April 14, 2004
2130-04-20085
U.S. Nuclear Regulatory Commission

Attn: Document Control Desk
Washington, DC 20555
Oyster Creek Generating Station
Facility Operating License No. DPR-16
NRC Docket No. 50-219

Subject: Submittal of Preliminary Decommissioning Cost Estimate

In accordance with $10 \mathrm{CFR} 50.75(\mathrm{f})(2)$, "Reporting and recordkeeping for decommissioning planning," paragraph $(f)(2)$, "each power reactor licensee shall at or about 5 years prior to the projected end of operations submit a preliminary decommissioning cost estimate which includes an up-to-date assessment of the major factors that could affect the cost to decommission." Accordingly, attached is a preliminary decommissioning cost estimate for Oyster Creek Generating Station (OCGS). Although OCGS will be seeking license renewal, this cost estimate is being submitted since the facility operating license for OCGS currently expires on April 9, 2009.

If you have any questions or require additional information, please contact Mr. Tom Looms at 610-765-5510.

Very truly yours,

Attachment 1 - Oyster Creek Generating Station Decommissioning Cost Analysis
cc: H. J. Miller, Administrator, USNRC, Region I
R. J. Summers, USNRC Senior Resident Inspector, OCGS
P. S. Tam, Senior Project Manager, USNRC

File No. 03035

ATTACHMENT 1 OYSTER CREEK GENERATING STATION
 DECOMMISSIONING COST ESTIMATE

DECOMMISSIONING COST ANALYSIS

for the
OYSTER CREEK NUCLEAR GENERATING STATION

prepared for
AmerGen Energy, LLC
prepared by

TLG Services, Inc.
Bridgewater, Connecticut

APPROVALS

President/
 Quality Assurance Manager

Project Manager

Project Engineer

Technical Manager

$\frac{3 / 22 / 04}{\text { Date }}$

TABLE OF CONTENTS

SECTION PAGE
EXECUTIVE SUMMARY vii-xvi

1. INTRODUCTION 1-1
1.1 Objectives of Study 1-1
1.2 Site Description 1-1
1.3 Regulatory Guidance $1-2$
1.3.1 Nuclear Waste Policy Act 1-4
1.3.2 Low-Level Radioactive Waste Acts 1-6
1.3.3 Radiological Criteria for License Termination 1-6
2. DECOMMISSIONING ALTERNATIVES 2-1
2.1 DECON 2-2
2.1.1 Period 1 - Preparations 2-2
2.1.2 Period 2 - Decommissioning Operations 2-4
2.1.3 Period 3 - Site Restoration $2-8$
2.1.4 ISFSI Operations and Decommissioning 2-9
2.2 SAFSTOR AND DELAYED DECOMMISSIONING 2-9
2.2.1 Period 1 - Preparations 2-10
2.2.2 Period 2 - Dormancy 2-11
2.2.3 Periods 3 and 4 - Delayed Decommissioning 2-12
2.2.4 Period 5 - Site Restoration 2-14
3. COST ESTIMATE 3-1
3.1 Basis of Estimate 3-1
3.2 Methodology 3-1
3.3 Financial Components of the Cost Model 3-3
3.3.1 Contingency 3-3
3.3.2 Financial Risk 3-5
3.4 Site-Specific Considerations 3-7
3.4.1 Spent Fuel Management 3-7
3.4.2 Reactor Vessel and Internal Components 3-10
3.4.3 Primary System Components 3-11
3.4.4 Main Turbine and Condenser 3-12
3.4.5 Transportation Methods 3-12
3.4.6 Low-Level Radioactive Waste Disposal 3-13
3.4.7 Site Conditions Following Decommissioning 3-13

TABLE OF CONTENTS (continued)

SECTION PAGE
3.5 Assumptions 3-14
3.5.1 Estimating Basis 3-14
3.5.2 Labor Costs 3-14
3.5.3 Design Conditions $3-15$
3.5.4 General 3-15
3.6 Cost Estimate Summary 3-17
4. SCHEDULE ESTIMATE 4-1
4.1 Schedule Estimate Assumptions 4-1
4.2 Project Schedule 4.2
5. RADIOACTIVE WASTES 5-1
6. RESULTS 6.1
7. REFERENCES 7-1
TABLES
Summary of Decommissioning Cost Elements, DECON xiv
Summary of Decommissioning Cost Elements, Delayed DECON xv
Summary of Decommissioning Cost Elements, SAFSTOR xvi
3.1 Schedule of Annual Expenditures, DECON 3.18
3.2 Schedule of Annual Expenditures, Delayed DECON 3-19
3.3 Schedule of Annual Expenditures, SAFSTOR $3-20$
5.1 Decommissioning Waste Summary, DECON 5-3
5.2 Decommissioning Waste Summary, Delayed DECON. 5-4
5.3 Decommissioning Waste Summary, SAFSTOR 5-5
6.1 Summary of Decommissioning Cost Elements, DECON 6-4
6.2 Summary of Decommissioning Cost Elements, Delayed DECON 6-5
6.3 Summary of Decommissioning Cost Elements, SAFSTOR 6-6

TABLE OF CONTENTS (continued)

SECTION PAGE
FIGURES
4.1 Activity Schedule 4-3
4.2 Decommissioning Timeline, DECON 4-5
4.3 Decommissioning Timeline, Delayed DECON 4-6
4.4 Decommissioning Timeline, SAFSTOR 4-7
APPENDICES
A. Unit Cost Factor Development A-1
B. Unit Cost Factor Listing B-1
C. Detailed Cost Analyses, DECON C-1
D. Detailed Cost Analyses, Delayed DECON D-1
E. Detailed Cost Analyses, SAFSTOR E-1
F. Work Difficulty Factor Adjustments F-1
G. Work Area Designation - GPU STN Index G-1

REVISION LOG

EXECUTIVE SUMMARY

This report presents estimates of the cost to decommission the Oyster Creek Nuclear Generating Station (Oyster Creek) for the selected decommissioning scenarios following the scheduled cessation of plant operations. The analysis relies upon site-specific, technical information, originally developed in an evaluation for the GPU Nuclear Corporation in 1997-99, ${ }^{[1]}$ updated to reflect current assumptions pertaining to the disposition of the nuclear unit and relevant industry experience in undertaking such projects. The updated estimates are designed to provide AmerGen Energy with sufficient information to assess their financial obligations, as they pertain to the eventual decommissioning of the nuclear unit.

The primary goal of the decommissioning is the removal and disposal of the contaminated systems and structures so that the plant's operating license can be terminated. The analysis recognizes that spent fuel will be stored at the site in the plant's storage pool and/or in an independent spent fuel storage installation (ISFSI) until such time that it can transferred to a U.S. Department of Energy (DOE) facility. Consequently, the estimates also include those costs to manage and subsequently decommission these storage facilities.

The estimates are based on numerous fundamental assumptions, including regulatory requirements, project contingencies, low-level radioactive waste disposal practices, high-level radioactive waste management options, and site restoration requirements. The estimates incorporate a minimum cooling period of approximately $51 / 2$ years for the spent fuel that resides in the storage pool when operations cease. In two of the scenarios evaluated, any residual fuel remaining in the pool after the $51 / 2$-year period is relocated to the ISFSI to await transfer to a DOE facility (the fuel is assumed to remain in the storage pool for the third scenario). The estimates also include the dismantling of non-essential structures and limited restoration of the site.

Alternatives and Regulations

The Nuclear Regulatory Commission (NRC or Commission) provided initial decommissioning requirements in its rule adopted on June 27, 1988. ${ }^{[2]}$ In this rule, the NRC set forth financial criteria for decommissioning licensed nuclear power facilities. The regulations addressed planning needs, timing, funding methods, and

[^0]
TLG Services, Inc.

environmental review requirements for decommissioning. The rule also defined three decommissioning alternatives as being acceptable to the NRC: DECON, SAFSTOR, and ENTOMB.

DECON is defined as "the alternative in which the equipment, structures, and portions of a facility and site containing radioactive contaminants are removed or decontaminated to a level that permits the property to be released for unrestricted use shortly after cessation of operations. "[3]

SAFSTOR is defined as "the alternative in which the nuclear facility is placed and maintained in a condition that allows the nuclear facility to be safely stored and subsequently decontaminated (deferred decontamination) to levels that permit release for unrestricted use." $[4]$ Decommissioning is to be completed within 60 years, although longer time periods will be considered when necessary to protect public health and safety.

ENTOMB is defined as "the alternative 'in which radioactive contaminants are encased in a structurally long-lived material, such as concrete; the entombed structure is appropriately maintained and continued surveillance is carried out until the radioactive material decays to a level permitting unrestricted release of the property."[5] As with the SAFSTOR alternative, decommissioning is currently required to be completed within 60 years.

The 60 -year restriction has limited the practicality of the ENTOMB alternative at commercial reactors that generate significant amounts of long-lived radioactive material. In 1997, the Commission directed its staff to re-evaluate this alternative and identify the technical requirements and regulatory actions that would be necessary for entombment to become a viable option. The resulting evaluation provided several recommendations, however, rulemaking has been deferred pending the completion of additional research studies, e.g., on engineered barriers.

In 1996, the NRC published revisions to the general requirements for decommissioning nuclear power plants to clarify ambiguities and codify procedures and terminology as a means of enhancing efficiency and uniformity in the decommissioning process.[6] The amendments allow for greater public participation

3 Ibid. Page FR24022, Column 3.
4 Ibid.
$5 \quad$ Ibid. Page FR24023, Column 2.
6 U.S. Code of Federal Regulations, Title 10, Parts 2, 50, and 51, "Decommissioning of Nuclear
and better define the transition process from operations to decommissioning. Regulatory Guide 1.184, issued in July 2000, further described the methods and procedures acceptable to the NRC staff for implementing the requirements of the 1996 revised rule relating to the initial activities and major phases of the decommissioning process. The costs and schedules presented in this analysis follow the general guidance and processes described in the amended regulations.

Decommissioning Scenarios for Oyster Creek

Three decommissioning scenarios are evaluated for the nuclear unit. The scenarios selected are representative of alternatives available to the owner and are defined as follows:

1. DECON: The operating license expires in April 2009. The first scenario assumes that the total duration of the physical dismantling process is minimized. The existing ISFSI is expanded to accommodate any residual spent fuel remaining from plant operations so as to facilitate the decontamination and dismantling of the power block structures. Spent fuel storage operations continue at the site until the transfer of the fuel to the DOE is complete, assumed to be in the year 2027.
2. Delayed DECON: In the second scenario, the unit is prepared for an abbreviated period of storage. The spent fuel discharged to the storage pool, once operations cease, remains in the pool until it can be transferred to a DOE facility, i.e., the ISFSI is not used to offload the pool. Decommissioning is delayed until the transfer of the fuel to the DOE is complete, i.e., in the year 2027. The unit is then decommissioned.
3. SAFSTOR: The unit is placed into safe-storage in the third scenario. However, decommissioning is deferred beyond the fuel storage period to the maximum extent possible; termination of the license would conclude within the maximum required 60 -year period. Spent fuel remaining in the spent fuel storage pool after a minimum cooling period of $51 / 2$ years is transferred to the ISFSI for interim storage until the transfer of the fuel to the DOE is complete, assumed to be in the year 2027.

[^1] seq.), July 29, 1996.

Methodology

The methodology used to develop the estimate described within this document follows the basic approach originally presented in the cost estimating guidelines ${ }^{[7]}$ developed by the Atomic Industrial Forum (now Nuclear Energy Institute). This reference describes a unit factor method for determining decommissioning activity costs. The unit factors used in this analysis incorporate site-specific costs and the latest available information on worker productivity in decommissioning.

An activity duration critical path is used to determine the total decommissioning program schedule. The schedule is relied upon in calculating the carrying costs, which include program management, administration, field engineering, equipment rental, and support services such as quality control and security. This systematic approach for assembling decommissioning estimates ensures a high degree of confidence in the reliability of the resulting cost estimate.

Contingency

Consistent with cost estimating practice, contingencies are applied to the decontamination and dismantling costs developed as "specific provision for unforeseeable elements of cost within the defined project scope, particularly important where previous experience relating estimates and actual costs has shown that unforeseeable events which will increase costs are likely to occur." ${ }^{[8]}$ The cost elements in the estimates are based on ideal conditions; therefore, the types of unforeseeable events that are almost certain to occur in decommissioning, based on industry experience, are addressed through a percentage contingency applied on a line-item basis. This contingency factor is a nearly universal element in all large-scale construction and demolition projects. It should be noted that contingency, as used in this analysis, does not account for price escalation and inflation in the cost of decommissioning over the remaining operating life of the station.

The use and role of contingency within decommissioning estimates is not a safety factor issue. Safety factors provide additional security and address situations that may never occur. Contingency funds, by contrast, are expected to be fully expended throughout the program. Inclusion of contingency is necessary to provide assurance that sufficient funding will be available to accomplish the intended tasks.

[^2]
Low-Level Radioactive Waste Disposal

The contaminated and activated material generated in the decontamination and dismantling of a commercial nuclear reactor is classified as low-level (radioactive) waste, although not all of the material is suitable for "shallow-land" disposal. With the passage of the "Low-Level Radioactive Waste Policy Act" in 1980, ${ }^{[9]}$ and its Amendments of $1985,{ }^{[10]}$ the states became ultimately responsible for the disposition of low-level radioactive waste generated within their own borders.

New Jersey is a member of the three-state Atlantic Interstate Low-Level Radioactive Waste Management Compact, formed after New Jersey formally joined the Northeast Regional Compact. The Barnwell Low-Level Radioactive Waste Management Facility, located in South Carolina, is expected to be available to support the decommissioning of Oyster Creek. It is also assumed that AmerGen Energy can access other disposal sites should it prove cost-effective. As such, rate schedules for both the Barnwell and the Envirocare facility in Utah are used to generate disposal costs.

High-Level Radioactive Waste Management

Congress passed the "Nuclear Waste Policy Act" ${ }^{[1]]}$ (NWPA) in 1982, assigning the responsibility for disposal of the spent nuclear fuel created by the commercial nuclear generating plants to the DOE. Two permanent disposal facilities were envisioned, as well as an interim storage facility. To recover the cost, the legislation created a Nuclear Waste Fund through which money is collected from the sale of electricity generated by the power plants. The NWPA, along with the individual disposal contracts with the utilities, specified that the DOE was to begin accepting spent fuel by January 31, 1998.

Since the original legislation, the DOE has announced several delays in the program schedule. By January 1998, the DOE had failed to initiate the disposal of spent nuclear fuel and high level waste, as required by the NWPA and the utility contracts. As a result, utilities have initiated legal action against the DOE. While legal actions continue, the DOE has no plans to receive spent fuel prior to completing the construction of its geologic repository.

Operation of DOE's yet-to-be constructed repository is contingent upon the review and approval of the facility's license application by the NRC, the successful resolution of pending litigation, and the development of a national transportation system. By

[^3]
TLG Services, Inc.

comparison, the Private Fuel Storage consortium submitted an application for an interim storage facility in 1997. To date, the Atomic Safety and Licensing Board has issued only a partial ruling on one of several issues that need to be resolved prior to the NRC issuing a license for the facility. With a more technically complex and politically sensitive application for permanent disposal, it is not unreasonable to expect that the NRC's approval to construct the repository at Yucca Mountain would require at least as long a'review period. Construction would therefore begin sometime around the year 2010, at the earliest. The DOE has no plans for receiving spent fuel from commercial nuclear plant sites prior to this date and startup operations may be phased in, creating additional delays. For estimating purposes, AmerGen Energy has assumed that the high-level waste repository, or some interim storage facility, will be fully operational by 2015 . This timetable is consistent with the findings of an evaluation recently issued to Congress by the Government Accounting Office. ${ }^{[12]}$

The NRC requires that licensees establish a program to manage and provide funding for the caretaking of all irradiated fuel at the reactor site until title of the fuel is transferred to the DOE. ${ }^{[13]}$ Interim storage of the fuel, until the DOE has completed the transfer, will be in the storage pool and/or an ISFSI located on the Oyster Creek site.

The ISFSI, which is independently licensed and operated, will be expanded to support decommissioning operations. For the DECON and SAFSTOR scenarios, the facility is sized to accommodate the inventory of spent fuel residing in the plant's storage pool at the conclusion of the required cooling period. Once emptied, the reactor building can be either decontaminated and dismantled, or prepared for long-term storage. In the Delayed DECON scenario, the existing ISFSI and storage pool remain operational and are used for the interim storage of the fuel until such time that the DOE can complete the transfer.

The DOE's generator allocation/receipt schedules are based upon the oldest fuel receiving the highest priority. Given this scenario and an anticipated rate of transfer, spent fuel is projected to remain at the site for approximately 19 years after the cessation of operations. Consequently, costs are included within the estimates for the long-term caretaking of the spent fuel at the Oyster Creek site until the year 2027.

[^4]
TLG Services, Inc.

Site Restoration

The efficient removal of the contaminated materials at the site may result in damage to many of the site structures. Blasting, coring, drilling, and the other decontamination activities will substantially damage power block structures, potentially weakening the footings and structural supports. Prompt demolition once the license is terminated is clearly the most appropriate and cost-effective option. It is unreasonable to anticipate that these structures would be repaired and preserved after the radiological contamination is removed. The cost to dismantle site structures with a work force already mobilized is more efficient and less costly than if the process were deferred. Experience at shutdown generating stations has shown that plant facilities quickly degrade without maintenance, adding additional expense and creating potential hazards to the public and the demolition work force. Consequently, this analysis assumes that non-essential site structures within the restricted access area are removed to a nominal depth of three feet below the local grade level wherever possible. The site is then backfilled, graded and stabilized.

Summary

The costs to decommission Oyster Creek are evaluated for several decommissioning scenarios, incorporating both the DECON and SAFSTOR decommissioning alternatives. Regardless of the timing of the decommissioning activities, the estimates assume the eventual removal of all the contaminated and activated plant components and structural materials, such that the facility operator may then have unrestricted use of the site with no further requirement for an operating license. Delayed decommissioning (Delayed DECON) is initiated after the spent fuel has been removed from the site and is accomplished within the 60 -year period required by current NRC regulations. In the interim, the spent fuel remains in storage at the site until such time that the transfer to a DOE facility can be completed. Once the transfer is complete, the storage facilities are also decommissioned.

The scenarios analyzed for the purpose of generating the estimates are described in Section 2. The assumptions are presented in Section 3, along with schedules of annual expenditures. The major cost contributors are identified in Section 6, with detailed activity costs, waste volumes, and associated manpower requirements delineated in Appendices C, D, and E. Cost summaries for the various scenarios are provided at the end of this section for the major cost components.

SUMMARY OF DECOMMISSIONING COST ELEMENTS
 DECON

(Thousands of 2003 Dollars)
Activity Total
Decontamination 14,149
Removal 106,014
Packaging 12,406
Transportation 5,561
Waste Disposal 96,915
Off-site Waste Processing 36,757
Program Management [1] 236,572
Spent Fuel Pool Isolation 9,332
ISFSI Related (non-operating) 81,723
Insurance and Regulatory Fees 18,601
Energy 4,095
Characterization'and Licensing Surveys 10,191
Property Taxes 20,638
Miscellaneous Equipment 5,998
Site O\&M 5,526
Total ${ }^{[2]}$ 664,477
NRC License Termination 480,331
Spent Fuel Management 141,648
Site Restoration 42,498

SUMMARY OF DECOMMISSIONING COST ELEMENTS DELAYED DECON
 (Thousands of 2003 Dollars)

Activity Total
Decontamination 18,113
Removal 95,991
Packaging 8,829
Transportation 4,258
Waste Disposal 58,593
Off-site Waste Processing 43,866
Program Management [1] 261,672
Spent Fuel Pool Isolation 9,332
ISFSI Related (non-operating) 38,655
Insurance and Regulatory Fees 31,133
Energy 11,808
Characterization and Licensing Surveys 11,524
Property Taxes 25,513
Miscellaneous Equipment 9,183
Site O\&M 6,798
Total [2] 635,270
NRC License Termination 414,583
Spent Fuel Management 175,539
Site Restoration 45,148
${ }^{[1]}$ Includes engineering and security${ }^{12]}$ Columns may not add due to rounding

SUMMARY OF DECOMMISSIONING COST ELEMENTS SAFSTOR
 (Thousands of 2003 Dollars)

Activity Total
Decontamination 18,035
Removal 99,217
Packaging 8,949
Transportation 4,282
Waste Disposal 56,405
Off-site Waste Processing 43,468
Program Management ${ }^{[1]}$ 343,367
Spent Fuel Pool Isolation 9,332
ISFSI Related (non-operating) 77,603
Insurance and Regulatory Fees 69,823
Energy 8,933
Characterization and Licensing Surveys 11,524
Property Taxes 67,209
Miscellaneous Equipment 16,269
Site O\&M 17,696
Total [2] 852,113
NRC License Termination 610,009
Spent Fuel Management 196,982
Site Restoration 45,122
${ }^{[1]}$ Includes engineering and security
${ }^{12]}$ Columns may not add due to rounding

1. INTRODUCTION '

This report presents estimates of the cost to decommission the Oyster Creek Nuclear Generating Station (Oyster Creek) for the scenarios described in Section 2, following a scheduled cessation of plant operations. The analysis is designed to provide AmerGen Energy with sufficient information to assess its financial obligations, as they pertain to the eventual decommissioning of the nuclear unit. It is not a detailed engineering document, but a financial analysis prepared in advance of the detailed engineering that will be required to carry out the decommissioning.

1.1 OBJECTIVES OF STUDY

The objectives of this study are to prepare comprehensive estimates of the cost to decommission Oyster Creek, to provide a sequence or schedule for the associated activities, and to develop waste stream projections from the decontamination and dismantling activities. For the purposes of this study, the shutdown date was taken as April 9, 2009, the expiration date of the current operating license.

1.2 SITE DESCRIPTION

The Oyster Creek nuclear unit is about two miles inland from the shore of Barnegat Bay on the coast of New Jersey. The site is approximately nine miles south of Toms River, New Jersey; about fifty miles east of Philadelphia, Pennsylvania; and sixty miles south of Newark, New Jersey. The generating station is comprised of a single reactor with supporting facilities.

Oyster Creek was designed and constructed by the General Electric Company Atomic Power Equipment Department as a turnkey project. The reactor is a single-cycle, forced circulation boiling water reactor producing steam for direct use in the steam turbine. The reactor vessel and the recirculation system are contained within the drywell of a pressure absorption containment system housed within the reactor building. The primary containment system consists of the drywell, vent pipes, and a pool of water contained in the absorption chamber (torus). The reactor building encloses the primary containment system, thereby providing a secondary containment.

Oyster Creek presently operates under a full term operating license at a maximum thermal power level of about 1930 MWth with a corresponding
gross electrical output of approximately 670 MWe . Heat produced in the reactor is converted to electrical energy by the steam and power conversion system. A turbine-generator system converts the thermal energy of steam produced by the reactor into mechanical shaft power and then into electrical energy. The turbine consists of a high-pressure, double-flow turbine element and three double-flow, low-pressure turbine elements all aligned in tandem. The generator is a direct-driven 60 cycle, 24,000 volt, conductor-cooled, synchronous generator rated at $640,700 \mathrm{~kW}$. The turbine is operated in a closed feedwater cycle which condenses the steam; the heated feedwater is returned to the reactor. Heat rejected in the main condensers is removed by the circulating water system.

The circulating water system provides the heat sink required for removal of waste heat in the power plant's thermal cycle. Water is drawn from Barnegat Bay through a 140 foot wide intake canal which follows the general course of the south branch of Forked River. The system has the principal function of removing heat by absorbing this energy in the main condenser. After passing through the plant condensers, the water is routed through the discharge canal which empties into Barnegat Bay.

1.3 REGULATORY GUIDANCE

The Nuclear Regulatory Commission (NRC or Commission) provided initial decommissioning requirements in its rule "General Requirements for Decommissioning Nuclear Facilities," issued in June 1988. ${ }^{[1]}$ This rule set forth financial criteria for decommissioning licensed nuclear power facilities. The regulation addressed decommissioning planning needs, timing, funding methods, and environmental review requirements. The intent of the rule was to ensure that decommissioning would be accomplished in a safe and timely manner and that adequate funds would be available for this purpose. Subsequent to the rule, the NRC issued Regulatory Guide 1.159, "Assuring the Availability of Funds for Decommissioning Nuclear Reactors," ${ }^{[2]}$ which provided additional guidance to the licensees of nuclear facilities on the financial methods acceptable to the NRC staff for complying with the requirements of the rule. The regulatory guide addressed the funding requirements and provided guidance on the content and form of the financial assurance mechanisms indicated in the rule.

The rule defined three decommissioning alternatives as being acceptable to the NRC: DECON, SAFSTOR, and ENTOMB. The DECON alternative, the option evaluated for this analysis, assumes that any contaminated or activated portion of the plant's systems, structures, and facilities are removed
or decontaminated to levels that permit the site to be released for unrestricted use shortly after the cessation of plant operations. The rule also placed limits on the time allowed to complete the decommissioning process. For SAFSTOR, the process is restricted in overall duration to 60 years, unless it can be shown that a longer duration is necessary to protect public health and safety. The guidelines for ENTOMB are similar, providing the NRC with both sufficient leverage and flexibility to ensure that these deferred options are only, used in situations where it is reasonable and consistent with the definition of decommissioning. At the conclusion of a $60-$ year dormancy period (or longer for ENTOMB if the NRC approves such a case), the site would still require significant remediation to meet the unrestricted release limits for license termination.

The ENTOMB alternative has not been viewed as a viable option for power reactors due to the significant time required to isolate the long-lived radionuclides for decay to permissible levels. However, with recent rulemaking permitting the controlled release of a site, the NRC has reevaluated this alternative. ${ }^{[3]}$ The resulting feasibility study, based upon an assessment by Pacific Northwest National Laboratory, concluded that the method did have conditional merit for some, if not most, reactors. However, the staff also found that additional rulemaking would be needed before this option could be treated as a generic alternative. The NRC had considered rulemaking to alter the 60-year time for completing decommissioning and to clarify the use of engineered barriers for reactor entombments.[4] However, the staff has recently recommended that rulemaking be deferred, based upon several factors, e.g., no licensee has committed to pursuing the entombment option, the unresolved issues associated with the disposition of greater-thanClass C material (GTCC), and the NRC's current priorities, at least until after the additional research studies are complete. The Commission has concurred with the staff's recommendation.

The NRC published revisions to the general requirements for decommissioning nuclear power plants in 1996. ${ }^{[5]}$ When the regulations were adopted in 1988, it was assumed that the majority of licensees would decommission at the end of the facility's operating licensed life. Since that time, several licensees permanently and prematurely ceased operations. Exemptions from certain operating requirements were required once the reactor was defueled to facilitate the decommissioning. Each case was handled individually, without clearly defined generic requirements. The NRC amended the decommissioning regulations in 1996 to clarify ambiguities and codify procedures and terminology as a means of enhancing efficiency and uniformity in the decommissioning process. The new amendments allow for
greater public participation and better define the transition process from operations to decommissioning.

Under the revised regulations, licensees will submit written certification to the NRC within 30 days after the decision to cease operations. Certification will also be required once the fuel is permanently removed from the reactor vessel. Submittal of these notices will entitle the licensee to a fee reduction and eliminate the obligation to follow certain requirements needed only during operation of the reactor. Within two years of submitting notice of permanent cessation of operations, the licensee is required to submit a PostShutdown Decommissioning Activities Report (PSDAR) to the NRC. The PSDAR describes the planned decommissioning activities, the associated sequence and schedule, and an estimate of expected costs. Prior to completing decommissioning, the licensee is required to submit an application to the NRC to terminate the license, which will include a License Termination Plan (LTP).

1.3.1 Nuclear Waste Policy Act.

Congress passed the Nuclear Waste Policy Act ${ }^{[6]}$ (NWPA) in 1982, assigning the responsibility for disposal of the spent nuclear fuel created by the commercial nuclear generating plants to the U.S. Department of Energy (DOE). Two permanent disposal facilities and an interim storage facility were envisioned. To recover the cost, the legislation created a Nuclear Waste Fund through which money is collected from the sale of electricity generated by the power plants. The NWPA, along with the individual disposal contracts with the utilities, specified that the DOE was to begin accepting spent fuel by January 31, 1998.

After pursuing a national site selection process, the NWPA was amended in 1987 to designate Yucca Mountain, Nevada, as the only site to be evaluated for geologic disposal of high-level waste. Also in 1987, the DOE announced a five-year delay (1998 to 2003) in the opening date for the repository. Two years later, in 1989, an additional seven-year delay was announced, primarily due to problems in obtaining the permits necessary from the State of Nevada to perform the required characterization of the site.

Generators have responded to this impasse by initiating legal action and constructing supplemental storage as a means of maintaining necessary operating margins. In an August 2000 ruling, ${ }^{[7]}$ the U.S.

Court of Appeals for the Federal Circuit reaffirmed the utility position that DOE had breached its contractual obligation. Legal actions with the DOE continue; however, the DOE's position has remained unchanged. The agency continues to maintain that its delayed performance is unavoidable because it does not have an operational repository and does not have authority to provide storage in the interim: Consequently the DOE has no plans to receive spent fuel from the commercial reactors until the repository is operational.

The NRC requires that licensees establish a program to manage and provide funding for the management of all irradiated fuel at the reactor until title of the fuel is transferred to the Secretary of Energy, pursuant to Title 10 of the Code of Federal Regulations (10 CFR), §50.54 (bb). ${ }^{[8]}$ This funding requirement is fulfilled through inclusion of certain high-level waste cost elements in the decommissioning estimates, as identified in Section 3.

An independent spent fuel storage installation (ISFSI) is currently operational at the site to provide supplement fuel storage. In two of the scenarios evaluated, the ISFSI is expanded to accommodate the inventory of spent fuel residing in the plant's storage pool at the conclusion of the required cooling period. Once emptied, the reactor building can be either decontaminated and dismantled or prepared for long-term storage. In the Delayed DECON scenario, the storage pool remains operational and is used for the interim storage of the fuel. The ISFSI remains operational; however, it is not used to offload the pool. Both facilities are maintained until such time that the DOE can complete the transfer.

For estimating purposes, the DOE is assumed to initiate spent fuel receipt in the year 2015. The DOE's generator allocation/receipt schedules are based upon the oldest fuel receiving the highest priority. Given this scenario and an anticipated rate of transfer, spent fuel is projected to remain at the site for almost 19 years after the cessation of operations. Consequently, costs are included within the analysis for the continued operation of the storage pool and the expansion of the ISFSI, as required, and for the long-term caretaking of the spent fuel at the site until the year 2027.
[This evaluation is prepared without prejudice to the rights of AmerGen Energy to pursue legal and contractual remedies from the DOE in light of recent court decisions.]

1.3.2 Low-Level Radioactive Waste Acts

The contaminated and activated material generated in the decontamination and dismantling of a commercial nuclear reactor is classified as low-level (radioactive) waste, although not all of the material is suitable for "shallow-land" disposal. Congress passed the "Low-Level Radioactive Waste Policy Act" in 1980, ${ }^{[9]}$ declaring the states as being ultimately responsible for the disposition of low-level radioactive waste generated within their own borders. The federal law encouraged the formation of regional groups or compacts to implement this objective safely, efficiently, and economically, and set a target date of 1986 for implementation. After little progress, the "Low-Level Radioactive Waste Policy Amendments Act of 1985," $[10]$ extended the implementation schedule, with specific milestones and stiff sanctions for non-compliance. However, to date, no new compact facilities have been successfully sited, licensed, and constructed.

New Jersey is a member of the three-state Atlantic Interstate Low-Level Radioactive Waste Management Compact, formed after New Jersey formally joined the Northeast Regional Compact. The Barnwell LowLevel Radioactive Waste Management Facility, located in South Carolina, is expected to be available to support the decommissioning of Oyster Creek. It is also assumed that AmerGen Energy can access other disposal sites should it prove cost-effective. As such, rate schedules for both the Barnwell and the Envirocare facility in Utah are used to generate disposal costs.

1.3.3 Radiological Criteria for License Termination

In 1997, the NRC published Subpart E, "Radiological Criteria for License Termination," ${ }^{[11]}$ amending 10 CFR §20. This subpart provides radiological criteria for releasing a facility for unrestricted use. The regulation states that the site can be released for unrestricted use if radioactivity levels are such that the average member of a critical group would not receive a Total Effective Dose Equivalent (TEDE) in excess of 25 millirem per year, and provided that residual radioactivity has been reduced to levels that are As Low As Reasonably Achievable (ALARA). The decommissioning estimates for Oyster Creek assume that the site will be remediated to a residual level consistent with the NRC-prescribed level.

It should be noted that the NRC and the Environmental Protection Agency (EPA) differ on the amount of residual radioactivity considered acceptable in site remediation. The EPA has two limits that apply to radioactive materials. An EPA limit of 15 millirem per year is derived from criteria established by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund). [12] An additional limit of 4 millirem per year, as defined in 40 CFR §141.16, is applied to drinking water. ${ }^{[13]}$

On October 9, 2002, the NRC signed an agreement with the EPA on the radiological decommissioning and decontamination of NRClicensed sites. The Memorandum of Understanding (MOU) [14] provides that EPA will defer exercise of authority under CERCLA for the majority of facilities decommissioned under NRC authority. The MOU also includes provisions for NRC and EPA consultation for certain sites when, at the time of license termination, (1) groundwater contamination exceeds EPA-permitted levels; (2) NRC contemplates restricted release of the site; and/or (3) residual radioactive soil concentrations exceed levels defined in the MOU.

The MOU does not impose any new requirements on NRC licensees and should reduce the involvement of the EPA with NRC licensees who are decommissioning. Most sites are expected to meet the NRC criteria for unrestricted use, and the NRC believes that only a few sites will have groundwater or soil contamination in excess of the levels specified in the MOU that trigger consultation with the EPA. However, if there are other hazardous materials on the site, the EPA may be involved in the cleanup. As such, the possibility of dual regulation remains for certain licensees. The present study does not include any costs for this occurrence.

2. DECOMMISSIONING ALTERNATIVES

Detailed cost estimates were developed to decommission Oyster Creek utilizing a combination of the approved decommissioning alternatives: DECON and SAFS,TOR. Although the alternatives differ with respect to technique, process, cost, and schedule, they attain the same result: the ultimate release of the site for unrestricted use.

Three decommissioning scenarios were evaluated for the nuclear unit. The scenarios selected are representative of alternatives available to the owner and are defined as follows:

1. DECON: The operating license expires in April 2009. The first scenario assumes that the total duration of the physical dismantling process is minimized. The existing ISFSI is expanded to accommodate any residual spent fuel remaining from plant operations so as to facilitate the decontamination and dismantling of the power block structures. Spent fuel storage operations continue at the site until the transfer of fuel to the DOE is complete, assumed to be in the year 2027.
2. Delayed DECON: In the second scenario, the unit is prepared for an abbreviated period of storage. The spent fuel discharged to the storage pool, once operations cease, remains in the pool until it can be transferred to a DOE facility, i.e., an ISFSI is not used to offload the pool. Decommissioning is delayed until the transfer of the fuel to the DOE is complete, i.e., in the year 2027. The unit is then decommissioned.
3. SAFSTOR: The unit is placed into safe-storage in the third scenario. However, decommissioning is deferred beyond the fuel storage period to the maximum extent possible; termination of the license would conclude within the maximum required 60 -year period. Spent fuel remaining in the spent fuel storage pool after a minimum cooling period of $51 / 2$ years is transferred to the ISFSI for interim storage.

The following sections describe the basic activities associated with each alternative. Although detailed procedures for each activity identified are not provided, and the actual sequence of work may vary, the activity descriptions provide a basis not only for estimating but also for the expected scope of work, i.e., engineering and planning at the time of decommissioning.

The conceptual approach that the NRC has described in its regulations divides decommissioning into three phases. The initial phase commences with the effective date of permanent cessation of operations and involves the transition of both plant
and licensee from reactor operations (i.e., power production) to facility de-activation and closure. During the first phase, notification is to be provided to the NRC certifying the permanent cessation of operations and the removal of fuel from the reactor vessel. The licensee would then be prohibited from reactor operation.

The second phase encompasses activities during the storage period or during major decommissioning activities, or a combination of the two. The third phase pertains to the activities involved in license termination. The decommissioning estimates developed for Oyster Creek are also divided into phases or periods; however, demarcation of the phases is based upon major milestones within the project or significant changes in the projected expenditures.

2.1 DECON

The DECON alternative, as defined by the NRC, is "the alternative in which the equipment, structures, and portions of a facility and site containing radioactive contaminants are removed or decontaminated to a level that permits the property to be released for unrestricted use shortly after cessation of operations." This study does not address the cost to dispose of the spent fuel residing at the site; such costs are funded through a surcharge on electrical generation. However, the study does estimate the costs incurred with the interim on-site storage of the fuel pending shipment by the DOE to an off-site disposal facility.

2.1.1 Period 1 - Preparations

In anticipation of the cessation of plant operations, detailed preparations are undertaken to provide a smooth transition from plant operations to site decommissioning. Through implementation of a staffing transition plan, the organization required to manage the intended decommissioning activities is assembled from available plant staff and outside resources. Preparations include the planning for permanent defueling of the reactor, revision of technical specifications applicable to the operating conditions and requirements, a characterization of the facility and major components, and the development of the PSDAR.

Engineering and Planning

The PSDAR, required within two years of the notice to cease operations, provides a description of the licensee's planned decommissioning activities, a timetable, and the associated financial requirements of the intended decommissioning program. Upon receipt of the PSDAR, the

NRC will make the document available to the public for comment in a local hearing to be held in the vicinity of the reactor site. Ninety days following submittal and NRC receipt of the PSDAR, the licensee may begin to perform major decommissioning activities under a modified 10 CFR §50.59 procedure, i.e., without specific NRC approval. Major activities are defined as any activity that results in permanent removal of major radioactive components, permanently modifies the structure of the containment, or results in dismantling components (for shipment) containing GTCC, as defined by 10 CFR §61. Major components are further defined as comprising the reactor vessel and internals, large bore reactor recirculation system piping, and other large components that are radioactive. The NRC includes the following additional criteria for use of the $\$ 50.59$ process in decommissioning. The proposed activity must not:

- foreclose release of the site for possible unrestricted use,
- significantly increase decommissioning costs,
- cause any significant environmental impact, or
- violate the terms of the licensee's existing license.

Existing operational technical specifications are reviewed and modified to reflect plant conditions and the safety concerns associated with permanent cessation of operations. The environmental impact associated with the planned decommissioning activities is also considered. Typically, a licensee will not be allowed to proceed if the consequences of a particular decommissioning activity are greater than that bounded by previously evaluated environmental assessments or impact statements. In this instance, the licensee would have to submit a license amendment for the specific activity and update the environmental report.

The decommissioning program outlined in the PSDAR will be designed to accomplish the required tasks within the ALARA guidelines (as defined in $10 \mathrm{CFR} \S 20$) for protection of personnel from exposure to radiation hazards. It will also address the continued protection of the health and safety of the public and the environment during the dismantling activity. Consequently, with the development of the PSDAR, activity specifications, cost-benefit and safety analyses, work packages and procedures, would be assembled to support the proposed decontamination and dismantling activities.

Site Preparations

Following final plant shutdown, and in preparation for actual decommissioning activities, the following activities are initiated:

- Characterization of the site and surrounding environs. This includes radiation surveys of work areas, major components (including the reactor vessel and its internals), internal piping, and primary shield cores.
- Expansion of the existing ISFSI for the interim storage of spent fuel in wet storage.
- Isolation of the spent fuel storage pool and fuel handling systems, such that decommissioning operations can commence on the balance ' of the plant. The pool will remain operational for approximately $51 / 2$ years following the cessation of operations before the inventory resident at shutdown can be transferred to either the ISFSI or a DOE facility.
- Specification of transport and disposal requirements for activated materials and/or hazardous materials, including shielding and waste stabilization.
- Development of procedures for occupational exposure control, control and release of liquid and gaseous effluent, processing of radwaste (including dry-active waste, resins, filter media, metallic and nonmetallic components generated in decommissioning), site security and emergency programs, and industrial safety.

2.1.2 Period 2-Decommissioning Operations

This period includes the physical decommissioning activities associated with the removal and disposal of contaminated and activated components and structures, including the successful termination of the $10 \mathrm{CFR} \S 50$ operating license. Significant decommissioning activities in this phase include:

- Construction of temporary facilities and/or modification of existing facilities to support dismantling activities. This may include a centralized processing area to facilitate equipment removal and component preparations for off-site disposal.
- Reconfiguration and modification of site structures and facilities as needed to support decommissioning operations. This may include the upgrading of roads (on- and off-site) to facilitate hauling and transport. Modifications may be required to the containment structure to facilitate access of large/heavy equipment. Modifications may also be required to the refueling area of the building to support the segmentation of the reactor vessel internals and component extraction.
- Design and fabrication of temporary and permanent shielding to support removal and transportation activities, construction of contamination control envelopes, and the procurement of specialty tooling.
- Procurement (lease or purchase) of shipping canisters, cask liners, and industrial packages.
- Decontamination of components and piping systems as required to control (minimize) worker exposure.
- Removal of piping and components no longer essential to support decommissioning operations.
- Transfer of the steam separator and dryer assemblies to the dryerseparator pool for segmentation. Segmentation by weight and activity maximizes the loading of the shielded transport casks. The operations are conducted under water using remotely operated tooling and contamination controls.
- Disconnection of the control blades from the drives on the vessel lower head. Blades are transferred to the spent fuel pool for packaging.
- Disassembly, segmentation, and packaging of the core shroud and in-core guide tubes. Some of the material is expected to exceed Class C disposal requirements. As such, those segments are packaged in a modified fuel storage canister for geologic disposal.
- Removal and segmentation of the remaining internals including the fuel support castings and core plate assembly.
- Draining and decontamination of the reactor well and the permanent sealing of the spent fuel transfer gate. Install shielded platform for segmentation of reactor vessel. Cutting operations are performed in air using remotely operated equipment within a contamination control envelope, with the water level maintained just below the cut to minimize the working area dose rates. Sections are transferred to the dryer-separator pool for packaging and interim storage.
- Disconnection of the control rod drives and instrumentation tubes from reactor vessel lower head. The lower reactor head and vessel supporting structure are then' segmented.
- Removal of the reactor recirculation pumps. Exterior surfaces are decontaminated and openings covered. Components can serve as ' their own burial containers provided that all penetrations are properly sealed.
- Demolition of the sacrificial shield activated concrete by controlled demolition.
- Transfer of the spent fuel from the storage pool to the DOE and ISFSI pad for interim storage.

At least two years prior to the anticipated date of license termination, a LTP is required. Submitted as a supplement to the FSAR or its equivalent, the plan must include: a site characterization, description of the remaining dismantling activities, plans for site remediation, procedures for the final radiation survey, designation of the end use of the site, an updated cost estimate to complete the decommissioning, and any associated environmental concerns. The NRC will notice the receipt of the plan, make the plan available for public comment, and schedule a local hearing. LTP approval will be subject to any conditions and limitations as deemed appropriate by the Commission. The licensee may then commence with the final remediation of site facilities and services, including:

- Removal of remaining plant systems and associated components as they become nonessential to the decommissioning program or worker health and safety (e.g., waste collection and treatment systems, electrical power and ventilation systems).
- Removal of the steel liners from the drywell, disposing of the activated and contaminated sections as radioactive waste. Removal of any activated/contaminated concrete.
- Removal of the steel liners from the steam separator and dryer pool, reactor well, and spent fuel storage pools.
- Surveys of the decontaminated areas of the containment structure.
- Removal of the contaminated equipment and material from the turbine and radwaste buildings, and any other contaminated facility. Use radiation and contamination control techniques until radiation surveys indicate that the structures can be released for unrestricted access and conventional demolition. This activity may necessitate the dismantling and disposition of most of the systems and components (both clean and contaminated) located within these buildings. This activity will facilitate surface decontamination and subsequent verification surveys required prior to obtaining release for demolition.
- Routing of material removed in the decontamination and dismantling to a central processing area. Material certified to be free of contamination is released for unrestricted disposition, e.g., as scrap, recycle, or general disposal. Contaminated material is characterized and segregated for additional off-site processing (disassembly, chemical cleaning, volume reduction, and waste treatment), and/or packaged for controlled disposal at a low-level radioactive waste disposal facility.

Incorporated into the LTP is the Final Survey Plan. This plan identifies the radiological surveys to be performed once the decontamination activities are completed and is developed using the guidance provided in the "Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM)." ${ }^{15]}$ This document incorporates the statistical approaches to survey design and data interpretation used by the EPA. It also identifies state-of-the-art, commercially available instrumentation and procedures for conducting radiological surveys. Use of this guidance ensures that the surveys are conducted in a manner that provides a high degree of confidence that applicable NRC criteria are satisfied. Once the survey is complete, the results are provided to the NRC in a format that can be verified. The NRC then reviews and evaluates the information,
performs an independent confirmation of radiological site conditions, and makes a determination on final termination of the license.

The NRC will terminate the operating license if it determines that site remediation has been performed in accordance with the LTP, and that the terminal radiation survey and associated documentation demonstrate that the facility is suitable for release.

2.1.3 Period 3-Site Restoration

Following completion of decommissioning operations, site restoration activities will begin. Efficient removal of the contaminated materials and verification that residual radionuclide concentrations are below the NRC limits will result in substantial damage to many of the structures. Although performed in a controlled, safe manner, blasting, coring, drilling, scarification (surface removal), and the other decontamination activities will substantially degrade power block structures including the reactor and radwaste buildings. Under certain circumstances, verifying that subsurface radionuclide concentrations meet NRC site release requirements will require removal of grade slabs and lower floors, potentially weakening footings and structural supports. This removal activity will be necessary for those facilities and plant areas where historical records, when available, indicate the potential for radionuclides having been present in the soil, where system failures have been recorded, or where it is required to confirm that subsurface process and drain lines were not breached over the operating life of the station.

Prompt dismantling of site structures is clearly the most appropriate and cost-effective option. It is unreasonable to anticipate that these structures would be repaired and preserved after the radiological contamination is removed. The cost to dismantle site structures with a work force already mobilized on site is more efficient than if the process were deferred. Site facilities quickly degrade without maintenance, adding additional expense and creating potential hazards to the public as well as to future workers. Abandonment creates a breeding ground for vermin infestation as well as other biological hazards.

This cost study presumes that non-essential structures and site facilities are dismantled as a continuation of the decommissioning activity. Foundations and exterior walls are removed to a nominal depth of three feet below grade. The three-foot depth allows for the
placement of gravel for drainage, as well' as topsoil, so that vegetation can be established for erosion control. Site areas affected by the dismantling activities are restored and the plant area graded as required to prevent ponding and inhibit the refloating of subsurface materials.

Concrete rubble produced by demolition activities is processed to remove rebar and miscellaneous embedments. The processed material is then used on site to backfill voids. Excess materials are trucked to an off-site area for disposal as construction debris.

2.1.4 ISFSI Operations and Decommissioning

The ISFSI will continue to operate under a separate and independent license (10 CFR §72) following the termination of the $\S 50$ operating license. Assuming the DOE starts accepting fuel in 2015, transfer of spent fuel from Oyster Creek is anticipated to begin in 2025 and continue through the year 2027.

At the conclusion of the spent fuel transfer process, the ISFSI will be decommissioned. The Commission will terminate the $\S 72$ license if it determines that the remediation of the ISFSI has been performed in accordance with an ISFSI license termination plan and that the final radiation survey and associated documentation demonstrate that the facility is suitable for release. Once the requirements are satisfied, the NRC can terminate the license for the ISFSI.

The assumed design for the ISFSI is based upon the use of a multipurpose canister and a concrete overpack for pad storage. For purposes of this cost analysis, it is assumed that once the inner canisters containing the spent fuel assemblies have been removed, any required decontamination performed, and the license for the facility terminated, the modules can be dismantled using conventional techniques for the demolition of reinforced concrete. The concrete storage pad will then be removed, and the area graded and landscaped to conform to the surrounding environment.

2.2 SAFSTOR AND DELAYED DECOMMISSIONING

The NRC defines SAFSTOR as "the alternative in which the nuclear facility is placed and maintained in a condition that allows the nuclear facility to be safely stored and subsequently decontaminated (deferred decontamination) to levels that permit release for unrestricted use." The facility is left intact
(during the dormancy period), with structures maintained in a sound condition. Systems not required to operate in support of the spent fuel pool or site surveillance and security are drained, de-energized, and secured. Minimal cleaning/removal of loose contamination and/or fixation and sealing of remaining contamination is performed. Access to contaminated areas is secured to provide controlled access for inspection and maintenance.

The engineering and planning requirements are similar to those for the DECON alternative, although a shorter time period is expected for these activities due to the more limited work scope. Site preparations are also similar to those for the DECON alternative. However, with the exception of the required radiation surveys and site characterizations, the mobilization and preparation of site facilities is less extensive.

The following discussion is appropriate for both the SAFSTOR and Delayed DECON scenarios, the primary differences being in the storage methods for the spent fuel and the length of the dormancy period. Spent fuel is continued to be stored in the wet storage pool for the Delayed DECON scenario until such time that the transfer to a DOE facility can be completed, i.e., the ISFSI is not used to offload the pool. Decommissioning operations are assumed to begin once the transfer is complete. By contrast, all of the fuel remaining in the storage pool after the minimum required cooling period is relocated to the ISFSI in the SAFSTOR scenario and the pool emptied. The nuclear unit remains in storage after fuel transfer operations are completed, with decommissioning operations initiated such that the license is terminated within the required 60-year time period.

2.2.1 Period 1 - Preparations

Preparations for long-term storage include the planning for permanent defueling of the reactor, revision of technical specifications appropriate to the operating conditions and requirements, a characterization of the facility and major components, and the development of the PSDAR.

The process of placing the plant in safe-storage includes, but is not limited to, the following activities:

- Isolation of the spent fuel storage services and fuel handling systems so that safe-storage operations may commence on the balance of the plant. This activity may be carried out by plant personnel in accordance with existing operating technical specifications. Activities
are scheduled around the fuel handling'systems to the greatest extent possible.
- Draining and de-energizing of the non-contaminated systems not required to support continued site operations or maintenance.
- Disposing of contaminated filter elements and resin beds not required for processing wastes from layup activities for future operations.
- Draining of the reactor vessel, with the internals left in place and the vessel head secured.
- Draining and de-energizing non-essential, contaminated systems with decontamination as required for future maintenance and inspection.
- 'Preparing lighting and alarm systems whose continued use is required; de-energizing portions of fire protection, electric power, and HVAC systems whose continued use is not required.
- Cleaning of the loose surface contamination from building access pathways.
- Performing an interim radiation survey of plant, posting warning signs where appropriate.
- Erecting physical barriers and/or securing all access to radioactive or contaminated areas, except as required for inspection and maintenance.
- Installing security and surveillance monitoring equipment and relocating security fence around secured structures, as required.

2.2.2 Period 2-Dormancy

The second phase identified by the NRC in its rule addresses licensed activities during a storage period and is applicable to the dormancy phases of the deferred decommissioning alternatives. Dormancy activities include a 24 -hour security force, preventive and corrective maintenance on security systems, area lighting, general building maintenance, heating and ventilation of buildings, routine radiological
inspections of contaminated structures, maintenance of structural integrity, and a site environmental and radiation monitoring program. Resident maintenance personnel perform equipment maintenance, inspection activities, routine services to maintain safe conditions, adequate lighting, heating, and ventilation, and periodic preventive maintenance on essential site services.

An environmental surveillance program is carried out during the dormancy period to ensure that releases of radioactive material to the environment are prevented and/or detected and controlled. Appropriate emergency procedures are established and initiated for potential releases that exceed prescribed limits. The environmental surveillance program constitutes an abbreviated version of the program in effect during normal plant operations.

Security during the dormancy period is conducted primarily to prevent unauthorized entry and to protect the public from the consequences of its own actions. The security fence, sensors, alarms, and other surveillance equipment provide security. Fire and radiation alarms are also monitored and maintained. While remote surveillance is an option, it does not offer the immediate response time of a physical presence.

The transfer of the spent fuel to a DOE facility continues during this period until complete. Fuel is shipped exclusively from the ISFSI in the SAFSTOR scenario and from the pool and the ISFSI in the Delayed DECON scenario.

After an optional period of storage (such that license termination is accomplished within 60 years of final shutdown), it is required that the licensee submit an application to terminate the license, along with an LTP (described in Section 2.1.2), thereby initiating the third phase.

2.2.3 Periods 3 and 4-Delayed Decommissioning

Prior to the commencement of decommissioning operations, preparations are undertaken to reactivate site services and prepare for decommissioning. Preparations include engineering and planning, a detailed site characterization, and the assembly of a decommissioning management organization. Final planning for activities and the writing of activity specifications and detailed procedures are also initiated at this time.

Much of the work in developing a termination plan is relevant to the development of the detailed engineering plans and procedures. The activities associated with this phase and the follow-on decontamination and dismantling processes are detailed in Sections 2.1.1 and 2.1.2. The primary difference between the sequences anticipated for the DECON and deferred scenarios is the absence, in the latter, of any constraint on the availability of the fuel storage facilities for decommissioning.

Variations in the length of the dormancy period are expected to have little effect upon the quantities of radioactive wastes generated from system and structure removal operations. Given the levels of radioactivity and spectrum of radionuclides expected from thirty to forty years of plant operation, no plant process system identified as being contaminated upon final shutdown will become releasable due to the decay period alone, i.e., there is no significant reduction in the waste generated from the decommissioning activities. However, due to the lower activity levels, a greater percentage of the waste volume can be designated for off-site processing and recovery.

The delay in decommissioning also yields lower working area radiation levels. As such, the estimates for the delayed scenarios incorporate reduced ALARA controls for the SAFSTOR's lower occupational exposure potential.

Although the initial radiation levels due to ${ }^{60} \mathrm{Co}$ will decrease during the dormancy period, the internal components of the reactor vessel will still exhibit sufficiently high radiation dose rates to require remote sectioning under water due to the presence of long-lived radionuclides such as ${ }^{94} \mathrm{Nb}$, ${ }^{59} \mathrm{Ni}$, and ${ }^{63} \mathrm{Ni}$. Therefore, the dismantling procedures described for the DECON alternative would still be employed during deferred scenarios. Portions of the biological shield will still be radioactive due to the presence of activated trace elements with long half-lives (${ }^{152} \mathrm{Eu}$ and ${ }^{154} \mathrm{Eu}$). Decontamination will require controlled removal and disposal. It is assumed that radioactive corrosion products on inner surfaces of piping and components will not have decayed to levels that will permit unrestricted use or allow conventional removal. These systems and components will be surveyed as they are removed and disposed of in accordance with the existing radioactive release criteria.

