RISK-INFORMED INSERVICE INSPECTION PROGRAM PLAN

KEWAUNEE NUCLEAR POWER PLANT, REVISION 0

Table of Contents

- 1. Introduction
 - 1.1 Relation to NRC Regulatory Guides 1.174 and 1.178
 - 1.2 PSA Quality
- 2. Proposed Alternative to Current Inservice Inspection Programs
 - 2.1 ASME Section XI
 - 2.2 Augmented Programs

3. Risk-Informed ISI Process

- 3.1 Scope of Program
- 3.2 Consequence Evaluation
- 3.3 Failure Potential Assessment
- 3.4 Risk Characterization
- 3.5 Element and NDE Selection
 - 3.5.1 Additional Examinations
 - 3.5.2 Program Relief Requests
- 3.6 Risk Impact Assessment
 - 3.6.1 Quantitative Analysis
 - 3.6.2 Defense-in-Depth
- 4. Implementation and Monitoring Program
- 5. Proposed ISI Program Plan Change
- 6. References/Documentation

1. INTRODUCTION

The Kewaunee Nuclear Power Plant (KNPP) is currently nearing the end of its third inservice inspection (ISI) interval as defined by the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Section XI Code for Inspection Program B. KNPP plans to implement a risk-informed inservice inspection (RI-ISI) program at the start of the fourth inservice inspection interval, which begins June 16, 2004. The ASME Section XI Code used during the third interval was the 1989 Edition. Pursuant to 10 CFR 50.55a(a)(3)(i), KNPP requested to use the 1998 Edition of Section XI with addenda through 2000 for the fourth inservice inspection interval.

The objective of this submittal is to request the use of a risk-informed process for the inservice inspection of Class 1 and 2 piping. The RI-ISI process used in this submittal is described in Electric Power Research Institute (EPRI) Topical Report (TR) 112657 Rev. B-A "Revised Risk-Informed Inservice Inspection Evaluation Procedure." The RI-ISI application was also conducted in a manner consistent with ASME Code Case N-578 "Risk-Informed Requirements for Class 1, 2, and 3 Piping, Method B."

1.1 Relation to NRC Regulatory Guides 1.174 and 1.178

As a risk-informed application, this submittal meets the intent and principles of Regulatory Guide 1.174, "An Approach for Using Probabilistic Risk Assessment in Risk-Informed Decisions On Plant-Specific Changes to the Licensing Basis" and Regulatory Guide 1.178, "An Approach for Plant-Specific Risk-Informed Decisionmaking Inservice Inspection of Piping". Further information is provided in Section 3.6.2 relative to defense-in-depth.

1.2 PSA Quality

This RI-ISI submittal used the 0101 revision of the Kewaunee Probabilistic Risk Assessment (PRA), which reflects the as-built as-operated plant as of December 2001. There have been no changes to the plant since then that would affect the analysis in the submittal.

<u>Summary of Level 1 PRA Results</u>: The base case core damage frequency (CDF) of the 0101 model is 4.1×10^{-5} /year. There have been no changes to the plant since then that would affect the analysis in the submittal. The largest core damage contributor, with a 54% contribution, is Loss of Offsite Power. The largest large early release contributor, with a 73% contribution, is Steam Generator Tube Rupture (SGTR).

<u>Summary of Level 2 PRA Results</u>: The base case large early release frequency (LERF) of the 0101 model is 4.78x10⁻⁶/year, resulting in a LERF/CDF ratio of 0.12. The calculated LERF is conservative, since all SGTR core damage sequences are assumed to contribute to LERF.

<u>PRA Model Description</u>: A detailed Level 1 PRA of Kewaunee was performed in accordance with the methodology described in NUREG/CR-2300, "PRA Procedures Guide." The Kewaunee PRA models were developed using small event trees (primarily systemic) and large fault trees. The model represents accident and transient initiating events starting from power operation and continuing for a 24-hour mission time.

Revisions to the model are controlled by General Nuclear Procedure 01.41.01, "Probabilistic Risk Assessment Model Revisions."

<u>WOG Peer Review</u>: The 0101 model, with some small changes that do not affect this analysis, was reviewed in June 10-14, 2002 by a Westinghouse Owners Group PRA Peer Review Team. The team consisted of a team leader from Westinghouse, two contract PRA reviewers, and three reviewers from PRA groups at other Westinghouse power plants. In general, the review team concluded that the Kewaunee PRA could be effectively used to support applications involving risk significance determinations supported by deterministic analyses once the Facts and Observations (F&Os) noted in the report are addressed.

The F&Os from the final report are summarized below. Kewaunee received five category A (extremely important and necessary to address) and 49 category B (Necessary to address but minor impact) F&Os. A description of the category A F&Os and their applicability to this submittal follows:

- 1. Long-term condensate storage tank inventory is not appropriately modeled for the loss of service water scenario. The resolution of this issue showed that it did not have a major effect on results.
- 2. Time-phasing of diesel generator run failures and different types of losses of offsite power (weather-related, plant-centered, etc.) are not modeled. The resolution of this issue showed that it did not have a major effect on results.
- 3. The bases for the time windows for human actions are not well defined. Work is in progress on resolving this F&O. Preliminary results show that the human error probabilities (HEPs) in the model tend not to be greatly affected by the new time windows.
- 4. The flooding analysis is deficient in a number of areas. Flooding was examined separately in the consequence analysis rather than relying on the PRA flooding analysis.
- 5. Operator action to close valve SI-101A or SI-101B after accumulator refill is overly conservative and perhaps should not be modeled. The resolution of this issue showed that it did not have a major effect on results. The sequences involved were unrelated to piping failures.

Additionally, each of the 49 category B F&Os was examined for effects on piping failure rates or consequences. None of them would result in a significant increase in failure rates or consequences.

F&Os were also examined for severe global impacts that could affect results, but none were found, thus validating the reviewers decision in making them category B F&Os rather than category A F&Os.

2. PROPOSED ALTERNATIVE TO CURRENT ISI PROGRAMS

2.1 ASME Section XI

ASME Section XI Examination Categories B-F, B-J, C-F-1 and C-F-2 currently contain the requirements for the nondestructive examination (NDE) of Class 1 and 2 piping components. The alternative RI-ISI program for piping is described in EPRI TR-112657. The RI-ISI program will be substituted for the current program for Class 1 and 2 piping (Examination Categories B-F, B-J, C-F-1 and C-F-2) in accordance with 10 CFR 50.55a(a)(3)(i) by alternatively providing an acceptable level of quality and safety. Other non-related portions of the ASME Section XI Code will be unaffected. EPRI TR-112657 provides the requirements for defining the relationship between the RI-ISI program and the remaining unaffected portions of ASME Section XI.

2.2 Augmented Programs

The following augmented inspection program was considered during the RI-ISI application:

• The augmented inspection program for flow accelerated corrosion (FAC) per Generic Letter 89-08 is relied upon to manage this damage mechanism but is not otherwise affected or changed by the RI-ISI program.

3. RISK-INFORMED ISI PROCESS

The process used to develop the RI-ISI program conformed to the methodology described in EPRI TR-112657 and consisted of the following steps:

- Scope Definition
- Consequence Evaluation
- Failure Potential Assessment
- Risk Characterization
- Element and NDE Selection
- Risk Impact Assessment
- Implementation Program
- Feedback Loop

A deviation to the EPRI RI-ISI methodology has been implemented in the failure potential assessment for KNPP. Table 3-16 of EPRI TR-112657 contains criteria for assessing the potential for thermal stratification, cycling and striping (TASCS). Key attributes for horizontal or slightly sloped piping greater than 1" nominal pipe size (NPS) include:

- 1. Potential exists for low flow in a pipe section connected to a component allowing mixing of hot and cold fluids, or
- 2. Potential exists for leakage flow past a valve, including in-leakage, out-leakage and cross-leakage allowing mixing of hot and cold fluids, or

- 3. Potential exists for convective heating in dead-ended pipe sections connected to a source of hot fluid, or
- 4. Potential exists for two phase (steam/water) flow, or
- 5. Potential exists for turbulent penetration into a relatively colder branch pipe connected to header piping containing hot fluid with turbulent flow,

AND

 $\Delta T > 50^{\circ}F$,

AND

Richardson Number > 4 (this value predicts the potential buoyancy of a stratified flow)

These criteria, based on meeting a high cycle fatigue endurance limit with the actual ΔT assumed equal to the greatest potential ΔT for the transient, will identify all locations where stratification is likely to occur, but allows for no assessment of severity. As such, many locations will be identified as subject to TASCS where no significant potential for thermal fatigue exists. The critical attribute missing from the existing methodology that would allow consideration of fatigue severity is a criterion that addresses the potential for fluid cycling. The impact of this additional consideration on the existing TASCS susceptibility criteria is presented below.

> Turbulent penetration TASCS

Turbulent penetration typically occurs in lines connected to piping containing hot flowing fluid. In the case of downward sloping lines that then turn horizontal, significant top-to-bottom cyclic Δ Ts can develop in the horizontal sections if the horizontal section is less than about 25 pipe diameters from the reactor coolant piping. Therefore, TASCS is considered for this configuration.

For upward sloping branch lines connected to the hot fluid source that turn horizontal or in horizontal branch lines, natural convective effects combined with effects of turbulence penetration will keep the line filled with hot water. If there is no potential for in-leakage towards the hot fluid source from the outboard end of the line, this will result in a well-mixed fluid condition where significant top-to-bottom Δ Ts will not occur. Therefore TASCS is not considered for these configurations. Even in fairly long lines, where some heat loss from the outside of the piping will tend to occur and some fluid stratification may be present, there is no significant potential for cycling as has been observed for the in-leakage case. The effect of TASCS will not be significant under these conditions and can be neglected.

> Low flow TASCS

In some situations, the transient startup of a system (e.g., RHR suction piping) creates the potential for fluid stratification as flow is established. In cases where no cold fluid source exists, the hot flowing fluid will fairly rapidly displace the cold fluid in stagnant lines, while fluid mixing will occur in the piping further removed from the hot source and stratified conditions will exist only briefly as the line fills with hot fluid. As such, since the situation is transient in nature, it can be assumed that the criteria for thermal transients (TT) will govern.

> Valve leakage TASCS

Sometimes a very small leakage flow of hot water can occur outward past a valve into a line that is relatively colder, creating a significant temperature difference. However, since this is a generally a "steady-state" phenomenon with no potential for cyclic temperature changes, the effect of TASCS is not significant and can be neglected.

> Convection heating TASCS

Similarly, there sometimes exists the potential for heat transfer across a valve to an isolated section beyond the valve, resulting in fluid stratification due to natural convection. However, since there is no potential for cyclic temperature changes in this case, the effect of TASCS is not significant and can be neglected.

In summary, these additional considerations for determining the potential for thermal fatigue as a result of the effects of TASCS provide an allowance for the consideration of cycle severity in assessing the potential for TASCS effects. The above criteria have previously been submitted by EPRI for generic approval (Letters dated February 28, 2001 and March 28, 2001, P.J. O'Regan (EPRI) to Dr. B. Sheron (USNRC), "Extension of Risk-Informed Inservice Inspection Methodology").

3.1 Scope of Program

The systems included in the RI-ISI program are provided in Table 3.1. The piping and instrumentation diagrams and additional plant information including the existing plant ISI program were used to define the Class 1 and 2 piping system boundaries.

3.2 Consequence Evaluation

The consequence(s) of pressure boundary failures were evaluated and ranked based on their impact on core damage and containment performance (i.e., isolation, bypass and large early release). The consequence evaluation included an assessment of shutdown and external events. The impact on these measures due to both direct and indirect effects was considered using the guidance provided in EPRI TR-112657.

3.3 Failure Potential Assessment

Failure potential estimates were generated utilizing industry failure history, plant specific failure history, and other relevant information. These failure estimates were determined using the guidance provided in EPRI TR-112657, with the exception of the previously stated deviation.

Table 3.3 summarizes the failure potential assessment by system for each degradation mechanism that was identified as potentially operative.

3.4 Risk Characterization

In the preceding steps, each run of piping within the scope of the program was evaluated to determine its impact on core damage and containment performance (i.e., isolation, bypass and large, early release) as well as its potential for failure. Given the results of these steps, piping segments are then defined as continuous runs of piping potentially susceptible to the same type(s) of degradation and whose failure will result in similar consequence(s). Segments are then ranked based upon their risk significance as defined in EPRI TR-112657.

The results of these calculations are presented in Table 3.4.

3.5 Element and NDE Selection

In general, EPRI TR-112657 requires that 25% of the locations in the high risk region and 10% of the locations in the medium risk region be selected for inspection using appropriate NDE methods tailored to the applicable degradation mechanism. In addition, per Section 3.6.4.2 of EPRI TR-112657, if the percentage of Class 1 piping locations selected for examination falls substantially below 10%, then the basis for selection needs to be investigated.

For KNPP, the percentage of Class 1 welds selected per the RI-ISI process was 10.0% (65 of 648 welds).

As stated in TR-112657, the existing FAC augmented inspection program provides the means to effectively manage this mechanism. No additional credit was taken for any FAC augmented inspection program locations.

A brief summary is provided in the following table, and the results of the selections are presented in Table 3.5. Section 4 of EPRI TR-112657 was used as guidance in determining the examination requirements for these locations.

Unit	Class 1 Pi	ping Welds ⁽¹⁾	Class 2 Pi	ping Welds ⁽²⁾	All Piping Welds ⁽³⁾		
Onic	Total	Selected	Total	Selected	Total	Selected	
1	648	65	1131	51	1779	116	

Notes

- 2. Includes all Category C-F-1 and C-F-2 locations.
- All in-scope piping components, regardless of risk classification, will continue to receive Code required pressure testing, as part of the current ASME Section XI program. VT-2 visual examinations are scheduled in accordance with the station's pressure test program that remains unaffected by the RI-ISI program.

3.5.1 Additional Examinations

The RI-ISI program in all cases will determine through an engineering evaluation the root cause of any unacceptable flaw or relevant condition found during examination. The evaluation will include the applicable service conditions and

^{1.} Includes all Category B-F and B-J locations.

degradation mechanisms to establish that the element(s) will still perform their intended safety function during subsequent operation. Elements not meeting this requirement will be repaired or replaced.

The evaluation will include whether other elements in the segment or additional segments are subject to the same root cause conditions. Additional examinations will be performed on those elements with the same root cause conditions or degradation mechanisms. The additional examinations will include high risk significant elements and medium risk significant elements, if needed, up to a number equivalent to the number of elements required to be inspected on the segment or segments during the current outage. If unacceptable flaws or relevant conditions are again found similar to the initial problem, the remaining elements identified as susceptible will be examined during the current outage. No additional examinations will be performed if there are no additional elements identified as being susceptible to the same root cause conditions.

3.5.2 Program Relief Requests

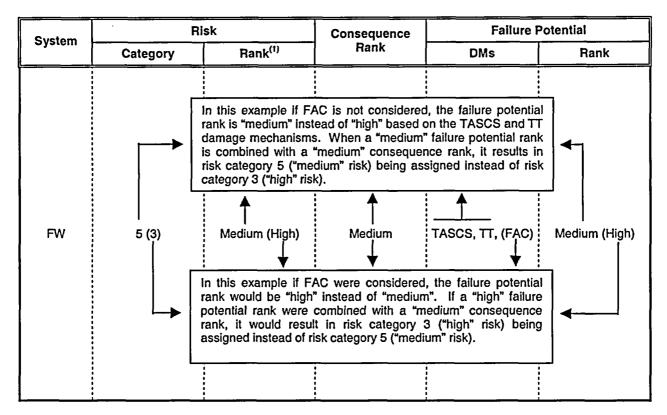
An attempt has been made to select RI-ISI locations for examination such that a minimum of >90% coverage (i.e., Code Case N-460 criteria) is attainable. However, some limitations will not be known until the examination is performed, since some locations may be examined for the first time by the specified techniques.

In instances where locations are found at the time of the examination that do not meet the >90% coverage requirement, the process outlined in EPRI TR-112657 will be followed.

None of the existing KNPP relief requests are being withdrawn due to the RI-ISI application.

3.6 Risk Impact Assessment

The RI-ISI program has been conducted in accordance with Regulatory Guide 1.174 and the requirements of EPRI TR-112657, and the risk from implementation of this program is expected to remain neutral or decrease when compared to that estimated from current requirements.


This evaluation identified the allocation of segments into High, Medium, and Low risk regions of the EPRI TR-112657 and ASME Code Case N-578 risk ranking matrix, and then determined for each of these risk classes what inspection changes are proposed for each of the locations in each segment. The changes include changing the number and location of inspections within the segment and in many cases improving the effectiveness of the inspection to account for the findings of the RI-ISI degradation mechanism assessment. For example, for locations subject to thermal fatigue, examinations will be conducted on an expanded volume and will be focused to enhance the probability of detection (POD) during the inspection process.

3.6.1 Quantitative Analysis

Limits are imposed by the EPRI methodology to ensure that the change in risk of implementing the RI-ISI program meets the requirements of Regulatory Guides 1.174 and 1.178. The EPRI criterion requires that the cumulative change in core damage frequency (CDF) and large early release frequency (LERF) be less than 1E-07 and 1E-08 per year per system, respectively.

Kewaunee conducted a risk impact analysis per the requirements of Section 3.7 of EPRI TR-112657. The analysis estimates the net change in risk due to the positive and negative influence of adding and removing locations from the inspection program. A risk quantification was performed using the "Simplified Risk Quantification Method" described in Section 3.7 of EPRI TR-112657. The conditional core damage probability (CCDP) and conditional large early release probability (CLERP) used for high consequence category segments was based on the highest evaluated CCDP (1E-02) and CLERP (1E-03), whereas, for medium consequence category segments, bounding estimates of CCDP (1E-04) and CLERP (1E-05) were used. The likelihood of pressure boundary failure (PBF) is determined by the presence of different degradation mechanisms and the rank is based on the relative failure probability. The basic likelihood of PBF for a piping location with no degradation mechanism present is given as x_{α} and is expected to have a value less than 1E-08. Piping locations identified as medium failure potential have a likelihood of $20x_0$. These PBF likelihoods are consistent with References 9 and 14 of EPRI TR-112657. In addition, the analysis was performed both with and without taking credit for enhanced inspection effectiveness due to an increased POD from application of the RI-ISI approach.

Table 3.6-1 presents a summary of the RI-ISI program versus the applicable ASME Section XI Code Edition program requirements and identifies on a per system basis each applicable risk category. The presence of FAC was adjusted for in the performance of the quantitative analysis by excluding its impact on the risk ranking. The exclusion of the impact of FAC on the risk ranking and therefore in the determination of the change in risk is performed, because FAC is a damage mechanism managed by a separate, independent plant augmented inspection program. The RI-ISI Program credits and relies upon this augmented plant inspection program to manage this damage mechanism. The plant FAC Program will continue to determine where and when examinations shall be performed. Hence, since the number of FAC examination locations remains the same "before" and "after" and no delta exists, there is no need to include the impact of FAC in the performance of the risk impact analysis. However, in an effort to be as informative as possible, for those systems where FAC is present, Table 3.6-1 presents the information in such a manner as to depict what the resultant risk categorization is both with and without consideration of FAC. This is accomplished by enclosing the FAC damage mechanism, as well as all other resultant corresponding changes (failure potential rank, risk category and risk rank), in parenthesis. Again, this has only been done for information purposes. and has no impact on the assessment itself. The use of this approach to depict the impact of degradation mechanisms managed by augmented inspection programs on the risk categorization is consistent with that used in the delta risk assessment for the Arkansas Nuclear One, Unit 2 (ANO-2) pilot application. An example is provided below.

Note

1. The risk rank is not included in Table 3.6-1 but it is included in Table 5-2.

As indicated in the following table, this evaluation has demonstrated that unacceptable risk impacts will not occur from implementation of the RI-ISI program, and satisfies the acceptance criteria of Regulatory Guide 1.174 and EPRI TR-112657.

Risk Impact Results

System ⁽¹⁾	∆Ris	SKCDF	∆Ris	KLERF
	w/ POD	w/o POD	w/ POD	w/o POD
RC	-8.80E-09	-2.80E-09	-8.80E-10	-2.80E-10
RHR	-3.47E-09	-1.46E-09	-3.47E-10	-1.46E-10
SI	-2.54E-09	-1.74E-09	-2.54E-10	-1.74E-10
CVC	-1.67E-08	-9.46E-09	-1.67E-09	-9.46E-10
MS	negligible	negligible	negligible	negligible
FW	negligible	4.00E-11	negligible	4.00E-12
ICS	-4.50E-10	-4.50E-10	-4.50E-11	-4.50E-11
AF	3.20E-11	4.00E-11	3.20E-12	4.00E-12
Total	-3.19E-08	-1.58E-08	-3.19E-09	-1.58E-09

Note

1. Systems are described in Table 3.1.

3.6.2 Defense-in-Depth

The intent of the inspections mandated by ASME Section XI for piping welds is to identify conditions such as flaws or indications that may be precursors to leaks or ruptures in a system's pressure boundary. Currently, the process for picking inspection locations is based upon structural discontinuity and stress analysis results. As depicted in ASME White Paper 92-01-01 Rev. 1, "Evaluation of Inservice Inspection Requirements for Class 1, Category B-J Pressure Retaining Welds," this method has been ineffective in identifying leaks or failures. EPRI TR-112657 and Code Case N-578 provide a more robust selection process founded on actual service experience with nuclear plant piping failure data.

This process has two key independent ingredients, that is, a determination of each location's susceptibility to degradation and secondly, an independent assessment of the consequence of the piping failure. These two ingredients assure defense in depth is maintained. First, by evaluating a location's susceptibility to degradation, the likelihood of finding flaws or indications that may be precursors to leak or ruptures is increased. Secondly, the consequence assessment effort has a single failure criterion. As such, no matter how unlikely a failure scenario is, it is ranked High in the consequence assessment, and at worst Medium in the risk assessment (i.e., Risk Category 4), if as a result of the failure there is no mitigative equipment available to respond to the event. In addition, the consequence assessment takes into account equipment reliability, and less credit is given to less reliable equipment.

All locations within the Class 1 and 2 pressure boundaries will continue to receive a system pressure test and visual VT-2 examination as currently required by the Code regardless of its risk classification.

4. IMPLEMENTATION AND MONITORING PROGRAM

Upon approval of the RI-ISI program, procedures that comply with the guidelines described in EPRI TR-112657 will be prepared to implement and monitor the program. The new program will be integrated into the fourth inservice inspection interval. No changes to the Technical Specifications or Updated Safety Analysis Report are necessary for program implementation.

The applicable aspects of the ASME Code not affected by this change will be retained, such as inspection methods, acceptance guidelines, pressure testing, corrective measures, documentation requirements, and quality control requirements. Existing ASME Section XI program implementing procedures will be retained and modified to address the RI-ISI process, as appropriate.

The monitoring and corrective action program will contain the following elements:

- A. Identify
- B. Characterize
- C. (1) Evaluate, determine the cause and extent of the condition identified
 - (2) Evaluate, develop a corrective action plan or plans
- D. Decide
- E. Implement
- F. Monitor
- G. Trend

The RI-ISI program is a living program requiring feedback of new relevant information to ensure the appropriate identification of high safety significant piping locations. As a minimum, risk ranking of piping segments will be reviewed and adjusted on an ASME period basis. In addition, significant changes may require more frequent adjustment as directed by NRC Bulletin or Generic Letter requirements, or by industry and plant specific feedback.

5. PROPOSED ISI PROGRAM PLAN CHANGE

Prior to the development of the RI-ISI program, piping weld selections were determined for the upcoming fourth interval per ASME Section XI requirements. As allowed by 10 CFR 50, the Class 1 (Examination Categories B-F and B-J) piping weld selections were determined per the requirements of the 1974 Edition through Summer 1975 Addenda of ASME Code Section XI. For Class 2 (Examination Categories C-F-1 and C-F-2), the piping weld selections were determined per the requirements of the 1998 Edition through 2000 Addenda of ASME Code Section XI. A comparison between the RI-ISI program and ASME Section XI Code program requirements for in-scope piping is provided in Tables 5-1 and 5-2. Table 5-1 provides a summary comparison by risk region. Table 5-2 provides the same comparison information, but in a more detailed manner by risk category, similar to the format used in Table 3.6-1.

KNPP is implementing the RI-ISI program at the start of the first period of its fourth inspection interval. As such, 100% of the required RI-ISI program inspections will be completed in the fourth interval. Examinations shall be performed during the interval such that the period examination percentage requirements of ASME Section XI, paragraphs IWB-2412 and IWC-2412 are met.

6. REFERENCES/DOCUMENTATION

EPRI TR-112657, "Revised Risk-Informed Inservice Inspection Evaluation Procedure", Rev. B-A

ASME Code Case N-578, "Risk-Informed Requirements for Class 1, 2, and 3 Piping, Method B, Section XI, Division 1"

Regulatory Guide 1.174, "An Approach for Using Probabilistic Risk Assessment in Risk-Informed Decisions On Plant-Specific Changes to the Licensing Basis"

Regulatory Guide 1.178, "An Approach for Plant-Specific Risk-Informed Decisionmaking Inservice Inspection of Piping"

Supporting Onsite Documentation

Structural Integrity Calculation/File No. NMC-01-340, "Degradation Mechanism Evaluation for the Kewaunee Nuclear Power Plant (KNPP)", Revision 2, dated July 11, 2003

Structural Integrity Calculation/File No. NMC-01-341, "Risk-Informed Inservice Inspection Consequence Evaluation of Class 1 & 2 Piping – Kewaunee", Revision 3

Structural Integrity Calculation/File No. NMC-01-342, "Risk Ranking Summary, Matrix and Report for the Kewaunee Nuclear Power Plant", Revision 0

Structural Integrity Calculation/File No. NMC-01-343, "Risk Impact Analysis for the Kewaunee Nuclear Power Plant", Revision 0

Structural Integrity Calculation/File No. NMC-01-345, "Risk-Informed Inservice Inspection Service History Review", dated March 21, 2003

Structural Integrity File No. NMC-01-103-2, Record of Conversation No. ROC-006, "Minutes of the Element Selection Meeting for the Risk-Informed ISI Project at the Kewaunee Nuclear Power Plant", Revision 0, dated February 6, 2003

Table 3	.1	
System Selection and Segm	ent / Element Definition	
System Description	Number of Segments	Number of Elements
RC - Reactor Coolant	36	270
RHR – Residual Heat Removal	60	363
SI – Safety Injection	67	538
CVC - Chemical and Volume Control	20	213
MS – Main Steam	20	76
FW Feedwater	12	51
ICS – Internal Containment Spray	19	121
AF – Auxiliary Feedwater	14	147
Totals	248	1779

(

					Tabl	e 3.3						
	_		Unit	1 - Failure	e Potentia	I Assessm	ent Sum	mary				
System ⁽¹⁾	Thermat	Fatigue		Stress Corros	sion Cracking	g	Loc	Localized Corrosion			Flow Sensitive	
System	TASCS	π	IGSCC	TGSCC	ECSCC	PWSCC	MIC	PIT	сс	E-C	FAC	
RC	x	x	1			l l					Î	
RHR	x	<u></u> _										
SI		X	X			X						
CVC	X	X										
MS												
FW	X		1								X	
ICS												
AF	X	X	· -									

.

Note

1. Systems are described in Table 3.1.

						Та	ble 3.4							
		1	lumber	of Segme	ents by	Risk Cate	egory W	/ith and V	Vithout	Impact o	f FAC			
	High Risk Region Medium Risk Region Low Risk Region													
System ⁽¹⁾	Cate	gory 1	Cate	gory 2	Cate	tegory 3 Category 4 Category 5				Cate	gory 6	Cate	egory 7	
	With	Without	With	Without	With	Without	With	Without	With	Without	With	Without	With	Withou
RC			7	7			29	29						1
RHR			2	2			19	19	2	2	32	32	5	5
SI			3	3			25	25	7	7	32	32		
CVC			2	2			6	6	1	1	7	7	4	4
MS											20	20		
FW					1 ⁽²⁾	0			4	4	7	8		
ICS							11	11			6	6	2	2
AF							2	2	2	2	10	10		
Total			14	14	1	0	92	92	16	16	114	115	11	11

Notes

1. Systems are described in Table 3.1.

2. This segment becomes Category 6 after FAC is removed from consideration due to no other damage mechanism being present.

(

						Ta	ble 3.5							
		Number	of Elem	ents Sele	cted fo	r Inspecti	on by F	Risk Cate	gory Ex	cluding l	npact o	of FAC		
			High Ris	sk Region				Medium Ri	sk Regior	t		Low Risk	Region	
System ⁽¹⁾	Category 1 Category 2 Category 3 Category 4 Category 5					Cate	gory 6	Cate	gory 7					
	Total	Selected	Total	Selected	Totai	Selected	Total	Selected	Total	Selected	Total	Selected	Total	Selected
RC			22	6		T T	248	25	0	0	0	0	0	0
RHR			8	2			107	11	6	1	221	0	21	0
SI			4	3			317	32	10	1	207	0	0	0
CVC			35	9			88	9	5	1	76	0	9	0
MS			0	0			0	0	0	0	76	0	0	0
FW			0	0			0	0	16	2	35	0	0	0
ICS			0	0			88	9	0	0	16	0	17	0
AF			0	0			33	4	6	1	108	0	0	0
Total			69	20			881	90	43	6	739	0	47	0

Notes

1. Systems are described in Table 3.1.

				1	fable 3.6-1						
				Risk Impa	ct Analysis	Results					
System ⁽¹⁾	Category	Consequence	Failure F	Potential		Inspections		CDF Impact ⁽⁴⁾		LERF Impact ⁽⁴⁾	
System	Calegory	Rank	DMs	Rank	SXI ^(2 and 3)	RI-ISI	Delta	w/ POD	w/o POD	w/ POD	w/o POD
RC	2	High	TASCS, TT	Medium	1	2	1	-3.00E-09	-1.00E-09	-3.00E-10	-1.00E-10
RC	2	High	TASCS	Medium	0	1	1	-1.80E-09	-1.00E-09	-1.80E-10	-1.00E-10
RC	2	High	Π	Medium	2	3	1	-4.20E-09	-1.00E-09	-4.20E-10	-1.00E-10
RC	4	High	None	Low	29	25	-4	2.00E-10	2.00E-10	2.00E-11	2.00E-11
RC Total								-8.80E-09	-2.80E-09	-8.80E-10	-2.80E-10
RHR	2	High	TASCS	Medium	1	2	1	-3.00E-09	-1.00E-09	-3.00E-10	-1.00E-10
RHR	4	High	None	Low	2	11	9	-4.50E-10	-4.50E-10	-4.50E-11	-4.50E-11
RHR	5a	Medium	TASCS	Medium	0	1	1	-1.80E-11	-1.00E-11	-1.80E-12	-1.00E-12
RHR	6a	Medium	None	Low	11	0	-11	negligible	negligible	negligible	negligible
RHR	6b	Low	TASCS	Medium	0	. 0	0	no change	no change	no change	no change
RHR	7a	Low	None	Low	0	0	0	no change	no change	no change	no change
RHR Total								-3.47E-09	-1.46E-09	-3.47E-10	-1.46E-10
SI	2	High	TT	Medium	0	1	1	-1.80E-09	-1.00E-09	-1.80E-10	-1.00E-10
SI	2	High	PWSCC	Medium	2	2	0	no change	no change	no change	no change
SI	4	High	None	Low	17	32	15	-7.50E-10	-7.50E-10	-7.50E-11	-7.50E-11
SI	5a	Medium	TT, IGSCC	Medium	1	1	0	no change	no change	no change	no change
SI	5a	Medium	IGSCC	Medium	1	0	-1	1.00E-11	1.00E-11	1.00E-12	1.00E-12
SI	6a	Medium	None	Low	17	0	-17	negligible	negligible	negligible	negligible
SI Total								-2.54E-09	-1.74E-09	-2.54E-10	-1.74E-10

				 Ta	able 3.6-1			<u></u>		<u></u>		
	Risk Impact Analysis Results											
System ⁽¹⁾	Catagory	Consequence	Failure	Potential		Inspections		CDF In	npact ⁽⁴⁾	LERF I	mpact ⁽⁴⁾	
System	Category	Rank	DMs	Rank	SXI ^(2 and 3)	RI-ISI	Delta	w/ POD	w/o POD	w/ POD	w/o POD	
CVC	2	High	TASCS	Medium	0	1	1	-1.80E-09	-1.00E-09	-1.80E-10	-1.00E-10	
CVC	2	High	TT	Medium	0	8	8	-1.44E-08	-8.00E-09	-1.44E-09	-8.00E-10	
CVC	4	High	None	Low	0	9	9	-4.50E-10	-4.50E-10	-4.50E-11	-4.50E-11	
CVC	5a	Medium	π	Medium	0	1	1	-1.80E-11	-1.00E-11	-1.80E-12	-1.00E-12	
CVC	6a	Medium	None	Low	0	0	0	no change	no change	no change	no change	
CVC	7a	Low	None	Low	0	0	0	no change	no change	no change	no change	
CVC Total								-1.67E-08	-9.46E-09	-1.67E-09	-9.46E-10	
MS	6a	Medium	None	Low	11	0	-11	negligible	negligible	negligible	negligible	
MS Total								negligible	negligible	negligible	negligible	
FW	5a	Medium	TASCS	Medium	6	2	-4	no change	4.00E-11	no change	4.00E-12	
FW	6a (3)	Medium	None (FAC)	Low (High)	2	0	-2	negligible	negligible	negligible	negligible	
FW	6a	Medium	None	Low	2	0	-2	negligible	negligible	negligible	negligible	
FW Total								negligible	4.00E-11	negligible	4.00E-12	
ICS	4	High	None	Low	0	9	9	-4.50E-10	-4.50E-10	-4.50E-11	-4.50E-11	
ICS	6a	Medium	None	Low	1	0	-1	negligible	negligible	negligible	negligible	
ICS	7a	Low	None	Low	0	0	0	no change	no change	no change	no change	
ICS Total								-4.50E-10	-4.50E-10	-4.50E-11	-4.50E-11	
AF	4	High	None	Low	5	4	-1	5.00E-11	5.00E-11	5.00E-12	5.00E-12	
AF	5a	Medium	TASCS, TT	Medium	0	1	1	-1.80E-11	-1.00E-11	-1.80E-12	-1.00E-12	
AF	6a	Medium	None	Low	7	0	-7	negligible	negligible	negligible	negligible	
AF Total								3.20E-11	4.00E-11	3.20E-12	4.00E-12	
Grand Total								-3.19E-08	-1.58E-08	-3.19E-09	-1.58E-09	

Notes

1. Systems are described in Table 3.1.

Notes for Table 3.6-1 (cont'd)

- 2. Only those ASME Section XI Code inspection locations that received a volumetric examination in addition to a surface examination are included in the count. Inspection locations previously subjected to a surface examination only were not considered in accordance with Section 3.7.1 of EPRI TR-112657.
- Prior to the development of the RI-ISI program, Class 1 (Examination Categories B-F and B-J) and Class 2 (Examination Categories C-F-1 and C-F-2) piping weld selections were determined for the upcoming fourth interval. These selections were used for comparison purposes. As allowed by 10 CFR 50, the Class 1 piping weld selections were determined per the requirements of the 1974 Edition through Summer 1975 Addenda of ASME Code Section XI. For Class 2, the piping weld selections were determined per the requirements of the 1998 Edition through 2000 Addenda of ASME Code Section XI.
- 4. Per Section 3.7.1 of EPRI TR-112657, the contribution of low risk categories 6 and 7 need not be considered in assessing the change in risk. They are excluded from analysis because they have an insignificant impact on risk. Hence, the word "negligible" is given in these cases in lieu of values for CDF and LERF Impact. For those cases in high, medium or low risk region piping where no impact to CDF or LERF exists, "no change" is listed.

Table 5-1 Inspection Location Selection Comparison Between ASME Section XI Code and EPRI TR-112657 by Risk Region **High Risk Region Medium Risk Region** Low Risk Region Code System⁽¹⁾ Section XI⁽²⁾ Section XI⁽²⁾ Section XI⁽²⁾ EPRI TR-112657 EPRI TR-112657 EPRI TR-112657 Weld Weld Weld Category Count Count Count Other⁽³⁾ Other⁽³⁾ Vol/Sur Sur Only Other⁽³⁾ RI-ISI Vol/Sur Sur Oniv RI-ISI Vol/Sur Sur Oniv RI-ISI B-F RC B-1 B-J RHR C-F-1 B-F SI B-J C-F-1 CVC B-J MS C-F-2 FW C-F-2 ICS C-F-1 AF C-F-2 B-F B-J Total C-F-1 C-F-2

Notes

1. Systems are described in Table 3.1.

Prior to the development of the RI-ISI program, Class 1 (Examination Categories B-F and B-J) and Class 2 (Examination Categories C-F-1 and C-F-2) piping weld selections were determined for the upcoming fourth interval. These selections were used for comparison purposes. As allowed by 10 CFR 50, the Class 1 piping weld selections were determined per the requirements of the 1974 Edition through Summer 1975 Addenda of ASME Code Section XI. For Class 2, the piping weld selections were determined per the requirements of the 1998 Edition through 2000 Addenda of ASME Code Section XI.

Notes for Table 5-1 (cont'd)

3. The column labeled "Other" is generally used to identify augmented inspection program locations credited per Section 3.6.5 of EPRI TR-112657. The EPRI methodology allows augmented inspection program locations to be credited if the inspection locations selected strictly for RI-ISI purposes produce less than a 10% sampling of the overall Class 1 weld population. As stated in Section 3.5 of this template, KNPP achieved a 10% sampling without relying on augmented inspection program locations. The "Other" column has been retained in this table solely for uniformity purposes with the other RI-ISI application template submittals.

Table 5-2 Inspection Location Selection Comparison Between ASME Section XI Code and EPRI TR-112657 by Risk Category Section XI⁽²⁾ Risk EPRI TR-112657 **Failure Potential** Consequence Code Weid System⁽¹⁾ Rank Category Count Other⁽³⁾ Vol/Sur Sur Only Category Rank DMs Rank RI-ISI TASCS, TT RC High High 2 Medium B-J 5 1 0 2 RC 2 High High TASCS Medium B-J 7 0 0 1 B-F 1 1 0 1 RC 2 High High Π Medium B-J 9 1 0 2 B-F 12 12 0 12 RC 4 Medium High None Low 17 B-J 236 53 13 2 High TASCS RHR High Medium B-J 8 1 0 2 B-J 9 1 0 5 RHR 4 Medium High None Low C-F-1 1 7 6 98 TASCS 5 Medium Medium 0 1 RHR Medium C-F-1 6 0 **RHR** 6 Medium 9 0 0 Low None Low B-J 27 C-F-1 RHR 6 Medium 2 Low None Low 192 13 0 RHR 6 Low TASCS Medium C-F-1 2 0 Low 0 0 7 RHR C-F-1 0 0 0 Low Low None Low 21 SI 2 High High π Medium 2 0 0 B-J 1 2 PWSCC SI High B-F 2 High Medium 2 0 2 B-J 12 3 0 4 SI 4 Medium High None Low C-F-1 305 14 12 28 SI 5 Medium Medium TT, IGSCC Medium B-J 5 1 1 1 SI 5 Medium Medium IGSCC 5 Medium B-J 1 0 0 95 B-J 16 13 0 SI 6 Low Medium None Low C-F-1 8 112 1 0

Table 5-2 (cont'd) Inspection Location Selection Comparison Between ASME Section XI Code and EPRI TR-112657 by Risk Category Section XI⁽²⁾ Risk Failure Potential EPRI TR-112657 Consequence Weld Code System⁽¹⁾ Rank Category Count Vol/Sur Sur Only Other⁽³⁾ Category Rank DMs Rank RI-ISI CVC 2 High High TASCS 2 0 0 Medium B-J 1 2 CVC High TT High Medium B-J 33 0 10 8 CVC 4 Medium High None Low B-J 88 0 30 9 CVC 5 Medium Medium TT B-J 5 0 0 Medium 1 CVC 6 Low Medium None B-J 76 0 21 0 Low CVC 7 Low Low None Low B-J 9 0 4 0 MS 6 Low Medium None Low C-F-2 76 11 2 0 FW 5 Medium Medium TASCS Medium C-F-2 16 6 1 2 FW 6 (3) Low (High) Medium None (FAC) 2 C-F-2 2 0 0 Low (High) FW 6 Medium Low C-F-2 33 2 None Low 0 0 ICS 4 Medium High None C-F-1 Low 88 0 6 9 ICS 6 Low Medium None Low C-F-1 16 1 0 0 7 ICS Low Low None C-F-1 17 0 3 0 Low AF 4 Medium High None Low C-F-2 33 5 0 4 AF 5 Medium TASCS, TT Medium Medium C-F-2 6 0 0 1 AF 6 Low Medium None Low C-F-2 108 7 0 0

Notes

1. Systems are described in Table 3.1.

Prior to the development of the RI-ISI program, Class 1 (Examination Categories B-F and B-J) and Class 2 (Examination Categories C-F-1 and C-F-2) piping weld selections were determined for the upcoming fourth interval. These selections were used for comparison purposes. As allowed by 10 CFR 50, the Class 1 piping weld selections were determined per the requirements of the 1974 Edition through Summer 1975 Addenda of ASME Code Section XI. For Class 2, the piping weld selections were determined per the requirements of the 1998 Edition through 2000 Addenda of ASME Code Section XI.

Notes for Table 5-2 (cont'd)

3. The column labeled "Other" is generally used to identify augmented inspection program locations credited per Section 3.6.5 of EPRI TR-112657. The EPRI methodology allows augmented inspection program locations to be credited if the inspection locations selected strictly for RI-ISI purposes produce less than a 10% sampling of the overall Class 1 weld population. As stated in Section 3.5 of this template, KNPP achieved a 10.0% sampling without relying on augmented inspection program locations. The "Other" column has been retained in this table solely for uniformity purposes with the other RI-ISI application template submittals.

ų

INSERVICE ENGINEERING

DOCUMENT PACKAGE

FILE No.: NMC-01-342

PROJECT No.: NMC-01

PROJECT NAME: Risk-Informed ISI Code Case N-578 Application to NMC Plants

CLIENT: Nuclear Management Company (NMC)

DOCUMENT TITLE: Risk Ranking Summary, Matrix and Report for the Kewaunee Nuclear Power Plant

Document Revision	Affected Pages	Revision Description	Preparer(s) Signature(s) & Date	Checker(s) Signature(s) & Date	Approver(s) Signature(s) & Date
0	i A1 B1 C1 – C20	Original Issue		-lestt Kelut 7/11/03	

i

Kewaunee Risk Ranking Summary

Ś

	R	isk	Dama Dank	Failure I	Potential	Weld Count		No. of
System	Category	Rank	Consequence Rank-	DMs	Rank			Element Selected
01RC	2	High	High	TASCS, TT	Medium	5	1	
01RC	2	High	High	TASCS	Medium	7	1	6
01RC	2	High	High	π	Medium	10	1	
02RHR	2	High	High	TASCS	Medium	8	1	2
0351	2	High	High		Medium	2	1	
0351	2	High	High	PWSCC	Medium	2	1	3
04CVC	2	High	High	TASCS	Medium	2	1	
04CVC	2	High	High	π	Medium	33	1	9
01RC	4	Medium	High	None	Low	248	1	25
02RHR	4	Medium	High	None	Low	9	1	
02RHR	4	Medium	High	None	Low	98	2	11
0351	4	Medium	High	None	Low	12	1	
0351	4	Medium	High	None	Low	305	2	32
04CVC	4	Medium	High	None	Low	88	1	9
07ICS	4	Medium	High	None	Low	88	2	9
08AF	4	Medium	High	None	Low	33	2	4
02RHR	5a	Medium	Medium	TASCS	Medium	6	2	1
0351	5a	Medium	Medium	TT, IGSCC	Medium	5	1	
0351	5a	Medium	Medium	IGSCC	Medium	5	1	1
04CVC	5a	Medium	Medium	π	Medium	5	1	1
06FW	5a	Medium	Medium	TASCS	Medium	16	2	2
08AF	5a	Medium	Medium	TASCS, TT	Medium	6	2	1
02RHR	6a	Low	Medium	None	Low	27	1	
02RHR	6a	Low	Medium	None	Low	192	2	0
02RHR	6b	Low	Low	TASCS	Medium	2	2	0
0351	6a	Low	Medium	None	Low	95	1	-
0351	6a	Low	Medium	None	Low	112	2	0
04CVC	6a	Low	Medium	None	Low	76	1	0
05MS	6a	Low	Medium	None	Low	76	2	0
06FW	6a (3)	Low (High)	Medium	None (FAC)	Low (High)	2	2	0
06FW	6a	Low	Medium	None	Low	33	2	0
07ICS	6a	Low	Medium	None	Low	16	2	. 0
08AF	6a	Low	Medium	None	Low	108	2	0
02RHR	7a	Low	Low	None	Low	21	2	0
04CVC	7a	Low	Low	None	Low	9	1	0
07ICS	7a	Low	Low	None	Low	17	2	0

• T I
21

.

.

-

Kewaun	ee Risk ,		Conditional Cor	e Melt Potential	
Ranking	, Matrix	NONE	LOW	MEDIUM	HIGH
[Category 7b - Low Risk	Category 5b - Medium Risk	Category 3 - High Risk	Category 1 - High Risk
ıt	H I G H	01RC - 0 02RHR - 0 03SI - 0 04CVC - 0 05MS - 0 06FW - 0 07ICS - 0 08AF - 0	01RC - 0 02RHR - 0 03SI - 0 04CVC - 0 05MS - 0 06FW - 0 07ICS - 0 08AF - 0	01RC - 0 02RHR - 0 03SI - 0 04CVC - 0 05MS - 0 06FW - 0 07ICS - 0 08AF - 0	01RC - 0 02RHR - 0 03SI - 0 04CVC - 0 05MS - 0 06FW - 0 07ICS - 0 08AF - 0
me		Total - 0 Elements	Total - 0 Elements	Total - 0 Elements	Total - 0 Elements
Degradation Mechanism Assessment <i>Pipe Rupture Potential</i>	M E D I U M	Category 7c - Low Risk 01RC - 0 02RHR - 0 03SI - 0 04CVC - 0 05MS - 0 06FW - 0 07ICS - 0 08AF - 0	Category 6b - Low Risk 01RC - 0 02RHR - 2 03SI - 0 04CVC - 0 05MS - 0 06FW - 0 07ICS - 0 08AF - 0	Category 5a - Medium Risk 01RC - 0 02RHR - 6 03SI - 10 04CVC - 5 05MS - 0 06FW - 16 07ICS - 0 08AF - 6	Category 2 - High Risk 01RC - 22 02RHR - 8 03SI - 4 04CVC - 35 05MS - 0 06FW - 0 07ICS - 0 08AF - 0
Degradatio <i>Pip</i>	L O W	Total - 0 Elements Category 7d - Low Risk 01RC - 0 02RHR - 0 03SI - 0 04CVC - 0 05MS - 0 06FW - 0 07ICS - 0 08AF - 0 Total - 0 Elements	Total - 2 Elements Category 7a - Low Risk 01RC - 0 02RHR - 21 03SI - 0 04CVC - 9 05MS - 0 06FW - 0 07ICS - 17 08AF - 0 Total - 47 Elements	Total - 43 Elements Category 6a - Low Risk 01RC - 0 02RHR - 219 03SI - 207 04CVC - 76 05MS - 76 06FW - 35 07ICS - 16 08AF - 108 Total - 737 Elements	Total - 69 Elements Category 4 - Medium Risk 01RC - 248 02RHR - 107 03SI - 317 04CVC - 88 05MS - 0 06FW - 0 07ICS - 88 08AF - 33 Total - 881 Elements

Consequence Evaluation Conditional Core Melt Potential

Calc./File No. NMC-01-342 Rev.0

System	Risk	Characteriz	ation	Consec	quence	Failure F	Potentiai	Lines in Segment	Welds in Segment	Weld		cc
Jystein -	Segment	Category	Rank		Rank	DMs DMs	Rank			Count	Oketen 110(3).	
01RC	RC-027	2	High	RCS-C-09	High	TASCS, TT	Medium	10-RC-ISIM-1704 10-RC-ISIM-892	RC-W033BC RC-W062, <u>RC-W063,</u> RC-W064, <u>RC-W065</u>	5	ISIM-1704 ISIM-892	1
01RC	RC-039	2	High	RCS-C-17	High	TASCS	Medium	3-RC-ISIM-874-1	PS-W053, PS-W054, <u>PS-W055,</u> PS-W056, PS W057, PS-W058, PS-W059	7	ISIM-874-1	1
01RC	RC-001	2	High	CVCS-C-02	High	Π	Medium	2-RC-ISIM-1704	RC-W051BC	1	ISIM-1704	1
01RC	RC-004	2	High	IL-C-05	High	π	Medium	6-RC-ISIM-982 6-RC-ISIM-1703	RC-W028, RC-W029 RC-W022BC	3	ISIM-1703 ISIM-982	1
01RC	RC-005	2	High	IL-C-08	High	TT	Medium	6-RC-ISIM-936 6-RC-ISIM-1704	RC-W061, <u>RC-W060</u> RC-W054BC	3	ISIM-1704 ISIM-936	1
01RC	RC-007	2	High	IL-C-16	High	Π	Medium	12-RC-ISIM-1704	RC-W050BC	1	ISIM-1704	1
01RC	RC-026	2	High	RCS-C-09	High	TT	Medium	10-RC-ISIM-892 14-RC-ISIM-892	RC-W066 RC-W067DM	2	ISIM-892	1
02RHR	RHR-022	2	High	RHR-C-05A1	. High	TASCS	Medium	8-RHR-ISIM-957-1	RHR-W003, RHR-W004, RHR-W005, RHR- W006	4	ISIM-957-1Sh1	1
02RHR	RHR-026	2	High	RHR-C-05B1	High	TASCS	Medium	8-RHR-ISIM-957-1	RHR-W027, RHR-W028, RHR-W029, RHR- W030	4	ISIM-957-1Sh1	1
0351	SI-033	2	High	IL-C-16	High	Π	Medium	12-SI-ISIM-938-1	SI-W075, <u>SI-W076</u>	2	ISIM-938-1	1
03SI	SI-040	2	High	IL-C-19	High	PWSCC	Medium	4-SI-ISIM-938-2	SI-W112DM	1	ISIM-938-2Sh1	1
03SI	SI-047	2	High	IL-C-22	High	PWSCC	Medium	4-SI-ISIM-939	SI-W054DM	1	ISIM-939Sh1	1
04CVC	CVC-010	2	High	CVCS-C-09	High	TASCS	Medium	2-CVC-ISIM-1369-2	WD-W004S, WD-W005S	2	ISIM-1369-2	1
04CVC	CVC-003	2	High	CVCS-C-02	High	Π	Medium	2-CVC-ISIM-1473	CVC-W096S, CVC-W095S, CVC-W094S, CVC-W093S, CVC-W092S, CVC-W091S, CVC-W090S, CVC-W089S, CVC-W088S, CVC-W087S, CVC-W086S, CVC-W085S, CVC-W084S, CVC-W083S, CVC-W082S, CVC-W081S, CVC-W080S, CVC-W079S, CVC-W078S, CVC-W077S, CVC-W076S, CVC-W075S, CVC-W074S, CVC-W070S, CVC-W072S, CVC-W071S, CVC-W070S, CVC-W069S, CVC-W068S, CVC-W067S, CVC-W066S, CVC-W065S, CVC-W064S	33	ISIM-1473	1
01RC	RC-002	4	Medium	CVCS-C-05	High	None	Low	2-RC-ISIM-1704	RC-W044BC	1	ISIM-1704	1
01RC	RC-003	4	Medium	CVCS-C-09	High	None	Low	2-RC-ISIM-1703	RC-W014BC	1	ISIM-1703	1
01RC	RC-006	4	Medium	1L-C-14	High	None	Low	12-RC-ISIM-1703	RC-W023BC	1	ISIM-1703	1
01RC	RC-008	4	Medium	RCS-C-01	High	None	Low	29-RC-ISIM-1703	<u>RC-W001DM</u> , RC-W070, RC-W005, RC- W080, <u>RC-W076DM</u>	5	ISIM-1703	1
01RC	RC-009	4	Medium	RCS-C-01A	High	None	Low	2.5-RC-ISIM-1703	RC-W071BC	1	ISIM-1703	1
01RC	RC-010	4	Medium	RCS-C-01B	High	None	Low	6-RC-ISIM-1703	RC-W004BC, RC-W027	2	ISIM-1703	1

NOTES:

Dissimilar metal welds are indicated by the letters "DM" in the weld number.
 Welds that were selected for examination are underlined.

Calc./File No. NMC-01-342 Rev. 0

0	Risk	Characteriz	ation	Consequence		Failure Potential		Lines in Segment	Wolde in Serment	Weld	Skotch No(c)	
System	Segment	Category	Rank	ID	Rank	DMs	Rank	Lines in Segment	Welds in Segment	Count	Sketch No(s).	
01RC	RC-011	4	Medium	RCS-C-02	High	None	Low	31-RC-ISIM-1703	RC-W077DM, RC-W081, RC-W008, RC- W009, RC-W012, RC-W015, RC-W018	7	ISIM-1703	1
01RC	RC-012	4	Medium	RCS-C-03	High	None	Low	27.5-RC-ISIM-1703	RC-W019, RC-W020, RC-W024, <u>RC-W026DM</u>	4	ISIM-1703	1
01RC	RC-013	4	Medium	RCS-C-03A	High	None	Low	2.5-RC-ISIM-1703	RC-W072BC	1	ISIM-1703	1
01RC	RC-014	4	Medium	RCS-C-04	High	None	Low	2-RC-ISIM-1703 2-RC-ISIM-1460 3-RC-ISIM-1460 3-RC-ISIM-1460	RC-W021BC RTD-W032S, RTD-W033S, RTD-W034S, RTD W035S, RTD-W036S, RTD-W037S, RTD- W038S, RTD-W039S, RTD-W040S, RTD- W041S, RTD-W042S, RTD-W043S, RTD- W044S, RTD-W045S, RTD-W046S, RTD- W047S, RTD-W048S, RTD-W049S, RTD- W050S, RTD-W051S, RTD-W052S, RTD- W050S, RTD-W054S, RTD-W055B RTD-W001S, RTD-W002S, RTD-W003S, RTD- W004S, RTD-W058, RTD-W006B, RTD- W004S, RTD-W058, RTD-W006B, RTD- W007S, RTD-W005B, RTD-W009S, RTD- W010S, RTD-W011S, RTD-W009S, RTD- W010S, RTD-W014S, RTD-W015S, RTD- W016S, RTD-W014S, RTD-W015S, RTD- W016S, RTD-W017S, RTD-W018S, <u>RTD-</u> W019S, RTD-W020S, RTD-W021S, RTD- W022S, RTD-W023S, RTD-W024S, RTD- W025B RTD-W026, RTD-W027, RTD-W028, RTD- W029, RTD-W030, RTD-W031 RC-W013BC	57	ISIM-1703 ISIM-1460	
01RC	RC-017	4	Medium	RCS-C-05	High	None	Low	29-RC-ISIM-1704	RC-W030DM, RC-W069, RC-W035, RC- W082, <u>RC-W078DM</u>	5	ISIM-1704	1
01RC	RC-018	4	Medium	RCS-C-05A	High	None	Low	2.5-RC-ISIM-1704	RC-W074BC	1	ISIM-1704	1
01RC	RC-019	4	Medium	RCS-C-05B	High	None	Low	6-RC-ISIM-1704	RC-W032BC, RC-W059	2	ISIM-1704	1
01RC	RC-020	4	Medium	RCS-C-06	High	None	Low	31-RC-ISIM-1704	<u>RC-W079DM</u> , RC-W083, RC-W038, RC- W039, RC-W042, RC-W073, RC-W045, RC- W048	8	ISIM-1704	
01RC	RC-021	4	Medium	RCS-C-07	High	None	Low	27.5-RC-ISIM-1704	RC-W049, RC-W055, RC-W056, <u>RC-W058DM</u>	4	ISIM-1704	1
01RC	RC-022	- 4	Medium	RCS-C-07A	High	None	Low	2.5-RC-ISIM-1704	RC-W075BC	1	ISIM-1704	1

•

	Risk	Characteriz	ation	Consec	quence	Failure	Potential			Weld	Chatab Na(a)	СС
System	Segment	Category	Rank	ID	Rank	DMs	Rank	Lines in Segment	Welds In Segment	Count	Sketch No(s).	
01RC	RC-023	4	Medium	RCS-C-08	High	None	Low	2-RC-ISIM-1704 2-RC-ISIM-1461 3-RC-ISIM-1461 3-RC-ISIM-1704	RC-W052BC RTD-W085S, RTD-W086S, RTD-W087S, RTD W088S, RTD-W089S, RTD-W090S, RTD- W091S, RTD-W092S, RTD-W090S, RTD- W094S, RTD-W095S, RTD-W096S, RTD- W097S, RTD-W098S, RTD-W099S, RTD- W100S, RTD-W101S, RTD-W102S, RTD- W103S, RTD-W104S, RTD-W102S, RTD- W106B RTD-W056S, RTD-W057S, RTD-W058S, RTD W059S, RTD-W060B, RTD-W061B, RTD- W062S, RTD-W060B, RTD-W064S, RTD- W065S, RTD-W066S, RTD-W064S, RTD- W068S, RTD-W066S, RTD-W067S, RTD- W068S, RTD-W069S, RTD-W070S, RTD- W071S, RTD-W072S, RTD-W073S, RTD- W074S, RTD-W075S, RTD-W076S, RTD- W077S, RTD-W078B RTD-W107, RTD-W079, RTD-W080, <u>RTD-</u> <u>W081</u> , RTD-W082, <u>RTD-W083</u> , RTD-W084 RC-W043BC	54	ISIM-1704 ISIM-1461	1
01RC	RC-030	4	Medium	RCS-C-10	High	None	Low	6-RC-ISIM-940-1 3-RC-ISIM-940-1	<u>PR-W001DM</u> , PR-W002 PR-W003, PR-W004, PR-W005, <u>PR-W006,</u> PR-W037, PR-W007, <u>PR-W008</u> , PR-W038, PR-W012, PR-W040	12	ISIM-940-1	1
01RC	RC-032	4	Medium	RCS-C-11	High	None	Low	3-RC-ISIM-940-1	PR-W039, PR-W011	2	ISIM-940-1	1
01RC	RC-033	4	Medium	RCS-C-12	High	None	Low	3-RC-ISIM-940-1	PR-W041, PR-W015	2	ISIM-940-1	1
01RC	RC-034	4	Medium	RCS-C-13	High	None	Low	6-RC-ISIM-940-2	<u>PR-W016DM,</u> PR-W017, PR-W018, PR-W019, PR-W020, PR-W021, PR-W022, PR-W023, PR-W025	9	ISIM-940-2	1
01RC	RC-035	4	Medium	RCS-C-14	High	None	Low	6-RC-ISIM-940-2	PR-W026DM, PR-W027, PR-W028, PR-W029, PR-W030, PR-W031, <u>PR-W032, PR-W033,</u> PR-W034, PR-W036	10	ISIM-940-2	1
01RC	RC-036	4	Medium	RCS-C-15	High	None	Low	3-RC-ISIM-1703 3-RC-ISIM-874-2	RC-W068BC PS-W001, PS-W002, PS-W003, PS-W004, PS W005	6	ISIM-1703 ISIM-874-2	1
01RC	RC-037	4	Medium	RCS-C-16	High	None	Low	3-RC-ISIM-1704 3-RC-ISIM-874-1	RC-W053BC PS-W030, PS-W031, PS-W032, PS-W033	5	ISIM-1704 ISIM-874-1	1

Calc./File	No.	NMC-01-342
oalout no		11110-01-044

Custor	Risk	Characteriz	ation	Conseq	uence	Failure	Potential	Lines in Segment	Welds in Segment	Wetd	Sketch No(s).	сс
System	Segment	Category	Rank	ID	Rank	DMs	Rank	- Lines in Segment	welds in Segment	Count	Sketch No(S).	
01RC	RC-038	4	Medium	RCS-C-17	High	None	Low	3-RC-ISIM-874-1	PS-W034, PS-W035, PS-W036, PS-W037, PS W038, PS-W039, PS-W040, PS-W041, PS- W042, PS-W043, <u>PS-W044</u> , PS-W045, PS- W046, PS-W047, <u>PS-W048</u> , PS-W049, PS- W050, PS-W051, PS-W052	19	ISIM-874-1	1
01RC	RC-040	4	Medium	RCS-C-17	High	None	Low	4-RC-ISIM-874-1	PS-W060, <u>PS-W061DM</u>	2	ISIM-874-1	1
01RC	RC-041	4	Medium	RCS-C-17	High	None	Low	3-RC-ISIM-874-2	PS-W006, PS-W007, PS-W008, PS-W009, PS W010, PS-W011, PS-W012, PS-W013, PS- W014, PS-W015, PS-W016, PS-W017, PS- W018, PS-W019, <u>PS-W020</u> , PS-W021, PS- W022, PS-W023, PS-W024, PS-W025, PS- W026, PS-W027BC, PS-W028, PS-W029	24	ISIM-874-2	1
01RC	RC-042	4	Medium	RHR-C-05A1	High	None	Low	8-RC-ISIM-1703	RC-W003BC	1	ISIM-1703	1
01RC	RC-043	4	Medium	RHR-C-05B1	High	None	Low	8-RC-ISIM-1704	RC-W034BC	1	ISIM-1704	1
02RHR	RHR-021	4	Medium	RHR-C-05A1	High	None	Low	8-RHR-ISIM-957-1	RHR-W001, RHR-W002	2	ISIM-957-1Sh1	1
02RHR	RHR-023	4	Medium	RHR-C-05A1	High	None	Low	8-RHR-ISIM-957-1	RHR-W007, RHR-W008, RHR-W009	3	ISIM-957-1Sh1	1
02RHR	RHR-025	4	Medium	RHR-C-05B1	High	None	Low	8-RHR-ISIM-957-1	RHR-W025, RHR-W026	2	ISIM-957-1Sh1	1
02RHR	RHR-027	4	Medium	RHR-C-05B1	High	None	Low	8-RHR-ISIM-957-1	RHR-W031, RHR-W032	2	ISIM-957-1Sh1	1
02RHR	RHR-003	4	Medium	ICS-C-02A	High	None	Low	6-RHR-ISIM-950-1	RHR-W408	1	ISIM-950-1	2
02RHR	RHR-004	4	Medium	ICS-C-02B	High	None	Low	6-RHR-ISIM-950-2	RHR-W411	1	ISIM-950-2	2
02RHR	RHR-005	4	Medium	RHR-C-01A	High	None	Low	10-RHR-ISIM-958-1	RHR-W417, RHR-W080, RHR-W081	3	ISIM-958-1Sh2	2
02RHR	RHR-006	4	Medium	RHR-C-01B	High	None	Low	10-RHR-ISIM-959-1	RHR-W329, RHR-W118, RHR-W119	3	ISIM-959-1Sh1	2
02RHR	RHR-007	4	Medium	RHR-C-02A	High	None	Low	10-RHR-ISIM-958-1 8-RHR-ISIM-958-2 10-RHR-ISIM-958-1	RHR-W082, RHR-W083, RHR-W084, RHR- W085 RHR-W078, RHR-W079, RHR-W086BC RHR-W091, RHR-W092, RHR-W093, RHR- W094, RHR-W095BC	12	ISIM-958-1Sh1 ISIM-958-1Sh2 ISIM-958-2	2
02RHR	RHR-010	4	Medium	RHR-C-02AH	High	None	Low	8-RHR-ISIM-958-2	RHR-W075, RHR-W076, RHR-W077	3	ISIM-958-2	2
02RHR	RHR-011	4	Medium	RHR-C-02AS	High	None	Low	12-RHR-ISIM-958-1 10-RHR-ISIM-958-1	RHR-W087, RHR-W088, RHR-W089 RHR-W090	4	ISIM-958-1Sh1	2
02RHR	RHR-012	4	Medium	RHR-C-02B	High	None	Low	10-RHR-ISIM-959-1 8-RHR-ISIM-959-1 10-RHR-ISIM-959-2	RHR-W120, RHR-W121, RHR-W123, RHR- W124, RHR-W126, RHR-W127 RHR-W109, RHR-W110, RHR-W125BC RHR-W116, RHR-W117, RHR-W122BC	12	ISIM-959-1Sh1 ISIM-959-2	2
02RHR	RHR-015	4	Medium	RHR-C-02BH	High	None	Low	8-RHR-ISIM-958-2	RHR-W107, RHR-W108	2	ISIM-958-2	2

.

Dissimilar metal welds are indicated by the letters "DM" in the weld number.
 Welds that were selected for examination are underlined.
 Page C4 of C20

.

Calc./File No. NMC-01-342 Rev. 0

0	Risk	Characteriz	ation	Consequ	Jence	Failure I	Potential	Lines in Segment	Welds in Segment	Weld	Sketch No(s).	
System	Segment	Category	Rank	ID	Rank	DMs	Rank	Lines in Segment	Weids in Segment	Count	Sketch Mo(S).	
02RHR	RHR-016	4	Medium	RHR-C-02BS	High	None	Low	12-RHR-ISIM-959-2 10-RHR-ISIM-959-2	RHR-W111, RHR-W112, <u>RHR-W113</u> , RHR- W114 RHR-W115	5	ISIM-959-2	2
02RHR	RHR-017	4	Medium	RHR-C-03A	High	None	Low	10-RHR-ISIM-958-1	RHR-W096, RHR-W097, RHR-W098, RHR- W099, RHR-W100, RHR-W101, RHR-W102	7	ISIM-958-1Sh1	2
02RHR	RHR-018	4	Medium	RHR-C-03B	High	None	Low	10-RHR-ISIM-959-1	RHR-W128, RHR-W129, RHR-W130, RHR- W131, RHR-W132, RHR-W133	6	ISIM-959-1Sh1	2
02RHR	RHR-042	4	Medium	RHR-C-13A	High	None	Low	B-RHR-ISIM-960-1	RHR-W142, RHR-W143, RHR-W143-1, RHR- W143-2, RHR-W144, RHR-W145, RHR-W146, RHR-W147, RHR-W148, RHR-W149, RHR- W150, RHR-W151, RHR-W152, RHR-W230	14	ISIM-960-1	2
02RHR	RHR-043	4	Medium	RHR-C-13B	High	None	Low	8-RHR-ISIM-960-1	RHR-W201, RHR-W202, RHR-W202-1, RHR- W202-2, RHR-W203, RHR-W204, RHR-W205, RHR-W206, RHR-W207, RHR-W208, RHR- W209, RHR-W240	12	ISIM-960-1	2
02RHR	RHR-064	4	Medium	RWST-C-01	High	None	Low	6-RHR-ISIM-961-1	RHR-W419, RHR-W420, RHR-W421, RHR- W422, RHR-W423, RHR-W424, RHR-W425, RHR-W426, RHR-W427, RHR-W428, RHR- W429, RHR-W430, RHR-W431BC	13	ISIM-961-1	2
0351	SI-028	4	Medium	IL-C-14	High	None	Low	12-SI-ISIM-935	SI-W120, SI-W121, SI-W122, SI-W123	4	ISIM-935	1
0351	SI-039	4	Medium	IL-C-19	High	None	Low	6-SI-ISIM-938-2 4-SI-ISIM-938-2	SI-W108 SI-W109, SI-W110	3	ISIM-938-2Sh1	1
0351	S1-046	4	Medium	IL-C-22	High	None	Low	6-SI-ISIM-939	SI-W048, <u>SI-W049,</u> SI-W050, <u>SI-W051, SI-</u> W052	5	ISIM-939Sh1	1
0351	SI-001	4	Medium	IL-C-01	High	None	Low	3-SI-ISIM-934-2	SI-W265, <u>SI-W266</u> , SI-W267, SI-W268	4	ISIM-934-2	2

NOTES:1) Dissimilar metal welds are indicated by the letters "DM" in the weld number.2) Welds that were selected for examination are underlined.Page C5 of C20

.

.

.

