*	JAN 1 5 1986	WMGT r/f NMSS r/f REBrowning	MRKnapp PSJustus MFliegel JTrapp & r/f
STRUCTURE TRIP REPORT	- 1 -	MBell HMiller TVerma	RLee AIbrahim
MEMORANDUM FOR:	Malcolm Knapp, Chief WMGT	JLinehan, WMRP RJohnson JKennedy	FRoss JGreeves MTokar
FROM:	John Trapp, Richard Lee, and Fred Ross, WMGT		JPearring PDR
SUBJECT:	TRIP REPORT - STRUCTURE A DURO BASIN: MEETING WITH		

On November 19-21, 1985, members of WMGT staff and their technical assistance contractors met with DOE and their contractors at the Parke University Motel in Columbus, Ohio to discuss the geologic structure of the Palo Duro Basin, Texas.

The purpose of the meeting was to examine the existing data that serves as the basis for interpretations of structural features in the Palo Duro Basin as presented in DOE contractor reports. The emphasis of the meeting was to evaluate the structural configuration and tectonic history of the basin. Principle meeting objectives were to determine the availability of data for structural interpretations, the differences in published interpretations, the significance of these differing interpretations, and methods for resolving these differences.

Enclosed are copies of the list of meeting attendees (Enclosure 1), the meeting agenda (Enclosure 2), the signed meeting summary (Enclosure 3), and copies of all presentation materials (Enclosure 4). Since these enclosures are quite extensive, they have only been provided to Mr. Browning and the DCC. Additional copies are available in the offices of Robert Johnson and John Trapp.

8606160 PDR W/ WM-16	0002 860115 ASTE PDF	2	John Trapp, WMGT Richard Lee, WMGT Abou-Bakr Ibrahim, WMGT S Fred Ross, WMGT			Whit Project 16 Docket No	
Enclo As St	sures: ated			Distrib	ution:		
				(Retur	n to WM, 623-SS)	
	WMGT	WMGT	:WMGT	:	:	:	
ME :JTrapp;mt	:RLee	Albrahim	FRoss	:	;	************	
TE :86/01/14	:86/01/14	:86/01/ /4	:86/01/	****	::	1.303	

ł

Que memo to konpri fin. L'api 1/15/96

106

SUMMARY OF NRC/DOE MEETING ON THE STRUCTURE AND TECTONICS OF THE PALO DURO BASIN

Date/Location November 18-21, 1985 Park University Hotel Columbus, OH

Attendees/Organizational Affiliation

A list of attendees and their organizational affiliations is attached as Enclosure 1.

Background/Facts

The meeting agenda (Enclosure 2) gives the meeting objectives and the topics discussed and the name and affiliation of the presentors. Enclosure 3 consists of all of the handouts and copies of the viewgraphs presented; each package is identified by the person making the presentation and a number which is shown on Enclosure 2. During the course of the meeting proprietary and DOE aquired seismic reflection data were made available for review. Enclosure 4 lists which portions of this data reviewed by NRC staff and contractors.

Observations

The NRC had the following observations:

- A significant amount of data available for structural interpretations of the Palo Duro Basin consists of boring logs of oil exploration wells and seismic surveys conducted for oil exploration. As part of site screening activities of the entire basin, project specific seismic data were obtained utilizing acquisition parameters which emphasize resolution in the approximate 2000 to 6000 ft. depth range. As such, the inherent uncertainty and limitations of these data for detailed structural analysis are recognized particularly with respect to near-surface strata.
- 2. The nature and distribution of the seismic and boring data are such that some variations in interpretations are possible for both the data and the resultant structural features.
- 3. Some available seismic data and remote sensing imagery, such as landsat and aerial photographs, do not appear to have been fully utilized. Much seismic data are proprietary in nature, and when approached by DOE contractors, the oil companies have refused to release the data. Other seismic data are known by DOE to be available from brokers; however, the quality and usefulness of this data is not well known. DOE should consider evaluating the availability and usefulness of all seismic data to determine if they can be obtained and if they are worth obtaining to assist in structural interpretations. It should be recognized that NRC has defined procedures for dealing with proprietary data. DOE may also wish to consider obtaining and evaluating other available remote sensing data such as various types and scales of aerial photography and radar imagery.

ł

- 4. In the development of their site characterization plans DOE should consider developing a comprehensive integration of the available data. The following data elements have been addressed to some degree; however, NRC considers the integration effort should include:
 - a. Development of a conceptual regional tectonic model(s) to evaluate various structural interpretations.
 - b. Evaluations of the possible effects of strike-slip faulting including both the ability to recognize such features and their effect on structural interpretations.
 - c. Evaluations of the role of the Matador Arch and Oldham Nose in the regional tectonic setting.
 - d. Evaluations of the relationship between fracture patterns observed in boreholes, outcrops, and remote sensing data including the limitations of the various methods in recognizing these features.
 - e. Modelling of gravity and magnetic data.
 - f. Evaluations of potential reactivation of structural features through geologic time including the upward change in structural expression such as progression from faulting to folding to fracturing which may be expected and variations in fracture density and orientations over areas of deep faults in comparison with unfaulted areas.
 - g. Providing more emphasis on evaluating the presence or absence of folds and their role in the tectonic history of the area.
 - h. Resolving difficulties in identifying basement.
 - i. Reevaluation of the boundaries and the resultant effect of the regional stress field between the approximately N 70° E maximum horizontal stress field of the mid continent to the approximately N-S stress field of the Rio Grande rift.
- 5. It appears that DOE's contractors have made significant progress in developing and implementing a viable QA program; however, NRC questions if traceability of information from study to study can yet be demonstrated. From the meeting presentations, it is NRC's impression that each study is providing some checks and documentation; however, there appears to be little to no effort to cross-check from one study to another. Examples that arose during the meeting include: criteria used to identify faults on seismic lines, criteria used to eliminate or modify faults presented in the published literature and subcontractor reports and criteria to select stratigraphic "picks" from borehole logs. DOE may wish to have its QA personnel consider this concern.

- 6. When planning for seismic reflection surveys NRC believes that:
 - a. Expanded coverage with seismic refraction profiling may provide much useful information concerning lateral and vertical variations of velocity values. Such information could be useful for 1) drill hole location optimization, 2) geohydrology characterization, and 3) planning of seismic reflections lines and evaluation of shallow reflection anomalies.
 - b. Dual programs may be desirable in certain areas to provide both shallow and deep structural data.
 - c. Shallow (less than 2000 feet) surveys should be considered in selected areas where the Alibates Fm is known to be faulted.
- 7. DOE should consider the usefulness and applicability of electrical and electromagnetic surveys in resolving structural and geohydrologic concerns.
- 8. Based on the DOE presentations of general types of planned site characterization studies, it appears to the NRC that current planning is focusing on developing site specific studies. It is not as apparent that the same attention has been given to also developing regional investigations important to understanding site performance. During future meetings in which proposed studies are discussed this subject needs additional clarification. This subject should be evaluated in light of the performance objectives of 10 CFR 60.
- 9. The NRC staff appreciates the effort of DOE in making available at this meeting the key personnel involved in the structural evaluation of the Palo Duro Basin. The knowledge and candor of the presentors helped assure the success of the meeting in accomplishing its objectives. The NRC staff wishes to thank all DOE participants for their effort.

The DOE had the following observations:

- 1. A common data base has been available to all SRP investigators for use in structural and stratigraphic interpretation; each study has utilized selected portions of the data base. The regional nature of the currently available borehole information and seismic surveys permit conflicting structural interpretations.
- SRP recognizes a need to develop a uniform approach to evaluation and interpretation of geotechnical data (i.e., criteria for (1) picking formation "tops" from geophysical logs, (2) picking faults on Palo Duro seismic sections, (3) assigning geologic horizons to seismic data, and (4) "time to depth" conversions.)

- 3. It is important to obtain seismic data optimized for both basement structure and shallow structures (repository horizon and above). These two needs lead to conflicting requirements for data acquisition parameters if a single seismic survey is to be used. Consideration should be given to separate surveys for deep and shallow data.
- 4. The exploration geophysics industry (particularly seismic), is needed by the program because of their expertise, capital equipment, and software. However, the industry's procedures and software are largely proprietary and do not fully comply with the program's general requirements for QA. Nor can the industry be expected to comply by revealing their proprietary programs. Some agreement between NRC and SRP is desirable before site characterization activities to identify the acceptable applications of industry data.
- 5. The uncertainty in structural maps should be explicitly stated rather than relying solely on the indicated distribution of data points to suggest areas of greater or lesser control.
- 6. DOE needs to resolve the level of detail needed in structural tectonic models necessary at different phases prior of pre-licensing studies. Specifically, the interpretation of structures within the tectonic framework and the evaluation of performance objectives must be related to uncertainties inherent in the model.
- 7. There is the need to clearly define the implications to site performance of tectonism during various geologic periods.
- 8. Site studies require integration to achieve consistent conceptual models of geology, structure, and hydrology (e.g., structural control of geomorphic processes and depositional patterns, and interrelationship of the geologic framework to hydrogeologic processes.
- 9. Available remote sensing data have not been utilized and completely evaluated.
- 10. This meeting demonstrates the desireability of early technical interchanges between DOE and NRC to discuss existing data and uncertainties in interpretations. Such discussions are valuable to expedite the later review of the SCP.
- 11. It was noted that relatively little information exists concerning the Dockum Formation across the entire panhandle. Some approaches to enhancing our understanding of this unit include geological and structural mapping in areas of exposure (e.g., Canadian River Valley), and shallow reflection/refraction seismic surveys.

SUMMARY OF NRC/DOE MEETING ON THE STRUCTURE AND TECTONICS OF THE PALO DURO BASIN

Observations

The NRC had the following observations:

 A significant amount of data available for structural interpretations of the Palo Duro Basin consists of boring logs of oil exploration wells and seismic surveys conducted for oil exploration. As part of site screening activities of the entire basin, project specific seismic data were obtained utilizing acquisition parameters which emphasize resolution in the approximate 2000 to 6000 ft. depth range. As such, the inherent uncertainty and limitations of these data for detailed structural analysis are recognized particularly with respect to near-surface strata.

<u>Response</u>: DOE recognizes the inherent limitations of existing seismic data. The regional database was intended to provide a basis for screening large land areas to define preferred study sites for detailed characterization and as such, are reconnaissance in nature. As indicated in DOE Observation 3, it is important, during site characterization, to obtain seismic data optimized for both basement structure and shallow structures (repository horizon and above). These considerations are currently being addressed in the planning of site characterization seismic data acquisition.

2. The nature and distribution of the seismic and boring data are such that some variations in interpretations are possible for both the data and the resultant structural features.

<u>Response</u>: This point is raised as DOE's Observation 1. The issue of greatest importance is the impact of any reasonable alternative interpretation on expected <u>site</u> performance. Site Characterization studies of local and regional structural elements will be based on overall site performance considerations (to be discussed in the SCP), not on questions of strictly academic interest. It may well turn out that the differing interpretations of regional structure based upon screening data have no impact on demonstrated release rates (and probabilities) from the candidate site.

3. Some available seismic data and remote sensing imagery, such as landsat and aerial photographs, do not appear to have been fully utilized. Much seismic data are proprietary in nature, and when approached by DOE contractors, the oil companies have refused to release the data. Other seismic data are known by DOE to be available from brokers; however, the quality and usefulness of this data is not well known. DOE should consider evaluating the availability and usefulness of all seismic data to determine if they can be obtained and if they are worth obtaining to assist in structural interpretations. It should be recognized that NRC has defined procedures for dealing with proprietary data. DOE may also wish to consider obtaining and evaluating other available remote sensing data such as various types and scales of aerial photography and radar imagery.

Response:

2 in

معمدون

- a. <u>Available Seismic Data</u> DOE has obtained representative, good quality seismic data of the site and region. It is recognized that additional brokered data exists and is desirable, particularly north of the site and over the Amarillo uplift. Further significant data at the site do not seem available through open channels with oil companies. Also, much of the available data is not of a quality (resolution at depths of interest) to be very useful to the program. Regarding seismic data owned by oil and gas exploration firms, it may be possible, on a case by case basis, to examine either the raw data or interpretations, but it is unclear how these proprietary lines can be used in an open, public program. DOE will continue to pursue this matter with NRC staff.
- b. <u>Remote Sensing Imagery</u> Some investigation of both satellite imagery and aerial photography of the Palo Duro Basin region has already occurred. The site has been flown at a detailed scale to permit construction of topographic maps for engineering design. DOE has recently received a subcontractor evaluation of landsat imagery of the Palo Duro region, and is performing a technical review of this study. As a result of this review, it is anticipated that additional remote sensing imagery analyses can be recommended which will be of use to the Salt Repository Project. A recent flyover was made of the Deaf Smith site using Side-Looking Airborne Radar (SLAR). This imagery, when available, will be evaluted to further utilize remote sensing within the Salt Repository Project.
- 4. In the development of their site characterization plans DOE should consider developing a comprehensive integration of the available data. The following data elements have been addressed to some degree; however, NRC considers the integration effort should include:
 - a. Development of a conceptual regional tectonic model(s) to evaluate various structural interpretations.
 - b. Evaluations of the possible effects of strick-slip faulting including both the ability to recognize such features and their effect on structural interpretations.
 - c. Evaluations of the role of the Matador Arch and Oldham Nose in the regional tectonic setting.
 - -d. Evaluations of the relationship between fracture patterns observed in boreholes, outcrops, and remote sensing data including the limitations of the various methods in recognizing these features.
 - e. Modelling of gravity and magnetic data.
 - f. Evaluations of potential reactivation of structural features through geologic time including the upward change in structural expression such as progression from faulting to folding to fracturing which may be expected and variations in fracture density and orientations over areas of deep faults in comparison with unfaulted areas.

- g. Providing more emphasis on evaluating the presence or absence of folds and their role in the tectonic history of the area.
- h. Resolving difficulties in identifying basement.
- i. Reevaluation of the boundaries and the resultant effect of the regional stress field between the approximately N 70° E maximum horizontal stress field of the mid continent to the approximately N-S stress field of the Rio Grande rift.

<u>Response</u>: DOE agrees that it is desirable to provide an integrated geological analysis with the site description in the Chapters 1 through 4 of the Site Characterization Plan (SCP). The points raised in this observation will be considered to the extent possible in the SCP.

5. It appears that DOE's contractors have made significant progress in developing and implementing a viable QA program; however, NRC questions if traceability of information from study to study can yet be demonstrated. From the meeting presentations, it is NRC's impression that each study is providing some checks and documentation; however, there appears to be little to no effort to cross-check from one study to another. Examples that arose during the meeting include: criteria used to identify faults on seismic lines, criteria used to eliminate or modify faults presented in the published literature and subcontractor reports and criteria to select stratigraphic "picks" from borehole logs. DOE may wish to have its QA personnel consider this concern.

<u>Response</u>: DOE has expended considerable effort over the past serveral years to develop a consistent and coordinated Quality Assurance (QA) program which meets the requirements of NQA-1 and 10 CFR 50, Appendix B. QA provides the means of documenting how an activity was conducted, i.e., the steps taken in each analysis leading to a specific interpretation. The key is to understand how varying the data reduction method changes the overall interpretation. It is recognized that as the program enters the site characterization phase to collect licensing information, it will be necessary to focus on a single approach to data interpretation (e.g., defined criteria for selecting formation tops from E-logs) by all contract research groups. Appropriate procedures will be developed for site characterization analytical work. However, some flexibility will still need to be provided to allow alternative approaches to be considered.

- 6. When planning for seismic surveys NRC believes that:
 - a. Expanded coverage with seismic refraction profiling may provide much useful information concerning lateral and vertical variations of velocity values. Such information could be useful for 1) drill hole location optimization, 2) geohydrology characterization, and 3) planning of seismic reflections lines and evaluation of shallow reflection anomalies.

- b. Dual programs may be desirable in certain areas to provide both shallow and deep structural data.
- *c. Shallow (less than 2000 feet) surveys should be considered in selected areas where the Alibates Fm is known to be faulted.

Response:

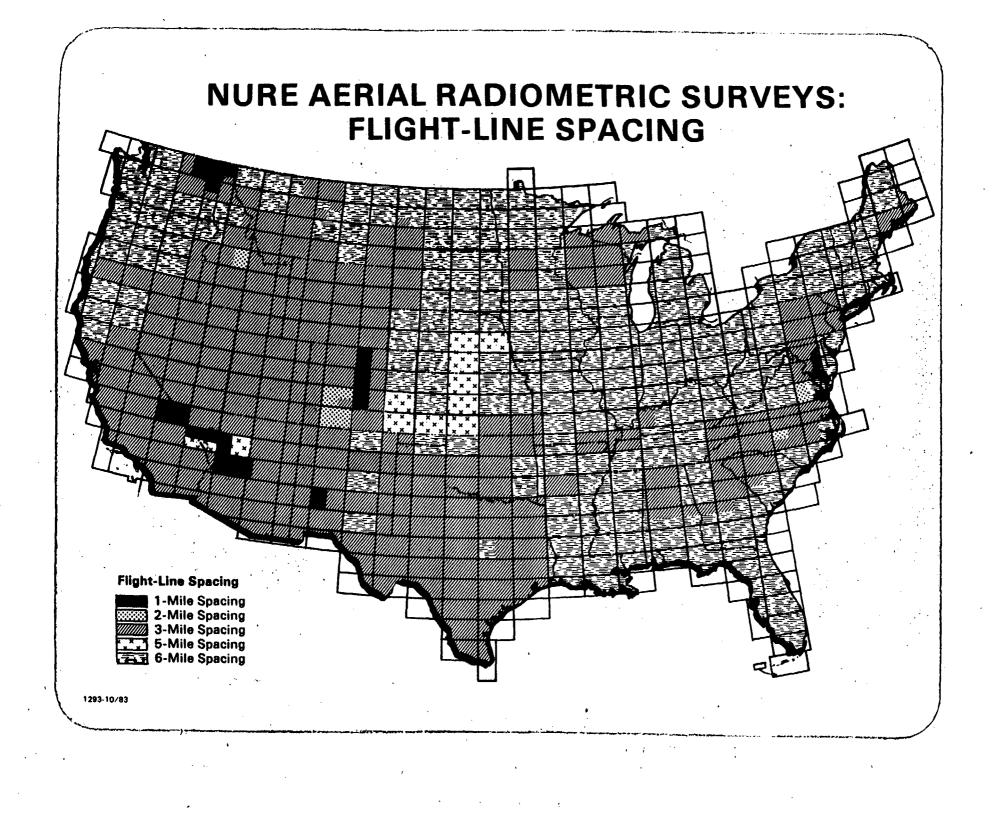
- a. Cost-benefit considerations are a mandated part of the repository program. Both reflection and refraction programs are planned to address either specific issues or to provide needed support for other studies.
 - Lateral and vertical variations of seismic velocity are probably insufficient to have any influence on optimizing the siting of drill holes. Sites will be selected to optimize the intended purpose for each hole, such as stratigraphic or hydrologic studies. Limited seismic work will be used to indicate that anamolous conditions are not present. Targeting an anomaly would be an exception.
 - (2) Hydrologists have indicated that the upper aquifer studies will require: elevations for the water table (available from existing water wells), the Ogallala-Dockum contact, and the base of the Dockum on about a 1/8-mile, or larger, grid. Variations in seismic velocity within the aquifer are not readily correlated with hydrologic parameters. The means to provide the desired data points will be considered in preparing the SCP.
 - (3) The reflection work will desire datum statics from refraction arrivals as an integral part of the reflection program, or will use a specialized refraction program to address datum statics only.
- b. Agree with NRC.
- c. Agree with NRC.

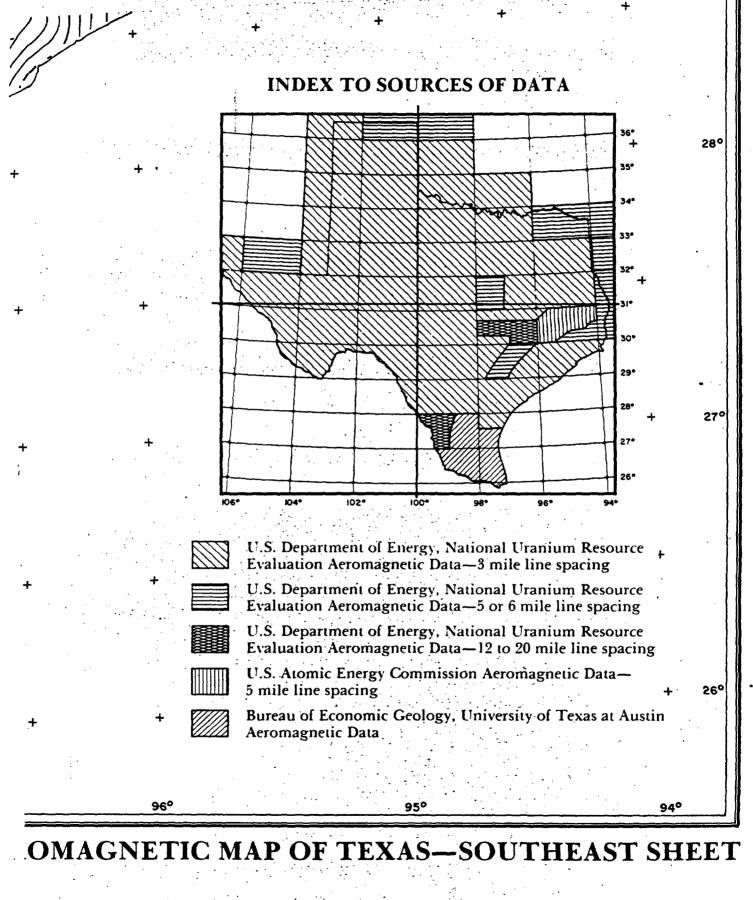
Plans and rationale will be provided in the SCP and subject to NRC review.

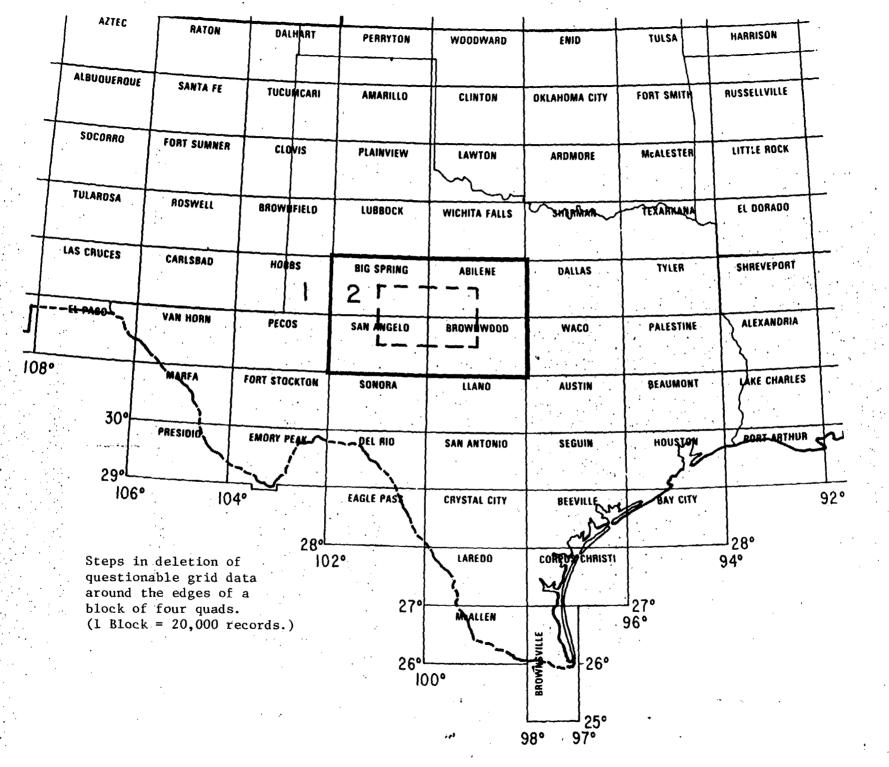
 DOE should consider the usefulness and applicability of electrical and electromagnetic surveys in resolving structural and geohydrologic concerns.

<u>Response</u>: The type of investigations to be conducted during site characterization will be matched to the issues to be resolved and overall site performance objectives. The SRP Issue Resolution Strategy, which will be presented in Section 8.2 of the SCP, will describe the type of information necessary to address questions of site performance. Associated field study plans will present the approach to collecting that information. All available geophysical survey techniques will be considered, as appropriate.

8. Based on the DOE presentations of general types of planned site characterization studies, it appears to the NRC that current planning is focusing on developing site specific studies. It is not as apparent that the same attention has been given to also developing regional investigations important to understanding site performance. During future meetings in which proposed studies are discussed this subject needs additional clarification. This subject should be evaluated in light of the performance objectives of 10 CFR 60.

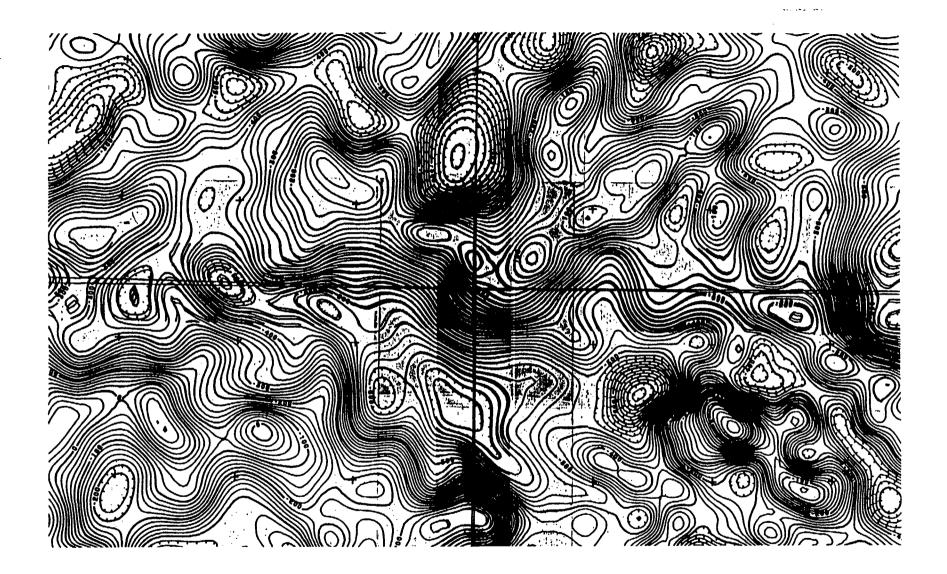

<u>Response</u>: SRP agrees with the need to evaluate site performance within a regional geologic context. However, the necessary level of detail for regional understanding is not well defined at this time. The SCP for the candidate salt site will describe what is known of the regional geology and important alternative interpretations. Chapter 8 of the SCP will define site performance objectives, and list the issues to be resolved through site characterization studies in order to demonstrate a level of site performance. Additionally, Chapter 8 will present what is believed to be a reasonable set of activities, including regional studies, to assure issue resolution. We look forward to further interactions with the NRC on this subject to assure that all substantive concerns and recommendations are accomodated.

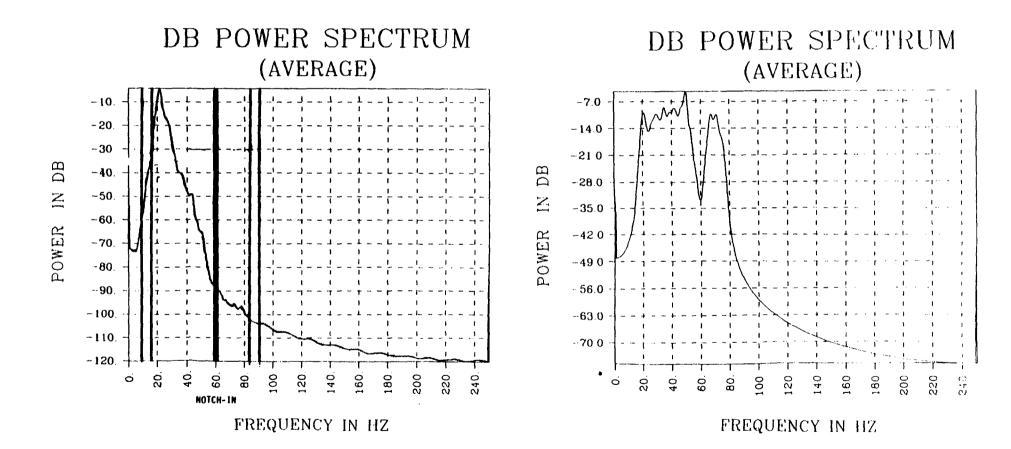

9. The NRC staff appreciates that effort of DOE in making available at this meeting the key personnel involved in the structural evaluation of the Palo Duro Basin. The knowledge and candor of the presentors helped assure the success of the meeting in accomplishing its objectives. The NRC staff wishes to thank all DOE participants for their effort.

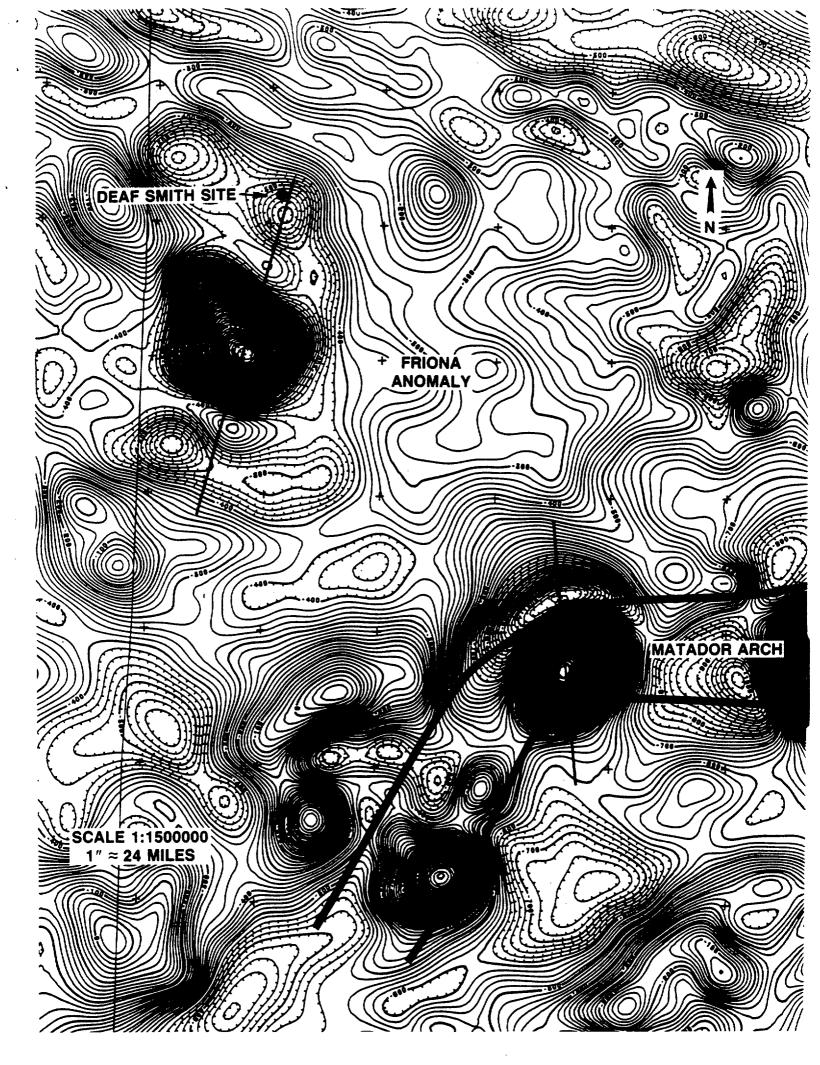

<u>Response</u>: SRPO concurs with the observation on the usefulness of this type of working meeting where all participants have an opportunity to discuss ideas in an open, professional environment. We would like to maintain this format for future discussions.

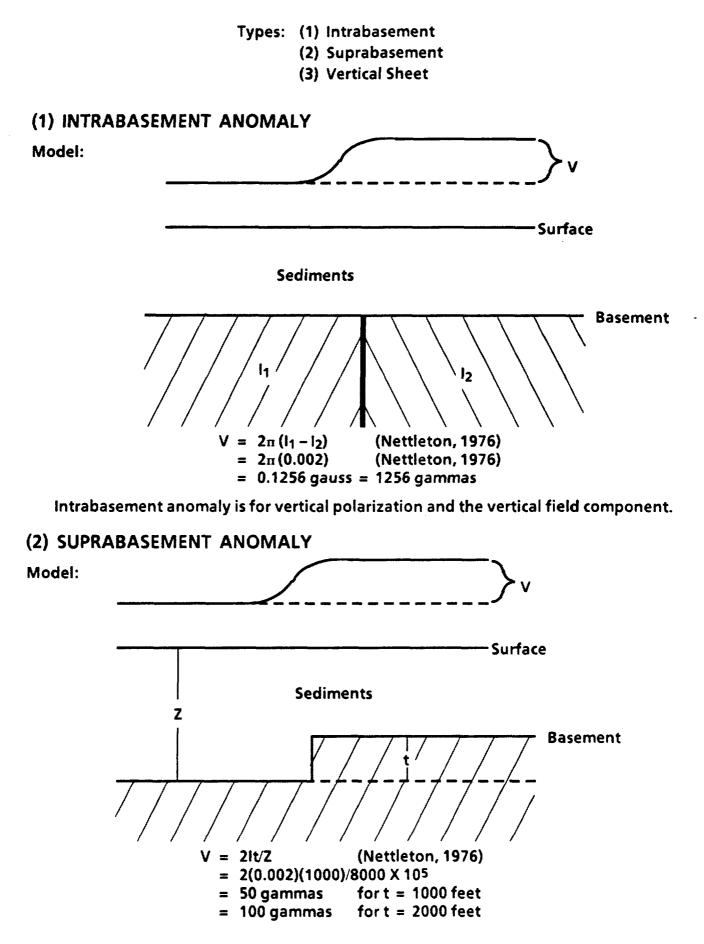
Bennett D

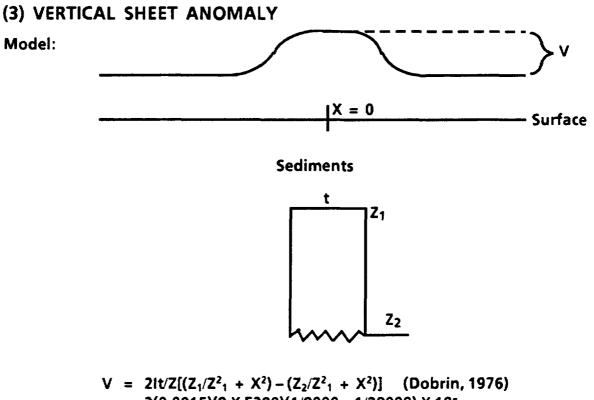
Contractor Supplied Data Ι. Spike Filter 2. 3. Critical Point Selection [GJBX 177(81)] 4. Line Adjust 5. Leveling 6. Coordinate Conversion 7. Gridding 8. Smoothing 9. Contouring 10. Drafting




• • • •

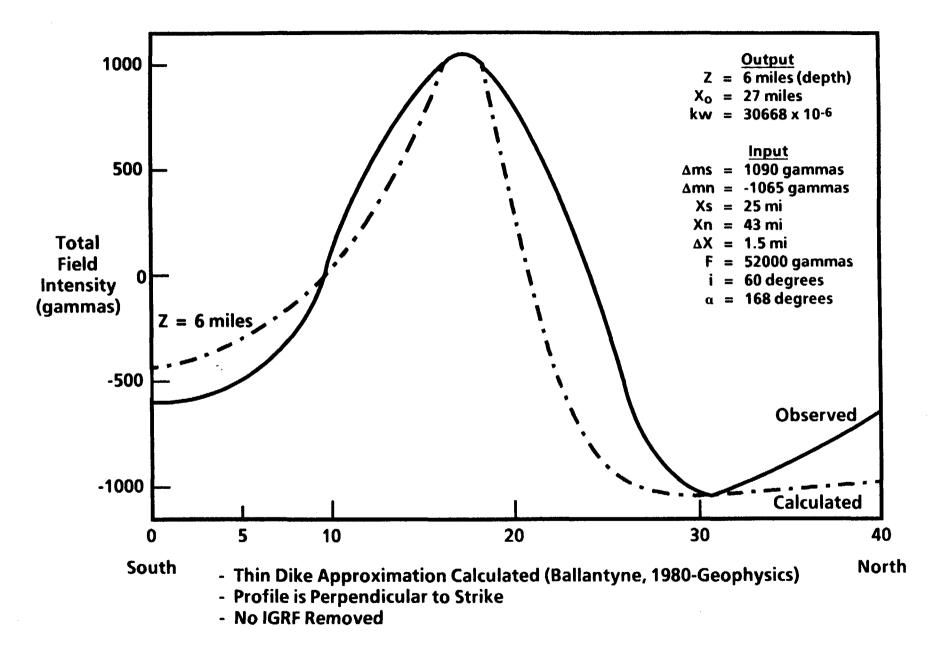

· ,


Demonstration of the ability of Bendix software to make separate maps that fit together. Shown are the portions of the four map sheets of the Texas map at their common corner. LINE O BEFORE REPROCESSING


LINE O AFTER REPROCESSING

MAGNETIC ANOMALY CALCULATIONS

- ¥

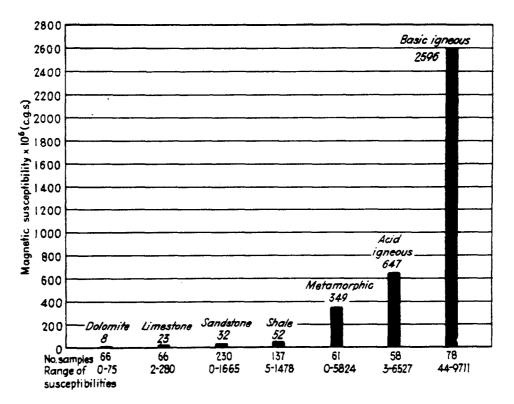

•

= 2(0.0015)(9 X 5280)(1/8000 – 1/28000) X 105 = 1273 gammas

This is for t = 9 miles, X = 0, I = 0.0015, $Z_1 = 8000$ feet, $Z_2 = 28000$ feet.

As for (1), anomalies calculated for (2) and (3) are for vertical polarization and for the vertical field component.

MATADOR ARCH TOTAL FIELD MAGNETIC ANOMALY


. .

CALCULATED SUSCEPTIBILITIES OF ROCK MATERIALS

Material	Minimum		Maximum		Average		Ilmenite, average	
	%	k × 10 ⁴	%	$k \times 10^4$	%	k × 10*	%	k × 10*
Quarts porphyrics	0.0	0	1.4	4,200	0.82	2,500	0.3	410
Rhyolites	0.2	600	1.9	5,700	1.00	3,000	0.45	610
Granites	0.2	600	1.9	5,700	0.90	2,700	0.7	1000
Trachyte-symites	0.0	0	4.6	14,000	2.04	6,100	0.7	1000
Eruptive nephelites	0.0	0	4.9	15,000	1.51	4.530	1.24	1700
Abyseal nephelites	0.0	0	6.6	20,000	2.71	8,100	0.85	1100
Pyroxenites	0.9	3000	8.4	25,000	3,51	10,500	0.40	5400
Gabbros	0.9	3000	3.9	12.000	2.40	7,200	1.76	2400
Monsonite-latites	1.4	4200	5.6	17,000	3.58	10,700	1.60	2200
Leucite rocks Dacite-quarts-	0.0	0	7.4	22,000	3.27	9,800	1.94	2600
diorite	1.6	4800	8.0	24,000	3.48	10,400	1.94	2600
Andenites	2.6	7800	5.8	17,000	4.50	13,500	1.16	1600
Diorites	1.2	3600	7.4	22,000	3.45	10,400	2.44	4200
Peridotites	1.6	4800	7.2	22,000	4.60	13,800	1.31	1800
Bessits	2.3	6900	8.6	26,000	4.76	14,300	1.91	2600
Diabases	2.3	6900	6.3	19,000	4.35	12,100	2.70	3600

Magnetite Content and Susceptibility, cgs units

SOURCE: L. B. Slichter and H. H. Stearn, "Geophysical Prospecting," Am. Inst. Mining Met. Engre., Trans., 1929.

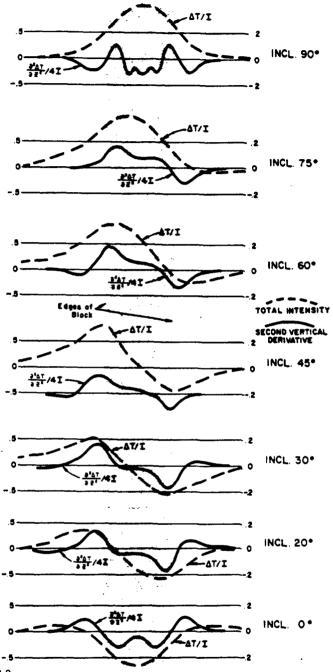
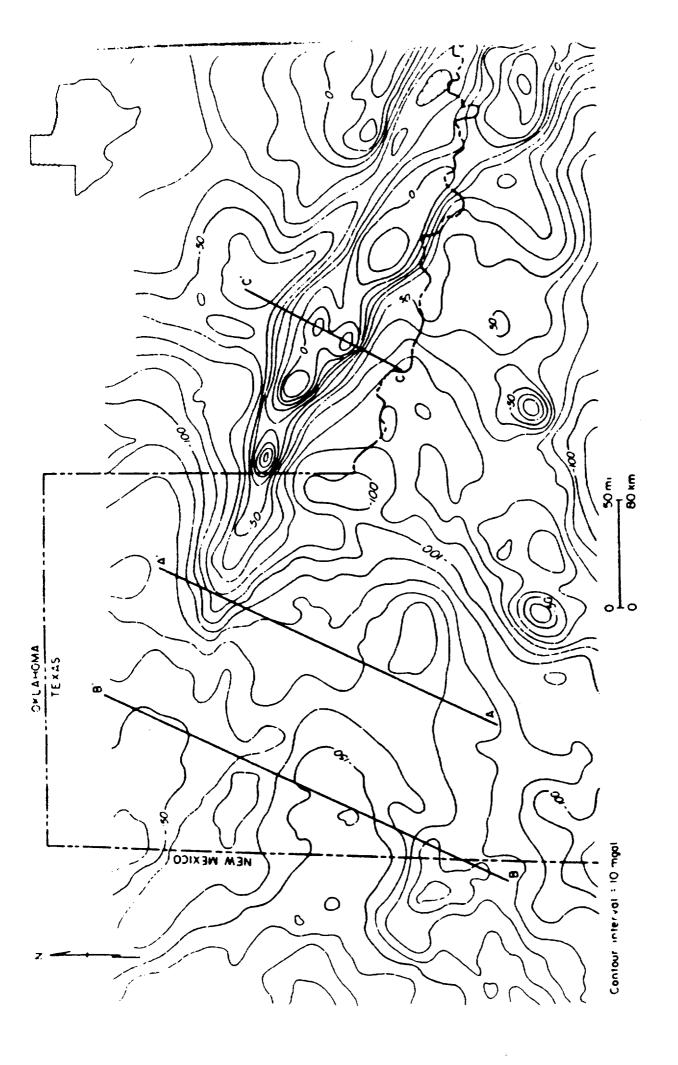


FIGURE 14-14

1


Average magnetic susceptibilities of surface samples and cores as measured in the laboratory. (Compiled by J. W. Peters, Mobil Oil Corp.)

FIGURES FROM DOBRIN, 1976

Profiles of magnetic and vertical derivative (curvature) fields on a north-south line across a prism with top at 1 unit depth, bottom at infinity, and for the various angles of inclination shown. All curves are for a body 8 depth units long (represented by the shaded area) and 6 units wide north to south. (From Vacquier et al., 1951.)

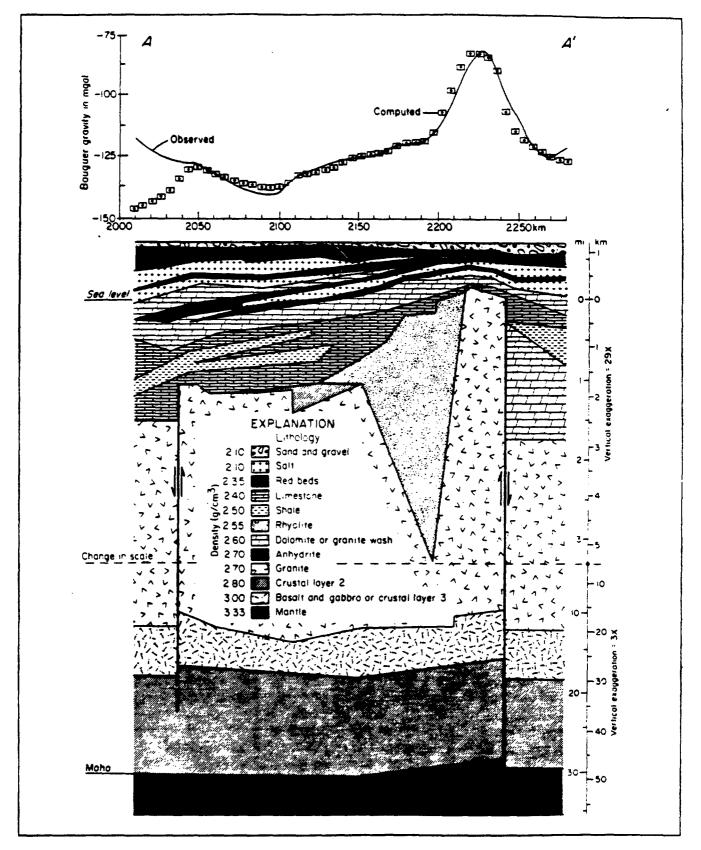


Figure 43. Gravity model A-A'. Cover-rock geometry is simplified from cross section D-D'; crustal layering and depth to Moho are taken from Stewart and Pakiser (1962), and the basement lithology is taken from Muehlberger and others (1967). See figure 42 for location.

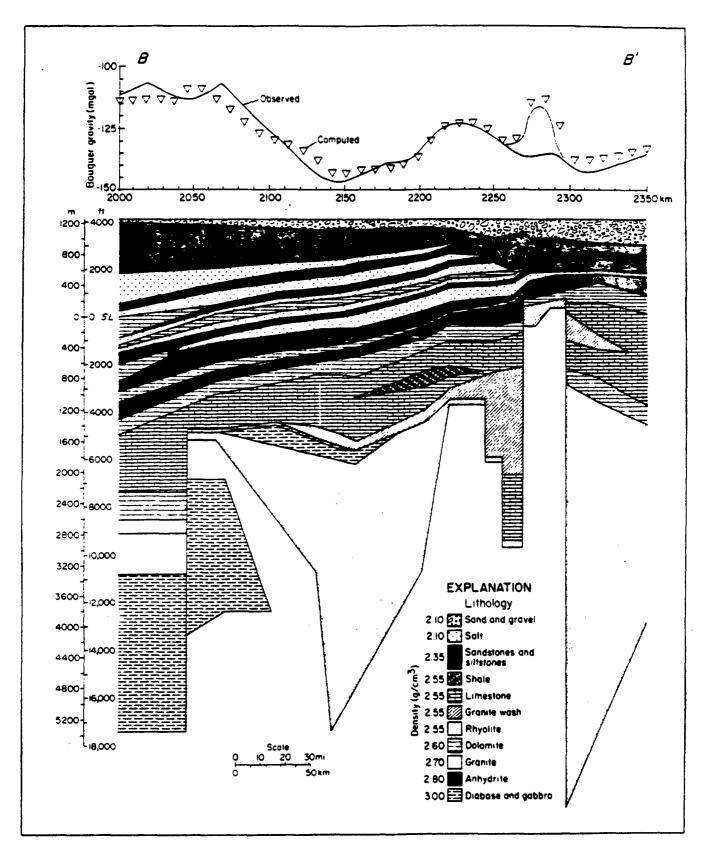


Figure 44. Gravity model B-B', modified from cross section B-B'. Shaded area on computed curve is a positive anomaly predicted from the model, which does not appear in the observed gravity. This requires that granites in this region be thin sills intruded into a deep rhyolite basin. See figure 42 for location.

Structural geology and tectonic history of the Palo Duro Basin and adjoining areas.

I. Introduction

The structural geology and tectonic history of the Palo Duro Basin is closely related to that of the adjoining areas. Therefore, to fully understand the structural development of the Palo Duro Basin it has been necessary to examine the history of deformation of not only of the basin and adjoining areas, but the entire region as well.

II. Structural geology of areas marginal to the Palo Duro Basin.

A. Amarillo Uplift -- a major positive structural element of the Ancestral Rocky Mountains: has been internally deformed into a series of horsts and grabens:

B. Whittenburg Trough -- deep pull-apart graben along south side of Amarillo Uplift:

C. Oldham-Harmon structural trend -- northwest-trending series of en echelon basement blocks that lie along the northern margin of the Palo Duro Basin;

D. Matador Arch -- east-west trending series of en echelon basement blocks that separate the Palo Duro and Midland Basins;

E. Roosevelt positive -- broad positive area that separates the Palo Duro and Tucumcari Basins.

III. Structural geology of the Palo Duro Basin.

A. The Palo Duro Basin is a structural low that occupies the southern part of the Texas Panhandle. It was a discrete depositional basin only during the Late Pennsylvanian.

B. Deformation appears to decrease southward from the Oldham-Harmon trend;

C. Structures within the basin are generally isolated positives and poorly defined lows:

1) Castro Trough -- northwest-trending low extending from Swisher County to Deaf Smith County:

2) Central Randall positive -- fault-bounded structure that probably typifies structures within the basin:

3) Deaf Smith County -- poor control, but there appear to be northwest- and northeast-trending faults.

D. Dominent structural grain is northwest-southeast, although northeast-southwest trending structures are locally important.

IV. Tectonic history of the Palo Duro Basin and surrounding region.

A. Tectonic history of the basin was defined using structural and stratigraphic data; information for the surrounding areas came primarily from published sources.

B. Deformation has been episodic; timing coincident with deformation of adjoining areas to east and west:

1. Proterozoic -- volcanism (1400 Ma), primarily rhyolite with related granite, similar rocks extend northeastward to Missouri.

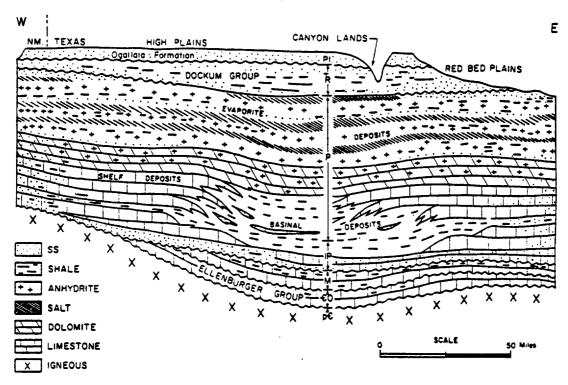
2. Cambrian -- rifting associated with opening of the Southern Oklahoma Aulacogen.

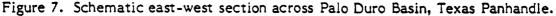
3. Cambrian to Early Devonian -- carbonate shelf.

4. Middle Devonian -- folding of the Texas Arch and Anadarko Basin; formation of regional unconformity.

5. Mississippian -- carbonate shelf.

6. Pennsylvanian -- Ancestral Rocky Mountain orogeny, formation of Palo Duro depositional basin: 75 miles left-lateral strike-slip faulting along Amarillo Uplift.


7. Permian -- regional subsidence associated with formation of the Permian Basin, transition from normal marine to restricted depositional conditions during Early Permian.


8. Triassic -- non-marine deposition during subsidence that was possibly associated with rifting in Gulf of Mexico.

9. Cretaceous -- very shallow marine to non-marine environments. No evidence of Laramide deformation.

10. Tertiary -- reactivation of basement structures during deposition of the Ogallala Formation in Late Miocene, coincident with Basin and Range deformation to the west.

11. Quaternary -- tectonic activity along Amarillo-Wichita Uplift, as indicated by seismicity in Whittenburg Trough; movement along Meers Fault in Oklahoma.

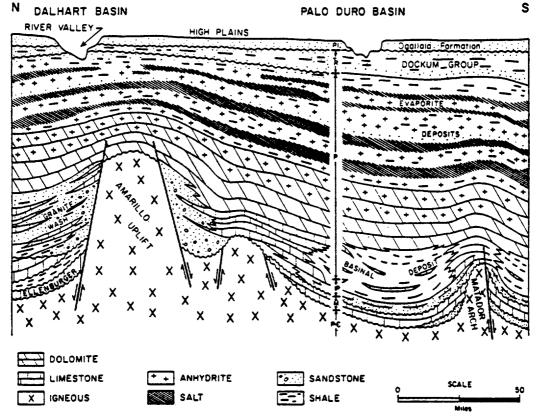


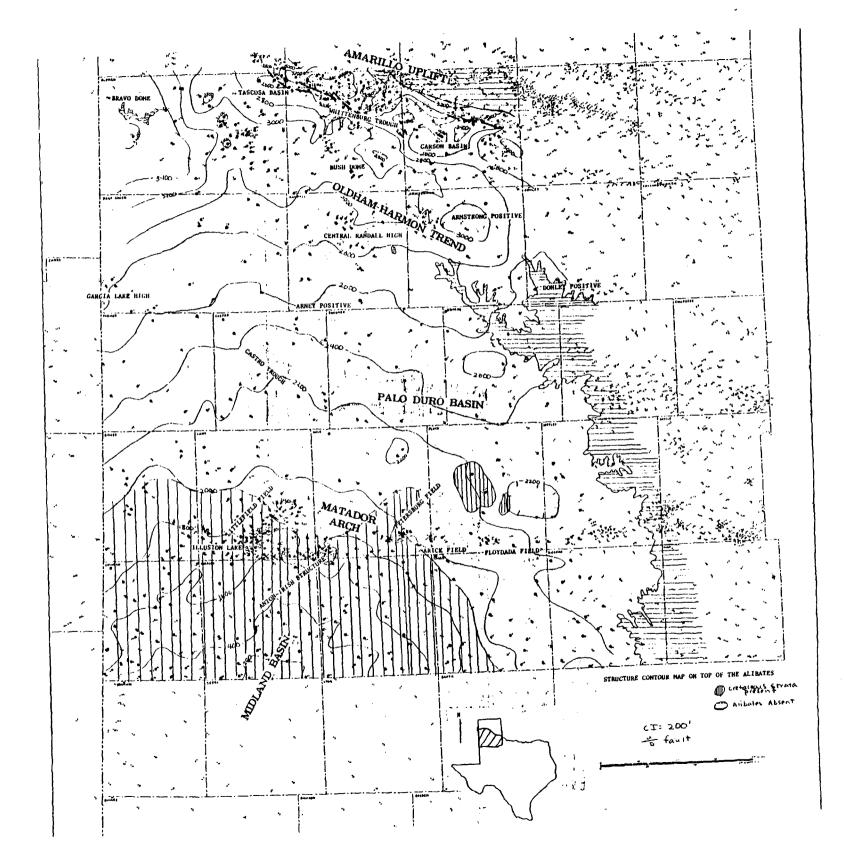
Figure 8. Schematic north-south section across Dalhart Basin, Amarillo Uplift, Palo Duro Basin, and Matador Arch, Texas Panhandle.

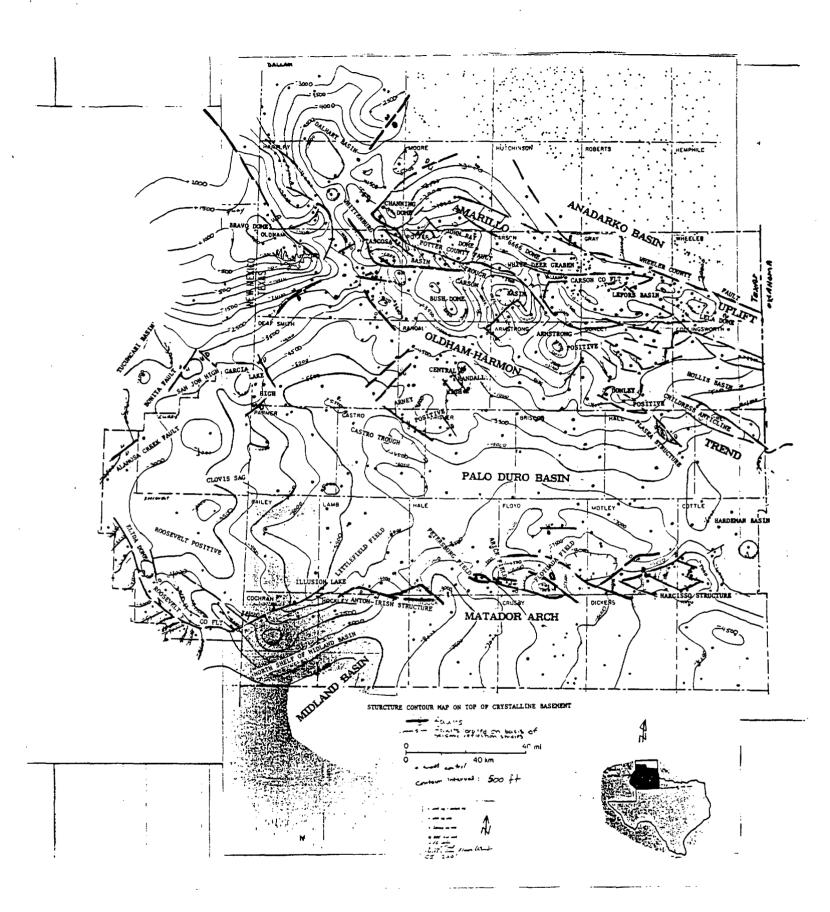
· · . .

			Data Dura Datia	Dalhart Basin	General Lithology	
SYSTEM	SERIES	GROUP	Palo Duro Basin FORMATION	FORMATION	and iii	
STOLEM	<u></u>	GROUP	alluvium, dune sand		depositional setting	
QUATERNARY	PLEISTOCENE		Piaya Tahaka "cover sands" Tule / "Playa"	alluvium, dune sand Playa "cover sands"	Locustrine clostics	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Tule / "Plays" Bianco	"Playa"	and windblown deposi	
TERTIARY	NEOGENE		Ogaliaia	Ogcilaio	Fluvial and lacustrine clastics	
CRETACEOUS			undifferentiated	undifferentiated	Marine shales and limestone	
TRIASSIC		DOCKUM			Fluvial-deltaic and locustrine clastics	
			Dewey Lake	Dewey Loke		
	OCHOA	<u>`</u>	Alibates	Alibates		
			Salado/Tansiil			
	ц ц		Yates			
	NLUP	ARTESIA	Seven Rivers	Artesia Group undifferentiated		
	GUADALUPE		Queen/Grayburg			
PERMIAN			San Andres	Blaine	Sabkha salt, anhydrite,red bed and peritidal dolomite	
	LEONARD	CLEAR FORK	Glorieta	Giorieta		
			Upper Clear Fork	Clear Fork		
			Tubb	}		
			Lower Clear Fork	undifferentiated		
			Red Cave	Tubb-Wichild Red Beds		
		WICHITA				
	WOLFCAMP		2			
? Z	VIRGIL	CISCO	rr	/	Chaif and	
NIA	MISSOURI	CANYON			Shelf and shelf-margin carbonate,	
PENNSYLVANIAN	DES	STRAWN			basinal shale, and deltaic	
	ATOKA				sondstone	
PE	MORROW	BEND				
MISSISSIP- PIAN	CHESTER	Ì			<u></u>	
	MERAMEC	1			Shelf carbonate and chert	
MISS	OSAGE					
ORDOVICIAN		ELLEN- BURGER			Shelf dolomite	
CAMBRIAN ?	T				Shoi low marine ( ) sandstone	
PR	ECAMBRIAN				Igneous and metamorphic	

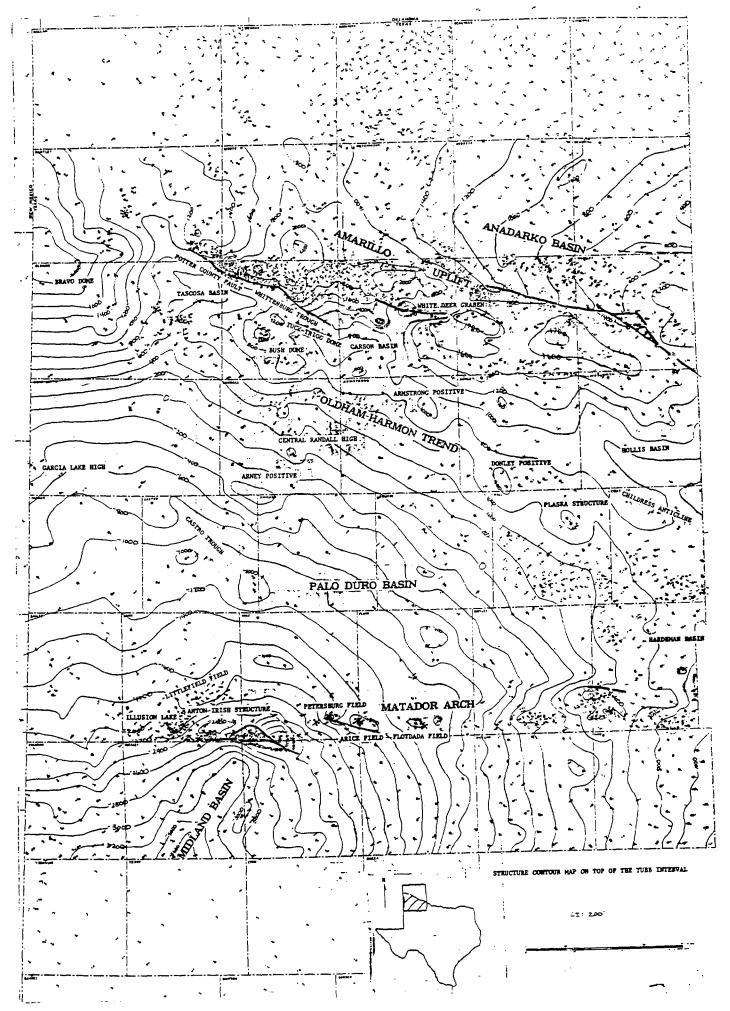
A Law I down

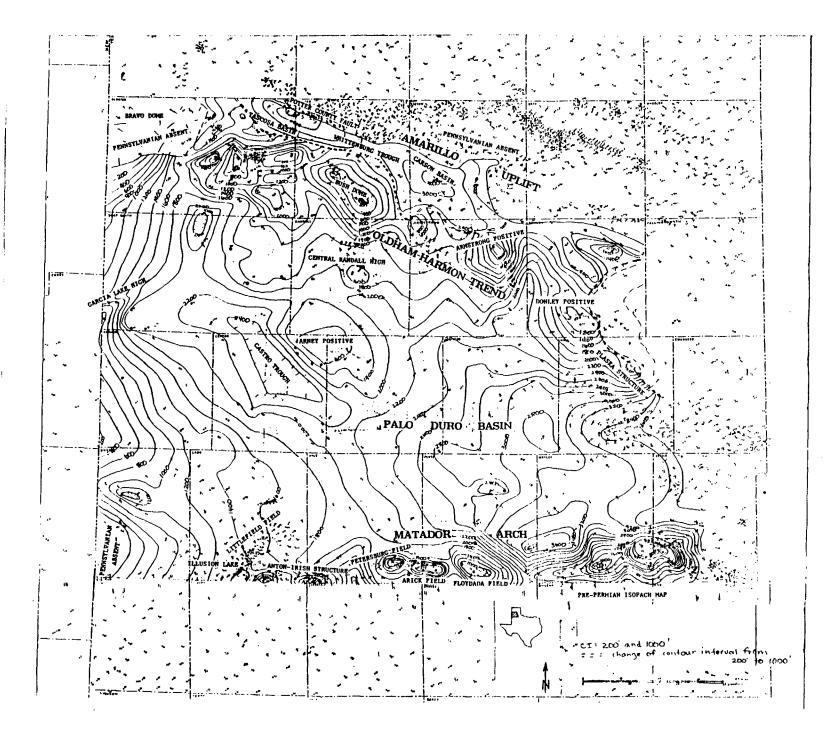
٠,

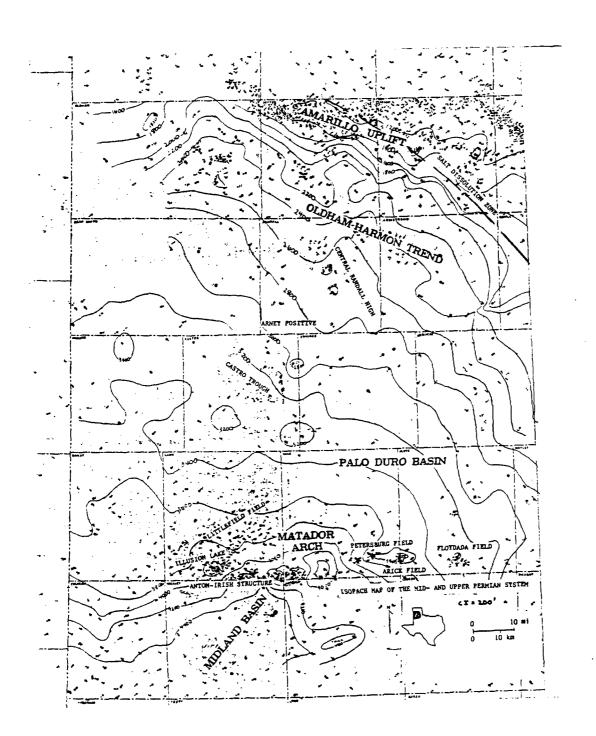

÷ ,


×

-

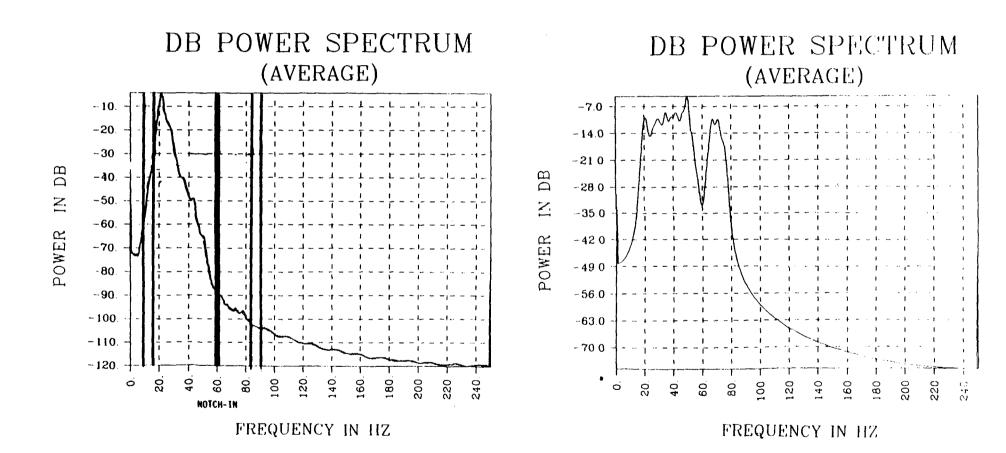

•

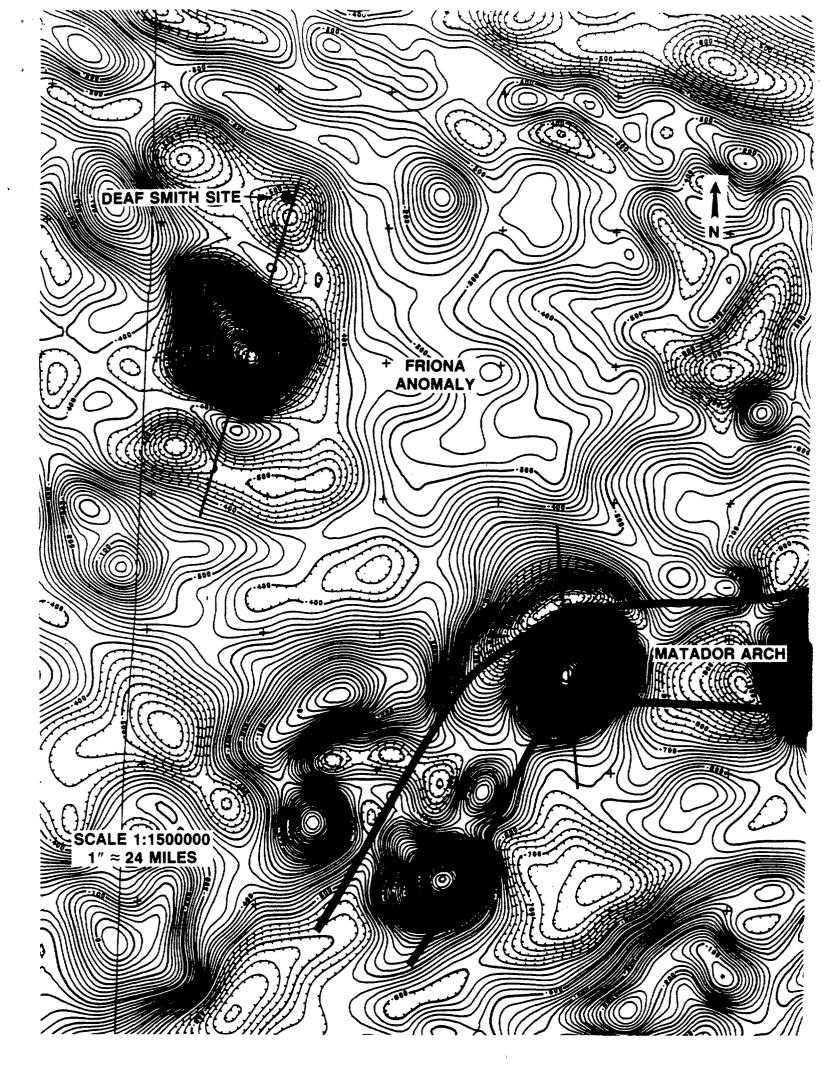

Figure 26. Stratigraphic column and general lithology of the Palo Duro and Dalhart Basins. After Handford and Dutton (1980).



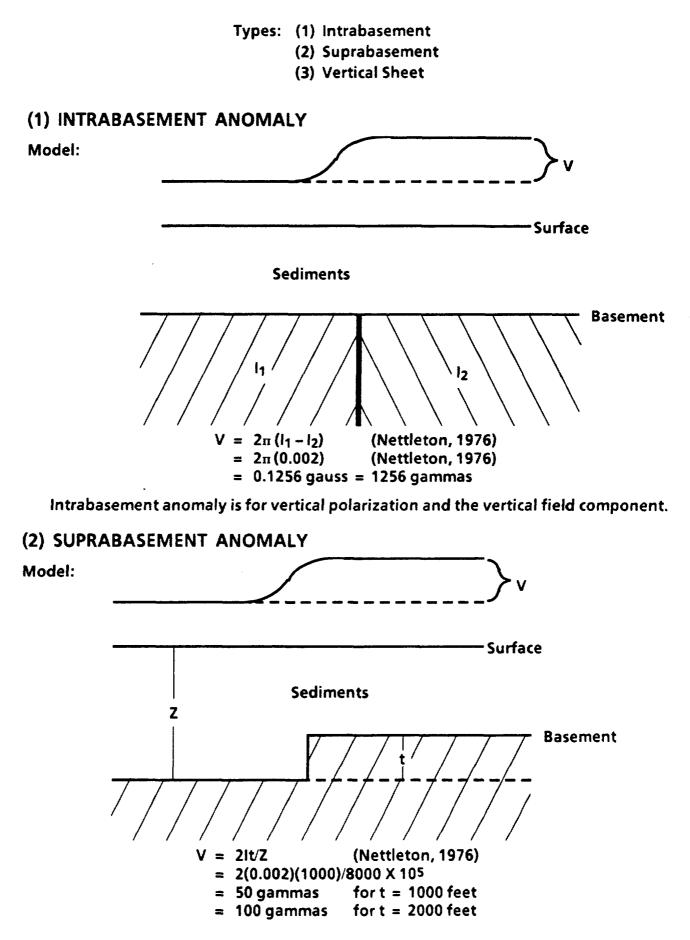


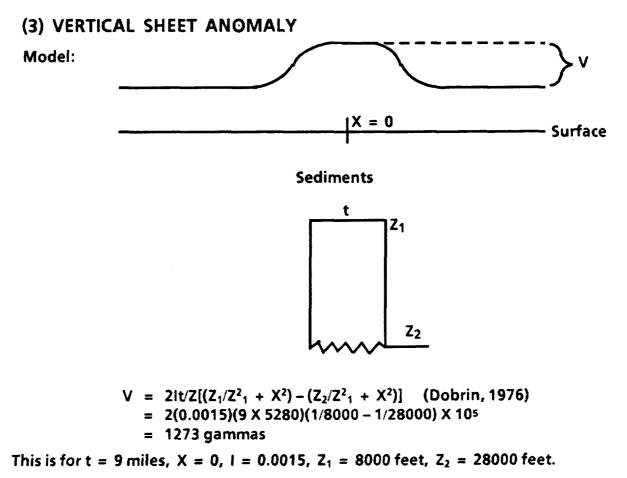

`,







LINE O BEFORE REPROCESSING

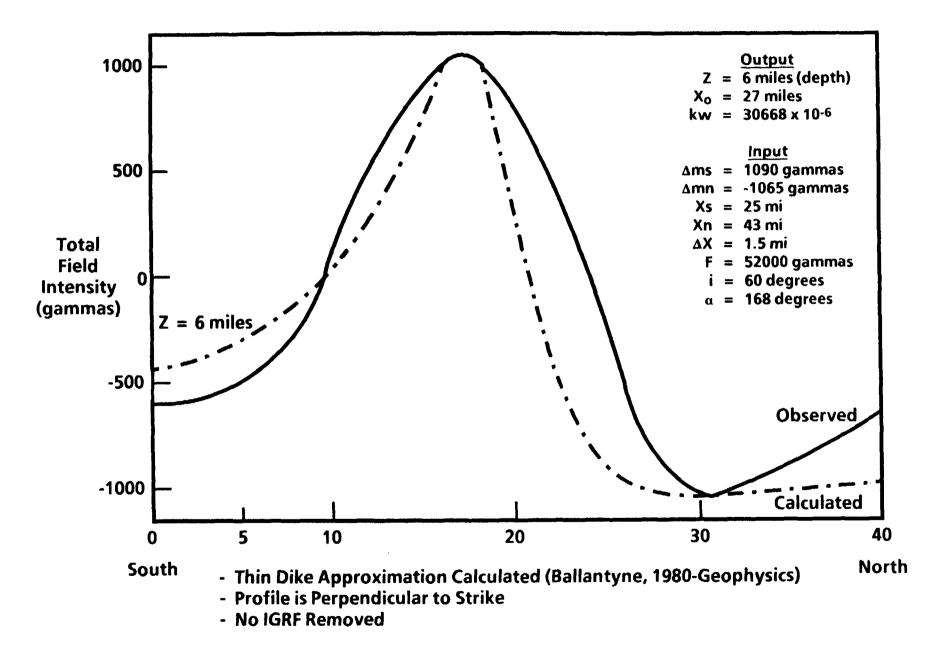

LINE O AFTER REPROCESSING





### MAGNETIC ANOMALY CALCULATIONS



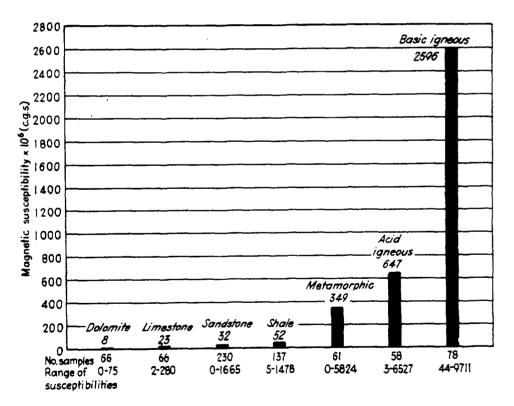



¥ 1

As for (1), anomalies calculated for (2) and (3) are for vertical polarization and for the vertical field component.