2.2.4 Period 5 -Site Restoration

Following completion of decommissioning operations, site-restoration activities can begin. If the site structures are to be dismantled, dismantling as a continuation of the decommissioning process is clearly the most appropriate and cost-effective option, as described in Section 2.1.3. The basis for the dismantling cost in the deferred scenarios is consistent with that described for DECON, presuming the removal of structures and site facilities to a nominal depth of three feet below grade and the limited restoration of the site.

3. COST ESTIMATE

The cost estimates prepared for decommissioning Oyster Creek consider the unique features of the site, including the NSSS, power generation systems, support services, site buildings, and ancillary facilities. The basis of the estimates, including the sources of information 'relied upon, the estimating methodology employed, site-specific considerations, and other pertinent assumptions; is described in this section.

3.1 BASIS OF ESTIMATE

The estimates were developed with site-specific, technical information originally developed in an evaluation prepared for the GPU Nuclear Corporation in 199799. ${ }^{16]}$ The information was reviewed for the current analysis and updated as deemed appropriate. The site-specific considerations and assumptions used in the previous evaluation were also revisited. Modifications were incorporated where new information was available or experience from ongoing decommissioning programs provided viable alternatives or improved processes.

3.2 METHODOLOGY

The methodology used to develop the estimates follows the basic approach originally presented in the AIF/NESP-036 study report, "Guidelines for Producing Commercial Nuclear Power Plant Decommissioning Cost Estimates," ${ }^{[17]}$ and the DOE "Decommissioning Handbook." $[18]$ These documents present a unit factor method for estimating decommissioning activity costs, which simplifies the estimating calculations. Unit factors for concrete removal (\$/cubic yard), steel removal (\$/ton), and cutting costs (\$/inch) were developed using local labor rates. The activity-dependent costs were estimated with the item quantities (cubic yards and tons), developed from plant drawings and inventory documents. Removal rates and material costs for the conventional disposition of components and structures relied upon information available in the industry publication, "Building Construction Cost Data," published by R.S. Means. ${ }^{[19]}$

This analysis reflects lessons learned from TLG's involvement in the Shippingport Station Decommissioning Project, completed in 1989, as well as the decommissioning of the Cintichem reactor, hot cells, and associated facilities, completed in 1997. In addition, the planning and engineering for the Pathfinder, Shoreham, Rancho Seco, Trojan, Yankee Rowe, Big Rock Point, Maine Yankee, Humboldt Bay-3, Oyster Creek, Connecticut Yankee, and San Onofre-1 nuclear units have provided additional insight into the process, the
regulatory aspects, and the technical challenges of decommissioning commercial nuclear units.

The unit factor method provides a demonstrable basis for establishing reliable cost estimates. The detail provided in the unit factors, including activity duration, labor costs (by craft), and equipment and consumable costs, ensures that essential elements have not been omitted. Appendix A presents the detailed development of a typical unit factor. Appendix B provides the values contained within one set of factors developed for this analysis.

Work Difficulty Factors

WDFs were assigned to each area, commensurate with the inefficiencies associated with working in confined, hazardous environments. The ranges used for the WDFs are as follows:

- Access Factor
- Respiratory Protection Factor
- Radiation/ALARA Factor
- Protective Clothing Factor
- Work Break Factor
0% to 40%
0\% to 50\%
0\% to 100\%
0% to 30%
8.33\%

These factors and their associated range of values were developed in conjunction with the Atomic Industrial Forum's Guideline Study. The factors (and their suggested application) are discussed in more detail in Appendix F.

Scheduling Program Durations

The unit factors, adjusted by the WDFs as described above, are applied against the inventory of materials to be removed in the radiologically controlled areas. The resulting man-hours, or crew-hours, are used in the development of the decommissioning program schedule, using resource loading and event sequencing considerations. The scheduling of conventional removal and dismantling activities are based upon productivity information available from the "Building Construction Cost Data" publication.

An area-by-area activity duration critical path was used to develop the total decommissioning program schedule. The unit cost factors, adjusted for WDF's as described above, were applied against the inventory of materials to be removed in each defined work area. Each work area was assessed for the most efficient number of workers/crews for the decommissioning activities. These adjusted unit cost factors were applied against the available manpower so that
an overall duration for removal of components and piping from each work area could be calculated. Work area identification is consistent with the Survey Tracking Number (STN) system utilized by GPU's radiological services group in the 1997 timeframe. An index of the GPU STN's is provided in Appendix G.

The program schedule is used to determine the period-dependent costs for program management, administration, field engineering, equipment rental, contracted services, etc. The study relies upon regional or site-specific salary and wage rates for the personnel associated with the intended program.

3.3 FINANCIAL COMPONENTS OF THE COST MODEL

TLG's proprietary decommissioning cost model, DECCER, produces a number of distinct cost elements. These direct expenditures, however, do not comprise the total cost to accomplish the project goal, i.e., license termination and site restoration.

Inherent in any cost estimate that does not rely on historical data is the inability to specify the precise source of costs imposed by factors such as tool breakage, accidents, illnesses, weather delays, and labor stoppages. In the DECCER cost model, contingency fulfills this role. Contingency is added to each line item to account for costs that are difficult or impossible to develop analytically. Such costs are historically inevitable over the duration of a job of this magnitude; therefore, this cost analysis includes funds to cover these types of expenses.

3.3.1 Contingency

The activity- and period-dependent costs are combined to develop the total decommissioning cost. A contingency is then applied on a line-item basis, using one or more of the contingency types listed in the AIF/NESP-036 study. "Contingencies" are defined in the American Association of Cost Engineers "Project and Cost Engineers' Handbook" ${ }^{20]}$ as "specific provision for unforeseeable elements of cost within the defined project scope; particularly important where previous experience relating estimates and actual costs has shown that unforeseeable events which will increase costs are likely to occur." The cost elements in this analysis are based upon ideal conditions and maximum efficiency; therefore, consistent with industry practice, a contingency factor has been applied. In the AIF/NESP-036 study, the types of unforeseeable events that are likely to occur in decommissioning are discussed and guidelines are provided for percentage contingency in each category. It should be noted that contingency, as used in this
analysis, does not account for price escalation and inflation in the cost of decommissioning over the remaining operating life of the station.

The use and role of contingency within decommissioning estimates is not a "safety factor issue." Safety factors provide additional sedurity and address situations that may never occur. Contingency funds are expected to be fully expended throughout the program. They also provide assurance that sufficient funding is available to accomplish the intended tasks. An estimate without contingency, or from which contingency has been removed, can disrupt the orderly progression of events and jeopardize a successful conclusion to the decommissioning process.

For example, the most technologically challenging task in decommissioning a commercial nuclear station is the disposition of the reactor vessel and internal components, now highly radioactive after a lifetime of exposure to core activity. The disposition of these components forms the basis of the critical path (schedule) for decommissioning operations. Cost and schedule are interdependent, and any deviation in schedule has a significant impact on cost for performing a specific activity.

Disposition of the reactor vessel internals involves the underwater cutting of complex components that are highly radioactive. Costs are based upon optimum segmentation, handling, and packaging scenarios. The schedule is primarily dependent upon the turnaround time for the heavily shielded shipping casks, including preparation, loading, and decontamination of the containers for transport. The number of casks required is a function of the pieces generated in the segmentation activity, a value calculated on optimum performance of the tooling employed in cutting the various subassemblies. The expected optimization, however, may not be achieved, resulting in delays and additional program costs. For this reason, contingency must be included to mitigate the consequences of the expected inefficiencies inherent in this complex activity, along with related concerns associated with the operation of highly specialized tooling, field conditions, and water clarity.

Contingency funds are an integral part of the total cost to complete the decommissioning process. Exclusion of this component puts at risk a successful completion of the intended tasks and, potentially, subsequent related activities. For this study, TLG examined the major activity-related problems (decontamination, segmentation, equipment
handling, packaging, transport, and waste disposal) that necessitate a contingency. Individual activity contingencies ranged from 10% to 75%, depending on the degree of difficulty judged to be appropriate from TLG's actual decommissioning experience. The contingency values used in this study are as follows:
" Decontamination 50\%
Contaminated Component Removal 25\%
Contaminated Component Packaging 10\%
Contaminated Component Transport 15\%
Low-Level Radioactive Waste Disposal 25\%
Reactor Segmentation 75\%
NSSS Component Removal 25\%
Reactor Waste Packaging 25\%
Reactor Waste Transport 25\%
Reactor Vessel Component Disposal 50\%
GTCC Disposal 15\%
Non-Radioactive Component Removal 15\%
Heavy Equipment and Tooling 15\%
Supplies 25\%
Engineering 15\%
Energy 15\%
Characterization and Termination Surveys 30\%
Construction 15\%
Taxes and Fees 10\%
Insurance 10\%
Staffing 15\%

The contingency values are applied to the appropriate components of the estimates on a line item basis. A composite value is then reported at the end of each estimate. For example, the composite contingency value reported for the DECON alternative is 18.9%. Values for the other alternatives are delineated within the detailed cost tables in Appendix D and E.

3.3.2 Financial Risk

In addition to the routine uncertainties addressed by contingency, another cost element that is sometimes necessary to consider when bounding decommissioning costs relates to uncertainty, or risk.

Examples can include changes in work scope, pricing, job performance, and other variations that could conceivably, but not necessarily, occur. Consideration is sometimes necessary to generate a level of confidence in the estimate, within a range of probabilities. TLG considers these types of costs under the broad term "financial risk." Included within the category of financial risk are:

- Transition activities and costs: ancillary expenses associated with eliminating 50% to 80% of the site labor force shortly after the cessation of plant operations, added cost for worker separation packages throughout the decommissioning program, national or company-mandated retraining, and retention incentives for key personnel.
- Delays in approval of the decommissioning plan, due to intervention, public participation in local community meetings, legal challenges, and national and local hearings.
- Changes in the project work scope from the baseline estimate, involving the discovery of unexpected levels of contaminants, contamination in places not previously expected, contaminated soil previously undiscovered (either radioactive or hazardous material contamination), variations in plant inventory or configuration not indicated by the as-built drawings.
- Regulatory changes, e.g., affecting worker health and safety, site release criteria, waste transportation, and disposal.
- Policy decisions altering national commitments, e.g., in the ability to accommodate certain waste forms for disposition, or in the timetable for such, e.g., the start and rate of acceptance of spent fuel by the DOE.
- Pricing changes for basic inputs, such as labor, energy, materials, and burial. Some of these inputs may vary slightly, e.g. - 10% to $+20 \%$; burial could vary from -50% to $+200 \%$ or more.

It has been TLG's experience that the results of a risk analysis, when compared with the base case estimate for decommissioning, indicate that the chances of the base decommissioning estimate's being too high is a low probability, and the chances that the estimate is too low is a higher probability. This is mostly due to the pricing uncertainty for
low-level radioactive waste burial, and to a lesser extent due' to schedule increases from changes in plant conditions and to pricing variations in the cost of labor (both craft and staff). This cost study, however, does not add any additional costs to the estimate for financial risk since there is insufficient historical data from which to project future liabilities. Consequently, the areas of uncertainty or risk are revisited periodically and addressed through repeated revisions or updates of the base estimate.

3.4 SITE-SPECIFIC CONSIDERATIONS

There are a number of site-specific considerations that affect the method for dismantling and removal of equipment from the site and the degree of restoration required. The cost impact of the considerations identified below is included in this cost study.

3.4.1 Spent Fuel Management

The cost to dispose of spent fuel generated from plant operations is not reflected within the estimates to decommission the Oyster Creek site. Ultimate disposition of the spent fuel is within the province of the DOE's Waste Management System, as defined by the NWPA. As such, the disposal cost is financed by a $1 \mathrm{mill} / \mathrm{kWhr}$ surcharge paid into the DOE's waste fund during operations. However, the NRC requires licensees to establish a program to manage and provide funding for the management of all irradiated fuel at the reactors until title of the fuel is transferred to the Secretary of Energy. This funding requirement is fulfilled through inclusion of certain high-level waste cost elements within the estimates, as described below.

The total inventory of assemblies that will require handling during decommissioning is based upon several assumptions. The pickup of commercial fuel is assumed to begin in the year 2015 and will proceed on an oldest fuel first basis. The maximum rate at which the fuel is removed from the commercial sites is based upon an annual capacity at the geologic repository of 3,000 metric tons of uranium (MTU). Any delay in the startup of the repository or decrease in the rate of acceptance will correspondingly prolong the transfer process and result in the fuel remaining at the site longer.

In all three scenarios, the ISFSI will continue to operate until such time that the transfer of spent fuel to the DOE can be completed. Assuming that the DOE commences repository operation in 2015 , fuel is projected
to be removed from the Oyster Creek site by the year 2027. In the Delayed Decommissioning scenario, the ISFSI is only used to store fuel placed during plant operations. To reduce caretaking costs, the smaller inventory of fuel assemblies located in the ISFSI is preferentially offloaded as the allocations permit

Operation and maintenance costs for the storage facilities (the ISFSI and the pool for the Delayed DECON scenario) are included within the estimates and address the cost for staffing the facilities, as well as security, insurance, and licensing fees. The estimates include the costs to purchase, load, and transfer the fuel storage canisters. Costs are also provided for the final disposition of the facilities once the transfer is complete.

Repository Startup

Operation of the DOE's yet-to-be constructed geologic repository is contingent upon the review and approval of the facility's license application by the NRC, the successful resolution of pending litigation, and the development of a national transportation system. By comparison, the NRC's review of the application for an interim storage facility submitted by the Private Fuel Storage consortium began in 1997 and is still ongoing. With a more technically complex and politically sensitive application for permanent disposal, it is not unreasonable to expect that NRC approval to construct the repository at Yucca Mountain will require at least as long a review period. Construction would therefore begin sometime around the year 2010, at the earliest. Therefore, the spent fuel management plan described in this section is predicated upon the DOE initiating the pickup of commercial fuel in the year 2015. This timetable is consistent with the findings of an evaluation recently issued to Congress by the Government Accounting Office. ${ }^{[21]}$

Spent Fuel Management Model

AmerGen Energy LLC is a wholly-owned subsidiary of Exelon Generation, LLC; the Exelon nuclear fleet, including the AmerGen units, consists of 21 units at 11 sites in Illinois, Pennsylvania, and New Jersey, including the inactive units at Dresden, Peach Bottom, and Zion. The ability to complete the decommissioning of these units, particularly for the DECON and Delayed DECON alternatives, is highly dependent upon when the DOE is assumed to remove spent fuel from the sites.

The DOE's repository program assumes that spent fuel will be accepted for disposal from the nation's commercial nuclear plants in the order (the "queue") in which it was removed from service ("oldest fuel first"). ${ }^{[22]} \mathrm{A}$ computer model developed by Exelon Nuclear was used to determine when the DOE would provide allocations in the queue for removal of spent fuel from the individual sites. Repository operations were based upon annual industry-wide acceptance rates of $400 \mathrm{MTU} / \mathrm{year}$ for year 1 , 600 MTU/ year for year 2, 1200 MTU/year for year 3, 2000 MTU/year for year 4, and 3000 MTU/year for year 5 and beyond. [23]

ISFSIs are constructed as necessary to maintain full-core discharge capability at the individual sites. Once the DOE begins repository operations, queue allocations are used to ship spent fuel from Exelon's operating sites in the following order: Limerick, Quad Cities, Byron, Braidwood, LaSalle and Clinton. Spent fuel shipments are then made from decommissioning sites in the order of retirement.

Canister Design

A multi-purpose storage canister (similar to the HOLTEC HI-STORM system), with a 68 -fuel assemblies capacity, is assumed for future cask acquisitions. A unit cost of $\$ 420,000$ is used for pricing the internal multi-purpose canister (MPC), with an additional cost of $\$ 330,000$ for the concrete overpack. The DOE is assumed to provide the MPC for fuel transferred directly from the pool to the DOE at no cost to the owner.

Canister Loading and Transfer

An average cost of $\$ 200,000$ is used for the labor to load/transport the spent fuel from the pool to the ISFSI pad, based upon industry experience. For estimating purposes, 50% of this cost is used to estimate the cost to transfer the fuel from the ISFSI to the DOE.

Operations and Maintenance

Annual costs (excluding labor) of approximately $\$ 969,000$ and $\$ 71,000$ are used for operation and maintenance of the spent fuel pools and the ISFSI, respectively.

ISFSI Design Considerations

A multi-purpose (storage and transport) dry shielded storage canister with a vertical, reinforced concrete storage overpack is used as a basis
for the cost analyses. Approximately 50% of the overpacks are assumed to have some level of neutron-induced activation as a result of the longterm storage of the fuel, i.e., to levels exceeding free-release limits. Approximately 10% of the concrete and steel is assumed to be removed from the overpacks for controlled disposal. The cost to dispose of this material, as well as the demolition of the ISFSI facility, is included in the estimates.

3.4.2 Reactor Vessel and Internal Components

The NSSS (reactor vessel, and reactor recirculation system components) will be decontaminated using chemical agents prior to the start of cutting operations (for DECON alternative only). A decontamination factor (average reduction) of 10 is assumed for the process.

The reactor pressure vessel and internal components are segmented for disposal in shielded, reusable transportation casks. Segmentation is performed in the dryer-separator pool, where a turntable and remote cutter are installed. The vessel is segmented in place, using a mastmounted cutter supported off the lower head and directed from a shielded work platform installed overhead in the reactor cavity. Transportation cask specifications and transportation regulations will dictate segmentation and packaging methodology.

The dismantling of the reactor internals will generate radioactive waste considered unsuitable for shallow land disposal, i.e., GTCC. Although the material is not classified as high-level waste, the DOE has indicated it will accept this waste for disposal at the future high-level waste repository. ${ }^{[24]}$ However, the DOE has not been forthcoming with an acceptance criteria or disposition schedule for this material, and numerous questions remain as to the ultimate disposal cost and waste form requirements. As such, for purposes of this study, the GTCC has been packaged and disposed of as high-level waste, at a cost equivalent to that envisioned for the spent fuel. It is not anticipated that the DOE would accept this waste prior to completing the transfer of spent fuel. Therefore, until such time the DOE is ready to accept GTCC waste, it is reasonable to assume that this material would remain in storage at the Oyster Creek site.

Intact disposal of the reactor vessel and internal components can provide savings in cost and worker exposure by eliminating the complex segmentation requirements, isolation of the GTCC material,
and transport/storage of the resulting waste packages. Portland General Electric (PGE) was able to dispose of the Trojan reactor as an intact package. However, its location on the Columbia River simplified the transportation analysis since:

- the reactor package could be secured to the transport vehicle for the entire journey, i.e., the package was not lifted during transport,
- there were no man-made or natural terrain features between the plant site and the disposal location that could produce a large drop, and
- transport speeds were very low, limited by the overland transport vehicle and the river barge.

As a member of the Northwest Compact, PGE had a site available for disposal of the package - the US Ecology facility in Washington State. The characteristics of this arid site proved favorable in demonstrating compliance with land disposal regulations.

It is not known whether this option will be available when Oyster Creek ceases operation. Future viability of this option will depend upon the ultimate location of the disposal site, as well as the disposal site licensee's ability to accept highly radioactive packages and effectively isolate them from the environment. Additionally, with BWRs, the diameter of the reactor vessel may severely limit overland transport. Consequently, the study assumes the reactor vessel will require segmentation, as a bounding condition.

3.4.3 Primary System Components

Reactor recirculation piping is cut from the reactor vessel once the water level in the vessel (used for personnel shielding during dismantling and cutting operations in and around the vessel) is dropped below the nozzle zone. The piping is boxed and transported by shielded van. The reactor recirculation pumps and motors are lifted out intact, packaged, and transported for processing and/or disposal.

3.4.4 Main Turbine and Condenser

The main turbine will be dismantled using conventional maintenance procedures. The turbine rotors and shafts will be removed to a laydown area. The lower turbine casings will be removed from their anchors by controlled demolition. The main condensers will also be disassembled and moved to a laydown area. Material is then prepared for transportation to an off-site recycling facility where it will be surveyed and designated for either decontamination or volume reduction, conventional disposal, or controlled disposal. Components will be packaged and readied for transport in accordance with the intended disposition.

3.4.5 Transportation Methods

Contaminated piping, components, and structural material other than the highly activated reactor vessel and internal components will qualify as LSA-I, II or III or Surface Contaminated Object, SCO-I or II, as described in Title 49.[25] The contaminated material will be packaged in Industrial Packages (IP I, II, or III, as defined in subpart 173.411) for transport unless demonstrated to qualify as their own shipping containers. The reactor vessel and internal components are expected to be transported in accordance with §71, as Type B. It is conceivable that the reactor, due to its limited specific activity, could qualify as LSA II or III. However, the high radiation levels on the outer surface would require that additional shielding be incorporated within the packaging so as to attenuate the dose to levels acceptable for transport.

Transport of the highly activated metal, produced in the segmentation of the reactor vessel and internal components, will be by shielded truck cask. Cask shipments may exceed 95,000 pounds, including vessel segment(s), supplementary shielding, cask tie-downs, and tractor-trailer. The maximum level of activity per shipment assumed permissible was based upon the license limits of the available shielded transport casks. The segmentation scheme for the vessel and internal segments is designed to meet these limits.

The transport of large intact components, e.g., large heat exchangers and other oversized components, will be by a combination of truck, rail, and/or multi-wheeled transporter.

The low-level radioactive waste requiring controlled disposal will be sent to one of two currently available burial facilities. Transportation costs
are based upon the mileage to either the Envirocare facility in Clive, Utah, or the Barnwell facility in South Carolina. Memphis, Tennessee, is used as the destination for off-site processing. Transportation costs are estimated using published tariffs from Tri-State Motor Transit. ${ }^{[26]}$

3.4.6 Low-Level Radioactive Waste Disposal

To the greatest extent practical, metallic material generated in the decontamination and dismantling processes is treated to reduce the total volume requiring controlled disposal. The treated material, meeting the regulatory and/or site release criterion, is released as scrap, requiring no further cost consideration. Conditioning and recovery of the waste stream is performed off site at a licensed processing center.

Material requiring controlled disposal is packaged and transported to one of two currently available burial facilities. Very low-level radioactive material, e.g., structural steel and contaminated concrete, is sent to Envirocare. More highly contaminated and activated material is sent to Barnwell. Disposal fees are based upon current charges for operating waste, with surcharges added for the highly activated components, e.g., generated in the segmentation of the reactor vessel.

3.4.7 Site Conditions Following Decommissioning

The NRC will terminate (or amend) the site licenses if it determines that site remediation has been performed in accordance with the license termination plan, and that the terminal radiation survey and associated documentation demonstrate that the facility is suitable for release. The NRC's involvement in the decommissioning process will end at this point. Building codes and environmental regulations will dictate the next step in the decommissioning process, as well as the owner's own future plans for the site.

Non-essential structures or buildings severely damaged in decontamination process are removed to a nominal depth of three feet below grade. Concrete rubble generated from demolition activities is processed and made available as clean fill. The excavations will be regraded such that the power block area will have a final contour consistent with adjacent surroundings.

The estimates assume the remediation of a significant volume of contaminated soil. This assumption may be affected by continued plant
operations and/or future regulatory actions, such as the development of site-specific release criteria.

Asphalt surfaces in the immediate vicinity of the Oyster Creek site buildings are broken up and the material used for backfill on site if needed.

3.5 ASSUMPTIONS

The following are the major assumptions made in the development of the estimates for decommissioning the site.

3.5.1 Estimating Basis

The study follows the principles of ALARA through the use of work duration adjustment factors. These factors address the impact of activities such as radiological protection instruction, mock-up training, and the use of respiratory protection and protective clothing. The factors lengthen a task's duration, increasing costs and lengthening the overall schedule. ALARA planning is considered in the costs for engineering and planning, and in the development of activity specifications and detailed procedures. Changes to worker exposure limits may impact the decommissioning cost and project schedule.

3.5.2 Labor Costs

The craft labor required to decontaminate and dismantle the nuclear units will be acquired through standard site contracting practices. The current cost of labor at the site is used as an estimating basis. Costs for site administration, operations, construction, and maintenance personnel are based upon average salary information provided by AmerGen Energy or from comparable industry information.

AmerGen Energy will hire a Decommissioning Operations Contractor (DOC) to manage the decommissioning. The owner will provide site security, radiological health and safety, quality assurance and overall site administration during the decommissioning and demolition phases. Contract personnel will provide engineering services, e.g., for preparing the activity specifications, work procedures, activation, and structural analyses, under the direction of AmerGen Energy.

3.5.3 Design Conditions

Any fuel cladding failure that occurred during the lifetime of the plant is assumed to have released fission products at sufficiently low levels that the buildup of quantities of long-lived isotopes (e.g., ${ }^{137} \mathrm{Cs},{ }^{90} \mathrm{Sr}$, or transuranics) has been prevented from reaching levels exceeding those that permit the major NSSS components to be shipped under current transportation regulations and disposal requirements.

The curie contents of the vessel and internals at final shutdown are derived from those listed in NUREG/CR-3474. ${ }^{[27]}$ Actual estimates are derived from the curie/gram values contained therein and adjusted for the different mass of the Oyster Creek components, projected operating life, and different periods of decay. Additional short-lived isotopes were derived from CR-0130 ${ }^{[28]}$ and CR-0672, ${ }^{[29]}$ and benchmarked to the longlived values from CR-3474.

The disposal cost for the control blades removed from the vessel with the final core load is included within the estimates. Disposition of any blades stored in the pools from operations is considered an operating expense and therefore not accounted for in the estimates.

Activation of the reactor building structure is confined to the sacrificial shield. More extensive activation (at very low levels) of the interior structures within containment has been detected at several reactors and the owners have elected to dispose of the affected material at a controlled facility rather than reuse the material as fill on site or send it to a landfill. The ultimate disposition of the material removed from the reactor building will depend upon the site release criteria selected, as well as the designated end use for the site.

3.5.4 General

Transition Activities

Existing warehouses will be cleared of non-essential material and remain for use by AmerGen Energy and its subcontractors. The plant's operating staff will perform the following activities at no additional cost or credit to the project during the transition period:

- Drain and collect fuel oils, lubricating oils, and transformer oils for recycle and/or sale.
- Drain and collect acids, caustics, and other chemical stores for recycle and/or sale.
- Process operating waste inventories, i.e., the estimates do not address the disposition of any legacy wastes; the disposal of operating wastes during this initial period is not considered a decommissioning expense.

Scrap and Salvage

The existing plant equipment is considered obsolete and suitable for scrap as deadweight quantities only. AmerGen Energy will make economically reasonable efforts to salvage equipment following final plant shutdown. However, dismantling techniques assumed by TLG for equipment in this analysis are not consistent with removal techniques required for salvage (resale) of equipment. Experience has indicated that some buyers wanted equipment stripped down to very specific requirements before they would consider purchase. This required expensive rework after the equipment had been removed from its installed location. Since placing a salvage value on this machinery and equipment would be speculative, and the value would be small in comparison to the overall decommissioning expenses, this analysis does not attempt to quantify the value that an owner may realize based upon those efforts.

It is assumed, for purposes of this analysis, that any value received from the sale of scrap generated in the dismantling process would be more than offset by the on-site processing costs. The dismantling techniques assumed in the decommissioning estimates do not include the additional cost for size reduction and preparation to meet "furnace ready" conditions. For example, the recovery of copper from electrical cabling may require the removal and disposition of any contaminated insulation, an added expense. With a volatile market, the potential profit margin in scrap recovery is highly speculative, regardless of the ability to free release this material. This assumption is an implicit recognition of scrap value in the disposal of clean metallic waste at no additional cost to the project.

Furniture, tools, mobile equipment such as forklifts, trucks, bulldozers, and other property owned by AmerGen Energy will be removed at no cost or credit to the decommissioning project. Disposition may include relocation to other facilities. Spare parts will also be made available for alternative use.

Energy

For estimating purposes, the plant is assumed to be de-energized, with the exception of those facilities associated with spent fuel storage. Replacement power costs are used for the cost of energy consumption during decommissioning for tooling, lighting, ventilation, and essential services.

Insurance

Costs for continuing coverage (nuclear liability and property insurance) following cessation of plant operations and during decommissioning are included and based upon current operating premiums. Reductions in premiums, throughout the decommissioning process, are based upon the guidance and the limits for, coverage defined in the NRC's proposed rulemaking "Financial Protection Requirements for Permanently Shutdown Nuclear Power Reactors." ${ }^{[30]}$ The NRC's financial protection requirements are based on various reactor (and spent fuel) configurations.

Taxes

Property taxes are included for all decommissioning periods with the exception of the transition phase.

Site Modifications

The perimeter fence and in-plant security barriers will be moved, as appropriate, to conform to the Site Security Plan in force during the various stages of the project.

3.6 COST ESTIMATE SUMMARY

A schedule of expenditures for each scenario is provided in Tables 3.1 through 3.3. Decommissioning costs are reported in the year of projected expenditure; however, the values are provided in thousands of 2003 dollars. Costs are not inflated, escalated, or discounted over the period of expenditure. The annual expenditures are based upon the detailed activity costs reported in Appendices C through E, along with the schedule discussed in Section 4.

TABLE 3.1

SCHEDULE OF ANNUAL EXPENDITURES
DECON
(thousands, 2003 dollars)

Year	Labor	Equipment \& Materials	Energy	Burial	Other	Total
2009	27,562	448	526	21	15,282	43,840
2010	46,627	9,969	711	17,258	32,722	107,286
2011	41,990	14,372	683	48,241	17,993	123,280
2012	37,003	5,622	543	20,919	14,881	78,968
2013	36,832	5,485	539	20,483	14,797	78,135
2014	34,570	4,899	481	17,051	12,204	69,205
2015	21,881	1,794	212	.2,641	7,445	33,973
2016	16,386	8,875	88	7	4,566	29,922
2017	13,124	8,671	61	0	2,674	24,529
2018	2,990	0	22	0	2,543	5,555
2019	2,990	0	22	0	2,543	5,555
2020	2,998	0	22	0	2,552	5,572
2021	2,990	0	22	0	2,543	5,555
2022	2,990	0	22	0	2,543	5,555
2023	2,990	0	22	0	2,543	5,555
2024	2,998	0	22	0	2,552	5,572
2025	2,990.	0	22	0	4,153	7,165
2026	2,990	0	22	- 0	5,303	8,315
2027	2,991	335	22	6	11,642	14,994
2028	1,493	1,286	35	719	2,414	5,948
	307,385	61,755	4,095	127,345	163,897	664,477

TABLE 3.2
SCHEDULE OF ANNUAL EXPENDITURES DELAYED DECON
(thousands, 2003 dollars)

Year	Labor	 Materials	Energy	Burial	Other	Total
2009	23,621	448	526	21	3,138	27,754
2010	27,331	3,662	678	1,963	15,938	49,571
2011	5,134	74	539	29	4,179	9,955
2012	5,148	74	541	29	4,192	9,983
2013	5,134	74	539	29	4,179	9,955
2014	5,134	74	539	29	4,179	9,955
2015	5,134	74	539	29	4,179	9,955
2016	5,148	74	541	29	4,192	9,983
2017	5,134	74	539	29	4,179	9,955
2018	5,134	74	539	29	4,179	9,955
2019	5,134	74	539	29	4,179	9,955
2020	5,148	74	541	29	4,192	9,983
2021	5,134	74	539	29	4,179	9,955
2022	5,134	74	539	29	4,179	9,955
2023	5,134	74	539	29	4,179	9,955
2024	5,148	74	541	29	4,192	9,983
2025	5,134	74	539	29	6,019	11,795
2026	15,715	345	539	29	12,193	28,821
2027	40,761	5,655	539	3,534	16,232	66,721
2028	38,665	13,238	541	32,351	9,792	94,585
2029	43,293	8,341	425	35,619	6,211	93,889
2030	33,206	4,825	302	22,169	7,555	68,057
2031	15,505	7,461	98	11	5,212	28,285
2032	14,005	10,365	66	0	1,874	26,310
	329,161	55,444	11,808	96,132	142,724	635,270

TABLE 3.3
SCHEDULE OF ANNUAL EXPENDITURES SAFSTOR
(thousands, 2003 dollars)

Year	Labor	Equipment \& Materials	Energy	Burial	Other	Total
2009	23,621	448	526	21	11,809	36,425
2010	27,331	3,662	678	1,963	27,430	61,063
2011	5,134	74	539	29	14,534	20,309
2012	5,148	74	541	29	14,574	20,365
2013	5,134	74	539	29	14,534	20,309
2014	4,715	74	432	29	11,864	17,113
2015	3,314	74	72	29	2,932	6,420
2016	3,323	74	72	29	2,941	6,439
2017	3,314	74	72	29	2,932	6,420
2018	3,314	74	72	29	2,932	6,420
2019	3,314	74	72	29	2,932	6,420
2020	3,323.	74	72	29	2,941	6,439
2021	3,314	74	72	29	2,932	6,420
2022	3,314	74	72	29	2,932	6,420
2023	3,314	74	72	29	2,932	6,420
2024	3,323	74	72	29	2,941	6,439
2025	3,314	74	72	29	4,542	8,030
2026	3,314	74	72	29	5,692	9,180
2027	3,312	74	72	29	5,691	9,178
2028	2,871	74	72	29	2,648	5,694
2029	2,863	74	72	29	2,640	5,678
2030	2,863	74	72	29	2,640	5,678
2031	2,863	74	72	29	2,640	5,678
2032	2,871	74	72	29	2,648	5,694
2033	2,863	74	72	29	2,640	5,678
2034	2,863	74	72	29	2,640	5,678
2035	2,863	74	72	29	2,640	5,678
2036	2,871.	74	72	29	2,648	5,694
2037	2,863	74	72	29	2,640	5,678
2038	2,863	74	72	29	2,640	5,678
2039	2,863	74	72	29	2,640	5,678
2040	2,871	74	72	29	2,648	5,694
2041	2,863	74	72	29	2,640	5,678
2042	2,863	74	72	29	2,640	5,678

TABLE 3.3 (continued)
SCHEDULE OF ANNUAL EXPENDITURES
SAFSTOR
(thousands, 2003 dollars)

Year	Labor	 Materials	Energy	Burial	Other	Total
2043	2,863	74	72	29	2,640	5,678
2044	2,871	74	72	29	2,648	5,694
2045	2,863	74	72	29	2,640	5,678
2046	2,863	74	72	29	2,640	5,678
2047	2,863	74	72	29	2,640	5,678
2048	2,871	74	72	29	2,648	5,694
2049	2,863	74	72	29	2,640	5,678
2050	2,863	74	72	29	2,640	5,678
2051	2,863	74	72	29	2,640	5,678
2052	2,871	74	72	29	2,648	5,694
2053	2,863	74	72	29	2,640	5,678
2054	2,863	74	72	29	2,640	5,678
2055	2,863	74	72	29	2,640	5,678
2056	2,871	74	72	29	2,648	5,694
2057	2,863	74	72	29	2,640	5,678
2058	2,863	74	72	29	2,640	5,678
2059	2,863	74	72	29	2,640	5,678
2060	2,871	74	72	29	2,648	5,694
2061	2,863	74	72	29	2,640	5,678
2062	2,863	74	72	29	2,640	5,678
2063	2,863	74	72	29	2,640	5,678
2064	10,930	261	235	29	4,416	15,871
2065	36,160	4,088	539	2,400	8,869	52,056
2066	43,816	15,361	539	32,857	11,503	104,076
2067	44,287	8,075	412	36,086	5,993	94,854
2068	30,755	4,247	278	18,643	8,099	62,022
2069	15,478	8,668	91	8	4,377	28,622
2070	12,584	9,505	59	0	1,678	23,827
	411,347	58,222	8,933	93,546	280,064	852,113

4. SCHEDULE ESTIMATE

The schedules for the decommissioning scenarios considered in this study follow the sequence presented in the AIF/NESP-036 study, with minor changes to reflect recent experience and site-specific constraints. In addition, the scheduling has been revised to reflect the spent fuel management plans described in Section 3.4.1.

A schedule or sequence of activities is presented in Figure 4.1 for the DECON decommissioning alternative. The schedule is also representative of the work activities identified in the delayed dismantling scenarios, absent any spent fuel constraints. The scheduling sequence assumes that fuel is removed from the spent fuel pool within the first $5^{1 / 2}$ years after operations cease. The key activities listed in the schedule do not reflect a one-to-one correspondence with those activities in the cost tables, but reflect dividing some activities for clarity and combining pthers for convenience. The schedule was prepared using the "Microsoft Project 2002" computer software. ${ }^{[31]}$

4.1 SCHEDULE ESTIMATE ASSUMPTIONS

The schedule reflects the results of a precedence network developed for the site decommissioning activities, i.e., a PERT (Program Evaluation and Review Technique) Software Package. The work activity durations used in the precedence network reflect the actual man-hour estimates from the cost tables, adjusted by stretching certain activities over their slack range and shifting the start and end dates of others. The following assumptions were made in the development of the decommissioning schedule:

- The reactor building is isolated until such time that all spent fuel has been discharged from the spent fuel pool to the DOE or to the ISFSI. Decontamination and dismantling of the storage pool is initiated once the transfer of spent fuel to the ISFSI is complete.
- All work (except vessel and internals removal) is performed during an 8 -hour workday, 5 days per week, with no overtime. There are eleven paid holidays per year.
- Reactor and internals removal activities are performed by using separate crews for different activities working on different shifts, with a corresponding backshift charge for the second shift.
- Multiple crews work parallel activities to the maximum extent possible, consistent with optimum efficiency, adequate access for cutting, removal and laydown space, and with the stringent safety measures necessary during demolition of heavy components and structures.
- For plant systems removal, the 'systems with the longest removal durations in areas on the critical path are considered to determine the duration of the activity.

4.2 PROJECT SCHEDULE

The period-dependent costs presented in the detailed cost tables are based upon the durations developed in the schedule for decommissioning Oyster Creek. Durations are established between several milestones in each project period; these durations are used to establish a critical path for the entire project. In turn, the critical path duration for each period is used as the basis for determining the period-dependent costs. A second critical path is also shown for the spent fuel cooling period, which determines the release of the reactor building for final decontamination.

Project timelines are provided in Figures 4.2 through 4.4. Milestone dates are based on a shutdown date of April 9, 2009. The start of decommissioning operations in the Delayed Decommissioning scenario is concurrent with the end of the fuel transfer activity, i.e. to an off-site DOE facility.

FIGURE 4.1

ACTIVITY SCHEDULE

FIGURE 4.1

ACTIVITY SCHEDULE (continued)

Mast Name

FIGURE 4.2
 DECOMMISSIONING TIMELINE DECON
 (not to scale)

(Shutdown April 9, 2009)

1
Period 1

FIGURE 4.3

DECOMMISSIONING TIMELINE

DELAYED DECON

(not to scale)
(Shutdown April 9, 2009)

Storage Pool Empty 12/2027

FIGURE 4.4
DECOMMISSIONING TIMELINE SAFSTOR
(not to scale)
(Shutdown April 9, 2009)

Spent Fuel Storage

ISFSI Empty
12/2027

5. RADIOACTIVE WASTES

The objectives of the decommissioning process are the removal of all radioactive material from the site that would restrict its future use and the termination of the NRC license(s). This currently requires the remediation of all radioactive material at the site in excess' of applicable legal limits. Under the Atomic Energy Act, ${ }^{[32]}$ the NRC is responsible for protecting the public from sources of ionizing radiation. Title 10 of the Code of Federal Regulations delineates the production, utilization, and disposal of radioactive materials and processes: In particular, §71 defines radioactive material and $\S 61$ specifies its disposition.

Most of the materials being transported for controlled burial are categorized as Low Specific Activity (LSA) or Surface Contaminated Object (SCO) materials containing Type A quantities, as defined in 49 CFR §173-178. Shipping containers are required to be Industrial Packages (IP-1, IP-2 or IP-3, as defined in subpart 173.411). For this study, commercially available steel containers are presumed to be used for the disposal of piping, small components, and concrete. Larger components can serve as their own containers, with proper closure of all openings, access ways, and penetrations.

The volumes of radioactive waste generated during the various decommissioning activities at the site is shown on a line-item basis in Appendix C, D, and E and summarized in Tables 5.1 through 5.3. The quantified waste volume summaries shown in these tables are consistent with $\S 61$ classifications. The volumes are calculated based on the exterior dimensions for containerized material and on the displaced volume of components serving as their own waste containers.

The reactor vessel and internals are categorized as large quantity shipments and, accordingly, will be shipped in reusable, shielded truck casks with disposable liners. In calculating disposal costs, the burial fees are applied against the liner volume, as well as the special handling requirements of the payload. Packaging efficiencies are lower for the highly activated materials (greater than Type A quantity waste), where high concentrations of gamma-emitting radionuclides limit the capacity of the shipping canisters.

No process system containing/handling radioactive substances at shutdown is presumed to meet material release criteria by decay alone, i.e., systems radioactive at shutdown will still be radioactive over the time period during which the decommissioning is accomplished, due to the presence of long-lived radionuclides. While the dose rates decrease with time, radionuclides such as ${ }^{137} \mathrm{Cs}$ will still control the disposition requirements.

The waste material generated in the decontamination and dismantling of Oyster Creek is primarily generated during Period 2 of the DECON alternative and Period 4 of the deferred alternatives. Material that is considered potentially contaminated when removed from the radiologically controlled area is sent to processing facilities in Tennessee for conditioning and disposal. Heavily contaminated components and activated materials are routed for controlled disposal. The disposal volumes reported in the tables reflect the savings resulting from reprocessing and recycling.

For purposes of constructing the analysis, the rate schedule for the Barnwell facility was used as a proxy for the higher activity waste. This schedule was used to estimate the disposal fees for most plant components and all activated concrete unsuitable for processing or recovery. An average disposal rate of approximately $\$ 315$ per cubic foot was used, with additional surcharges for activity, dose rate, and/or handling added as appropriate for the particular package.

The remaining volume of contaminated metallic and concrete debris is processed and conditioned at a Duratek facility. The contaminated metallic waste stream includes the lower activity components such as miscellaneous steel, metal siding, scaffolding, and structural steel. Metals are recycled at a unit rate of $\$ 1.99$ per pound. Concrete, soil, asbestos and other bulk debris are disposed of at a rate of $\$ 1.00$ per pound or approximately $\$ 100$ per cubic foot. Dry active wastes, e.g., cloth, paper and plastics, are sent to the Envirocare facility for direct disposal from the site at $\$ 2.87$ per pound or $\$ 57.40$ per cubic foot, at an assumed density of 20 pounds per cubic foot.

TABLE 5.1
DECOMMISSIONING WASTE SUMMARY DECON

| Waste | Volume
 (cubic feet) |
| :--- | :---: | | Class ${ }^{1}$. |
| :--- |

Low-Level Radioactive Waste
Barnwell, South Carolina (contaminated/activated metallic waste and concrete)

A	68,944	$5,996,132$
B	11,820	$1,731,981$
C	631	37,795

Envirocare, Utah (miscellaneous steel, contaminated/activated concrete)

Containerized	A	19,647	$1,706,435$
Bulk	A	208,188	$17,995,060$

Geologic Repository (Greater-than Class C)
Total ${ }^{2} \quad>\mathrm{C} \quad \frac{411}{309,641} \quad \frac{72,900}{27,540,303}$

Processed Waste (Off-Site)
386,250
Scrap Metal 45,702,000

[^5]TABLE 5.2
DECOMMISSIONING WASTE SUMMARY DELAYED DECON

Waste	Volume	Weight
Class ${ }^{1}$	(cubic feet)	(pounds)

Low-Level Radioactive Waste
Barnwell, South Carolina (contaminated/activated metallic waste and concrete)

A	37,887	$3,312,336$
B	6,686	909,192
C	287	32,125

Envirocare, Utah (miscellaneous steel, contaminated/activated concrete)
Containerized
Bulk

Geologic Repository (Greater-than Class C)

	$>C$	411
Total 2		72,900
248,882	$21,302,477$	

Processed Waste (Off-Site)
462,227
Scrap Metal
A $\quad 16,858$
1,463,684
A 186,753
$15,512,240$ 45,702,000

[^6]
TABLE 5.3

DECOMMISSIONING WASTE SUMMARY SAFSTOR

| | " | Waste
 Class $^{\mathbf{1}}$ | Volume
 (cubic feet) |
| :---: | :---: | :---: | :---: | | Weight |
| :--- |
| (pounds) |

Low-Level Radioactive Waste
Barnwell, South Carolina (contaminated/activated metallic waste and concrete)

A	37,456	$3,216,877$
B	6,405	873,677
C	287	32,125

Envirocare, Utah (miscellaneous steel, contaminated/activated concrete)

Containerized	A	16,591	$1,432,314$
Bulk	A	205,297	$16,215,750$

Geologic Repository (Greater-than Class C)
$>C$
411
72,900

Total ${ }^{2}$
266,447
$21,843,643$

Processed Waste (Off-Site)
456,585
Scrap Metal
45,702,000

[^7]
6. RESULTS

The analysis to estimate the costs to decommission Oyster Creek relied upon the site-specific, technical information developed for a previous analysis prepared in 1997-99. While not an engineering study, the estimates provide AmerGen Energy with sufficient information to assess its financial obligations, as they pertain to the eventual decommissioning of the nuclear station.

The estimates described in this report are based on numerous fundamental assumptions, including regulatory requirements, project contingencies, low-level radioactive waste disposal practices, high-level radioactive waste management options, and site restoration requirements. The decommissioning scenarios assume continued operation of the plant's spent fuel pool for a minimum of $51 / 2$ years following the cessation of operations for continued cooling of the assemblies. For the DECON and SAFSTOR scenarios, spent fuel will be offloaded to the ISFSI until such time that the DOE can complete the transfer of the assemblies to its repository. The spent fuel remains in the storage pool in the Delayed DECON alternative.

The cost projected to promptly decommission (DECON) Oyster Creek is estimated to be $\$ 664.5$ million. The majority of this cost (approximately 72.3%) is associated with the physical decontamination and dismantling of the nuclear unit so that the license can be terminated. Another 21.3% is associated with the management, interim storage, and eventual transfer of the spent fuel. The remaining 6.4% is for the demolition of the designated structures and limited restoration of the site.

The primary cost contributors, identified in Tables 6.1 through 6.3, are either laborrelated or associated with the management and disposition of the radioactive waste. Program management is the largest single contributor to the overall cost. The magnitude of the expense is a function of both the size of the organization required to manage the decommissioning, as well as the duration of the program. It is assumed, for purposes of this analysis, that AmerGen Energy will oversee the decommissioning program, using a DOC to manage the decommissioning labor force and the associated subcontractors. The size and composition of the management organization varies with the decommissioning phase and associated site activities. However, once the operating license is terminated, the staff is substantially reduced for the conventional demolition and restoration of the site, and the long-term care of the spent fuel (for the DECON alternative).

As described in this report, the spent fuel pool will remain operational for a minimum of $51 / 2$ years following the cessation of operations. The pool will be isolated
and an independent spent fuel island created. This will allow decommissioning operations to proceed in and around the pool area. Over the $51 / 2$-year period, the spent fuel will be packaged into transportable steel canisters for loading into a DOE-provided transport cask (DECON and SAFSTOR alternatives only). The canisters will be stored in concrete overpacks at the ISFSI until the DOE is able to receive them. Dry storage of the fuel under a separate license provides additional flexibility in the event the DOE is not able to meet the current timetable for completing the transfer of assemblies to an off-site facility and minimizes the associated caretaking expenses.

The cost for waste disposal includes only those costs associated with the controlled disposition of the low-level radioactive waste generated from decontamination and dismantling activities, including plant equipment and components, structural material, filters, resins and dry-active waste. As described in Section 5, disposal of the lower level material, including concrete and structural steel, is at the Envirocare facility. The more highly radioactive material is sent to the Barnwell facility, with the exception of selected reactor vessel components. Highly activated components, requiring additional isolation from the environment, are packaged for geologic disposal. The cost of geologic disposal is based upon a cost equivalent for spent fuel.

A significant portion of the metallic waste is designated for additional processing and treatment at an off-site facility. Processing reduces the volume of material requiring controlled disposal through such techniques and processes as survey and sorting, decontamination, and volume reduction. The material that cannot be unconditionally released is packaged for controlled disposal at one of the currently operating facilities. The cost identified in the summary table for processing is allinclusive, incorporating the ultimate disposition of the material.

Removal costs reflect the labor-intensive nature of the decommissioning process, as well as the management controls required to ensure a safe and successful program. Decontamination and packaging costs also have a large labor component that is based upon prevailing union wages. Non-radiological demolition is a natural extension of the decommissioning process. The methods employed in decontamination and dismantling are generally destructive and indiscriminate in inflicting collateral damage. With a work force mobilized to support decommissioning operations, non-radiological demolition can be an integrated activity and a logical expansion of the work being performed in the process of terminating the operating license. Prompt demolition reduces future liabilities and can be more cost effective than deferral, due to the deterioration of the facilities (and therefore the working conditions) with time.

The reported cost for transport includes the tariffs and surcharges associated with moving large components and/or overweight shielded casks overland, as well as the general expense, e.g., labor and fuel, of transporting material to the destinations identified in this report. For purposes of this analysis, material is primarily moved overland by truck.

Decontamination' is used to reduce the plant's radiation fields and minimize worker exposure. Slightly contaminated material or material located within a contaminated area is sent to an off-site processing center, i.e., this analysis does not assume that contaminated plant components and equipment can be decontaminated for uncontrolled release in-situ. Centralized processing centers have proven to be a more economical means of handling the large volumes of material produced in the dismantling of a nuclear unit.

License termination survey costs are associated with the labor intensive and complex activity of verifying that contamination has been removed from the site to the levels specified by the regulating agency. This process involves a systematic survey of all remaining plant surface areas and surrounding environs, sampling, isotopic analysis, and documentation of the findings. The status of any plant components and materials not removed in the decommissioning process will also require confirmation and will add to the expense of surveying the facilities alone.

The remaining costs include allocations for heavy equipment and temporary services, as well as for other expenses such as regulatory fees and the premiums for nuclear insurance. While site operating costs are greatly reduced following the final cessation of plant operations, certain administrative functions do need to be maintained either at a basic functional or regulatory level.

TABLE 6.1
SUMMARY OF DECOMMISSIONING COST ELEMENTS DECON
(thousands of 2003 dollars)

Work Category	Cost	\%
Decontamination	14,149	2.1
Removal	106,014	16.0
Packaging	12,406	1.9
Transportation	5,561	1
Waste Disposal	96,915	14.6
Off-site Waste Processing	36,757	5.5
Program Management [1]	236,572	35.6
Spent Fuel Pool Isolation	9,332	1.4
ISFSI Related (non-operating)	81,723	12.3
Insurance and Regulatory Fees	18,601	2.8
Energy	4,095	0.6
Characterization and Licensing Surveys	10,191	1.5
Property Taxes	20,638	3.1
Miscellaneous Equipment	5,998	0.9
Site O\&M	5,526	0.8
Total [2]		
	664,477	100.0
NRC License Termination		
Spent Fuel Management	480,331	72.3
Site Restoration	141,648	21.3

${ }^{11}$ Includes engineering and security
${ }^{121}$ Columns may not add due to rounding

TABLE 6.2
SUMMARY OF DECOMMISSIONING COST ELEMENTS
DELAYED DECON
(thousands of 2003 dollars)

Work Category	Cost	\%
Decontamination	18,113	2.9
Removal	95,991	15.1
Packaging	8,829	1.4
Transportation,	4,258	0.7
Waste Disposal	58,593	9.2
Off-site Waste Processing	43,866	6.9
Program Management ${ }^{[1]}$	261,672	41.2
Spent Fuel Pool Isolation	9,332	1.5
ISFSI Related (non-operating)	38,655	6.1
Insurance and Regulatory Fees	31,133	4.9
Energy	11,808	1.9
Characterization and Licensing Surveys	11,524	1.8
Property Taxes	25,513	4.0
Miscellaneous Equipment	9,183	1.4
Site O\&M	6,798	1.1
Total ${ }^{[2]}$	635,270	100.0
NRC License Termination	414,583	65.3
Spent Fuel Management	175,539	27.6
Site Restoration	45,148	7.1

${ }^{(11)}$ Includes engineering and security
${ }^{12}$ Columns may not add due to rounding

TABLE 6.3
SUMMARY OF DECOMMISSIONING COST ELEMENTS SAFSTOR

(thousands of 2003 dollars)

Work Category	Cost	\%
Decontamination	18,035	2.1
Removal	99,217	11.6
Packaging	8,949	1.1
Transportation	4,282	0.5
Waste Disposal	56,405	6.6
Off-site Waste Processing	43,468	5.1
Program Management ${ }^{1]}$	343,367	40.3
Spent Fuel Pool Isolation	9,332	1.1
ISFSI Related (non-operating)	77,603	9.1
Insurance and Regulatory Fees	69,823	8.2
Energy	8,933	1.0
Characterization and Licensing Surveys	11,524	1.4
Property Taxes	67,209	7.9
Miscellaneous Equipment	16,269	1.9
Site O\&M	17,696	2.1
Total [2]	852,113	100.0
NRC License Termination	610,009	71.6
Spent Fuel Management	196,982	23.1
Site Restoration	45,122	5.3

> 11) Includes engineering and security 12] Columns may not add due to rounding

7. REFERENCES

1. U.S. Code of Federal Regulations, Title 10, Parts 30, 40, 50, 51, 70 and 72, "General Requirements for Decommissioning Nuclear Facilities," Nuclear Regulatory Commission, Federal Register Volume 53, Number 123 (p 24018 et seq.), June' 27, 1988.
2. U.S. Nuclear Regulatory Commission, Regulatory Guide 1.159, "Assuring the Availability of Funds for Decommissioning Nuclear Reactors," October 2003.
3. U.S. Code of Federal Regulations, Title 10, Part 20, Subpart E, "Radiological Criteria for License Termination."
4. U.S. Code of Federal Regulations, Title 10, Parts 20 and 50, "Entombment Options for Power Reactors," Advanced Notice of Proposed Rulemaking, Federal Register Volume 66, Number 200, October 16, 2001.
5. U.S. Code of Federal Regulations, Title 10, Parts 2, 50 and 51, "Decommissioning of Nuclear ' Power Reactors," Nuclear. Regulatory Commission, Federal Register Volume 61 (p 39278 et seq.), July 29, 1996.
6. "Nuclear Waste Policy Act of 1982 and Amendments," U.S. Department of Energy's Office of Civilian Radioactive Management, 1982.
7. Maine Yankee Atomic Power Company, Connecticut Yankee Atomic Power Company, and Yankee Atomic Power Company v. United States, U.S. Court of Appeals for the Federal Circuit decision, Docket No. 99-5138, -5139, -5140, August 31, 2000.
8. U.S. Code of Federal Regulations, Title 10, Part 50, "Domestic Licensing of Production and Utilization Facilities," Subpart 54 (bb), "Conditions of Licenses."
9. "Low-Level Radioactive Waste Policy Act," Public Law 96-573, 1980.
10. "Low-Level Radioactive Waste Policy Amendments Act of 1985," Public Law 99240, January 15, 1986.
11. U.S. Code of Federal Regulations, Title 10, Part 20, Subpart E, "Radiological Criteria for License Termination," Federal Register, Volume 62, Number 139 (p 39058 et seq.), July 21, 1997.