System	Risk	Characteriz	ation	Consec	luence	Failure	Potential	Lines in Segment	Welds in Segment	Weld	Sketch No(s).	СС
System	Segment	Category	Rank	ID	Rank	DMs	Rank	Lines in Segment	Meius în Segment	Count	0.0001110(3).	
0351	SI-003	4	Medium	IL-C-02	High	None	Low	4-SI-ISIM-936 3-SI-ISIM-936 2-SI-ISIM-936 2-SI-ISIM-982	SI-W271 SI-W272, SI-W273, SI-W274, SI-W275, SI- W276, <u>SI-W277</u> , <u>SI-W278</u> , SI-W279, SI-W280, SI-W281, <u>SI-W282</u> , <u>SI-W283</u> , <u>SI-W284</u> , SI- W285, SI-W286, SI-W287 SI-W288, <u>SI-W2895</u> , SI-W557S, SI-W291S SI-W4385, <u>SI-W4395</u> , SI-W4405, SI-W4415, SI-W442S, SI-W4395, SI-W4405, SI-W4455, SI-W446S, SI-W447S, SI-W4485, SI-W4455, SI-W446S, SI-W4475, SI-W4485, SI-W4495, SI-W4505, SI-W4515, SI-W4525, SI-W4535, SI-W5425, SI-W5435, SI-W4545	40	ISIM-936 ISIM-982	2
0351	SI-017		Medium	IL-C-09	High	None	Low	3-SI-ISIM-934-1	SI-W237	1	ISIM-934-1	2
0351	SI-019	4	Medium	IL-C-10	High	None	Low	4-SI-ISIM-937-2 3-SI-ISIM-937-2 2-SI-ISIM-937-2 3-SI-ISIM-937-2 3-SI-ISIM-937-1 2-SI-ISIM-937-1	SI-W304 SI-W305, SI-W306, <u>SI-W307</u> , SI-W308 SI-W309S, <u>SI-W310S</u> , SI-W311S, SI-W312S, SI-W313S, SI-W314S, SI-W315S, SI-W316S, SI-W317S, SI-W318S, SI-W319S, SI-W551S, SI-W552S, SI-W320S SI-W338, SI-W339, SI-W340, SI-W341 SI-W342, SI-W343, SI-W340, SI-W345, SI- W346, SI-W347, <u>SI-W348</u> , SI-W349 SI-W350S, SI-W546S	33	ISIM-937-2Sh1 ISIM-937-2Sh2 ISIM-937-1	
0351	SI-050	4	Medium	RWST-C-01	High	None	Low	16-SI-ISIM-992-1 12-SI-ISIM-992-1 12-SI-ISIM-959-1 10-SI-ISIM-959-1	SI-W560, SI-W570, <u>SI-W571</u> , SI-W573, <u>SI- W574</u> , <u>SI-W575</u> , SI-W576, SI-W577, SI-W578, SI-W579, SI-W585 SI-W586, SI-W587, SI-W588 SI-W561, SI-W562, SI-W563 SI-W564, SI-W565	19	ISIM-959-1Sh1 ISIM-992-1	2
0351	SI-051	4	Medium	RWST-C-01	High	None	Low	10-SI-ISIM-958-1 10-SI-ISIM-958-1	SI-W558BC SI-W559	2	ISIM-958-1Sh1 ISIM-958-1Sh2	
0351	SI-052	4	Medium	RWST-C-01	High	None	Low	12-SI-ISIM-992-1	SI-W580, SI-W581, SI-W582, SI-W583	4	ISIM-992-1	2
0351	SI-053	4	Medium	RWST-C-01	High	None	Low	12-SI-ISIM-992-1	SI-W584	1	ISIM-992-1	2
0351	SI-054	4	Medium	RWST-C-01	High	None	Low	6-SI-ISIM-992-1	SI-W572BC	1	ISIM-992-1	2

Suctor	Risk	Characteriz	ation	Consequence		Failure	Potential	Lines in Segment	Welds in Segment	Weld	Sketch No(s).	СС
System	Segment	Category	Rank	١Ď	Rank	DMs	Rank	Lines in Segment	Welds in Segment	Count	Sketch No(S).	
0351	SI-055	4	Medium	SI-C-01	High	None	Low	8-SI-ISIM-992-1	SI-W466, SI-W467, SI-W468, SI-W469, SI- W470, SI-W471, SI-W472, SI-W473, SI-W474, SI-W475, SI-W476, SI-W477 SI-W478, SI-W479, SI-W480, SI-W481, SI- W482, SI-W483, SI-W484, SI-W485, SI-W486, SI-W487, SI-W488, SI-W489	64	ISIM-992-1 ISIM-933 ISIM-1608	2
								12-SI-ISIM-933 6-SI-ISIM-933 12-SI-ISIM-933 6-SI-ISIM-933	<u>SI-W417</u> , SI-W418, SI-W419, SI-W420 SI-W421, SI-W422 SI-W403, SI-W407 SI-W408, SI-W409, SI-W410			
								2-SI-ISIM-933 2-SI-ISIM-1608 2-SI-ISIM-992-1	SI-W404BC, SI-W405S, SI-W406S SI-W360S, SI-W361S, SI-W362S, SI-W363S, SI-W364S, SI-W365S, SI-W366S, SI-W367S SI-W368BC			
								2-SI-ISIM-992-1 2-SI-ISIM-1608	SI-W356BC SI-W369S, SI-W370S, SI-W371S, <u>SI-W372S</u> , SI-W373S, SI-W374S, <u>SI-W375S</u> , SI-W376S, SI-W377S, SI-W378S, SI-W379S, SI-W380S, SI-W381S, <u>SI-W382S, SI-W383S</u> , SI-W384S			
								2-SI-ISIM-992-1	SI-W385BC			
0351	S1-063	4	Medium	SI-C-02A	High	None	Low	6-SI-ISIM-933	SI-W394, SI-W395, SI-W396, SI-W397, SI- W398, SI-W400, SI-W401, SI-W402 SI-W411, SI-W412, SI-W413, SI-W414, SI- W415, SI-W416, SI-W399BC	15	ISIM-933	2
0351	SI-065	4	Medium	SI-C-02B	High	None	Low	6-SI-ISIM-933	<u>SI-W429</u> , SI-W430, SI-W431, SI-W432, SI- W433, SI-W435, SI-W436, SI-W437 SI-W423, SI-W424, SI-W425, SI-W426, SI- W427, SI-W428, SI-W434BC	15	ISIM-933	2
0351	SI-067	4	Medium	SI-C-03A	High	None	Low	4-SI-ISIM-934-2 2-SI-ISIM-934-2 2-SI-ISIM-993	SI-W240, SI-W241, SI-W242 SI-W491BC SI-W492S, SI-W493S, SI-W494S, SI-W495S	8	ISIM-934-2 ISIM-993	2
0351	SI-069	4	Medium	SI-C-03B	High	None	Low	4-SI-ISIM-934-1 2-SI-ISIM-934-1 2-SI-ISIM-993	SI-W200, SI-W201, SI-W202 SI-W540BC SI-W541S, SI-W538S, SI-W537S, SI-W536S	8	ISIM-934-1 ISIM-993	2

NOTES: 1) Dissimilar metal welds are indicated by the letters "DM" in the weld number.

2) Welds that were selected for examination are underlined.

Calc./File No. NMC-01-342 Rev. 0

Guatam	Risk	Characteriz	ation	Conseq	uènce	Failure	Potential	Lines in Segment	Weids in Segment	Weld	Sketch No(s).	cc
System	Segment	Category	Rank	ID	Rank	DMs	Rank	Lines in Segment	Weids in Degment	Count		
0351	SI-073	4	Medium	SI-C-05	High	None	Low	2-SI-ISIM-993	SI-W4985, SI-W4995, SI-W5005, SI-W5015, SI-W5025, SI-W5035, SI-W5045, SI-W5055, SI-W5065, SI-W5075, SI-W5085, SI-W5095, SI-W5105, SI-W5115, SI-W5125, SI-W5135, SI-W5145, SI-W5155, SI-W5165, SI-W5175 SI-W5335, SI-W5225, SI-W5215, SI-W5205, SI-W5295, SI-W5245, SI-W5235, SI-W5225, SI-W5215, SI-W5205	34	ISIM-993	2
0351	SI-080	4	Medium	SI-C-07A	High	None	Low	4-SI-ISIM-934-2	SI-W243, <u>SI-W244, SI-W245,</u> SI-W246, SI- W247	5	ISIM-934-2	2
0351	SI-081	4	Medium	SI-C-07B	High	None	Low	4-SI-ISIM-934-1	SI-W203, SI-W204, SI-W205, SI-W206, SI- W207	5	ISIM-934-1	2
0351	SI-082	4	Medium	SI-C-08	High	None	Low	4-SI-ISIM-934-2 3-SI-ISIM-934-2 3-SI-ISIM-934-1 4-SI-ISIM-934-1 3-SI-ISIM-934-1	SI-W248, SI-W220 <u>SI-W249</u> , SI-W250, SI-W251, SI-W252, SI- W253, SI-W254, SI-W255 SI-W219, SI-W218, SI-W217, SI-W216, SI- W215, SI-W214, SI-W213, SI-W212, SI-W211, SI-W210 SI-W209, SI-W208 SI-W221, SI-W222, SI-W223, SI-W224, <u>SI-</u> <u>W225</u> , SI-W226, SI-W227	28	ISIM-934-2 ISIM-934-1	2
0351	SI-085	4	Medium	SI-C-08A	High	None	Low	3-SI-ISIM-934-2	SI-W256, SI-W257, SI-W258, SI-W259, SI- W260, SI-W261, <u>SI-W262,</u> SI-W263, SI-W264	9	ISIM-934-2	2
03SI	SI-086	4	Medium	SI-C-08B	High	None	Low	3-SI-ISIM-934-1	SI-W228, SI-W229	2	ISIM-934-1	2
03SI	SI-087	4	Medium	SI-C-09B	High	None	Low	3-SI-ISIM-934-1	SI-W230, SI-W231, <u>SI-W232, SI-W233</u>	4	ISIM-934-1	2
0351	SI-088	4	Medium	SI-C-10B	High	None	Low	3-SI-ISIM-934-1	<u>SI-W234,</u> SI-W235, SI-W236	3	ISIM-934-1	2
04CVC	CVC-005	4	Medium	CVCS-C-05	High	None	Low	2-CVC-ISIM-1474	LD-W001S, LD-W002S, LD-W003S, LD- W004S, LD-W005S, LD-W006S, LD-W007S, LD-W008S, LD-W009S, LD-W010S, LD- W011S, LD-W012S WD-W017S, WD-W018S	14	ISIM-1474 -	1
04CVC	CVC-009	4	Medium	CVCS-C-09	High	None	Low	2-CVC-ISIM-1369-2	WD-W001S, <u>WD-W002S</u> , WD-W003S	3	ISIM-1369-2	1
04CVC	CVC-011	4	Medium	CVCS-C-09	High	None	Low	2-CVC-ISIM-1369-2	WD-W006S, WD-W007S, WD-W008S, WD- W009S, <u>WD-W010S, WD-W011S</u>	6	ISIM-1369-2	1

NOTES:

Dissimilar metal welds are indicated by the letters "DM" in the weld number.
 Welds that were selected for examination are underlined.

.

Calc./File	No.	NMC-	01-342

0	Risk	Characteriz	ation	Consec	lneuce	Failure	Potential			Weld		
System	Segment	Category	Ränk	ID	Rank	DMs	Rank	Lines in Segment	Welds in Segment	Count	Sketch No(s).	CC
04CVC	CVC-019	4	Medium	CVCS-C-13	High	None	Low	2-CVC-ISIM-1471	CVC-W039S, CVC-W040S, CVC-W041S, CVC-W042S, CVC-W043S, CVC-W044S, CVC-W045S, CVC-W046S, CVC-W047S, CVC-W048S, CVC-W049S, <u>CVC-W050S</u> , <u>CVC-W051S</u> , CVC-W052S, CVC-W053S, CVC-W054S, CVC-W055S CVC-W056S, CVC-W057S, CVC-W180B	20	ISIM-1471	1
04CVC	CVC-023	4	Medium	CVCS-C-15	High	None	Low	2-CVC-ISIM-1476	CVC-W133S, CVC-W134S, CVC-W135S, CVC-W136S, CVC-W137S, <u>CVC-W138S</u> , CVC-W139S, <u>CVC-W140S</u> , CVC-W141S, CVC-W142S, CVC-W143S, CVC-W144S, CVC-W145S, CVC-W146S, CVC-W147S, CVC-W148S, CVC-W149S CVC-W150S, CVC-W151S, CVC-W152S	20	ISIM-1476	1
04CVC	CVC-024	4	Medium	RCS-C-17	High	None	Low	2-CVC-ISIM-874-3	CVC-W155S, CVC-W156S, CVC-W157S, CVC-W158S, CVC-W159S, CVC-W160S, CVC-W161S, CVC-W162S, CVC-W163S, CVC-W164S, CVC-W165S, <u>CVC-W166S</u> , CVC-W167S, CVC-W168S, CVC-W169S, CVC-W170S, CVC-W171S, CVC-W172S, CVC-W173S, CVC-W174S, CVC-W175S, CVC-W176S, CVC-W177S, CVC-W178S, CVC-W179S	25	ISIM-874-3	1
07ICS	ICS-001	4	Medium	ICS-C-02A	High	None	Low	8-ICS-ISIM-950-1 6-ICS-ISIM-950-1 8-ICS-ISIM-950-1 6-ICS-ISIM-950-1	I <u>CS-W045</u> ICS-W046BC ICS-W047 ICS-W048, ICS-W049	5	ISIM-950-1	2
07ICS	ICS-003	4	Medium	ICS-C-02B	High	None	Low	8-ICS-ISIM-950-2 6-ICS-ISIM-950-2 8-ICS-ISIM-950-2 6-ICS-ISIM-950-2	ICS-W050 ICS-W051BC ICS-W052 ICS-W053, ICS-W054	5	ISIM-950-2	2
07ICS	ICS-005	4	Medium	ICS-C-03A	High	None	Low	6-ICS-ISIM-951	ICS-W001, ICS-W002, ICS-W003, <u>ICS-W004,</u> ICS-W005 ICS-W010, ICS-W009	7	ISIM-951	2
07ICS	ICS-007	4	Medium	ICS-C-03B	High	None	Low	6-ICS-ISIM-953	ICS-W100, ICS-W101, ICS-W102, <u>ICS-W103,</u> ICS-W104 ICS-W109, ICS-W108	7	ISIM-953	2

Calc./File	No.	NMC-01-342

System	Risk	Characteriz	ation	Consec	quence	Failure I	Potential	Lines in Segment	Welds in Segment	Weld	Sketch No(s).	cc
System	Segment	Category	Rank	1D	Rank	DMs	Rank		Weids in Segment	Count	Sketch No(S).	
07ICS	ICS-009	4	Medium	ICS-C-04A	High	None	Low	6-ICS-ISIM-951	ICS-W006, ICS-W007BC, ICS-W008, ICS- W011, ICS-W012, ICS-W013, ICS-W014, ICS- W015, ICS-W016, ICS-W017, ICS-W018, ICS- W019, ICS-W020, ICS-W021, ICS-W022, ICS- W023, ICS-W024, ICS-W025, ICS-W026, ICS- W027, ICS-W028, ICS-W029, ICS-W030, ICS- W031, ICS-W032, ICS-W033, ICS-W034, ICS- W035, ICS-W036	29	ISIM-951	2
07ICS	ICS-011	4	Medium	ICS-C-04B	High	None	Low	6-ICS-ISIM-953	ICS-W107, ICS-W106BC, ICS-W105, ICS- W110, <u>ICS-W111, ICS-W112</u> , ICS-W113, ICS- W114, ICS-W115, ICS-W116, ICS-W117, ICS- W118, ICS-W119, ICS-W120, ICS-W121	15	ISIM-953	2
07ICS	ICS-021	4	Medium	RWST-C-01	High	None	Low	6-ICS-ISIM-1646	ICS-W173, ICS-W174, ICS-W175, ICS-W176	4	ISIM-1646	2
071CS	ICS-022	4	Medium	RWST-C-02	High	None	Low	12-ICS-ISIM-950-1 8-ICS-ISIM-950-1 8-ICS-ISIM-950-2	ICS-W179, ICS-W163, ICS-W164, ICS-W165, ICS-W166, ICS-W167, ICS-W168 ICS-W169 ICS-W170, ICS-W171	10	ISIM-950-1 ISIM-950-2	2
07ICS	ICS-023	4	Medium	RWST-C-02	High	None	Low	12-ICS-ISIM-950-1 8-ICS-ISIM-950-1	ICS-W158 ICS-W159, ICS-W160, ICS-W161	4	ISIM-950-1	2
071CS	ICS-024	4	Medium	RWST-C-03	High	None	Low	8-ICS-ISIM-950-1	ICS-W162	1	ISIM-950-1	2
07ICS	ICS-025	4	Medium	RWST-C-04	High	None	Low	8-1CS-1SIM-950-2	ICS-W172	1	ISIM-950-2	2
08AF	AF-001	4	Medium	AFW-C-01A	High	None	Low	3-AF-ISIM-891-2	AFW-W001, AFW-W002, AFW-W003, AFW- W004, <u>AFW-W005</u> , <u>AFW-W006</u> , AFW-W007, AFW-W008, AFW-W009, AFW-W010, AFW- W011, AFW-W012, AFW-W013	13	ISIM-891-2	2
08AF	AF-007	4	Medium	AFW-C-01B	High	None	Low	3-AF-ISIM-891-2 3-AF-ISIM-891-1	AFW-W080, AFW-W081, AFW-W082, AFW- W083, AFW-W084, AFW-W085, AFW-W086, <u>AFW-W087, AFW-W088</u> , AFW-W089 AFW-W090, AFW-W091, AFW-W092, AFW- W093, AFW-W094, AFW-W095, AFW-W096, AFW-W097, AFW-W098, AFW-W099	20	ISIM-891-2 ISIM-891-1	2
02RHR	RHR-046	5a	Medium	RHR-C-14A	Medium	TASCS	Medium	8-RHR-ISIM-962-2 10-RHR-ISIM-962-2	RHR-W165 RHR-W166, RHR-W167, <u>RHR-W168</u>	4	ISIM-962-2Sh1	2
02RHR	RHR-048	5a	Medium	RHR-C-14A	Medium	TASCS	Medium	8-RHR-ISIM-961-1	RHR-W228, RHR-W229	2	ISIM-961-1	2
0351	SI-012	5a	Medium	IL-C-04	Medium	TT, IGSCC	Medium	2-SI-ISIM-982 6-SI-ISIM-982	SI-W011B SI-W012	2	ISIM-982	1

NOTES:

•

Dissimilar metal welds are indicated by the letters "DM" in the weld number.
 Welds that were selected for examination are underlined.

Calc./File No. NMC-01-342

:

Custom	Risk	Characteriz	ation	Conseq	luence	Fallure F	Potential	Lines in Segment	Welds in Segment	Weld	Sketch No(s).	сс
System	Segment	Category	Rank	ID	Rank	DMs	Rank	Lines in Segment	Weius in Segment	Count	Sketch (10(3).	Ľ
0351	SI-016	5a	Medium	IL-C-07	Medium	TT, IGSCC	Medium	2-SI-ISIM-936 6-SI-ISIM-936	SI-W087B SI-W088	2	ISIM-936	1
0351	SI-032	5a	Medium	IL-C-15	Medium	TT, IGSCC	Medium	12-SI-ISIM-938-1	SI-W074	1	ISIM-938-1	1
0351	SI-027	5a	Medium	IL-C-13	Medium	IGSCC	Medium	12-SI-ISIM-935	SI-W119	1	ISIM-935	1
0351	SI-031	5a	Medium	IL-C-15	Medium	IGSCC	Medium	12-SI-ISIM-938-1	SI-W072, SI-W073	2	ISIM-938-1	
03SI	SI-038	5a	Medium	IL-C-18	Medium	IGSCC	Medium	6-SI-ISIM-938-2	SI-W107	1	ISIM-938-2Sh1	1
0351	SI-044	5a	Medium	IL-C-21	Medium	IGSCC	Medium	6-SI-ISIM-939	SI-W047	1	ISIM-939Sh1	1
04CVC	CVC-001	5a	Medium	CVCS-C-01	Medium	Π	Medium	2-CVC-ISIM-1473	CVC-W063S, <u>CVC-W062S</u> , CVC-W061S, CVC-W060S, CVC-W059S	5	ISIM-1473	1
06FW	FW-001	5a	Medium	AFW-C-04A	Medium	TASCS	Medium	8-FW-ISIM-970	FW-W026, FW-W066	2	ISIM-970	2
06FW	FW-002	5a	Medlum	AFW-C-04B	Medium	TASCS	Medium	8-FW-ISIM-866	FW-W054	1	1SIM-866	2
06FW	FW-011	5a	Medium	FW-C-04A	Medium	TASCS	Medium	16-FW-ISIM-970 8-FW-ISIM-970	<u>FW-W024</u> , FW-W025, FW-W060, FW-W063, FW-W058, FW-W064 FW-W027BC	7	ISIM-970	2
06FW	FW-013	5a	Medium	FW-C-04B	Medium	TASCS	Medium	16-FW-ISIM-971 8-FW-ISIM-971	FW-W052, <u>FW-W061,</u> FW-W062, FW-W059, FW-W065 FW-W055BC	6	ISIM-971	2
08AF	AF-015		Medium	AFW-C-04A	Medium	TASCS, TT	Medium	3-AF-ISIM-865	AFW-W079, AFW-W147	2	ISIM-865	2
08AF	AF-016	5a	Medium	AFW-C-04B	Medium	TASCS, TT	Medium	3-AF-ISIM-866	AFW-W142, <u>AFW-W143,</u> AFW-W144, AFW- W145	4	ISIM-866	2
02RHR	RHR-024	6a	Low	RHR-C-05A2	Medium	None	Low	8-RHR-ISIM-957-1	RHR-W010, RHR-W011, RHR-W012, RHR- W013, RHR-W014, RHR-W015, RHR-W016, RHR-W017, RHR-W018, RHR-W019, RHR- W020, RHR-W021, RHR-W022, RHR-W023, RHR-W024	15	ISIM-957-1Sh1	1
02RHR	RHR-028	6a	Low	RHR-C-05B2	Medium	None	Low	8-RHR-ISIM-957-1 8-RHR-ISIM-957-1	RHR-W033, RHR-W034, RHR-W035, RHR- W036, RHR-W037, RHR-W038, RHR-W039, RHR-W040, RHR-W041, RHR-W042, RHR- W043 RHR-W044	12	ISIM-957-1Sh1 ISIM-957-1Sh2	1 1
02RHR	RHR-001	6a	Low	ICS-C-01A	Medlum	None	Low	8-RHR-ISIM-950-1	RHR-W406, RHR-W407	2	ISIM-950-1	2
02RHR	RHR-002		Low	ICS-C-01B	Medium	None	Low	6-RHR-ISIM-950-2	RHR-W409, RHR-W410	2	ISIM-950-2	2
02RHR	RHR-019	- 6a	Low	RHR-C-04A1	Medium	None	Low	12-RHR-ISIM-958-1	RHR-W413, RHR-W414	2	ISIM-958-1Sh1	2
02RHR	RHR-020	6a	Low	RHR-C-04B1	Medium	None	Low	12-RHR-ISIM-959-2	RHR-W401, RHR-W400	2	ISIM-959-2	2
02RHR	RHR-029	6a	Low	RHR-C-06	Medium	None	Low	8-RHR-ISIM-957-1 10-RHR-ISIM-957-1 8-RHR-ISIM-957-1	RHR-W046 RHR-W047, RHR-W048 RHR-W045	4	ISIM-957-1Sh1 ISIM-957-1Sh2	

.

.

Calc./File No. NMC-01-342

System	Risk	Characteriza	ation	Conseq	luence	Failure	Potential	Lines In Segment	Welds in Segment	Weld	Sketch No(s).	
System	Segment	Category	Rank	ID	Rank	DMs	Rank	Ellies III Segment	Hads in Segment	Count	Sketch no(s).	
02RHR	RHR-030	6a	Low	RHR-C-06	Medium	None	Low	10-RHR-ISIM-957-2	RHR-W049, RHR-W050, RHR-W051, RHR- W053, RHR-W054, RHR-W055, RHR-W056, RHR-W057, RHR-W058, RHR-W059, RHR- W060, RHR-W061, RHR-W062	13	ISIM-957-2	2
02RHR	RHR-031	6a	Low	RHR-C-07	Medium	None	Low	10-RHR-ISIM-957-2 10-RHR-ISIM-958-2	RHR-W412, RHR-W063C, RHR-W063B RHR-W063A, RHR-W063, RHR-W064, RHR- W065	7	ISIM-957-2 ISIM-958-2	2
02RHR	RHR-032	6a	Low	RHR-C-08	Medium	None	Low	10-RHR-ISIM-958-2 10-RHR-ISIM-958-2 8-RHR-ISIM-958-2	RHR-W066A, RHR-W067, RHR-W066, RHR- W068, RHR-W069 RHR-W071 RHR-W072, RHR-W073	8	ISIM-958-2	2
02RHR	RHR-033	6a	Low	RHR-C-08	Medium	None	Low	8-RHR-ISIM-958-2 8-RHR-ISIM-958-2	RHR-W070BC RHR-W103, RHR-W104, RHR-W105	4	ISIM-958-2	2
02RHR	RHR-034	6a	Low	RHR-C-09A	Medium	None	Low	8-RHR-ISIM-958-2	RHR-W074	1	ISIM-958-2	2
02RHR	RHR-035	6a	Low	RHR-C-09B	Medium	None	Low	8-RHR-ISIM-958-2	RHR-W106	1	ISIM-958-2	2
02RHR	RHR-036	6a	Low	RHR-C-11A	Medium	None	Low	6-RHR-ISIM-958-1 8-RHR-ISIM-958-1	RHR-W134, RHR-W135 RHR-W136	3	ISIM-958-1Sh1	2
02RHR	RHR-037	6a	Low	RHR-C-11B	Medium	None	Low	6-RHR-ISIM-959-2 8-RHR-ISIM-959-2	RHR-W191, RHR-W192 RHR-W193	3	ISIM-959-2	2
02RHR	RHR-038	6a	Low	RHR-C-12A1	Medium	None	Low	8-RHR-ISIM-958-1	RHR-W137, RHR-W138, RHR-W139	3	ISIM-958-1Sh1	2
02RHR	RHR-039	6a	Low	RHR-C-12A2	Medium	None	Low	8-RHR-ISIM-958-1	RHR-W140, RHR-W141	2	ISIM-958-1Sh1	2
02RHR	RHR-040	6a	Low	RHR-C-12B1	Medium	None	Low	8-RHR-ISIM-959-2	RHR-W194, RHR-W195, RHR-W196	3	ISIM-959-2	2
02RHR	RHR-041	6a	Low	RHR-C-12B2	Medium	None	Low	8-RHR-ISIM-959-2	RHR-W197, RHR-W198, RHR-W199, RHR- W200	4	ISIM-959-2	2
02RHR	RHR-044	6a	Low	RHR-C-14A	Medium	None	Low	8-RHR-ISIM-960-1 8-RHR-ISIM-962-2	RHR-W153, RHR-W154, RHR-W155, RHR- W156 RHR-W254, RHR-W253	6	ISIM-960-1 ISIM-962-2Sh1	2
02RHR	RHR-045	6a	Low	RHR-C-14A	Medium	None	Low	8-RHR-ISIM-962-2 8-RHR-ISIM-962-2 8-RHR-ISIM-962-2	RHR-W159, RHR-W158 RHR-W157, RHR-W160, RHR-W161 RHR-W162, RHR-W163, RHR-W164	8	ISIM-962-2Sh1 ISIM-962-2Sh2	1
02RHR	RHR-047	6a	Low	RHR-C-14A	Medium	None	Low	10-RHR-ISIM-962-2	RHR-W169, RHR-W170, RHR-W171, RHR- W172, RHR-W173, RHR-W174, RHR-W175, RHR-W176 RHR-W176A	9	ISIM-938-2Sh1 ISIM-962-2Sh1	1

Calc./File No. NMC-01-342 Rev. 0

System	Risk	Characteriz	ation	Consec	quence	Fallure I	Potential	Lines in Segment	Welds in Segment	Weld	Sketch No(s).	СС
System	Segment	Category	Rank	ID	Rank	DMs	Rank	Lines in Segment	Weids in organization	Count	Oxecon (10(3).	Ľ
02RHR	RHR-049	6a	Low	RHR-C-14B	Medium	None	Low	8-RHR-ISIM-960-1	RHR-W210, RHR-W211, RHR-W212, RHR- W213	16	ISIM-960-1 ISIM-961-1	2
								8-RHR-ISIM-961-2	RHR-W214, RHR-W215, RHR-W216, RHR- W217, RHR-W218, RHR-W219, RHR-W220, RHR-W221, RHR-W222, RHR-W223, RHR- W224		ISIM-961-2	
					i			8-RHR-ISIM-961-1	RHR-W225		_	
02RHR	RHR-050	6a	Low	RHR-C-14B	Medium	None	Low	8-RHR-ISIM-961-2	RHR-W284, RHR-W285	2	ISIM-961-2	2
02RHR	RHR-051	6a	Low	RHR-C-15A	Medium	None	Low	10-RHR-ISIM-938-2	RHR-W177, RHR-W177A	2	ISIM-938-2Sh1	2
02RHR	RHR-052	6a	Low	RHR-C-15A1	Medium	None	Low	8-RHR-ISIM-962-2 6-RHR-ISIM-950-1	RHR-W255, RHR-W256, RHR-W257, RHR- W258, RHR-W259, RHR-W260, RHR-W261 RHR-W262, RHR-W263, RHR-W264, RHR- W265, RHR-W266, RHR-W267, RHR-W268, RHR-W269, RHR-W270, RHR-W271, RHR- W272, RHR-W273, RHR-W274, RHR-W275	21	ISIM-950-1 ISIM-962-2Sh1	2
02RHR	RHR-053	6a	Low	RHR-C-15A1	Medium	None	Low	6-RHR-ISIM-933	RHR-W276, RHR-W277, RHR-W278, RHR- W279, RHR-W280, RHR-W281, RHR-W282, RHR-W283	8	ISIM-933	2
02RHR	RHR-054	6a	Low	RHR-C-15A2	Medium	None	Low	10-RHR-ISIM-938-2 10-RHR-ISIM-938-2 10-RHR-ISIM-938-1	RHR-W178, RHR-W179, RHR-W180, RHR- W181, RHR-W182, RHR-W183, RHR-W184, RHR-W185 RHR-W188, RHR-W189 RHR-W190	11	ISIM-938-1 ISIM-938-2Sh1	2
02RHR	RHR-055	6a	Low	RHR-C-15A2	Medium	None	Low	6-RHR-ISIM-938-2	RHR-W186, RHR-W187	2	ISIM-938-2Sh1	2
02RHR	RHR-056	6a	Low	RHR-C-15B1	Medium	None	Low	8-RHR-ISIM-961-2 6-RHR-ISIM-950-2	RHR-W286, RHR-W287, RHR-W288, RHR- W289, RHR-W290, RHR-W291, RHR-W292, RHR-W293, RHR-W294, RHR-W295, RHR- W296, RHR-W297 RHR-W298, RHR-W299, RHR-W300, RHR- W301, RHR-W302, RHR-W303, RHR-W304, RHR-W305, RHR-W306, RHR-W303, RHR-W304, RHR-W305, RHR-W309, RHR-W311, RHR-W312, RHR-W313, RHR-W310, RHR-W314	29	ISIM-950-2 ISIM-961-2	2

.

. .

	Risk	Characteriz	ation	Conseq	uence	Failure	Potential	Lines in Segment	Welds in Segment	Weld	Sketch No(s).	c
System	Segment	Category	Rank	ID	Rank	DMs	Rank	Lines in Segment	weids in Segment	Count	Sketch Ho(S).	
02RHR	RHR-057	6a	Low	RHR-C-15B1	Medium	None	Low	6-RHR-ISIM-933	RHR-W315, RHR-W316, RHR-W317, RHR- W318, RHR-W319, RHR-W320, RHR-W321, RHR-W322, RHR-W323, RHR-W324, RHR- W325, RHR-W326, RHR-W327, RHR-W328	14	ISIM-933	2
02RHR	RHR-063	6b	Low	RHR-C-18	Low	TASCS	Medium	8-RHR-ISIM-961-1	RHR-W226, RHR-W227	2	ISIM-961-1	2
03SI	SI-010	6a	Low	IL-C-04	Medium	None	Low	2-SI-ISIM-982	SI-W001S	1	IStM-982	1
0351	SI-011	6a	Low	IL-C-04	Medium	Non e	Low	2-SI-ISIM-982	SI-W002S, SI-W003S, SI-W004S, SI-W005S, SI-W006S, SI-W007S, SI-W008S, SI-W009S, SI-W010S	9	ISIM-982	1
0351	SI-014	6a	Low	IL-C-07	Medium	None	Low	2-SI-ISIM-936	SI-W077S	1	ISIM-936	1
0351	SI-015	6a	Low	IL-C-07	Medium	None	Low	2-SI-ISIM-936	SI-W078S, SI-W079S, SI-W080S, SI-W081S, SI-W082S, SI-W083S, SI-W084S, SI-W085S, SI-W086S	9	ISIM-936	1
0351	S1-026	6a	Low	IL-C-13	Medium	None	Low	12-SI-ISIM-935	SI-W113, SI-W114, SI-W115, SI-W116, SI- W117, SI-W118	6	ISIM-935	1
03SI	SI-029	6a	Low	IL-C-15	Medium	None	Low	10-SI-ISIM-938-1	SI-W055, SI-W056, SI-W057, SI-W058, SI- W059, SI-W060, SI-W061, SI-W062, SI-W063	9	ISIM-938-1	
0351	SI-030	6a	Low	IL-C-15	Medium	None	Low	12-SI-ISIM-938-1	SI-W064, SI-W065, SI-W066, SI-W067, SI- W068, SI-W069, SI-W070, SI-W071	8	ISIM-938-1	1
0351	SI-035	6a	Low	IL-C-18	Medium	None	Low	2-SI-ISIM-937-2	SI-W091S, SI-W092S, SI-W093S, SI-W094S, SI-W095S	5	ISIM-937-2Sh1	1
0351	S1-036	6a	Low	IL-C-18	Medium	None	Low	2-SI-ISIM-937-2 2-SI-ISIM-938-2	SI-W096S, SI-W097S, SI-W098S, SI-W099S, SI-W100S, SI-W101S, SI-W102S, SI-W103S SI-W104BC	9	ISIM-937-2Sh1 ISIM-938-2Sh1	
0351	SI-037	6a	Low	IL-C-18	Medium	None	Low	6-SI-ISIM-938-2	SI-W089, SI-W090, SI-W105, SI-W106	4	ISIM-938-2Sh1	1
0351	SI-042	6a	Low	IL-C-21	Medium	None	Low	2-SI-ISIM-937-1	SI-W031S	1	ISIM-937-1	1
0351	SI-043	6a	Low	IL-C-21	Medium	None	Low	2-SI-ISIM-937-1 2-SI-ISIM-939 6-SI-ISIM-939	SI-W029S, SI-W030S, SI-W032S, SI-W033S, SI-W034S, SI-W035S, SI-W036S, SI-W037S, SI-W038S, SI-W039S, SI-W040S, SI-W041S SI-W042BC SI-W043, SI-W044, SI-W045, SI-W046	17	ISIM-937-1 ISIM-939Sh1	1

NOTES: Dissimilar metal welds are indicated by the letters "DM" in the weld number.
 Welds that were selected for examination are underlined.

.

.

System	Risk	Characteriza	ation	Consec	luence	Failure	Potential	Lines in Segment	Welds in Segment	Weld	Sketch No(s).	
System	Segment	Category	Rank	ID .	Rank	DMs	Rank	Lines in Segment	weids in Segment	Count	Sketch No(S).	
0351	SI-045	6a	Low	IL-C-21	Medium	None	Low	6-SI-ISIM-939 6-SI-ISIM-939	SI-W013 SI-W014, SI-W015, SI-W016, SI-W017, SI- W018, SI-W019, SI-W020, SI-W021, SI-W022, SI-W023, SI-W024, SI-W025, SI-W026, SI- W027, SI-W028	16	ISIM-939Sh1 ISIM-939Sh2	1
0351	S1-002	6a	Low	IL-C-01A	Medium	None	Low	3-SI-ISIM-934-2 4-SI-ISIM-934-2	SI-W269 SI-W270	2	ISIM-934-2	2
0351	SI-006	6a	Low	IL-C-02A	Medium	None	Low	2-SI-ISIM-982	SI-W455S, SI-W456S	2	ISIM-982	2
0351	SI-007	6a	Low	IL-C-02A	Medium	None	Low	2-SI-ISIM-982	SI-W457S, SI-W458S, SI-W459S, SI-W460S, SI-W461S, SI-W462S, SI-W544S, SI-W545S, SI-W463S	9	IS1M-982	2
0351	SI-008	6a	Low	IL-C-02B	Medium	None	Low	2-SI-ISIM-936	SI-W292S, SI-W293S, SI-W294S, SI-W295S, SI-W296S, SI-W297S, SI-W298S, SI-W556S, SI-W300S, SI-W301S	10	ISIM-936	2
03SI	SI-009	6a	Low	IL-C-03	Medium	None	Low	2-SI-ISIM-982	SI-W464S, SI-W465S	2	ISIM-982	2
0351	SI-013	6a	Low	IL-C-06	Medium	None	Low	2-SI-ISIM-936	SI-W302S, SI-W303S	2	ISIM-936	2
0351	SI-018	6a	Low	1L-C-09A	Medium	None	Low	3-SI-ISIM-934-1	SI-W238, SI-W239	2	ISIM-934-1	2
0351	SI-021	6a	Low	IL-C-10A	Medium	None	Low	2-SI-ISIM-937-2	SI-W321S, SI-W553S, SI-W554S, SI-W322S, SI-W323S, SI-W324S, SI-W325S, SI-W326S, SI-W327S, SI-W555S, SI-W329S, SI-W331S, SI-W332S, SI-W333S, SI-W334S, SI-W335S	16	ISIM-937-25h1	2
0351	SI-022	<u>6a</u>	Low	IL-C-10A	Medium	None	Low	2-SI-ISIM-937-2	SI-W330S	1	ISIM-937-25h2	2
0351	S1-023	6a	Low	IL-C-10B	Medium	None	Low	2-SI-ISIM-937-1	SI-W352S, SI-W353S, SI-W354S, SI-W547S, SI-W548S, SI-W355S, SI-W356S, SI-W549S, SI-W550S, SI-W357S	10	ISIM-937-1	2
03S1	SI-024	6a	Low	IL-C-11	Medium	None	Low	2-SI-ISIM-937-2	SI-W336S, SI-W337S	2	ISIM-937-2Sh1	2
0351	SI-025	6a	Low	IL-C-12	Medium	None	Low	2-SI-ISIM-937-1	SI-W358S, SI-W359S	2	ISIM-937-1	2
0351	SI-034	6a	Low	IL-C-17	Medium	None	Low	6-SI-ISIM-938-2	SI-W124, SI-W125, SI-W126, SI-W127	4	ISIM-938-2Sh1	2
0351	SI-041	6a	Low	IL-C-20	Medium	None	Low	6-SI-ISIM-939	SI-W168, SI-W169	2	ISIM-939Sh2	2
0351	SI-048	6a	Low .	RHR-C-14B	Medium	None	Low	6-SI-ISIM-961-2	SI-W128, SI-W129, SI-W130, SI-W131, SI- W132, SI-W133, SI-W134, SI-W135, SI-W136, SI-W137, SI-W138, SI-W139, SI-W140, SI- W141, SI-W142, SI-W143, SI-W144, SI-W145, SI-W146, SI-W147, SI-W148	21	ISIM-961-2	2

NOTES: Dissimilar metal welds are indicated by the letters "DM" in the weld number.
 Welds that were selected for examination are underlined.

. .

. .

Calc./File	No.	NMC-01-342	
------------	-----	------------	--

System	Risk	Characteriza	ation	Conseq	uence	Failure	Potential	Lines in Segment	Welds in Segment	Weld	Sketch No(s).	cc
System	Segment	Category	Rank	ID	Rank	DMs	Rank	Lines in Segment	Weids in Segment	Count	Okcieli No(3).	
0351	SI-049	6a	Low	RHR-C-15B2	Medium	None	Low	6-SI-ISIM-939 6-SI-ISIM-939	SI-W149, SI-W150, SI-W151, SI-W152, SI- W153, SI-W154, SI-W155, SI-W156, SI-W157, SI-W158, SI-W159, SI-W160, SI-W161, SI- W162, SI-W163, SI-W164, SI-W165 SI-W166, SI-W167	19	ISIM-939Sh1 ISIM-939Sh2	2
0351	SI-071	6a	Low	SI-C-04A	Medium	None	Low	2-SI-ISIM-993	SI-W496S, SI-W497S	2	ISIM-993	2
03SI	SI-072	6a	Low	SI-C-04B	Medium	None	Low	2-SI-ISIM-993	SI-W535S, SI-W540S	2	1SIM-993	2
0351	SI-079	6a	Low	SI-C-06	Medium	None	Low	2-SI-ISIM-993	SI-W518S, SI-W519S	2	1SIM-993	2
04CVC	CVC-015	6a	Low	CVCS-C-11	Medium	None	Low	2-CVC-ISIM-874-3	CVC-W153S, CVC-W154S	2	ISIM-874-3	1
04CVC	CVC-016	6a	Low	CVCS-C-12	Medium	None	Low	2-CVC-ISIM-1471	CVC-W001S, CVC-W002S	2	ISIM-1471	1
04CVC	CVC-017	6a	Low	CVCS-C-12	Medium	None	Low	2-CVC-ISIM-1471	CVC-W003S, CVC-W004S, CVC-W005S, CVC-W006S, CVC-W007S, CVC-W008S, CVC-W009S, CVC-W010S, CVC-W011S, CVC-W012S, CVC-W013S, CVC-W014S, CVC-W015S, CVC-W016S, CVC-W017S, CVC-W018S, CVC-W019S, CVC-W020S, CVC-W021S, CVC-W022S, CVC-W023S, CVC-W024S, CVC-W025S, CVC-W026S, CVC-W027S, CVC-W028S, CVC-W029S, CVC-W030S, CVC-W031S, CVC-W032S	30	ISIM-1471	1
04CVC	CVC-018	6a	Low	CVCS-C-12	Medium	None	Low	2-CVC-ISIM-1471	CVC-W033S, CVC-W034S, CVC-W035S, CVC-W036S, CVC-W037S, CVC-W038S	6	ISIM-1471	1
04CVC	CVC-020	6a	Low	CVCS-C-14	Medium	None	Low	2-CVC-ISIM-1476	CVC-W097S, CVC-W098S, CVC-W099S	3	ISIM-1476	11
04CVC	CVC-021	6a	Low	CVCS-C-14	Medium	None	Low	2-CVC-ISIM-1476	CVC-W100S, CVC-W101S, CVC-W102S, CVC-W103S, CVC-W104S, CVC-W105S, CVC-W106S, CVC-W107S, CVC-W108S, CVC-W109S, CVC-W110S, CVC-W111S, CVC-W112S, CVC-W113S, CVC-W114S, CVC-W115S, CVC-W116S, CVC-W117S, CVC-W118S, CVC-W119S, CVC-W120S	21	ISIM-1476	1
04CVC	CVC-022	6a	Low	CVCS-C-14	Medium	None	Low	2-CVC-ISIM-1476	CVC-W121S, CVC-W122S, CVC-W123S, CVC-W124S, CVC-W125S, CVC-W126S, CVC-W127S, CVC-W128S, CVC-W129S, CVC-W130S, CVC-W131S, CVC-W132S	12	ISIM-1476	1
05MS	MS-001	6a	Low	MS-C-01A	Medium	None	Low	30-MS-ISIM-871 31-MS-ISIM-984-2	MS-W118, MS-W002, MS-W003, MS-W004, MS-W120, MS-W005, MS-W006, MS-W100, MS-W007, MS-W008 MS-W009, MS-W010	12	ISIM-871 ISIM-984-2Sh1	2

NOTES:

1) Dissimilar metal welds are indicated by the letters "DM" in the weld number. Page C16 of C20

.

2) Welds that were selected for examination are underlined.

Calc./File No. NMC-01-342

System	Risk	Characteriza	ation	Consec	luence	Failure	Potential	Lines in Segment	Welds in Segment	Weld	Sketch No(s).	сс
System	Segment	Category	Rank	ID	Rank	DMs	Rank	Emes in organem		Count		
05MS	MS-002	6a	Low	MS-C-01B	Medium	None	Low	30-MS-ISIM-872 31-MS-ISIM-985-1	MS-W119, MS-W050, MS-W051, MS-W052, MS-W121, MS-W053, MS-W054, MS-W054A, MS-W055, MS-W056 MS-W057, MS-W058, MS-W059	13	ISIM-872 ISIM-985-1Sh1	2
05MS	MS-003	6a	Low	MS-C-02A	Medium	None	Low	31-MS-ISIM-984-2	MS-W10A, MS-W047P	2	ISIM-984-2Sh1	2
05MS	MS-004	6a	Low	MS-C-02B	Medium	None	Low	31-MS-ISIM-985-1	MS-W059A, MS-W094P	2	ISIM-985-1Sh1	2
05MS	MS-005	6a	Low	MS-C-03A	Medium	None	Low	31-MS-ISIM-984-2 30-MS-ISIM-984-2	MS-W011, MS-W012 MS-W014, MS-W016	4	ISIM-984-2Sh1	2
05MS	MS-006	6a	Low	MS-C-03A	Medium	None	Low	24-MS-ISIM-984-2 24-MS-ISIM-984-2	MS-W097, MS-W096 MS-W015, MS-W013, MS-W018	5	ISIM-984-2Sh1 ISIM-984-2Sh2	2
05MS	MS-007	6a	Low	MS-C-03B	Medium	None	Low	31-MS-ISIM-985-1	MS-W060, MS-W061	2	ISIM-985-1Sh1	2
05MS	MS-008	6a	Low	MS-C-03B	Medium	None	Low	24-MS-ISIM-985-1	MS-W067, MS-W062, MS-W063, MS-W064, MS-W065	5	ISIM-985-1Sh1	
05MS	MS-009	6a	Low	MS-C-04A	Medium	None	Low	6-MS-ISIM-984-2 8-MS-ISIM-969 6-MS-ISIM-969	MS-W031BC MS-W020, MS-W021, MS-W022 MS-W023	5	ISIM-969 ISIM-984-2Sh3	2
05MS	MS-010	6a	Low	MS-C-04B	Medium	None	Low	6-MS-ISIM-985-1 8-MS-ISIM-968 6-MS-ISIM-968	MS-W078BC MS-W079, MS-W080, MS-W081, MS-W082 MS-W083	6	ISIM-968 ISIM-985-1Sh3	2
05MS	MS-011	6a	Low	MS-C-05A1	Medium	None	Low	6-MS-ISIM-984-2 6-MS-ISIM-984-2	MS-W029BC MS-W024	2	ISIM-984-2Sh1 ISIM-984-2Sh3	1
05MS	MS-012	6a	Low	MS-C-05A2	Medium	None	Low	6-MS-ISIM-984-2 6-MS-ISIM-984-2	MS-W027BC MS-W026	2	ISIM-984-2Sh1 ISIM-984-2Sh3	
05MS	MS-013	6a	Low	MS-C-05A3	Medium	None	Low	6-MS-ISIM-984-2 6-MS-ISIM-984-2	MS-W025BC MS-W028	2	ISIM-984-2Sh1 ISIM-984-2Sh3	
05MS	MS-014	6a	Low	MS-C-05A4	Medium	None	Low	6-MS-ISIM-984-2 6-MS-ISIM-984-2	MS-W023BC MS-W030	2	ISIM-984-2Sh1 ISIM-984-2Sh3	2
05MS	MS-015	6a	Low	MS-C-05A5	Medium	None	Low	6-MS-ISIM-984-2 6-MS-ISIM-984-2	MS-W019BC MS-W032	2	ISIM-984-2Sh1 ISIM-984-2Sh3	2
05MS	MS-016	6a	Low	MS-C-05B1	Medium	None	Low	6-MS-ISIM-985-1 6-MS-ISIM-985-1	MS-W076BC MS-W077	2	ISIM-985-1Sh1 ISIM-985-1Sh3	
05MS	MS-017	6a	Low	MS-C-05B2	Medium	None	Low	6-MS-ISIM-985-1 6-MS-ISIM-985-1	MS-W074BC MS-W075	2	ISIM-985-1Sh1 ISIM-985-1Sh3	
05MS	MS-018	6a	Low	MS-C-05B3	Medium	None	Low	6-MS-ISIM-985-1 6-MS-ISIM-985-1	MS-W072BC MS-W073	2	ISIM-985-1Sh1 ISIM-985-1Sh3	
05MS	MS-019	6a	Low	MS-C-05B4	Medium	None	Low	6-MS-ISIM-985-1 6-MS-ISIM-985-1	MS-W070BC MS-W071	2	ISIM-985-1Sh1 ISIM-985-1Sh3	
05MS	MS-020		Low	MS-C-05B5	Medium	None	Low	6-MS-ISIM-985-1 6-MS-ISIM-985-1	MS-W068BC MS-W069	2	ISIM-985-1Sh1 ISIM-985-1Sh3	

NOTES:

. .

Dissimilar metal welds are indicated by the letters "DM" in the weld number.
 Welds that were selected for examination are underlined.

Calc./File No. NMC-01-342 Rev. 0

System	Risk	Characteria		Consec	luence	∦	Potential	Lines in Segment	Welds in Segment	Weld Count	Sketch No(s).	C
•	Segment	Category	Rank	ID	Rank	DMs	Rank			Count		
06FW	FW-008	6a (3)	Low (High)	FW-C-03A	Medium	None (FAC)	Low (High)	16-FW-ISIM-991-1	FW-W011	2	ISIM-970	2
								16-FW-ISIM-970	FW-W012		ISIM-991-1Sh1	
06FW	FW-003	6a	Low	FW-C-01A	Medium	None	Low	16-FW-ISIM-991-1	FW-W006	1	ISIM-991-1Sh1	
06FW	FW-004	6a	Low	FW-C-01B	Medium	None	Low	16-FW-ISIM-972-1	FW-W032, FW-W033, FW-W034, FW-W035	4	ISIM-972-1Sh1	
06FW	FW-005	6a	Low	FW-C-02A	Medium	None	Low	16-FW-ISIM-991-1	FW-W007P, FW-W008P	2	ISIM-991-1Sh1	
06FW	FW-006	6 a	Low	FW-C-02B	Medium	None	Low	16-FW-ISIM-972-1	FW-W036, FW-W039P	2	ISIM-972-1Sh1	Γ
06FŴ	FW-007	6a	Low	FW-C-03A	Medium	None	Low	16-FW-ISIM-991-1	FW-W010	1	ISIM-991-1Sh1	Т
06FW	FW-009	6a	Low	FW-C-03A	Medium	None	Low	16-FW-ISIM-970	FW-W013, FW-W014, FW-W015, FW-W016, FW-W017, FW-W018, FW-W019, FW-W020, FW-W021, FW-W022, FW-W023	11	ISIM-970	
06FW	FW-010	6a	Low	FW-C-03B	Medium	None	Low	16-FW-ISIM-972-1 16-FW-ISIM-971	FW-W040, FW-W041 FW-W042, FW-W043, FW-W044, FW-W045, FW-W046, FW-W047, FW-W048, FW-W049, FW-W050, FW-W051	12	ISIM-971 ISIM-972-1Sh1	
07ICS	ICS-013	6a	Low	ICS-C-05A1	Medium	None	Low	6-ICS-ISIM-951	ICS-W037, ICS-W038	2	ISIM-951	
07ICS	ICS-014	6a	Low	ICS-C-05A2	Medium	None	Low	6-ICS-ISIM-951	ICS-W039, ICS-W040, ICS-W041, ICS-W042	4	ISIM-951	
07ICS	ICS-015		Low	ICS-C-05B1	Medium	None	Low	6-ICS-ISIM-953	ICS-W122, ICS-W123	2	ISIM-953	
07ICS	ICS-016	6a	Low	ICS-C-05B2	Medium	None	Low	6-ICS-ISIM-953	ICS-W124, ICS-W125, ICS-W126, ICS-W127	4	ISIM-953	
07ICS	ICS-017	6a	Low	ICS-C-06A	Medium	None	Low	6-ICS-ISIM-951	ICS-W043, ICS-W044	2	ISIM-951	1
07ICS	ICS-018	6a	Low	ICS-C-06B	Medium	None	Low	6-ICS-ISIM-953	ICS-W128, ICS-W129	2	ISIM-953	1
08AF	AF-003	6a	Low	AFW-C-01A1	Medium	None	Low	3-AF-ISIM-877-1	AFW-W014, AFW-W015, AFW-W016, AFW- W017	4	ISIM-877-1	1
08AF	AF-004	6a	Low	AFW-C-01A2	Medium	None	Low	3-AF-ISIM-877-1	AFW-W018, AFW-W019, AFW-W020, AFW- W021, AFW-W022, AFW-W023, AFW-W024, AFW-W025, AFW-W026, AFW-W027, AFW- W028, AFW-W029, AFW-W030, AFW-W031, AFW-W032, AFW-W033, AFW-W034, AFW- W035, AFW-W036, AFW-W037, AFW-W038	21	ISIM-877-1	
08AF	AF-005	6a	Low	AFW-C-01A3	Medium	None	Low	3-AF-ISIM-877-1 3-AF-ISIM-877-2	AFW-W039, AFW-W040 AFW-W041, AFW-W042, AFW-W043, AFW- W044, AFW-W045, AFW-W046, AFW-W047, AFW-W048, AFW-W049, AFW-W050, AFW- W051, AFW-W052, AFW-W053, AFW-W054	16	ISIM-877-1 ISIM-877-2	
08AF	AF-006	6a	Low	AFW-C-01A4	Medium	None	Low	3-AF-ISIM-877-2	AFW-W055, AFW-W056	2	ISIM-877-2	Т

NOTES:

1) Dissimilar metal welds are indicated by the letters "DM" in the weld number. Page C18 of C20

2) Welds that were selected for examination are underlined.

.

Calc./File No. NMC-01-342

Custom	Risk	Characteriza	ition	Conseq	uence	Failure I	Potential	Lines in Segment	Welds in Segment	Weld	Sketch No(s).	cc
System	Segment	Category	Rank	ID	Rank	DMs	Rank	- Lines in Segment	Weids in Segment	Count	SACIUM 110(3).	
08AF	AF-009	6a	Low	AFW-C-01B1	Medium	None	Low	3-AF-ISIM-891-1	AFW-W100, AFW-W101, AFW-W102, AFW- W103, AFW-W104, AFW-W105, AFW-W106, AFW-W107, AFW-W108, AFW-W109, AFW- W110, AFW-W111, AFW-W112, AFW-W113, AFW-W114, AFW-W115, AFW-W116, AFW- W117, AFW-W118, AFW-W119	20	ISIM-891-1	2
08AF	AF-010	6a	Low	AFW-C-01B2	Medium	None	Low	3-AF-ISIM-891-1	AFW-W120, AFW-W121	2	ISIM-891-1	2
08AF	AF-011	6a	Low	AFW-C-02A	Medium	None	Low	3-AF-ISIM-877-2 4-AF-ISIM-877-2	AFW-W057 AFW-W058	2	ISIM-877-2	2
08AF	AF-012	6a	Low	AFW-C-02B	Medium	None	Low	3-AF-ISIM-891-1 4-AF-ISIM-891-1	AFW-W122 AFW-W123	2	ISIM-891-1	2
08AF	AF-013	6a	Low	AFW-C-03A	Medium	None	Low	4-AF-ISIM-865 3-AF-ISIM-865	AFW-W059 AFW-W060, AFW-W061, AFW-W062, AFW- W063, AFW-W064, AFW-W065, AFW-W066, AFW-W067, AFW-W068, AFW-W069, AFW- W070, AFW-W071, AFW-W072, AFW-W073, AFW-W074, AFW-W075, AFW-W076, AFW- W077, AFW-W146, AFW-W078	21	ISIM-865	2
08AF	AF-014	6a	Low	AFW-C-03B	Medium	None	Low	4-AF-ISIM-866 3-AF-ISIM-866	AFW-W124 AFW-W125, AFW-W126, AFW-W127, AFW- W128, AFW-W129, AFW-W130, AFW-W131, AFW-W132, AFW-W133, AFW-W134, AFW- W135, AFW-W136, AFW-W137, AFW-W138, AFW-W139, AFW-W140, AFW-W141	18	ISIM-866	2
02RHR	RHR-058	7a	Low	RHR-C-16	Low	None	Low	8-RHR-ISIM-960-1 8-RHR-ISIM-960-1	RHR-W231, RHR-W232, RHR-W233, RHR- W234, RHR-W235, RHR-W236, RHR-W237 RHR-W239	8	ISIM-960-1	2
02RHR	RHR-059		Low	RHR-C-16	Low	None	Low	6-RHR-ISIM-960-1	RHR-W238BC	1	ISIM-960-1	2
02RHR	RHR-060	78	Low	RHR-C-17	Low	None	Low	6-RHR-ISIM-961-1	RHR-W241, RHR-W242, RHR-W243, RHR- W244, RHR-W245, RHR-W246	6	ISIM-961-1	2
02RHR	RHR-061	7a	Low	RHR-C-18	Low	None	Low	6-RHR-ISIM-961-1	RHR-W247, RHR-W248, RHR-W249	3	ISIM-961-1	2
02RHR	RHR-062	7a	Low	RHR-C-18	Low	None	Low	6-RHR-ISIM-961-1	RHR-W250, RHR-W251, RHR-W252	3	ISIM-961-1	2
04CVC	CVC-007	7a	Low	CVCS-C-06	Low	None	Low	2-CVC-ISIM-1474	LD-W013S, LD-W014S	2	ISIM-1474	1
04CVC	CVC-008	7a	Low	CVCS-C-07	Low	None	Low	2-CVC-ISIM-1474	WD-W019S, WD-W20S	2	ISIM-1474	1
04CVC	CVC-013	7a	Low	CVCS-C-10	Low	None	Low	2-CVC-ISIM-1369-2	WD-W012S, WD-W013S, WD-W014S	3	ISIM-1369-2	1
04CVC	CVC-014	7a	Low	CVCS-C-10	Low	None	Low	2-CVC-ISIM-1369-2	WD-W015S, WD-W016S	2	ISIM-1369-2	1
07ICS	ICS-019	7a	Low	ICS-C-07A	Low	None	Low	6-ICS-ISIM-952	ICS-W141, ICS-W142, ICS-W143, ICS-W144, ICS-W145, ICS-W146, ICS-W147	7	ISIM-952	2

NOTES:

Dissimilar metal welds are indicated by the letters "DM" in the weld number.
 Welds that were selected for examination are underlined.

Svetom	System Risk Character			Consec	equence Fallu		Potential	Lines in Segment	Welds in Segment	Weld	Sketch No(s).	CC
System	Segment	Category	Rank	ID	Rank	DMs	Rank	Lines in deginent		Count	0.0001110(0).	
07ICS	ICS-020	7a	Low	ICS-C-07B	Low	None	Low		ICS-W148, ICS-W149, ICS-W150, ICS-W151, ICS-W152, ICS-W153, ICS-W154, ICS-W155, ICS-W156, ICS-W157	10	ISIM-954	2

TOTAL: 1779

NOTES:1) Dissimilar metal welds are indicated by the letters "DM" in the weld number.2) Welds that were selected for examination are underlined.Page C20 of C20

1

INSERVICE ENGINEERING

DOCUMENT PACKAGE

FILE No.: NMC-01-343

PROJECT No.: NMC-01

PROJECT NAME: Risk-Informed ISI Code Case N-578 Application to NMC Plants

CLIENT: Nuclear Management Company (NMC)

DOCUMENT TITLE: Risk Impact Analysis for the Kewaunee Nuclear Power Plant

Document Revision	Affected Pages	Revision Description	Preparer(s) Signature(s) & Date	Checker(s) Signature(s) & Date	Approver(s) Signature(s) & Date
0	i 1 1 (Att. 1) 1 (Att. 2) 1 (Att. 3) 1 (Att. 4)	Original Issue	Den Bryan 7/11/2003	Lott Kulet 7/11/03	Phillip C. Bakes July 29,2003
			•		

Risk Impact Analysis for Kewaunee

A risk impact analysis was conducted for Kewaunee per the requirements of Section 3.7 of EPRI TR-112657. The analysis estimates the net change in risk due to the positive and negative influence of adding and removing locations from the inspection program. Limits are imposed by the EPRI methodology to ensure that the change in risk of implementing the RI-ISI program meets the requirements of Regulatory Guides 1.174 and 1.178. The EPRI criterion requires that the cumulative change in core damage frequency (CDF) and large early release frequency (LERF) be less than 1E-07 and 1E-08 per year per system, respectively.

The change in CDF due to application of the RI-ISI process was estimated based on the following:

$\succ \qquad \Delta_{RCDF} = CCDP^*RF^*[(PODs^*Ns) - (PODR^*NR)]$

CCDP	Conditional Core Damage Probability
RF	Rupture Frequency
PODs	Probability of Detection associated with the ASME Section XI Code Program
PODR	Probability of Detection associated with the EPRI TR-112657 RI-ISI Program
Ns	Number of Inspection Locations in the ASME Section XI Code Program
NR	Number of Inspection Locations in the EPRI TR-112657 RI-ISI Program

The change in LERF due to application of the RI-ISI process was estimated by substituting the conditional large early release probability (CLERP) for CCDP in the above equation. In addition, the analysis was performed both with and without taking credit for enhanced inspection effectiveness due to an increased POD from application of the RI-ISI process.

The following were additional considerations in conducting the quantitative analysis.

- Only those ASME Section XI Code inspection locations that received a volumetric examination in addition to a surface examination are included in the count. Inspection locations previously subjected to a surface examination only were not considered in accordance with Section 3.7.1 of EPRI TR-112657.
- Per Section 3.7.1 of EPRI TR-112657, the contribution of low risk categories 6 and 7 need not be considered in assessing the change in risk. They are excluded from analysis because they have an insignificant impact on risk. Hence, the word "negligible" is given in these cases in lieu of values for CDF and LERF Impact. For those cases in high, medium or low risk region piping where no impact to CDF or LERF exists, "no change" is listed.
- Prior to the development of the RI-ISI program, Class 1 (B-F and B-J) and Class 2 (C-F-1 and C-F-2) piping weld selections were determined for the upcoming fourth interval. These selections were used for comparison purposes. As allowed by 10CFR50, the Class 1 piping weld selections were determined per the requirements of the 1974 Edition through Summer 1975 Addenda of ASME Code Section XI. For Class 2, the piping weld selections were determined per the requirements of the 1998 Edition through 2000 Addenda of ASME Code Section XI.
- For high consequence rank segments, the highest evaluated CCDP (1E-02) and CLERP (1E-03) values were used to assess
 risk impact. These values are based on postulated breaks in the RWST discharge piping that result in a flooding of the AFW
 pumps and a manual plant trip with only MFW available for feed flow.

The risk impact inputs and results are documented in the following attachments.

Attachment	Description
1	Contains risk impact inputs used in the analysis, including the upper bound values for CCDP and CLERP, best estimate and upper bound rupture frequencies, and POD improvement factors.
2	Provides an inspection location selection comparison between the ASME Section XI Code and EPRI TR-112657 by Risk Category.
3	Provides a bounding estimate of risk impact based on best estimate failure rates. These results are presented in the template.
4	Provides a bounding estimate of risk impact based on upper bound failure rates. Evaluated for sensitivity case purposes only.

This evaluation has demonstrated that unacceptable risk impacts will not occur from implementation of the RI-ISI program, and satisfies the acceptance criteria of Regulatory Guide 1.174 and EPRI TR-112657.