ş

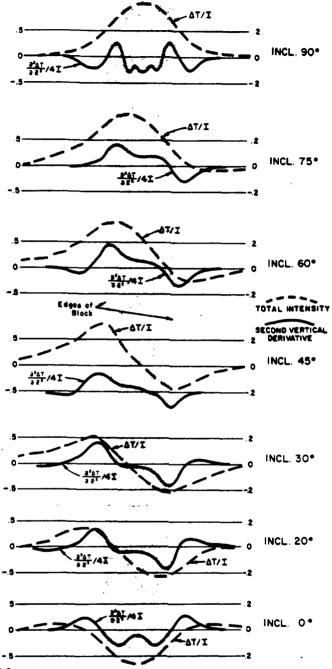
### MATADOR ARCH TOTAL FIELD MAGNETIC ANOMALY




#### CALCULATED SUSCEPTIBILITIES OF ROCK MATERIALS

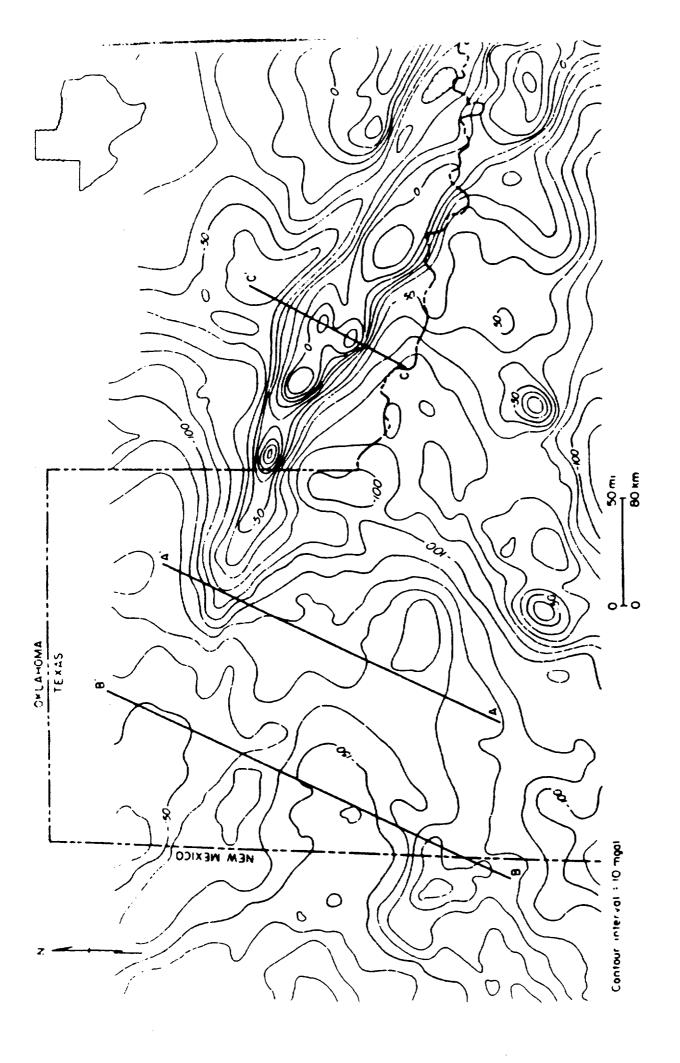
				Juivepti				
Material	Mini	imum	Maxi	imum	Ave	rage		enite, trage
	%	k × 104	%	$k  imes 10^4$	%	k × 10*	%	$k \times 10^{\circ}$
Quarts porphyries	0.0	0	1.4	4,200	0.82	2,500	0.3	410
Rhyolites	0.2	600	1.9	5,700	1.00	3,000	0.45	610
Granites	0.2	600	1.9	5,700	0.90	2,700	0.7	1000
Trachyte-syenites	0.0	0	4.6	14,000	2.04	6,100	0.7	1000
Eruptive nephelites	0.0	0	4.9	15,000	1.51	4,530	1.24	1700
Abyseal nephelites	0.0	0	6.6	20,000	2.71	8,100	0.85	1100
Pyrozenites	0.9	3000	8.4	25,000	3,51	10,500	0.40	5400
Gabbros	0.9	3000	3.9	12,000	2.40	7,200	1.76	2400
Monsonite-latites	1.4	4200	5.6	17,000	3.58	10,700	1.60	2200
Leucite rocks	0.0	0	7.4	22,000	3.27	9,800	1.94	2600
Dacite-quarts-						1		
diorite	1.6	4800	8.0	24,000	3.48	10,400	1.94	2600
Andesites	2.6	7900	5.8	17,000	4.50	13,500	1.16	1600
Diorites	1.2	3600	7.4	22,000	3.45	10,400	2.44	4200
Peridotites	1.6	4900	7.2	22,000	4.60	13,800	1.31	1800
Basalts	2.3	6900	8.6	26,000	4.76	14,300	1.91	2600
Diabases	2.3	6900	6.3	19,000	4.35	13,100	2.70	3600

Magnetite Content and Susceptibility, cgs units


SOURCE: L. B. Slichter and H. H. Stearn, "Geophysical Prospecting," Am. Inst. Mining Met. Engrs., Trans., 1929.



#### FIGURE 14-14


Average magnetic susceptibilities of surface samples and cores as measured in the laboratory. (Compiled by J. W. Peters, Mobil Oil Corp.)

FIGURES FROM DOBRIN, 1976





Profiles of magnetic and vertical derivative (curvature) fields on a north-south line across a prism with top at 1 unit depth, bottom at infinity, and for the various angles of inclination shown. All curves are for a body 8 depth units long (represented by the shaded area) and 6 units wide north to south. (From Vacquier et al., 1951.)



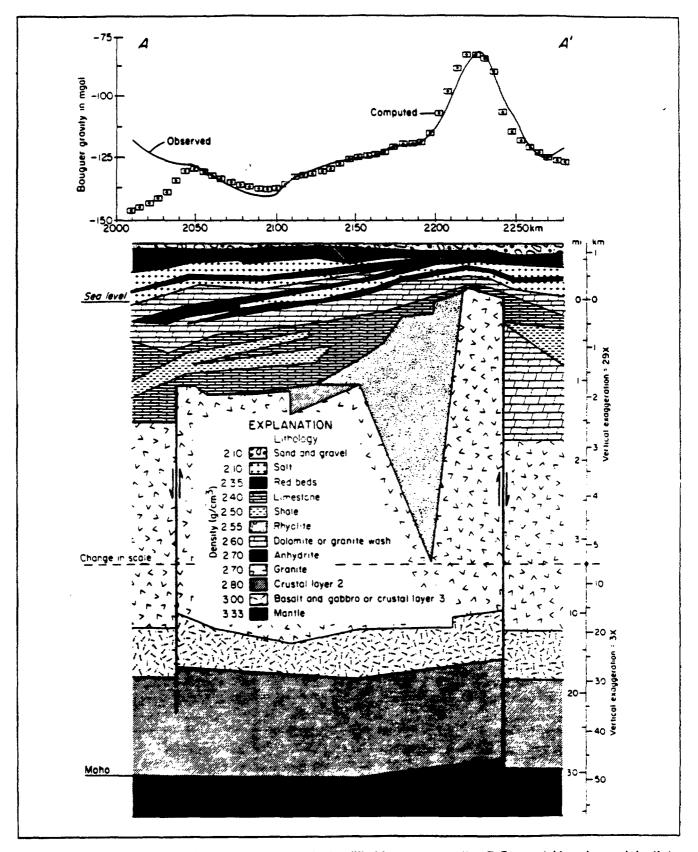



Figure 43. Gravity model A-A'. Cover-rock geometry is simplified from cross section D-D'; crustal layering and depth to Moho are taken from Stewart and Pakiser (1962), and the basement ilthology is taken from Muchiberger and others (1967). See figure 42 for location.

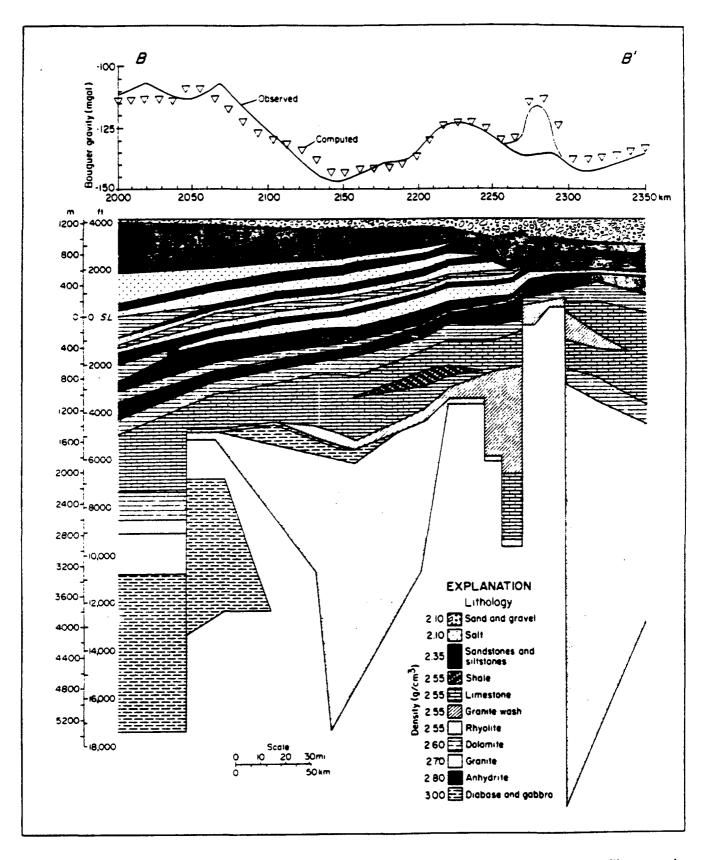



Figure 44. Gravity model B-B', modified from cross section B-B'. Shaded area on computed curve is a positive anomaly predicted from the model, which does not appear in the observed gravity. This requires that granites in this region be thin sills intruded into a deep rhyolite basin. See figure 42 for location.

SWEC SEISMIC DATA RECORDING AND PROCESSING PARAMETERS

The RFP issued in June, 1982, requested bidders to provide price per mile quotations as follows:

- Α. Recording
  - 1. Spread: split/straddle using 24 phones (14 or 28 Hz dampened 60% of critical) per trace.
  - 2. Vibrators: three available with not less than two operating to employ 20 (2 x 10) 7 second sweeps at 20 to 120 Hz input for 11 seconds.
  - 3. Recording: 2 ms sample rate at 18-120 Hz band pass. Quote price per mile for each of the following configurations: a. 96 trace - 48 fold - 55' group interval - 55' sweep interval b. 96 trace - 24 fold - 55' group interval - 110' sweep interval c. 48 trace - 24 fold - 110' group interval - 110' sweep interval
- Β. Processing
  - Specify and quote a processing sequence of operations utilizing 1. state of the art production techniques at a 2 ms sample rate.
  - 2. Provide full scale and half scale sections three second length, full scale sections to be 20 traces per inch horizontally at 55' group and sweep intervals and 10" per second of reflection time vertically.

Western Geophysical Company was the successful bidder. Field experimentation designed to establish recording parameters were conducted on July 7 and 8, 1982.

- С. The following Recording Parameters were selected:
  - Geophones: 16 per group 10 Hz dampened 70% of critical; 1. changed to 24 per group on April 6, 1983 2. Group length: 165'

  - 3. Group interval: 55'
  - Spread: 2805' 220' 0 220' 2805' 4.
  - 5. Source: Sweep frequency 17 to 85 Hz - 3 vibrators - 30 (3 x 10) 9 sec. sweeps
  - 6. 13 sec. record length 2 ms sample rate
  - 7. Filter: 12 90 Hz Notch 60
- Processing Parameters were essentially as specified and quoted by D. WGC. These included: Edit/Demultiplex, correlation and vertical sum; digital filtering, datum statics and trace balance; zero phase deconvolution; CDP gathers; velocity analysis; automatic statics; NMO; coherency stack; gain and time variant filtering. A 3.0 second record length for processing was selected to minimize cost. Comparisons between 24 fold and 48 fold processing failed to justify the increased cost of 48 fold processing.

GJL&A - NRC/SRP Work Shop - 11/19/85

#### Reprocessing of Seismic Reflection Data

I. Introduction

Difficulty in interpretation of the DOE seismic reflection profiles collected in 1982 and 1983 prompted the reprocessing of the data by the Bureau and the University of Texas. Institute for Geophysics. Specific problems with the original stacked data included:

1. the discontinuous nature of the Alibates reflector, possibly as a result of salt dissolution;

2. the variation in strength of reflectors associated with the San Andres Formation along the profiles; and

3. the lack of good resolution of the basement surface, in part because the seismic acquistion parameters were set to maximize resolution at the level of the San Andres Formation.

The three primary objectives of the reprocessing program were to:

1) study the near surface data to identify acquision and/or processing problems that may have affected the continuity of reflectors;

2) examine the data in the vicinity of the San Andres Formation to determine the nature of lateral variability in the reflectors: and

3) better delineate the location of the basement surface, if possible, with the available data.

II. Procedures

A. Near surface reflectors were examined in a small-fold study of the field data using near traces. In addition, velocity studies were made to insure that the data were properly stacked.

B. Complex attributes of the data (instanteous frequency and amplitude) were determined from the stacked data to more precisely identify events associated with the San Andres Formation and the basement surface.

III. Conclusions

A. In the cases studied, the disruption of near surface reflectors was related to loss of fold in the vicinity of "no permit" areas. Incorrect stacking velocities and the presence of a strong airwave also contributed to the lack of continuity. A study of each line would be necessary determine if all apparent disruptions are artifacts of acquision and/or processing techniques.

B. Lateral variations in the San Andres Formation are. in part, related to variation in quality of data, and, in part, appear to be related to horizonal variations in bulk rock characteristics. However, there are insufficent geologic data at the present time to fully interpret the results.

C. Although complex attributes differ for the basement and overlying sedimentary section. no unique seismic signature was noted for the basement surface.

# AVAILABLE GEOPHYSICAL DATA IN THE TEXAS PANHANDLE

## SEISMIC REFLECTION DATA

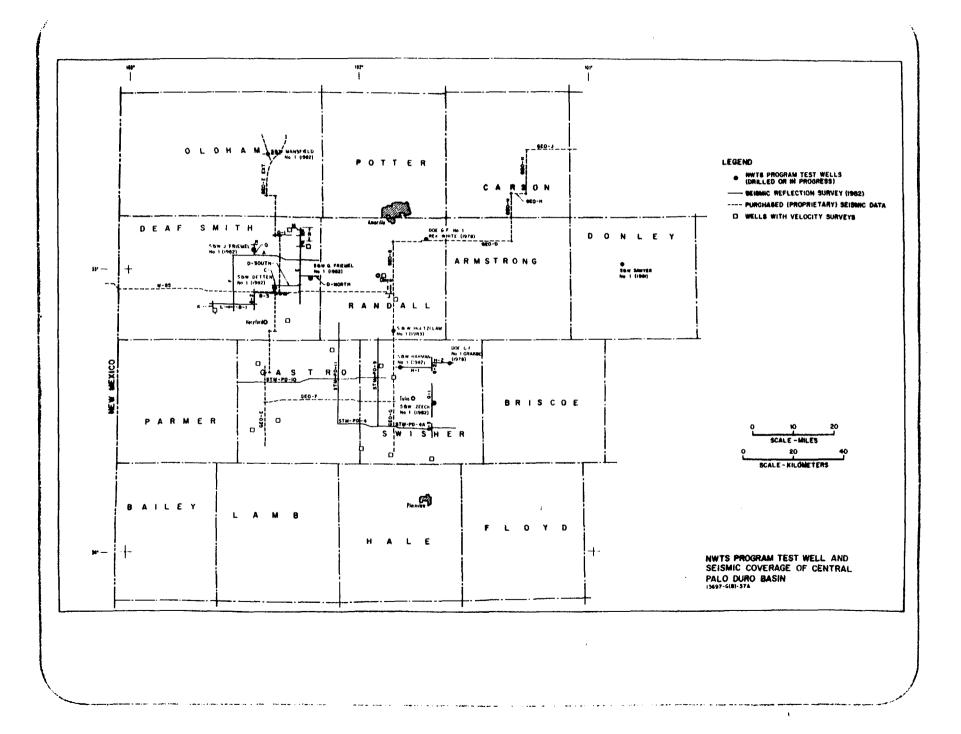
### **GRAVITY DATA**

### **AEROMAGNETIC DATA**

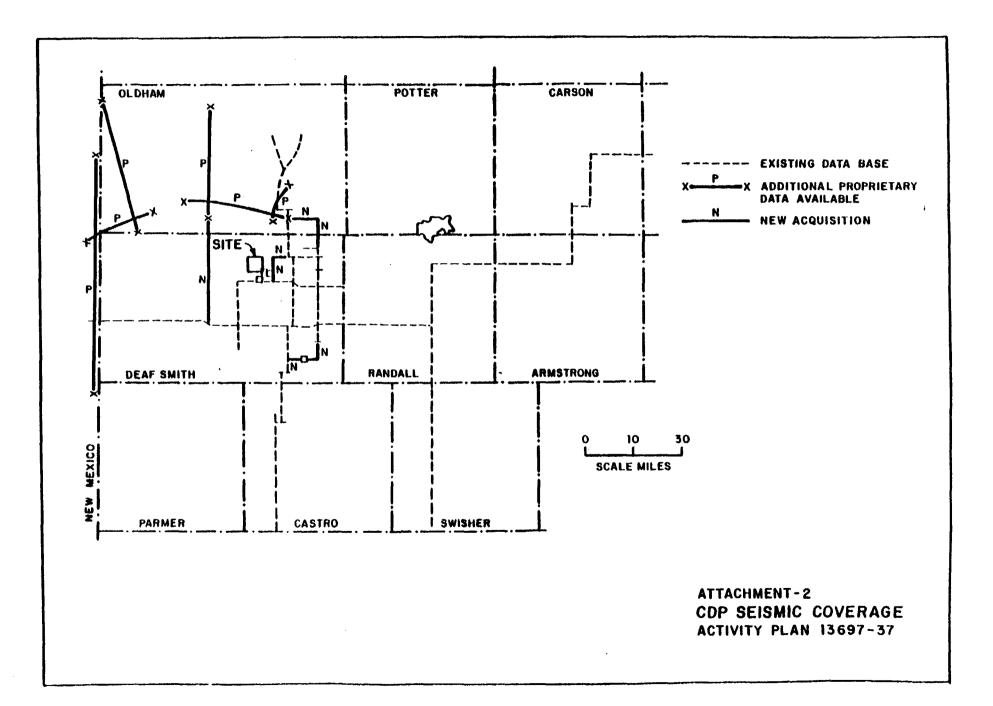
# **SEISMIC REFLECTION DATA**

t

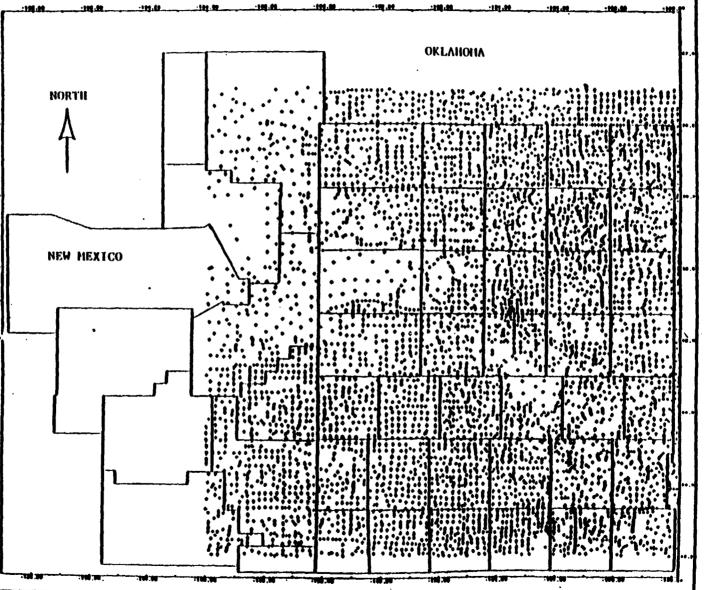
## **PROPRIETARY DATA**


## SWEC SURVEYS

## **VELOCITY SURVEY DATA**

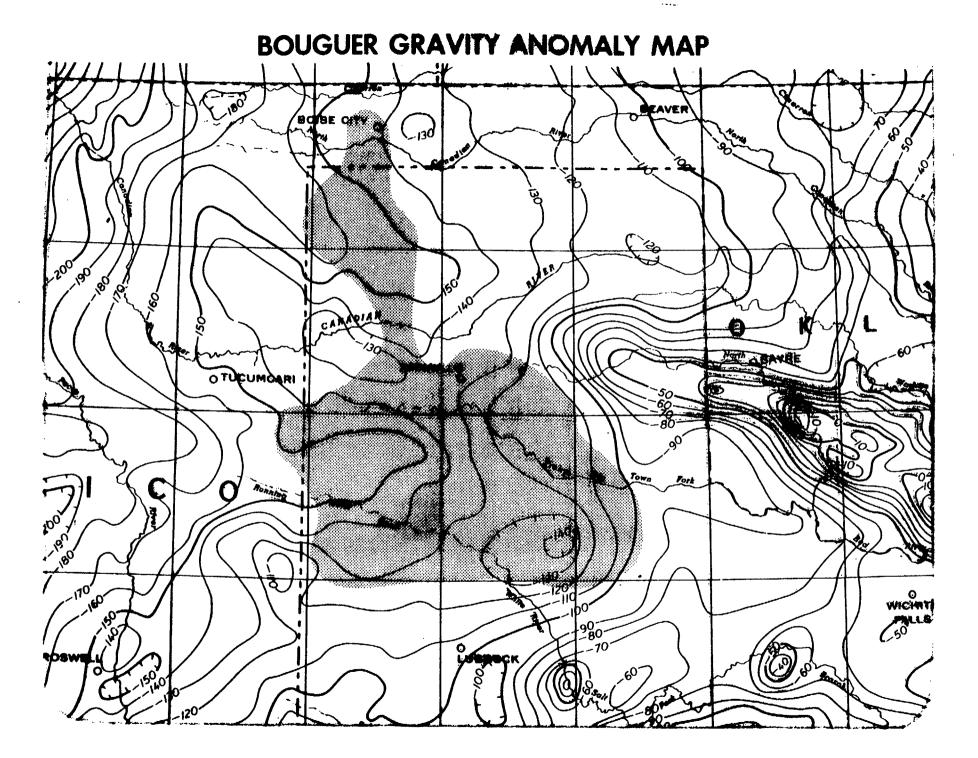

### **VERTICAL SEISMIC PROFILES**

### SYNTHETIC SEISMOGRAMS


1



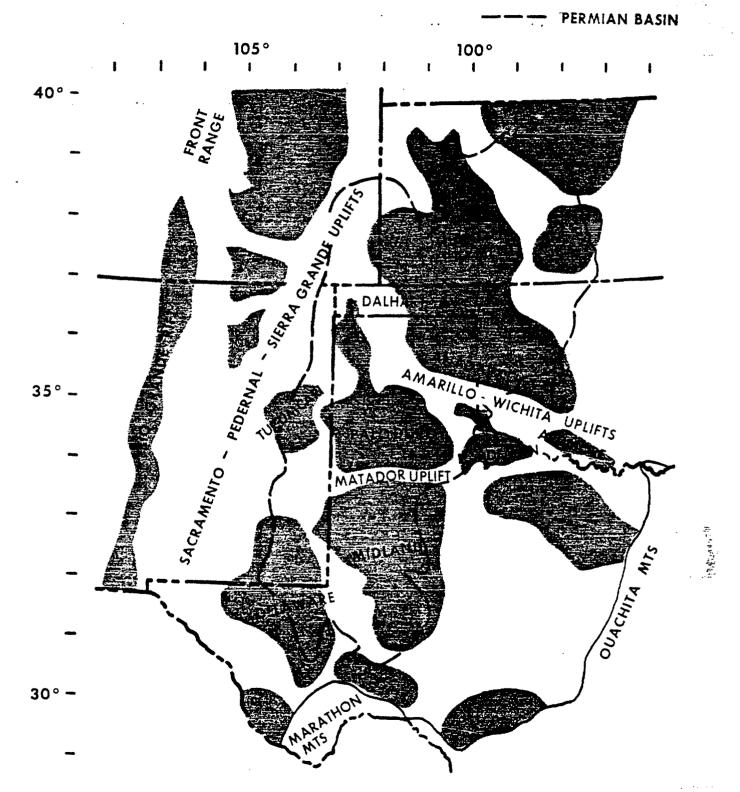
.




LOCATION GRAVIT AT A C



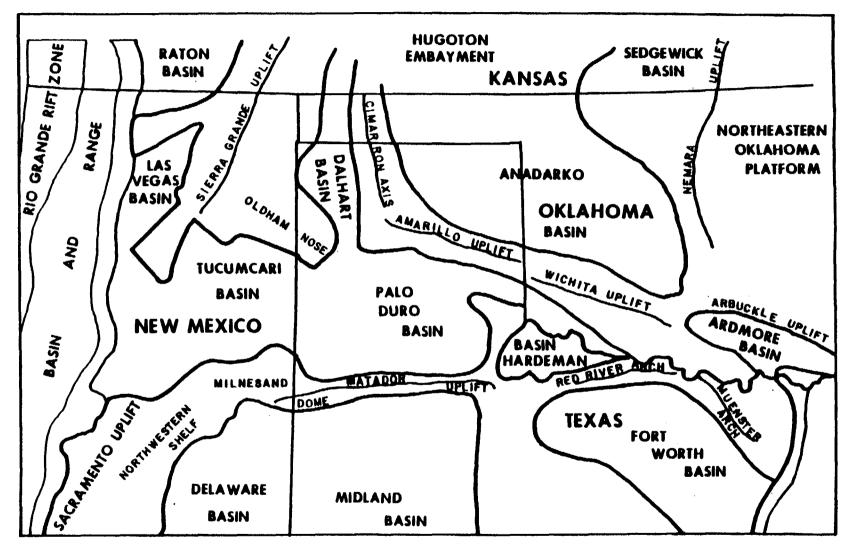
**GEOPHYSICA** 


S



## **REGIONAL TECTONIC MAP**

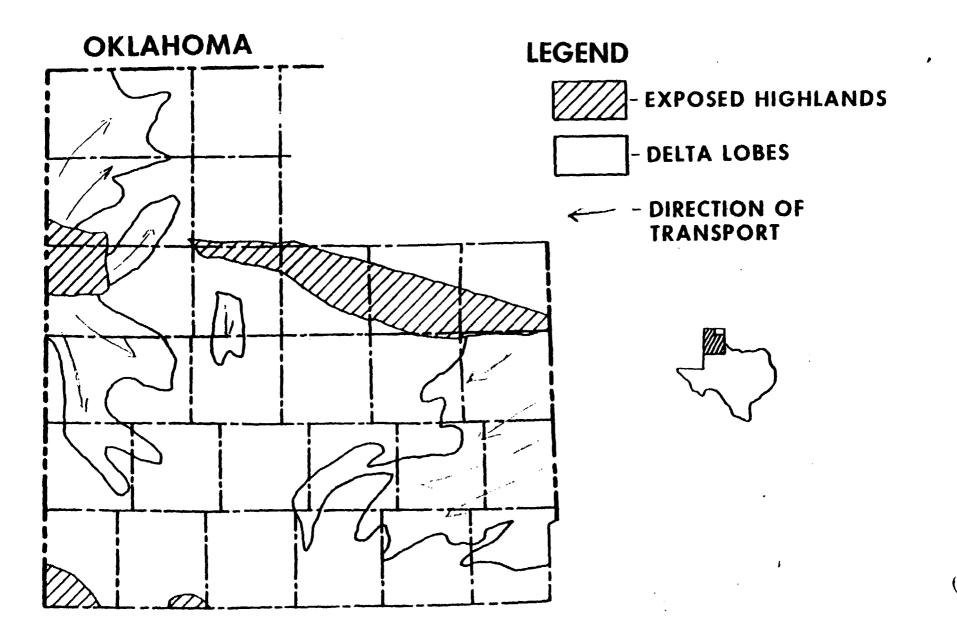
LEGEND

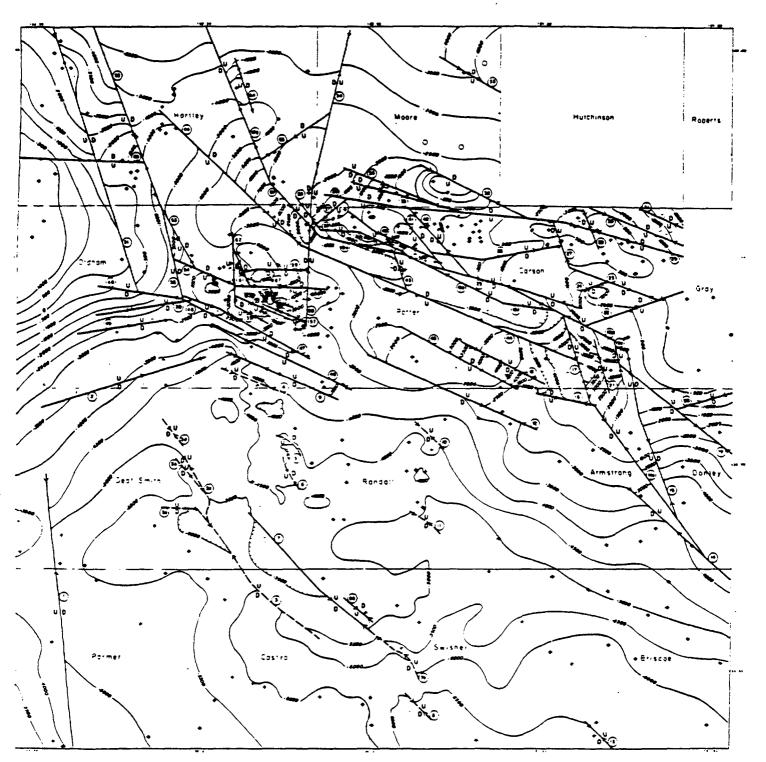

Peck (1)



0H-2

(= );


### **REGIONAL TECTONIC FEATURES**






Ł

### **PENNSYLVANIAN DELTAS**





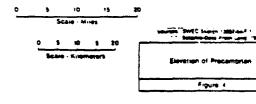


ŵ

Datum is Mean Sea Level

Numbers mennions Faults Relat to

.


Tennes 1 and 2

E Fault Interpreted From Geophysical Well Log Data (U-Usthrown O-Downthrown) Arrows indicate Areas of Maximum Observed Disblacement

Fault Interpreted by Long. 1963 (U-Usthrown: D-Downthrown) Arrows indicate Areas of Maximum Observed Displacement

I

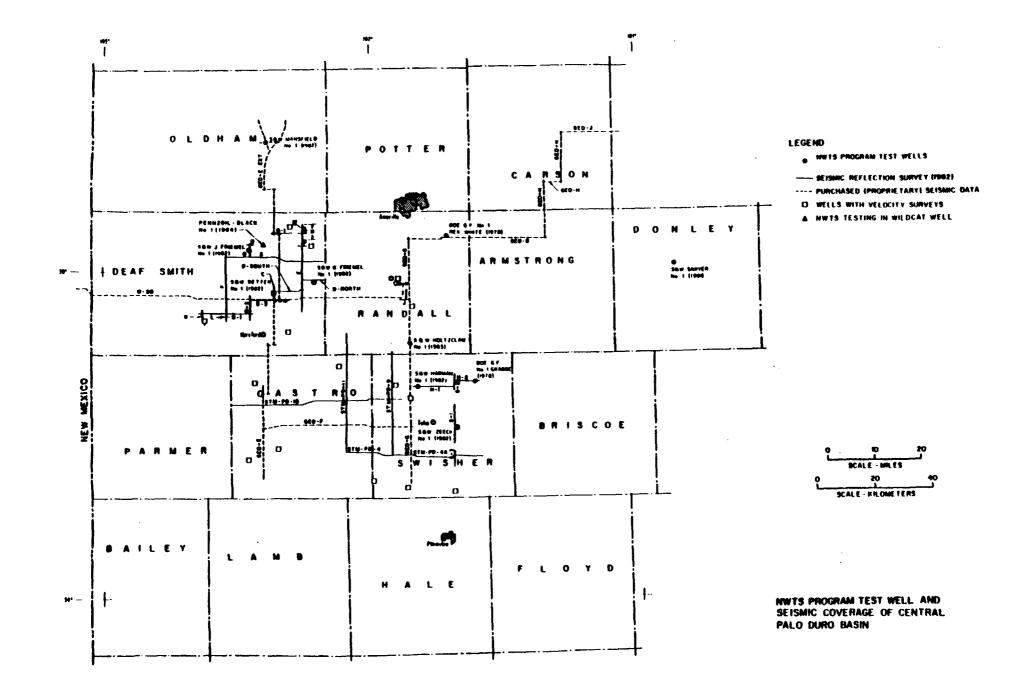
- Structure Contour-Interval 500 Feet. Well Control
- Well Not Penetrating Procambrian
- С But Used to Contine Maximum Ex
- Fault Identification Number

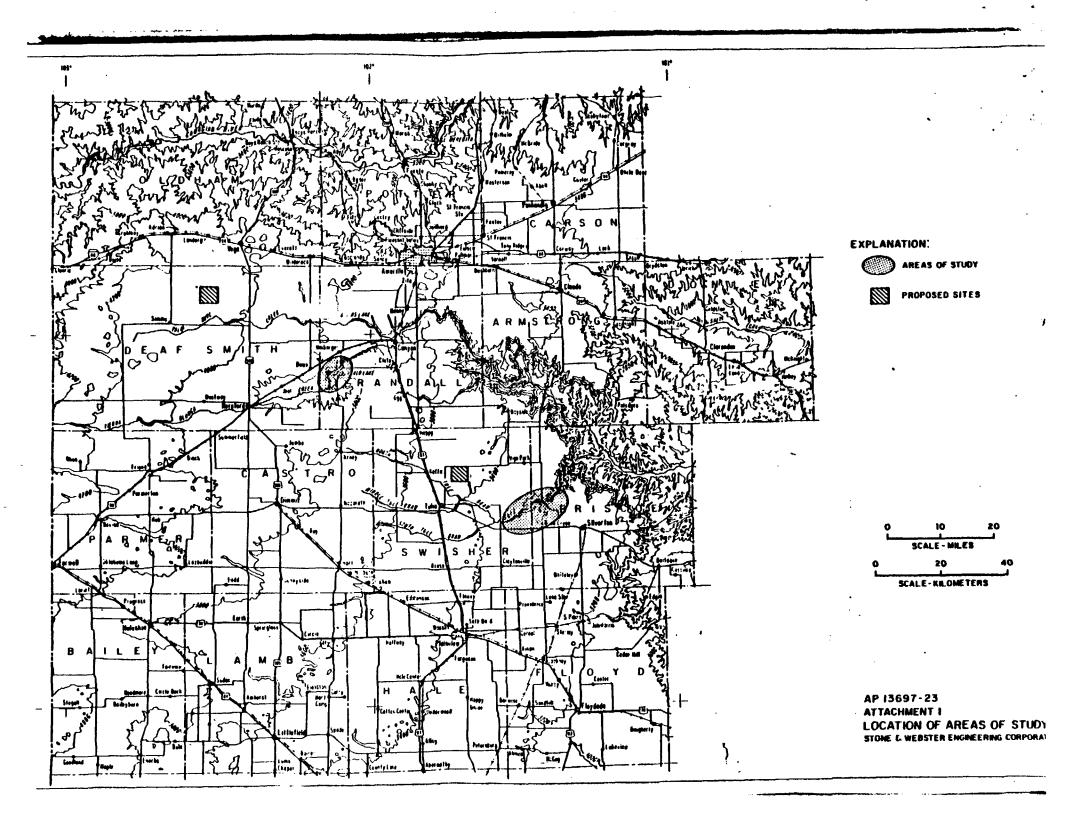


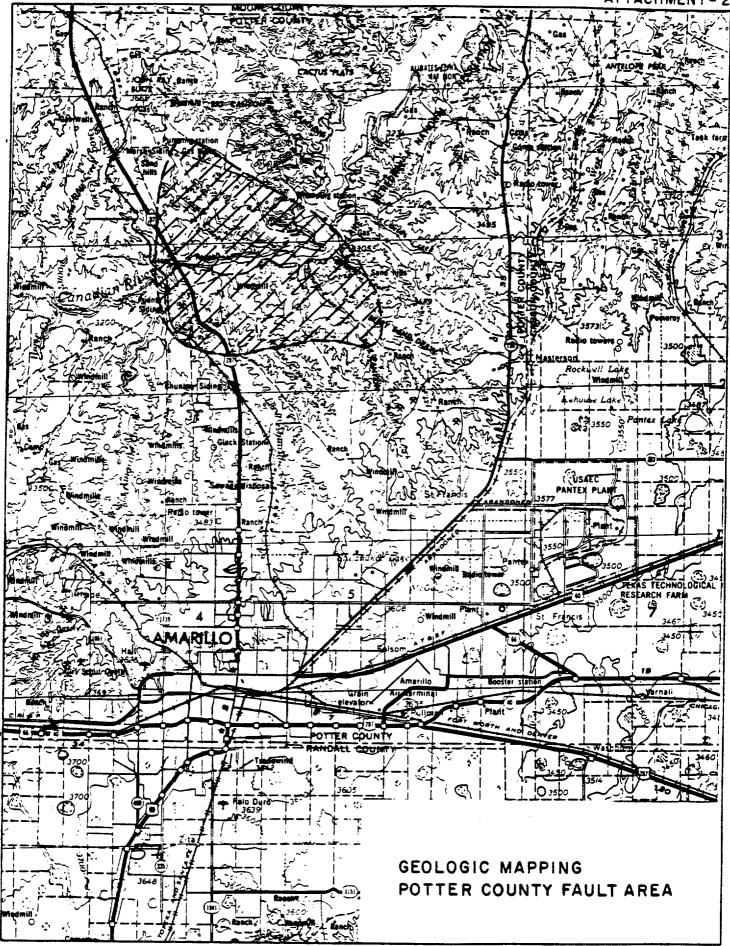
-

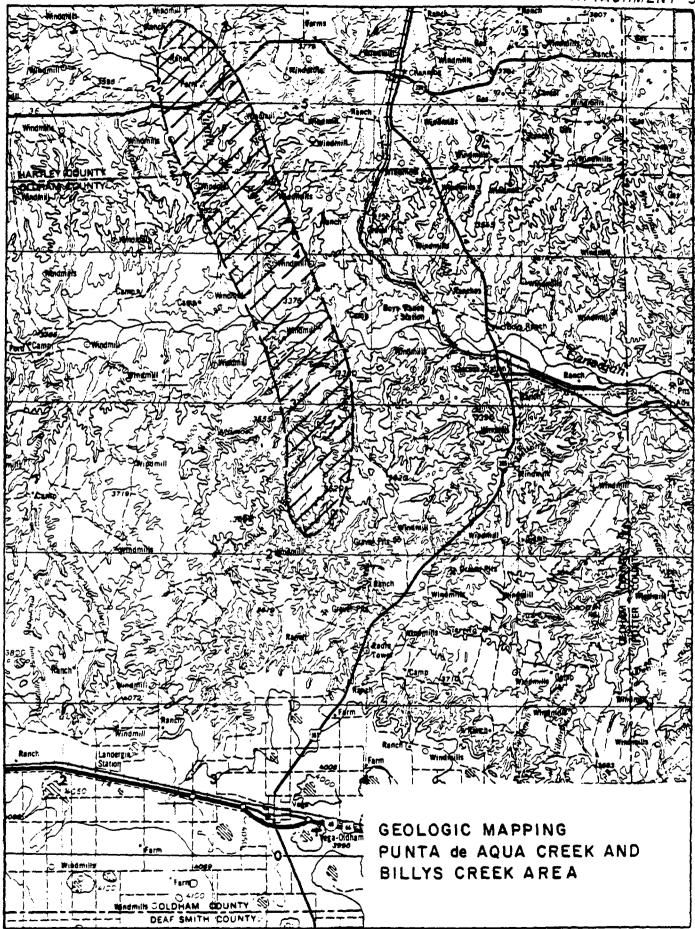
**.** .

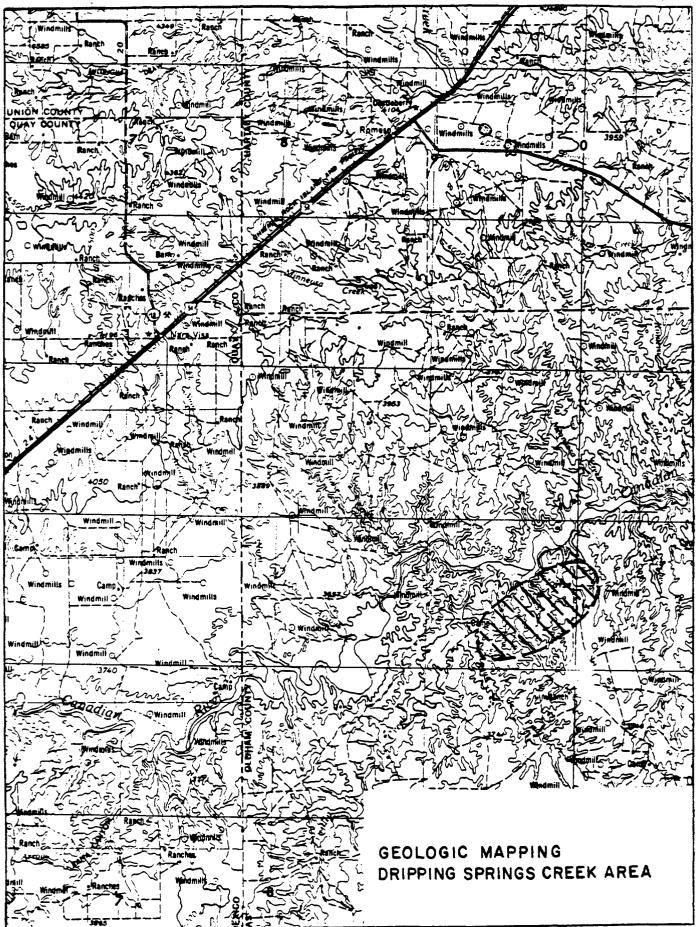
#### Description

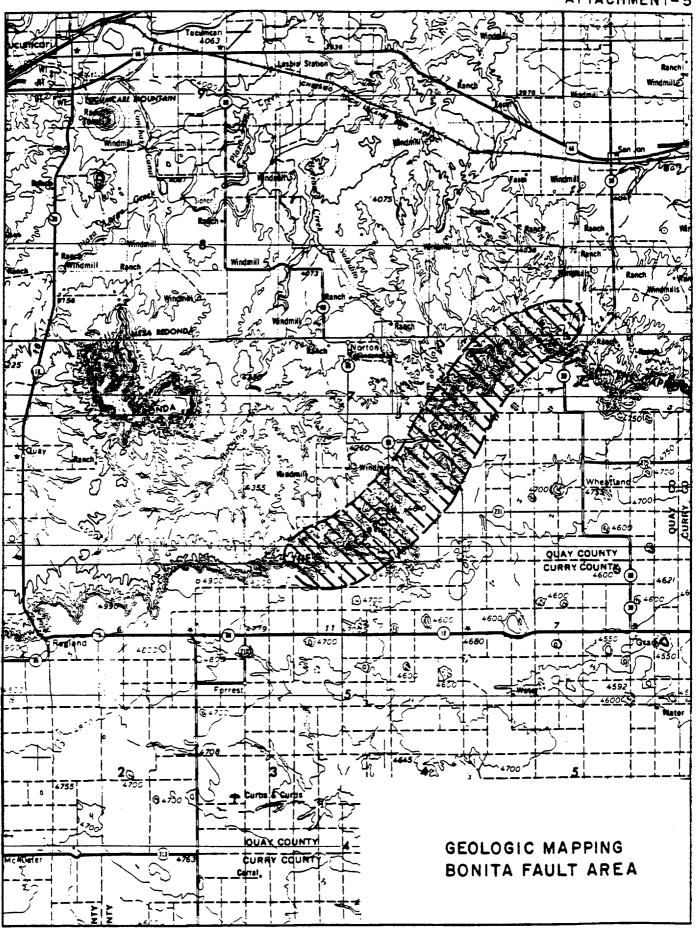

Gamma Ray Log
Caliper Log (4-Arm)
Spontaneous Potential Log (fresh water mud only)
Dual Induction Electric Log (fresh water mud only) or
Dual Laterolog (salt-mud only)
Microresistivity Log
Borehole Compensated Sonic Velocity Log
Sonic Waveform
Integrated Travel Time
Digitized Waveform
Long Spaced Sonic Log
Sonic Waveform
Digitized Waveform
Well Seismic Log
Density Log with photoelectric absorption curve
Gamma Ray Spectrometry Log
Compensated Neutron Log
High Resolution Continuous Dipmeter Logs (including fracture identification, continuous directional survey, and arrow plots)
Continuous Directional Survey
Electromagnetic Propagation Log
Temperature Log
Repeat Formation Tester (run separately at selected intervals)
Thermal Decay Time
Digital Sonic Log


Synthetic logs derived from computer processing of the above logs will be obtained to provide calculated information on rock perosity/permeability and mechanical properties.


A Cement Bond Log, Variable Density Log, and Casing Potential Log will be run within the cased portion of the well. A Gamma Ray Log and Casing Collar Locator log will be run simultaneously with these logs for depth control and correlation with the logs run in the open hole.


As required, a partial site of logs will be performed to identify potentially porous zones, and to locate good packer seats prior to running drill stem tests. This partial suite will consist of:


Gamma Ray Log Compensated Neutron Log Dual Induction or Dual Laterolog 4-Arm Caliper Log














#### Agenda Joint NRC/SRP Workshop November 19-21, 1985, Parke University Hotel, Columbus, Ohio

#### STRUCTURE AND TECTONICS OF THE PALO DURO BASIN

Objective: Participants at this workshop will obtain an understanding of the current state of knowledge of the structural features of the Palo Duro Basin. The focus will be on evaluating the present structural configuration of the basin and its tectonic history and setting. Current seismicity and active tectonic processes in the region will not be discussed.

The data base from which structural interpretations have been made will be examined. The workshop will identify areas where contractor interpretations of existing data differ, and consider methods to resolve those differences.

November 19, 1985

- 8:30 9:00 INTRODUCTIONS
- 9:00 10:00 OVERVIEW OF THE PALO DURO BASIN SRPO, NRC
  - Current basis for definition and tectonic history.
- 10:00 12:00 DESCRIPTION OF DATA USED IN SRP'S STRUCTURAL STUDIES
  - Seismic Lines. Includes: location of DOE-run and purchased lines, the quality of the data (resolution at depths of interest), the rationale for selection of specific lines, and the proprietary status of the information.
  - Types of processing of seismic information, including reasons for selecting specific processing techniques.
  - Other geophysical data (gravity, aeromagnetic) used to define structures.

G.J. Long (G.J. Long)( R. Budnik (TBEG)(5) D. Turner (ONWI)(6)

J. Peck (SWEC) ()

R. Budnik (TBEG) (2)

H. Acharya (SWEC) (3)

TBD (SWEC) W. Bennett (Bendix) (7)

Sec. Sec. Sec. S.

i

12:00 - 1:00 --- LUNCH ---

1:00 - 5:00 - Non-DOE wells. Includes: number and location of wells, lithologic and geophysical logs available, quality of the data, rationale for selection of wells to be included in the data base, and availability of the data for review by third parties.

- Summary of the borehole database.
- <u>DOE Wells</u>. Includes: lithologic logs and geophysical logs available, stratigraphic correlations made, and application of well information to other studies (e.g. use of sonic logs to establish parameters for seismic processing).
- Remote-sensed Imagery. Includes: types of imagery analyzed, application of remote-sensing to structural interpretation (e.g. lineament analysis), and "ground checking" of interpreted features.
- <u>Geologic Analysis</u>.
   <u>Includes:</u> field mapping, joint/ fracture analysis (outcrop and borehole), relation of mapped features to regional structures, (including recent interpretations of Pleistocene units).
- Quality Assurance. Procedures for data collection/interpretation of seismic, borehole, and other data applicable to structural analyses.

November 20, 1985

#### 8:30 - 11:00 INTERPRETATION AND SYNTHESIS OF STRUCTURAL DATA

 Stratigraphic Correlations. Includes: development of structure contour maps of major units (include younger units such as the Dockum), development of isopach maps, and the types of data utilized in these studies. P. Murphy (SWEC) (?)

P. Murphy (SWEC)

J. Peck (SWEC) (9)

T. Gustavson (TBEG)(10'

R. Gillespie (SWEC) J. Peck (SWEC) E. Collins (TBEG) T. Gustavson (TBEC) D. Plerce(SwEc) (12)

E. Washer (SWEC)(1>) D. Davidson (TBEG)(14)

- P. Murphy (SWEC) (15) T. Gustavson (TBEG)
- S. Hovorka (TBEG)

R. Budnick(TBEG)

- TID - Constraints - ----

-	Detailed Correlations. This will be a brief synopsis of material presented at the August 5-9 workshop in question.	T. Gustavson (16)
	PARTS OF THE AVAILABLE DATA BASE NOT ITILIZED AND RATIONALE FOR EXCLUSION	
-	<ul> <li>Summary of all available borehole and proprietary geophysical data and selection criteria for access by the program.</li> </ul>	E. Washer (SWEC)
-	<ul> <li>Summary of available literature sources for structural interpretations of the Palo Duro Basin.</li> </ul>	E. Washer (SWEC) E. Bingler (TBEG) R. Budnik (TBEG)
12:00 - 1:00 -	LUNCH	
	NTERPRETATIONS OF THE STRUCTURAL GEOLOGY DATA BASE	
<u> </u>	<ul> <li>Computer mapping abilities from geologic data base.</li> </ul>	T. Bruno (SWEC) <b>(19)</b>
	<ul> <li>Methods/Procedures for interpreting seismic data.</li> <li>Magnetic annuluis</li> <li>Extent to which available data (bore-hole stratigraphic information, surface mapping, seismic information published studies) has been integrated into a structural interpretation.</li> </ul>	G.J. Long (G.J. Long)( R. Budnik (TBEG)(7) D. Twrir(onwr)(6) R. Budnik (TBEG) T. Gustavson (TBEG) P. Murphy (SWEC) J. Peck (SWEC) T. Regan (SWEC)
	Effects of differing data interpreta- tions or different data bases on structure/tectonic evaluations of the Palo Duro Basin, including methods, data base and results.	TBD (TBEG) D. Pierce (SWEC)
November 21, 1985		
8:30 - end S	UMMARY AND CONCLUSIONS	
	General types of additional studies necessary to resolve differing structural interpretations/hypotheses.	All D. Ballmann (20)
-	Meeting summary and agreements.	SRPO, NRC

ı

,

..

- · · · .

Page 3

ŧ

Page	4
------	---

. . . . . .

### EXPECTED ATTENDEES

SRPOONWISWECTBEGNRCJ. SherwinW. NewcombJ. PeckE. BinglerJ. TrappJ. SherwinJ. HilemanE. WasherJ. RaneyP. JustusT. BaillieulJ. HilemanD. PierceT. GustavsonP. JustusM. FerriganA. FunkP. MurphyF. CollinsA. Ibrahim
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

۰.

### BENDIX

W. Bennett

* (G.J. Long & Associates)
** (Weston Geophysical)
*** (LLL)

-

.•

į

ENCLOSURE 3

•

•

.

#### References

- Acharya,H., 1984, Palo Duro Microearthquake Network Operation Report for April-July 1984: Office of Nuclear Isolation Topical Report ONWI/SUB/84/E512-05000-T34, 50 p.
- Acharya.H., 1985. Palo Duro Microearthquake Network Operation Report for August-December, 1984: Office of Nuclear Isolation Topical Report ONWI/SUB/84/E512-05000-T40, 50 p.
- Adams, J.E., 1954, Mid-Paleozoic paleogeography of central Texas, in Guidebook to Cambrian field trip-Llano area: San Angelo Geological Society, p. 70-73.
- Adkins.W.S., 1932, The Mesozoic Systems in Texas, in Sellards, E.H., Adkins.W.S., and Plummer, F.B., The Geology of Texas, v. 1, stratigraphy: The University of Texas, Austin, Bureau of Economic Geology, Bulletin 3232, p. 239-518.
- Amsden.T.W., 1975. Hunton Group (Late Ordovician, Silurian, and Early Devonian) in the Anadarko Basin of Oklahoma: Oklahoma Geological Survey Bulletin no. 121, 214 p.
- Amsden, T.W., 1980, Hunton Group (Late Ordovician, Silurian, and Early Devonian) in the Arkoma Basin of Oklahoma: Oklahoma Geological Survey Bulletin no. 129, 136 p.
- Anderson, R.Y. and Kirkland, D.W., 1969, Geologic setting of the Rita Blanca Lake deposits, in Anderson, R.Y., and Kirkland, D.W., eds., Paleoecology of an Early Pleistocene lake on the High Plains of Texas: Geological Society of America Memoir no. 113, p. 3-13.
- Armstrong,A.K., 1979, North-central New Mexico, an alternative interpretation of the Mississippian: U.S. Geological Survey, Professional Paper 1010-K, p. 189-197.
- Axtmann, T.C., 1983, Structural mechanisms and oil accumulation along the Mountain View-Wayne Fault, south-central Oklahoma: Shale Shaker. v. 34, no. 2. p 13-22.
- Aydin, A. and Nur, A., 1982. Evolution of pull-apart basins and their scale independence: Tectonics, v. 1, no. 1, p. 91-105.
- Baars, D.L., 1972, Devonian System, in Mallory, W.W., ed., Geologic Atlas of the Rocky Mountain region: Rocky Mountain Association of Geologists, p. 90-99.
- Baars.D.L., 1975, Pre-Pennsylvanian reservoir rocks of the eastern Colorado Plateau and southern Rocky Mountains. in Bolyard.D.W., Symposium on deep drilling frontiers in the central Rocky Mountains: Rocky Mountain Association of Geologists, p.71-74.
- Baars, D.L., 1976, The Colorado Plateau aulacogen--key to continental scale basement rifting: Proceedings of Second International Conference on Basement Tectonics, p. 157-164.
- Baars.D.L. and See,K.D., 1968, Pre-Pennsylvanian stratigraphy and paleotectonics of the San Juan Mountains, southwestern Colorado: Geological Society of America, Bulletin, v. 79, no. 3, p. 333-350.

- Baker, C.L., 1932. Foreword, in Reed, L.C. and Longnecker, O.M., Jr., The geology of Hemphill County, Texas: The University of Texas, Austin. Bureau of Economic Geology, Bulletin 3231, p. 5-6.
- Baldwin.B. and Muehlberger, W.R., 1959, Geologic studies of Union County. New Mexico: New Mexico Bureau of Mines and Mineral Resources, Bulletin 63, 171 p.
- Barnes, V.E., 1968, Plainview Sheet: The University of Texas at Austin, Bureau of Economic Geology, Geologic Atlas of Texas, 1:250,000.
- Barnes.V.E., 1969, Amarillo Sheet: The University of Texas at Austin. Bureau of Economic Geology, Geologic Atlas of Texas, 1:250,000.
- Barnes, V.E., 1977, Clovis Sheet: The University of Texas at Austin, Bureau of Economic Geology, Geologic Atlas of Texas, 1:250,000.
- Barnes, V.E., 1983, Tucumcari Sheet: The University of Texas at Austin, Bureau of Economic Geology, Geologic Atlas of Texas, 1:250,000.
- Baltz.E.H. and Read.C.G., 1960, Rocks of Mississippian and probable Devonian age in the Sangre de Cristo Mountains, New Mexico: American Association of Petroleum Geologists, Bulletin, v. 44, no., 11, p. 1749-1774.
- Bates,R.L., 1943, Northeast area, in Bates,R.L., The oil and gas resources of New Mexico: New Mexico Bureau of Mines and Mineral Resources Bulletin, no. 18, p. 141-158.
- Berkstresser, C.F., Jr. and Mourant, W.A., 1966. Ground-water resources and geology of Quay County. New Mexico: New Mexico Bureau of Mines and Mineral Resources Ground-water Report no. 9, 115 p.
- Birsa,D.S., 1977, Subsurface geology of the Palo Duro Basin, Texas Panhandle: The University of Texas at Austin, Ph.D. dissertation, 379 p.
- Booth,S.L., 1981, Structural analysis of portions of the Washita Valley Fault zone, Arbuckle Mountains, Oklahoma: Shale Shaker, v. 31., no. 7, p. 107-120.
- Bradfield.H.H., 1968. Stratigraphy and structure of the deeper Marietta Basin of Oklahoma and Texas, in Basins of the Southwest: West Texas Geological Society, v. 1, p. 54-70.
- Brewer, J.A., Brown, L.D., Steiner, D., Oliver, J.E., Kaufman, S., and Denison, R.E., 1981, Proterozoic basin in the southern Midcontinent of the United States revealed by COCORP deep seismic reflection profiling: Geology, v. 9, no.12, p. 569-575.
- Brewer, J.A., Good, R., Oliver, J.E., Brown, L.D., and Kaufman, S., 1983, COCORP profiling across the southern Oklahoma aulacogen: overthrusting of the Wichita Mountains and compression within the Anardarko Basin: Geology, v. 11, no. 2, p. 109-114.

- Budnik,R.T., in review, Left-lateral intraplate deformation along the Ancestral Rocky Mountains: implications for Late Paleozoic plate reconstruction: submitted to Tectonophysics.
- Budnik.R.T., 1983. Influence of basement structure on distribution and facies of overlying strata, Palo Duro Basin, Texas Panhandle, in Gustavson, T.C., and others, Geology and geohydrology of the Palo Duro Basin, Texas Panhandle: The University of Texas at Austin, Bureau of Economic Geology Geological Circular no. 83-4, p. 14-24.
- Budnik,R.T., 1984, Structural geology and tectonic history of the Palo Duro Basin, Texas Panhandle: The University of Texas at Austin, Bureau of Economic Geology Open File Report OF-WTWI-1984-55, 35 p.
- Budnik,R.T. and Smith,D.A., 1982, Regional stratigraphic framework of the Texas Panhandle, in Gustavson,T.C. and others, Geology and geohydrology of the Palo Duro Basin, Texas Panhandle: The University of Texas at Austin, Bureau of Economic Geology, Geological Circular 82-7, p. 38-86.
- Carr.J.E. and Bergman, D.L., 1976, Reconnaissance of water resources of the Clinton Quadrangle west-central Oklahoma: Oklahoma Geological Survey, Map HA-5, 1:250,000.
- Carter, D.W., 1979. A study of strike-slip movement along the Washita Valley Fault, Arbuckle Mountains, Oklahoma: Shale Shaker, v. 30, no. 4, p. 79-106.
- Chapin,C.E. and Cather,S.M., 1983, Eocene tectonics and sedimentation in the Colorado Plateau - Rocky Mountain area, in Lowell, J.D., ed., Rocky Mountain foreland basins and uplifts: Rocky Mountain Association of Geologists, p. 33-56.
- Condie,K.C., 1981, Precambrian rocks of the southwestern United States and adjacent areas of Mexico: New Mexico Bureau of Mines and Mineral Resources, Resource Map 13.
- Collins, E.W., 1984. Styles of deformation in Permian strata. Texas Panhandle: The University of Texas at Austin, Bureau of Economic Geology, Geological Circular 84-4, 32 p.
- Craig, L.C., and Conner, C.W., 1979, Paleotectonic investigations of the Mississippian System in the United States: U.S. Geological Survey Professional Paper no. 1010, 369 p.
- Danbom, S.H., 1969, A gravity and magnetic investigation of the Amarillo Uplift: Texas Technological College, M.S. thesis, 60 p.
- Dane, C.H. and Bachman, G.O., 1965, Geologic map of New Mexico: U.S. Geological Survey, 1:500,000.
- Denison, R.E. and Hetherington, E.A., Jr., 1969, Basement rocks in far west Texas and south-central New Mexico, in Kottlowski, F.E. and LeMore, D.V., eds, Border stratigraphy symposium: New Mexico Bureau of Mines and Mineral Resources, Circular 104, p. 1-16.
- DeVoto,R.H., 1980, Mississippian stratigraphy and history of Colorado, in Kent,H.C. and Porter,K.W., eds., Colorado Geology: Rocky Mountain Association of Geologists, p. 57-70.

- Docekal, J., 1970, Earthquakes of the stable interior, with emphasis on the Midcontinent: The University of Nebraska, Ph.D. dissertation, 451 p.
- Donovan, R.N., Gilbert, M.C., Luza, K.V., Marcini, D., and Sanderson, D.J., 1983, Possible Quaternary movement on the Meers Fault, southwestern Oklahoma, Oklahoma Geology Notes, v. 43, no. 5, p. 124-133.
- Drewes.H., 1978, The Cordilleran orogenic belt between Nevada and Chihuahua: Geological Society of America Bulletin. v. 89, no.5, p. 641-657.
- Dutton,S.P., 1980. Depositional systems and hydrocarbon resource potential of the Pennsylvanian System, Palo Duro and Dalhart Basins, Texas Panhandle: The University of Texas at Austin, Bureau of Economic Geology, Geological Circular, 80-8, 49 p.
- Dutton,S.P., 1982, Pennsylvanian and Lower Permian strata, in Dutton,S.P., Goldstein,A.G., and Ruppel,S.C., Petroleum potential of the Palo Duro Basin: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations no. 123, p. 18-45.
- Eddleman.M.W., 1961, Tectonics and geologic history of the Texas and Oklahoma Panhandles, in Oil and gas fields of the Texas and Oklahoma Panhandles: Panhandle Geological Society, p. 61-68.
- Evans,G.L., 1949, Upper Cenozoic of the High Plains, in Cenozoic geology of the Llano Estacado and Rio Grande Valley: West Texas Geological Society and New Mexico Geological Society Guidebook, 79 p.
- Evans.J.L. 1979, Major structural and stratigraphic features of the Anadarko Basin, in Hyne.N.J., ed., Pennsylvanian sandstones of the Midcontinent: Tulsa Geological Society, p. 97-113.
- Feinstein, S., 1981, Subsidence and thermal history of Southern Oklahoma Aulacogen: implications for petroleum exploration: American Association of Petroleum Geologists, Bulletin, v. 65, no. 12, p. 2521-2533.
- Finch.W.I. and Wright,J.C., 1970, Linear features and ground-water distribution in the Ogallala Fromation of the Southern High Plains, in Ogallala Aquifer Symposium: Lubbock, International Center for Arid and Semi-Arid Land Studies, Texas Tech University, Special Report 39, p. 49-57.
- Flawn.P.T., 1956, Basement rocks of Texas and southeast New Mexico: The University of Texas, Austin, Bureau of Economic Geology Publication 5605, 261 p.
- Foster, R.W. and Stipp, T.F., 1961, Preliminary geologic and relief map of the Precambrian rocks of New Mexico: New Mexico Bureau of Mines and Mineral Resources Circular no. 57, 37 p.
- Fracasso, M.A. and Hovorka, S.D., 1984. Cyclicity in the Middle Permian San Andres Formation, Palo Duro Basin, Texas Panhandle: The University of Texas at Austin, Bureau of Economic Geology Open File Report, OF-WTWI-1984-21, 42 p.

- Frezon,S.F. and Dixon,G.H., 1975, Texas Panhandle and Oklahoma, in McKee,E.D., Crosby,E.J., and others, Paleotectonic investigations of the Pennsylvanian System in the United States: U.S. Geological Survey Professional Paper 853-J, Part I, p. 177-195.
- Gable.D.J. and Hatton,T., 1983, Maps of vertical crustal movements in the conterminous United States over the last 10 million years: U.S. Geological Survey, Miscellaneous Investigations Series, Map I-1315.
- Gilbert.M.C., 1983. Timing and chemistry of igneous events associated with the Southern Oklahoma Aulacogen: Tectonophysics, v. 94, p. 439-455.
- Gilbert.M.C. and Donovan.R.N., 1984, Recent developments in the Wichita Mountains: Geological Society of America, Southcentral Section Guidebook, 101 p.
- Goldstein,A.G., 1982, Structural geology, in Dutton,S.P., Goldstein,A.G., and Ruppel,S.C., Petroleum potential of the Palo Duro Basin: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations no. 123, p. 52-59.
- Goldstein,A.G., 1984, Tectonic controls of Late Paleozoic subsidence in the south central United States: Journal of Geology, v. 92, no. 2, p. 217-222.
- Greenwood, E., Kottlowski, F.E., and Thompson, S., III, Petroleum potential and stratigraphy of Pedrogosa Basin: Comparison with Permian and Orogrande Basins: American Association of Petroleum Geologists, Bulletin, v. 61, no. 9, p. 1448-1469.
- Gustavson, T.C. and Budnik, R.T., 1985, Structural influences on geomorphic processes and physiographic features. Texas Panhandle: Technical issues in siting a nuclear-waste repository: Geology, v. 13, no. 3, p.173-176.
- Gustavson, T.C., Finley, R.J., and McGillis, K.A., 1980. Regional dissolution of Permian salt in the Anadarko, Dalhart, and Palo Duro Basins of the Texas Panhandle: The University of Texas at Austin, Bureau of Economic Geology, Report of Investigations no. 106, 40 p.
- Haas.E.A., 1981, Structural analysis of a portion of the Reagan Fault Zone, Murray County, Oklahoma: Shale Shaker, v. 31, 6, p. 93-105.
- Ham,W.E., Denison,R.E., and Merritt,C.A., 1964, Basement rocks and structural evolution of southern Oklahoma: Oklahoma Geological Survey, Bulletin 95, 305 p.
- Ham,W.E., and Wilson,J.L., 1967, Paleozoic epeirogeny and orogeny in the central United States: American Journal of Science, v. 265, no. 5, p. 332-407.
- Handford,C.R. and Dutton,S.P., 1980, Pennsylvanian-Lower Permian depositional systems and shelf-margin evolution, Palo Duro Basin, Texas: American Association of Petroleum Geologists, Bulletin, v. 64, no. 1, p. 88-106.

Harland, W.B., 1971, Tectonic transpression in Caledonian Spitsbergen: Geological Magazine, v. 108, no. 1, p. 27-42.

- Hill,C.S., 1971, Future petroleum resources in pre-Pennsylvanian rocks of north, central, and west Texas and eastern New Mexico, in Cram, I.H., ed., 1971, Future petroleum provinces of the United States - their geology and potential: American Association of Petroleum Geologists, Memoir 15, v. 1, p 738-803.
- Hoffman, P., Dewey, J.F., and Burke, K., 1974. Aulacogens and their genetic relation to geosynclines, with a Proterozoic example from Great Slave Lake, Canada, in Dott, R.H., Jr and Shaver, R.H., Modern and ancient geosynclinal sedimentation: Society of Economic Paleontologists and Mineralogists, Special Paper 19, p. 38-55.
- Huffman,G.G., 1959, Preliminary isopachous and paleogeologic studies, central Mid-continent area: Shale Shaker, v. 10, p. 5-21.
- Kauffman, E.G., 1977, Geological and biological overview: western interior Cretaceous basin: The Mountain Geologist, v. 14, nos. 3 and 4, p. 75-99.
- Kelley, V.C. 1971, Geology of the Pecos Country, Southeastern New Mexico: New Mexico Bureau of Mines and Mineral Resources Memoir, no. 24, 78 p.
- King, P.B., 1977. The evolution of North America: Princeton University Press, 197 p.
- Kirkham, R.M. and Rodgers. W.P.. 1981, Earthquake potential in Colorado a preliminary evaluation: Colorado Geological Survey, Bulletin 43, 171 p.
- Kluth,C.F. and Coney,P.J., 1981, Plate tectonics of the Ancestral Rocky Mountains: Geology, v.9, no.1, p. 10-15.
- Knepper, D.H., Jr., Late Cenozoic structure of the Rio Grande Rift zone, central Colorado, in Epis, R.C., and Weimer, R.J., eds., Studies in Colorado field geology: Colorado School of Mines, Professional Contributions, no. 8, p. 421-430.
- Knowles, T., Nordstrom, P., and Klemt, W., 1981. Evaluating the ground-water resources of the High Plains of Texas. Final Report: Texas Department of Water Resources, Publication LP-173, v.3, 477 p.
- Knowles, T., Nordstrom, P., and Klemt, W.B., 1982a, Evaluating the groundwater resources of the High Plains of Texas, v. 1: Texas Department of Water Resources, Report LP-173, 174 p.
- Knowles, T., Nordstrom, P., and Klemt, W., 1982b. Evaluating the ground-water resources of the High Plains of Texas, Final Report: Texas Department of Water Resources, Publication LP-173, v.2, 451 p.
- Kottlowski,F.E.; Flower,R.H., Thompson,M.L., and Foster,R.W., 1956. Stratigraphic studies of the San Andres Mountains, New Mexico: New Mexico Bureau of Mines and Mineral Resources, Memoir 1, 132 p.

- Krisle, J.E., 1959. General geology of the Tucumcari Basin of northeastern New Mexico, in Guidebook of the southern Sangre de Cristo Mountains, New Mexico: Panhandle Geological Society, p. 1-8.
- Lisenbee,A.L., Woodward,L.A., and Connolly,J.R., 1979, Tijeras-Canoncito fault system--a major zone of recurrent movement in north-central New Mexico, in Ingersoll,R.V., ed., Santa Fe Country: New Mexico Geological Society, Guidebook to 30th field conference, p. 89-99.
- Lovelace, A.D., 1972. Geology and aggregate resources. District II: New Mexico State Highway Department, 65 p.
- Mapel,W.J., Johnson,R.B., Bachman,G.O., and Varnes, K.L., 1979, Southern Rocky Mountains region: U.S. Geological Survey, Professional Paper 1010-J. p. 161-187.
- Maxwell.R.W., 1959. Post-Hunton pre-Woodford unconformity in southern Oklahoma. in Petroleum geology of southern Oklahoma. v. 2: American Association of Petroleum Geologists, p. 101-126.
- McGlasson,E.H., 1969, Siluro-Devonian of west Texas and southeast New Mexico, in Kottlowski,F.E. and LeMore,D.V., eds., Border stratigraphy symposium: New Mexico Bureau of Mines and Mineral Resources, Circular 104, p. 26-37.
- McGillis,K.A. and Presley,M.W., 1981. Tansill. Salado, and Alibates Formations: Upper Permian evaporite/carbonate strata of the Texas Panhandle: The University of Texas at Austin, Bureau of Economic Geology Geological Circular 81-8, 31 p.
- McGookey.D.A., 1984. Uplift, subsidence, vertical crustal movements: The University of Texas at Austin, Bureau of Economic Geology, Open File Report, OF-WTWI-1984-2, 10 p.
- McGookey, D.A., and Budnik, R.T., 1983, History of faulting in the Palo Duro Basin, in Gustavson, T.C., and others, Geology and geohydrology of the Palo Duro Basin, Texas Panhandle: The University of Texas at Austin, Bureau of Economic Geology, Geological Circular 83-4, p. 6-13.
- McGookey.D.A. and Goldstein.A.G., 1982, Structural influence on deposition and deformation at the northwest margin of the Palo Duro Basin, in Gustavson.T.C., and others, Geology and geohydrology of the Palo Duro Basin, Texas Panhandle: The University of Texas at Austin, Bureau of Economic Geology, Geological Circular 83-4, p. 28-37.
- McGowen, J.H., Granata, G.E., and Seni, S.J., 1979. Depositional framework of the lower Dockum (Triassic). Texas Panhandle: The University of Texas at Austin, Bureau of Economic Geology, Report of Investigations, 97, 60 p.
- McKee,E.D., Crosby,E.J., and others, 1975, Paleotectonic investigations of the Pennsylvanian System in the United States: U.S. Geological Survey Professional Paper 853-J, Part II, 197 p.
- McKee, E.D. and Oriel, S.S., 1967, Paleotectonic investigations of the Permian System in the United States: U.S. Geological Survey Professional Paper 515, 271 p.