7. REFERENCES (continued)

12. "Establishment of Cleanup Levels for CERCLA Sites with Radioactive Contamination," EPA Memorandum OSWER No. 9200.4-18, August 22, 1997.
13. U.S. Code of Federal Regulations, Title 40, Part 141.16, "Maximum contaminant levels for beta particle and photon radioactivity from man-made radionuclides in community water systems."
14. "Memorandum of Understanding Between the Environmental Protection Agency and the Nuclear Regulatory Commission: Consultation and Finality on Decommissioning and Decontamination of Contaminated Sites," OSWER 9295.8-06a, October 9, 2002.
15. "Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM)," NUREG/CR-1575, Rev. 1, EPA 402-R-97-016, Rev. 1, August 2000.
16. "Decommissioning Cost Analysis for the Oyster Creek Nuclear Generating Station," Document No. G01-1271-003, TLG Services, Inc., February 1999.
17. T.S. LaGuardia et al., "Guidelines for Producing Commercial Nuclear Power Plant Decommissioning Cost Estimates," AIF/NESP-036, May 1986.
18. W.J. Manion and T.S. LaGuardia, "Decommissioning Handbook," U.S. Department of Energy, DOE/EV/10128-1, November 1980.
19. "Building Construction Cost Data 2003," Robert Snow Means Company, Inc., Kingston, Massachusetts.
20. Project and Cost Engineers' Handbook, Second Edition, p. 239, American Association of Cost Engineers, Marcel Dekker, Inc., New York, New York, 1984.
21. "Technical, Schedule, and Cost Uncertainties of the Yucca Mountain Repository Project," GAO-02-191, December 2001.
22. "Acceptance Priority Ranking \& Annual Capacity Report," DOE/RW-0457, March 1995.

7. REFERENCES (continued)

23. "Civilian Radioactive Waste Management System Total System Description," Revision 02 (TDR-CRW-SE-000002), DOE/RW-0500, September 2001.
24. "Strategy 'for Management and Disposal of Greater-Than-Class C Low-Level Radioactive Waste," Federal Register Volume 60, Number 48 (p 13424 et seq.), March 1995.
25. U.S. Department of Transportation, Title 49 of the Code of Federal Regulations, "Transportation," Parts 173 through 178, 1996.
26. Tri-State Motor Transit Company, published tariffs, Interstate Commerce Commission (ICC), Docket No. MC-109397 and Supplements, 2000.
27. J.C. Evans et al., "Long-Lived Activation Products in Reactor Materials" NUREG/CR-3474, Pacific Northwest Laboratory for the Nuclear Regulatory Commission. August 1984.
28. R.I. Smith, G.J. Konzek, W.E. Kennedy, Jr., "Technology, Safety and Costs of Decommissioning a Reference Pressurized Water Reactor Power Station," NUREG/CR-0130 and addenda, Pacific Northwest Laboratory for the Nuclear Regulatory Commission. June 1978.
29. H.D. Oak, et al., "Technology, Safety and Costs of Decommissioning a Reference Boiling Water Reactor Power Station," NUREG/CR-0672 and addenda, Pacific Northwest Laboratory for the Nuclear Regulatory Commission. June 1980.
30. "Financial Protection Requirements for Permanently Shutdown Nuclear Power Reactors," 10 CFR Parts 50 and 140, Federal Register Notice, Vol. 62, No. 210, October 30, 1997.
31. "Microsoft Project 2002," Microsoft Corporation, Redmond, WA, 2002.
32. "Atomic Energy Act of 1954," (68 Stat. 919).

Oyster Creek Nuclear Generating Station
Decommissioning Cost Analysis

Document E16-1455-006; Rev. 0
Appendix A, Page 1 of 4

APPENDIX A

APPENDIX A UNIT COST FACTOR DEVELOPMENT

Example: Unit Factor for Removal of Contaminated Heat Exchanger < 3,000 lbs.

1. SCOPE

Heat exchangers weighing $<3,000 \mathrm{lbs}$. will be removed in one piece using a crane or small hoist. They will be disconnected from the inlet and outlet piping. The heat exchanger will be sent to the waste processing area. .

2. CALCULATIONS

Act
ID
Activity

Description \quad\begin{tabular}{c}
Activity

Duration

(minutes)

Critical

Duration

(minutes)*
\end{tabular}

a	Remove insulation	60	(b)
b	Mount pipe cutters	60	60
c	Install contamination controls	20	(b)
d	Disconnect inlet and outlet lines	60	60
e	Cap openings	20	(d)
f	Rig for removal	30	30
g	Unbolt from mounts	30	30
h	Remove contamination controls	15	15
i	Remove, wrap, send to waste processing area	$\frac{60}{15}$	$\underline{60}$
	Totals (Activity/Critical)	$\mathbf{3 5 5}$	$\mathbf{2 5 5}$

Duration adjustment(s):

+ Respiratory protection adjustment (25% of critical duration) 64
+ Radiation/ALARA adjustment (30\% of critical duration) . $\quad \underline{77}$
Adjusted work duration 396
+ Protective clothing adjustment (30\% of adjusted duration) $\quad \underline{119}$
Productive work duration $\quad \frac{119}{515}$
+ Work break adjustment (8.33 \% of productive duration) 43
Total work duration (minutes) 558
*** Total duration $=9.300 \mathrm{hr}$ ***
* alpha designators indicate activities that can be performed in parallel

APPENDIX A (continued)

3. LABOR REQUIRED

4. EQUIPMENT \& CONSUMABLES COSTS

Equipment Costs none
Consumables/Materials Costs
-Blotting paper 50 @ $\$ 0.42$ sq ft $\{2\}$ $\$ 21.00$
-Plastic sheets/bags 50 @ $\$ 0.10 / \mathrm{sq} \mathrm{ft}\{3\}$ $\$ 5.00$
-Gas torch consumables $1 @ \$ 4.16 / \mathrm{hr} \times 1 \mathrm{hr}\{1\}$ $\$ 4.16$
Subtotal cost of equipment and materials \$30.16
Overhead \& profit on equipment and materials @ 16.00% $\$ 4.83$
Total costs, equipment \& material $\$ 34.99$
TOTAL COST:
Removal of contaminated heat exchanger <3000 pounds: \$3,068.01
Total labor cost: \$3,033.02
Total equipment/material costs: $\$ 34.99$
Total craft labor man-hours required per unit: 67.890

5. NOTES AND REFERENCES

- Work difficulty factors were developed in conjunction with the Atomic Industrial Forum's (now NEI) program to standardize nuclear decommissioning cost estimates and are delineated in Volume 1, Chapter 5 of the "Guidelines for Producing Commercial Nuclear Power Plant Decomm̈issioning Cost Estimates," AIF/NESP-036, May 1986.
- References for equipment \& consumables costs:

1. www.mcmaster.com online catalog, item 7193785
2. R.S. Means (2003) Section 01540-800-0200, page 17
3. R.S. Means (2003) Section 01590-400-6360, page 25

- Material and consumable costs were adjusted using the regional indices for Camden, New Jersey.

APPENDIX B

UNIT COST FACTOR LISTING (DECON: Power Block Structures Only)

APPENDIX B

UNIT COST FACTOR LISTING (Power Block Structures Only)

Unit Cost Factor

Cost/Unit(\$)
Removal of clean instrument and sampling tubing, $\$$ linear foot0.43
Removal of clean pipe 0.25 to 2 inches diameter, $\$$ linear foot 4.48
Removal of clean pipe >2 to 4 inches diameter, $\$ /$ inear foot 6.48
Removal of clean pipe >4 to 8 inches diameter, $\$$ linear foot 12.69
Removal of clean pipe >8 to 14 inches diameter, $\$$ /inear foot 24.44
Removal of clean pipe >14 to 20 inches diameter, $\$$ linear foot 31.63
Removal of clean pipe >20 to 36 inches diameter, \$linear foot 46.57
Removal of clean pipe >36 inches diameter, $\$$ linear foot 55.39
Removal of clean valves >2 to 4 inches 83.88
Removal of clean valves >4 to 8 inches 126.92
Removal of clean valves >8 to 14 inches 244.35
Removal of clean valves >14 to 20 inches 316.29
Removal of clean valves >20 to 36 inches 465.69
Removal of clean valves >36 inches 553.90
Removal of clean pipe hangers for small bore piping 26.07
Removal of clean pipe hangers for large bore piping 96.42
Removal of clean pumps, <300 pound 211.14
Removal of clean pumps, $300-1000$ pound 593.35
Removal of clean pumps, $1000-10,000$ pound 2,356.59
Removal of clean pumps, $>10,000$ pound 4,547.23
Removal of clean pump motors, $300-1000$ pound 251.24
Removal of clean pump motors, $1000-10,000$ pound 983.97
Removal of clean pump motors, $>10,000$ pound 2,213.94
Removal of clean heat exchanger <3000 pound 1,261.46
Removal of clean heat exchanger >3000 pound 3,161.00

APPENDIX B
 (continued)

Unit Cost Factor

Removal of clean tanks, <300 gallons 271.95
Removal of clean tanks, 300-3000 gallon 863.17
Removal of clean tanks, >3000 gallons, \$/square foot surface area 7.24
Removal of clean electrical equipment, <300 pound 116.97
Removal of clean electrical equipment, 300-1000 pound 409.06
Removal of clean electrical equipment, 1000-10,000 pound 818.12
Removal of clean electrical equipment, $>10,000$ pound 1,949.14
Removal of clean electrical transformers <30 tons 1,353.65
Removal of clean electrical transformers > 30 tons 3,898.29
Removal of clean standby diesel-generator, $<100 \mathrm{~kW}$ 1,382.64
Removal of clean standby diesel-generator, 100 kW to 1 MW 3,086.15
Removal of clean standby diesel-generator, $>1 \mathrm{MW}$ 6,388.94
Removal of clean electrical cable tray, \$linear foot 10.81
Removal of clean electrical conduit, \$/inear foot 4.71
Removal of clean mechanical equipment, <300 pound 116.97
Removal of clean mechanical equipment, 300-1000 pound 409.06
Removal of clean mechanical equipment, 1000-10,000 pound 818.12
Removal of clean mechanical equipment, $>10,000$ pound 1,949.14
Removal of clean HVAC equipment, <300 pound 116.97
Removal of clean HVAC equipment, 300-1000 pound 409.06
Removal of clean HVAC equipment, $1000-10,000$ pound 818.12
Removal of clean HVAC equipment, $>10,000$ pound 1,949.14
Removal of clean HVAC ductwork, $\$ /$ pound 0.45
Removal of contaminated instrument and sampling tubing, \$/linear foot 1.08
Removal of contaminated pipe 0.25 to 2 inches diameter, \$/inear foot 14.78

APPENDIX B (continued)

Unit Cost Factor

Cost/Unit(\$)

> Removal of contaminated pipe >2 to 4 inches diameter, $\$$ linear foot Removal of contaminated pipe >4 to 8 inches diameter, \$linear foot

Removal of contaminated pipe >8 to 14 inches diameter, $\$$ linear foot 80.28
Removal of contaminated pipe >14 to 20 inches diameter, $\$$ linear foot 96.33
Removal of contaminated pipe >20 to 36 inches diameter, \$linear foot 133.86
Removal of contaminated pipe >36 inches diameter, \$/linear foot 159.41
Removal of contaminated valves >2 to 4 inches 315.19
Removal of contaminated valves >4 to 8 inches 374.12
Removal of contaminated valves >8 to 14 inches 772.69
Removal of contaminated valves >14 to 20 inches 981.06
Removal of contaminated valves >20 to 36 inches $\quad 1,308.47$
Removal of contaminated valves >36 inches 1,563.91
Removal of contaminated pipe hangers for small bore piping 83.60
Removal of contaminated pipe hangers for large bore piping 275.50
Removal of contaminated pumps, <300 pound 655.84
Removal of contaminated pumps, 300-1000 pound $1,537.13$
Removal of contaminated pumps, $1000-10,000$ pound $5,201.62$
Removal of contaminated pumps, $>10,000$ pound $12,630.87$
Removal of contaminated pump motors, $300-1000$ pound 655.43
Removal of contaminated pump motors, 1000-10,000 pound $2,105.39$
Removal of contaminated pump motors, $>10,000$ pound 4,737.44
Removal of contaminated heat exchanger <3000 pound $3,068.01$
Removal of contaminated heat exchanger >3000 pound $8,859.03$
Removal of contaminated feedwater heater/deaerator $\quad 22,254.36$
Removal of contaminated moisture separator/reheater 48,879.96

APPENDIX B (continued)

Unit Cost Factor

Cost/Unit(\$)

> | Removal of contaminated tanks, <300 gallons | $1,088.77$ |
| :--- | ---: |
| Removal of contaminated tanks, >300 gallons, $\$ /$ square foot | 22.32 |
| Removal of contaminated electrical equipment, <300 pound | 514.43 |
| Removal of contaminated electrical equipment, $300-1000$ pound | $1,251.83$ |
| Removal of contaminated electrical equipment, $1000-10,000$ pound | $2,403.35$ |
| Removal of contaminated electrical equipment, $>10,000$ pound | $4,820.06$ |
| Removal of contaminated electrical cable tray, $\$ /$ hinear foot | 25.08 |
| Removal of contaminated electrical conduit, $\$ / i n e a r$ | |
| Removal of contaminated mechanical equipment, <300 pound | 11.69 |
| Removal of contaminated mechanical equipment, $300-1000$ pound | 577.41 |

Removal of contaminated mechanical equipment, $1000-10,000$ pound $2,709.06$
Removal of contaminated mechanical equipment, $>10,000$ pound $4,820.06$
Removal of contaminated HVAC equipment, <300 pound 577.41
Removal of contaminated HVAC equipment, 300-1000 pound $\quad 1,411.23$
Removal of contaminated HVAC equipment, $1000-10,000$ pound $\quad 2,709.06$
Removal of contaminated HVAC equipment, $>10,000$ pound . 4, 820.06
Removal of contaminated HVAC ductwork, $\$$ pound 2.32
Removal/plasma arc cut of contaminated thin metal components, \$linear in. 2.84
Additional decontamination of surface by washing, $\$$ /square foot . 5.71
Additional decontamination of surfaces by hydrolasing, $\$$ /square foot 26.02
Decontamination rig hook-up and flush . 4,912.13
Chemical flush of components/systems, $\$ /$ gallon 10.63
Removal of clean standard reinforced concrete, \$/cubic yard . 67.11
Removal of grade slab concrete, \$/cubic yard 175.76
Removal of clean concrete floors, $\$ /$ cubic yard 288.98

APPENDIX B
 (continued)

Unit Cost Factor
Cost/Unit(\$)

Removal of sections of clean concrete floors, $\$ /$ cubic yard
 872.98
 Removal of clean heavily rein concrete w/\#9 rebar, \$/cubic yard 192.04
 Removal of contaminated heavily rein concrete w/\#9 rebar, \$/cubic yard $\quad 1,452.40$
 Removal of clean heavily rein concrete w/\#18 rebar, \$/cubic yard
 242.90
 Removal of contaminated heavily rein concrete w/\#18 rebar, \$/cubic yard
 1,918.52

Removal heavily rein concrete w/\#18 rebar \& steel embedments, \$/cu yd , 377.78
Removal of below-grade suspended floors, \$/cubic yard 288.98
Removal of clean monolithic concrete structures, \$/cubic yard 730.34
Removal of contaminated monolithic concrete structures, \$/cubic yard 1,452.56
Removal of clean foundation concrete, \$/cubic yard 570.79

Removal of contaminated foundation concrete, \$/cubic yard 1,351.06
Explosive demolition of bulk concrete, \$/cubic yard 25.86
Removal of clean hollow masonry block wall, \$/cubic yard 67.75
Removal of contaminated hollow masonry block wall, \$/cubic yard 181.41
Removal of clean solid masonry block wall, \$/cubic yard 67.75
Removal of contaminated solid masonry block wall, \$/cubic yard 181.41
Backfill of below-grade voids, \$/cubic yard 15.19
Removal of subterranean tunnels/voids, \$/linear foot 130.08
Placement of concrete for below-grade voids, \$/cubic yard 90.96
Excavation of clean material, \$/cubic yard 2.45
Excavation of contaminated material, \$/cubic yard 27.17
Excavation of submerged concrete rubble, \$/cubic yard 11.89
Removal of clean concrete rubble (tipping fee included), \$/cubic yard 85.06
Removal of contaminated concrete rubble, \$/cubic yard 22.01
Removal of building by volume, $\$ /$ cubic foot 0.23
APPENDIX B(continued)
Unit Cost FactorCost/Unit(\$)
Removal of clean building metal siding, $\$ /$ square foot 1.24
Removal of contaminated building metal siding, \$/square foot 3.24
Removal of standard asphalt roofing, $\$ /$ square foot 2.00
Removal of transite panels, $\$ /$ square foot 2.02
Scarifying contaminated concrete surfaces (drill \& spall) 9.52
Scabbling contaminated concrete floors, $\$ /$ square foot 5.55
Scabbling contaminated concrete walls, $\$$ /square foot 6.21
Scabbling contaminated ceilings, $\$$ /square foot 55.86
Scabbling structural steel, \$/square foot 4.72
Removal of clean overhead cranes/monorails < 10 ton capacity 575.52
Removal of contaminated overhead cranes/monorails <10 ton capacity 1,318.24
Removal of clean overhead cranes/monorails $>10-50$ ton capacity 1,381.26
Removal of contaminated overhead cranes/monorails $>10-50$ ton capacity 3,151.81
Removal of polar cranes >50 ton capacity, each 5,778.86
Removal of gantry cranes > 50 ton capacity, each 24,364.28
Removal of clean structural steel, \$/pound 0.32
Removal of clean steel floor grating, \$/square foot 2.95
Removal of contaminated steel floor grating, \$/square foot 7.22
Removal of clean free-standing steel liner, $\$ /$ square foot 10.85
Removal of contaminated free-standing steel liner, $\$ /$ square foot 25.84
Removal of clean concrete-anchored steel liner, \$/square foot 5.42
Removal of contaminated concrete-anchored steel liner, \$/square foot 30.05
Placement of scaffolding in clean areas, $\$ /$ square foot 12.05
Placement of scaffolding in contaminated areas, \$/square foot 17.78
Landscaping with topsoil, \$/acre $15,370.28$

APPENDIX B (continued)

Unit Cost Factor

Cost/Unit(\$)
Cost of CPC B-88 LSA box \& preparation for use 1,051.61
Cost of CPC B-25 LSA box \& preparation for use 838.58
Cost of CPC B-12V 12 gauge LSA box \& preparation for use 720.97
Cost of CPC B-144 LSA box \& preparation for use 3,999.47
Cost of LSA drum \& preparation for use 115.13
Cost of cask liner for CNSI 14-195 cask , 8,226.15
Cost of cask liner for CNSI 8-120A cask (resins) 5,779.18
Cost of cask liner for CNSI 8-120A cask (filters) 5,779.18
Decontamination of surfaces with vacuuming, $\$ /$ square foot 0.60

APPENDIX C
 DETAILED COST ANALYSES
 DECON

Oyster Creek Nuclear Generating Station DECON Decommissioning Cost Estimate (Thousands of 2003 Dollars)

Actuty	Activiry Deseription	$\begin{gathered} \text { Docon } \\ \text { Cor: } \end{gathered}$	$\begin{gathered} \text { Removal } \\ \text { cour } \end{gathered}$	$\begin{gathered} \text { Pect noping } \\ \text { Coult } \end{gathered}$	Trunsport Conts	$\begin{gathered} \text { Off-Sile } \\ \text { Procesting } \\ \text { Costa } \end{gathered}$		$\begin{aligned} & \text { OTher } \\ & \text { Cote } \end{aligned}$	$\begin{gathered} \text { Totus } \\ \text { contingency } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Costas } \\ \hline \end{gathered}$	$\begin{gathered} \text { NRC } \\ L_{\mathrm{c} . \mathrm{i} \text { Tomm. }}^{\text {Coata }} \\ \hline \end{gathered}$		$\begin{gathered} \text { Site } \\ \text { Rostorntion } \\ \text { Conts } \\ \hline \end{gathered}$	$\begin{aligned} & \begin{array}{c} \text { Procesesed } \\ \text { Vohume } \\ \text { Cu. Foof } \end{array} \end{aligned}$	$\begin{aligned} & \hline \text { Closis } A \\ & \text { Cu. Foet } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Burulv } \\ & \begin{array}{c} \text { Ciont } \\ \text { Cu, Foun } \end{array} \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { Oumase } \\ \text { Cos. Fome } \\ \hline \end{array} \end{aligned}$	$\begin{aligned} & \text { GTCC } \\ & \text { CuF Fot } \end{aligned}$		$\begin{gathered} \text { Crah } \\ \text { Manhourt } \end{gathered}$	$\begin{gathered} \text { Uuint and } \\ \text { Contrictor } \\ \text { Manhlownt } \\ \hline \end{gathered}$
PERRICO it - Shutdown Mrough Tramstion																					
Period 1a D fa. 1.1	Drect Decommiswioning Activitien Preppere prelimintry decommissioring cost	-	-	-	-	-	-	97	15	112	112	-	-	-	-	-	. ${ }^{-}$	-	-	-	1.300
12.1.2	Notricaton ol Cosation of Opmation																				
12.1.3	Remove ned 8 cource mmeoty									N/											
19.15										-											
1.1 .18	Prepere ond rumme PSDAR	-	-	-	-	-	-	150	22	172	172	-									2.000
12.9 .7	Ravery dimit divas appers.	-	-	-	-	.	-	36	52	396	398	-	-	-	-		-	-	-	-	4.800
t.1. 1.8	Pertom cotender rad remey									*											
19.19	Evtrunte byproderd tiventory	-	-	-	-	-	-	75	11	${ }^{\circ}$	${ }^{88}$	-	-	-	-	-	-	.	-	-	1.000
${ }_{\text {12. }}^{\text {12.1.10 }}$	End produr diselation		:	:	:	-	.	75 97	11	-868	-1128	$:$	-	:	:		.	:	.		1.000 1.300
10.1	Dofino mutar woth rowemion	:	:	:	:	:	:	562	${ }_{4}$	648	46	:	:	:	. :	:	:	:	:	:	7.500
12.1 .13	Perrom Ser ma	-	-	-	-	-	-	232	33	287	267	-	-	-	-		-	-		-	3.100
12.1.14		:	:	:	:	:	-	375	${ }_{48}^{56}$	431	${ }_{3} 41$:	:	:	:		:	:	:	:	3.000
ta. 1.16									48	353	333		-	-	-	-	-	-	-	-	4.098
Actury Specimeabone																					
10.1.17.1	Prenit temporary tacmimes	:	-	-	-	:	-	369	${ }_{45}$	424	831	-	42	:	-	-	-	-	-	-	4980
10.1.172		:	:	:	:	:	:	${ }_{37} 31$	${ }^{48}$	359 43	23 43	:	36	:	:	:	:	:		:	4,187
1.1.1.17.4	Resctor memen	-	.	-	.	.	.	532	8	612	812	.	:	:	:	:					7.100
1.1.1.17.3	Renctor vessed	-	-	-	-	-	-	$4{ }^{47}$	3	500	560	-	-	-	-	-	-	-			0.500
${ }^{1.1 .1 .178}$	Sercincion stield	-	-	-	-			${ }^{37}$	8	43	43	-	-	-			-	-	-		500
12.1 .177	Moistue sepersorunthomers	:	:	-	:	$:$:	730.	11	-88888	88	:	9	:	-		-		-	-	1.000
${ }^{10.1 .178} 1$	Rentroced concrue	:	:	:	:	:	:	120.	18 47	${ }^{138}$	69	-	69	:	- :	:	:	:	-	:	1.800 4.157
1.1.171.10	Presturo supprestion stucture	-	-	-	-	-	-	150	2	172	172	.	:	.	-	-	.	:	-	-	2.000
12.1.17.41	1 Ormen	-	-	-	-	-	-	120	${ }^{18}$	138	138	-	,	-	-	-	-	-	-		1.800
93111912	Prand turcture 8 bulbing	-	-	-	-	-	-	234	35	${ }^{88}$	${ }^{138}$	-	134	-	-		-				3.120
[1.1.17.13	3 Westu menasement	:	:	:	:	:	:	${ }^{345}$	52 10	${ }_{78} 98$	${ }_{39} 59$:	${ }^{3}$:	:	-	:	-	:	-	4.600 .000
19.117	Toter	:	.	.	.	-	:	3.198	479	3.578	1.355	-	320	:	-	-	-		-	.	42.674
Pemming 8	3 She Prepersatione																				
${ }^{12.1 .18}$	Propurs ciemuxting mecuence	-	-	-				${ }^{180}$	27		${ }_{207}^{207}$	-	-	-	-		-				2,400
1.1.1.19	Prent sep. 8 wemp. sves	:	:	:	:	:	:	$\begin{array}{r}2.419 \\ \hline 105\end{array}$	${ }_{18}^{36}$	2.782	2.782 121	:	$:$:	:		:	-		:	1.400
19.121		-	-	-	-	-	-	2.048	307	2.335	2.335	-	-	-	:		:		-	:	
10.122	Procre caskerinorr 8 comathers	:	:	-	:	:	-	- 90.38	4, 14	+108	11598	-	50	-	-		-	-	:	-	1.230
1.1	Sutten Pembed 1s Aarknty Costs							10.356	1,559	11,907	11.567	-	320	-	-	-	-	-	-		78,600
Pariod la Collateral Costs					-	-	-	10.300	1.519	11.945	-										
${ }_{193}{ }^{\text {a }}$:	:	:	:	:	:	10.300	1.513	11,406	:	11.045	:	:	:		:	:			
Partod is Partod-dependort Costs																					
10.4.1		:						$\stackrel{1}{19}$	\because	1.907	${ }^{1.907}$	-					-		:	:	
1.4 .4 .3	Hesim phystas expolen	-	231	-	-	-	-	-	$5 s$	278	- 278	-		:	-		-	-	:	:	
1.4 .4	Hesyy coutmear rentem	-	288	5	,	-		-	${ }^{43}$	331	331	-	-	-	40	-	-	-	9	0	:
1045 1148		:	-	5	1	:		823	${ }^{6}$	719	${ }_{719}$:	:	:	404	:	:	:	8.103	99	
14.45	NRC fees	-	-	-	-	-	-	371	37	408	408		-	.	-	- -	-		-	-	- -
10.48 1.49	Emergener Plenting Fees	:	:	:	:	:	:	101 250	${ }_{37}^{10}$	${ }_{281}^{111}$	287	111	:	:	:		:	:	:	-	

Table C
Oyster Creek Nuclear Generating Station
DECON Decommissioning Cost Est imate
(Thousands of 2003 Dollars)

Table C
Oyster Creek Nuclear Generating Station
DECON Decommissioning Cost Estimate
(Thousands of 2003 Dollars)

\begin{tabular}{|c|}
\hline \({ }^{\text {Acthtly }}\) \& Aetivy Doseriplon \& \(\xrightarrow{\text { Docon }}\) com \& Removen
Cont \& Meckeging
Conis \& Transport
costa \& \& \begin{tabular}{l}
HRN \\
Diepren Cost
\end{tabular} \& \[
\begin{aligned}
\& \text { Oher } \\
\& \text { Costa }
\end{aligned}
\] \& \[
\begin{gathered}
\text { Toturi } \\
\text { contingency }
\end{gathered}
\] \& \[
\begin{gathered}
\text { Total } \\
\text { coate }
\end{gathered}
\] \& NRC Coats \& \[
\begin{gathered}
\text { Sport Fud } \\
\text { Managoment } \\
\text { Comits } \\
\hline
\end{gathered}
\] \& Reatoration Cotal \& \begin{tabular}{l}
Proceseed
Vohnme \\
Cen Fer
\end{tabular} \& \[
\begin{aligned}
\& \text { Clastat } \\
\& \text { Cu. Foet }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Buruiv } \\
\& \text { Closion } \\
\& \text { Cut Foen }
\end{aligned}
\] \& ohumet Class C Cu. \({ }^{\text {Fen }}\) \& \[
\begin{aligned}
\& \text { GTCC } \\
\& \text { CuFFout }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Burnal! } \\
\& \text { procateon } \\
\& \text { wh. Lbe. }
\end{aligned}
\] \& \[
\begin{gathered}
\text { Craht } \\
\text { Manhours }
\end{gathered}
\] \& Uulny and
Contestor Manhourt \\
\hline \multicolumn{22}{|l|}{} \\
\hline 13.47 \& Puare enorgy butyet \& \(\bullet\) \& - \& - \& - \& - \& - \& 317 \& 48 \& 304 \& 304 \& - \& \& - \& - \& - \& - \& - \& \& - \& - \\
\hline 1.4 .8 \& NRC Feen \& - \& - \& - \& - \& - \& - \& 188 \& 19 \& 207 \& 207 \& \& - \& - \& - \& - \& - \& - \& - \& - \& \\
\hline 16.4 .9
104.10 \& \& : \& : \& : \& : \& : \& : \& \(\begin{array}{r}51 \\ 127 \\ \hline\end{array}\) \& 19 \& 1468 \& 148 \& 56 \& \(:\) \& : \& : \& : \& \(:\) \& - \& : \& : \& : \\
\hline 96.4 .11 \& Spomen fud Pod OSM \& - \& - \& - \& - \& - \& - \& 491 \& 74 \& 364 \& - \& Sed \& : \& - \& - \& - \& : \& : \& : \& : \& \\
\hline 10.4 .12 \& 155510 Denering Cost \& - \& - \& - \& - \& - \& - \& 36 \& 5 \& 41 \& - \& 41 \& - \& - \& - \& - \& - \& - \& - \& \& - \\
\hline \(1 \mathrm{~B}_{6.4} .13\) \& Seantry Stafl Coz \& - \& - \& - \& - \& - \& - \& 499 \& 74 \& 564 \& 554 \& - \& - \& - \& - \& - \& - \& - \& \& - \& 29.804 \\
\hline \(\xrightarrow{18.4 .14} \begin{aligned} \& \text { 10.4, } \\ \& 1.45\end{aligned}\) \& Doc sinf cost \& : \& : \& \(:\) \& : \& : \& \& 3,420 \& \({ }^{313} 1\) \& \({ }_{3}^{3.933}\) \& \({ }_{3}^{3.933}\) \& : \& : \& : \& : \& : \& : \& : \& : \& \& 52.857 \\
\hline 10.4 \& \& 19 \& 116 \& 3 \& 1 \& . \& 13 \& 14,467 \& 2235 \& 17,454 \& 19.728 \& 802 \& - \& - \& 221 \& - \& - \& : \& 4,439 \& 34 \& \\
\hline 100 \& TOTN PERNOO וD COST \& 1,312 \& 11.597 \& 270 \& 40 \& 2.192 \& 2.113 \& 3,579 \& 9.975 \& 63.99 \& 50,556 \& 8,608 \& 270 \& 29.050 \& 19.414 \& 3.839 \& - \& - \& 2,804,318 \& 151,521 \& 231,954 \\
\hline PERLOO 1 \& totals \& 1,942 \& 12.100 \& 275 \& 41 \& 2.192 \& 3.138 \& 06.229 \& 17.715 \& 123,34 \& 103.024 \& 19.817 \& 590 \& 29.050 \& 19.419 \& 3.839 \& - \& - \& 2.612 .419 \& 151.621 \& 781.925 \\
\hline \multicolumn{22}{|l|}{PEROOL 25 -Lape Componem Rumaval} \\
\hline \multicolumn{22}{|l|}{Pertod 21. Dreet Drcommistoring Natribies} \\
\hline Nudeor Sre
2a.1.9.1 \& mom Supory Sytoon Remover Recratention Pumon a Motors \& 3 \& 87 \& 33 \& 35 \& 42 \& 78 \& - \& 246 \& 1.244 \& 1.244 \& - \& \& 107 \& 1,053 \& \& \& \& 227,150 \& 2936 \& \\
\hline 22.1.1.2 \& CRDMs a Nis Removal \& 140 \& 124 \& 183 \& 4 \& - \& 419 \& \& 230 \& 1,140 \& 1.140 \& : \& : \& \& 5,178 \& - \& \& : \& 112.850 \& \({ }_{5.509}\) \& : \\
\hline 2e.1.1.3 \& Resctior Vesse intemmis \& 118 \& 2.077 \& 4.443 \& 859 \& - \& 7.509 \& 182 \& 8.724 \& 21.971 \& 21.911 \& - \& - \& - \& 1.127 \& 1,378 \& 83 \& - \& 112,313 \& 25,434 \& 1,149 \\
\hline 20.1.14 \& Rosctor Vessed \& \({ }^{69}\) \& 4.854 \& 1.251 \& 473 \& \& 8.8882 \& 192 \& 7.124 \& 20.935 \& 220.935 \& - \& - \& - \& 10.850 \& 2.254 \& \& - \& 1.401.05 \& 25.434 \& 1.149 \\
\hline 20.1 .1 \& Toxath \& 363 \& 4.943 \& 5.910 \& 1.411 \& 42 \& 15.574 \& 364 \& 14.624 \& 45.29 \& 45.229 \& - \& - \& 107 \& 18,159 \& 3,831 \& 631 \& - \& 2.053.461 \& 59.315 \& 2299 \\
\hline \[
\begin{aligned}
\& \text { Removal of } \\
\& 2 a .1 .2
\end{aligned}
\] \& al Mapror Equipment Main Turtinafienerator \& - \& 267 \& 538 \& 181 \& 5.020 \& 428 \& - \& 1,004 \& 7.113 \& 1,415 \& - \& \& 36.053 \& 1,653 \& \& - \& \& 2.670 .672 \& 5.691 \& \\
\hline 2 E .1 .3 \& Main Condensert \& - \& 804 \& 335 \& 100 \& 3.125 \& 285 \& - \& 78 \& 5.413 \& 3.413 \& - \& - \& 33.099 \& -1,029 \& : \& : \& : \& 1,662,888 \& 17,198 \& : \\
\hline \multicolumn{22}{|l|}{Dinpowid Pl Pand Sritema} \\
\hline Drywell Sys
\[
20.1 .4
\] \& Totem Components Totah \& - \& - \& - \& - \& - \& - \& - \& - \& - \& - \& - \& \& - \& - \& - \& \& - \& \& \& \\
\hline \multicolumn{22}{|l|}{Resctor Bullong Systimn Componmenta} \\
\hline 2.15 .1 \& RCA \& : \& 35 \& 1 \& 1 \& 8 \& 33 \& : \& 18 \& 9 \& 9 \& : \& \& 7 \& 100 \& - \& : \& : \& 12.0010 \& 792 \& \\
\hline 20.15 .3 \& RCB \& - \& 32 \& ! \& 1 \& 30 \& 27 \& - \& 24 \& 138 \& 138 \& - \& - \& 374 \& 88 \& - \& - \& - \& 22,132 \& 1.169 \& \\
\hline 20.154 \& RCO \& - \& 271 \& 7 \& , \& 200 \& 129 \& - \& 14 \& 817 \& 817 \& - \& - \& 3.212 \& 388 \& - \& - \& - \& 185.183 \& 6.024 \& \\
\hline 2.1.1.5 \& \({ }_{\text {RCO }}\) \& \& 52 \& 1 \& 2 \& \({ }_{36}^{62}\) \& \({ }^{63}\) \& \& \& \({ }_{121}^{221}\) \& \({ }^{221}\) \& \& \& \({ }^{761}\) \& \({ }^{190}\) \& \& \& \& \({ }^{47.921}\) \& 1,180 \& \\
\hline \({ }_{2}^{20.1 .1 .56}\) \& \({ }_{\text {RCM }}^{\text {RCS }}\) \& : \& 55
83 \& 1 \& ; \& \({ }_{80}^{36}\) \& 25
83 \& : \& \(\stackrel{28}{4}\) \& 146
307 \& 146
307 \& \(:\) \& : \& \({ }_{887} 688\) \& 78
280 \& : \& : \& : \& 25.788 \& \({ }_{1}^{1.205}\) \& : \\
\hline 2 Em .58 \& RCN \& - \& 1 mb \& 5 \& 5 \& 172 \& 101 \& - \& \({ }^{21}\) \& 510 \& 510 \& - \& - \& 1.510 \& 304 \& - \& - \& - \& 88.593 \& 4,107 \& \\
\hline 2.1.1.59
2.1.5. 10 \& Res \& : \& \({ }_{42}^{88}\) \& 5 \& 3 \& 28
28 \& 159

27 \& : \& ${ }_{21}^{61}$ \& 11920 \& 322 \& : \& : \& 342
306 \& ${ }_{80} 89$ \& $:$ \& : \& : \& 58.885
19.639 \& 1.1993 \&

\hline 2 L .15 \& Tomb \& - \& 84 \& 28 \& 28 \& 851 \& 648 \& . \& 47 \& 2.874 \& 2.874 \& : \& - \& 0.050 \& 1.955 \& - \& - \& : \& 501.583 \& 78.867 \& :

\hline \multicolumn{22}{|l|}{New Raswaste Buting 9rumm Components}

\hline 20.10 .2 \& ${ }_{\text {N2O }}$ \& \% \& ${ }^{2}$ \& - \& ${ }_{0}$ \& 3 \& 2 \& : \& ${ }_{3}$ \& 17 \& 17 \& : \& : \& 40 \& 5 \& : \& : \& : \& 23.058 \& ${ }_{2} 202$ \& -

\hline 28.1 .8 .3 \& N2P \& - \& 22 \& . 0 \& 1 \& 28 \& 3 \& - \& 10 \& 63 \& 83 \& - \& \& 324 \& 8 \& - \& - \& - \& 13.208 \& 168 \&

\hline 20.184 \& N30 \& - \& 52 \& , \& 1 \& 19 \& 27 \& - \& 23 \& 124 \& - 124 \& - \& - \& 237 \& 83 \& \cdot \& - \& - \& 17.032 \& 1.154 \& -

\hline \& ${ }_{\text {N30 }}$ \& : \& 62
13 \& , \& 1 \& ${ }_{2}^{4}$ \& 14 \& : \& 24 \& ${ }_{21}^{197}$ \& 137
21 \& : \& $:$ \& 419 \& 4 \& . \& : \& : \& ${ }^{20.003}$ \& 1.403 \& -

\hline 20.1 .68
20.169 \& N33 \& : \& ${ }_{76}^{13}$ \& 1 \& 1 \& ${ }_{23}$ \& ${ }_{27}^{27}$ \& : \& 2 \& 158 \& 21
150 \& : \& : \& ${ }^{198}$ \& ${ }^{7}$ \& : \& : \& : \& 1.409
18.964 \& 294 \&

\hline 22.1 .8 .8 \& N3P \& - \& 19 \& 0 \& 0 \& 10 \& 10 \& - \& 9 \& 49 \& 49 \& : \& : \& 118 \& 31 \& - \& : \& : \& 7,576 \& $\stackrel{19}{ }$ \& - .

\hline 2.1.8.9 \& N30 \& - \& 13 \& 0 \& 0 \& 5 \& 2 \& - \& 5 \& 26 \& 28 \& - \& - \& 67 \& 7 \& - . \& . \& - \& 3.331 \& 299 \&

\hline
\end{tabular}

TLOS Serticte Ine

Oyster Creek Nuclear Generating Station
DECON Decommissioning Cost Estimate (Thousands of 2003 Dollars)

Activity	Aeturity Dosertption	$\begin{gathered} \text { Docon } \\ \text { coty } \end{gathered}$	Remevit Cots	Fachaging Costs	Tranaport Cont	$\begin{gathered} \text { OnfSite } \\ \text { Procosting } \\ \text { Costry } \end{gathered}$	$\begin{aligned} & \text { LFW } \\ & \text { Dispored } \\ & \text { Cosite } \end{aligned}$	Other	${ }_{\text {contingoney }}^{\text {Total }}$	$\begin{gathered} \text { Total } \\ \text { coste } \end{gathered}$	$\begin{gathered} \text { HRC } \\ \text { Le.Tom. } \\ \text { Coste } \end{gathered}$	$\begin{gathered} \text { Spont fuot } \\ \text { Menegomment } \\ \text { conta } \end{gathered}$	$\begin{gathered} \text { Site } \\ \text { Restoration } \\ \text { Conta } \end{gathered}$	$\begin{aligned} & \text { Procested } \\ & \text { Vohmen } \\ & \text { Cut Foet } \end{aligned}$	$\begin{aligned} & \text { Cinang } \\ & \text { Cu. Foot } \end{aligned}$		Clase C Cu. Feet	GTCC Cu. Fow	$\begin{aligned} & \text { Burion 1 } \\ & \text { Proceuthe } \\ & \text { Ph, Libe. } \end{aligned}$	$\begin{gathered} \text { Cronh } \\ \text { Manhour } \end{gathered}$	$\begin{aligned} & \text { Utility and } \\ & \text { Contracter } \\ & \text { Wanhourt } \end{aligned}$
Augmentac $\text { 28. } 1.9$	Tounth	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
$\begin{aligned} & \text { Mrscelianem } \\ & \text { 2..1. } 10 \end{aligned}$	ans Syntem Componomis Totats	-	-	-	-	-	.	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2.1 .11	Scemtading in urport of decommissioning	-	688	10	3	93	17	-	187	981	961	-	-	7,057	${ }^{68}$	-	-	-	3, 469	16.705	-
20.9	Subtoral Period 2 a Aativy Costs	859	14.387	1,003	1.915	14,124	22.550	384	20.776	82.018	82.018	-	-	16.418	40,14	3.83	631	-	11.066.250	235.299	2,299
Porlod 25 2.21 2* 2	Adelionel Costs Ourle Surcherge (Exchuding RPV) Subtotion Purtod 2a Additionat Conti	:	:	:	:	:	8.250 8.250	-	2.063 2.063	10.313 10.313	10.313 10.313	:	-	:	:	:	:	:	:	:	:
		130 150	i71	${ }^{82}$	170	$:$	${ }_{\text {est }}{ }_{\text {es }}$	$\underset{12,753}{12.735}$		$\begin{array}{r}1.574 \\ 1197 \\ \text { 1868 } \\ \hline 18.499\end{array}$	$\begin{array}{r}1.574 \\ 17 \\ \hline 1.754\end{array}$	14.088	20	$:$	$:$	1.453 1.453	$:$	\vdots	200.574	215 \vdots 215	$:$
Period 2a 2a 4.1 2.42	Period-Dependent Costry Decon mupplies wasurnce \qquad	\therefore	$:$	$:$:	:	$:$	$\stackrel{9}{1,000}$	(128	(1, ${ }^{60}$	(1004	$:$	13*	:	:	$:$:	:	\because	:	$:$
${ }_{28}^{20.4}$	Property tares	-	98	:	:	:	:	1.238	124 247	1.381	1.255 123 108	:	136	:	:	:	:	:	$:$:	:
2815	Homy equipment remed	-	1.930			-	-	-	290	2.220	2220	-	-	:	-	:	-	-	-	-	:
20.48	Disposes of DAW generated	-		35	12	-	269	-	${ }^{15}$	411	418	-	-	-	4.884	-	-	-	93.870	. 150	-
${ }_{2048}^{20818}$	${ }^{\text {Prame merchy }}$ Nudget	:	:	:	:	:	:	${ }_{597} 73$	110 54	S468		:	:	:	-	:	:	:	,		
20.4 .9	Emergency Plaming Foes	-	.	-	-	-	-	125.	12	${ }^{137}$	$\stackrel{\square}{0}$	137	.	.		:	:	:	:	:	
284.10	She osm Com	-	-	-	-	-	-	309.	40	358	336	\cdot	-	-	-	:		-	:		
20.4.11	SSoms Fuod Pool 0 OM	:	-	:	:	:	:	1.1998	180 13	1.379 101	-	1.1079	$:$:	-	$:$:	:	:	:	
224.13	Seanmy Smichem	-	.	-			.	1,496	224	1.129	1,729	-	-		-	:	:		:	:	91,068
204.14 20.15	DCC Sunt \cos	:	:	-	:	:	-	${ }^{9} 9.983$		12.4580	${ }^{11.450}$	-	-	:	-	-	-		-	-	958.283
		48	2.918	Ss	12	:	269	$\begin{aligned} & 18.136 \\ & 3, .858 \end{aligned}$	2.720 5.700	43.695	20.8.46	1.617	138	:	4.884	:	:		93,800	1.150	${ }_{5298.488}^{2817}$
2.0	TOTN PERTOD 2a Cost	9,057	17,454	7.201	2.097	14.124	31.520	48.005	30,807	132.564	138,223	18.288	156	164,418	4,819	3.064	631	-	11.360 .730	235.885	531.784
PeRrico 2t-she Docontumination																					
Pertod 26 Drect Decommimatoring Activion																					
Dinporal of Pland Spsteome																					
$2 \mathrm{tb.1.12}$	189	73	130	7	4	33	218	-	130	${ }^{597}$	597	:	:	436	${ }^{655}$:	:	:	${ }_{76.515}$	${ }_{3}^{1.917}$	
2 tb 1.1 .3	ras	108	218	${ }^{3}$	7	9	330	-	211	99	994	-	-	1.098	1.052	:	-	:	${ }^{1319.929}$	${ }_{6}^{3} 8.468$:
20.1.14	IEA	-	52	1	3	${ }_{30}^{40}$	135	:	${ }_{20}^{54}$	${ }_{198}^{288}$	288 128	:	-	498	100	$:$:	:	38.511 18.238	1.244	:
${ }_{20.11}^{20.1 .5}$	${ }_{\text {Totam }}$	459	712	9	47	529	27118	$:$	1,183	5.748	5.748	:	$:$	8.541	8,174	$:$:	:	9095,351	19,745	:

Oyster Creek Nuclear Generating Station
DECON Decommissioning Cost Estimate
(Thousands of 2003 Dollars)

Table C
Oyster Creek Nuclear Generating Station
DFCON Decommissioning Cost Estimate
Thousands of 2003 Doilars)

\begin{tabular}{|c|}
\hline Acelvity \& Activily Descoriplion \& \[
\begin{aligned}
\& \text { Docen } \\
\& \text { Coset }
\end{aligned}
\] \& \[
\begin{gathered}
\mathbf{R}_{\text {comoval }}^{\text {Cost }}
\end{gathered}
\] \& \[
\begin{gathered}
\text { Packeging } \\
\text { Conte }
\end{gathered}
\] \& Traneport Cost \& \[
\begin{gathered}
\text { On- Site } \\
\text { Procosing } \\
\text { Conts }
\end{gathered}
\] \& \[
\begin{gathered}
\text { LLRW } \\
\begin{array}{c}
\text { Dlaposent } \\
\text { Cotats }
\end{array}
\end{gathered}
\] \& OTher
Costa \& \[
\begin{gathered}
\text { Totat } \\
\text { contingeney }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Toun } \\
\& \text { cont } \\
\& \hline
\end{aligned}
\] \& \& Spent Fual Management Conts \& \[
\begin{aligned}
\& \text { Anston } \\
\& \text { Costion }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Procelesed } \\
\& \text { Volime } \\
\& \text { Cu. Feet }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Conasia } \\
\& \text { Cu. Foot }
\end{aligned}
\] \& \[
\begin{gathered}
\text { Burinal } \\
\text { Cla. } \\
\text { Cu. Foon } \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Tolumes } \\
\& \text { Clases } \\
\& \text { Cu. Paed }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { GTCC } \\
\& \text { Cu. }
\end{aligned}
\] \& \[
\begin{gathered}
\text { Buratil } \\
\text { Procesued } \\
\text { m., Lbes. }
\end{gathered}
\] \& \[
\underset{\text { Mantours }}{\text { Crat }}
\] \& Uiliny and
Contractor Contractor
Menhour \\
\hline \multicolumn{22}{|l|}{Of Rasuasto Buthry Srumm Componenta} \\
\hline 20.7.4.1 \& ORW Pre Dsio doskdoe and Dicon \& - \& 180 \& - \& - \& - \& \(\cdots\) \& - \& 24 \& 185 \& 185 \& - \& - \& is \& - \& - \& - \& - \& 9i4 \& 3.197 \& - \\
\hline \({ }_{20.14 .3}\) \& \({ }_{\text {PSP }}^{\text {Pro }}\) \& : \& 107 \& 2 \& 0 \& \(\stackrel{12}{7}\) \& \(4{ }^{1}\) \& - \& - \({ }^{5}\) \& 2100 \& \({ }^{350}\) \& : \& - \& 143
950 \& 12 \& , \& : \& : \& \(\begin{array}{r}8.148 \\ \hline 9.652\end{array}\) \& 23988 \& \\
\hline 26.1.4.4 \& PTA \& - \& 30 \& 1 \& 1 \& 22 \& 16 \& : \& 15 \& AS \& 85 \& : \& : \& \({ }_{278}\) \& 48 \& : \& : \& : \& \({ }^{13.552}\) \& \({ }_{6} \mathbf{2 8 7}\) \& \\
\hline 2 c 1.4.5 \& pua \& - \& 159 \& 4 \& 3 \& 70 \& 90 \& - \& 14 \& 399 \& 399 \& - \& - \& \& 270 \& - \& - \& - \& 59,137 \& 3.521 \& \\
\hline 20.146 \& Pu \& - \& 112 \& 5 \& 4 \& 118 \& 81 \& - \& 67 \& 385 \& 385 \& - \& - \& 1.4 .41 \& 331 \& - \& - \& . \& 80.278 \& 2.500 \& \\
\hline 20.1.4.7 \& pra \& - \& \({ }^{8}\) \& - \& \& 1 \& 0 \& - \& 2 \& 9 \& 9 \& \& \& 12 \& 0 \& - \& - \& \& 52 \& 148 \& \\
\hline \({ }_{26.1 .49}^{20.4}\) \& UAB \& : \& 200
165 \& 3
3 \& 5 \& 174 \& \({ }^{37}\) \& : \& \({ }_{14}^{98}\) \& 558 \& \({ }^{556}\) \& : \& : \& 2118 \& \({ }^{131}\) \& - \& - \& - \& 97.159 \& 5.232 \& \\
\hline 26.1 .4 \& Totm \& : \& 992 \& 19 \& 22 \& 643 \& 292 \& : \& 407 \& 2.374 \& 2.314 \& : \& \(:\) \& 21.128
7.959 \& 9.000 \& : \& : \& : \& - 40.178 \& -31.587 \& : \\
\hline \multicolumn{22}{|l|}{Tuthen Buthing Syutem Components} \\
\hline 20.15 .1 \& \& - \& 45 \& 1 \& 1 \& 19 \& 25 \& - \& 21 \& 142 \& 112 \& \& \& 241 \& \(\pi\) \& \& \& \& 16,631 \& 977 \& - \\
\hline \({ }_{20.15 .5}^{20.5}\) \& \({ }_{\text {TFG }}^{\text {TF }}\) \& : \& 251
20 \& 17 \& \({ }_{2}^{2}\) \& 650
11 \& 271
3 \& : \& \({ }^{238}\) \& \({ }_{1}^{1.43}\) \& 1.46 \& : \& \(:\) \& 8.047 \& . 814 \& - \& : \& : \& 399.789 \& 5.558 \& \\
\hline 20.1.5.4 \& TG2 \& - \& 186 \& 13 \& 17 \& 481 \& 271 \& : \& 190 \& 1,159 \& 1.159 \& : \& : \& 5.937 \& 814 \& - \& : \& : \& \({ }^{346.8989}\) \& \({ }_{4.200}^{457}\) \& \\
\hline 20.1.5.5 \& trz \& - \& 351 \& 20 \& 17 \& 390 \& 520 \& - \& 281 \& 1.579 \& 1.59 \& - \& - \& 4.827 \& 1,5e4 \& \& \& \& 338,185 \& 7.003 \& \\
\hline \({ }^{27.1 .56}\) \& TRA \& - \& \({ }^{18}\) \& 0 \& 0 \& 4 \& 5 \& - \& \({ }^{6}\) \& 30 \& 30 \& \& \& 47 \& 14 \& \& - \& \& 3.147 \& 319 \& \\
\hline 20.15.7 \& \({ }_{7}\) \& - \& 73 \& 3 \& 2 \& 29 \& 67 \& - \& 40 \& 218 \& \({ }^{216}\) \& - \& - \& \({ }^{358}\) \& 208 \& - \& - \& - \& 32.860 \& 1.148 \& \\
\hline \({ }_{20}^{20.1 .50}\) \& \({ }_{\text {TMa }}\) \& - \& 47 \& 2 \& 2 \& 56 \& 35 \& - \& 29 \& 170 \& 170 \& - \& : \& \({ }^{698}\) \& 105 \& \& - \& - \& 37.402 \& 1.008 \& \\
\hline \({ }_{20}^{20.15 .59 .90}\) \& \({ }_{\text {TO2 }}^{\text {TN2 }}\) \& : \& 244
138 \& 9 \& 10 \& \({ }^{263}\) \& \(\stackrel{200}{ }\) \& : \& \({ }^{153}\) \& 880
157 \& 80 \& : \& 157 \& 3.280 \& 808 \& \& : \& : \& 186,931 \& 5.488
3.169 \& \\
\hline 20.1.5.11 \& toa \& - \& 68 \& 1 \& 2 \& 74 \& 18 \& : \& 33 \& 195 \& 193 \& : \& 85 \& 917 \& 49 \& - \& : \& \& 4.689 \& \begin{tabular}{l}
3.169 \\
1.998 \\
\hline
\end{tabular} \& \\
\hline 2.151 .12 \& TOCR \& - \& 49 \& 2 \& 4 \& +29 \& 17 \& - \& 37 \& 277 \& \({ }_{177} 37\) \& - \& - \& 1.590 \& 31 \& - \& - \& - \& 80, 199 \& 1,000 \& \\
\hline \({ }_{20}^{20.15 .514}\) \& TOR \& : \& 49 \& 2 \& ? \& \(\stackrel{50}{8}\) \& \(\stackrel{36}{18}\) \& : \& 30 \& 171 \& \({ }_{27}^{17}\) \& : \& : \& \({ }^{17}\) \& \({ }^{109}\) \& : \& : \& : \& \({ }_{\substack{38.865 \\ 4.018}}\) \& \begin{tabular}{l}
1.098 \\
\hline 785
\end{tabular} \& \\
\hline \(2{ }_{20.15 .15}\) \& \& : \& \% \({ }^{13}\) \& \({ }_{3}\) \& : \& 190 \& \({ }_{3}^{6}\) \& : \& \({ }^{50}\) \& 3 \& 327 \& : \& : \& 2300 \& 107 \& : \& : \& : \& \& \({ }_{1}^{1.854}\) \& \\
\hline 2t.1.5.16 \& tox/roy \& - \& 22 \& 0 \& 0 \& 9 \& 3 \& - \& 8 \& 42 \& 42 \& - \& - \& \({ }^{108}\) \& 9 \& \& , \& \& \$.148 \& 488 \& \\
\hline 20.9.5.17 \& \(\stackrel{\text { TS2 }}{1}\) \& : \& 154 \& \% \& ? \& 298 \& 198 \& - \& 123 \& 710 \& 710 \& - \& - \& 2.804 \& \& - \& - \& - \& \({ }^{163.051}\) \& 2.309 \& \\
\hline \({ }_{26}^{20.1 .5 .1 .19}\) \& \({ }_{\text {TH2 }}\) \& : \& +148 \& \({ }_{3}^{2}\) \& \({ }_{5}^{2}\) \& [55 \& \({ }_{46}^{38}\) \& : \& 30 \& 1718
418 \& 1718 \& : \& : \& \(\stackrel{675}{1.823}\) \& 114
137 \& - \& : \& : \& 37.615
80.451 \& \({ }^{1,042}\) \& \\
\hline 2 b .1 .5 \& Totah \& - \& 2.000 \& \({ }_{88}\) \& 100 \& 2.791 \& 1,188 \& - \& 1.378 \& 8.143 \& 7.968 \& . \& 157 \& 3, 531 \& 5.384 \& - \& : \& : \& 1.8m, 180 \& 44.622 \& \\
\hline \multicolumn{22}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \({ }_{20.162}^{20.16 .1}\) \& Ars \& : \& 109
24 \& : \& 3 \& \({ }_{31}^{84}\) \& \({ }_{21}^{93}\) \& : \& \({ }_{16}^{64}\) \& \({ }_{95}^{339}\) \& \({ }_{9}^{359}\) \& \& - \& 9,044 \& 280 \& \& \& : \& 27, 203 \& \& \\
\hline 25.1.6.3 \& Ars \& - \& 22 \& 1 \& 1 \& 4 \& 10 \& - \& 11 \& 60 \& \({ }_{80}^{88}\) \& : \& - \& 208 \& 30 \& \& : \& \& -11,152 \& \({ }_{493}\) \& \\
\hline 2b.1.6.4 \& are \& - \& 57 \& 1 \& 2 \& 7 \& 19 \& - \& 30 \& 183 \& 183 \& - \& \& 699 \& 63 \& \& \& \& 41.512 \& 1.278 \& \\
\hline \({ }^{20.9 .65}\) \& Are \& \& 20 \& 0 \& 0 \& 4 \& \({ }^{10}\) \& - \& \({ }^{6}\) \& 42 \& 12 \& \& \& 43 \& 31 \& : \& : \& - \& 4.928 \& 427 \& \\
\hline \({ }_{20.1 .6 .7}^{20.188}\) \& \({ }_{\text {a }}^{\text {Nas }}\) \& : \& 43
10 \& 1 \& 1 \& 40
2 \& \({ }_{3}^{20}\) \& : \& \({ }_{3}^{22}\) \& 128
18 \& 128 \& \& : \& 492