Kewaunee Risk Impact Inputs

Consequence	Upper Bound		Failure F	Best Estimate	Upper Bound	POD Improvement Factors				
Rank	CCDP	CLERP	Damage Mechanisms	Rank	Failure Rate	Failure Rate	Section XI	RI-ISI	None	
High	1.00E-02	1.00E-03	FAC	High	2.00E-06	1.00E-04	N/A	N/A	N/A	
	1 005 04	1 005 05	1.00E-05	TASCS, TT	Medium	0.005.07	4 005 05	0.3	0.9	
Mediam	Medium 1.00E-04 1	1.002-05	IGSCC, TGSCC, PWSCC, ECSCC, MIC, PIT, CC, E-C	meaium	2.00E-07	1.00E-05	0.5	0.5	0.5	
Low	1.00E-06	1.00E-07	None	Low	1.00E-08	1.00E-06	0.5	0.5		

'r'

Kewaunee Inspection Location Comparison by Risk Category

System	R	isk	Consequence	Failure i	Potential and a state of a	Code	Weld Count	Section XI	Selections	TR-112657	Selections
System	Category	Rank	Rank	DMs	Rank	Category		Vol/Sur	Sur Only	RI-ISI	Other
01RC	2	High	High	TASCS, TT	Medium	B-J	5	1	0	2	•
01RC	2	High	High	TASCS	Medium	B-J	7	0	0	1	•
01RC	2	High	Ulah	π	Medium	B-F	1	1	0	1	•
UIRC	2	rigit	High		Median	B-J	9	1	0	2	•
01RC	4	Medium	High	None	Low	B-F	12	12	0	12	•
0110		Mediditi	ragii			B-J	236	17	53	13	•
02RHR	2	High	High	TASCS	Medium	B-J	8	1	0	2	-
02RHR	4	Medium	High	None	Low	B-J	9	1	0	5	-
UZININ		Wediditt	riigii		L0W	C-F-1	98	1	7	6	•
02RHR	5a	Medium	Medium	TASCS	Medium	C-F-1	6	0	0	1	•
02RHR	• 6a	Low	Medium	None	Low	B-J	27	9	0	0	•
021(111)			Medicin	None	207	C-F-1	192	2	13	0	•
02RHR	6b	Low	Low	TASCS	Medium	C-F-1	2	0	0	0.	•
02RHR	7a	Low	Low	None	Low	C-F-1	21	0	0	0	•
0351	2	High	High	π	Medium	B-J	2	0	0	1	•
0351	2	High	High	PWSCC	Medium	B-F	2	2	0	2	•
0351	4	Medium	High	None	Low	B-J	12	3	0	4	-
0001	-				201	C-F-1	305	14	12	28	•
03SI	5a	Medium	Medium	TT, IGSCC	Medium	B-J	5	1	1	1	•
03SI	5a	Medium	Medium	IGSCC	Medium	B-J	5	1	0	0	•
0351		Low	Medium	None	Low	B-J	95	16	13	0	•
		2011	meanan		2011	C-F-1	112	1	8	0	
04CVC	2	High	High	TASCS	Medium	B-J	2	0	0	1	
04CVC	2	High	High	Π	Medium	B-J	33	0	10	8	-
04CVC	4	Medium	High	None	Low	B-J	88	0	30	9	-
04CVC	5a	Medium	Medium	Π	Medium	B-J.	5	0	0	1	•
04CVC	6a	Low	Medium	None	Low	B-J	76	0	21	0	
04CVC	7a	Low	Low	None	Low	B-J	9	0	4	0	•
05MS	6a	Low	Medium	None	Low	C-F-2	76	11	2	0	-
06FW	5a	Medium	Medium	TASCS	Medium	C-F-2	16	6	1	2	-
06FW	6a (3)	Low (High)	Medium	None (FAC)	Low (High)	C-F-2	2	2	0	0	•
06FW	6a	Low	Medium	None	Low	C-F-2	33	2	0	0	•
07ICS	4	Medium	High ·	None	Low	C-F-1	88	0	6	9	-
07ICS	6a	Low	Medium	None	Low	C-F-1	16	1	0	0	-
071CS	7a	Low	Low	None	Low	C-F-1	17	0	3	0	•
08AF	4	Medium	High	None	Low	C-F-2	33	5	0	4	•
08AF	5a	Medium	Medium	TASCS, TT	Medium	C-F-2	6	0	0	1	•
08AF	6a	Low	Medium	None	Low	C-F-2	108	7	0	0	

					· **												
System	Category	Consequence	Upper	Bound	Fallure Potential		Best Estimate	POD In	provement	Factors :::	, inspe	ection Local	tions	CDF h	mpact _{teres}	LERF	Impact 🚉
374(411	Caregory	Rank	CCDP	CLERP _	Damage Mechanisms	Rank	Fallure Rate	Section XI	- RI-ISI -	None	Section XI	RI-ISI	Detta 📜	w POD	. w/o POD	. w POD :	wo POD
RC	2	High	1.00E-02	1.00E-03	TASCS, TT	Medium	2.00E-07	0.3	0.9	0.5	1 1	2	1	-3 00E-09	-1.00E-09	-3.00E-10	-1.00E-10
RC	2	High	1.00E-02	1.00E-03	TASCS	Medium	2.00E-07	0.3	0.9	0.5	0	1	1	-1.80E-09	-1.00E-09	-1.80E-10	-1.00E-10
RC	2	High	1.00E-02	1.00E-03	TT	Medium	2.00E-07	0.3	0.9	0.5	2	3	1	-4.20E-09	•1.00E-09	-4.20E-10	-1.00E-10
RC	4	High	1.00E-02	1.00E-03	None	Low	1.00E-08	0.5	0.5	0.5	29	25	-4	2.00E-10	2.00E-10	2.00E-11	2.00E-11
RC Total												_		-8.80E-09	+2.80E-09	-8.80E-10	-2.80E-10
RHR	2	High	1.00E-02	1.00E-03	TASCS	Medium	2.00E-07	0.3	0.9	0.5	1	2	1	-3.00E-09	-1.00E-09	-3.00E-10	-1.00E-10
RHR	4	High	1.00E-02	1.00E-03	None	Low	1.00E-08	0.5	0.5	0.5	2	11	9	-4.50E-10	-4.50E-10	-4.50E-11	-4.50E-11
RHR	5a	Medium	1.00E-04	1.00E-05	TASCS	Medium	2.00E-07	0.3	0.9	0.5	0	1	1	+1.80E+11	-1.00E-11	-1.80E-12	+1.00E-12
RHR	6a	Medium	1.00E-04	1.00E-05	None	Low	1.00E-08	0.5	0.5	0.5	11	0	-11	negligible	negligible	negligible	negligible
RHR	6b	Low	1.00E-06	1.00E-07	TASCS	Medium	2.00E-07	0.3	0.9	0.5	0	0	0	no change	no change	no change	no change
RHR	7a	Low	1.00E-06	1.00E-07	None	Low	1.00E-08	0.5	0.5	0.5	0	0	0	no change	no change	no change	no change
RHR Total			_											-3.47E-09	-1,46E-09	-3.47E-10	-1.46E-10
SI	2	High	1.00E-02	1.00E-03	TT	Medium	2.00E-07	0.3	09	05	0	1	1	-1.80E-09	-1.00E-09	-1.80E-10	-1.00E-10
SI	2	High	1.00E-02	1.00E-03	PWSCC	Medium	2.00E-07	0.5	0.5	05	2	2	0	no change	no change	no change	no change
SI	4	High	1.00E-02	1.00E-03	None	Low	1.00E-08	0.5	0.5	0.5	17	32	15	-7.50E-10	-7.50E-10	-7.50E-11	-7.50E-11
SI	5a	Medium	1.00E-04	1.00E-05	TT, IGSCC	Medium	2.00E-07	0.5	0.5	0.5	1	1	0	no change	no change	no change	no change
SI	5a	Medium	1.00E-04	1.00E-05	IGSCC	Medium	2.00E-07	0.5	0.5	0.5	. 1		-1	1.00E-11	1.00E-11	1.00E-12	1.00E-12
St	6a	Medium	1.00E-04	1.00E-05	None	Low	1.00E-08	0.5	0.5	0.5	17	0	-17	negligible	negligible	negligible	negligible
SI Total														+2.54E-09	-1.74E-09	-2.54E-10	-1.74E-10
CVC	2	High	1.00E-02	1.00E-03	TASCS	Medium	2.00E-07	0.3	0.9	0.5	0	1	1	-1.80E-09	•1.00E-09	-1.80E-10	-1.00E-10
CVC	2	High	1.00E-02	1.00E-03	Π	Medium	2.00E-07	0.3	0.9	0.5	0	8	8	-1.44E-08	-8.00E-09	+1.44E-09	-8.00E-10
CVC	4	High	1.00E-02	1.00E-03	None	Low	1.00E-08	0.5	0.5	0.5	0	9	9	-4.50E-10	-4.50E-10	-4.50E-11	-4.50E-11
CVC	5a	Medium	1.00E-04	1.00E-05	Π	Medium	2.00E-07	03	0.9	0.5	0	1	1	-1.80E-11	-1.00E-11	-1.80E-12	-1.00E-12
CVC	6a	Medium	1.00E-04	1.00E-05	None	Low	1.00E-08	0.5	0.5	0.5	0	0	0	no change	no change	no change	no change
CVC	7a	Low	1.00E-08	1.00E-07	None	Low	1.00E-08	0.5	0.5	05	0	0	0	no change	no change	no change	no change
CVC Total											II			-1.67E-08	-9.46E-09	-1.67E-09	-9.46E-10
MS	6a	Medium	1.00E-04	1.00E-05	None	Low	1.00E-08	0.5	0.5	0.5	11	0	-11	negligible	negligible	negligible	negligible
MS Total														negligible	negligible	negligible	negligible
FW	- 5a	Medium	1.00E-04	1.00E-05	TASCS	Medium	2.00E-07	0.3	0.9	0.5	6	2	-4	no change	4.00E-11	no change	4.00E-12
FW	6a (3)	Medium	1.00E-04	1.00E-05	None (FAC)	Low (High)	1.00E-08	0.5	0.5	0.5	2	0	-2	negligible	negligible	negligible	negligible
FW	6a	Medium	1.00E-04	1.00E-05	None	Low	1.00E-08	0.5	0.5	0.5	2	0	-2	negligible	negligible	negligible	negligible
FW Total														negligible	4.00E-11	negligible	4.00E-12
ICS	4	High	1.00E-02	1.00E-03	None	Low	1.00E-08	0.5	0.5	05	0	9	9	-4.50E-10	-4.50E-10	-4.50E-11	-4.50E-11
ICS	6a	Medium	1.00E-04	1.00E-05	None	Low	1.00E-08	0.5	0.5	05	1	0	-1	negligible	negligible	negligible	negligible
ICS	78	Low	1.00E-06	1.00E-07	None	Low	1.00E-08	0.5	05	05	0	0	0	no change	no change	no change	no change
ICS Total														-4.50E-10	-4.50E-10	-4.50E-11	-4.50E-11
AF	4	High	1.00E-02	1.00E-03	None	Low	1.00E-08	0.5	05	05	5	4	•1	5.00E-11	5.00E-11	5.00E-12	5.00E-12
AF	5a	Medium	1.00E-04	1.00E-05	TASCS, TT	Medium	2.00E-07	0.3	09	05	0	1	1	-1.80E-11	-1.00E-11	-1.80E-12	-1.00E-12
AF	6a	Medium	1.00E-04	1.00E-05	None	Low	1.00E-08	0.5	0.5	05	7	0	-7	negligible	negligible	negligible	negligible
AF Total				•										3.20E-11	4.00E-11	3.20E-12	4.00E-12
Grand Total														-3.19E-08	-1.58E-08	-3.19E-09	-1.58E-09

Kewaunee Bounding Estimate of Risk Impact Based on Best Estimate Failure Rates

Kewaunee Bounding Estimate of Risk Impact Based on Upper Bound Failure Rates

- ·		Consequence	Upper	Bound	Fallure	Potential	Upper Bound	POD Im	provement	Factors	Insp	ection Local	llons	CDF1	mpact	LERF Impact	
System	Category	Rank	CCDP	CLERP	Damage Mechanisms	Rank	Fallure Rate	Section XI	È RI-ISI .	None 📜	Section XI	RI-ISI 🖯	Delta	W POD	w/o POD	' W POD	. Wo POD
RC	2	High	1.00E-02	1.00E-03	TASCS, TT	Medium	1.00E-05	0.3	0.9	0.5	1	2	1	-1.50E-07	-5.00E-08	-1.50E-08	-5.00E-09
RC	2	High	1.00E-02	1.00E-03	TASCS	Medium	1.00E-05	0.3	0.9	05	0	1	1	-9.00E-08	-5.00E-08	-9.00E-09	-5.00E-09
RC	2	High	1.00E-02	1.00E-03	TT	Medium	1.00E-05	0.3	0.9	05	2	3	1	-2.10E-07	-5.00E-08	-2.10E-08	-5.00E-09
RC	4	High	1.00E-02	1.00E-03	None	Low	1.00E-06	0.5	0.5	05	29	25	-4	2.00E-08	2.00E-08	2.00E-09	2.00E-09
RC Total								Î T						-4.30E-07	+1.30E-07	-4,30E-08	-1.30E-08
RHR	2	High	1.00E-02	1.00E-03	TASCS	Medium	1.00E-05	0.3	0.9	05	1	2	1	-1.50E-07	-5.00E-08	-1.50E-08	-5.00E-09
RHR	4	High	1.00E-02	1.00E-03	None	Low	1.00E-06	0.5	0.5	05	2	11	9	-4.50E-08	-4.50E-08	-4.50E-09	-4.50E-09
RHR	5a	Medium	1.00E-04	1.00E-05	TASCS	Medium	1.00E-05	0.3	0.9	05	0	1	1	-9.00E-10	-5.00E-10	-9 00E-11	-5.00E-11
RHR	6a	Medium	1.00E-04	1.00E-05	None	Low	1.00E-06	0.5	05	0.5	11	0	-11	negligible	negligible	negligible	negligible
RHR	6b	Low	1.00E-06	1.00E-07	TASCS	Medium	1.00E-05	0.3	0.9	0.5	0	0	0	no change	no change	no change	no change
RHR	7a	Low	1.00E-06	1.00E-07	None	Low	1.00E-06	0.5	0.5	0.5	0	0	0	no change	no change	no change	no change
RHR Total			-							ľ				-1.96E-07	-9.55E-08	-1.96E-08	-9.55E-09
SI	2	High	1.00E-02	1.00E-03	TT	Medium	1.00E-05	0.3	0.9	05	0	1	1	-9.00E-08	-5.00E-08	-9.00E-09	-5.00E-09
SI	2	High	1.00E-02	1.00E-03	PWSCC	Medium	1.00E-05	0.5	0.5	0.5	2	2	0	no change	no change	no change	no change
SI	4	High	1.00E-02	1.00E-03	None	Low	1.00E-06	0.5	0.5	05	17	32	15	-7.50E-08	•7.50E-08	-7.50E-09	•7.50E-09
SI	5a	Medium	1.00E-04	1.00E-05	TT, IGSCC	Medium	1.00E-05	0.5	0.5	0.5	• 1	1	0	no change	no change	no change	no change
SI	5a	Medium	1.00E-04	1.00E-05	IGSCC	Medium	1.00E-05	0.5	0.5	0.5	1	0	-1	5.00E-10	5.00E+10	5.00E-11	5.00E-11
SI	6a	Medium	1.00E-04	1.00E-05	None	Low	1.00E-06	0.5	0.5	0.5	17	0	-17	negligible	negligible	negligible	negligible
SI Total														-1.65E-07	-1.25E-07	-1.65E-08	-1.25E-08
CVC	2	High	1.00E-02	1.00E-03	TASCS	Medium	1.00E-05	0.3	0.9	05	0	1	1	-9 00E-08	-5.00E-08	-9 00E-09	-5.00E-09
CVC	2	High	1.00E-02	1.00E-03	Π	Medium	1.00E-05	0.3	0.9	0.5	0	8	8	-7.20E-07	-4.00E-07	-7.20E-08	-4.00E-08
CVC	4	High	1.00E-02	1.00E-03	None	Low	1.00E-06	0.5	0.5	0.5	0	9	9	-4.50E-08	-4.50E-08	-4.50E-09	-4.50E-09
CVC	5a	Medium	1.00E-04	1.00E-05	Π	Medium	1.00E-05	0.3	0.9	05	0	1	1	-9.00E-10	-5.00E-10	-9.00E-11	-5.00E-11
CVC	6a	Medium	1.00E-04	1.00E-05	None	Low	1.00E-06	0.5	0.5	05	0	0	0	no change	no change	no change	
CVC	7a	Low	1.00E-08	1.00E-07	None	Low	1.00E-06	0.5	0.5	05	0	0	0	no change	no change	no change	no change
CVC Total								I		<u> </u>			ļ	-8.56E-07	-4.96E-07	-8.56E-08	-4.96E-08
MS	6a	Medium	1.00E-04	1.00E-05	None	Low	1.00E-06	0.5	0.5	05	11	0	-11	negligible	negligible	negtigible	negligible
MS Total							ļ	ļ					<u> </u>	negligible	negligible	negligible	
FW	5a	Medium	1.00E-04	1.00E-05	TASCS	Medium	1.00E-05	0.3	0.9	05	6	2	-4	no change	2.00E-09	no change	2.00E-10
FW	6a (3)	Medium	1.00E-04	1.00E-05	None (FAC)	Low (High)	1.00E-06	0.5	0.5	0.5	2	0	-2	negligible	negligible	negligible	negligible
FW	6a	Medium	1.00E-04	1.00E-05	None	Low	1.00E-06	0.5	0.5	0.5	2	0	-2	negligible	negligible	negligible	negligible
FW Total								ļ		ļ	ļ			negligible	2.00E-09	negligible	2.00E-10
ICS	4	High	1.00E-02	1.00E-03	None	Low	1.00E-06	0.5	05	05	0	9	9	-4.50E-08	-4.50E-08	-4 50E-09	-4.50E-09
ICS	6a	Medium	1.00E-04	1.00E-05	None	Low	1.00E-06	0.5	0.5	0.5	1	0	-1	negligible	negligible	negligible	negligible
ICS	78	Low	1.00E-06	1.00E-07	None	Low	1.00E-06	0.5	0.5	05	0	0	<u> </u>	no change	no change	no change	
ICS Total					· · · · · · · · · · · · · · · · · · ·		l			<u> </u>			<u> </u>	-4.50E-08	-4.50E-08	-4.50E-09	-4.50E-09
AF	4	High	1.00E-02	1.00E-03	None	Low	1.00E-06	0.5	0.5	05	5	4		5.00E-09	5.00E-09	5.00E-10	5.00E-10
AF	58	Medium	1.00E-04	1.00E-05	TASCS, TT	Medium	1.00E-05	0.3	0.9	05	0	1	1	-9.00E-10	-5.00E-10	-9.00E-11	-5.00E-11
AF	6a	Medium	1.00E-04	1.00E-05	None	Low	1.00E-06	0.5	0.5	05	7	0	-7	negligible	negfigible	negligible	negligible
AF Total							ļ	Į		ļ	 	·		4,10E-09	4.50E-09	4.10E-10	4.50E-10
Grand Total														-1.69E-06	-8.84E-07	-1.69E-07	-8.84E-08

.

.

ISI Drawings

During development of the Third 10-Year Inservice Inspection (ISI) Interval Plan, Wisconsin Public Service Corporation (WPSC) created ISI CAD drawings for the Kewaunee Nuclear Power Plant. ISI drawings provide a source document for planning, scheduling, and administration of components subject to inspection under the 1998 Edition 2000 Addenda of ASME Boiler and Pressure Vessel Code, Section XI. The ISI isometric drawings (page A-4), ISI component drawings (page A-12), and ISI flow diagrams (page A-15) are listed in the attached tables. The ISI isometric drawings and ISI flow diagrams have been levelized. The ISI component drawings are not levelized. The term levelization indicates that data within the drafting design file has been segregated into different levels. The drafting software utilized at KNPP contains 63 drawing levels. Levels are put together to form a complete drawing. Furthermore, levels can be turned on and off independently to create different drawings from one drafting file. The drafting design file for the isometric drawings are used to generate isometric drawings (stress analysis), weld map isometric drawings, and ISI isometric drawings. The drafting design files for the flow diagrams are used to generate operation flow diagrams, analytical flow diagrams, and ISI flow diagrams.

The hierarchy of information contained on the isometric drawings is as follows:

- Isometric Drawings (Stress Analysis)
 - o Pipe configuration
 - o Component support identification numbers and location
 - o Analytical part number
 - o Valve identification number and location
- Weld Map Isometric Drawings
 - o Weld location
 - o Fabrication weld identification number
 - Weld type (determined by referencing fabrication ID numbers to original weld datasheets located in KNPP QA Vault)
 - o Pipe material and thickness
- ISI Isometric Drawings
 - o ISI identification numbers
 - o NDE boundary flags
 - 0 ISI code class boundary flags

The hierarchy of information contained on the flow diagrams is as follows:

- Operations Flow Diagrams
 - o All piping and instrumentation
 - 0 QA boundary flags
- Analytical Flow Diagrams
 - o Analytical Part Number
 - 0 Anchor Points

ISI Drawings

- ISI Flow Diagrams
 - o Code Class Boundary Flags
 - o ISI Notes

Information contained on the ISI isometric drawings include:

- Size, schedule, material, and configuration of piping
- Location and identification of welds, supports and hangers, integrally welded attachments, and valves and flanges
- Class 1 and class 2 pressure retaining bolting within the NDE boundary
- Valve manufacturer for class 1 valves subject to VT-3 internal examination
- Floor and wall penetrations
- Calibration block
- Code class and NDE boundaries
- Examination direction

Information contained on the ISI component drawings include:

- Welds
- Component supports
- Integrally welded attachments
- Bolting
- Calibration block
- Thickness and material type
- Code class

The equipment numbering system used on the ISI isometric and component drawings is as follows. An equipment number is a unique identifier used to identify a piece of equipment. The term "equipment" refers to supports, valves, pumps, vessels, welds, etc. An example of each type of numbering scheme is given below.

Supports

MS-H27	MS H 27	system abbreviation support/hanger sequential number
<u>Valves</u>		
RHR-1A	RHR 1 A	system abbreviation sequential number train

ISI Drawings

Pumps, Vessels, etc.

AHEL-1A	A H EL 1 A	Unit 1 heat exchanger (P would indicate pump and F would indicate filter) equipment or system identifier sequential number train
<u>Welds</u>		

SI-W100S	SI W 100	system abbreviation weld sequential number
	S	indicates a socket weld (BC indicates a branch connection weld, L indicates a longitudinal weld, and no designation indicates a butt weld)

Restraints

RR66	RR	rupture restraint
	66	sequential number

Integrally Welded Attachment

MS-WA-706	MS	system abbreviation
	WA	welded attachment (H indicates hanger)
	706	sequential number

ISI Drawings

 \bigcirc

	ISI ISOMETRIC DRAWINGS			
I.D.	TITLE	CLASS	ANALYTICAL PART NO.	
ISIM-865	Auxiliary Feedwater Piping to Steam Generator 1A	2	AFW-05B-001	
ISIM-866	Auxiliary Feedwater Piping to Steam Generator 1B	2	AFW-05B-002	
ISIM-867	Containment Service Water Piping Line 37NW	3	SW-02-001	
ISIM-868	Containment Service Water Piping Line 37ES	3	SW-02-002	
ISIM-869	Containment Service Water Piping Line 37EN	3	SW-02-003	
ISIM-870	Containment Service Water Piping Line 37NE	3	SW-02-004	
ISIM-871	Main Steam Steam Generator 1A	2	MS-06-001	
ISIM-872	Main Steam Steam Generator 1B	2	MS-06-002	
ISIM-874-1	3" R.C. to Pressurizer	1	RC-36-001	
ISIM-874-2	3" R.C. to Pressurizer	1	RC-36-001	
ISIM-874-3	2" CVC to Pressurizer RC	1	RC-36-001	
ISIM-875	Aux. Cooling From CC Pumps 1A & 1B to CC HT Exch's 1A & 1B Inlet	3	CC-31-001	
ISIM-876	SW From CC Heat Exch. & Spent Fuel Pool Heat Exch. To 24" Standpipe	3	SW-02-005	
ISIM-877-1	Auxiliary Feedwater Piping From Intermediate Anch. To Pen. #46W	2	AFW-05B-003	
ISIM-877-2	Auxiliary Feedwater Piping From Intermediate Anch.To Penet. #46W	2	AFW-05B-003	
ISIM-881-1	CC – RSDL HX 1A, 1B, BA Evap Pkg Outs & Pens 33N, 40, 33E to Surge TK	3	CC-31-005	
ISIM-885-1	Service Water From FCU 1A to Shroud Cooling Coil 1A to Pene. 38NW	3	SW-02-007	

ISI Drawings

 \bigcirc

ISI ISOMETRIC DRAWINGS			
I.D.	TITLE	CLASS	ANALYTICAL PART NO.
ISIM-886	SW From Fan Coil Unit 1B to Shroud Clg Coil 1B to Cntmt Pen 38NE	3	SW-02-008
ISIM-888-1	Service Water From FCU 1C & 1D to Shroud Cooling Unit 1C/1D and Intermediate Anchors	3	SW-02-009
ISIM-888-2	Service Water From FCU 1C & 1D to Shroud Cooling Unit 1C/1D and Intermediate Anchors	3	SW-02-009
ISIM-889-1	Service Water From FCU 1C, 1D & Shroud Cooling Coil 1C, 1D to Pene. 38EN & 38ES	3	SW-02-010
ISIM-889-2	Service Water From FCU 1C, 1D & Shroud Cooling Coil 1C, 1D to Pene. 38EN & 38ES	3	SW-02-010
ISIM-890	CC – RSDL HX 1A, 1B, BA Evap Pkg Outs & Pens 33N, 40, 33E to Surge TK	3	CC-31-005
ISIM-891-1	From AFW Pumps 1A/1B & Turb. Driven Pump Disch. To Pen. 46E	2	AFW-05B-004
ISIM-891-2	From AFW Pumps 1A/1B & Turb. Driven Pump Disch. To Pen. 46E	2,3	AFW-05B-004
ISIM-892	Pressurizer Surge Line	1	RC-36-003
ISIM-893	SW Outlets From Strainers 1A1, 1A2, 1B1, & 1B2 to Anchors on 24 " Header	3	SW-02-011
ISIM-894	From Service Water Pump Discharge to Service Water Strainers Inlet	3	SW-02-012
ISIM-895	Service Water – From 24" Supply Header to traveling Screens 1A1 & 1A2	3	SW-02-013
ISIM-896	Service Water – From 24" Supply Hdr. To Traveling Screens 1B1 & 1B2	3	SW-02-014

ISI Drawings

 $\left(\right)$

.

	ISI ISOMETRIC DRAWI	NGS	
I.D.	TITLE	CLASS	ANALYTICAL PART NO.
ISIM-897-1	Serv. Wtr. & Feedwater Suct. To Aux. Feedwater 1A, 1B, & Turb. Drvn. Pumps	3	SW-02-015
ISIM-897-2	Serv. Wtr. & Feedwater Suct. To Aux. Feedwater 1A, 1B & Turb. Drvn. Pumps	3	SW-02-015
ISIM-900	SW From Intermediate Anchor on 24" HDR to Intermediate Anchors on 16" Pipe & Near VLV SW-4B	3	SW-02-018
ISIM-901	SW From Intermediate Anchor on 24" HDR to Intermediate Anchors on 16" Pipe & Near VLV SW-4A	3	SW-02-019
ISIM-902	SW From Cntmt Pens. 38ES & 38EN to Aux. Bldg. Standpipe	3	SW-02-020
ISIM-903	SW RTN From Comp. Clg. HX1B to Aux. Bldg. Standpipe	3	SW-02-021
ISIM-904	SW – RTN From Cntmt Pens. 38NW & 38NE to Aux. Bldg. Standpipe	3	SW-02-022
ISIM-913	CC – From Anchor and Letdown HX to Comp. Clg. Pumps 1A/1B Suction	3	CC-31-007
ISIM-914	CC – From CC HX 1A/1B Outlets to Letdown HX & RSDL HX 1A Inlets	3	CC-31-008
ISIM-915	CC – From Anchor to RSDL HX 1B, Pens 32N, 39, 32E & BA Evap Pkg Inlt	3	CC-31-009
ISIM-922	Service Water – From Anchor to Cntmt Pens 37EN & 37ES	3	SW-02-031
ISIM-924-1	SW Sply to CC HX 1A/1B, Spent Fuel HX & Emergency Sply to Spent Fuel Pools	3	SW-02-033
ISIM-924-2	SW Sply to CC HX 1A/1B, Spent Fuel HX & Emergency Sply to Spent Fuel Pools	3	SW-02-033
ISIM-926	Service Water Anchors to Cntmt Pens. 37NE & 37NW	3	SW-02-035

7

ISI ISOMETRIC DRAWINGS			
I.D.	TITLE	CLASS	ANALYTICAL PART NO.
ISIM-932	SW – From Flex Conns on Diesel Gen. 1A & 1B CW HXS to Anchor	3	SW-02-039
ISIM-933	Safety Injection Pumps Suction Piping	2	SI-33-001
ISIM-934-1	Safety Injection Pumps Disch. Piping to Pen 28E & RWST	2	SI-33-002
ISIM-934-2	Safety Injection Pumps Disch. Piping to Pen 28N & RWST	2	SI-33-002
ISIM-935	SI – From Accumulator 1A to Loop A Cold Leg	1, 2	SI-33-003
ISIM-936	SI – From Cntmt PEN. 28N to Acmtrs and Cold Leg Loops	1, 2	SI-33-004
ISIM-937-1	SI – From Cntmt PEN. 28E to 2" Branch Conn on 6" HDR to Reactor	2	SI-33-005
ISIM-937-2SH1	SI – From Cntmt PEN. 28E to 2" Branch Conn on 6" HDR to Reactor	1, 2	SI-33-005
ISIM-937-2SH2	SI – From Cntmt PEN. 28E to 2" Branch Conn on 6" HDR to Reactor	2	SI-33-005
ISIM-938-1	SI – From Cntmt PEN. 10 to Reactor From Acmtr 1B to Loop B Cold Leg	1, 2	SI-33-006
ISIM-938-2SH1	SI – From Cntmt PEN. 10 to Reactor From Acmtr 1B to Loop B Cold Leg	1, 2	SI-33-006
ISIM-938-2SH2	SI – From Cntmt PEN. 10 to Reactor From Acmtr 1B to Loop B Cold Leg	1,2	SI-33-006
ISIM-939SH1	Safety Injection From Cntmt Pen 48 to Reactor	1, 2	SI-33-007

	ISI ISOMETRIC DRAWINGS			
I.D.	TITLE	CLASS	ANALYTICAL PART NO.	
ISIM-939SH2	Safety Injection From Cntmt Pen 48 to Reactor	1,2	SI-33-007	
ISIM-940-1	Reactor Coolant – From Pressurizer to Pressurizer Relief Tank	1	RC-36-002	
ISIM-940-2	Reactor Coolant – From Pressurizer to Pressurizer Relief Tank	1	RC-36-002	
ISIM-950-1	Containment Spray Pump Suction Piping	2	ICS-23-001	
ISIM-950-2	Containment Spray Pump Suction Piping	2	ICS-23-001	
ISIM-951	Containment Spray Pump 1A Disch Piping to Pen. 29N	2	ICS-23-002	
ISIM-952	Cntmt Spray From Cntmt Pen 29N to Ring Headers 1 & 3	2	ICS-23-003	
ISIM-953	Containment Spray Pump 1B Disch Piping to Pen. 29E	2	ICS-23-004	
ISIM-954	Cntmt Spray From Cntmt Pen 29E To Ring Headers 2 & 4	2	ICS-23-005	
ISIM-957-1SH1	RHR – From RC Loops A & B Hot Legs to Cntmt Pen. 9 & to Cntmt Sump B	2	RHR-34-001	
ISIM-957-1SH2	RHR – From RC Loops A & B Hot Legs to Cntmt Pen. 9 & to Cntmt Sump B	1, 2	RHR-34-001	
ISIM-957-2	RHR – From RC Loops A & B Hot Legs to Cntmt Pen. 9 & to Cntmt Sump B	2	RHR-34-001	
ISIM-958-1-1	RHR – From Cntmt Sump B & Anchors Thru RHR Pump 1A to Anchor on Disch. Line	2	RHR-34-002	
ISIM-958-1-2	RHR – From Cntmt Sump B & Anchors Thru RHR Pump 1A to Anchor on Disch. Line	2	RHR-34-002	

ISI ISOMETRIC DRAWINGS			
I.D.	TITLE	CLASS	ANALYTICAL PART NO.
ISIM-958-2	RHR – From Cntmt Sump B & Anchors Thru RHR Pump 1A to Anchor on Disch. Line	2	RHR-34-002
ISIM-959-1-1	RHR – From Cntmt Sump B & Anchors Thru RHR Pump 1B to Anchor on Disch. Line	2	RHR-34-003
ISIM-959-1-2	RHR – From Cntmt Sump B & Anchors Thru RHR Pump 1B to Anchor on Disch. Line	2	RHR-34-003
ISIM-959-2	RHR – From Cntmt Sump B & Anchors Thru RHR Pump 1B to Anchor on Disch. Line	2	RHR-34-003
ISIM-960-1	RHR – From Anchors Thru RSDL HX 1A/1B to Pens. 10, 48 & RHR-SFP Interconns	2	RHR-34-004
ISIM-960-2	RHR – From Anchors Thru RSDL HX 1A/1B to Pens. 10, 48 & RHR-SFP Interconns	2	RHR-34-004
ISIM-961-1	RHR – From Anchors Thru RSDL HX 1A/1B to Pens. 10, 48 & RHR-SFP Interconns	2	RHR-34-004
ISIM-961-2	RHR – From Anchors Thru RSDL HX 1A/1B to Pens. 10, 48 & RHR-SFP Interconns	2	RHR-34-004
ISIM-962-1	RHR – From Anchors Thru RSDL HX 1A/1B to Pens. 10, 48 & RHR-SFP Interconns	2	RHR-34-004
ISIM-962-2SH1	RHR – From Anchors Thru RSDL HX 1A/1B to Pens. 10, 48 & RHR-SFP Interconns	2	RHR-34-004
ISIM-962-2SH2	RHR – From Anchors Thru RSDL HX 1A/1B to Pens. 10, 48 & RHR-SFP Interconns	2	RHR-34-004

ISI Drawings

	ISI ISOMETRIC DRAWINGS			
I.D.	TITLE	CLASS	ANALYTICAL PART NO.	
ISIM-968	Main Steam 1B Power Relief Valve Vent	2	MS-06-006	
ISIM-969	Main Steam 1A Power Relief Valve Vent	2	MS-06-007	
ISIM-970	Feedwater From Anchored ELL to Steam Gen. 1A	2	FW-05A-001	
ISIM-971	Feedwater From Anchored ELL to Steam Gen. 1B	2	FW-05A-002	
ISIM-972-1SH1	Feedwater – From Anchor Near Htrs to Anchored ELLs Inside Cntmt	2	FW-05A-003	
ISIM-972-1SH2	Feedwater – From Anchor Near Htrs to Anchred ELLs Inside Cntmt	2	FW-05A-003	
ISIM-982	SI – From Cntmt Pen. 28N to Acmtrs and Cold leg Loops	1, 2	SI-33-004	
ISIM-984-2SH1	Main Steam – From Anchred ELLs to HP Turbine Stop Valves	2	MS-06-003	
ISIM-984-2SH2	Main Steam – From Anchred ELLs to HP Turbine Stop Valves	2	MS-06-003	
ISIM-984-2SH3	Main Steam – From Anchred ELLs to HP Turbine Stop Valves	2	MS-06-003	
ISIM-985-1SH1	Main Steam – From Anchred ELLs to HP Turbine Stop Valves	2	MS-06-003	
ISIM-985-1SH2	Main Steam – From Anchred ELLs to HP Turbine Stop Valves	2	MS-06-003	
ISIM-985-1SH3	Main Steam – From Anchred ELLs to HP Turbine Stop Valves	2	MS-06-003	
ISIM-991SH1	Feedwater – From Anchor Near Htrs to Anchored ELLs Inside Cntmt	2	FW-05A-003	

ISI ISOMETRIC DRAWINGS			
I.D.	TITLE	CLASS	ANALYTICAL PART NO.
ISIM-991SH2	Feedwater – From Anchor Near Htrs to Anchored ELLs Inside Cntmt	2	FW-05A-003
ISIM-992-1	Safety Injection Pumps Suction Piping	2	SI-33-001
ISIM-992-2	Safety Injection Pumps Suction Piping	2	SI-33-001
ISIM-993	Safety Injection Pumps Disch. Piping to Pen 28N, 28E & RWST	2	SI-33-002
ISIM-999	CC – From Anchor to RSDL HX 1B, Pens 32N, 39, 32E, & BA Evap Pkg Inlt	3	CC-31-009
ISIM-1369-2	RCS Cold leg Lop A & Excess Letdown Line	1	CVC-35-148
ISIM-1460	RC-RTD Line For R. C. Loop A	1	RC-36-102
ISIM-1461	RC-RTD Line For R. C. Loop B	1	RC-36-103
ISIM-1471	CVC – From Pene. #13N to R.C. Pump Loop 1A	1,2	CVC-35-140
ISIM-1473	CVC – From Disch. Line of Regen. HT. Exch. Anch. Point on Line to RCS Cold Leg Loop B	1,2	CVC-35-143
ISIM-1474	CVC – From Loop B of Pump Suction to Regenerative HT. Exch.	1,2	CVC-35-144
ISIM-1476	CVC – From Pene. #13E to R.C. Pump Loop 1B	1,2	CVC-35-147
ISIM-1608	SI – From 16" S.I. Pump Suction Line to Valve SI-31 to 8" S.I. Pump Suction Line From Boric Acid Tanks	2	N/A
ISIM-1646	Containment Spray Pumps 1A & 1B Disch Piping to Pens. 29E & 29N	2	ICS-23-002
ISIM-1703	Reactor Coolant Piping Loop A	1	N/A
ISIM-1704	Reactor Coolant Piping Loop B	1	N/A

ISI Drawings

	ISI COMPONENT DRAWINGS				
I.D.	TITLE	CLASS			
M-1193	Reactor Vessel RV	1			
M-1194	Reactor Vessel Nozzles and Integrally Welded Attachments	1			
M-1195	Reactor Vessel Threads in Flange	1			
M-1196	Reactor Vessel Stud, Nut and Washers	1			
M-1197	Reactor Vessel Vessel Closure Head Conoseal Bolting and Control Rod Drive Mechanisms	1			
M-1198 SH. 1 of 2	Reactor Vessel Closure Head Flange and Control Rod Drive Mechanism	1			
M-1198 SH. 2 of 2	Reactor Vessel Closure Head Flange Part Length Control Rod Drive Mechanism Motor Tube	1			
M-1199	Reactor Vessel Internals	1			
M-1200	Pressurizer PRZ	1			
M-1201	Replacement Steam Generators SG-1A and SG-1B	1			
M-1202	Reactor Coolant Pumps RCP-1A and RCP-1B	1			
M-1203	Reactor Coolant Pump RCP-1A and RCP-1B Casing	1			
M-1204	Reactor Coolant Pumps RCP-1A and RCP-1B Flywheel & Supports	1			
M-1205SH1	Reactor Coolant Pumps RCP-1A and RCP-1B Main Flange and No. 1 Seal Housing Bolting	1			
M-1205SH2	Reactor Coolant Pump 1A and RCP-1B Main Flange Bolt	1			
M-1206	Steam Generators Existing and Replacement SG-1A and SG-1B	2			
M-1207	Residual Heat Exchangers AHRS1-1A and AHRS2-1B	2			
M-1208	Regenerative Heat Exchanger ARG	2			
M-1209	Letdown Heat Exchange AHLD	2			
M-1210	Charging Pump Pulsation Dampeners APD-1A, APD-1B and APD-1C	2			
M-1211	Volume Control Tank VCT	2			
M-1212	Seal Water Injection Filters AFSI-1A and AFSI-1B	2			
M-1213	Reactor Coolant Filter AFRC	2			
M-1214	Seal Water Filter AFSW	2			

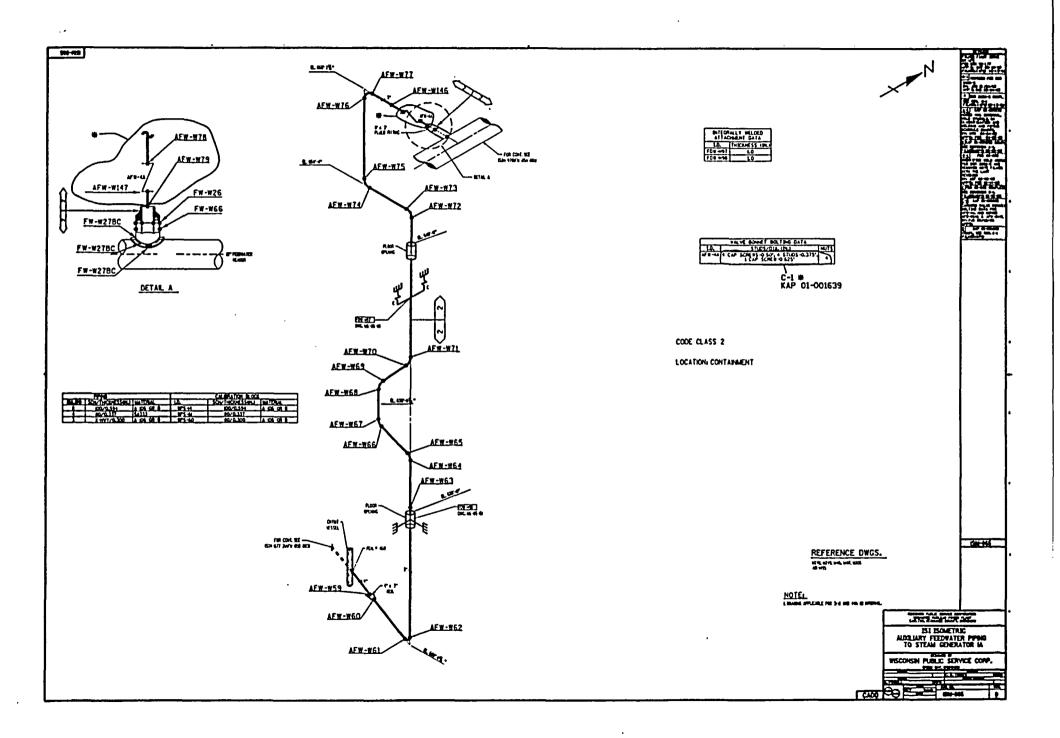
(

ISI Drawings

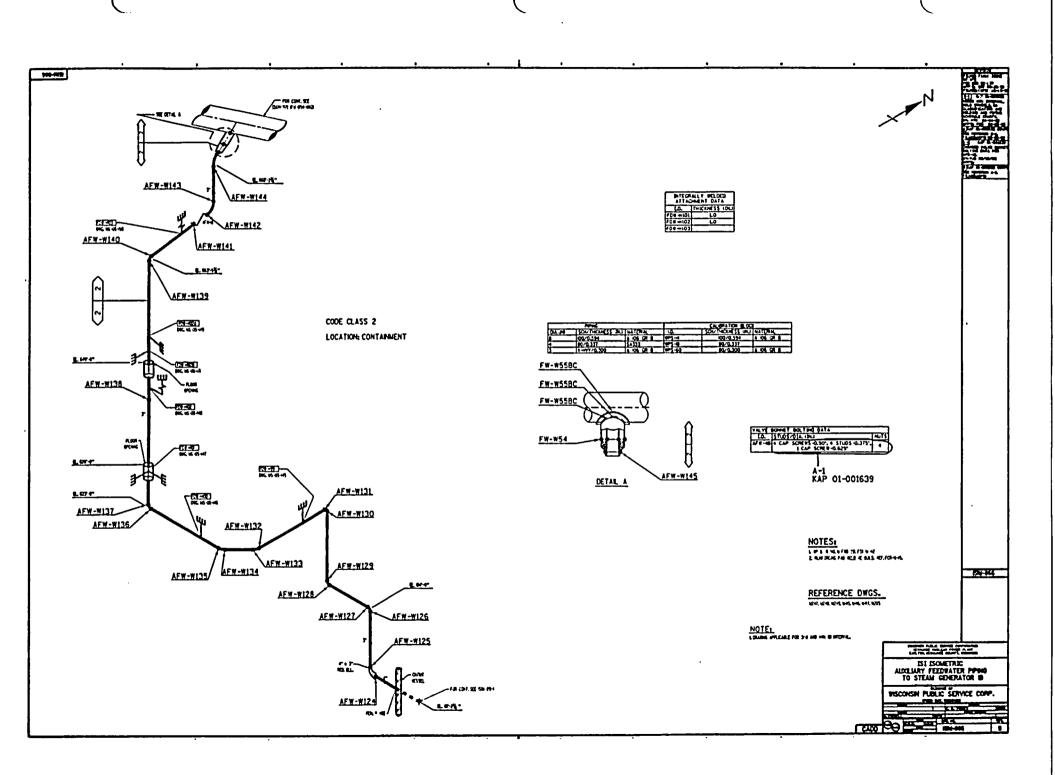
 $\left(\right)$

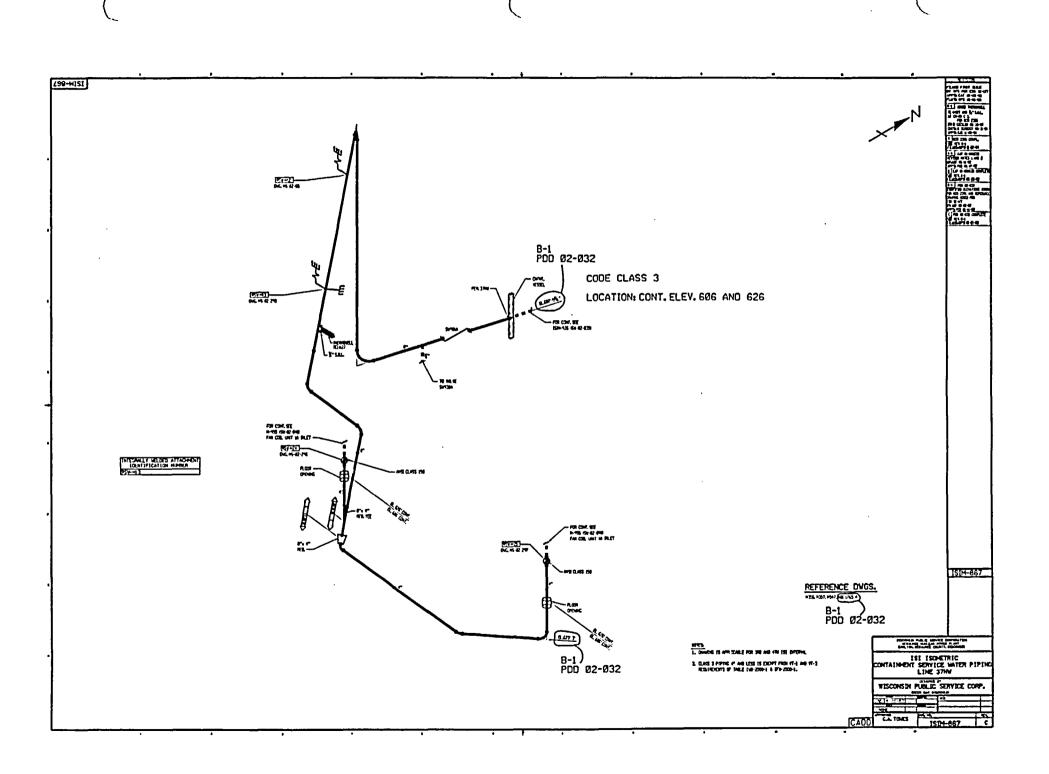
 \mathbb{C}

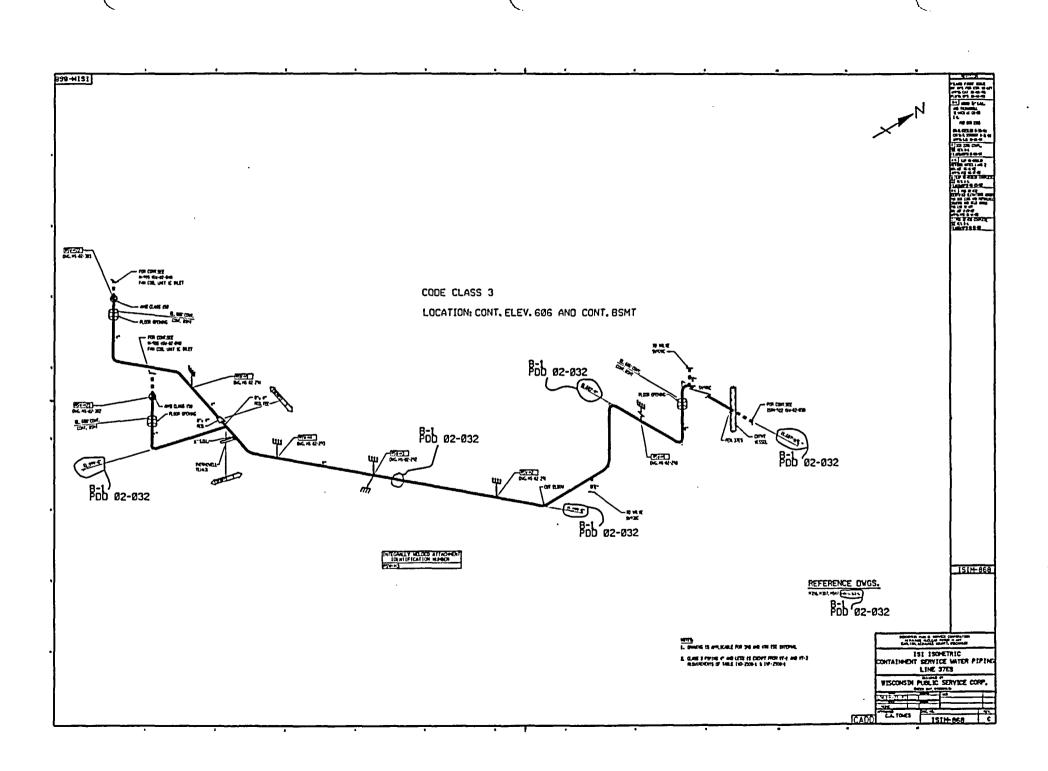
ISI COMPONENT DRAWINGS				
I.D.	TITLE	CLASS		
M-1215	Residual Heat Removal Pumps APRH1-1A and APRH2-1B	2		
M-1216	Charging Pumps APCH-1A, APCH-1B, APCH-1C	2		
M-1218	Component Cooling Surge Tank ATCS	3		
M-1220	Service Water Pump Strainers ASSW-1A1, ASSW-1A2, ASSW-1B1, and ASSW-1B2	3		
M-1221	Excess Letdown Heat Exchangers AHEL-1A & AHEL-1B	1,3		
M-1222	Component Cooling Heat Exchangers AHCC1-1A and AHCC2-1B	3		
M-1223	Spent Fuel Pool Heat Exchanger AHSF	3 ·		
M-1224	Residual Heat Exchangers AHRS1-1A and AHRS2-1B	3		
M-1225	Diesel Generator AHDG-1A and AHDG-1B Cooling Water Heat Exchangers	3		
M-1226	Letdown Heat Exchanger AHLD	3		
M-1227	Seal Water Heat Exchanger AHSF	3		
M-1228	Reactor Coolant Pumps RCPC-1A and RCPC-1B Lube Oil Cooler	3		
M-1229	Residual Heat Removal Pumps Shaft Seal Heat Exchangers AHRHRP-1A and AHRHRP-1B	3		
M-1230	Spent Fuel Pool Pumps APSF-1A and APSF-1B	3		
M-1231	Auxiliary Feed Water Pump Turbine Driven APFT	3		
M-1232	Auxiliary Feed Water Pumps Motor Driven APFM-1A and APFM-1B	3		
M-1233	Containment Spray Pumps and Gland Seal Coolers APCS-1A and APCS-1B	3		
M-1234	Component Cooling Pumps APCC-1A and APCC-1B	3		
M-1236	Service Water Pumps APSW-1A1, APSW-1A2, APSW-1B1 and APSW-1B2	3		
M-1237	Safety Injection Pump Heat Exchangers (2), Lube Oil Cooler and Stuff Box Jacket AHSC-1A and AHSC-1B	3		
M-1239	Containment Fan Coolers AHCF-1A, AHCF-1B, AHCF-1C and AHCF-1D	3		
M-1705	Accumulator Tank ACC-1A	2		

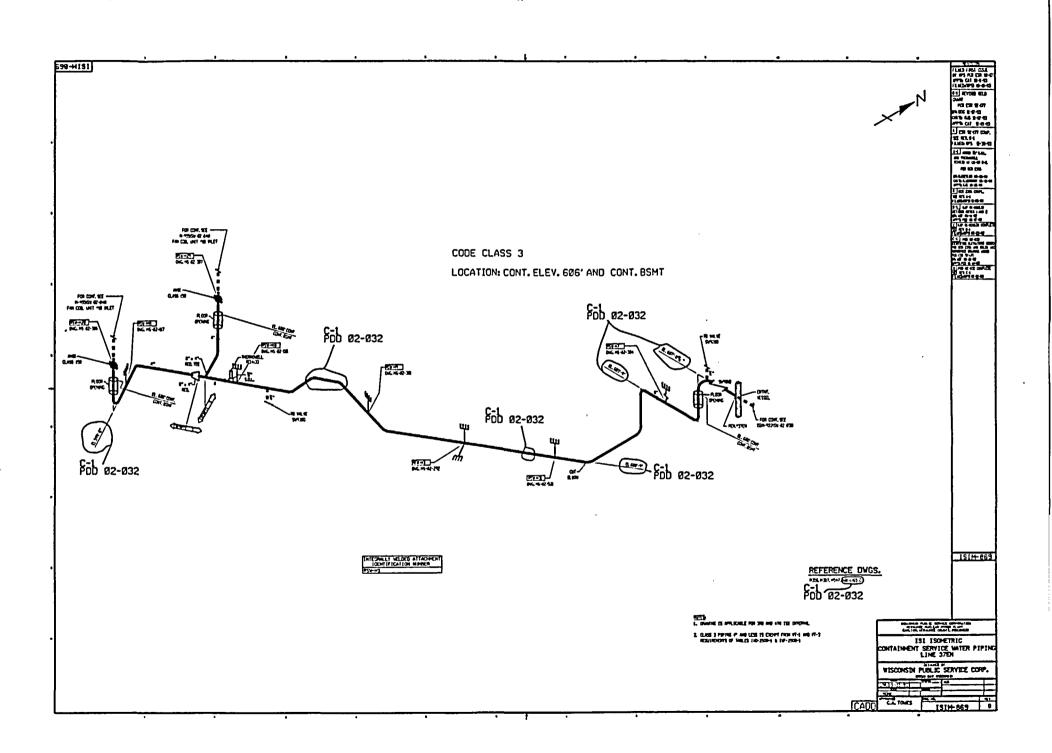

ISI Drawings

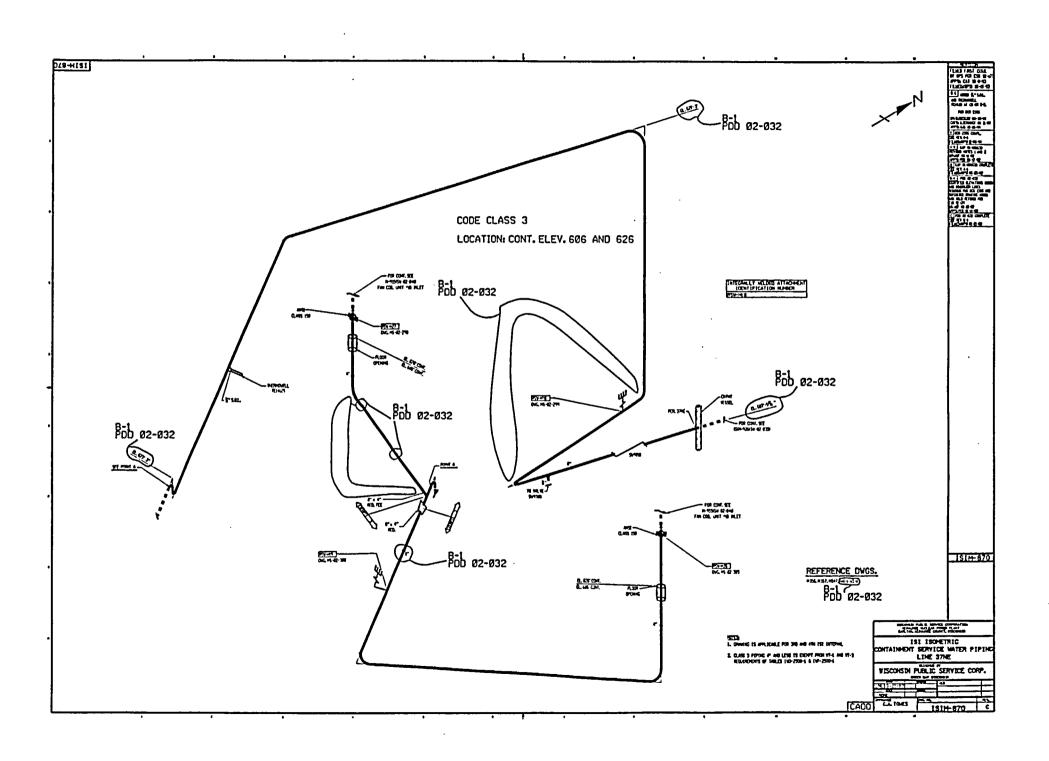
ISI COMPONENT DRAWINGS				
I.D.	TITLE	CLASS		
M-1706	Accumulator Tank ACC-1B	2		
M-1707	Safety Injection Pumps APSI-1A and APSI-1B	2		
M-1709	Control Room Air Conditioning Chiller Units 1A and 1B, Control Room Air Conditioning Expansion Tanks 1A and 1B and Control Room Air Conditioning Coil Units 1A and 1B	3		

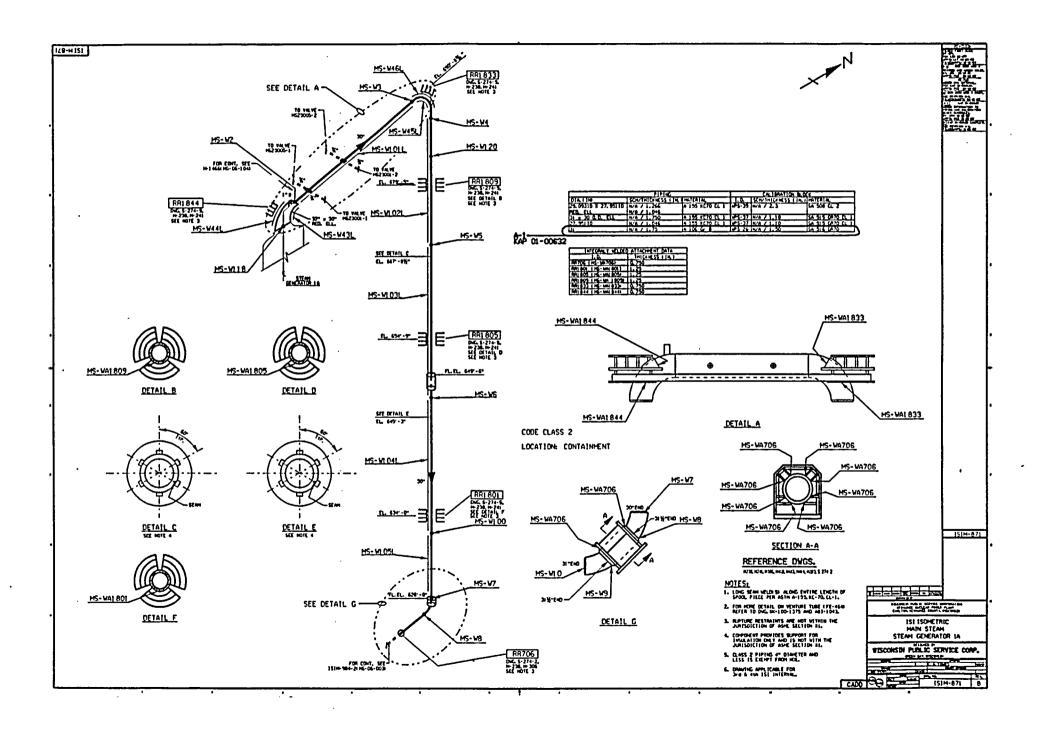

.

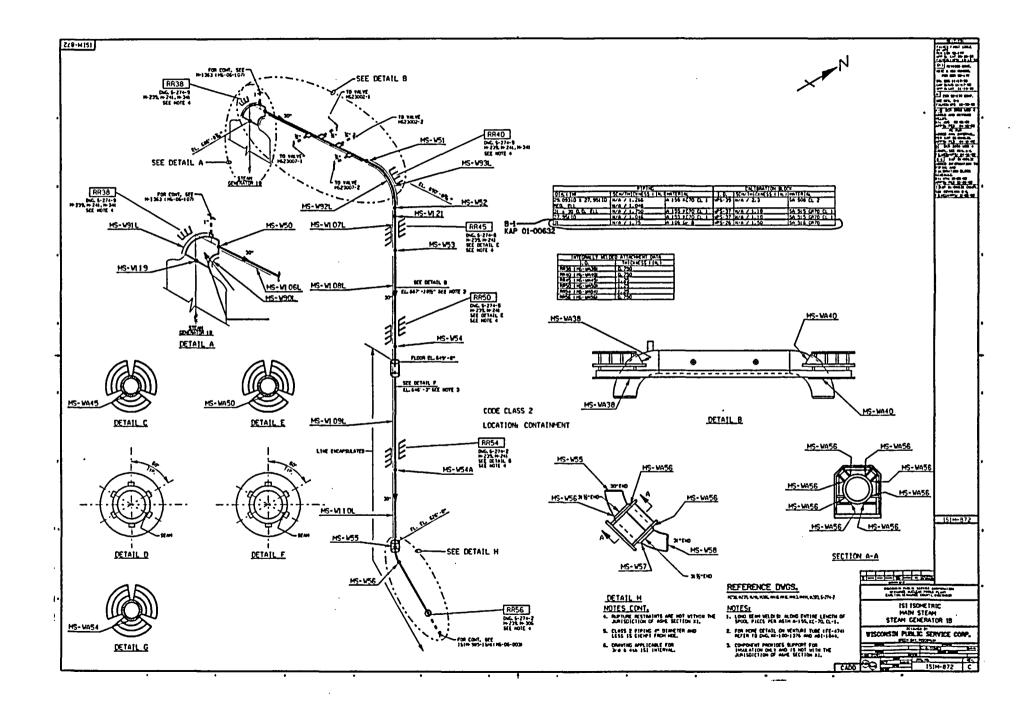

 $\left(\right)$


ISI FLOW DIAGRAMS				
I.D.	TITLE	CLASS		
ISIXK-100-10	Reactor Coolant System	1,2		
ISIXK-100-18	Residual Heat Removal System	1,2		
ISIXK-100-19	Component Cooling System	3		
ISIXK-100-20	Component Cooling System	3		
ISIXK-100-28	Safety Injection System	1,2		
ISIXK-100-29	Safety Injection System	2		
ISIXK-100-35	Auxiliary Coolant System	1,2,3		
ISIXK-100-36	Chemical & Volume Control System	2,3		
ISIXK-100-38	Chemical & Volume Control System	NCC		
ISIXK-100-44	Sampling System	1,2		
ISIM-202-1	Service Water System	3		
ISIM-202-2	Service Water System	3		
ISIM-203	Main Aux. Steam and Steam Dump	2,3		
ISIM-205	Feedwater System	2,3		
ISIM-214	Chemical Injection System	2,3		
ISIM-217	Internal Containment Spray System	2		
ISIM-218	Spent Fuel Pool Cooling and Clean-Up System	2,3		
ISIM-219	Secondary Sampling Systems	2		
ISIM-350	Reactor Plant Misc. Vents, Drains & Sump Pump Piping	2		
ISIM-547	Service Water System, Containment Cooling	3		
ISIM-588	Air Cond. Cooling Water Piping	3		
ISIM-606	Air Cond. Cooling Water Piping	3		

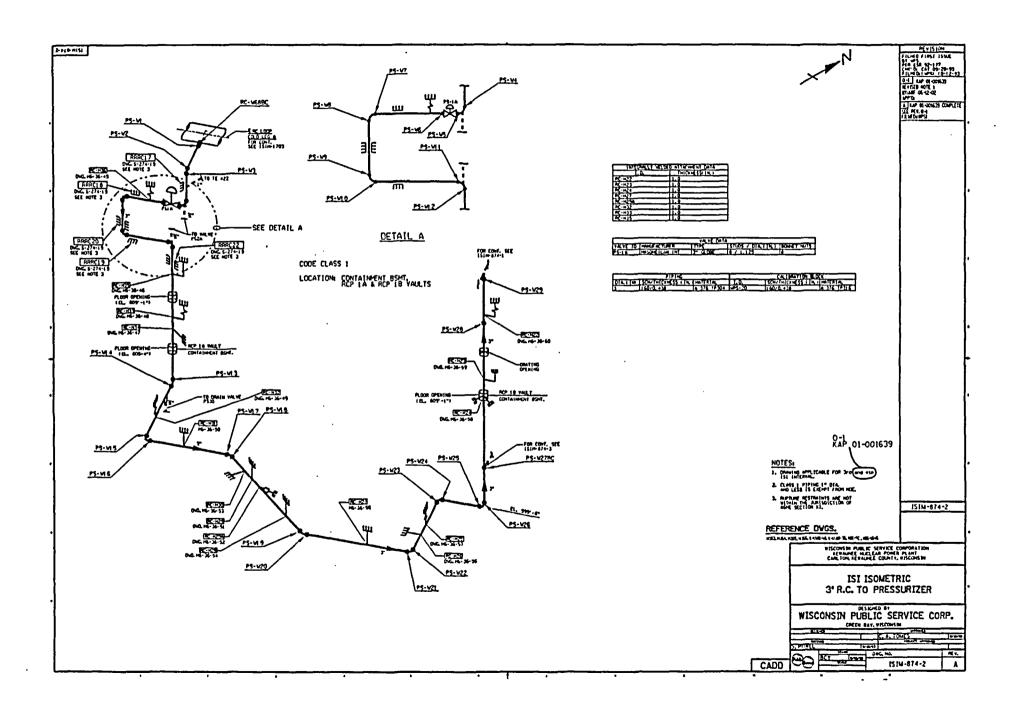

(

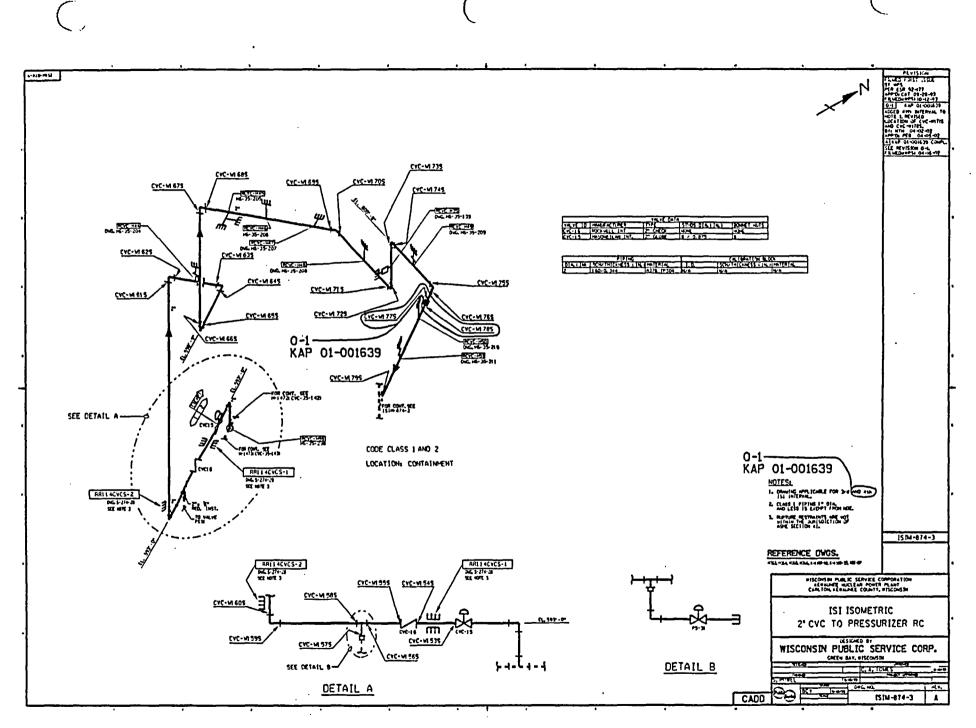


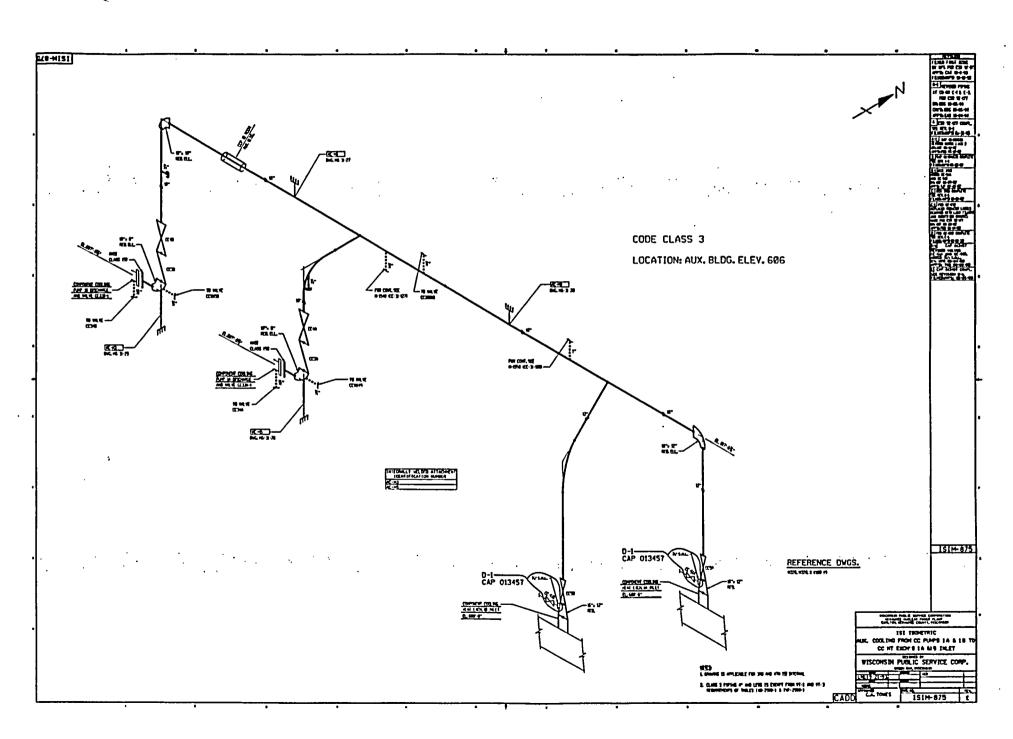


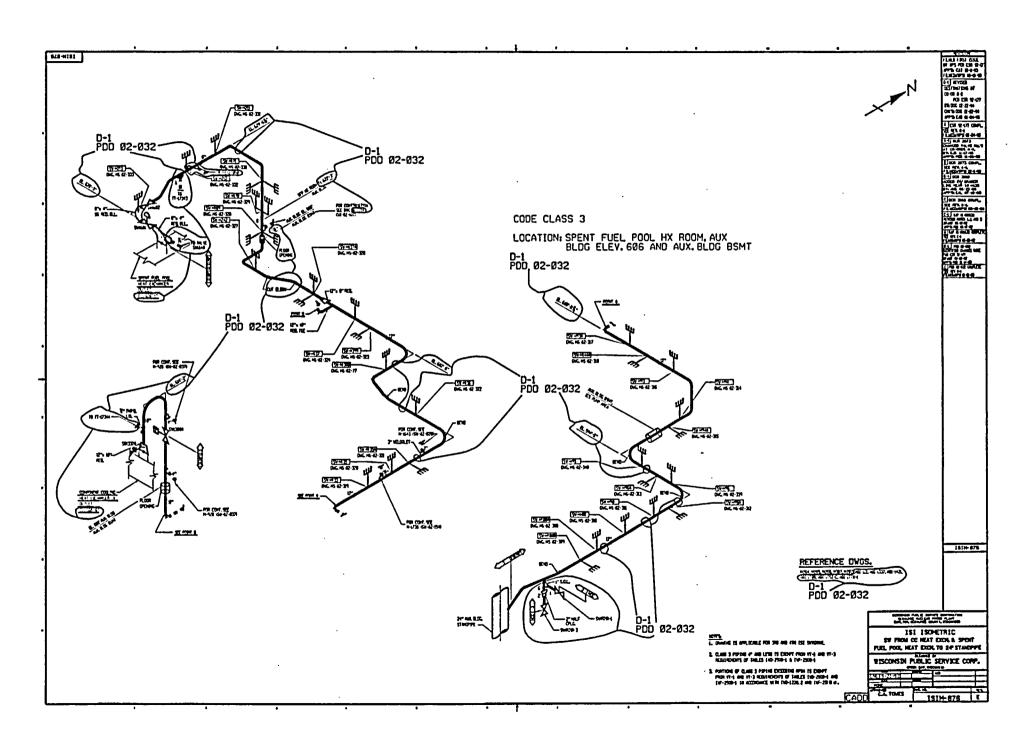


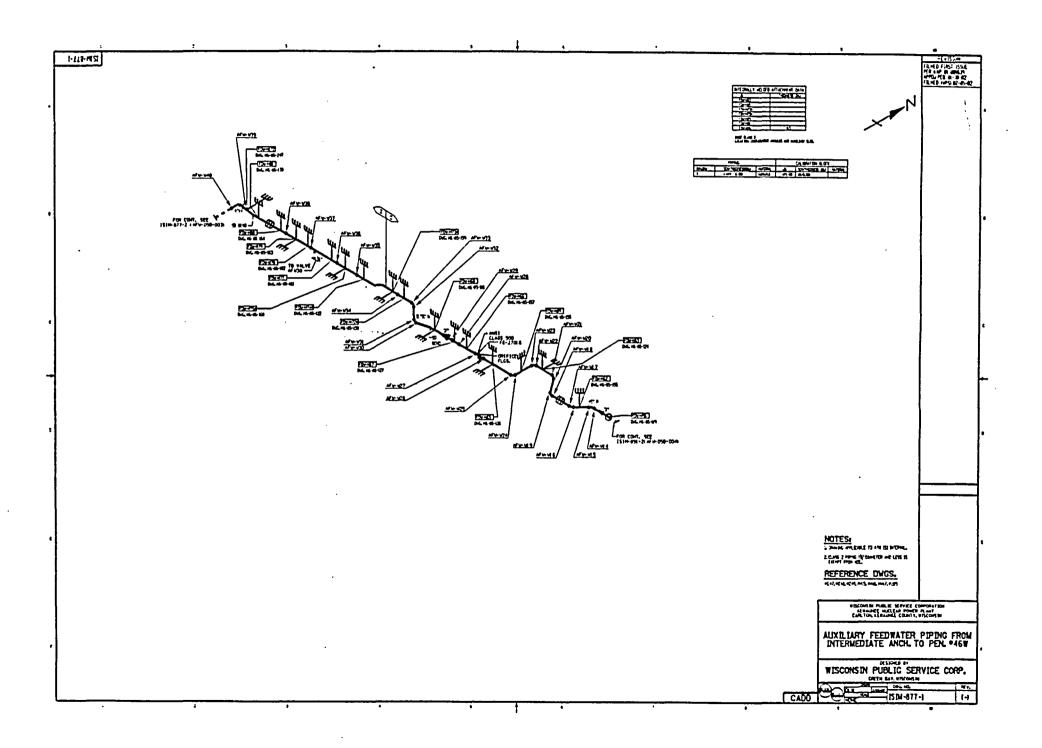
• .