- Meyer,R.F., 1966, Geology of Pennsylvanian and Wolfcampian rocks in southeast New Mexico: Bureau of Mines and Mineral Resources. Memoir 17, 119 p.
- Meyers, D.A., Stafford, P.T., and Burnside, R.J., 1956. Geology of the Late Paleozoic Horseshoe Atoll in West Texas: The University of Texas, Austin, Bureau of Economic Geology, Publication no. 5607, 113 p.
- Miller, J.P., Montgomery, A, and Sutherland, P.K., 1963, Geology of part of the southern Sangre de Cristo Mountains, New Mexico: New Mexico Bureau of Mines and Mineral Resources, Memoir 11, 106 p.
- Montgomery, S.L., 1984, Hardeman Basin: small, oil-rich graben in north Texas: Petroleum Frontiers, v. 1, no.2, p. 26-67.
- Muehlberger, W.R. and Denison, R.E., 1964, Precambrian geology of southcentral New Mexico, in Guidebook, 15th Field Conference, Ruidoso Country, New Mexico: New Mexico Geological Society, p. 62-69.
- Muehlberger, W.R., Hedge, C.E., Denison, R.E., and Marvin, R.F., 1966, Geochronology of the Midcontinent Region, United States, 3. Southern area: Journal of Geophysical Research, v. 71, no.22, p. 5409-5426.
- Muehlberger, W.R., Denison, R.E., and Lidiak, E.G., 1967. Basement rocks in continental interior of United States: American Association of Petroleum Geologists Bulletin, v. 51, no. 12, p. 2351-2380.
- Nakata.J.K., Wentworth.C.M., and Machette.M.N., 1982. Quaternary fault map of the Basin and Range and Rio Grande Rift provinces, western United States: U.S. Geological Survey Open-File Report 82-579, scale 1:2,500.000, 2 sheets.
- National Petroleum Bibliography. 1965, Geological Maps--Panhandle oil and gas: National Petroleum Bibliography, Amarillo, 220 p.
- New Mexico Geological Society, 1982, New Mexico highway geologic map: scale 1:1,000,000.
- Nicholson, J.H., 1960, Geology of the Texas Panhandle, in Aspects of the geology of Texas, a symposium: The University of Texas, Austin, Bureau of Economic Geology Publication 6017, p. 51-64.
- Olsen, J.C., Marvin, R.F., Parker, R.L., and Mehnert, H.H., 1977, Age and tectonic setting of Lower Paleozoic alkalic and mafic rocks, carbonatites, and thorium veins in south-central Colorado: U.S. Geological Survey, Journal of Research, v. 5, no. 6, p. 673-687.
- Panhandle Geological Society, 1958, North-South stratigraphic cross section: Keyes Dome-Dalhart Basin-Bravo Dome and Palo Duro Basin: Panhandle Geologic Society, Stratigraphic Cross Section, no.4.
- Panhandle Geological Society, 1969, Pre-Pennsylvanian geology of the western Anadarko Basin: 34 p.

- Patton, L.T., 1923. The geology of Potter County: The University of Texas, Austin, Bureau of Economic Geology and Technology, Bulletin 2330, 184 p.
- Personius, S.F. and Machette, M.N., 1984, Quaternary and Pliocene faulting in the Taos Plateau region, northern New Mexico, in Baldridge, W.S., Dickerson, P.W., Riecker, R.E., and Zidek, J., eds., Rio Grande Rift: northern New Mexico: New Mexico Geological Society, Guidebook, 35th field conference, p. 83-90.
- Pippin.L., 1970. Panhandle-Hugoton Field. Texas. Oklahoma. Kansas -- the first fifty years. in Geology of giant petroleum fields: American Association of Petroleum Geologists Memoir 14, p. 204-222.
- Pitt, W.D., 1973. Hydrocarbon potential of pre-Pennsylvanian rocks in Roosevelt County, New Mexico: New Mexico Bureau of Mines and Mineral Resources. Circular no. 130, 7 p.
- Poole, F.G., Baars, D.L., Drewes, H., Hayes, P.T., Ketner, K.B., McKee, E.D., Teichert, C., and Williams, J.S., 1967. Devonian of the southwestern United States. in Oswald, D.H., ed. International symposium on the Devonian System: Alberta Society of Petroleum Geologists, v. 1, p. 879-912.
- Presley, M.W. and McGillis, K.A., 1982, Coastal evaporite and tidal-flat sediments of the upper Clear Fork and Glorieta Formations, Texas Panhandle: The University of Texas at Austin, Bureau of Economic Geology, Report of Investigations 115, 50 p.
- Ramondetta.P.J., 1982. Facies and stratigraphy of the San Andres Formation, northern and northwestern shelves of the Midland Basin. Texas and New Mexico. The University of Texas at Austin. Bureau of Economic Geology. Report of Investigations no. 128, 56 p.
- Rascoe.B. Jr. and Baars.D.L., 1972, Permian System, in Mallory,W.W., ed., Geologic Atlas of the Rocky Mountain Region: Rocky Mountain Association of Geologists, p. 143-165.
- Reagor, B.G., Stover, C.W., and Algermissen, S.T., 1982, Seismicity map of the State of Texas: U.S. Geological Survey, Miscellaneous Field Studies, Map MF-1388, 1:1,000,000.
- Robertson, J.M. and Moench, R.H., 1979. The Pecos Greenstone Belt: A Proterozoic volcano-sedimentary sequence in southern Sangre de Cristo Mountains, New Mexico, in Ingersoll, R.V., ed, Santa Fe Country: New Mexico Geological Society, Guidebook to 30th field conference, p. 165-173.
- Rogatz, H., 1939. Geology of the Texas Panhandle oil and gas field: American Association of Petroleum Geologists, v. 23, no.7, p. 983-1053.
- Ross.R.J., Jr. and Tweto.O., 1980, Lower Paleozoic sediments and tectonics in Colorado, in Kent,H.C. and Porter,K.W., eds., Colorado Geology: Rocky Mountain Association of Geologists, p. 47-56.

- Roth,R., 1960, Swisher gabbroic terrane of Texas Panhandle: American Association of Petroleum Geologists Bulletin, v. 44, no. 11. p. 1775-1784.
- Ruppel,S.C., 1982, Pre-Pennsylvanian sequence, in Dutton,S.P., Goldstein,A.G., and Ruppel,S.C., Petroleum potential of the Palo Duro Basin: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations no. 123, p.10-17.
- Ruppel,S.C., 1985, Petroleum potential of the pre-Pennsylvanian of the Palo Duro Basin, Texas Panhandle: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations no. 147.
- Sanford,A.R., Budding,A.J., Hoffman,J.P., Alptekin,O.S., Rush,C.A., and Toppozada,T.R., 1972, Seismicity of the Rio Grande Rift in New Mexico: New Mexico State Bureau of Mines and Mineral Resources Circular 120, 19 p.
- Sanford.A.R., Olsen,K.H., and Jaksha,L.H., 1981, Earthquakes in New Mexico, 1849-1977: New Mexico Bureau of Mines and Mineral Resources Circular no. 171, 20 p.
- Schultz,G.E., 1977, The Ogallala Formation and its vertebrate faunas in the Texas and Oklahoma Panhandles, in Schultz,G.E., ed., Field conference on Late Cenozoic biostratigraphy of the Texas Panhandle and adjacent Oklahoma: West Texas State University Special Publication, no. 1, p. 5-104.
- Scott,R.W., 1977, Early Cretaceous environments and paleocommunities in the southern western interior: The Mountain Geologist, v. 14, nos. 3 and 4, p. 155-173.
- Seni,S.J., 1980, Sand-body geometry and depositional systems. Ogallala Formation, Texas: The University of Texas at Austin, Bureau of Economic Geology, Report of Investigations 105, 36 p.
- Smith.D.A., 1983, Basement and Lower Paleozoic structural influence on Late Permian sediemntation over the Donley positive area, Donley County, Texas Panhandle, in Gustavson, T.C., and others. Geology and geohydrology of the Palo Duro Basin, Texas Panhandle, The University of Texas at Austin, Bureau of Economic Geology, Geological Circular, no. 83-4, p.25-35.
- Soderstrom,G.S., 1968, Stratigraphic relationships in the Palo Duro-Hardeman Basin area, in Basins of the Southwest, v. 1: West Texas Geological Society, p. 41-49.
- Stearns, D.W., 1972, Structural interpretation of the fractures associated with the Bonita Fault, in Kelley, V.C. and Trauger, F.D., eds., Guidebook of east-central New Mexico: 61-164.
- Stovall, J.W., 1943, Stratigraphy of the Cimarron Valley (Mesozoic Rocks), in Schoff, S.L., Geology and groundwater resources of Cimarron County, Oklahoma: Oklahoma Geological Survey, Bulletin 62, p. 43-100.
- Stratigraphic Research Committee, 1958. North-south stratigraphic crosssection Delaware Basin-Northwest Shelf: Rosewell Geological Society.

- Stratigraphic Research Committee. 1959, North-south stratigraphic crosssection Matador Arch to Central Basin Platform, southeastern New Mexico: Rosewell Geological Society.
- Tade, M.D., 1967, Helium storage in Cliffside Field: Journal of Petroleum Technology, v. 19, no. 7, p. 885-888.
- Tanner, J.H., III, 1967, Wrench fault movements along Washita Valley Fault, Arbuckle Mountain area, Oklahoma: American Association of Petroleum Geologists Bulletin, v. 51, no. 1, p.126-141.
- Tarr.R.S., Jordan,L., and Rowland,T.C., 1965, Geologic map and sections of pre-Woodford rocks in Oklahoma: Oklahoma Geological Survey, Map GM-9, 1:750,000.
- Tedford,R.H., 1981, Mammalian biochronology of the late Cenozoic basins of New Mexico: Geological Society of America, Bulletin, Part I, v. 92, no. 12, p. 1008-1022.
- Thomas, J. J. Shuster, R.D., and Bickford, M.E., 1984, A terrane of 1350-1400 my. old silic volcanic and plutonic rocks in the buried Proterozoic of the Midcontinent and the Wet Mountains, Colorado: Geological Society of America Bulletin, v. 95, no. 10, p. 1150-1157.
- Totten.R.G., 1956. General geology and historical development. Texas and Oklahoma Panhandles: American Association of Petroleum Geologists Bulletin, v. 40, no. 8, 1945-1967.
- Tweto,O., 1979. The Rio Grande Rift in Colorado. in Riecker,R.E.,ed. Rio Grande Rift: Tectonics and Magmatism: American Geophysical Union, p. 33-56.
- Tweto.O., 1980a, Tectonic history of Colorado, in Kent,H.C. and Porter.K.W., eds, Colorado Geology: Rocky Mountain Association of Geologists, p. 5-9.
- Tweto,O., 1980b, Precambrian geology of Colorado, in Kent,H.C. and Porter,K.W., eds, Colorado Geology: Rocky Mountain Association of Geologists, p. 37-46.
- Tweto,O., 1983, Las Animas Formation (Upper Precambrian) in the subsurface of southern Colorado: U.S. Geological Survey, Bulletin 1529-G, 14 p.
- Van Schums, W.R., and Bickford, M.E., 1981, Proterozoic chronology and evolution of the midcontinent region, North America, in Kroner, A., ed., Precambrian plate tectonics: Elsevier Publishers. p. 261-296.
- Ver Wiebe, W., 1930, Ancestral Rocky Mountains: American Association of Petroleum Geologists, Bulletin, v. 14, no. 6, p. 765-788.
- Weeks.J.B. and Gutentag.E.D., 1981. Bedrock geology, altitude of base, and 1980 saturated thickness of the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, U.S. Geological Survey, Hydrologic Investigations Atlas, HA-648, 1:2.500,000.
- Weimer.R.J., 1980, Recurrent movement on basement faults, a tectonic style for Colorado and adjacent areas, in Kent.H.C. and Porter.K.W., eds., Colorada Geology: Rocky Mountain Association of Geologists, p. 23-35.

1

## Interpretation of seismic reflection data

#### I. Introduction

Seismic reflection data were examined as an aid to structural and stratigraphic studies within the basin. All available stratigraphic and velocity data were integrated to interpret the seismic data.

II. Procedures used in the identification of reflectors:

1. Compared of synthetic seismograms and VSP data from DOE wells with adjacent seismic reflection profiles.

2. Constructed time/depth plots using check shot data from petroleum exploration wells, in areas without synthetic seismograms.

3. Used regional isopach and structural data as aid to interpreting basement reflector.

#### III. Problems

1. Acquisition parameters were inappropriate for resolving deep structure.

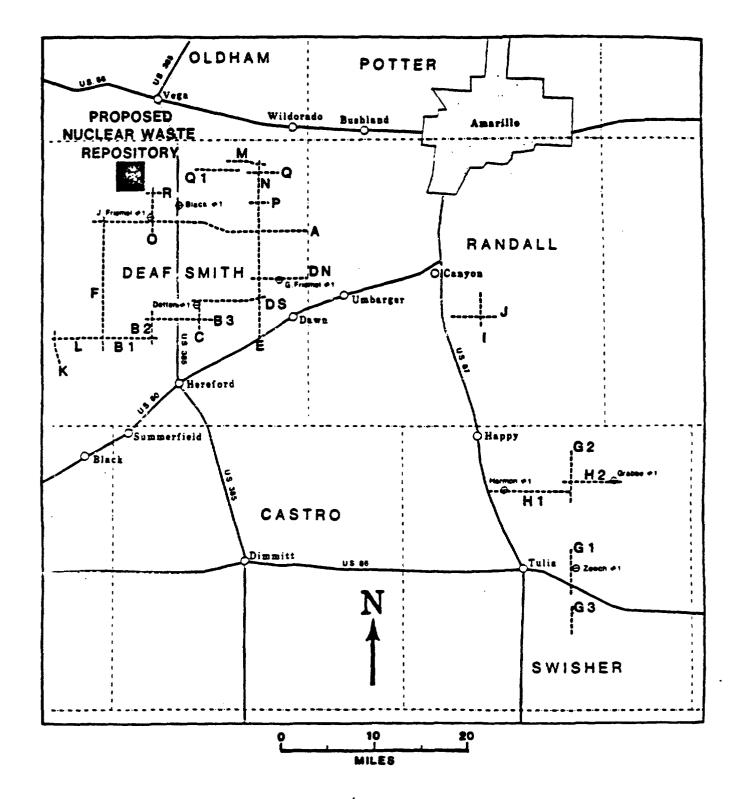
2. "No-permit" areas resulted in degraded data.

3. Problems with statics corrections and velocity determinations produced misties with well data.

4. SWEC lines did not tie well to each other nor to lines from other surveys.

5. Poor velocity control reduced reliability of structure maps produced from seismic data.

6. Variablility in quality of data made it difficult to trace structures from line to line.


## IV. Conclusions

1. The available seismic reflection data have been useful for examining the gross structural continuity of Permian strata within the Palo Duro Basin. However, details of faulting are still unresolved.

2. The accuracy of structure contour maps developed from the seismic data is probably low because of poor velocity control, both regionally and along individual lines.

Ţ





## TABLE 1

۰.

.

.

.

LINE NUMBER	SHOT BY.	ENERGY SOURCE	FOLD % MSC	FREQUENCY# Hz	SFREAD feet	SOURCE SPACING FT
SWEC-A to B-3. D-I	Western	Vibroseis	24	12-90	2860-220-0-220-2860	110
SWEC-C #	Western	Vibroseis	24	18-128	2860-275-0-275-2860	110
SWEC-C +	Western	Vibroseis	48	18-128	2860-275-0-275-2860	55
SWEC-C @	Western	Vibroseis	48	18-128	5720-550-0-550-5720	110
SWEC-J	Western	Vibroseis	48	8-64	11220-880-0-880-11220	220
SWEC-K to R	Western	Vibroseis	24	12-90	2805-220-0-220-2805	110
BENDIX-D, F to H, J	Bendix-United	Vibroseis	12	12-40	4620-990-0-990-4620	330
BENDIX-E	Bendix-United	Vibroseis	12	12-40	4620-990-0-990-4620	330
75-2	Sundance	Dynamite	8	16-125	6600-220-0-220-6600	660
10-120	Sundance	Dynamite	12	16-125	5280-220-0-220-5280	440
FD-4, 4A, 9, 10, 11	STM	Vibroseis	24	15-75	8250-495-0-495-8250	330
W-95	Western	Vibroseis	24	8-64	7150-825-0-825-7150	. 275

# Configuration A & B
+ Configuration C
@ Configuration D

in Figure 2

**≭** notch @ 60

.

٠,

•

.

.

.

-

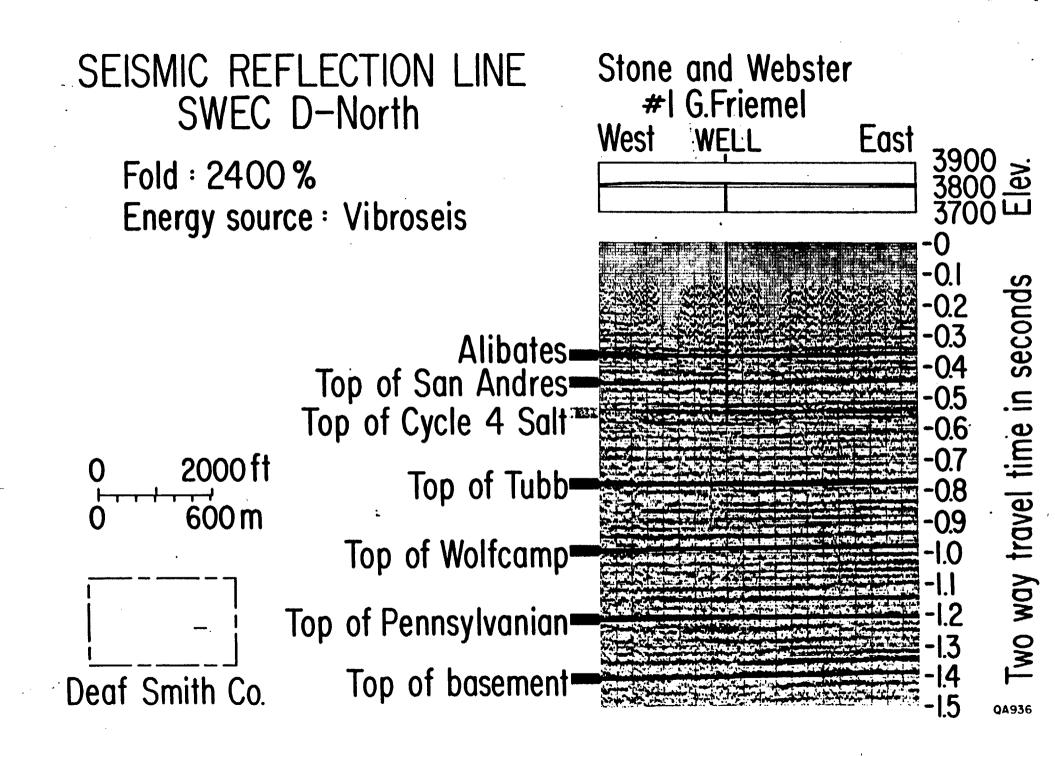
e' '

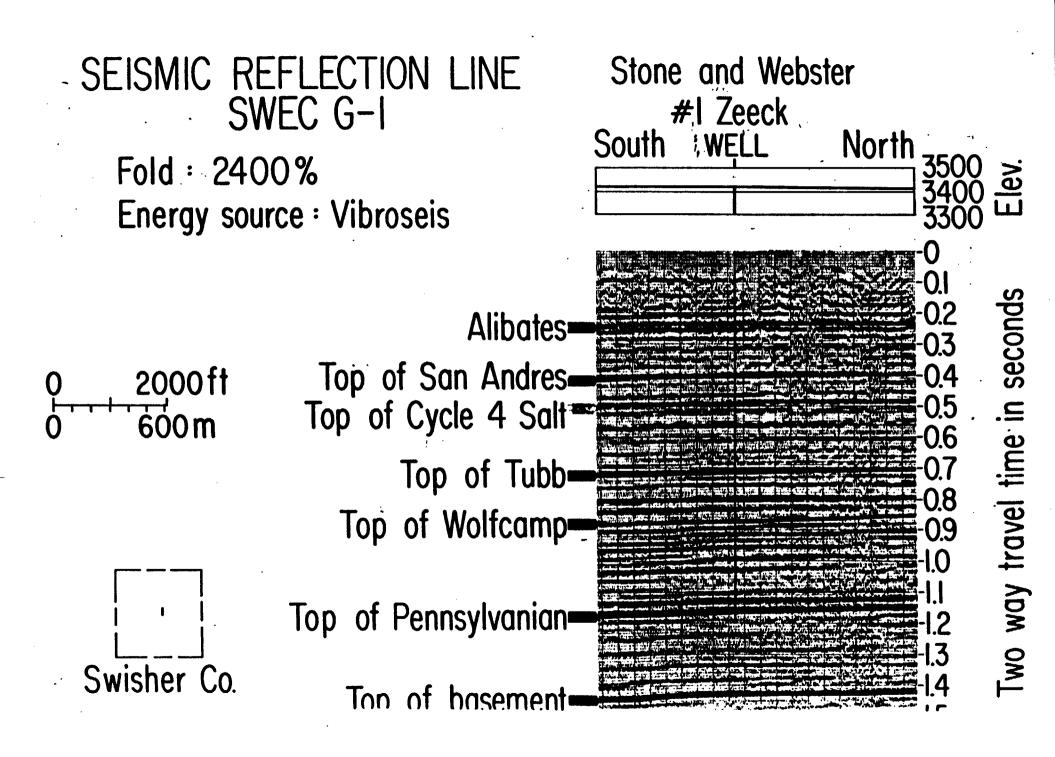
TABLE 2

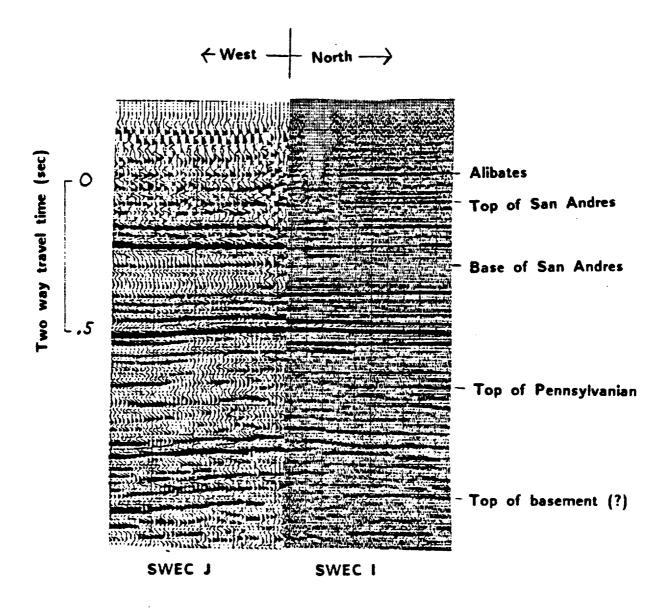
## List of DOE Test Wells

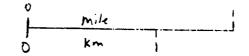
Well Name		County	Velocity Data*
Gruy-Federal	#1 Rex White	Randall	ISL
SWEC	#1 Mansfield	Oldham	ISL
SWEC	#1 Sawyer	Don ley	ISL
Gruy-Federal	#1 Grabbe	Swisher	ISL, SS
SWEC	#1 Detten	Deaf Smith	ISL, SS
SWEC	#1 G. Friemel	Deaf Smith	ISL, SS
SWEC	#1 Harman	Swisher	ISL, SS, VS
SWEC	#1 Holtzclaw	Randa11	ISL, SS, VS
SWEC	#1 J. Friemel	Deaf Smith	ISL, SS, VS, VSP
SWEC	#1 Zeeck	Swisher	ISL, SS, VS, VSP

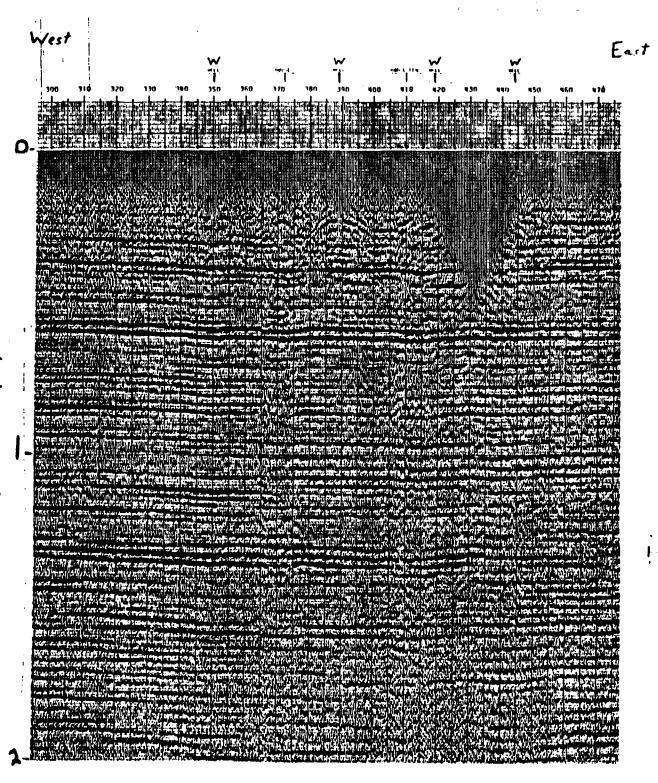
.


ŀ


ı.


Velocity Data


,


- ISL
- Integrated sonic log Synthetic seismogram (geogram) Velocity survey Vertical seismic profile SS
- ٧S
- VSP







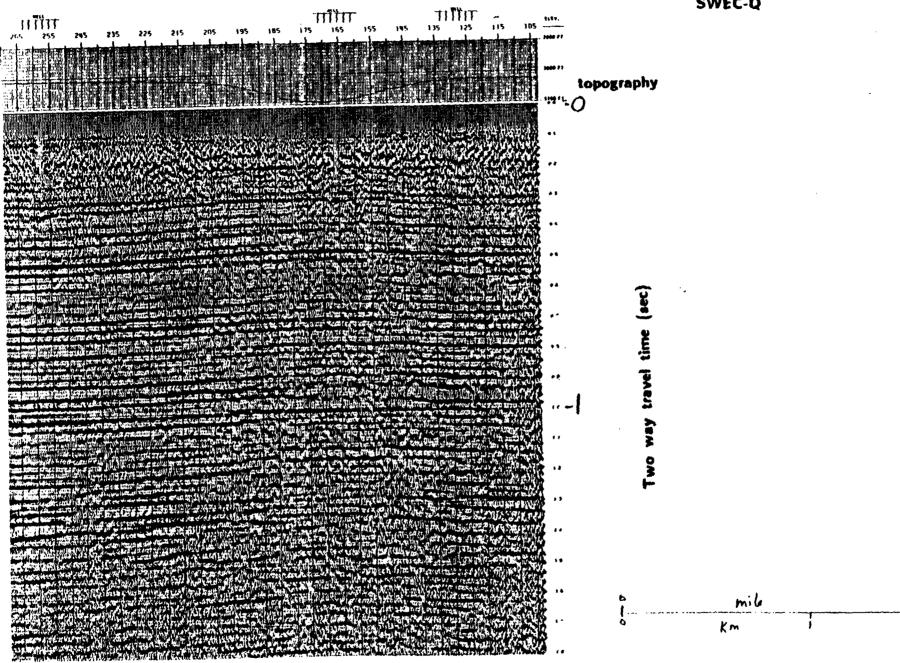




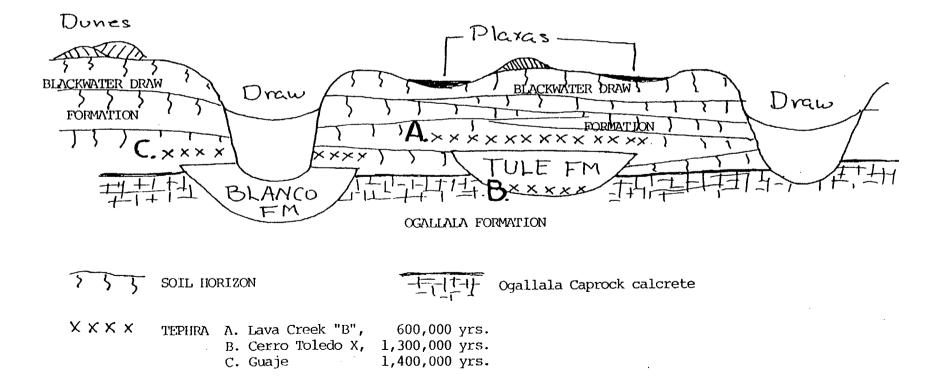
## SWEC B-3

# Distortion of data in vicinity of irrigation wells

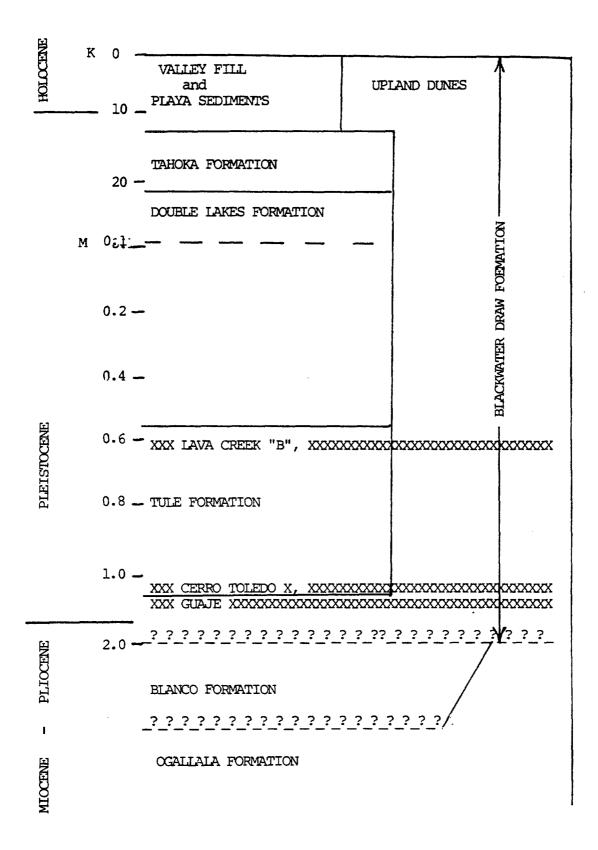
1


1

mile


1

1


Two-way travel time (sec)



SWEC-Q



.



 GUSTAVSON, T.C., IN PRESS, GEOMORPHIC DEVELOPMENT OF THE CANADIAN RIVER VALLEY, TEXAS PANHANDLE: AN EXAMPLE OF REGIONAL SALT DISSOLUTION AND SUBSIDENCE: GEOLOGICAL SOCIETY OF AMERICA BULLETIN.

.*

CONTENTS:

PRESENTS REGIONAL STRUCTURAL AND STRATIGRAPHIC ARGUMENTS THAT THE CANADIAN RIVER VALLEY FORMED AS A RESULT OF DISSOLUTION-INDUCED SUBSIDENCE FOLLOWING THE DEPOSITION OF OGALLALA FLUVIAL SEDIMENTS (PLIOCENE?). FIGURES 1-9. TIMING OF DISSOLUTION RANGES FROM PLIOCENE TO RECENT.

I.

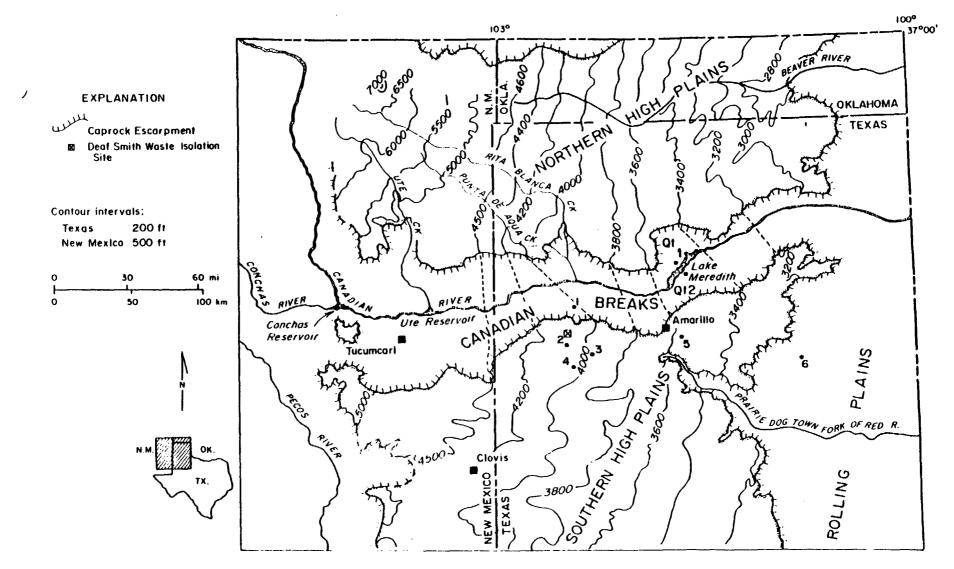
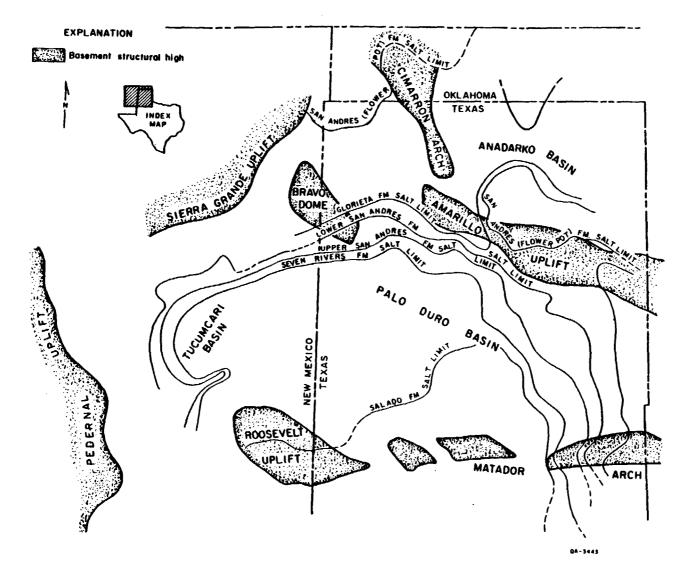




FIGURE 1. Study location, regional topography and physiography

•

QA - 3445





1

.

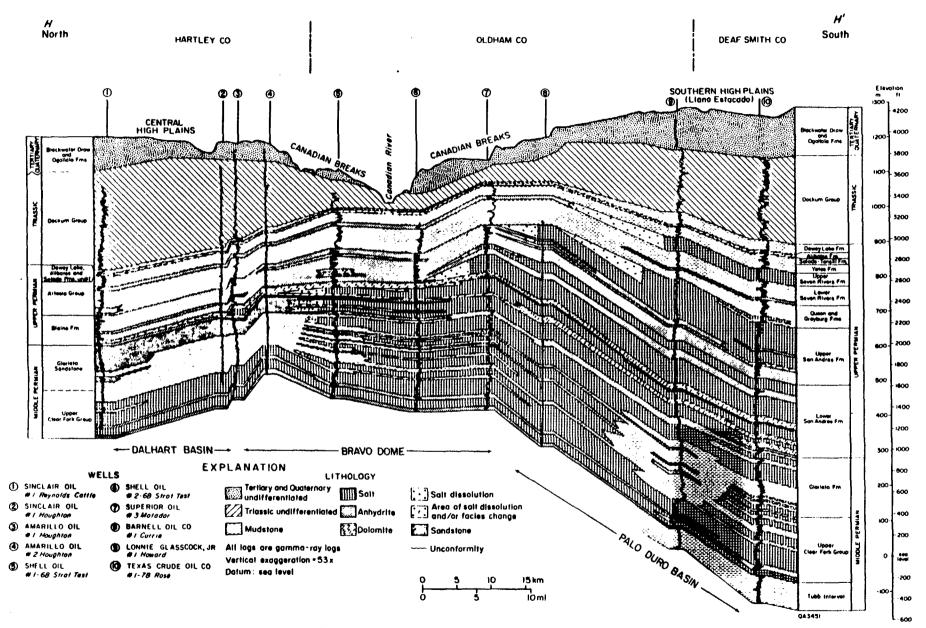



Figure 3. Stratigraphic cross section.

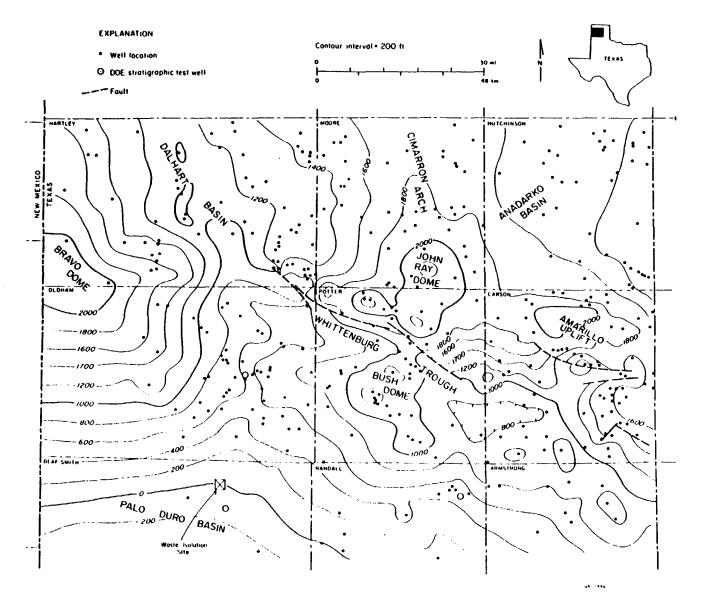
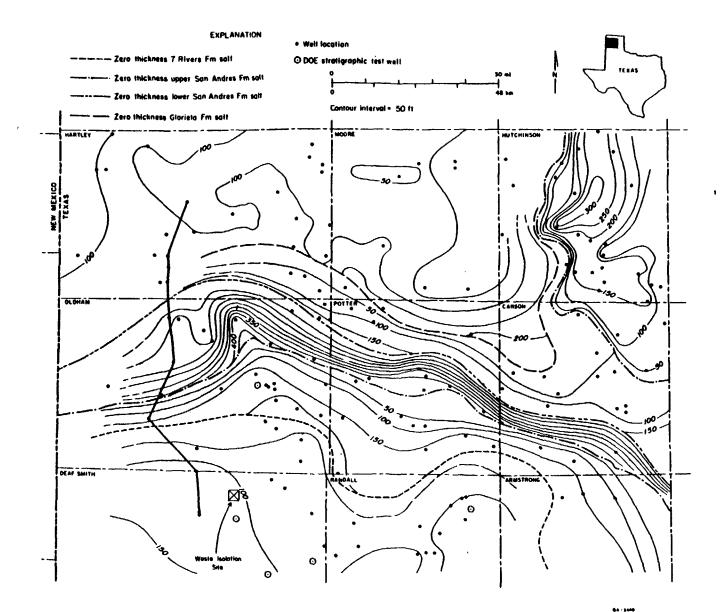




FIGURE 4. Structure-contour map on the Tubb Formation

• "



••

FIGURE 5. Salt thickness slice map for Permian bedded salts.

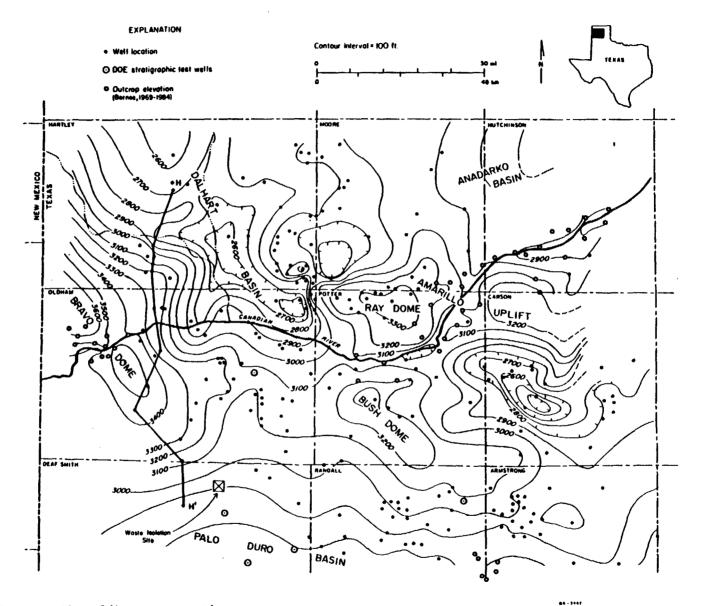
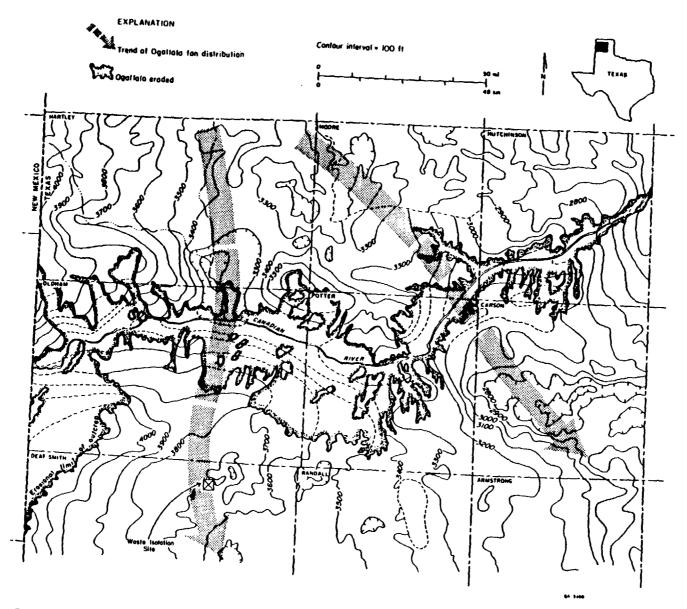




Figure 6 Structure on the Alibates Formation

___

.

. .



ŧ

FIGURE 7. Structure-contour map on the base of the Ogallala Formation

.

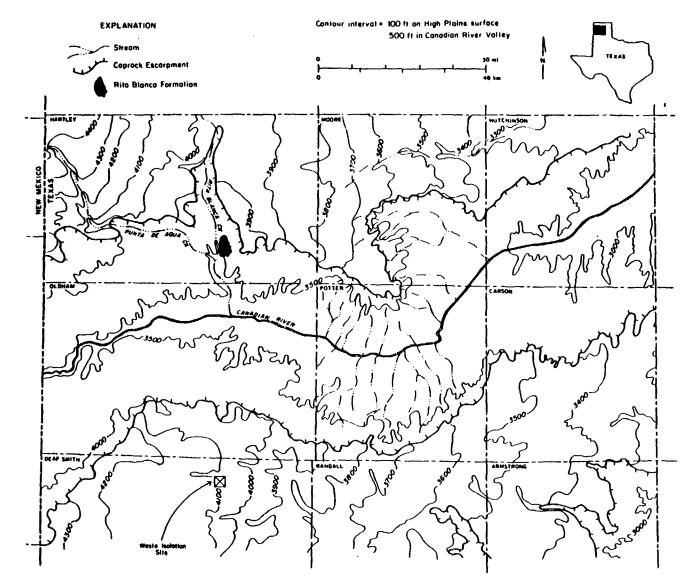
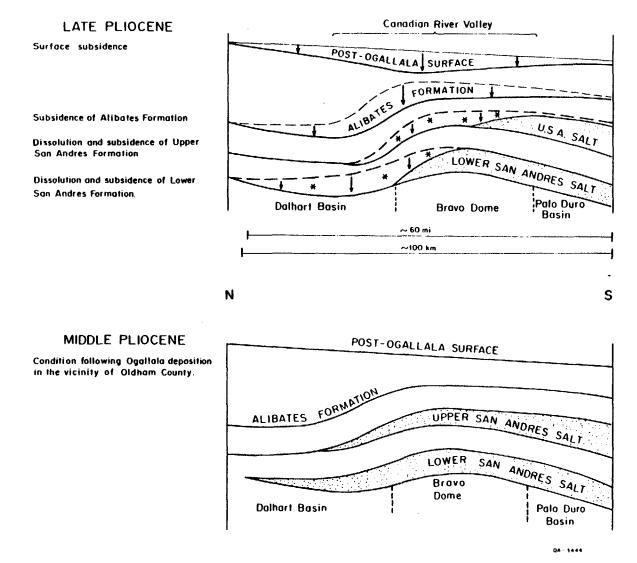
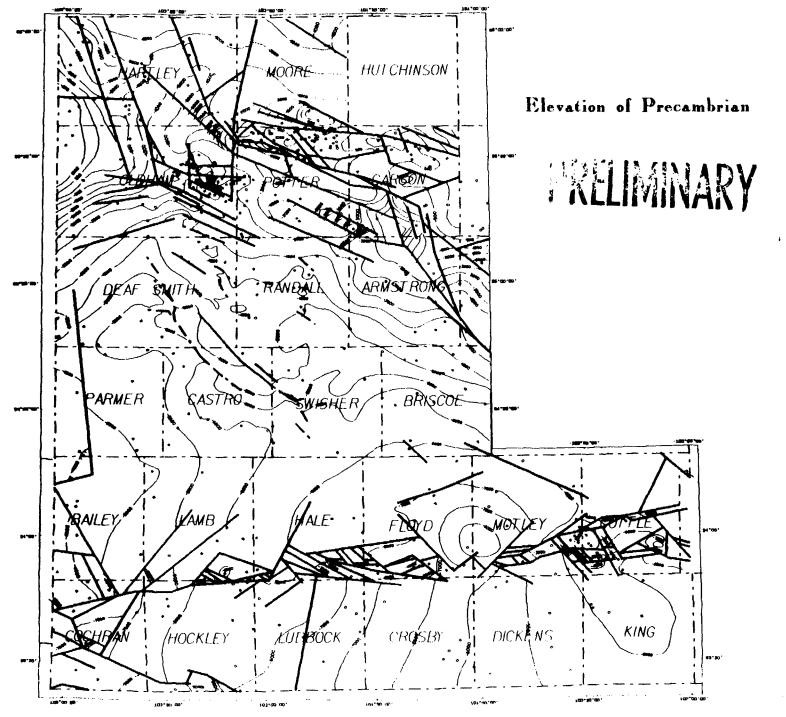
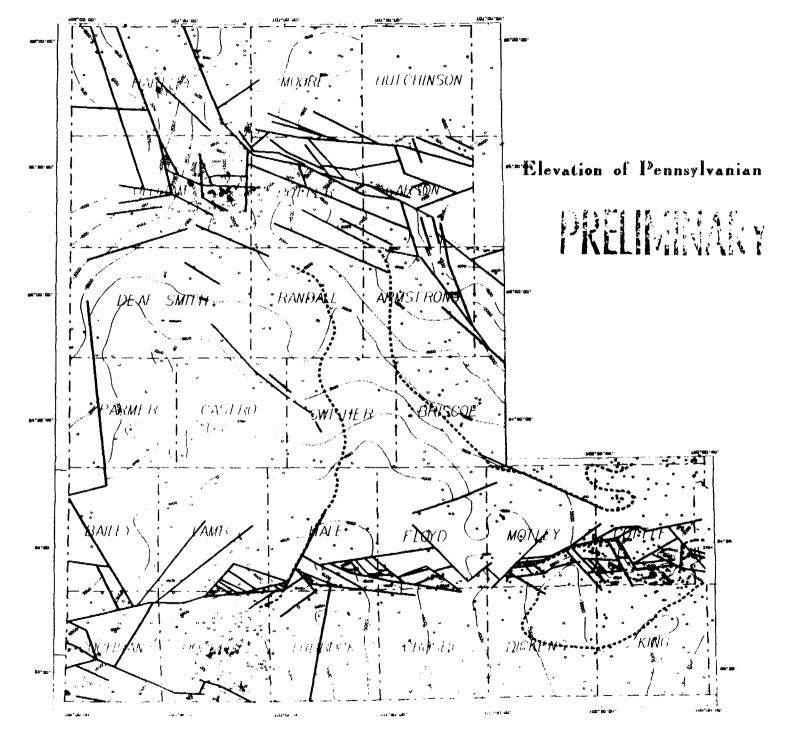


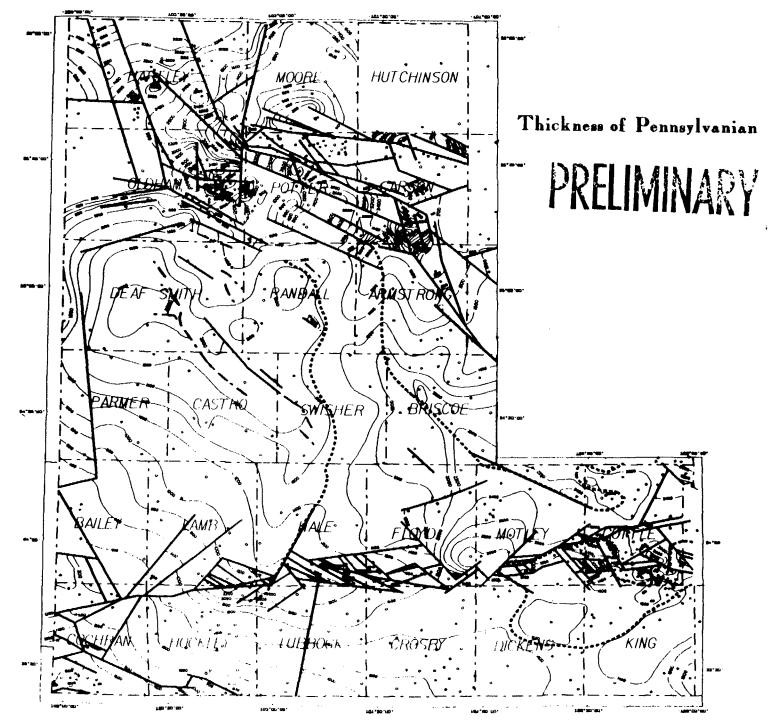

FIGURE 8. Topography.

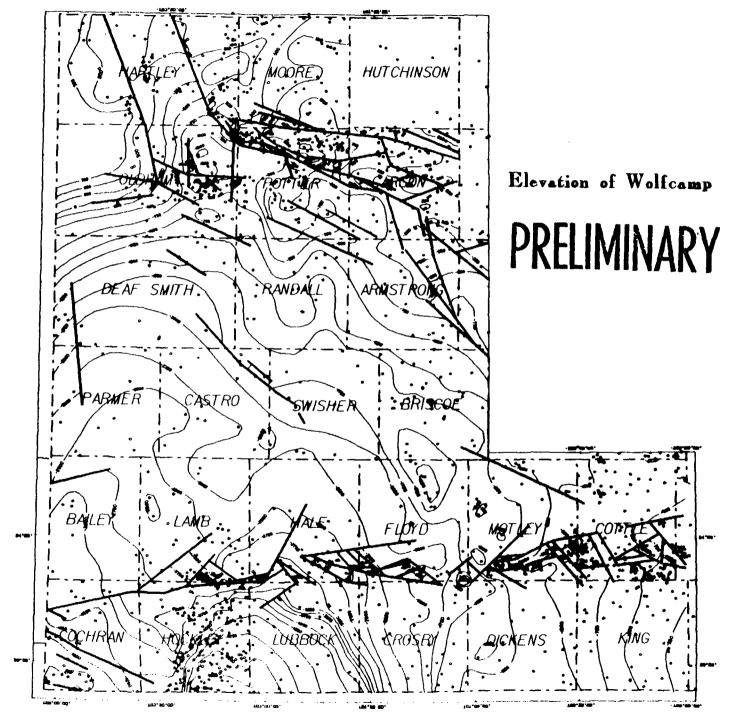
.

_

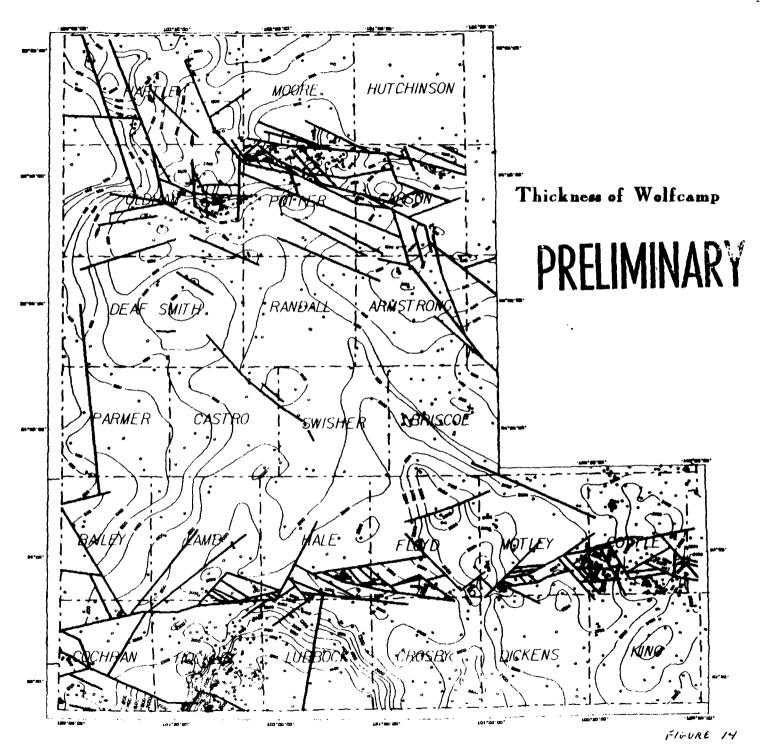
84-3447

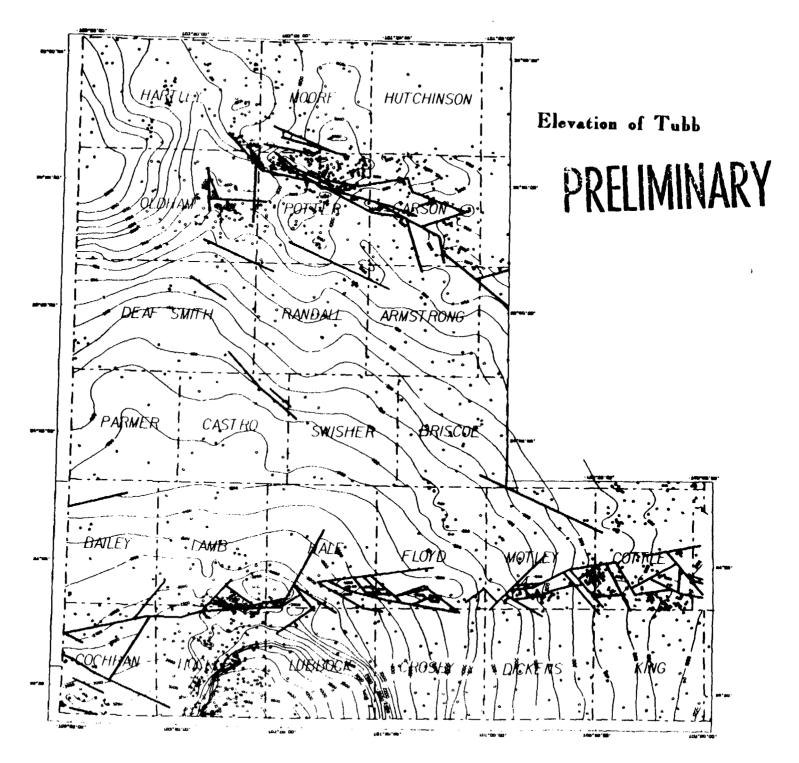




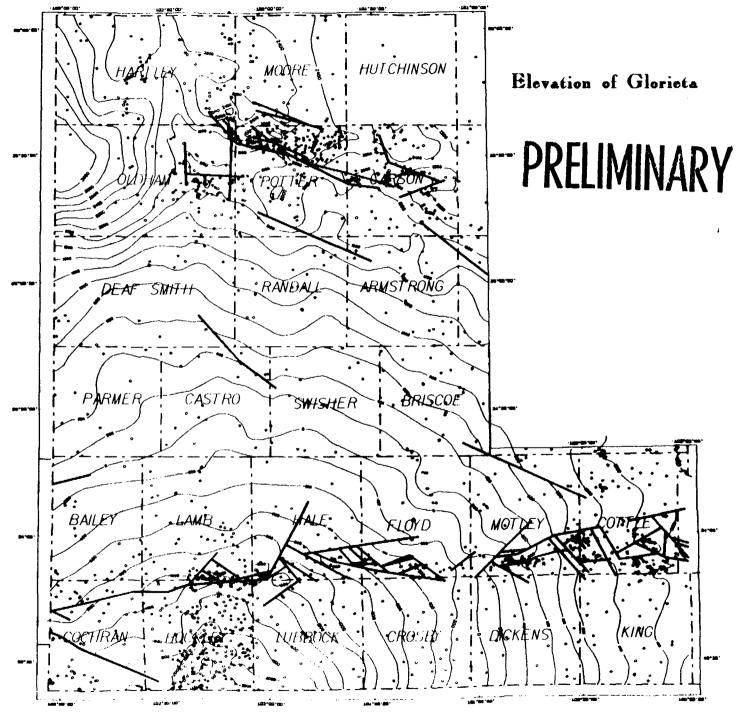


Figure 9. Process model for the formation of the Canadian River Valley

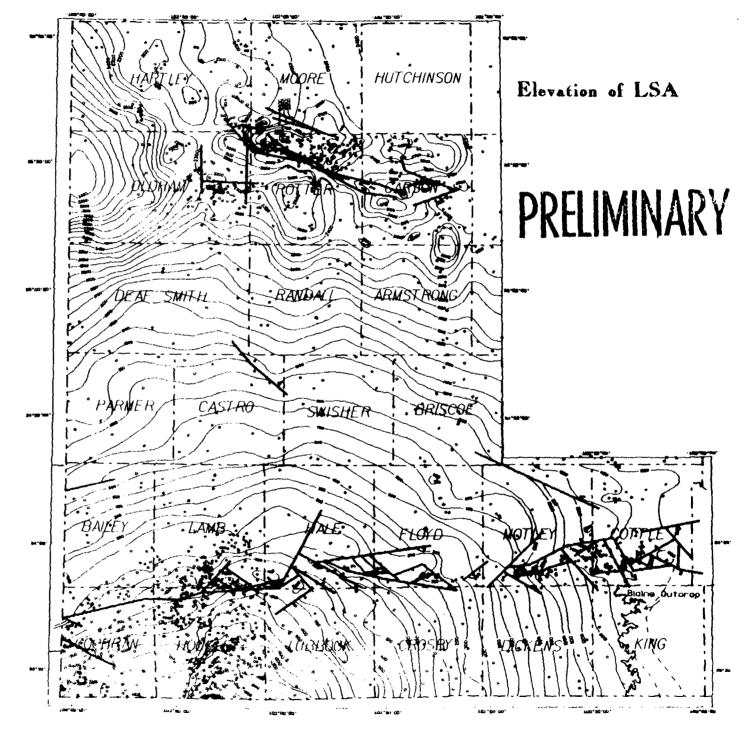



Muphy (15)

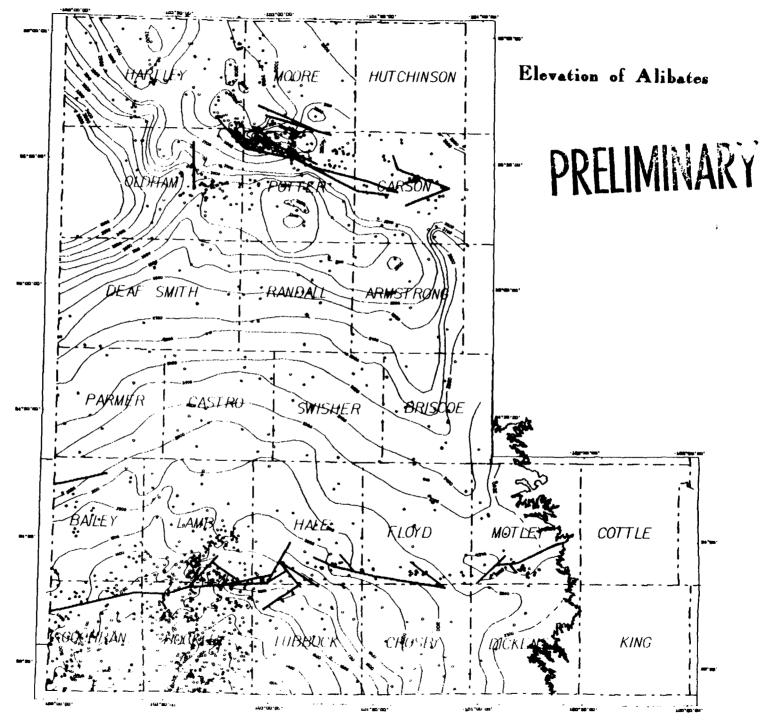

FIGURE 10

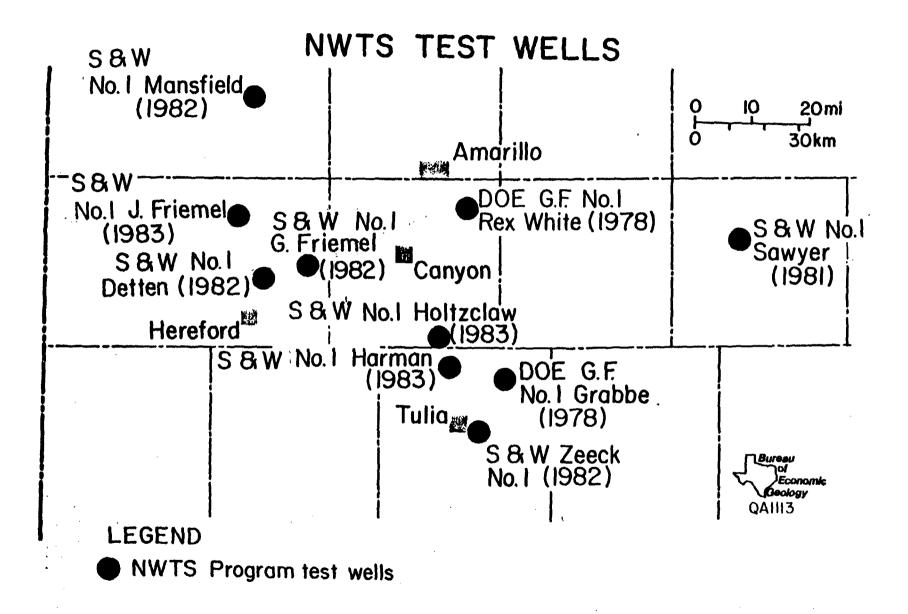




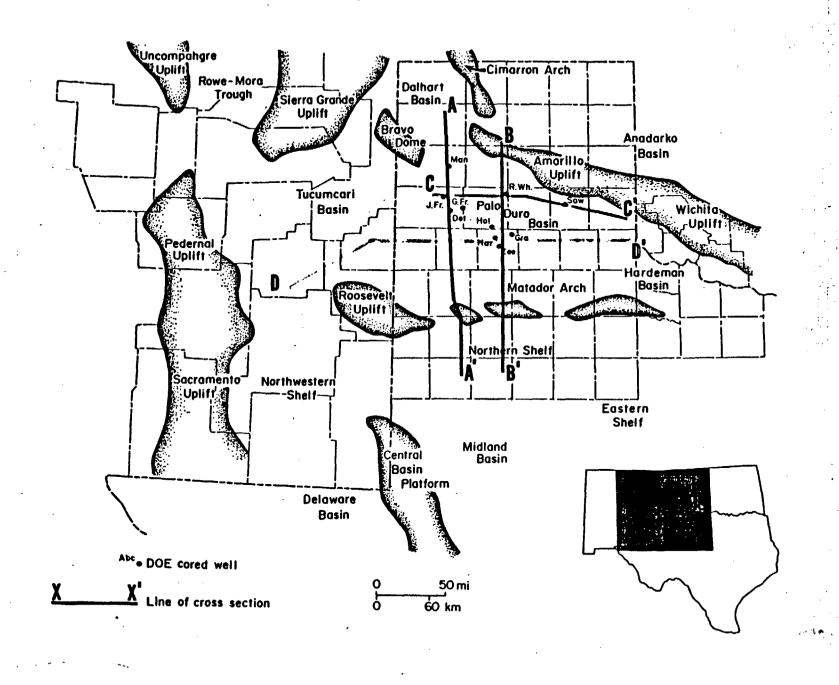












## CORED INTERVALS

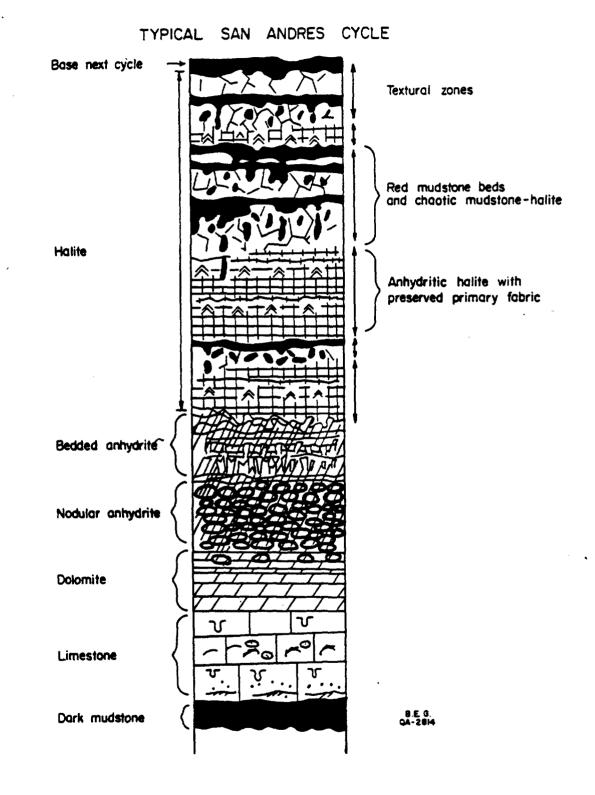
FORMATION	MAWSFU				DETTEN	GERIEME	WOODS- HOLTCLAW	HARMON	ZEECK	GRA		REX WHIT	SAV	NYER
OGALLALA			39	ol roce								30'		·
DOCKUM	45										1371			
DEWEY LAKE							1080'				20' 11:55:09			
ALIBATES				missing Vili				1072	1035					
SALADO - TANSILL		5' 155193			1129		26' (* 202	33'	1145		25' Missing			
YATES						11-2-1								20' M-55:00
OPPER SEVEN RIVERS			146	<b>`</b> 4`	1422	1312	1399 missi	1302						10° 10-55-52
LOWER SEVEN RIVERS														160' Missing
QUEEN- GRAYBURG	<u>^</u>	42' 1.33.55	18	46		1727		1804	1295					10-22? 22,
UPPER SAN ANDLES	1240				1785									
MIDDLE SAN ANDRES LOWER, SAN	,720 T	·					2307							
LOWER SAN ANDRES UNITS														ro' <u>m Sore</u>
UNITY														
UNIT 3			27	"JO"	2.847	2690	2884							
UNIT2								3049'						
GLORIETA									3102					
UPPER CLEAR FORK						_							╧╋	
TURB						<u> </u>	_	<u> </u>					11	30'
LOWER CLEAR FORK			L			_	·		<u> </u>	42	L 2.10'	<b>↓ ↓</b>		
RED CAVE	<b>T</b> ¹	540 4026	ļ					· · ·				3991		
NICHITA		9123 4393	55	19'					5309	<u> </u>			╧	
WOLF CAMP		1995'		30'	ļ			ļ	7388	~ <b>5</b>			30	33'
PENNSYLVANIA	J		9,2	ור <u>ג</u> געישי יצי	1				· · ·			-l		
Lotal (t. con	106	2'	     41	39'	1255'	૧ ક્રમ	815'	14771	2034'	30	1221	20161	3	558

.

115 (



			Palo Duro Basin	Dalhart Basin	General Lithology and							
SYSTEM	SERIES	GROUP	FORMATION	FORMATION	depositional setting							
	HOLOCENE		alluvium, dune sand Playa	alluvium, dune sand Playa								
QUATERNARY	PLEISTOCENE		"Tahoka "cover sands" Tule. Bianco	"cover sands"	Lacustrine clastics and windblown deposits							
TERTIARY	NEOGENE		Ogailaia	Ogailala	Fluvial and locustrine clastics							
CRETACEOUS			undifferentiated	undifferentiated	Marine shales and limestone							
TRIASSIC		DOCKUM			Fluvial-deltaic and lacustrine clastics							
			Dewey Lake	Dewey Lake								
	осноа		Alibates	Alibates								
			Salado/Tansill									
	ų		Yates	Artesia Group								
	TUP	ARTESIA	Seven Rivers	undifferentiated								
	GUADALUPE		Queen/Grayburg		Cyclic sequences							
PERMIAN			San Andres	Blaine	hypersaline- shel änhydrite, halite continental red be							
PER			Glorieta	Glorieta								
			Upper Clear Fork	Clear Fork								
	LEONARD	CLEAR FORK	FORK	FORK	FORK	CLEAR FORK	CLEAR FORK	CLEAR FORK	FORK	Tubb	]	1
	EON											
			Red Cave	Tubb-Wichita Red Beds								
		WICHITA										
	WOLFCAMP				~							
~~~~?~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	VIRGIL	CISCO	??	+?								
ANIAN	MISSOURI	CANYON			Shelf and shelf-margin carbonate,							
ארע∌	DES MOINES	STRAWN		· · · ·	basinal shale, and deltaic							
PENNSYLV	ATOKA				sandstone							
PE	MORROW	- BEND										
MISSISSIP- PIAN	CHESTER	1	+	+								
	MERAMEC]			Shelf carbonate and chert							
MIS MIS	OSAGE				Shelf dolomite							
ORDOVICIAN		ELLEN- BURGER										
CAMBRIAN ?					Shallow marine(?) sandstone							
PI	RECAMBRIAN		1		igneous and metamorphic							


٢

•

• .

,

. .

figure 2

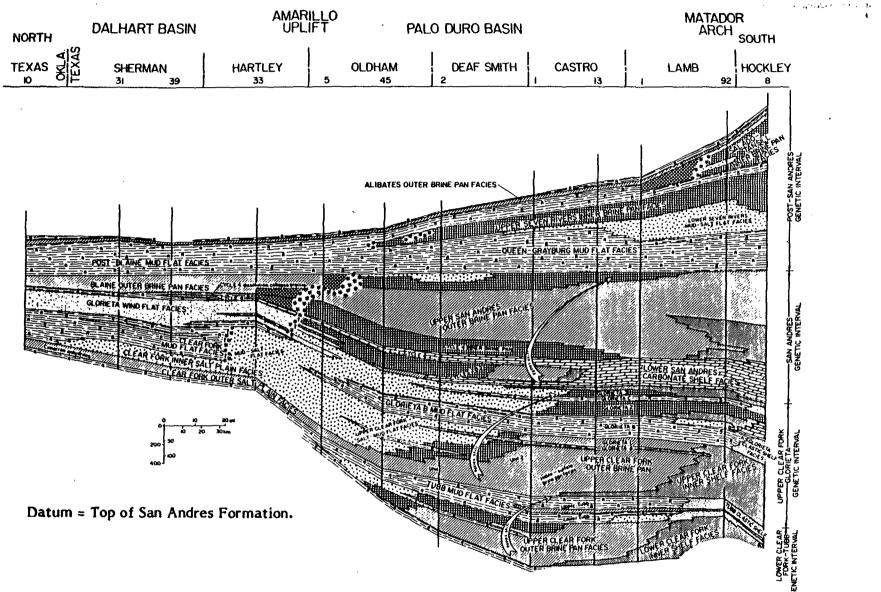


Table 3 Textural classification of halite with genetic significance.

.

.

~

.

•

Sy	(upol	A	8	C	D	E	F	G	н	I I
halite type		chevron halite rock	color banded/ vertically oriented halite rock	ed.	chaotic mud- stone-halite rock	muddy halite	Sibuani anhydritic halite rock	displacive halite in other sediments	halite cavity- filling cement	fibrous fracture- filling halite cement
	e crystal lize	0.5-5 cm tall	0.5-5cm tall	cognized	0.3 to 3 cm	1-5 cm	1-5 cm	0.5-3 cm	1 to 20+ cm	.3 to 1 cm
halite crystal shape		subvertical mosaic; L:W= 3:2 to 4:1	subvertical mosaic; L:W= 3:2 to 4:1	not yet re	equant anhedral to euhedral crystals	equant mosaíc	equant mosaic	euhedral cubes or hopper shapes	equant mosaic	fibrous
	composition	anhydrite common; mudstone possible	anhydrite, mudstone, organicらデ	fabric	mudstone, minor anhydrite	mudstone, minor anhydrite	anhydrite	mudstone; also dolomite, anhydrite	cavity filling halite is clean but is associ- ated with mud-	trace of hema- tite present as coloring agent, otherwise pure
ies	x	<12-52	1%-5%	mary	10-50%	1-10%	1-25%	50-99%	stone and anhydrite	halite
impurities	location	anhydrite on grain bound- aries, part- ings, mud- stone only in pipe fills	within and between grains, along partings, in pipes	for another pri	in masses between halite crystals, some also within grains	within grains, minor between grains	along part- ings, grain boundaries	matrix for halite	insõluble residues	
fluid	inclusions	abundant,small define relict growth faces	varied	reserved	few	varied	varied	few	large and abundant	?
	iated with e types	F along crystal boundaries and pipes, Hånd/or D in pipes	F&E,Hánd/ or D in pipes	C re	mudstone beds typically includes remnant B halite	may contain remnant A,B, possible H	may contain remnant A,B possible H	non-halite rocks	all halite types	in non-halite rocks
identifying characteristics		minute fluid inclusions along relict halite growth faces	bedding and/ or vertical orientation of crystals		10-50% mudstone in inter- crystalline masses,chaot- ic texture	halite colored red brown or black by 1-10% impurities, no bedding	halite with 1-25% anhy- drite, 2, no bedding	euhedra N to sub- hedral halite crystals in sediments	exceptionally coarse clear crystals, fill cavity in other salt type	fibrous halite in fracture, many examples red colored
sketch			1.3451		Xa		F.C.	~	10	

.

· · · · ·

.

Key to detailed logs, San Andres units 4 and 5 halite

Column 1 Depths in feet below kelly bushing

- PC indicates point count of 100 points over 1 foot interval of slabbed core to check estimated percent lithology.
- - * indicates sample logged by BEG and a detailed description available in BEG files.
 - + indicates sample logged, but no detailed description.

Intervals sampled before BEG logging are labeled as "sampled" in column 2

Column 2 Estimated percent lithology

Mineral Composition

	Porosity
XXX	Potash Salt
	Halite
	Anhydri te
	Gypsum
77	Dolostone
┝┯┯╡	Limestone
	Chert
	Sandstone -
	Siltstone
===	Mudstone
	Claystone
1	

Carbonate Components

- G Grainstone
- P Packstone
- W Wackestone
- M Mudstone

Carbonate Components (continued)

- o oolites or coated grains
- 🗆 intraclasts
- 6 fossiliferous (general)
- ~ motluscs
- o crinoids
- 🕤 forams
- ✤ brachiopods
- A phylloid algae
- D coral

Column 3 Structures

Halite

<u>^</u> ^^	chevrons
11111	vertically oriented crystals
11111	dark bands
11 5	pipe, pits (show residue at bottom)
anhy	drite
かん	chaotic mud salt
	recrystallized halite
Y Kr	exceptionally coarse halite
~	mudstone interbed
-+++++++++++++++++++++++++++++++++++++	anhydrite interbed
~~~	discontinuous mudstone interbed
the the	discontinuous anhydrite interbed
~	nonhorizontal bedding

Sketch of structures in left half of column; interbeds of one lithology in another extend 3/4 of column width; boundaries between lithologies drawn across entire column width.