24 \& ${ }_{9}^{60}$ \& : \& : \& : \& ${ }_{\text {2 }}^{\text {25,4.735 }}$ \& 919
218 \&

\hline 20.168 \& azc \& - \& 80 \& 2 \& 3 \& $\boldsymbol{\sim}$ \& 17 \& - \& 37 \& 23 \& 223 \& . \& \& 1.048 \& 51 \& \& - \& \& 47,000 \& 1,782 \&

\hline 2 C .16 .9 \& 120 \& - \& 14 \& 0 \& 0 \& 3 \& 6 \& - \& 5 \& 29 \& 29 \& - \& \& 40 \& 18 \& \& - \& \& 3.282 \& 307 \&

\hline 2b.1.6.10 \& ARE \& \& 13 \& 0 \& : \& 3 \& 5 \& \& 5 \& 27 \& 27 \& \& \& 39 \& 16 \& \& \& - \& 3.029 \& 29 \& -

\hline ${ }_{70.18 .12}^{26.11}$ \& ${ }_{\text {Na }}$ \& : \& 124 \& : \& 0 \& $2{ }^{5}$ \& 4 \& : \& 115 \& ${ }_{86}^{27}$ \& ${ }_{68}^{27}$ \& : \& : \& ${ }_{372}^{68}$ \& 13 \& : \& \& : \& 9,0,15
14.041 \& ${ }_{541}^{287}$ \&

\hline 2 c .1 .6 \& Toust \& - \& 428 \& 11 \& 13 \& 37 \& 213 \& - \& 219 \& 125 \& 1.256 \& - \& - \& 4.807 \& 84 \& - \& - \& . \& 240,464 \& 9.530 \&

\hline \multicolumn{22}{|l|}{Miscothmears Symem Components}

\hline 27.1.8.1 \& BM \& - \& 195 \& 5 \& 7 \& 191 \& 91 \& - \& 102 \& 591 \& 591 \& - \& - \& 2.387 \& 27 \& - \& - \& - \& 120.748 \& 4.319 \&

\hline 20.1.12 \& ${ }^{884}$ \& : \& 7 \& 3 \& 5 \& ${ }_{2}^{165}$ \& 24 \& : \& 50 \& 319 \& 318 \& \& - \& 2.039 \& 73 \& \& \& \& ${ }^{9} 9.359$ \& 1.599 \&

\hline ${ }_{26.154}$ \& ${ }_{\text {caa }}$ \& : \& 384 \& 10 \& 19 \& ${ }_{59}{ }^{2}$ \& 75 \& : \& 208 \& 1.292 \& - ${ }_{-1,24}$ \& \& : \& 7.3919 \& 293 \& : \& : \& $:$ \& ${ }_{320.031}^{1.12}$ \& 8.514 \&

\hline 26.1.7.5 \& DM \& - \& 30 \& 1 \& , \& 22 \& 17 \& - \& 20 \& 112 \& 112 \& . \& - \& 277 \& 51 \& . \& : \& : \& 13.772 \& ${ }_{1}^{1} \mathbf{1}$, $\times 3$ \& -

\hline 2 c 20.1.7 \& DAC \& - \& ${ }^{11}$ \& 2 \& 3 \& 8 \& 23 \& - \& 49 \& 282 \& 282 \& - \& \& 1.094 \& 69 \& - \& - \& - \& 50,602 \& 2.588 \&

\hline ${ }_{\text {25.1.7. }}^{20.17 .7}$ \& ¢0t \& : \& ${ }_{10}$ \& : \& : \& : \& - \& : \& 8 \& 68
12 \& : \& \& ${ }^{63}$ \& : \& : \& \& : \& : \& : \& 1.227 \& -

\hline 20.1.79 \& OPH \& - \& 87 \& - \& - \& - \& - \& - \& 10 \& 7 \& - \& \& 7 \& - \& : \& \& : \& \& : \& 1.551 \&

\hline 20.1.1.10 \& OWF \& - \& 16 \& - \& - \& - \& - \& - \& 2 \& ${ }^{88}$ \& - \& - \& ${ }^{8}$ \& - \& - \& - \& - \& - \& - \& 339 \&

\hline
\end{tabular}

TLG Serrices, Ine

Table C
Oyster Crcek Nuclear Generating Station
DECON Decommissioning Cost Estimate
(Thousands of 2003 Dollars)

$\begin{gathered} \text { Acturity } \\ \text { inder } \end{gathered}$	Aetrivy Doseription	$\begin{gathered} \text { Docen } \\ \text { Coun } \end{gathered}$	Rumoval Cont	$\begin{aligned} & \text { Pochaging } \\ & \text { Costo } \end{aligned}$	$\begin{gathered} \text { Tromspont } \\ \text { copts } \end{gathered}$	$\begin{aligned} & \text { ON-Site } \\ & \text { Procesting } \\ & \text { Costs } \end{aligned}$		$\begin{aligned} & \text { Other } \\ & \text { Coste } \end{aligned}$	$\text { contingoncy }^{\text {Toul }}$	$\begin{aligned} & \text { Total } \\ & \text { Coste } \\ & \hline \end{aligned}$	$\begin{gathered} \text { NRC } \\ \text { Le. Tow. } \\ \text { Costa } \end{gathered}$	$\begin{gathered} \text { Spent fuot } \\ \text { Mancgompont } \\ \text { Costs } \end{gathered}$	\qquad	Volume Cu. Feet	Clase A Cu. Fow		$\begin{aligned} & \text { Volument } \\ & \text { Closes C } \end{aligned}$	$\begin{gathered} \text { GTCG } \\ \text { Cu. } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Burnid } \\ & \text { Procesced } \\ & \text { Wh, Libe. } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Crath } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Uling and } \\ & \text { Contractor } \\ & \text { Manhourn } \end{aligned}$
${ }^{20.17 .7 .12}$	nTAKE Structure	-	142	\bullet	,	O	i	-	21	183	\%	-	${ }^{163}$	-		-	-	-	-	3.200	,
2 c .17 .11	MM	-	$\stackrel{0}{8}$,	3	${ }_{2}^{18}$	71		57	320	320	-	-	1.013	${ }^{231}$	-	-	-	${ }^{81.838}$	2.185	
${ }_{\text {20.1.7.15 }}^{20.17 .14}$	mga	-	35	:	-	${ }^{23}$	${ }^{21}$:	18	${ }^{98}$	${ }_{4}^{98}$:	-	290	${ }^{63}$:	:	:	17.386	782	
${ }_{\text {26.17.18 }}$	${ }_{\text {Ms }}{ }_{\text {M }}$:	27	-	0	8	8	:	9	${ }_{31}$	47	:	31	11	19	:	:	:	4.	${ }_{635}$	
2b.17.77	NME RCOF	-	13	-	-	-	-	-	2	15	-	-	15	-		:	-	:	-	294	
2 c .17 .78	${ }^{\circ} \mathrm{P}$	-	213	-	-	-	-	-	32	245	-	-	245	-	-	-	-	-	-	4.918	
${ }_{\text {20.1.720 }}^{20.17 .79}$	PTS ${ }_{\text {PSF }}$:	${ }_{21}^{30}$	0	0	4	1	:	5	${ }_{4}^{35}$	4	:	35	ise	4	:	:	:	7.138	${ }_{483}^{687}$	
26.17 .72	UNARP	-	1,324	18	14	343	32	-	487	2.488	2.488	-	-	4.250	1.17	.	-	-	259,388	21.772	
2 c .1 .722	was	-	113	3	3	7	54	-	53	296	298	-		878	162	-	-	-	50.170	2.99	
27.1723	WHE.	:		:	-	-			${ }^{2}$	13	-	:	15	-	-	-	\because		-	500	
${ }_{\text {20, }}^{20.17 .729}$	YARDAREAS YOAIVFAIMA	$:$	$\stackrel{24}{4}$:	:	1	0	:	3	${ }^{279}$	4	$:$	${ }^{279}$	18	1	:	:	:	79	5.4999	
${ }_{26.17}$	Toter	:	3.35	4	54	1.808	713	:	1.181	0.902	5.905	:	1.058	- 19.885	2.424	:	:		998.098	67.610	
26.1.8	Scertoking in wupot of decommistioning	-	835	13	4	178	21	-	23	1.288	1.278	-	-	1,321	82	-	-	-	60.836	20.881	-
Decomtaminution do Ste Euthmoz																					
${ }^{28.1 .19 .1}$	Now Recwasus Buthing. Sriteme Remover	-	98	37	24	1	382	-	127	ess	${ }^{608}$	-	-	6	3.819			-	322,14	2.127	
2 zb 1.9 .2		:	2	4	3	1	81	-	12	${ }^{61}$	${ }^{61}$	-	-	${ }^{\circ}$	109	\because	:		- $\begin{array}{r}42,784 \\ 0.8000\end{array}$	88	
${ }_{2019}^{20.193}$	Rosction Bubbing - Syzeme Removel	:	317	8_{8}^{8}		:	89 898						:		-1894				34.800 919350	-878	
${ }_{20.19 .5}^{20.194}$	Turtine Puidrig - Sy yemm Removal	28	111	${ }_{11} 9$	${ }_{7}^{57}$	\bullet	119	:	37 7	1.710	1.710 340	:	-	43	9.194	:	:	:	919.350 112.338	6.081 2.691	
28.19.6.	Dowel - Docon	3	346	131	120	-	2.574	-	${ }^{12} 13$	4.188	4.188	-	-	22	13.793	-	-	-	1.301.337	10.409	
20.197	Oprow - Limer Removat	1.829	94	30	so	1.767	154	-	+.388	5.908	3.988	-	-	22.108	${ }^{601}$.	-		${ }^{951.525}$	53.718	
${ }_{20.19}^{25.19 .8}$	M.LWW Stornge Docen	${ }_{18}^{16}$	${ }_{82}^{82}$?	4	-	${ }_{88}^{67}$:	41	${ }_{195}^{198}$	${ }_{195}^{196}$:	:	.	${ }_{658}^{687}$	-	:	:	60.880 65.58	1,4868	
20.19.10	New Rndweste Buluting. Decoon	73	428	42	27	9.	478	-	200	1.273	1.273	:	:	235	4.249	:	:	:	434.144	9.35	-
26.19.11			200	172	110	12	1.754	-	849	3.398	3.390	-	.	152	17.532	-	-		1.799.162	10.756.	
2 zb 1.9 .12	R80 - Tons Ramover	2.184	1.085	45	75	2.649	229	-	1.833	8.099	8.099	-	-	3274	899	-	-	-	1.410.755	67.923	
${ }_{\text {2b, }}^{2} \mathbf{1 9 . 9 1 4}$	Roaxto Buiding -19M. Decon	${ }_{33}$	232 138	19	${ }_{9}^{15}$	${ }^{108}$:	- ${ }^{158}$	814 420	1814 420	:	:	2052	+1747	:	:	$:$	235.515 100.04	3.564 .239	.
20.19.95	Reactor evithog 5in - Decom	37	150	15	10	-	156	-	9	467	467	:	:	:	i. 562	:	:		958.92	3.593	
$2 \mathrm{D} .19{ }^{\text {98 }}$	Ranctior Puising 75n. Dicocon	12	53	5	3	-	52	-	3	${ }^{800}$	180	-		-	${ }^{523}$	-	-		52.27	1.264	
2 zb 1.9 .97	Rescras Buliting 9it - Dicon	27	109	11	7	-	112	-	7	336	336	-	-	-	1,115	-	:		111.53	2.802	
${ }_{20}^{20.19 .9 .919}$	Stackermaus Tumph - Remove \& Decon	119 104	430	28 41	${ }_{28}^{17}$	82	288	:	221 289	¢ $\begin{aligned} & 1.011 \\ & 1.415\end{aligned}$	1.011	$:$	\because	1.14	$\begin{array}{r}2.878 \\ \hline 8.098\end{array}$:	:	:	281,780 454.730	-9.417	,
26.19:20	Tuthes Eulithg 23 T - Docom	73	336	31	22	90	314	-	219	1,083	1,083	-	-	1.109	3,100	-	-		353,651	7,987	
20.19.21	Turthe Butang atan - Deam	45	177	18	12	-	189		117	558	558	-	-	-	1.888	-			188.828	4.231	
2 c .1922	Commmmatad Soll	,	78	1.079	${ }^{683}$	1	10.020	-	2.87	13.275	${ }^{15.7275}$	-	-	-	108200	-	:		10.619.930	0.020	
28.19	Totas	4.44	6.431	1.801	1,289	4.819	19.232	-	2.311	41.727	${ }^{47.727}$	-	-	59.832.	177.869	-	-	-	20.409.160	220,816	
26.1	Suteotal Pariod Zt Activy Costs	5.084	${ }^{19,023}$	2.258.	7.672	14,732	29,49	-	17.278	89,487	80,252	-	1.214	182395	209,139	-	-	-	27,056,150	50,142	
Perrid 20 Colnaters Corts																					
20.32	Dimposil of esterionel detrin fom decontiminition	-	.	-	-	-		-				-		:	1		:		${ }_{29}$,	
20.33	Small mod mownce	-	350	-	-	-			- 314	20.703	403	2890	:	-	-	-	:		-	-	
${ }_{20.3}^{20.3 .4}$		118	350.	(8)	283	:	¢,690	233.224	-3.078	289.7004	3.198	${ }_{28,708}^{78,708}$	$:$	-	\uparrow	2.677	:	$:$	415,304	211	:
2 b .3																					
Perlod 2t Period-Dependert Corts																					
${ }_{26} 42$	insurumea	1.20	:	-	:	:	:	2.317	232	2.548	2.548	-	:	:	:	.	:	:	:	:	
2 c .4 .3	Procery laxes	-	-	-	-	-	-	2,757	278	3.033	3.003	-	-	-	-	-	-	.	-	-	-
${ }_{2645}^{20.4}$:	${ }^{2.1986}$:	:	:	:	:	(534	${ }^{2.8570}$	${ }^{2.9675}$:	:	:	:	:	:		:	:	

Table C
Oyster Creek Nuclear Generating Station
DECON Decommissioning Cost Estimate
(Thousands of 2003 Dollars)

Aetivity Inder	Activity Derectiption	Decen Coat	Renova	Pactaging Conte	$\begin{gathered} \text { Tronspont } \\ \text { Copets } \end{gathered}$	$\begin{aligned} & \text { On-site } \\ & \text { Procesing } \\ & \text { Contas } \end{aligned}$		$\begin{aligned} & \text { OUher } \\ & \text { Conts } \end{aligned}$	$\begin{gathered} \text { Total } \\ \text { Contingemery } \end{gathered}$	$\begin{aligned} & \text { Total } \\ & \text { Coote } \end{aligned}$	$\begin{gathered} \text { NRG } \\ \begin{array}{c} \text { Ne. Tomm. } \\ \text { coteren } \end{array} \end{gathered}$	spent fuel Manegomemt Conts	\qquad	Proceseed Vohmel Cu. Feet	$\begin{aligned} & \text { clogit } \\ & \text { Cu. Feot } \end{aligned}$		Close 6 Cu. Feet		$\begin{aligned} & \text { Buriel } \\ & \text { Proceaced } \\ & \text { Wh. Lbt. } \end{aligned}$	Mannoun	Utilly and Contration Monhown
20.47	Pront enorgy burgat	-	-	-	-	-	-	1294	19	1.488	1.488	-	-	-	-	-	-	-	-	-	-
20.48	NRC F Feer	-	-	-	-	-	-	1.196	120	1.316	1,318	-	-	-	-	-	-	-	-	-	-
20.4.4.	Emensency Pleming foes	:	$:$:	:	:	:	2789	${ }^{28}$	${ }_{793} 900$	\%	300	-	-	-	-	:	:		:	:
204.11	Spent fuel Pod OSM	-	-	-	-	-	-	2.871	401	3.072	-	3.072	-	-	-	-	-	-	-	-	-
27.12		-	-	-	-	-	-	498	74	571	571	-	-	-	-	-	-	-	-	-	-
28.4 .13			-	-	-	-	-			- 3	307	$\stackrel{223}{ }$:	$:$:	:	:	:	:	:	
${ }_{37}^{20.4 .16}$	Secanty sint cost	:	:	:	:	$:$:	2.871 21.802	3.200	3.012 23.072	${ }_{25072}^{3.072}$:	:	:	:	:	:	:	:	:	182.359 342380
25.4 .16	Urimy stan Cost	-	-			-		38.893	5.829	4, 693	44.693	.	-	-		-	-	-			811,.993
20.4	Sutctat Pariod 26 Pertod.Dopendort Costa	1.280	6.482	102	23	-	497	75.230	12,599	29.198	92.594	3,003	-	-	0.651	-	-	-	173,358	2.124	1.118,331
20.0	TOTN PERROO 7 COST	8.488	25.835	2.543	1.958	14.72	31,008	96,454	33,902	215.580	184,062	30,311	1.244	182,993	211,791	2.877	-	-	28.46.010	505.478	1.118.301
PER100 2 EC - Decentuminstion Following Wot Fued Storge																					
$\text { Perlod } 2 c c$ 2e. 1.1	Orwat Decomernitioning Activites Remove spert huel rechs	423	46	57	68	-	1.4.45	-	650	2.869 -	2.889	-	-	-	6,397	-	-	-	573,140	1.071	-
Ofuposin of Plewt Syetme																					
$\text { Drywel } S_{y}$ 2c. 1.2	Tom Comporenta Tomen	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Resctor Puiding Systom Componems																					
${ }_{\text {2celin }}^{20.131}$	${ }_{\text {RH1 }}^{\text {RH/PH/ P4 }}$	-	37	,	1	${ }_{3}^{23}$	10	:	15	87	87	:	:	${ }^{280}$	${ }_{77} 30$:	:	:	14.041	${ }^{817}$:
2c.1.3.3	${ }_{\text {RHa }}^{\text {RHM }}$	9	21	1	!	${ }_{3}^{38}$	18 18	-	15 15	${ }_{69} 6$	${ }_{69}$:	:	41	77 59	:	:	$:$	${ }_{\text {2 }}^{24.889}$	${ }_{6}^{2083}$:
2ci.j.3	RHS	-	37	0	1	19	,	-	13	${ }^{3}$	73	-	-	239	22	-	-	\bullet	11.631	74	:
2 cl 1.35	R RHM	-	22	0	0	7	5	-	${ }^{8}$	42	42	-	-	92	15	-	-	-	5.068	483	
	${ }_{\text {RHX }}^{\text {R }}$	-	40	1	1	${ }^{28}$	${ }^{15}$:	18	${ }_{85}^{104}$	${ }_{85}^{104}$:	:	39 343	47 14	:	:	:	\$8, ${ }_{18,142}$	888	:
${ }_{2 \in 1}=1.38$	RMCC	:	88	2	2	88	37	:	35	205	${ }_{205}$	$:$:	7	110	:	:	:	${ }_{14.218}$	-1.428	:
2 cc 1.3	Totsts	9	38	7	7	207	122	-	155	\%ss	ass	-	-	2.580	368	:	:	:	136.913	8.015	:
Now Radwatte Buiding Syzem Components 2 c.1.4 Totats																					
Od Redwarte Buiding Systom Components 2 c 1.5 Totels		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Turtine Bulluing Spirem Componems 2c.1.0 Totars		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Augmented Olligm Syitum Components 2c. 1.7 Totent		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Miscefaneoust Syatem Components $2 e .8 .1$ gMi/GCA		:	${ }_{18}^{16}$:	:	:	-	:	2	${ }_{18}^{18}$:	:	${ }_{18}^{18}$	-	:	:	:	:	- :	350 350	:
Decommmintend She Budings																					
2 c 1.9	Toters	360	487	10	:	128	91	,	311	1,403	1.103	-	-	1.583	$*_{* 2}$:	:	:	147200	17.34	:
2e. 1.10	Scerioking in wuppot of decommendining	-	167	,	1	24	4	-	47	245	245	-	-	284	16	- ${ }^{-}$	-	-	13.367	4.176	- -
$2 \mathrm{c}, 1$		792	1.043	78	${ }^{8}$	357	1.002	-	1.195	5.411	5.393	-	18	4.387	7.616	-	-	-	870.597	30,956	-

tLG Sertices, Ine

Table C
Oyster Creek Nuclear Generating Station
DECON Decommissioning Cost Estimate
(Thousands of 2003 Doliars)

Actlvit	Activity Docertpion	${ }_{\substack{\text { Duceon } \\ \text { Cout }}}$	$\begin{gathered} \text { Removal } \\ \text { Cous } \end{gathered}$	Pachaping corte	Tramsport Cosets	Oficsate Procesting Cont	LLRW Dieponal Coste	Other	$\begin{gathered} \text { Totat } \\ \text { Contlmeney } \end{gathered}$	$\begin{aligned} & \text { Totar } \\ & \text { costu } \\ & \hline \end{aligned}$	$\begin{gathered} \text { HRR } \\ \text { LNe. Torm. } \\ \text { Cooty: } \end{gathered}$	$\begin{gathered} \text { Spent Fubi } \\ \text { Manegement } \\ \text { Coste } \end{gathered}$	\qquad	$\begin{aligned} & \text { Processed } \\ & \text { Yolume } \\ & \text { Cu. Fool } \end{aligned}$	$\begin{aligned} & \text { cloont } \\ & \text { un. Fate } \end{aligned}$	$\begin{gathered} \text { Burialvo } \\ \begin{array}{c} \text { Cleans } \\ \text { Cut. Fow } \\ \hline \end{array} \end{gathered}$	$\begin{aligned} & \text { ohymes } \\ & \text { Cluses Cu. Fett } \end{aligned}$	$\begin{gathered} \text { CTCC } \\ \text { Cut } \mathrm{t} \\ \hline \end{gathered}$	$\begin{aligned} & \text { BunM1 } \\ & \text { Procecood } \\ & \text { wh. Les. } \end{aligned}$	$\begin{gathered} \text { Cront } \\ \text { Menthours } \end{gathered}$	$\begin{aligned} & \text { Uuility and } \\ & \text { Contrector } \\ & \text { Mintooure } \end{aligned}$
Period 2 C Coltatera Comst																					
22.311	Procers licida weste	57	\%	21	3	-	268	-	108	508	500	-	-	-	-	421	*	-	53.274	82	-
${ }_{2 c} \cdot 1.2$	Smelt bod towornce		28	8				-	4	33	330	-	:				:	:			
2.3.3		-	\cdot	${ }_{80}$	$\stackrel{23}{7}$	337	88	:	118	+830	- 8.350	:	:	8.000 8.000	373 373	421	:	:	303.507 356.781	739 821	:
2.3	Suthoum Period 2 C Colhateral Cost	57	28	80	n	537	364		224	T.308	1,368					4				821	
Pentod 2 P	Perios.Dependent Cosal																				
${ }_{2 \times-4 .}^{20.4}$	Dosen neppies	${ }^{3}$:	:	:	:	:	sos	${ }_{50}^{21}$	103 554	${ }_{554}^{103}$:	-	:	:	:	:	:	:	:	:
2c.4. 3	Propenty trios	-		-	-	-	-	701.	70	71	71		-		-	-				-	
27.44		-	251	-	-	-	-		68	134	314	-	-	-	-	-			-		-
2 C 4.5	Heeny cautiment rentel	-	1.100	-		-		\bullet	165	1.285	1.219		-	-	S	-	-	-		\%	:
$2{ }^{24.4} 8$	Otsocrat 1 DAW generstad	:	:	${ }^{10}$	3	:	"	iss	${ }_{28}^{21}$	${ }^{117}$	${ }_{202}^{117}$:	:	1.335	:		:	28,750	328	
${ }_{2 c}^{2 c .4 .4}$	Punc eneers butal	$:$:	:	:	:	:	179	${ }_{30}^{28}$	${ }_{33} 38$	${ }_{331}^{202}$:	:	:	-	:	$:$:	:	:	:
22.4 .9	Emergency Preming Fies	-	-	-	-	-	-	11	7	78	-	78	-	-	-	-	-	-		-	
2 c 4.10	she 08 Mc com	-	-	-	-	-	-	175	28	202	202	\cdot	-		-	-	-	-	-	-	-
$2 \mathrm{ce.4.11}$:	:	:	:	:	:	232 50	${ }_{7}^{78}$	290 57	${ }^{290}$	57	:	$:$	$:$:	:	:	:	:	
${ }_{2 C 4.15}$	Secouty Yant Cost	:	:	:	:	:	:	679	102	r39	781	57	-	:	:	:	-	-	-	-	4,938
$2 \mathrm{Ca4} 14$	DOC San Cost	-	-	-	-	-	-	3.807	571	4.379	4.379	-	-			-	-	:	\because		58.314
${ }_{\text {2ce. }}^{\text {ce. }}$	Unily Stanf com	83	1.351	16	3	:	π	-9.8.590	(1.4820	11.362 20.008	-	i3s	:	:	1,235	:	:	:	20,750	328	155,29 25.
2 c .0	TOTA PERLOO 2 c cost	932	2.43	172	165	89	2.303	16,598	4.099	27.587	27,434	135	${ }^{18}$	10.387	9,372	421	-	-	1,254,128	32,105	255.769
PRR100 20. Liconte Tommination																					
Period 2e 20.1 .1 20.1 .2	Direct Decommissioning Activies ORISE confimatery burver Terminate licemse	-	-	-	-	-	-	118.	35	150	150	-	-	-	-	-	-	-	-	-	-
20.1	Suntcout Period 2e Acthiy Costs	-	-	-	-			118	35	150	150		-		-		-				
Period 2e 20.2 .1 $2 \cdot 2$:	:	:	:	:	:	${ }_{4,572}$	1,371	5.93 5.943	5.943 5.93	:	:	:	:	:	:	:	:	9898.444	- :
Pertod 20 2.31 2*. 3	Collintern Conts DOC itaif retocstion expenses Sutiotel Pertod 20 Contmersit Costs	:	$:$:	:	:	:	${ }^{1.097}$	${ }_{184}^{164}$	1281	${ }_{1}^{1.281}$:	:	:	:	-	-	$:$:	-	:
${ }_{20}^{20.4 .4}$	Pmperaty truea	:		:	:	:	:	${ }_{753} 5$	${ }^{54}$	${ }_{828} 895$	${ }_{828}^{595}$	*	:	-		.	*		:	-	
2.43	Henith pryiza mupores	-	464	-		-		-	116	580	500	-	-				-	,	105		
20.4	Disooseld d Diw generatad	-	-	4	1	-	17	0	${ }^{5}$	27	${ }^{27}$	-	-	-	305	-	-	-	8.105	15	-
20.4 .5 2046	${ }^{\text {Preme }}$ NRC Feresy bugat	:	:	:		:	:	968	${ }_{33}^{14}$	108 399	108	:	:	:	\therefore.	:	:		:	:	$:$
204.7	Emersiocy Plenning Feet	-	-	-	-	.	-	${ }^{78}$	B	8		84	-	-	-	-	-	\bullet	-	-	:
20.4 .8		:	:	:	:	:	:	188	${ }^{28}$	216 81	${ }^{216}$	61	:	:	:	:	:	:	-:	:	
20.4 .9 204	ISFSt Promenting Cost	:	:	:	:	:	:		${ }_{60}^{8}$	81 480	4s0	61	-	:	$:$:	:		:	:	24,357
204.11	Doc sumicou	-	-	.	-	:	-	4.0980	814	4.804	4,704	-	-	-	-	-	:		-	-	${ }^{62,257}$
${ }_{204}^{20.4}$	Urimy 5 ith Coin	:	iss	${ }^{\bullet}$	\bullet	:	17		9.878	14.643	$\begin{array}{r}-8.619 \\ \hline 1.499\end{array}$	i4s	:	:	305	\because	:	-	6.105	-75	82.107 169.321
20.0	TOTM PERROD 20 COST	-	484	4	. 1	-	17	18.062	3.449	21,997	21.852	145	-	-	303	-	-	-	8,105	98,519	189,321

Oyster Creck Nuclear Generating Station DECON Decommissioning Cost Estimate (Thousands of 2003 nollare)

Activity	Acturly Deacriotion	$\begin{gathered} \text { Docon } \\ \text { Cown } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Romovat } \\ & \text { Cont } \end{aligned}$	$\begin{gathered} \text { Prockagime } \\ \text { Conts } \end{gathered}$	Trampont	$\begin{gathered} \text { OHT-Sta } \\ \text { Procesting } \\ \text { Costa } \end{gathered}$	$\begin{gathered} \text { LRWW } \\ \text { Clipposel } \\ \text { Covits } \end{gathered}$	$\begin{aligned} & \text { OTher } \\ & \text { Cote } \end{aligned}$	$\begin{aligned} & \text { Totel } \\ & \text { contingerex. } \end{aligned}$	$\begin{aligned} & \text { Toul } \\ & \text { Costa } \end{aligned}$	$\begin{gathered} \text { NRC } \\ \text { Lic. Tom. } \\ \text { Coste } \end{gathered}$		$\begin{gathered} \text { Site } \\ \text { Restorntion } \\ \text { Conts } \end{gathered}$	$\begin{aligned} & \text { Proceaced } \\ & \text { Yohme } \\ & \text { Cu. Feol } \end{aligned}$	$\begin{gathered} \text { Clogita } \\ \text { Cu. Foot } \end{gathered}$		ofunte Clasi C CuFfen	$\underset{C u F i c t}{c i c i c}$	Gunai Processed Wh. Lbe.	$\mathrm{cran}_{\text {Manhours }}$	Uuinty and Contracto Menhour
Period 30	36. 5 ne Rostoration																				
Pariod 3b Droct Decommistoning Acturior																					
Domomition	of Rementrg She Pusamoz																				
30.1.1.1		:	80	-	:	:	:	-	${ }^{188}$	${ }_{508}^{968}$	968	-	507	:	:	-	-	:	-	2779	-
${ }_{\text {30, }}^{30.1 .12}$	Adonevitrebo buling	-	441	:	:	:	:	:	${ }_{36}^{68}$	${ }_{207} 97$:	:	507	:	-	-	:	:	:	8.313	
${ }_{\text {30, }}^{30.10 .1 .1}$	Augmented Of Gas Puithg	:	$\underset{76}{24}$:	:	:	:	:	38	${ }_{30}^{277}$:	:	${ }_{20}^{27}$:	:	:	:	$:$		${ }^{3} \mathbf{3} 488$	
3 bl 1.1 .5	Dinal Canerstor Bubing	-	91	-	-	-	-	-	14	90s	-	-	103	-	-	-	-	-		1.197	-
${ }_{3}^{3}+1.1 .1 .6$	Difution Snowure	-	115	-	:	-	-	-	17	${ }_{113}^{13}$:	-	133	:	-			-		1.723	
30.1.1.7	Domentc Watur fromy	-	10	-	-	-	-		1	11	-	-	11	:	-	,	:	:		${ }^{176}$	
		:	18	:	:	:	:	:	1	21	:	:	21	:	:	:	:	:	:	${ }_{39}{ }^{63}$:
30.1.1.10	Henempg Botur House	-	32		.	-	-	-	5	37	:	:	37	:	:	:		:		578	
36.11.1.11	meme Smetare	-	303	-	-	-	-	-	57	40	-	-	40	-	-	-	-	-		9.859	
30.1.1.12	Low Leved Radusste 5brage	-	304	-	-	-	-	-	${ }^{47}$	350	-	-	350	-	-		-	-		4.918	
${ }_{\text {30, }}^{30.1 .1 .171}$	Meathoshop	:	${ }_{82} 17$:	:	:	:	:	${ }_{12}^{27}$	${ }_{98}^{203}$:	:	${ }^{203}$	-	:	:	:	:	:	3.021	
30.1.1.15	Meinterencos Buthory	-	275	-	-	-	-	-	41	316	:	:	316	:	:	:	:	:		4,93	
36.1.1.18	Mmamist Werchovis	-	692	-	-	-	-	-	104	798	.	-	796	-	-	-	-	-	-	10.317	
36.1.1.47	Miccolmmous Sincturs	:	${ }_{480} 30$:	:	-	:	:	${ }_{2}^{28}$	349	-	-	349	-	-	-	-	:		4807	
	Now Rewostio Putang	:	${ }^{80}$:	$:$:	:	:	7	${ }_{9} 5$:	:	${ }^{352}$:	:	:	:	:		7.334	
3 c .1 .120	Once exitity	-	214	-	-	-	-	-	32	246	-	-	248	-	-	-		-		3.875	
${ }_{\substack{\text { a }}}^{36.1 .21}$	Of Reawaric Butans	:	(361	:	:	:	:	:	34	415 60	:	:	15 180	:	:	:	:	:			
36.1.1.23	Protrement Buitro	.	27	-	-	-	-	-	4	${ }_{31}$	-	-	31	:	\div	:	:	:	:	2195	
36.1.1.24	Rescroor Bulling	-	4,157	-	-	\cdots	-	-	624	4.781	-	-	4.781	-	-	-	-	-	-	63.48	
${ }_{\text {30, }}^{30.1 .1 .28}$:	[120	:	:	:	:	:	${ }_{30}^{2}$	2083	:	:	${ }^{14}$:	:	:	:	:	:	321	
36.11 .127	Tant Patas Mise Yerd	-	698	-	-	-	-	-	105	803	-	:	- 203	-	-	:	:	:	:	9.514	
36.1.128	Tuthe Puluthy		${ }^{3.436}$							3.958			3.954	:	:					51,425	
36.1.1.1. ${ }^{36}$	Totats Peosesion	:	${ }_{14.277}^{407}$:	:	:	:	:	2, ${ }^{141}$	${ }_{10,508}^{468}$	960	:	${ }_{\text {¢5, }}{ }^{468}$:	:	:	:	:-	:	S.050 200.785	:
Sre crosoor Actumee																					
3 bb .12	Remove Rublte	-	6.880	-	-	-	-	-	1.002	7.882	-	-	7.602	\bullet	-	-	-	-		10,739	-
3b.1.3	Grade 8 lindicapes sto		3 S		-	-	:		52	397	-	-	397	-	-	-	-	-	-	1.483	㖪
${ }_{30.1}^{36.14}$:	21,232	:	:	:	:	117 17	3,205	-134	134 4, 100	:	20,i74	:	:	:	:	:	:	219.026	\%
Pentod 36 Adationit coss																					
38.2 .1	Concrate Crustiog	-	430	-	5	-	-	-	${ }_{65}^{65}$	499	-	-	499	-		-	-	-		2.857	
362		-	430	-	5	.	-	.	${ }^{65}$	499	.	-	499	-	-	:	-	-	:	2.857	.
Pertoo 3t 303.1	Colthers Costo	:	162 162	:	:	:	:	:	${ }_{24}^{24}$	188	:	-	188	-	:	:	-	-	-	-	-

Table C

Oyster Creek Nuclear Generating Station DECON Decommissioning Cost Estimate (Thousands of 2003 Dollars)

\begin{tabular}{|c|}
\hline Actuty \& Actury Dosecription \& \[
\begin{aligned}
\& \text { Decon } \\
\& \text { Cost } \\
\& \hline
\end{aligned}
\] \& \[
{ }^{\text {Removen }}
\] \& \[
\begin{gathered}
\text { Pachapting } \\
\text { Costs }
\end{gathered}
\] \& \[
\begin{gathered}
\text { Tronsport } \\
\text { Coats }
\end{gathered}
\] \& \[
\begin{gathered}
\text { ON-Sise } \\
\text { Procosiling } \\
\text { Costa } \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { LRRW } \\
\& \text { Dtapesil } \\
\& \text { Conts } \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Other } \\
\& \text { Conte }
\end{aligned}
\] \& \[
\begin{gathered}
\text { Totul } \\
\text { Contimomery }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Toter } \\
\& \text { cothe }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { NRC } \\
\& \text { Lie. Town. } \\
\& \text { Cooty }
\end{aligned}
\] \& \[
\begin{gathered}
\text { Spend fued } \\
\text { Monepomert } \\
\text { Coote }
\end{gathered}
\] \& \(\qquad\) \& \[
\begin{aligned}
\& \text { Procosiod } \\
\& \text { Yotheme } \\
\& \text { Cu. Foot }
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{ClogetA} \\
\& \text { Cu. Foot } \\
\& \hline
\end{aligned}
\] \& \& \[
\begin{aligned}
\& \text { Tokmen } \\
\& \text { Clasis } \mathrm{C} \\
\& \mathrm{Cu} . \text { foet }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { CICG } \\
\& \text { CuF }
\end{aligned}
\] \& Burnal Wh, Lbel \& \[
\underset{\text { Manhours }}{\text { Cinh }}
\] \& Uulify ind
Contratior
and Manheurs \\
\hline \multicolumn{22}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \& \\
\hline 30.2 \& \& - \& 97 \& - \& - \& - \& - \& 1,552 \& 155 \& 1.708 \& - \& - \& 1,708 \& - \& - \& - \& - \& - \& - \& - \& \\
\hline 33043 \& Heasy mationemx remal \& : \& \({ }^{3.327}\) \& : \& : \& : \& : \& \({ }_{97}\) \& 49989 \& 3.828
112 \& : \& \(s\) \& \({ }_{56}^{3.888}\) \& : \& : \& : \& : \& \(:\) \& : \& \(:\) \& \\
\hline 30.45 \& NRC ISFSIf feen \& - \& . \& - \& - \& : \& - \& 480 \& 48 \& 528 \& - \& 588 \& \(\bigcirc\) \& : \& - \& : \& : \& : \& : \& \(:\) \& \\
\hline 3648 \& Emersomey Ptuming Fees \& - \& - \& - \& - \& - \& - \& 157 \& \({ }^{16}\) \& 172 \& - \& 172 \& - \& - \& - \& - \& - \& - \& - \& - \& \\
\hline 35.4 .7 \& IFFsi 0 perating Costir \& - \& - \& - \& - \& - \& - \& 140 \& 17 \& 127 \& - \& 127 \& - \& - \& - \& - \& - \& - \& - \& - \& \\
\hline 330.48 \& Sthe OMM Come \& : \& : \& : \& : \& : \& : \& (388 \& [58 \& \({ }_{94}\) \& : \& 636 \& 313 \& : \& : \& : \& : \& : \& : \& : \& 50.270 \\
\hline 36.4.10 \& DOC Sunt cost \& . \& - \& - \& - \& - \& - \& 6.510 \& 97 \& 74.48 \& . \& Sos \& T,487 \& : \& : \& : \& : \& : \& : \& \& 990.280 \\
\hline 36.4.49 \& Uumy Stan Coat \& \& \(\cdots\) \& - \& - \& - \& - \& 4.177 \& 627 \& 4.804 \& - \& 2.02 \& 2.402 \& - \& - \& - \& - \& - \& - \& - \& 56.700 \\
\hline 304 \& Sutrowe Pariod \%8 Period Dopendont Coxts \& - \& 3.327 \& - \& - \& - \& - \& 15,412 \& 2.848 \& 21,384 \& - \& 3,024 \& 18.360 \& - \& - \& - \& - \& - \& - \& - \& 208,740 \\
\hline 36.0 \& TOTA PERIOO 30 COST \& - \& 23,174 \& - \& 5 \& - \& - \& 13,528 \& 5,940 \& 48.84 \& 1.100 \& 5,004 \& 20,520 \& - \& - \& - \& - \& - \& - \& 221,883 \& 207,300 \\
\hline \multicolumn{22}{|l|}{} \\
\hline \multicolumn{22}{|l|}{} \\
\hline \begin{tabular}{l}
Period 3t \\
3 c 3.1 \\
3e. 3
\end{tabular} \& \begin{tabular}{l}
Collatern Cowa \\
Spent Fual Capiti and Trimefor \\
Sublatif Perlod 3c Collintert Conts
\end{tabular} \& : \& : \& : \& : \& : \& : \& 8.200
8.200 \& 930
930 \& \[
\begin{aligned}
\& 7.190 \\
\& 7.190
\end{aligned}
\] \& : \& \[
\begin{aligned}
\& 7.130 \\
\& 7.150
\end{aligned}
\] \& : \& : \& : \& : \& : \& : \& : \& : \& : \\
\hline \multicolumn{22}{|l|}{Potrex 3 P Pembe-Opendert Costs} \\
\hline 3 3.4. 2 \& Propery tixes \& - \& - \& - \& - \& - \& - \& 20,177 \& 1.078 \& 11.198 \& - \& 11.194 \& - \& - \& - \& - \& - \& - \& : \& : \& \\
\hline 3 C 43 \& Prund maregy tuotye \& - \& - \& - \& - \& - \& - \& 191. \& 29 \& 220 \& - \& 220 \& - \& - \& - \& - \& - \& - \& \& \& \\
\hline \({ }_{3}^{3.4 .4}\) \& NRC ISFSII Fotel \& : \& : \& : \& : \& : \& : \& 3,145 \& 314
103 \& 3.459

1 \& : \& 3,459 \& : \& $:$ \& : \& : \& : \& : \& : \& $:$ \&

\hline 3045

3046 \& Emeosymy Penming faet \& : \& : \& : \& : \& \& : \& | 1,028 |
| :--- |
| 2.54 | \& 103

362 \& ${ }_{\text {2 }}$ \& : \& 1,919
2.981 \& : \& \& \& : \& : \& $:$ \& : \& : \&

\hline 3 c .4 .7 \& ISFSI Doersting Costs \& - \& - \& - \& - \& - \& - \& ${ }^{23}$ \& 108 \& ${ }^{331}$ \& - \& 831 \& - \& : \& : \& : \& : \& \because \& : \& $:$ \&

\hline 3.4.88 \& Searny Simil cos \& - \& : \& : \& : \& \& - \& 3.885 \& ${ }^{350}$ \& 4.215 \& - \& 4.215 \& - \& \& - \& \& - \& \& - \& - \&

\hline ${ }_{3}^{3 \times 4} 4$ \& \& : \& : \& : \& : \& : \& : \& 52,819 \& ${ }_{6}^{3,422}$ \& ${ }_{50.572}^{20.231}$ \& : \& 28.233
56.572 \& : \& : \& : \& : \& : \& : \& : \& : \& 350.400
573,480

\hline 3 c .0 \& TOTAL PERIOO 3c COST \& - \& - \& - \& - \& - \& . \& 58.268 \& 7.434 \& ${ }^{63.702}$ \& - \& 63,702 \& - \& : \& . \& - \& : \& - \& : \& : \& \$73.480

\hline \multicolumn{22}{|l|}{PERIOO Sd - GTCC Ehitping}

\hline \multicolumn{22}{|l|}{Pertod 38 Droct Dicoomminuioning Achtiort}

\hline Nudom 5 St \& \&

\hline ${ }_{30} 3 \mathrm{c} 9.1 .19$ \& Voseen 8 intemat CTCC Dhsoral \& : \& . \& 300
300 \& : \& : \& 5.501
5.501 \& : \& ${ }_{\text {css }}^{655}$ \& ${ }_{6}^{6.685}$ \& ${ }_{6}^{6.657}$ \& : \& : \& : \& : \& : \& : \& 411 \& 72.900
72.900 \& : \& :

\hline 38.1 \& Subrotal Period 38 Acthely Costa \& - \& - \& 300 \& - \& - \& ${ }^{5.501}$ \& - \& 855 \& 8.657 \& ${ }_{6} 655$ \& - \& . \& . \& - \& . \& : \& 411 \& n,900 \& : \& $:$

\hline \multicolumn{22}{|l|}{}

\hline ${ }_{30.4} 3.12$ \& Propery trases. \& : \& - \& - \& : \& : \& - \& 4 \& 4 \& 48 \& : \& 48 \& : \& : \& - \& : \& : \& : \& : \& : \&

\hline 3043 \& Plant ereasy tuoger \& - \& - \& - \& - \& - \& - \& 1 \& 0 \& 1 \& - \& 1 \& - \& - \& - \& - \& - \& - \& - - \& - \&

\hline ${ }_{3}^{34.4 .4 .5}$ \& Emercency Pleming Foen \& : \& : \& : \& : \& \& : \& 18 \& : \& ${ }_{5}^{15}$ \& : \& 13 \& \& : \& \& \& : \& \& \& : \&

\hline 30.46 \& Ste osm cost \& - \& - \& - \& - \& - \& - \& 11 \& 2 \& 13 \& - \& 13 \& - \& : \& - \& : \& : \& : \& : \& : \& -

\hline 34.4 \& ISFSIS Doerating Cosis \& - \& - \& - \& \& \& - \& 3 \& 0 \& ${ }^{4}$ \& \cdots \& 4 \& - \& - \& - \& - \& - \& - \& - \& - \& \bigcirc

\hline 34.88
344.9 \& Securty Stan cost \& : \& : \& : \& : \& : \& : \& ${ }_{98}^{18}$ \& 15 \& 118 \& : \& 18
113 \& : \& \& : \& . \& : \& $:$ \& : \& - \& $\begin{array}{r}\text { 960 } \\ \hline\end{array}$

\hline 384 \& \& - \& - \& - \& - \& - \& - \& 216 \& 28 \& 244 \& : \& 244 \& . \& - \& - \& : \& : \& : \& $:$ \& : \& 2.469

\hline 34.0 \& TOTM PERLOO SA COST \& - \& - \& 300 \& - \& - \& 5.501 \& 218 \& 80 \& 6.900 \& 8.657 \& 24 \& - \& - \& - \& - \& - \& 411 \& 72.900 \& - \& 2.669

\hline
\end{tabular}

Table C

Oyster Creek Nuclear Generating Station
DFCON Decommissioning Cost Estimate
(Thousands of 2003 Dollars)

Oyster Creek Nuclear Generating Station
DECON Decoinmiear Gen
Decommissioning Cost
(Thousands of 2003 Dollars)

Aectivity Inder	$\begin{gathered} \text { Decon } \\ \text { Cost } \end{gathered}$	$\begin{gathered} \text { Removed } \\ \text { Core } \end{gathered}$	Puckoplng Conts	$\begin{gathered} \text { Trameport } \\ \text { costs } \end{gathered}$	$\begin{aligned} & \text { OW-Stre } \\ & \text { Procenting } \\ & \text { Conts } \end{aligned}$	$\begin{aligned} & \text { LLRW } \\ & \text { Dispoual } \\ & \text { Costs } \end{aligned}$	$\begin{aligned} & \text { Onser } \\ & \text { Conts } \end{aligned}$	$\begin{gathered} \text { Toual } \\ \text { Contlingency } \end{gathered}$	$\begin{aligned} & \text { Toull } \\ & \text { Costs } \end{aligned}$	MRC Lue. Tomm Coets		$\begin{aligned} & \text { Sde } \\ & \text { Rechorution } \\ & \text { Conts } \end{aligned}$	$\begin{gathered} \text { Proceseed } \\ \text { Volume } \\ \text { Cu. Fot } \end{gathered}$	Cloant A Cu. Fom		$\begin{aligned} & \text { Columet } \\ & \text { Clase C } \\ & \text { Cu. Feet } \end{aligned}$	GTCG CuF Foet	Burial Procener Wh, Lbe.	$\begin{gathered} \text { Crat } \\ \text { Manhours } \end{gathered}$	Utilty and Centricter Manhourt
TOTA COST TO DECOMMISSION	9.818	85,062	10.501	4.720	31,962	75.094	342231	105.068	664.47	480.331	144.648	42.498	380.250	298,779	11.820	${ }^{63}$	411	44.257.260	1.261 .301	9.654.821
TOTAL COST TO DECOMMLSSTON WTTH 19.79\% CONTMGENCY:			\$864,47	mourenses ar	a 2003 conmer															
GTOTAL NRC LLEENSE TERMMATION COST IS 7220\% OR			\$480,331	Hevenende od	d 2003 dollms															
FPENT Fuel management cost is 21.37\% or:			\$141,848	Hhourandio	d 2005 dollmer															
Nownuclear demolmion cost is c.ax or:			H2,998	Howrende ed	al 2003 dohme															
TOTAL PRMMARY SITE RAOWASTE VOLUME BURRD			11.56	able Fowt																
TOTAL SECONOARY STIE RADWASTE VOLIWE BURITD			277,835	catce Past																
TOTAL GREATER THAN CLASS C RADWASTE VOLUWE CENERATED				wable Foet																
TOTAL SCRAP metal removed:			22,851																	
total craft labor requirements:			1.281,901	manhours																

End Notec

APPENDIX D DETAILED COST ANALYSES DELAYED DECON

Table 1

Oyster Creek Nuclear Generating Station
Delayed DECON Decommissioning Cost Estimate