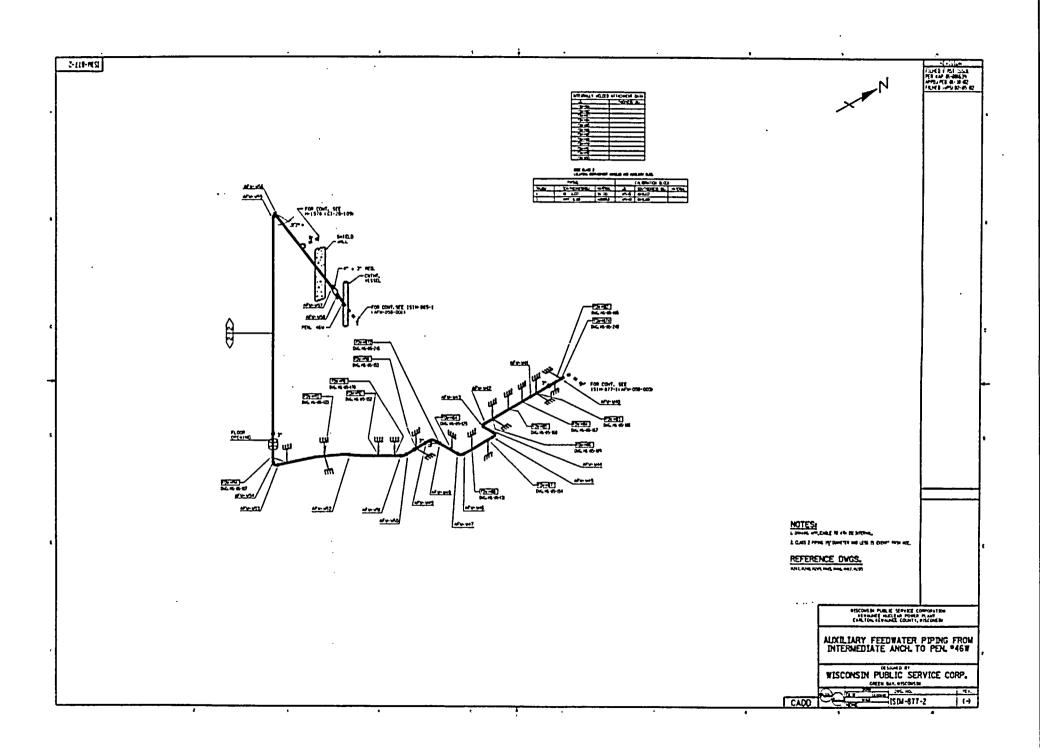


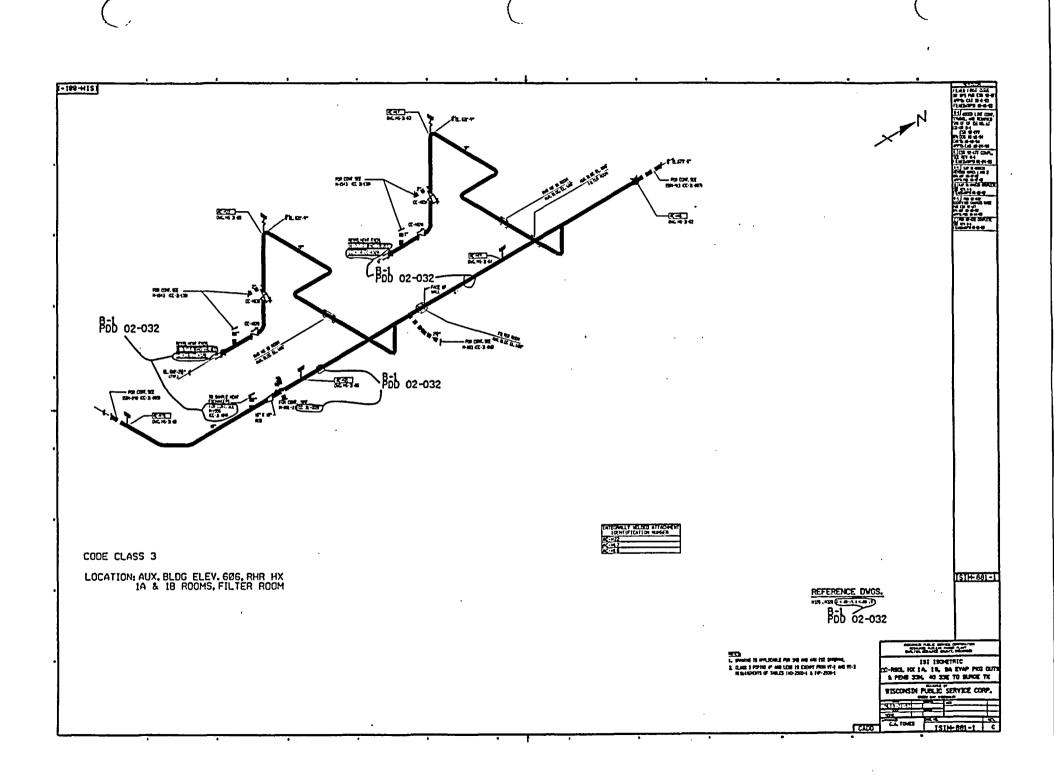


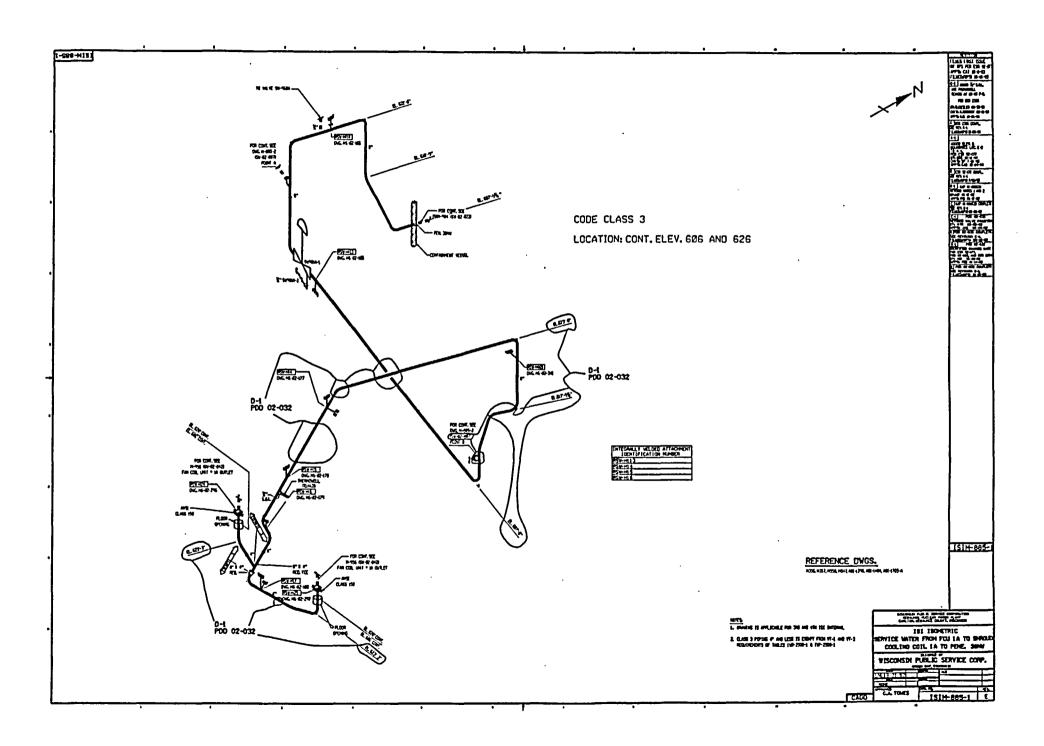


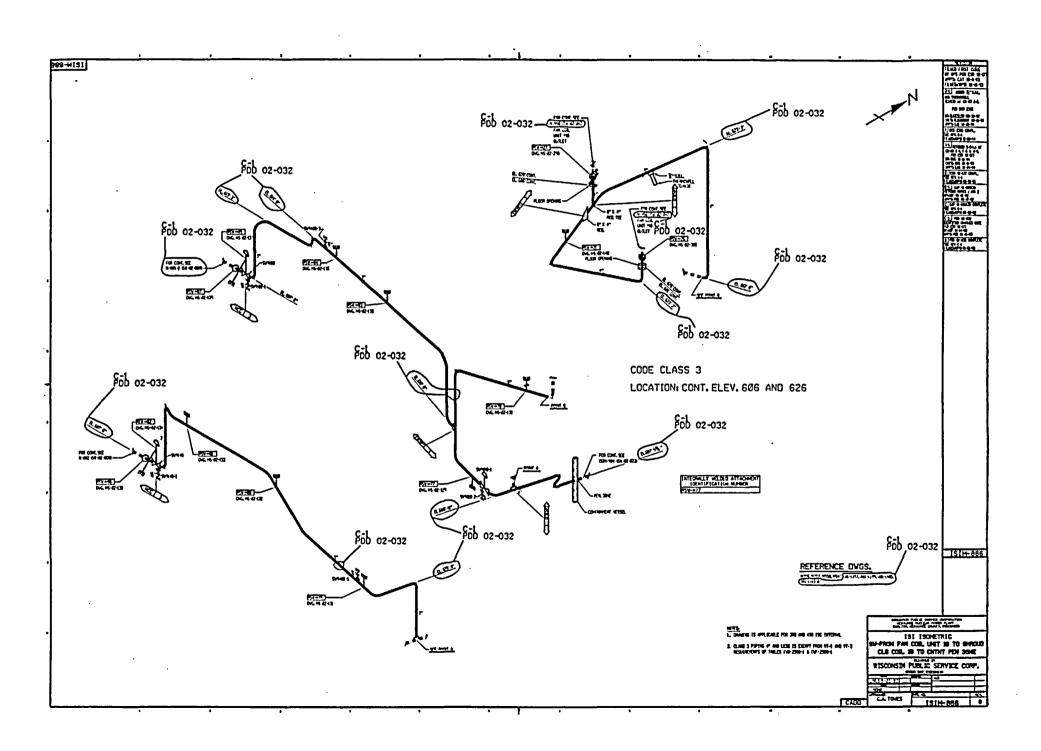

· · ···•



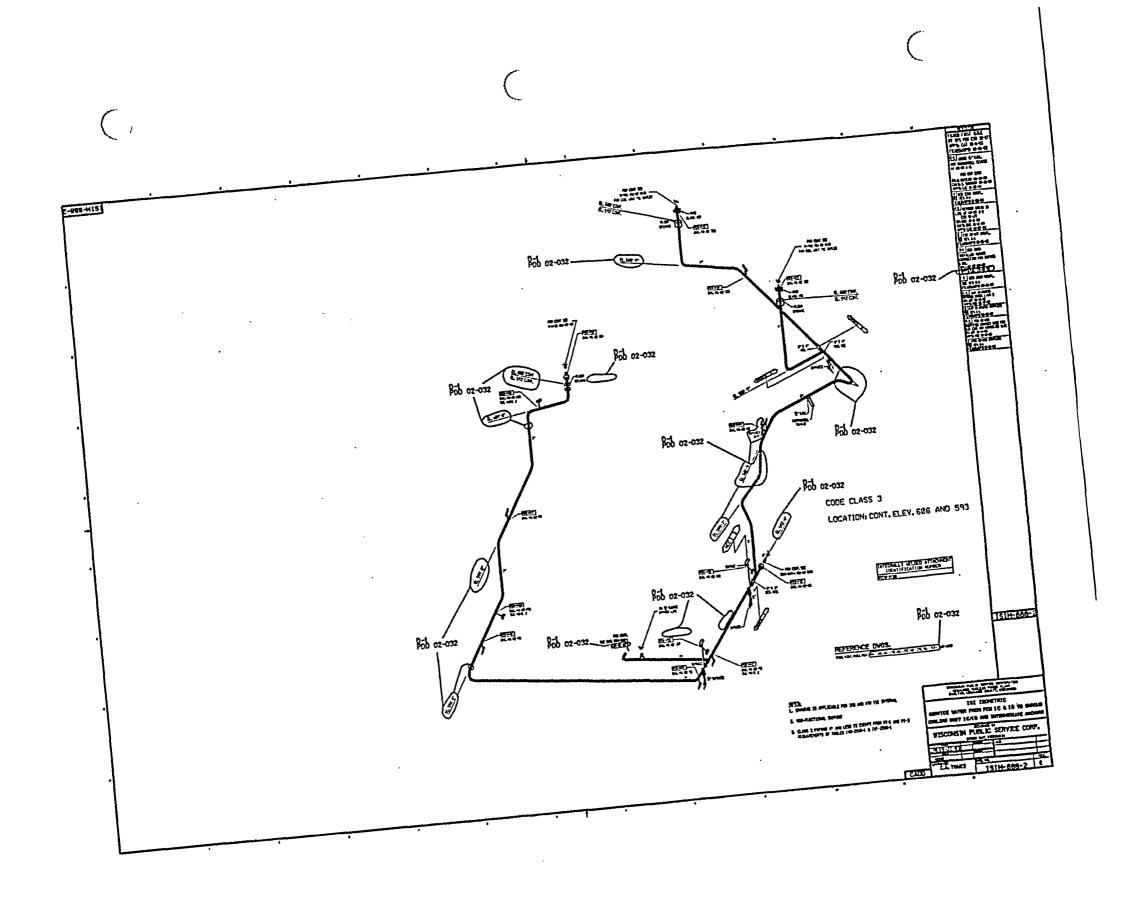

(

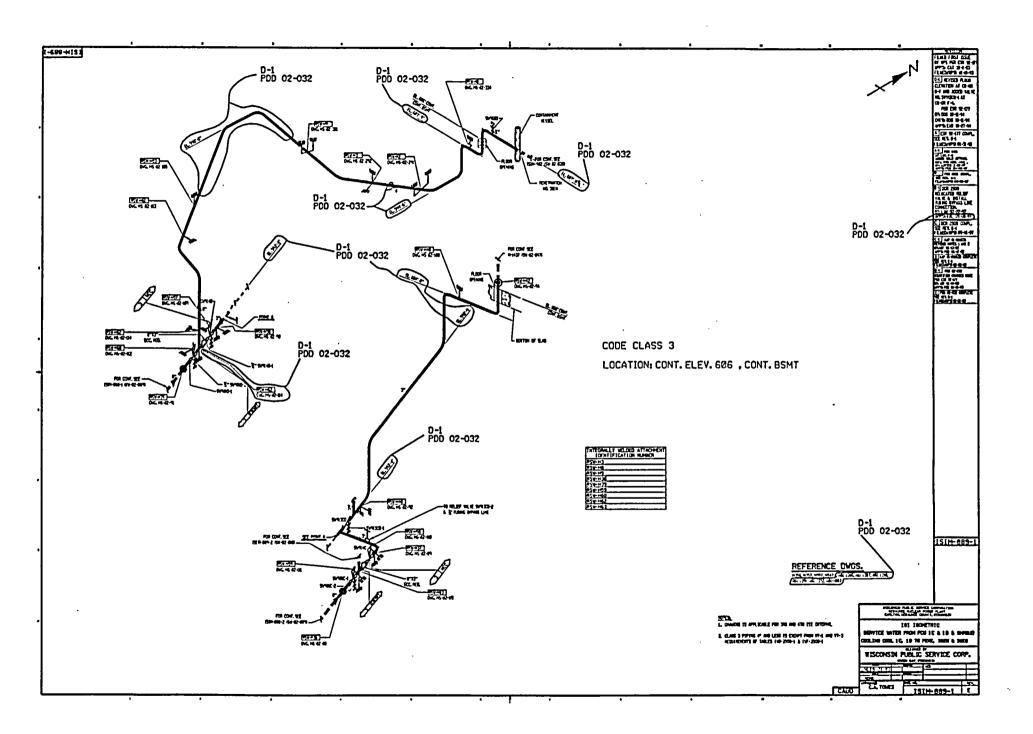


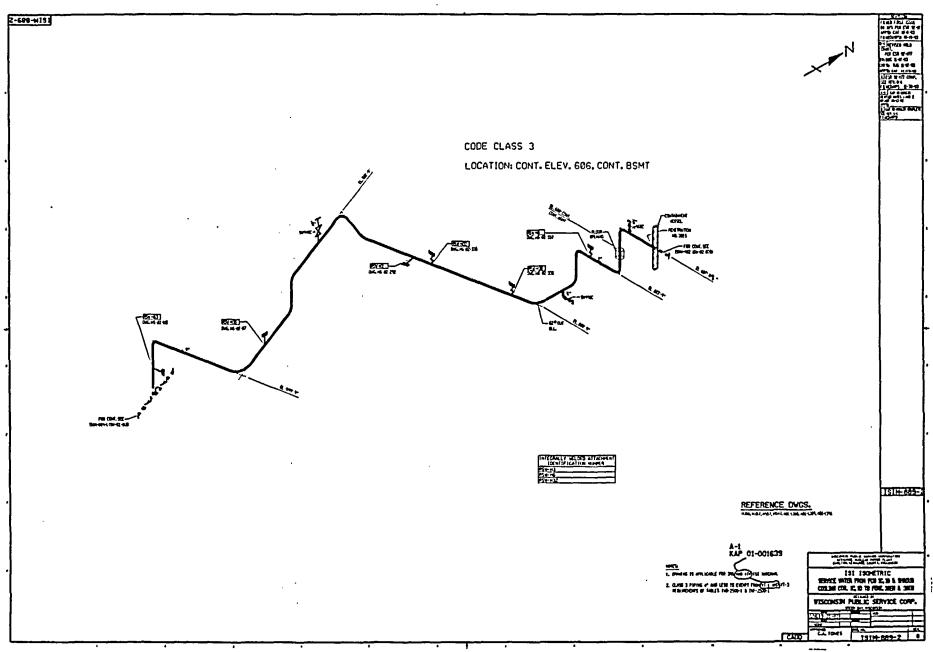

. .

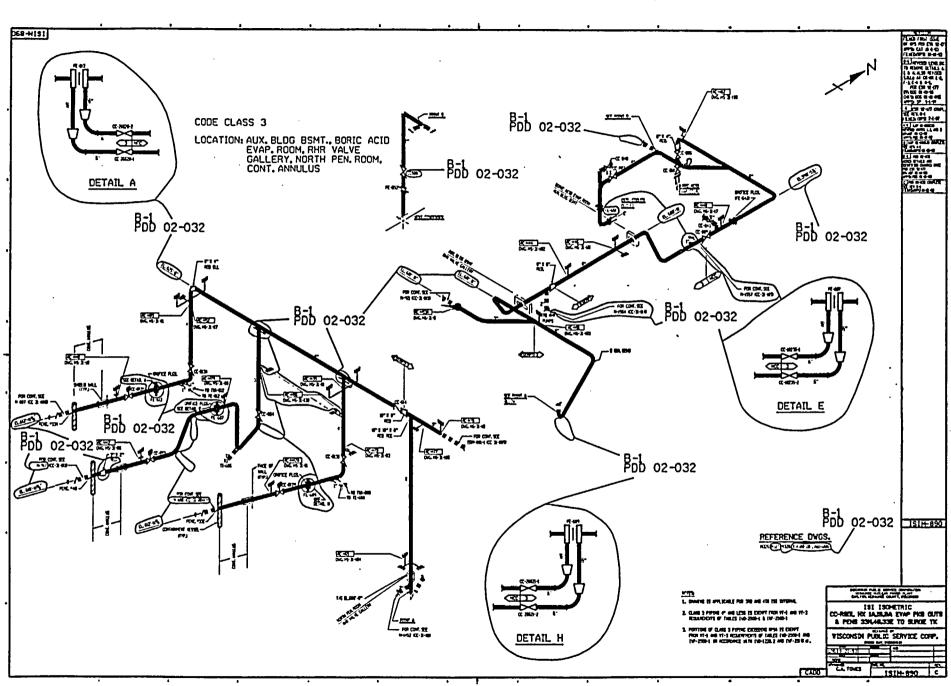


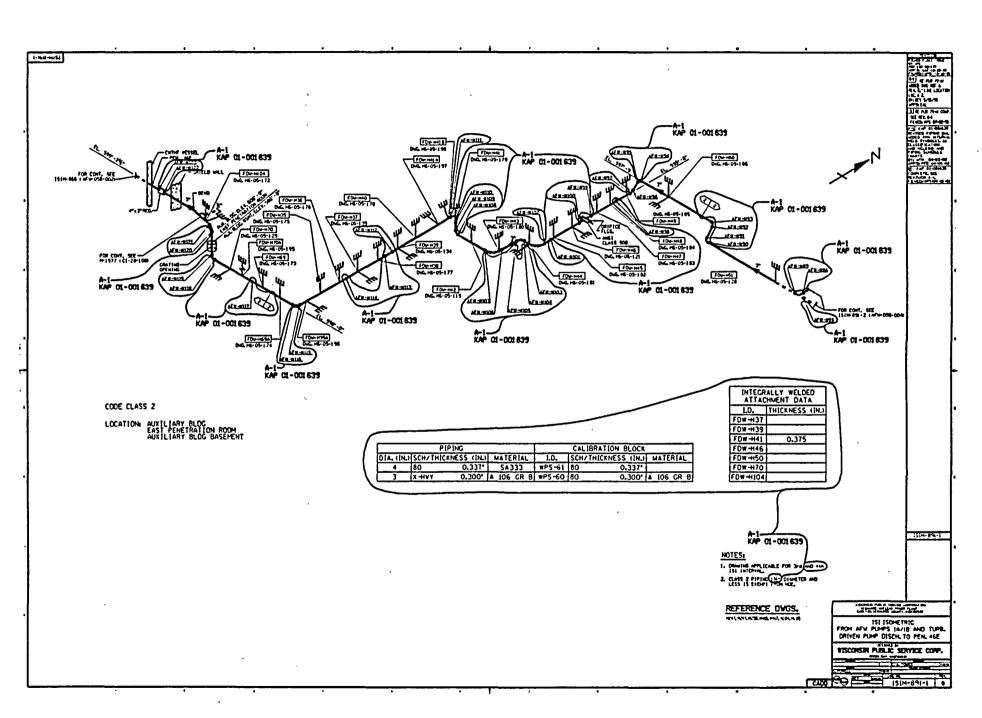
(

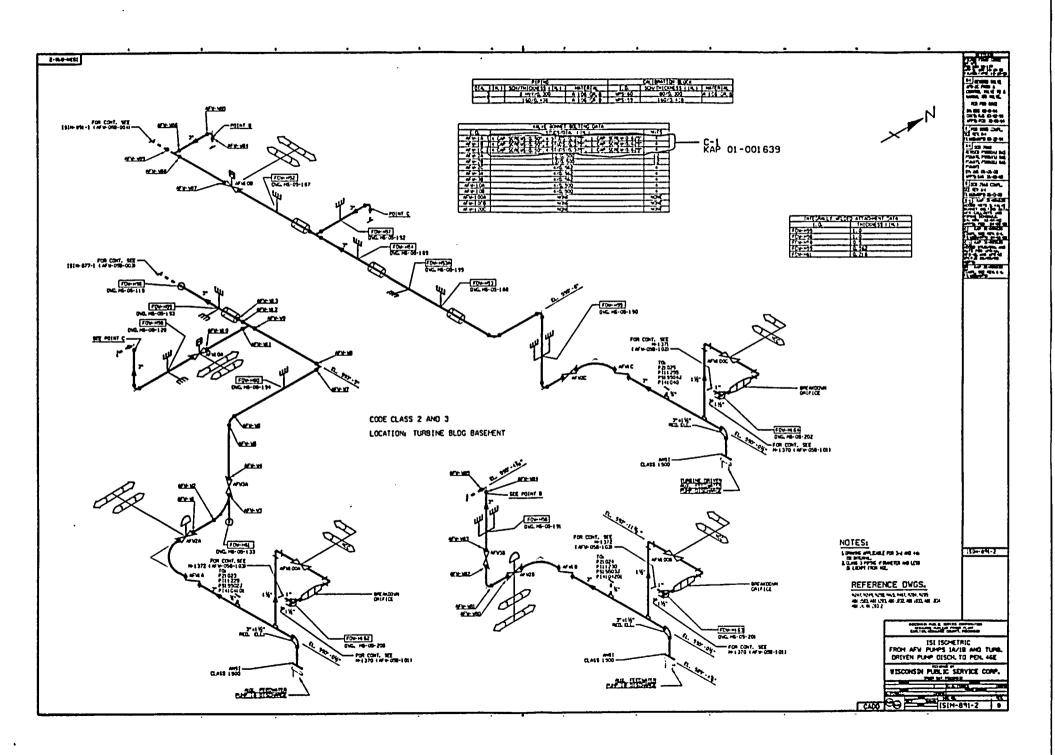


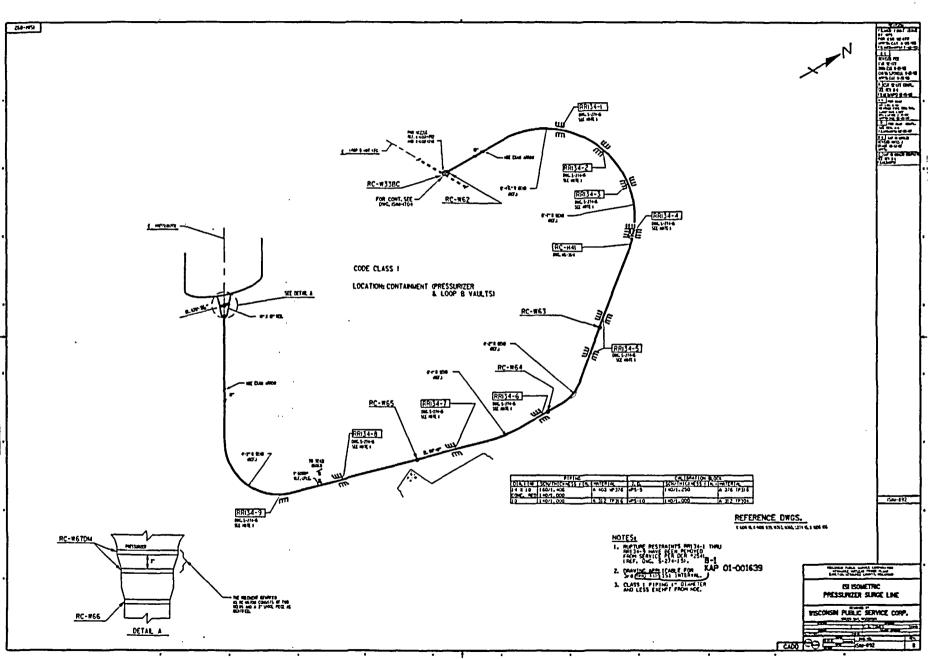


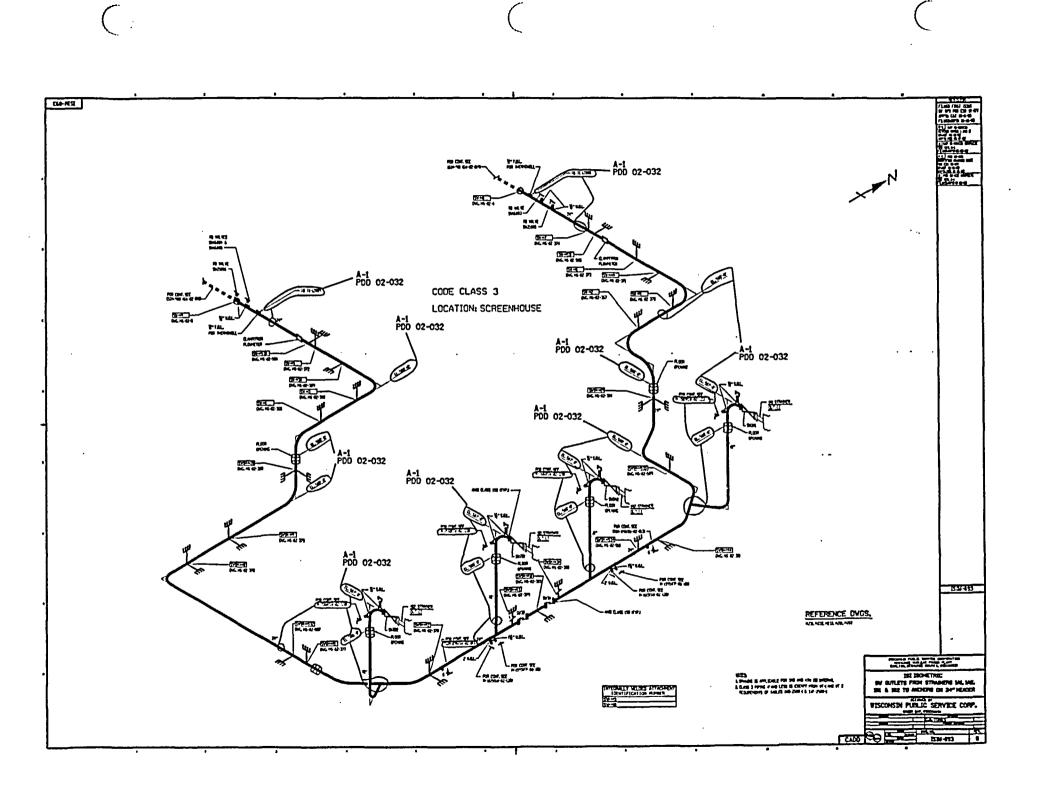


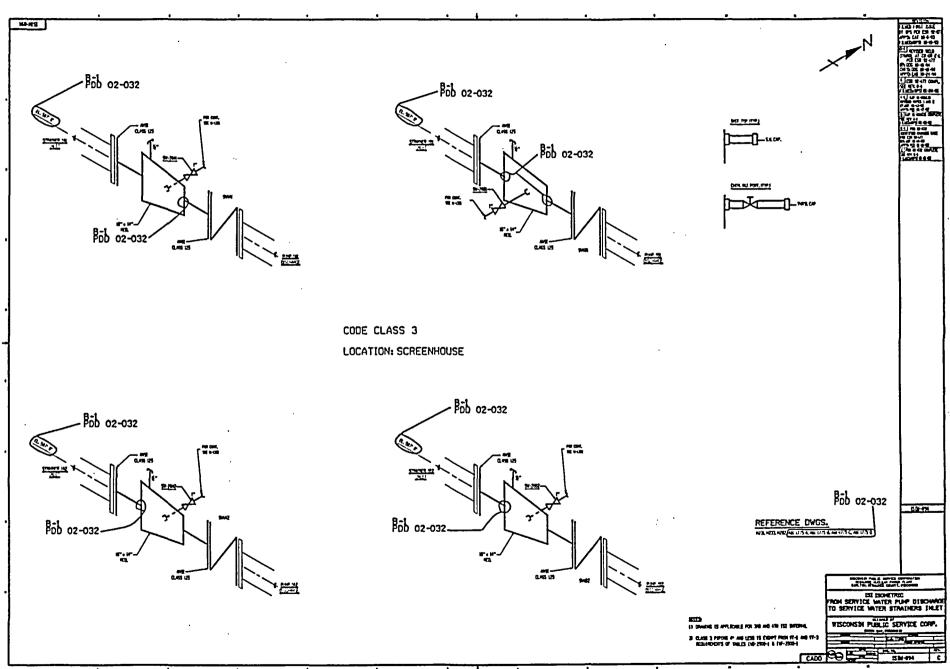


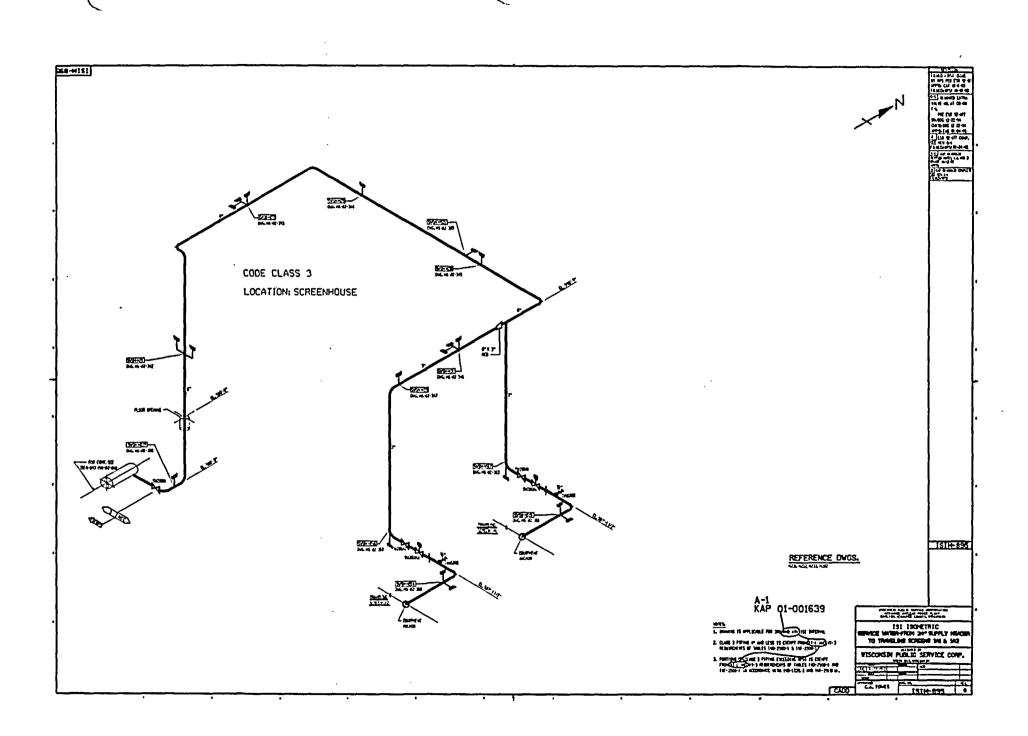


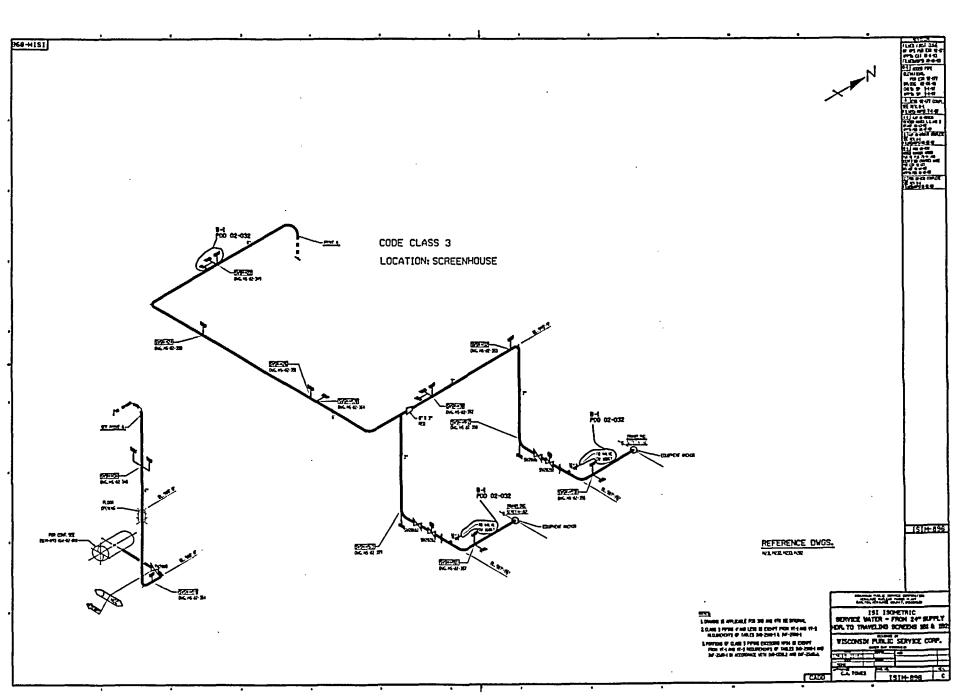

. .

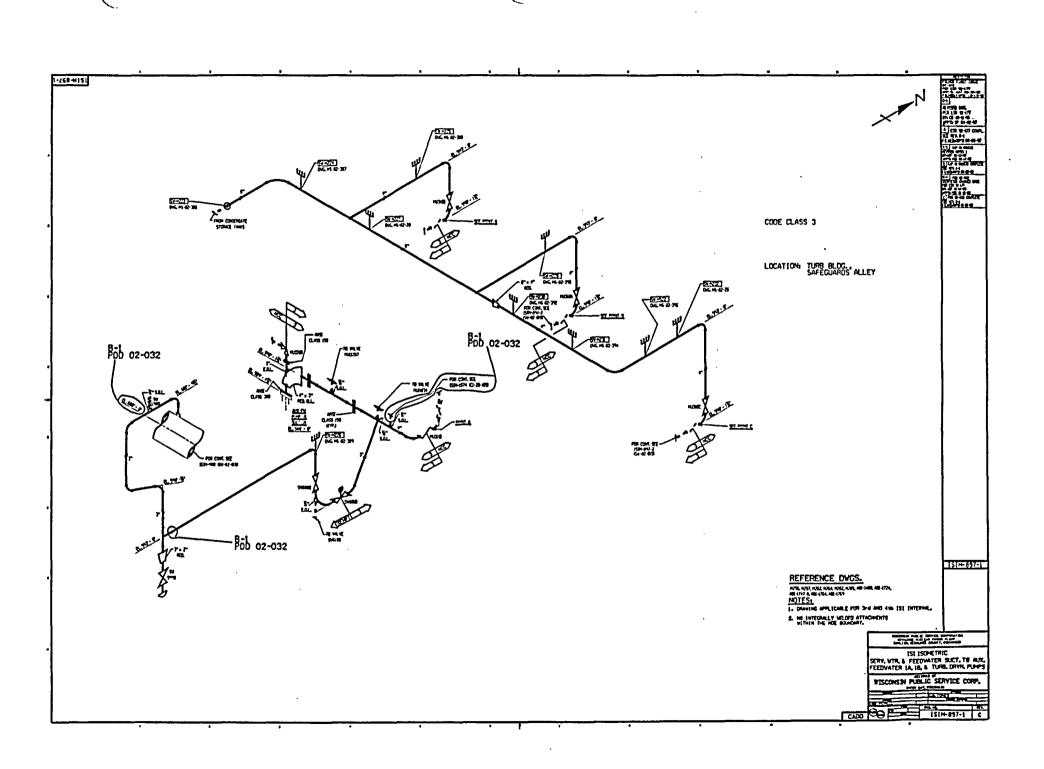


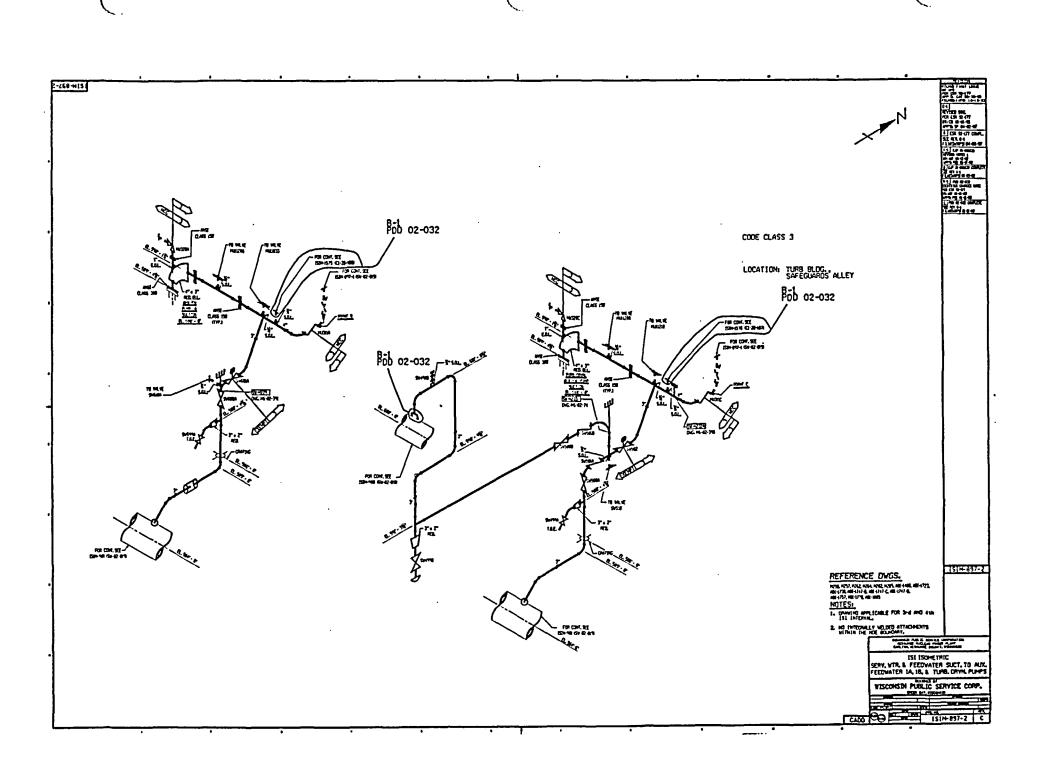

.