				6C
	Column 3	Structures (continued)		•
	<u>Anhydri te</u>			
	-UALAW-	gypsum pseudomorphs		
		bedding (schematic)		· :
	-A-	contorted bedding		
	3332	nodular		
	*	crystallotopic		
	Carbonates			
	$\sim$	bedding, scour surface		
		wispy lamination		
		ripple lamination		
	2000	cross beds		
	90900	intraclasts		
		coarse grainstone		
	א הי	burrows		.:
	<b>~~</b> ~	stylolites		an a
	<u>Clastics</u>			
		lamination		
	ל -ת	burrows		
		ripple lamination		
	~~~~	disturbed intraclastic fabric		
	522	more disturbed		
•	71111	cross bedding		
	XX	dissipation structures		• .
		·		

•. •. •.

-. .

i

Column 3 Structures (continued)

General

0-0	boudinage		
Ŋ	mudcracks		
	clasts		·
72	faulting		
***	fractures		
ட	birdseye-fabric		
R)	contorted alminae.		
a	displacive halite hoppers		
<(LĈ))	skeletal displacive halite		
\$	filled fracture		
000	nodules (note composition)	, 0	• • • •
*	crystallotopic anhydrite in other litholo	gies	

Column 4 Comments

A. At left edge letters A through F indicate halite rock types.

Halite Types

A bedded halite with chevron fluid inclusions

B bedded halite with vertically oriented crystals

D chaotic mudsalt

E recrystallized muddy halite

F recrystallized halite with interstitial anhydrite

G displacive halite in sediment

H coarse recrystallized cavity fill halite

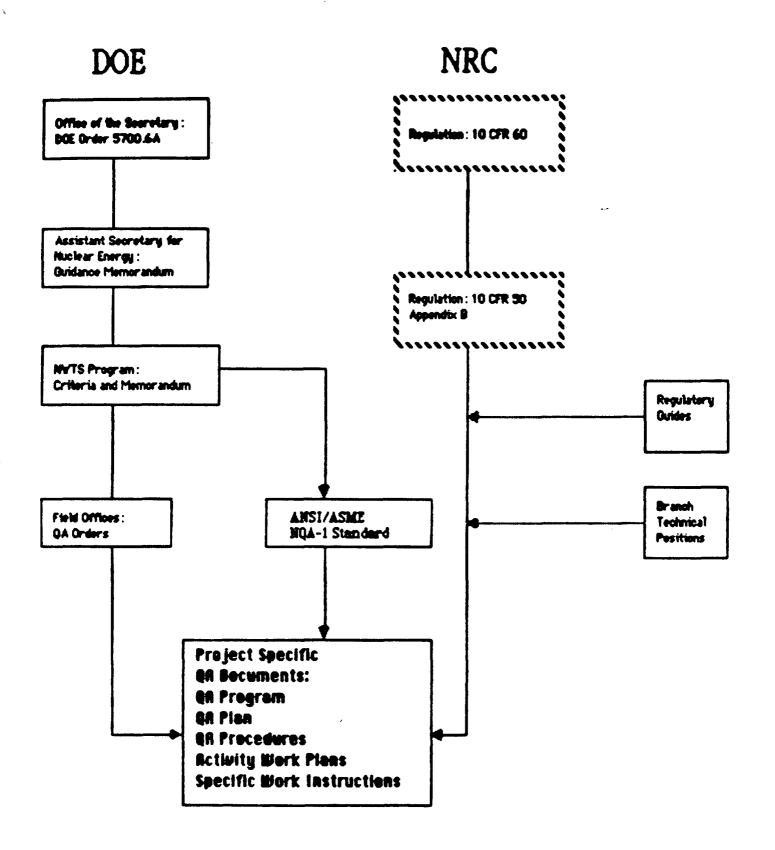
I fibrous fracture fill

See table and text for description of halite classification.

٠ę

B. Location, irregularity and estimated continuity of mudstone and anhydrite interbeds in halite.

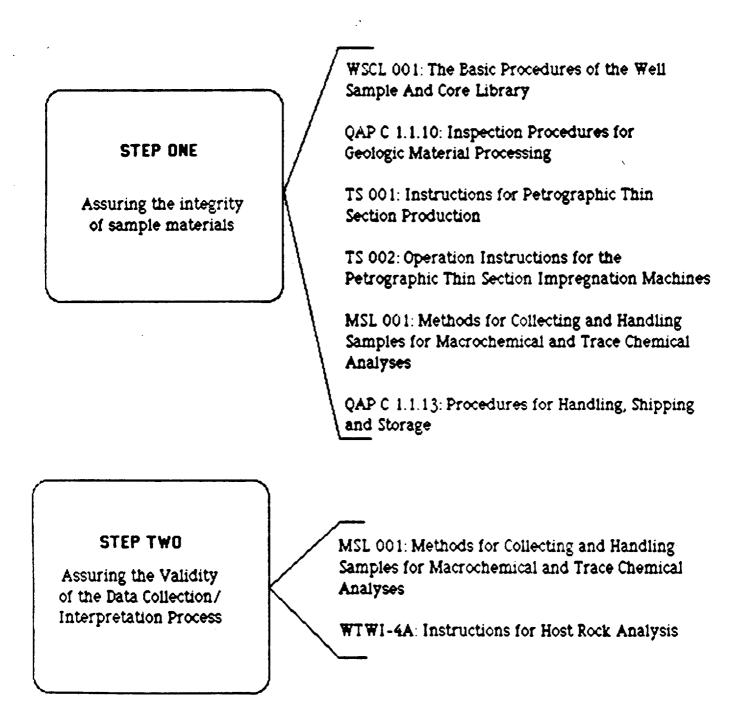
 muds tone
 anhydri te
 irregular base, flat top
 discontinuous beds


C. Comments on interbeds

M indicates mudstone

A indicates anhydrite Z indicates siltstone

bed thickness shown


5A indicates 5 anhydrite interbeds too closely spaced to show individually, estimated percent impurities shown.

Hierarchy of Documents Affecting BEG QA Program

DOE VELLS

BUREAU OF ECONOMIC GEOLOGY QUALITY ASSURANCE PROCEDURES FOR DATA COLLECTION/INTERPRETATION OF BOREHOLE INFORMATION

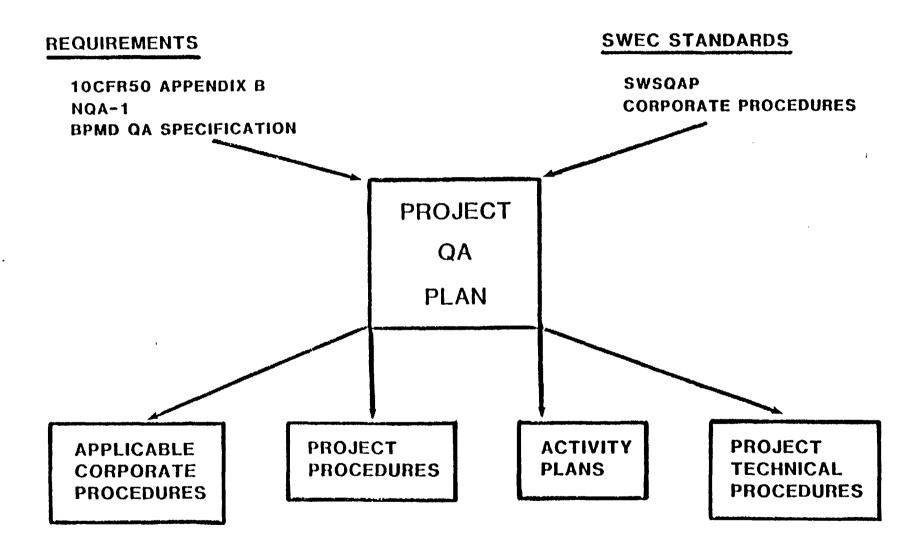
DOE WELLS

Quality Assurance Procedures for Data Collection/ Interpretation of Borehole Information

As we have seen there are a wide range of very useful data that are derived from the DOE boreholes. The reliability of the physical and chemical characteristics determined for each type of material rests on the validity of the processes used to analyze those materials. Even more important is the integrity of the samples from which thoses results were obtained. Therefore the Bureau places great importance on ensuring the quality of the samples that are to be analyzed. Analytical results are no better than the samples from which those results were obtained. The integrity of the samples (in our case primarily well cores) is controlled by quality assurance procedures. The quality of the samples is the *first concern of the data collection and interpretation system*. These written documents describe in detail how cores and associated samples are identified, handled, sampled, and shipped. They are:

- 1. WSCL 001: The Basic Procedures of the Well Sample and Core Library
- 2. QAP C1.1.10: Inspection Procedures for Geologic Material Processing
- 3. TS 001: Instructions for Petrographic Thin Section Production
- 4. TS 002: Operation Instructions for the Petrographic Thin Section Impregnation Machines
- 5. MSL 001: Methods for Collecting and Handling Samples for Macrochemical and Trace Chemical Analyses
- 6. QAP C 1.1.13: Procedures for Handling, Shipping and Storage

The *second* area of control through our quality assurance procedures is in the interpretertation of the analytical data from the samples. The following procedures are relevent to the Bureau's interpretation of borehole derived data:


ANALYTICAL TYPES AND PRIMARY QA PROCEDURES ASSOCIATED WITH DOE BOREHOLES

ΤΥΡΕ	QA PROCEDURE
Lithologic Logging of Well Core	WTWI-4A: Instructions for Host Rock Analysis
Pertogrophic Descriptions	WTWI~4A: Instructions for Host Rock Analysis
Geochemical Testing	MSL 001: Methods for Collecting and Handling Samples for Macrochemical and Trace Chemical Analyses

ī

QA PROGRAM

Washer (13)

STONE & WEBSTER CORPORATE PROCEDURES

- TECHNICAL AND ADMINISTRATIVE PROCEDURES AND GUIDELINES WITH GENERAL APPLICABILITY TO THE COMPANY'S WORK
- ISSUED BY THE VARIOUS DEPARTMENTS / DIVISIONS FOR THEIR AREAS OF RESPONSIBILITY, E.G.:

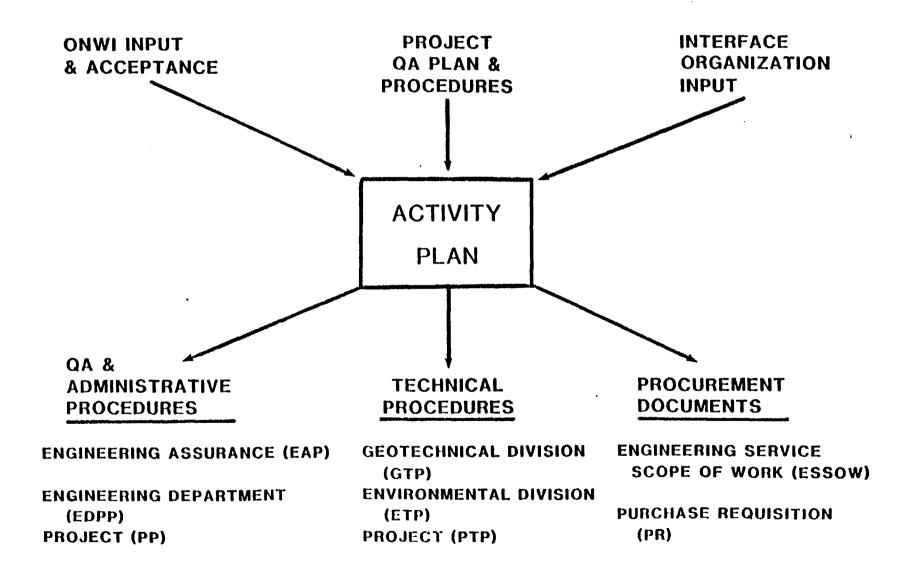
ENGINEERING DEPARTMENT GEOTECHNICAL DIVISION ENGINEERING ASSURANCE DIVISION

PROJECT PROCEDURES

- TECHNICAL AND ADMINISTRATIVE PROCEDURES ISSUED BY THE PERMIAN BASIN PROJECT (PROJECT MANUAL AND PROJECT Q.A. PLAN)
- OFTEN BASED ON MORE GENERAL CORPORATE PROCEDURES
- PROJECT SPECIFIC AND GENERALLY APPLICABLE TO ALL PROJECT WORK

PROJECT TECHNICAL PROCEDURES (PTPs)

- TECHNICAL PROCEDURES ISSUED BY THE PERMIAN BASIN PROJECT
- APPLICABLE TO WORK PERFORMED BY STONE & WEBSTER PERSONNEL
- GUIDELINES AND REQUIREMENTS FOR PERFORMING A SPECIFIC TASK OR STUDY
- PREPARED WHEN NO APPLICABLE CORPORATE TECHNICAL PROCEDURE OR GUIDELINE IS AVAILABLE


ACTIVITY PLANS

- SUMMARY PLANS FOR A COMPLEX PROJECT STUDY (USUALLY A FIELD INVESTIGATION WITH SEVERAL COMPONENTS)
- OBJECTIVES
- SCOPE OF WORK
- PARTICIPANTS
- QUALITY ASSURANCE
- EVALUATION
- REPORTS
- SCHEDULE

ENGINEERING SERVICE SCOPES OF WORK (ESSOWS)

• TECHNICAL AND QUALITY ASSURANCE REQUIREMENTS FOR SUBCONTRACTORS

ACTIVITY CONTROL DOCUMENTS

Appendix I Revision 5 May 10, 1985

GEOLOGIC PROJECT MANAGER-

PERMIAN BASIN

ACTIVITY PLANS (APs) (Formerly Field Test Plans, FTPs)

	REV	ISION	
--	-----	-------	--

		TITLE	<u>NO.</u>	DATE
FTP	13697-1-2	Texas BEG Exploratory Wells	2	12/10/81
		 DOE - SWEC Sawyer No. 1 Donley County Texas 		
		 DOE - SWEC Mansfield No. 1 Oldham County Texas 		
AP	13697-2-1	Stratigraphic Test Wells	1	6/11/82
	·	 SWEC Detten No.1 Friemel No.1 Harman No.1 		
AP	13697-3-2	Hydrologic Test Wells	2	6/15/82
		 SWEC - Zeeck No. 1 SWEC Detten No. 1 (Deepened Stratigraphic Test W 	Vell)	
FTP	13697-4-1	Engineering Design Boreholes	l	4/4/85
AP	13697-5-1	Laboratory Testing	1	1/25/84
AP	13697-6-0	Hydrogeologic Test Well	0	7/22/82
		 SWEC - Zeeck No. 1 Well Pump Testing and Fluid S 	ampl	ing
AP	13697-7-0	SWEC Mansfield No.1 Well Pump Testing and Fluid Sampling	0	6/30/82
AP	13697-8-0	Water Well Drilling For Fluid Sampling of the Dissolution Zone	0	9/22/82
AP	13697-9-0	Hydrologic Test Well	0	10/04/82
-		• SWEC - J. Friemel No. 1		

			QUALITY ASSURANCE PLAN		endix I ision 5
			GEOLOGIC PROJECT MANAGER-		10, 1985
				REV	VISION
			TITLE	NO.	DATE
	AP	13697-10-0	Testing at the Pennzoil No. 1 Black Wildcat Well	0	7/23/84
	AP	13697-11	Reserved	-	-
	AP	13697-12-0	Statigraphic Test Well	0	12/23/82
			• SWEC - Holtzclaw No. 1		
	AP	13697-13-1	Microearthquake Network	1	5/31/84
	AP	13697-14-0	Stratigraphic Test Well	0	3/25/83
			• SWEC - Oschner No. 1		
.	AP	13697-15-1	Geophysical Surveys	1	6/21/83
	AP	13697-16-0	Seismic Reflection Surveys	0	7/16/82
•	AP	13697-17-0	Hydrogeologic Test Well	0	4/12/82
			 SWEC - J. Fremel No. 1 Pump Testing and Fluid Sampling 		
	AP	13697-18-2	Geotechnical Borehole Testing	2	9/19/84
	AP	13697-19-0	Engineering Design Borehole – Geotechnical Field Testing	0	9/9/83
	AP	13697-20-1	Hydrologic Test Well - Western Deat Smith No. 1 (PD-14)	1	7/5/85
	AP	13697-21	Reserved		
	AP	13697-22-0	Dockum - Upper Permian Test Wells	0	8/9/84
	AP	13697-23-0	Geologic Mapping and Field Reconnaissance – MacKenzie Lake and Buffalo Lake Areas	0	6/29/84

.

.

•

Т

.

.

,

AP - 9 HYDROLOGIC TEST WELL - J. FRIEMEL NO. 1

TABLE OF CONTENTS

1.7

	Section	Title	Page	1.10
	1.0	INTRODUCTION	1	1.12
	2.0	OBJECTIVES	1	1.14
	3.0	PARTICIPANTS	2	1.15
	4.0	DRILLING AND TESTING PROCEDURES AND EQUIPMENT	3	1.13
	4.1	Drilling	4	1.19
	4.2	Rock Coring	4	1.20
•	4.3	Mud Program	5	1.21
	4.4	Mud Logging Services		1.22
	4.5	Well Logging and Perforation Services	5	1.23
	4.6	Drill Stem Tests	5	1.24
	4.7	Pump Tests and Fluid Sampling	6	1.25
	4.8	Distribution of Field Test Data and Samples	6	1.25
	5.0	QUALITY ASSURANCE	7	1.23
	5.1	Calibration of Test Equipment	8	1.29
	6.0	EVALUATION OF TEST PROGRAM	8	1.31
	7.0	REPORTS	9	1.33
	7.1	Weekly Progress Report	9	1.34
	7.2	Well Completion Report	10	1.35
	8.0	SCHEDULE	11	1.37
	9.0	ATTACHMENTS	11	1.39

â5

I.

•

AP - 9 HYDROLOGIC TEST WELL J. FRIEMEL NO. 1

-	ATTACHMENT 4-0 Hydrologic test well	1.19 1.20
	SWEC SUBCONTRACTORS	1.22

1.22

	Name	General Description	Contract ESSOW or P.O. No.	1.25 1.26 1.27
	Baker & Taylor	Drill Rig & Crew	G103A	1.29
	Schlumberger	Geophysical Logging & Perforating Services	G103B	1.31 1.32
•	Hycalog	Rock Coring Equipment & Coring Engineer	G103C	1.34 1.35
	Dresser-Magcobar	Mud Program - Drilling Fluids & Mud Engineer	G103D	1.37 1.38
	Field Call-out	Cementing Supplies & Services	×	1.40 1.41
	Field Call-out	Casing and Tubing		1.43
	Johnston - Macco	Drill Stem Testing	G103G	1.45
	FMC	Well Head Assembly	G103H	1.47
	Field Call-out	Casing Installation Crew	*	1.49
	Field Call-out	Fuel-Drill Rig, Other Onsite Equipment	×	1.51 1.52
	Field Call-out	Water for Drilling	*	1.54
	Exploration Logging	Mud Logging Services	G103Q	1.56
	John Nicholson Amarillo, Texas	Drilling Consultant Petroleum Geologist	G112A	2.1 2.2
	P. Cameron, Jr, Inc.	Consultant-Petroleum Engineer. Drill Rig Engineers	G112F	2.5 2.7 2.3
	Glen Thompson Tucson, Arizona	Mud Tracer Consultant	G112D	2.11 2.12

*Field Purchase Orders

ı.

.

•

35

AP - 9 HYDROLOGIC TEST WELL - J. FRIEMEL NO. 1

	ATTACHMENT 5-0 HYDROLOGIC TEST WELLS	1.7 1.3
	SWEC PROJECT TECHNICAL PROCEDURES (PTPs) AND PROJECT PROCEDURES (PPs)	1.10 1.11
Number	Title/Description	1.14
PTP 13697-7	Cementing and Casing Installation	1.17
PTP 13697-8	Logging, Packaging, and Transport of Core	1.19
PTP 13697-11	Transport, Logging, Photographing, and Storage of Core at SWEC Field Office	1.21
PP 9-1	Responsibilities of SWEC Site Geologist	1.24
PP 9-2	Receiving Equipment and Materials	1.25

1

.

.

Appendix H Revision 5 May 10, 1985

GEQLOGIC PROJECT MANAGER-

PERMIAN BASIN

PROJECT TECHNICAL PROCEDURES ((PTPs)

REVISION

	<u>NO.</u>		TITLE	<u>NO.</u>	DATE
,	PTP	13697-1-4	Logging, Packaging, and Transport of Core - Donley and Oldham County Wells	4	4/6/83
	PTP	13697-2	Cancelled		
	PTP	13697-3-2	Casing Installation and Cementing - Donley and Oldham County Wells	2	4/22/81
	PTP	13697-4-3	Pump Testing and Fluid Sampling Sawyer and Mansfield Wells	3	9/14/82
	PTP	13697-5-1	Handling and Transport of Formation Fluid Samples - Donley and Oldham County Wells	1	6/2/81
	PTP	13697-6-0	Preparation, Loading, and Preservation of Smoked Seismic Paper Records for Sprengnether MEQ-800 Portable Seismic Recorder	0	2/9/83
\rightarrow	PTP	13697-7-1	Casing Installation and Cementing and Plugging Test Wells	1	8/15/83
->	PTP	13697-8-2	Field Logging, Packaging, and Transport of Core - Strati- graphic and Hydrologic Test Wells and Engineering Design Borehole	2	4/27/83
	PTP	13697-9-1	Laboratory Testing of Rock and Salt Samples at SWEC Geotechnical Laboratory	1	8/27/84

;

QUALITY	ASSURANCE	PLAN
---------	-----------	------

ъ ^с

•

.

Appendix H Revision 5 May 10, 1985

GEOLOGIC PROJECT MANAGER-

PERMIAN BASIN

PROJECT TECHNICAL PROCEDURES ((PTPs)

REVISION

	<u>NO.</u>		TITLE	<u>NO.</u>	DATE
	PTP	13697-10-1	Handling and Transport of Formation Fluid Samples From DST and RFT Tests in Strati- graphic and Hydrologic Test Wells and Engineering Design Borehole	1	1/24/83
->	PTP	13697-11-2	Transport, Logging, Photo- graphing and Storage of Core at SWEC Field Office	2	5/2/83
	PTP	13697-12-2	Determination of Point Load Strength Index on Rock Cores	2	3/21/84
	PTP	13697-13-2	Pump Testing and Fluid Sampling SWEC Test Wells	2	7/1/83
	PTP	13697-14-1	Microearthquake Seismic Network for Seismic Data Collection, Reporting Seismic Events, Reporting Equipment Failure, and Data Transfer	1	6/12/84
	PTP	13697-15-0	Logging, Photographing, Pack- aging, and Transport of Core - Deep Test Wells	0	8/11/83
	PTP	13697-16-0	Confirmation of Geophysical Well Log Data Recorded on Magnetic Tape	0	4/27/84
	PTP	13697-17-0	Maintenance of Geophysical Well Log Tapes	0	7/13/84
	PTP	13697-18-1	Creating and Amending Project Computerized Geologic Data Base	1	2/5/85
	PTP	13697-19-0	Hydraulic Fracture Orientation Determination	0	5/29/84

÷

N

GEOLOGIC PROJECT MANAGER-

ъ ¹

.

Appendix G Revision 5 May 10, 1985

PERMIAN BASIN

	PROJECT	PROCEDURES	(PPs)
-			

TABLE OF CONTENTS*

ISSUE

<u>NO.</u>	TITLE	NO.	DATE
PP 1-1-1	Purpose and Use	1	8/7/80
PP 4-1-1	Quality Assurance Program	1	8/15/80
PP 4-2-1	Monthly QA Program Activity Summary	1	8/15/80
PP 4-3-1	Surveillance Program	1	6/19/81
PP 4-4-1	Interface Procedures for QA Assistance to Texas BEG	1	6/19/81
PP 4-5-1	Interface Procedure for Resolving Apparent Core/Data Discrepancies between TBEG and SWEC	1	4/27/83
PP 4-6-1	Incident Reporting	1	3/25/85
PP 4-7-1	Inspection and TID Report	· 1	10/1/84
PP 5-1-1	SWEC Calculations	1	10/30/80
PP 5-2-4	Project Engineering Sketches and Figures	4	4/4/84
PP 5-3-2	Rock Core and Field Sample Handling and Identification	2	8/8/83
PP 5-4-1	Technical Documents Received	1	10/30/80
PP 5-5-1	Verification of Geologic Investigation (Studies) by Independent Technical Review	1	10/10/84
PP 5-7-3	Project Technical Procedures (PTPs)	3	6/15/83

*These procedures are maintained in the Project Manual and reflect prime quality assurance program compliance. Other procedures exist in the Project Manual that reflect basic project administration.

ī.

G-1

STONE & WEBSTER

GEOLOGIC PROJECT MANAGER-

Appendix G Revision 5 May 10, 1985

PERMIAN BASIN

PROJECT PROCEDURES (PPs) (CONT'D)

TABLE OF CONTENTS* (CONT'D)

		ISSU	<u>c</u>
NO.	TITLE	NO.	DATE
PP 5-8-2	SWEC ESSOWs and Purchase Orders	2	3/30/82
PP 5-10-2	Project Technical Reports	2	6/15/83
PP 5-11-2	Project Licensing Documents	2	6/15/83
PP 5-16-1	Handling of ONWI Nonconformance Reports and Corrective Action Requests	1	6/19/81
PP 5-18-3	Handling of Nonconformance and Disposition Reports	3	6/15/83
PP 5-19-4	Handling of Engineering and Design Coordination Reports	4	8/8/84
PP 5-22-1	Dissemination of Project Technical Information External to SWEC	1	6/15/83
PP 5-23-1	Project Activity Plans	1	6/15/83
PP 6-1-4	Correspondence Identification and Addresses	4	4/1/82
PP 6-2-7	Outgoing Correspondence	7	2/3/83
PP 6-3-1	Incoming Correspondence	1	9/26/80
PP 6-4-2	Document and Distribution and Control	2	3/30/82
PP 7-1-1	Project Records Management Plan	1	4/30/84
PP 7-2-2	Project Filing System	2	8/8/84

*These procedures are maintained in the Project Manual and reflect prime quality assurance program compliance. Other procedures exist in the Project Manual that reflect basic project administration.

STONE & WEBSTER

GEOLOGIC PROJECT MANAGER-

Appendix G Revision 5 May 10, 1985

PERMIAN BASIN

PROJECT PROCEDURES (PPs) (CONT'D)

TABLE OF CONTENTS* (CONT'D)

			ISSUE	
	NO.	TITLE	<u>NO.</u>	DATE
	PP 7-3-3	Final Disposition of Project Records	3	4/30/85
	PP 7-4-2	Project Records Classification Code List	2	8/8/84
	PP 7-5-1	Microfilming of Project Records	1	4/30/84
	PP 8-1-3	Headquarters Contracting and Procurement	3	4/19/83
	PP 8-2-3	Field Contracting and Procurement	3	1/4/83
>	PP 9-1-3	Responsibilities of SWEC Site Geologist	3	1/18/84
->	PP 9-2-3	Receiving Equipment and Materials and Reporting Services	3	2/3/83
	PP 9-4-1	Safety Program and Reporting	1	5/15/81
	PP 9-5-1	Protection of the Environment	1	5/15/81
	**PAD 5-2-1	Maintenance of Document Review Comments	1	1/17/83
	**PAD 7-1-1	Guideline for the Acquisition, Duplication, and Safekeeping of Primary Data Records on a Magnetic Format	1	2,6/84
		Closeout/Microfilming/Master Log for Job Books R3 and R12	1	2/15/84
	reflect prime qual: exist	edures are maintained in the Project ity assurance program compliance. Ot	her pro	ocedures
	in the Pro	ject Manual that reflect basic projec	t admii	histration.

**Project Administrative Directive (PAD) (PP 2-1)

.

STONE & WEBSTER

GEOLOGIC PROJECT MANAGER- May 10, 1985

PERMIAN BASIN

PROJECT PROCEDURES (PPs) (CONT'D)

TABLE OF CONTENTS* (CONT'D)

Appendix G Revision 5

<u>NO.</u>	TITLE	.*		NO.	DATE

**PAD 19-1-2 Applicable Computer Programs and 2 10/1/84 Status

*These procedures are maintained in the Project Manual and reflect

prime quality assurance program compliance. Other procedures exist

in the Project Manual that reflect basic project administration.

**Project Administrative Directive (PAD) (PP 2-1)

G-4

FRACTURE INVESTIGATIONS OF THE PALO DURO BASIN AREA

Eddie Collins. BEG

- 1. Regional fracture orientations -- figs. 2.3
 - data collected in Permian and Triassic strata
 - data includes joint strikes measured in outcrop and fracture orientations measured from fracture identification logs
 - data for each one degree by one degree quadrant has been plotted together
 - have plotted general fracture orientations and fracture orientations that are significant at a 95% confidence level
 - regionally, west-east striking fractures are signifcant in Permian strata
 - Deaf Smith Co. also has NE striking fractures
- 2. Vertical and lateral continuity of fractures
 - 2.1 Faults, folds, joints figs. 4-6