Acthwy	Activily Daecription	$\begin{gathered} \text { Doeon } \\ \text { cont } \end{gathered}$	$\begin{aligned} & \text { Removal } \\ & \text { Cost } \end{aligned}$	Preliaglog Costs	$\begin{gathered} \text { Trinspert } \\ \text { Costat } \end{gathered}$	Oft-5no Processting Costa	Likw Dieposed Conta	$\begin{aligned} & \text { Oliver } \\ & \text { Costa } \end{aligned}$	$\begin{gathered} \text { TCAs } \\ \text { conelinpongy } \end{gathered}$	$\begin{gathered} \text { ToAl } \\ \text { costic } \end{gathered}$	$\begin{aligned} & \text { LNRC } \\ & \text { Le. Tom. } \\ & \text { Couts } \end{aligned}$	$\begin{aligned} & \text { Spent Fuel } \\ & \text { manderment } \\ & \text { Coste } \end{aligned}$	Renterration Coste	$\begin{aligned} & \text { Poconesed } \\ & \text { voumen } \\ & \text { Cu.fort } \end{aligned}$	$\begin{gathered} \text { ConetA } \\ \text { Cu. Foet } \\ \hline \end{gathered}$		$\frac{\text { Columes }}{\text { Cleses }}$ $C_{\text {u. Fow }}$	$\begin{gathered} \text { GTCC } \\ \text { CU. FOM } \end{gathered}$	Burned Procelsed M., Lbe.	$\begin{gathered} \text { Crath } \\ \text { unhhourt } \end{gathered}$	
PERRIOO 10. Shutdown through Transilion																					
Period ta Diect Decommin wioring Nefutior																					
	SAFSTOR 路e charmitertation Burver 	:	:	:	:	:	:	${ }_{97}^{298}$	${ }_{8}^{88}$	300 112	390 112	:	:	:	:	:	:	:	:	:	1,300
$\begin{aligned} & 1=1.3 \\ & 12.1 .4 \end{aligned}$	Noencraston of Cossemiton Of Persions									0											
12.15	Noontation of Pammerar Dofuting									5											
11.1 .6																					
14.1 .7	Prepers end atomit PSDAR	-	-	-	-	-	-	150	22	17	172	-	-	-	-	-	-	-	-	-	2.000
181.8 10.19 1.9	Revow plat owigi a peeca.	-	-	-	-	-	-	97	15	112	112	-	-	-	-	-	-		-	-	1,200
181.9 19.1 .10	Pextom dotaliod nod miver			15	11	8			.		.						
tal. 11	End product desertition	:	:	-	-	-	-	75	11	${ }_{0} 8$	${ }_{80}^{\infty}$:	:		:	:	:		:		${ }^{1,0000}$
41.12	Defented by prosect mientery	-	-	-	-	-	-	112	17	129	129	-	-	-	-	-	-	-	-	-	1.500
90.1.13	Dofine metr mort eeaumice	-	-	-	-	-	-	75	11	${ }^{86}$	${ }^{86}$	-	-		-	-	-	-	-	-	1.000
${ }_{1}^{19.1 .14}$		$:$:	:	:	$:$:	${ }_{375}^{232}$	${ }_{56}^{35}$.	${ }_{437}^{267}$	${ }_{431}^{267}$:	:	:	:	:	:	:	:	:	3.000 8.000
Acturiy 5 poecticationm																					
14.1.18.1	Propere pater and ICCliber tor SAFSTOR	-	-	-	-	-	-	369	53	424	424	-	-	-	-	-	-	-	:	-	4.920
${ }^{181.18 .182}$	Preme sytrama	:	-	-	-	-	-	312	47	359	359	-	-	-	-	-	-		-	-	4.187
T21.18.3	Prund stucturge mid tuibing	:	:	:	:	-	:	${ }_{150}^{231}$	${ }_{22} 3$	269 172	279 17	:	:	-	:	:	:	:	:	:	3.120 2.000
12.1.165	Facrin mid the dormmey		:		:	:	:	150	22	172	172	:	:		:		:		:	:	2.000 2.000
1.1 .16	T<at	:	:	:	:	:	:	1.214	182	1.398	1,398	:	:	-	:	:	:	:	:	:	16.201
Ootated Wort Procatures																					
${ }^{121.17 .7 .9}$	Prand inimme	:	:	:	:	:	:	${ }_{90}^{89}$	13	102	102	-	-		-	-		-			1.183
12.1.77	Tonth	:	:	:	:	:	:	179	${ }_{27}$	205	${ }_{205}^{103}$:	:	-	:	:	:	:	:	:	1,200 2,383
	Procure vicuum difing system Draindo-energixe non-cort. sytiome	-	-	-	-	-	-	7	1	$?$	9	-	-	-	-	-	-	-	-	-	100
${ }_{\text {ta }}+1.120$:											
${ }_{4}^{4} 1.122$	Oocoivsecrer costemmatod yystme									:											
1.1	Subtow Portod is Actury Costs	-	-	-	-	-	-	2950	491	3.471	3.471	-	-	-	-	-	-	-	-	-	35.830
$1 \mathrm{e}, 12$	Propery 1 uxon	:	:	:	:	:	:	1.3n		1.80	1.00	:	:		:	:	:	:			
12.43	Hosth phrstes rupdor	-	221	-	-	-	-	-	55	278	276	-	:		:	:			$:$:	
10.48		-	288	,	,	-	${ }^{-1}$	-	${ }^{43}$	331	331	-	-	-	-	-	-	-	1	-	
${ }^{2} 1245$	Dixposen of OAW	:	.	${ }^{5}$	1	:	${ }^{23}$	025	${ }_{9}^{8}$	35 79	${ }_{719}$:	:	:	404	:	:	:	8.103	9	:
14.4 .7	NRC Fees	-	-	-	-	-	-	371	37	408	400	i	:		.	-	-	:	:	:	
70.48	${ }_{\text {Emergenct Pluming }}$:	:	:	:	:	:	101 250	10	${ }_{\substack{111 \\ 207}}$	287	111	:	:	:	:	:	:	:	$:$	-
10.4.10	Spomt Fuol Pool 0 SM	:	:	:	:	:	:	868	145	¢,113	28	1,113	:	:	:	:	:	:	- :	$:$	
10.4 .11	isfsi opersing Costis	-	-	-	-	-	-	71	11	82	1	82	-		-	-	-		-	-	
184.12 10.13	Secunty Stin coant	:	:	:	:	:	:		+145		-	-	:	:	:	-	-	-	-	-	58.921
$10.4{ }^{\text {c }}$:	509	5	1	-	23	29.510	4.421	34.470	33.14	1.300	:	:	404	\because	:	:	8.103	99	406,23
190	TOTAL PER100 \% COST	-	509	5	1	-	23	32.991	4.912	37,941	38.635	1,308	-	-	404	-	-	-	8.103	99	482.233
PERTOD tb - sarstor Limited decor activits																					

Table D
Oyster Creek Nuclear Generating Station
Delayed DECON Decommissioning Cost Estimate
(Thousands of 2003 Doliars)

$\begin{aligned} & \text { Aethliky } \\ & \text { modex } \end{aligned}$	Aetriby Dosecription	-	$\begin{gathered} \text { Docon } \\ \text { Cout } \end{gathered}$	$\begin{gathered} \text { Rumoval } \\ \text { Cost } \end{gathered}$	Pecknging	Tramsport Conter	$\begin{gathered} \text { On-Site } \\ \substack{\text { rrocessing } \\ \text { Costs }} \\ \hline \end{gathered}$	$\begin{gathered} \text { LRWW } \\ \text { Dispota } \\ \text { Coata } \end{gathered}$	$\begin{aligned} & \text { Oiner } \\ & \text { Conts } \end{aligned}$	$\begin{gathered} \text { Cometel } \\ \hline \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { cosite } \\ \hline \end{gathered}$	$\begin{gathered} \text { WRC } \\ \text { Le. Tamm. } \\ \text { costa } \\ \hline \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Spand Fwat } \\ \text { Mancomment } \\ \text { Coste } \end{array} \\ \hline \end{gathered}$	Restorrifen Conte	$\begin{aligned} & \text { Pocanese } \\ & \text { Vohume } \\ & \text { Cu, Fowt } \end{aligned}$				$\begin{aligned} & \text { GTCC } \\ & \text { Cu. Foen } \end{aligned}$	$\begin{gathered} \text { Buris) } / \\ \text { Procused. } \\ \text { Wh, Lbe. } \end{gathered}$	$\begin{gathered} \text { Crant } \\ \text { Manhours } \end{gathered}$	$\begin{array}{\|l\|} \hline \text { Uulity } \begin{array}{c} \text { and } \\ \text { Contector } \\ \text { M Manhourn } \end{array} \\ \hline \end{array}$
Patiod 16 Drrec Decommisioring Nethriet																						
Decoontmm	hneton of Sias Budingy																					
10.1.1.1	New Radweste Buibing - Systeme Removal		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-
tal.1.2	Ond Racwazio Buturing - Syeema Remove			-	-	-	-	-	-								-				1	-
thiti.3	Aupmended On Geas - Dicon		2	-	-	-	-	-	-		3	3		-		\bullet	-	-	-	-	97	-
tbi.t.4	Drewer - Limer Removal		1.629	-		-	-	-	-	814	${ }^{2} .4 .43$	2.433	-	-		-	-	-	-	-	32.453	
${ }_{\text {tob }}^{\text {to.1.1. }}$			2.164	:	:	:	:	:	:	1.092	3.275	3.275	:	:	:	:	:	:	:	:	4.109	:
th.1.1.7	Stuckerimust Tumetr . Remove a Decon		42	:	:	:	:	:	:	21	63	63	:	:		:	:	:	:	:	952	-
16.1 .18	Tutime Butitrp on - Decon		8	-	-	-	-	-	-	4	12	12		-	-	-	-	-	-	-	153	-
kis.1.19	Rauctor Bubling 19M. Deson		-311	-	-	:	:	-	:	2170	511	811	-	-		-	-	-	-	-	8.762	
16.1 .1	Tads		4.210	-	-	-	-	-	-	2.105	8.315	8.315	-	-	-	-	-	-	-	-	${ }^{83.995}$	
14.1	Substal Porrod ib Actily Costh		4.210	-	-	-	-	-	-	2.105	6,315	6,315	-	-	-	-	-	-	-	-	83,993	-
16.2			-	-	-	-	-	-	8.115	1.217	9,332	9.332	-	:		-	.		:	:	:	
16.3.			$\stackrel{198}{ }$	68	${ }^{6} 5$	${ }^{175}$	\bullet	$\stackrel{73}{4}$:	314 10	${ }^{1.485}$	1,465 ${ }_{\text {78 }}$:	:	:	:-	-1,360	:	:	. ${ }_{-}^{169.933}$		
10.3	Sithoas Period lb Cosmeral Costs		824	${ }_{88}$	65	175	-	73	-	419	2285	2285	-	-	-	-	1,344	:	:	16.983	28s	- :
tb 6.3	Propenty ixes			:	.	,	:	:	527	53	579	579	-	:		:	:		-	:	:	
$1{ }^{1} .4 .4$	Hooth physics unplos		-	311	-	-	-	-	-	78	388	388	-	-		-	-	-	-	-	-	
1 tas	Homy eothomen memen		:	3	,	-		,	-	11	8080	${ }_{8}^{86}$	-	-		ir	-	-		\%	9	
16.48			:	:	1	0	:	7	is8	- ${ }^{2}$	1819	1810	:	:	:	117	:	:	:	${ }^{2,339}$	29	:
15.48	NRC Foes		-	-	-	-	-	-	9		103	103		-		:	:	:	-	:	:	
1849	${ }_{\text {Emamgoncy Pranning }}$:		:				${ }_{83}^{25}$	3	${ }_{7}^{28}$	\cdots	${ }^{28}$:			-		:	-	-	
to.4.10			:	:	:	:	:	:	83 248 24	${ }_{37}$	72 281	7	281		:	:	:	:	:	:	:	:
164.12	ISFSIL Opersming couta		-	-	-	-	-	-	18	3	21	1	21	:		-	-	-	-	-	-	S
184.13 168.14	Secrity stan cout		:	:	:	:	:		- 4.544	680	3.2818	3.218		:			:	:	:	:	:	
164	Suttosal Pericd ib Payiod-Dependent Costs		735	383	,	0	:	1	8.45	1.172	8.64	${ }_{8,315}$	329	:	-	117	:		:	2.339	29	${ }_{87} 8.298$
16.0	TOTM PERPCO id Cost		3.70	451	67	${ }^{76}$	-	40	14.460	4.913	28.578	28.247	329	-	-	117	1,348	-	-	17272	84,289	87.269
PERTOO te - Propenstiom for sAFs TOR Dormancy																						
Perlod tic Dreet Decomminstoning Actuxion																						
	Properes iupport equipment for torrage 		:	${ }_{36} 09$:	$:$:	:		${ }_{5}^{61}$	470	480	:	:				-	-	:	3.000	
1 c 1.3	meerm anvey prior 10 dormency		-	3	-	:	.	:	733	220	933	953	-	:	-	-	.	-	-	:	19.008	
${ }_{\text {cic }}^{19.1 .4}$	Secure buiding morviow		-	.	-	-	-	-	4	7	${ }_{50}$	50										
	-												-	-	-	-	-	-	-	-	-	583
14.1	Scotosel Period te Acbuity Costs		-	446	-	-	-	-	77	293	1.515	1.515	-	-	-	-	-	-	-	-	22.798	583
Pettod te Coltstors Couts																						
1e3, lec 1	Procrast loud weste		${ }^{219}$		3	${ }^{196}$:	${ }^{13}$:	30	${ }^{1.850}$	1.650	:	:	-	-	1.508	-	-	189.862	298	-
1 c 3	Sutotem Pmiod ic Conteral Conts		219	3	in	998	:	813	:	350	1.854	7.854	:	:		$:$	1.508	:	-	189,882	29	

TI. S Serviorm, Ine.

Table D
Oyster Creek Nuclear Generating Station
Delayed DECON Decommissioning Cost Estimate
(Thousands of 2003 Dollara)

Aetrivy	Aetrimy Desecription	$\begin{gathered} \text { Docon } \\ \text { Cont } \end{gathered}$	Removed	Pucksoghng	Tranaport Conte	$\begin{gathered} \text { OM1-Ste } \\ \substack{\text { Procisting } \\ \text { Contis }} \\ \hline \end{gathered}$		$\begin{gathered} \text { Other } \\ \text { Coetis } \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Toder } \\ \text { Contingemer } \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \text { Totan } \\ \text { Couts } \end{gathered}$	$\begin{aligned} & \text { LNRC } \\ & \text { Le. Tom. } \\ & \text { Costs. } \end{aligned}$	$\begin{gathered} \text { Somen Fuet } \\ \text { Mancompent } \\ \text { Coste } \end{gathered}$	$\begin{gathered} \text { Sut } \\ \text { Restorntion } \\ \text { Contig } \end{gathered}$	$\begin{aligned} & \text { Procested } \\ & \text { Volume } \\ & \text { Cu. Fept } \end{aligned}$	$\begin{aligned} & \text { Clasen } A \\ & \text { Cu. Foet } \end{aligned}$		$\begin{aligned} & \text { olumeng } \\ & \text { Clases C } \\ & \text { Cu. Foet } \end{aligned}$	${ }_{C}^{G T C C}$	Burnall Procesped W. Lbe.	$\mathrm{Cramf}_{\text {Montour }}$	Unitity and Contracter Menhount
104.2 10.4 1	Properity wes	$:$	$i 23$:	$:$:	:	$\stackrel{521}{ }$	52 31	S73	${ }_{158}$:	:	.	:	:		:			
16.4	Homy mentrnewt finter	-	72	-		-	-	-	11	83	${ }^{8}$	-	-	-		-		-			
1645	Daposil of DAW gemerred	-	-	1	0	-	6	-	2	9	${ }^{\circ}$	-	-	-	101	-	-	-	2.020	25	\bullet
Pc4.6	Prend energy budget	-	-	-	-	:	-	${ }^{158}$	23	179	179	-	:	:	-	-		:			
reas	Emergency Pleming foes	\because	-	:	:	$:$:	25	3	${ }^{102}$	102	${ }_{31}$:	:	:	:		:			
16.9	Smeosm cost	-	-	-	-	-	-	62	9	12	72		-	-	-	-					
1c.4. 10	Sperat fued Pool OSM	-	-	:	-		-	241	38	276	-	278	:	:	:	:	:	-	:		-
licti.11		:	:	:	:	:	-	21818	${ }_{36}$	2088	278	${ }^{20}$:	:	:	:	:	:-	$:$:	14.090
tc,, 13	vumy $\operatorname{stan} \mathrm{Coset}$.	-	19					4.431	eos	5.096	5.096		:	-				-	0		71,030
1 Ca		-	197		0	-	0	6.221	923	7.388	7.023	328	-	-	101	-	-	-	2.020	25	86.320
14.0	TOTAL PERTOO Te COST	219	cens	14	196	-	819	6.997	1.568	10.517	10.192	${ }^{28}$	-	\bullet	101	1.008	-	-	191,902	23.119	80.903
PERIOO 1 totals		5.988	1,806	146	33	-	1.582	53.988	17.399°	73,035	73.074	4.981	-	-	622	2,855			372,27	107,509	658,403

PERHOD 2a - 3AFSTOR Dormeney whth Wol Spent fuol Stornge

2.1 .19	Oummany mapoction									:											
2.12										:											
2.1 .4	Bumminus iof replecement	-	-	-	-	-	-	599	90	689	-	659	-	-		-	-	-			
2 La .9	Mantornmes appiou	-	-	-	-	-	-	1.979	297	2.275	-	2.275	-	:	-	:	:	.		:	
2.1	Subtomil Priod 28 Activy Costs	-	-	-	-	-	-	2.575.	387	2.963	.	2.963	-	-	-		-	-		-	
Period 20 Colateral Corts																					
2.3	Sithetal Patiod 23 Colideral Costs	-	-	\bullet	-	-	-	4.000	800	4.000	-	4.000	-	-	-	-	-	-	-	-	
Perrod 2 a Period-Dopendert Cosas																					
21.4 .1 20.4	Propenty	:	:	:	:	:	:	71.214 15.728	1.351 1.57	171.298	:	${ }_{17}^{17.359}$:	:	:	:	:	:	:	:	
2.4 .3	Hesent prysicas uppotes	-	869	.		.	-	-	217	1.088	.	1,006	-	-	:	:	:	.	:	:	
2.44	Dixposal of DAW penerued	-	\cdot	75	17		305	\cdots	101	5s8		${ }^{559}$			8.383				127.517	1.562	
2.2 .45	Preme ereory budget	:	:	:	:	:	:	7.379	1.107 15	(8.486	:	\% ${ }_{8}^{8.488}$:	:		:	:			:	
20.4 .6 29.4	$\underset{\text { Emergency Puming feet }}{\text { NRC }}$:	:	:	:	:	:	5.350	${ }_{159}$	-	:	5,885	$:$:	:		$:$:	:	
22.48	Stu OsM Cost	-	-	-	-	-	-	3.932	590	4.521	-	4.521	-		-					-	
2249	Spenf fuel Poot 08M	-	-	-	-	-	-	15.239	2.285	17.520		17.528	-		-					-	
234.10	1sf SI Ooemsting Conts	-		:							-			:							
204.11 20.4 .12	Secumy Sion cost	:	:	:	:	:	:	-	9,284	9.813 71,162	:	\% 9.615	$:$:	:		:		:	:	\$009.734
20.4		-	889	75	17	-	355	133.782	18,592	153.700	-	133,700	-	-	0.363	-	-	-	${ }^{127.517}$	1.562	1,480.617
2.0	TOTAL PEPAOO 2 a Cost	-	869	75	17	-	365	140.359	19.578	161.283		181.283	-	-	0.383		-		127.517	1.562	1,460.817
PERROD 2 TOTALS		-	8	3	17	-	305	140,359	19.578	181.263	-	181.263	-	-	0.863		-	-	127,517	1.562	1,460.617
PERTOD 30. Resctivate She Fonowing SAFSTOR Dormancy																					


```
    Pertom Doluthedgos remmey
```

 End produt dosectition
 TLG Servires, Inc.

Table D
Oyster Crrek Nuclear Generating Station
Delayed DECON Decommissioning Cost Estimate

Actutly	Activisy Oonecription	-	$\begin{gathered} \text { Decon } \\ \text { Cost } \\ \hline \end{gathered}$	Removel Cost	$\begin{gathered} \text { Peckeging } \\ \text { Costs } \end{gathered}$	$\begin{gathered} \text { Tromport } \\ \text { Cost } \end{gathered}$	\qquad Processing Coets	$\begin{gathered} \text { URWW } \\ \text { Dinpoum } \\ \text { Cotict } \end{gathered}$	$\begin{aligned} & \text { Oither } \\ & \text { Ceaty } \end{aligned}$	$\begin{gathered} \text { Total } \\ \text { Comingency } \end{gathered}$	$\begin{aligned} & \text { Toun } \\ & \text { Copts } \end{aligned}$	$\begin{gathered} \text { NRC } \\ \text { Ue. Torm. } \\ \text { Conti } \\ \hline \end{gathered}$		Restoration Cotts	$\begin{aligned} & \text { Procensed } \\ & \text { Volurve } \\ & \text { Cu. Fated } \end{aligned}$	$\begin{aligned} & \text { CoseA } \\ & \text { co. foem } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { Volume } \\ & \text { Closes C } \\ & \text { Cis. Fow } \end{aligned}$	$\begin{gathered} \text { GTEC } \\ \text { Cu.Foos } \end{gathered}$	$\begin{aligned} & \text { Beryent } \\ & \text { Froceteed. } \\ & \text { Wi. LDe. } \end{aligned}$	$\underset{\text { Manhowr }}{\text { Cran }}$	Uninty and $\begin{aligned} & \text { Contrector } \\ & \text { Manhoury } \end{aligned}$
Portod 30.0																						
3 l .1 .6	Define mitor woth resumes (amme)		-	-	-	-	-	-	562	a	048	64	-	-	-	- -	-	-	-	-	-	7.500
3 Sa .7	Partom SER modea		-	-	-	-	-	-	272		267	267						-	-	-		
3 mel 18	Patam shosposinc Cost Fruty		-	-	-	-	-	-	375	58		431	-	-	-	-	-	-	-			5.000
31.9 381.10			-	-	-	-	-	-	307	${ }^{48}$	${ }^{33}$	353	-	-	-	-	-	-	-	-	-	4.098
Acturiy Specticstions																						
3. 1.1.1.1			-	-				-	532	85	635	571		${ }^{63}$								
3 l .112	Pfut probere		-	:	:	:	:	:	312	47	359	323	:	${ }_{86} 6$:	:	:	:	:		:	4.167
3e.1.11.3	Recector inemme		-	-	-	-	-	-	532	80	612	612	-	-	-	-	-	-	-			7.100
3a 1.114	Resctior vestel		-	-	-	-	-	-	437	73	500	500	-	-	-	-			-			6.500
$3 \mathrm{3a} 1.11 .5$	Seamdin yldeld		:	:	:	:	-	:	37	${ }_{11}$	4	${ }_{4}^{43}$:	:	-	-	-	:	-	-	-	500
${ }_{3} 31.11 .7$			\because	:	:	:	:	:	\% 120	18	-188	${ }_{89}^{88}$:	69	:	:	:	:	:	:	:	1,000
3 S 1.11 s	Tuthe 8 condemsar.		-	-	-	-	-	-	312	47	359	359	-	-	-	-	-	-	-	-	-	4187
3a 1.119	Prosure epprestion stuctur		-	:	:	-	-	:	150	22	172	12	:	-	\because	-	-		-			2.000
${ }_{3}^{3 a}$	Prowet Etuctures \& buibingt	-	:	:	:	:	:	:	120	${ }_{35}^{18}$	${ }^{138}$	-138	:	is	:	:	:	:	:		:	[1.600
301.19122	Werie menagement		-	-	-	-	-	-	345	- 52	398	- 398	$:$	${ }^{4}$:	:	:		:	:	:	4.600
			:	:	:	:	:	:	+678	-10	\%88	359	:	39	:	:	.	-	-			${ }^{900}$
									1.342					31		\because	$\stackrel{\bullet}{*}$		-	-		44.824
	She Preparstions Prepmere diamanting reaquence		-	-	-	-	-	-	280	27	207	207	-	-	-	-	-		-	-		2.400
3 ma 1.13			-	-	-	-	-	-	2.419	363	2.728	2.782	-	-	-	,	-					
33.1.14			:	:	$:$:	-	:	2098	307	2,315	121 2.355	:	:	$:$:	-	-	:	:	:	- 1,400
3 za 1.18	Procure caskstmers 8 comether		-	-	-	-	-	-	92	14	108	108	-	41	-	-	-	.	-	-	-	1.230
3 m .1			-	-	-	-	-	-	10,275	1.341	11.817	11,475	.	41	-	-	.	-	.	-	.	17.550
Patiod 30 Colintura Cows																						
$3 \mathrm{3e} .11$	Spem Fuer Creptas and Trastor.		-	-	-	-	-	-	4.000	- 720	5.520	:	5.520	-	-	:	-		-	-		
3 a 3	Sutbeen Period 34 Coltureral Coste		-	-	-	-	-	-	4,800	720	5.520	-	5.520	-	-	-	-	-		-	-	-
Pariod Ss Partod.Dependent Costs																						
30.2	Propery tixes		:			:	:	:	999	100	7.099	1.099	:	:	:	:	:	:	:	:	-	:
3.4 .3	Heamithersics suobles		-	224	-	-	-	:	-	53	${ }_{34} 78$	${ }^{278}$:	:	-	-	-	-	:	-		-
3384.4			:	288	${ }^{5}$	1	:	23	:	${ }^{43}$	331 35	331 35	:	:	:	404	:	:	:	8.103	99	:
34.8	Plent energy budpet		-	-	-	-	-	-	469	70	539	539	.	.	-	,	:	.	-	4.103		:
304.7	NRC Fees		:	:	:	:	:	:	${ }^{371}$	${ }_{10} 37$	408	${ }^{208}$	i11	:	:	:	:	:	:	-	-	-
3948 3049			:	:	$:$:	-	:	101 250	10 37	${ }_{281}^{118}$	287	111	:	:	:	:	:	:	:	:	:
33.4 .10	Spen fuol Pod Osm		-	-	-	-	-	-	968	145	1.113	-	1.193	-	-	-					-	
33.4 .11	Secunt, sunt cost		-		-	-	-	-	531	${ }^{80}$	811	611	\cdot	-	-	-	-	-	:	-	-	32.329.
33.4 .12			:	509	${ }_{5}$	1	:	${ }_{23}$	${ }_{20,908}^{16.376}$	2, 21258	18.833 24.569	28,393	1.224	:	:	404	:	:	:	8.103	99	${ }_{293,584}^{28129}$
30.0	TOTAL PERAOO 3, COST		-	509	5	1	-	23	35,981	5.368	41.905	34.820	8.74	34	-	408	-	-	-	8.103	99	374.114
PER100 36 - Decommisationing Properetions																						
Perno so Orrect Decommiskioring Actuviot																						
Detaled Wort Procendum																						
${ }_{\text {3 }}^{36.1 .1 .1 .1}$	Plant instumem		:	:	:	-	:	:	395	45	${ }_{34}^{108}$	${ }_{34}^{307}$:	.4	:	:	:	:	:	:	:	4.733 4.000
30, 1.1.3	Remmening beiming		-	-	-	-	-	-	109	15	116	29	-	87	-	-	-	-	:	:	:	1.950

Table D
Oyster Creek Nuclear Generating Station
Delayed DECON Decommissioning Cost Fstimate (Thousands of 2003 Dollars)

$\begin{gathered} \text { Aecturyy } \\ \text { indory } \end{gathered}$	Activiry Donecription	$\begin{gathered} \text { Ducon } \\ \text { Cot } \end{gathered}$	$\underset{\substack{\text { Removat } \\ \text { cont }}}{ }$	Packsoghy	Tromsport costs	$\begin{aligned} & \text { Oinisite } \\ & \text { Procsasing } \\ & \text { Costa } \end{aligned}$	$\begin{gathered} \text { LLRW } \\ \text { Dhposel } \\ \text { Conts } \end{gathered}$	$\begin{aligned} & \text { Oiner } \\ & \text { Coats } \end{aligned}$	$\begin{gathered} \text { Totsis } \\ \text { Comporing } \\ \hline \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { costi } \end{gathered}$	$\begin{aligned} & \text { NRE } \\ & \text { Le. } \begin{array}{c} \text { Mom. } \\ \text { Costy } \end{array} \end{aligned}$		Restoration Cost	$\begin{aligned} & \text { Proctesed } \\ & \text { Volume } \\ & \text { Cu, Foet } \end{aligned}$	$\begin{aligned} & \text { cioan } \alpha, \\ & c_{u} \text { Foot } \end{aligned}$	$\begin{aligned} & \text { Burial } \\ & \text { Clasiz } B \\ & \text { Cu. Foot } \end{aligned}$		$\begin{aligned} & \text { cicc } \\ & \text { cut fou } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Burruit } \\ & \text { Procested } \\ & \text { Wh, ben. } \end{aligned}$	$\begin{gathered} \text { Crant } \\ \text { Manhoove } \\ \hline \end{gathered}$	Utolity and Contractor Menhour
30.1.1.5	ucore insumemation	-	-	-	-			75	11	8	8	-	-	-	-	-	-		-	-	1.000
35.1.1.8	Remover primery conturneent	-	-	-	-	-	-	150	22	172	172	-	-	-	-	-	-	-	-		2.000
351.1.7	Rascor wesed	-	:	:	:	-	:	272	4	313	313	-	${ }^{\circ}$	-	-	-	-	-	-	-	3.830
${ }_{\text {30, }}^{30.1 .1 .9}$	Fichy ctoseor	-	:	:	:	:	:	90	3	100	52	:	52	:	:	:	:	:	:	$:$	1200
${ }_{3} 3$.1.1.10	Reminorod conowl	:	:	:	:	:	:	${ }_{75} 80$	111	${ }^{103}$	103 43	$:$	43	:	:	:	:	:	:	:	1.2000 1.000
35.1.1.11	Turtion 8 condemers	-	-	-	-	-	-	312	47	359	359	-	-	-	-	-	-	-			4.187
38.10 .112		-	-	-	-	-	-	${ }^{150}$	27	12	172	-		-	-	-	-	-	-	-	2,000
${ }_{\text {30, }}^{30} 1.1 .111$	R Reatrut buibling	:	:	:	:	:	:	${ }_{2}^{204}$	31	235 235	212	$:$	24	-	:	:	:	-		-	2,730
35.1 .1	Toxt	-	.	-	-	.	-	2.452	360	2.820	2.550	-	270	.	-	-	-	-	-	-	32,740
30.1	Sutbeen Period 30 Semily Conte	-	-	-	-	-	-	2.152	38	2,820	2,530	-	270	-	-	-	-	-	-	-	32.740
${ }_{30.23}^{30.2}$	Dimpostion of Lrad RCRA Wazie (not loed)	$:$:	:	58	9.820	:	:	${ }^{818}$	$\begin{array}{r}618 \\ \hline 9.980 \\ \hline\end{array}$	$\begin{array}{r}618 \\ 1.980 \\ \hline\end{array}$:	27,000	:	:	:	:	$\begin{array}{r}115.078 \\ 1.820 .000 \\ \hline\end{array}$:	
33.2 .4	Drsoostion of Leed tiveriory	-	,	-	2.	4		-		53	59	-	-	31	-	-	-	-	2.050	-	
30.25	Astoriter Remeatision	-	9.791	1	43	-	716	1	2.833	13.188	13.184	-	-	-	${ }^{99.193}$	-	-	-	249.515	150,230	-
3 b 2	Subtomi Pariod 36 Adombond Costs	-	9.791	1	13	2.192	17	3152	3.918	19.863	19.883	-	-	29.050	19.193	-	-	-	2.006.671	150.230	-
Period 30 Colluterw Conts																					
36.3.1	Docon maipmon	628	:	:	:	:	:	9	96	, 723	${ }^{737}$:	-			:		-	-		
${ }_{30.3 .2} 3$:	128	:	:	:	:	9.987	184 19	1.281 145	${ }_{1}^{1281}$	$:$:	:	:	:	:	:	:	:	:
33.34	Plipe cutshy mavoment	-	957	-	-	-	-	0	143	1.100	1.100	2750	-	-	-	-	-	-		-	
${ }_{30.3}^{36.35}$		82	1,002	:	$:$:	:	2.400	${ }_{781}$	2,780 5,988	3.288	2,780	:	:	$:$:	:	:	:	:	:
Pertod 30 Pertos-Dependent Costs																					
330.4 .1	Dicom mpopten	19	-	-	-	-	-	\%	5	24	24	-	-	-	-	-					
33.4 .2	mauremes	-	-	-	-	-	-	429	42	${ }^{263}$	${ }^{463}$	-	-		-	-	-	-			
30.4.3	Propenty toxes	:	ses	:	:	:	:	${ }_{5} 9$	-30	551	${ }_{7} 51$:	:	:	:	:	:	:	:	$:$	
3043	Hiamy matiomene rateal	-	145	.		-		.	22	156	${ }^{168}$		-	-		:	-	-	,		:
33.4 .4	Disposel or Daw somerned	-	-	2	1	-	12	-	3	${ }^{18}$	18	-	-	-	203	-	-	-	4.063	50	-
30.4 .7	Plora enoryy tudiol -	-	-		:	-		${ }^{235}$	${ }^{35}$	270	270	-	-			-	-	-			
${ }_{36.4 .9}$:	:	:	:	:	:	${ }^{186}$	${ }_{5}^{19}$	203	$\stackrel{305}{ }$	56	:	:	-	:	:	:	:	:	
330.4 .90	SRe OSM Cont	-	.	.	.	:	.	123	19	14	14		-	-	-	:	:	:	:	:	:
384.11	Spemi fuel poot OsM	-	-	-	-	-	-	${ }^{485}$	73	${ }^{588}$	-	558	-	-	-	-	-	-	-	-	\therefore
${ }_{3}^{350.4 .12}$	Seconty star cost	:	:	:	:	:	:	-766	507	${ }^{3008}$	300	-	-		-	-	-	-	-	-	${ }^{18,209}$
350.4 .14	${ }_{\text {coser }}$	-				:		-1.383	- 1.258	(3.830	3,690		:	:		:	:	:	:		52,288 134,113
354		19	710	2	1	-	12.	14,029	2.215	18.980	18,378	814	-	-	203	-	-	-	4.083	50	202.607
30.0	TOTAL PERICO 30 COST	68	11.584	3	13	2.192	72	23.130	7.285	45.882	42.039	2.974	270	29.050	19.398	-	-	-	2.810 .75	150.290	235,247
perioo 3 totals		848	12.093	8	114	2,192	731	59.111	12.871	87,588	78,850	10.116	611	29.050	19.000	-		-	2.018.037	150,379	600.461

Oyster Creek Nuclear Gencrating Station
Delayed DECON Decommissioning Cost Estimate

$\begin{gathered} \text { Activity } \\ \text { inder } \end{gathered}$	Actiky Deacripition		$\begin{gathered} \text { Docon } \\ \text { Cost } \end{gathered}$	Remova	Pockaging Conts	Tranapon Conts	$\begin{gathered} \text { OHfistion } \\ \text { Procesing } \\ \text { Costs } \end{gathered}$	$\begin{gathered} \text { LRWW } \\ \text { Dhpoout } \\ \text { Conty } \end{gathered}$	$\begin{aligned} & \text { Other } \\ & \text { Coote } \end{aligned}$	Comthonency	$\begin{gathered} \text { Totall } \\ \text { Cotets } \end{gathered}$	$\begin{gathered} \mathrm{NRRC} \\ \text { Lie.Tom. } \\ \text { Cont! } \\ \hline \end{gathered}$	Sombly Managument Cont	Reltoration Cotet	Procpeted Yolume Cu. Foed	$\begin{aligned} & \text { ClosiA } \\ & \text { Cu. Fou } \end{aligned}$		Clumes Cu. Foen		$\begin{aligned} & \text { Buriali } \\ & \text { Proconeod. } \\ & \text { wh, tise. } \end{aligned}$	$\begin{gathered} \text { Crinh } \\ \text { Manhours } \end{gathered}$	Uthity and Contrector Manhoert
PERIOD 4s . Lerge Component Removal																						
${ }_{\text {An }}$	Sramm Supat Sramem Removal			π		17			-													
4a.1.1.2	Recrouaton Pumpr 8 Matore		27	124	$\begin{array}{r}183 \\ \hline 183\end{array}$	17	42	${ }^{765}$:	170	${ }^{1.187}$	1.107 90	:	:	107	\%,053				27, ${ }^{2750}$	2,159	:
4ati.3	Rasctor Vorusil hromith		8	1.741	2.685	462	-	3.315	132	3.812	12.230	12.230	:	.	.	1.502	1.37	287		30.823	17.509	83
4 ta 1.14	Veseel 4 intemat GTCG Ompex		-	\cdot	300		-	5.501	-	85s	${ }_{6.657}$	0.657	-	-	-		.	${ }^{2}$	41	72.200	\%	\because
4.1.1.1.5	Resctor Voum		-	4.318	778	209	-	5.189	132	8.009	${ }^{16.684}$	18.894	-	-	-	18.203	-		-	1,854,750	9,509	832
4 ta 1.1	Tots		119	6.261	3.978	704	42	13,169	283	11.153	31,84	37,088	-	-	107	23,934	1,377	287	411	2.388,475	40.512	1.863
42.13	Man Condomemi		\bullet	114	342	94	3.290	-	-	roo	5,159	3,159	-	-	30,738	-	-	-	-	1,653,128	15, 180	-
Dhaporal a Plext Sytiom																						
$\begin{aligned} & \text { Drywel Sye } \end{aligned}$	rumm Componenta Toth	-	-	-	-	-	-	-	-	-	-	.-	-	-	-	-	-	-	-	-	-	
$4 \mathrm{~A}, 1.5 .2$	RCA		-	30	1	1	12	21	-	15	∞	80	-	-	147	6			-	-11.731	- 89	-
	RCS RCD		:	240	$!$!		5	:	19080	112		:	:	, 5014	${ }^{18}$:	:		21.819	1.009	:
4 A 1.15	ACO		.	48	1	3	92	-	-	28	167	-167	-	-	9,198	,	:		:	48,138	1,020	
4.158	${ }_{\text {RCJ }}$		-	$\stackrel{48}{88}$	1	1	50	-	-	20	120	120	-	-	${ }^{17}$	-	.		-	25.004	1.068	-
4.1.1.7 4	RCM		-	73	1	3	120	-	-	37	235	235	-	-	1.481	-	-		-	${ }^{00.136}$	1,836	-
4.1.5.8	$\xrightarrow{\text { RCN }}$:	165 58	2	5	170 51	i10	.	88 51	29 29	410 27	:	:	2107 638	330	:	-	:	85,5a1 55.42	3.610 1.313	:
881510	RCT		-	37	0	1	38		-	15	91	94	:	\because	464	330	:		$:$	${ }_{18,058}^{58.42}$	${ }_{80}$	
4.1 .5	Tosals		-	145	15	27	895	137	-	360	2.179	2.179	-	-	11,078	412	.	-	-	488, 908	18,488	-
Now Rendwerste Buiding 5ystiem Components																						
${ }_{4}^{4.1 .1 .18}$	7E8		:	${ }^{108}$	2	2	29	${ }^{65}$:	${ }_{4}^{48}$	$\begin{array}{r}233 \\ \hline 15\end{array}$	259 5	:	:	882	${ }^{98}$	-	:	:	${ }^{32} 303$	2.373	:
4 4 .18 .3	N2P		-	19	0	,	29	-	.	\%	57	57	:	:	31	:	-		:	13.830	400	:
4.1 .6 .4	${ }^{\text {N34 }}$		-	${ }_{5}^{48}$	0	1	32	-	-	18	${ }^{96}$	96	-	:	398	-	-	-	-	18,151	999	-
${ }^{4.8 .1 .65}$	${ }^{\text {N30 }}$:	55	0	1	41	,	-	20	117	117	-	-	501		-	-	-	20.362	1.237	-
4.18 .8	${ }_{\text {N3N }}$		-	67	-	1	38	1	:	22	12788989	-188	:	:	$4{ }_{47}$.3	:		:	1.388	${ }_{1}^{1.999}$	
42.1 .88	${ }^{\text {N3P }}$		-	17	0	0	14	-	-	7	39	39	-	-	179	:	:		:	${ }_{7} 7287$	374	
$4 \mathrm{4a.1.69}$	${ }^{\text {N30 }}$		-	12	-	0	6	-	-	4	22	22	-	-	80	-	-	-	-	3.250	281	-
4n1.9.10	${ }_{\text {N3R }}^{\text {N3S }}$:	12 17	0	0	15	:	:	4	${ }_{40}^{24}$	${ }_{40}^{24}$:	:	-978	:	:		:	3,946	238	:
48.1.6.12	NTT		-	11	-	0	5	\%	-	3	18	19	:	:	39	:	:		:	23.357	369 240	
41.1 .613	N3W		-	${ }_{7}^{78}$	4	3	4	107	:	${ }_{50}$	293	293		-	810	338	-	-	-	53.705	1.873	-
4.11 .8 .44 18.1 .6 .15	N3N		:	79 143	4	7	-5218	118	:	${ }^{58}$	315 474	315	:	:	(033	359	:		:	30.024 124.028	1,1700	
6.9 .18 .16	Nst		-	27	8	1	19			10	57	57	-	-	239		-		-	9.707	821	:
4.1 .18 .17 4.1 .19	${ }_{\text {N53 }}$:	${ }_{40}^{23}$	1	1	20	15	:	17	${ }_{93}^{52}$	${ }_{93} 5$:	:	121 248	528	:	:	:	7,154	-539	-
CA.19.19	${ }_{\text {NS4 }}$:	12	!	!	${ }_{4}^{20}$	${ }_{6}^{15}$:	5	${ }_{28}^{93}$	${ }_{28} 8$:	:	${ }^{218}$	${ }_{19}$	$:$	$:$:	14,050	275 259	
421.1.2.20	N55		-	50	,	1	${ }^{33}$	-	-	${ }^{18}$	102	102	-	-	414	-	-	-	-	16.809	1.114	-
	NSS		:	${ }_{28}^{74}$	1	${ }_{1}^{2}$	${ }_{23}^{59}$	5	:	${ }_{12}^{28}$	180	${ }^{180}$:		789	18	:		:	29,828 13.120	${ }_{\text {1,542 }}$:
48.1823	NSE		-	27	0	1	23	-	-	10	${ }^{63}$	63	-	-	307		:	:	.	12.485	${ }_{603}$	
	${ }_{\text {NSO }}^{\text {NSC }}$:	12		:	9	:	:	4	${ }_{39}$	${ }_{3}^{28}$	-	-	106	-	-	-	-	4.29	278	-
41.625	NSD		-	19	0	-	12			1	39	3	-	-	152	-		-	-	8.190	420	

Table D
Oyster Creek Nuclear Generating Station
Delayed DECON Decommissioning Cost Estimate
Thousands of 2003 Dollars)

\begin{tabular}{|c|}
\hline \[
\begin{aligned}
\& \text { Aetevny } \\
\& \text { indory }
\end{aligned}
\] \& Activity Doseriotion \& \[
\begin{gathered}
\text { Decon } \\
\text { Coat }
\end{gathered}
\] \& \[
\begin{gathered}
\text { Romoval } \\
\text { Cont }
\end{gathered}
\] \& \[
\begin{gathered}
\text { Preksyhng } \\
\text { Conta }
\end{gathered}
\] \& \[
\begin{gathered}
\text { Trampport } \\
\text { Conts } \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\text { On-SIt } \\
\text { Procousuling } \\
\text { costa }
\end{gathered}
\] \& \[
\begin{gathered}
\text { LURW } \\
\begin{array}{c}
\text { Dibposel } \\
\text { costel }
\end{array} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\text { Other } \\
\text { Conts } \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\text { Totel } \\
\text { conthogency }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Totan } \\
\& \text { Coste }
\end{aligned}
\] \& \[
\begin{gathered}
\text { NRG } \\
\text { Lik. Town. } \\
\text { Cont? } \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { 5pem Fivel } \\
\& \text { Managenemt } \\
\& \text { Costa }
\end{aligned}
\] \& Restoration Conts \& \[
\begin{aligned}
\& \text { Procesed } \\
\& \text { Volume } \\
\& \text { Cu. Foen }
\end{aligned}
\] \& \begin{tabular}{l}
Clenta \(A\) \\
Cu. Fout
\end{tabular} \& \& \& \[
\begin{aligned}
\& \text { CICE } \\
\& \text { Cu. Fout }
\end{aligned}
\] \& -rocetered \(\mathrm{Wr}_{2}\) Lbe. \& \[
\begin{gathered}
\text { Cisth } \\
\text { Minhours }
\end{gathered}
\] \& Utility and Contractor Manhoun \\
\hline \multicolumn{22}{|l|}{Naw Reawazus Butiong Syuten Commenemis (continua)} \\
\hline \& \& - \& 13 \& 0 \& 0 \& 9 \& - \& - \& 5 \& 27 \& 27 \& - \& - \& 110 \& - \& - \& - \& - \& 4.453 \& 278 \& - \\
\hline 4 4 1.6 .27 \& NSF \& - \& 19 \& 0 \& 0 \& 7 \& - \& - \& 8 \& 4 \& 4 \& - \& - \& 91 \& 27 \& - \& - \& - \& 8.103 \& 411 \& \\
\hline 4.1.1.628 \& NSH \& - \& \% \& 0 \& : \& \({ }_{0}\) \& 5 \& : \& \({ }^{3}\) \& 198 \& 18
17 \& : \& : \& \({ }_{5}\) \& 15 \& : \& : \& : \& (1,045 \& \({ }_{17}^{209}\) \& : \\
\hline 4.1.1.30 \& NsI \& . \& 11 \& . \& 0 \& 4 \& - \& - \& 3 \& 18 \& 10 \& : \& : \& 51 \& - \& : \& : \& : \& 2.090 \& 238 \& : \\
\hline 4.1 .16 .34 \& NSJ \& - \& 8 \& 0 \& 0 \& 11 \& - \& - \& . \& 23 \& 23 \& - \& - \& \({ }^{131}\) \& - \& - \& - \& - \& \({ }^{5.328}\) \& 167 \& - \\
\hline 4 A 18.32 \& NSK \& - \& 10 \& - \& 0 \& \({ }_{8}^{8}\) \& - \& - \& 4 \& 20 \& 20 \& - \& - \& 73 \& - \& - \& - \& - \& 3.050 \& 224 \& - \\
\hline and
4.16 .63 \& NSO \& : \& 19 \& 1 \& 2 \& \% 12 \& - \& : \& 21 \& 127 \& - 388 \& : \& : \& (145 \& : \& : \& : \& \(:\) \& S.803
27.221 \& - 1.003 \& \\
\hline 4.18.2s \& NSP \& : \& 19 \& 1 \& 1 \& 15 \& 12 \& : \& 10 \& 57 \& 57 \& : \& : \& \({ }_{183}\) \& \(4{ }^{4}\) \& : \& : \& \(\because\) \& 210.12 \& 4.639 \& : \\
\hline 4 CL .838 \& NSO \& - \& 18 \& 1 \& , \& 15 \& 12. \& - \& 10 \& 58 \& 56 \& - \& - \& 182 \& 47 \& - \& - \& - \& 10.615 \& 413 \& - \\
\hline 4a1.6.37 \& NSS \& : \& \({ }_{49}^{4}\) \& \(?\) \& 5 \& 177 \& g \& - \& \(\stackrel{39}{29}\) \& \& \({ }^{267}\) \& - \& : \& 2.198 \& \& : \& - \& - \& 69,151 \& \({ }^{969}\) \& : \\
\hline an 16.39
\(4=1.3939\) \& NST \& : \& 49
50 \& 1 \& 1 \& 49 \& 8 \& : \& 22
22 \& 131
131 \& 131
131 \& : \& : \& -006 \& \({ }_{28}^{28}\) \& : \& : \& : \& \({ }_{20.767}^{28.708}\) \& 1.116
\(i, 129\) \& : \\
\hline 4 A 1.8 .40 \& Nst \& - \& 24 \& 0 \& 0 \& 12 \& 4 \& - \& 0 \& 48 \& 49 \& : \& . \& 153 \& 12 \& : \& - \& : \& 77.230 \& \({ }_{515}\) \& : \\
\hline 40.1.841 \& N52 \& - \& 24 \& 0 \& 0 \& 12 \& 4 \& - \& \(\stackrel{ }{2}\) \& 49 \& 49 \& - \& - \& 153 \& 12 \& - \& - \& - \& 7230 \& 545 \& \\
\hline \& Tat \& - \& [419 \& \(2{ }^{1}\) \& \({ }_{4}^{1}\) \& \({ }_{1,288}^{48}\) \& 387 \& : \& \({ }_{650} 20\). \& 3.788 \& 3,1988 \& : \& : \& \({ }_{4}^{57.650}\) \& 129 \& : \& : \& : \& 23.240
740255 \& ¢ \& \\
\hline \multicolumn{22}{|l|}{Odd Paowerste Pumbing Sritem Components} \\
\hline 4.1 .7 .1 \& 7es \& - \& 56 \& 0 \& 1 \& 39 \& - \& - \& 20 \& 117 \& 117 \& - \& \(\bullet\) \& 480 \& \& \& \& - \& 19.481 \& 1.246 \& \\
\hline \({ }_{40}^{40.1 .7 .7}\) \& \({ }_{7 \times A}^{\text {70a }}\) \& : \& \({ }_{15}^{33}\) \& 1 \& 1 \& 17 \& \({ }_{8} 8\) \& : \& 20 \& 105
50 \& 105
50 \& : \& : \& 122
208 \& 121
25 \& : \& : \& : \& 19.829
10.642 \& 718
39 \& \\
\hline 4 A .1 .74 \& P8A \& - \& 100 \& 4 \& 3 \& 72 \& 76 \& - \& ss \& 310 \& 510 \& : \& : \& \({ }^{263}\) \& 258 \& : \& : \& : \& 58.723 \& 2238 \& \\
\hline 4 Ac 1.7 .5 \& PPA \& - \& 36 \& 0 \& 1 \& 30 \& - \& - \& 14 \& 81 \& 81 \& - \& - \& 373 \& \& - \& - \& - \& 15.150 \& 800 \& \\
\hline \({ }_{48.17 .7}\) \& \({ }_{\text {PRA }}^{\text {PRA }}\) \& : \& 5 \& 1 \& 2 \& 69 \& : \& : \& \(2{ }^{3}\) \& 188 \& 1968 \& : \& : \& 85s \& : \& : \& : \& : \& 2. 3.7174 \& 1.290 \& \\
\hline 4 E 1.78 \& PTK/PTP \& - \& 8 \& - \& - \& 2 \& iss \& - \& 3 \& 14 \& 14 \& : \& - \& \({ }^{8}\) \& \& : \& : \& : \& 4.199 \& \({ }_{7} 1.202\) \& \\
\hline 41.7 \& Tods \& . \& 315 \& T \& - \& 243 \& 125 \& \& 148 \& 047 \& 84 \& - \& - \& 3.011 \& 404 \& - \& - \& - \& 155.001 \& 7.038 \& \\
\hline \multicolumn{22}{|l|}{Turtion Auming Sruem Components} \\
\hline 41.82 \& TB2 \& - \& Sas \& 11 \& 27 \& 962 \& . \& - \& 311 \& 1.957 \& 1.957 \& - \& - \& 11.906 \& 350 \& : \& : \& : \& 483.529 \& 14.232 \& \\
\hline 4 A 18.3 \& \({ }^{\text {T }} 83\) \& - \& 4 \& \& \& 3 \& - \& - \& 1 \& 9 \& , \& : \& - \& \({ }_{4} 4\) \& : \& : \& : \& : \& 483.5899 \& \({ }^{16.232}\) \& \\
\hline 4 Am 1.8 .4 \& \({ }^{\text {T83 }}\) \& - \& 11 \& 0 \& \(1{ }^{\circ}\) \& 10 \& - \& \& 4 \& 25 \& 23 \& \& - \& 124 \& - \& - \& - \& - \& 5.034 \& 229 \& - \\
\hline 40.1.8.8 \& \({ }_{\text {TE2 }}\) \& : \& 1.073 \& 4 \& 112 \& 3.928 \& : \& : \& 87 \& 8.038 \& 8.039 \& : \& : \& 48.609 \& - \& - \& - \& - \& 1.974.054 \& 23.615 \& \\
\hline 40.18 .7 \& TEE \& . \& 220 \& 4 \& ? \& 333 \& - \& - \& 107 \& 673 \& 67 \& : \& : \& 4.115 \& : \& : \& : \& : \& 167.126 \& 4.883 \& \\
\hline 401.8.8 \& TEG \& - \& 18 \& 0 \& 0 \& 11 \& - \& - \& 6 \& 35 \& 35 \& - \& \& 139 \& : \& : \& : \& : \& \& \({ }^{3} 81\) \& \\
\hline 4 CB 1.99 \& \({ }_{\text {TP2 }}\) \& - \& \({ }^{18}\) \& 2 \& 6 \& 215 \& \& - \& 82 \& 402 \& 102 \& - \& - \& 2.859 \& - \& - \& - \& - \& 107.97 \& 2.578 \& - \\
\hline An.1.a.10 \& \({ }_{\text {TP3 }}^{\text {P3 }}\) \& : \& 79 \& 3
3 \& 3
2
2 \& 69
58 \& \({ }_{68} 67\) \& : \& \(4{ }_{4}^{45}\) \& \({ }_{23}^{234}\) \& \({ }_{234}^{234}\) \& . \& : \& \({ }_{659} 8\) \& \({ }_{225}^{209}\) \& \& \& : \& 50,293

43.953 \& $\begin{array}{r}1.738 \\ \hline 1.59\end{array}$ \&

\hline 4.18 \& Tash \& - \& 2.548 \& 79 \& 174 \& 6.099 \& 253 \& . \& 1.058 \& t0.998 \& 10.698 \& : \& : \& 14.350 \& ${ }_{824}^{29}$ \& : \& : \& : \& 3.087.463 \& 56. 199 \&

\hline \multicolumn{22}{|l|}{Augnemed Ongas System Compommta 4.19 Totw}

\hline $$
\begin{gathered}
\text { Mincoilmmoon } \\
\text { A. } 1.10
\end{gathered}
$$ \& ove System Components Totaly \& - \& - \& - \& - \& - \& - \& - \& - \& - \& - \& - \& \& - \& - \& \& - \& \& - - \& - \&

\hline 4. 1.11 \& Scafioking in upporl 1 cecommisstioning \& - \& 583 \& 10 \& 3 \& 93 \& 17 \& - \& 168 \& 84 \& 874 \& - \& - \& 1.057 \& 68 \& - \& - \& - \& 53.469 \& 14.559 \& -

\hline 4.1 \& Subtoen Periced 40 Actuly Cosis \& 119 \& 12,016 \& 5.008 \& 9.202 \& 17.122 \& 18.087 \& 283 \& 15.781 \& 60,378 \& -88,378 \& - \& - \& 201.002 \& 28,882 \& . 1.37 \& 287 \& 41 \& 11,200,550 \& 180.371 \& i.66s

\hline | Pariod 4,4 |
| :--- |
| 4.21 |
| 4* 2 | \& | Adoifonel Conts |
| :--- |
| Curie Surcharge (Encturing RPV) Suntotan Period se Adotional Conts | \& : \& : \& : \& : \& : \& ¢,7.711 \& : \& ${ }_{4}^{428}$ \& ${ }_{2}^{2.139}$ \& 2.139

$\mathbf{2 . 1 3 9}$ \& : \& : \& . \& : \& - \& : \& : \& : \& : \& - :

\hline
\end{tabular}

Table D
Oyster Creek Nuclear Generating Station Delayed DECON Decommissioning Cost Estimate Thoumands of 2003 Dollars)

$\begin{aligned} & \text { Activivy } \\ & \hline \end{aligned}$	Aetwiby Ooecription	$\begin{gathered} \text { Deson } \\ \text { Cost } \end{gathered}$	$\begin{gathered} \text { Removat } \\ \text { Cont } \end{gathered}$	Prekaging	$\begin{gathered} \text { Transport } \\ \text { Costs } \end{gathered}$		$\begin{gathered} \text { Llaw } \\ \begin{array}{c} \text { Disponat } \\ \text { Coote } \end{array} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Other } \\ & \text { CoAB } \end{aligned}$	$\begin{gathered} \text { Sotul } \\ \text { comingengy } \\ \hline \end{gathered}$	$\begin{gathered} \text { Toinl } \\ \text { copts } \\ \hline \end{gathered}$	$\begin{aligned} & \text { NRGC} \\ & \text { Le. Thom } \\ & \text { conts } \end{aligned}$	$\begin{aligned} & \text { Sponf fuel } \\ & \text { Menopoument } \\ & \text { Couts } \end{aligned}$	Sife Rentoration Coste	$\begin{aligned} & \text { Procesened } \\ & \text { Vollume } \\ & \text { Ct. Foet } \end{aligned}$	$\begin{aligned} & \text { Closen A } \\ & \text { Cu. Foen } \end{aligned}$	$\begin{aligned} & \text { Bunnily } \\ & \begin{array}{c} \text { Cimpis } \\ \text { Cu. Fout } \end{array} \end{aligned}$	Johuma Clobs C Cu. Fen	$\begin{aligned} & \text { GTCC } \\ & \text { Cu. Fiod } \end{aligned}$		$\begin{gathered} \text { Crah } \\ \text { Manhourt } \end{gathered}$	$\begin{aligned} & \text { Uuininy and } \\ & \text { Contrector } \\ & \text { Manheorre } \\ & \hline \end{aligned}$
Pmiod 40 colturan Couts																					
4.431	Procest maud weste	21	-	10	26	-	158	-	55	270	270	-		-	-	202	-	-	25.507	40	-
8.3 .2	5 Sman mod showise	21	${ }_{135}^{135}$			-	ise	-	20	158	140	-	16	-	-	-		-	\%		-
4.3		21	135	10	28	-	158	-	75	425	410	-	16		-	202	-	-	23,507	40	.
Period ds Period. Oesendeen Costr																					
4.4 .2	mencmose	\because	-	:	:	-	-	837	${ }_{17}^{84}$	${ }^{231}$	9271	-		-	.	-				-	
${ }_{4}^{4.4 .4} 4$	Property tros	:	8	:	:	:	:	1,186	117	1.283	${ }^{1.155}$	-	${ }^{20}$	-	:	:	:			-	:
42.45	Heme exthomem reneat	.	1.819			:	-	:	23	2.092	2.092		:	:		:	:			:	
4.4 .46	Drsposat of DAW ponermed	-	1,0	45	10	:	220.	-	69	${ }^{2} 337$	2,092	:	:	:	3.839	:	:	:	76,939	93	:
48.48	Pranc erargy budgal.	:	-	:	:	:	:	547	82	829	88	-	-	-	-	-		-	-	-	
484.8		:	:	:	:	:	:	308 292	4	335	335	:	:	:	:	:	:	:	:	:	:
84.4.10	Reownua Procesung Exuibmentsentices	-	-	-	-	-	-	420	${ }^{63}$	435	483	-	-	-		-	-	-	-	-	
Sa, 4.11	Socurty sant cost DOC Stan Cout	:	:	:	:	:	:	1,200	${ }^{180} 1.14$	1,380 10.820	1.380	:	:	:		$:$:		:	${ }^{714.029}$
$4 \mathrm{Am.a.13}$	untiy sunf coat		:		-	:	-	16.720	2.508	19.228.	${ }_{19} 1.228$:		:		:			${ }_{263.519}$
4.4	Sublosil Period 4s Pemiod-Dependent Comst	45	2.841	45	10	-	220	31,097	5,090	39,149	39,020	-	128	-	3.839	-	-	.	78.938	943	483.014
400	TOTAL PERIOD 4 COST	185	15.592	5.083	1.238	17.122	18.176	31.361	21.353	110.091	109,947	-	14	201,002	30,701	1.580	287	411	11.302 .990	187,354	485.479
PERTOD db-ste Decontamination																					
$\text { Pariod at }[$ $4 b .9 .1$	Orect Decommssioning Actubles Remove spent tual racks	378	48	57	68	-	9,44	-	627	2.821	2.821	-	-	-	6.387	-		.	573.110	1.071	-
Dindorat of Plant Systeme																					
Orment 5	arem Componens																				
${ }_{4}^{20.1 .21}$	whac	273	${ }_{112}^{228}$	58	3	575	1.499	-	885	3,332	3.332	-	-	7.111	4.507	-		-	692.839	8.003	
${ }_{\text {40.1.2. }}^{40}$	${ }_{18 \text { ca }}^{18}$.	${ }_{88}^{68}$	\% ${ }_{108}^{112}$	- ${ }_{10}$	4	11 14	${ }_{2}^{144}$:	1109	${ }_{851}^{513}$	${ }_{8} 815$:	$:$	\%.880	632 675	:	:	:	744.439	3.362 .537	
4 ta 1.24	tea		${ }_{48}$	3	3	75	63	:	39	229	229	:	:	${ }_{926}$	188	:		:	\% 51.859	${ }_{1}^{3.009}$	
40.1.25	${ }_{\text {res }}^{\text {res }}$		43	0	1	${ }^{38}$. 3	-	16	${ }^{96}$	${ }^{98}$		-	40	\square	.			17.899	962	-
4.1.2	Tomis	439	${ }^{6}$	7	48	905	$\uparrow .930$	-	9.007	5.021	3.021	-	.	11,199	5,802	-	-	-	974,949	16.947	.
Resctor Pumbing System Componems																					
46.1 .31	R89	:	132	1	${ }^{6}$	${ }^{202}$:		${ }_{34}^{64}$	408	400	\bullet	:	2.493	-	-			${ }^{1015} 5009$	2.943	
${ }_{\text {abib }}^{4.1 .1 .2}$	${ }_{\text {RRC }}^{\text {R8B }}$:	72	1	3	106 120	:	:	34 37	${ }_{2}^{216}$	218 235	:	:	(1,308	:	:	:	:	53.019 80.298	1.569 1.609	:
20.1.34	ReE	-	${ }^{98}$,	3	112		-	41	254	254	.	-	. 1.381	is	:		:	88.063	2.122	:
	RBO	:	83 356	4	${ }^{38}$	-807	109	:	580	1.530	$\begin{array}{r}\text { ¢ } \\ \hline\end{array} .5070$:	$:$	140 11.229	515	:		:	578.091	${ }^{1,083}$	
c.9.1.3.7	R8S	-	167	7	${ }^{3}$	223	142	:	113	1.600	1.300	:	$:$	2.757	428	:	-	:	${ }_{150.36}$	${ }^{8} 8.031$	
4 c 9.98	R8SW	-	${ }^{93}$	1	3	109	-	-	40	248	228	-	-	1,243	\cdot	-		-	${ }^{54.558}$	2.004	
10.9 .9 40.19 .9	RC7 ROB	:	62 62	${ }_{17}$	${ }_{11}$	${ }^{150}$	541	:	${ }_{178}^{29}$	185	165 95	:	:	1.806	1.824	:	:	:	- 24.9197	-	
40.1.19	ROM	-	32		1	22	,	-	11	${ }_{65}$	65	-	:	${ }^{288}$	7.024	:	:	:	-10.870	${ }_{690}$	
4 A .1 .1 .12	Rec	-	142	,	5	158	171	-	80	${ }^{367}$	307	-	-	1.953	S	-	-	-	${ }^{7} 9.329$	3.132	
	REF	:	${ }_{6}^{68}$	B	4	54 107	${ }^{171}$:	${ }_{30} 99$	374	371 233		:	-887		:	:	:	73.233 59508	1.904	-
4 t .1 .1 .15	REL	-	14	- 3		208	-	-	7	497		:	:	${ }^{1.286}$:			:	133.44	3,177	
	${ }_{\text {Rem }}^{\text {Rea }}$:	${ }_{84}^{37}$!	1	${ }^{43}$	${ }_{8} 8$:	${ }_{78}^{18}$	${ }_{48}^{88}$	${ }^{98}$	$:$:	(1938	iss	:	:	-	21.846	-288888	-
${ }_{40.1211}$	Reo	:	112	3	4	${ }_{108}^{90}$	${ }_{50}$:	57	331	${ }_{331}$:	:	T,1911	${ }_{150}$:	:	:		- 1.80808	
48.1 .319	RER	17	${ }^{37}$	1	1	14	33	-	${ }^{28}$	131	131		-	17	${ }^{98}$	-		-	15.995	1.148	-
-4.1.122	${ }_{\text {REW }}^{\text {Ref }}$	\bigcirc	${ }_{19}$	0	:	(15	.3	:	${ }_{7}^{13}$	63 38	${ }_{38}^{63}$:		185 146	11			:	8.463	${ }_{4} 69$:
4.1.1.32	REX	-	21	0	0	13	-	-	7	42	42	-	-	185	:	:	:	:	6.710	468	

TLG Serticen, ine.