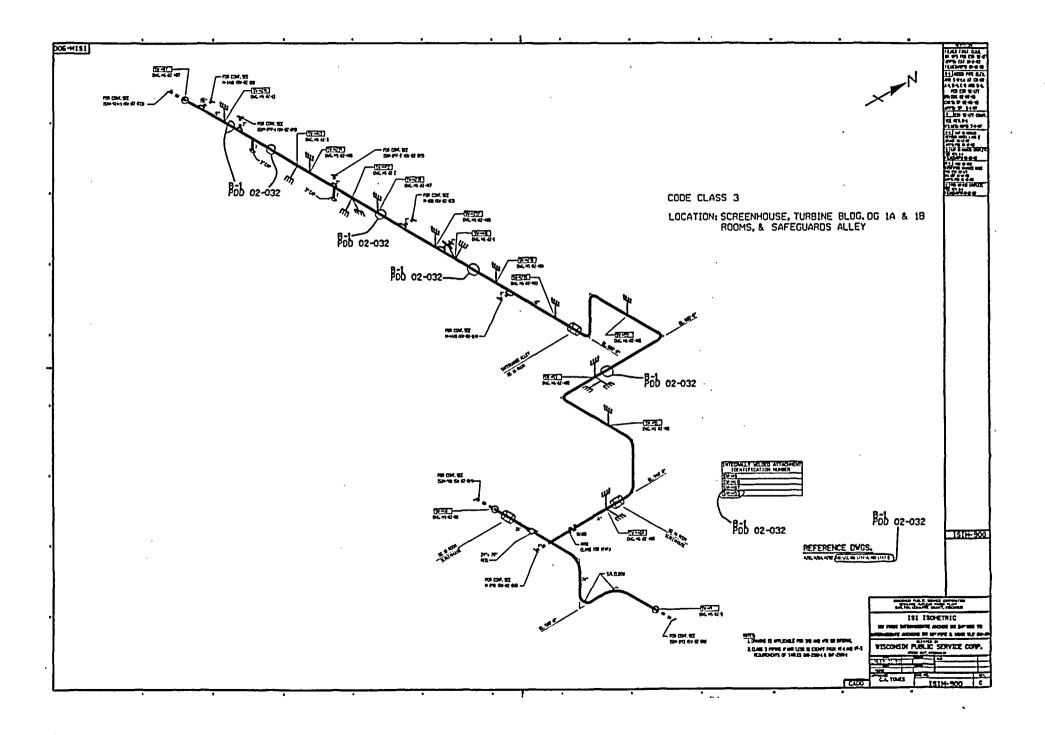


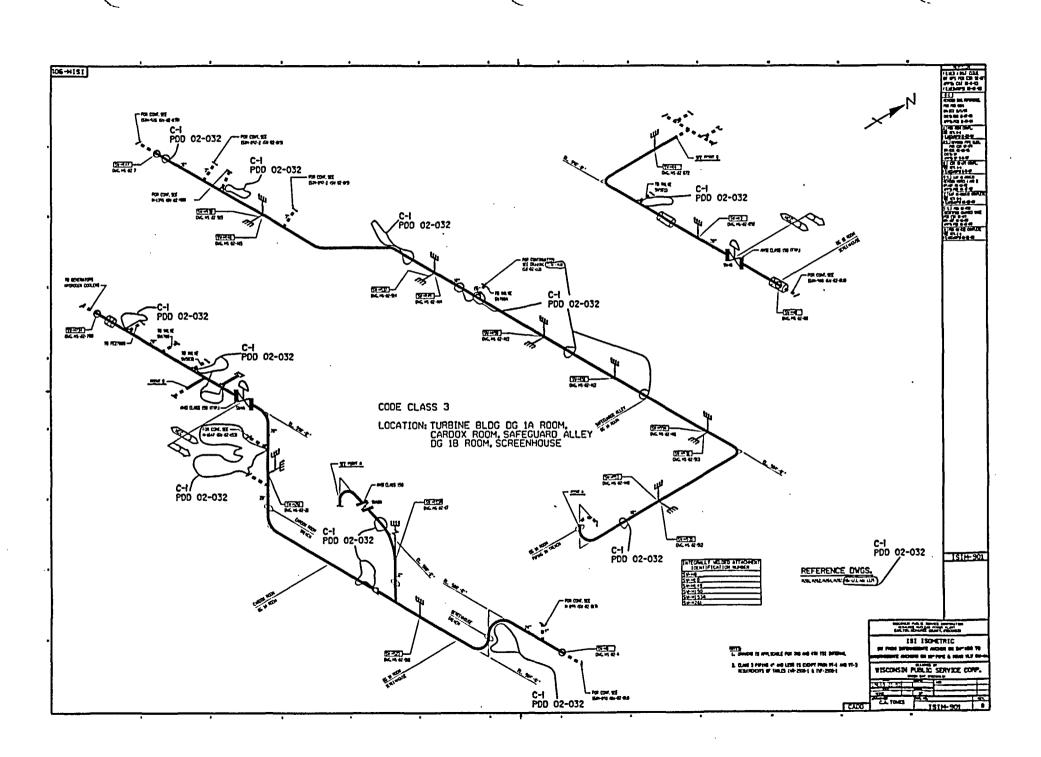


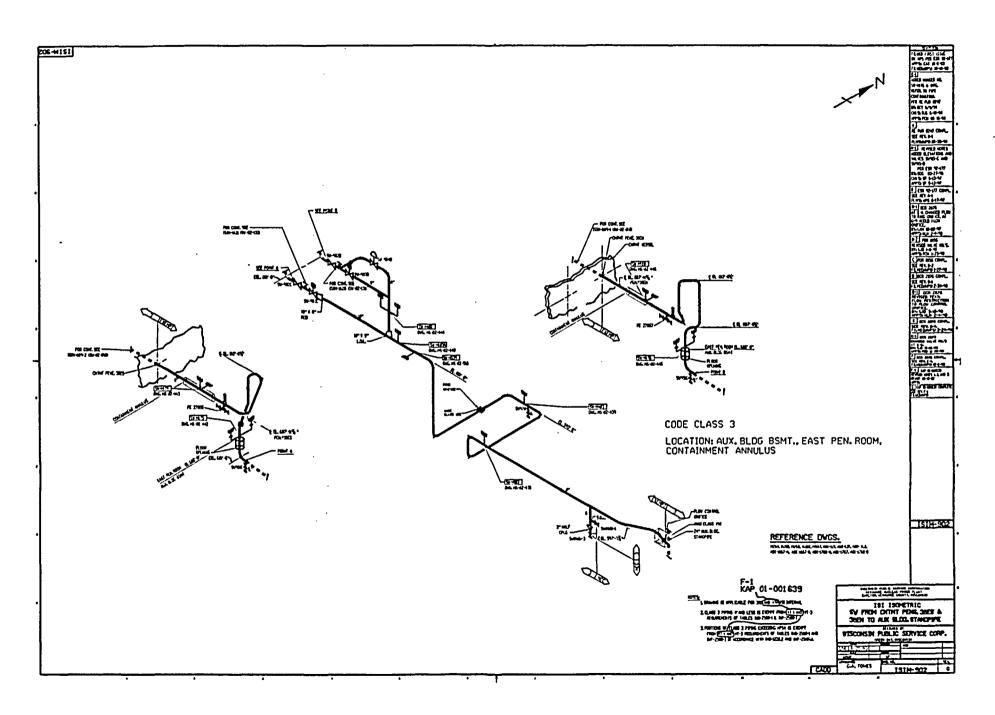


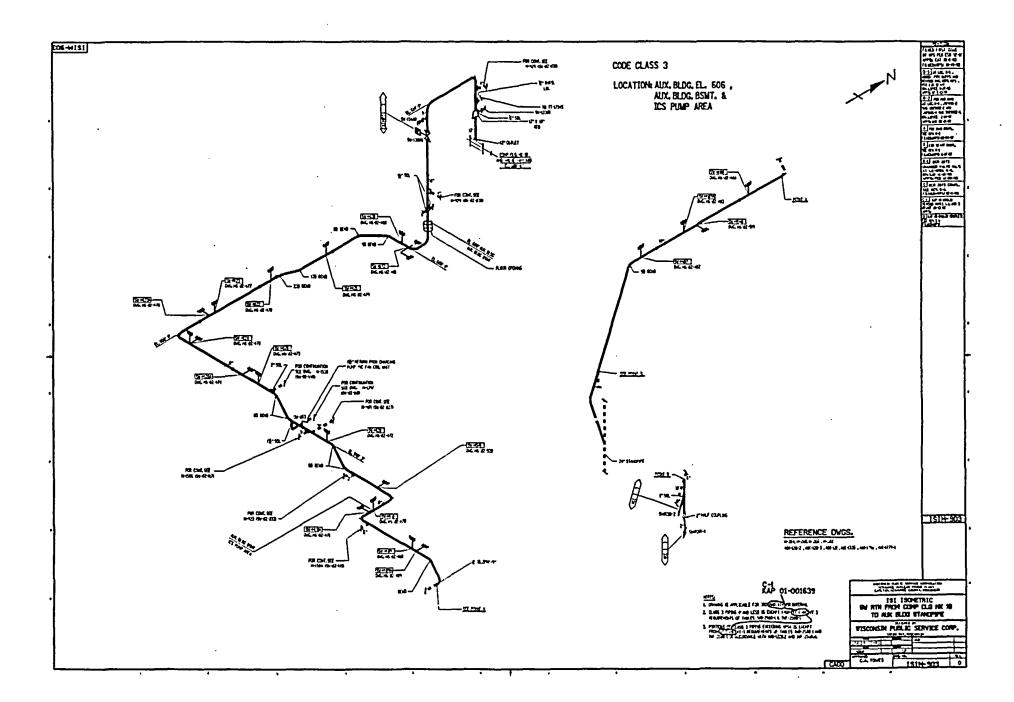

•

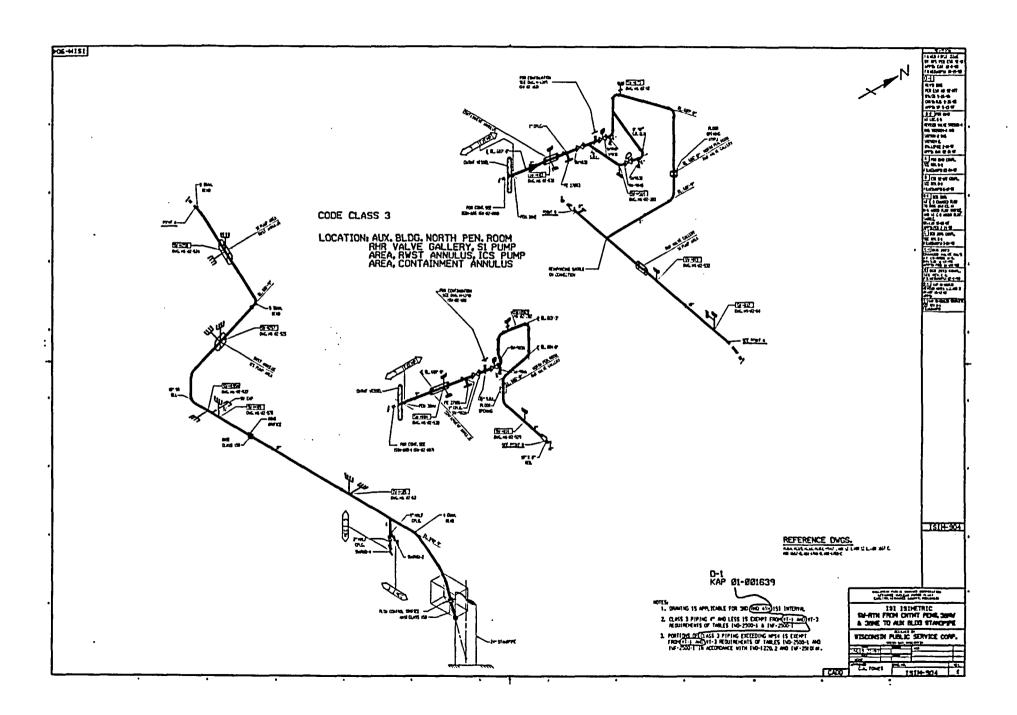


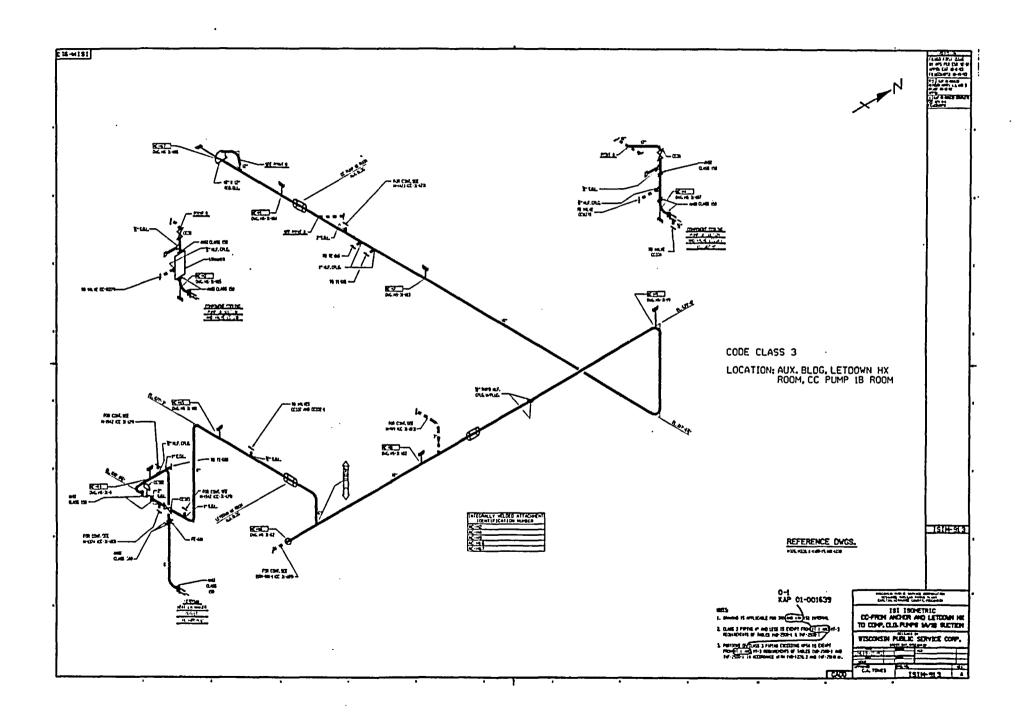


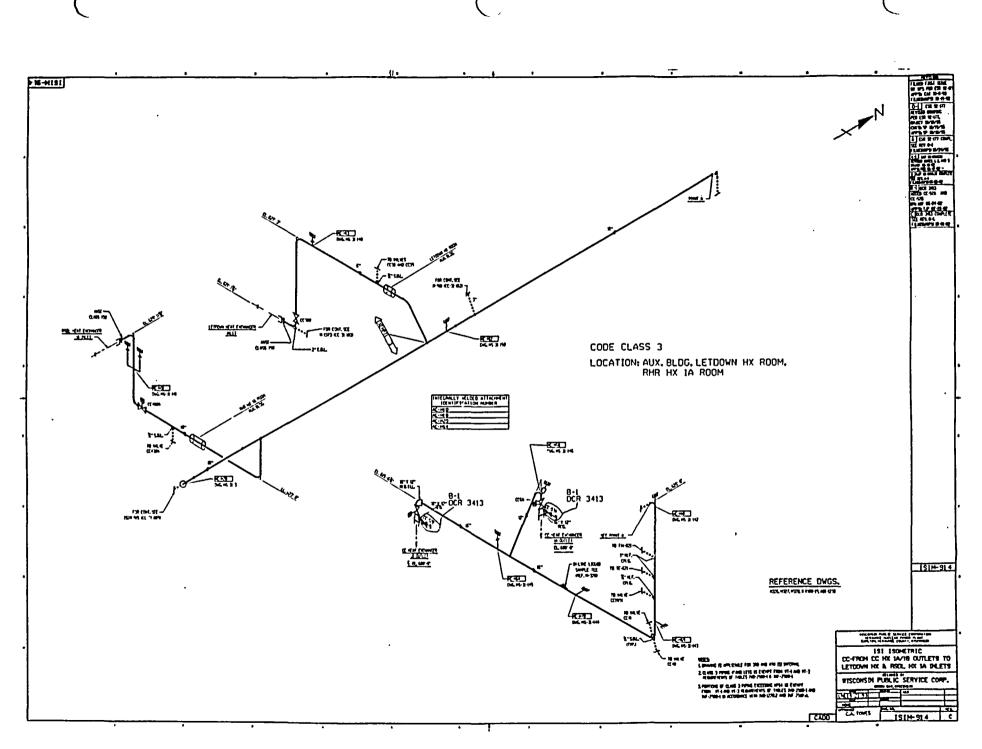


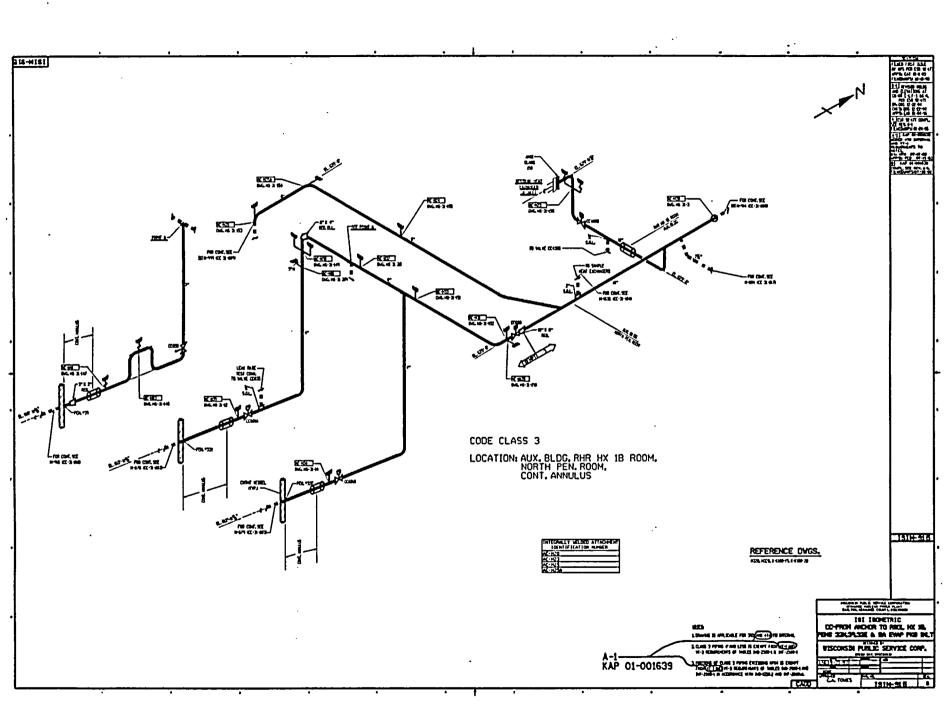


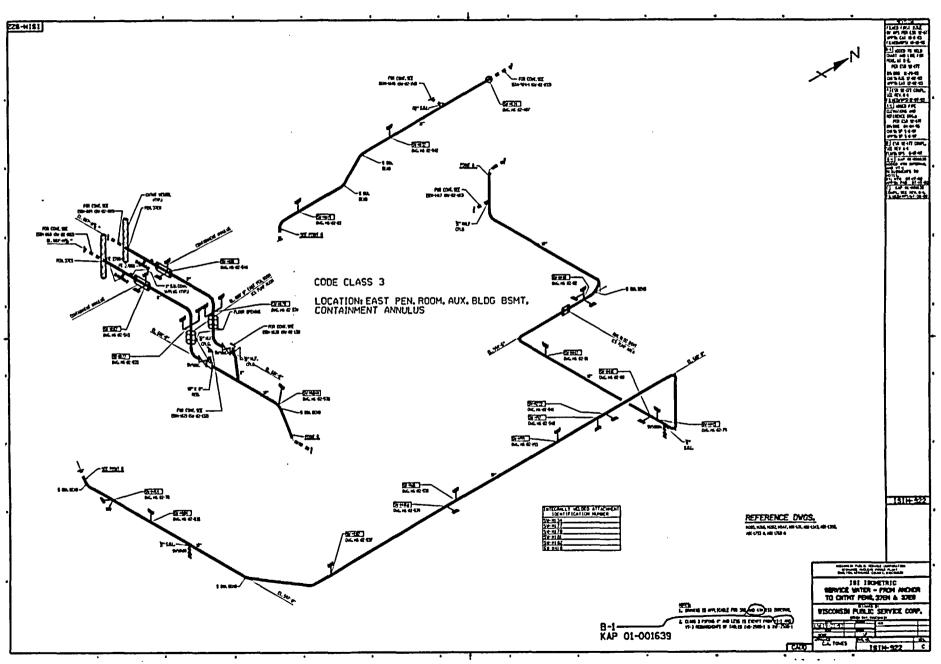

l

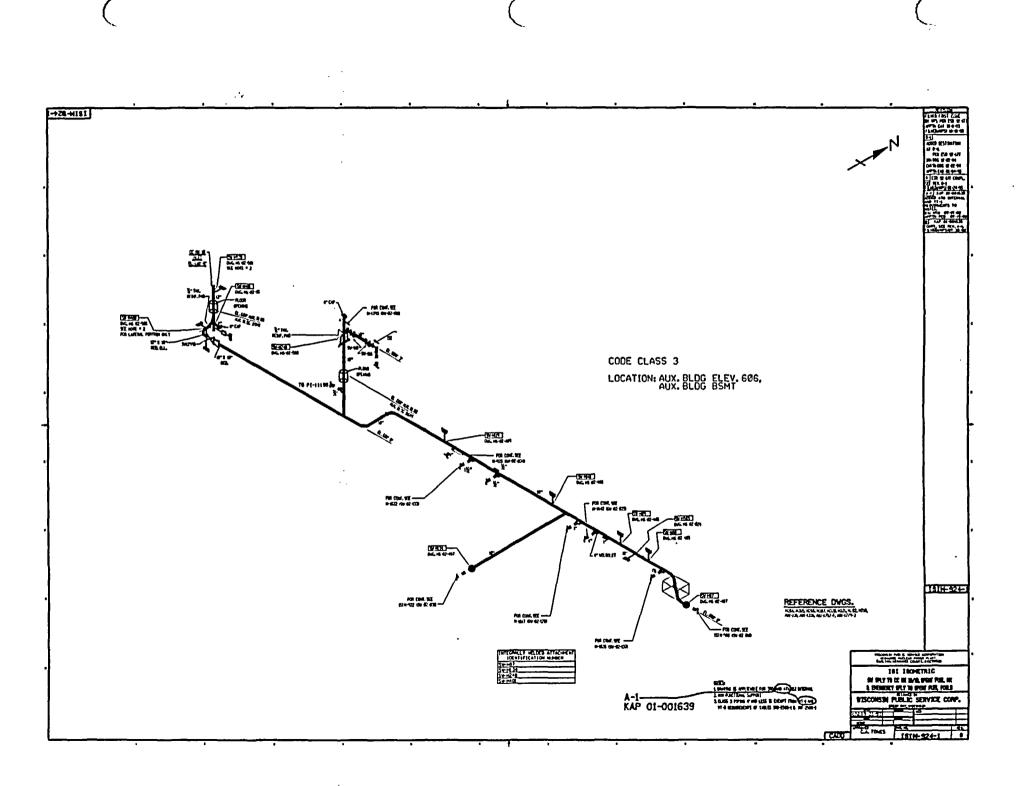


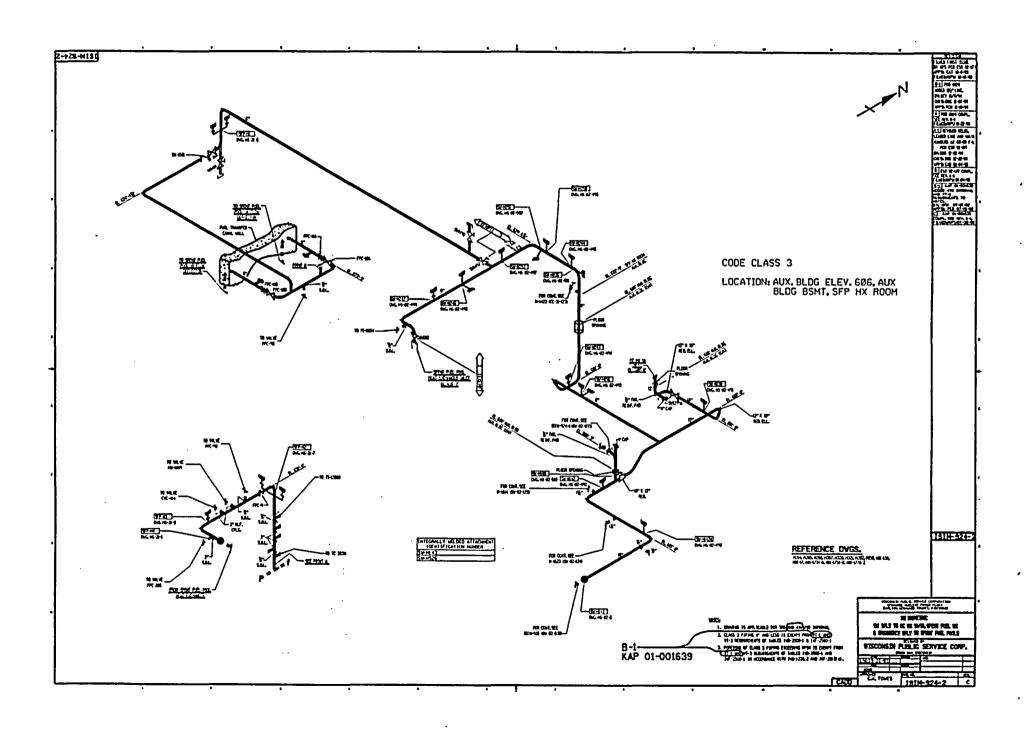


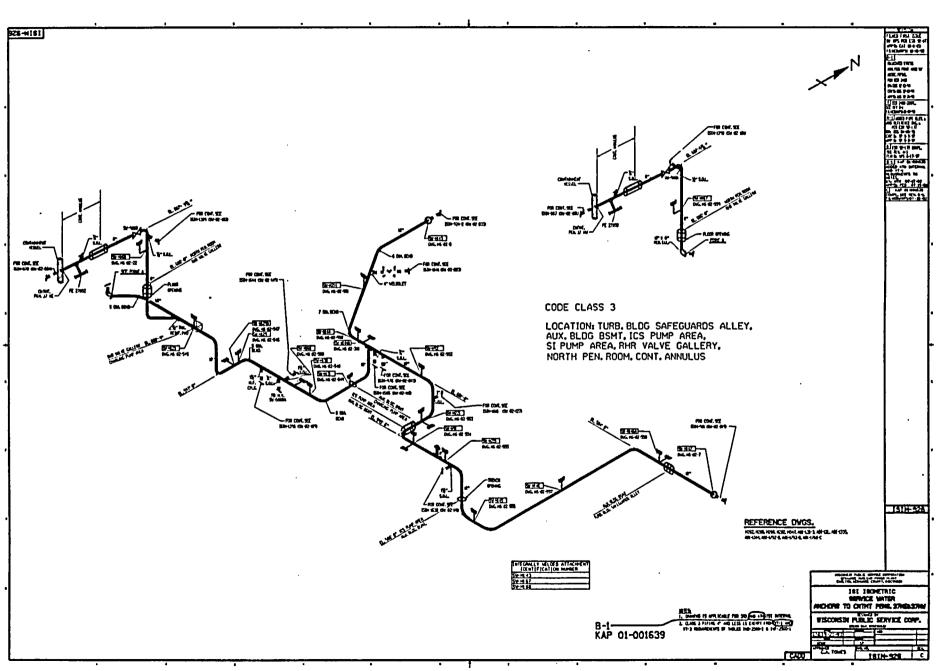


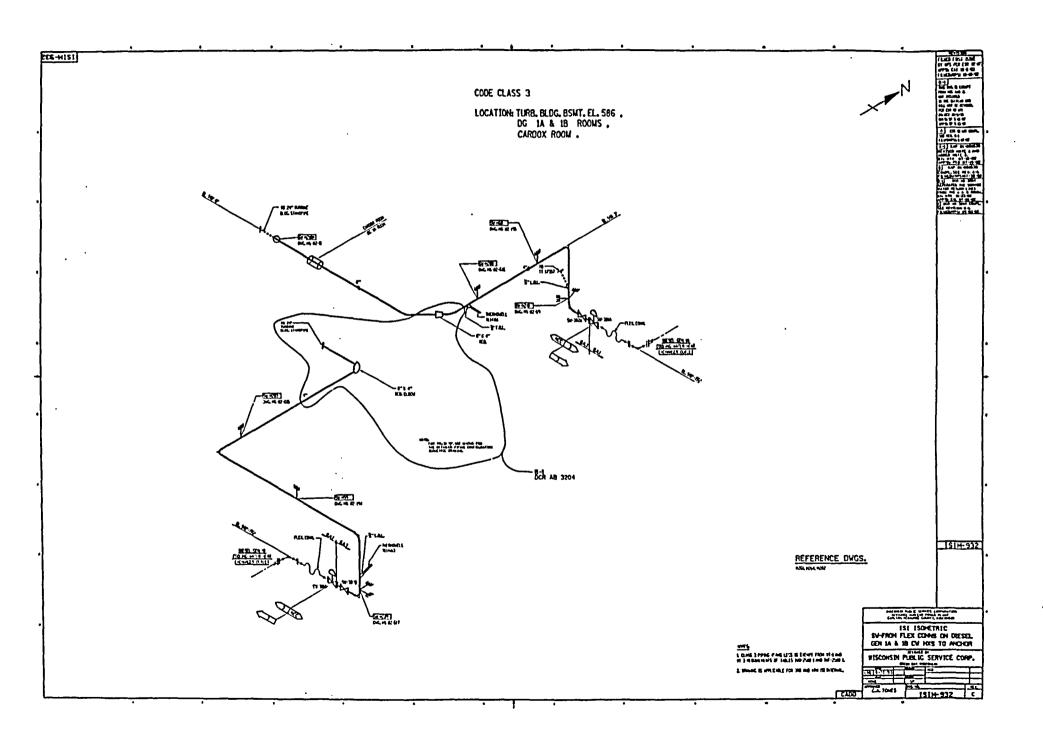

· · · · ·

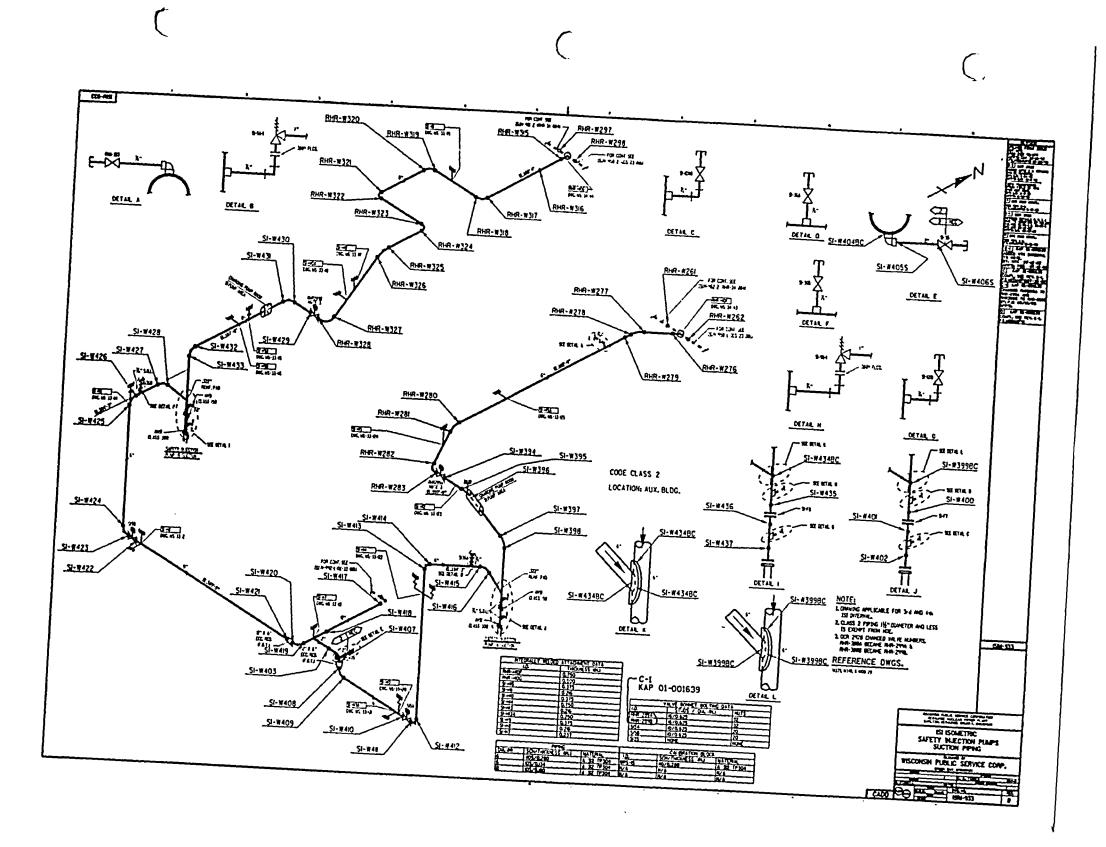


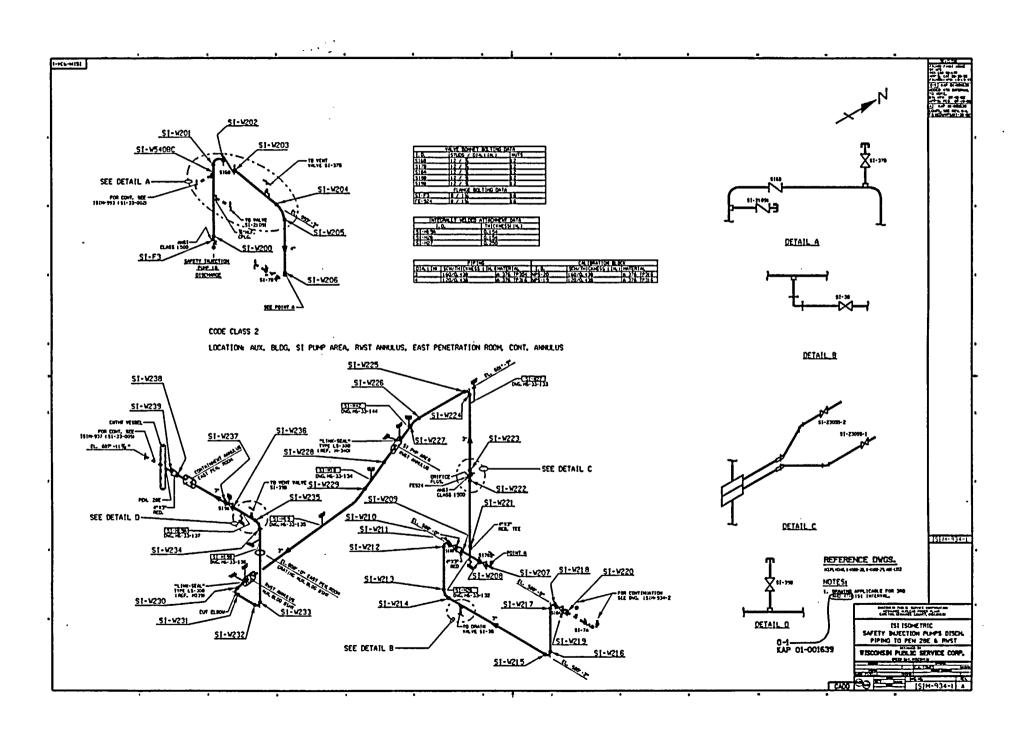


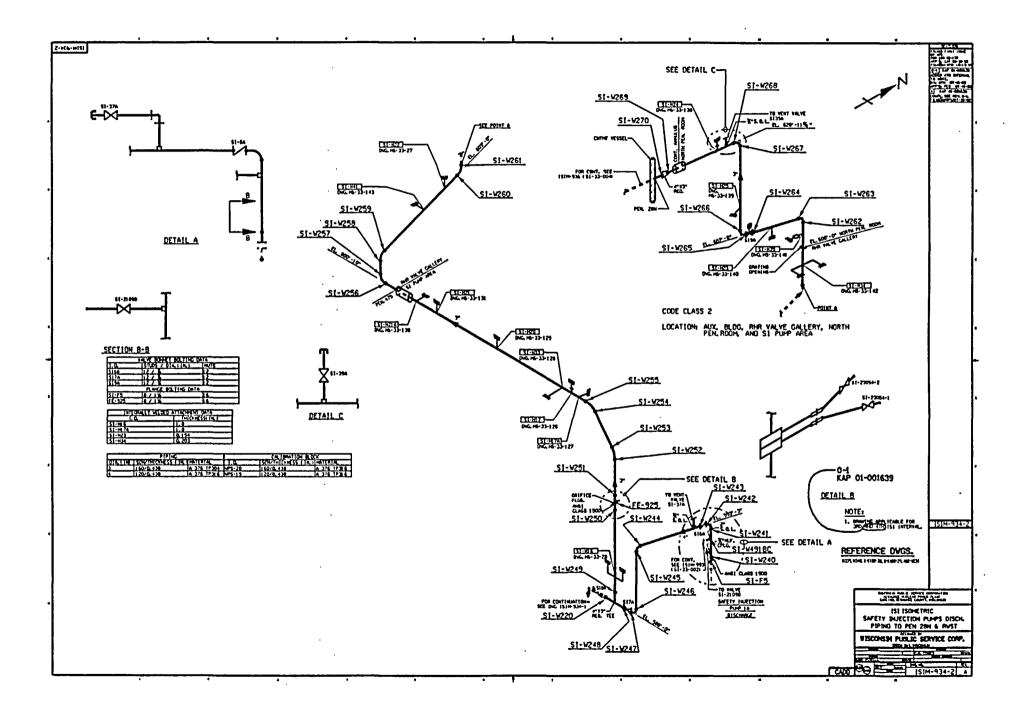


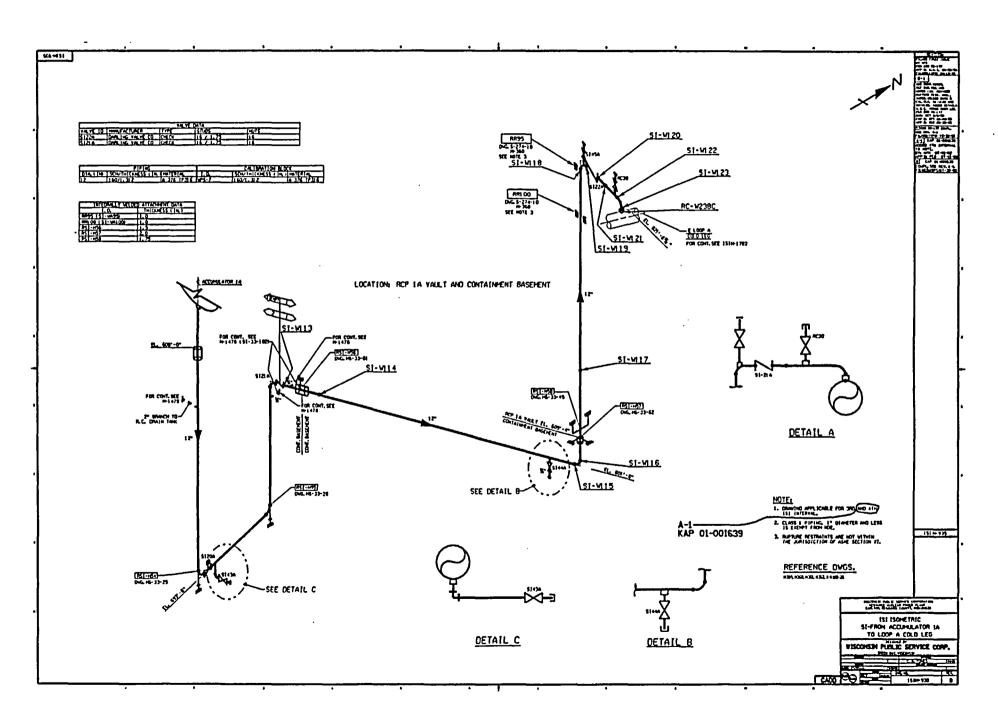


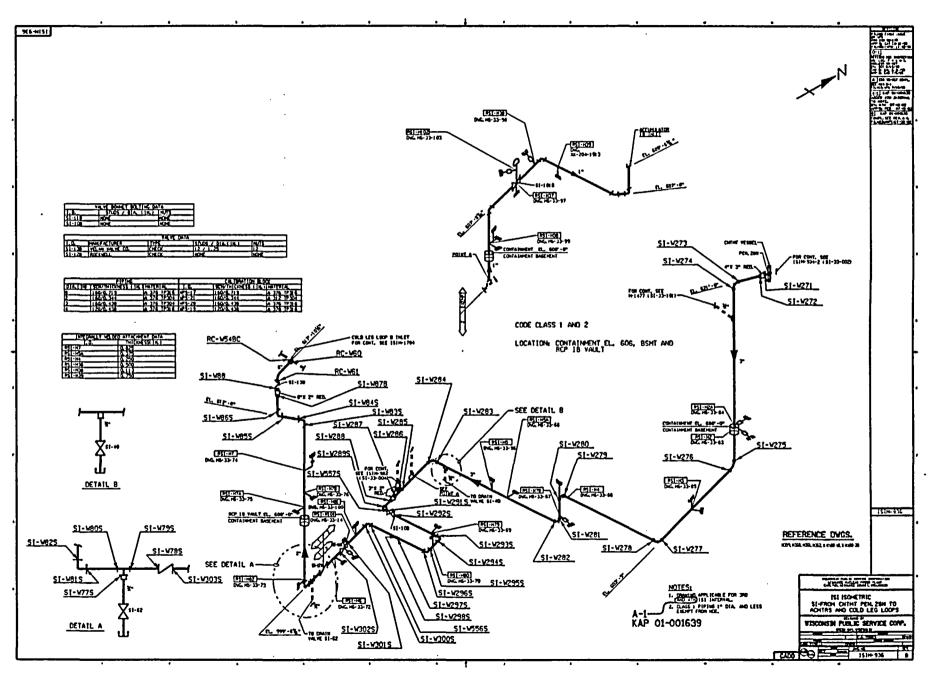


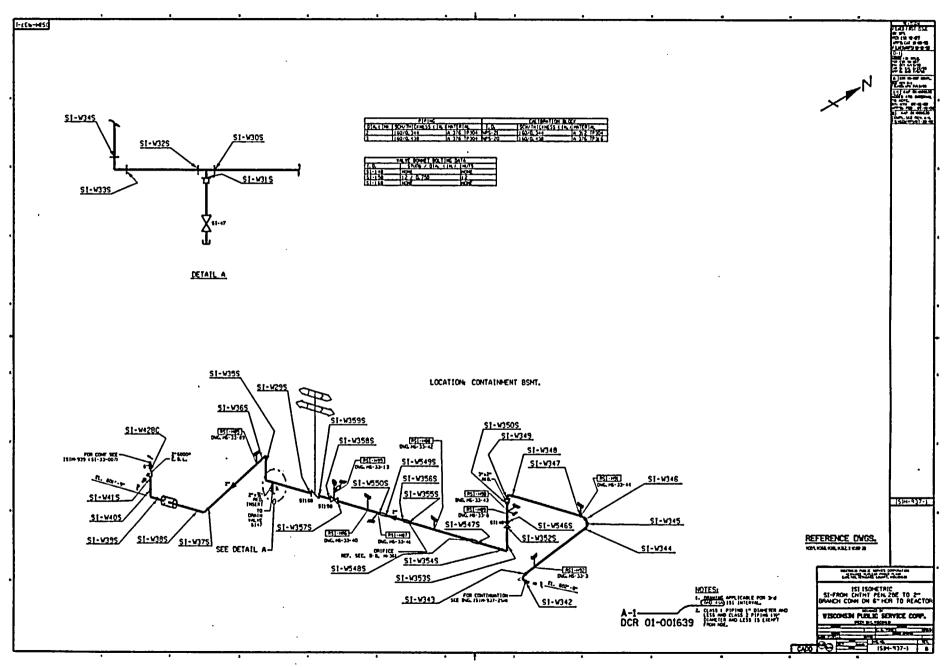


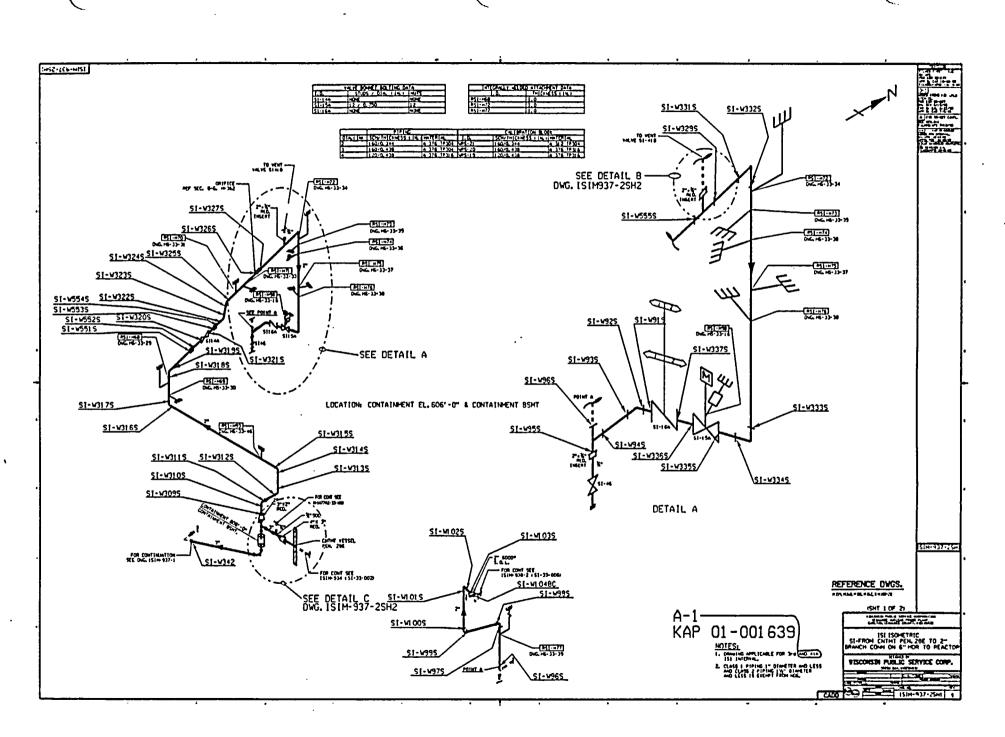


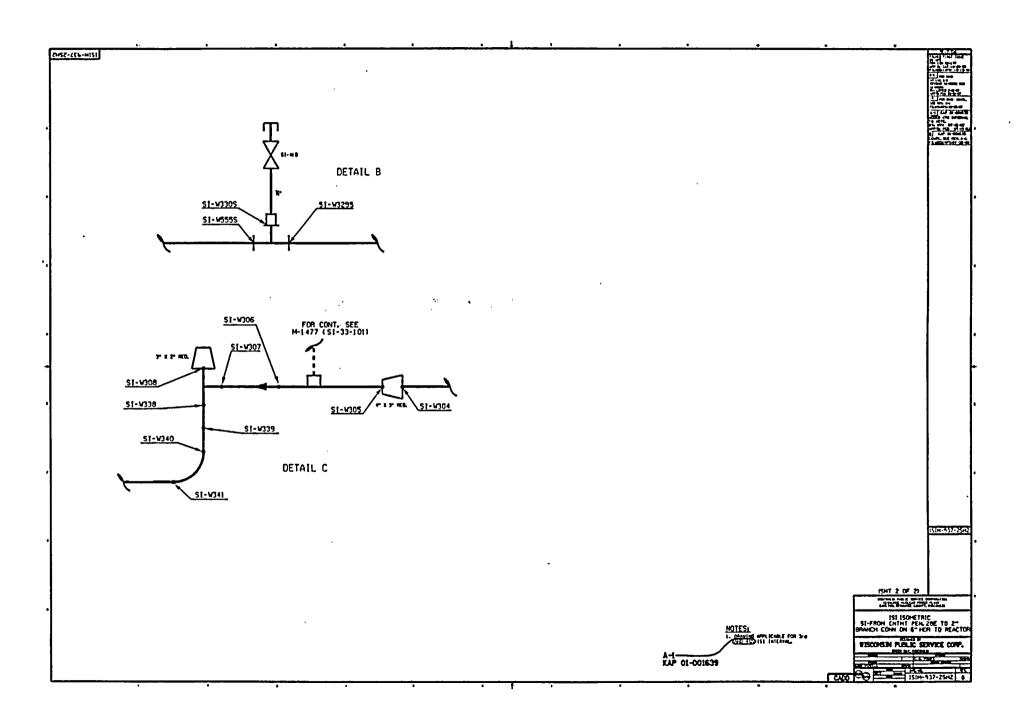


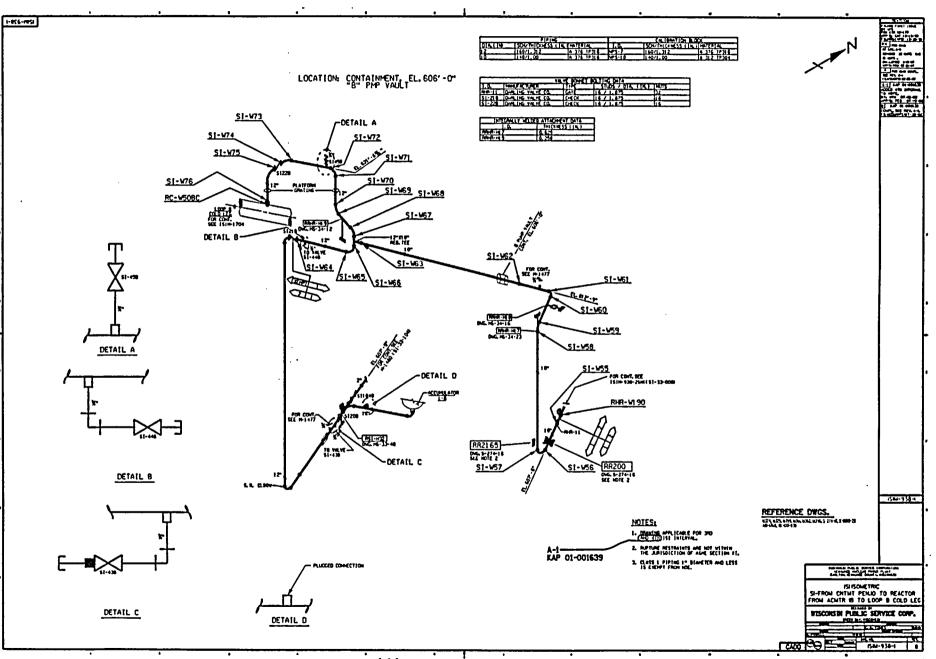


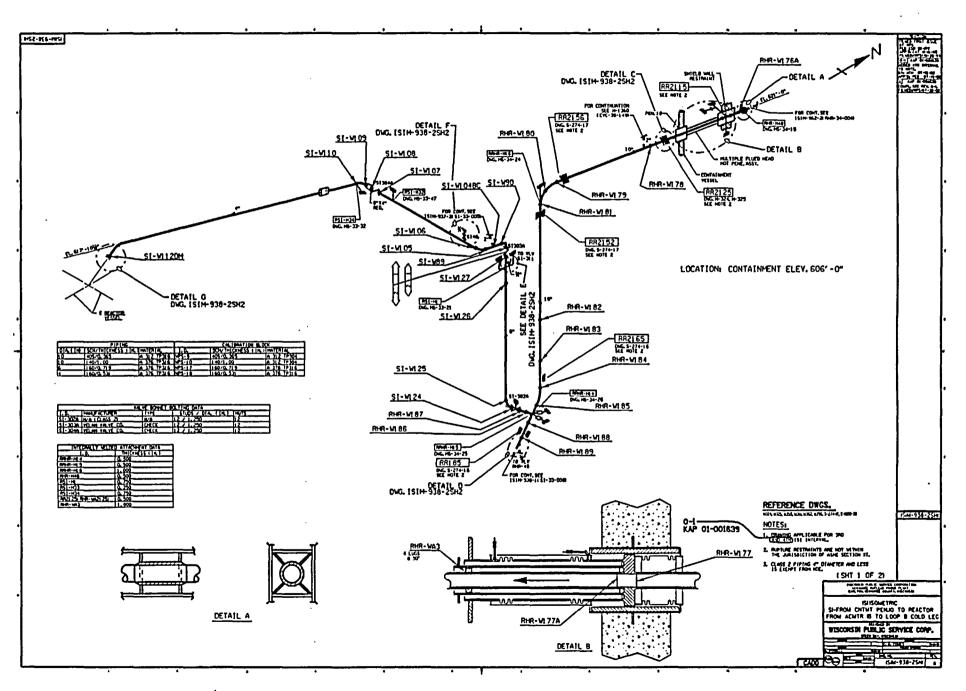


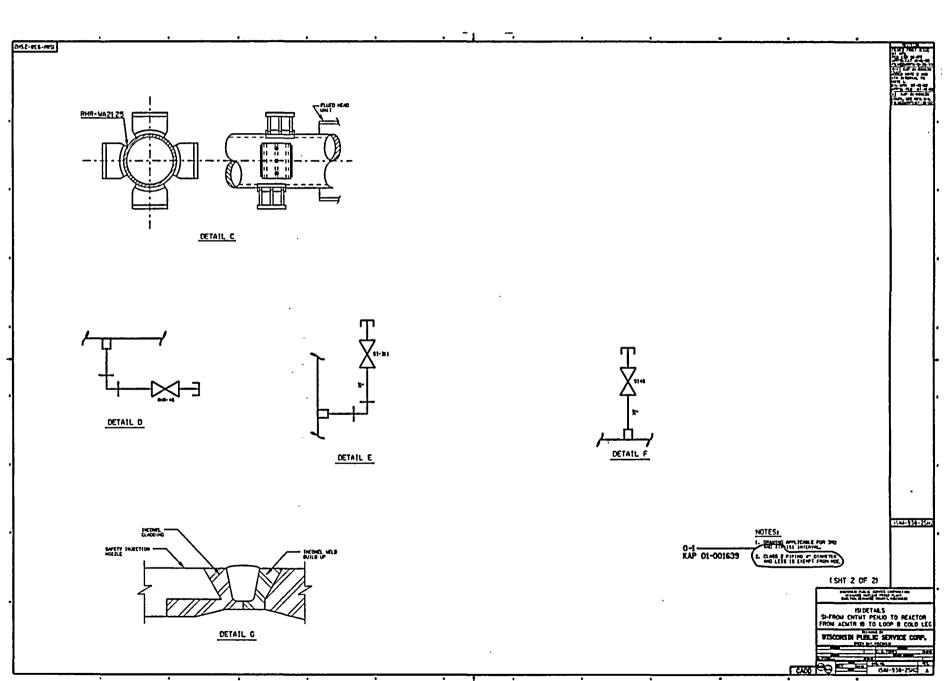




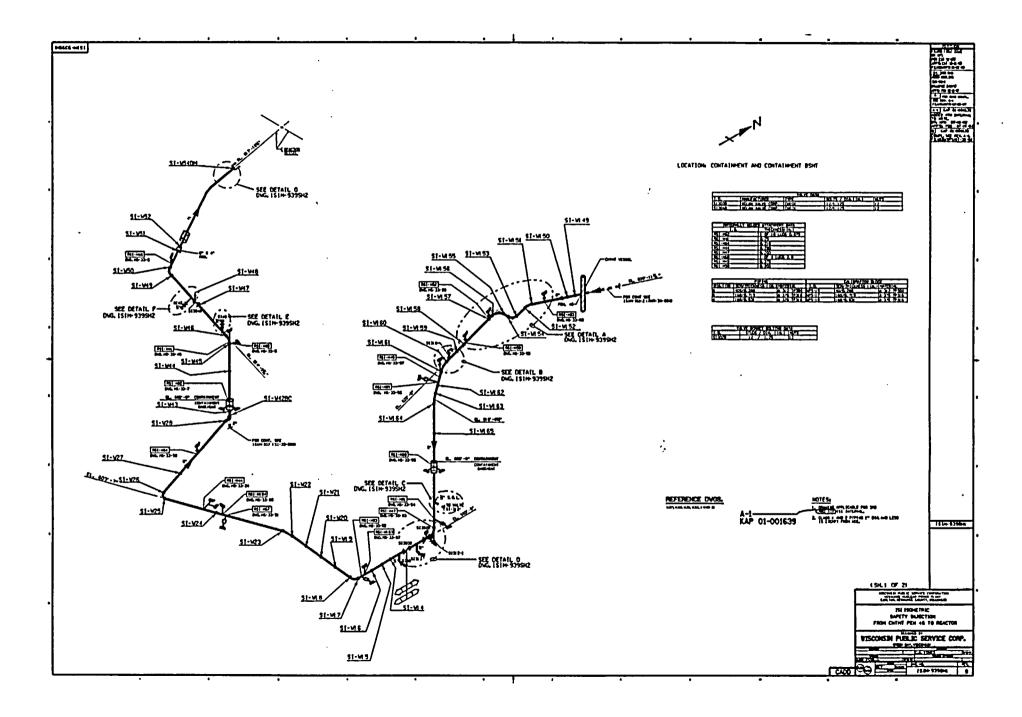


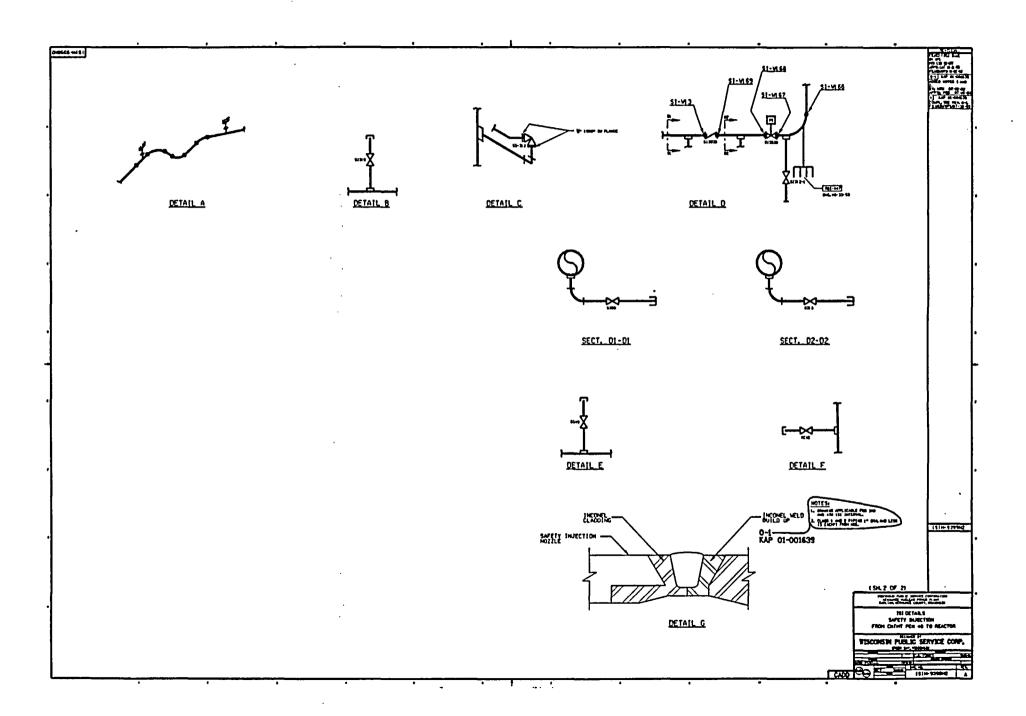

•

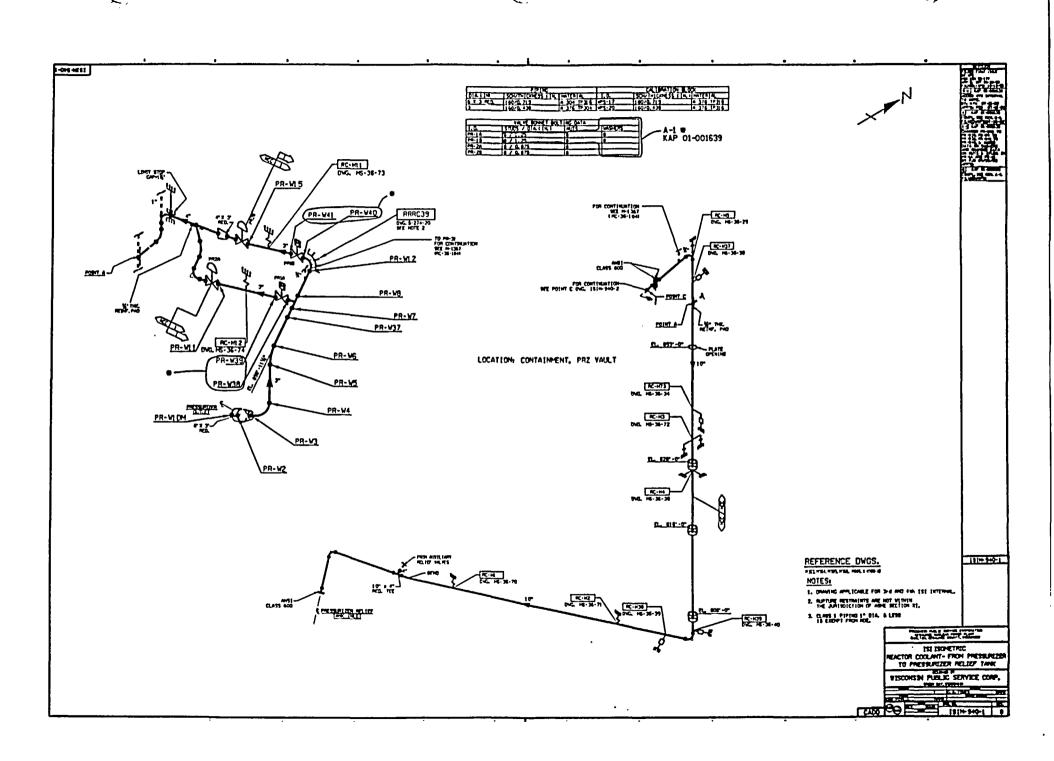


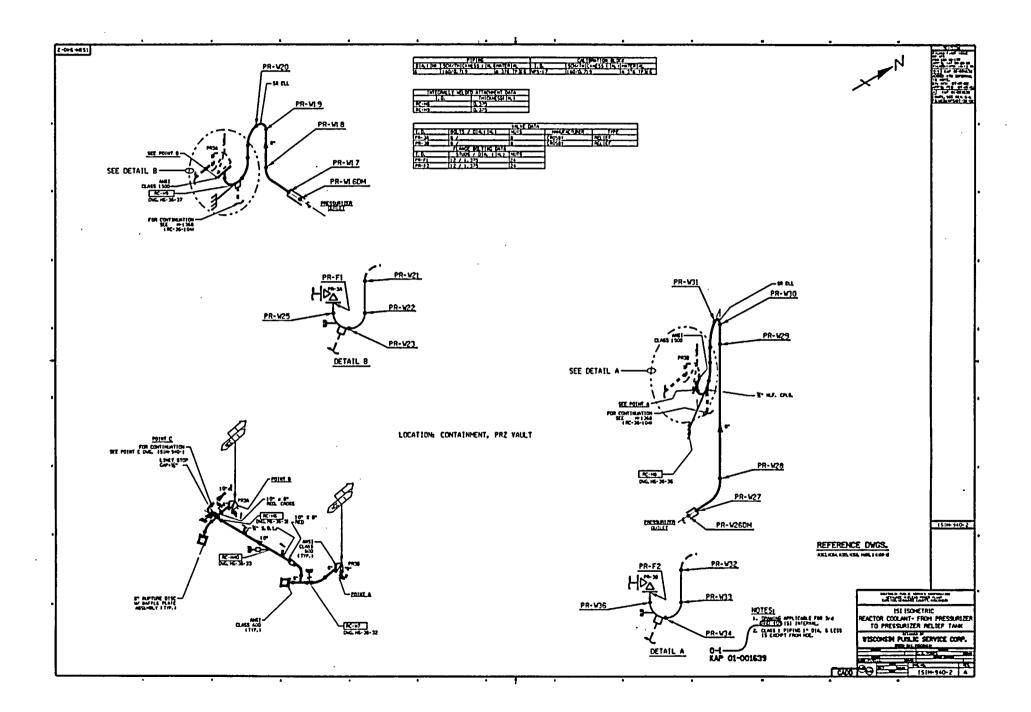


(

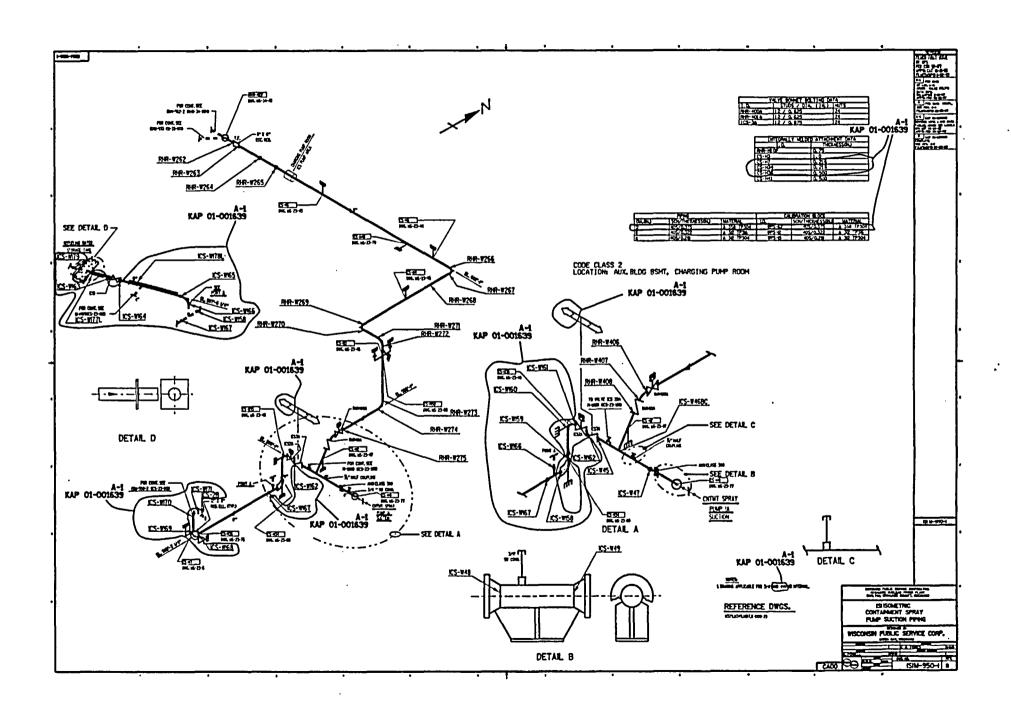


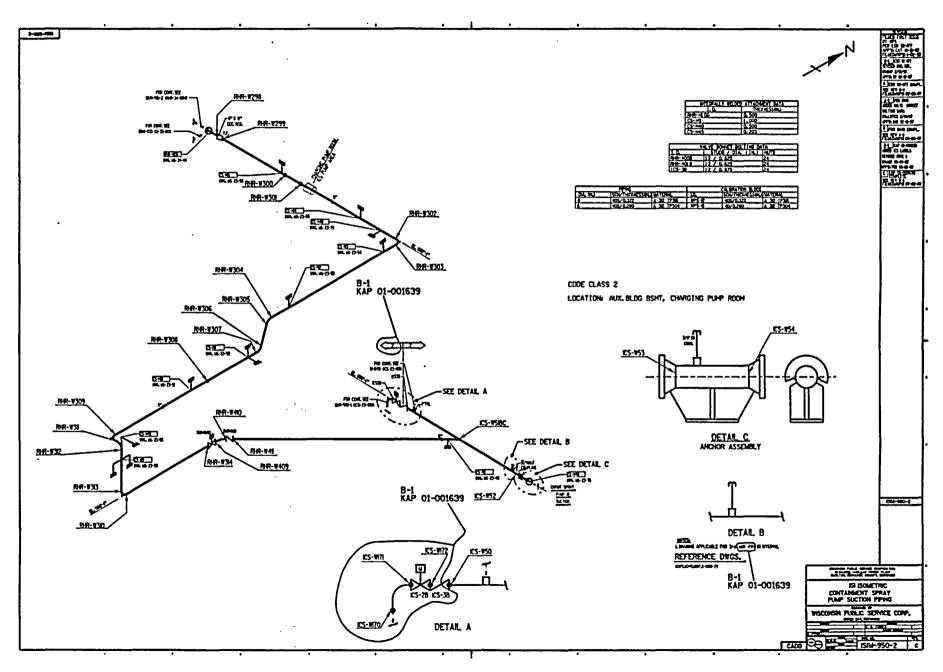

. . .

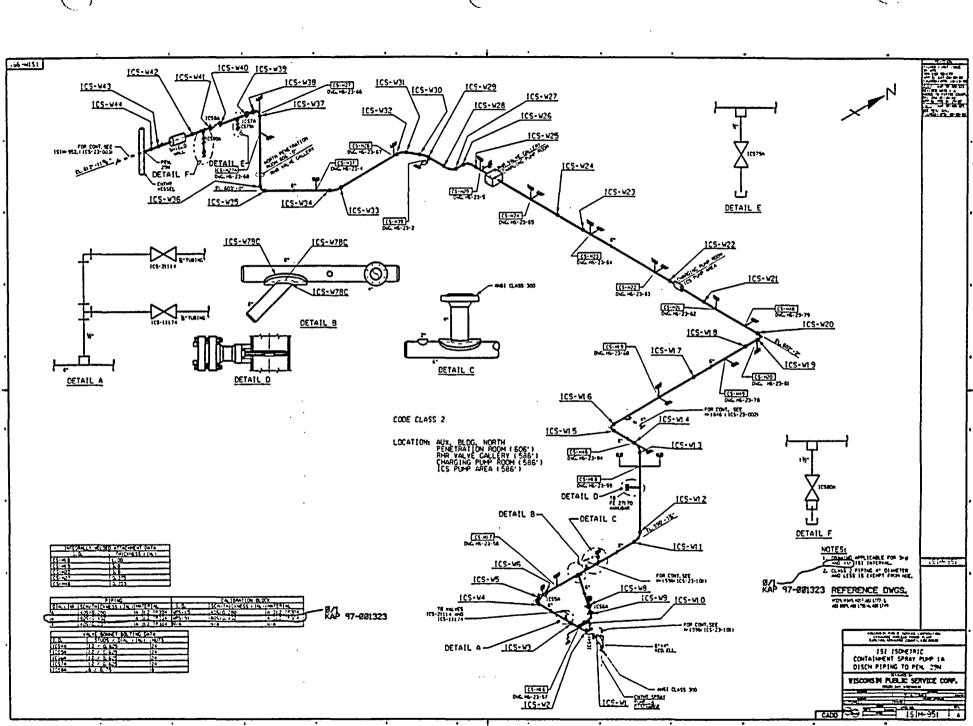




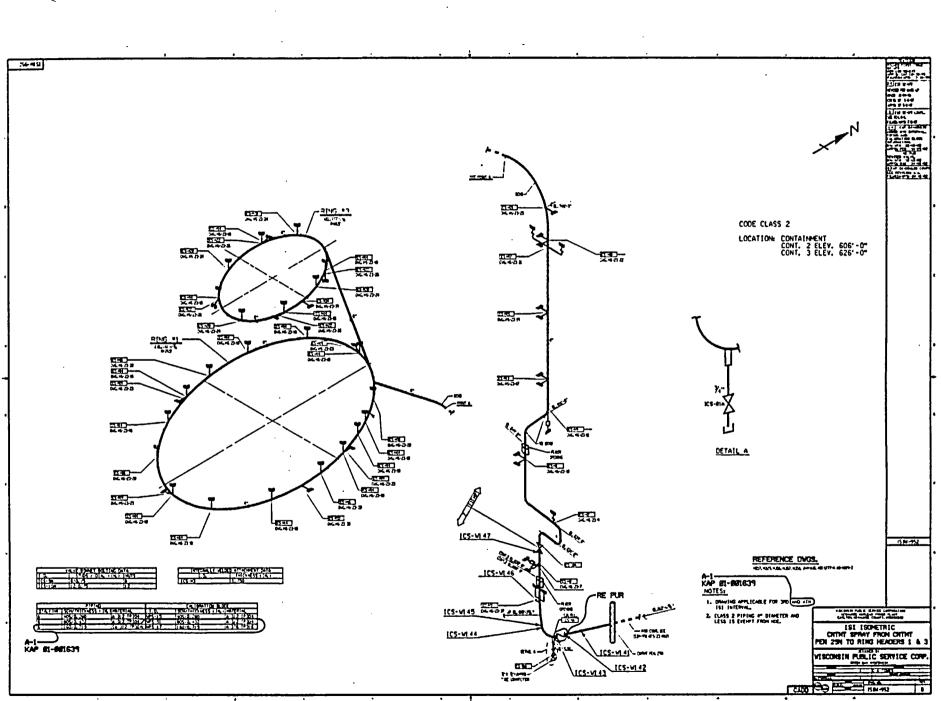
•

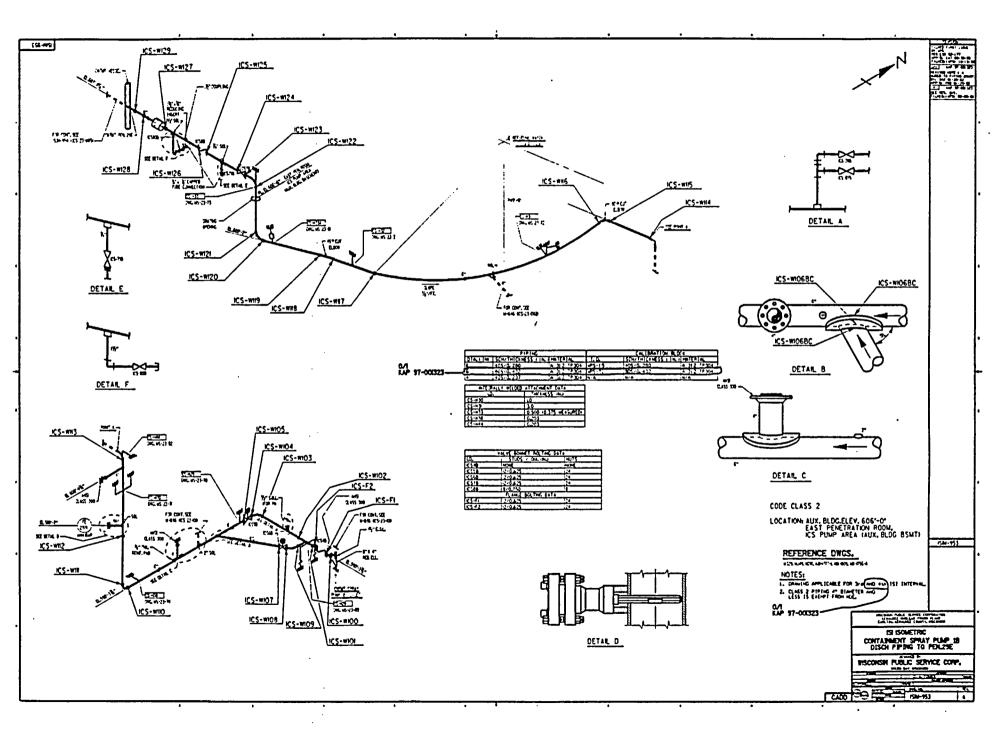


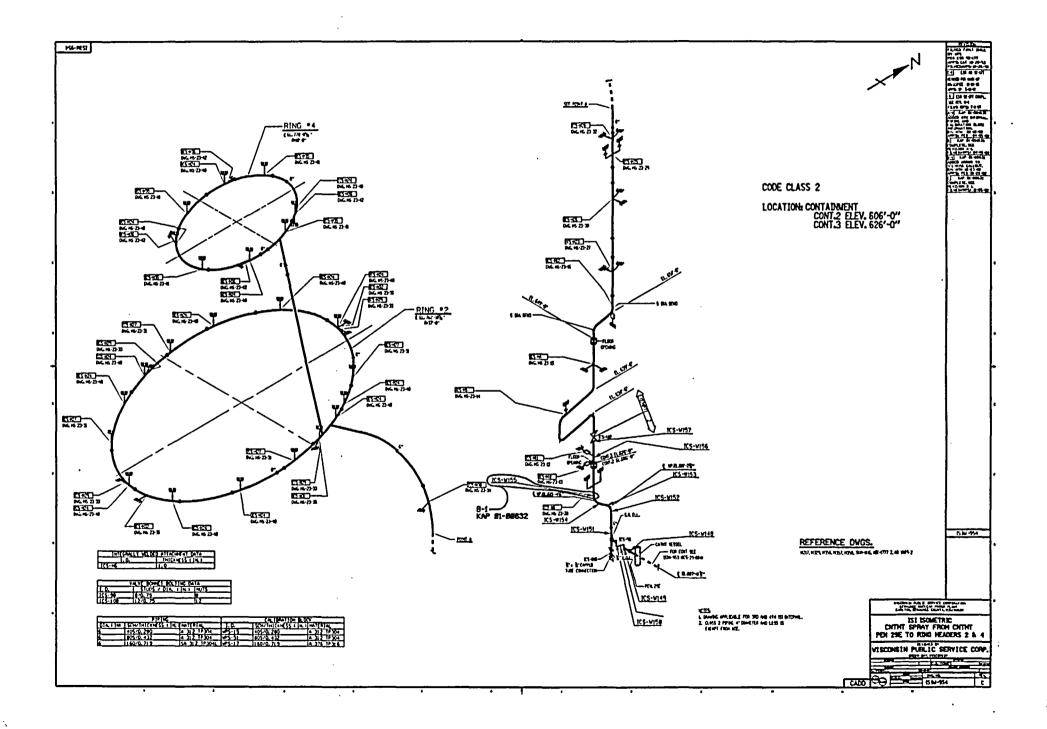



C

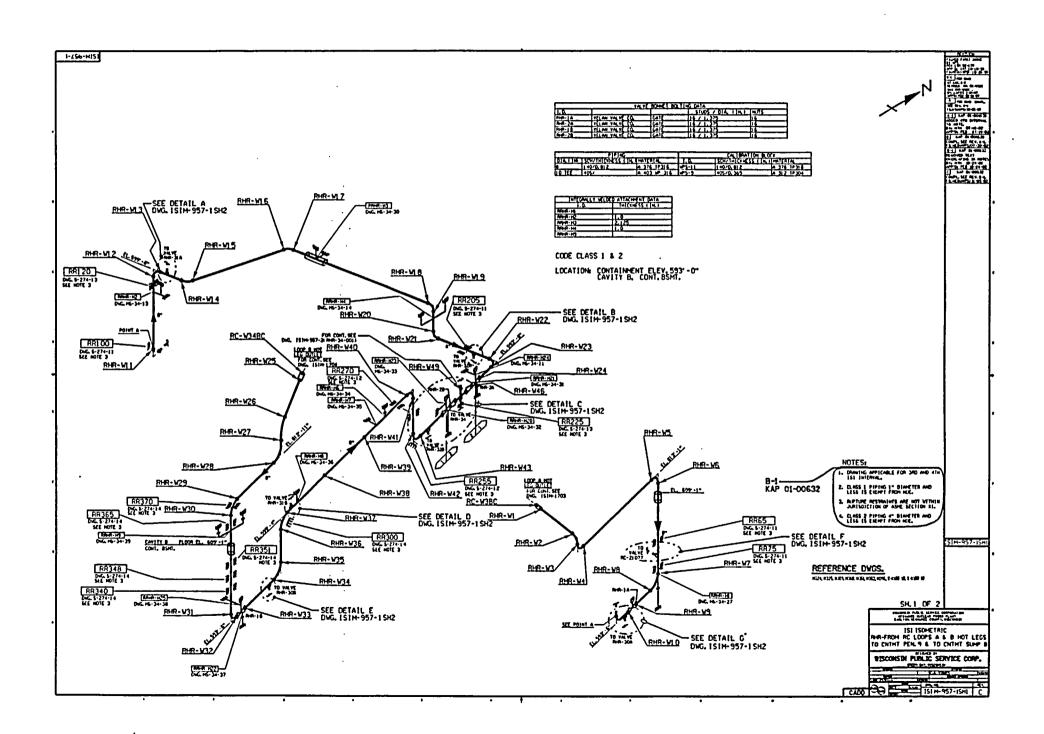
(


▲,

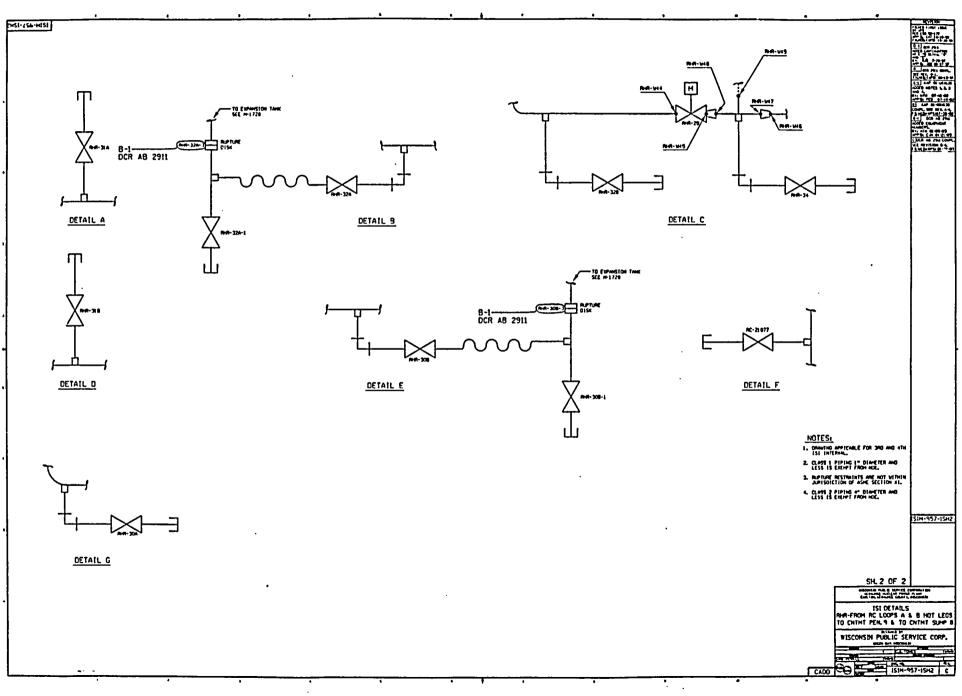

·

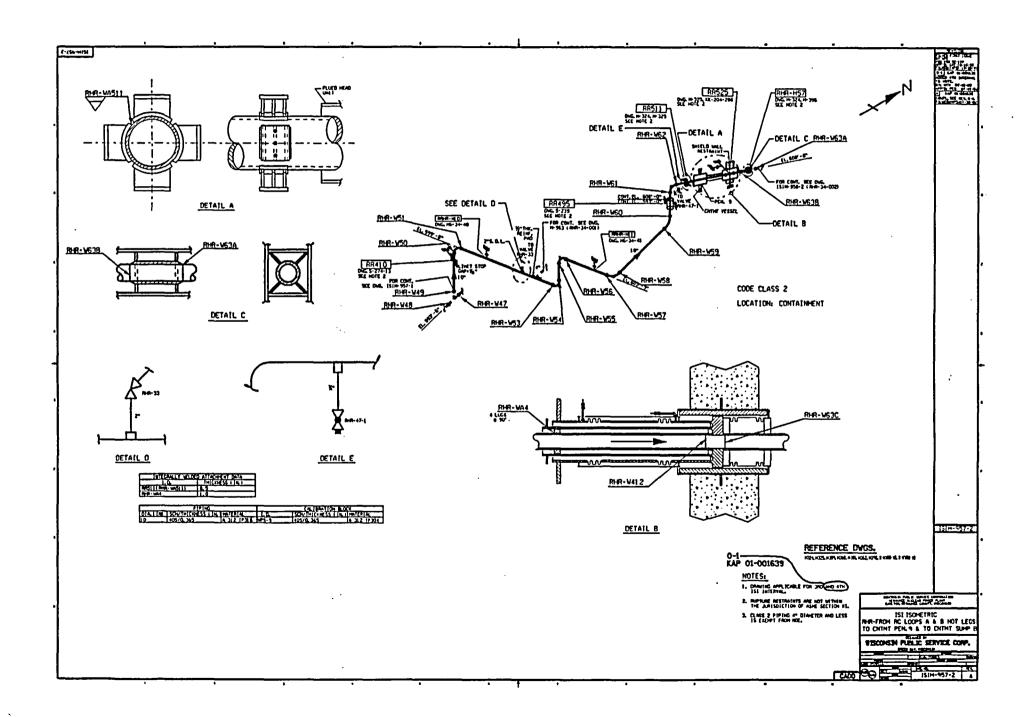

``

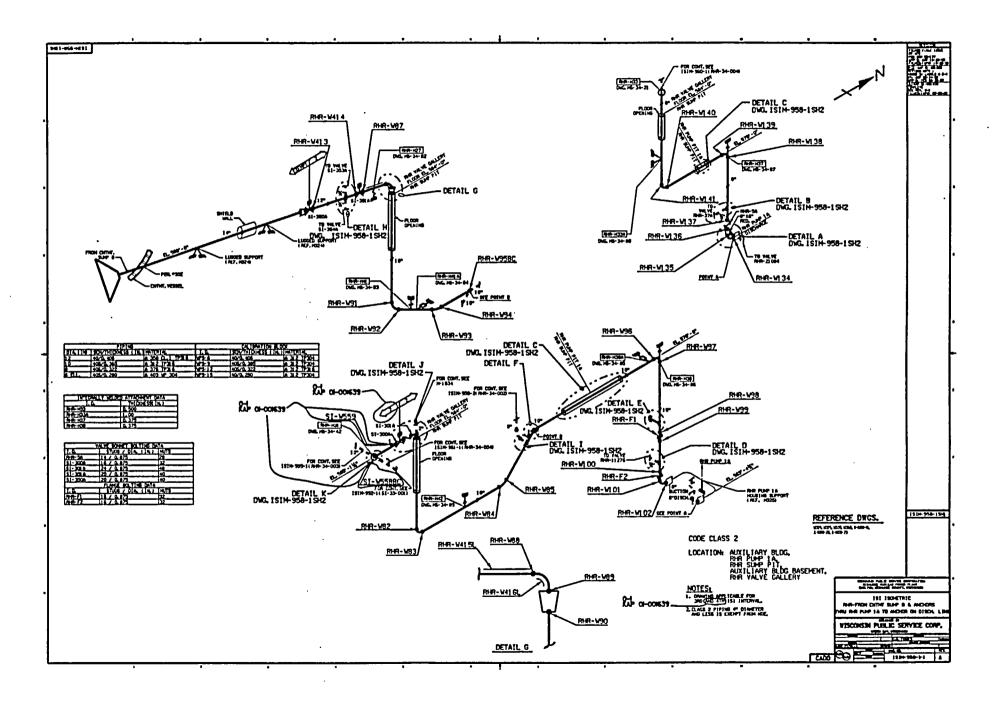
· · · ·

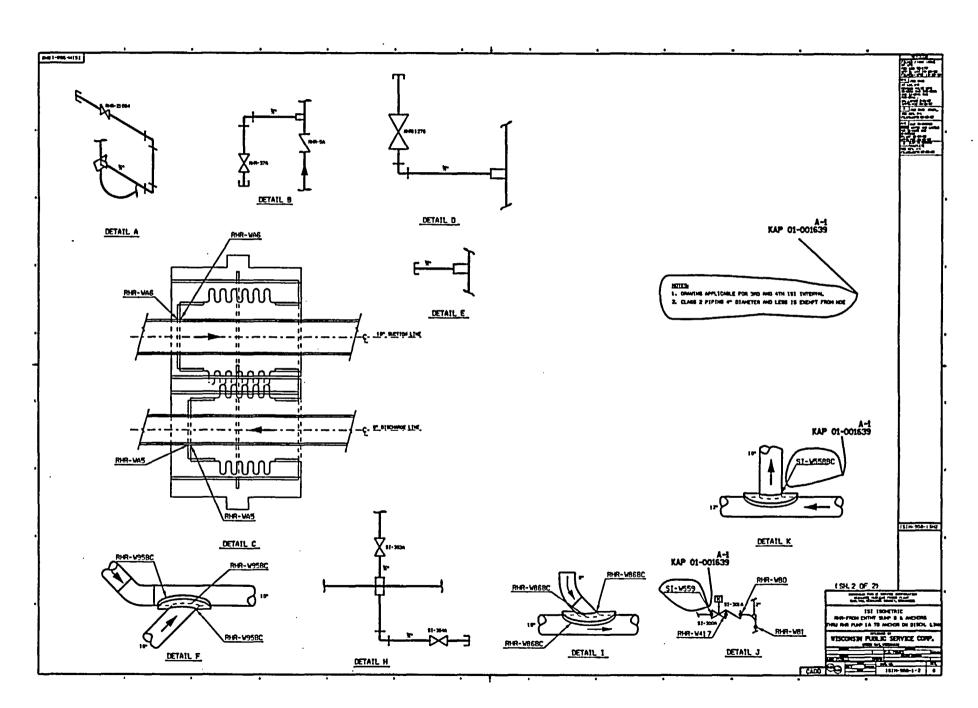


•

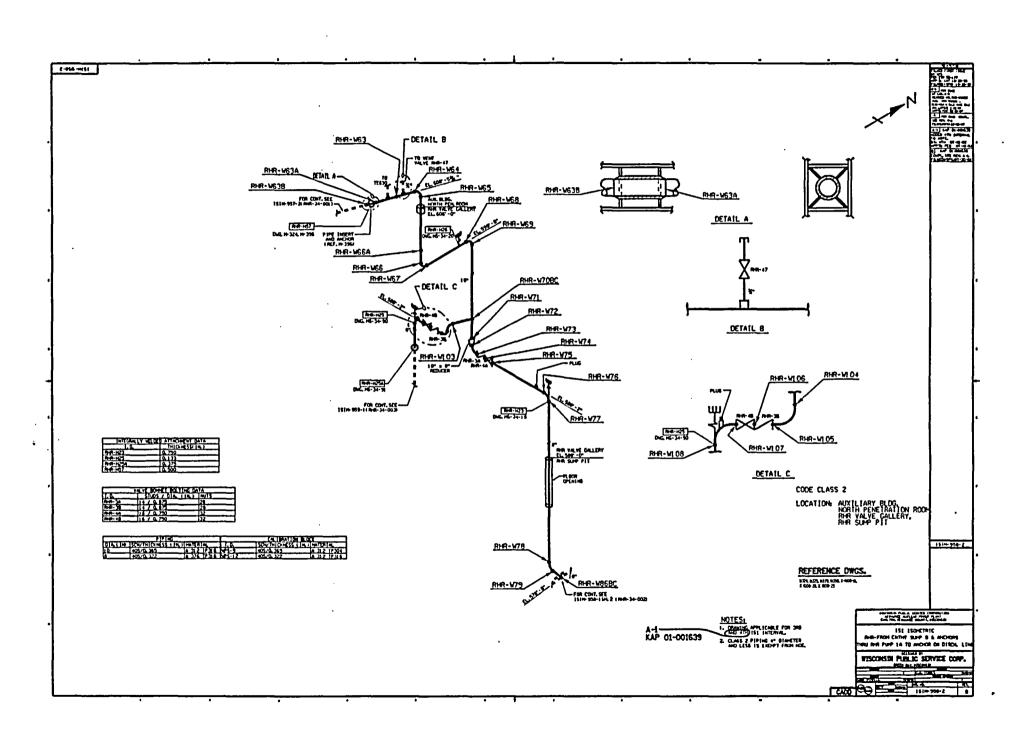


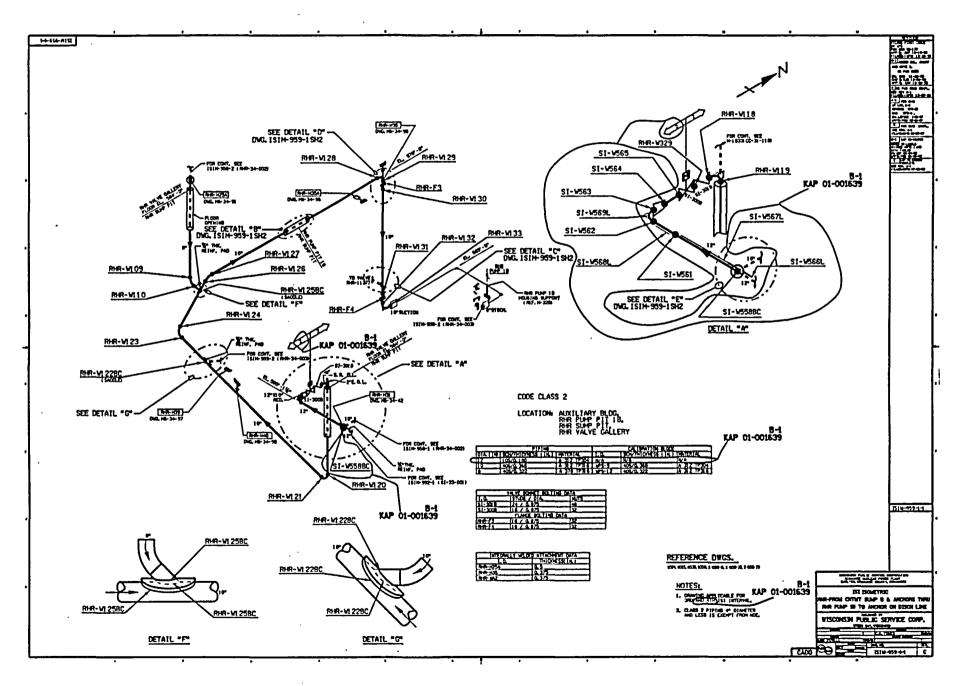

Ĺ



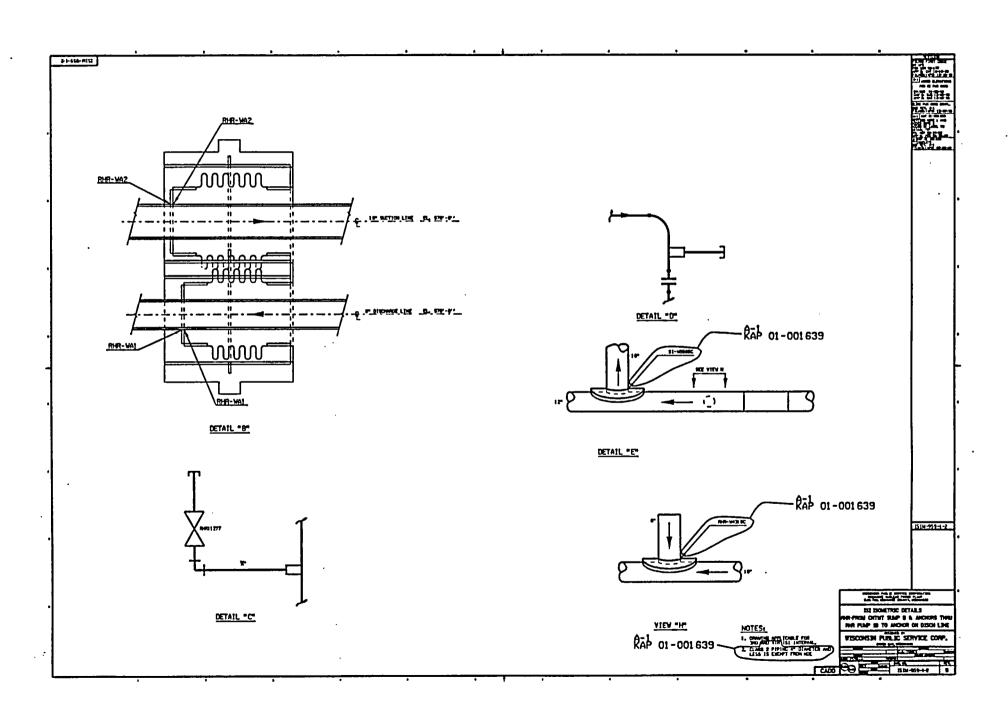

 $\left(\right)$

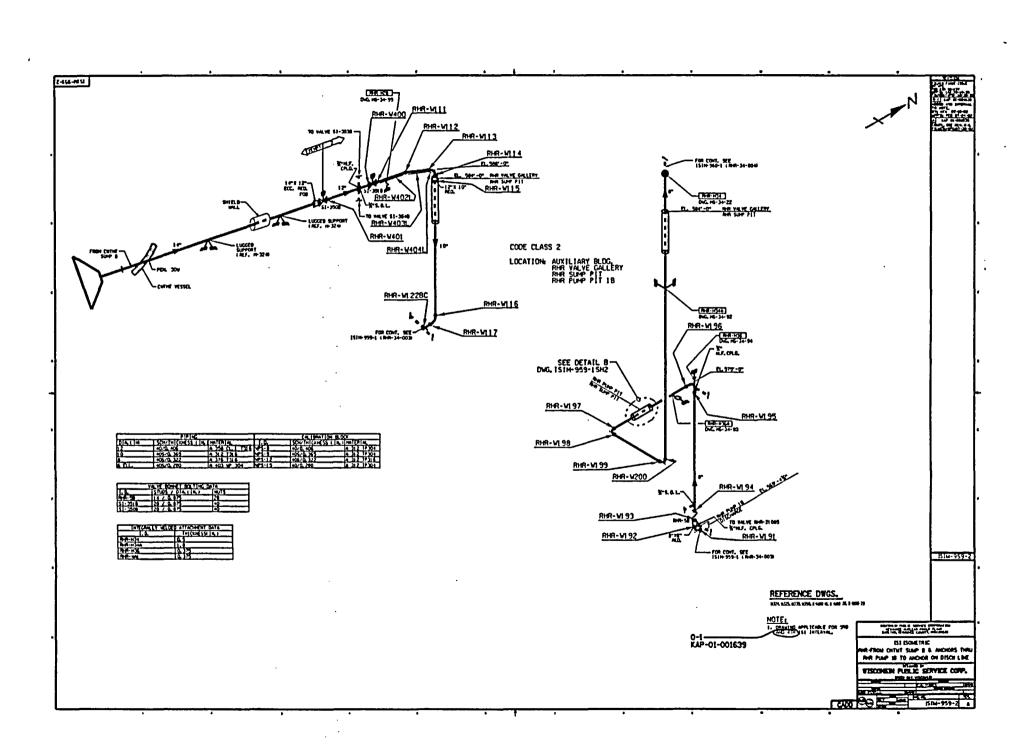
()