 - at western part of study area one significant joint set strikes NE. parallel to the strike of the Alamosa Creek and Bonita Faults
 - northeast of Deaf Smith Co., joints were studied in Permian.
 Triassic and Tertiary rocks at a flexure off the southwest flank of John Ray Dome; at intervals along a traverse in the different age

1

ı

strata. strikes of a representative joint from each set were measured: data has been plotted in azimuth vs traverse distance plots and rose diagrams: data show a well defined NW striking joint set in the overlying strata. parallel to the flexure axis: fracture spacing is closely spaced in Permian and Triassic sandstones (5-8 joints across 1 m in 1-2 m beds): Tertiary Ogallala strata also have a well defined NE striking joint set

- 2.2 Joint zones fig. 7
 - in relatively undeformed strata, zones of closely spaced joints extend vertically through Permian and Triassic strata; these joint zones range in width from 10 to 40 m and have been traced laterally up to 1 km
- 2.3 Joint spacing vs bed thickness fig. 8
 - the number of joints across two meters were measured for sandstone beds of different thicknesses: figure 8 shows plotted data

2.4 Lateral variability of joint orientations - figs. 9, 10

- strikes of vertical gypsum-filled joints in Permian strata were measured along three traverses at Palo Duro Canyon State Park: data are plotted in azimuth vs traverse distance plots and rose diagrams
- data show well defined E-W striking joints throughout the area: most of the joints strike NNW at the northern traverse (fig. 10):

2

the middle traverse (traverse 2) shows the strikes of the NNW oriented joints drift northwestward and NW striking joints become most common

- 3. Preliminary evaluations of fractures and veins in the core
 - 3.1 General occurrance of fractures and veins figs. 11-13
 - core show that Permian strata are cut by gypsum. halite, anhydrite, and calcite veins, as well as fractures with no mineral filling; most of the fractures without mineral fillings are the result of drilling coring, however some are thought to be natural
 - for this study the strata has been grouped into three categories based on lithology and stratigraphic sequence: the categories are (1) strata below salt units. (2) strata that contain bedded halite. and (3) deformed strata above the salt units (salt dissolution zone)
 - based on the core descriptions, the percentage of fractured core for each category has been determined by dividing the number of one foot core intervals containing fractures by the total core footage
 - data show that strata above the bedded halite units are more fractured than the salt zone units: the salt zone unit category contains the lowest percentages of fractured core: for strata below the bedded halite units, core from the Mansfield well located on the Bravo Dome has the greatest percentage of fractured core

3

- 3.2 Gypsum veins (core and outcrop) figs. 14- 27
 - strata overlying salt units commonly have vein fillings of gypsum
 - core and outcrop studies show gypsum veins are common in a deformed strata zone
 - veins are composed of fibrous gypsum bisected by a medial scar; they are thought to be antitaxial crack-seal veins (Ramsay and Huber, 1983); the medial scar marks the site of earliest mineralization with new material added at the vein - wall rock contact; the mineral fibers indicate the direction of maximum principal extension at the time they were added to the vein
 - gentle subsidence and collapse is thought to have opened the gypsum filled fractures
- 3.3 Halite veins figs. 28-32
 - fibrous halite veins fill fractures in bedded units
 - veins occur within mudstone, siltstone, and carbonate interbeds
 - some veins exhibit a subpolygonal pattern on bedding planes; these may have a desiccation or synaeresis related origin
 - some veins exhibit a postcompactional origin: they are eliptical in shape and do not exclusively "V" downwards: fracture filling is not zoned and contains no silt or mud filling: crosscutting relationships show that many veins postdate compaction and cementation
- 3.4 Veins and fractures below halite units fig. 33

4

- calcite and anhydrite veins are present as well as fractures without mineral fillings
- 3.5 Fracture orientations in Deaf Smith Co. fig. 34

• •

 fracture orientations have been interpreted using fracture identification logs; these logs have limitations; data show westward and northeastward fracture orientations

ī.

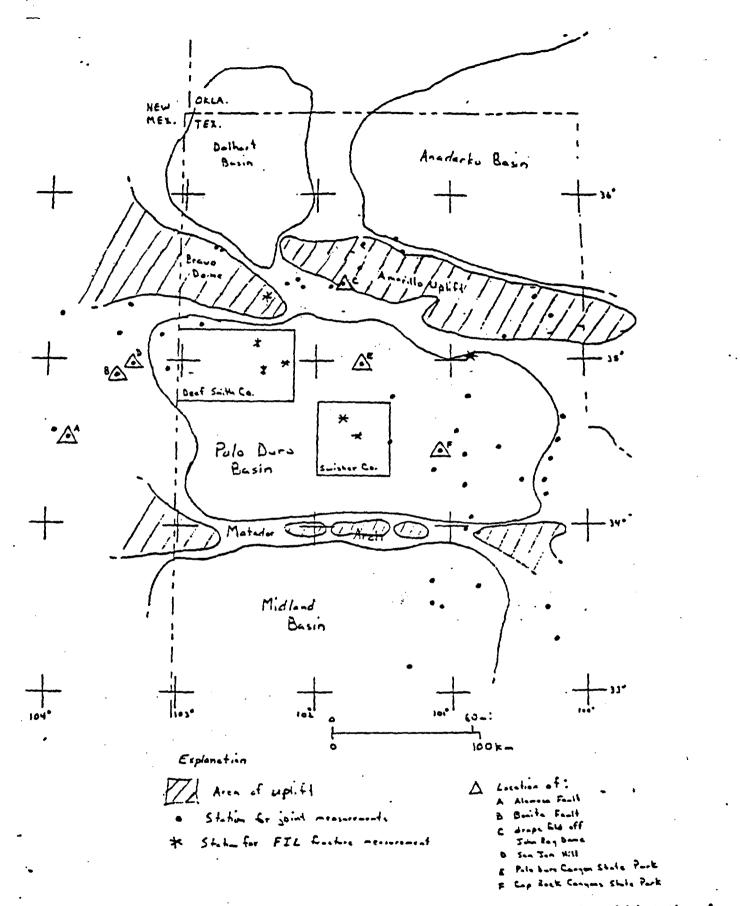


Figure 2 Structural setting of the Palo Duro Basin area showing the location of (1) stations for the regional joint and Fracture Identification Log (FIL) fracture measurements and (2) areas for detailed field studies.

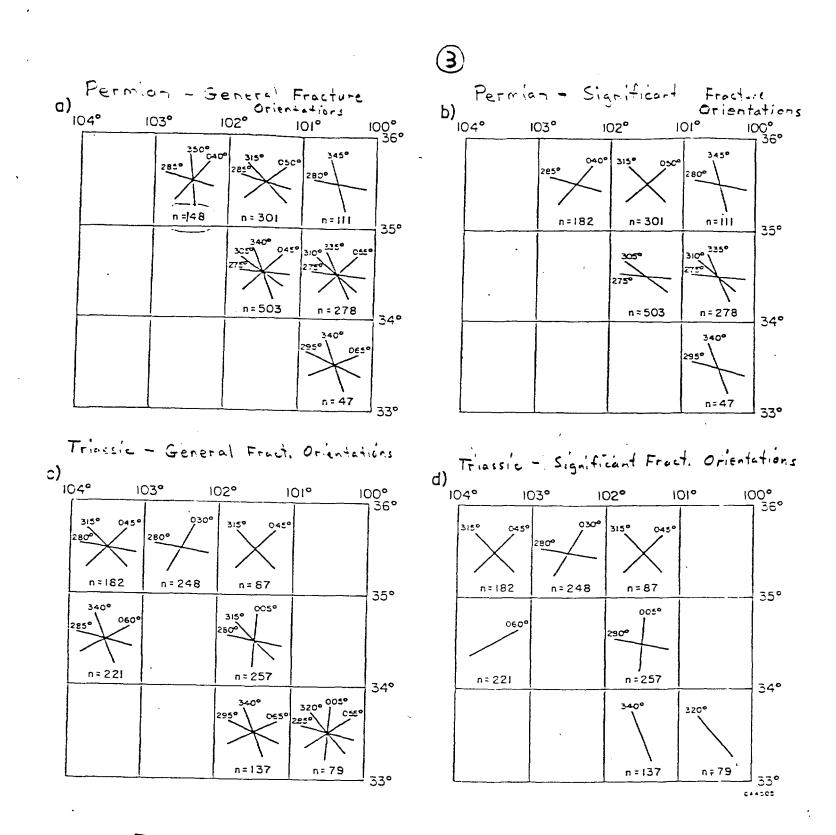


Figure \exists Fracture maps of the Texas Panhandle and eastern New Mexico region showing (a) mean fracture strikes for Permian strata, (b) mean fracture strikes that are significant at 95% confidence for Permian strata, (c) mean fracture strikes for Triassic strata and (d) mean fracture strikes that are significant at 95% confidence. Stations for fracture measurements and structural setting are shown in figure 1. n = the number of measurements in each quadrant.

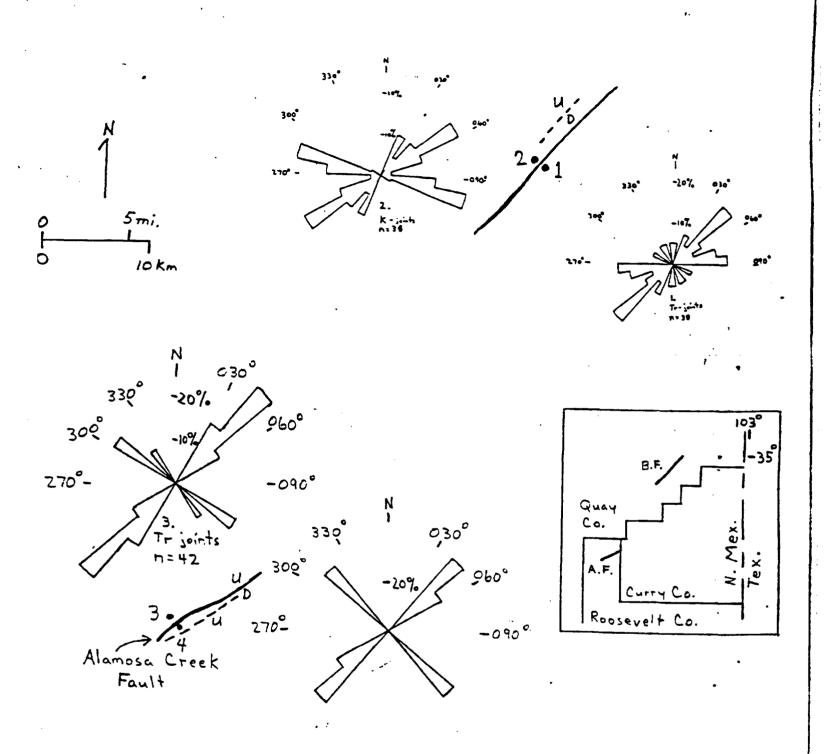
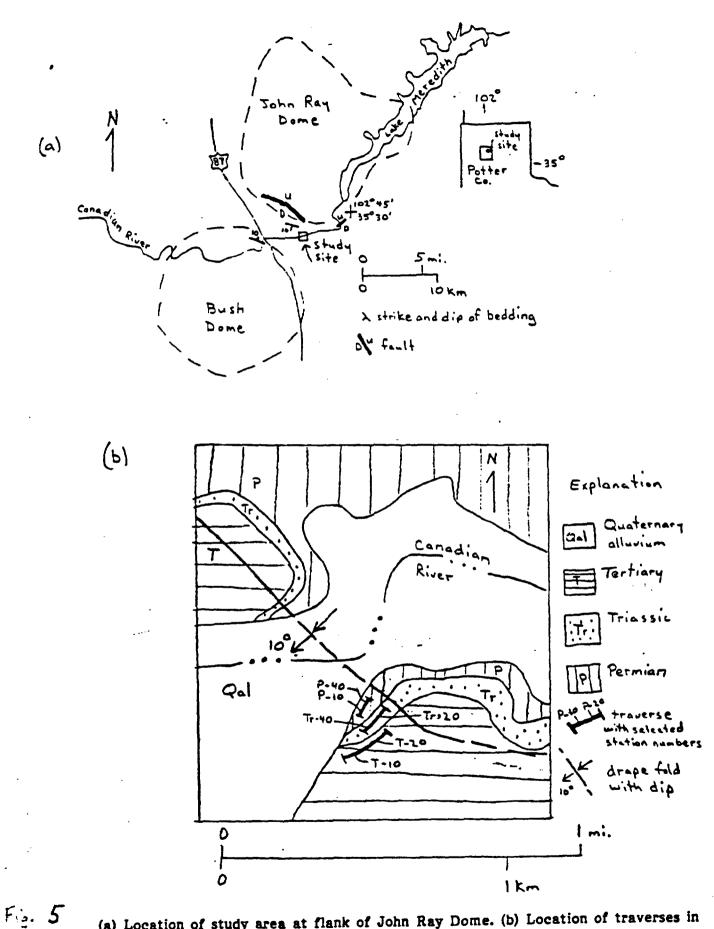



Figure 4 (a) Strikes of faults and joints at the western margin of the Palo Duro Basin in eastern New Mexico. Rose diagram data are plotted as percentages of total number of measurements (n) for 10° intervals.

DRAFT

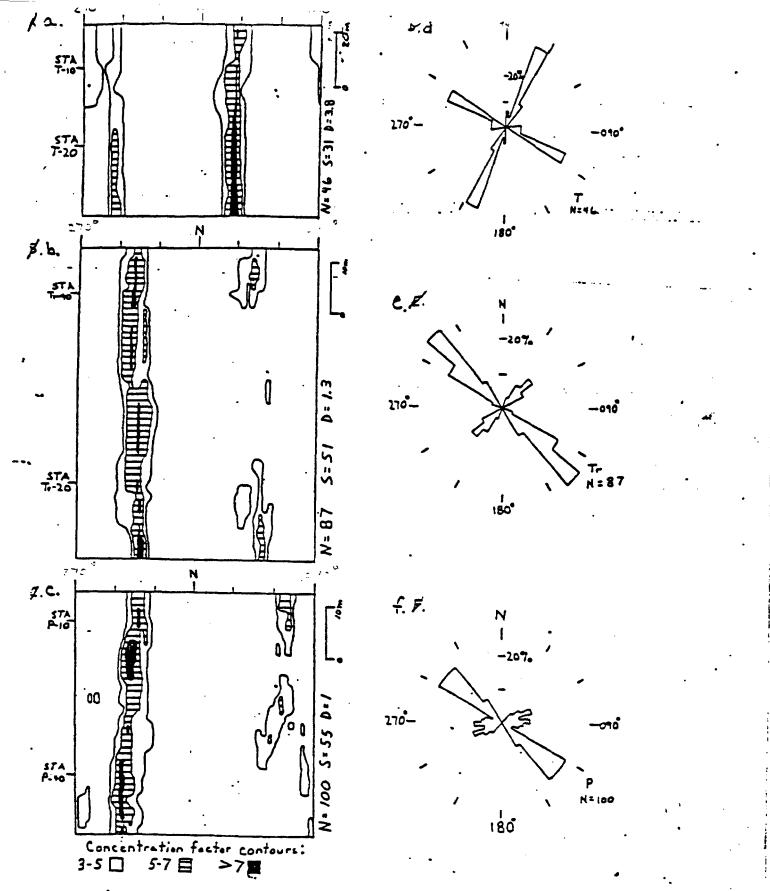

2. 5 (a) Location of study area at flank of John Ray Dome. (b) Location of traverses in Permian strata (P), Triassic strata (Tr), and Tertiary strata (T).

Figure 6 Azimuth-versus-traverse-distance plots are for joints in (a) Tertiary, (b) Triassic, (c) Permian strata. N = number of measurements, S = number of stations, STA = selected station number, and D = average distance between the stations. Contours are in concentration of data within 10° intervals across every 2° of azimuth (Wise and McCrory, 1982). Corresponding rose diagram plots are of joints in (d) Tertiary, (e) Triassic, and (f) Permian strata. Data are plotted as percentages of total number of measurements (N) for 10° intervals.

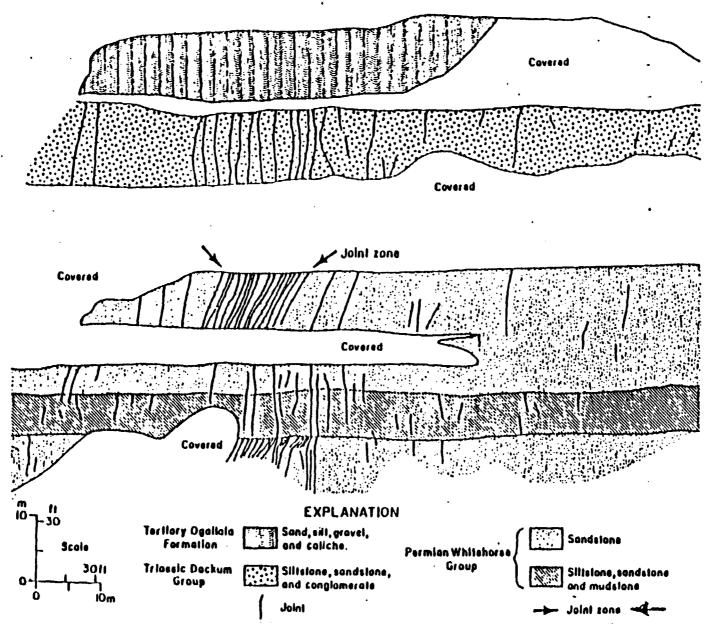
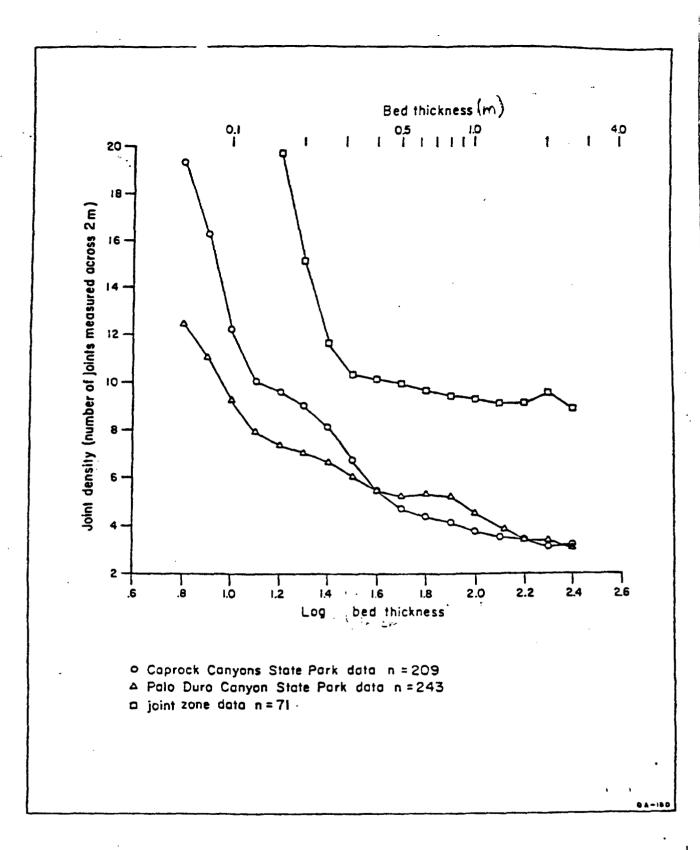



Figure 7 Cross-section view of a joint zone extending through Permian and Triassic rocks at Caprock Canyons State Park in Briscoe County. Overlying Tertiary Ogallala sediments are also fractured, although it is uncertain if the Ogallala fractures are actually systematic joints that are part of the joint zone.

-

gure 8 Graph showing weighted joint density versus log of bed thickness for data from aprock Canyons State Park, Palo Duro Canyon State Park, and joint zones at both parks.

Ł

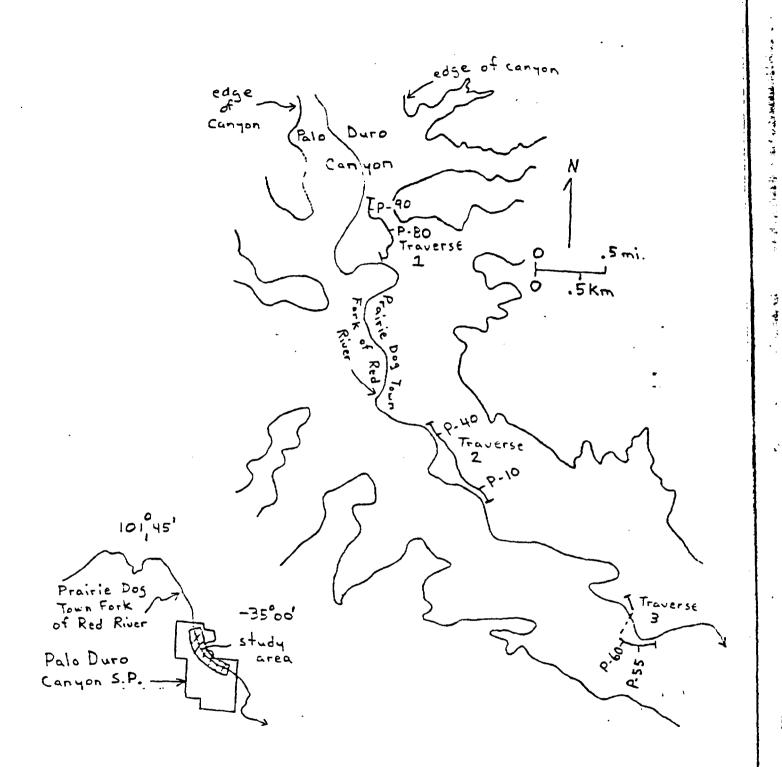


Figure 9 Location of traverses in Permian strata at Palo Duro Canyon State Park. AVTD plots for the traverses are shown in figure 19.

DRAFT

į

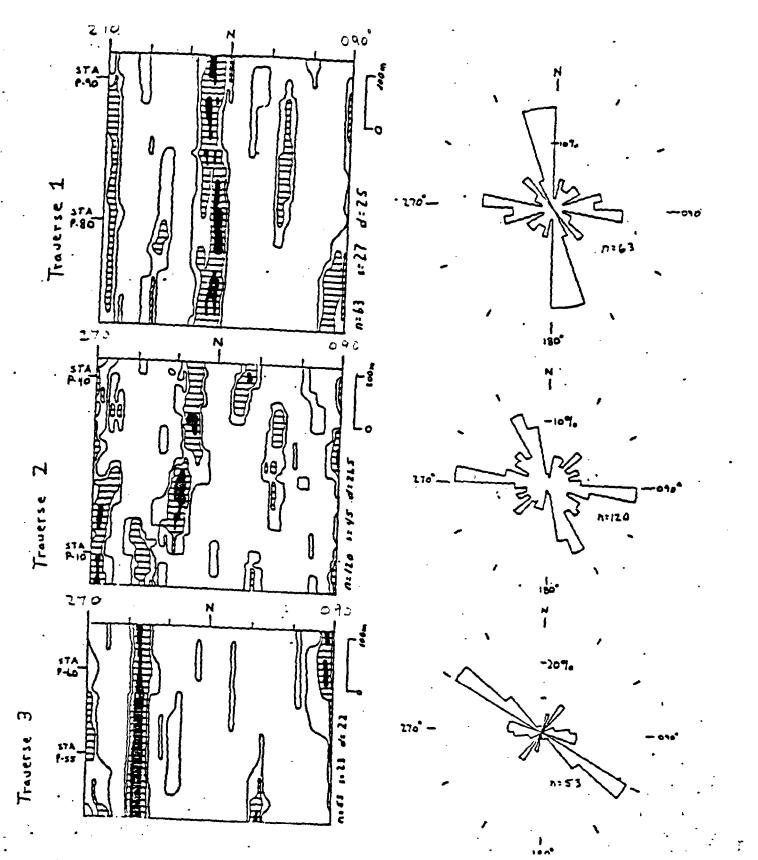
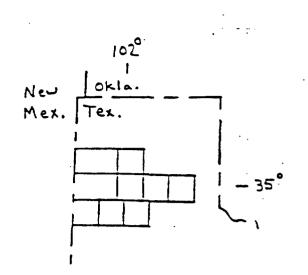



Figure 10 Azimuth-versus-traverse-distance plots are for joints in Permian strata at Palo Duro Canyon State Park, Randall County, Texas. N = number of measurements, S = number of stations, STA = station number, and D = average distance between the stations. Contours are in concentration of data within 10° intervals across every 2° of azimuth (Wise and McCrory, 1982). Corresponding rose diagram plots are of joints measured at each traverse. Data are plotted as percentages of total number of measurements (N) for 10° intervals.

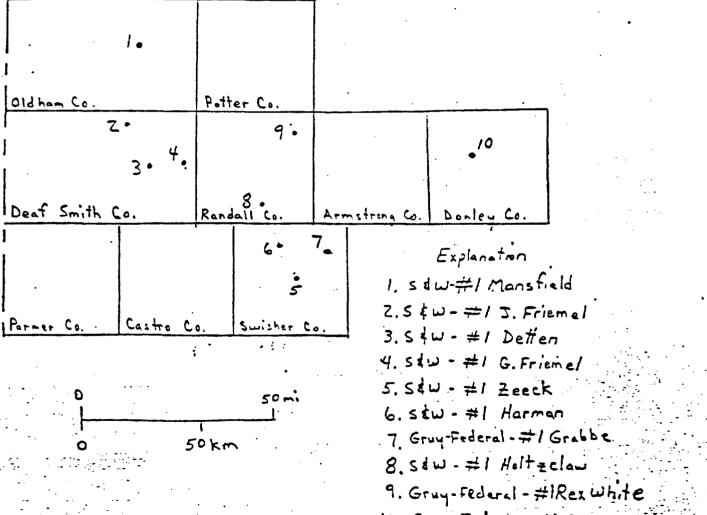


Figure // Location of boreholes used for fracture studies in the Palo Duro Basin area.

10. Gruy-Federal- #1 Sawyer

Dufarma Clinta Zone Units d che (Discal Ait.

2,5 Ε,

> 1 1 Sall Zone Urids § 5

1

アンキャーマンションション とうちょうしん あっかい

General Lithology Pata Duro Basin 4 Dalhart Basin and GROUP FORMATION SYSTEM SERIES FORMATION depositional setting aliuvium, dune sand Playa ailuvium, dune sand Playa HOLOCENE Tanoxa QUATERNARY cover sands" cover sands" Locustrine clastics PLEISTOCENE Tule Blanco and windblown deposits Fluvial and TERTIARY Ogailaia NEOGENE Ogailaia locustrine clastics Marine shales CRETACEOUS undifferentiated undifferentiated and limestone Fluvial-deltaic and TRIASSIC DOCKUM locustrine clastics Dewey Lake Dewey Lake OCHOA ₹ Alibates Alibates Salada/Tansili Yates GUADALUPE Artesia Group ARTESIA undifferentiated Seven Rivers Queen/Grayburg Cyclic sequences: ilow-marine carbonates; PERMIAN hypersaline- shelf San Andres Blaine anhydrite, halite; continental red beds Glorieta Glarieta Upper Clear Fork **Clear Fork** CLEAR FORK LEONARD Tubb Lower Clear Fork L. below salt undifferentiated Tubb-Wichita **Red Cave** Red Beds WICHITA WOLFCAMP VIRGIL CISCO PENNSYLVANIAN Shelf and shelf-margin CANYON MISSOURI carbanate, basinal shale, DES MOINES . STRAWN and deltaic sandstone ATOKA BEND MORROW MISSISSIP-PIAN CHESTER Shelf carbonate MERAMEC and chert OSAGE ELLEN-BURGER ORDOVICIAN Shelf dolomite Shallow marine(?) CAMBRIAN ? sandstone igneous and PRECAMBRIAN metamorphic

12 Generalized stratigraphic column, Palo Duro Basin, modified from Budnik and Smith Figure (1982).

COPIED FOR QA FILES

DRAFT

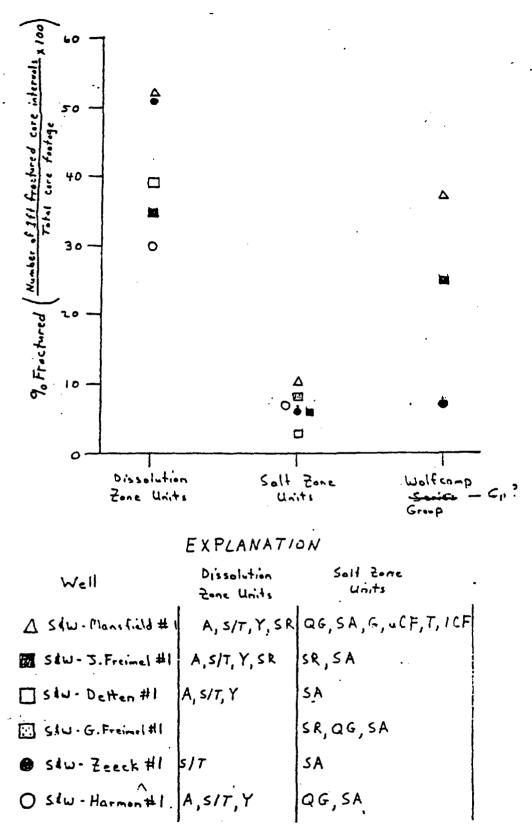
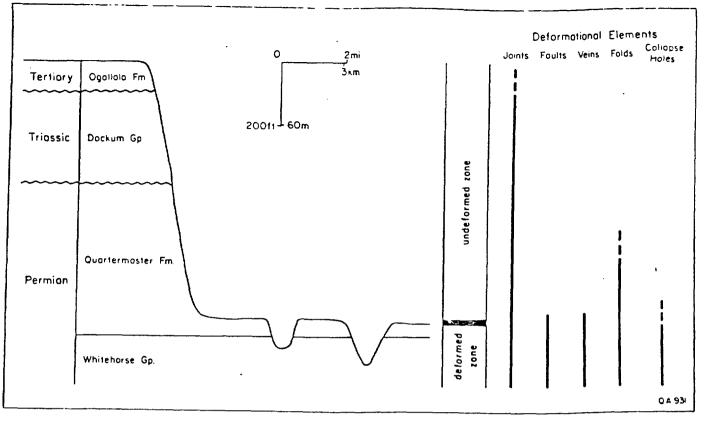
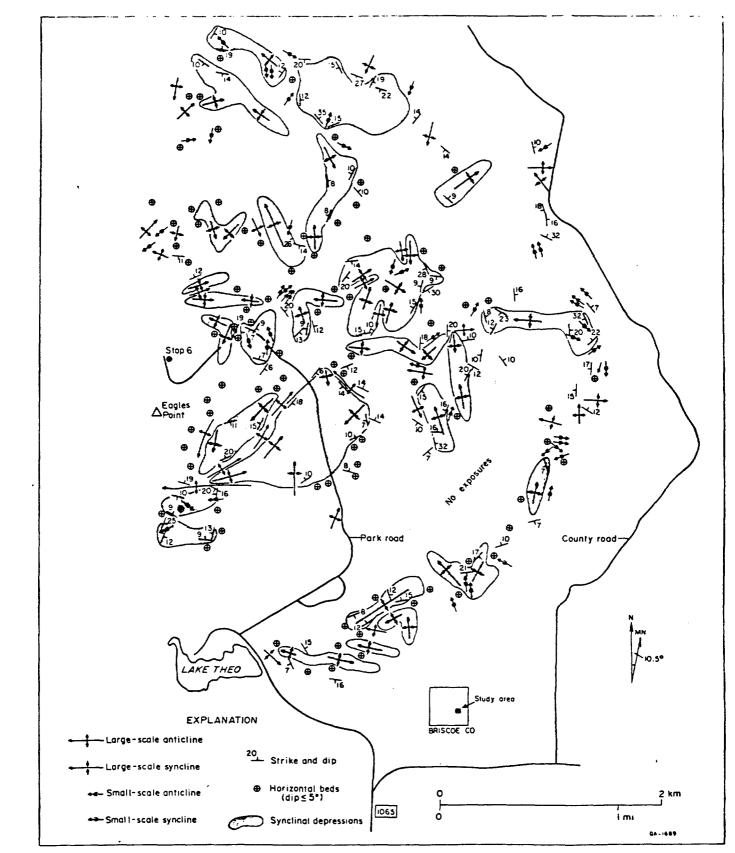



Figure 13 Percentage of fractured Permian core from boreholes in Oldham, Deaf Smith, and Randall Counties, Texas. Abbreviations of Permian formations are as follows: A - Alibates; S/T - Salado-Tansill; Y - Yates; SR - Seven Rivers; QG - Queen Grayburg; SA - San Andres; G -Glorieta; uCF - upper Clear Fork; T - Tubb; ICF - lower Clear Fork.

Figure 14 Composition of veins in core of Permian strata from salt dissolution zone/ deformed

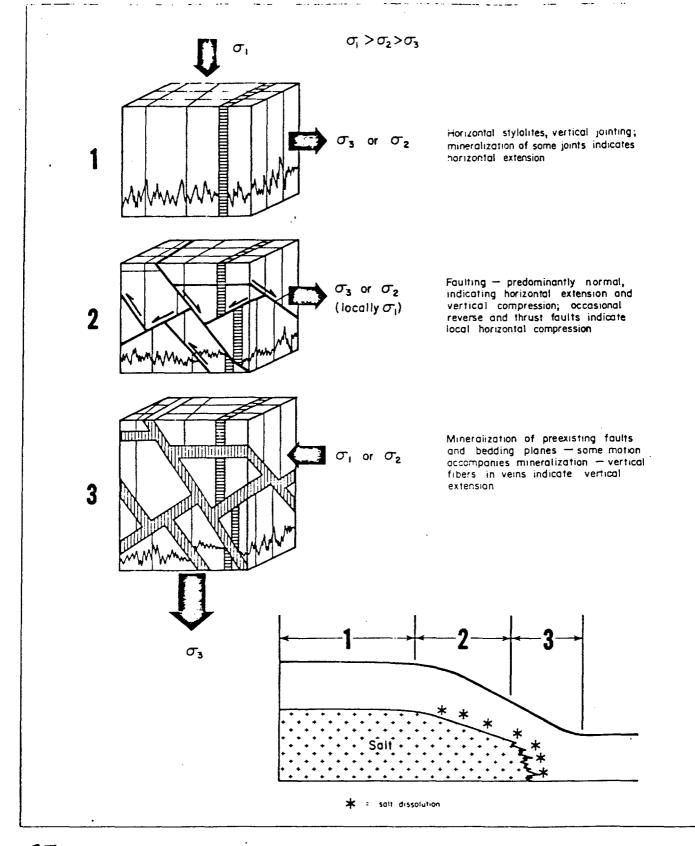
T 18


•

Stratigraphy and deformational elements at Caprock Canyons State Park.

Ł

٠,


4

51.de 26. Structural elements in the lower Quartermaster Formation and upper Whitehorse Group within part of Caprock Canyons State Park. Folds are characterized by synclinal depressions of various shapes (from Collins, 1983b).

9

ł

5/ide 27 . Conceptual model of brittle deformation above dissolution zones. Stage 1 represents normal burial; Stage 2 represents horizontal extension as a precursor to dissolution collapse; Stage 3 represents collapse (from Goldstein, 1982).

į

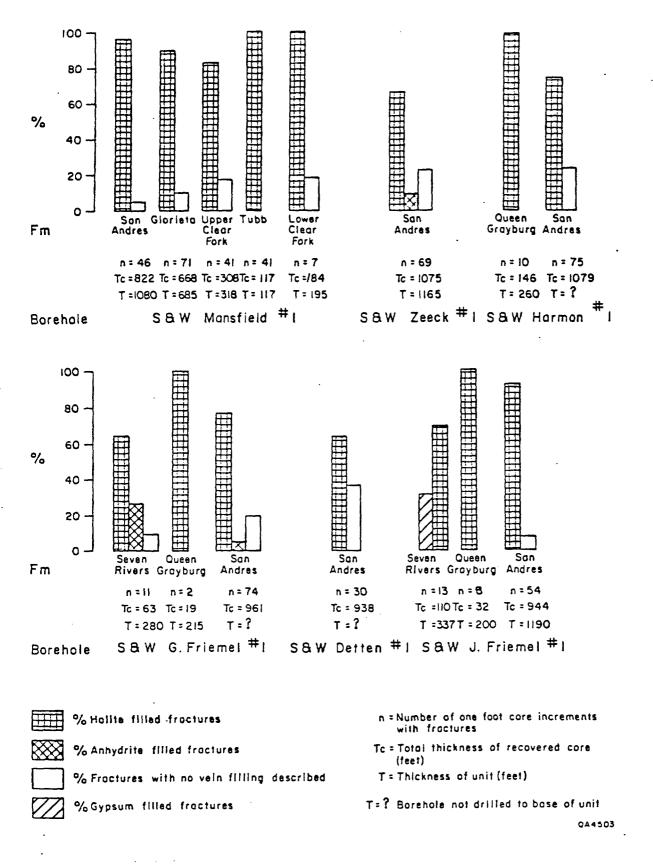
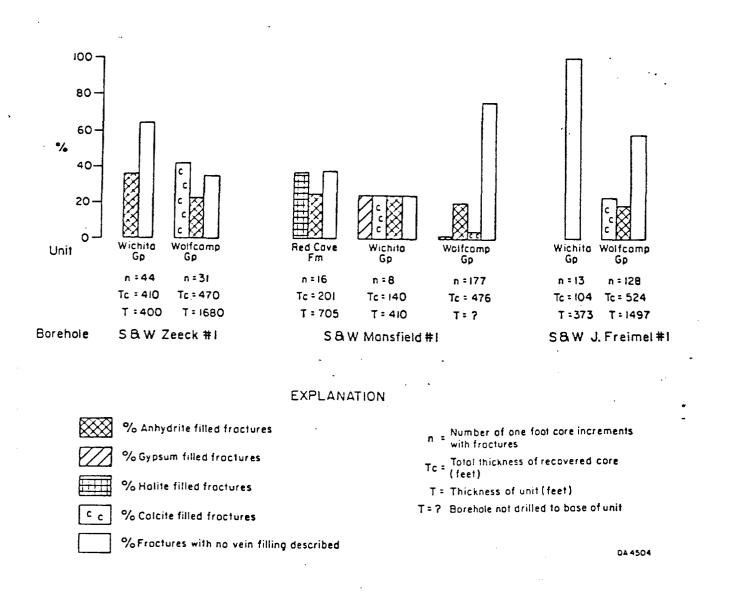
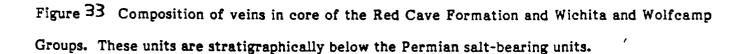
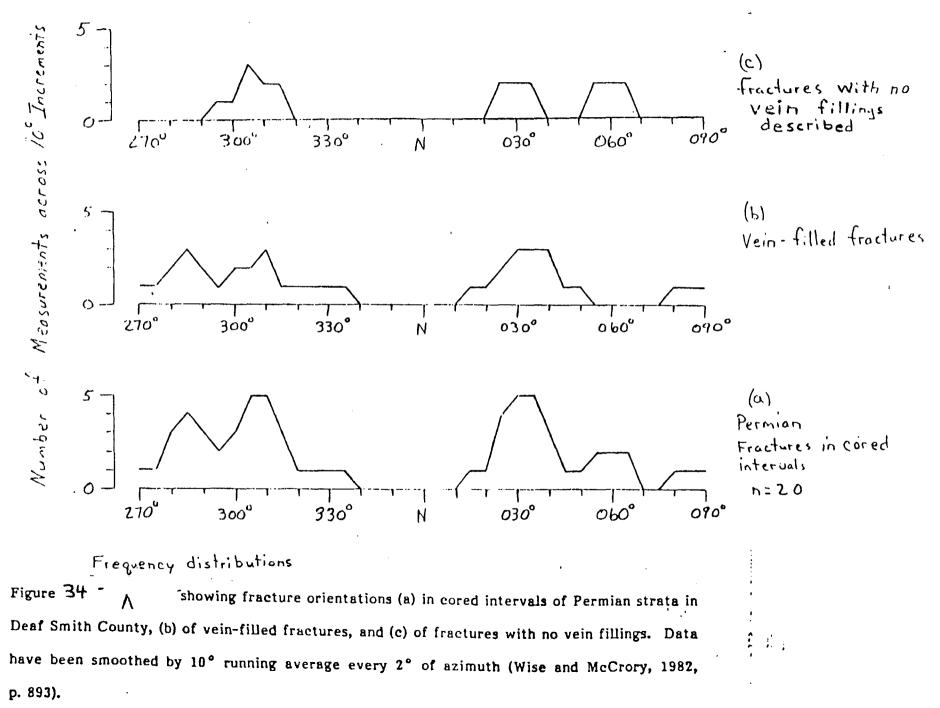




Figure 28 Composition of veins in core of Permian salt-bearing strata.

مداديك كالكوسنددا and the second Auto Auto Carelo ł

DRAFT

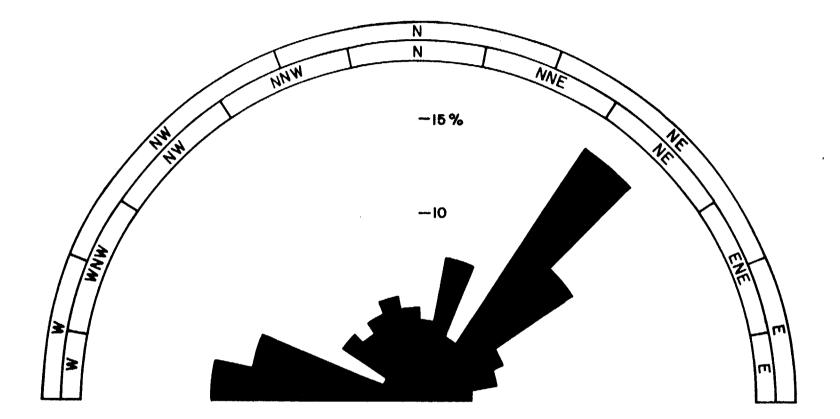


CAUTION

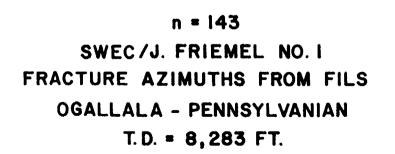
This report describes research carried out by staff members of the Bureau of Economic Geology that addresses the feasibility of the Palo Duro Basin for isolation of high-level nuclear wastes. The report describes the progress and current status of research and tentative conclusions reached. Interpretations and conclusions are based on evallable data and state-of-theart concepts, and between may be a conclusion, more information and jurther application of the myoriced sciences.

DRAFT

ł

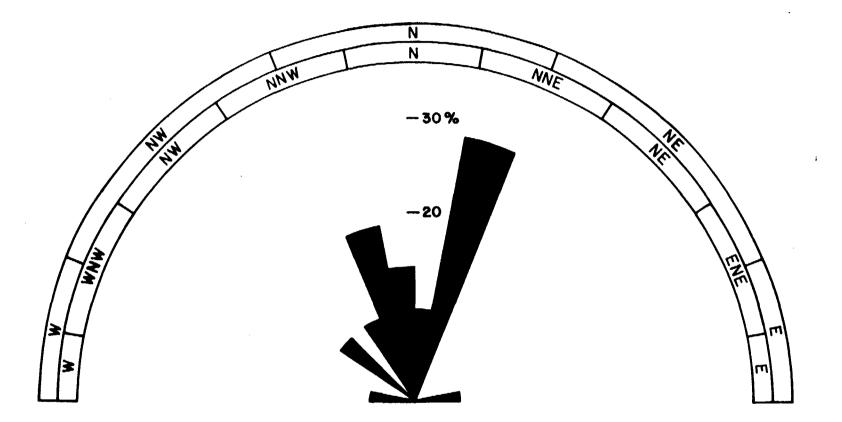

• • •

FREQUENCY OF FRACTURE* AZIMUTHS FROM FILS SWEC/J. FRIEMEL NO. I

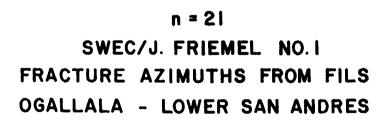

								AZIN	IUTH	1							
FORMATION	V	V	NW				N				NE				E		TOTAL
	W	1W	<u>vw</u>	N	W	N	W	1		NN	E	N	<u>E</u>	Eł	NE	Ε	
OGALLALA																	
DOCKUM					[1			1					ſ		3
DEWEY LAKE																	
ALIBATES							1								Ì	1 1	ſ
SALADO														!			
YATES				1		1	1	1									4
U. SEVEN RIVERS						1				1							2
L. SEVEN RIVERS										2					ļ	11	4
QUEEN - GRAYBURG									2	1							3
U. SAN ANDRES										1							1
L. SAN ANDRES								2									2
GLORIETA		3		1	1		1	2		1		L	1				12
U. CLEAR FORK					2		2		1		1			E.	1		8
TUBB					ļ							1	1	2	İ 🗌		4
L. CLEAR FORK			1	ł	1	}	1						1		1		2
RED CAVE	ĺ			2	1		İ			1		19	10	ł	1		35
WICHITA																1	J
WOLFCAMP	13	10	2	1		2		l		2	1	l	1		2	2	39
PENNSYLVANIAN	2					3		2	1	<u> </u>	2	2		3	4		21
TOTAL	16	13	3	7	6	7	8	7	6	11	5	23	14	7	6	4	143

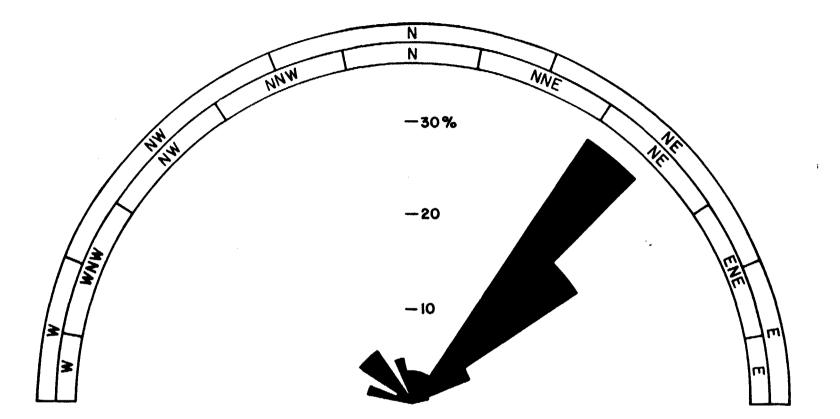
* VERTICAL FRACTURES ONLY

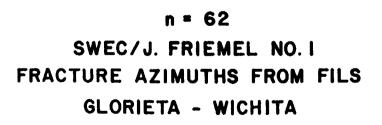
PRELIMINARY

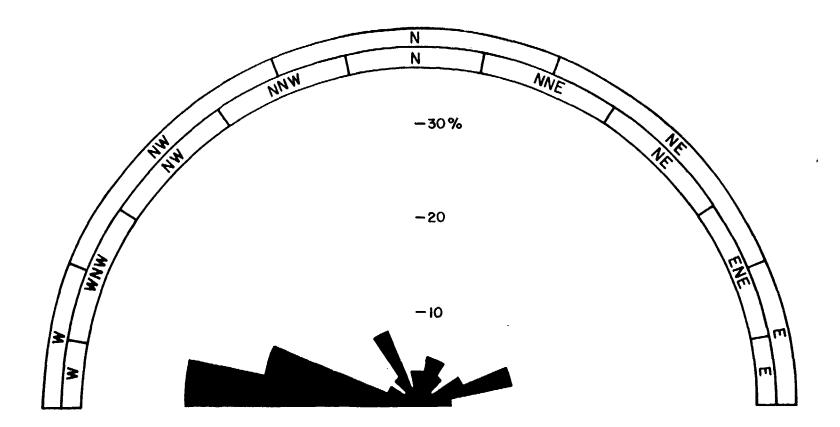


•

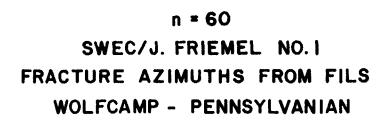


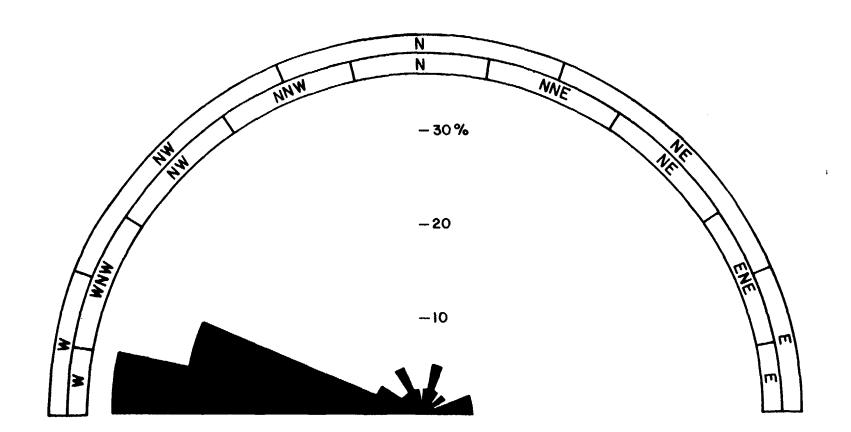

÷


I.

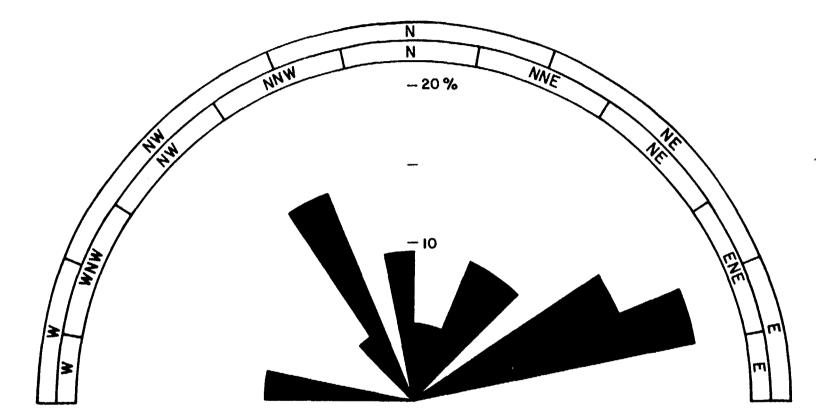


1




2

ł



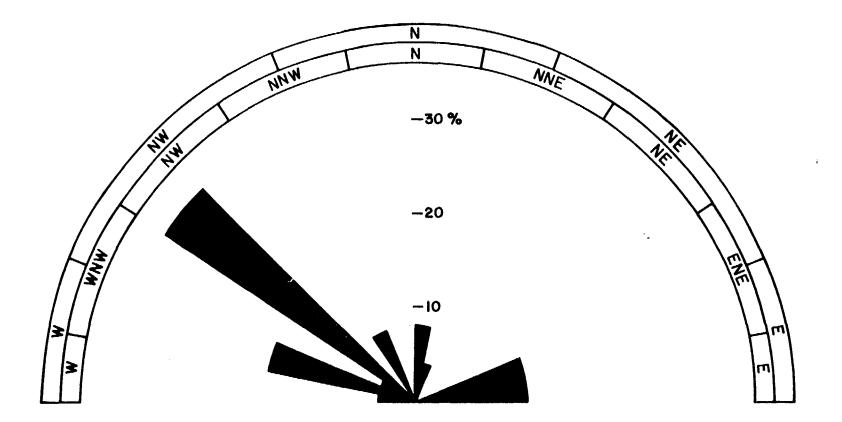
T

. 1

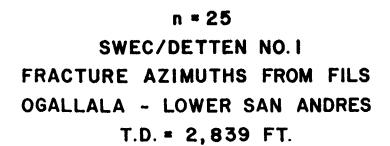
n = 21 SWEC/J. FRIEMEL NO.1 FRACTURE AZIMUTHS FROM FILS PENNSYLVANIAN

.

.


FREQUENCY OF FRACTURE* AZIMUTHS FROM FILS SWEC/DETTEN NO. I

1


	AZIMUTH																
FORMATION		N		Ň	W		N					Ň	E		1	-	TOTAL
	W	WI	NW	N	IW	NI	W		N	N	NE	N	E	EI	NE	E	
OGALLALA					1					1							2
DOCKUM			1			2					l						2
DEWEY LAKE																	_
ALIBATES																	
SALADO				1													
YATES				1													1
U. SEVEN RIVERS															l		
L. SEVEN RIVERS		4	1	5	Į	Į]						10
QUEEN - GRAYBURG								ļ	2						3	2	9
U. SAN ANDRES															-		Ū
L. SAN ANDRES								ľ									
										—					—		
TOTAL	1.	4	1.	8		2			2		}				3	3	25
		`	`	Ĭ	ĺ					'					Ĭ	Ĭ	20

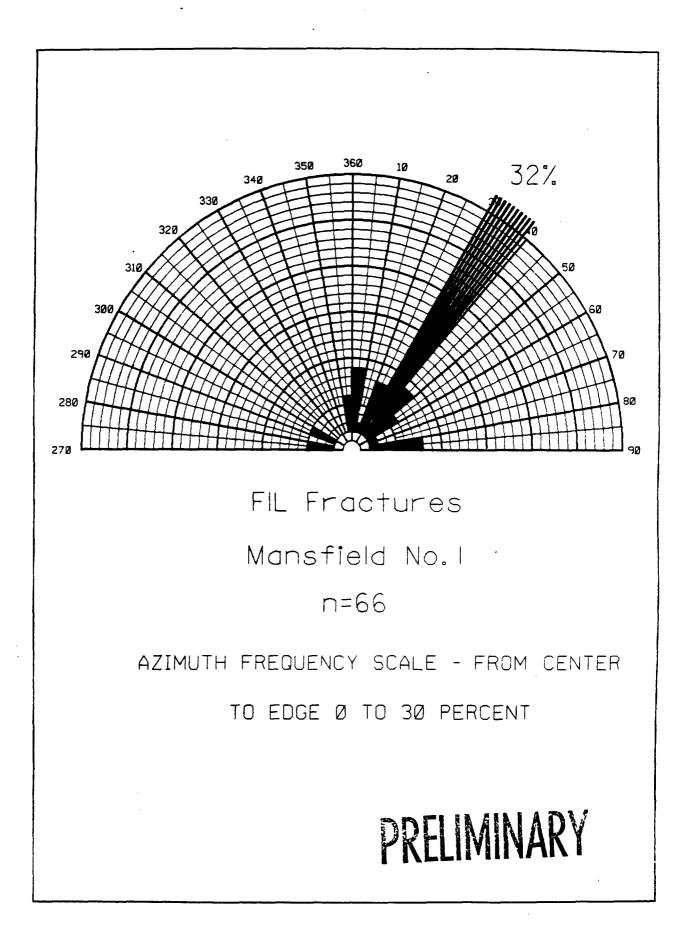
* VERTICAL FRACTURES ONLY

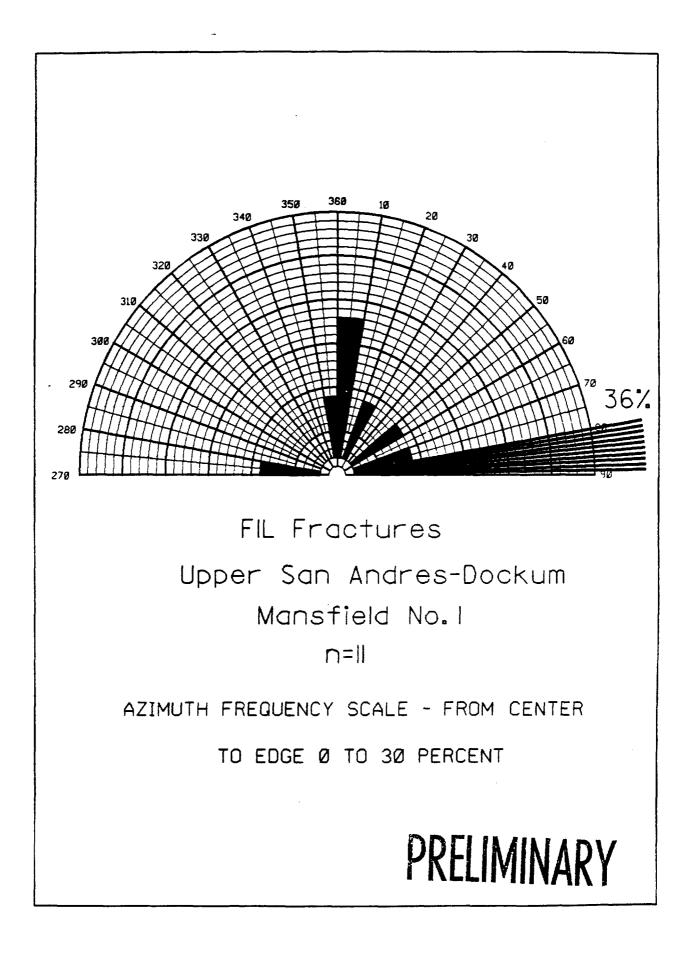
· · ·

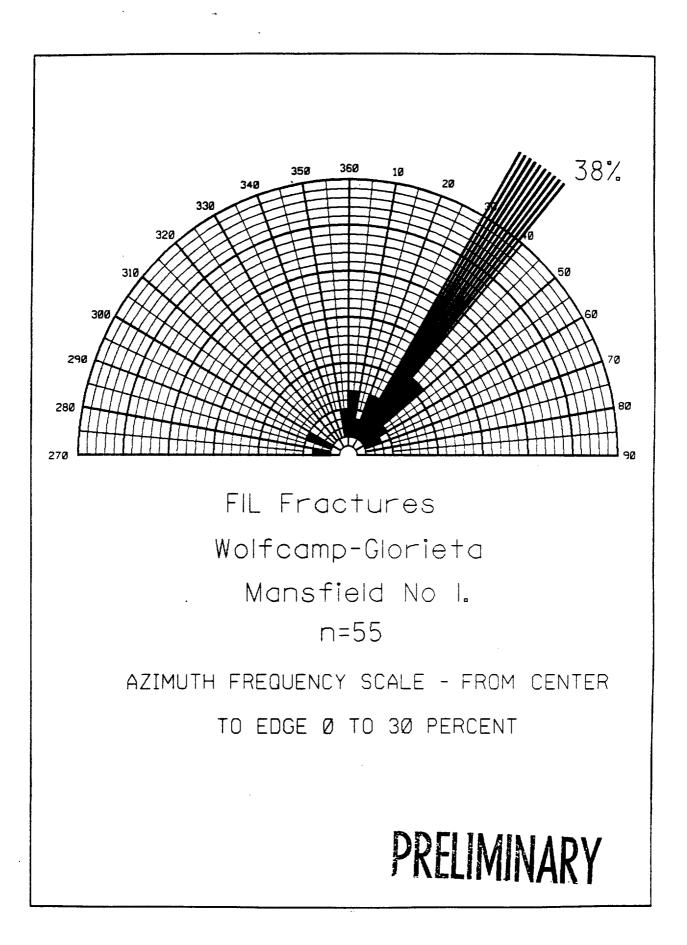
FREQUENCY OF FRACTURE * AZIMUTHS FROM FILS SWEC/G. FRIEMEL NO. I

I.

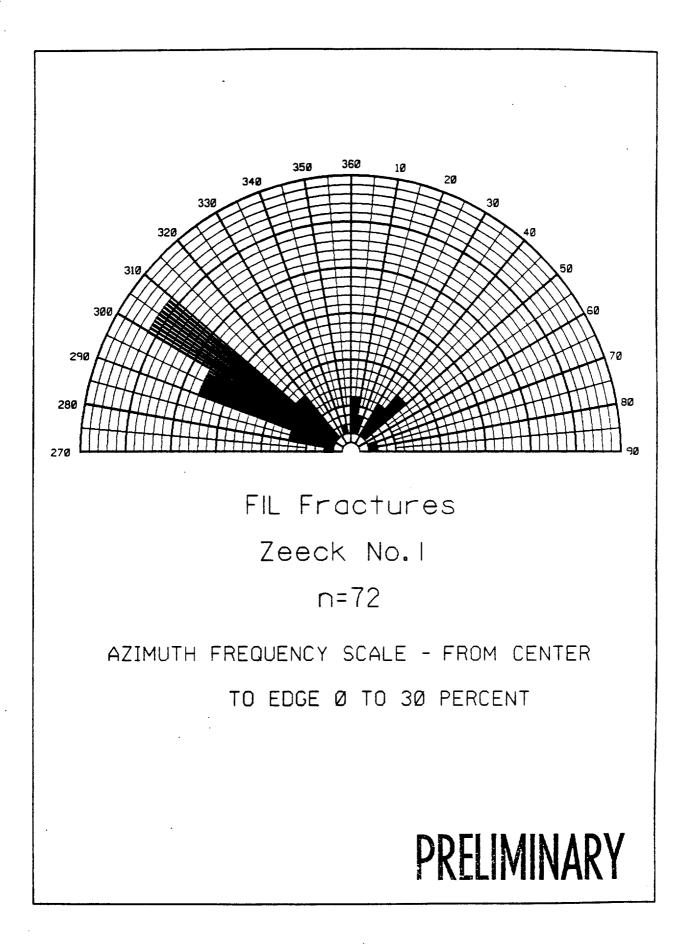
	AZIMUTH														
FORMATION	W		NW			Ň			NE		E		ΤΟΤΑ		
	W	WI	NW	NW	NNW	N	NNI	Ξ	NE	EN	NE	Ε			
OGALLALA															
DOCKUM															
DEWEY LAKE															
ALIBATES															
SALADO								1							
YATES															
U. SEVEN RIVERS											1				
L. SEVEN RIVERS															
QUEEN - GRAYBURG															
U. SAN ANDRES															
L. SAN ANDRES															
		1					-								
TOTAL								2							

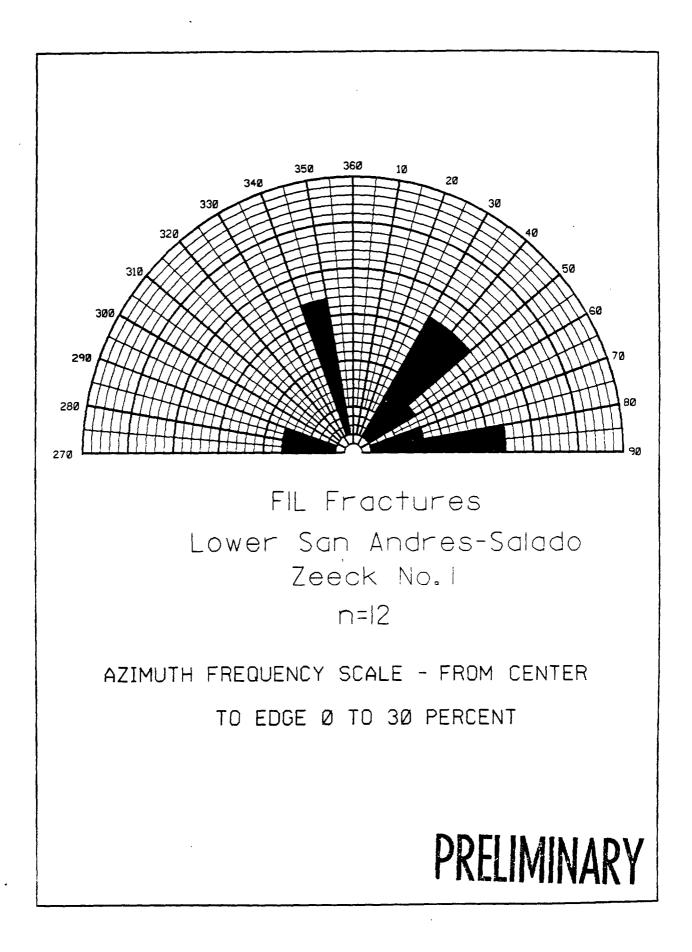

* VERTICAL FRACTURES ONLY

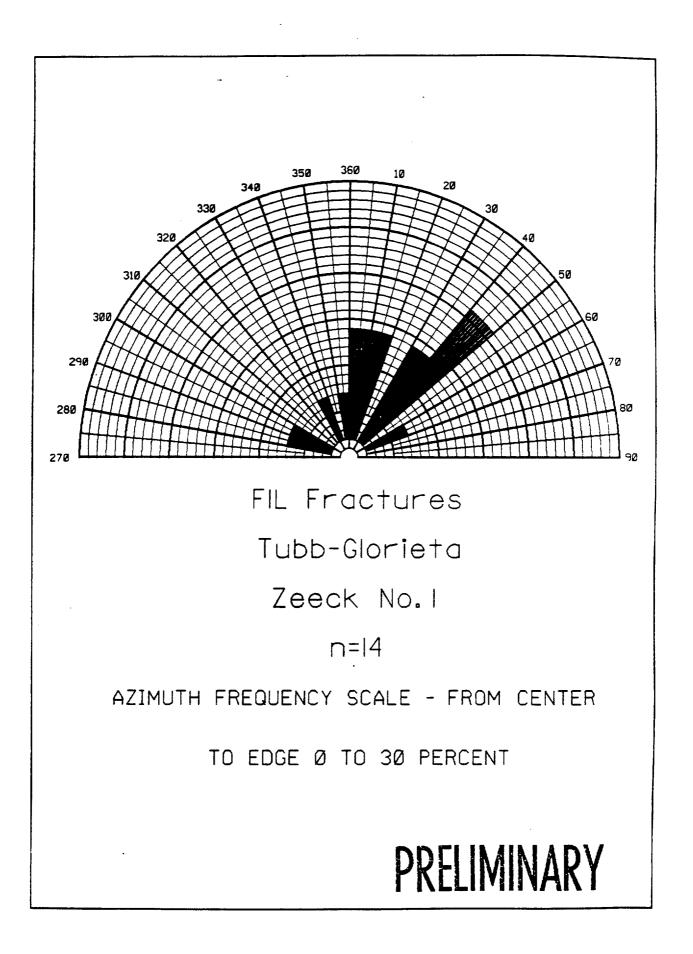


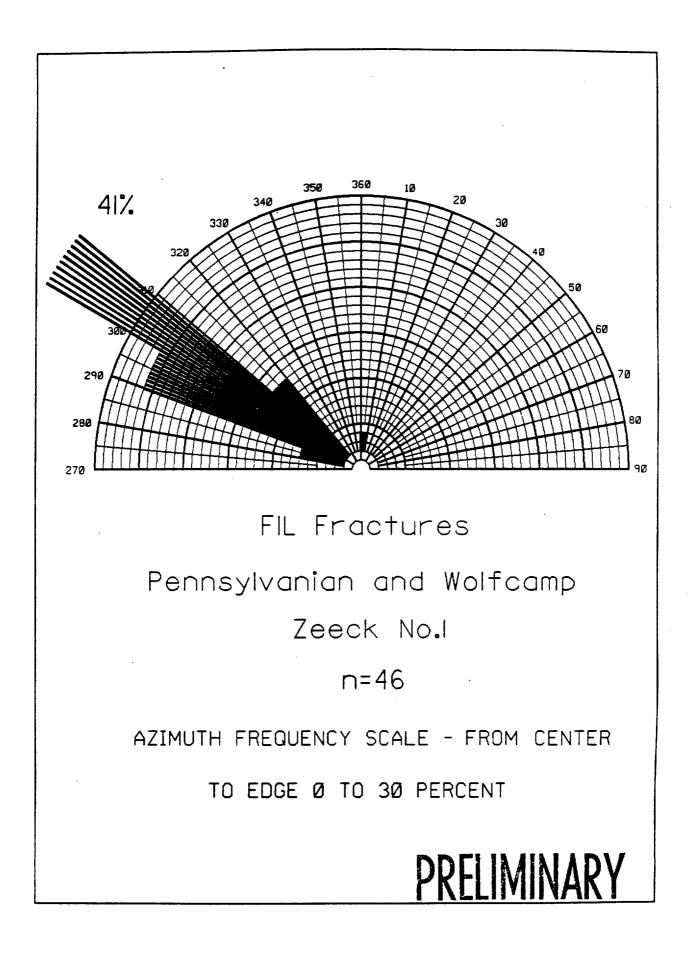

SWEC /	Mansfield	No.1
--------	-----------	------

		AZIMUTH																			
FORMATION		N_			NW					<u>N</u>				NE				E			TOTAL
	W		WNU	2	N	$\frac{1}{2}$	NN	<u>ω</u>	1	1	<u> </u>	INE		NE		EN	E	E			
OGALLALA							İ.														
Dockym	1				ļ	ļ				1					1			2	5		
DEWEY LAKE		Į																	,		
ALIBATES			[1																	
SALADO							Ι.														
YATES					}																
USEVEN RIVERS			1		ĺ				1												
L. SEVEN RIVERS						1		. 1				1					1	2	4		
QUEEN-ORAYBURG					l	[
U. SAN ANDRES					!	1				/									1		
L. SAN ANDRES						l					,						1				
GLORIETA U. CLEAR FORK										',	1		,				1	/	4		
TURE	([/	1			1						4- 2		
L-CLEAR FORK	 				ł										1		l		Z		
RED CAVE				,		,			,	2		4	18	5	2	2	Ι,		27		
WICHITA				1		1 '			1	6	,	T	1 1	3	6	2	'		37		
WOLFCAMP		1	3								1		2	1					4		
PENNSYLVANIAN							ľ												í (
		 .					l										-				
TOTAL	3	1	3	1		1			4	6	2	S	21	6	4	2	2	5	66		
																	.				

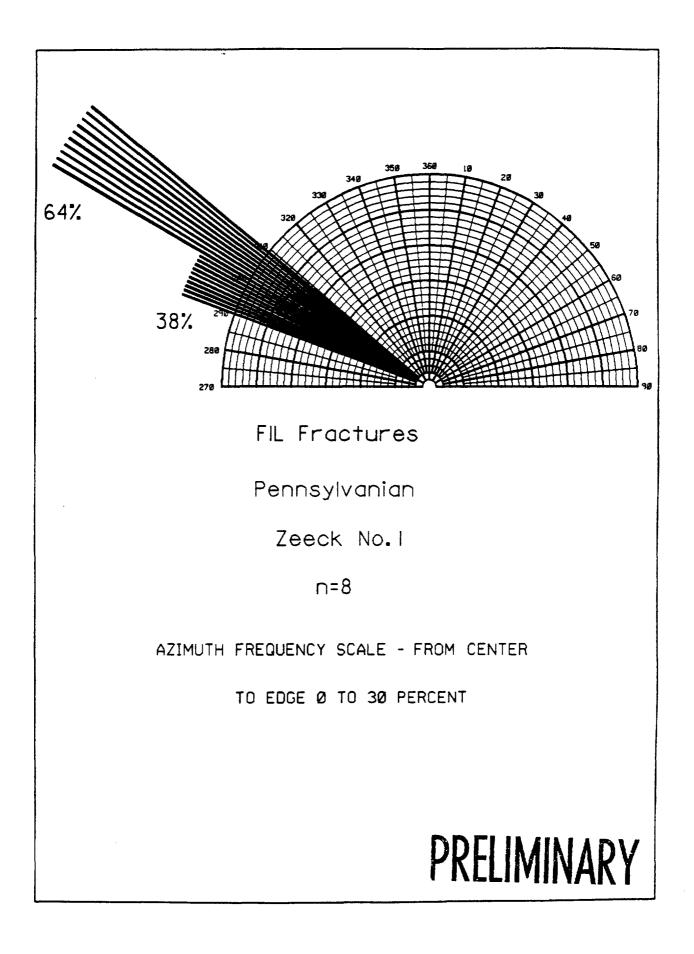


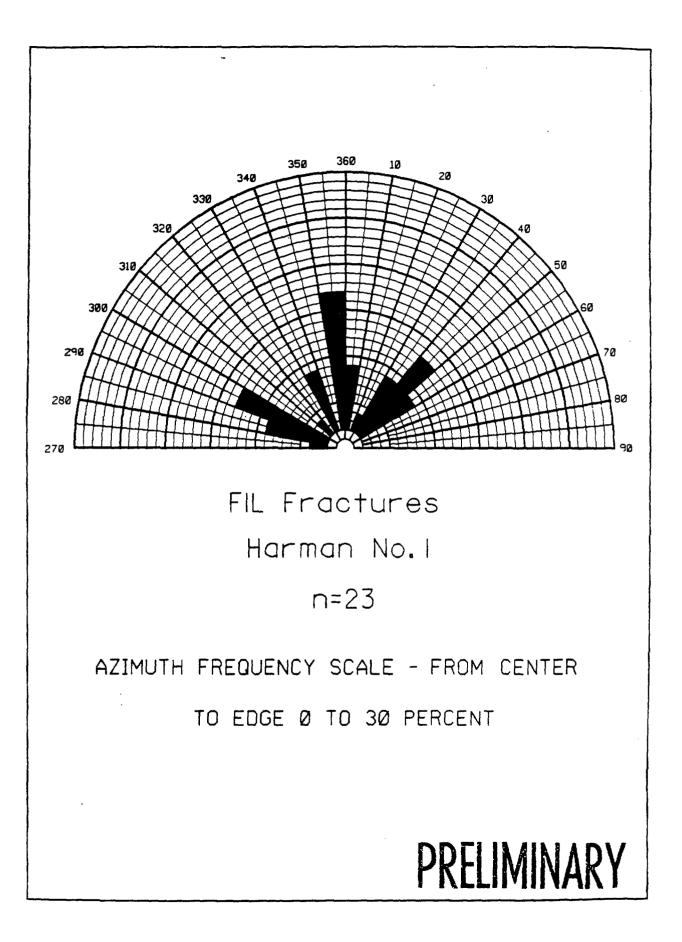





SWEC / Zeeck No. 1

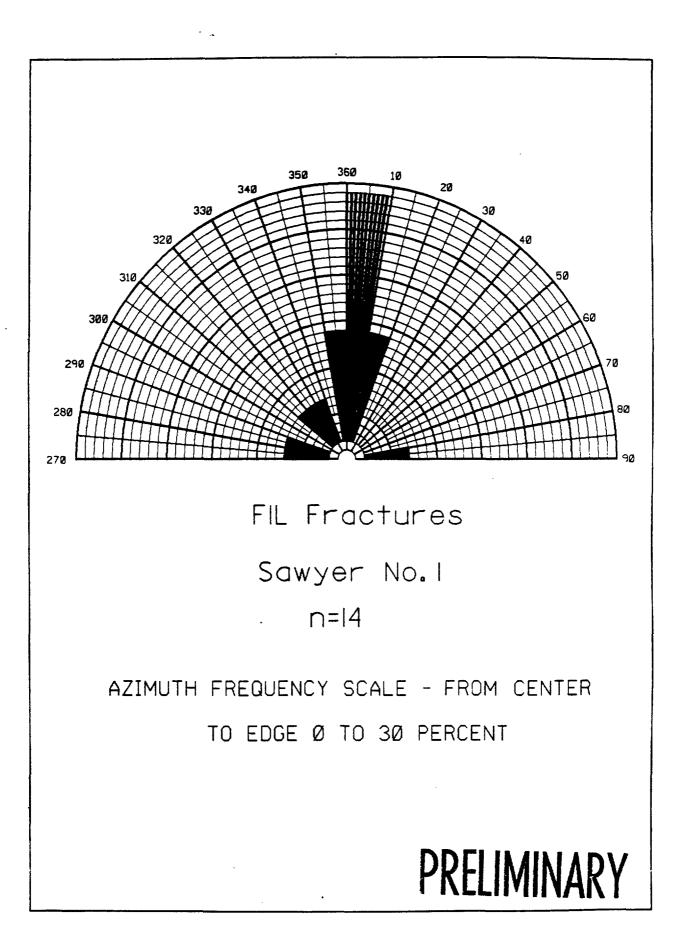
							A	211	vn.	TH									
FORMATION		<u>N</u>			NV	<u>v</u>			<u> </u>	1				NE			E		TOTAL
	W		VNU	<u>, </u>	N	$\frac{\omega}{\omega}$	NN	w	1	1		NE		NE		EN	E	E	
OGALLALA																			
Dockym	Ì						ļ												
DEWEY LAKE			1							'		ļ							•
ALIBATES]									
SALADO										İ		1			1				2
YATES	/	l					1											1	2 2 2
UISEVEN RIVERS		l	1					1		i '				1					2
L. SEVEN RIVERS		l				ſ		1						1			.		2
QUEEN-ORAYBURG			ţ.														Ì		
U. SAN ANDRES		11											1				1	1	3
L. SAN ANDRES							1											1	/
GLORIETA	Î.	1 '	1			ł –		1		1	2	ł		1			1	1	6
U. CLEAR FORK		[/			1	/					4
- TUBB		1						1		1			1	1		1]		4
L-CLEAR FORK]		
RED CAVE				ļ								[]							
WICHITA	,	3	9	14	6					2	,	1		Ι,			Ι,		38
WOLFCAMP	1			5		{					1			ł '			'	ł	ەد. 8
PENNSYLVANIAN			3	<u> </u>					:			l							Ö
TOTAL	2	s	13	19	6		1	3		4	3		4	2			2	2	72
									·		~				1	`			



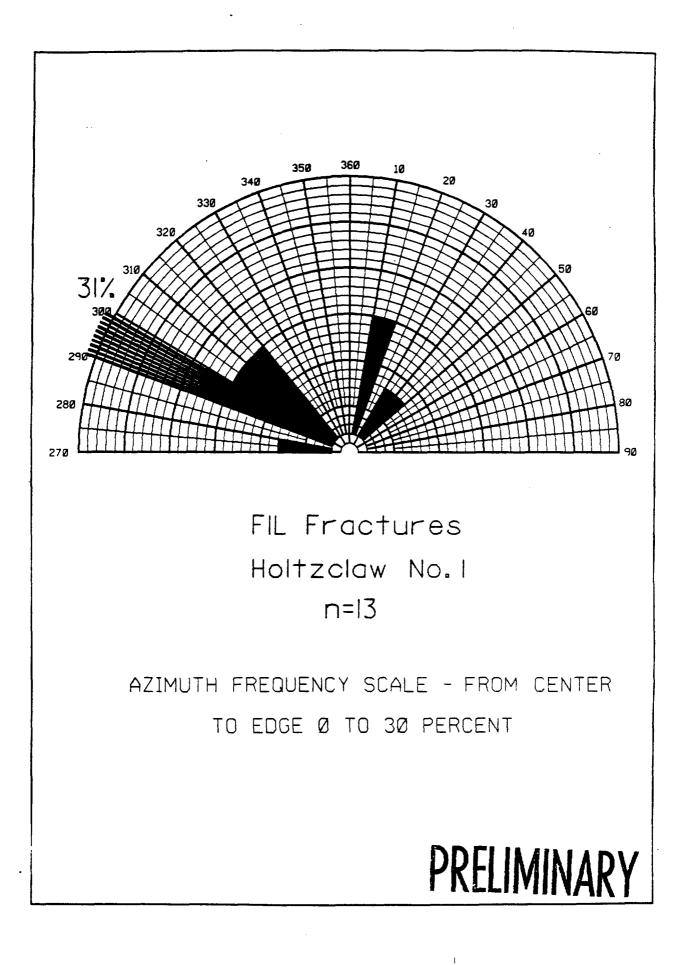


T

SWEC/	Harman	No.	
-------	--------	-----	--


							A	211	vn-	ГH									
FORMATION	the second second second second second second second second second second second second second second second s	<u>v</u>			NV	<u>v</u>			<u> </u>	<u> </u>		<u> </u>		NE					TOTAL
	W	<u> </u>	NW		N	N	NN	ω	1	1	N	NE		NE		EN	E	E	
OGALLALA					1		[1			[1	1
DOCKUM		2	2						1			1		3	1				11
DEWEY LAKE					I		1												
ALIBATES										1									2
SALADO																			
YATES																			
USEVEN RIVERS		l	/				1	1										1	4
L. SEVEN RIVERS																			
QUEEN-ORAYBURG					1														1
U. SAN ANDRES	1																		l T
L. SAN ANDRES									2									l	3
GLORIETA																			
U. CLEAR FORK																		ļ	
тивв																		· ·	
L-CLEAR FORK																			
RED CAVE																			
WICHITA																			