Table D
Oyster Creek Nuclear Generating Station
Delayed DECON Decommissioning Cost Estlmate
(Thousands of 200s Dollars)

	Activity Deceripition		$\begin{gathered} \text { Decon } \\ \text { cont } \end{gathered}$	$\begin{aligned} & \text { Removat } \\ & \text { Coent } \end{aligned}$	Pistiaging	Trmeport Costa	$\begin{gathered} \text { On-Sise } \\ \text { Procoseling } \\ \text { Conts } \end{gathered}$	$\begin{gathered} \text { HRW } \\ \text { Disport } \\ \text { Costs } \end{gathered}$	$\begin{aligned} & \text { Other } \\ & \text { cote } \end{aligned}$	comingungy	$\begin{aligned} & \text { Toun } \\ & \text { Cont: } \end{aligned}$	$\begin{aligned} & \text { HRC } \\ & \text { Uic.T.orm. } \\ & \text { Conts } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { Site } \\ & \text { Rentorntion } \\ & \text { Cothe } \end{aligned}$	$\begin{aligned} & \text { Proconsed } \\ & \text { volump } \\ & \text { Cu. Fioen } \\ & \hline \end{aligned}$	Clost A Cu. Foen	$\begin{aligned} & \text { Burnail } \\ & \text { Clime } 8 \\ & \text { Cu. Fien } \end{aligned}$	Cinges C $\mathrm{Cu} . \mathrm{Fent}^{2}$	GTEE Cu. Foent	$\begin{aligned} & \text { Burwind } \\ & \text { Procheod } \\ & \text { m, Les. } \end{aligned}$	$\begin{gathered} \text { Cran } \\ \text { manhours } \end{gathered}$	$\begin{aligned} & \text { Uuinty and } \\ & \text { Contructor } \\ & \text { Manhours } \\ & \hline \end{aligned}$
4. 1.3 .23			-	23	0	0	15	-	-	,	47	47	-	-	192	- -	-	-	-	7.784	512	-
48.1.324	RFP		-	109		4	131			48		293		.	1.622		-		-	65.6s9	2.14	-
4 b .1 .323	rfe		24	${ }^{68}$	3	2	27	69		51	24	24	-	-	337	207	-	-		33.210	1.978	
40.1 .128	RFF		-	78	!	2	75	-	-	31	145	185	-	-	937		-	-	-	37.469	1.59	-
40.327	${ }_{\text {RFF }}^{\text {RFS }}$		-	102	?	4	50	775	-	78	429	42	-	-	${ }^{692}$	525	-	-	-	73,175	2.271	
4b.1.3.28	${ }_{\text {Rff }}^{\text {Rf }}$:	${ }_{87}^{89}$	1	4	${ }_{61}^{58}$	170		76 24	397 14	997	:		${ }_{75}^{69}$	${ }^{510}$:	:	:	13.713 30.629	1,971	
Cbi. 1.33	RFN		-	7	1	3	∞	-	-	33	205	203	-	-	1.118	-	.	-	-	45.918	1.712	
40.1.31	RFO		-	107	1	2	78	-	-	39	273	${ }^{273}$	-	-	92	-	-	-	-	38.243	2.379	
${ }_{4}^{4 \mathrm{Lb}} 1.1313$	${ }_{\text {RGG }}^{\text {RGO }}$:	10	!	23	${ }_{613}$:		-78	4,1988	-139					:	:		277,07	1,431	
	${ }_{\text {RGG }}^{\text {RGO }}$:	${ }_{35}^{17}$	。	${ }^{23}$	-13	:		170	1.1088	T.188	-		10.058		:	:	:	408.453	3.81	
4 4 1.3 .35	RGL		-	41	1	1	45	-	-	17	105	105	-	-	. 559	-	.	-	-	22.545	919	
40.1.38	RGP		-	20	0	1	19	-	-	${ }^{6}$	${ }^{48}$	48	-	-	-238		-	-		2.681	437	
${ }_{40}^{451.1 .397}$	${ }_{\text {RGU }}^{\text {RGR }}$:	$\begin{array}{r}128 \\ \hline 95\end{array}$	$?$	4	132 4	:	:	${ }_{21}^{51}$	318 12 12	${ }^{19}$:	:	1.839		:	:		${ }_{7}^{66.314}$	2, 1.293	
4. 1.13 .39	RH1		-	${ }_{33}$	0	1	27	:	:	12	7	14	:	:	339	:	:	$:$		13.754	${ }_{73}$	
$4{ }^{4} .1 .12 .40$	RH2		-	${ }^{28}$	1	1	4	-	-	14	${ }_{8} 8$	${ }^{88}$		-	550	-	-	-	-	22.340	${ }^{15}$	
40.1 .3 .4	RH3/RAM/RTH		-	8	1	1	48	,	-	28	150	. 158	-	-	592	,	-			22.061	1.785	
	RHA		6	${ }^{14}$	0	;	${ }^{5}$	11	:	11	${ }_{8}^{50}$	S0	:	:	${ }_{232}$	3	:			${ }^{6,314}$	${ }_{84}$	
$4 \mathrm{~b}, 1.34$	R+h		-	19	0	0	10	-	.	*	35	35	.	-	121	.	\cdots	.		4.013	418	
40.1.34	RHX		-	35	0	!	${ }^{36}$	-	-	18	87	${ }^{87}$	-	-	40	-	-	.	-	-17.877	782	-
4. 1.1 .546 AD. 1.9 .47	RHMCC		:	${ }_{68}^{32}$	i	2	${ }^{30}$:	:	43	73	79	-	:	369	-	-	:	-	14.998	716	
4.1.3	Tots		53	3.555	108	162	5.009	1.627	-	2110	12.62\%	12.828	:	:	81.983	4.901	-	-	:	2,955,733	80.238	
New Radwaste Bulding Sytem Comporments																						
4b, 14.2	${ }^{\text {N88 }}$,	59	\bigcirc	1	43		-	21	123	${ }^{128}$	-		530		-		-	21.506	1.299	
4bi.i. ${ }^{\text {a }}$	NMA		;	${ }_{19}^{20}$	1	!	19	${ }_{10}^{12}$:	15	${ }_{8}^{7}$	\% ${ }_{6}$:	:	${ }_{162}^{183}$	${ }_{36}^{42}$:	:	:	ciore	${ }_{559}^{597}$	
44.1 .45	N		-	80	0	1	37	-	-		119	119			459		-		-	18.650	1.300	
46.1.4.8	NKE		-	5		-	1	-	-	1	1	7	-	-	17	-	-		-	687	106	
40.1.4.7	MF		-	13	-	0	${ }^{8}$	5	:	5	28	28	-	-	${ }^{98}$		-			${ }^{3.0858}$	235	
	${ }_{\text {Nak }}^{\text {NH/ }}$:	${ }_{18}^{15}$:	!	188	5	:	8	48 37	45 37	:	:	${ }_{178}^{217}$	14	:	:		$\underset{\substack{10.038 \\ 7.138}}{ }$	337 352	
40.1.410	NaL		:	23	0	0	14	:	:	8	48	46	:	:	17	:	:	:		7.195	525	
40.1411	NSP		9	53	1	2	89	9	-	${ }^{28}$	186	${ }^{188}$	-	-	1.029	11	-	-	-	41,782	1.188	-
4b.1.4.12	Ns\%		39	49	2	1	$\stackrel{39}{9}$	29	-	45	203	205	:	-	482	111	-	:		27.292	1.918	-
4b.i.a. 4	NSX		51	80	1	2	\%	:	:	${ }_{51}^{2}$	233	235	:	:	M2	.	:	:		34,478	2148	,
A.i. 4	Toda		107	516	,	14	487	58	.	289	1,438	1,438	:	:	5.774	203	:	:	-	249,545	23, 238	
	ORW Pre DSO Dostucge end Dicom		:	14	0	0	12	:	:	21 5	${ }_{28}^{104}$	${ }^{1818}$	-		ist					0.12	2.839 245	
$4 \mathrm{a}, 1.5 .3$	pss		-	$\stackrel{1}{4}$	1	3	9	-	-	39	239	24	-		1.198	-	-	.	-	48.634	2096	:
$4 \mathrm{c}, 1.54$	PTA		-	27	0	;	${ }^{20}$	-		11	${ }^{69}$	89	-	-	371	-	-	-	-	15.084	003	-
41.53	PUA		-	142	1	3	112	-	-	53	311	311	-	-	1,389		-	-	-	56.392	3.008	-
${ }_{4}^{48.15 .5 .7}$	PVA		:	${ }^{100}$	2	-	14	18	:	32 2	32	${ }_{9}^{32}$:	:	${ }^{1,683}$	68	$:$:		78.719	${ }_{1}^{2.224}$:
4.1.98	U49		-	216	2	5	191	-	-	4	49	49	:	:	2,387	-	-	:	:	98.117	4.648	:
4t.1.5.9	vas		-	147	2		18		-	65	404	45	-	-	227		-	-	-	92.485	3.221	-
s. 1.5	Totm		-	88	10	22	73	16		332	2.041	2,041		-	9.590	68	-		.	993.793	19.120	

TLO Serticon, tne

Oyster Creek Nuclear Generating Station Delayed DFCON Decommissioning Cost Estimate Thousends of 2003 Dollars)

Actury	Attivy Doseriplon	$\begin{aligned} & \text { Docon } \\ & \text { Cost } \end{aligned}$	$\begin{gathered} \text { Removan } \\ \text { Cooet } \end{gathered}$	Pecknging Cogts	Tratreport Cocta	$\begin{gathered} \text { Off-Sute } \\ \text { Procseaing } \\ \text { Coete } \end{gathered}$	$\begin{gathered} \text { HRW } \\ \text { Dhapornt } \\ \text { costs } \end{gathered}$	$\begin{gathered} \text { Oher } \\ \operatorname{cost} \\ \hline \end{gathered}$	Comitaly		$\begin{gathered} \text { NRC } \\ \text { Lk Tom. } \\ \text { Conts. } \end{gathered}$		Rutortion Certi	$\begin{aligned} & \text { Proceseed } \\ & \text { Voturn } \\ & \text { Cu. Fent } \end{aligned}$	$\begin{aligned} & \hline \text { ClosenA } \\ & \text { Cu. Foot } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Burativo } \\ & \begin{array}{c} \text { Closer } \\ \text { Cut Feon } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { foturnese } \\ & \text { Ciser C } \\ & \text { Cu. Feen } \end{aligned}$	GTcG	Burlal Procensed Wh the.	$\begin{gathered} \text { Crin } \\ \text { Manhours } \\ \hline \end{gathered}$	Utulity and Contrector Manheras
Mrocelmas	cus Srreen Componems (commuon)																				
	mis	-	13			-			2	15	-	-	15		- -					300	
4 4 .1 .8 .25	yardareas	-	243	-				-	36	279		-	279				-			5.499	
	Toatreaita	:	3,273	23	56	1.97 ${ }^{2}$:	:	1,027	0.338	5249	:	$\stackrel{\text { 1.078 }}{ }$	24093	:	-	:	:	783 978424	B5 30	:
4 4 .19	Scatiodeng in urport of decomminsioning	-	873	16	5	142	25	-	49	1.312	1.312	-	-	1.50\%	99	-	-		80,203	21,839	-
Decontuminotion α Ste Bumpros																					
	Now Recowaste Putang - Symeme Removal	-	8	37	24	1	382	-	124	${ }^{659}$	${ }^{651}$	-	-	8	3.819	-	-		382.18	1.875	-
4 4.1.10.2		-	2	4	3	1	41	-	11	61	81	-		6	${ }^{08}$				${ }^{20.780}$	$5{ }^{53}$	
412.10 .3	Rescror Butbing - Sramers Removal	-	3	${ }^{6}$	4	-	${ }^{65}$	-	18	${ }^{98}$	9	-			048				81.000	80	-
40.4 .104		13	283	9	57	$\stackrel{ }{*}$	919	-	${ }^{18}$	1.688	${ }^{1.668}$	-	-	45	9.194		-	-	919.350	5.44	
20.7.10.5	Augmented Of Gen - Dacom	13	51	5	4	4	58	-	35	${ }^{1695}$	169	-		. 45	${ }^{533}$		-	-		1,230	
ALT.10.6	Opmed - Decon		481	130	119		2569	-	734	4.005	4.095	-	-	\bigcirc	13.738			-	1.285 .817	9.202	
${ }_{4}^{40.1 .10 .7}$	Opwof. Unar Remover	${ }^{1.409}$	848 27	30	50	${ }^{1.787}$	${ }^{134}$	$:$	1,254	5.57	5.573	:	:	22.108	${ }^{601}$:		(951.625	47.889	
4ki.1.10.9	Mincolimeows Budthys - Decon	7	27	3	2	-	33	-	19	92	92	:	-	\because	323	-	:	:	32.778	655	:
4 t .1 .10 .10	New Radwasto lutity - Decen	33	193	21	4	19	214	-	135	818	618	-		235	2129				222,109	4.207	
20.1.10.11	Ow Redorite Buting. Deson		315	${ }_{4}^{88}$	55	$2{ }^{12}$	${ }_{279}^{877}$	-	- 317	${ }_{7}^{1.882}$	1,862			-132	8.789				- 88.82 .050	4, 8.588	
${ }^{24} 1.140 .12$		${ }^{1.942}$	975 128	45 11	75 10	${ }_{\text {2,49 }}^{168}$	${ }_{98}^{29}$	$:$	1,065	$\begin{array}{r}7.539 \\ \hline 53\end{array}$	$\begin{array}{r}1599 \\ \hline 38\end{array}$:	:	327054	${ }_{811} 81$:	:	:	1.4010.853	+0.582	
46.1.10.14	Remcto Euxiling 23 H . Decon	15	∞	7	4		70	-	41	197	197	-	-	20,	700		-	-	70.017	1.1227	
4ti.1.10.15	Recctor Buiding 519 - Docan	17	88	8	5	-	78	-	48	219	219	-	-	-	781				-70.096	1.592	- -
20.1.10.18	Rosctor Buting 73 S - Dosom	${ }_{12}^{8}$	${ }_{48}^{24}$	${ }_{5}$	2	:	${ }_{50} 8$:	${ }_{33}^{18}$	15	\% 75	:	:	:	2818	-	:			${ }_{1}^{568}$	
41.1 .10 .18	Suctexmaut Tumeth. Remowa a Docon	72	161	13	8		134	:	112	501	501	:	:	-	${ }_{1}^{1339}$:	:	130.478	4.828	
26.1.10.19	Tutbena Butirng Of. Decon	50	217	21	15.	22	211	-	150	757	757	-	-	1.144	2.069		-	-	251.969	s.240	
46.1.10.20	Turtion Bulding 23n - Deocn	33	${ }^{163}$	${ }^{16}$	12	90	${ }^{161}$	-	114	509	589	-	-	1.109	1.570				${ }^{200.603}$	3.as5	
4t.t.10.21		${ }^{20}$	78 78	1.039	663	\therefore	10.820	.:	$\begin{array}{r}\text { 239 } \\ \hline 8\end{array}$	+55.275	${ }_{15}^{28273}$.	:	-	:	${ }_{708200}$:	:		1,266 6020	
4t.1.10 23	Renctor Puiling $119 n$. Droon	310	382	6	6	128			2 c	1.164	T,184	-	-	1.563	42				107.248	14.578	
Ab. 1.10	Totus	4.008	4.695	1.00	. 144	4.98	17.170	-	0.544	42.06	42,108	-	-	81,98	157.182	-		-	18.00.570	180.725	
4 b .1	Subtow Period Ab Actriny Corts	4.989	16.618	1.948	1.803	18.292	22.508	-	15,339	81,325	80,112	-	1.213	228.175	174.739	-		-	28,361,130	446.360	
Period 4b Adifionsa Costi																					
$4{ }^{2}$	Subtul Perlod 40 Adotricona Cosit	-	188	¢	12	-	233	1.203	288	1.929	-	1.929	-	-	1,409	-		-	107.859	2.964	2.560
Pertod Ab Contram Coots																					
26.15	Proctis layd wosto	43	:	162	${ }^{208}$:	1.478		438	2.328	2328	:		-		2.232			362.000	126	
${ }_{40.3 .3}^{46.3}$:	319	:	:	:	:	:	48	367	367	$:$:	$:$. ${ }^{1}$:		0	:
4.34	Decommizioning Eadpmeni Ofsosibon		9	${ }^{60}$	23	537	98	-	114	830	830	-		8.000	373		-	:	303.507	73	-
4 t 3	Subtal Pertod ab Commery Cost	43	319	221	230	537	1.574	-	800	3.523	3.523	-	-	8,000	374	2.252	-	-	665.608	${ }^{68}$	-

Table D

Oyster Creek Nuclear Gencrating Station
Delayed DECON Decommissioning Cost Estimate
(Thousands of 2003 Doltars)

\begin{tabular}{|c|}
\hline Aetlvky \& Activery Douecrotion \& \[
\begin{gathered}
\text { Oncon } \\
\text { cool }
\end{gathered}
\] \& \[
\begin{gathered}
\text { Remorval } \\
\text { Coost }
\end{gathered}
\] \& Pestaging
Coats \& Trmaport \& \[
\begin{gathered}
\text { Ont-Site } \\
\text { Procoseling } \\
\text { Conts }
\end{gathered}
\] \& \[
\begin{gathered}
\text { LURW } \\
\text { Dhootel } \\
\text { Costi }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { OTher } \\
\& \text { Corts }
\end{aligned}
\] \& \[
\begin{gathered}
\text { Total } \\
\text { comingency }
\end{gathered}
\] \& \[
\begin{gathered}
\text { Totern } \\
\text { Cooth }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { NRCC } \\
\& \text { Le. Torm. } \\
\& \text { Couts }
\end{aligned}
\] \& \& \(\qquad\) Restorntion Cost: \& \[
\begin{aligned}
\& \text { Votume } \\
\& \text { Cu. Fout } \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Clasion } \\
\& \text { Cu. Foor }
\end{aligned}
\] \& \& \[
\overline{c i n s i c}
\]
Cu. Fon \& \[
\begin{aligned}
\& \text { CTCC } \\
\& c_{U, ~ F o w n ~}^{2} \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Brovtuil } \\
\& \text { Procuscod } \\
\& \text { W, Lbe. }
\end{aligned}
\] \& \[
\begin{gathered}
\text { Crath } \\
\text { Manheours }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Uuiny and } \\
\& \text { Contrector } \\
\& \text { Manhown }
\end{aligned}
\] \\
\hline \multicolumn{22}{|l|}{} \\
\hline \& \& 781 \& - \& - \& - \& - \& - \& 0 \& 195 \& 977 \& 97 \& - \& - \& - \& - \& - \& - \& - \& - \& - \& - \\
\hline 48.2 \& meremose \& - \& - \& - \& - \& - \& - \& 1.940 \& 104 \& 1.14 \& 1,144 \& - \& - \& \& - \& - \& \& - \& \& - \& \\
\hline 48.43 \& Procery y anes \& - \& - \& - \& - \& - \& - \& 1.48 \& 145 \& 1.593 \& 1.593 \& - \& - \& - \& - \& - \& - \& - \& - \& - \& \\
\hline 484.5 \& Hosmy milomem remal \& : \& \& : \& : \& : \& : \& : \& 311 \& 2.109
2.613 \& 2.813 \& : \& : \& : \& : \& : \& : \& : \& \& : \& \\
\hline 4 b .4 .6 \& Dtaposal of DAW genersied \& - \& - \& \({ }^{4}\) \& 99 \& - \& 411 \& - \& 114 \& 628 \& 828 \& - \& - \& - \& 7,186 \& - \& - \& - \& 143.563 \& 1.759 \& \\
\hline 40.7 \& Plort enereys buctom \& \(\because\) \& - \& - \& - \& - \& - \& 507 \& \({ }^{78}\) \& 589 \& 584 \& - \& - \& - \& - \& - \& - \& - \& - \& - \& \\
\hline 4 4 .48 \& NRCF
Smese
OsM
cose \& - \& - \& - \& : \& - \& - \& 628 \& \({ }^{63}\) \& 691 \& 691 \& - \& - \& - \& - \& - \& - \& - \& - \& - \& \\
\hline 44.10 \& Raswate Procoung Expmmentsamicas \& . \& : \& : \& : \& : \& - \& 521 \& 78 \& 600 \& 800 \& : \& : \& : \& : \& : \& : \& \& : \& : \& \\
\hline 464.11 \& Semany Stulicom \& - \& - \& - \& - \& - \& - . \& 1.490 \& 224 \& 1.714 \& 1.714 \& - \& - \& - \& - \& - \& - \& \& \& \& 90.680 \\
\hline 88.4 .12 \& doc stircost \& - \& - \& - \& - \& - \& - \& 11.438 \& 1,718 \& 13,771 \& 13.171 \& - \& - \& - \& - \& - \& - \& \& - \& \& 179.880 \\
\hline \({ }_{40.4}^{20.4}{ }^{\text {a }}\) \& Unity Strif Cout \& 78 \& 3.0ss \& s \& 19 \& : \& 41 \& 199,988 \& \({ }_{0}^{2,592}\) \& 229.170 \& 22,940 \& : \& : \& : \& 7,ien \& : \& : \& : \& 143.503 \& 1,739 \& \({ }_{5}^{315.133}\) \\
\hline 46.0 \& TOTAL PEPROO Ab COST \& 5.811 \& 21.078 \& 2256 \& 1.997 \& 18.829 \& 24.720 \& 38.801 \& 22.752 \& 135,953 \& 132.811 \& 1.929 \& \({ }_{1} .213\) \& 232.175 \& 183,707 \& 2.252 \& - \& - \& 27,290,150 \& 451,099 \& 588,279 \\
\hline \multicolumn{22}{|l|}{PER1OD Ca -Lcennee Toummantion} \\
\hline \begin{tabular}{l}
Priod 4o \\
4.1.1.1 \\
4. 1.2 \\
4.1
\end{tabular} \& Direct Decommissioning Acturties DFISE conflimaticy surver Termbate llomet Subtotal Period 4e Activily Costs \& - \& - \& \(\cdot\) \& \(\cdot\) \& - \& - \& 116
116 \& 35
35 \& 150
150 \& 150 \& - \& - \& . \& - \& - \& - \& - \& - \& - \& - \\
\hline \begin{tabular}{l}
Pertod 40 \\
4.2 .1 \\
40.2
\end{tabular} \& \& : \& : \& : \& : \& : \& : \& 4.5872 \& \$.1.371 \& 5.943
5.93 \& 5.9.43 \& : \& : \& \& : \& : \& : \& : \& : \& \({ }_{98,464}^{98.44}\) \& : \\
\hline \begin{tabular}{l}
Period te \\
2e.3.1 \\
463
\end{tabular} \& Collatorer Coses OOC stem rebcation empenses Subrotm Panod is Cofmeral Costs \& : \& : \& : \& : \& : \& : \& \(\stackrel{9}{7.097}\) \& \({ }_{184}^{184}\) \& 1.281 \& 1,281 \& : \& : \& \& - \& : \& : \& : \& \(:\) \& : \& \\
\hline \multicolumn{21}{|l|}{Porict 40 Perlod.Dependent Costs} \& \\
\hline \(4 \times 4.2\) \& Propery tryes \& - \& iss \& - \& - \& - \& - \& 153 \& 13 \& 820 \& 828 \& - \& - \& - \& - \& - \& - \& - \& - \& - \& \\
\hline 40.43
40.4 \& \& : \& 64 \& 4 \& 1 \& : \& 17 \& \& 116
5 \& 500
27 \& 500

21 \& \& : \& \& 305 \& : \& : \& : \& 0.005 \& 15 \&

\hline 404.5 \& Plome emengy budgel \& - \& - \& - \& , \& - \& \& 94 \& 14 \& 108 \& 100 \& \& : \& - \& 3 \& - \& - \& : \& 0.05 \& \% \&

\hline 40.46 \& NRC F6093 \& - \& : \& - \& : \& - \& : \& 327 \& 33 \& ${ }^{359}$ \& 359 \& - \& - \& - \& - \& - \& - \& - \& - \& - \& -

\hline 40.48 \& Steanty Smin Cose \& : \& : \& : \& : \& : \& : \& ${ }_{232}^{188}$ \& ${ }_{35}^{28}$ \& 288
287 \& 216
267 \& : \& : \& - \& : \& : \& : \& : \& : \& - \& 14.143

\hline 40.4 .9 \& doc starcost \& - \& - \& - \& - \& - \& - \& 4.930 \& 814 \& 4.704 \& 4.704 \& . - \& - \& \& - \& - \& \& - \& - \& - \& ${ }^{82.857}$

\hline $$
\begin{aligned}
& 40.4 .10 \\
& 404
\end{aligned}
$$ \& Uniny Sun cost \& : \& 484 \& $\stackrel{ }{ }{ }^{\circ}$ \& 1 \& : \& 17 \& 5.019

11.244 \& 783
1.736 \& 5.772 \& 5.772
13.457 \& : \& : \& : \& 305 \& : \& : \& : \& 0.105 \& 75 \& $\stackrel{\text { 196.536 }}{ }$

\hline 20.0 \& TOTAL PERIOO A0 Cost \& - \& 484 \& 4 \& 1 \& - \& 17 \& 17,028 \& 3.297 \& 20.811 \& 20.811 \& - \& - \& - \& 303 \& - \& - \& - \& 8.103 \& 98.519 \& 14.583

\hline period 4 \& atotals \& 5,996 \& 37,94 \& 7,323 \& 3.136 \& 35.932 \& 42.919 \& 86.969 \& 47,402 \& 280.055 \& 283,569 \& 4.929 \& 1.357 \& 433,17 \& 214.712 \& 3.832 \& 287 \& 411 \& 30.607.250 \& 737.829 \& 1.220.253

\hline
\end{tabular}

Table D
Oyster Creek Nuclear Generating Station
Delayed DECON Decommissioning Cost Estimate

Table D
Oyster Creek Nuclear Generating Station
Delayed DECON Decommissioning Cost Estimate (Thousands of 2003 Dollars)


```
End Note
```


APPENDIX E

DETAILED COST ANALYSES

SAFSTOR

Table E

Oyster Creck Nuclear Generating Station SAFSTOR Decommissioning Cost Estimate (Thousands of 2003 Dollars)

Activiky	Activty Doencription	$\begin{aligned} & \text { Deconn } \\ & \text { cost } \end{aligned}$	Renneval Codet	$\begin{gathered} \text { Pachaping } \\ \text { Coste } \end{gathered}$	Tramboprt	$\begin{gathered} \text { Of-Sne } \\ \text { Procosking } \\ \text { Conts } \end{gathered}$	$\begin{array}{\|c} \text { LRWW } \\ \text { Dipote } \\ \text { cotite } \end{array}$	$\begin{aligned} & \text { Oher } \\ & \text { Conte } \end{aligned}$	$\begin{gathered} \text { Total } \\ \text { Comingency } \end{gathered}$	$\begin{gathered} \text { TouA } \\ \text { Coate } \end{gathered}$	$\begin{gathered} \text { NRC } \\ \text { Lua Tom. } \\ \text { Coste } \end{gathered}$	$\begin{aligned} & \text { spom Fuel } \\ & \text { Monegomment } \\ & \text { Conts } \end{aligned}$	$\begin{gathered} \text { Site } \\ \text { Restoration } \\ \text { Costt. } \end{gathered}$	$\begin{aligned} & \text { Procon wed } \\ & \text { Yoikme } \\ & \text { Cu. Foot } \end{aligned}$	Clase A Cy. Feet				$\begin{aligned} & \text { Buralit } \\ & \text { Procesaed } \\ & \text { wh, te. } \end{aligned}$	$\underset{\substack{\text { Craft } \\ \text { Manhoure }}}{\text { coser }}$	$\begin{aligned} & \text { Unitity ond } \\ & \text { Comptetor } \\ & \text { Manhours } \end{aligned}$
PERLOD 1a . Shutdown throveh Tranaition																					
10.1.1	SAFSTOR 制e charactertention murvey Prepsive preiniminary decormisisioning cost	:	:	-	$:$:	:	${ }_{87}^{292}$	${ }^{88}$	380 112	380 112	:	:	:	:	:	:	:	-	:	1,500
1 ma 13	Notifcrion of Cessestion do Operatione									-											
15.1 .4		.								nor											
10.15	Nathestion of Pormmene Dofiving									-											
										1											
${ }_{\text {la }}^{1.1 .1 .8}$	Proenve mo mbum PSoAs	:	:	:	:	:	:	+900	22	172	172	:		:			-	:			2,000
9.1 .8	Peotom detusat red unvey								15	1	112	-	-	-	-	-	-		-		1.300
90.1.10	Essmote typrosud tiverimy	-	-	-	-	-	-	75	11	${ }_{8}$	88	\bullet	-	-	-	-	-	-	-	-	1.000
10.1.11	End prosura deartioton	-	-	-	-			75	11	${ }^{80}$	es	-	-	-	. -	-	-	-			1,000
11.1 .12	Dratios byproda Imentioy	-	-	-	-	-	-	${ }^{112}$	17	${ }^{129}$	129	-	-	-	-	-	-	-	-		1.500
later	Datre mestor mort rapunce	-	-	-	-	-	-	75	11	${ }^{68}$	${ }^{86}$	-	:	-	-	-	:	-	:		1.000
12.1 .15	Pamorm Sno-Spoeme Cout Swcy	\bullet	:	:	:	:	:	232 375	38	${ }_{131}$	131	:	:	:	:	:	:	$:$:	:	3,100 5.000
Acthy Spoentestom																					
1.1.190.1	Prowere diant mind facmios for SNFSTOR	-	-	-	-	-	-	359	55	424	424	-				-	-		\cdots		4.920
10.1.18.	Pesp yrseme	-	-	-	-	-	-	312	47	359	359	-	:	-	-		-	-			4.187
$\xrightarrow{9.1 .18 .3}$:	:	.	:	.	:	${ }_{1}^{25}$	35 28	269 172	269 172	:	:	$:$:	:	:	:	:	:	3.120 2000
13.1.16 5	Froctiy end sita dormmey	-	-	-	-	-	-	130	27	172	172	-	-	-	-	-	-	-	-		2.000
18.1 .18	Toun	-	-	-	-	-	-	1.214	182	1.996	1.398	-	-	-	-	-	-	-	-	-	18,207
Dotalood Wort Procatures																					
10, 1.17.1	Pimi aryeem	:	:	:	:	:	:	${ }_{90}^{89}$	${ }^{13}$	102	102	-	-	-	-	-	-	-	-	-	1.183
10.1.17	Toum	:	:	-	:	:	$:$	179	27	${ }_{205}^{103}$	${ }_{205}^{103}$:	:	:	:	:	-	$:$:	-	1,200 2.293
10.1.18	Procuri nsuam oying pream,	-	-	-	-	-	-	7	1	:	9	-	-	. -	-	-	-	-	-		100
12.120	Omin 8 dy NSS 3									:											
$1 \mathrm{1a.1.21}$	Drativo energze commmintad prateme									,											
${ }_{\text {12, }}^{12.122}$	Deconreocre contaminutad dystam									1											
	Suthen Parted 1s Actury Cosis	-	-	-	-	-	-	2,940	499	3,471	3.471	-	-	-	-	-	-	-	-	-	35,890
Period 19, Consteral Conts																					
123.1 10.3 143	Spent fuel Cepitu nd Trender	:	:	:	:	-	-	10.307 10.007	1.548	${ }^{111.853}$:	111,953	:	:	:	-	:	:			:
Period to Perrod-ompendent Cots																					
1.4 .1	truerrece	-	-	-	-	-	-	1,734	173	1,907	1.807	-	-	-	-	-	-	-			
7 Tas .2	Propenty taxes	:	2		:	:	$:$:	- 5	27s	278	:	:	:	-	-	-	-			-
12.4.3	Hosmp pryeza upaties	:	${ }_{268}^{271}$:		:	${ }_{43}$	${ }_{331}^{278}$	${ }_{331}^{276}$:				:	:	:			:
184.5	Dincoul of DAW gemeratod	-	2	5	1	-	23		6	35	35	-	.	:	408	:	$:$:	0103	99	
10.4 .6	Ptari emergy buxget	-	-	-	-	-	-	623	9	119	719	-	.	-	,	-	-	-	,	-	
1.4.4	NRC Fomm	-	-	-	-	-	-	311	37		408	i1	:	-	-	-	-	-	-	-	
1948		:	:		:	:	:	101 250	30	111 287	$-{ }^{-87}$	11		:	:		:	:	:	:	:
te.4.10	Spere fum Pod OSM	-	-		-		-	88	145	1.113	-	1.113		-	.	,	-	-	-	-	:
\$18.11	isfsioperang cons	:	:	:	:		:	\%18	119	${ }_{1.14}^{82}$	1.14	0	:	:	:		:	-	-	-	\bigcirc
18.4 .13	Uriny Sum cout	:						24,422	3.663	28.085	28,083	:	:	$:$:	:	:	:			-387,421
184	Subtomil Priod ta Perico-Dependent Cosis	-	509	5	1	-	23	29.510	4.421	3,470	33.184	1,506	-	-	404	- .	-	:	8.103	99	446.343
14.0	TOTN PERICO Y COST	-	509	5	+	-	23	42.988	8,458	49,794	30,635	13.159	-		404				8.103	99	482.233

Table E Oyster Creek Nuclear Generating Station SAFSTOR Decommissioning Cost Estimate (Thousands of 2003 Dollars)																					
Actury	Aettrity Doseription	Decon Cont	Removal Cont	Pachoolng Conts	$\begin{gathered} \text { Tronsport } \\ \text { Coate } \end{gathered}$	Of-Sto Procesting Conte	$\begin{gathered} \text { Liviw } \\ \text { Dinpoted } \\ \text { Conta } \end{gathered}$	$\underset{\substack{\text { Ohen } \\ \text { coota }}}{ }$	- Toaul	$\begin{gathered} \text { Toul } \\ \text { Costa } \\ \hline \end{gathered}$	$\begin{gathered} \text { MRC } \\ \begin{array}{c} \text { Le. Tomb. } \\ \text { Costr } \end{array} \end{gathered}$	Spent fual Managrovent Conta	Sits Rectortion Conts	Proceseed Volume Cu. Feet	$\begin{aligned} & \text { CraseA } \\ & \text { cu. Foef } \end{aligned}$	$\begin{aligned} & \text { Bunsivo } \\ & \text { Cisionion } \\ & \text { Cu. Foot } \end{aligned}$	$\begin{aligned} & \text { Coumpse } \\ & \text { Cu. Fout } \\ & \text { Cut } \end{aligned}$	$\begin{aligned} & \text { GTcc } \\ & \text { cu. Fotet } \end{aligned}$	Burtal/ rocested Wh. Lbe.	$\stackrel{\text { Mant }}{\text { Crint }}$	$\begin{aligned} & \text { Uitility and } \\ & \text { Contrector } \\ & \text { Manhoure } \end{aligned}$
Period ti	- SAFSTOR LImited DECOW Aetivites													-	-						
Perted it Direct Decommisalorng Actrwee																					
Decontamin	Noter	-	-	:	-	:	:	:		-	-	-	-	:	-	:	:	-	:	!	:
18.1.1. ${ }_{\text {1b.1.3 }}$		2	:	:	:	$:$:	:	1	3	3	:	-	:	-	$:$:	-	:	37	:
16.1.1.4	Domel. Lheer Removal	1,629	-	-	-	-	-	-	814	2.43	2.43	-	-	-	-	-	-	-	-	22,453	-
10.1.15	Reo. Torne Pemoval	2.184	-	-	-	-	-	-	1.092	3.275	3.275	-	-	-	-	-	-		-	43.008	-
	Reacter Rulding -19f. Docon	${ }^{5}$:		:	:	:	:	$2{ }^{3}$	${ }_{6}^{8}$	${ }_{63}^{88}$:	:	:	:	:	$:$:	:	109 952	:
${ }_{\text {lem }}^{16.1 .1 .17}$	Ssactexhust Tumeli Remove Decom	${ }_{8} 8$	$:$	-	:	:	:	:	21	63 12	63 12	-	$:$:	:	:	$:$:	:	952 159	*
16.1.1.9	Resetar Prising 119n. Dison	31	-	.	-	-	-	-	970	511	511	-	-	\because	-	-	-	-	-	${ }^{8.702}$	-
10.19	Toum	4290	-	-	-	-	-	-	2.105	6.315	0.315	-	-	-	-	-	-	-	-	83.993	-
16. 1		4210	-	-	-	-	-	-	2.105	8.315	6.315	-	-	-	-	-	-	-	-	83.995	,
Pertod ib 1b. 2.1	Addrornal Comat Soent Fuel Pool footetion	-	-	-	\bullet	-	-	8,115	1.217	9.332	9.332	\bullet	-	-	-	-	-	-	-	-	-
10.2		-	-	.	-	-	-	8.115	1.217	9.332	9.332	-	-	-	-	-	-	-	-	-	-
${ }^{\text {Pumbod }} 16 \mathrm{Cb}$	Cotumerl Cosis															\bullet					\because
10.3.1 ${ }_{\text {10.3 }}$	Docon equbmert	888 98	-	${ }^{6}$	$i 73$:	is	:	314	723 1.485	723 1.885	:	-	-	--	1.348	:	:	169.933	265	- :
${ }_{10.35}$	Smanl of ithommoe	19	8	65	175	:	\%	9	10	${ }^{18}$	${ }^{7} 8$	0	-	:	:	\cdots	$:$	-	\cdots	-	
${ }_{10}^{10.3}$	Soent Furl Cmpard and Trender	824	${ }_{68}$	65	i73.	:	is	2.50	${ }_{805}^{367}$	${ }_{5}^{2.2983}$	2.285	2.900 2.903	$:$:	$=$	1.988	:	-	169.933	285	$:$
Patod 16 P	Porbo-Dependen Cost																				
104.15	Decon mupoter	${ }^{35}$:	:	:	:	:	437	184 44	${ }_{461}^{919}$	819	:	:	:	:	:	:	*	:	:	$:$
184.2 18.4 .3	Propery taxes	-	:	-	:	:	:	527	53	579	579	:	:	:	:	:	:	-	:	:	
164	Hemert ptyita supoles	-	311	-	-	-	-	\bullet	- 78	389	${ }^{388}$	-	-	-	-	-	-	-		-	
15.4.3	Hency arivement romel	:	\because	1	0	:	7	.		${ }_{10}^{84}$	${ }_{10}^{84}$:	:	:	i17	:	:	:	2.339	29	:
10.4 .8 10.4		$:$	-	1	0	:	7	iss	24	1810	1810	$:$:	$:$	${ }^{117}$:	:	:	2.339	29	*
Tb. 48	NRCC Feom	-	-	-	-	-	-	9	9	103	103	-	\bullet	-	-	-	-	-	-	-	-
78.4 .9 18.4 10.10	Emengency Plaming Foet	:	:	:	:	:	:	25 63	3	${ }_{72}^{28}$	7	.28	\because	:	:	:	:	:	:	:	,
10.4.10	Stomi fun Pod 08 M	:	:	:	:	:	-	24	37	281	\cdot	281	-	-	-	-	-	-	-	-	:
10.4.12	ISFSI Operating coets	-	-	-	-	-	:	18	3	${ }^{21}$	\%	${ }^{21}$	-	-	-	:	:	:	:	:	A
16.4 .13 10.14	Seanty sin cost	,	:		-	:	-	4.536	680	5.216	3.218		:	:		:	:	:	:		${ }_{72,47}^{10.81}$
10.4	Suthoal Period it Period-Dependent Costa	73	383	1	0	-	7	6.345	1.172	0.844	8.315	379	-	-	11	-	-	-	2.399	29	87.269
160	TOTAL PEALOO Ib COST	5.76	451	${ }^{6}$	175	-	140	11.037	5.299	29.539	28.247	3.292	-	-	117	1.348	-	-	172.272	84.269	87269
PERLOD te . Proparstione for Sarstor dormancy																					
Pemiod Te Ouma Decommisioring hathiot																					
	Prepero eupot eoutment for storgo,	:	409 36	:	:	:	:	:	${ }_{5}^{61}$	470	478	:	:	:	:	:	:	:	:	3.000 700	:
te. 1.9	interim sumby prox lo commey	-	0	-	-	-	-	73	220	033	935	-	-	.	-	-	-	-	-	19,098	-
										50											
$1 . .95$	Propare a mbemb hiomim roport	-	-	-	-	-	-	4	7	50	so	-	-	-	-	-	-	-	-	-	583
$1 . .1$		-	448	-	-	-	-	77	293	1.515	1.515	-	-	-	-	-	-	-	-	22,799	583

Table E
Oyster Creek Nuclear Generating Station SAFSTOR Decommissioning Cost Estimat
(Thousands of 2003 Doliars)

\begin{tabular}{|c|}
\hline $$
\begin{aligned}
& \text { Actullyy } \\
& \text { Mndor }
\end{aligned}
$$ \& Actlvity Daseripaton \& $$
\begin{aligned}
& \text { Docen } \\
& \text { Cont }
\end{aligned}
$$ \& Removal \& Packaging Costs \& Trancoort Costa \& $$
\begin{gathered}
\text { On-Ske } \\
\text { Proceseling } \\
\text { Costs }
\end{gathered}
$$ \& $$
\begin{aligned}
& \text { LLiLW } \\
& \text { OLsposnt } \\
& \text { Conte }
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { Other } \\
& \text { Coats }
\end{aligned}
$$ \& $$
\begin{gathered}
\text { Tetal } \\
\text { cortingoncy }
\end{gathered}
$$ \& $$
\begin{gathered}
\text { Total } \\
\text { Cootl }
\end{gathered}
$$ \& Lie Tom. Conta \& $$
\begin{aligned}
& \text { Spont Fuol } \\
& \text { Manogentemt } \\
& \text { Conta }
\end{aligned}
$$ \& Site
Restorsion
Conta \& Proctesed
Vohme Cu, Feot \& $$
\begin{aligned}
& \text { Clasisit } \\
& \text { Cu. Foot }
\end{aligned}
$$ \& \& glumer Clotec Cu. Foot \& $$
\begin{aligned}
& \text { CTCC } \\
& \text { Cu. Fort }
\end{aligned}
$$ \& Burnal/ rocessed M., itban. \& $$
\begin{gathered}
\text { Crat } \\
\text { Manhourn }
\end{gathered}
$$ \&

\hline \multicolumn{22}{|l|}{Poriod 19 Colviseral Costr}

\hline 14.31 \& Process liaud wets \& 219 \& - \& 73 \& 198 \& - \& 813 \& - \& 349 \& 1.650 \& 1.650 \& - \& - \& - \& - \& 1.508 \& - \& - \& 189.882 \& 298 \& -

\hline ${ }_{\text {Te. }}^{1 \times .3}$ \& Smel mod shownce \& - \& 3 \& - \& - \& \bullet \& - \& - \& 0 \& 4 \& 4 \& \cdots \& - \& - \& - \& \& - \& - \& - \& \&

\hline \& \& 219 \& 3 \& 3 \& is \& : \& 813 \& ${ }_{2}^{2.577}$ \& ${ }_{736} 38$ \& 2.963
4.619 \& 9,856 \& 2.960
2.900 \& : \& : \& : \& 1.508 \& : \& $:$ \& 189.882 \& \% 8 \& :

\hline Period te P \& Percot-Dependert Cowts \&

\hline 1.4 .1 \& mavence \& - \& - \& - \& - \& - \& - \& 432 \& 43 \& 475 \& 475 \& - \& - \& - \& - \& - \& - \& - \& \& - \&

\hline \& Propenty taxem \& - \& - \& - \& : \& - \& - \& 521 \& 52 \& 35 \& 575 \& - \& - \& - \& - \& \& - \& - \& - \& - \&

\hline ${ }_{\text {ceces }}$ \& \& : \& $\underset{\sim}{128}$ \& : \& : \& : \& : \& : \& 31
11 \& 156

80 \& 156 \& : \& : \& : \& \& : \& : \& : \& : \& : \&

\hline te.4. 5 \& Dispora if DAW gemerated \& - \& - \& 1 \& 0 \& - \& 6. \& - \& 2 \& 9 \& 9 \& : \& : \& : \& 101 \& : \& : \& : \& 2.020 \& 25 \&

\hline te.e. ${ }^{\text {ceis }}$ \& Plax menergy butget \& - \& - \& - \& - \& - \& - \& ${ }^{95}$ \& 23 \& 179 \& 179 \& - \& - \& - \& : \& : \& - \& : \& $:$ \& : \& :

\hline ${ }_{\text {ceas }}^{10.8}$ \& NRCF Fome \& : \& : \& : \& : \& : \& $:$ \& ${ }^{23}$ \& 3 \& 102
28 \& 102 \& ${ }^{2}$ \& : \& : \& : \& : \& : \& : \& : \& : \& :

\hline 12.4 .9 \& Ste OsM Cot \& - \& - \& - \& - \& - \& - \& ${ }_{82}$ \& 9 \& 72 \& 72 \& \& \& : \& \& \& - \& - \& \& \&

\hline 19.4 .10 \& Sporif fuar Pod OSM \& - \& - \& - \& - \& - \& - \& 241 \& 38 \& 278 \& \cdot \& 276 \& - \& - \& - \& - \& - \& - \& - \& - \& -

\hline 1ca. 11 \& \& - \& : \& - \& - \& : \& : \& 18 \& 3 \& 20 \& \& 20 \& - \& - \& : \& \& - \& - \& - \& - \&

\hline \& Secrny Star cost \& : \& - \& : \& : \& : \& : \& - 2.414 \& -38 \& 5.098 \& 3.098 \& : \& : \& : \& : \& $:$ \& : \& : \& : \& : \& 14.690
71.650

\hline 19.4 \& \& - \& 197 \& 1 \& 0 \& - \& 6 \& 8.231 \& 923 \& 71.318 \& 7.023 \& 320 \& . \& - \& 109 \& , \& : \& - \& 2,020 \& 25 \& 80,320

\hline 1c.0 \& TOTAL PERIOO ic cost \& 219 \& 848 \& 74 \& 190 \& - \& 819 \& 9.574 \& 4.933 \& 13,481 \& 10.992 \& 3,289 \& - \& - \& 101 \& 1.508 \& - \& - \& 191.902 \& 23.119 \& 80.003

\hline PERTOD 1 \& totas \& 5.988 \& 9.808 \& 148 \& $3{ }^{3}$ \& - \& 1,582 \& 89,409 \& 13.710 \& 92,014 \& 73.074 \& 19.740 \& - \& - \& 68 \& 2.85 \& - \& - \& 372277 \& 107,508 \& 656.403

\hline \multicolumn{22}{|l|}{PERIDD 2 A - SAFSTOR Dormency with Wot Soom Fuw Storge}

\hline Period 2a 23.1.1 3.12 \& | Direct Decommistioring Acturbes Ounterty indection |
| :--- |
| | \& \& \& \& \& \& \& - \& \& - \& \& . \& \& \& - \& \& \& \& \& \&

\hline ${ }_{20}^{2.1 .3}$ \& Propere ropers \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline 2.1.4 \& Bixumhour rod redscoment \& - \& - \& - \& - \& - \& \bullet \& 152 \& ${ }^{23}$ \& 175 \& - \& 175 \& - \& - \& - \& - \& - \& - \& - \& - \& -

\hline ${ }_{20.1}^{20.15}$ \& Msutheal Period 20 Acturiy cosss \& : \& : \& $:$ \& : \& : \& $:$ \& ${ }_{659}^{503}$ \& ${ }_{9} 7$ \& 879
78 \& : \& 979 \& $:$ \& : \& : \& : \& : \& : \& : \& : \&