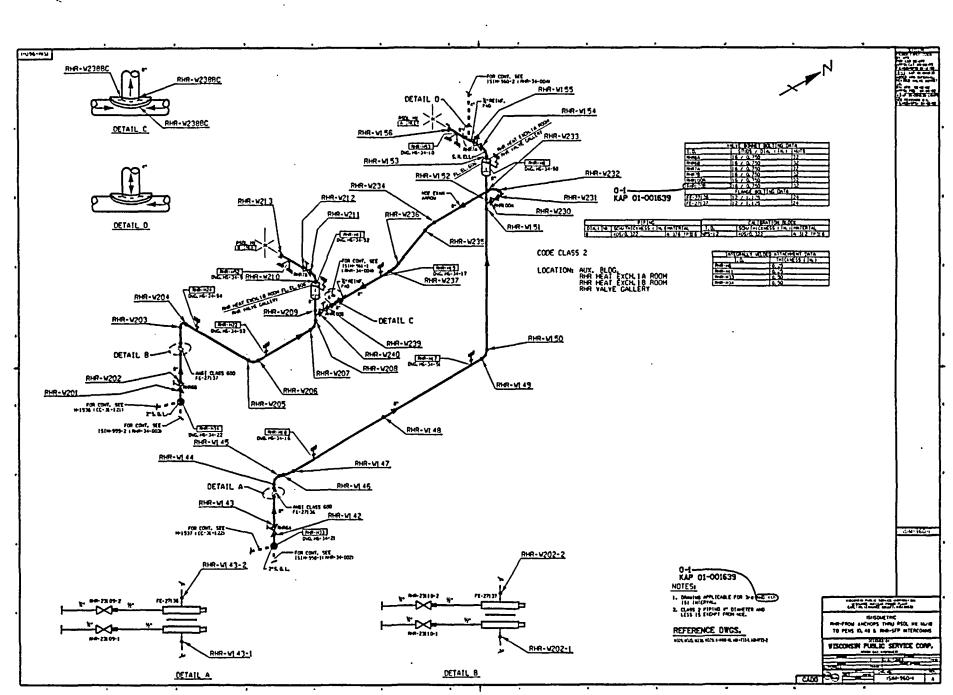


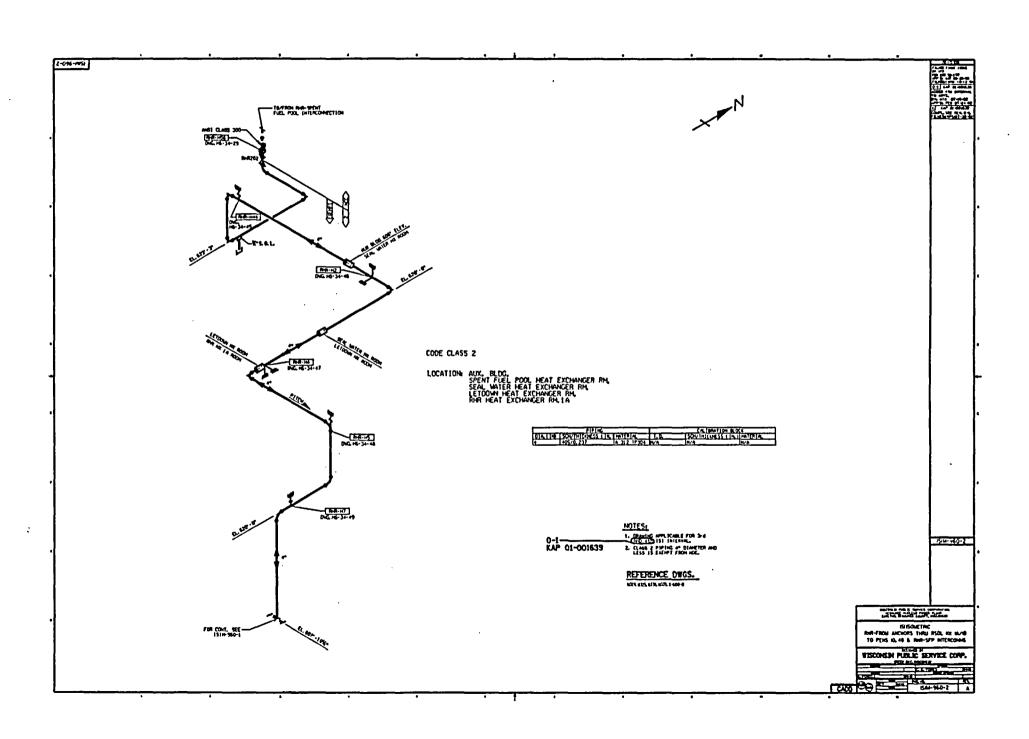


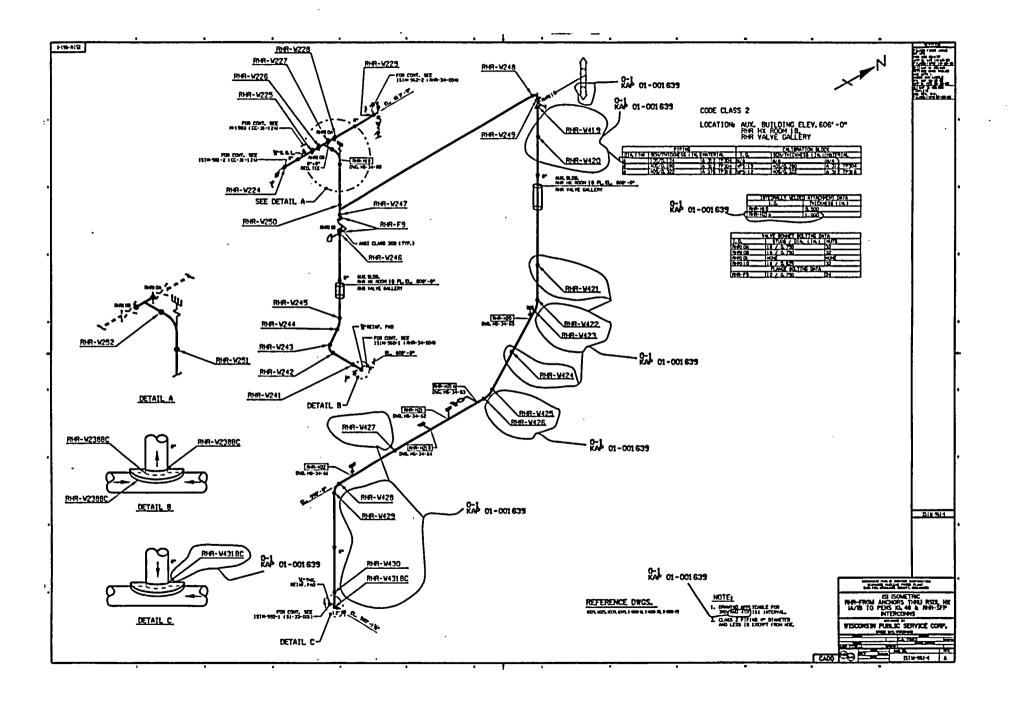
Ν

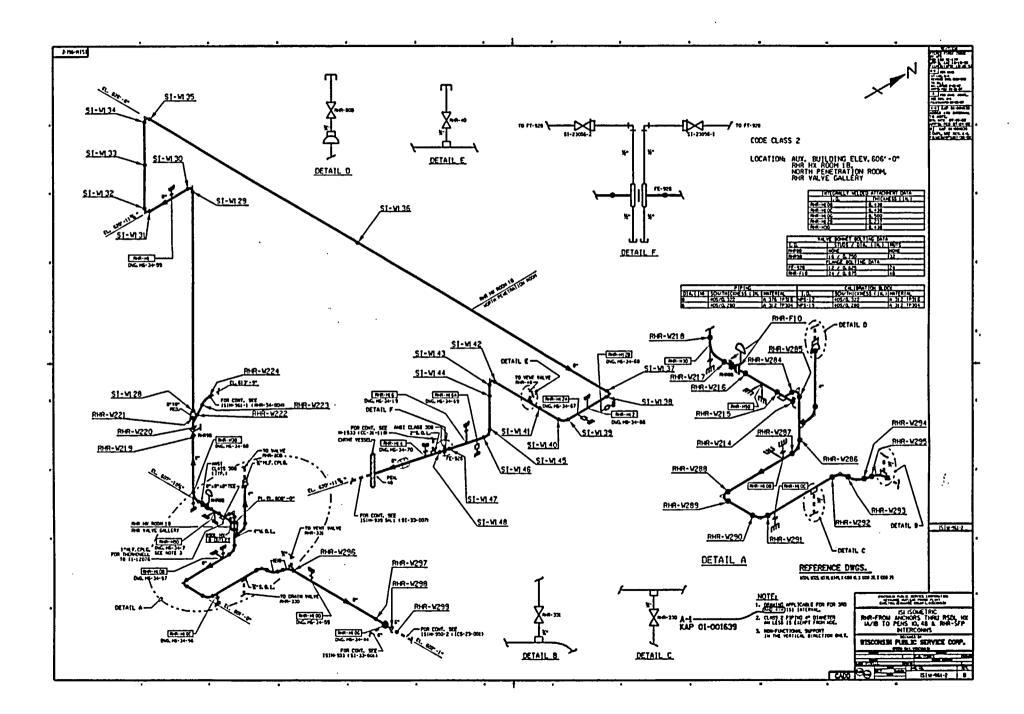


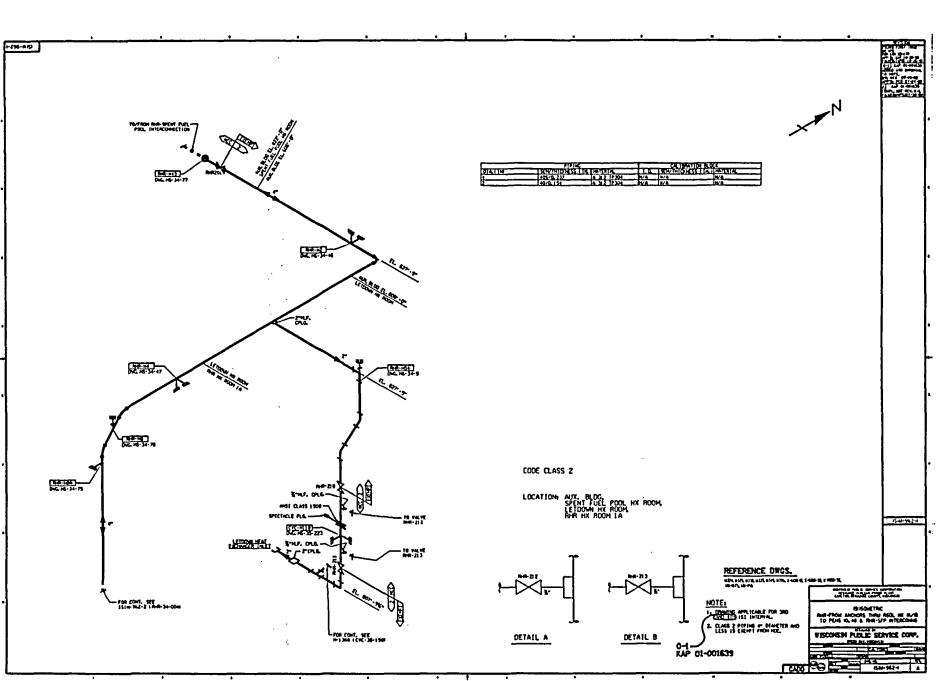

(

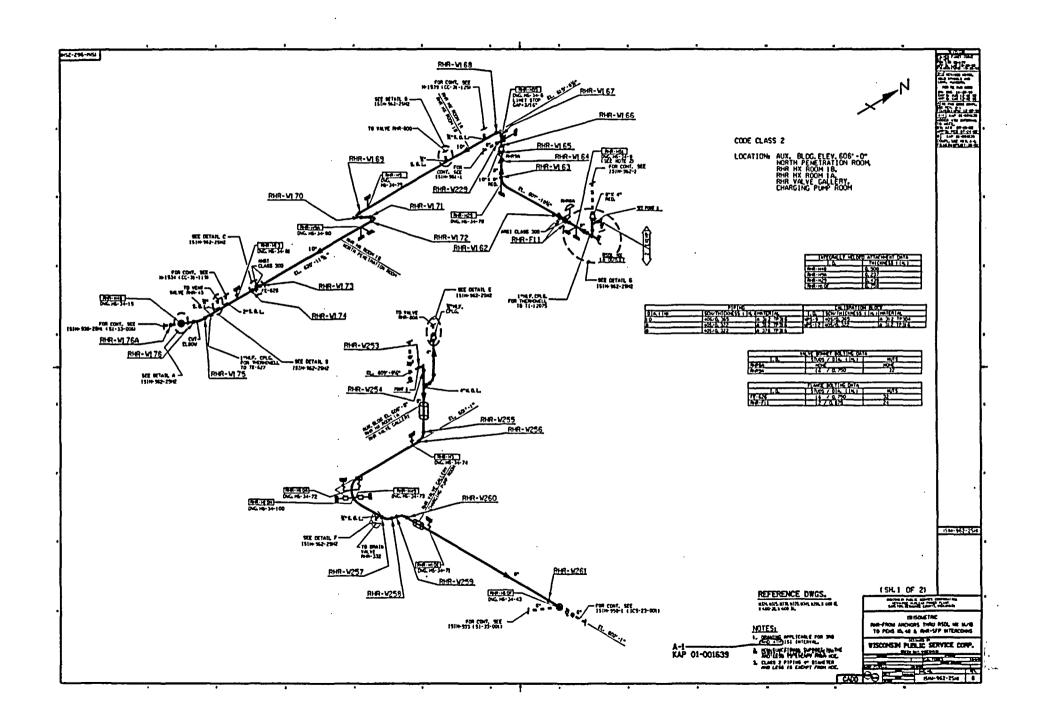


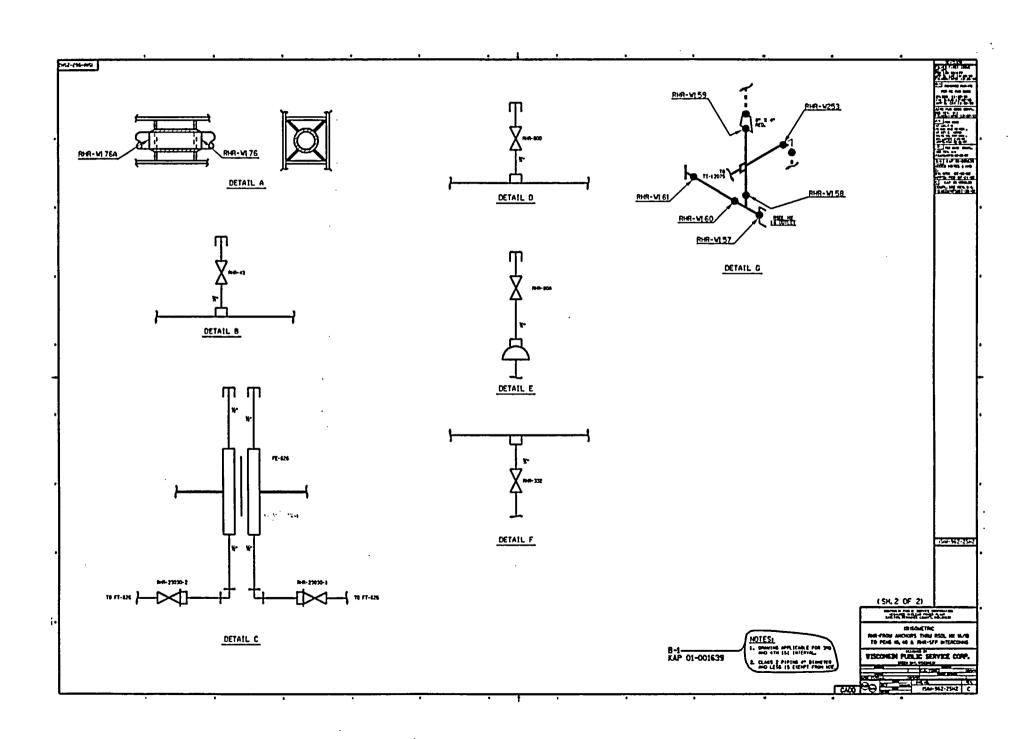

•

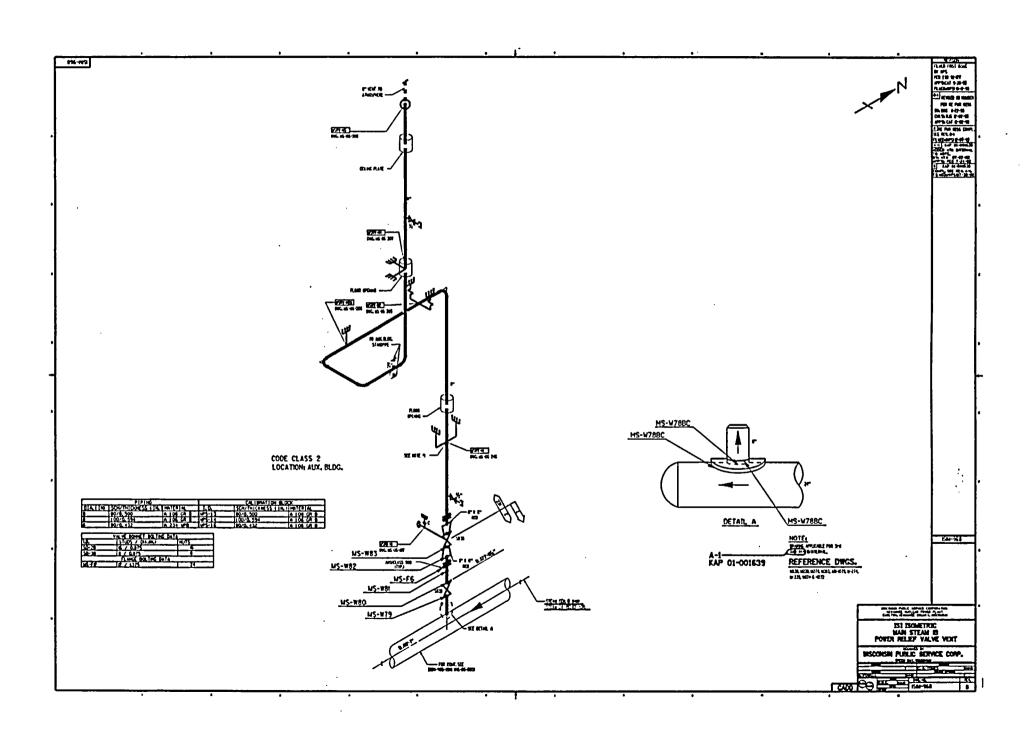

¹¹ 1

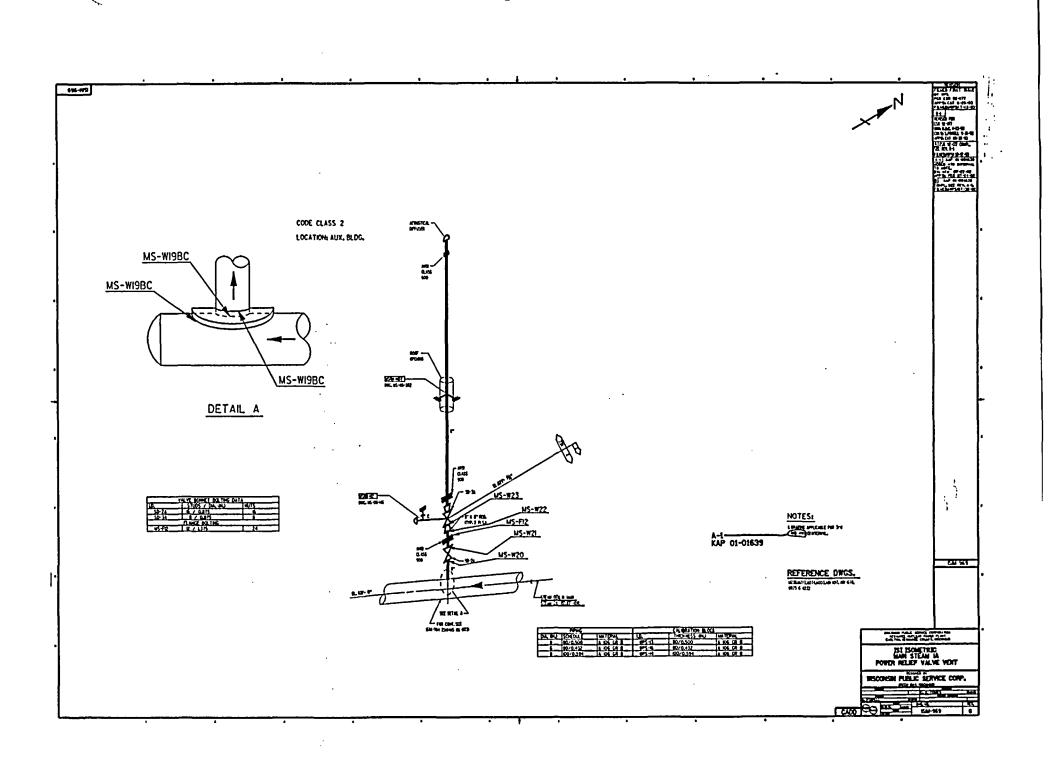


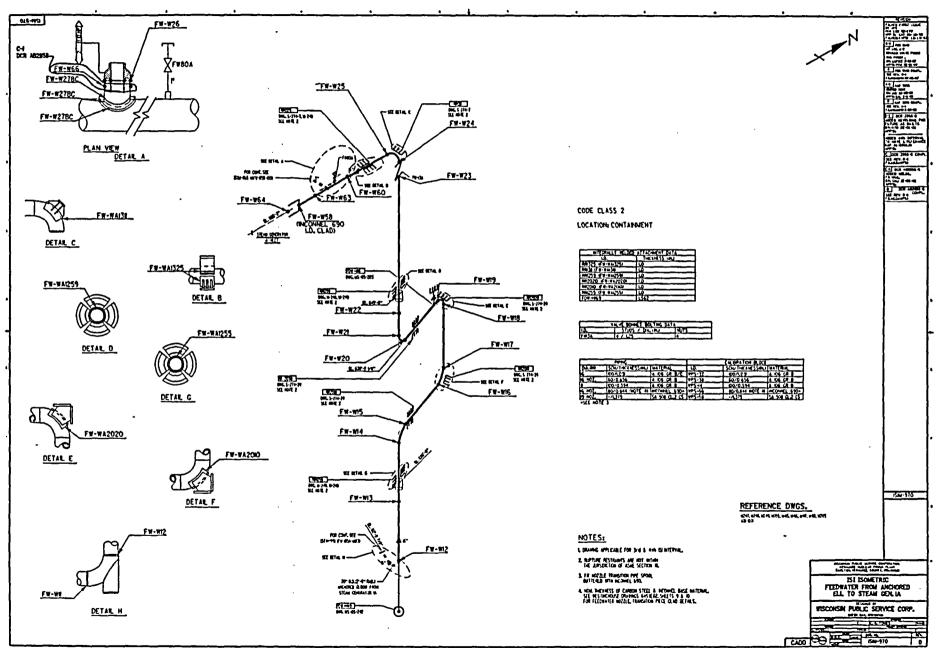


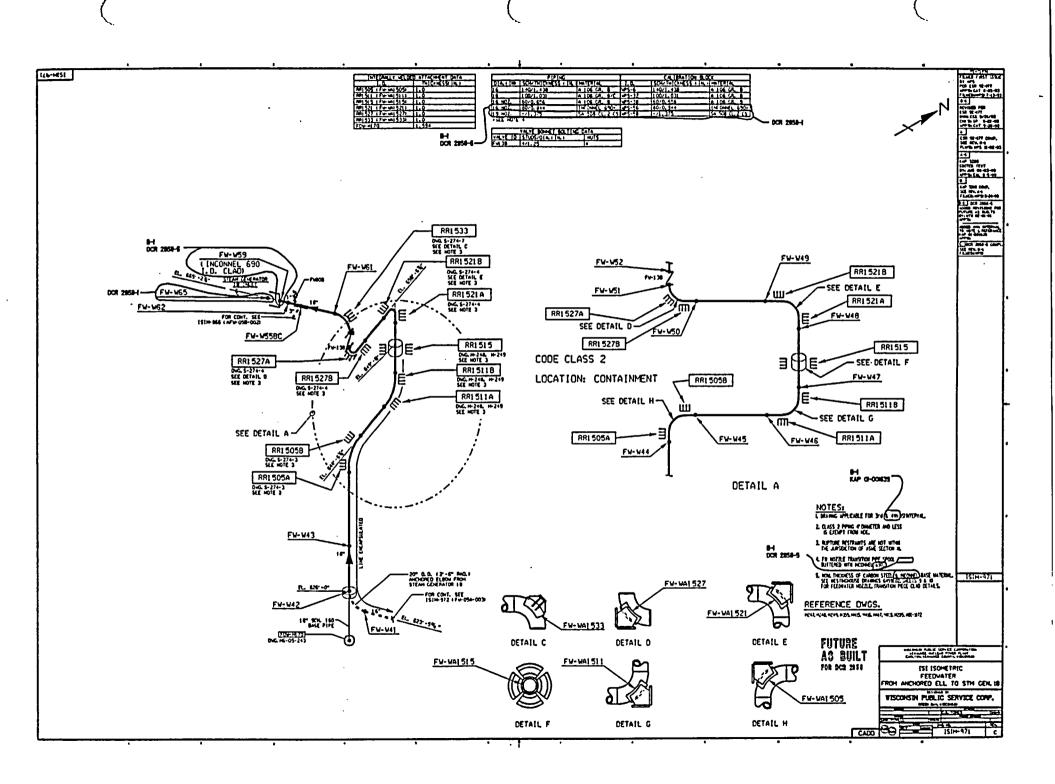


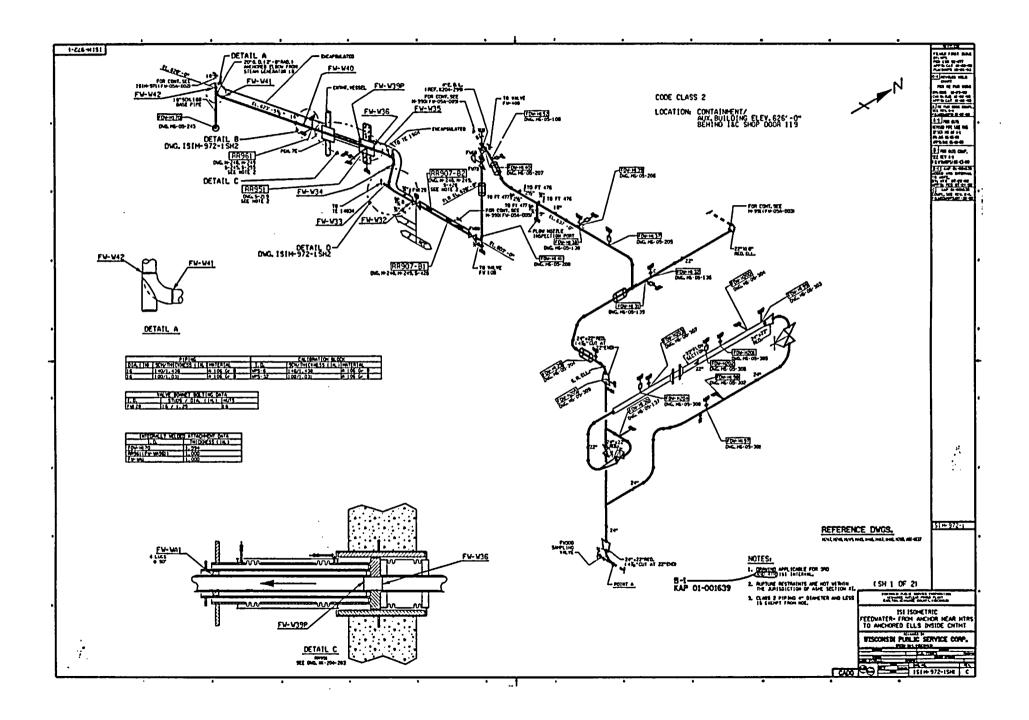


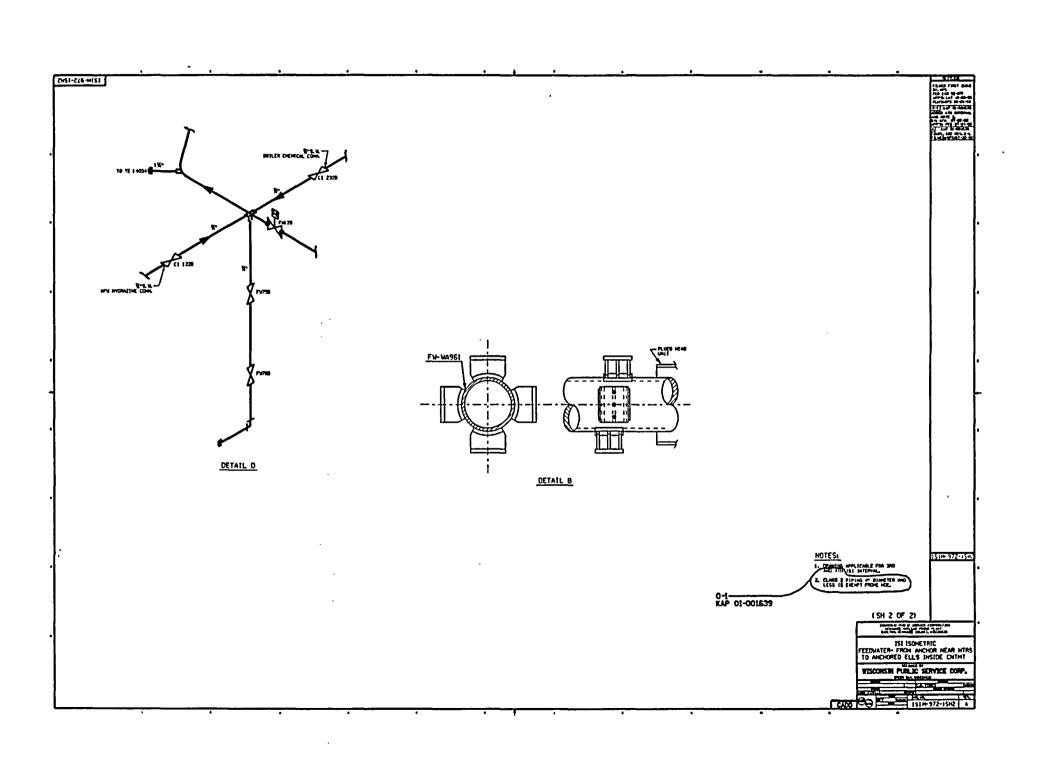

 $\left(\right)$

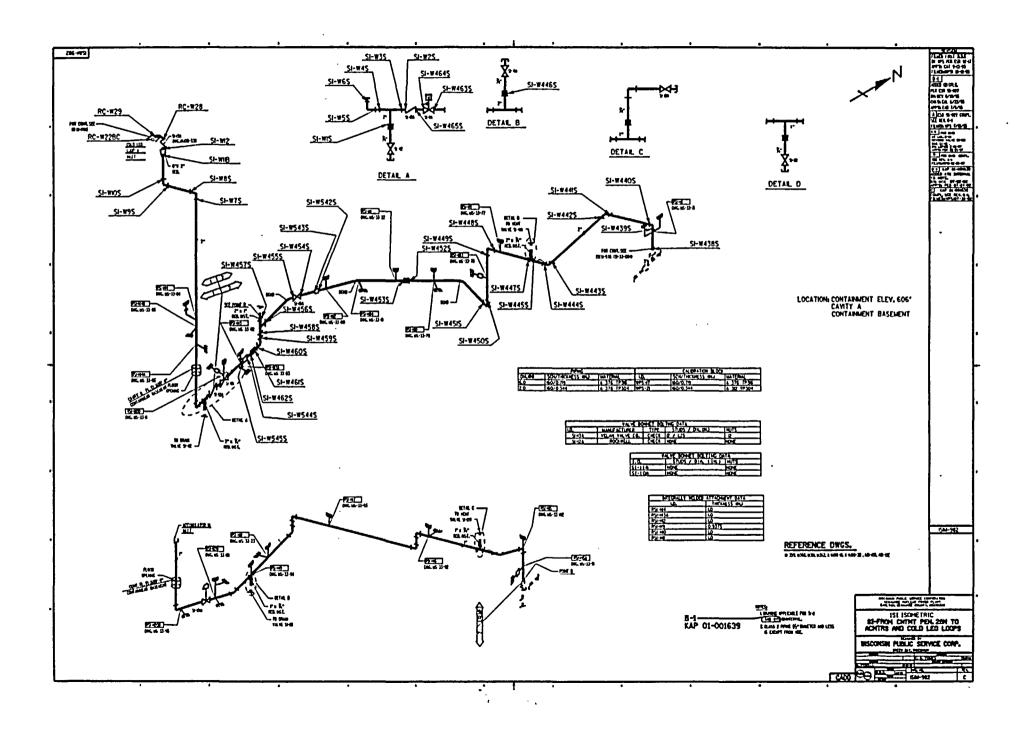


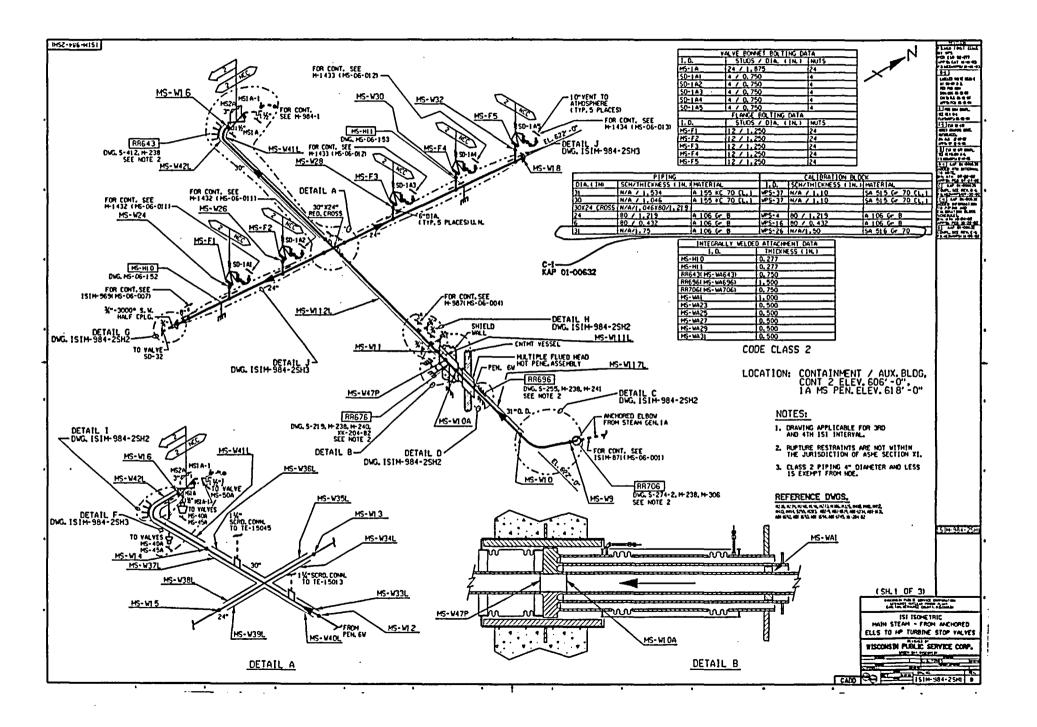


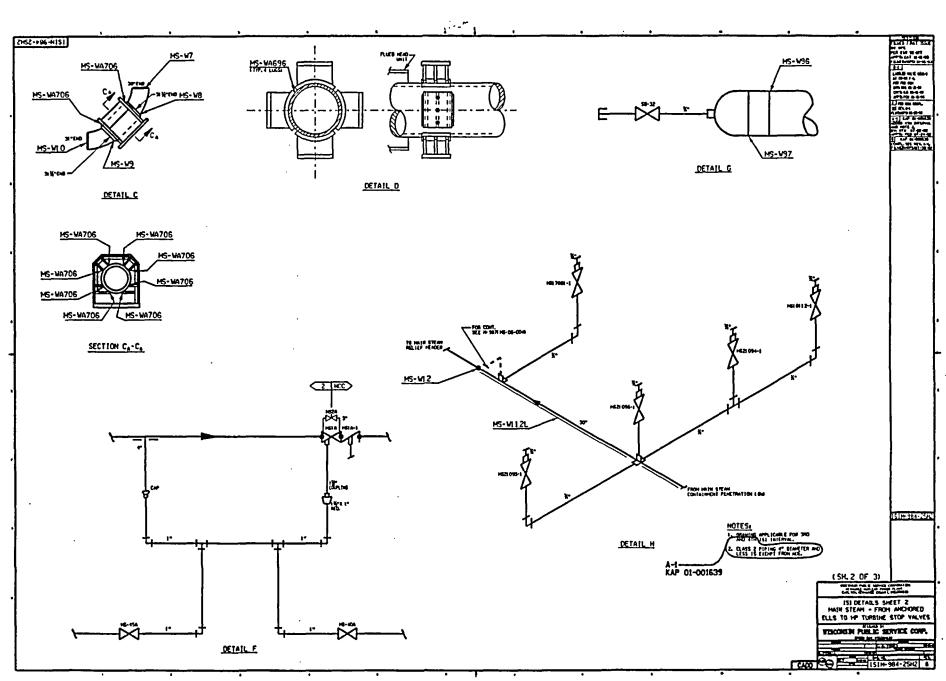


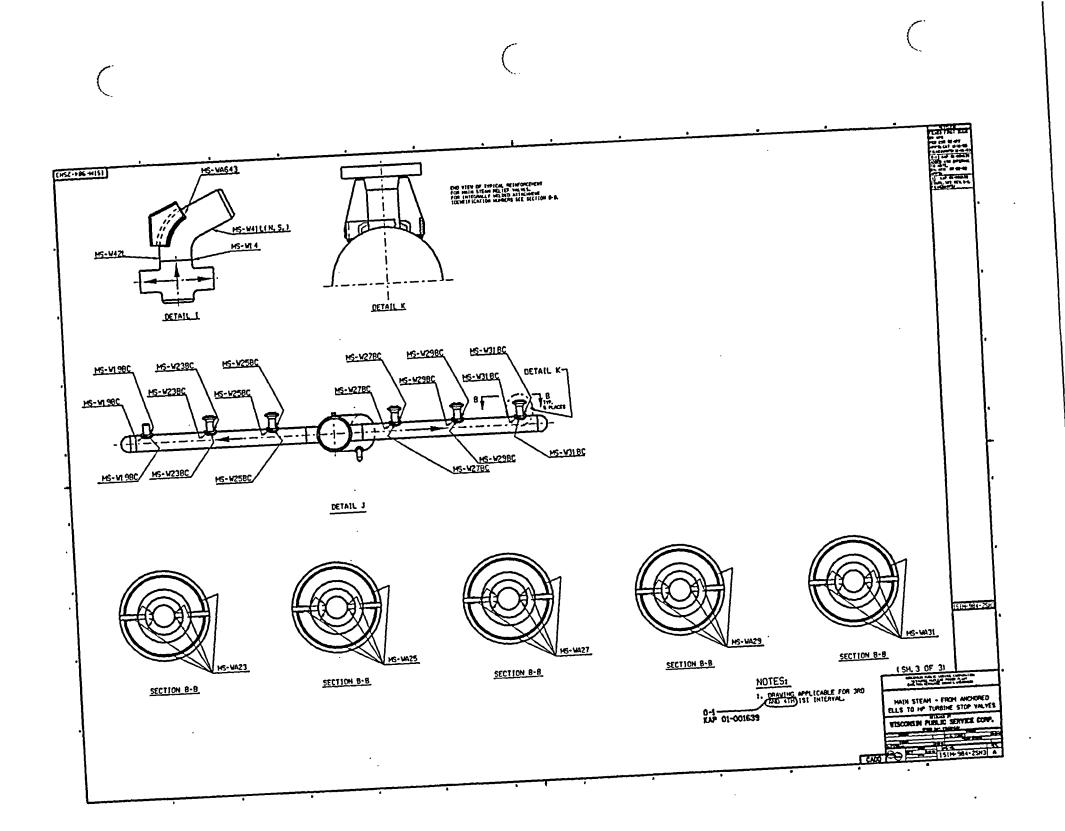

 $\left(\right)$

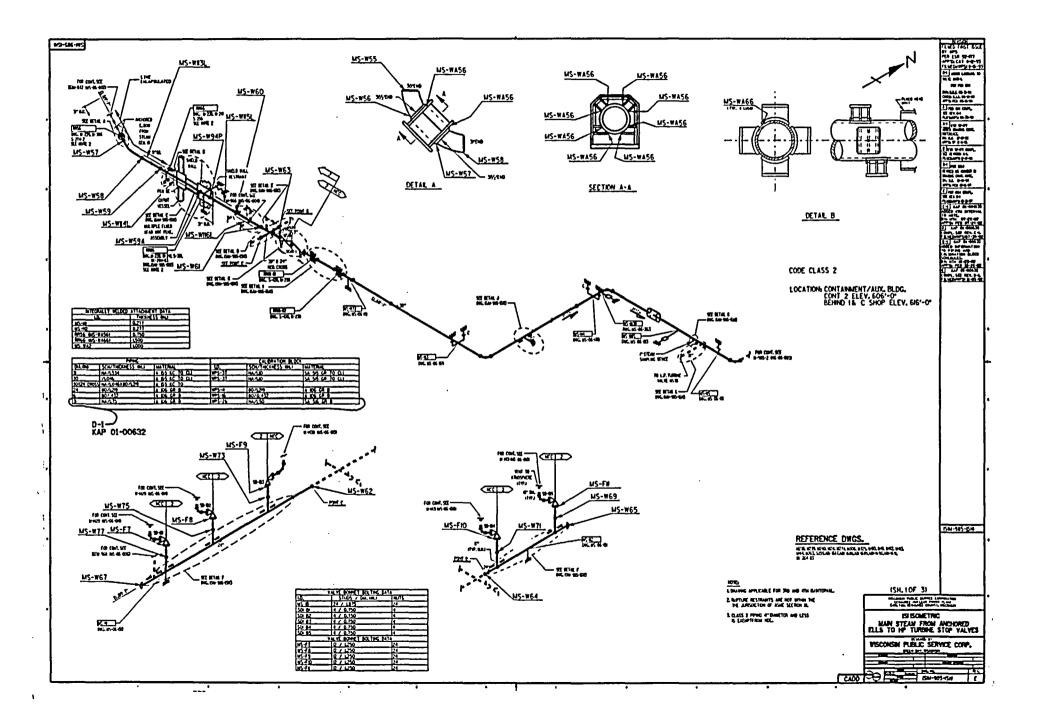


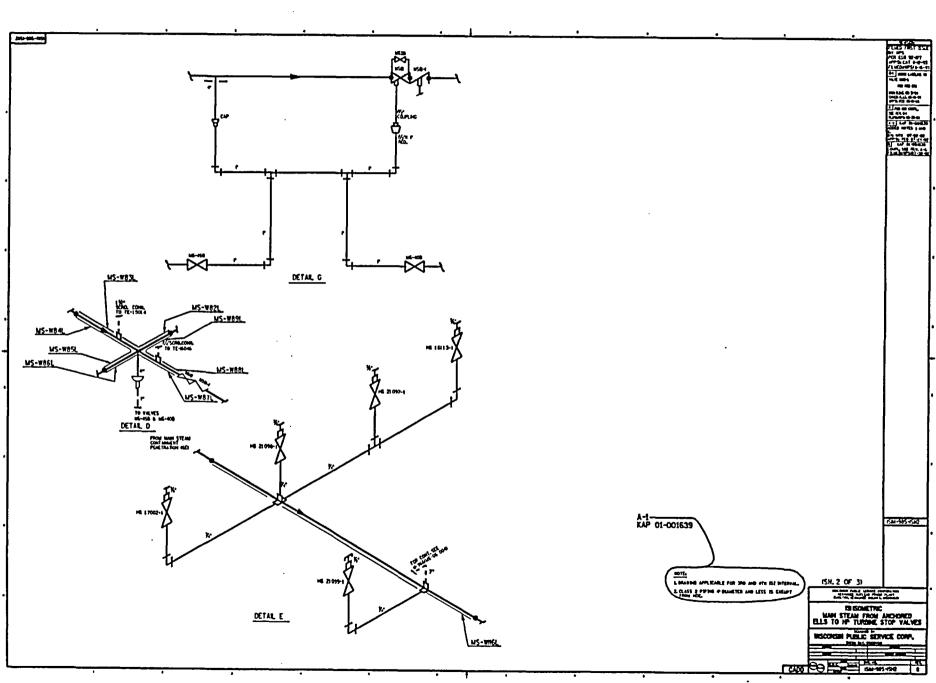


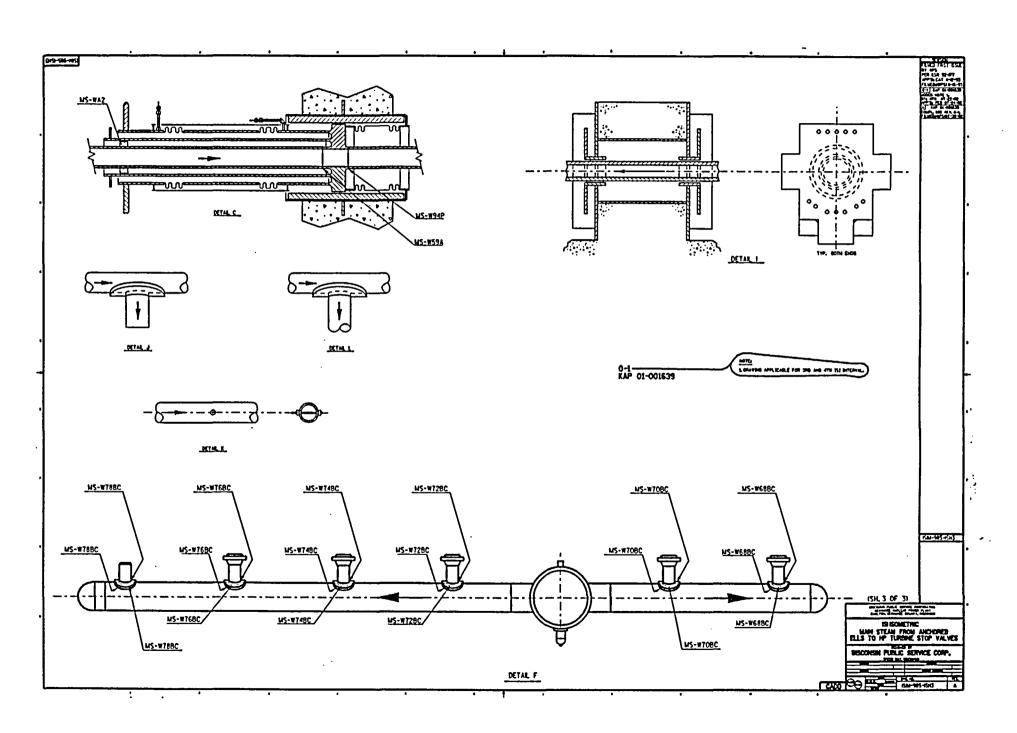

;

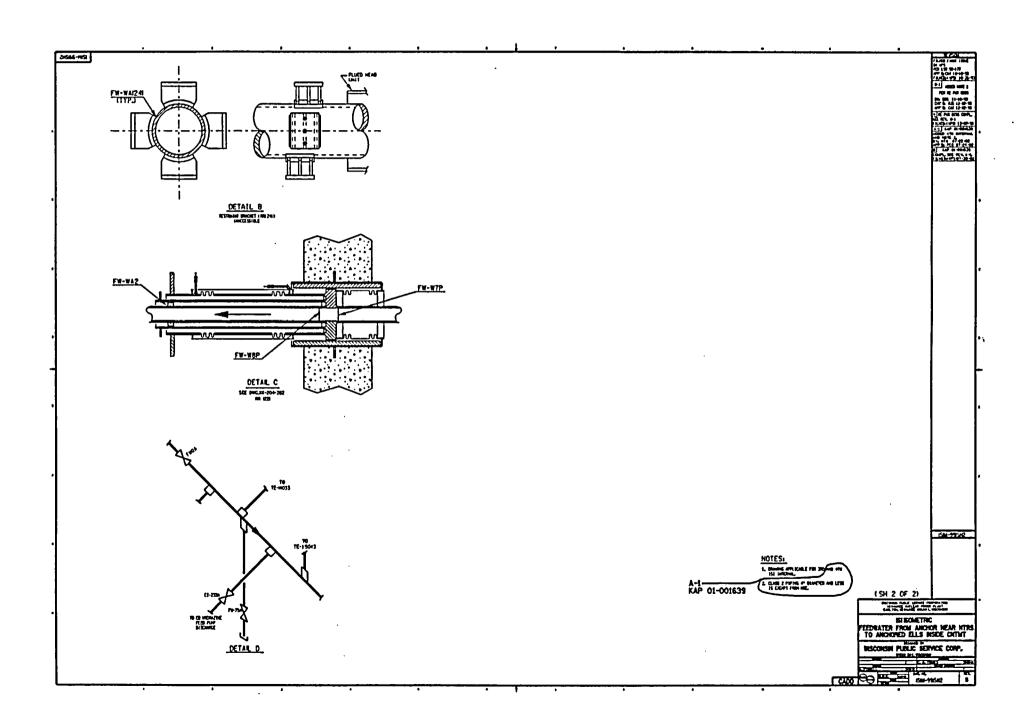

-



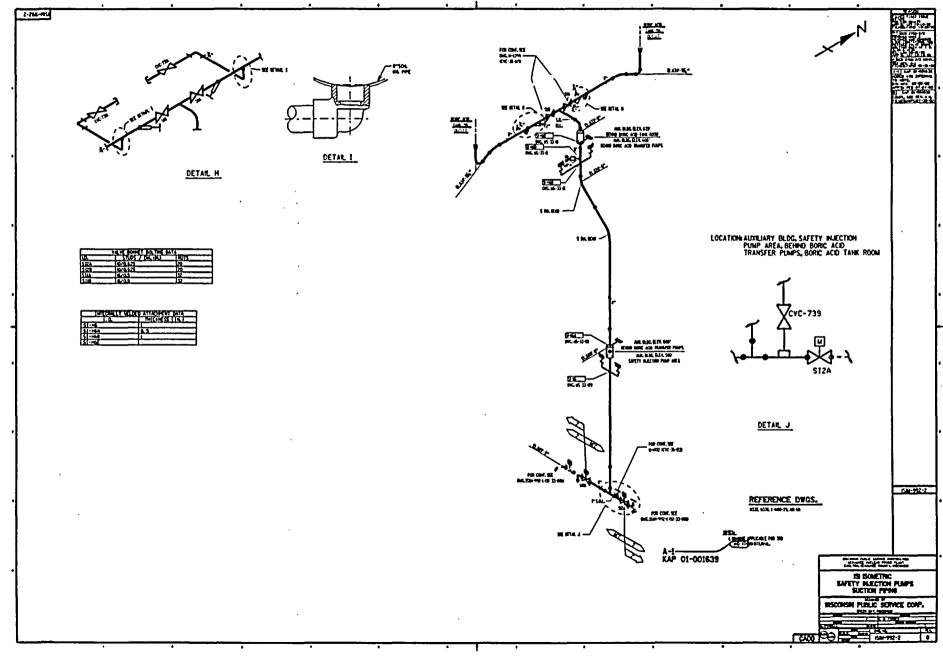


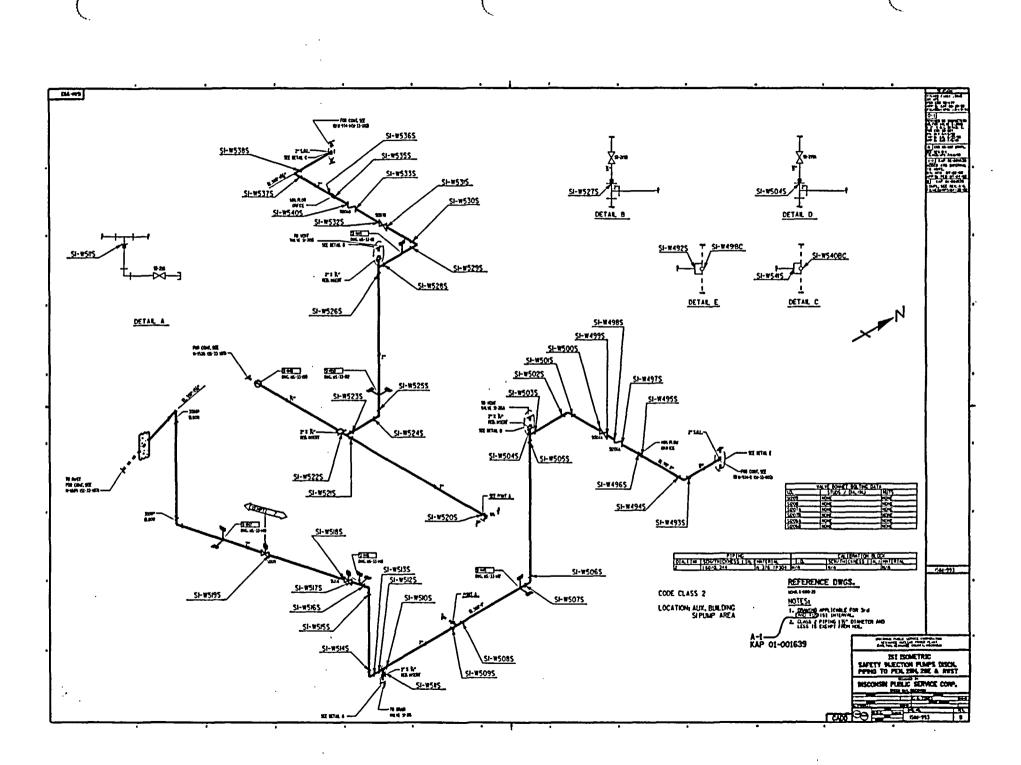

 $\left(\right)$

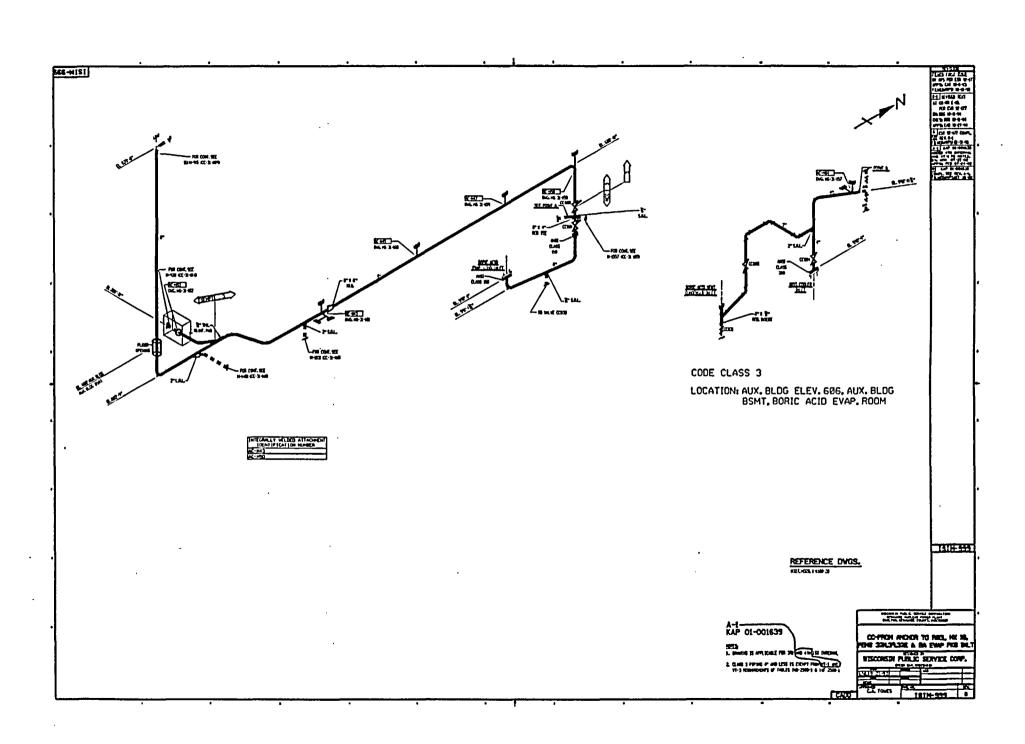


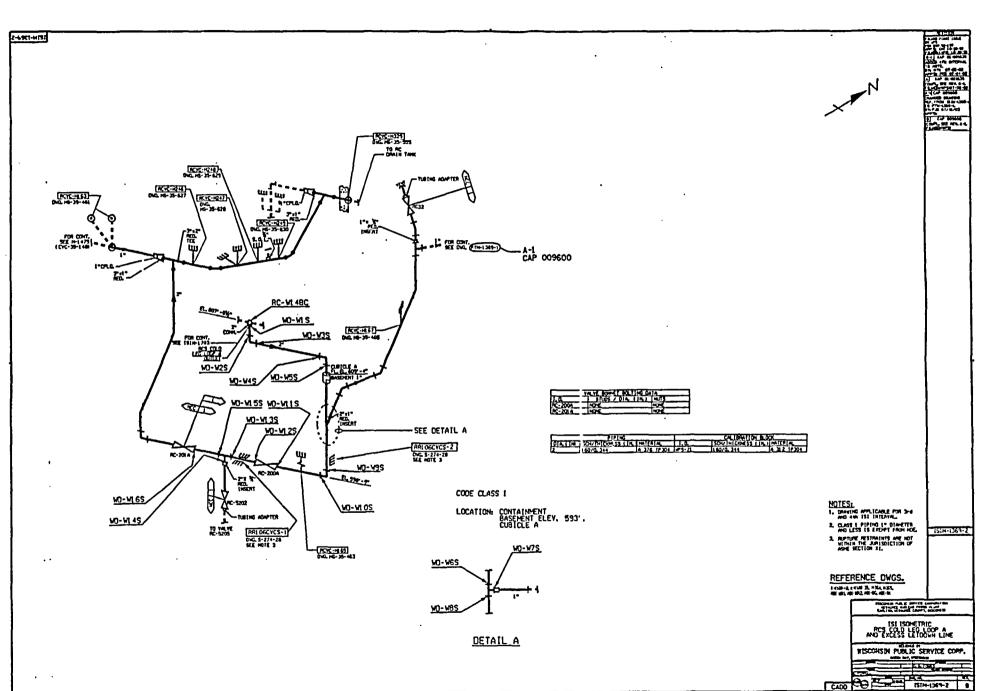




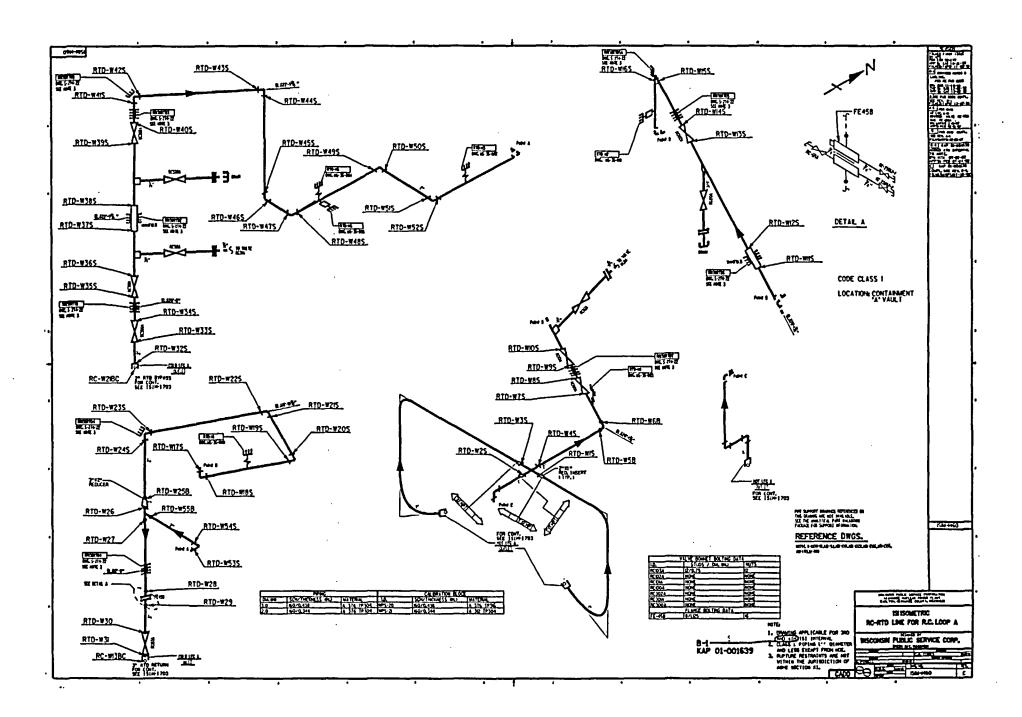


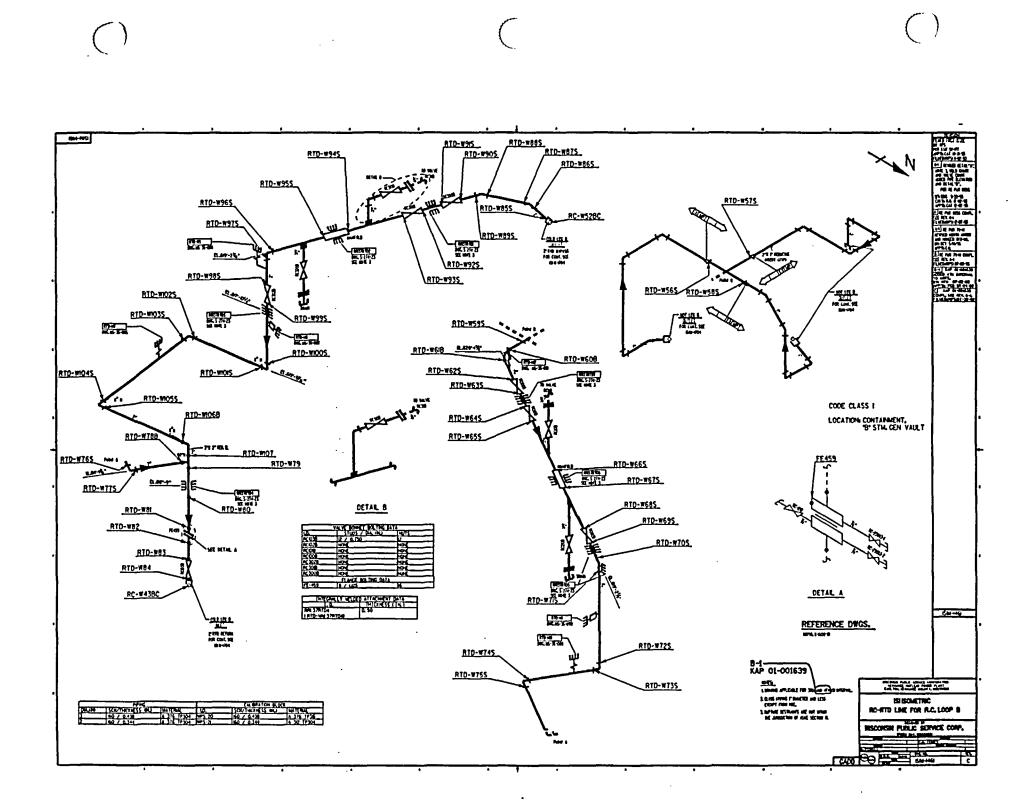

. .