WOLFCAMP																	1		
PENNSYLVANIAN						·		-		—						1			
TOTAL	1	2	3	-	1		1	1	4	2		l	1	4	z				23

SWEC/	Sawyer	No.1
-------	--------	------


							A	211	1U1	гн								··· · · · · · · · · · · · · · · · · ·
FORMATION	\	N			NW	J			N			<u> </u>	 NE				Ξ	TOTAL
	W		NNW		N	N	NN	ω	<u> </u>	1	N	NE	NE		EN	E	E	
OGALLALA															[
DOCKYM																		
DEWEY LAKE		ł				:												
ALIBATES															ł	J		
SALADO															Į –			
YATES															ł			
HISEVEN RIVERS															-			
L. SEVEN RIVERS	1														1			1
QUEEN-ORAYBURG		ļ													1			
4. SAN ANDRES																		
L. SAN ANDRES		[l				
GLORIETA		1			1						1			1	ł			3 Z
U. CLEAR FORK		1			1	1												2.
TUBB								ĺ	$-l^{*}$					 				1
L-CLEAR FORK		l							1		1			Į	l			2
RED CAVE		1								2]		1			2
WICHITA													ļ					
WOLFCAMP]		2						1		2
PENNSYLVANIAN	1]]						1	1		1	
		-		1									l		1			·
TOTAL .	1	1			2	1			2.	4	2					1	1/	14

.

SWEC	/ Holtzclaw	No.1
------	-------------	------

							A	211	111-	гн							·		
FORMATION		<u>~</u>			NV				<u> </u>	1				NE					TOTAL
	W		NWM		N	Ψ	NN	W		1	N	NE		NE		EN	E	E	
OGALLALA DOCKUM DEWEY LAKE													1	1					2
ALIBATES SALADO YATES UJSEVEN RIVERS L. SEVEN RIVERS QUEEN-ORAYBURG U. SAN ANDRES L. SAN ANDRES GLORIETA	1		31	2	. [1				/				5 5 1
U. CLEAR FORK TUBB L. CLEAR FORK RED CAVE WICHITA WOLFCAMP PENNSYLVANIAN TOTAL			-4	2	2						-			7					

Guatavson (10)

REMOTE-SENSED IMAGERY

•

•

•

.

TYF	PE OF IMAGERY	SOURCE	DATA
1.	Landsat/ERTS	EROS DATA CENTER Sioux Falls, IA	BLACK AND WHITE AND FALSE COLOR IMAGES, DIGITAL TAPE, ALL PANHANDLE
2.	SLAR	USGS	IMAGES OR DIGITAL TAPE, PLAINVIEW AND CLOVIS QUADS
3.	HIGH-ALTITUDE, QUAD-CENTERED, COLC INFRARED		1:80,000 all Panhandle
4.	LOW-ALTITUDE, BLACK AND WHITE, AERIAL PHOTOGRAPHY	ÚSDA	VARIOUS SCALES AND VINTAGES, ALL PAN- HANDLE
5.	LOW-ALTITUDE, BLACK AND WHITE MOSAICS	TOBIN AERIAL Surveys San Antonio, TX	1:24,000 All Panhandle

T

TYF	PE OF IMAGERY	SOURCE	DATA
6.	Shuttle imaging Radar	GODDARD SPACE Flight Center Greenbelt, MD	1:500,000 SELECTED AREAS
7.	LOW-ALTITUDE, COLOR INFRARED	TEXAS NATURAL Resource Informatic System, Austin, TX	1:20,000, SELECTED ON AREAS
8.	LOW-ALTITUDE COLOR OBLIQUE SLIDES	BEG	SELECTED AREAS

,

•

Т

4.1

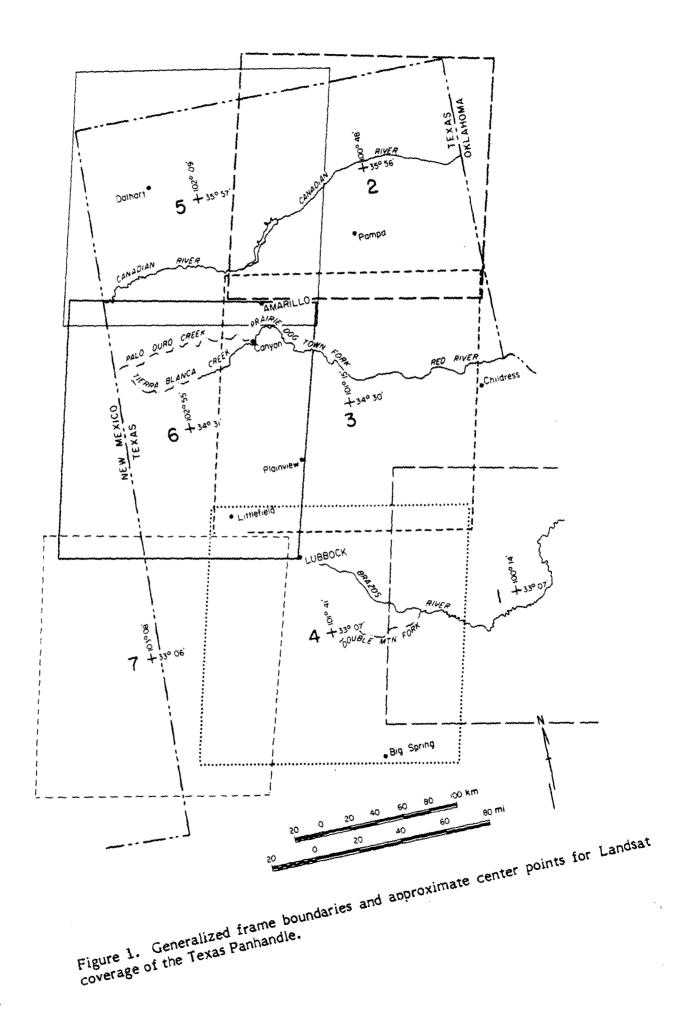
۳

,

.

REMOTE-SENSED IMAGERY

REGIONAL STUDY


 FINLEY AND GUSTAYSON. 1981. LINEAMENT ANALYSIS BASED ON LANDSAT IMAGERY, TEXAS PANHANDLE: GEOLOGIC CIRCULAR 81-5.

CONTENT:

LINEAMENTS, ALIGNED PLAYAS, SCARPS AND DRAINAGE SEGMENTS WERE MAPPED FROM LANDSAT IMAGES AND COMPARED TO REGIONAL FRACTURE TRENDS. FIGURES 1-5.

GROUND CHECK:

MOST LINEAMENTS CAN BE RECOGNIZED ON THE GROUND; HOWEVER, THE CAUSE OF THE LINEAMENTS SUCH AS A SYSTEM OF FRACTURES AT THE SURFACE, REMAINS ELUSIVE. FRACTURES ARE GENERALLY ABSENT FROM THE BLACKWATER DRAW AND OGALLALA FORMATIONS.

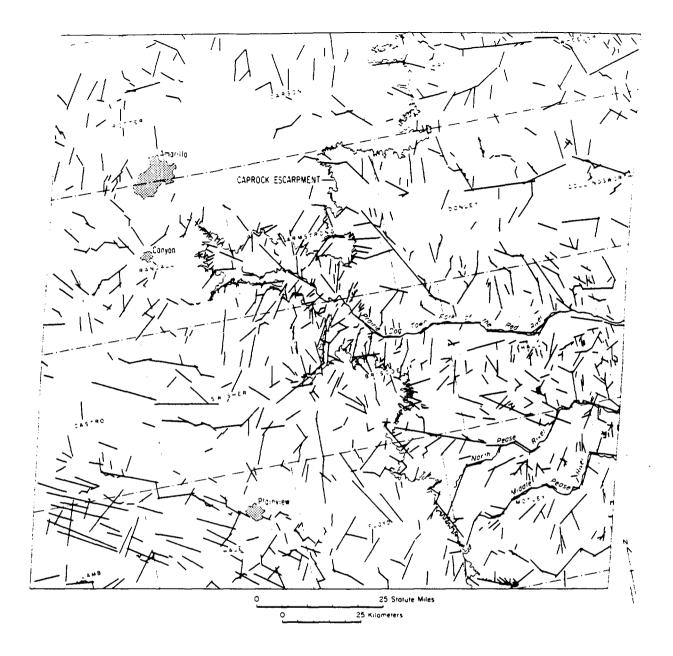


Figure 2. Lineaments derived from Landsat imagery, block 3 (fig.1), Texas Panhandle region (Scene 1672-16455, May 26, 1974). Original imagery is at a scale of 1:250,000.

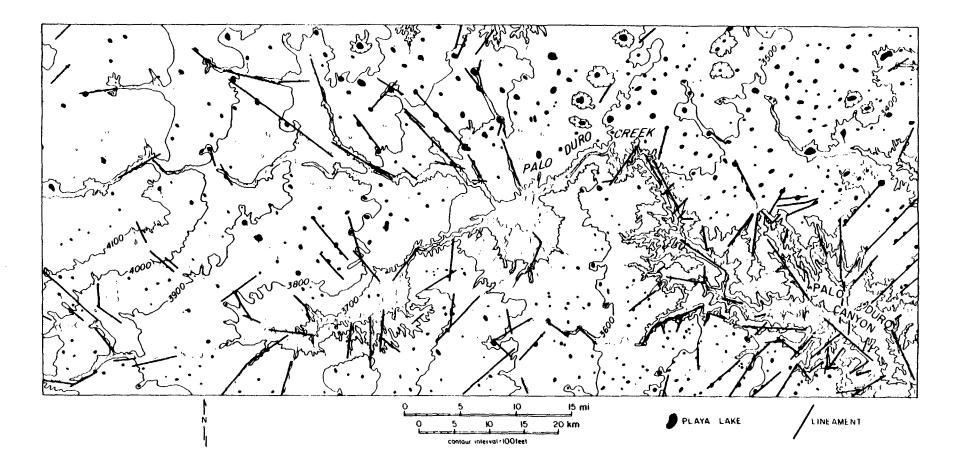


Figure 3. Detail of lineaments mapped on Landsat imagery in the vicinity of Palo Duro Creek and Palo Duro Canyon. Linear stream segments and escarpments form many of the lineaments. Area shown is A in figure 4. Original imagery is at a scale of 1:250,000.

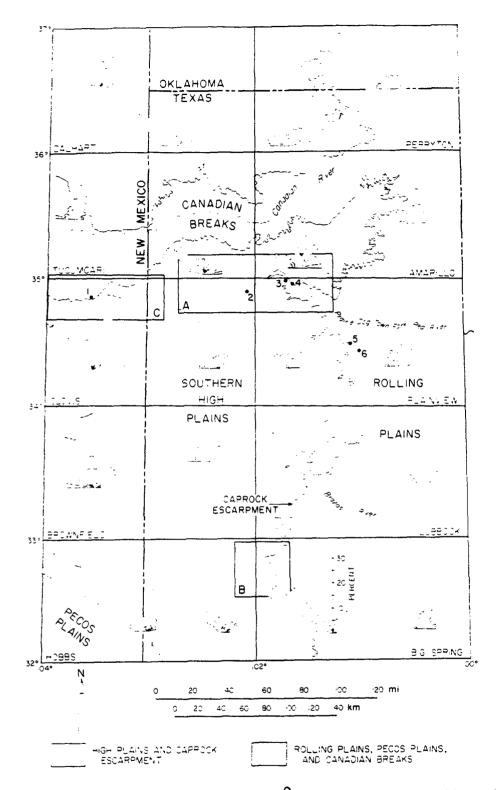
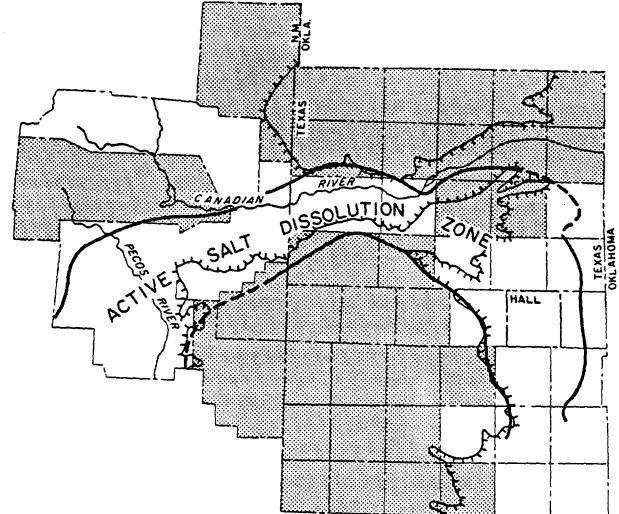


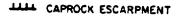
Figure 4. Summary of lineament length by 10^o azimuth category within each named 1° x 2° National Map Series sheet. Area A, corresponds to figure 3. Localities 1 through 6 are sources of joint data for figure 5.

i

LOCAL STUDY

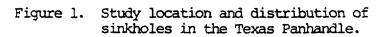
١.

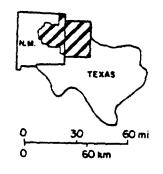

 GUSTAVSON, T.C. AND OTHERS. 1982. EVAPORITE DISSOLUTION AND DEVELOPMENT OF KARST FEATURES ON THE ROLLING PLAINS OF THE TEXAS PANHANDLE: JOURNAL OF EARTH SURFACE PROCESSES AND LANDFORMS, Vol. 7, p. 545-563.

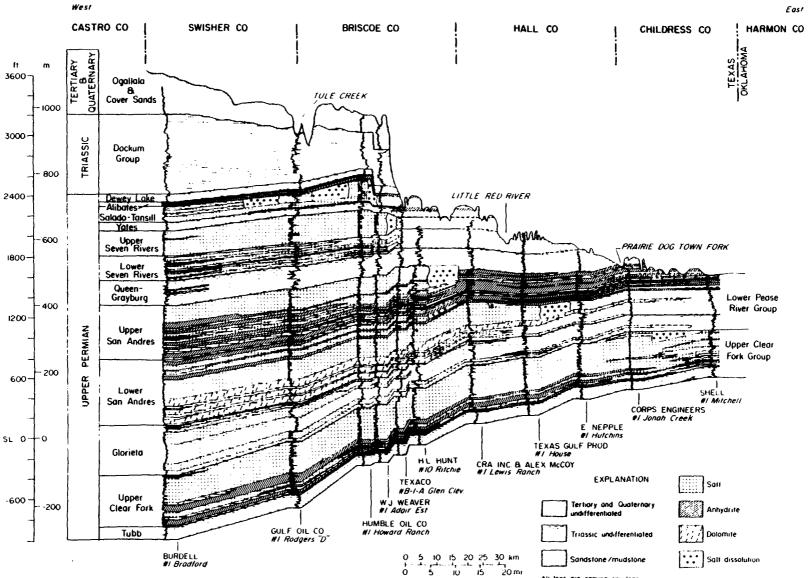

CONTENT:

COMPARES ORIENTED SUBSIDENCE/COLLAPSE FEATURES, IDENTIFIED FROM FIVE VINTAGES OF BLACK AND WHITE AERIAL PHOTOGRAPHY, TO LINEAR DRAINAGE ELEMENTS, OPEN EARTH FRACTURES, AND FRACTURES IN HALL COUNTY, TEXAS. FIGURES 1-4.

GROUND CHECK:


SUBSIDENCE FEATURES, MOSTLY DOLINES, ARE EASILY RECOGNIZED ON THE GROUND. DOLINE AXES AND THE ALIGN-MENT OF A GROUP OF DOLINES ARE LOCALLY PARALLEL TO A SERIES OF OPEN EARTH FRACTURES.




NO SINKHOLES

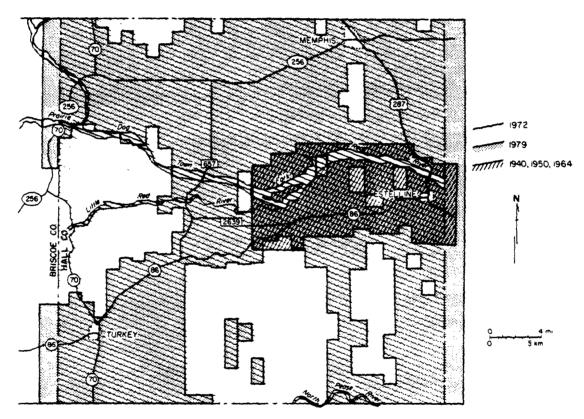
1

£.,

ò 5

DATUM Sea level

All loos


are gamma ray logs

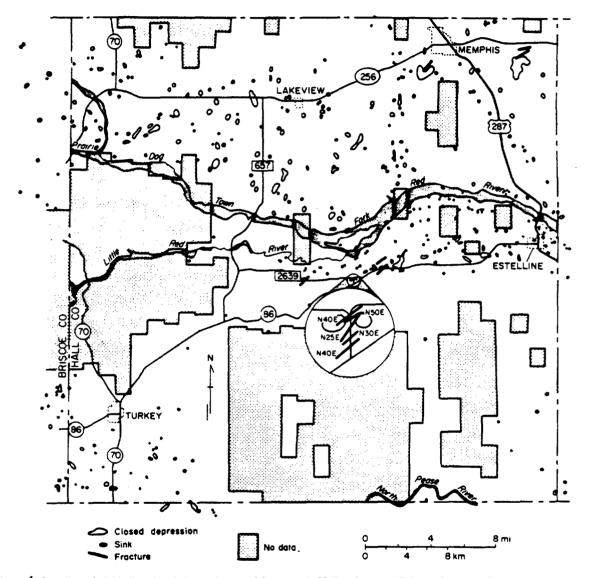
,

Figure 2. Structure and stratigraphic cross-section on the northeast flank of the Palo Duro Basin.

H 0 GUSTAVSON ET AL.

Eas!

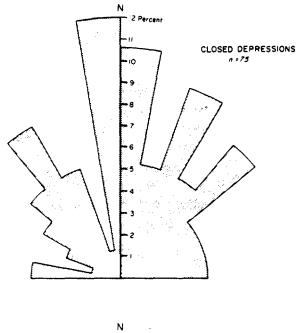
T. C. GUSTAVSON ET AL.


.*

۰.

Figure 3. Distribution of photographic data that were analysed. Colour slides. 1979; black-and-white stereographic photography, 1940, 1950, 1964, and 1972

ī.


٠,

EVAPORITE DISSOLUTION AND KARST DEVELOPMENT

Figure 4. Location of sinkholes, closed depressions, and fractures in Hall and eastern Briscoe Counties. Closed depressions are drawn to scale, sinkholes which are much smaller are not drawn to scale. Areas of no data are those areas for which coloured slides were not available. These areas are relatively highly dissected and closed depressions do not occur there

I

· •

•

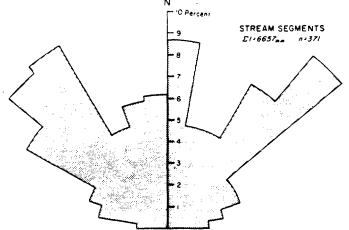


Figure 5. Diagrams indicate orientations of closed depressions and linear stream elements in Hall County. For each 10° sector, linear data are plotted as a percentage of total number of closed depressions and as a percentage of total length of linear stream segments, respectively

ī.

٠,

٠.

Peck (9)

SUMMARY OF WELLS DRILLED AND TESTED BY SWEC

- 1. <u>Sawyer No. 1</u>; Donley County, started June 23, 1981, completed October 15, 1981. T.D.: 4806 ft. Present status: Final plugged.
- a. <u>Casing Program</u> 13 3/8 in. conductor to 66 ft, 9 5/8 in. surface to 337 ft, 5 1/2 in. production to 3938 ft, 4 in. liner from 3938 ft to 4806 ft.
- b. <u>Rock Coring</u> (all 4 in. OD core) Total of 3872 ft, from 66 ft to 3938 ft, Yates through Pennsylvanian.

MAJOR SALT SECTION

4 1

0.	Upper	. 5	San Ar	ndres	438	ft	to	652	ft,	thickness	214	ft
0	LSA	-	Unit	5	652	ft	to	756	ft,	thickness	104	ft
0	LSA	-	Unit	4	756	ft	to	840	ft,	thickness	84	ft
0	LSA	-	Unit	3	840	ft	to	894	ft,	thickness	54	ft
0	LEA	-	Unit	2	894	ft	to	947	ft,	thickness	53	ft

Unusual features - Fault zone at 756-762 ft - 155 of missing section.

c. Drill Stem Tests (DSTs)

No. 1 2950 ft to 3123 ft - Wolfcamp, PI = 816 psi, K = 0.15 md

- d. Geophysical Logging Complete suites of cased and open hole logs.
- e. Long-Term Pump Testing and Fluid Sampling
 - Zone 1 Ellenburger Sand, 4716 ft 4746 ft, unable to obtain data to determine PI or K, 4 downhole and 2 surface samples.
 - Zone 2 Ellenburger Top, 4604 ft 4640 ft, PI = 1390 psi, K = 0.3 md., 4 surface samples.
 - Zone 3 Penn. Limestone, 4500 ft 4535 ft, PI = 1531 psi, K = 5.4 md., 4 downhole and 2 surface samples
 - Zone 4 Penn. Limestone, 4258 ft-4342 ft, PI = 1350 psi, K = 2.7 md., 7 downhole and 10 surface samples.
 - Zone 5 Wolfcamp, 3189 ft 3172 ft, PI = 977 psi, K = 2.7 md., 3 downhole and 20 surface samples.

f. Dissolution Zone water Well

Sawyer No. 2, 784 ft, 20 ft screen section at bottom of hole in LSA Unit 4. Testing by TBEG began April, 1983.

- Mansfield No. 1, Oldham County, started October 19, 1981, completed December 19, 1982. T.D. 4995 ft by SWEC, 7409 ft by Baker & Taylor (dry hole). Present status: Final plugged.
- a. <u>Casing Program</u> 13 3/8 in. conductor to 41 ft, 9 5/8 in. surface to 1212 ft, 5 1/2 in. tubing to 5180 ft.
- b. Rock Coring (All 4 in. OD core) Total of 4196 ft.

o 46 ft to 3540 ft - Dockum to Red Cave o 4023 ft to 4123 ft - Wichita o 4393 ft to 4995 ft - Wichita and Wolfcamp

MAJOR SALT SECTION

0	Upper San Andres	985	ft to	1373	ft,	thickness	388	ft
0	LSA - Unit 5	1373	ft to	1546	ft,	thickness	173	ft
0	LSA - Unit 4	1546	ft to	1815	ft,	thickness	269	ft
0	LSA - Unit 3	1815	ft to	1940	ft,	thickness	125	ft
0	LSA - Unit 2	1940	ft to	1978	ft,	thickness	38	ft
0	LSA - Unit 1	1978	ft to	2001	ft,	thickness	23	ft

c. Drill Stem Tests (DSTs)

No. 1 4800 ft - 4996 ft - Wolfcamp PI = 1322 psi K= 26.6 md. No. 2 4550 ft - 4650 ft - Wolfcamp - Did not produce sufficient fluid. No. 3 4550 ft - 4650 ft - Wolfcamp - Did not produce sufficient fluid No. 4 4550 ft - 4650 ft - Wolfcamp - Unable to set packers. No. 5 6994 ft - 7409 ft - Granite Wash - Did not produce sufficient fluid. No. 6 6612 ft - 6640 ft - Penn. Carbonates, PI = 2230, K = 21.4 md. No. 7 4812 ft - 4840 ft - Wolfcamp, PI = 1404, K = 30.22 md.

- d. Geo; hysical Logging Complete suites of cased and open hole logs.
- e. Long-Term Pump Testing and Fluid Sampling

Zone 1 - Wolfcamp, 4818-4890, PI = 1470 psi, K = 3.3 md., 8 downhole and 24 surface samples Zone 2 - Wolfcamp, 4514-4638, PI = 1150 psi, K = 0.6 md., 9 downhole and 8 surface samples.

f. Dissolution Zone Water Well

Mansfield No. 2, 780 ft, 30 ft screen at bottom in Queen/Grayburg. Testing by TBEG began June, 1983.

BX1-1369711-70/7

- 3. <u>Detten No. 1</u> Deaf Smith County, started February 26, 1982, completed May 5, 1982. T.D. 2839.3 ft. Present Status: Final plugged.
- a. Casing Program 13 3/8 in. conductor to 53 ft, 9 5/8 in. surface to 1122 ft.
- b. Rock Coring (all 4 in. OD core) Total of 1249 ft

o 1129.2 ft to 1423.0 ft - Salado, Yates, Upper Seven Rivers
o 1884 ft to 2839.3 ft - Upper San Andres, Lower San Andres to Unit 3

MAJOR SALT SECTION

 o
 Upper San Andres
 1866
 ft to
 2374
 ft, thickness
 508
 ft

 o
 LSA - Unit 5
 2374
 ft to
 2575
 ft, thickness
 201
 ft

 o
 LSA - Unit 4
 2575
 ft to
 2830
 ft, thickness
 255
 ft

c. Drill Stem Tests (DSTs)

No. 1 1160 ft - 1360 ft - Upper Seven Rivers - Unsuccessful - Poor packer seat.
No. 2 1299 ft - 1366 ft - Upper Seven Rivers - Unsuccessful - Poor packer seat.
No. 3 2749 ft - 2839 ft - LSA Unit 4 Dolomite, P.I. = 1150 psi, K = 0.16 md.

- d. Geophysical Logging Complete suites of open hole logs.
- e. Long-Term Pump Testing and Fluid sampling None.
- f. Dissolution Zone water Well

Detten No. 2, 1325 ft, 20 ft of screen at bottom in Yates. The well was completed in March, 1933. Testing, monitoring, and sampling by TBEG continues.

- 4. <u>G. Friemel No. 1</u> Deaf Smith County, started February 23, 1982, completed March 31, 1982. T.D. 2710 ft. Present Status: Final plugged.
- a. <u>Casing Program</u> 13 3/8 in. conductor to 50 ft, 9 5/8 in. surface to 1058 ft.
- b. Rock Coring (all 4 in. OD core) Total of 1121.7 ft

 o 1191.5 ft to 1312.0 ft - Yates, Upper Seven Rivers
 o 1709.0 ft to 2710.2 ft - Queen/Grayburg, Upper San Andres, and Lower San Andres to Unit 3

MAJOR SALT SECTION

• ·

 o
 Upper San Andres
 1742
 ft to
 2331
 ft, thickness
 589
 ft

 o
 LSA - Unit 5
 2331
 ft to
 2435
 ft, thickness
 104
 ft

 o
 LSA - Unit 4
 2435
 ft to
 2688
 ft, thickness
 253
 ft

c. Drill Stem Tests (DSTs)

No. 1 2600 ft - 2710 ft, LSA Unit 4 Dolomite, P.I. = 975 psi, K = 0.07 md.

- d. Geophysical Logging Complete suites of open hole logs.
- e. Long-term Pump Testing and Fluid Sampling None.
- f. Dissolution Zone water Well None.

ī.

- 5. <u>Zeeck No. 1</u> Swisher County, started April 9, 1982, completed August 17, 1982. T.D. 7652 ft. Pump testing started September 22, 1983, completed May 2, 1984. Present Status: Final plugged.
- a. <u>Casing Program</u> 13 3/8 in. conductor to 26 ft, 9 5/8 in. surface at 1024 ft, 5 1/2 in. to 7421 ft.
- b. Coring (all 4 in. OD core) Total of 1993 ft

o 1035 ft to 1144 ft - Salado
o 1885 ft to 3102 ft - Queen/Grayburg, Upper San Andres, Lower San Andres Units 5, 4, 3, and Upper Section of Unit 2.
o 5309 ft to 5780 ft - Wichita/Wolfcamp Contact and Upper Wolfcamp
o 5910 ft to 6058 ft - Wolfcamp
o 7300 ft to 7387 ft - Pennsylvanian Carbonates

MAJOR SALT SECTION

0	Upper San Andres	2014 ft to 2574 ft, thickness 560 ft
0	LSA - Unit 5	2574 ft to 2732 ft, thickness 158 ft
0	LSA - Unit 4	2732 ft to 3014 ft, thickness 282 ft
0	LSA - Units 3,2,&1	3014 ft to 3188 ft, thickness 174 ft

c. Drill Stem Tests (DSTs)

No. 1 1019 ft - 1044 ft - Salado, Unsuccessful.
No. 2 1019 ft - 1044 ft - Salado, Did not produce sufficient fluid.
No. 3 3035 ft - 3103 ft - LSA, Unit 3, Did not produce sufficient Fluid.
No. 4 2932 ft - 3103 ft - LSA Unit 3, Unsuccessful.
No. 5 2927 ft - 3103 ft - LSA Unit 4 Dolomite, P.I. = 1250 psi, K = 0.25 md.
No. 6 5365 ft - 5542 ft - Upper Wolfcamp, PI = 1875 psi, K = 6.77 md.
No. 7 7146 ft - 7225 ft - Pennsylvanian, PI = 2559 psi, K = 2.83 md.

- d. Geophysical Logging Complete suites of open and cased hole logs.
- e. Long-Term Pump Testing and Fluid Sampling
 - Zone 1 Penn. Carbonates, 7140 ft 7230 ft, P.I. = 2400 psi, K 15 md., 10 downhole and 48 surface samples
 - Zone 2 Wolfcamp, 5603 ft 5640 ft, P.I. = 1960 psi, K = 1 md., 6 downhole and 9 surface samples.
 - Zone 3 Wolfcamp, 5470 ft 5550 ft, P.I. = 1890 psi, K = 7 md., 3 downhole and 34 surface samples.
 - Zone 4 LSA Unit 4 Dolomite, 2930 ft 2970 ft, P.I. = 1300 psi, 25 surface samples
- f. Dissolution Zone water Well None.

I.

- 6. <u>Harman No. 1</u> Swisher County, started July 29, 1982, completed September 7, 1982. T.D. 3052 ft, hole completed as Shallow Dissolution Zone Water Welt (see below)
- a. <u>Casing Program</u> 13 3/8 in. conductor to 40 ft, 9 5/8 in. surface to 1063, cement to plug 1220 ft + to 1400 ft +.
- b. Rock Coring (all 4 in. OD core) Total of 1481 ft
 - o 1070 ft to 1303 ft Alibates, Salado, Yates, and Upper Seven Rivers
 o 1804 ft to 3052 ft (T.D.) - Queen/Grayburg, Upper San Andres, and Lower San Andres into Unit 2.

MAJOR SALT SECTION

 o
 Upper San Andres
 1949
 ft to
 2466
 ft, thickness
 517
 ft

 o
 LSA - Unit 5
 2466
 ft to
 2651
 ft, thickness
 185
 ft

 o
 LSA - Unit 4
 2651
 ft to
 2931
 ft, thickness
 280
 ft

 o
 LSA - Unit 3
 2931
 ft to
 3012
 ft, thickness
 81
 ft

c. Drill Stem Tests (DSTs)

No. 1 2840 ft - 3050 ft -

Unit 4 Dolomite, P.I. = 1203 psi K = 0.011 md., minor leakage noted around packers.

No. 2 2830 ft - 3050 ft - (T.D.) - Unit 4 Dolomite, P.I. 1315, K = 0.186 md.

- d. Geophysical Logging Complete suites of open hole logs.
- e. Long-Term Pump Testing and Fluid Sampling None.
- f. Dissolution Zone water Well

Installed in existing borehole with open hole section from bottom of surface casing at 1064 ft to top of cement plug at 1220 ft +. Gravel packed screen (30 ft long) set in Yates. The well was completed in March 1983; Testing, monitoring, and sampling by TBEG continues.

- 7. Friemel No. 1 Deaf Smith County, started October 15, 1982, completed March 18, 1983. T.D. 8283 ft, pump testing started May 3, 1983 completed September 19, 1984. Present status: Final plugged.
- a. <u>Casing Program</u> 22 in.. conductor to 48 ft, 16 in. surface to 1210 ft, 10 3/4 in. intermediate salt string to 4695 ft, 5 1/2 in. to 8283 ft.
- b. Rock Coring (all 4 in. OD core) Total of 3041 ft

0	352 ft to 1464 ft -	Dockum, Dewey Lake, Alibates, Salado, Yates, and Upper Seven Rivers
ο	1846 ft to 2830 ft -	Upper San Andres, LSA Units 5, 4, and Upper Section of Unit 3
-	5519 ft to 6032 ft -	••
0	JJ19 IL LO 00J2 IL 7	Wolfcamp
0	6421 ft to 6537 ft -	Penn. Carbonates
0	7698 ft to 7780 ft -	Granite Wash
0	8047 ft to 8283 ft (T.D.) -	Granite Wash

MAJOR SALT SECTION

0	Upper San Andres	1880 :	ft to	2372	ft,	thickness	492	ft
0	LSA - Unit 5	3372	ft to	2560	ft,	thickness	188	ft
0	LSA - Unit 4	2560	ft to	2822	ft,	thickness	262	ft
0	LSA - Units 3,2,&1	2822 :	ft to	3018	ft,	thickness	196	ft

c. Drill Stem Tests (DSTs)

No. 1 958 ft - 1216 ft - Santa Rosa - Too High Producer.
No. 2 787 ft - 850 ft - Santa Rosa - Unsuccessful.
No. 3 1279 ft - 1464 ft - Upper Seven Rivers - Did not produce sufficient fluid.
No. 4 1279 ft - 1464 ft - Upper Seven Rivers - Did not produce sufficient fluid.
No. 5 2753 ft - 2830 ft - LSA Unit 4 Dolomite - Did not produce sufficient fluid.
No. 6 5630 ft - 5909 ft - Wolfcamp, P.I. = 1756 psi, K = 10.3 md.
No. 7 7692 ft - 8283 ft - Penn. Carbonates and Granite Wash -Unsuccessful, Tool stuck.

- d. Geophysical Logging Complete suites of open and cased hole logs.
- e. Long-Term Pump Testing and fluid sampling
 - Zone 1 Penn. Granite Wash, 8168 8804 ft, Formation press = 2840 psi, K = 29 md., 12 downhole and 54 surface samples.
 - Zone 2 Penn. Granite Wash, 8122-8132 ft, Formation Press = 2809 psi, K = 131 md., 23 surface samples.
 - Zone 3 Penn. Granite Wash, 8040-8050 ft, formation press = 2766 psi, K = 152 md., 21 surface samples.
 - Zone 4 Penn. Granite Wash, 7890-7904 ft, Formation press. = 2684 psi, K = 3.3 md., 10 downhole and 52 surface samples.
 - Zone 5 Penn. Granite wash, 7707-7711 and 7729-7734 ft, Formation press. = 2615 psi, K= 1000 md., 15 surface samples.

1

BX1-1369711-70/7

- Zone 6 Penn. Carbonate, 7300-7326 ft, Formation press. = 2428 psi, K = 92 md., 11 downhole and 47 surface samples.
- Zone 7 Wolfcamp, 5825-5926 ft, Formation press = 1721 psi, K = 1.3 md., 17 downhole and 89 surface samples.