\hline \multicolumn{22}{|l|}{Perrod 2 a Contrems Cosu}

\hline 2.3 \& Subteal Pertod 2 a Cominera Corts \& - \& - \& - \& - \& . \& - \& 38.059 \& 5,408 \& 41,45 \& : \& 41,425 \& : \& : \& : \& : \& : \& : \& : \& $:$ \&

\hline ${ }^{\text {Period }} 20.14$ \& Parion-Dopendont Costs \& - \& - \& - \& - \& - \& - \& 3.361 \& 336 \& 3.997 \& - \& 3.697 \& - \& \& \& \& \& \& \& \&

\hline 2 4 42 \& Propeny taxes \& - \& - \& - \& - \& - \& - \& 4.000 \& 400 \& 4.400 \& - \& 4.400 \& : \& : \& : \& \& : \& : \& : \& : \&

\hline 214.3
204 \& Henth ptreia suppion \& : \& 221 \& 19 \& 4 \& : \& 9 \& . \& ${ }_{28}^{55}$ \& 278
148 \& : \& ${ }_{142}^{278}$ \& : \& : \& 1.819 \& : \& : \& : \& 32.34 \& 397 \& :

\hline 224.4 \& Pamer meray buxtyent \& - \& - \& 19 \& 4 \& : \& 9 \& 1,877 \& 288 \& +142 \& : \& - \& : \& : \& 1.619 \& \& : \& : \& 32,434 \& \&

\hline 2385 \& NRCFiose \& - \& - \& - \& - \& - \& - \& 1.31 \& ${ }^{38}$ \& 1.497 \& - \& 1,497 \& - \& - \& - \& - \& - \& - \& - \& - \& -

\hline 784.7
28.48 \& Emergency Peming Foes \& : \& $:$ \& : \& : \& : \& : \& ${ }_{1.000}^{400}$ \& ${ }_{150}$ \& 1.1450 \& : \& $\xrightarrow{1.145}$ \& : \& $:$ \& : \& \& : \& : \& : \& : \&

\hline 2.4 .9 \& Speer fuod Pod Oim \& - \& - \& - \& - \& - \& - \& 3.875 \& 581 \& 4.156 \& - \& 4.4 .46 \& - \& - \& : \& : \& : \& : \& \& : \& -

\hline 234.10 \& \& - \& - \& - \& - \& - \& - \& 2304 \& 43 \& ${ }^{327}$ \& - \& 3278 \& - \& - \& - \& - \& - \& - \& - \& \bullet \& \cdots

\hline 218.11
20.4 .12 \& Secarty Sumf coat \& : \& \& \& \& : \& \& 2.127
13,739 \& 23961 \& 2.146
18.100 \& : \& 2.488
18.100 \& \& $:$ \& \& \& : \& : \& \& \& 129.403
242.109

\hline 214. \& \& - \& 221 \& 19 \& 4 \& - \& 93 \& 34.028 \& 4.72 \& 38.094 \& - \& 39.094 \& - \& - \& 1.619 \& \cdots \& - \& : \& 32,934 \& 397 \& 37.511

\hline 2.0 \& TOTAL PERTOO 2a COST \& - \& 221 \& 19 \& 4 \& - \& 93 \& 70.723 \& 10.233 \& 81293 \& - \& 81.293 \& - \& - \& 1.819 \& - \& - \& - \& 32,434 \& 397 \& 371,511

\hline
\end{tabular}

Table E
Oyster Creek Nuclear Generating Station SAFSTOR Decommissioning Cost Estimate (Thousands of 2003 Dollars)

$\begin{aligned} & \text { Aetwhy } \\ & \text { indobr } \end{aligned}$	Astivty Doseription	.	$\begin{aligned} & \text { Decon } \\ & \text { Cosi } \end{aligned}$	$\begin{gathered} \text { Removal } \\ \text { Cont } \end{gathered}$	Pachaping Conts	Trimbert Coste	$\begin{gathered} \text { OHFSite } \\ \text { Procetiong } \\ \text { Costa } \end{gathered}$	$\begin{aligned} & \text { Linw } \\ & \text { Dteposil } \\ & \text { Cowte } \end{aligned}$	$\begin{aligned} & \text { Other } \\ & \text { coeta } \end{aligned}$	Continganer	$\begin{gathered} \text { Total } \\ \text { Cooth } \end{gathered}$	$\begin{aligned} & \text { LRRC } \\ & \text { LKETM. } \\ & \text { Costy. } \end{aligned}$	$\begin{aligned} & \text { Spent Fual } \\ & \text { mamenomert } \\ & \text { Conts } \end{aligned}$	Sutt Rathoration Cente	$\begin{aligned} & \text { Procented } \\ & \text { Volurna } \\ & \text { Cu. Foet } \end{aligned}$	$\begin{aligned} & \text { Cilosin } \\ & \text { Cu. Foot } \end{aligned}$			$\begin{gathered} \text { GTCC } \\ \text { Cu. Foof } \\ \hline \end{gathered}$	Buralt Proctaled W, the	$\begin{gathered} \text { Crat } \\ \text { Mantours } \end{gathered}$	Ulility and Corteructor Manherri
PERIOD 2b - sarstor dormency wih Dry spent Fuel storge															-							
Pmodt 200																						
2.7 .12	Ovenoty mepoction										-											
${ }_{20.15}^{20.1}$	Sombemume embromertan envery										-											
20.1.4	Pripemmous roor rediscement		-	-	-	-	-	-	504	76	579	-	579	-	-	-	-	-		-		-
2 z .1 .5	Mammenmee untimes			-	-	-	-	-	1.564	250	1.973	-	1.973			-		-			-	
26.1	Subtual Period 2b Actury Corts		-	-	-	-	-	-	2.167	325	2,492	-	2.492	-	-	-	-	-	-	-	-	-
			-	-	-	-	-	-	6.200	930	7.130	\bullet	7.30	-	-	-						-
22.3			-	-	-	-	-	-	8.200	030	7.130	-	7,130	-	-	-			-	-	-	-
Perlod 26 P	Perrod-Dependent Costs																					
${ }_{20.4}^{20.4}$	mexurace		:	:	:	:	:	:	${ }^{9} 19.297$	1,350	10.447 14.54	:	10.447 14.549	$:$:	:	:	:	:			:
27.4 .9	Homito prysia muphin		-	73			-			183	914	:	. 814	-	-	-	:	-	-	:	:	-
2 t .4 .4	Disposel of Daw gemerated		-	-	83	14	-	307	-	${ }^{\text {as }}$	469	-	489	-	-	8.352		-	-	107.248	1.14	
20.45	Pamat merey burget		-	:	-	:	:	:	${ }^{827}$	124	-932	\because	-952	:	:	-	:	:	-	-	:	:
27.4 .4	NRC Foresery Plaming Foes		:	$:$:	:	$:$:	4.500	250	4.950	:	-4,950	:	$:$	$:$	-	:	:	:	:	:
20.48	Sthosm Com			-	-	-	-	-	2.307	494	9.603	-	3.603	-	-	-	\because	-	-		-	\bullet
20.4 .9	ISFST Operoung Cont		-	-	-	-	-	-	839	141	1.080	-	1.000	-	-	--		-				
20.4.10	Searrly stan cont		:	:	-	:	:		4,763	- 715	5,478	:	5, 3 , 173	-							:	
$2744^{20.11}$	Unity Srit Cost		:	731	B3	14	:	307	33,488 71,764	5.005 9.605	88,373	:	38.373 88.484	:	:	5.352	$:$:	-	107,248	1,344	490.001 779.861
27.0	TOTN PERROO 2b COST		-	731	${ }^{63}$	14.	-	307	80.131	10.860	92.108	-	92.106	-	-	3.352	-	-	-	107.248	1.314	79.881
PERROO 2c - SAFSTOR Dormuncy whthout Spent Fuol Storspe									.					-								
${ }_{\substack{\text { ce. } \\ \text { cel } 1.1}}$	Suentery mspoction									-	:								-			
${ }_{261.3}$	Repers ipport																					
$2 \mathrm{CL.14}$	Bitumious rod redecement		-	-	-	-		-	1.398	209	${ }^{1.805}$	1.803	-			-		:			-	
2z.1.5			:	:	:	:	:	:	${ }_{6}^{4.8071}$	692 901	5.303 6.907	5.303 6.907	:	:	$:$:	:	$:$	$:$:	:	$:$
			-	-	-	-	-	-	23.020	2302	23.322	25,322	-	-	-	-	-	-	-		-	-
${ }^{2} \mathrm{Cc} 4.2$	Propery tases		-	\cdots	-	-	-	-	36.657	3.858	${ }^{40.353}$	${ }^{40.323}$	-	:	-	-		:	-	-	-	-
20.4.4.			:	2.028	i7s	39	*	-si		508	2.532 1.301 1	+2.532	:	:	:	14,033		:	:	297.236	3.642	
2.45	Plant mingy buoget		-	-			-	St	2.293	344	${ }^{2} 2.837$	2.537	-	-	-	14,033	-	:	:	29,230	3.0	-
2.4 .48	NRC Foees		-	:	-	-	-	-	12.419	1,247	13,718	13.718	:	\because	:	:	:	:	:	-	:	$:$
	Ste OBM Cost		:	:		:	:		¢, 9.604	1,3959	${ }^{10.539} 7$	10.539 7.591	:	$:$:	:		:	:	:	:	401,.870
2 c .4 .9	urimy stin cose		-						${ }^{84} 8712$	12.707	${ }_{27}^{97.49}$	27.419		-	-	,		-	-			1.224,137
2 c .4			-	2.028	175	39	-	${ }^{5} 51$	14.919	23.373	201,303	201.383	-	-	-	14.833	-	-	-	297.236	3,042	1,823,807
2 c .0	TOTA PERLOO 2 c COST		-	2.028	175	39	-	651	180.925	24.274	208.290	200.290	\cdot	-	-	14.833	-	-	-	297.236	3.642	1.625.807
PERIOD 2 TOTALS			-	2.978	237	57	-	¢,259	331.779	45.367	381,669	200.290	173,999	-	-	21,003	-	-	-	430.918	5.353	2,mm,180

Table E

Oyster Creek Nuclear Generating Station
SAFSTOR Decommissioning Cost Estimate Thousands of 2003 Dollars)

	Activity Desectrotion	$\begin{gathered} \text { Oeven } \\ \text { Cost } \end{gathered}$	$\begin{gathered} \text { Rumovil } \\ \text { Cont } \end{gathered}$	$\begin{gathered} \text { Packeging } \\ \text { Coste } \end{gathered}$	Trameport	$\begin{gathered} \text { Or-Site } \\ \text { Proceseling } \\ \text { Conts } \end{gathered}$	$\begin{gathered} \text { LLRW } \\ \text { OLupoent } \\ \text { Conts } \end{gathered}$	$\begin{aligned} & \text { Oherer } \\ & \text { cott } \end{aligned}$	$\begin{gathered} \text { Tetay } \\ \text { cortmpency } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { costa } \end{gathered}$	$\begin{gathered} \text { NRC } \\ \text { Lac. Town. } \\ \text { Coots } \end{gathered}$	\qquad Mantownant Conta	$\begin{gathered} \text { Sute } \\ \text { Rostortion } \\ \text { Contin } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Procon ede } \\ & \text { Votume } \\ & \text { Cu. Foot } \end{aligned}$	ClastA Cu. Foot		Ciant Cu.Feol	$\begin{aligned} & \text { GTCG } \\ & \text { Cu. Foot } \end{aligned}$	$\begin{aligned} & \text { Burial\| } \\ & \hline \text { Procetted } \\ & \text { Ph, Ita. } \end{aligned}$	$\underset{\substack{\text { Mantor } \\ \hline}}{ }$	$\begin{aligned} & \begin{array}{l} \text { Uility and } \\ \text { Contrictor } \\ \text { Manhoourn } \end{array} \end{aligned}$
$\text { Pertod } 30 \text { [}$ $30.1 .1$	Drect Decommitedioning Actrobe Prepere profirthery dectemmiseioning cost	-	-	-	-	-	-	97	15	112	112	-	-	-	-	-	-				1.500
3 3 .12	Revisu ploritury a poces	-	:	:	:	:	-	34	52	398	398	:	:	:	:	:	:	:	:	:	4.000
	Poriorm deastec ride enver																				
30.1 .4	End produt denertpon	-	-	-	-	-	-	78	11	8	${ }^{68}$	-									1.000
3 m 1.5	Dashed typrosua tmentory	-	-	-	-	-	-	97	15	112	112	-	-	-	:		-	-		-	1,300
${ }_{3}^{3 \times 1.17}$	Define mepr wark eexumice	\bullet	-	-	-	-	-	562	${ }_{3}$	${ }^{68}$	${ }^{686}$	-	-	-	-	-	-	-		-	7.500
33.1 .8	Pentom SER Mo ER	:	$:$:	:	:	:	375	36	837	${ }_{431}^{281}$	$:$	-	:	:		:			.	3.100 5.000
30.19	Aroperoin bemat Leerse Tomminfion Ptun	-	-	-	-	-	-	307	48	353	353	-	-	-	-	-	-		\bullet	-	4.098
30.1 .10	Recolve NRC mppornio of mminstion dam									,											
Actriny Speechembort																					
$3 \mathrm{3m} 1.11 .1$:	:	-	:	:	-	\$52	${ }_{47} 8$	839	${ }^{571}$:	63	-	:		:	-		-	7.370
30.1.112	Prent indeme	-	-	-	-	-	-	312	47	359	323	-	3	-	-	-	-	-		-	4.187
38.8 .11 .3	Rosato himma	-	-	-	-	-	-	532	80	812	${ }^{612}$	-		-		-	-	-			7.100
30.1.1.4.		:	:	:	$:$:	:	${ }^{37}$	${ }_{8}$	${ }^{500}$	380	:	-	:	:		:	:		:	8.500
3 3 .1 .116	Mckare seperntortuhooter	-	-	-	-	-	-	75	11	86	85	-		-	-	-	-	-	-	-	9.000
30.1.11.7	Rentorese concrate	-	-	-	-	-	-	120	18	138	${ }^{69}$	-	69	-	-		-	-		-	1.000
30.11 .11 .8	Turthe 8 consemen	-	-	-	-	-	-	312	47	359	${ }^{359}$	-		-	:		:	:		:	4.157
34.1.19.9	Prosture anmmaion stacture	:	:		:	:		150 120	${ }_{18}^{22}$	172	172	:	:	:	:		:	:		:	2.000 1.000
36.1.11.19	Peme swretres a budang	-	:	-	-	:	:	234	35	269	134	:	is	-	:	:	:	:	:	:	3.120
30.1.11.12	Wemic mampomere	-	-	-	-	-	:	349	52	398	398		9				-	-		-	4.800
${ }_{30.10 .11}^{30.11 .13}$	Fracity \& sho chorecat	:	:	:	:	:	:	3,442	509	${ }_{3}^{7.04}$	3.592	:	$3{ }^{39}$:	.	:	:	$:$.	:	4.900
38.1 .11	Totar	-				-			501	3.844	3.502	-	311	-	\cdots		-	-		-	4.624
Puming a Stre Preperatoms																					
${ }_{\text {3ex }}^{36.1512}$:	:	:	:	:	:	2.41900	27 363	2.782	2.782	:	:	$:$:	:	:	:	:	:	2.400
30.1.14		-	-	-	-	-	-	109	${ }^{16}$	2131	123	-	-	-	-		-	-	-	-	1,400
30.1 .15 30.118	Pixpong Corl Contem Empeliocinguc.	:	:	:	:	:	$:$	2.048 ${ }^{2}$	${ }_{14} 80$	2.353 108	2,1035	:	:	:	:		:	:	-	:	1.230
38.1		-	:	-	-	-	:	10.279	9.541	11.817	11,473	:	341	$:$:	:	:	:	:	:	71.550
Perrod 3s Perloct-Dependerit Coats																					
30.42	Properytasen	:	\cdot	:	:	-	-	999	100	1,099	1.099			:							
334.3	Honmip phyiar mupoles	-	229	-	-	-	-	-	55	${ }^{279}$	${ }^{278}$	-	-	-	,		-	-	,	-	-
3044	Meny eavienowr mexat	-	${ }^{288}$	5		-	3	-	${ }^{43}$	331	${ }^{331}$	-	-	-	a	-	-	-	9		-
30.4 .5 30.48		:	-	5	1	:	23	469	${ }_{70}$	339	539	:	:	:	$\stackrel{40}{ }$:	:	:	8.103	99	:
20.4 .7	NRC Fom	-	-	-	-		-	371	37	408	408	-		-			-	-		-	-
3048	Stic Osm cosit	:	:	:	:		:		37	287	${ }_{512} 8$	-	-	-	-		-		:		
30.9 30.40	Secruny Staf Cout	:	:	:	:	:	$:$	16.376	$\begin{array}{r}\text { 278 } \\ \hline 2.48\end{array}$	512 18.033	18,633		:	$:$:	:	:	:	:	:	27,144 281236
3346	Subtome Patiod 30 Pertod Dependort Costr	.	509	5	1	-	23	19.089	2.915	23.112	23,112	-	-	-	404	-	-	:	-8,00	99	288,350
34.0	TOTAL PER100 3a cost	-	509	5	1	-	23	29,904	4.488	3.928	3,587	-	341	-	404	-	-		8.103	99	365.900

Table F

Oyster Creek Nuclear Generating Station SAFSTOR Decommissioning Cost Estimat (Thousends of 2003 Dollars)

Table F

Oyster Creek Nuclear Generating Station
AFSTOR Decommissioning Cost Estimate
Thousands of 2003 Dollars)

$\begin{gathered} \text { Aerivily } \\ \text { moder } \\ \hline \end{gathered}$	Actutry Doseription	$\begin{gathered} \text { Decon } \\ \text { Cont } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Ramoval } \\ & \text { Cont } \end{aligned}$	$\begin{gathered} \text { Peckoging } \\ \text { Coate } \end{gathered}$	$\begin{gathered} \text { Trantpert } \\ \text { Coots } \\ \hline \end{gathered}$	$\begin{aligned} & \text { On-Sito } \\ & \text { Procesing } \\ & \text { Conets } \end{aligned}$	$\begin{gathered} \text { LRW } \\ \text { Duposed } \\ \text { Couta } \end{gathered}$	$\begin{aligned} & \text { Other } \\ & \text { Corts } \end{aligned}$	$\begin{gathered} \text { Totay } \\ \text { Comingener } \end{gathered}$	$\begin{gathered} \text { Totat } \\ \text { Conh } \\ \hline \end{gathered}$	$\begin{aligned} & \text { NRC } \\ & \text { Lic. Torm. } \\ & \text { Coste } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Spent Fiont } \\ & \text { Managemert } \\ & \text { Certs } \end{aligned}$	Site Rethortition Colta	$\begin{aligned} & \text { Proctereed } \\ & \text { Volurn } \\ & \text { Cu. Feret } \end{aligned}$	Clent A Cu. Fee	$\begin{aligned} & \text { Burial V } \\ & \text { Clonat a } \\ & \text { Cu. Foot } \end{aligned}$	$\begin{aligned} & \text { (olumes } \\ & \text { Clases C } \\ & \text { Cu. Foet } \end{aligned}$	GTCC Cu. Foot	$\begin{aligned} & \text { Burial! } \\ & \text { Proceneed } \end{aligned}$ Wh, IBe.	Cront	Utility and Comtrector Manhour
PERLOO 4 a LLerge Combenem Removal																					
Pertiod 40 D	Dract Decommesiontrg Acturbes			.		.															
Muctian St 4.1.1.1.1	om Surply Sytem Removal Recirctation Pumpla a Motort	7	π	33	15	247	383	-	181	923	923	-	-	633	527		-		277,150	2.156	
4.1.1.12	Cromis 8 Na Removal	27	124	183	17	$\stackrel{\square}{\square}$	419	,	170	940	20	-	-	O	5.179	-	-		112,050	3,338	
40.1.1.3	Reseata Vored intems	4	1.141	2.655	462	-	2.504	132	3.457	11.164	11.168	:	:	:	${ }_{1,502}$	1,377	267		${ }_{30,023}$	17.509	832
40.1.14			\cdots	300	\cdots	-	5.501	,	855	0.657	6.657	-	-			-		411	12.900	-	
4at.1.9	Reseata Vossel	-	4.318	${ }^{788}$	209		5.169	132	6.009	${ }^{18.654}$	16.694	-	-	0	16.203	77	\%	-	1.856,730	17.509	832
40.1. 1	Totss	119	8.281	3.976	72	247	14.078	${ }^{23}$	10,73	36,378	36.378	-	-	635	23,417	9,377	287	411	2368,475	40.512	1.665
Removal of 4.12 4.1 .3	Malor Equipment Main Turbine Generator Man Conomears	-	${ }_{714}^{232}$	${ }_{34}^{34}$	+181	$\begin{aligned} & \mathbf{3 , 2 8 9} \end{aligned}$:	:	${ }_{720}^{988}$	7.144 $\mathbf{5 . 1 5 9}$	7,144 $\mathbf{5 , 1 5 9}$:	:	${ }_{350.738}^{59.00}$:	:	:	:	$\begin{aligned} & 2.855,154 \\ & 1,653,128 \end{aligned}$	$\begin{array}{r} 4.957 \\ 15.100 \end{array}$:
Depowe of Plash Syueme																					
onvell Sye 48.1 .4	tom Components Totals	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
${ }_{\text {Renecas }}$ Auis.	ading Sy ytem Components RCIRC3									5	5	-		19		-	-		57		
de.1.9.2	RCA	:	30	1	1	12	21	:	15	80	${ }^{5}$:	:	147	64	:	:	:	11.731	669	:
Aatis. 3	${ }^{\text {RCB }}$	-	45	1	1	41	5	-	19	112	112	-	-	501	16	-	-	-	21.819	1.009	-
48.954 4.155	${ }_{\text {RCO }}$:	240 48	4	;	321 92	:	:	110 26	603 167	683 167	:	:	3,974 , 1186	:	:	:	:	181.394 10.136	${ }_{\substack{\text { S } \\ \hline 1.273}}$:
40.1.5.6	RCN	-	48	,	1	50	:	:	20	120	120	:	:	${ }_{6} 1717$:		:	:	10.136 25.04	\%,020	
4 A 1.5 .7	RCM	-	73	1	3	120	-	-	37	235	235	:	:	1.461	$:$:	:		${ }_{80.158}^{25045}$	1.68	
481.58	RCN	-	${ }^{165}$	2	3	170			${ }^{68}$	410	410	-	-	2.107	0	-	-	-	85.581	3.610	
${ }_{4}^{4.1 .159}$	RCS	:	${ }_{37}^{58}$	${ }_{0}$	3	51 38	110	:	51 15	${ }^{271}$	27	:	:	${ }_{104}^{638}$	330	:	:	:	35.422 18.658	${ }_{\substack{1.313 \\ 807}}$	
4 A .15	Tomen.	-	145	15	27	89	137	:	350	2.179	2.119	-	:	11,078	412	:	:	:	4s6,70s	78,488	
40.18 .8 .1	${ }_{\text {N20 }}$:	100	2	2	${ }_{4}^{29}$	65	:	48	235 15	253 15	:	:	362 49	198	-	:	:	${ }_{3}^{32.343}$	2.373	
43.18 .3	N2P	-	19	0	1	28	-	,	9	57	57	:	:	31	:	-	:	:	13.830	${ }_{406}$	
4.164	N3,	-	48	0	1	32	-	-	16	8	98	-	-	398	-				18,151	99	
48.1 .6 .5 4.168	${ }_{\text {N30 }}$:	${ }_{11}^{55}$	0	1	4	1	:	${ }_{3}^{20}$	117	117	:	:	$\stackrel{501}{27}$	3	:	:	-		1.237 159	:
4. 8.16 .7	N3N	:	67	0	1	38	1	:	22	1278189	-188	:	:	${ }_{4}^{27}$	3	:	:		1.368 18.40	- 1.498	:
4.1.18.8	N3P	-	17	0	0	14	-	-	$?$	39	39	- -	-	. 979	:	-	-	-	1289	374	:
48.189 4.1810	N30	:	12 12	:	0	8	:	:	4	$\stackrel{22}{22}$	22 24	:	:	${ }_{97}^{80}$	-	:	:	-	3.260	${ }_{280}^{281}$	-
40.10 .11	N3S	-	17	0	0.	13	-	-	7	40	40	-	-	187	-				7.583	307	
4a.1.8.12	N3T	-	11	,	0	5	-	-	3	19	19	-	-	38	\%	-	-	-	2.357	240	-
40.18.13	N3W	:	${ }_{70}^{78}$	4	3	${ }_{52}$	1978	:	S4	${ }_{315}^{293}$	${ }_{393} 293$:	:	610 643	386 399	:	:		Si.703	9.873	
4.4 .18 .15	N3Y	-	143	3	1	247	-	-	74	474	474	-	-	3.054	-	-	-	-	124,023	3.141	
48.1 .9 .18	N31	-	27	0	1	19	-	-	10	87	57	-	\bullet	239		-	-	-	9.707	621	
48.1617 48.18 .18	Ns2	:	${ }_{40}^{23}$	1	1	20	15	:	17	32 93	${ }^{52}$:	$:$	1218	${ }_{52}^{28}$:		7.154 14.050	${ }_{915} 5$	-
4.9 .1 .8 .19	NSS	-	12.	0	0	4	6	-	5	28	- 26	-	-	48	19	-	:	-	3.347	259	$:$
4.318.20	NSS	:	${ }_{74}$:	1	${ }_{59}^{33}$	-	:	78	102	102	$:$	-	414	-	:	-	-	18.009	1.194	-
4.1.1.22	NSA	.	28	1	1	18	16	.	14	78	76	-	-	270	80	:	:	-	13,435	${ }_{604}$	
48.1 .8 .23	Ns8	-	${ }_{12} 27$	0	1	25	-	-	10	${ }^{63}$	${ }^{63}$	-	-	307	∞		:		12485	${ }_{803}$	-
${ }_{4}^{4.1 .1624} 4$	NSC	:	${ }_{19}^{12}$	0	0	12	:	$:$	4	${ }_{39}^{29}$	${ }_{39}^{28}$:	:	158 158	:	:	:	:	4.294 8.190	${ }_{428}^{287}$.

tLO Serricrn, Ine.

Table E
Oyster Creck Nuclear Generating Station
SAFSTOR Decommissioning Cost Estimate
(Thousands of 2003 Doilarz)

tLG Services, Inc.

Table E
Oyster Creek Nuclear Generating Station SAFSTOR Decommissioning Cost Estimat
(Thourands of 2003 Dollar

$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { nether } \\ \hline \end{array}$	Acthty Oeseripition	$\begin{gathered} \text { Docen } \\ \text { Cont } \end{gathered}$	Remove	Pschaping Coote	Transport	$\begin{gathered} \substack{\text { OHN-SHE } \\ \text { Procesening } \\ \text { Costs }} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { LRW } \\ \text { Ohaporel } \\ \text { Coffil } \end{gathered}$	$\begin{aligned} & \text { Oher } \\ & \text { Coete } \end{aligned}$	$\begin{gathered} \text { Tota } \\ \text { Comingency } \end{gathered}$	$\begin{gathered} \text { Tout } \\ \text { Cots } \end{gathered}$		$\begin{aligned} & \text { 5pem Fuvi } \\ & \text { Monagement } \\ & \text { Cothe } \end{aligned}$	Rettoration Costa	$\begin{aligned} & \text { Procoster } \\ & \text { Votume } \\ & \text { cu. Foese } \end{aligned}$	$\begin{aligned} & \text { ClasinA } \\ & \text { Cu. Foot } \end{aligned}$	$\begin{aligned} & \text { Bumal } \\ & \text { Clorif } \\ & \text { Cu. Foot } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { GITC } \\ & \text { Cut Fout } \end{aligned}$		$\begin{gathered} \text { Crat } \\ \text { Monhours } \end{gathered}$	
Pertod ta Conmern Cosata																					
4.4 .15	Procist iavid wast	5	135	5	13	-	${ }^{108}$	-	32	184	180	-		-	-	109	-	-	13.005	20	
4.3.32	Smabl bod alcweras		135						20	150	140		${ }^{16}$								
43	Suthom Patiod 4s Colnteral Costs	5	139	5	13	-	108	-	53	320	304	-	16	-	,	103	-	-	13.004	20	-
4.4 .2 44.3	${ }_{\text {Properit taxem }}$:	:	:	:		:	657 914	${ }_{91}^{68}$	P27 1.008	722 905	:	101	:	-	:	:	:	:	:	
$44_{4} 4$	Hemin prata mopolen	-	780	-	-	-	-	.	192	859	958	-	-				:			:	:
40.45	Hoesy eatbmeer remes	-	1,428	,			,	-	214	1.4 .40	1.800		-		\%	-	-	-	-	-	
4.8 .4	Drsosen od Daw	:	:		${ }^{10}$		${ }^{24}$			328	388				3,737				74,988	918	
4.48 .48	PNRC Foresy bugol	:	:	:	:	:	:	429	${ }_{40}^{40}$	${ }_{46}^{49}$	${ }_{488}^{493}$:	:	:	,	:	$:$:	:	:	-
40.4 .9	Ste osm \cos	-	-	-	-	-	-	229	3	283	283	-	-	-		-	-	-		-	
4.4 .10	Rabwests Procysing EcatmmenuSontices	-	-	-	-	.	-	329	49	379	379	-	-	-		-	-	-	-	-	
40.4.11	Socuth sisi cost	:	:	:	$:$:	:	, 917	141	(1.082	4,082	:	-			-	:		:	:	57237
44.13	unir sent cost							13.109	1.985	15.076	15.076	:									15,.69 206,003
4.4	Subtel Period 4, Perios Dopendert Corts	35	2.192	4	10	-	215	24,361	4,033	30,910	30,009	:	101	-	3.737	-	:	:	74.898	918	379.329
4.0	TOTAL PERTOO AL COST	180	15.144	5.058	1.224	17,34	45.52	24.645	19,475	96.541	90,425	-	118	201,361	30,488	1,481	297	411	11289,350	187,314	380.963
PER100 Ab - Ste Dreorismination																					
Period ab eb. 1.9	Direct Decommiesioning Actublet Renow ipent hus ract:	378	48	57	${ }^{88}$		1.405		627	2.821	2.821				6,987	-			573.140	4.079	

Onmel 5 yram Compornent																				
4.5.12.1	mas	273	278	58	3	575	1.199	-	663	3.332	3,332	-	-	7.111	4.507	-	-	-	892.839	8.005
40.1.22	18A	68	112	3		71	14	-	109	513	513	-	-	880	432	-		-	71,439	3.362
46.1.2.3	ra	98	+	10	7	149	225	-	- 178	851	851	.	.	1.0.01	875	.			135,304	5.537
4b.1.2.4	tea	-	48	3	3	73	63	-	39	229	229			928	188	-			56,479	T.089
48.12 .3	RCB	-	4	0	1	38	-	-	18	9	88	-	-	40					77.899	962
4 b .12	Totars	439	${ }^{16}$	78	48	905	1.930	-	9,007	5.021	5.021	.	-	11.199	5.002	-	-	-	974.949	16.967
		-	132	2	${ }^{6}$	${ }^{202}$	-	*	${ }_{4}^{64}$	406	400	-	-	2.493	-	-	-	-	${ }^{101.308}$	2.913
4b.9,3.2	${ }^{\text {ReB }}$	-	7	1	3	${ }^{108}$	-	-	34	216	216	-	-	1.300	-	-		-	53,019	1.569
20.9.3.3	${ }^{\text {Rec }}$	-	3	1	3	120	-	-	37	233	235	-	-	1.485	-	-			60.294	1.509
4 b .1 .54	RBE	-	9	1	3	112	-	-	4	234	254	.		1.391		-			58.063	2.122
40.1 .35	${ }_{\text {RBF }}^{\text {R8F }}$:	83 386	4	${ }^{3}$	+80	101	:	580	307 1530	$\begin{array}{r}307 \\ \hline 1530\end{array}$:	:	${ }_{178}^{170}$	315	:			57.301 45805	${ }^{1.803}$
${ }_{40.18 .1 .3 .7}$	${ }_{\text {R8S }}$:	${ }_{167} 958$	1	${ }_{8}^{28}$	${ }_{223}^{927}$	142	:	230 113	1.530 680	1.350 680	:	:	${ }_{2}^{11,279}$	428	:	:	:	458,005 150,334	8.039
4 6 .1 .35	RBSW	-	9	1	3	109	,	-	40	246	248	.	:	1,313		:		:	51.558	2.081
40.1.3.9	AC7	-	62	1	3	${ }^{69}$		-	29	185	185		.	1.100		-			44.917	1,308
40.1.3.10	R08	-	62	18	11	150	541	-	178	${ }^{937}$	937		-	1.861	1.624	-		.	221.254	1.143
40.7.3.11	ROM	-	\$2	0	1	22	\cdot	-	11	${ }^{65}$	${ }^{65}$	-	-	289		-		-	10.870	690
46.13.12	Rec	-	${ }^{142}$	2	5		ir	-	80	987	${ }^{367}$	-	-	1.933		-		-	79.329	${ }^{3.132}$
${ }^{\text {4b.1.3.13 }}$	ReF	-	${ }_{80}^{88}$	6	4	54	171	-	69	371	371	-	-	${ }^{867}$	515	-		.	${ }^{73.233}$	1.504
46.1.3.14	REEREI	:	${ }_{8}^{88}$!	3	1078	:	-	${ }_{7}^{36}$	233	${ }^{233}$		-	1.323	,	-		-	53.008	1.651
46.1.3.15	REL	:	${ }^{14}$?	,	288 43 4		:	${ }_{18} 7$	${ }^{497}$	49		:	${ }_{3}^{3.236}$:	:		:	133.435	3,17\%
4.0.1.3.17	Reo	-	8	d	4	9	162	-	78	42	42	-	-	9,115	488	:		:	${ }_{\text {B8. }}^{269}$	
46.13 .18	Reo		112	3	,	108	50	-	57	331	331	-	-	1.311	150	-		.	66.648	2.510
46.1 .3 .19	RER	${ }^{17}$	37	1	1	14	33	-	${ }^{28}$	131	131		-	177	${ }^{2}$	-		-	15,993	1.116
4.9.1.2.20	${ }_{\text {REW }}^{\text {Rew }}$	${ }^{8}$	${ }_{19}^{23}$	0	0	15		:	${ }^{13}$	${ }^{63}$	${ }_{38} 8$:	185	11	:		-	${ }_{5}^{8.43}$	697
40.1.322	REX	-	21	0	0	13	-	-	7	42	42	:	-	${ }_{165}$:	:	:	:	3.936 8.710	${ }_{468}$

rla Service, Ine.

Table E
Oyster Creek Nuclear Generating Station SAFSTOR Decommissioning Cost Estimate

Thousande of 2003 Dollars)

Antily	Actitity Denctiption	$\begin{gathered} \text { Docon } \\ \text { cost } \end{gathered}$	Removal	$\begin{gathered} \text { Puck sging } \\ \text { Conts } \end{gathered}$	Trampons	$\begin{aligned} & \text { Ch+5k9 } \\ & \text { Procention } \\ & \text { Coent } \\ & \hline \end{aligned}$	$\begin{gathered} \text { LLRW } \\ \text { Bupporal } \\ \text { Cotata } \end{gathered}$	$\begin{aligned} & \text { Othe } \\ & \text { Conte } \end{aligned}$	$\begin{gathered} \text { Toul } \\ \text { contengeney } \end{gathered}$	$\begin{gathered} \text { Toun } \\ \text { count } \end{gathered}$	$\begin{gathered} \text { NRC } \\ \text { Le. Torm. } \\ \text { Cotti } \\ \hline \end{gathered}$	\qquad Mamegenenk Conts Conta	$\begin{aligned} & \text { Site } \\ & \text { Restorstion } \\ & \text { Costs } \end{aligned}$	$\begin{aligned} & \text { Processed } \\ & \text { Volume } \\ & \text { Cu. Feet } \end{aligned}$	$\begin{aligned} & \text { Closin } \\ & \text { CuF Fin } \end{aligned}$	$\begin{aligned} & \text { Bumpl } \\ & \hline \text { Claner } \\ & \text { Cu. Fowe } \end{aligned}$	Ciset Cis Cu. Fou	$\begin{aligned} & \text { 6TCC } \\ & \text { cu. Fowe } \end{aligned}$		$\begin{gathered} \text { Cront } \\ \text { Manhours } \end{gathered}$	Unility and Contrictio
40.1 .124	RFs		109	2	4	131		-	49	293	293	-	-	1.622	\%			-	65.859	2.146	-
46.1 .1 .23	RFC	24	${ }^{68}$	3	2	27	89	-	51	24	24	-	-	337	207	-	-	-	33.210	1.978	-
4.1.1.27	RFF	-	${ }^{78}$	1	2	${ }^{73}$	98	-	31	185	${ }^{185}$	-	-	923	5	-	-	-	37.469	1.694,	
4.10 .327	RFH	-	102	?	4	58	78	-	79	422	428		-	${ }^{692}$	529	-			75,175	2,271	
4. 1.1328	Rff	-	${ }^{69}$	6	4	56	170	-	74	397	397	-	-	${ }^{690}$	510	-	-	-	73.14	1,974	:
46.1 .329 4.13 .30	${ }_{\text {RFN }}^{\text {Rel }}$:	37 7	1	2	81 80	:	:	33	205	144 203	:	-	[1948		:	:	:	30.625 45.18	${ }_{1}^{1282}$:
48.14 .31	RFO	:	107	1	2	78	.	-	39	225	223	-	-	042	:	:	-		38.243	2.379	
4.1.3.32	RGC	-	80	1	2	54	-	\cdot	23	139	139	-	-	687	-	-	-		27.107	1,343	-
${ }^{40.13 .33}$	Riso	-	173	?	${ }^{23}$	813	-	-	170	1,188	1,188	-	:	10.058	-	:	:	:		3.8.61	:
${ }_{4}^{46.1 .3 .35}$	Rot	:	4	:	1	33 45	:	:	119	105	105	:	:	595		:		:	-	9917	
4.1.133	RGP	:	20	-	,	19	:	:	8	48	418	:	:	236	:	:	:	:	9.661	437	
48.13 .37	RCR	-	128	2	4	138	-	-	53	318	318	-	-	1.853	-	-	-	-	${ }^{60} 814$	2.833	:
${ }_{40.15 .359}^{46.1 .38}$	Revt	:	35 33	!	1	${ }_{27}^{47}$:	:	21	122 74	${ }_{74}^{127}$:	:	547 339	:	:	:	:	22199	1.249 703	:
4.11 .140	P-12	:	${ }_{28}$	1	1	4	-	:	14	88	88	:	:	550	:	:	:		22,300	815	
4 4 .1 .1 .44	RH3/RH/R/RH	-	∞	1	1	48	-	-	28	158	158	-	-	592		-		-	24.081	1.785	
46.1 .342	RM	B	14	0	0	7	11	-	11	50	50	-	-	${ }^{63}$	3	-	-	-	6.374	440	
${ }_{4}^{4.10 .1 .343}$	R+1/	:	${ }_{19} 9$	0	1	23 10	:	:	18	${ }_{6}^{63}$	${ }^{63}$:	:	${ }_{121}^{282}$:	:	:	:	¢1,4313	${ }_{410}^{64}$:
4.1.1345	rhx	-	35	0	1	36	-	-	14	87	87	-	:	440		:	:		17.677	188	
4 4 .1 .13 .48	RHT	-	32	0	1	30	-	-	13	75	73	-	-	369		-	-	-	14.998	116	
4.4 .1 .3 .47	RMce	53	8585	'	2	8000	187		299	$\begin{array}{r}178 \\ \hline 1288\end{array}$	1288	-	-	${ }_{81.939}$:	:		40.165 853733	${ }^{1.468}$:
48.1.3	Toths	53	3.553	108	162	5.009	1.827				12.828			81.983	4.901			-	2.935.733	80,238	
A.1.42	N48	:	59	0	1	43		:	21	125	125	:	:	530		:			21,506	1.295	
40.1.4.3	ma	?	20	,	1	13	${ }_{10}^{12}$		13	7	${ }^{7}$			183 162	42				cince	S078	$:$
	${ }_{\text {Nus }}^{\text {Nus }}$	7	\%0	!	9	13 37	10	:	${ }^{13}$	119	${ }_{19}^{88}$:	:	162 59	3	:	:	:	S.398 10.650	$\begin{array}{r}\text { ¢,359 } \\ \hline, 300\end{array}$:
4.1 .14 .6	ME		5			1	-	-	,	7	1	-	-	17		-			687	106	
48.14 .7	N4F	-	3		0	8	\cdot	-	5	${ }^{28}$	$2{ }^{28}$	-	-	98		-	-		3.938	2 s	
4.148	${ }_{\text {NKH }}^{\text {N/ }}$		19	0	1	18	5		8	45	4		:	217	${ }^{14}$:	:	:	${ }^{10.038}$	337 352	
4.1.1.4.9	NKK	:	${ }_{23}^{16}$	0	0	${ }_{14}^{14}$:	:	${ }_{8}^{6}$	${ }_{48}^{37}$	37	:	:	${ }_{17}^{178}$	-	:	:	:	7,195	352 325	:
4.1.1.11	NSR		53	,	2	83		-	${ }^{28}$	165	168	-	-	1.029		-	-		41,782	1,188	
4 4 .14 .12	NSV	39	49	,	1	. 39	29	-	$4{ }^{4}$	205	205	-	-	${ }^{488}$	111	-	-	-	27.292	1.918	
4.10 .413														10						, 148	
${ }_{46.19 .4}^{46.14}$	NSX	31 107	510	$!$	${ }_{14}^{2}$	-6888480	58	:	31 269	1,433	(233	:	:	3, 812 3,	203	:	:	$:$	34,178 249.445	${ }_{1}^{2.3 .578}$:
Ond Rnawnate Butbing Sruten Componenta																					
46.1.5.1	OfW Pre Dsso Destroge and Decen PRD	:	143 41						21 5	164 28	184 28	:	:	151	:	:	:	:	6.12	2.839 245	
${ }_{\text {ab.1.5.3 }}^{48.152}$	${ }_{\text {PRS }}^{\text {PR }}$:	11	i	${ }_{3}^{0}$	${ }_{87}^{12}$:	:	${ }_{39}$	238	28 234	:	:	1.19919	:	:	:	:	\%.112	20098	:
461.54	PTA	-	27	,	1	30	-	-	11	69	69	-	-	371	-	-	-	-	55.064	803	
4 B .1 .5 .5	PUA	-	142	1	3	112	,		53	311	311	-	-	1.389		-	-	-	59,392	3.096	
${ }_{4}^{40.15 .56}$	PVN	:	100	.2	4	147	18	:	52 2	${ }_{9}^{32}$	${ }^{322}$:	\cdots	1.825 13	${ }^{68}$:	:	:	7.419 519	2.224	-
${ }_{40.1 .58}^{40.37}$	UMA	:	216	2	5	191	-	:	${ }^{24}$	498	- 498	:	:	2.367	-	\therefore	:	-	- 3119	1488 4.888	\because
$4 \mathrm{4b} 1.1 .9$	vas	-	148	2	5	${ }^{194}$	-	-	${ }^{\text {es }}$	404	404	-	-	2277		-	-	-	92.465	3.221	
4.1.5	Toxith	-	68	10	2	775	18	-	332	2.049	2.041	-	-	9.590	68	-	-	-	393,993	19.120	

Table E
Oyster Creek Nuclear Generating Station SAFSTOR Decommissioning Cost Estimate

Thousands of 2003 Dollars)

Activy	Activity Description		$\begin{aligned} & \text { Decon } \\ & \text { Cont } \end{aligned}$	$\begin{gathered} \text { Removil } \\ \text { Cout } \end{gathered}$	Pactaging Cosefs Conts	$\begin{gathered} \text { Transport } \\ \text { Coate } \end{gathered}$	$\begin{gathered} \text { Oh-Sto } \\ \text { Procesting } \\ \text { Conti } \end{gathered}$	$\begin{gathered} \text { LRWW } \\ \text { Ohposil } \\ \text { conta } \\ \hline \end{gathered}$	$\begin{aligned} & \text { OTher } \\ & \text { Costa } \end{aligned}$	$\begin{gathered} \text { Totwl } \\ \text { Cortimgency } \end{gathered}$	$\begin{gathered} \text { Toutat } \\ \text { Conts } \end{gathered}$	$\begin{gathered} \text { NRC } \\ \text { Lik Tom. } \\ \text { Coots } \\ \hline \end{gathered}$	\qquad Misnsgornent Cots	\qquad		ClestA Cu, foot		$\begin{aligned} & \text { Closer C } \\ & \text { Cu. Foet } \\ & \hline \end{aligned}$	$\begin{gathered} \text { GTCC } \\ \text { Cu. Foet } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Burnali } \\ & \text { Prococeod } \\ & \text { wh, LEee. } \end{aligned}$	$-\begin{gathered} \text { Crosh } \\ \hline \end{gathered}$	\square
Tuthe Buthon Sytiom Components																						
48.18 .2	T ${ }^{\text {F }}$		-	278	8	22	780	-	-	17	1.209	1209			9.8.48		:	-	-	39, ${ }^{18143}$	4.042	
46.1 .63	Trg			18	0	0	12	.		8	37	37			150		-	-		8.108	399	-
\&b.1.8.4	TG2		-	165	7	17	611	-	-	138	937	937	-		7.58	-	-	-	-	307.179	3.878	:
4.4 .1 .6 .5	${ }_{7}^{7 \% 1}$:	31	1	${ }^{18}$	${ }^{6} 8$:	:	17	7.134	1,154	:	:	7.914	:	:	:	$:$	321.193 2988 298	c.8.38	
45.1 .6	n_{72}		:	68	2	2	42	3	-	33	185	185	-	-	53	19	-	-	-	31,828	1,440	
4. 1.8 .8	tMA			42	1	2	72	-		22	138	138	-		895	-	-			36.367	900	
4.1 .169	TN2		-	216	4	10	339	-	-	110	${ }^{200}$	700	-	\%	4.46	-	.	-	-	180,563	4.43	
48.1.8.10	T02		-	119	,		12		-	18	137	in	-	137	- ${ }^{1}$		-	-	-	A197	2.73	
48.18 .11	toa		-	59	1	2	82	-		${ }_{33}^{28}$	172	172	:		${ }_{1}^{1.014}$:	:	:	41,172	$\stackrel{1.302}{1030}$	
${ }_{40.78 .13}^{40.8 .12}$	focr		:	49	2	2	${ }_{75}^{137}$:	:	33 23	224 144	224 14	:	:	$\begin{array}{r}1.892 \\ \hline 931\end{array}$:	:	\because	:	88,697 37.795	1,038	
4 c .1 .8 .14	Tow		-	13		0	8		-	5	${ }^{26}$	$2{ }^{26}$	-	-	988		-	-		3.978	298	
46.1.1.15	Tow		-	78	2	6	207	-	-	31	342	312	-	-	2.557	-	-	-	-	${ }^{103.657}$	1.688	-
	Toxitor		:	19	${ }_{4}$	9	313	:	:	${ }_{83}^{88}$	38 345	-3685	$:$:	$\begin{array}{r}124 \\ 3875 \\ \hline\end{array}$:	:	:	$\begin{array}{r}5.052 \\ \hline 15732\end{array}$	+433	:
80.1.6.18	TIA		-	41	1	2	73	-	-	21	138	138	-	.	899	.		:	-	3 sa Sos	921	:
46.18 .19	Tu2	-	-	127	2	5	169			58	351	-381	-	,	2.096					${ }^{85} 139$	2.827	
48.1 .8	Totah		-	1.778	4	104	3.628	39	-	1.007	8.800	6,142	-	137	44,990	119	.	-	-	1.833.397	39.193	-
Augmmate	Onges Sytan Componemt				,	4	19			4	274	214			1.508							
C0.1.7.2	AYA		:	${ }_{21}^{20}$!	1	${ }_{41}^{19}$:	:	12	${ }^{278}$	${ }_{78} 78$:	:	${ }^{1.596}$	-	:	$:$:	${ }^{20.759}$	${ }_{2}^{2.125}$	-
<b.1.7.3	are		-	19	0	1	22	-	-	8	50	50	-	-	287	-	-	-	-	10.682	430	
40.1.7.4	${ }_{\text {are }}$		-	51	1	2	82	:	:	${ }^{25}$	${ }^{161}$	161	-	:	1.012	-	-	:	:	41.078	1.128	
	Are		:	${ }_{38}^{17}$,	1	$\stackrel{8}{4}$:	:	${ }_{7}^{6}$	32 98	+32	:		811		-	:	:	24.799	878	.
40.17%	Aza		:	9	1	,	3		:	3	15	15	:	:	40	:	:	:	:	1.839	190	
4.8.7.8	NZC		-	70	1	3	93		.	32	198	198	-		1.145		-	-	-	48.509	1.547	
40.1.7.	NO		-	12	-	0	!	:	-	4	22	22	:	-	${ }^{79}$	-		:	-	3,063	257	
4.1.7.10	NTE		:	11 10	:	0	7	:	:	4	21 28	${ }_{22}^{21}$:	:	70 90	:	:	:	:	2.856 .672	${ }_{233}^{236}$	
C6.17.12	azi		-	21	0	1	28		:	10	80	80	-		343		:	:	:	13.938	173	
4.1 .7	Totas		-	37	5	14	476		-	168	1.037	1.037	-	-	5.885	-	-	.	-	238, 198	8.315	
Mmachanmoun symam Componmis																						
${ }^{\text {4b. }} 1.8 .8 .1$	${ }^{\text {B4M }}$			172	3		235			79								:		${ }_{\substack{18 \\ 18.031 \\ \text { asise }}}$	3.779	
${ }_{40.18 .8}^{48.10 .2}$	${ }_{\text {B0a }}^{\text {bia }}$:	${ }_{7}^{4}$	2	5	178 2	:		43	${ }_{12}^{291}$	$\stackrel{291}{12}$	$:$.	2.183 27	:		:	:		1.403 187	
cb.1.8.4	cM		-	341	7	18	${ }^{633}$	-		${ }^{184}$	1,182	7. 182	-	-	${ }^{1.028}$	-		-	-	317.938	7.500	
48.185	DM		-	45	0	!	30			18	22	${ }^{92}$	-	-	${ }^{368}$				-	13.277	1.004	
4 c .186	${ }_{\text {OCB }}^{\text {OCA }}$:	109	${ }^{1}$	3	99	:	:	4	${ }_{2}^{24}$	24	:	${ }^{\text {es }}$	1,230	:	-	:	:	4,900	2.302	
40.1.8.8	DOT		:	${ }_{10} 8$:	:	:	:	:	2	${ }^{12}$:	:	12	:	:		:	:	:	1275	
40.189	${ }^{\text {DPH }}$		-	${ }^{87}$	-	-	- -			10	77	-	-	77	-		-	-	-	-	1.501	
Sb. 18.18	${ }_{\text {owp }}^{\text {OWF }}$:	${ }_{90}$:	- :	:	-	.	${ }_{14}^{2}$	108	:	$:$	188	:			:		:	359 2.013	
4 c .1.e. 12	GM/GCA		-	18	-	-	-	-		2	18	.	-	18	-	-	-	-	-	-	350	
46.1813	nTAKE Structure		-	142	\bullet	-	\%	-		24	183	is	-	163	\bigcirc	-	-	-	-	85	3.208	
4b. 1.8 .14 Ab. 18.15	MMA		:	${ }_{35}^{87}$	1	1	${ }^{119}$:	40	231 83	${ }_{83}^{251}$:				:	:	:	59.850 78.75	1.918	
46.18 .16	mes/mbt		-	28	0		9	,		8	42	42	-		100	-	-	:	:	4.37	575	
${ }_{46.18 .18}^{46}$	MM M Roor		:	${ }_{13}^{27}$:	:	:	:	:	4	31 15	:	:	${ }_{15}^{31}$:	-	:	:	:	:	635 294	.
${ }_{\text {ce. } 2.8 .89}$	${ }_{08}$:	219	:	-	-	:	:	32	24	:	:	245	:	-	:	:	:	:	4.916	-
4b.1820	PTB		-	30						5	35		-	35							887	
4b.1.8.21	RSFROOF		:	- ${ }^{21}$	0	$\stackrel{0}{6}$	48	:		${ }_{408}{ }^{7}$	2250	${ }_{2250}$:	:	6, 175 182			:		7.697	${ }^{263}$	
40.1823	WM		:	${ }_{113}$	i	3	97	:	:	43	${ }_{257}$	${ }_{2}^{257}$:	:	${ }^{6} 1.197$:	:	:	:	${ }_{48.803}$	${ }_{2}^{21.491}$	-

TLO Services, Ine

Table E.
Oyster Creek Nuclear Gencrating Station SAFSTOR Decommissioning Cost Estimate (Thousands of 2003 Dollars)

Ativily	Actioty Dosectiotion	$\begin{aligned} & \text { Docen } \\ & \text { Coxt } \end{aligned}$	$\begin{gathered} \text { Removen } \\ \text { Cont } \end{gathered}$	$\begin{gathered} \text { Factaging } \\ \text { Couts } \end{gathered}$	$\begin{gathered} \text { Trenspert } \\ \text { Coota } \end{gathered}$	$\begin{aligned} & \text { Off-Site } \\ & \text { Procesting } \\ & \text { Conts } \end{aligned}$	$\begin{aligned} & \text { LRWW } \\ & \text { Onpotu } \\ & \text { Coute } \end{aligned}$	$\begin{aligned} & \text { Oher } \\ & \text { Copts } \end{aligned}$	$\begin{gathered} \text { Todsit } \\ \text { Contingeney } \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Conte } \end{gathered}$	$\begin{gathered} \text { NRC } \\ \begin{array}{c} \text { Le. Trum. } \\ \text { Coath } \end{array} \end{gathered}$	Spent Fual Manegomert Conta	Sith Runtoration Cente	$\begin{aligned} & \text { Proceseed } \\ & \text { Vohume } \\ & \text { Cu. Peot } \end{aligned}$	$\begin{aligned} & \text { Clasioh } \\ & \text { Cu. Foot } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Bunalv: } \\ & \hline \text { Closeng } \\ & \text { Cu. Foot } \end{aligned}$	$\begin{aligned} & \text { olumapt } \\ & \text { Clape C } \\ & \text { Cu. Fert } \end{aligned}$	$\begin{aligned} & 6 \mathrm{ccc} \\ & \text { cu. Foot } \end{aligned}$	$\begin{aligned} & \text { Buriail } \\ & \text { Hecespod } \\ & \text { M. } 1 \text { bes. } \end{aligned}$	$\begin{gathered} \text { Crat } \\ \text { Mantours } \end{gathered}$	Uninty and Contrictor Manhour
$4{ }^{4.1} 18.24$		-	${ }^{13}$	-	-	-	-		2	15	-	-	15	-	-	-	-	-	-	300	-
Ab.7.2.23	yaraneas	-	243	-	-				36	279			279		-		-			5.499	
${ }_{46.18}^{46.1828}$	roalraita	:	1	3	st	2			1	4	4	-	-	19	-	-	-	-	${ }^{733}$	30	-
46.18			3.37	23	58	1,941		-	1.027	8.325	5.219	-	1.078	24,093	-	-	-	-	978.124	65,3a7	-
46.1.9	Scambithy in wupor of decommisioring	-	875	16	5	142	25	-	249	1.312	1.312	-	-	1.588	89	-	-	-	80.203	21.639	-
	Now Reowste Puibing - Syueme Removal	-	${ }^{3}$	37	24	1	382	-	124	651	651	-	-	6	3.819	-	-	-	382,144	1.875	-
40.1.10.2		-	2	4	3	1	41	-	11	61	81	-	-	-	203	-			${ }^{40,785}$		-
4t.1.10.3	Rosara eutho- 5 ymma Removil	-	${ }^{363}$	${ }^{6}$	4	:	68.	:	18	${ }^{98}$	${ }^{86}$:	-	:	${ }^{688}$	-	-		8, 80.00	${ }^{80}$	
46.1.10.4		13	${ }_{51}^{263}$	${ }_{5}^{0}$	57	4	${ }^{989}$:	314	${ }_{\substack{1.0688 \\ 107}}$:	:	45	2.198	:	$:$:	919,350 57, 4×5	5,477 $\mathbf{1} 23$:
4.1.1. 108	Drmwt. Decom	,	481	950	19	.	2.569	-	79	4.093	4.083	:	:	4	13,738	:	:	:	1,299,617	0.202	
4 4 .1 .10 .7	Onvel- Limer Removal	1,449	848	30	50	9.787	154	-	1,234	5.573	5.573	-	-	22,108	801	-	-	-	951.623	47.881	
2b.t.108	MRW Slormpo - Deson	7	27	3	2	:	33	:	${ }_{9}^{19}$	${ }_{92}^{92}$	${ }_{92}^{92}$:	:	-	33	:	-	-	${ }^{31330}$	658	
46.1.10.10	New Redwasto Suthe - Docon	3	193	21	14	19	214	-	${ }^{125}{ }^{\text {. }}$	${ }_{818}$	818	:	:	235	2.129	:	:	:	222,101	4.207	:
40.1.10.11			315	∞	53	12	877	-	317	1.862	1.682	-	-	192	${ }^{2} .789$	-	-	-	682.850	4.768	
4t. 1.10 .12	Reso - Tous Remover	$\begin{array}{r}1.942 \\ \\ \hline 23\end{array}$	973	45 11	73 10	2.049	${ }_{96}^{29}$:	7.885	$\begin{array}{r}7.599 \\ \hline 308\end{array}$	7599 530	:	:	${ }_{\substack{3,744 \\ 2052}}$	891	:	:	:	1.410,755		
46.1.10.14	Rexcto Bunding 23 H - Docom	15	80	7	4	A	70	:	41	197	997	-	:	$\stackrel{1}{2}$	700	:	.	:	70.017	1.1827	
46.1.10.15	Resuda Buling 51n. Decom	17	68	a	5	.	78	-	46	219	219	-	-	-	781	-	:	-	78.098	1.582	-
20.1.10.18	Reactor Euliming 75n - Docon	${ }^{6}$	24	3	2	-	${ }^{26}$	-	16	75	13	-	-	-	281	-	-	-	28,138	500	
4.1 .101717	Roanctu Butising 9in - Dacon	12	48	5	3	-	58	-	${ }^{33}$	158	158	-	-	-	556	-	-	-	55.767	1.148	
${ }_{46.1 .10 .19}$	Suthe Puding of- Docom	50	181 217	13 21	${ }_{15}^{8}$	82	134 211	:	112 150	501 757	¢597	:	:	1.144	1.339 2.069	:	:	-	133.878	4.828	
46.11020	Tuther Buxing 23 M - Decon	33	169	16	12	80	161	:	114	589	509	:	:	7.109	1.570	:			200.633	3.855	
Ab. 9.10 .21		20	78	9	6	-	9		${ }^{59}$	268	262	-	-	-	- 248	-		-	94.413	1.886	-
40.1.10.22	Comemementod Soll	3	${ }^{78}$	1.039	663	*	10.620	-	2.877	15.275	${ }^{15,275}$	-	-	183	108,200	-		\bullet	10.619.990	0.020	
$4 \mathrm{Ab.1.10}$	Totute.	4.008	4.89	1.800°	$1.14{ }^{\circ}$	4.98	17.170	:	8,544	42.100	42.108	:	:	81,198	957.482	:	:	:	18, 1073.570	180,725	:
40.1	Subtotan Period Ab Activy Costs	4,987	16.515	1,948	1,830	18,292	22.508	-	15.339	01.325	80.112	-	1.213	226,175	174.759	-	-	-	26.381,130	46.350	-
Patiod Ab Aosibsen Costy																					
40.2	Sthaten Patiod Ab Additonal Coss	:	649	7	${ }_{53}$:	580	$1.2 m$	507	3.074	$:$	3.074	:	:	4.723	:	:	:	500, 151	10.001	2,500
Perrod as Colstrexw Coats																					
$4 \mathrm{Ab.31}$	Process	14	-	153	$1 \times$	-	1,388	-	396	2.133	2.133	-	-	-	-	2,069	-	-	339.017	90	-
${ }_{46.3 .3}$:	324	:	:	:	:	$:$	49	373	373	:		:	1	-	$:$:	29	0	
46.3	Sutbow Pemiod 40 Colateral Cosis	14	324	193	ta	:	1.388	:	445	2.508	2.506	:	:	:	-	2.069	:	:	339.048	9	
Period at Perrod Dependent Coats																					
$4 \mathrm{Ab.4}$.	Smannect	78	:	:	:	:	:	1.000	195	1.144	, 1.14	-	-	-	-			:		:	-
46.4 .3	Propery toxer	-	,	-	-			1.4.48	145	1.593	1.953	-	-	-	-		-	-		.	
45.4.4	Heastr pryates eumples	-	1.704	-	-	-	-	-	${ }^{26}$	2.130	2.130	-	-	-	-	-	-	-		-	-
4645 4048		:	2.27	-	19	:	411		311 114	2.613 688	2.813 828	:		:	7.168		$:$:		1,759	-
48.4 .7	Peme eneryy butbet	-	.	a		-	4	507	76	S80	- ${ }^{\text {sed }}$:	-	:	7.104	-	:	:	143.563	, 189	.
48.48 4859	NRC Fene	-	:	-	-	:	:	${ }^{828}$	${ }_{54}^{63}$	891	891	-	-	-	-	-	-	-	-	-	-
48.9 40.410	Ste OsM Cost	:	:	:	:	:	:	362	${ }_{78}^{34}$	${ }_{600}^{16}$	816	:		:	:	:	:	:	:	:	:
40.4 .11	Secorty $\operatorname{stan} \mathrm{Cosat}$	-	-	-	\bullet	-	-	1.490	224	9.714	1.214	-		-	-		:	:	:	:	- 90.685
${ }_{40}^{40.4 .12}$	Doc sumf com UTy Stan Cose	:	:	:	:	:		11,433	1.718	13.171 2.300	13.171	-		:			:	-	-	-	179.850
4.4	Subtotal Pemod es Period-Dopendert Cons	781	3.975	s	19	-	411	37,998	6.530	89.200	49.200	-	-	-	7,184	-	-	-	143.563	1.759	${ }_{5} 515.679$

Table
Oyster Creek Nuclear Generating Station SAFSTOR Decommissioning Cost Estimat Thousands of 2003 Dollara)

Parlot 56 Otrac Decomminaioning Activiber

S.1.1.10 Mresthe Solure to

St.1.1.15 Men Gint Searty

S5.1.1.19 Now semple Pu
s.i.120
Omiso Butang

tLic Servicr, Ine.