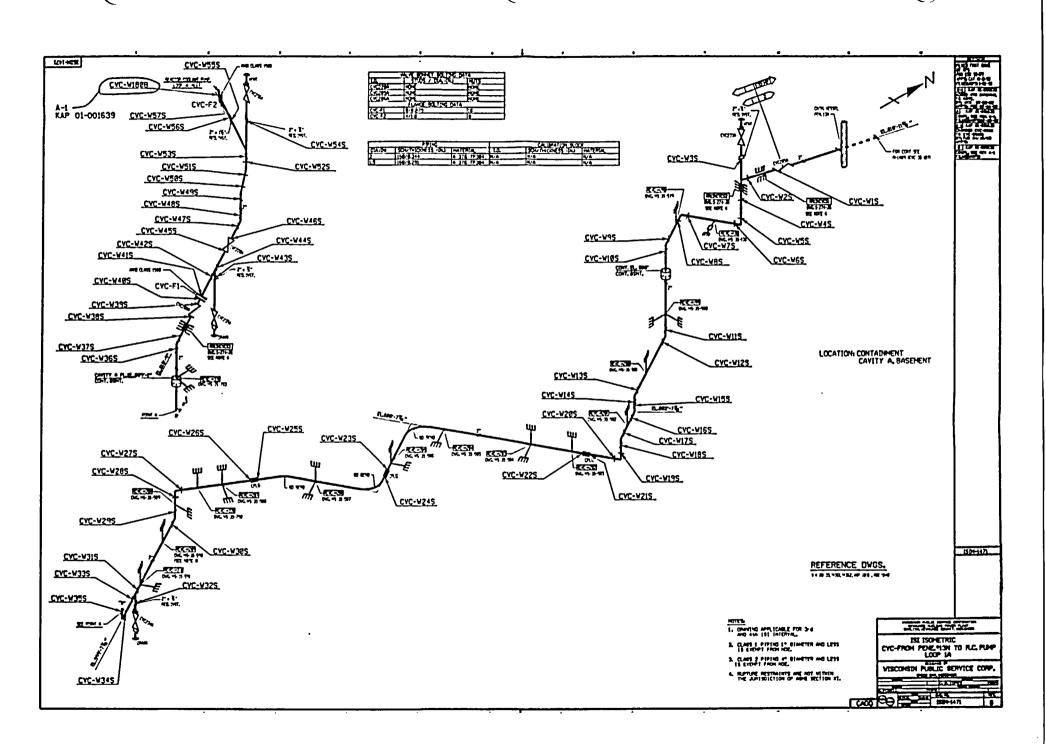


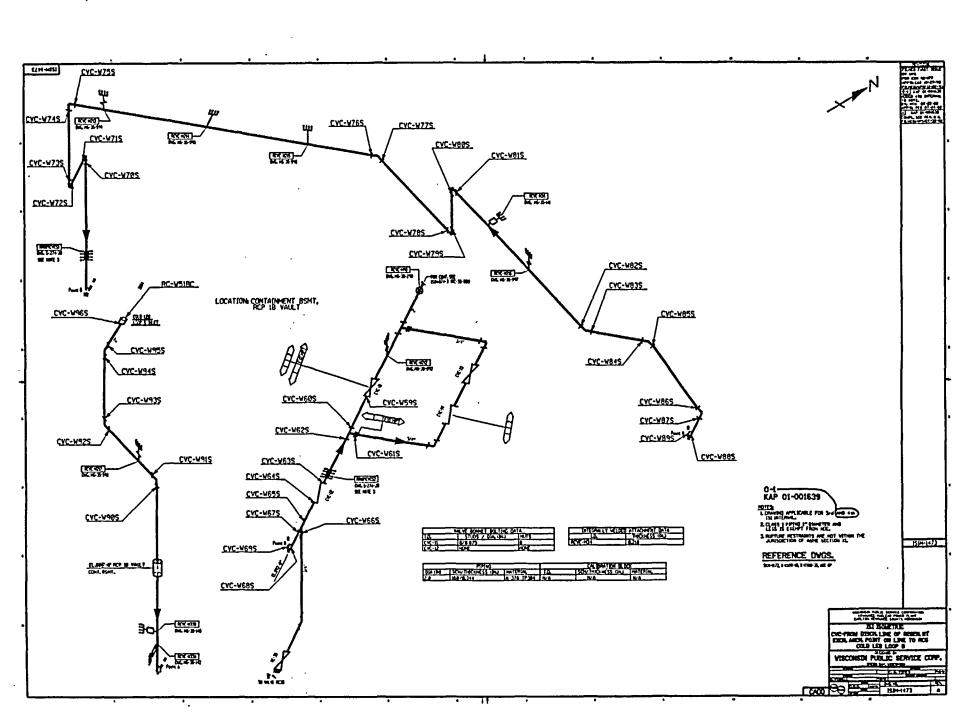


()

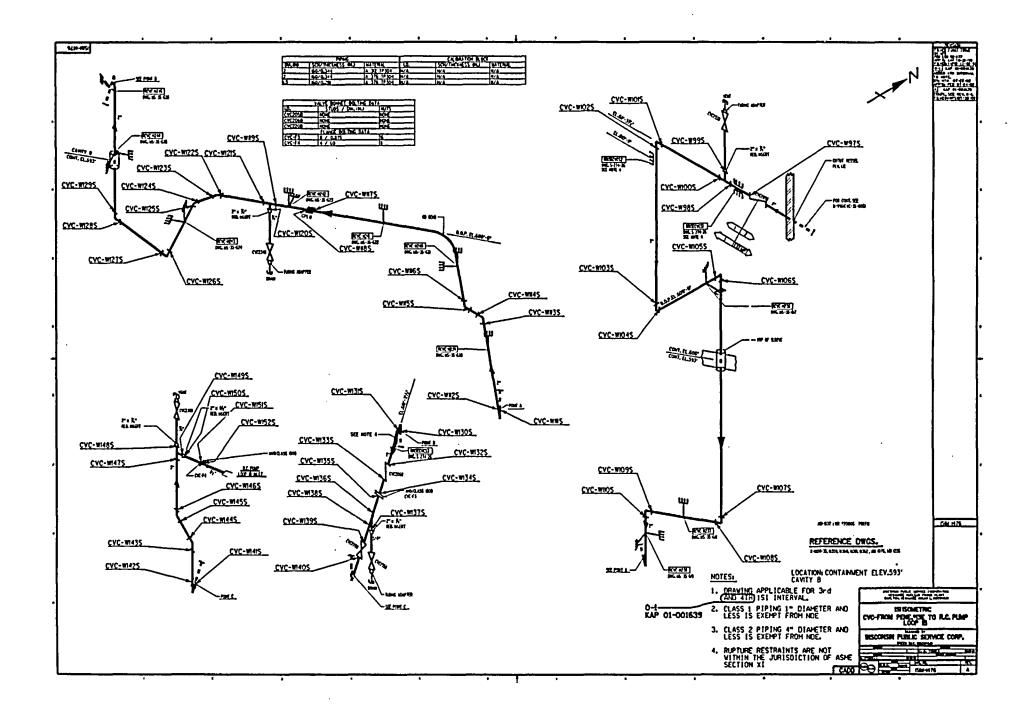


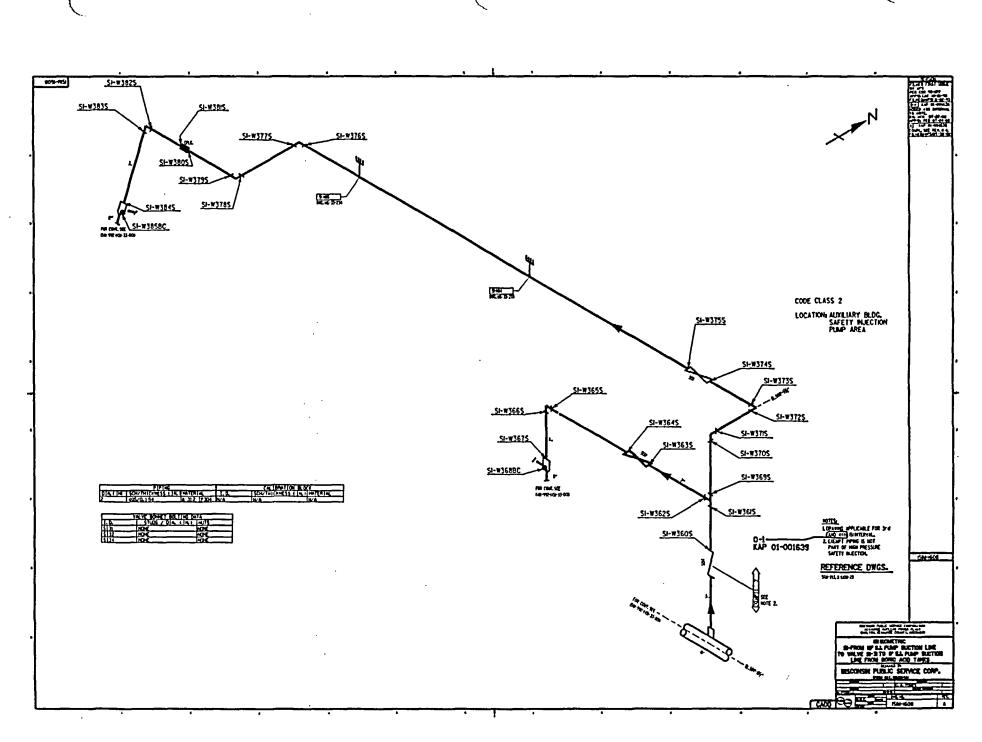


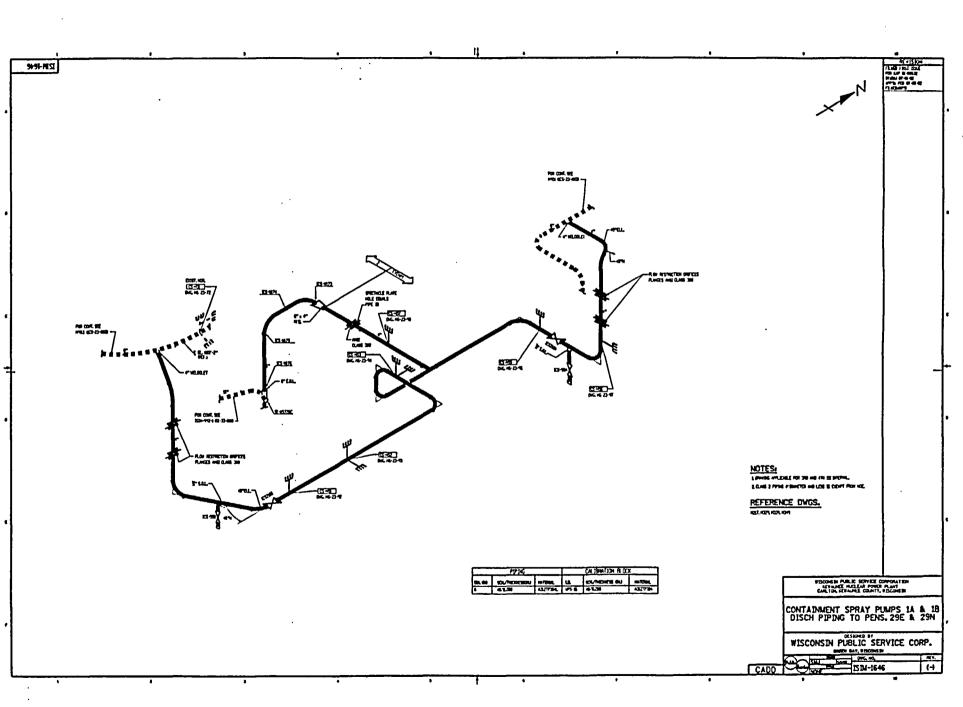


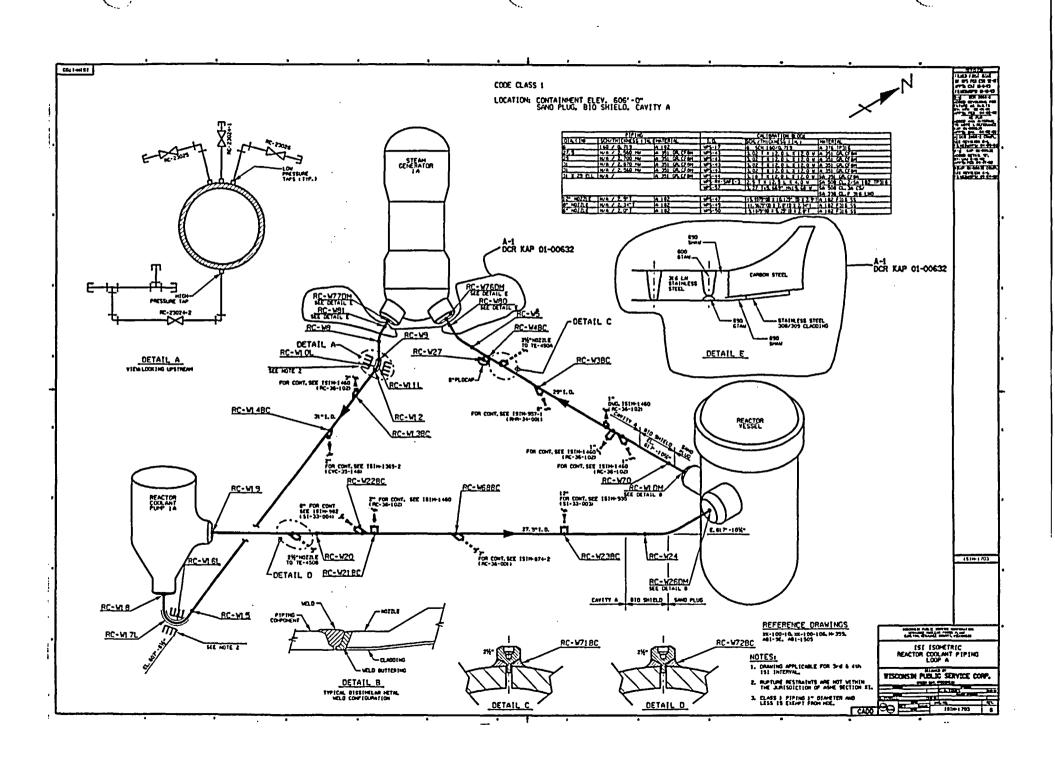


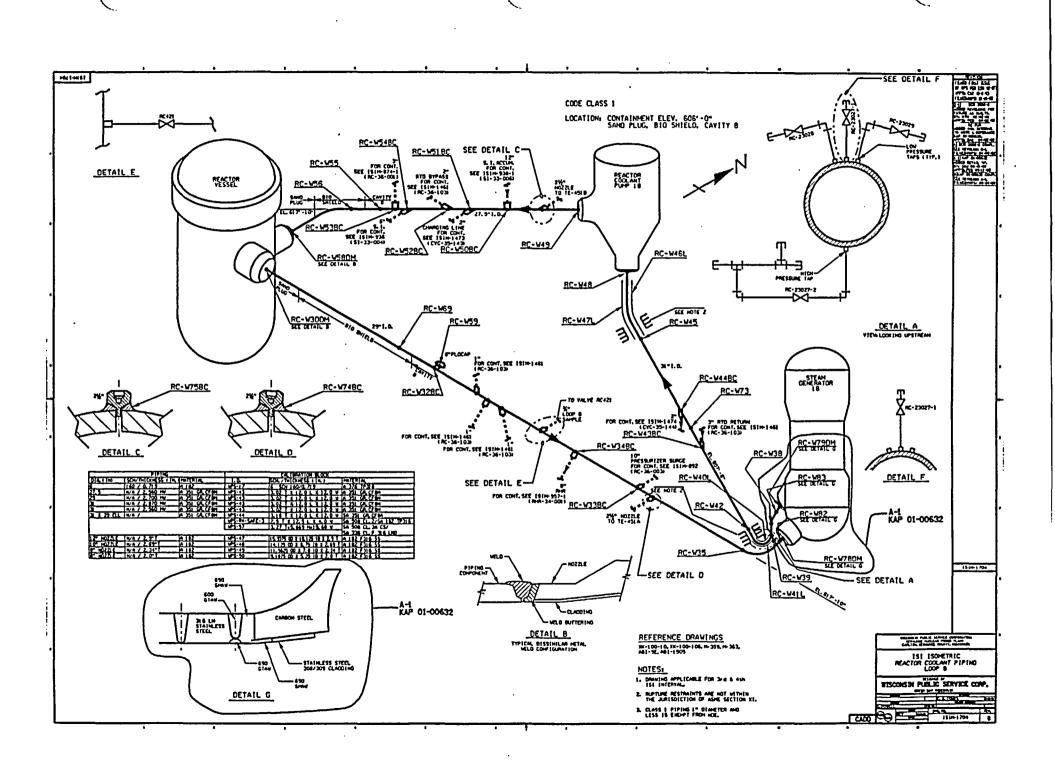

ı,

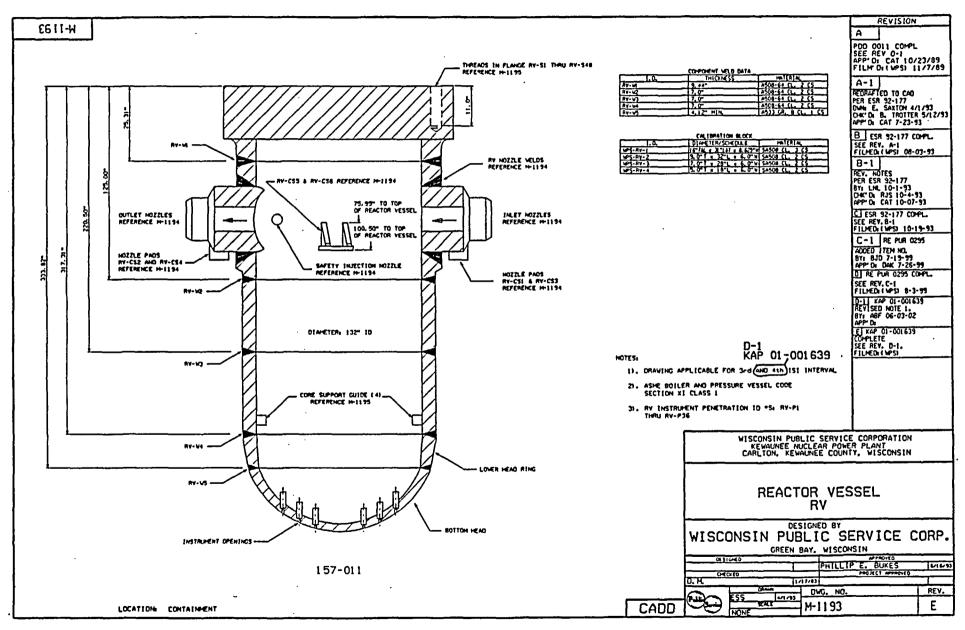


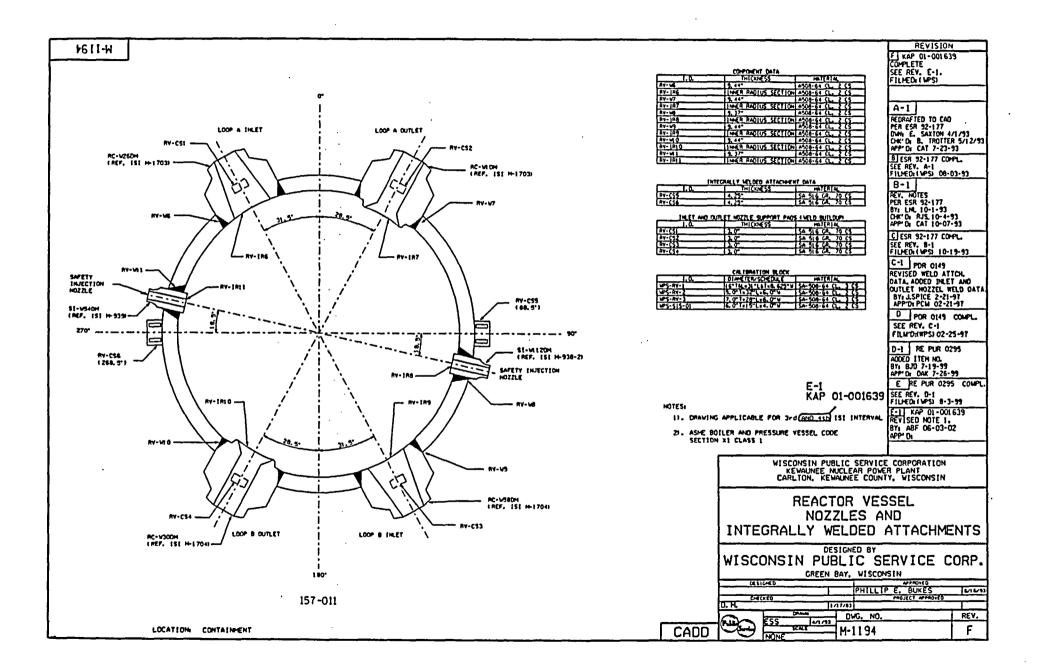


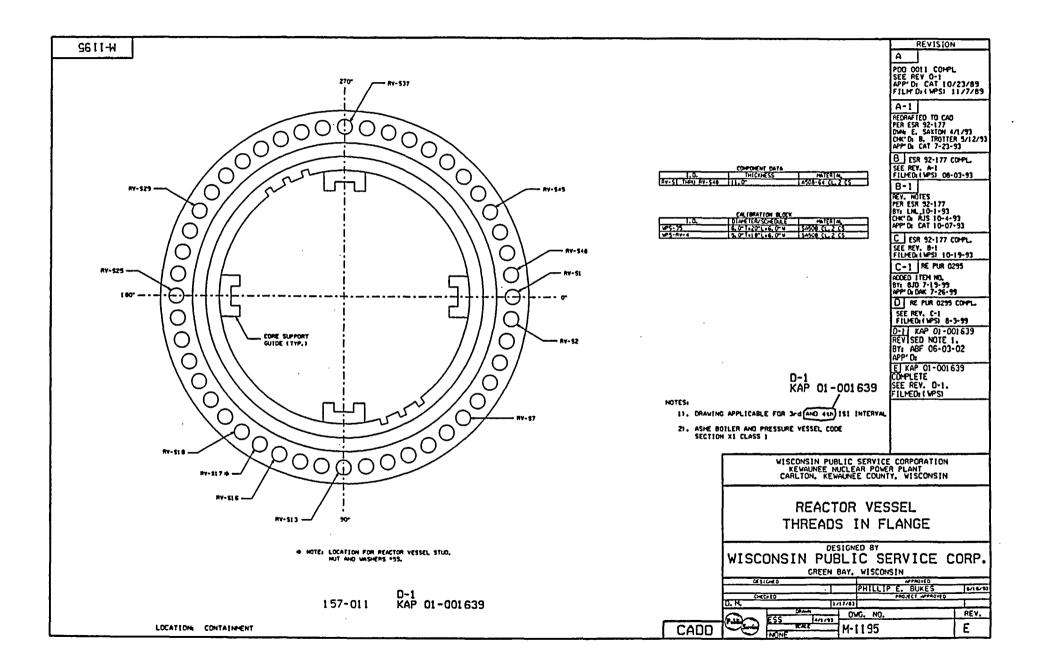


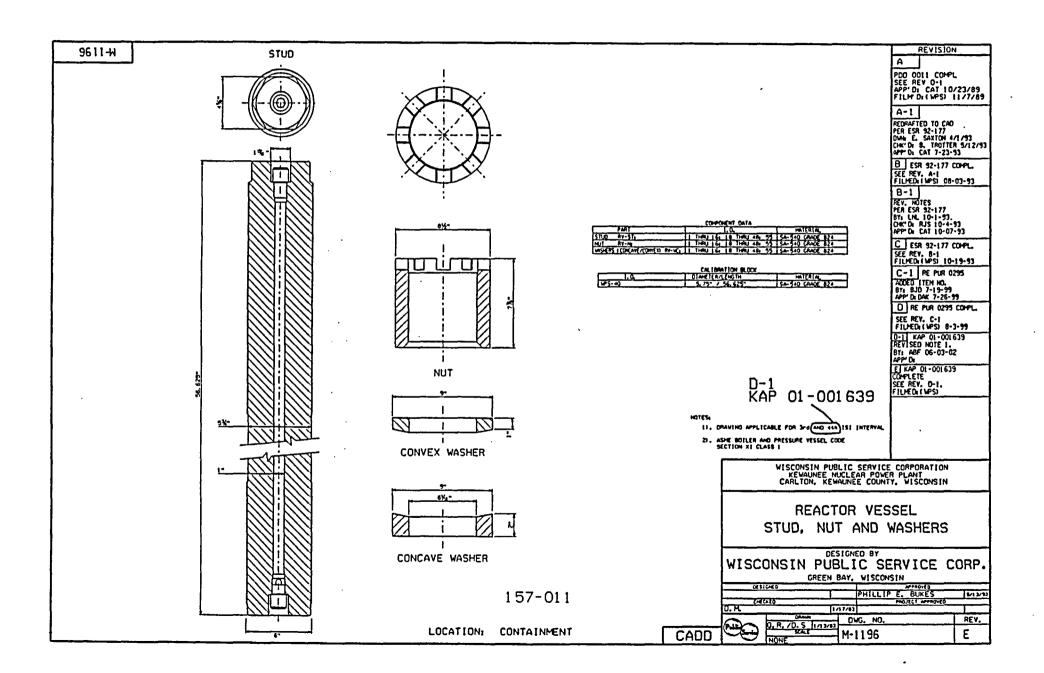


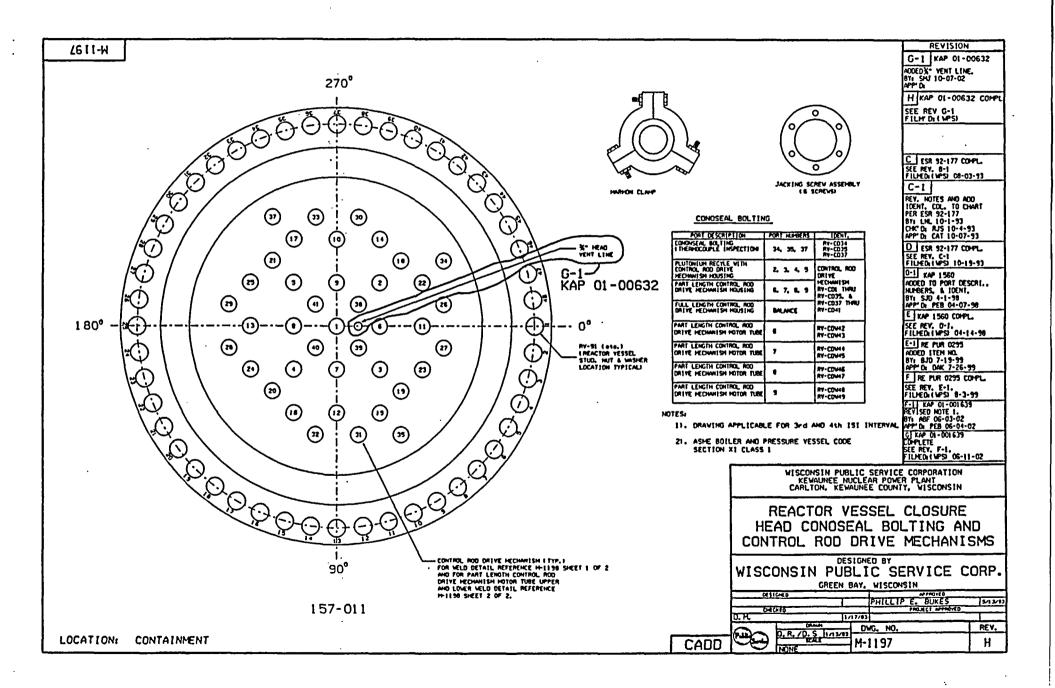


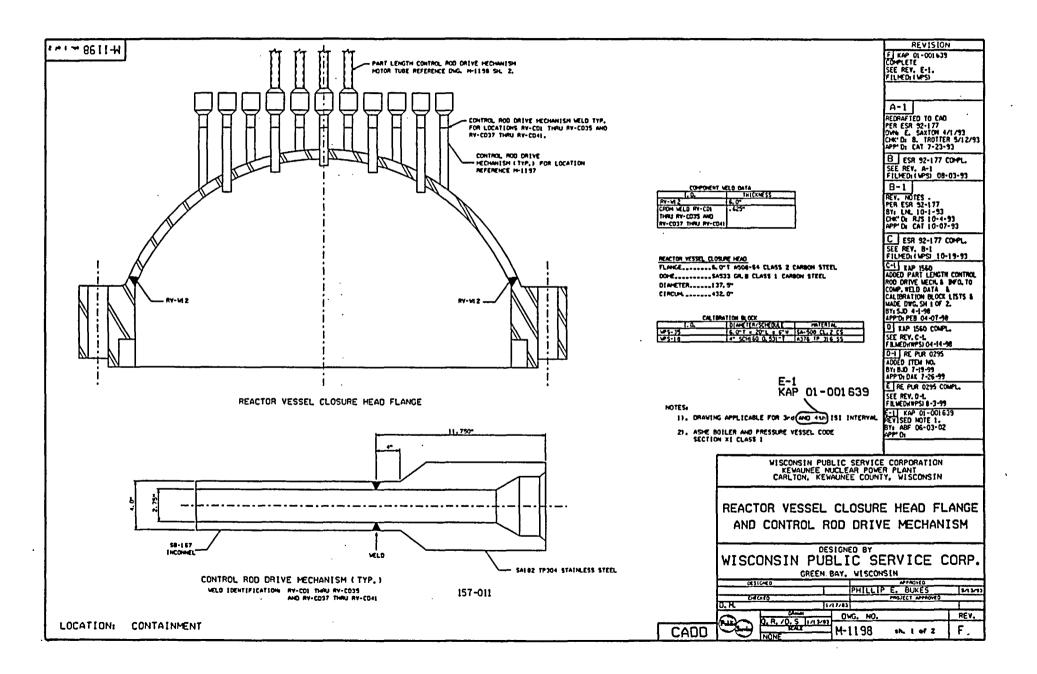


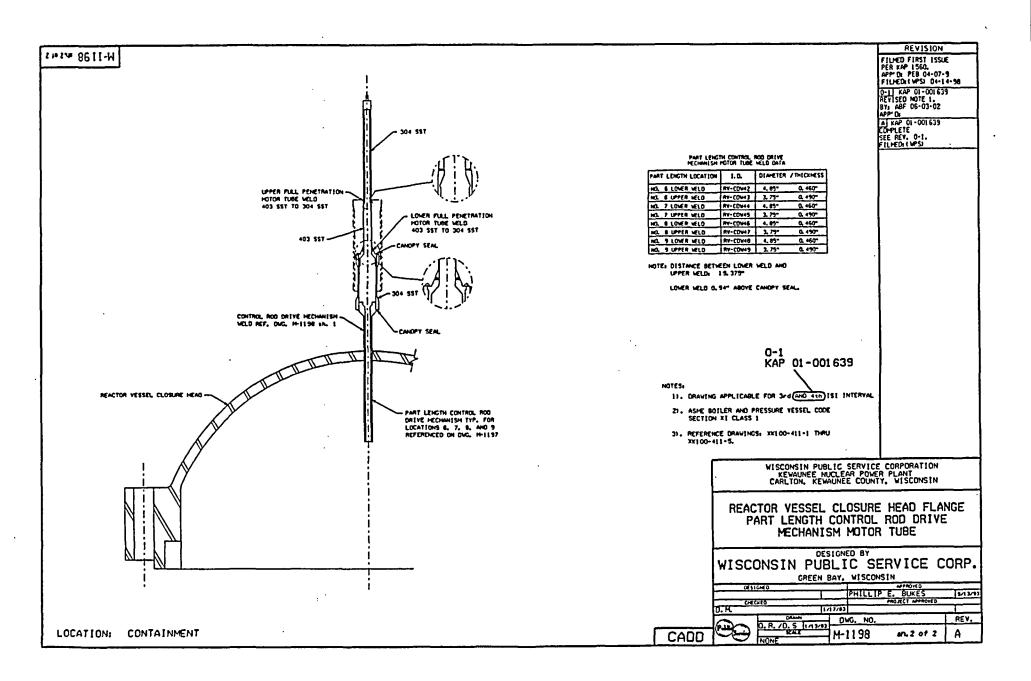


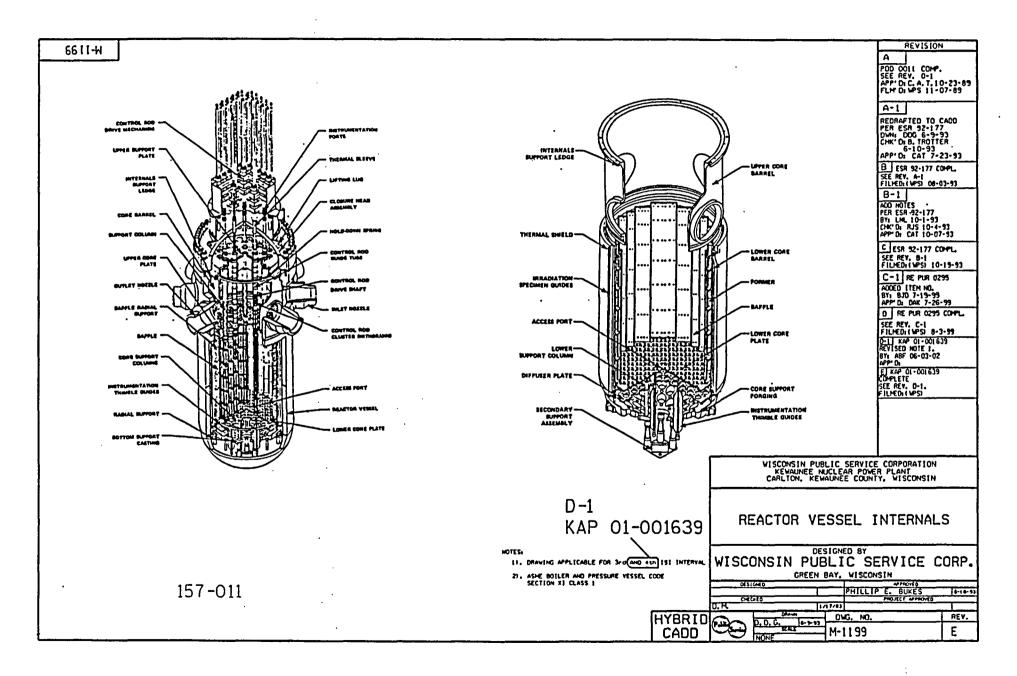


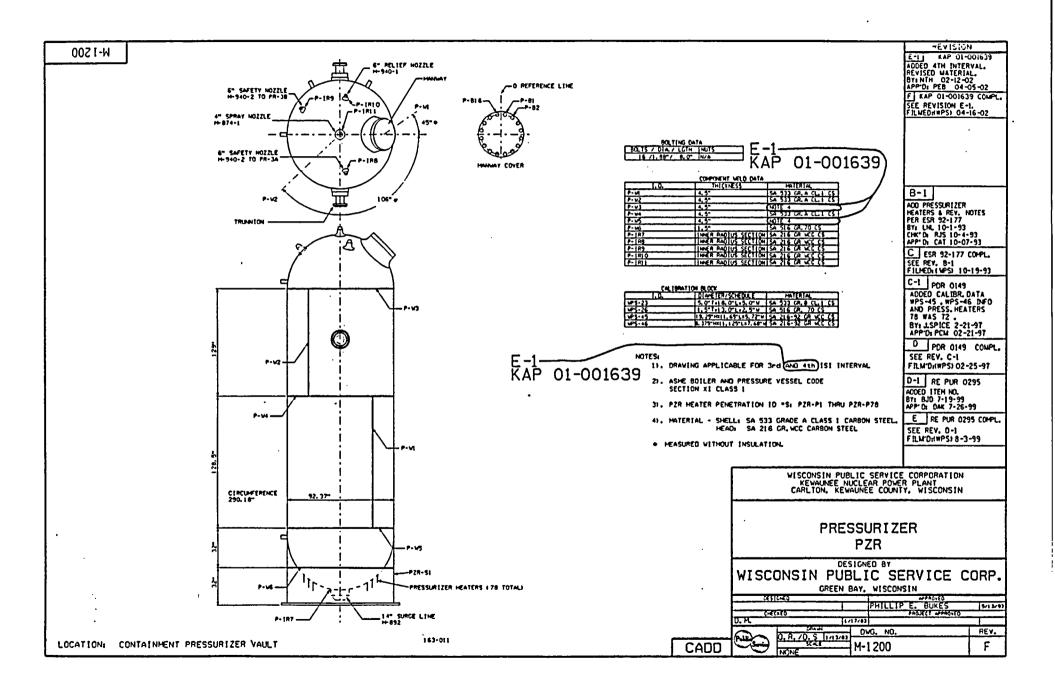


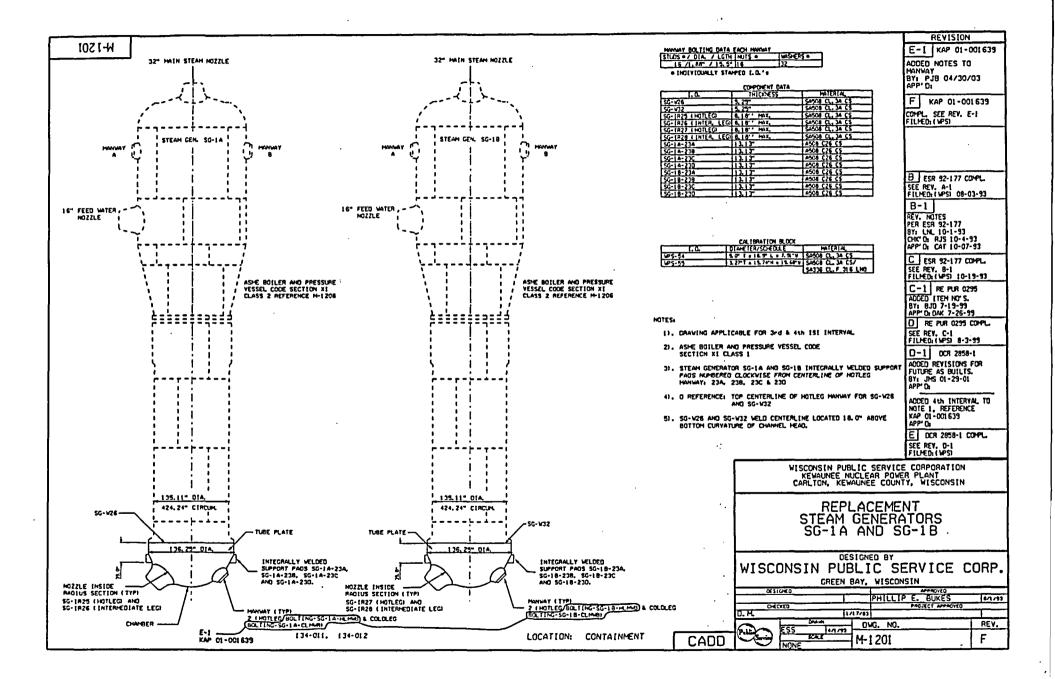


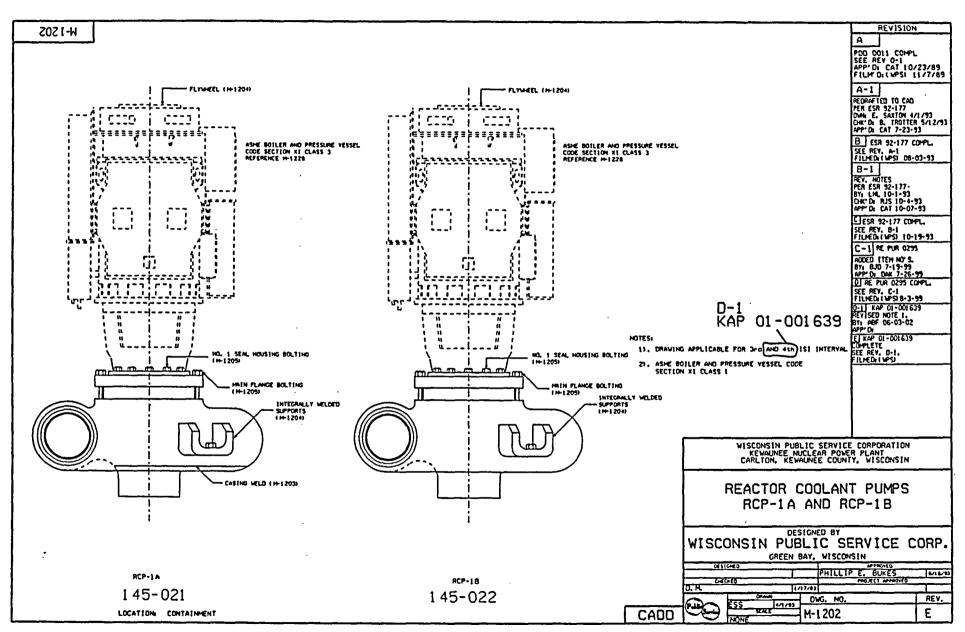




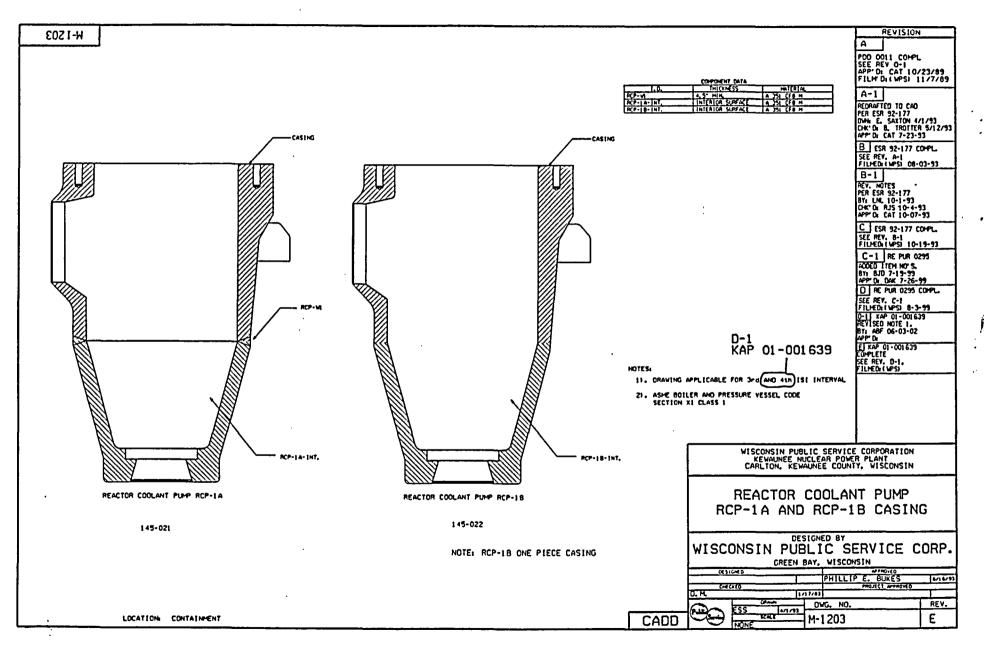

.

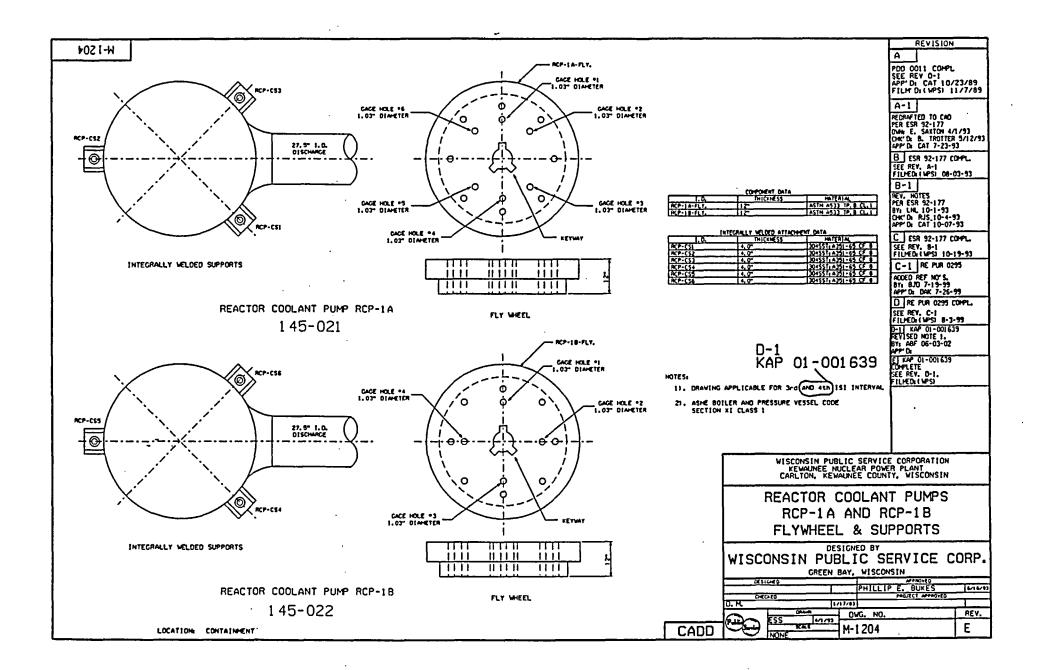


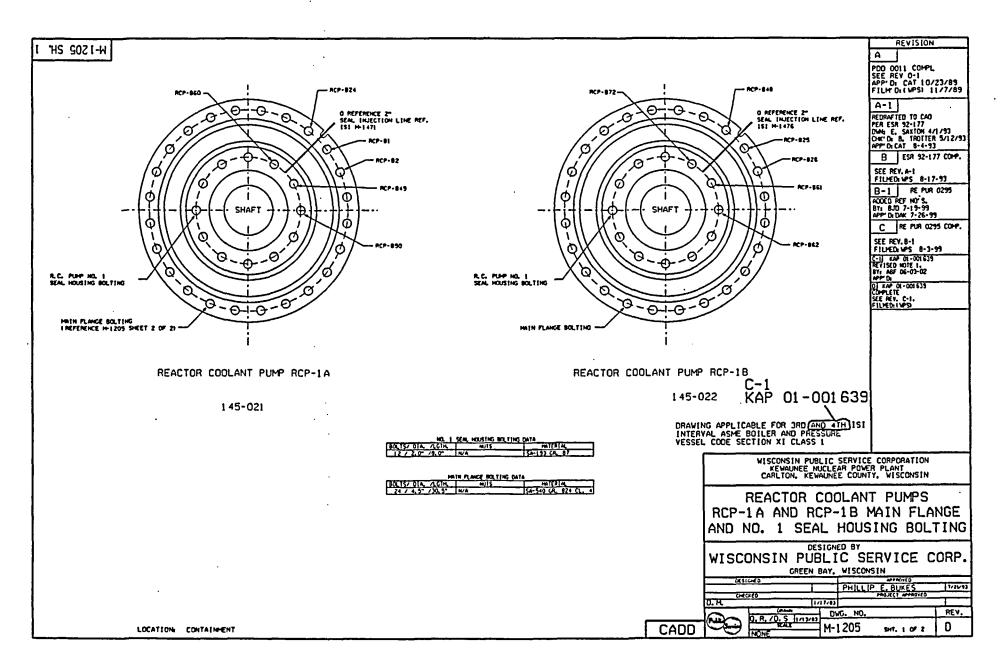


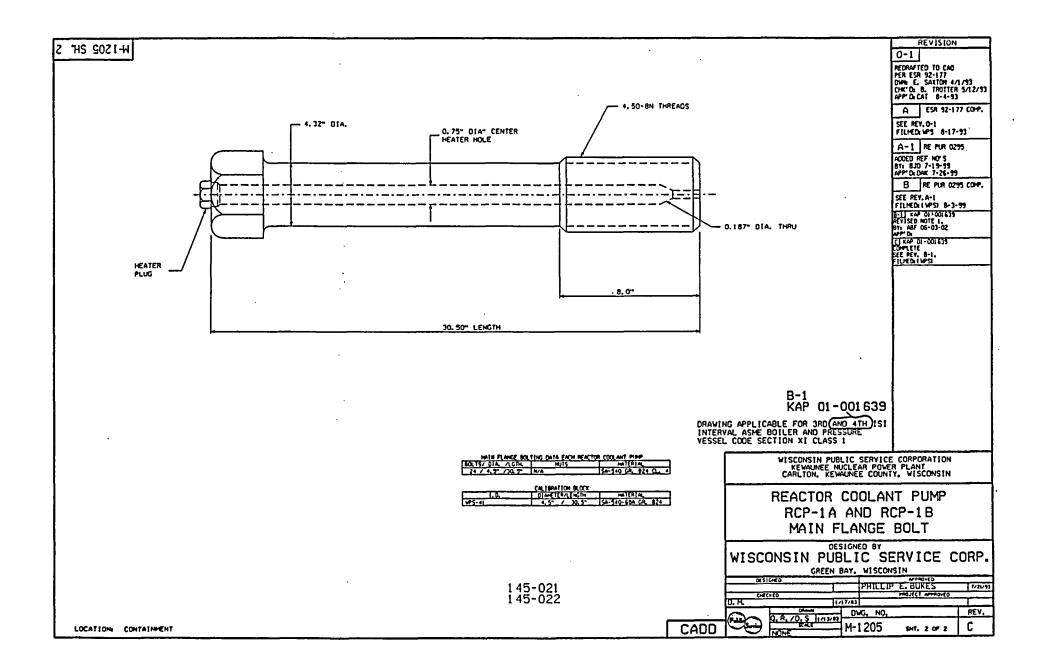


.

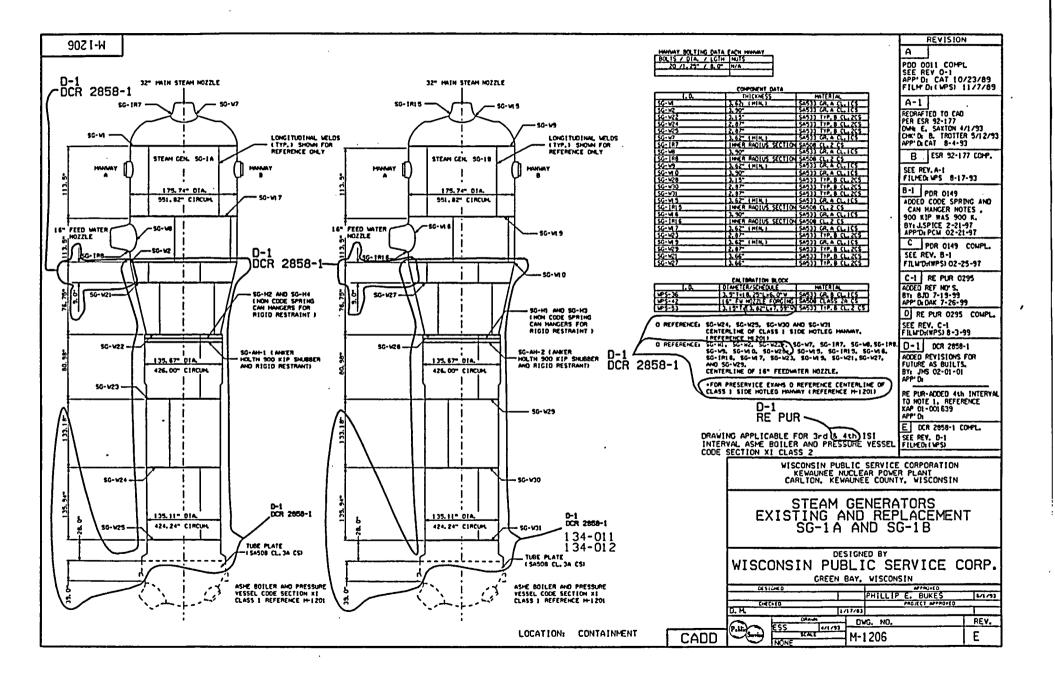


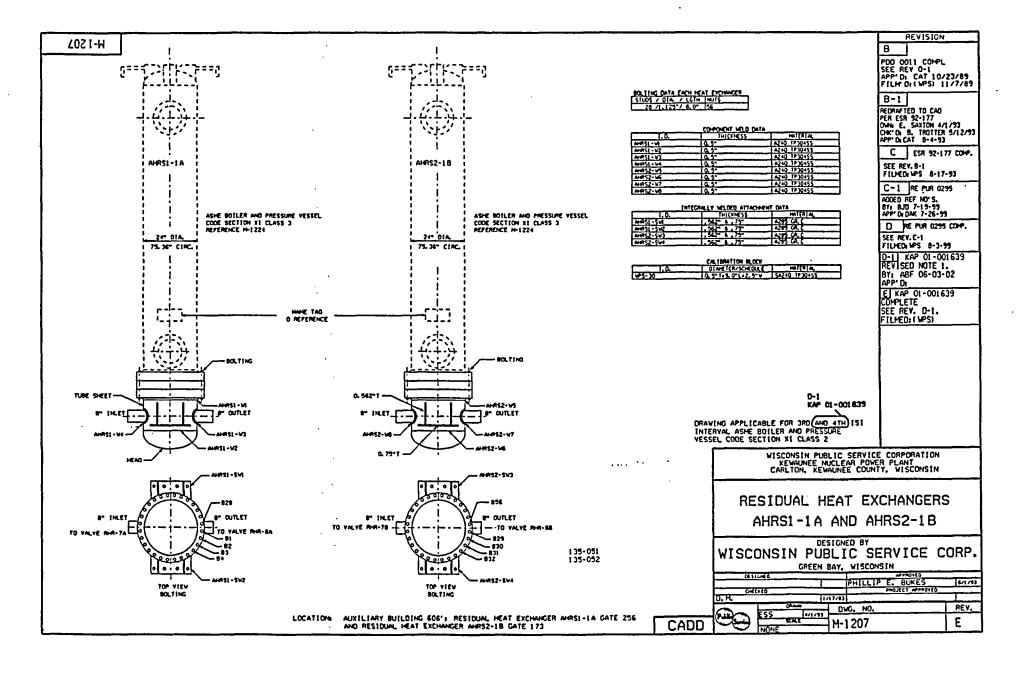


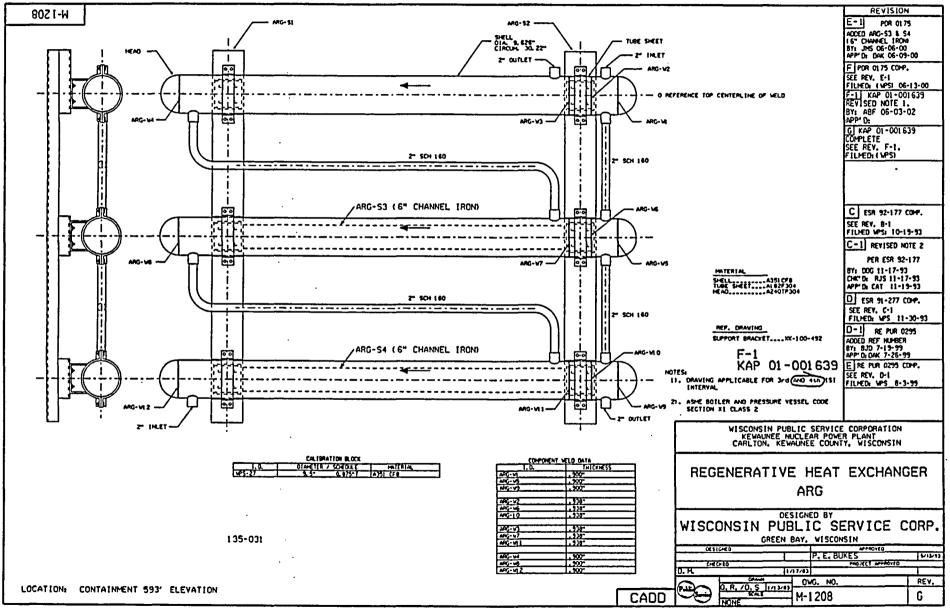


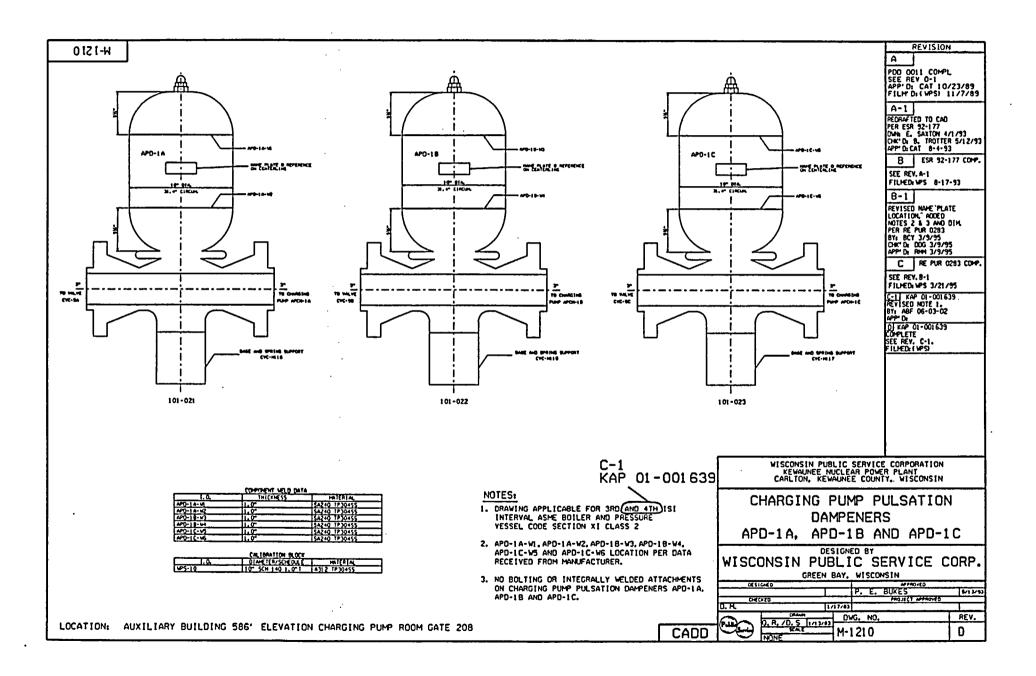

.

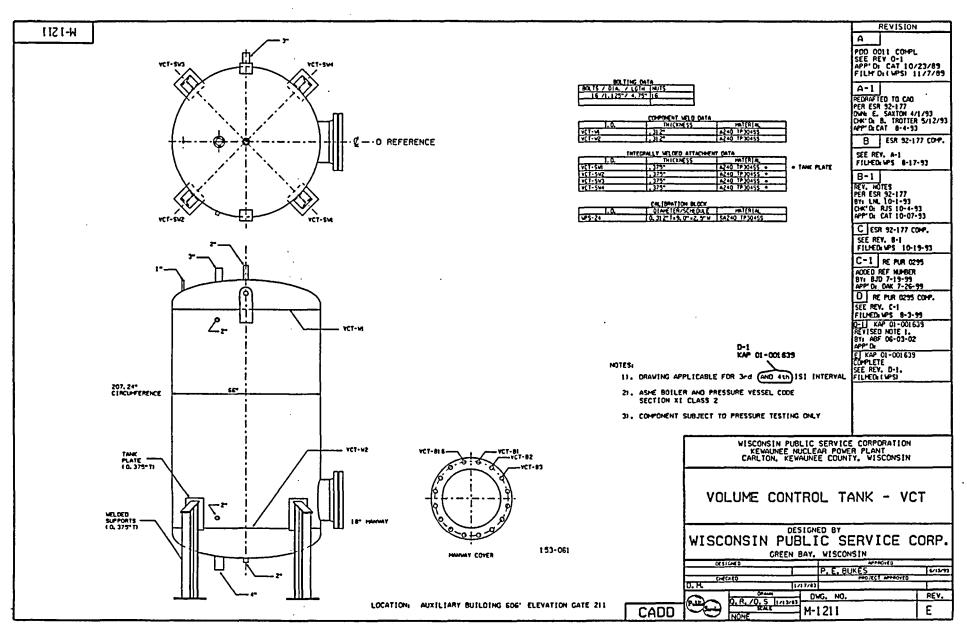
:

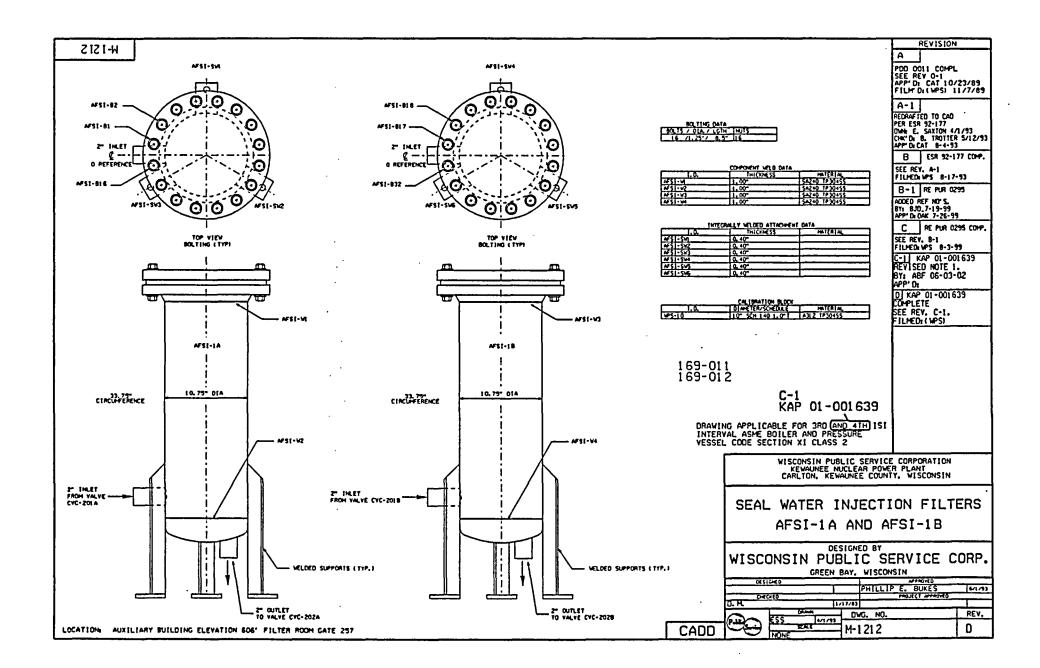




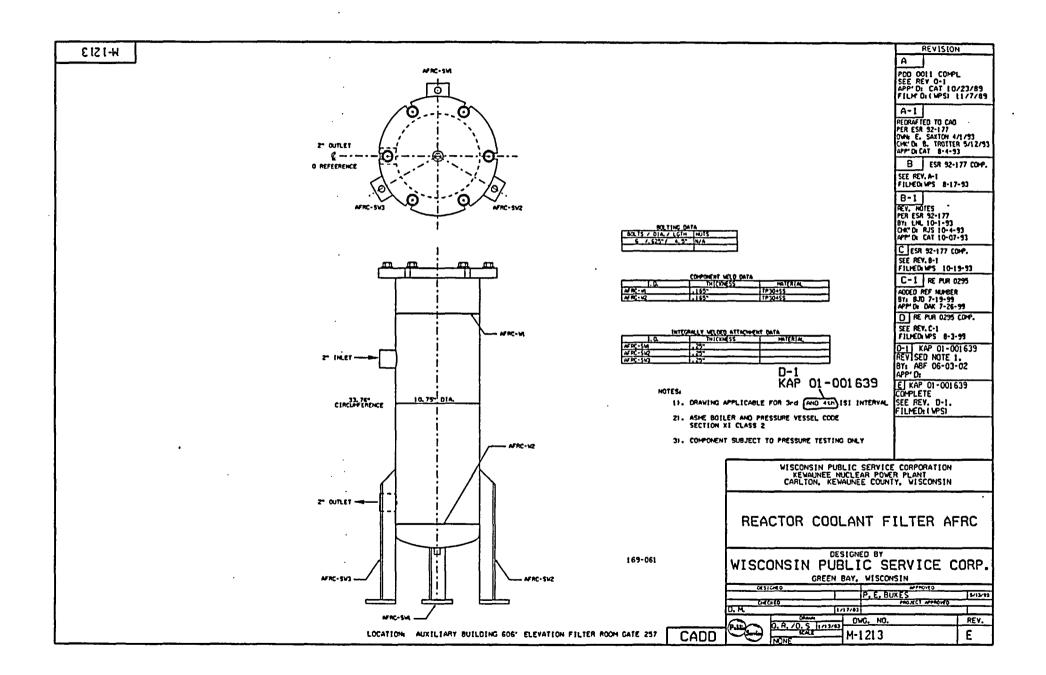


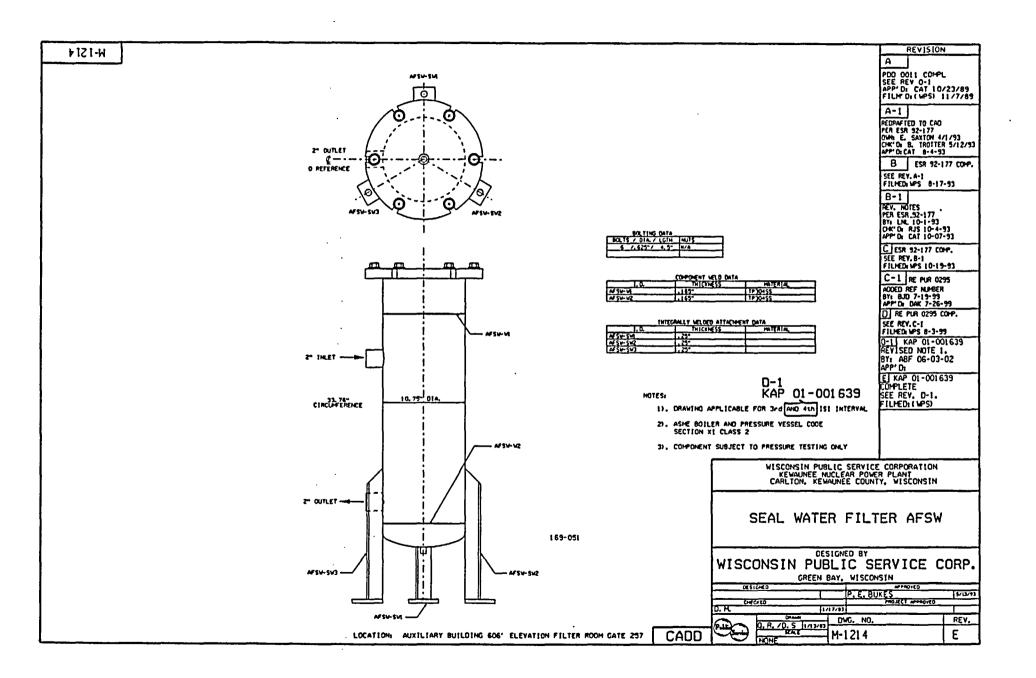


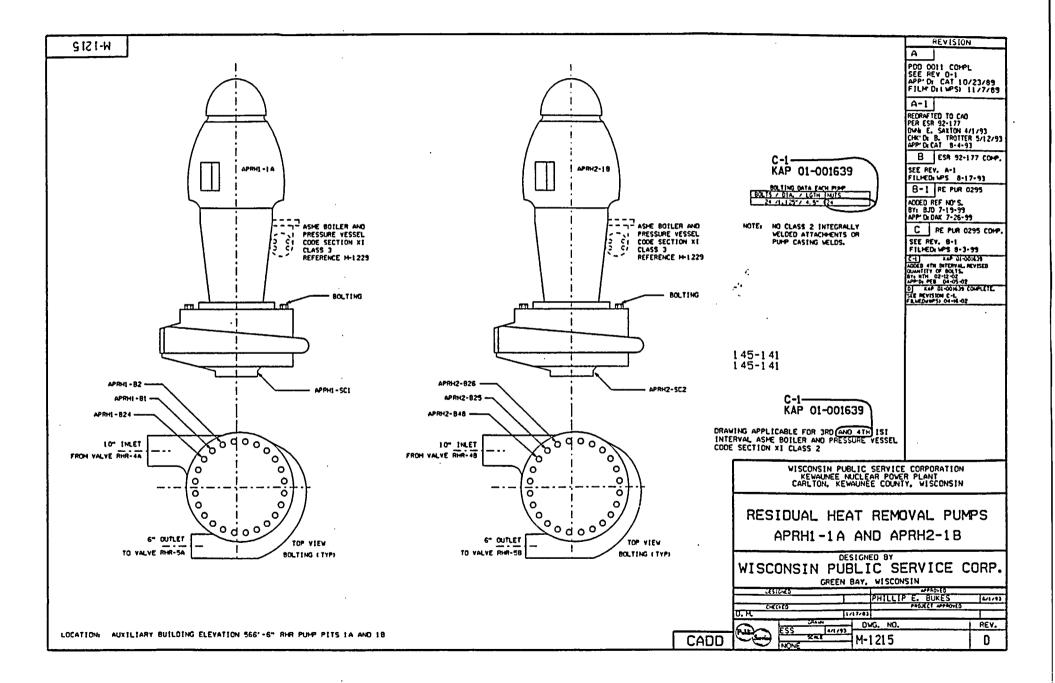


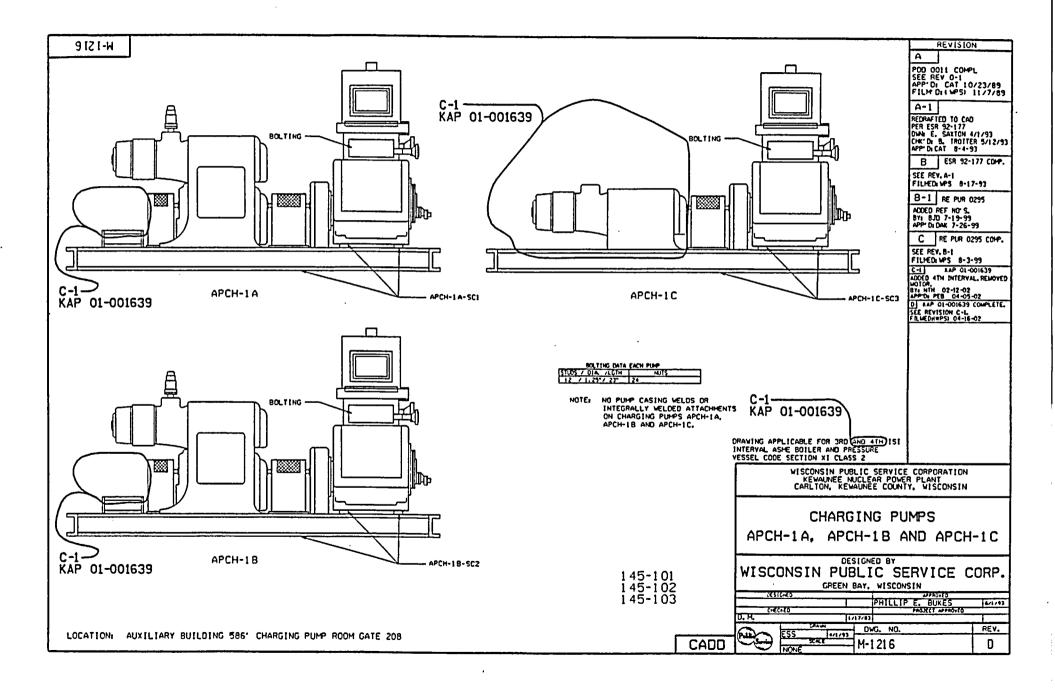

.