- Zone 8 LSA Unit 4, 2754-2798 ft, Formation press. = 957 psi, K = 0.04 md., 25 surface samples.
- Zone 9 Queen/Grayburg, 1690-1770 ft, Formation press. = 510 psi, K = 1.2 md., 13 downhole and 23 surface samples.
- f. Seismometer seismometer installed at a depth of 480 ft in the well. Surface facility expected to be constructed and system operational by December, 1985.

- 8. <u>Holtzclaw No. 1</u> Randall County, started February 28, 1983, completed March 24, 1983. T.D. 2884 ft. Hydro fracture testing performed in December, 1983 (see below). Present status: Final plugged.
- a. Casing Program 20 in. conductor to 41 ft, 10 3/4 in. surface to 1125 ft.
- b. Rock Coring (all 4 in. OD) Total of 901 ft

1080 ft - 1401 ft - Dewey Lake, Albates, Salado, Yates and Upper Seven Rivers

2304 ft - 2884 ft - Upper San Andres, Lower San Andres Unit 5, 4 & into 3.

MAJOR SALT SECTION

Upper San Andres 1878-2369 ft, total salt thickness 160 ft
LSA - Unit 3 2369-2562 ft, total salt thickness 75 ft
LSA - Unit 4 2562-2822 ft, total salt thickness 124 ft

c. Drill Stem Tests (DSTs)

No. 1 1276 ft - 1322 ft - Upper Seven Rivers - did not produce sufficient fluid.
No. 2 1140 ft - 1186 ft - Salado - did not produce sufficient fluid.
No. 3 702 ft - 748 ft - Santa Rosa - did not produce sufficient fluid.
No. 4 1718 ft - 1764 ft - Queen/Grayburg - Formation press = 694 psi, K = 1.56 md.
No. 5 2745 ft - 2792 ft - LSA - 4 - did not produce sufficient fluid.

- d. <u>Geophysical Logging Complete suites of open hole logs</u>.
- e. Long-Term Pump Tsting and Fluid sampling None.
- f. Dissolution Zone water Well None.
- g. Hydrofracture Testing

Queen/Grayburg	1850-1858.5, Max. Horiz Stress = 1260 psi, Min. Horiz Stress = 1110 psi, orientation of fracture developed = N30°E
USA	2330-2338.5, fracture broke around packers, orienttion of fractures developed = N40°E and N80°W
LSA - Unit 5	2430-2438.5, Min horiz Stress = 2915 psi, Vert. stress = 2780 psi, orientation of fracture developed = N60°E
LSA - Unit 4	2581-2589.5, Min horiz stress = 3500 psi, Vert stress = 2950 psi, orientation of fracture developed = N60 ⁰ E
LSA - Unit 4	2790-2798.5, Max horiz stress = 2550 psi, Min horiz stress = 1900 psi orientation of fracture developed = N45°E

Murphy (8)

NRC WORKSHOP November 19 - 21, 1985

A.) Number and Location of Wells

Figure 1	- Study Area
Figure 2	- Distribution of Well Selection
Figure 3	- Well Locations
Figure 4	- County Distribution of Wells

B.) Lithologic Data

· · · ·

- Largest source are geophysical logs specifically Density-Neutron - Sonic
- 2) Sample logs & Mud Logs
- Core limited core from exploration wells taken in producing horizons and occasionally basement. The program wells are our only source of core throughout the stratigraphic section.

I.

C.) Availability

Geophysical Logs & Mud Logs
 Panhandle Electric Well Log Service
 West Texas Electric Well Log Service
 North Texas Electric Well Log Service
 Rocky Mountain Electric Well Log Service
 500 N. Baird Street
 Midland, TX 79701

State Agencies

2) Sample Logs

Panhandle Sample Log Service 1011 W. Ninth Street Amarillo, TX 79109

American Stratigraphic Co. 6280 E. 39th Avenue Denver, Co. 80207

Permian Basin Sample Laboratory 401 N. Colorado Midland, TX 79701

Ardmore Geological Society P.O. Box 1552 Ardmore, OK 73401

D.) Quality of Data

Generally, the older the log the poorer the quality. The oldest log in our data base dates from 1931. These older logs were resistivity and were types run in holes using poor drilling techniques, poor mud programs, and crude instruments which were not serviced regularly. Technological advances over the years have improved the quality of logs and their interpretation immensely. Quality also varies with each logging service.

The following compares the type of geophysical log vs. use.

Per	centage of	Used	for	
<u>f</u>	ile (est.)	Correlation	Lithology [Variable]	
Resistivity Logs (all forms)	40%	Fair	Poor	
Gamma Ray - Neutron (all forms)	25%	Fair	Poor	
Gamma Ray - Density (all forms)	15%	Good	Good	
Gamma Ray - Sonic (all forms)	15%	Good	Good	
Neutron, Density, Sonic (no gamma- ray)	- 1%	Poor	Poor	
All logs	4%	Excellent	Excellent	

All of the data is available for purchase from commercial sources listed earlier. All of the interpretations regarding formations, major salt beds, and porosity determinations are on computer tape.

E.) Organization

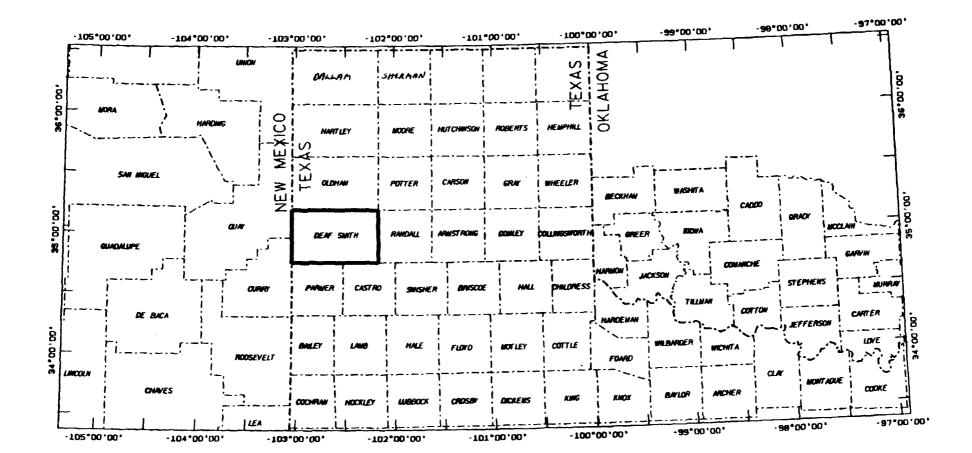
- 1) All information from each well are in folders arranged by state, alphabetically by county, and by number.
- 2) SWEC identification numbers match Bureau numbers up to July, 1980 Those numbers assigned to wells afterwards are followed by the letter "s" (not included in computer file). The original set of numbers were assigned from West to East and North to South. Later numbers were assigned to wells based on order of acquisition. Each county has numbers begining with No. 1. The county codes are listed on Attachment 2.

Т

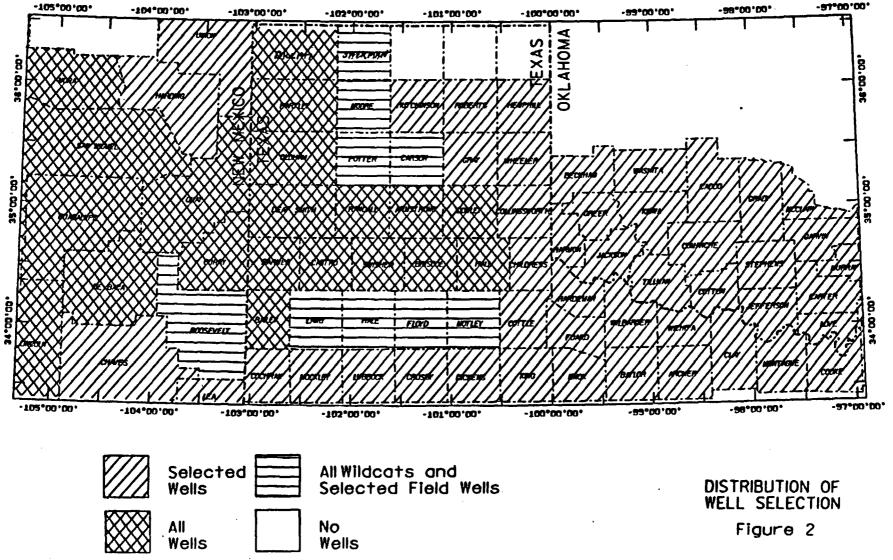
- 3) Each Folder contains:
 - Geophysical Logs (if any)
 - Sample Logs (if any)
 - Mud Logs (if any)
 - State Records (if any)

Applications to drill

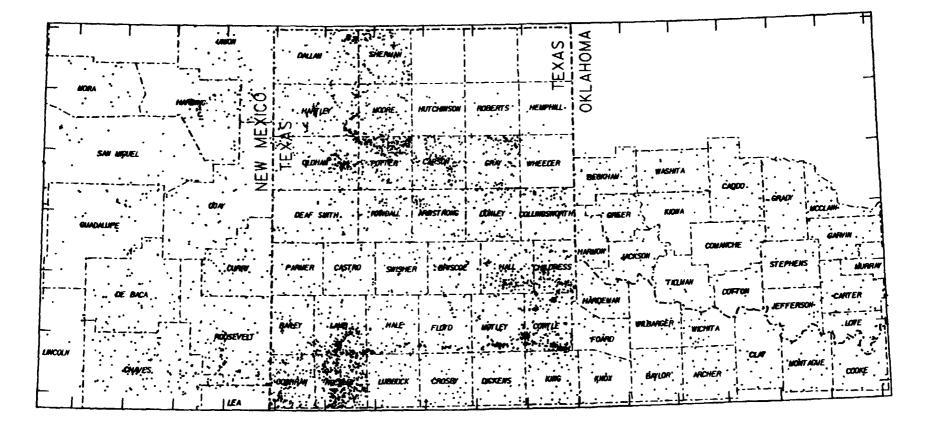
Plats


Completion Reports

(used to check elevation, verify location, type and location of production and yields, driller's logs)

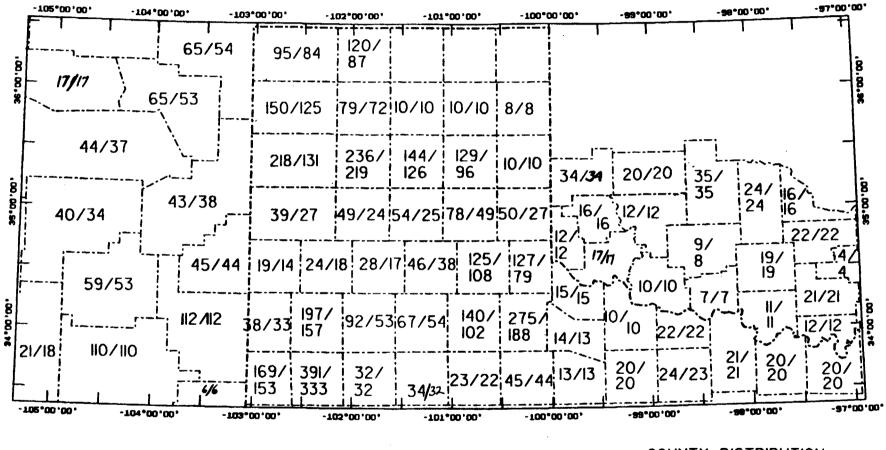

- Well Record Sheet

Lists Formation tops and salt beds

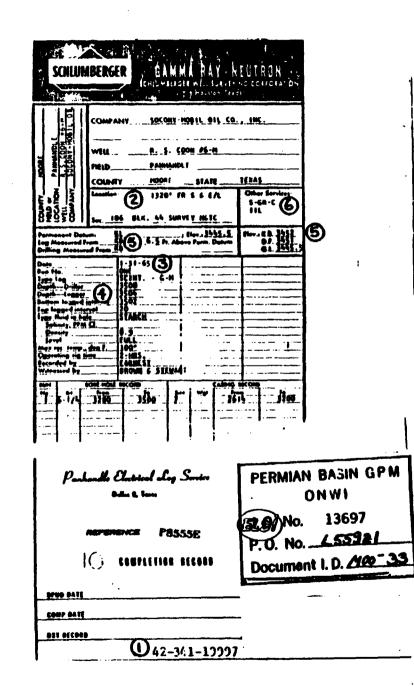

- 4) Computer file
 - Entered from well record sheet, salt information listed separately on Attachment 5, p. 2
 - changes to file made on change sheets, stamped by originator, Project Geologist when checked, and when change is verified and transferred to master file.
 - change sheets organized by state, alphabetically by county, by number, chronologically.
- 5) Maps
 - Postings of Formation tops or thicknesses with and/or without contours.
 - Posting of elevations at a 1:250,000 scale and checked against 2 degree USGS Topographic Map.
 - check of anomalous values for possible errors.

STUDY AREA Figure 1

NOTE: Wells were selected based on depth, location, and year drilled.


÷

Texas: 3525 Oklahoma: 480 New Mexico: 659


LOCATION OF WELLS IN DATA BASE

TOTAL : 4624

Figure 3

Number of wells with records/ Number of wells with geophysicallogs 4624/3849 in Data Base COUNTY DISTRIBUTION OF WELLS Figure 4

- NOTES: (NUMBERS CROSS-REFERENCED TO WELL RECORD FORM -ATTACHMENT 4)
- 1. API NUMBER. NORMALLY FOUND BELOW DST RECORD OR ON STATE RRC RECORDS. USUALLY INCLUDES TWO DIGIT STATE NO. (TEXAS-42), THREE DIGIT COUNTY NO. (MOORE-341) AND FIVE DIGIT WELL NUMBER.
- 2. EXACT LOCATION OF WELL WITHIN A SECTION. 1320 FR S&E/L TRANSLATES TO 1320 FT FROM SOUTH LINE AND 1320 FT FROM EAST LINE. "SOUTH" AND "EAST" ARE CROSSED OUT ON THE WELL RECORD FORM.
- 3. DATE OF LOGGING RUNS, EXCLUDING COMPUTED LOGS SUCH AS CORIBAND OR CYBERLOOK. DO NOT ENTER DATE DRILLED.
- 4. DEPTH OF WELL MEASURED BY LOGGER NOT BY DRILLER UNLESS THE DIFFERENCE IS MORE THAN 50 FT OR THE COMPLETION REPORT (W-3) INDICATES A DEEPER DEPTH AND/OR WELL WAS PLUGGED BACK (p.b.) BEFORE LOGGING.
- 5. REFERENCE ELEVATION FOR LOGS (NOTE K.B.-KELLEY BUSHING, D.F.-DECK FLOOR OR GL-CROUND LEVEL).
- 6. INDICATE OTHER LOGS RUN BUT NOT IN WELL FILE (USE ABBREVIA-TIONS ON ATTACHMENT 6)

State and County Abbreviations used for Well Identification Numbers

.

· . .

`

County	Abbrev	lations	County	Abbrev	iations
Name	State	County	Name	State	County
		-			
ARCHER	TX	ARC	CHAVES	NM	CHA
ARMSTRONG	TX	ARM	COLFAX	NM	CTX
BAILEY	TX	BAI	CURRY	NM	CUR
BAYLOR	TX	BAY	DE BACA	NM	DEB
BRISCOE	TX	BRI	GUADALEUPE	NM	GUA
CARSON	TX	CAR	HARDING	NM	HRD
CASTRO	TX	CAS	LEA	NM	LEA
CHILDRESS	TX	CHI	LINCOLN	NM	LIN
CLAY	TX	CLA	MORA	NM	MOR
COCHRAN	TX	COC	QUAY	NM	QUA
COLLINGSWORTH	TX	COL	ROOSEVELT	NM	ROO
COOKE	TX	COO	SAN MIGUEL	NM	SAN
COTTLE	TX	COT	TORRANCE	NM	TOR
CROSBY	TX	CRO	UNION	NM	UNI
DALLAM	TX	DAL			
DEAF SMITH	TX	DEA	BECKHAM	OK	BEC
DICKENS	TX	DIC	CADDO	OK	CAD
DONLEY	TX	DON	CARTER	OK	CRT
FLOYD	TX	FLO	COMANCHE	OK	COM
FOARD	TX	FOA	COTTON	OK	CTT
GRAY	TX	GRA	CUSTER	OK	CUS
HALE	TX	HAE	GARVIN	OK	GAR
HALL	TX	HAL	GRADY	OK	GDY
HANSFORD	TX	HAN	GREER	OK	GRE
HARDEMAN	TX	HDM	HARMON	OK	HRM
HARTLEY	TX	HAR	JACKSON	OK	JAC
HEMPHILL	TX	HEM	JEFFERSON	OK	JEF
HOCKLEY	TX	HOC	JOHNSTON	OK	JOH
HUTCHINSON	TX	HUT	KIOWA	OK	KIO
KING	TX	KIN	LOVE	OK	LOV
KNOX	TX	KNO	MARSHALL	OK	MAR
LAMB	TX	LAM	MCCLAIN	OK	MCC
LIPSCOMB	TX	LIP	MURRAY	OK	MUR
LUBBOCK	TX	LUB	STEPHENS	OK	STE
MONTAGUE	TX	MON	TILMAN	OK	TIL
MOORE	TX	MOO	WASHITA	OK	WAS
MOTLEY	TX	MOT		••••	
OCHILTREE	TX	OCH			
OLDHAM	TX	OLD			
PARMER	TX	PAR			
POTTER	TX	POT			
RANDALL	TX	RAN			
ROBERTS	TX	ROB			
SHERMAN	TX	SHE			
SWISHER	TX	SWI			
WHEELER	TX	WHE			
WICHITA	TX	WIC			
WILBARGER	TX	WIL			

i.

FILE CHECKLIST

PROJECT: Permian Basin	JOB#: 13697	DATE:	FEB 24, 1984	
STATE: TEXAS	COUNTY: MOORE		ION: 106, 44, H	TC
WELLA: MOO-33	WELL N	IME: 5000	NY-MOBIL COON # 6M	
Sample Log # 🖲	O Type of		Order #	
🗆 🌀 Scout Ticket	GRN		P8555E	
C State Permits	SONI	C-GR	PASSED	
0				
Completed Record Form	۰ <u></u>			

NOTES :

- DATE OF INVENTORY.
 INCLUDE SECTION, BLOCK, TOWNSHIP, RANGE AND SURVEY.
 SWEC WELL IDENTIFICATION NUMBER.
- 4. INCLUDE OPERATOR AND LEASE NAME.
- 5. CHECK IF LOG INCLUDED AND ITS SAMPLE NO.
- 6. CHECK IF SCOUT TICKETS ARE INCLUDED IN FILE.
- 7. CHECK IF STATE PERMIT OR APPLICATION FOR PERMIT IS INCLUDED (FORM 1, W-1).
- 8. OTHER STATE INFORMATION: INDICATE TYPE PLAT, WR (WELL RECORD), DL (DRILLERS LOG) PR (PLUGGING RECORD), W-2, W-3, G-1.
 9. CHECK IF SWEC WELL RECORD FORM GP-013081-2A IS INCLUDED.
 10. TYPE OF LOG AND REFERENCE ORDER NO. USE ABBREVIATIONS SHOWN ON ATTACHMENT 6.

WELL RECORD AGGREGATE SALT 87 WELL NO. MOO- 33 106 STONE & WEBSTER ENGINEERING CORP. SECTION FURM GP-013081-2A BLOCK/TWP 44 DEEPEST FURMATION PENETRATED WOLFCAMP TEXAS H & TC LATIFUDE 035.1467 LONGITUDE -101.6328 SURVEY / RANGE MOORE PERMIT NO. 042-341-19997 FORMATION RECORD MOBIL OIL OPERATOR FORMATION DEPTH(TOP-BOT) TOP EL FORMATION DEPTH (TOP-BOT) TOP EL R.S. COON #6-M **CLEAR FORK GP.** 1320 FEET NORTH/GOMEN **GLORIE TA** 1048-1303? OGALLALA 5-327 **U.CLEAR FORK** 13037-1562 FEET GAGT / WEST DAKOTA GROUP TUBB 1562 - 1689 3 1-31-65 L.CLEAR FORK 1689-1812 FREDRICKSBURG **RED CAVE** 1012-2337 TRINITY • 3504: WICHITA 2337-2676

2 1320 DATE DRILLED TOP OF ROCK (EL.) DEPTH OF WELL ELEVATION /REFERENCE 3452 KB MORRISON WOLFCAMP 2678-T.D. EXETER (DF, GL, ETC) PENNSYLVANIAN **MISSISSIPPIAN** DOCKUM ELLENBURGER TRUJILLO CAMBRIAN SS. (6) RECORDS / LOGS IIL **TECOVAS** PRECAMBRIAN AVAIL ABLE SANTA ROSA LOGS IN HOUSE BL-GR-C GRN DEWEY LAKE 327-368 ALIBATES 368-390 WHITEHORSE GP. (7) GRN SALE FROM SALADO 390-417 POOR A7' LUG QUALITY AGGREGATE SALT THICKNESS YATES - 448 ATTACHMENT PTP 13697-J PAGE 1 OF 3 LOGS INTERPRETED BY Rom 2-24-83 HUMBER OF LAYERS U. SEVEN RIVERS . 7 THICKER THAN 5 FEET LOGS CHECKED I. SEVEN RIVERS -616 2 THICKER THAN 20 FEET RECHECKED QUEEN/GRAYBURG 616 - 745 LEPTH TO THICKEST LAVER 1450 LOCATION CHECKED U. SAN ANDRES 745-910 52 THICKNESS OF THICKEST LAYER RECHECKED -----L. SAN ANDRES 910-1048 ELEVATION OF THICKEST LAYER

4 4 1 9

SEE PAGE 2 FOR NOTES.

STATE

COUNTY

IFASE

(9)

	SALT INFORM	IATION .			TOTAL.	SALT	
FORMATION	SALT ELEV.	SALT DEPTH	SALT THICK	FORMATION	THICKNESS	FORMATION	THICKNESS
U. CLEAR FORK		1450-1502	52'	SALADÓ			<u> </u>
		1552-1562	10'	SEVEN RIVERS	0	· · · · · · · · · · · · · · · · · · ·	
L.CLEAR FORK		1787-1812	25'	U. SAN ANDRES	0		
	•			L. SAN ANDRES	<u> </u>		
·····				GLORIE TA			
		•		U. CLEAR FORK	62'		
				TUBB			
		بالمتحد المراجعة والمراجع المراجع المراجع المراجع		L. CLEAR FORK	25'		
·····				N-310 6-14		10_, FROT - 98	5
		·		N-330 F-10	sa a fine. 9	83_ FBOT - 104	8
				N=350. F= 19	SA 3. FT(IP=//	48. FBOT - 104	8 4
						48 FBOT - 104	
	••••••••••••••••••••••••••••••••••••••					48 , FBOT - 104	
·····	********	*	<u></u>				
				ADD	ITIONAL IN	IFORMATION	
		<u></u>	•				
	•			NOTES :			
				•			
				<u>1 THRU 6 - SEE AT</u>			
				ومستعدي وسيتجهد بوالبي فالمترجي والمحد والمراجع		H SALT BEDS WERE	DETERMINED.
		••••••••••••••••••••••••••••••••••••••		8. INDICATE GOOD			
·····				9. INITIALS OF I			
						VIDUAL WHO CHECK	
				INTERPRETAT	TON AND LOCA	TION (ONLY WHEN	RRC RECORDS
				ARE AVAILA			
•						ETER IS CERTAIN	
	•	·•				THE ENTIRE SALT	
				NUMBER OBTA	INED FROM "S	ALT INFORMATION"	SECTION
				OF FORM.			
······································	· · · · · · · · · · · · · · · · · · ·						
	······					·	

.

.

.

.

.

-

ATTACHMENT 5 PTP 13697-18-1 PAGE 1 OF 2

GP-122982-2 (FRONT)

TOTAL AGGREGATE SALT

NOTIFICATION OF CHANGES TO THE OIL & GAS WELLFILE

nen	ELEV	A
1000	LATT	10

NEW LONGITUDE_

\$

•

LV AND REF_____

WELL # () COUNTY STATE

OLD WELL # (IF CHANGED) (1)

1. CHANGES OR ADDITIONS TO FORMATION FICKS

110.	FORMATION	NAME?	TOP	A/S/?	BOTTON (S)	T/?
	SURFACE					
5	COLORADO	NOTES :				
10	DAKOTA					
25	TRINITY				OTH OLD AND NEW NUT	
40	MORRISON			W WELL	ATTACE A COPY OF	THE
50	EXETTER				N(3.3).	
_55		2. LATI			AN "O" AND LONGIT	IDE
	DOCKUM	WITH	A (-), I.E., 035.]	467 AN	-101.6328.	1
75	SANTA ROSA		HE FORMATION IS A N	EW LIS	TING, THE "NAME" CO	LUMN
100	DEWEY LAKE		LD BE CHECKED.			
110	ALIBATES				ATTON IS AT THE SU	
120	SALADO				THE SAME TOP AND	
130	YATES		HS AND ANNOTATED WI			
140 150	U SEVEN RIVER				SHOULD BE ANNOTATE	WITH
160	L SEVEN RIVER QUEEN/GRAY		ESTION MARK IN THE			
170	U SAN ANDRES				PENETRATED SHOULD	
200	L SAN ANDRES				BED IS A SALT BED	
310	LSA 5				NONSALT INTERBEDS	
330	LSA 4				THICK AND CUMULA	
350	LSA 3				E TOTAL BED THICKN	
370	LSA 2		FORMATIONS LACKING			
390	LSA 1		DEPTH SHOULD BE ENT			
395	FLOWERPOT		TOM" COLUMNS .	1		1
410	GLORIETA	7. THE	NAME COLUMN SHOULD	BE CHE	KED IF THE FORMATIO	ON IS A
420	U CLEAR FORK		LISTING.			
430	TUBB			ES NOT	INCLUDE ANY NONSAL'	j
.440	L CLEAR FORK		RBEDS .	_		
450	RED CAVE	9. AGGR	EGATE SALT THICKNES	SOFE	CH SALTBEARING FOR	ATION.
451	MATADOR	THE	TOTAL OF ALL SALT TH	ICRNES	ES IS ENTERED ON TI	ŧΕ
452	U SPRAYBERRY	FRON	T PAGE OF THIS FORM			
453	SPRATBERRY				EPTH, OR OTHER DATA	PUT A
454	L SPRAYBERRY	CENT	SIGN "c" IN THE AL	PROPRI	ATE COLUMN.	
456	DEAN					
460	WICHITA					L
470	WOLFCAMP					<u> </u>
500	PENNSYLVANIAN					
600	MISSISSIPPIAN					h
603	KINDERHOOK					├
605	WOODFORD					<u>├</u> ────┤
610	FUSSELMAN					<u>├</u>
612	HUNTON					<u>├</u> ────┤
614	SYLVAN				······································	┝────┤
615	MONTOYA					h
620	VIOLA					
640	STMPSON ELLENBURGER		(10) ¢		3 0)	
700						
730	DEVONIAN					
760 790	SILURIAN ORDOVICIAN					
	CAMBRIAN					
800	PRECAMBRIAN					{
900	TRECAMERLAN					┝╼╾──────

ATTACHMENT 5 PTP 13697-18-1 PAGE 2 OF 2

WELL #

2.

-

CHANGES OR ADDITIONS TO TARGET SALT PICKS

FORMATION NAME? TOP 3/? BOTTOM NO. I ? SALT- (B) 125 SALADO Ø 1 TGT 145 U7R TGT ī 175 USA TGT ł 315 LSA 5 tgt 335 LSA 4 TGT 355 | LSA 3 TGT 375 LSA 2 TGT 415 GLORIETA TGT 425 U CLEAR FK TGT 445 L CLEAR FE TGT

3.

CHANGES OR ADDITIONS TO 852 PURE SALT PICKS

NO.	FORMATIO	N ·	RAME?	TOP	A/?	BOTTOM	1?	SALT-
901	USA	TK						
902	SALADO	TK						_
904	U7R	TK						
906	USA	TK i					Í	
908	LSA 5	TK						
910	LSA 4	TK						
912	LSA 3	TK						
914	LSA 2	TK						
916	LSA 1	TK						
918	GLORIETA	TK						
920	UCF	TK						
922	LCF	TK						
930	YATES	TK.						
932	Q/G	TK						
934	TUBB	TK						

4. CHANGES OR ADDITIONS TO AGGREGATE SALT THICKNESSES

NO.	FORMAT	ION	NAME?		THICKNESS
214	SALADO	SALT		0	9
215	U7R	SALT		0	
216	L7R	SALT		0	
217	USA	SALT		. 0	
218	LSA	SALT		0	
219	GLOR	SALT		0	
220	UCF	SALT		0	
221	TUBB	SALT		0	
222	LCF	SALT		0	
223	YATES	SALT		0	
224	0/G	SALT		0	

5. CHANGES OR ADDITIONS TO FIRST SALT DEPTHS

NO.	FORMATION	NAME?	DEPTH TO FIRST SALT
240	USA FIRST		
241	LSA 5 FIRST		
242	LSA 4 FIRST		

6. CHANGES OR ADDITIONS TO EVAPORITE SEQUENCES ABOVE AND BELOW TARGET SALT

NO.	FORMATION	NAME?	TOP	BOTTOM
1	ABOVE			
999	BELOW			

7. ADDITIONAL CHANGES

NO.	FORMATION	NAME?	
	l		

1

ATTACHMENT 6 PTP 13697-18-1

GEOPHYSICAL WELL LOG ABBREVIATIONS

SCHLUMBERGER

.

•

. .

•

INDUCTION-ELECTRICAL SURVEY	IES
INDUCTION-SPHERICALLY FOCUSED LOG	ISF-
DUAL INDUCTION-LATEROLOG"	DIL
	DISF
DUAL INDUCTION-SPHERICALLY FOCUSED LOG	
DUAL LATEROLOG-	DLL-
MICROLOG"	ML
MICROLATEROLOG"	MLL
PROXIMITY" LOG	PL
MICRO-SPHERICALLY FOCUSED LOG	MICROSFL=
FORMATION DENSITY LOG	FDC+
COMPENSATED NEUTRON LOG	CNL-
SIDEWALL NEUTRON POROSITY LOG	SNP-
BOREHOLE COMPENSATED SONIC LOG	BHC-
LONG-SPACED SONIC	LSS-
NATURAL GAMMA RAY SPECTROMETRY	NGS*
ELECTROMAGNETIC PROPAGATION LOG	EPT-
HIGH RESOLUTION DIPMETER	HDT-
CONTINUOUS DIRECTIONAL SURVEY	CDR
WELL SEISMIC TOOL	WST-
FORMATION INTERVAL TESTER	FIT-
REPEAT FORMATION TESTER	RFT-
SIDEWALL SAMPLER	CST

WELLEX-ORESSER ATLAS

GAMMA-GUARD	G/G
INDUCTION-ELECTRIC LOG	IEL
COMPENSATED ACOUSTIC VELOCITY (WITH GAMMA RAY)	C/AUL/(GR)
COMPENSATED DENSITY LOG (WITH GAMMA RAY)	CDL/(GR)
FORXO	FORXO
RADIDACTIVITY	GRN
DENSITY (WITH GAMMA RAY)	DEN/(GR)
COMPENSATED DENSITY-NEUTRON LOG (WITH GAMMA RAY)	CDL/N/(GR)
SIDEWALL NEUTRON (WITH GAMMA RAY)	SWN(-GR)
COMPENSATED DENSITY. DUAL SPACED NEUTRON (WITH GAMMA RAY)	CD-DSN(-GR)
BOREHOLE COMPENSATED ACOUSTIC LOG (WITH GAMMA RAY)	BHC-AL/(GR)

FRONTIER

GAMMA RAY-NEUTRON	GRN