> Table E

Oyster Creek Nuclear Generating Station AFSTOR Decommissioning Cost EstImate

Thousands of 2003 Doliars)

Actruny moder	Acthity Deseripation	$\begin{gathered} \text { Docon } \\ \text { Cont } \end{gathered}$	$\begin{gathered} \text { Removal } \\ \text { Cont } \end{gathered}$	$\begin{gathered} \text { Puck aping } \\ \text { Costs } \end{gathered}$	$\begin{gathered} \text { Trenipont } \\ \text { Coets } \end{gathered}$			$\begin{aligned} & \text { Oher } \\ & \text { contit } \end{aligned}$	$\begin{gathered} \text { Toun } \\ \text { Contimgency } \end{gathered}$	$\begin{aligned} & \text { Toten } \\ & \text { Coste } \end{aligned}$	Lle. Tomb. Conte		\qquad	Proceseed Volune Co. Feol	$\begin{aligned} & \text { Closith } \\ & \text { Cu. Fown } \end{aligned}$		ohurnes clate C Cu. Foel	$\begin{aligned} & \text { GTCG } \\ & \text { Cu, Fiot } \end{aligned}$	Burial Procasesd Wh. Lbe.	$\underset{\substack{\text { Crant } \\ \hline}}{ }$	Unidity and Comtractor Manhourt
Oemotion of Remerhng Sta Bubingi (contrued)																					
58.11 .12	Reascor Buabing	-	4.157	-	-	-	-	-	624	4.781	-	-	4.781	-	-	-	-	-	-	63.448	-
56.1.123	Sempot Poot	:	212	:	:	:	:	:	2	-14	:	:	14	:	:	:	:	-	-	${ }_{3} 201$	-
56.1.127	Tant Padia Mic, Yma	:	698	:	:	:		:	109	${ }_{803}$:	:	${ }_{\text {cos }}$:	:	:	:	:	:	${ }_{9}^{3.518}$:
50.1.1.28	Turbine Eutuing	-	3.438	-	-	-	-	-	516	3.934	-	:	3,94	:	,	:	:	:	:	51,425	
50.1.129	Turbie Pesostar	-	407		-	-	-	-	61	468		-	486		-		-	-	-	5.050	
50.1 .1	Totem	.	14.211	-	-	-	-	-	2.132	18.343	947	-	15.39\%	-	:	-	:	:	:	208.428	-
Sue Clomon Actution																					
50.92	Remmere futio	-	6.850	-	-	-	-	\bullet	1,002	7,882	-	-	7.682	-	-	-		-	-	10.759	
${ }_{5}^{56.1 .1 .4}$		-	345	-	-	-	-	17	52	397	is	-	397	-	-	-	-	-	-	1.483	-
58.1	Sthot Poriod Sbactury Costrs	:	21,238	:	:	:	:	117	3.203	24,5s8	1.082	:	23,074	:	\bullet	:	:	:	:	218.808	1.5900
\$5.2		:	1.082	:	5	:	:	${ }_{36}$	${ }_{185}^{100}$	${ }_{1.2889}{ }^{768}$:	769	498	:	:	:	:	:	:	2.981 5.856	${ }_{160}$
Pertot sb Conders Cost																					
50.3		.	163	.	.	-	.	-	25	188	:	:	160	-	:	:	:	:	:	-	-
Period st Perlod-Dependeot Costs																					
5442	Propery inios	-	-	-	-	-	:	1,552	153	1.708	:	:	1.700	:		:	:	:		:	
50.4 .3		-	3.387	-	-		-	\cdot	49	3.828	-	-	3.828	-	-	.	.	-	.	,	:
Sbi4	Pasm enery budsm	-	-	:	-	-	-	97	15	112	-	-	112	-	-	-	-	-	-	-	:
56.48	Stie 0 OM Cort	:	- :	:	:	:	:	- 308	${ }_{72}^{58}$	${ }_{559} 48$:	:	${ }_{551}^{46}$:	:	:	:	\because	:	:	
504.7	Doc smin cost	-	-	-	-	-	-	6.510	97	7.407	:	:	7.467	:	:	:	:	:	:	:	${ }_{80,820}^{29.80}$
55.48	Uniry Sem Cose							3.1408	511	3,920	-	-	3,920	-	-	-	-	-	-	-	44.800
50.4		-	3.377	-	-	-	-	13,318	2.375	19.020	-	-	19.020	-	-	-	-	.	.	-	178.580
50.0	TOTAL PERLOO Sb COST	-	25,789	-	5	-	-	13.471	5.788	45.032	1.082	709	43,182	-	-	-	-	-	-	224.524	178,300
Period stotals			25.789		5			13.47	5.768	45.032	1.082	769	4.182		-	-	-	-		224.524	178,300

Oyster Creek Nuclear Gencrating Station AFSTOR Decommlssioning Cost Estimate (Thousands of 2005 Dollars)

	$\begin{gathered} \text { Docen } \\ \text { Cont } \\ \hline \end{gathered}$	$\begin{gathered} \text { Removal } \\ \text { Cout } \end{gathered}$	$\begin{gathered} \text { Puckuging } \\ \text { Coote } \end{gathered}$	$\begin{gathered} \text { Trenspert } \\ \text { Costa } \end{gathered}$	$\begin{gathered} \text { OH-Sne } \\ \text { Procesting } \\ \text { Cosit } \end{gathered}$	$\begin{gathered} \text { LRW } \\ \text { Dteporal } \\ \text { Conts } \end{gathered}$	$\begin{aligned} & \text { Oher } \\ & \text { Contif } \end{aligned}$	Comithouncy	$\begin{aligned} & \text { Totat } \\ & \text { Cobts } \end{aligned}$	$\begin{gathered} \text { HRC } \\ \text { Le. Tem. } \\ \text { Conth } \\ \hline \end{gathered}$	$\begin{gathered} \text { sportifued } \\ \text { Menoponvert } \\ \text { Cotet } \end{gathered}$	$\begin{gathered} \text { Sut } \\ \text { Restoretion } \\ \text { Coste } \end{gathered}$	$\begin{aligned} & \text { Procesosed } \\ & \text { Vow } \\ & \text { Cul foer } \end{aligned}$	$\begin{aligned} & \text { CisesA } \\ & \text { Cu. Foof } \end{aligned}$	$\begin{aligned} & \text { Bunar V } \\ & \text { Cliares } \\ & \text { Cu. Fiet } \\ & \hline \end{aligned}$		$\begin{gathered} \text { GTCC } \\ \text { Cu. Foor } \end{gathered}$		Crat	$\begin{aligned} & \text { Ulity and } \\ & \text { Contracter } \\ & \text { Monhenre } \\ & \hline \end{aligned}$
TOTAL COST TO DECOMMISSION	12.578	79.639	7.663	3.663	37.799	4.009	\$13.000	121.759	852.113	810.009	196.962	45.122	- 456.585	259.34	6.405.	237	411	41.493.350	1.232.807	5.328 .284
TOTAL COST TO DECOMUISSION WTH 16 G\%x COWTWCENEY:			8852,113	thowende of	2003 cormen															
TOTAL NRE LLEENSE TERMNATOW COST IS 71.59% Or			\$610.004	thennends of	12003 dolims															
SPEnt fuel mamagement cost is 23.5\% OR:			\$178.982	thourende od	d 2003 dolles															
NOW-NUCLEAR DEMOUTION COSTIS 4.01X OR:			\$43,122	thourende ol	12003 donsm															
TOTAL PRIMARY Stte raowaste volume buritd			40.14	eubie Fowt																
total secondary ste raowaste volume bumied:			271.88	cubte Foot									-					.	-	
total greater than class chaowaste volume cenerated				cutic Fam														.		
Total scrap metal removed:			22.851										-							
total cratt lator reanrements:			1,231,007	manhours						-										
End Nolec: Wa - haficites that that ectibly not cherged en decommisioning expense. 0 - indicsues thet tivi acevily pertormed by decommisibioning utim. 				.								-		-	-			-		-

APPENDIX F

GUIDELINES FOR APPLY'ING WORK DURATION ADJUSTMENT FACTORS

TLG has historically applied work duration adjustment factors in determining unit cost factors to account for working in a radiologically controlled environment. In performing an area-by-area decommissioning estimate, the work duration factors are applied on an "area" basis based on the nominal area conditions. Where practical, areas are established based on similar working conditions.

The WDFs fall into five categories: access, respiratory protection, ALARA, protective clothing (PC), and work breaks. The guidelines of how these factors are assessed for each area is described below. Table F-1 details the WDFs used for each of the seven unit cost factor sets contained in the estimates. Table F-2 outlines the unit cost factors used for each area of the Oyster Creek plant.

1) Access Factor:

Controlling Variables:

- Height of the component above the working floor
- Difficulty in working around the component (restricted access)

Source of Variable Information:

- Estimators observation or judgment
- Plant drawings

Range of Access Factor Adjustments:
0% - Components are accessible and located near a working level floor or platform
10% - Scaffolding (component less than <12 feet above floor) is required to access the majority of the components or the area around the components is congested.
20% - Scaffolding (component less than <12 feet above floor) is required to access the majority of the components and the area around the components is congested.
30% - Scaffolding (component between 12-20 feet above floor) is required to access the majority of the components or the area around the components are extremely congested.

TLG Services, Inc.

40% - Scaffolding (component between 20-45 feet above floor) is required to access the majority of the components).
50% - Scaffolding (component greater than 45 feet above floor) is required to access the majority of the components).

2) Respiratory Protection Factor:

Controlling Variables:

- Component surface contamination levels (internal or external)
- Type of work (potential to create an airborne problem)
- General area surface contamination levels
- Site specific requirements for maintaining respirator qualifications (initial qualification, requalification, etc.)
- Personal air sampler requirements

Sources of Variable Information:

- Radiation Work Permit Requirements
- Area Survey Maps
- Site Radiation Protection Program Manual

Range of Respiratory Protection Factor Adjustments:
0% - Respiratory protection is not required (clean system or loose surface contamination has been removed).
25% - Respiratory protection is only required during limited segments of the work (i.e. physical cutting)
50% - Respiratory protection is continuously required while working on the component.

3) Radiation/ALARA Factor:

Controlling Variables:

- Component contact dose rate
- General area dose rate
- Site specific requirements for maintaining radiation worker qualification (initial qualification, requalification, etc.)
- Dosimetry requirements

Sources of Variable Information:

- Area Survey Maps
- Site Radiation Protection Program Manual
- Radiation Work Permit Requirements

Range of Radiation/ALARA Factor Adjustments:
(Note that surface contamination levels are principally accounted for in protective clothing requirements and respiratory protection requirements)
0% - The component is clean and is not located in a radiologically controlled area
10% - The component is located in a radiologically controlled area (General Area Radiation field $<2.5 \mathrm{mrem} / \mathrm{hr}$).

20\% - The component is located in a radiologically controlled area (General Area Radiation field between 2.5 to $15 \mathrm{mrem} / \mathrm{hr}$).
40% - The component is located in a radiologically controlled area (General Area Radiation field between 16 and $99 \mathrm{mrem} / \mathrm{hr}$).
100% - The component is located in a radiologically controlled area (General Area Radiation field > $100 \mathrm{mrem} / \mathrm{hr}$).

4) Protective Clothing Factor:

Controlling Variables:

- Component surface contamination levels (internal or external)
- General area surface contamination levels
- Type of activity (wet/dry work, potential to create a surface contamination problem)
- Site specific work schedule arrangements

Sources of Variable Information:

- Radiation Work Permit Requirements
- Area Survey Maps
- Site Radiation Protection Program Manual

Range of Protective Clothing Factor Adjustments (alternate site-specific schedules may dictate alternate adjustments):
0% - The component is clean and is not located in a radiologically controlled area.
30% - The component is clean or contaminated and is located in a surface contamination controlled area. Work is to be completed in accordance with
the requirements of an RWP, which specifies a single or double set of "PCs", or "PCs" with plastics.
50% - The components is located in a surface contamination controlled area. Work is to be completed in accordance with the requirements of an RWP; which specifies "plastics" in addition to double PCs for protective clothing.
100% - The component is located in a surface contamination controlled area. Work is to be completed in accordance with the requirements of an RWP, which specifies double "PCs" and double "plastics". (extremely wet or humid working environment).

5) Work Break Factor:

Controlling Variables:

- Site specific work schedule arrangements

Sources of Variable Information:

- Typical site work schedule

Range of Work Break Factor Adjustments:
8.33\% - Workday schedule outlined in AIF/NESP-036 (alternate site-specific schedules may dictate alternate adjustments).

TABLE F-1

UNIT COST FACTOR SETS AND THEIR WORK DIFFICULTY ADJUSTMENT FACTORS

UCF Set ID	Access	DECON/ Clean Percentage		ALARA	DECON/Contam.Percentage				
		Resp.	PCs		Access	Resp.	PCs	ALARA	
1	10.0	0.0	0	10	10.0	0.0	0	10	
2	20.0	0.0	30	10	20.0	0.0	30	10	
3	20.0	25.0	30	30	20.0	25.0	30	30	
4	30.0	25.0	50	30	30.0	25.0	50	30	
5	50.0	25.0	50	40	50.0	25.0	50	40	
6	- 30.0	25.0	50	50	30.0	25.0	50	100	
7	20.0	0.0	0	0	20.0	25.0	30	30	
		SAFSTOR / Clean Percentage Resp. PCs		ALARA	 ' SAFSTOR/Contam. Percentage Access Resp. PCs				
	Access			ALARA					
1	10.0	0.0	0		10	10.0	0.0	0	10
2	20.0	0.0	30	10	20.0	0.0	30	10	
3	20.0	25.0	30	10	20.0	25.0	30	10	
4	30.0	25.0	50	10	30.0	25.0	50	10	
5	50.0	25.0	50	10	50.0	25.0	50	10	
6	30.0	25.0	50	10	30.0	25.0	50	10	
7	20.0	0.0	0	0	20.0	25.0	30	10	

TABLE F-2

OYSTER CREEK STN DESIGNATIONS AND ASSOCIATED UNIT COST FACTORS

AREA	AREA DESCRIPTION	UCF SET
Drywell System Components		
IAA	DRYWELL RECIRC LOOP	5
IAC	DRYWELL EL. 13 -SUB PILE ROOM	5
ICA	DRYWELL EL. 51 \& 75'	5
IEA	DRYWELL EL. 95	4
RC6	DRYWELL LABRYNTH	3
Reactor Building System Components		1
RB1	REACTOR BUILDING - 19' GENERAL	3
RBB	19' NE	3
RBC	19' SE	3
RBE	CRD SYSTEM PUMP ROOM	3
RBF	REACTOR BUILDING EQUIPMENT DRAIN TANK ROOM	3
RBO	19' INSIDE TORUS	4
RBS	TOP OF TORUS SEGMENT N/E	4
RBSW	REACTOR BUILDING SWITCHGEAR ROOM	2
RC1	SOUTHEAST AIRLOCK	3
RC7	SW RAD MONITOR ENCLOSURE	2
RCA	NORTH SCRAM DISCHARGE VOLUME	3
RCB	LAUNDRY \& LAB DRAIN TANKS/PUMPS	3
RCD	NORTH BANK HCU's	3
RCG	NORTH CONTAINMENT SPRAY HEAT EXCHANGERS	3
RCJ	CRD SYSTEM FILTER/VALVING AREA	3
RCM	SOUTH BANK CSS HEAT EXCHANGERS	3
RCN	SOUTH BANK CONTROL ROD DRIVE MODULES	3
RCS	SOUTH SCRAM DISCHARGE VOLUME (RCS15VM)	3
RCT	REACTOR BUILDING EL.23-6 - ALL AREAS GENERAL	3
RD8	RX33' SHUTDOWN COOLING RM GENERAL ALL AREAS	3
RDM	TIP DRIVE ROOM WEST	3
REC	CORE SPRAY BOOSTER PUMPS	3
REF	SHUTDOWN COOLING HEAT EXCHANGER ROOM	1
REH	NITROGEN COMPRESSOR AREA	3
REI	REACTOR 51' TOOL CRIB	3
REL	RBCCW HEAT EXCHANGER/PUMP AREA	3
REM	SOUTHEAST ACCESS AREA	3
REO	CLEANUP SYSTEM HEAT EXCHANGER ROOM	4
REQ	CLEANUP SYSTEM PUMP AREA	3
RER	CLEANUP SYSTEM VALVE NEST EL. 64	5
RET	CLEANUP FILTER SLUDGE PUMP HALLWAY	6
REW	INSTRUMENT RACK RK01	3

TABLE F-2

OYSTER CREEK STN DESIGNATIONS AND ASSOCIATED UNIT COST FACTORS (continued)

AREA	AREA DESCRIPTION	UCF SET
Reactor Building System Components (continued)		
REX	INSTRUMENT RACK RK02 AREA	3
REY	REACTOR BUILDING 51' GENERAL ALL AREAS	3
RFB	SOUTH EAST GENERAL AREA (C.U. SURGE TANK)	3
RFC	RWCU VALVE AISLE AND CONTROL AREA	5
RFF	CLEANUP SYSTEM FILTER AID/PRECOAT TANK AREA	3
RFH	OLD FUEL POOL HEAT EXCHANGERS \& PUMPS AREA	3
RFJ	ASFP HEAT EXCHANGERS/PUMPS AREA	3
RFL	CONTROL ROD DRIVE REBUILD ROOM	3
RFN	EMERGENCY CONDENSER VALVE AREA	3
RFQ	REACTOR BUILDING 75' GENERAL ALL AREAS	3
RGC	NORTHEAST ACCESS AREA	3
RGD	"B" EMERGENCY CONDENSER NE01-B	
RGI	SOUTHEAST ACCESS AREA	3
RGL	SOUTHWEST ACCESS AREA	3
RGP	CLEANUP DEMINERALIZER VAULT (RGP16FM)	4
RGR	LIQUID POISON TANK/PUMPS AREA	3
RGU	REACTOR BUILDING EL. 95 - GENERAL ALL AREAS	3
RH1	NORTH FLOOR AREA	3
RH2	WEST FLOOR AREA	3
RH3	RB EL119 ALL AREAS	3
RH4	REACTOR BUILDING CRANE	3
RH6	ELEVATOR CONTROL EQUIP AREA	3
RHA	REACTOR CAVITY	6
RHJ	CASK WASHDOWN / DECONTAMINATION AREA	3
RHL	BRIDGE CRANE AND TRACKS	3
RHX	SOUTH FLOOR AREA	3
RHY	SOUTH EAST FLOOR AREA	3
RMCC	REACTOR BUILDING MCC ROOM	2
New Radwaste Building System Components		
7EB	NRW TUNNEL GENERAL ALL AREAS	5
N2G	NRW BUILDING GENERAL ALL ELEVATIONS	3
N2P	NRW BUILDING PENTHOUSE	3
N38	NRW 23' GENERAL ALL AREAS	3
N3A	NRW TRUCK BAY	3
N3D	NEW RADWASTE FILL AISLE	4
N3I	NRW \#2 SUMP ROOM	4
N3N	NRW SOUTH OPERATING GALLERY EAST	4

Document E16-1455-006, Rev. 0
Appendix F, Page 9 of 12

TABLE F-2

OYSTER CREEK STN DESIGNATIONS AND ASSOCIATED UNIT COST FACTORS (continued)

TABLE F-2

OYSTER CREEK STN DESIGNATIONS AND ASSOCIATED UNIT COST FACTORS (continued)

AREA	AREA DESCRIPTION	UCF SE
New Radwaste Building System Components (continued)		
N5S	NRW BU̇ILDING HVAC ROOM	3
N5T	NRW CHEM WASTE/FLR DRAIN TANK ROOM WC-T-1A	5
N5U	NRW CHEM WASTE/FLR DRAIN TANK ROOM WC-T-1B	5
N5V	NRW CHEM WASTE/FLR DRAIN TANK ROOM WC-T-1C	5
N5W	NRW CRANE BAY-STORAGE/LAYDOWN ROOM	3
N5X	NRW HIGH PURITY TANK \& ROOM 1A	5
N5Y	NRW WC-D-1A DEMISTER ROOM	5
N5Z	NRW WC-D-1B DEMISTER ROOM	5
PAA	OLD RADWASTE BUILDING GENERAL ALL AREAS	3
Old Radwaste Building System Components		
7BA	1-12 SUMP AREA GENERAL	4
7DA	ORW TUNNEL GENERAL ALL AREAS	4
7FA	ORW AIR FILTER ROOM	5
PBA	ORW SMALL PUMP ROOM	5
PDA	ORW 35' \& 45' CENTRIFUGE AND HOPPER	5
PMA	ORW OVERBOARD DISCHARGE MONITOR	3
PRA	ORW ROOF GENERAL ALL AREAS	4
PRD	ORW FUEL POOL FILTERS / KELLY BUILDING	4
PSB	ORW CONTROL ROOM OPERATION AREA	3
PTA	ORW COMPACTOR AREA	3
PTK	ORW - NORTH ANNEX	3
PTP	DRUM STORAGE AREA GENERAL	3
PUA	ORW LARGE PUMP ROOM	4
PUU	ORW INSIDE TANK ROOM GENERAL	4
PVA	ORW NORTH ANNEX KELLY BUILDING	2
UAB	ORW OUTSIDE TANKS \& MOAT AREA	4
UAS	ORW SURGE TANK \& PUMP AREA	4
ORW	ORW PRE D\&D DESLUDGE AND DECON	4
Turbine Building System Components		
7CA	TURBINE TUNNEL GENERAL ALL AREAS	5
TB2	TURBINE BUILDING BASEMENT GENERAL ALL AREAS	3
TB23	TB23 HALLWAY AREA	1
TB38	TB38 HALLWAY AREA	1
TC2	CONDENSER BAY OVERHEAD GENERAL ALL AREAS	3
TD2	CONDENSER BAY DRAIN TANK PIT	3

TABLE F-2

OYSTER CREEK STN DESIGNATIONS AND ASSOCIATED UNIT COST FACTORS (continued)

AREA	AREA DESCRIPTION	UCF SET
Turbine Building System Components (continued)		
TE2	SPARE EXCITER GENERAL ALL AREAS	2
TEE	4160 VOLT ROOM	3
TEG	RCA EXIT	1
TF2	FEED PUMP ROOM GENERAL ALL AREAS	3
TFG	OFF GAS SAMPLE AREA	3
TG2	CONDENSATE PUMP PIT ${ }^{\circ}$	3
TH2	HEATER BAY AREA	3
TKA	TB EAST AND WEST PASSAGEWAY	2
TL2	HI-LO CONDUCTIVITY ROOM	3
TMA	MECHANICAL VACUUM PUMP ROOM	3
TN2	TB BASEMENT NORTH	3
TO2	OPERATING FLOOR	3
TOA	HEATER BAY ROOF	3
TOCR/DCA	TURBINE BUILDING CONTROL ROOM	1
TOR	TURBINE BYPASS VALVE AREA	3
TOV	CONTAMINATED INSTRUMENT SHOP EL.55-4	2
TOW	EL.46-6 WEST ROOF AREA	3
TOX	TURBINE RAGEMS II BUILDING	3
TOY	TURBINE REPAIR OFFICE	3
TP2	CONDENSATE DEMINERALIZER AREA	3
TP3	CONDENSATE DEMINERALIZER TANK ROOM	4
TPE	REGEN TANK ROOM ENTRANCE AREA	3
TS2	STEAM JET AIR EJECTOR ROOM	3
TTA	TRUNNION ROOM GENERAL ALL AREAS	4
TU2	TB NORTH MEZZANINE	3
Augmented Offgas System Components		
AY8	AOG NORTH ACCESS AREA (AYFOGZI)	3
AYA	RECOMBINER ROOM 'A'	- 3
AYB	RECOMBINER ROOM 'B'	3
AYC	CHARCOAL ADSORBER ROOM	3
AYE	AOG PIPE TUNNEL \& SUMP AREA	4
AZ8	REFRIGERATION EQOT AREA ALL AREAS	3
AZA	HEPA FILTER ROOM 'A'	3
AZC	AOG CONTROL ROOM AREA	3
AZD	WATER REMOVAL TRAIN \#1 ROOM	3
AZE	WATER REMOVAL TRAIN \#2 ROOM	3
AZF	WATER REMOVAL TRAIN \#3 ROOM	3

TABLE F-2

OYSTER CREEK STN DESIGNATIONS AND ASSOCIATED UNIT COST FACTORS

 (continued)AREA
Augmented Offgas System Components (continued)
AZI
AOG BUILDING HVAC ROOM3

Miscellaneous System Components
BAA BOILER HOUSE ALL AREAS
BBA STACK ALL AREAS 13
BDA RAGEMS I BUILDING . 3
CAA CONDENSATE STORAGE TANK 3
DAA CHEMISTRY LA GENERAL ALL AREAS 3
DAC CABLE SPREADING ROOM EL.36-0 3
DGB DIESEL GENERATOR \#1 \& \#2 W/ STORAGE TANK 1
DOT . DIRTY OIL TANK . 1
DPH14.6 DILUTION PUMP HOUSE . 1
DPH6-0 DILUTION PUMP HOUSE 1
DWF DOMESTIC WATER FACILITY 1
FWP . FRESH WATER PUMP HOUSE 1
GAA NORTH GUARD HOUSE AND PARKING LOT 1
GCA MAIN GATE SECURITY BUILDING AND PARKING LOT 1
MAA NMB ;HOT MACHINE SHOP 3
MBA NMB RWP OFFICE 2
MBS NMB HOT TOOL ROOM 2
MBT RESP MAINT FACILITY 2
MS23-6 MACHINE SHOP 1
MS34-6 HEALTH PHYSICS STORAGE AREA 1
MSROOF MACHINE SHOP ROOF 1
NMBROOF HOT MACHINE SHOP ROOF AREA 1
OB35-0 OFFICE BUILDING A/B BATTERY ROOM 1
OB46-6 OFFICE BUILDING 1
OBROOF OFFICE BUILDING ROOF 1
PTB23-6 PRETREATMENT BLDG 1
RSFROOF SERVICE HEAD ROOF 2
WAA LLRWSF 2
WHS CONTROL ROOM 1
YDA DRYWELL PROCESSING FACILITY 2
YFA YARD LAUNDRY TRAILER 2
YLA YARD RADWASTE SHIPPING CENTER 2
INTAKE STR INTAKE STRUCTURE 1
UYARD YARD 2
YARD AREAS YARD AREAS 1

APPENDIX G
 WORK AREA DESIGNATION
 GPU SURVEY TRACKING NUMBER (STN) INDEX

GPU STN INDEX

INDEX

REACTOR BUILDING

RAA RX BLDG.-GENERAL ALL AREAS
BELOW 23' ELEVATION

RB1	-19' ELEVATION TORUS ROOM-GENERAL ALL AREAS
RBB	CONTANMENT SPRAY PUMP ROOM NE (1-1 \& 1-2) AND 1-6 SUMP
RBC	CONTAINMENT SPRAY PUMP ROOM SE (1-3 \& 1-4) AND 1-7 SUMP
RBE	CONTROL ROD DRIVE (CRD) SYSTEM PUMP ROOM (RK-04) AND " A " \& "C" CORE SPRAY PUMPS
RBF	RX BLDG. EQUIPMENT DRAIN TANK (RBEDT) ROOM AND "B" \& "D" CORE SPRAY PUMPS
RBO	INSIDE TORUS-GENERAL ALL AREAS
RBS	TOP OF TORUS-GENERAL ALL AREAS
23' ELEVATION	
RCT	23' ELEVATION-GENERAL ALL AREAS
RCl	SE AIRLOCK AND STAIRS
RC2	ELEVATOR PIT
RC5	RX BLDG. TRUCK (RAILROAD) BAY AIRLOCK
RC6	DRYWELL LABYRINTH \& FRONT OF DRYWELL SHIELD DOORS
RCA	NORTH SCRAM DISCHARGE VOLUMETORUS ACCESSAORTH WEST CORNER
RCB	LAB DRAIN TANK/LAUNDRY (NV-36) DRAIN TANK \& PUMP (NV-40)
RCD	NORTH BANK CRD ACCUMULATORS (HUC'S) \& NORTH WEST ACCESS
RCG	NORTH CONTAINMENT SPRAY HEAT EXCHANGERS ($1-1$ \& $1-2$)
RCJ	CONTROL ROD DRIVE (CRD) SYSTEM FILTER \& VALVING AREA

GPU STN INDEX

 (Continued)
INDEX

REACTOR BUILDING

23' ELEVATION - CONTINUED
RCM SOUTH CONTANMENT SPRAY HEAT EXCHANGERS (1-3 \& 1-4) \& FRONT OF TRUCK (RAILROAD) BAY AIRLOCK
RCN SOUTH BANK OF CRD ACCUMULATORS (HCU'S) RCS SOUTH SCRAM DISCHARGE VOLUME AREA/ CORE SPRAY BOOSTER PUMPS /TORUS VACUUM BREAKERS

38' ELEVATION
RDM : TIP SYSTEM AREA-GENERAL RD8 SHUTDOWN COOLING PUMP ROOM-GENERAL

51' ELEVATION

REY	SI' ELEVATION-GENERAL ALL AREAS
REC	INSTRUMENT RACK RK-03 AREA \& CORE
	SPRAY BOOSTER PUMPS
REF	SHUTDOWN COOLING HEAT EXCHANGER
	ROOM
REH	QA/QC STORAGE AREA \& NITROGEN
	COMPRESSOR AREA
REI	TOOL CRIB \& LAYDOWN AREA
REL	RX BLDG. CLOSED COOLING WATER (RBCCW)
	HEAT EXCHANGER \& PUMP AREA
REM	SOUTH EAST ACCESS AREA
REO	CLEANUP SYSTEM HEAT EXCHANGER ROOM
REQ	CLEANUP SYSTEM PUMP AREA
RER	CLEANUP SYSTEM VALVE NEST
RET	CLEANUP FILTER SLUDGE TANK ROOM AND
	HALLWAY
REV	AREA OVER STEAM TUNNEL
REW	RK-01 INSTRUMENT RACK
REX	RK-02 INSTRUMENT RACK

GPU STN INDEX

 (Continued)
INDEX

REACTOR BUILDING - CONTINUED

75' ELEVATION

RFB SE GENERAL AREA (CLEANUP SURGE TANK IN OVERHEAD)
RFC CLEANUP VALVE AISLE \& CONTROL AREA
RFF CLEANUPSYSTEM FILTER TANK/RK-0S INSTRUMENT RACK/TANK AREA
RFH OLD FUEL POOL HEAT EXCHANGER \& PUMP AREA.
RFJ AUGMENTED (NEW) SPENT FUEL POOL HEAT EXCHANGER \& PUMP AREA
RFL CONTROL ROD DRIVE (CRD) REBUILD ROOM/ WASH TANK AREA
RFN EMERGENCY CONDENSER VALVE (OVERHEAD) AREA/CRD STORAGE \& STAGING AREA
RFQ 75' ELEVATION-GENERAL ALL AREAS REW RK-01 INSTRUMENT RACK-SEE 51' RX BLDG. MAP

95' ELEVATION

RGA LICENSED SOURCE STORAGE CAGE
RGC NE ACCESS AREAREACTOR BLDG. CLOSED COOLING WATER (RBCCW) SURGE TANK
RGD "A" \& "B" EMERGENCY CONDENSER AREA
RGF RECIRC SEAL REBUILD ROOM
RGI SOUTH EAST AREA
RGL SOUTH WEST AREA
RGP CLEANUP DEMINERALIZER VAULT
RGR LIQUID POISON TO NORTH CORRIDOR
RGU 95' ELEVATION-GENERAL ALL AREAS
119' ELEVATION

RH1	NORTH FLOOR AREA/SKIMMER SURGE TANK/
	OBSERVATION TOWER
RH2	WEST FLOOR AREA
RH3	119' ELEVATION-GENERAL ALL AREAS

INDEX

REACTOR BUILDING

- 119' ELEVATION - CONTINUED

RH4	RXBLDG. CRANE
RHS	RXBLDG. ROOF
RH6	ELEVATOR CONTROL/EQUIPMENT LANDING
RHA	AREA
REACTOR CAVITY	
RHB	SPENT FUEL POOL
RHC	NEW FUEL STORAGE
RHD	EQUIPMENT STORAGE POOL (ESP)
RHJ	CASK WASHDOWN/DECONTAMNATION/
RHX	NORTHEASTFLOOR AREA
ROUTH FLOOR AREA.	
RHY	SOUTH EAST FLOOR AREA
RHL	REFUEL BRIDGE

DRYWELL

IGA	DRYWELL-GENERAL ALL AREAS
IAA	13' ELEVATION-ALL AREAS EXCEPT CRD ROOM
IAC	13' ELEVATION - CRD ROOM
IBA	23' ELEVATION
IBB	DRYWELL AIRLOCK
ICA	46' ELEVATION
IEA	82' ELEVATION
RC6	DRYWELL LABYRINTH \& FRONT OF DRYWELL SHIELDDOORS

TURBINE BUILDING

TAA	TURBINE BLDG.-GENERAL ALL AREAS
TB2	BASEMENT SOUTH-GENERAL ALL AREAS
TC2	CONDENSER BAY-GENERAL ALL AREAS
TE2	SPARE EXCITER AREA-GENERAL ALL AREAS
TEE	4160 VOLT ROOM
TEG	RAD CON COUNT ROOMTURBINE BLDG. EXIT
TF2	FEEDPUMP ROOM-GENERAL ALL AREAS

GPU STN INDEX

 (Continued)
TURBINE BUILDING - CONTINUED

TFG	OFF GAS SAMPLE AREA
TG2	CONDENSATE PUMP PIT-GENERAL ALL AREAS
TH2	HEATER BAY-GENERAL ALL AREAS
TKA	NE PASSAGEWAY \& NE HALLWAY
TL2	HILO CONDUCTIVITY ROOM-GENERAL ALL
	AREAS
TMA	MECHANICAL VACUUM PUMP ROOM
TN2	BASEMENT NORTH-GENERAL ALL AREAS
TO2	TURBINE BLDG. OPERATING FLOOR (TBOF)-
	GENERAL ALL AREAS
TOW	WEST\& NORTH WEST ROOF AREA
TOX	TURBINE RAGEMS BUILDING
TOY	TURBINE REPAIR OFFICE
TOA	HEATER BAY ROOF
TOS	TURBINE FLOOR TOOL ROOM
TOV	CONTAMINATED (HOT) \& C SHOP
TOR	BYPASS VALVE AREA BELOW TBOF
TP2	CONDENSATE DEMINERALIZER CONTROL
	ROOM-ALL AREAS
TP3	CONDENSATE DEMINERALLZER TANK ROOM-
	ALLAREAS
TPE	CONDENSATE DEMINERALIZER REGEN TANK
	ROOM-ALL AREAS
TS2	STEAM JET AIR EJECTOR ROOM-ALL AREAS
TTA	TRUNNION ROOM-GENERAL ALL AREAS
TU2	NORTH MEZZANINE-ALL AREAS

NEW RAD WASTE

N2G	NEW RAD WASTE-GENERAL ALL AREAS
N2P	PENTHOUSE \& ROOF

TLG Services, Inc.

GPU STN INDEX

(Continued)

INDEX

NEW RAD WASTE

23' ÉLEVATION - CONTINUED
N3I \#2 SUMP ROOM - DS-P-4A, DS-P-4B
N3N SOUTH OPERATING GALLERY/VALVE AREA PIPE CHASE
N3P HP-P-1A HIGH PURITY PUMP ROOM
N3Q WC-P-1B WASTE CHEM PUMP ROOM
N3R VALVE AREA WEST/WASTE CHEM VALVE AREA
N3S WC-P-1A WASTE CHEM PUMP ROOM
N3T \#I SUMP ROOM DS-P-3A, DS-P-3B
N3U "A" EVAPORATOR
N3W "B" EVAPORATOR
N3Y NRW HEAT EXCHANGER BLDG.-GENERAL ALL AREAS
7EB 1-3 SUMP
38' ELEVATION

N48	38' ELEVATION-GENERAL ALL AREAS
N4A	"A" HOLD-UP TANK/SL-T-3A ROOM (ACCESS
	FROM FILL AISLE)
N4B	"B" HOLD-UP TANK/SL-T-3B ROOM (ACCESS
	FROM FILL AISLE)
N4D	PIPE/VALVE GALLERY SOUTH \& EAST
N4E	LARGE CONTAINER FILL SKID ROOM SL-Y-6
N4F	CLW PROCESS VALVE AREA
N4G	CLW VALVING ROOM
N4H	SPENT RESIN TRANSFER PIPING ROOM
N4K	SPENT RESN VALVE GALLERY
N4L	PIPE GALLERY WEST/VALVE AREA RESURGE
	REGEN

48' \& 58' ELEVATIONS

N51	HP-D-1A DEMINERALIZER ROOM
N52	HP-F-2A RESIN TRAP ROOM
N53	HP-D-1B DEMINERALIZER ROOM
N54	HP-F-2B RESIN TRAP ROOM
N55	MEZZANINE VALVING AREA-58' ELEVATION

GPU STN INDEX (Continued)

INDEX

NEW RAD WASTE

```
48' & 58' ELEVATIONS - CONTINUED
```

N56	48' ELEVATION-GENERAL ALL AREAS
N5A	"A" CONCENTRATED LIQUID WASTE TANK ROOM SL-T-1A
N5B	"B" CONCENTRATED LIQUID WASTE TANK ROOM SL-T-1B
N5C	WC-F-1A CHEMICAL WASTE FILTER ROOM
N5D	HP-F-1A HIGH PURITY FILTER ROOM
N5E	WC-F-1B CHEMICAL WASTE FILTER ROOM
N5F	HP-F-IB HIGH PURITY FILTER ROOM
N5G	CONCENTRATED LIQUID WASTE PUMP S-P-1A ROOM
NSH	SL-T-1A/1B VALVE ALLEY
N51	CONCENTRATED LIQUID WASTE PUMP
	S-P-IB ROOM
NSJ	SAMPLE SINK AREA
N5K	NEUTRALIZATION FEED SKID AREA
N5N	LAUNDRY/DECON AREA
N50	FILTER PRECOAT/BODY FEED ROOM
N5P	SL-T-2A SPENT RESIN TANK
N5Q	SL-T-2B SPENT RESIN TANK
N5R	CONTROL ROOM (NEW RAD WASTE)
N5S	HVAC ROOM
NST	WC-T-1A CHEM WASTE/FLOOR DRAIN TANK
N5U	WC-T-1B CHEM WASTE/FLOOR DRAIN TANK
N5V	WC-T-1C CHEM WASTE/FLOOR DRANN TANK
N5W	CRANE BAY/STORAGE LAYDOWN AREA
N5X	HP-T-1A HIGH PURITY TANK ROOM
N5Y	WC-D-IA DEMISTER ROOM
. N5Z	WC-D-IB DEMISTER ROOM
7EB	1.3 SUMP

INDEX

OLD RAD WASTE

PAA	OLD RAD WASTE-GENERAL ALL AREAS
PBA	SMALL PUMP ROOM - ALL AREAS
PDA	35'\& 45' ELEVATION-CENTRIFUGE \& HOPPER
	ROOMS -ALL AREAS
PMA	OVERBOARD DISCHARGE MONITOR
PRD	KELLY BLDG. NV-37 FUEL POOL FLLTERS
PRA	ROOF-ALL AREAS
PSB	CONTROL ROOM (OLD RAD WASTE) \& PRECOAT
	ROOM-ALL AREAS
PTA	COMPACTOR ROOM-ALL AREAS
PTK	NORTH ACCESS OPERATING AISLE
PTP	DRUM STORAGE \& SCAFFOLD PLANNING-ALL
	AREAS
PUA	LARGE PUMP ROOM \& MEZZANINE-ALL AREAS
PUU	TANK ROOM-ALL AREAS
PVA	NORTH ANNEX KELLY BLDG.

AUGMENTED OFF GAS (AOG)

23' ELEVATION

AXA AOG GENERAL ALL AREAS
AY8 23' ELEVATION-GENERAL ALL AREAS
AYA "A" RECOMBNER ROOM
AYB "B" RECOMBINER ROOM
AYC CHARCOAL ABSORBER ROOM
AYE PIPE TUNNEL \& SUMP AREA
38' ELEVATION

AZ8	38' ELEVATION-GENERAL ALL AREAS
AZA	HEPA FILTER ROOM
AZC	CONTROL ROOM (AOG)
AZD	\#1 WATER REMOVAL TRAIN ROOM
AZE	\#2 WATER REMOVAL TRAIN ROOM
AZF	\#3 WATER REMOVAL TRAIN ROOM

AUGMENTED OFF GAS (AOG)

38' ELEVATION - CONTINUED

AZH	FLAME ARRESTOR ROOM
AZI	HVAC ROOM
AZJ	38^{\prime} STAIRWELL \& LANDING AREA

YARD

YAA YARD-GENERAL ALL AREAS
YDA DRYWELL (DW) PROCESS FACILITY \& BRIEF AREA
YFA LAUNDRY TRAILERS
YHA . RCT/GATE 20 TRAILER
YKA SCAFFOLD STORAGE SHED
YLA SHIPPING SURVEYS
BAA BOILER HOUSE-ALL AREAS
BBA STACK - ALL AREAS
BCA STACK PAD-ALL AREAS
BDA RAGEMS BUILDING-GENERAL ALL AREAS
PPA NRW PUMP HOUSE - ALL AREAS
UAB ORW OUTSIDE TANK MOAT AREA (HP-T-2A/2B \& WC-T-3A/3B)
UAS ORW SURGE TANK NV-04 \& PUMP AREA
7BA 1-12 SUMP AREA - GENERAL ALL AREAS
7CA TURBINE \& RX BLDG. TUNNELS-GENERAL. ALL AREAS
7DA ORW TUNNEL-GENERAL ALL AREAS
7EB - NRW TUNNEL-GENERAL ALL AREAS \& 1-3 SUMP
7FA HEPA FILTER ROOM UNDER ORW
7EB NRW 1-3 SUMP

CONDENSATE TRANSFER/TORUS WATER

STORAGE

CAA CONDENSATE WATER STORAGE TANK/ TORUS WATER STORAGE TANK (TWST) GENERAL ALL AREAS
INDEX
CONDENSATE TRANSFERTORUS WATERSTORAGE - CONTINUED
CBA CONDENSATE TRANSFER PUMP HOUSE - GENERAL ALL AREAS

MAC/NEW MAINTENANCE BUILDING

MAA HOT MACHINE SHOP
MAB CLEAN TOOL ROOM
MBA RWP OFFICE/MAC
MBS HOT TOOL ROOM MBT RESPIRATOR MANTENANCE FACILITY MGG NEW MAINTENANCE BLDG.-GENERAL ALL AREAS

LOW LEVEL RAD WASTE

WAA LOW LEVEL RAD WASTE STORAGE FACILITY
MAIN OFFICE/SERVICE BUILDING
DAA . CHEM LAB/PASS ROOM
DBA . 480 VOLT ROOM
DCA CONTROL ROOM
DDA THIRD FLOOR M\&C/EXIT
DEA MAIN OFFICE BLDG. ROOF
DFA OLD CABLE SPREADING ROOM
DQQ BATTERY ROOM/MG SET ROOM/ NEW CABLE SPREADING ROOM/OPS COORDINATION OFFICE/OFFICE BLDG./ SERVICE BLDG.GENERAL ALL AREAS

MISCELLANEOUS

GAA NORTH GATE GUARD HOUSE \& NORTH PARKING LOT

GPU STN INDEX
 (Continued)

INDEX

MISCELLANEOUS - CONTINUED

GCA	MAIN GATE GUARD HOUSE \& MAIN
	PARKING LOT
XEA	AUXILIARY OFFICE BUILDING (AOB)
	RAD CON \& SAFETY.
XFA	BLDG. - STATION SERVICES (SS)/
	INSTRUMENT \& CALIBRATION (I\&C) SHOP/
	FIRE PROTECTION DEPT.-NOT INCLUDING
	COUNT ROOM/TURBINE BLDG. EXIT)
XGA	SITE EMERGENCY BUILDING (SEB)
XIA	TOOL CALIBRATION TRAILER (OLD SS
	TRAILER)
XJA	REFUEL CAFE
XLA	MAINTENANCE FAB SHOPS
XMA	WAREHOUSE
YCA	AUXILIARY OFFICE BLDG. (AOB) CHEMISTRY
	LAB
YJA	BLDG. 4MECHANICAL WELDING SHOP
YSA	RADIAC TRAILER
ZFA	CONTRACTOR TRAILERS 90-105 @ NORTH
	GATE
ZHA	TRAILER 300 COMPLEX @ NORTH GATE
ZJA	FORKED RIVER SITE
QQQ	MISCELLANEOUS - GENERAL ALL AREAS

[^0]: 1 "Decommissioning Cost Estimate for the Oyster Creek Nuclear Generating Station," Document No. G01-1271-003, TLG Services, Inc., February 1999.
 2 U.S. Code of Federal Regulations, Title 10, Parts 30, 40, 50, 51, 70 and 72 "General Requirements for Decommissioning Nuclear Facilities," Nuclear Regulatory Commission, Federal Register Volume 53, Number 123 (p 24018 et seq.), June 27, 1988.

[^1]: Power Reactors," Nuclear Regulatory Commission, Federal Register Volume 61, (p 39278 et

[^2]: 7 T.S. LaGuardia et al., "Guidelines for Producing Commercial Nuclear Power Plant Decommissioning Cost Estimates," AIFNESP-036, May 1986.
 8 Project and Cost Engineers' Handbook, Second Edition, American Association of Cost Engineers, Marcel Dekker, Inc., New York, New York, p. 239.

[^3]: 9 "Low-Level Radioactive Waste Policy Act of 1980," Public Law 96-573, 1980.
 10 "Low-Level Radioactive Waste Policy Amendments Act of 1985," Public Law 99-240, 1986.
 ${ }^{11}$ "Nuclear Waste Policy Act of 1982 and Amendments," U.S. Department of Energy's Office of Civilian Radioactive Management, 1982.

[^4]: 12 "Technical, Schedule, and Cost Uncertainties of the Yucca Mountain Repository Project," GAO-02-191, December 2001.
 "Domestic Licensing of Production and Utilization Facilities," U.S. Code of Federal Regulations, Title 10, Part 50.54 (bb).

[^5]: 1 Waste is classified according to the requirements as delineated in Title 10 CFR , Part 61.55
 2 Columns may not add due to rounding.

[^6]: 1 Waste is classified according to the requirements as delineated in Title 10 CFR, Part 61.55
 2 Columns may not add due to rounding.

[^7]: 1 Waste is classified according to the requirements as delineated in Title 10 CFR, Part 61.55
 2 Columns may not add due to rounding.