DENSITY (WITH GAMMA RAY)	DEN(-GR)
TEMPERATURE (WITH GAMMA RAY)	TEMP(-GR)

LANE

DENSILOG (WITH GAMMA RAY) GDC GAMMA RAY-NEUTRON GR/NN RADIDACTIVITY GR/NN DIFFERENTIAL TEMPERATURE DIFF-TEMP

NOTES: (1) SPECIAL LOGS, SUCH AS CORIBAND, CYBERLOOK, AND SPECTRALOG. SHOULD BE SPELLED OUT (NO ABBREVIATION).

(2) VARIOUS CEMENT BOND LOGS EXIST. SUCH ABBREVIATIONS WOULD BE:

CEMENT BOND	CB
CEMENT BOND EVALUATION	CBE
ACOUSTIC CEMENT BOND EVALUATION	ACCBE
ACOUSTIC CEMENT BOND	ACCB

(3) MOST OF SCHLUMBERGER LOGS ARE RUN IN COMBINATION. FOR EXAMPLE:

	DUAL LATERLOG_MICRO SFL_MICROLATERLOG Compensated neutron-formation density (with gamma ray)	DLL-MSFL-MUL CNL-FDC(-GR)
(4)	HYDROCARBON MUD LOG	HC

I.

(5) GAMMA RAY GR

- MARK OF SCHLUMBERGER

Long (18)

PALO DURO BASIN PROJECT INTERPRETATION OF SEISMIC DATA

- VELOCITY DATA Assemble, classify and integrate vertical velocity data with subsurface data. Reduce velocity data to a common reference datum. Determine reflection times for subsurface geologic markers at points of control.
- MAPPING HORIZONS Identify and select the reflections/subsurface horizons to be mapped. (USA, LSA1, Wc and PreC)
- 3. SUBSURFACE REFLECTION TRAVERSES Identify and mark the reflection horizons to be mapped on the seismic sections. Close all seismic subsurface traverses by adjusting to compensate for loop misclosures. Revise seismic time horizons as required to tie at points where velocity and electric log data are available. Time the seismic horizons at appropriate intervals and post the times to a base map.
- 4. STRUCTURAL CONFIGURATION Contour time maps.
- 5. SECONDARY ADJUSTMENTS Utilizing the horizon dip attitudes indicated by the time structure maps, project and tie the horizons to offline points of velocity/subsurface control making adjustments to the seismic horizons and contour maps as required.
- 6. APPARENT AVERAGE VELOCITY MAPS Determine the apparent average velocity to each mapped horizon at each well within the survey from the contoured time value of the horizon at the well and the depth of the corresponding subsurface marker. Post these values to a base map and contour the apparent average velocity configuration for each mapped horizon. The differences in apparent average velocity observed over the area represent a combination of lateral changes in the vertical velocity gradient and unresolved near surface corrections.
- 7. TIME-DEPTH CONVERSION For each mapped horizon compare the time map postings with the apparent average vertical velocity configuration, determine the average velocity at that station, and convert reflection times to depths. Post these values to the base map. Prepare isopach maps and depth maps for each horizon.

GJL&A - NRC/SRP Work Shop - 11/19/85

NRC WORKSHOP November 19 - 21, 1985 Mapping from Geologic Data Base

I. Figures from previous reports

- * Study Area
- * X Sections
- * Block Diagrams
- * Fence Diagrams

II. How these figures are made

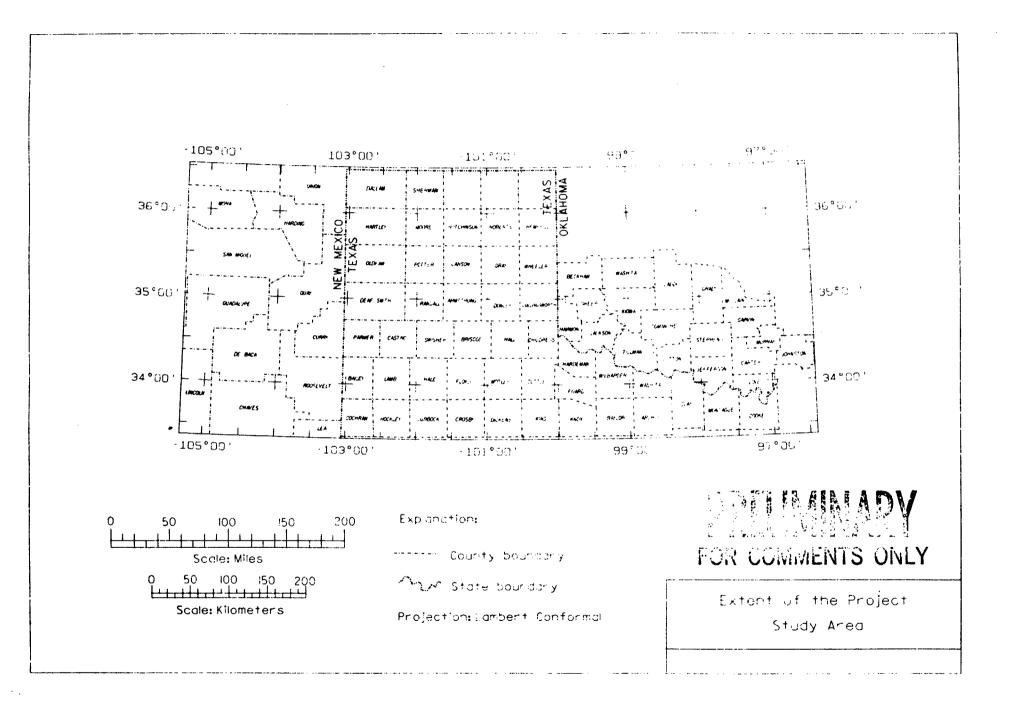
* Data base

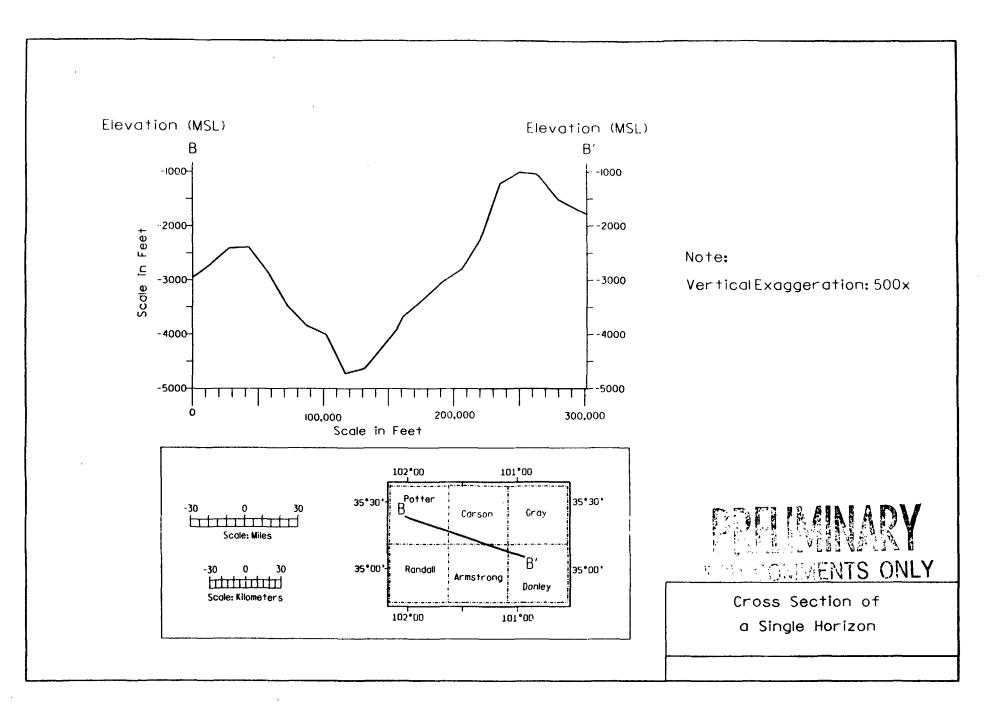
Geologic Interpretation

Procedures for Verification

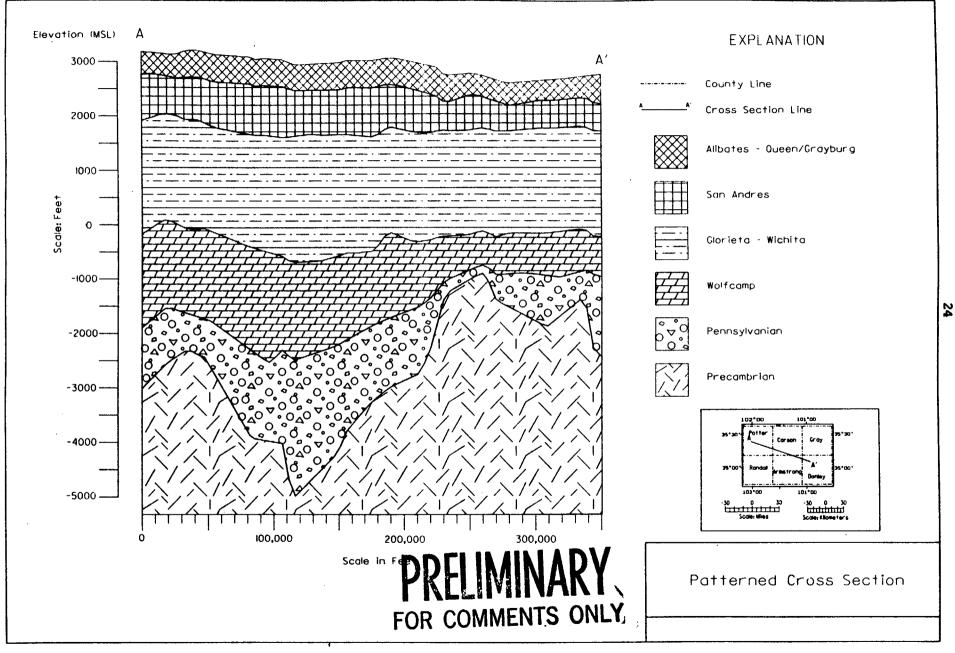
* Preliminary Maps

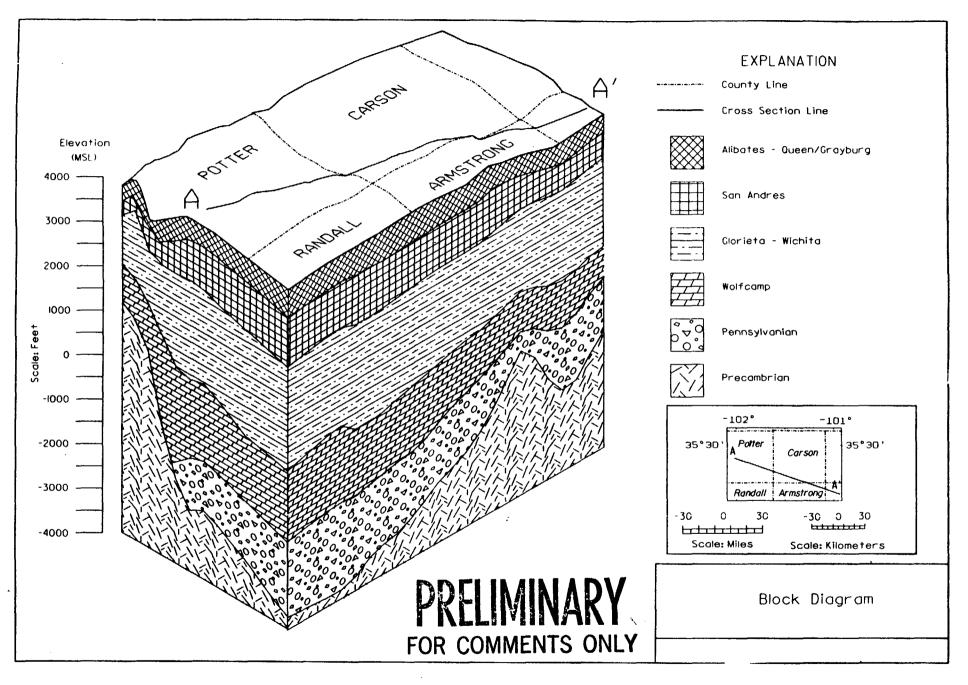
Surface II Postings of data values

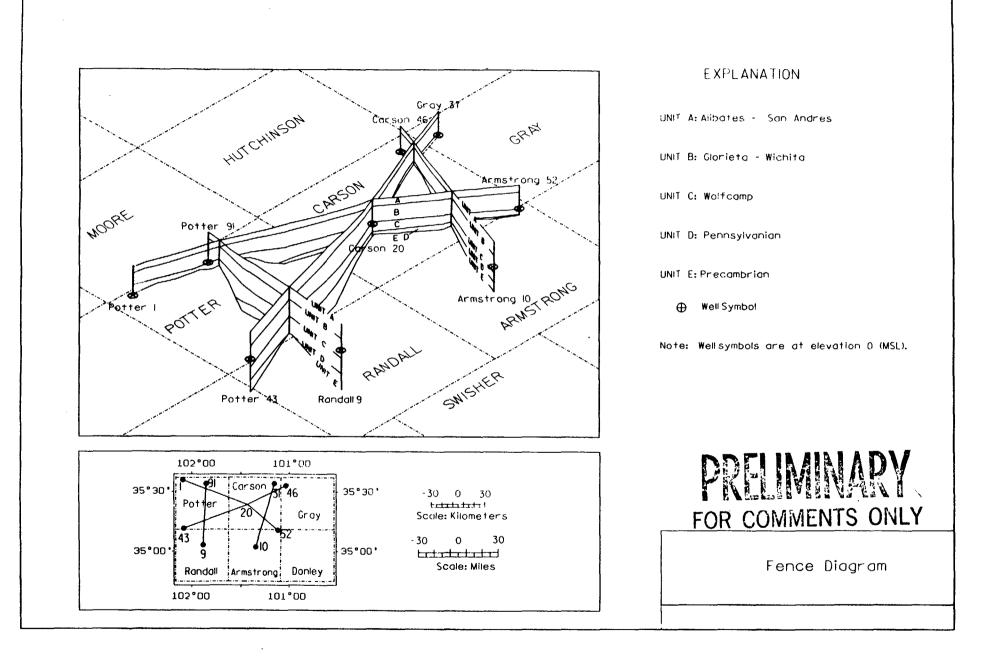

Surface II contours (thickness and elevation)

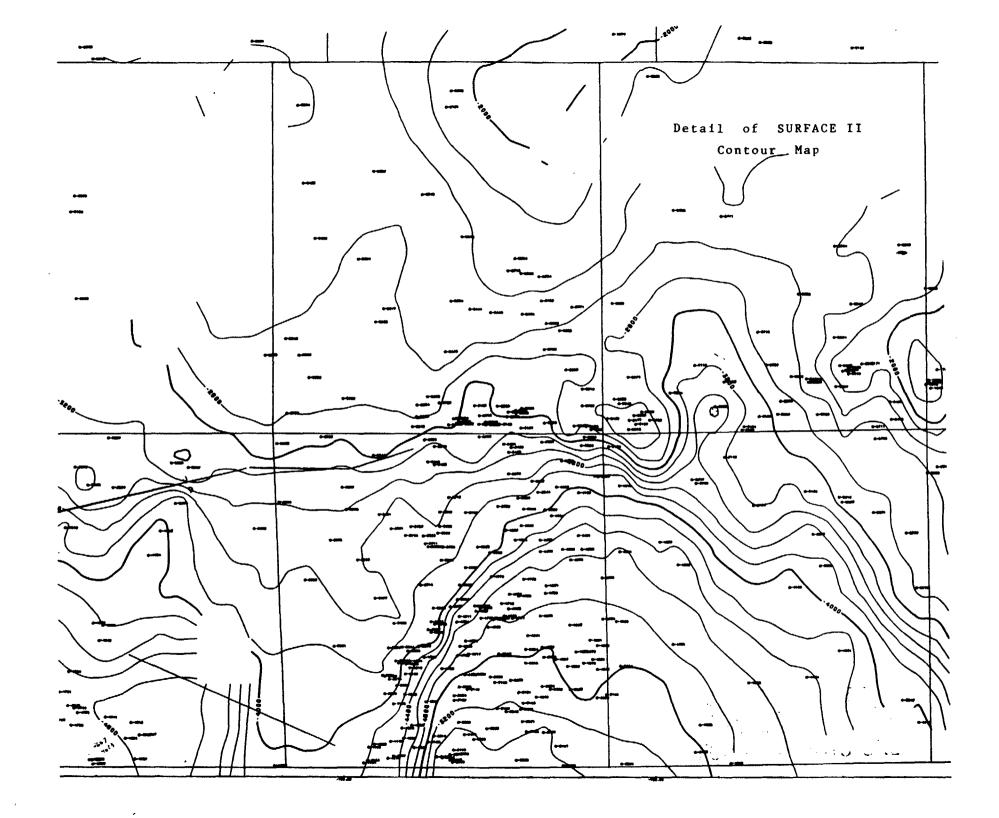

X-sections

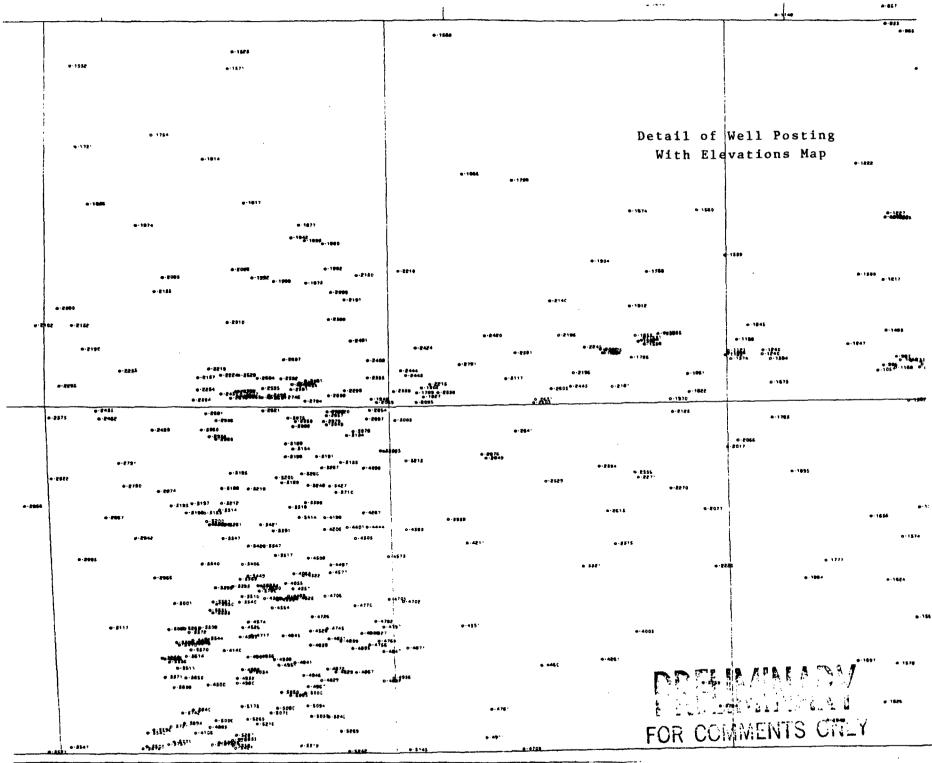
* Hand drawn maps and sections

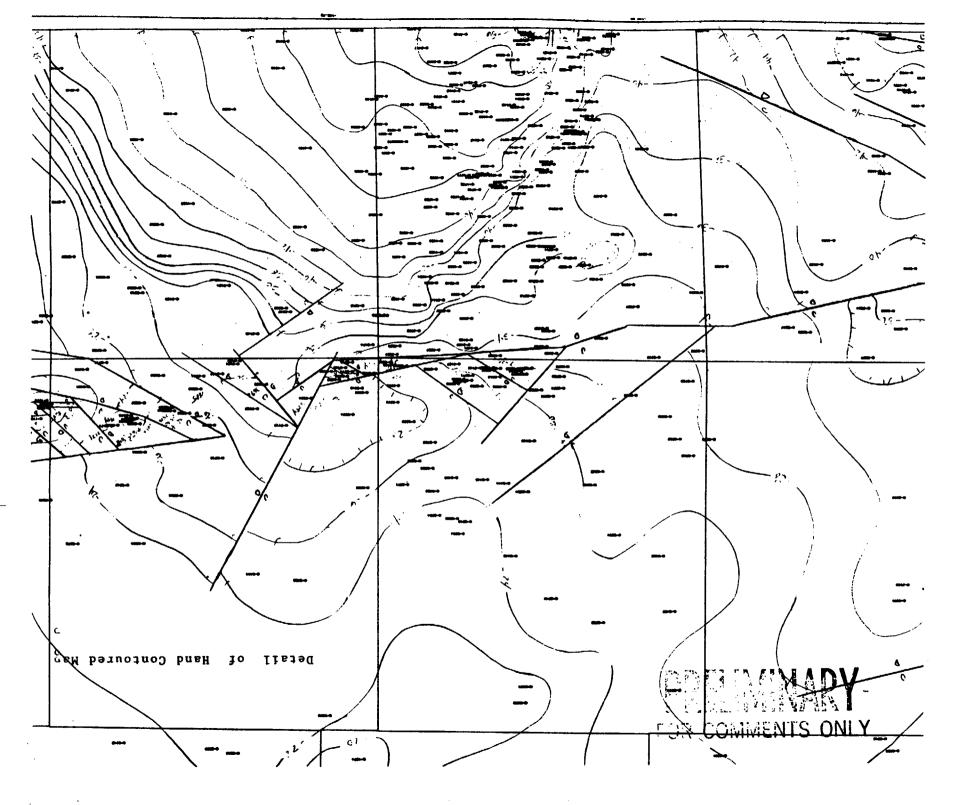

* finalized maps

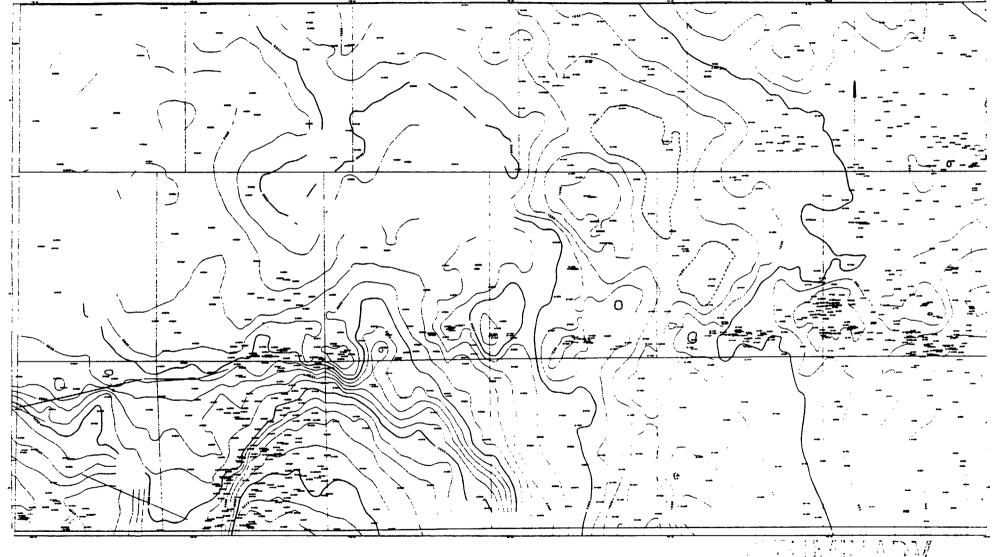

Checking procedures

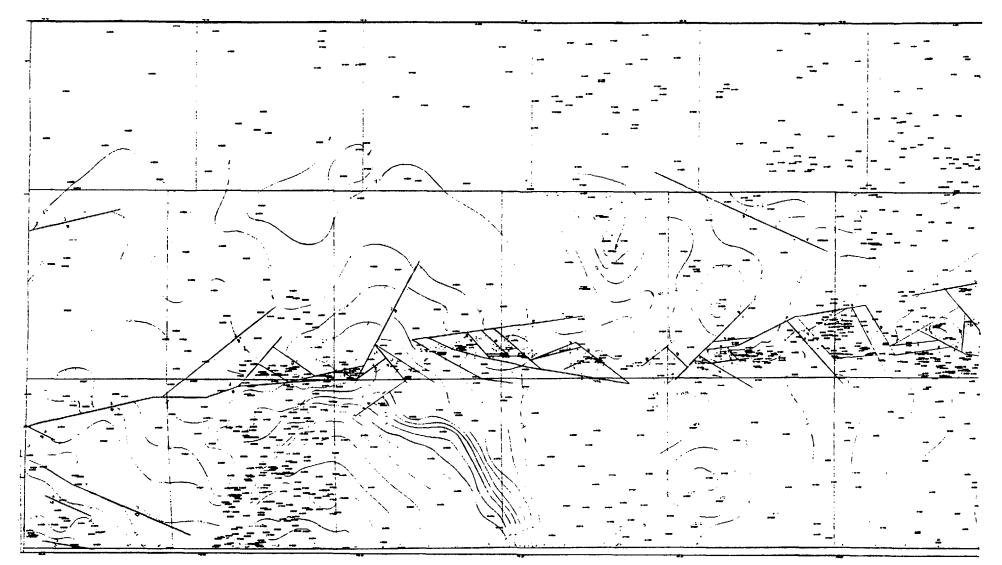



Ì





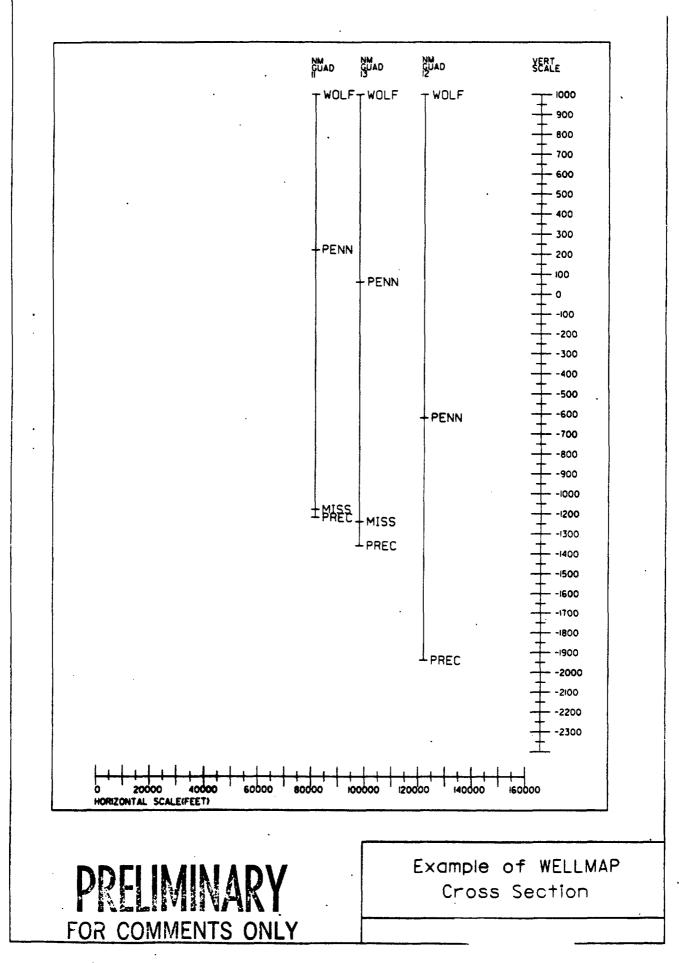

.

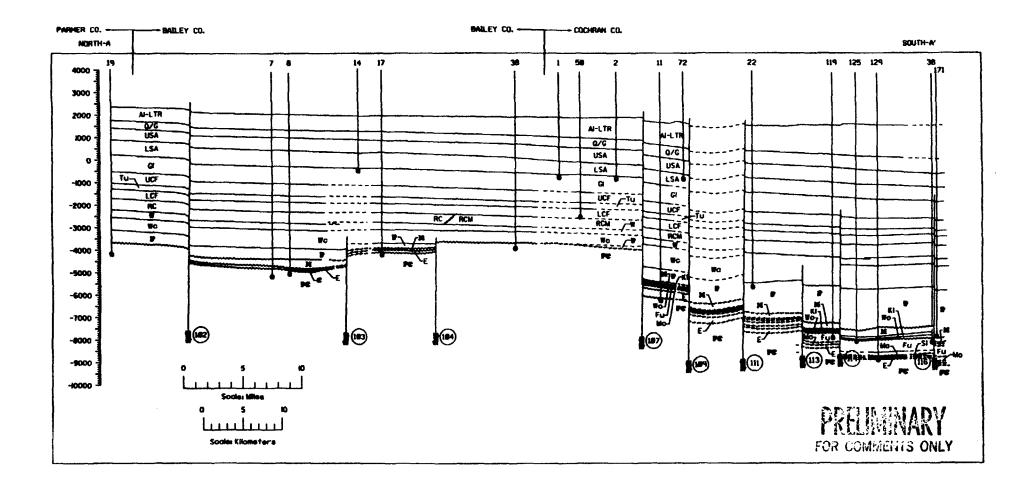


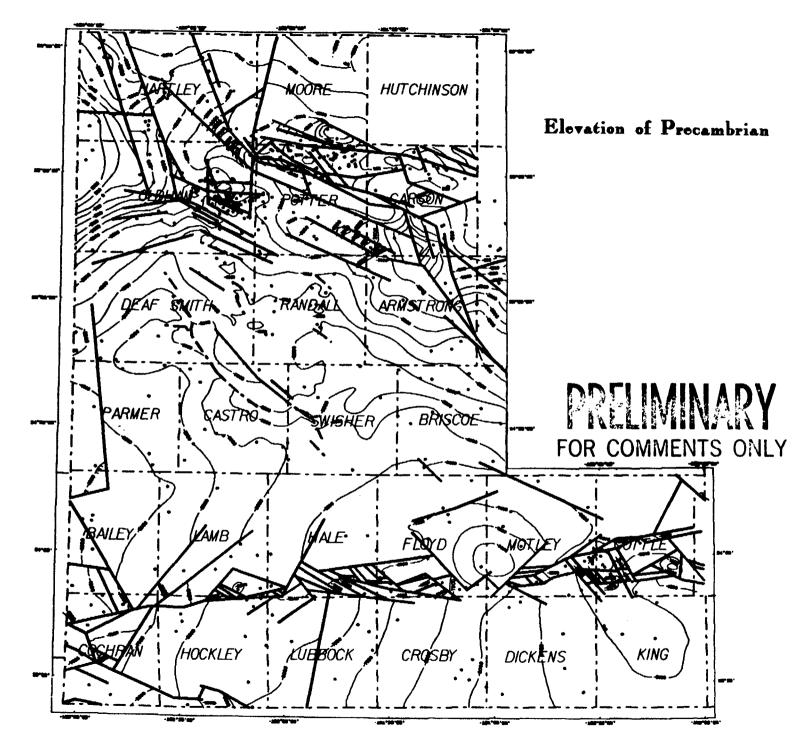
SURFACE II Contour Map

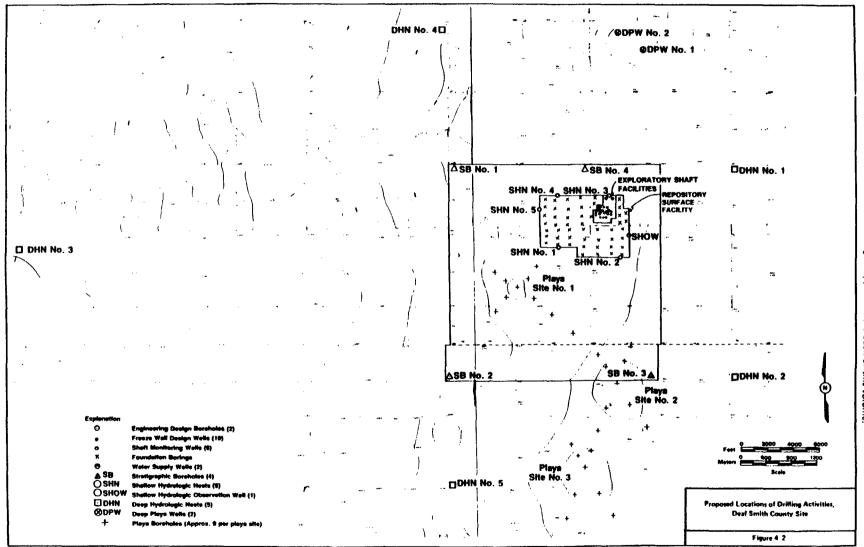
~

FUR COMMENTS ONLY




Hand Drawn Contour Map Based on SURFACE II Map

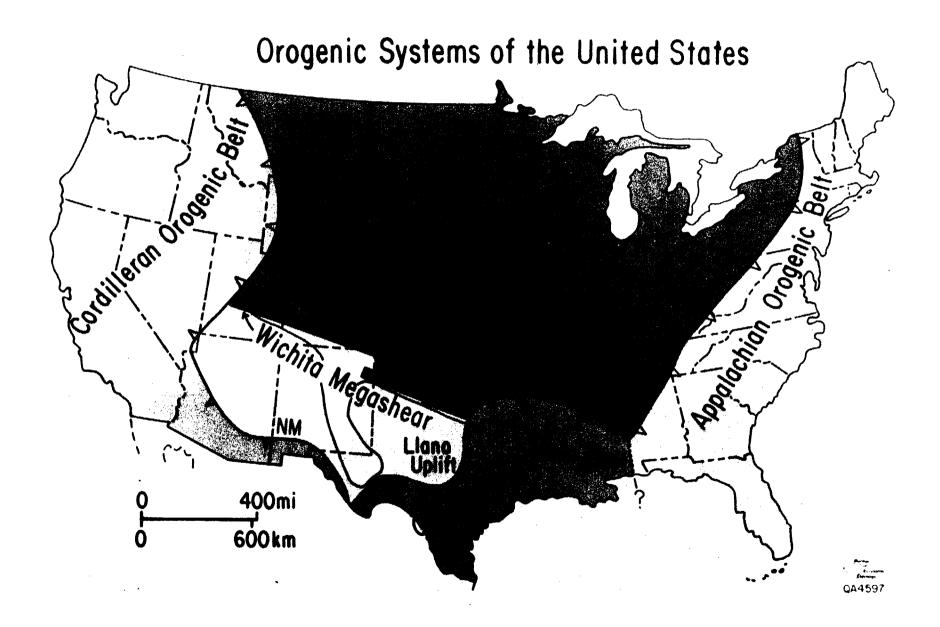

. **..... . . . · :::

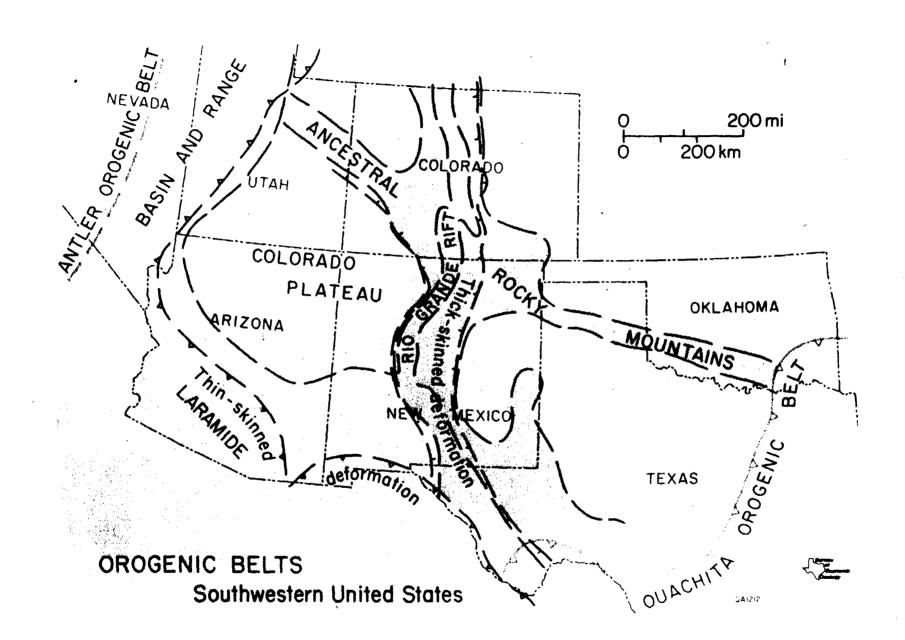

Well Posting Map with Z Values

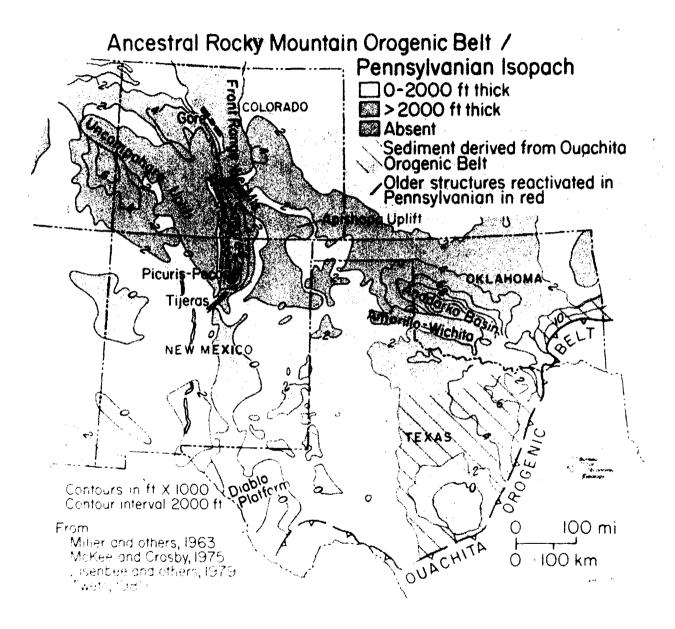
.

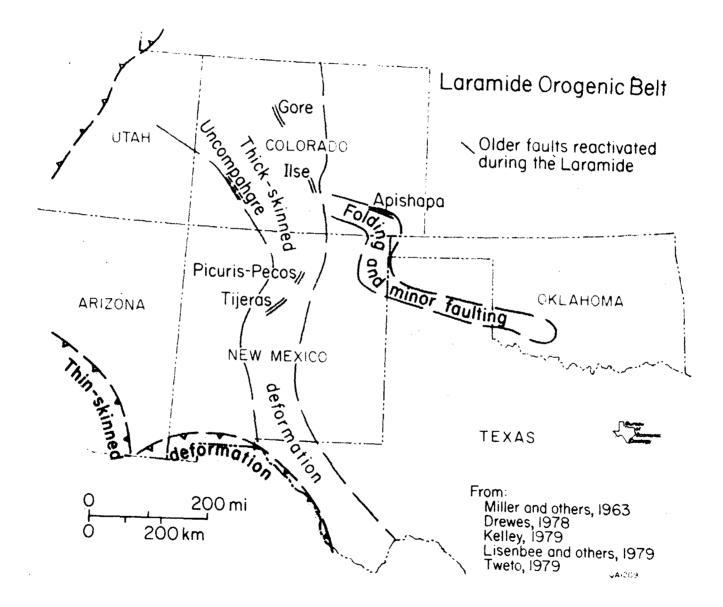
4-5

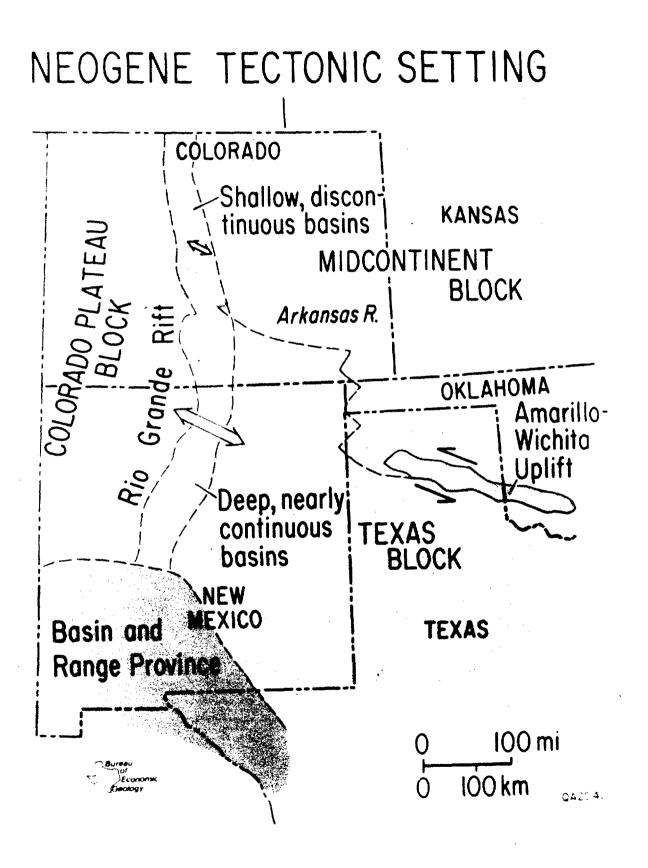
Ballmann (20)

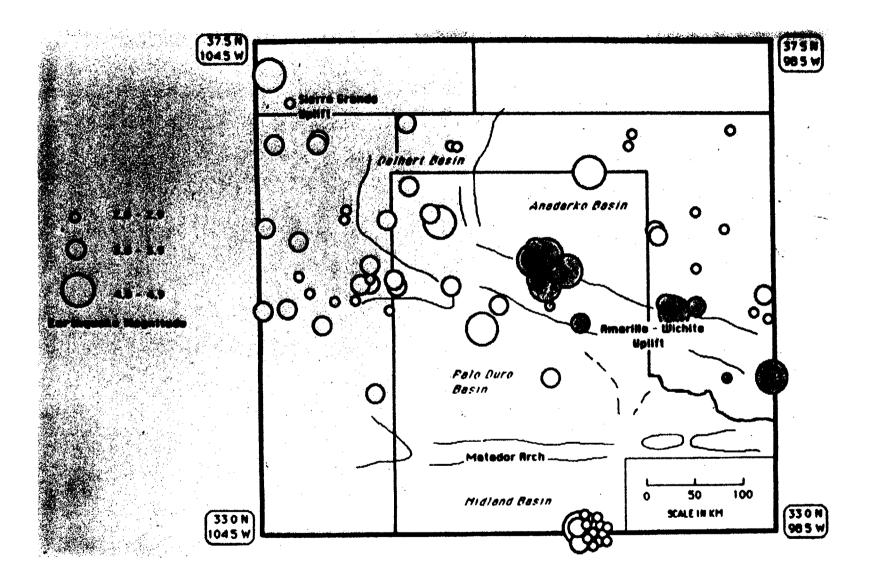

Enclosure 4

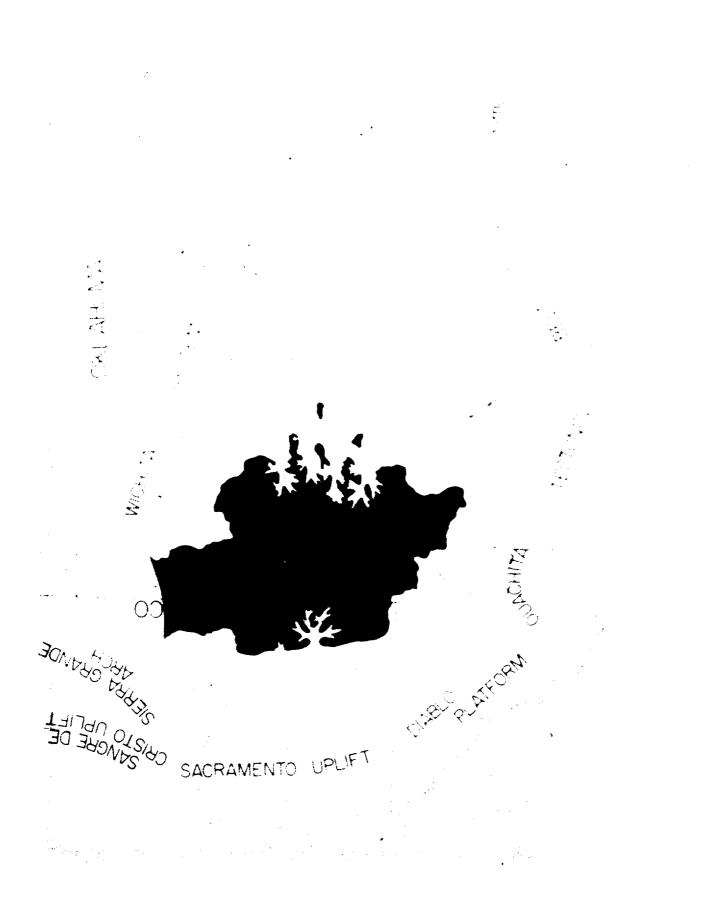

Seismic Reflection Survey Data Reviewed by NRC

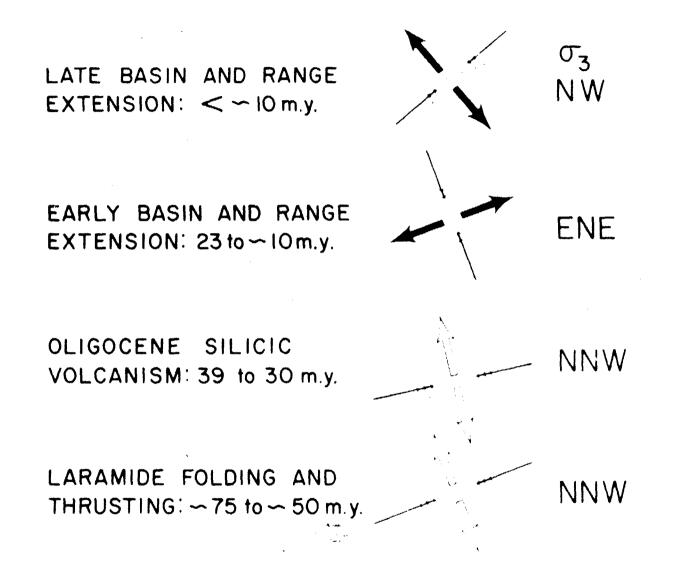

Seismic survey data of a proprietary nature were reviewed by the NRC staff and contractors. These consisted of the following lines designated on SWEC drawing "Sketch No. 13697-44-A-1":

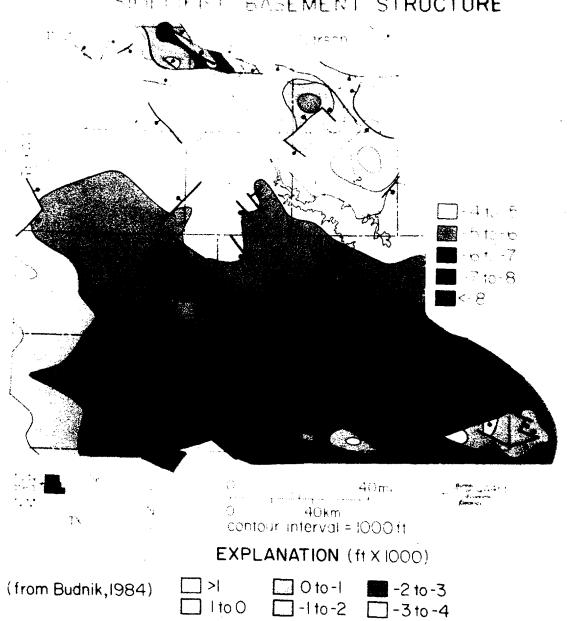

STM-PD-10 STM-PD-11 STM-PD-9 GEO-E W-95


Т

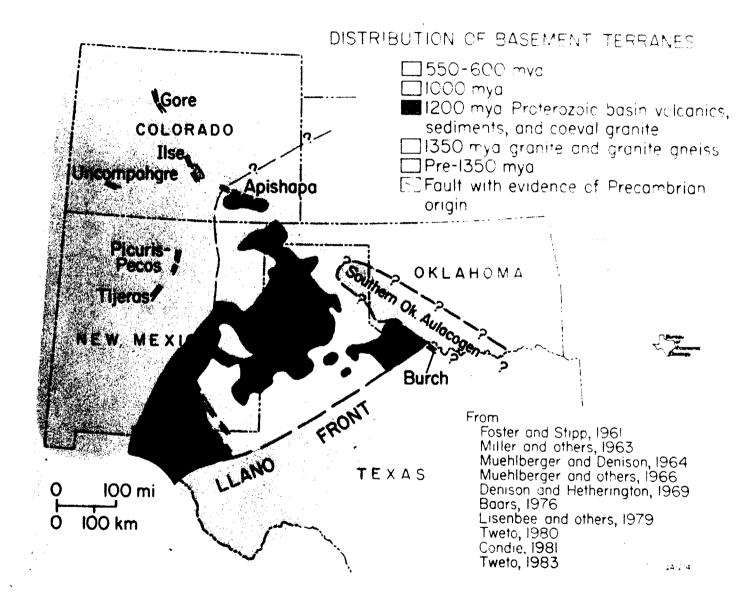


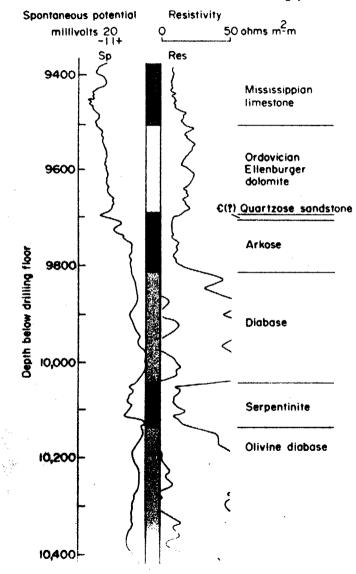






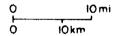
-


T

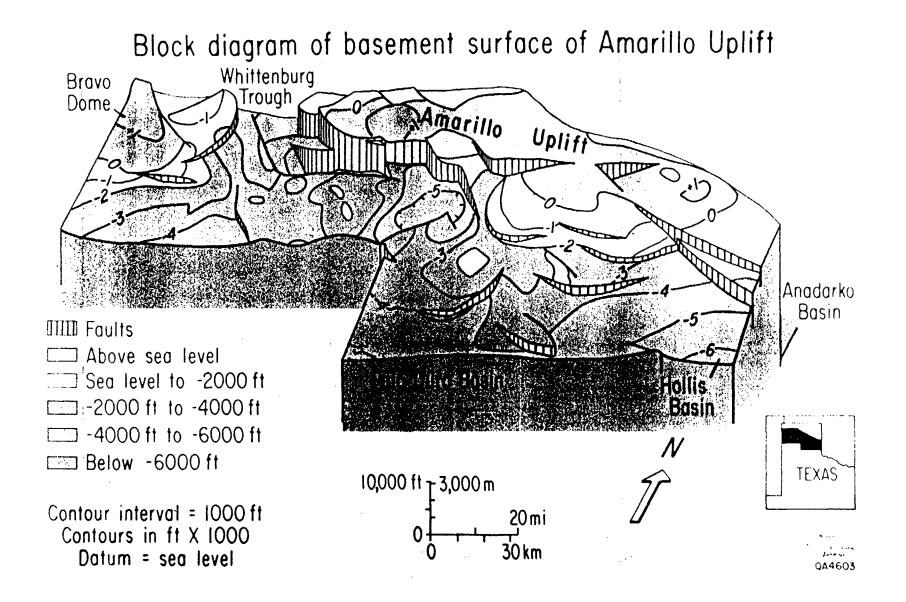


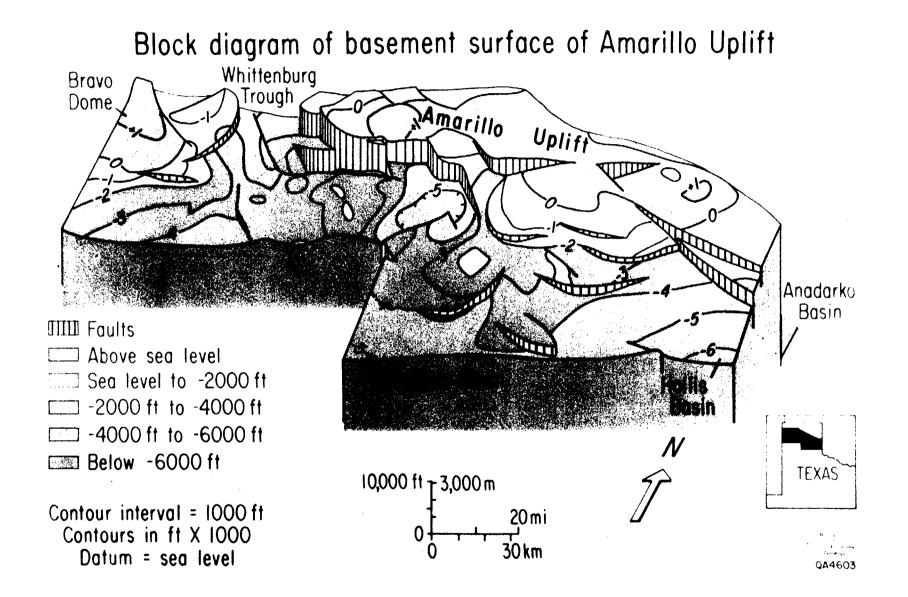
I

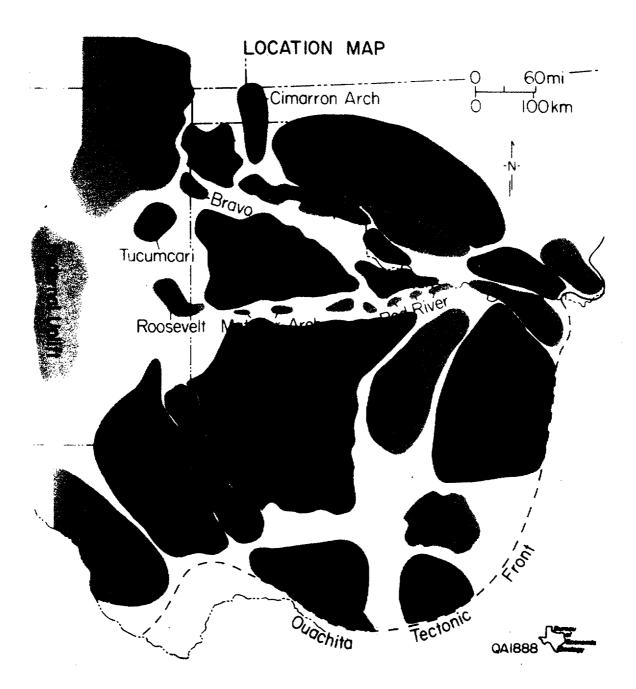
SHAD FISD BASEMENT STRUCTURE

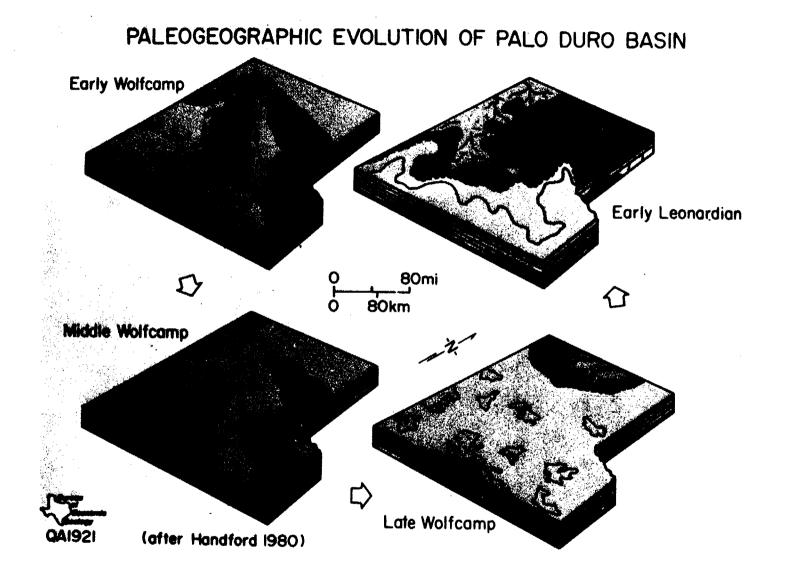


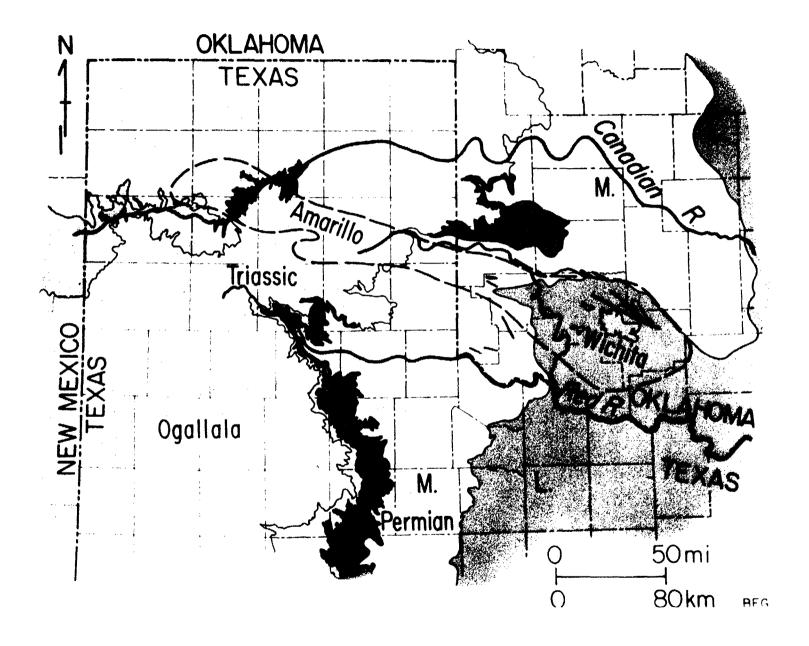
Deaf Smith Randall

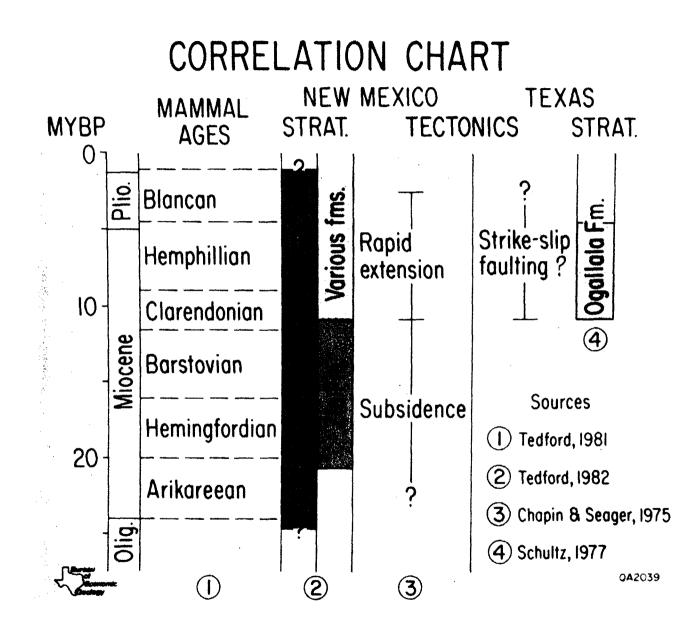

Distribution of pre-Ellenburger Group arkose in Castro Trough

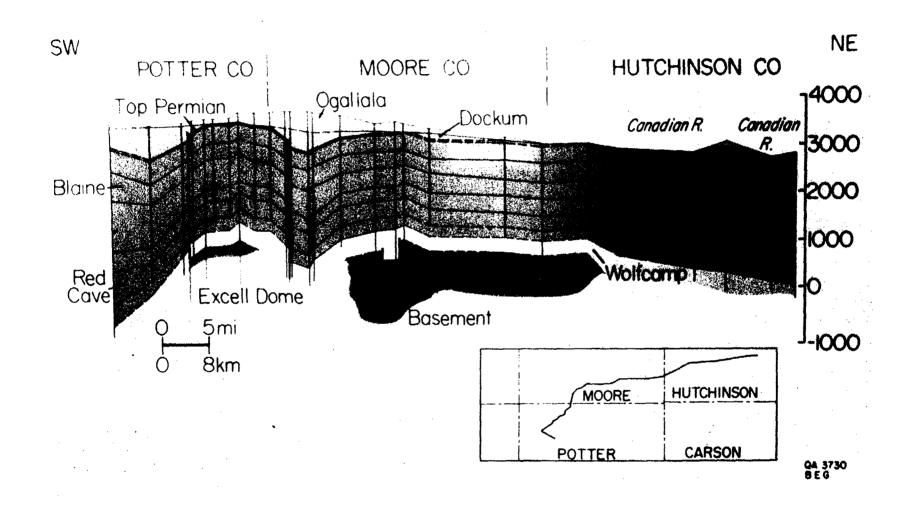

Well control

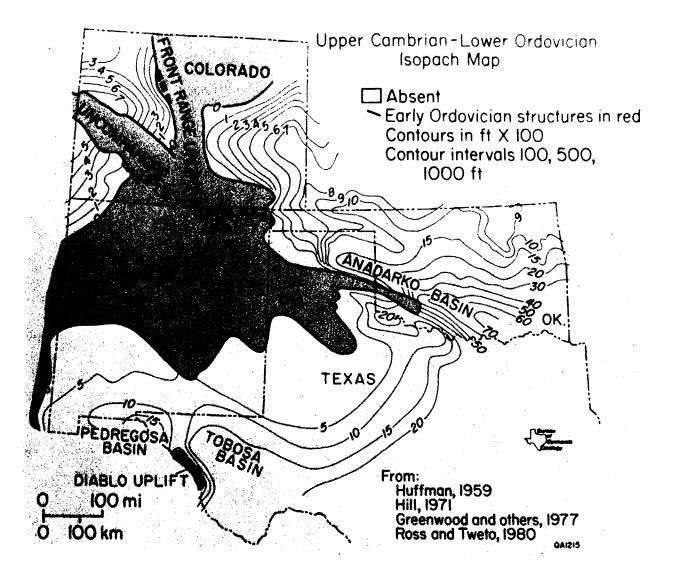

• Wells penetrating pre-Ellenburger arkose

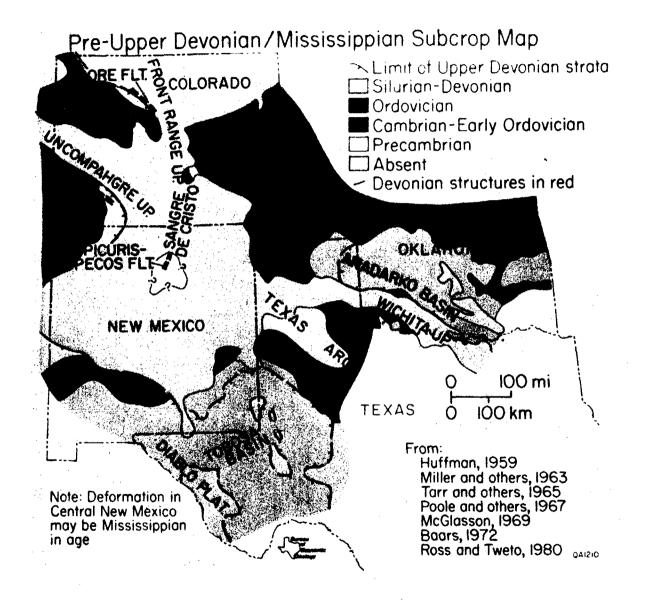

SUN OIL COMPANY #/ Herring, Castro County

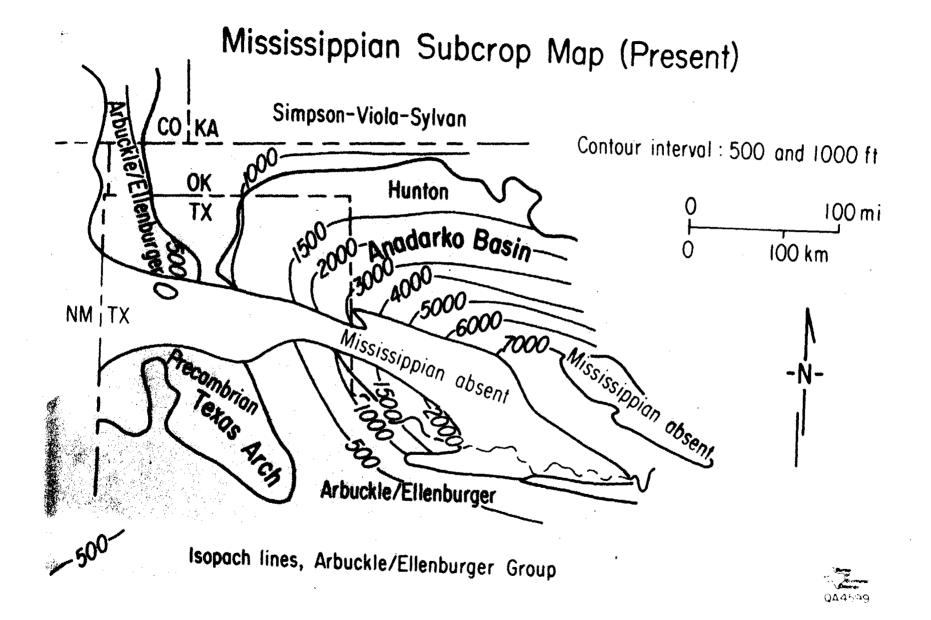


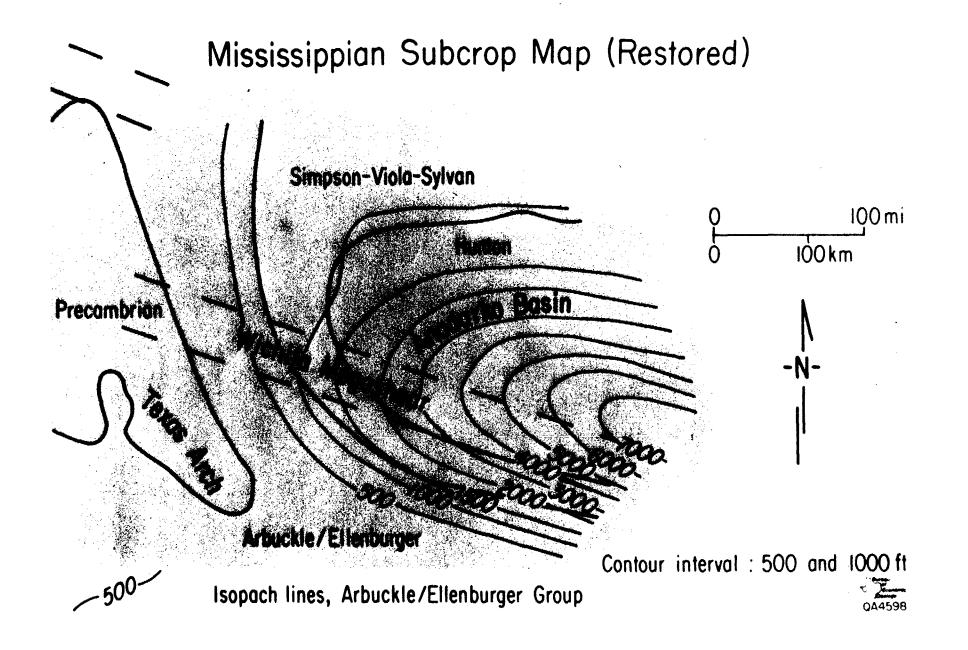


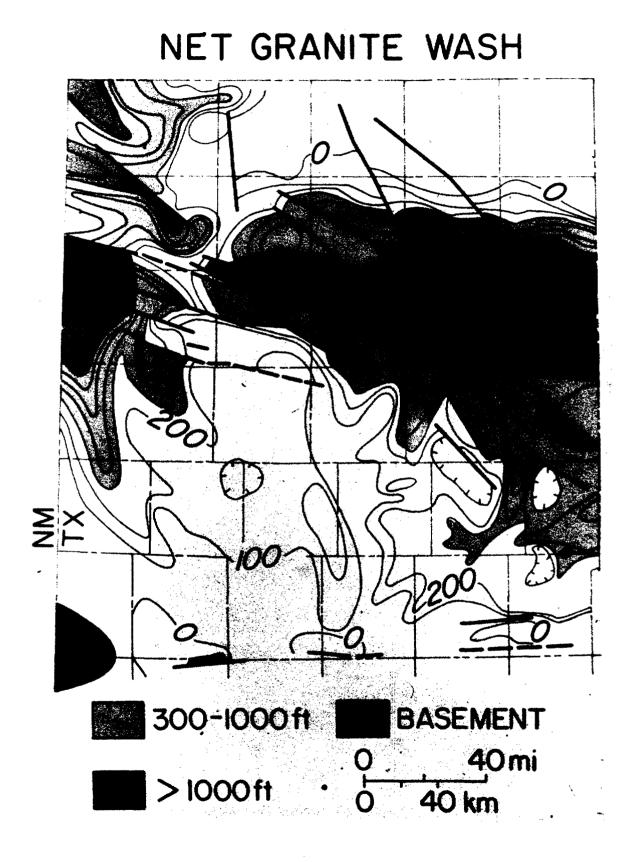


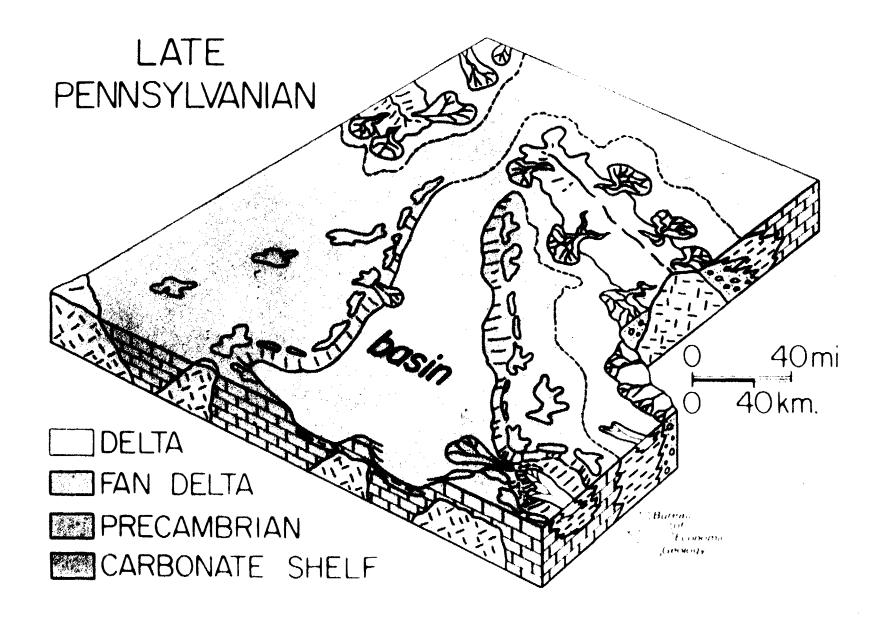

Т

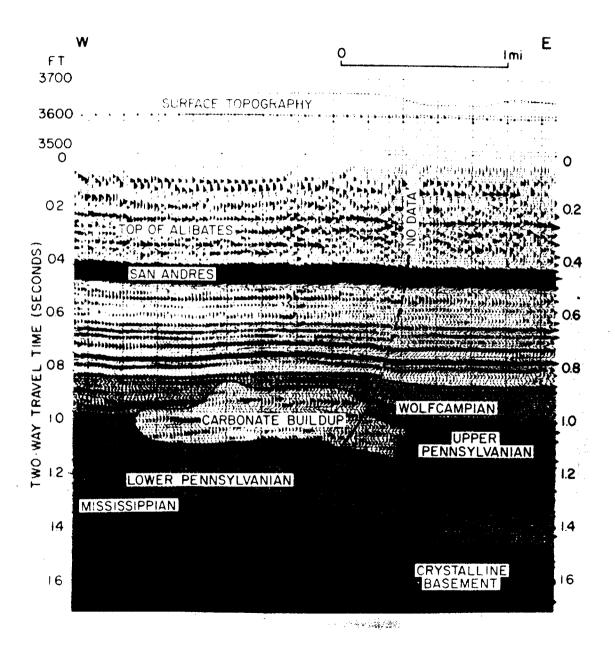


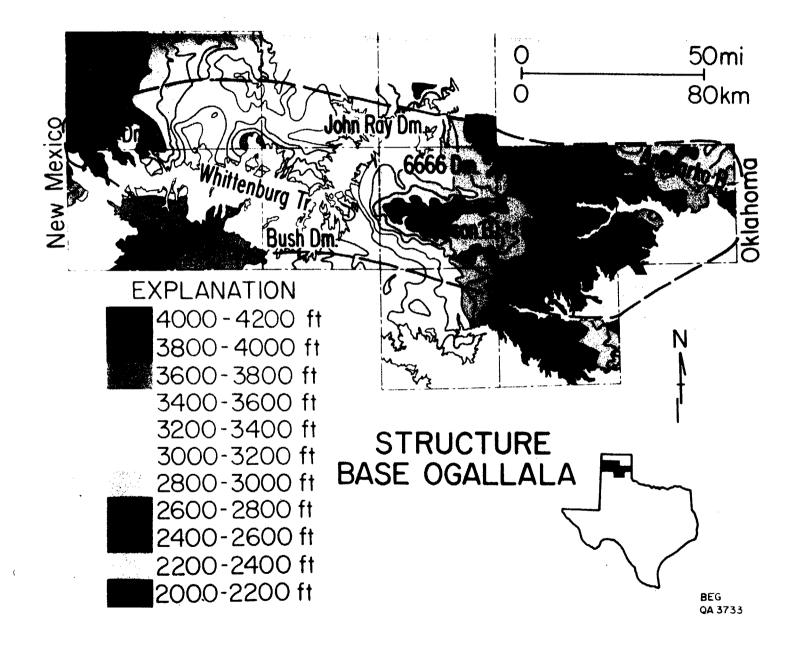


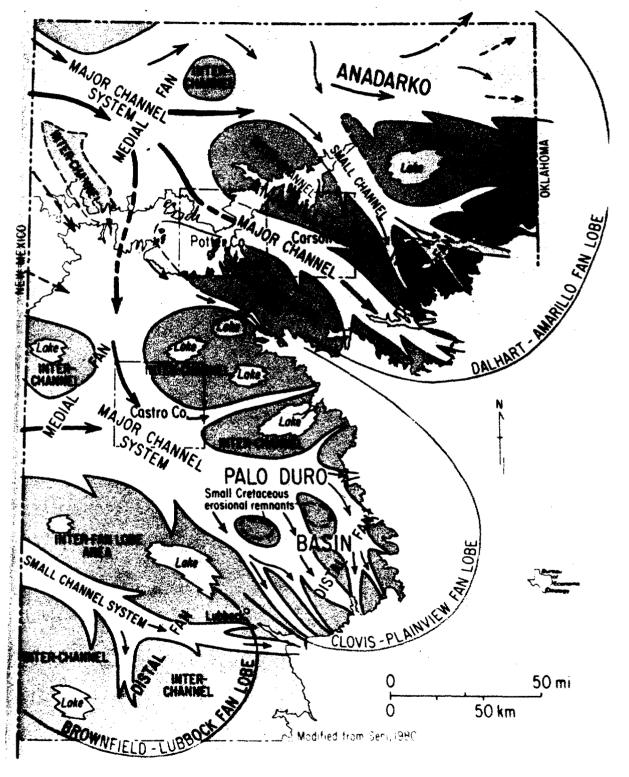


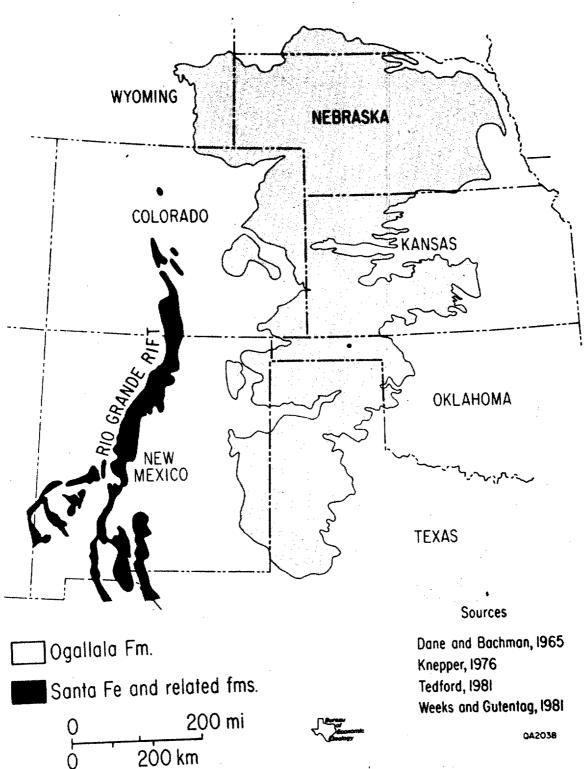




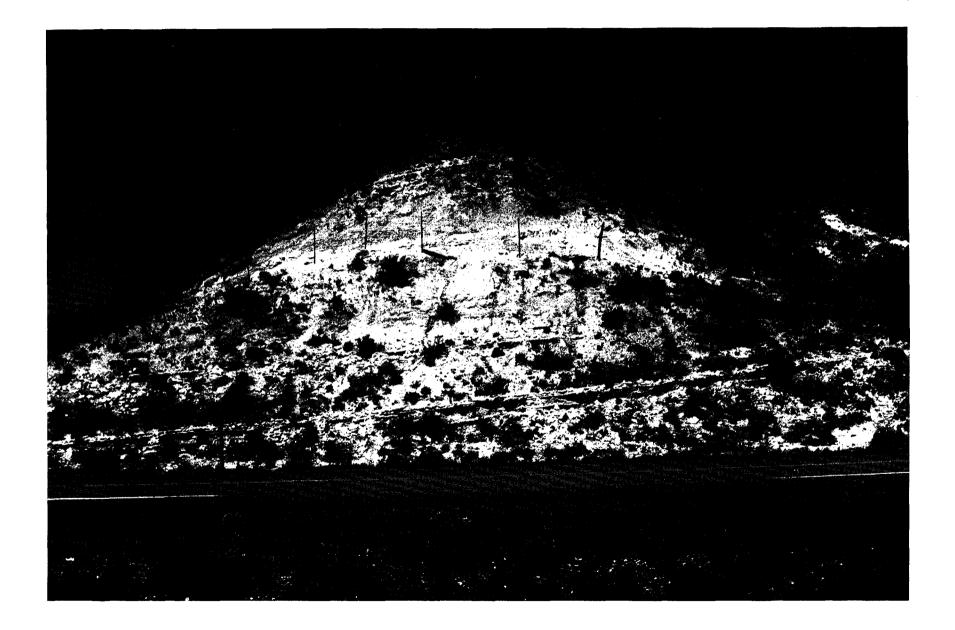


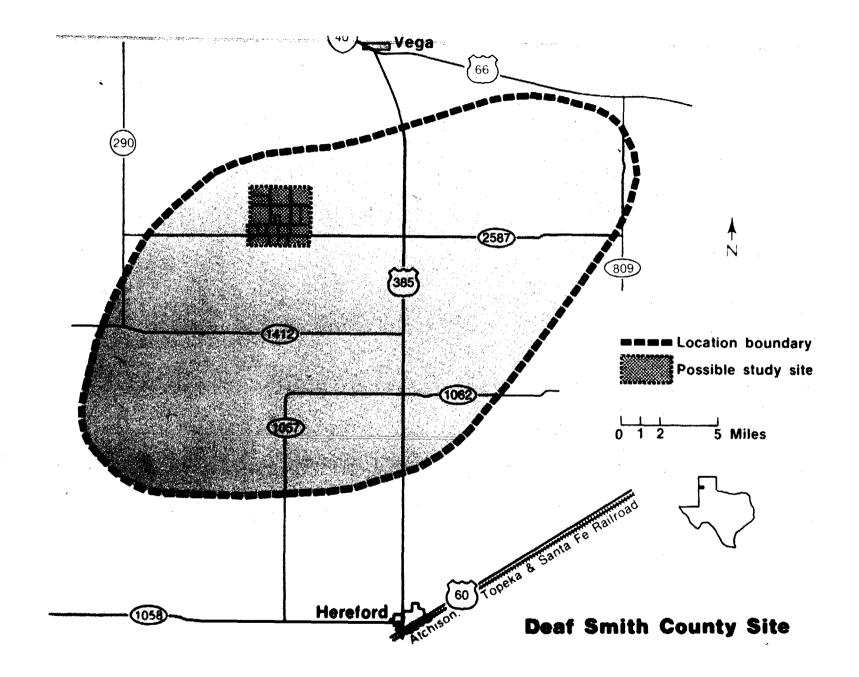


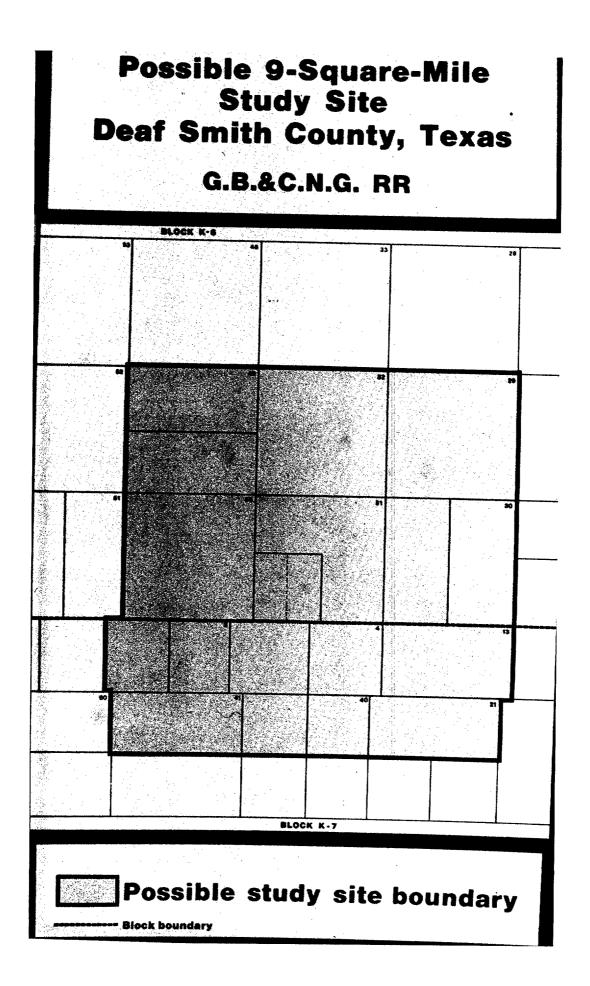

SYSTEM	OROUP	FORMATION	
OUATERNARY	and the second second second second second second second second second second second second second second second	RECENT FLUVIAL & LUCUSTAINE DEPOSI	
TERTIARY	and the product of the second states of the second	OGALLALA	
N. Established	DAKOTA	A benefit of the state of the s	
CRITACIOUS		FREDRICKSBURG	
		MORRISON	
JURASSIC		EXETER	
MASSIC	DOCKOM	THE REAL PROPERTY OF THE	STRATERAPHIC
	- DOCKOM		
PERMIAN		DEWEY LAKE	
			COLUMN
		YATES	
	ARTESIA/WHITEHORSE		
		OUEEN/GRAYBURG	
	CTEAR FORK	JUBD	
		RED CAVE	
	WICHITA SAL	Santa and the second states of the second	
	WOLFCAMP		
PENNSYLVANIAN	UNNAMED SANDS	TONE CARBONATE, AND SHALE	
The second second			
MISSISPHAN			
TAITYICCCIM VI	UNNAMED	CARBONATE	
ORDOVICIAN	ELLENBURGER	anna an an Anna Anna Anna Anna Anna Ann	
		SANDSTONES	
AND PRECAMORIAN	Break parties with a figure water	and the set of the set of the set of the set of the set of the set of the set of the set of the set of the set	

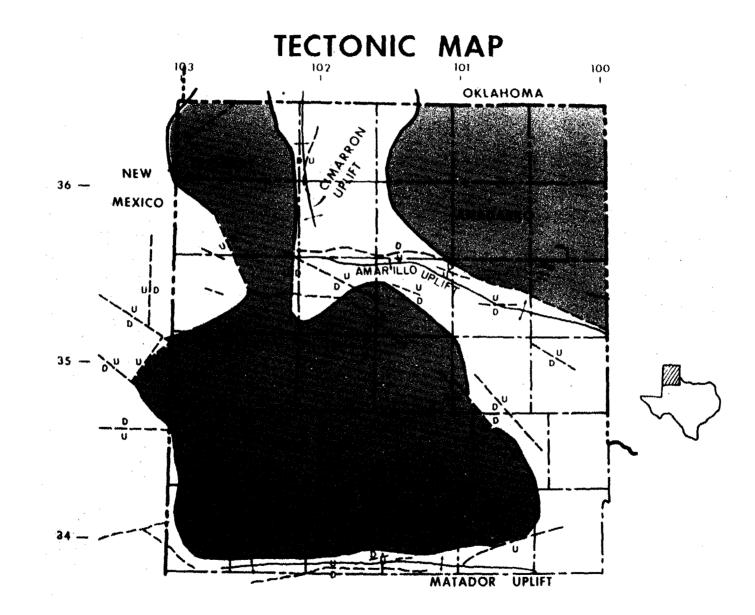

ł

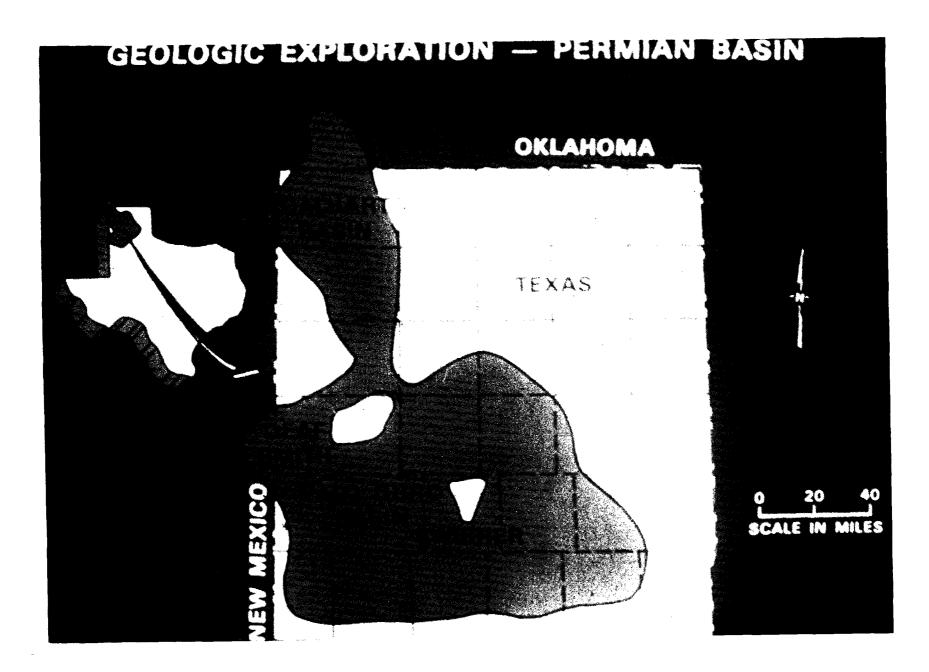
DEPOSITIONAL PATTERNS OF OGALLALA FM.

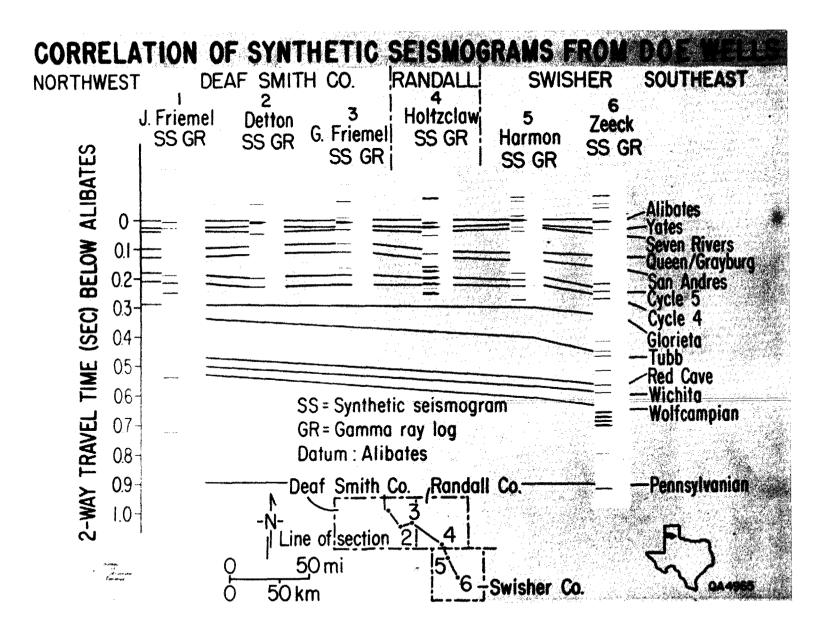

T

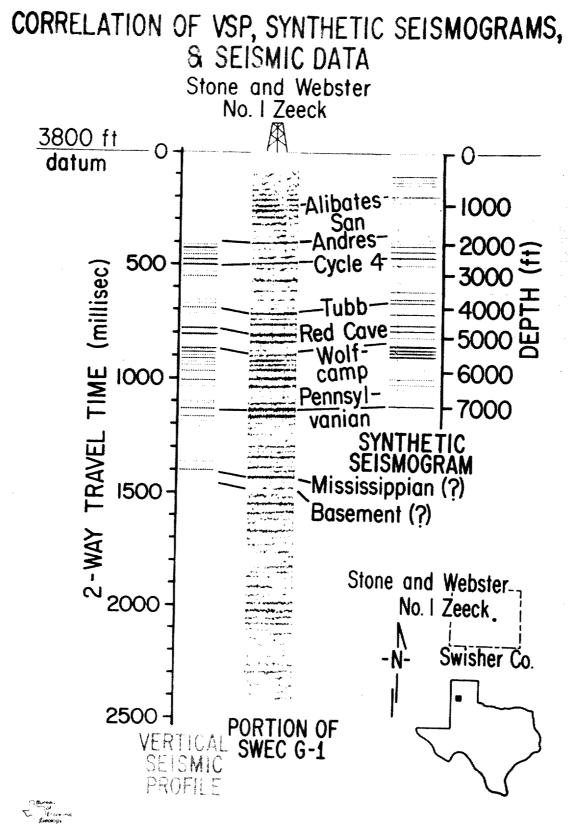


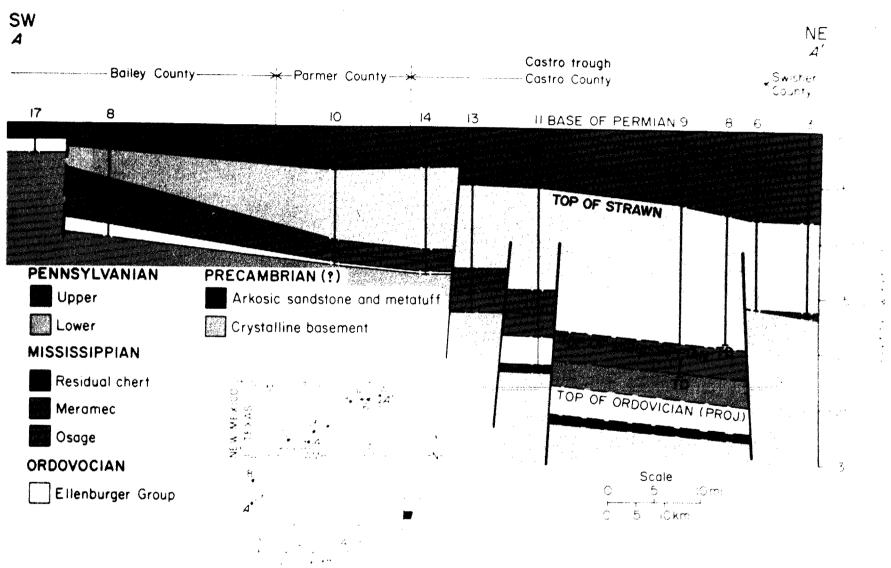

DISTRIBUTION OF NEOGENE SEDIMENTS

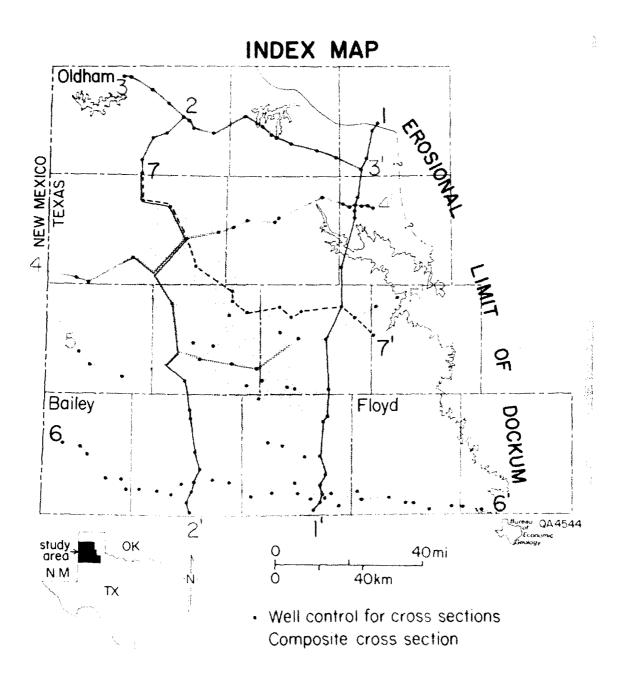


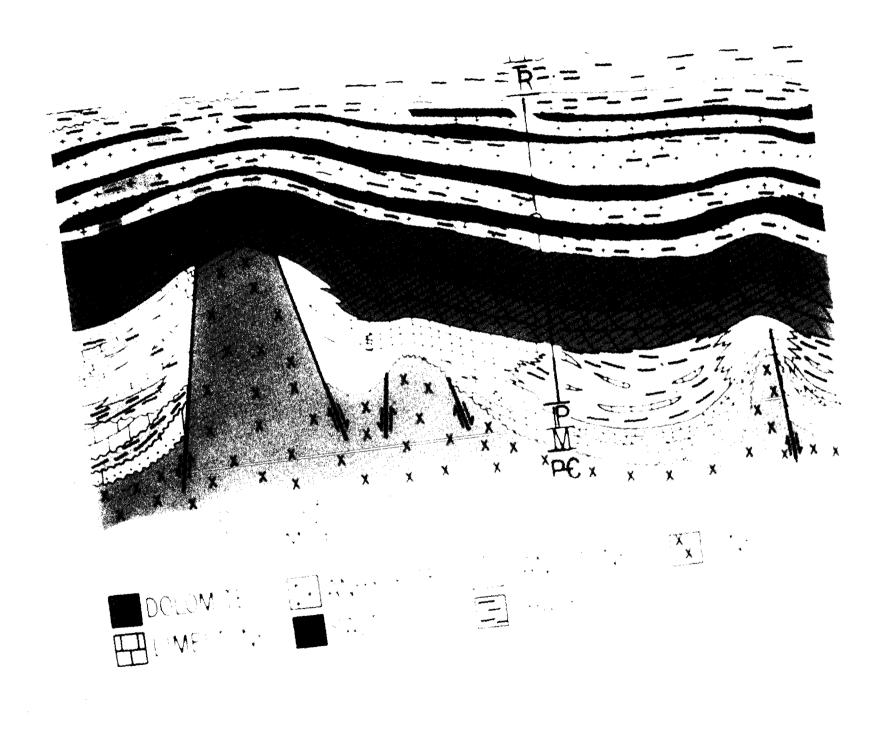


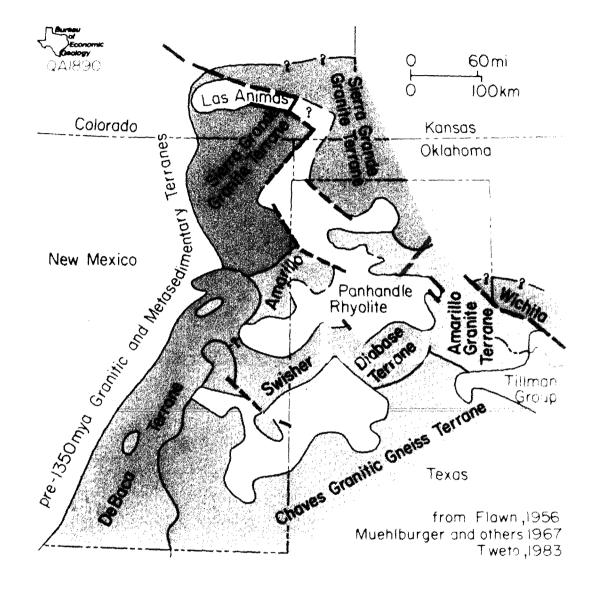


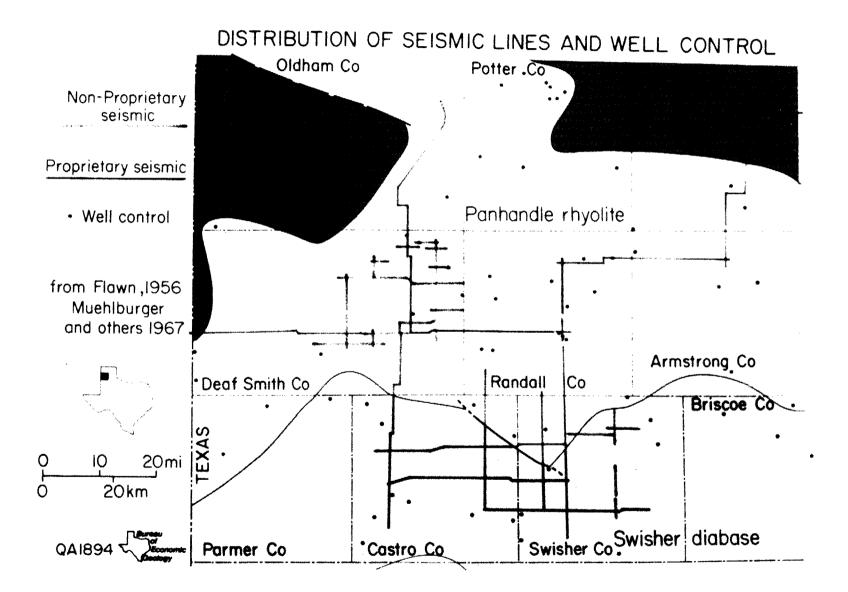


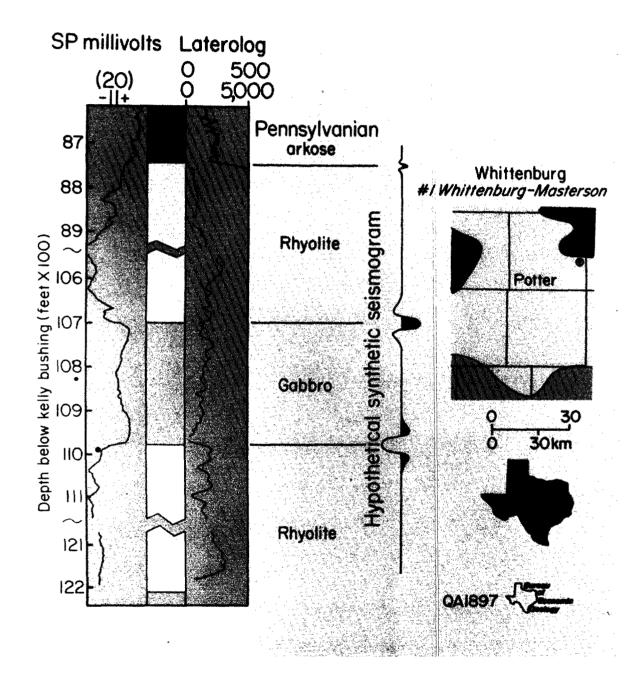


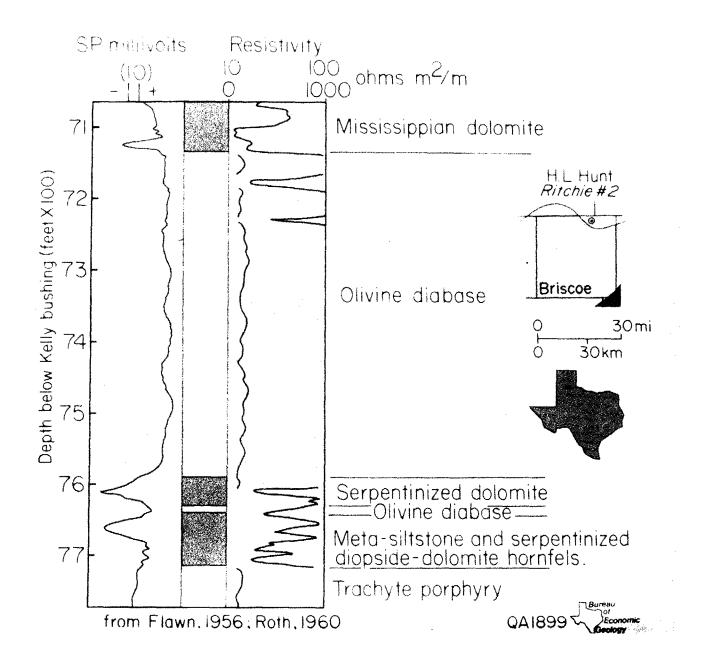


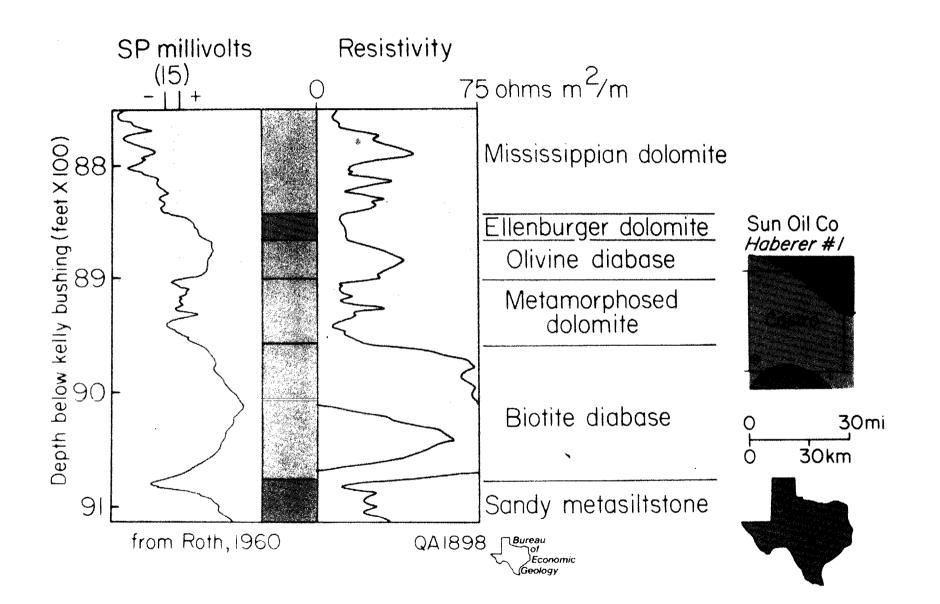



QA4966

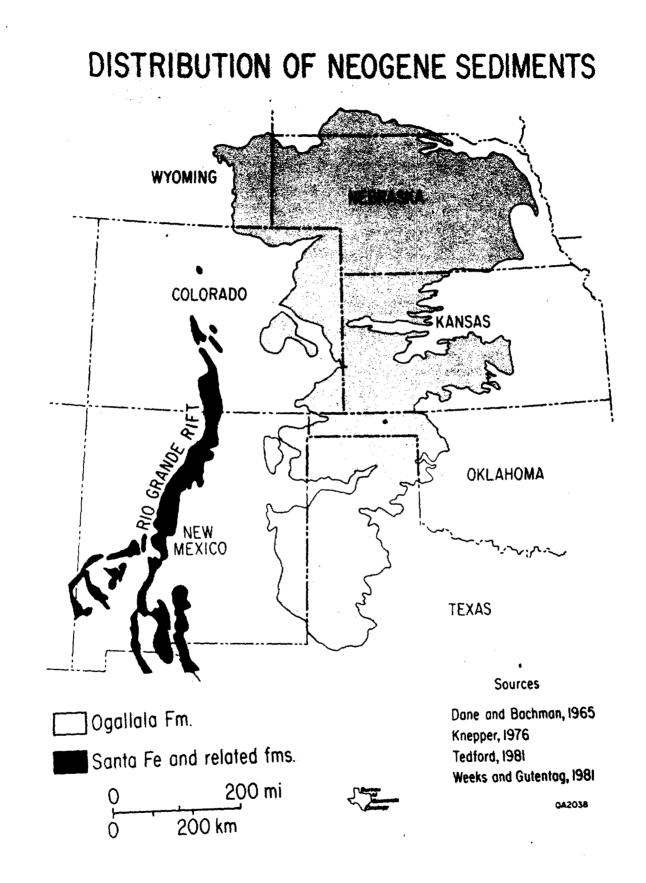

ł

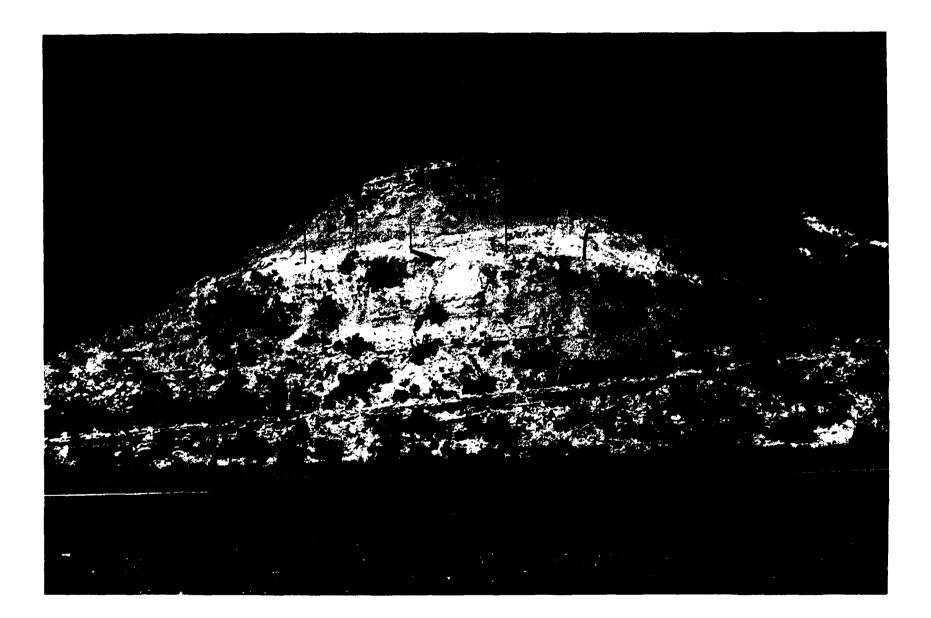


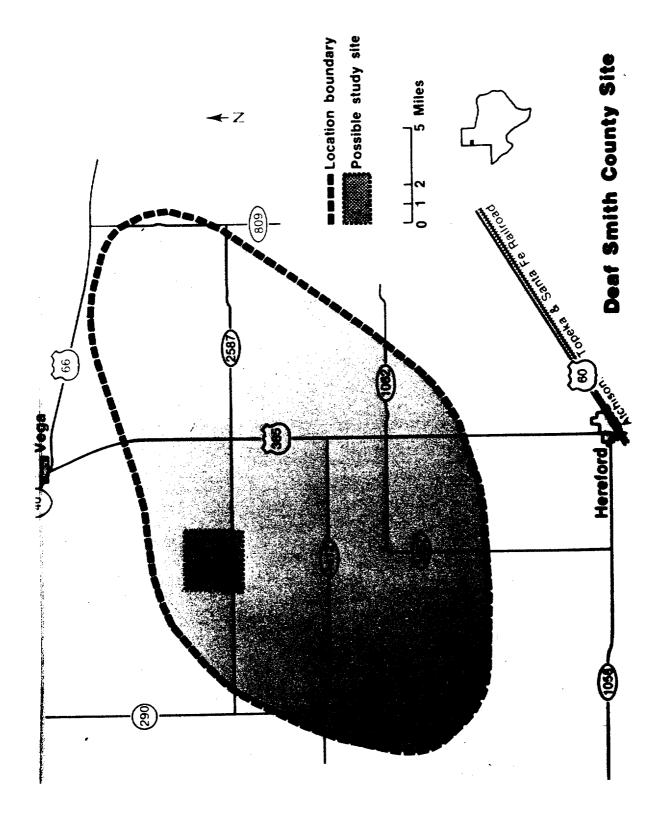


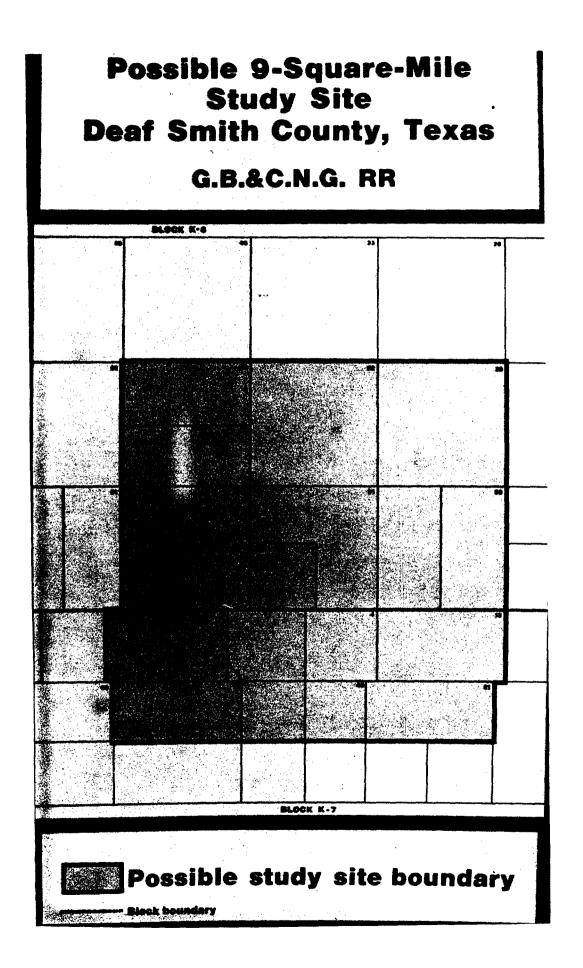

.

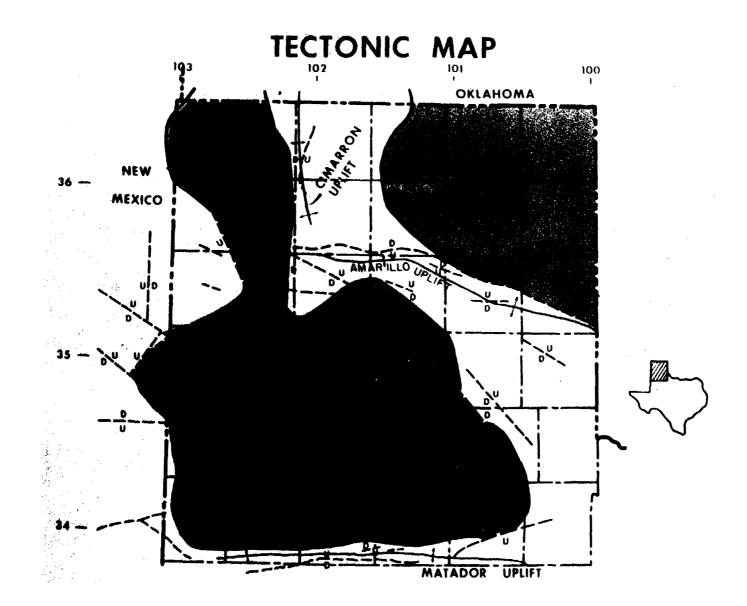
DISTRIBUTION OF BASEMENT TERRANES

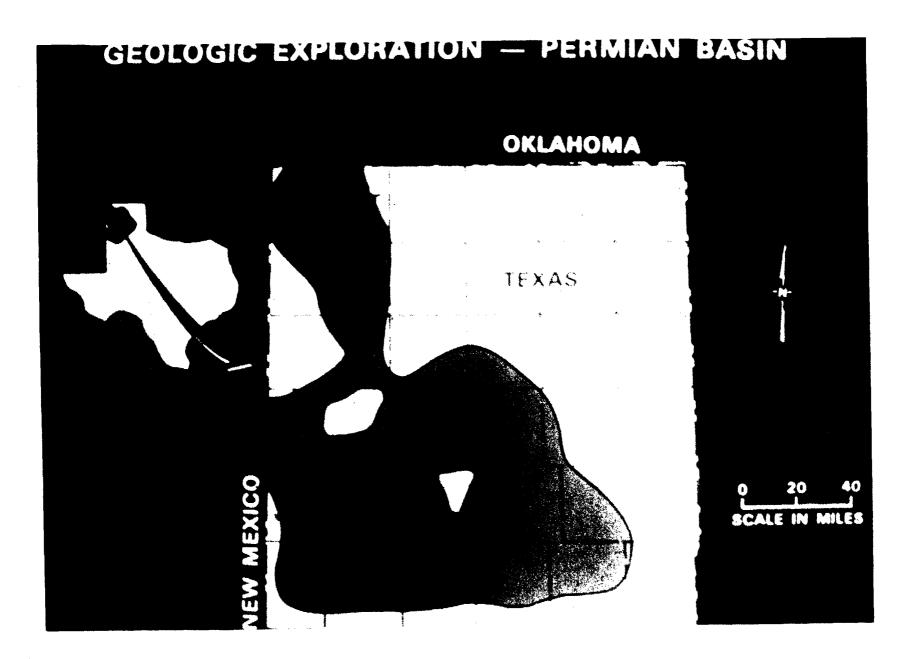


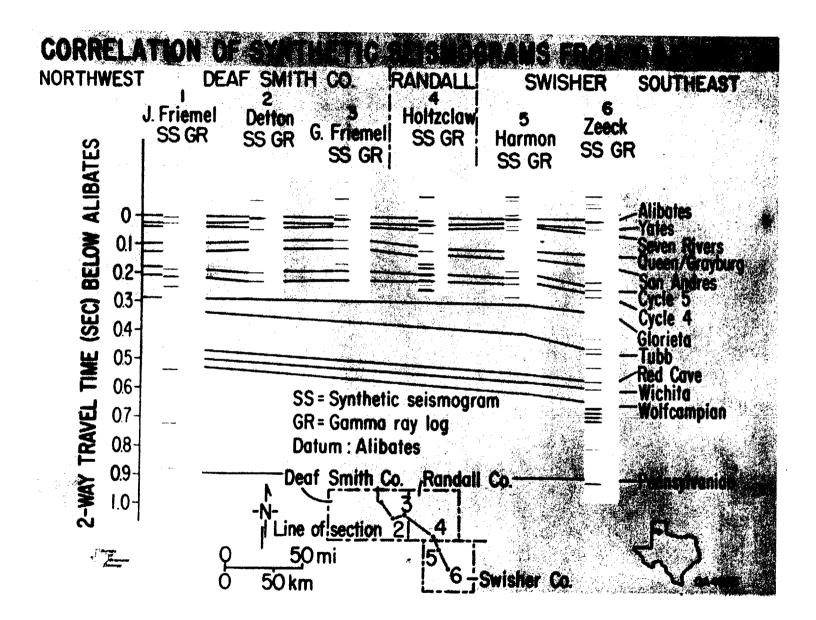

١

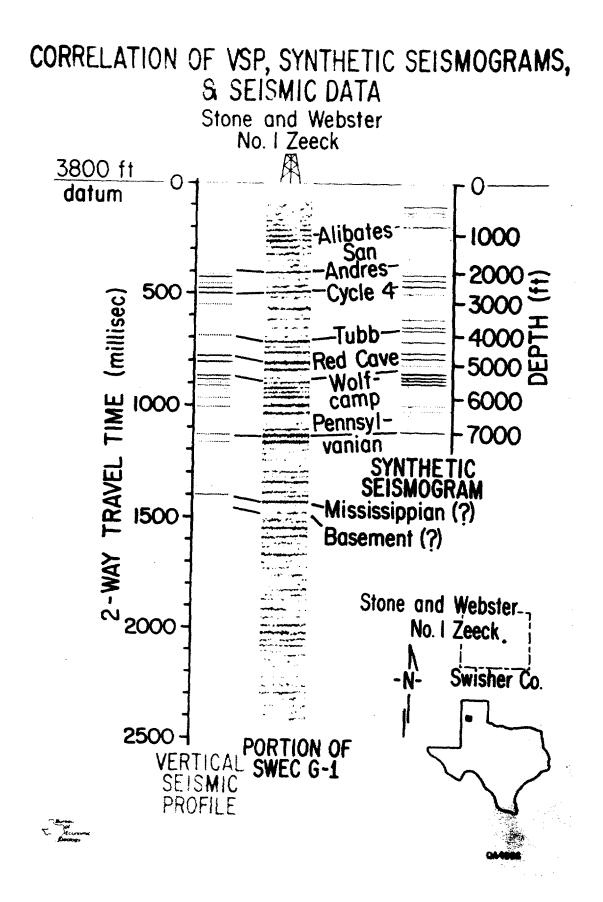

. I

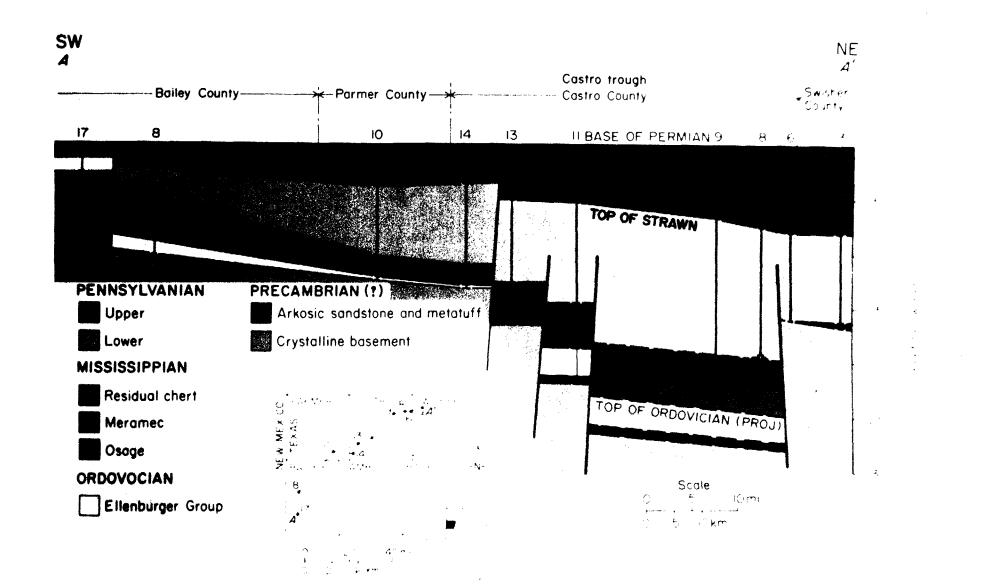


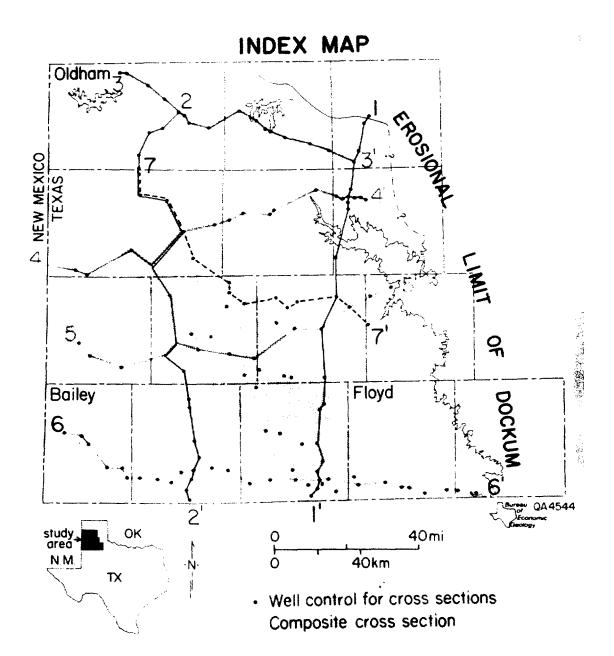


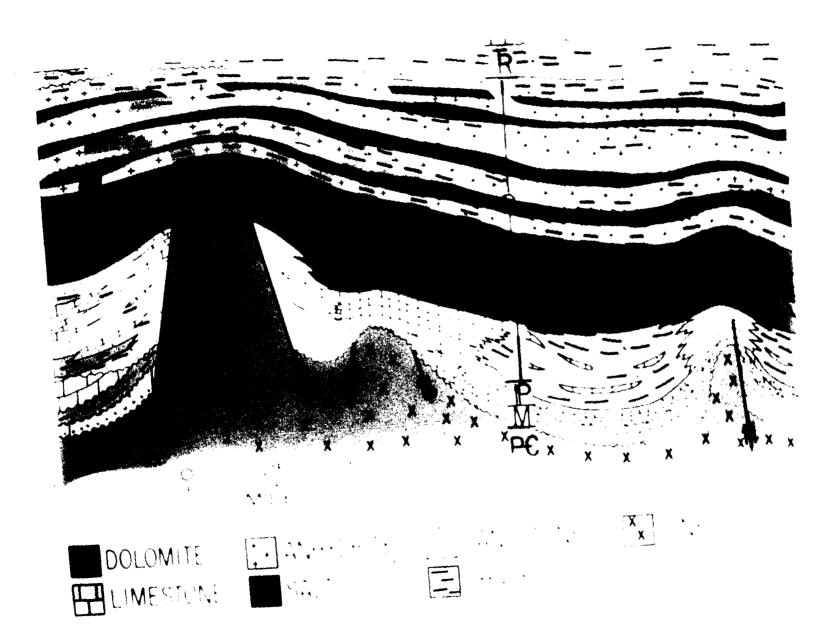


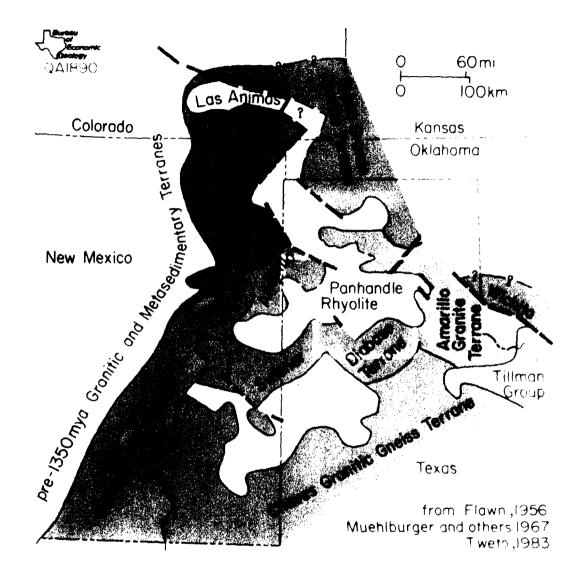


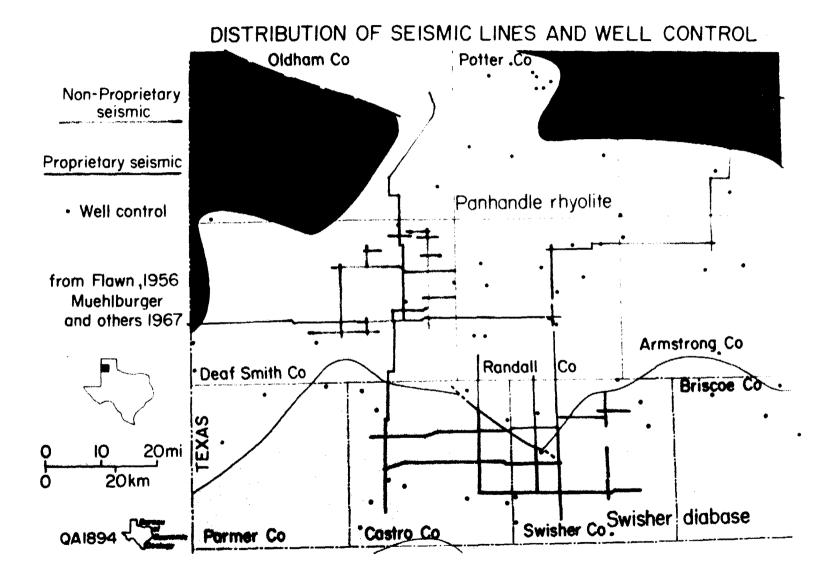


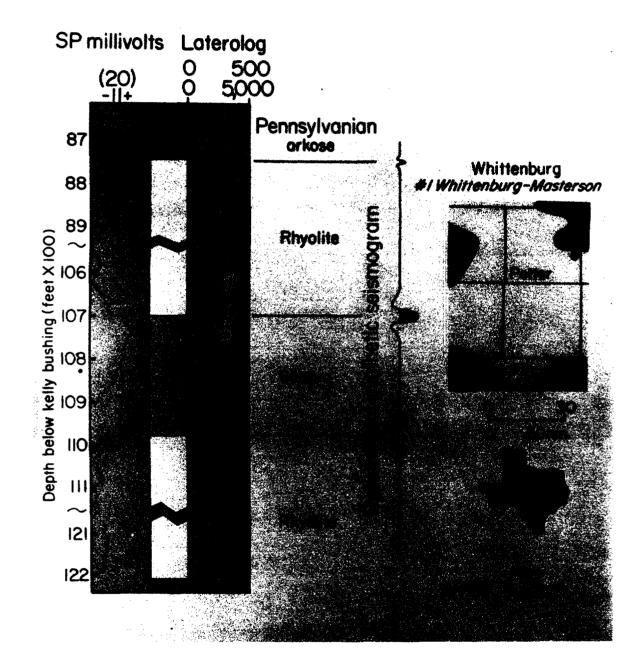


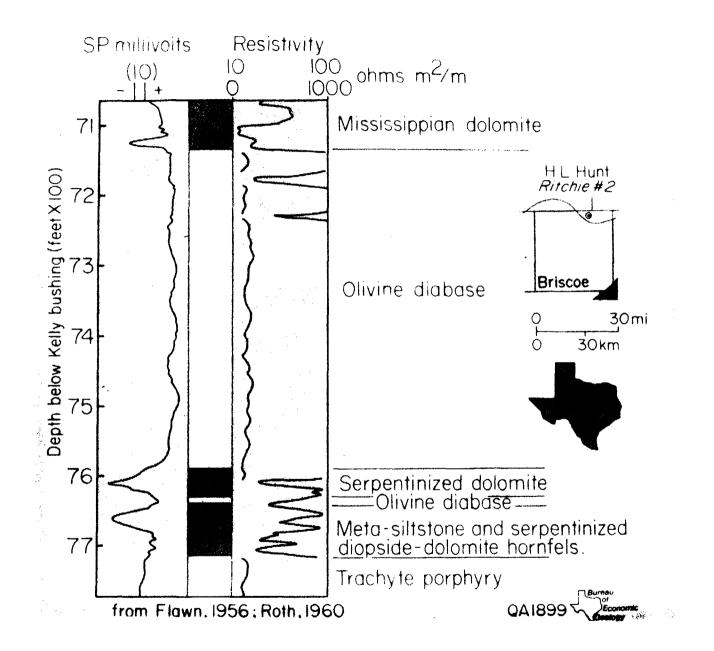


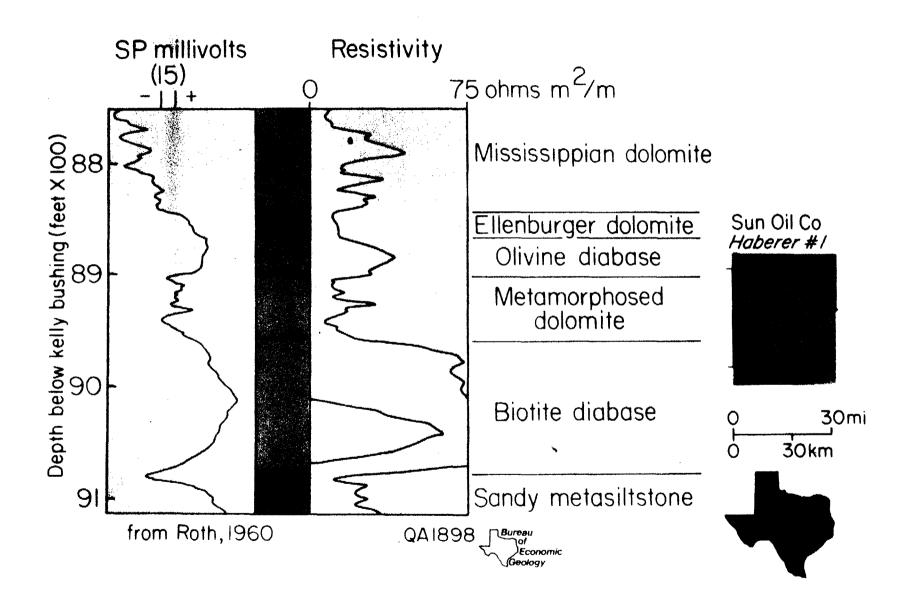




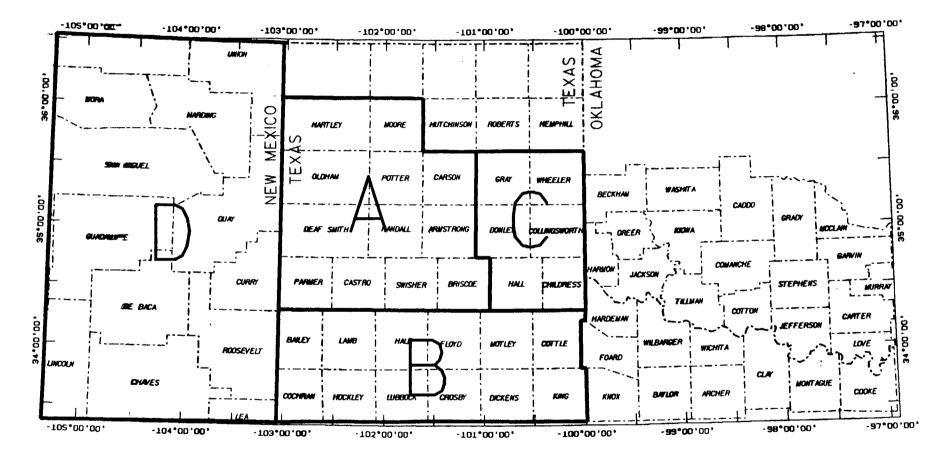




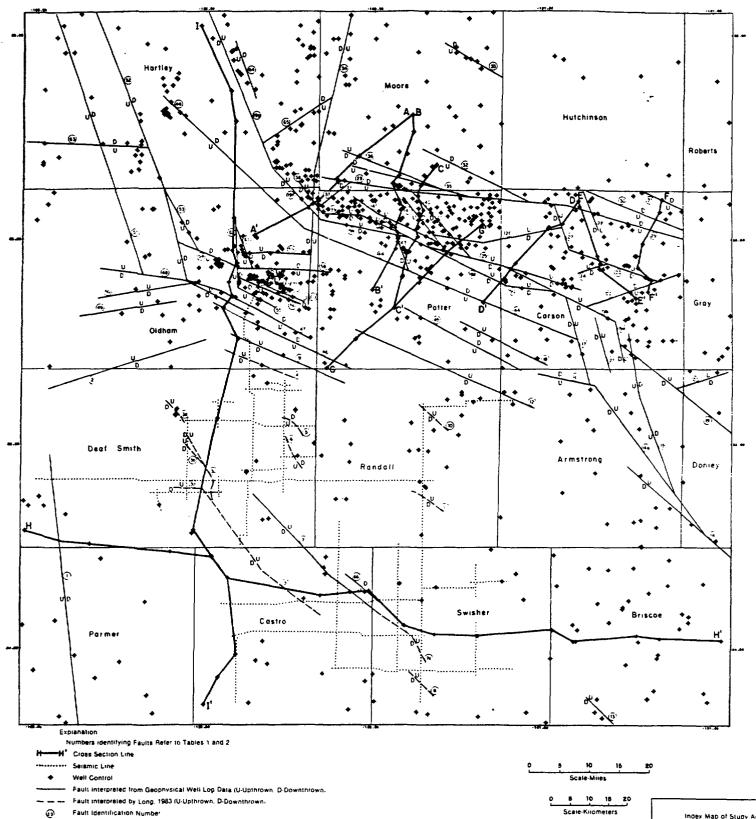




DISTRIBUTION OF BASEMENT TERRANES

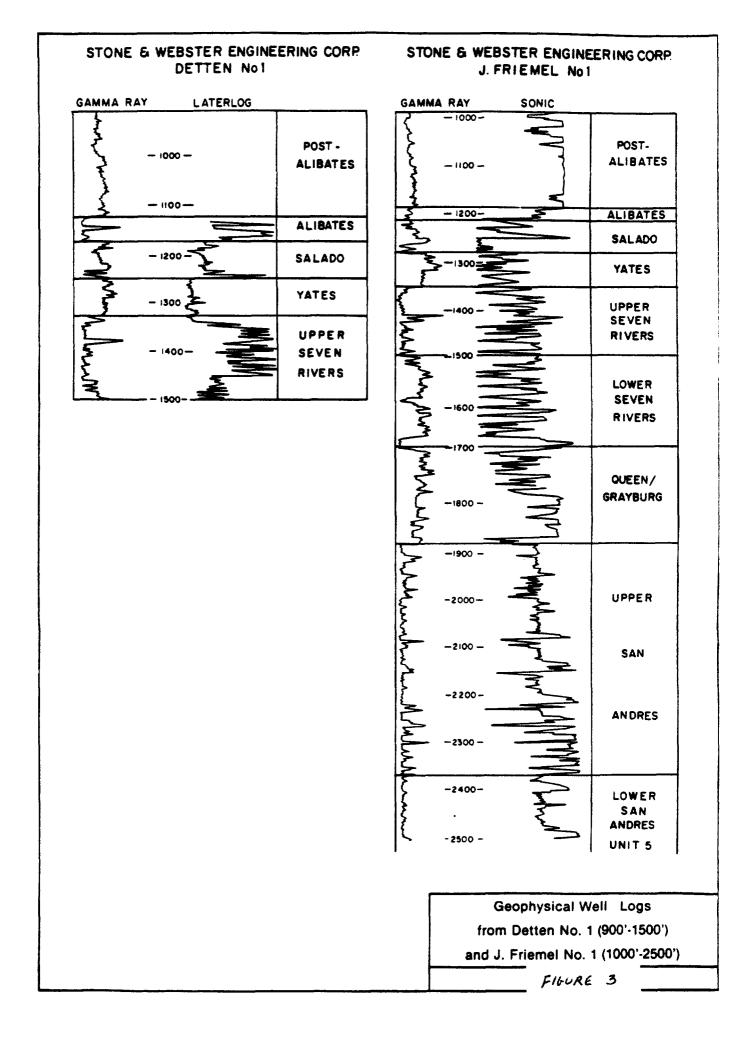


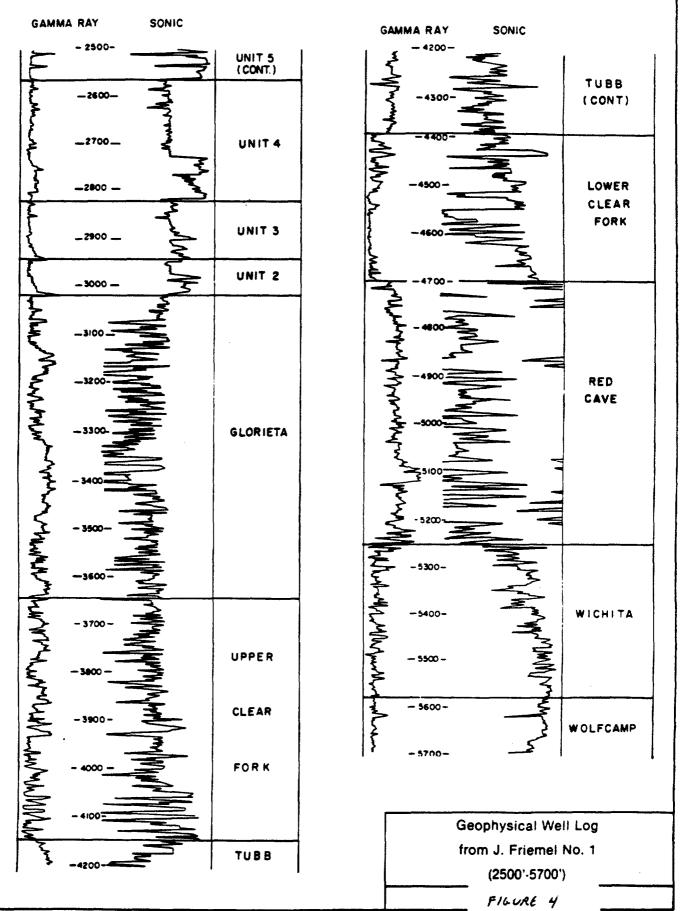
· · · ·



ı

- A :Northern Palo Duro Basin
- E: Matador Uplift
- C: Eastern Panhandle
- D : Eastern New Mexico


Figure |


Fault Identification Number ଡ

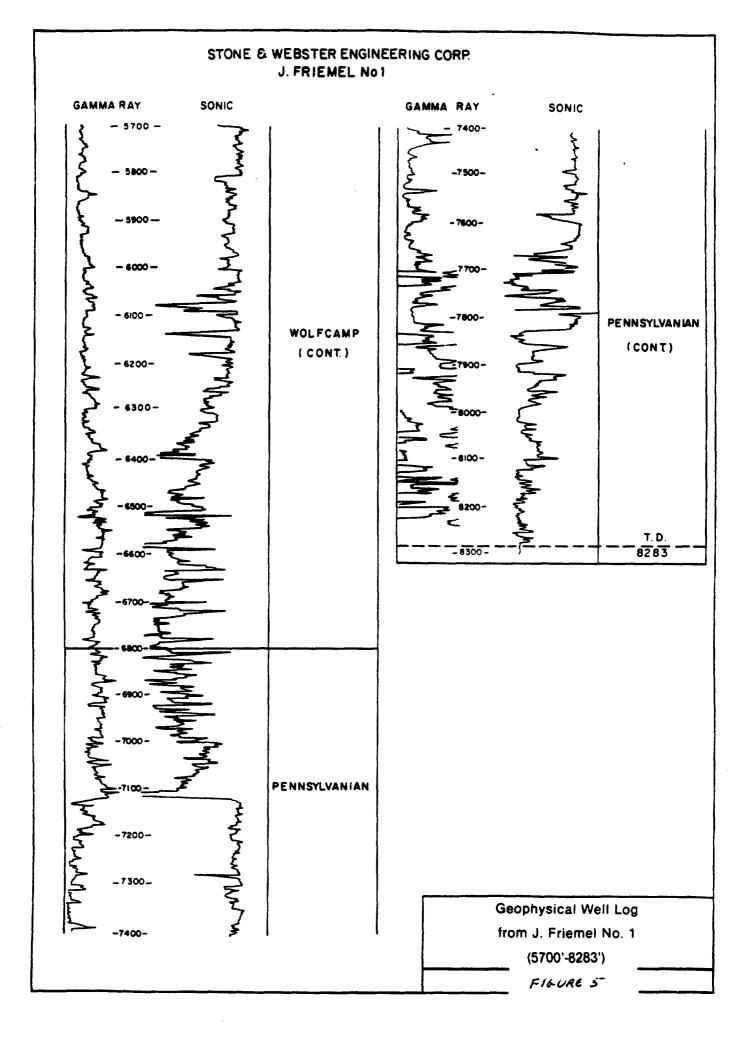
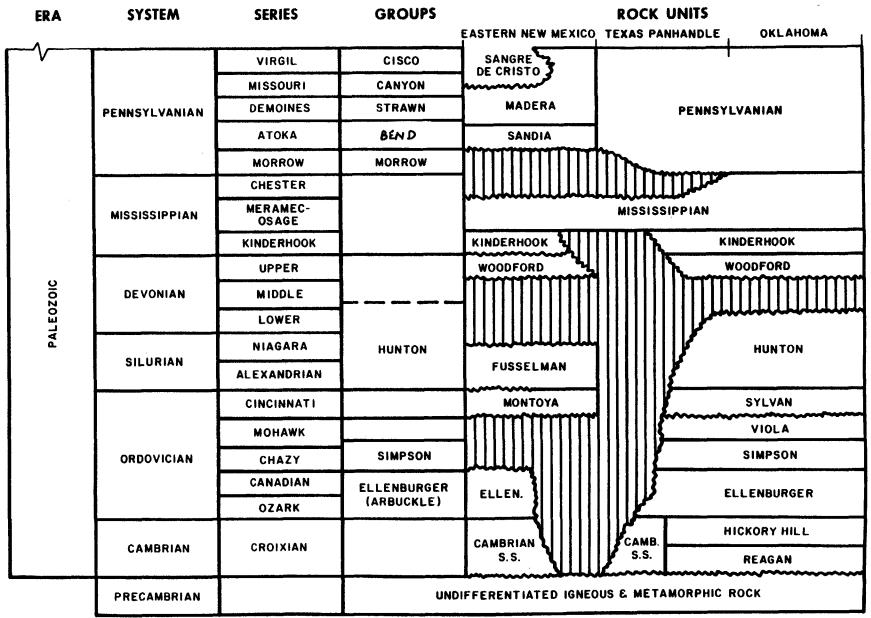

Index Map of Study Ar

FIGURE 2



STONE & WEBSTER ENGINEERING CORP. J. FRIEMEL No 1

STRATIGRAPHIC SECTION CONT. PRECAMBRIAN TO PENNSYLVANIAN

STRATIGRAPHIC SECTION CONT. PERMIAN SYSTEM

.

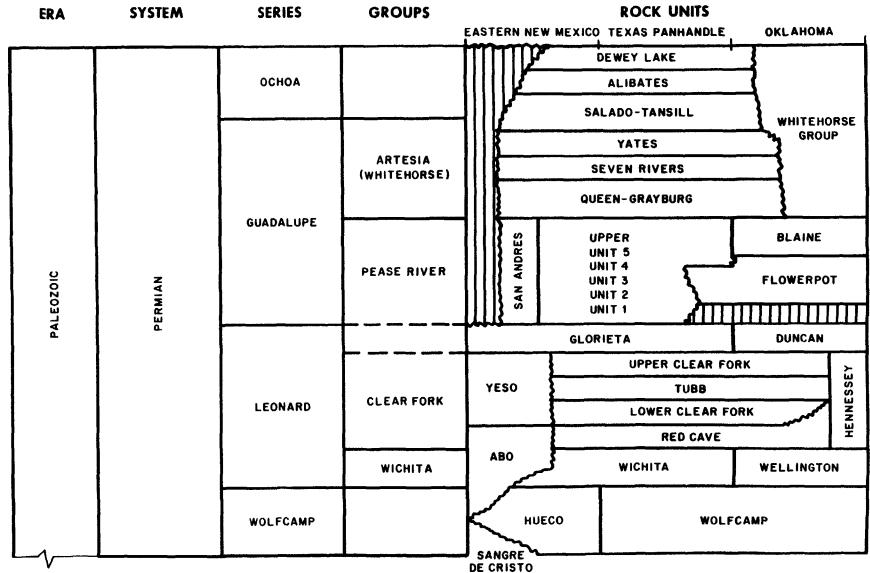
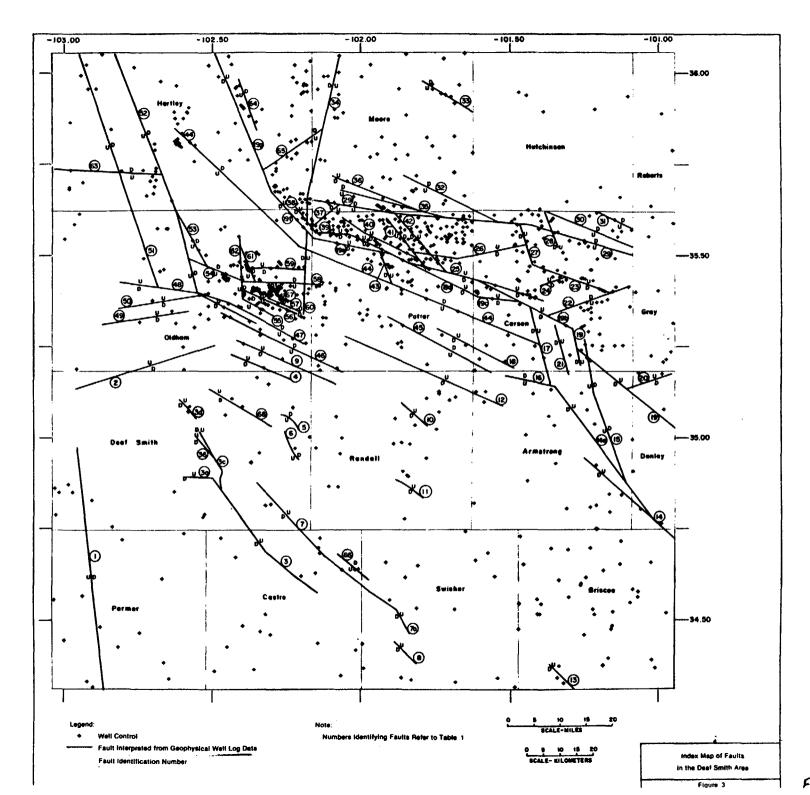
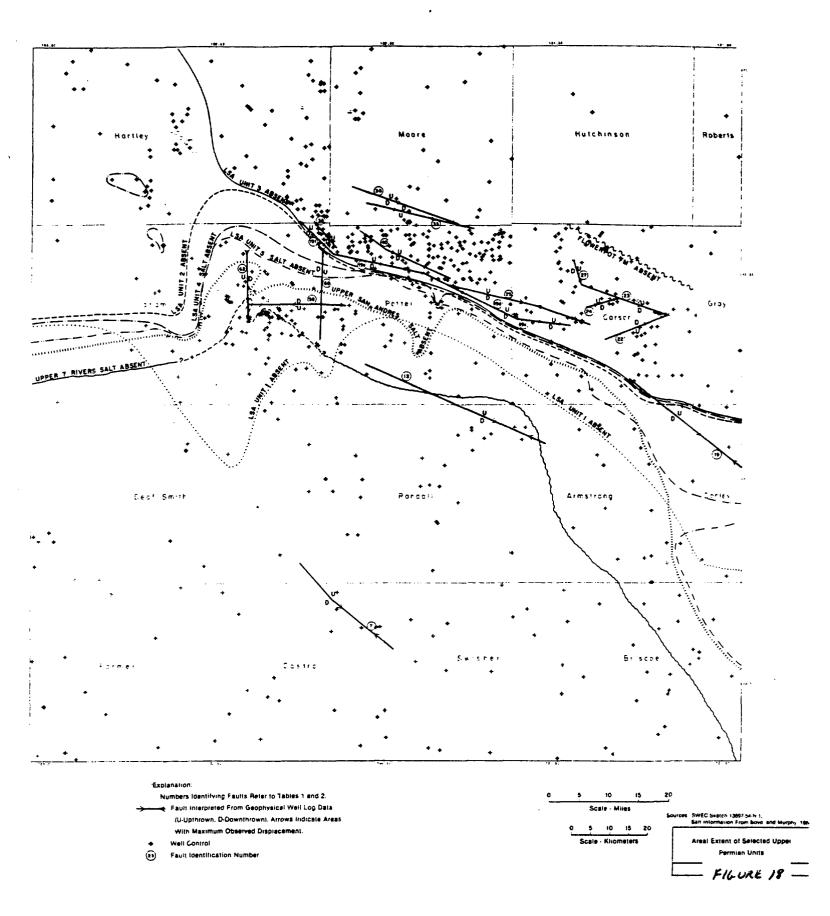



FIGURE 7


.

STRATIGRAPHIC SECTION TRIASSIC TO RECENT

ERA	SYSTEM	SERIES	GROUPS	EASTERN NEW MEXIC	ROCK UNITS TEXAS PANHANDLE OKLAHOMA	
CENOZOIC	QUATERNARY	RECENT		UNCONSOLIDATED SANDS & GRAVELS		
		PLEISTOCENE				
	TERTIARY	PLIOCENE- Eocene		OGALLALA		
MESOZOIC	CRETACEOUS			NIOBRARA		
				CARLILE		
				GREENHORN		
				GRANEROS		
				DAKOTA	ДАКОТА	
			FREDRICKSBURG TRINITY	PURGATOIRE	FREDRICKSBURG TRINITY	
	JURASSIC			MORRISON		
				BELL RANCH- Wanakah		
				TODILTO		
				EXETER (ENTRADA)		
	TRIASSIC		DOCKUM	CHINLE	DOCKUM	
				SANTA ROSA		

FIGURF 4

Ruppel 8/5

PALO DURO BASIN STRATIGRAPHIC STUDIES

BUREAU OF ECONOMIC GEOLOGY

\$

٩.

UNIT	MAJOR CONTRICUTORS		
Precambrian	Flawn, Budnik		
Cambrian, Ordovician	Ruppel		
Mississippian	Ruppel		
Pennsylvanian	Dutton, S.		
Permian Wolfcamp	*Handford, Dutton, S., *Herron, Conti, Hovorka, Posey		
Wichita	Hovorka		
Red Cave	*Handford		
Lower Clear Fork	*Handford		
Tubb	*Presley		
Upper Clear Fork	*Presley, *McGinnis		
Glorietta	*Presley, *McGinnis		
San Andres	*Presley, *Ramonoetta, *Bein, Hovorka, Fracasso		
Queen-Grayburg	*Kolker, Hovorka, Nance		
Seven Rivers	Fracasso *Kolker, Hovorka, Nance *Kolker, Hovorka, Nance		
Yates	*Kolker, Hovorka, Nance *Kolker, Hovorka, Nance		
Tansill-Salado	*Kolker, Hovorka, Nance *McGillis, *Presley, *Kolker, Nance		
Alibates	<pre>*McGillis, *Presley, Nance</pre>		
Dewey Lake	*Kolker, Fracasso, Johns		
Triassic Dockum	*McGowen, *Granata, Seni, Johns		
Teritary Ogallala	Seni, Gustavson		
Quaternary Blackwater Draw, Etc.	Caran, Baumgardner, Gustavson		

* No longer with the Bureau of Economic Geology

	·····		Palo Duro Basin	Dalhart Basin	General Lithology
SYSTEM	SERIES	GROUP	FORMATION	FORMATION	depositional setting
QUATERNARY	HOLOCENE		alluvium, dune sand Playa	ailuvium, dune sond Playa	
	PLEISTOCENE		"Tahoka "cover sands" Tule / "Playa" Bianco	"cover sands" "Playa"	Lacustrine clastics and windblown deposit
TERTIARY	NEOGENE		Ogoilaia	Ogsilala	Fluvial and lacustrine clastics
CRETACEOUS	-		undifferentiated	undifferentiated	Marine shales and limestone
TRIASSIC		DOCKUM			Fluvial-deltaic and lacustrine clastics
PERMIAN	AOHJO GUADALUPE		Dewey Lake	Dewey Lake	Sabkha sait, anhydrite,red beds, and peritidai daiomite
			Alibates	Alibates S	
		ARTESIA	Salado/Tansili	Artesia Group undifferentiated	
			Yates		
			Seven Rivers		
			Queen/Grayburg		
			San Andres	Blaine	
	LEONAF	CLEAR FORK	Glorieta	Giorieta	
			Upper Clear Fork	Clear Fark	
			Тирр		
			Lower Clear Fork	und: ¹² prentiated Tubbr-Wichita Red Beds	
			Red Cove		
		WICHITA	····		
	WOLFCAMP			_	
PENNSYLVANIAN	VIRGIL	CISCO	~~~~?~~~~~~	??	Shelf and shelf-margin carbonate, basinal shale, and aeltaic sandstane
	MISSOURI	CANYON			
	DES	STRAWN			
	ATOKA	BEND			
	MORROW				
MISSISSIP- PIAN	CHESTER		~~~~~~~~~~		Shelf carbonate
	MERAMEC	-			
	OSAGE				and chert
ORDOVICIAN		ELLEN-	~~~~~		Shelf dolomite
CAMBRIAN ?		BURGER			Shallow marinel? sandstone
PPI	ECAMBRIAN				igneous and metamorphic

.

1

.....

1

Figure 26. Stratigraphic column and general lithology of the Palo Duro and Dalhart Basins. After Handford and Dutton (1980).

·. · · · ·

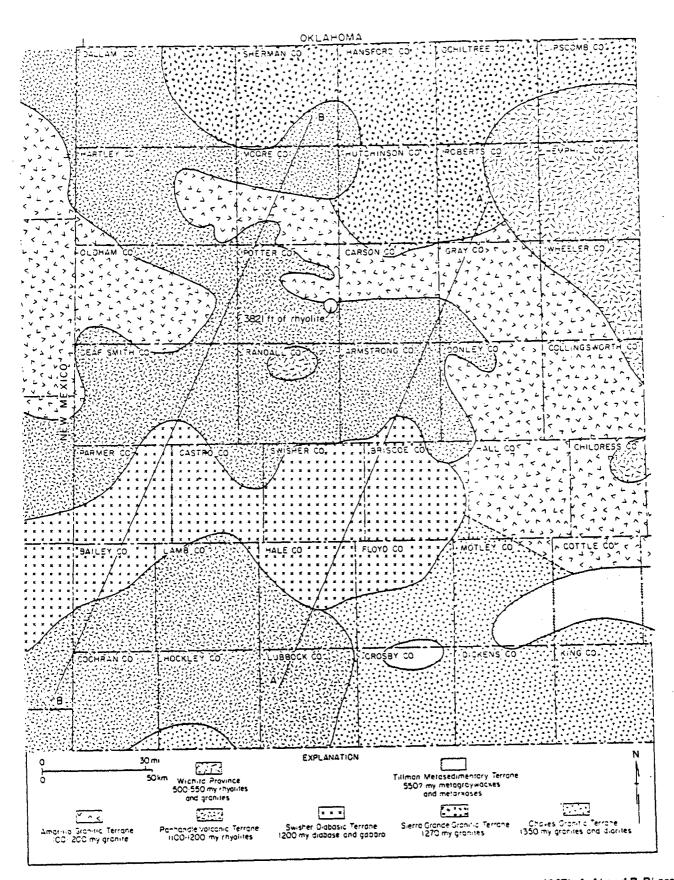
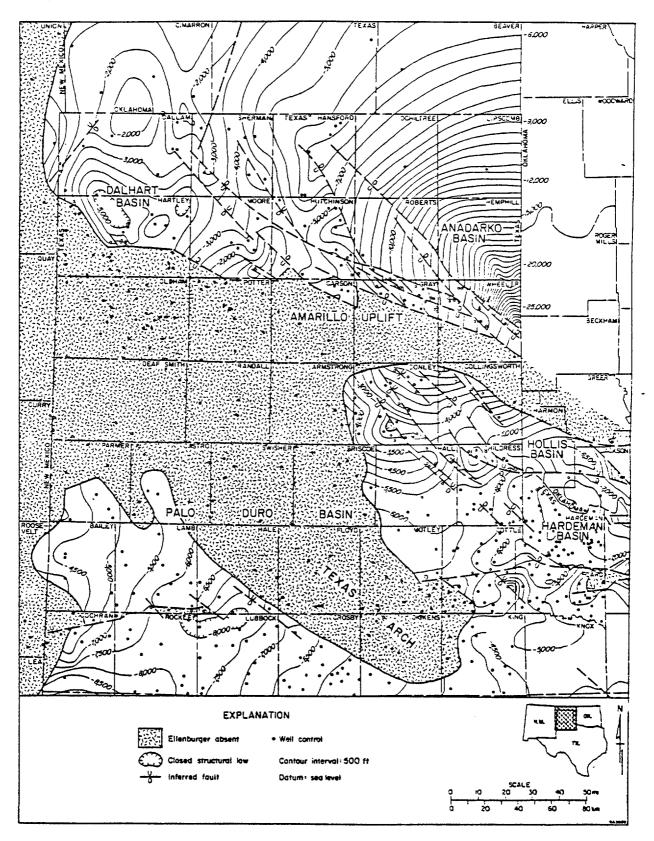
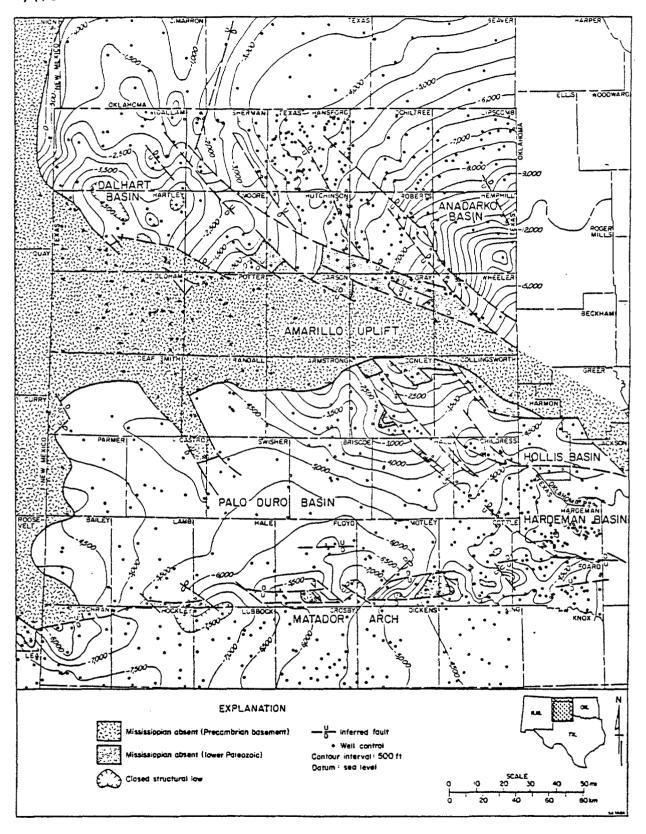



Figure 42. Basement lithologic provinces in the Texas Panhandle (from Muchiberger and others. 1967). A-A' and B-B' are locations of gravity models discussed in this report (see figs. 43 and 44).


J

1997. 1997.

.

MISSISSIPPIAN SYSTEM: STRUCTURE MAP

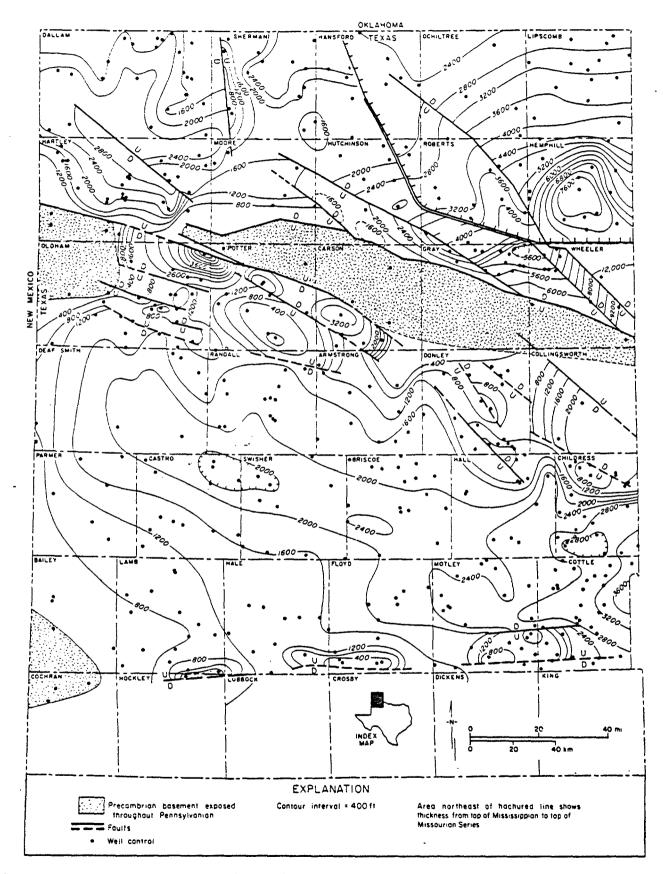


Figure 14. Isopach map of Pennsylvanian System, Texas Panhandle. Sediments thin onto uplifts that were exposed during Pennsylvanian Period.

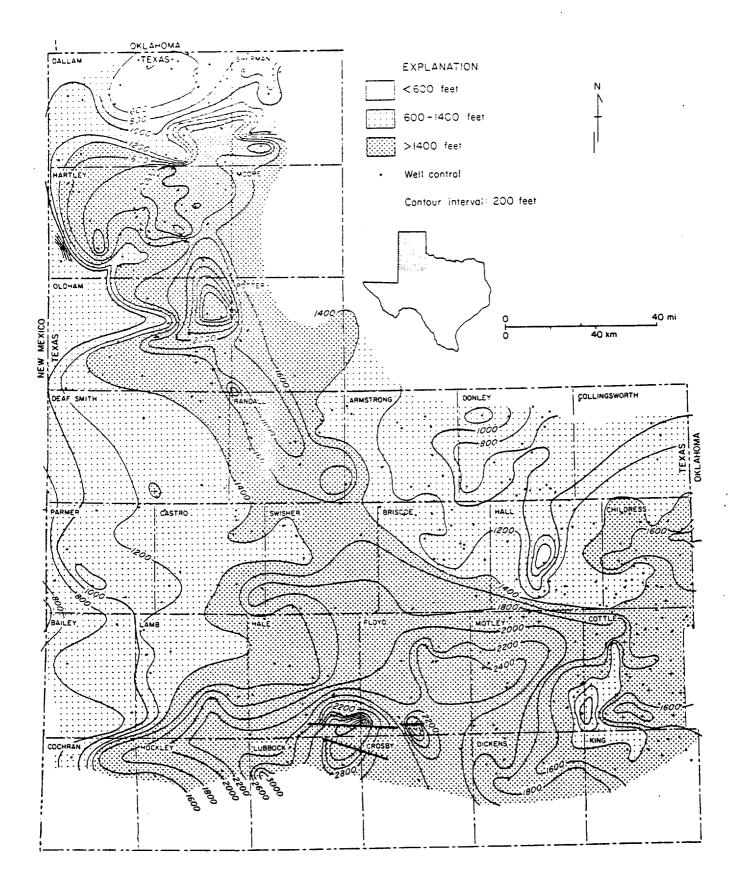


Figure 16. Isopach map of Wolfcampian Series, Palo Duro Basin (Handford, unpublished data).

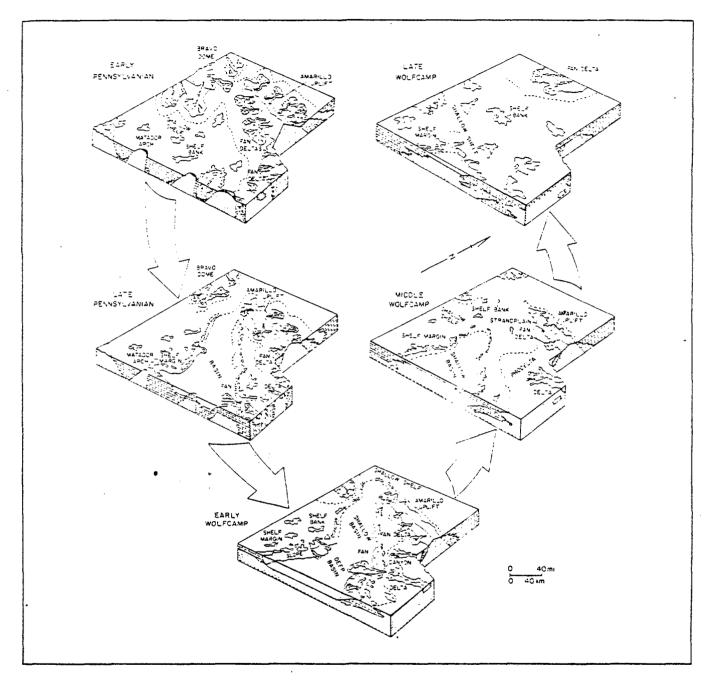


Figure 23. Block diagrams of paleogeographic evolution of Palo Duro Basin during Pennsylvanian and Wolfcampian time (from Handford and Dutton, 1980).

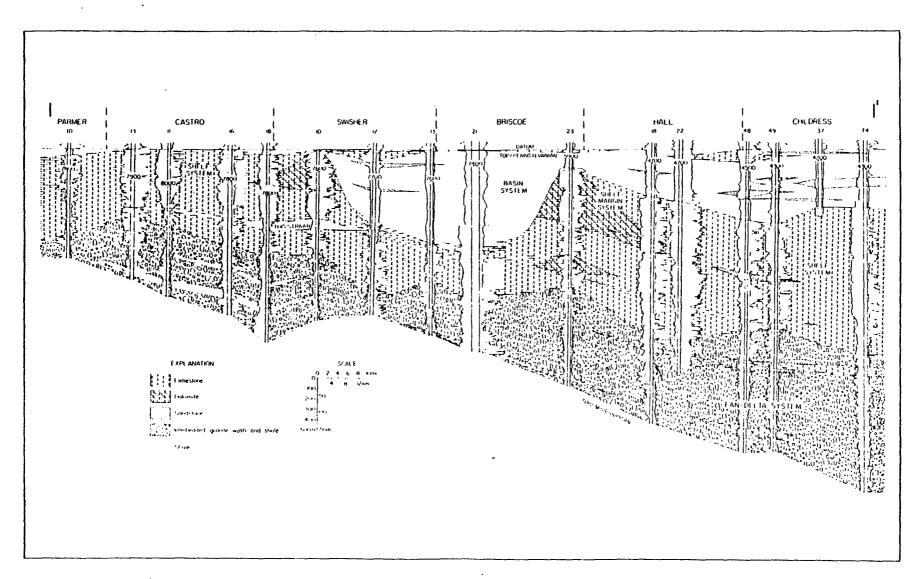


Figure 25. East-west cross section I-I' of Pennsylvanian strata, Parmer to Childress Counties (see fig. 3 for location).

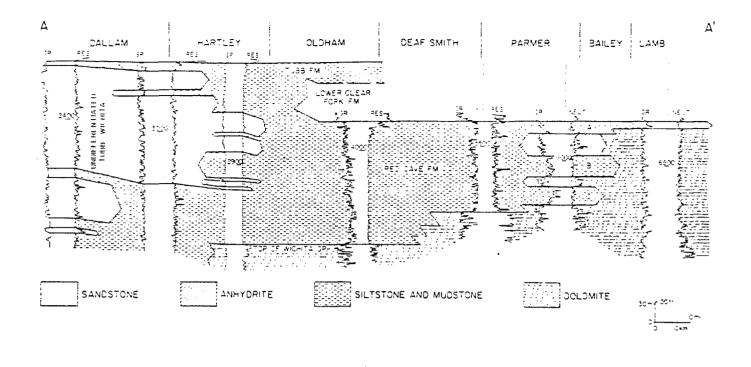
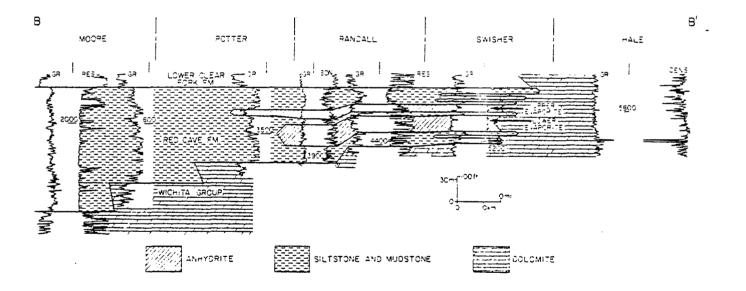
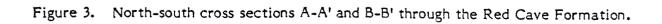





Figure 59. North-south regional cross section A-B from the central Palo Duro Basin to the Amarillo Uplift. Line of section shown in figure 57.

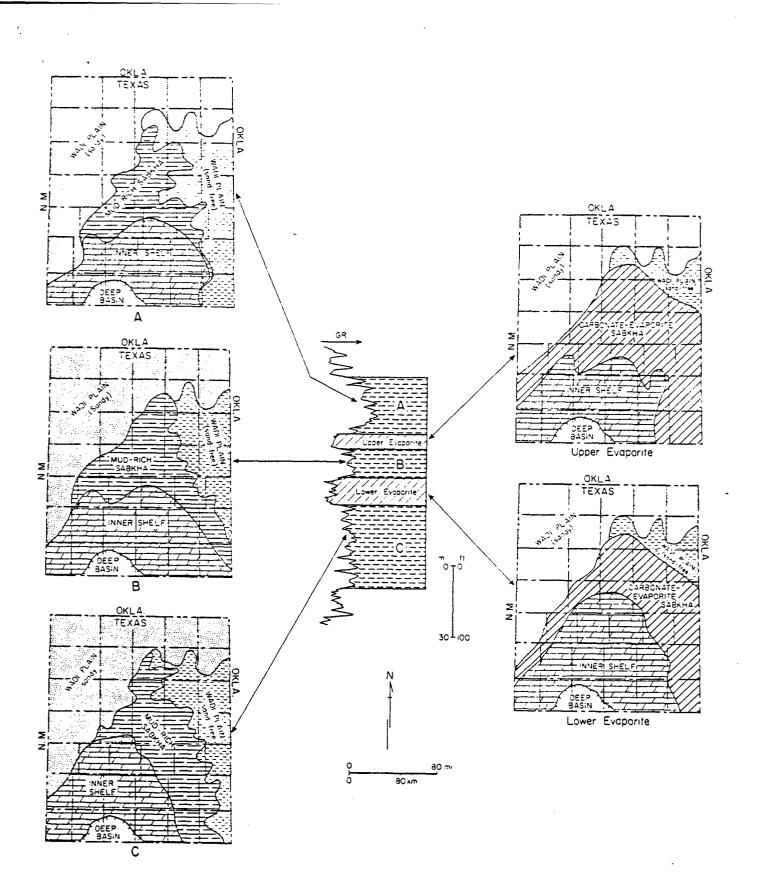


Figure 19. Paleogeography of the Red Cave Formation. Cyclic clastic and carbonateevaporite facies reflect alternating styles of sabkha deposition that were brought on by the periodic availability and supply of clastics to sabkha environments.

ł

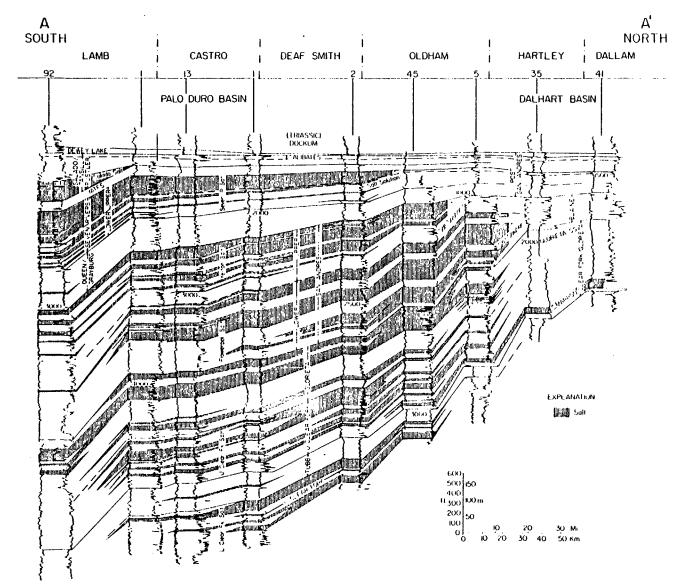


Figure 5. North-south cross section, Upper Permian salt-bearing strata, Texas Panhandle. Generalized salt units are correlated. Location of section in figure 4.

16

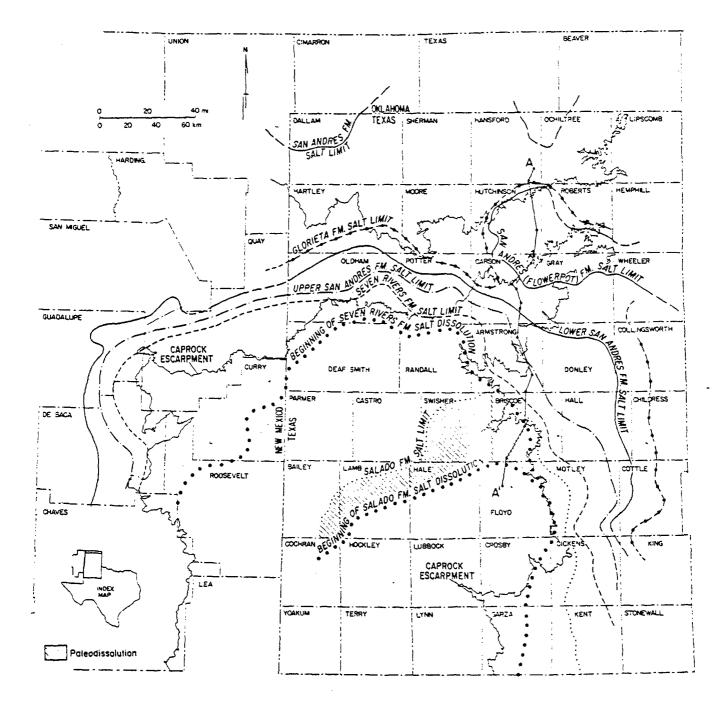


Figure 72. Salt dissolution zones, Texas Panhandle and eastern New Mexico. Except for the Seven Rivers and Salado Formations, where both the beginning of salt dissolution and the limit of salt are shown, the limit of salt for the younger formation marks the approximate beginning of salt dissolution for the next older formation (from Dutton and others, 1979).

ï

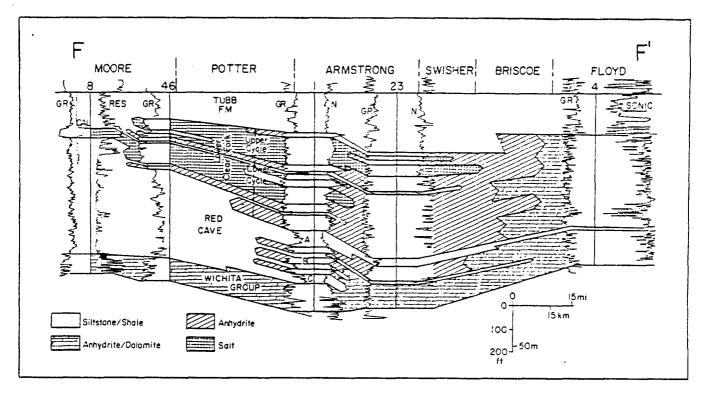


Figure 34. North-south cross section F-F' of lower Clear Fork Formation. See figure 3 for location (from Handford, 1981).

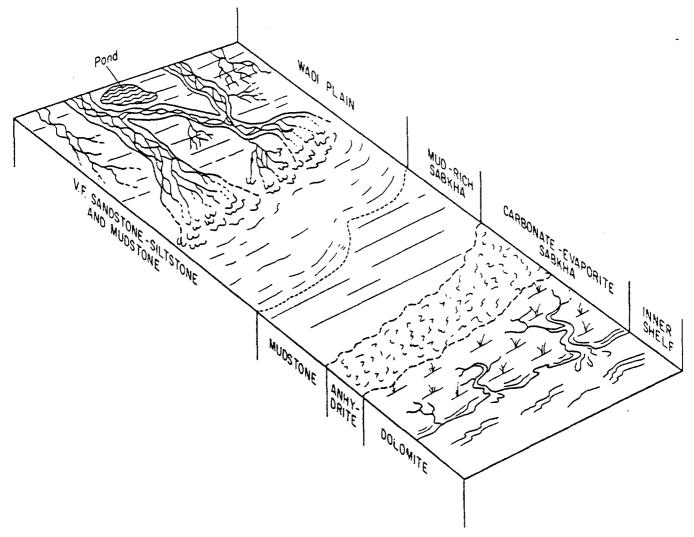


Figure 17. Composite depositional model for Red Cave carbonate, evaporite, and clastic facies.

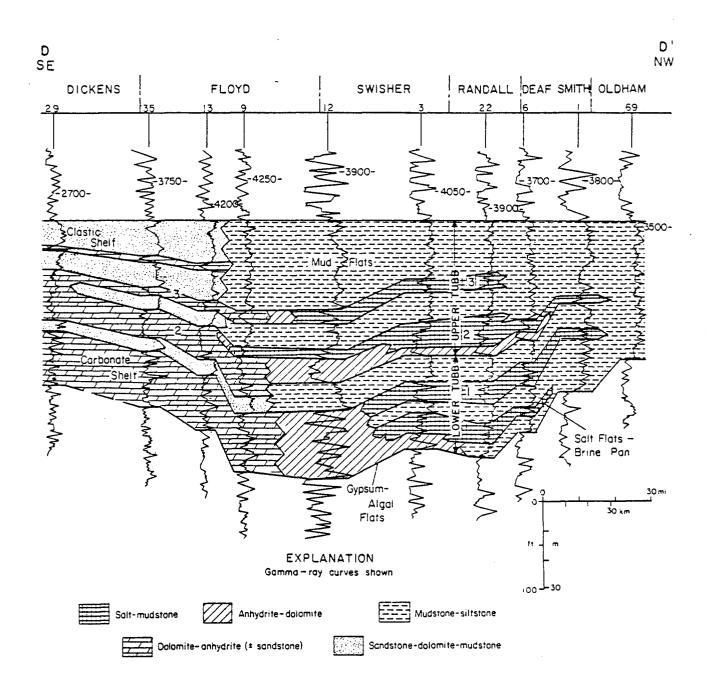


Figure 41. Northwest-southeast cross section, Tubb Formation, Palo Duro Basin. Line of cross section is indicated in figure 87. From Presley (1980b).

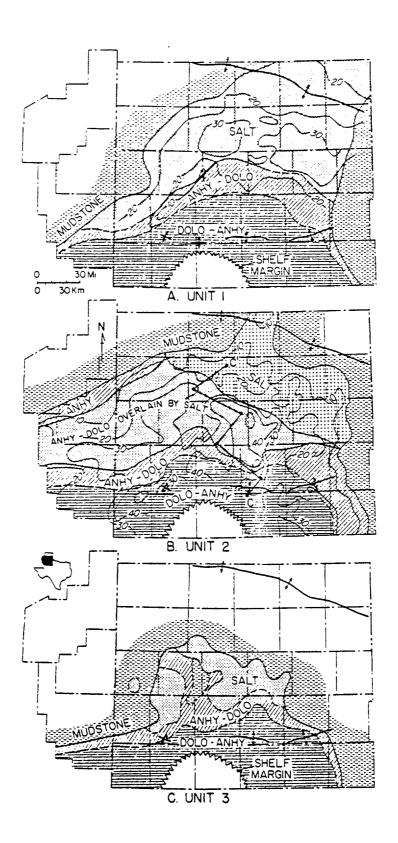


Figure 42. Facies maps of evaporite-carbonate units 1, 2, and 3 (oldest to youngest) of the Tubb Formation. Salt is dominant in updip regions to the north; carbonate is dominant to the south. These units show progressive southerly migration of evaporite-carbonate facies. From Presley (1980b).

١.

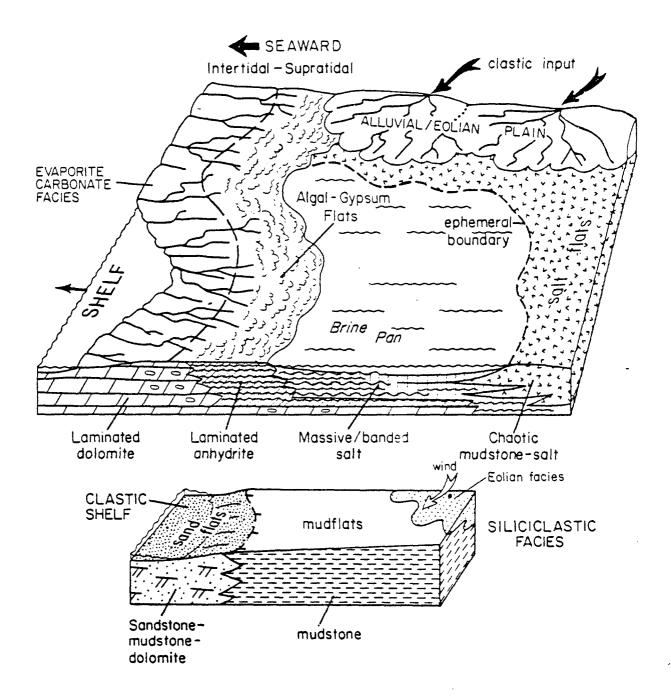


Figure 40. Facies and environments recorded in Tubb strata of the Palo Duro and Dalhart Basins. Evaporite-carbonate facies record a gradual basinward shift in environments. Siliciclastic (red-bed) facies dominate the Tubb sequence, and were deposited in tidal mud flats, which graded basinward into tidal sand flats. From Presley (1980b).

,

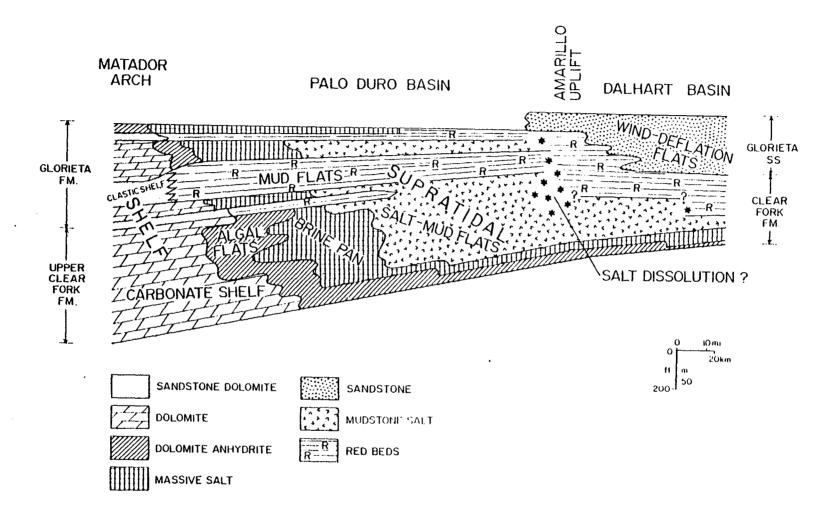
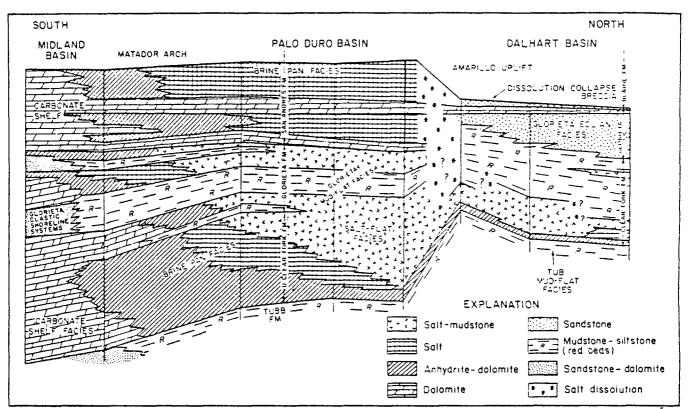
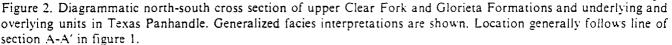




Figure 43. North-south facies cross section through Palo Duro and Dalhart Basins showing relation of environments for the upper Clear Fork and Glorieta Formations. From Presley (unpublished data).

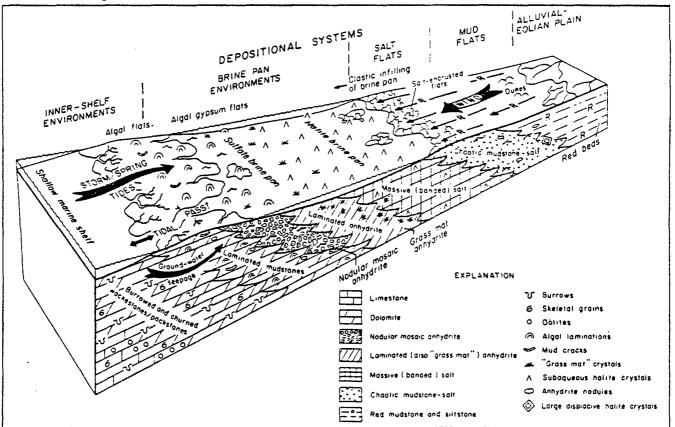


Figure 3. Evaporite and carbonate depositional facies and environments inferred for upper Clear Fork and Glorieta rocks.

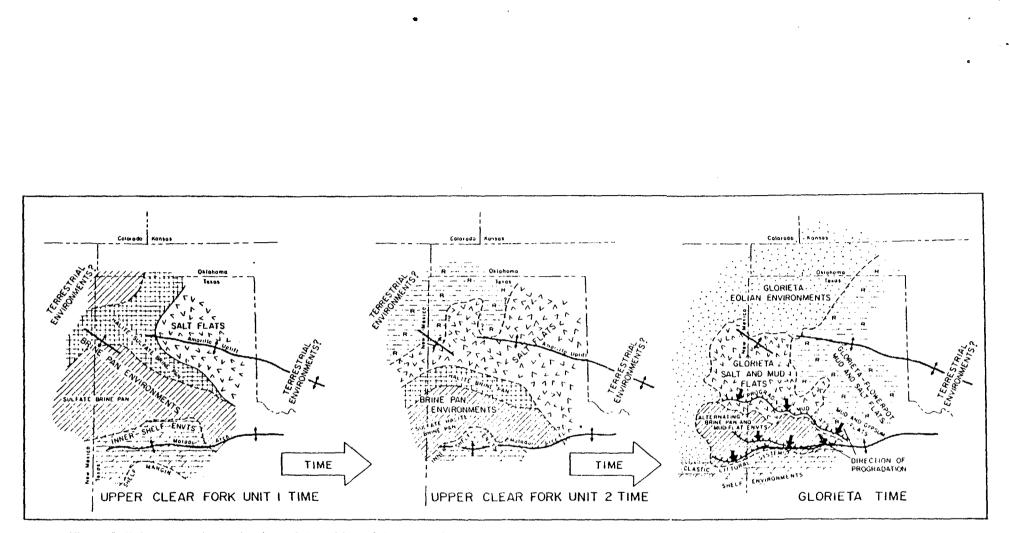
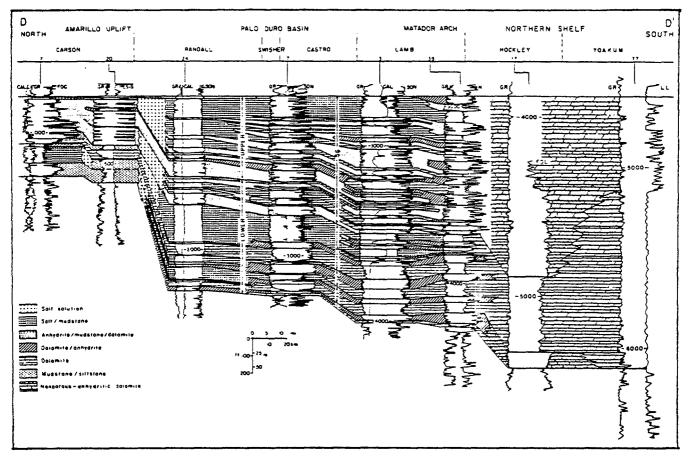
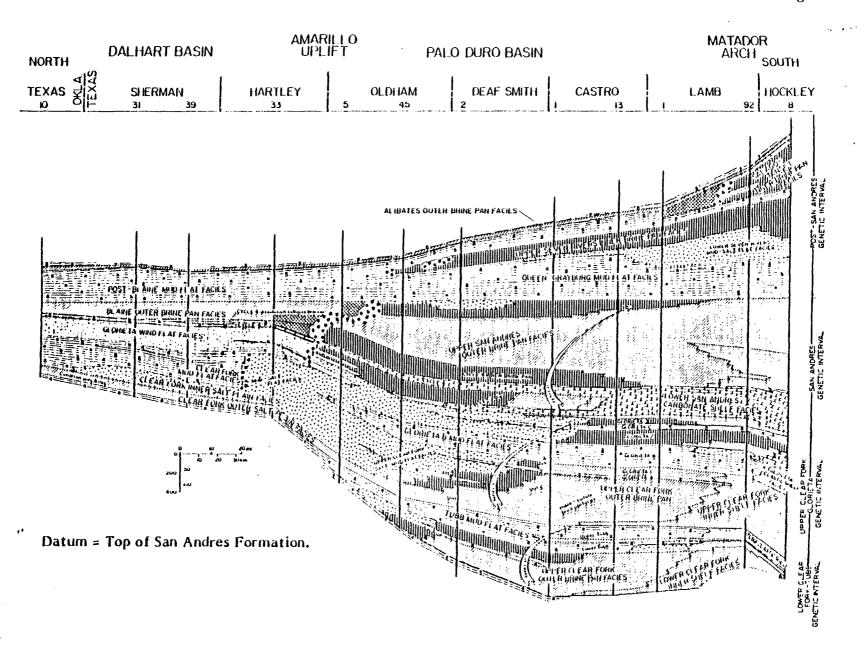
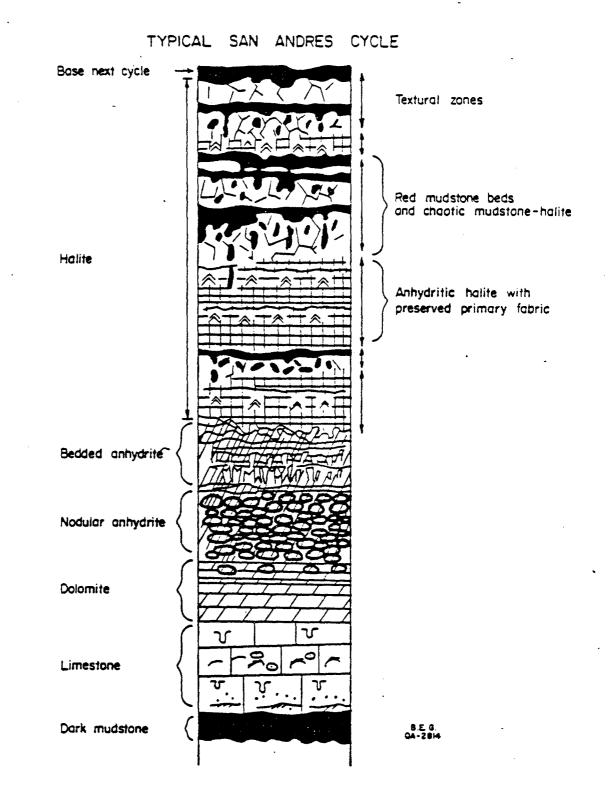
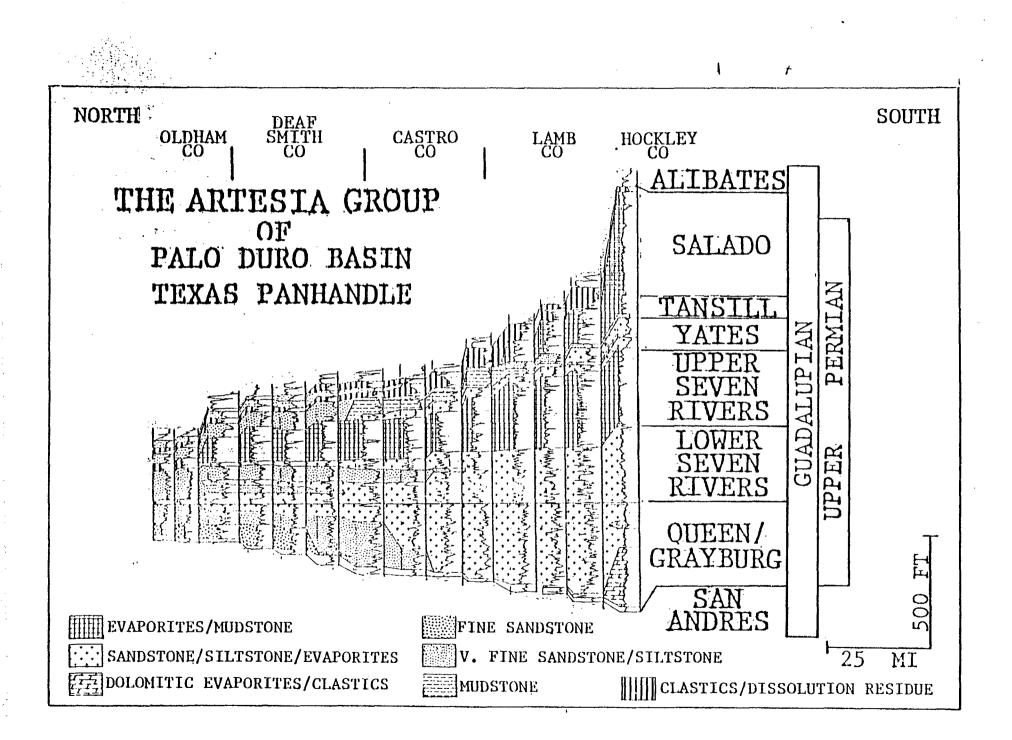
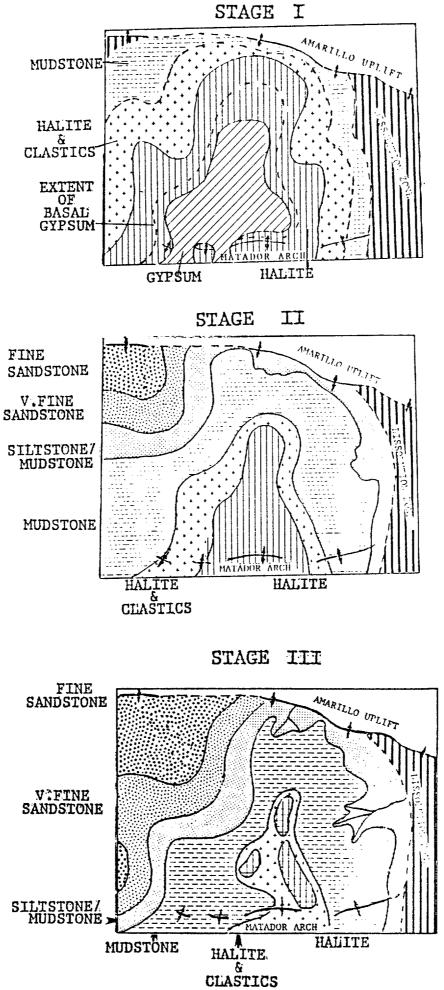


Figure 5. Paleogeography at the time of deposition of the upper Clear Fork and Glorieta Formations.

:


Figure 2. North-south cross section through the study area (after Presley, 1979, and P. Ramondetta, personal communication, 1981). Pinch-out of salt and anhydrite preclude detailed log correlation to the south. Datum: Top San Andres. See figure 1 for line of section.


ligure 2

z

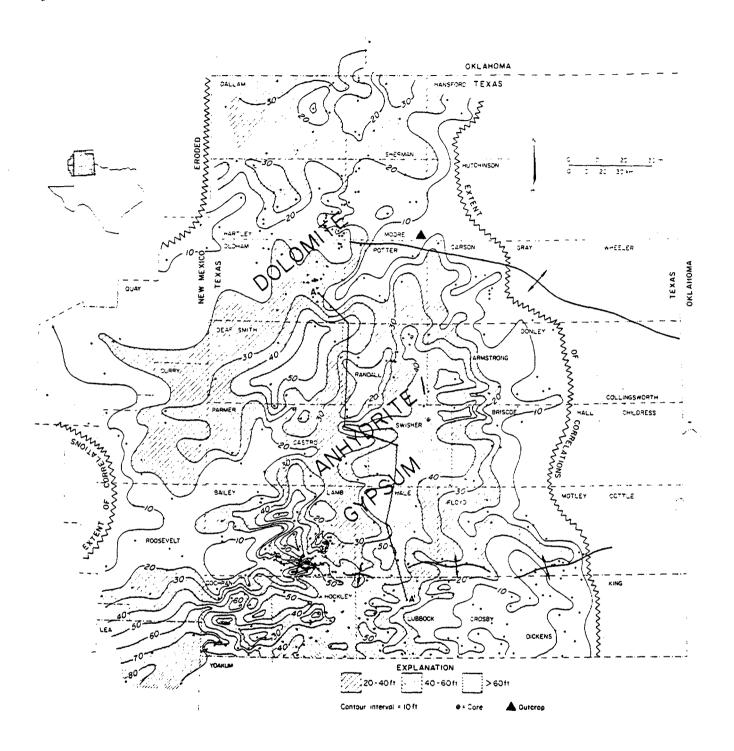


Figure 10. Isopach map, Alibates Formation. Serrate lines mark limit of correlation and erosional boundaries. Outcrop shown in Moore County. Maximum thickness in central and southern Palo Duro Basin.

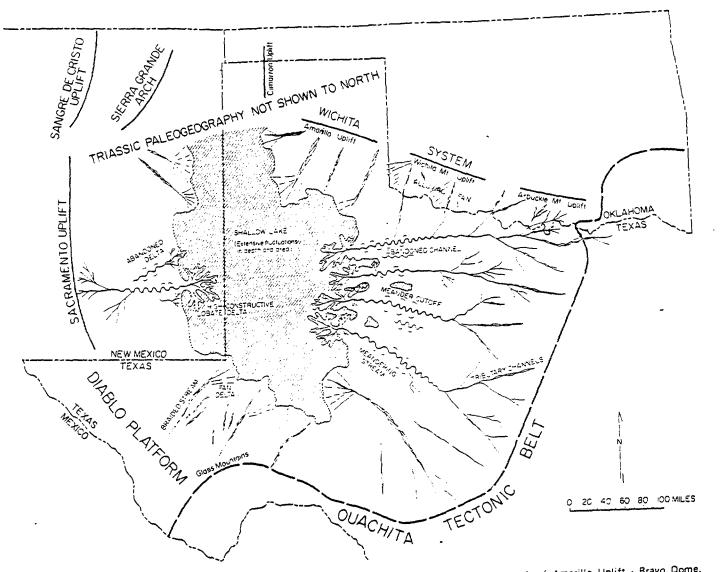


Figure 5. Inferred paleogeography during the initial stage of Dockum sedimentation in the area south of Amarillo Uplift - Bravo Dome. Depositional elements are braided streams, alluvial fans, fan deltas, meandering streams, distriputary deltas, and shallow lakes.