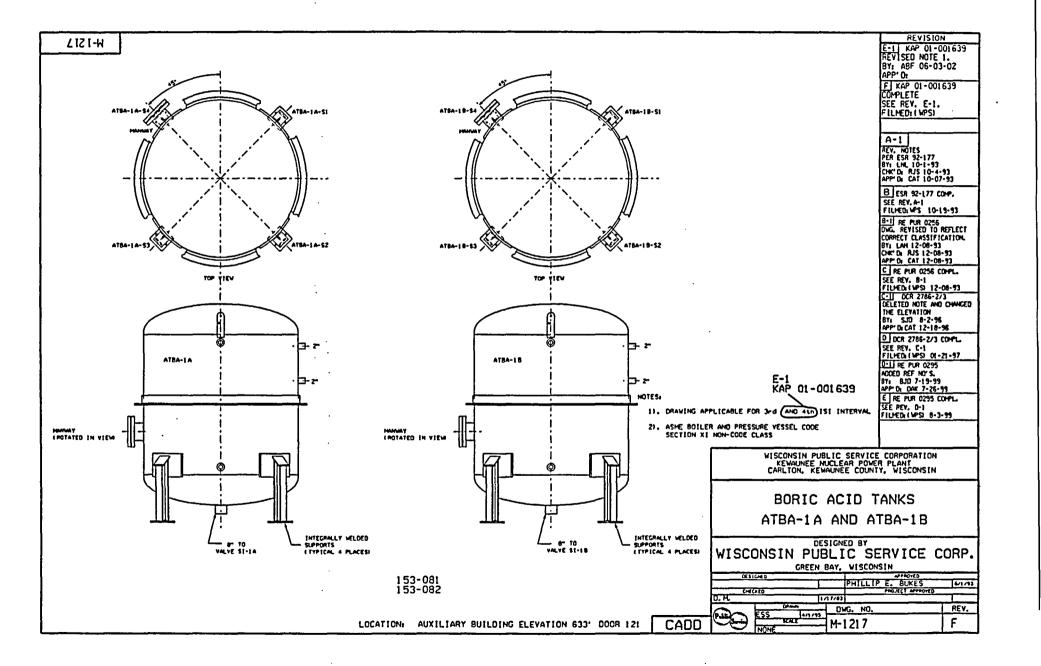
REVISION M-1209 Α POD 0011 COMPL SEE REV 0-1 APP'D: CAT 10/23/89 FILM D: (WPS) 11/7/89 BOLTING DAT A-1 15 / DIA / LOTH HUTS PEDEAFTED TO CAO PER ESR 92-177 Dunt E. SARION 4/1/93 CHK' D. B. TROTTER 5/12/93 APP' D. CAT 8-4-93 CO-PONENT WELD DATA THICKNESS 0. 375-MATE! ۰. 6" INLET A240 11/20455 wed-ut в ESR 92-177 COHP. SEE REY. A-1 FILMEDI MPS 8-17-93 AHLD INTEGRALLY WELDED ATTACHENT DATA HATERIA B-1 RE PUR 0295 ADDED REF NUMBER BY BJD 7-19-99 APP" D DAK 7-26-99 CALIBRATION BLOCK ASHE BOILER AND PRESSURE VESSEL CODE SECTION XI CLASS 3 C RE PUR 0295 COMP. 95-25 14 01A REFERENCE HIZZE SEE REV. 8-1 FILMEDI MPS 8-3-99 43. 967 CIRC. 1 FILVED: WF3 8-3-79 C-11 KAP 01-001639 REVISED NOTE 1. BT: ABF 06-03-02 APP 0. 0] KAP 01-001639 CD+LETE SEE REV. C-1. FILMED: 14PS) S" OUTLET BOLTING C-1 KAP 01-001639 . 50"1 2" OUTLET 2" INLET ORAWING APPLICABLE FOR 3RD (AND 41H) ISI INTERVAL ASHE BOILER AND PRESSURE VESSEL CODE SECTION XI CLASS 2 1-1/2 VISCONSIN PUBLIC SERVICE CORPORATION KEWAUNEE MUCLEAR POWER PLANT CARLTON, KEWAUNEE COUNTY, VISCONSIN AVE ALL SUIT . LETDOWN HEAT EXCHANGER 2" OUTLET TO 2" INLET TO AHLD VALVE LD-7 -----O REFERENCE DESIGNED BY WISCONSIN PUBLIC SERVICE CORP GREEN BAY. WISCONSIN ... DESIGNED NPPROVE ANNA-SV2 PHILLIP E. BUKES 1 35-041 Mim TOP VIEW . HON D. H. 1/17/03 RAI DVG. NO. REV. 99 LOCATION AUXILIARY BUILDING 606" LETDOWN HEAT EXCHANCER ROOM GATE 53 ESS CADD M-1209 0


NON

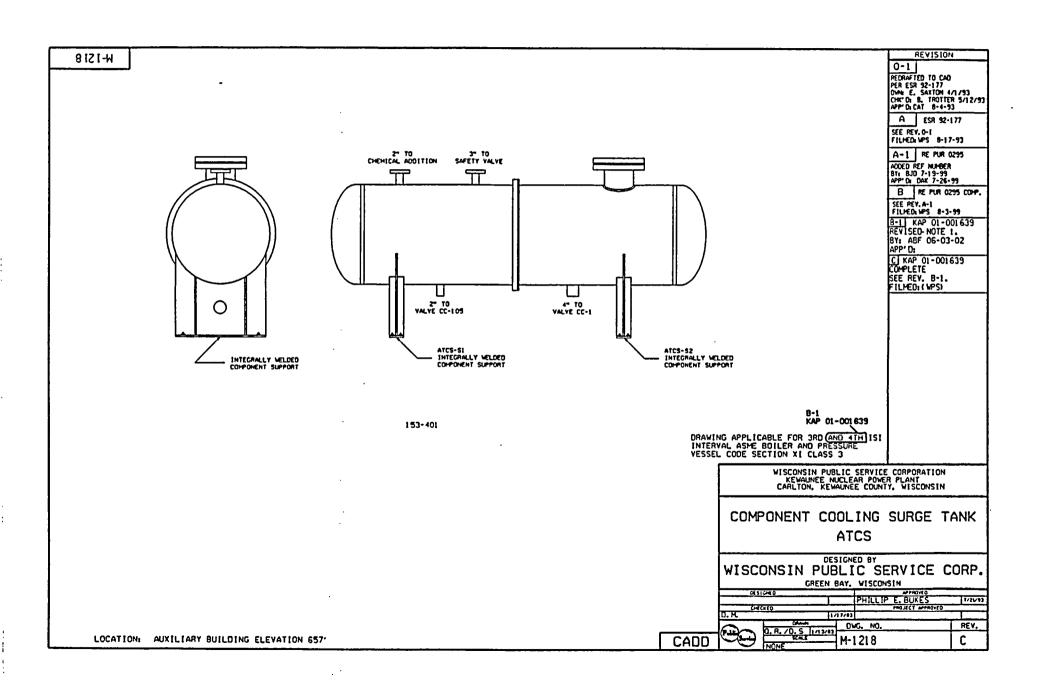


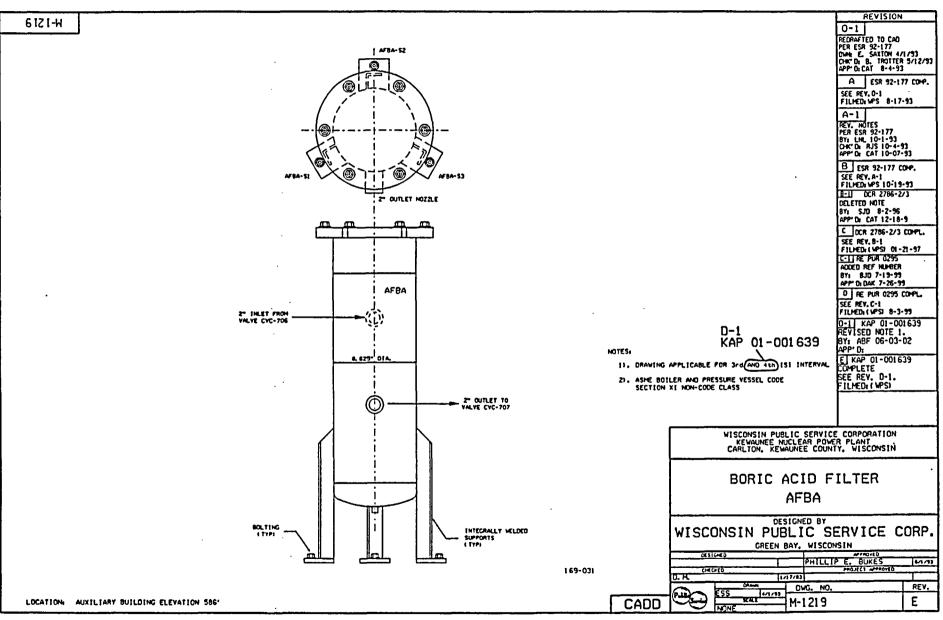


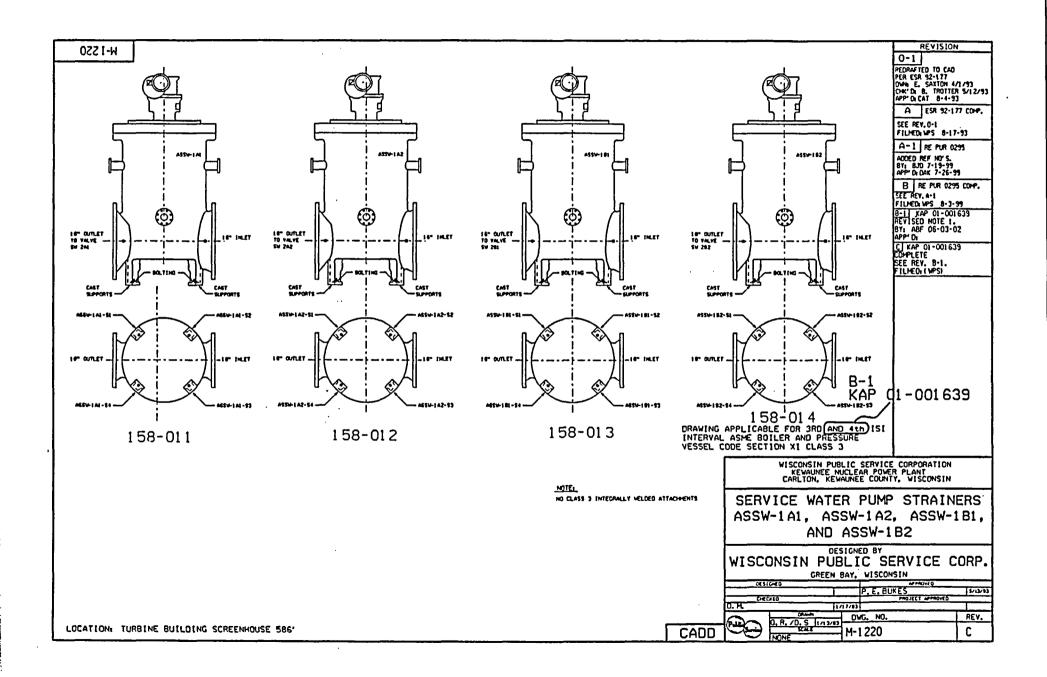

 $\left(\right)$

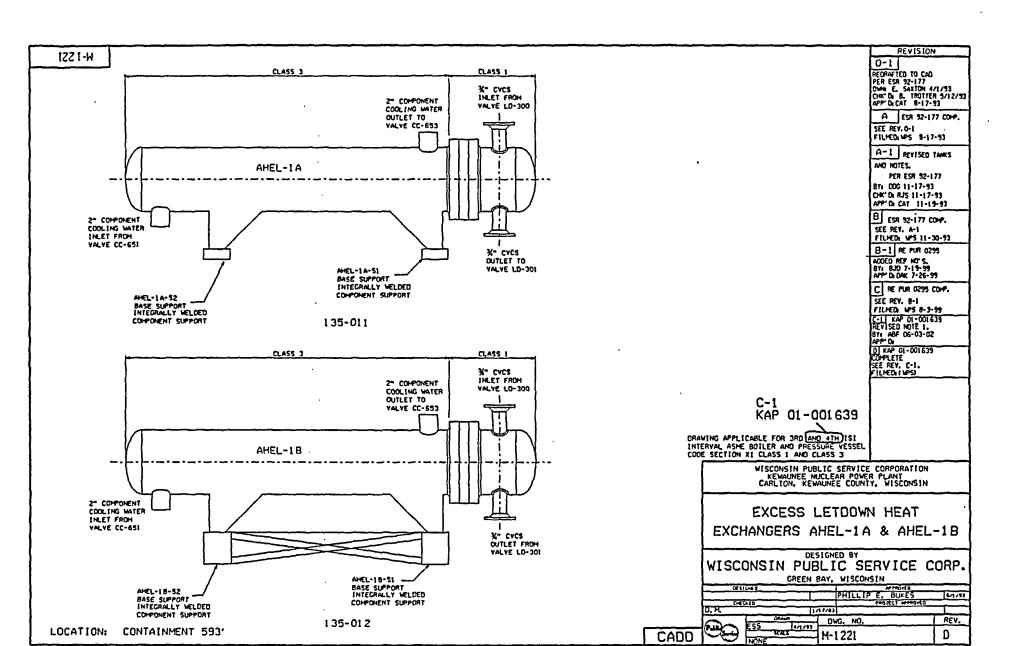

```



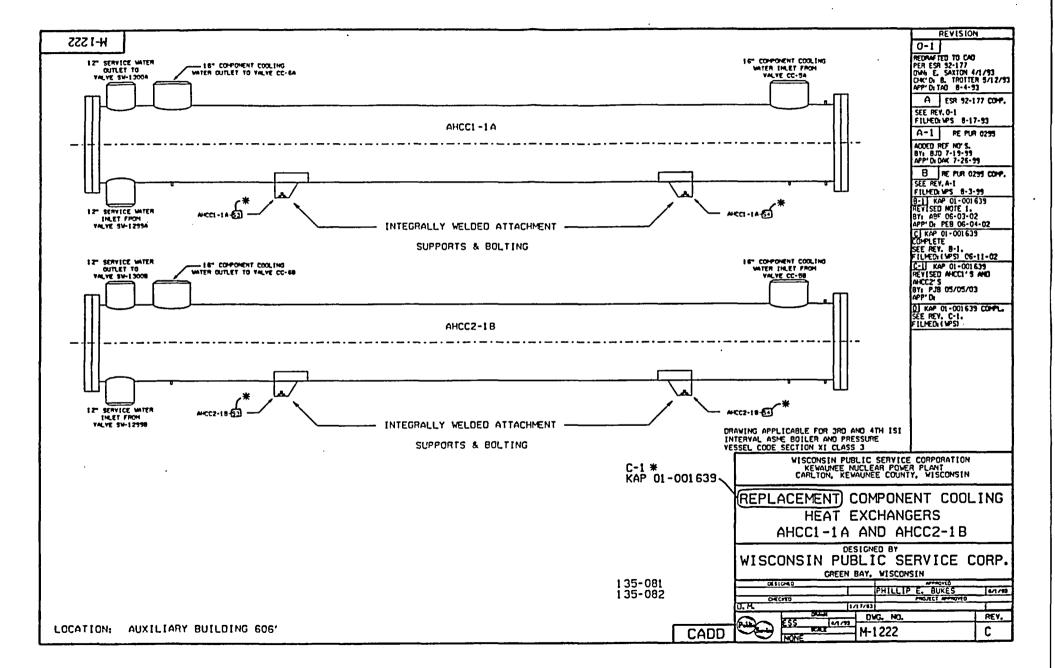




٠


ł



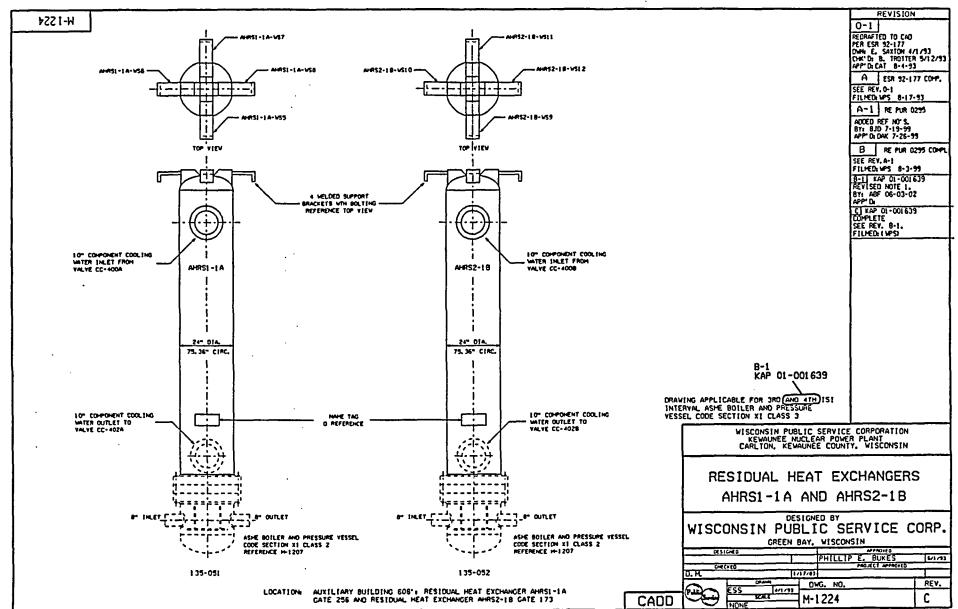


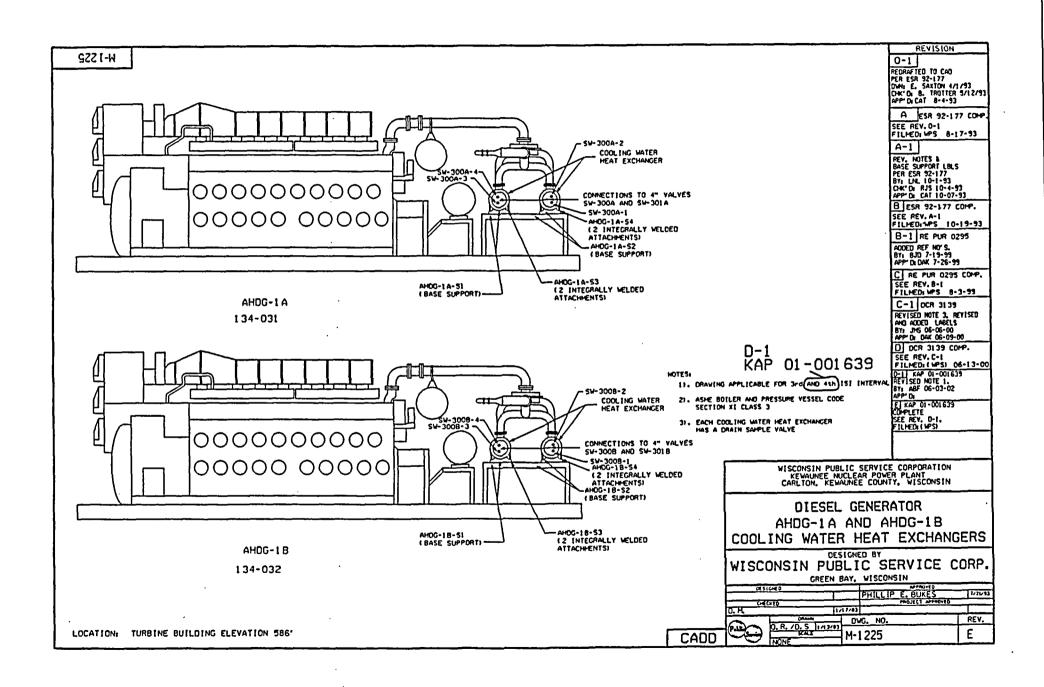









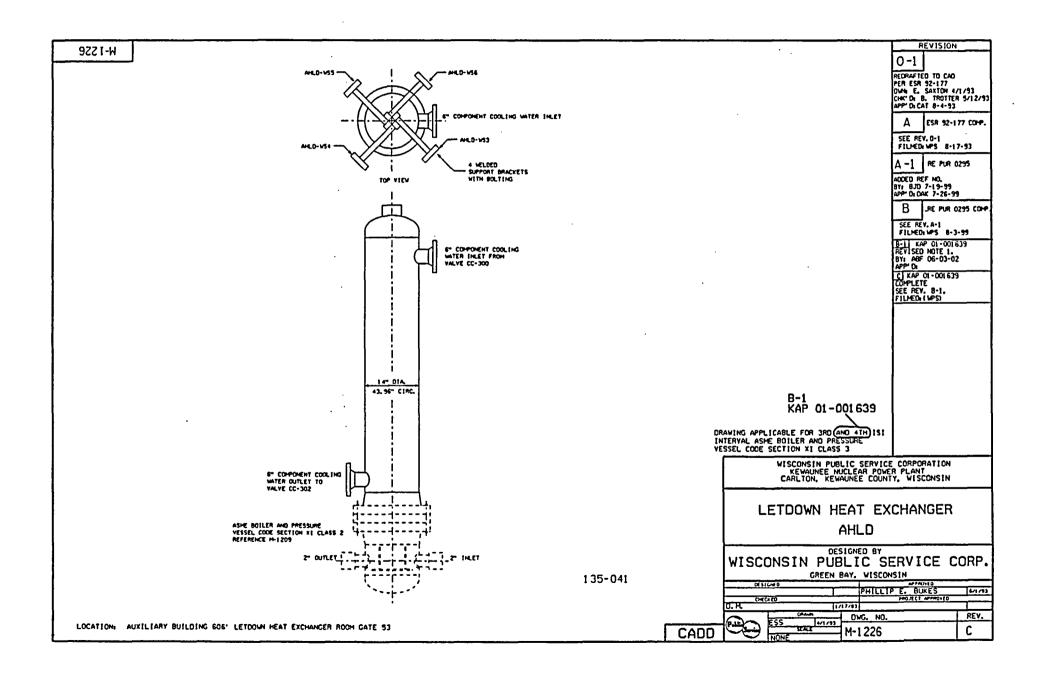


NON

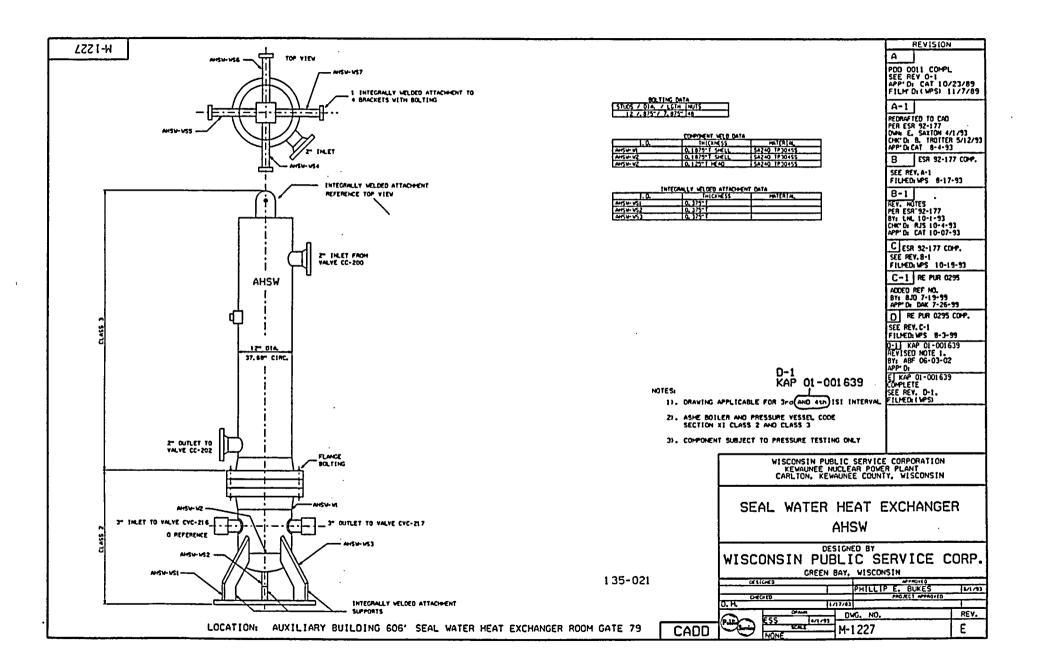


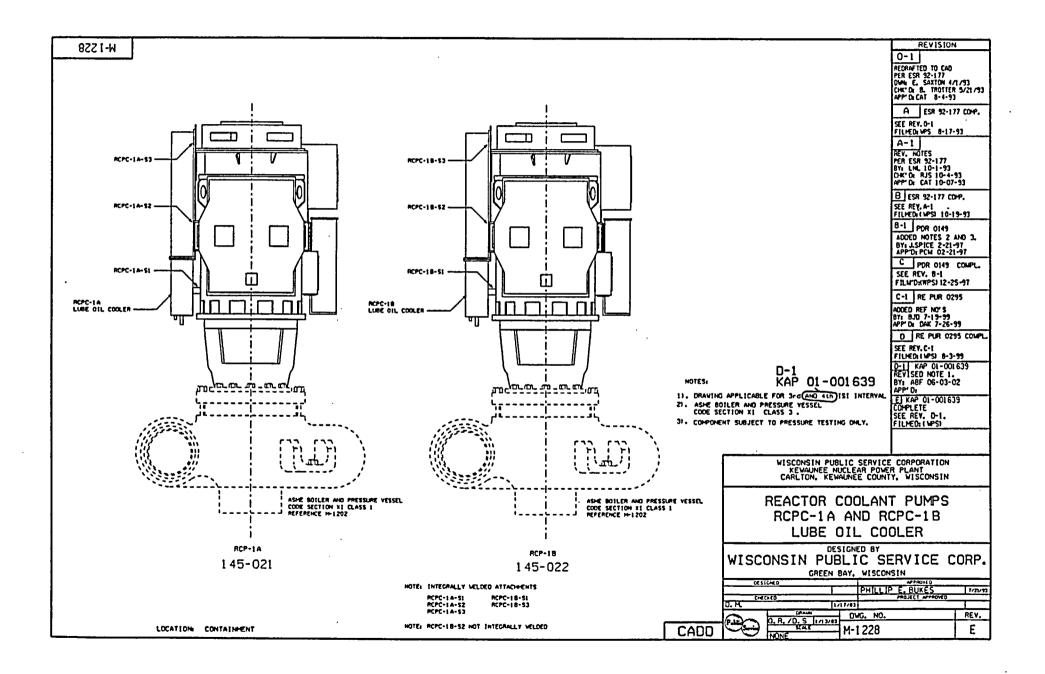

REVISION K-1223 0-1 REDRAFIED TO CAO PER ESR 92-177 DWN E. SARTON 4/1/93 CHK'OR B. TROITER 5/12/93 APP'DI CAT 8-4-93 A ESR 92-177 COHP. SEE REV. 0-1 FILMEDE WPS 8-17-93 A-1 8" SPENT FUEL POOL INLET TO VAVLE FPC-7 REV. NOTES PER ESR 92-177 BY: LNL 10-1-93 CHK'D: RJS 10-4-93 APP'D: CAT 10-07-93 6" SERVICE WATER INLET FROM VALVE SV-1600 6" SERVICE WATER OUTLET TO VALVE SV-1601 B ESR 92-177 COMP. SEE REY. A-1 " FILMED-MPS 10-19-93 B-1 RE PUR 0295 ADDED REF NO. BY1 BJD 7-19-99 APP DLDAK 7-26-99 C RE PUR 0295 COMP. SEE REV. 8-1 FILHEDE WPS 8-3-55 C-1 KAP 01-001639 REVISED NOTE 1. BY: ABF 06-03-02 APP' D: DI KAP 01-001639 COMPLETE SEE REV. C-1. FILMED: (WPS) AHSF-51-AH55-52 عما 8" SPENT FUEL POOL OUTLET TO VAVLE FPC-8 C-1 INTEGRALLY VELCED ATTACHMENT SUPPORT BRACKETS WITH BOLTING KAP Q1-001639 NOTESI 11. DRAWING APPLICABLE FOR 3rd AND 4th ISI INTERVAL 2). ASHE BOILER AND PRESSURE VESSEL CODE SECTION XI CLASS 3 3). COMPONENT SUBJECT TO PRESSURE TESTING ONLY WISCONSIN PUBLIC SERVICE CORPORATION KEWAUNEE MUCLEAR POWER PLANT CARLTON, KEWAUNEE COUNTY, WISCONSIN SPENT FUEL POOL HEAT EXCHANGER AHSF DESIGNED BY WISCONSIN PUBLIC SERVICE CORP. GREEN BAY, WISCONSIN 135-091 DESIGNED PHILLIP E, BUKES 1/2/13 CHECKED D. M. 1/17/03 REV. DWG. NO. 0, R. /0. S 1/13/02 M-1223 CADD D LOCATION AUXILIARY BUILDING ELEVATION 622" SPENT FUEL POOL HEAT EXCHANGER ROOM DOOR 140 NONE

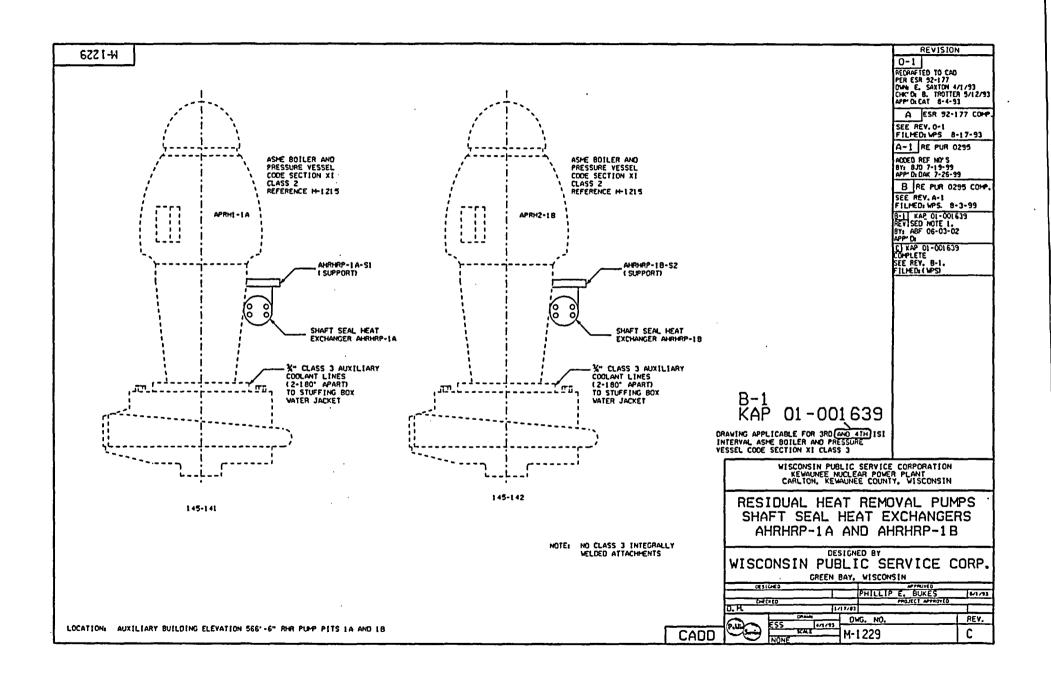
( )

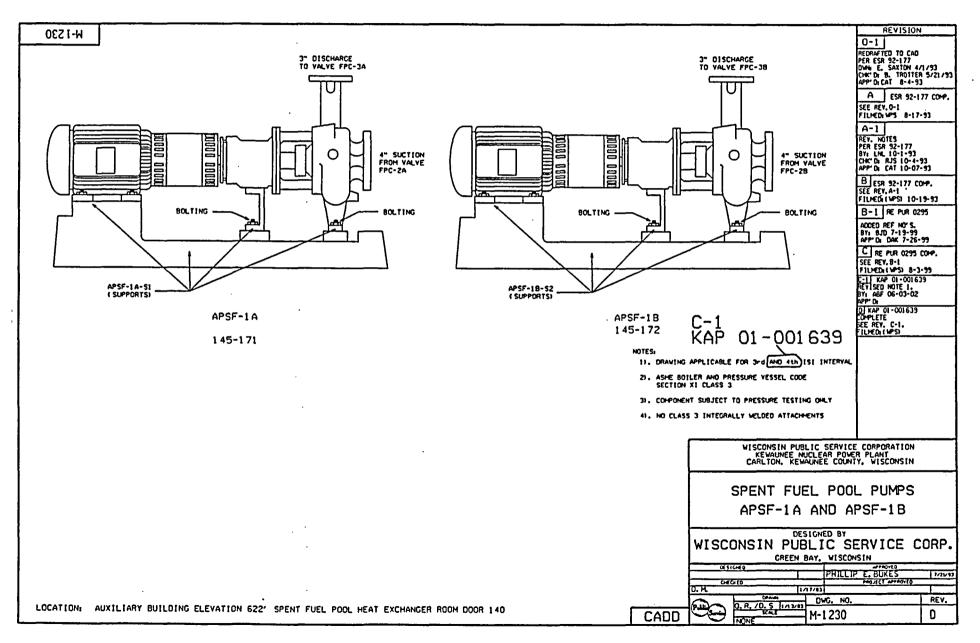


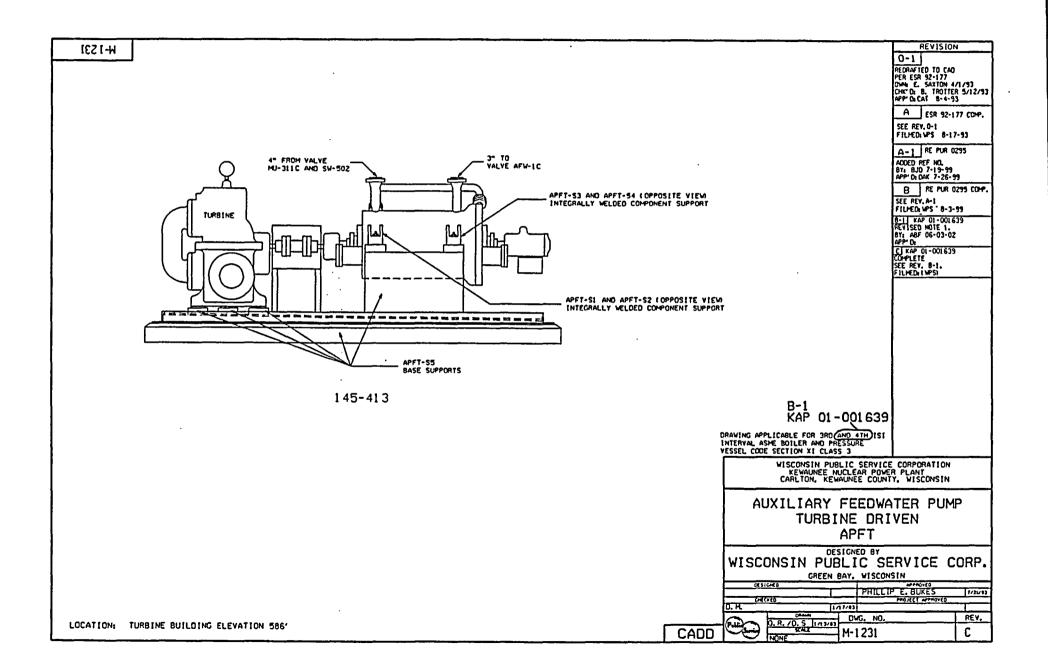


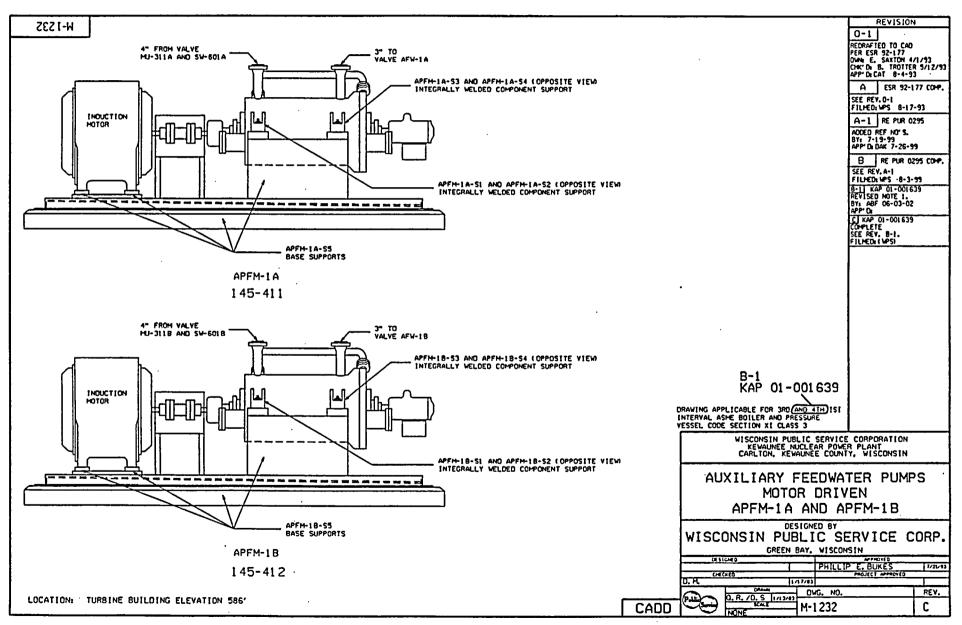



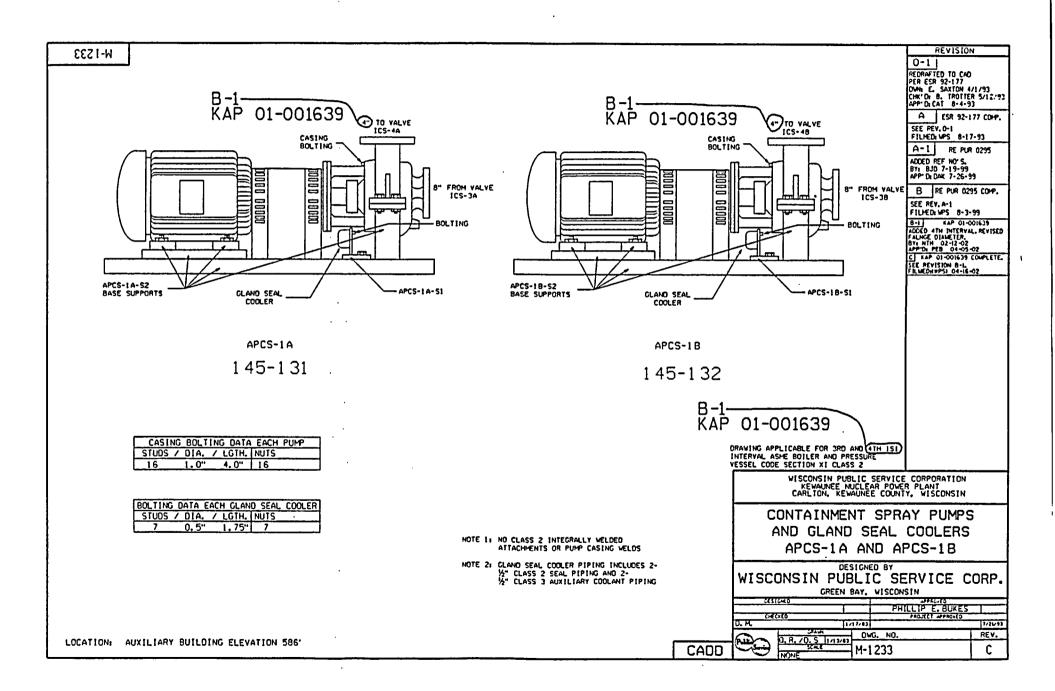





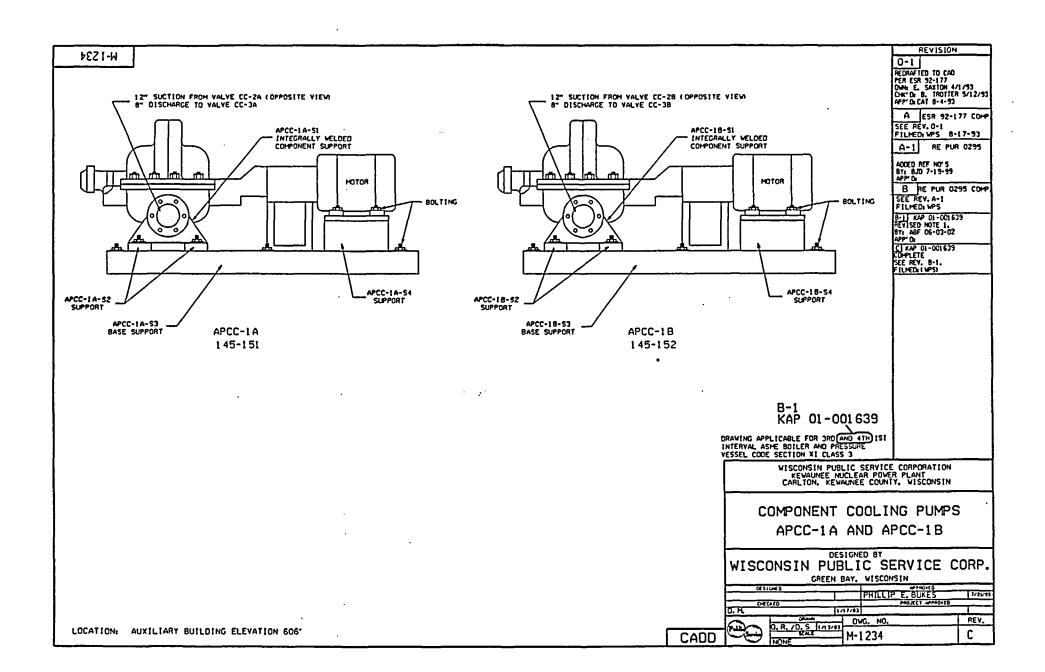


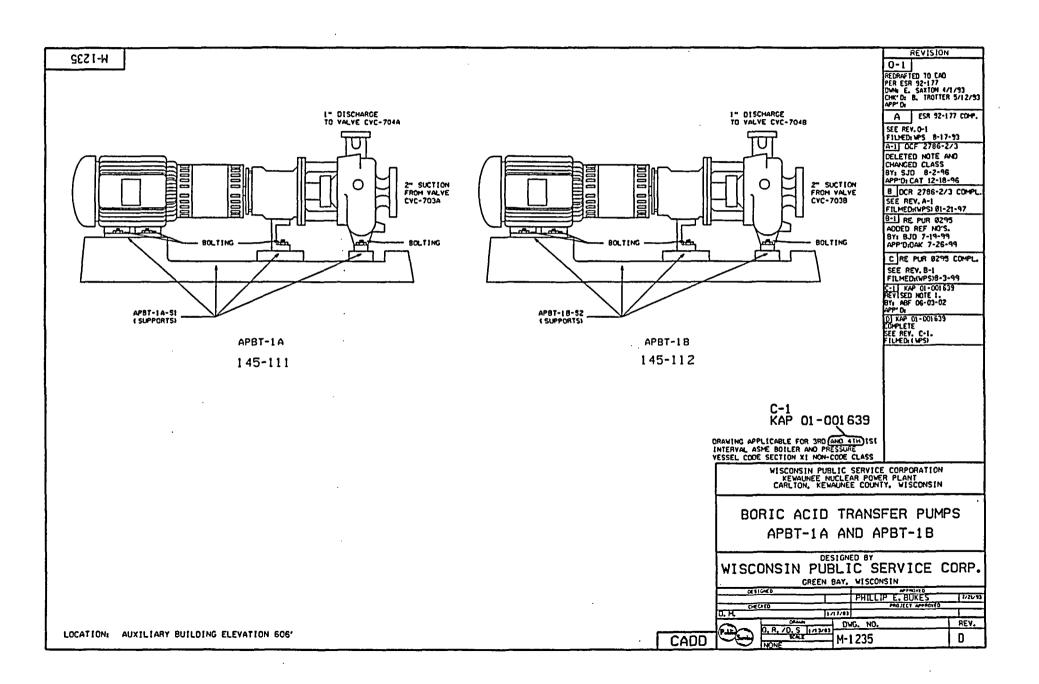


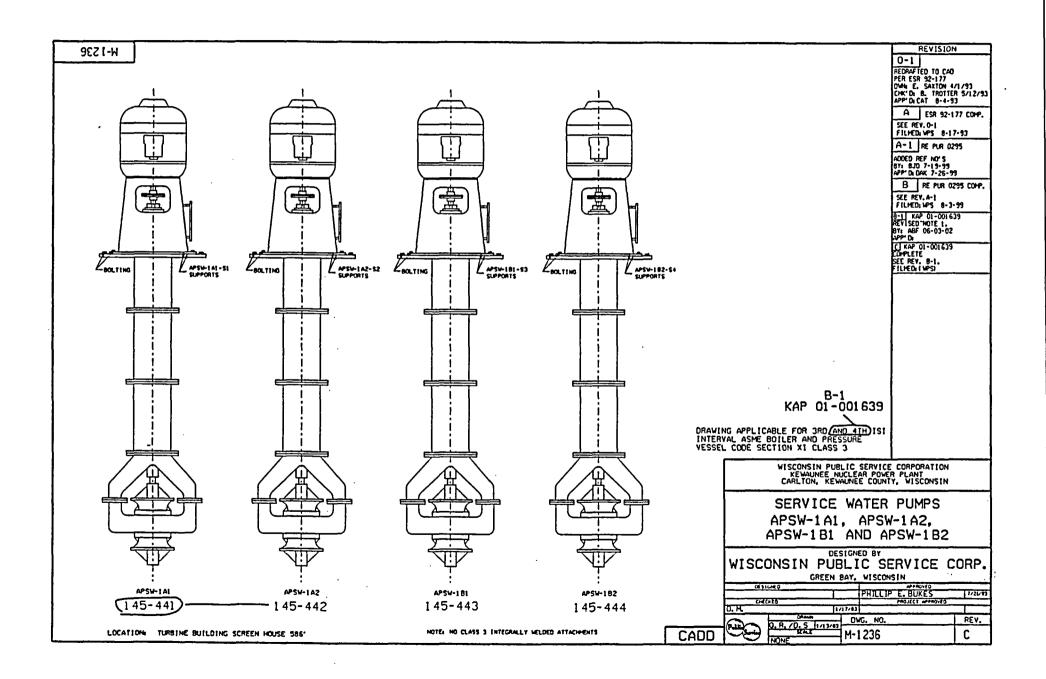



· · ·

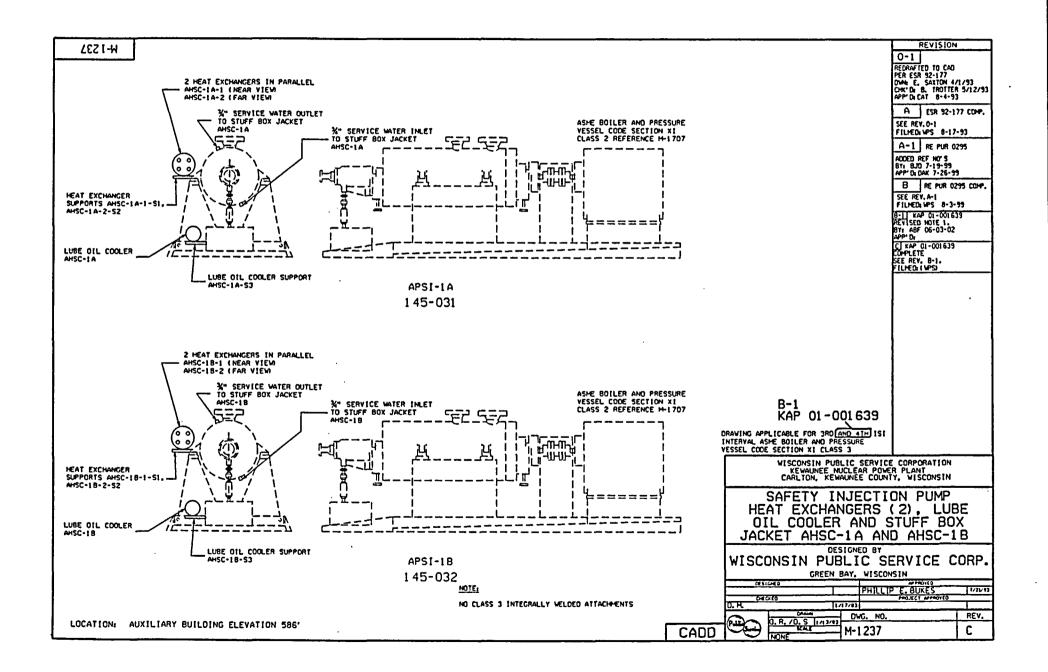

.

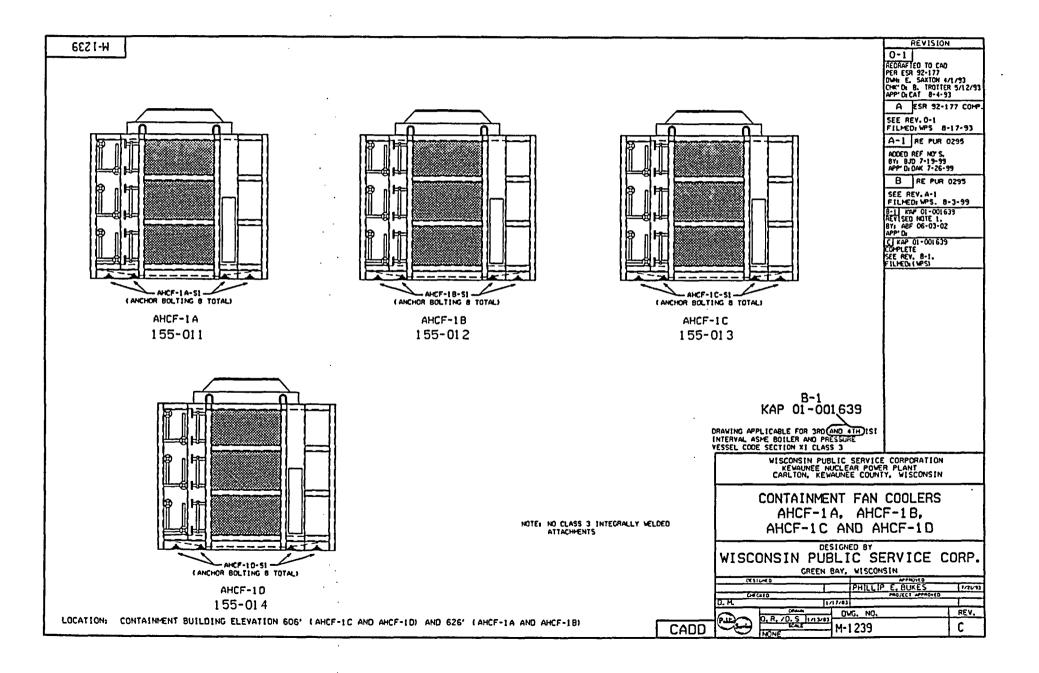


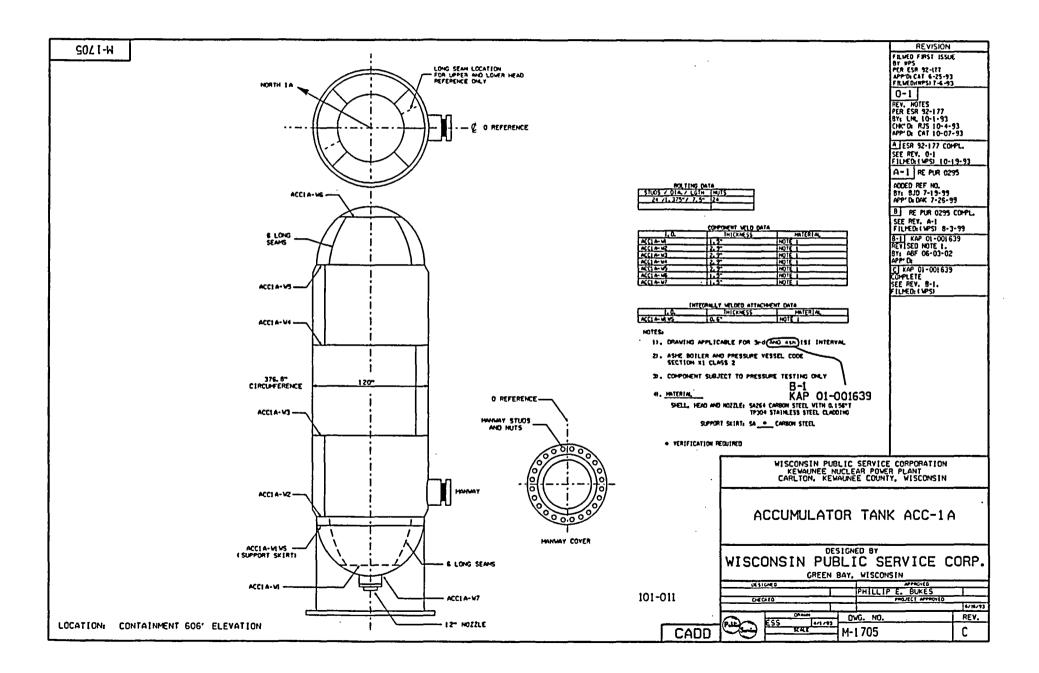


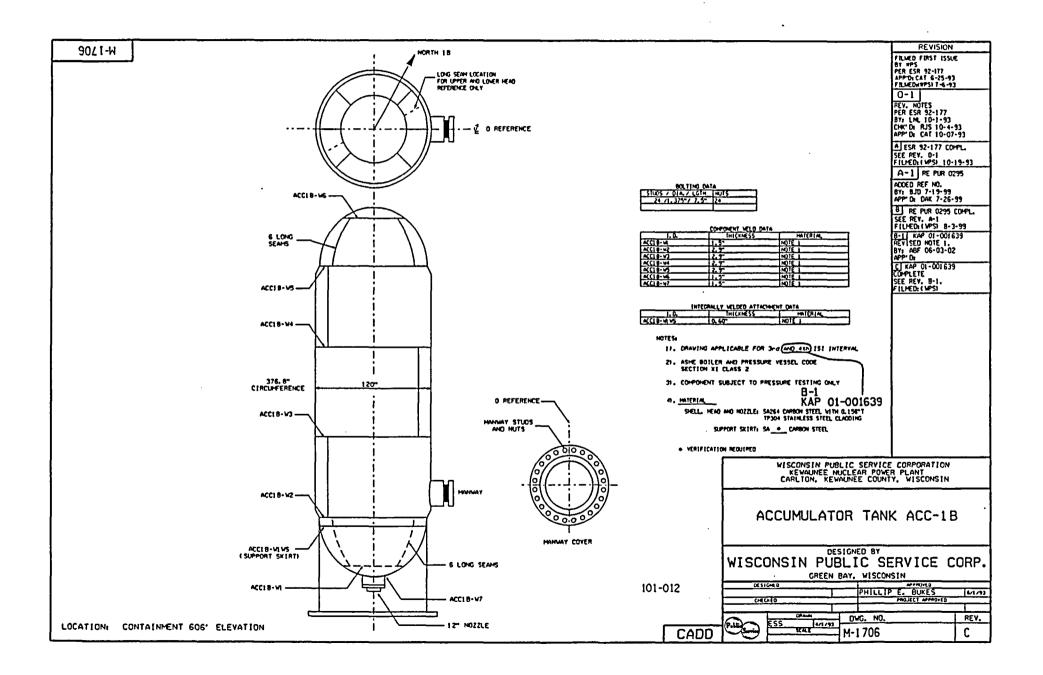


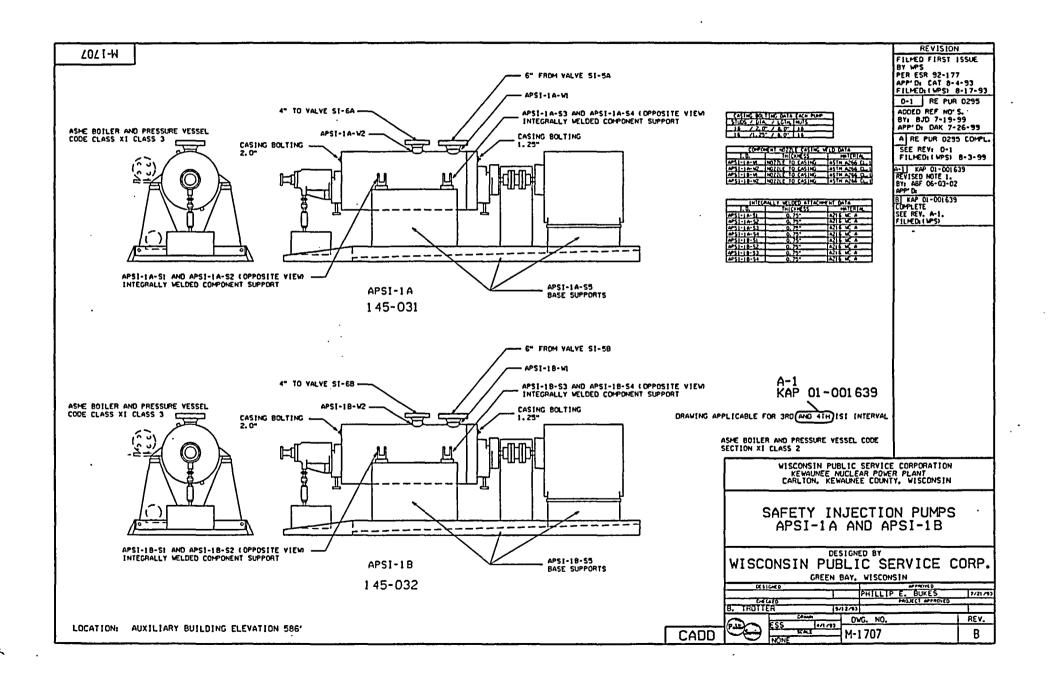



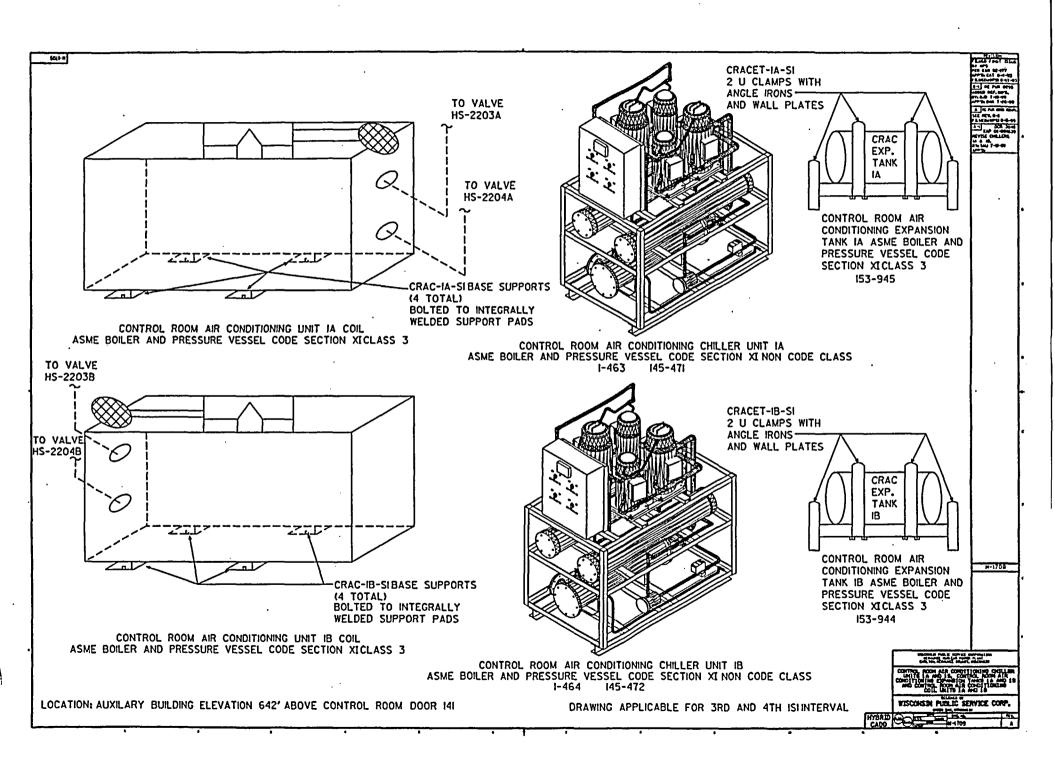



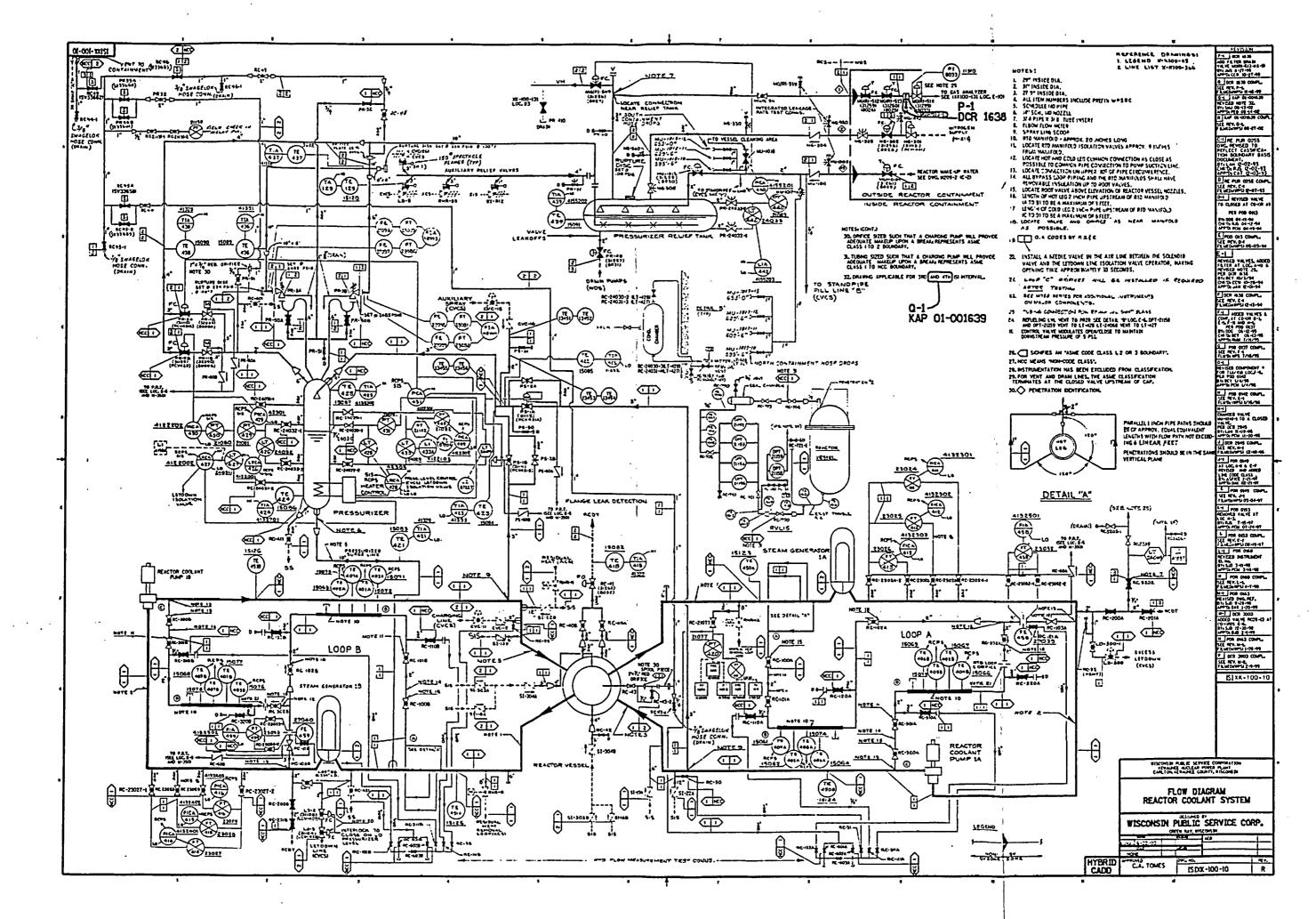


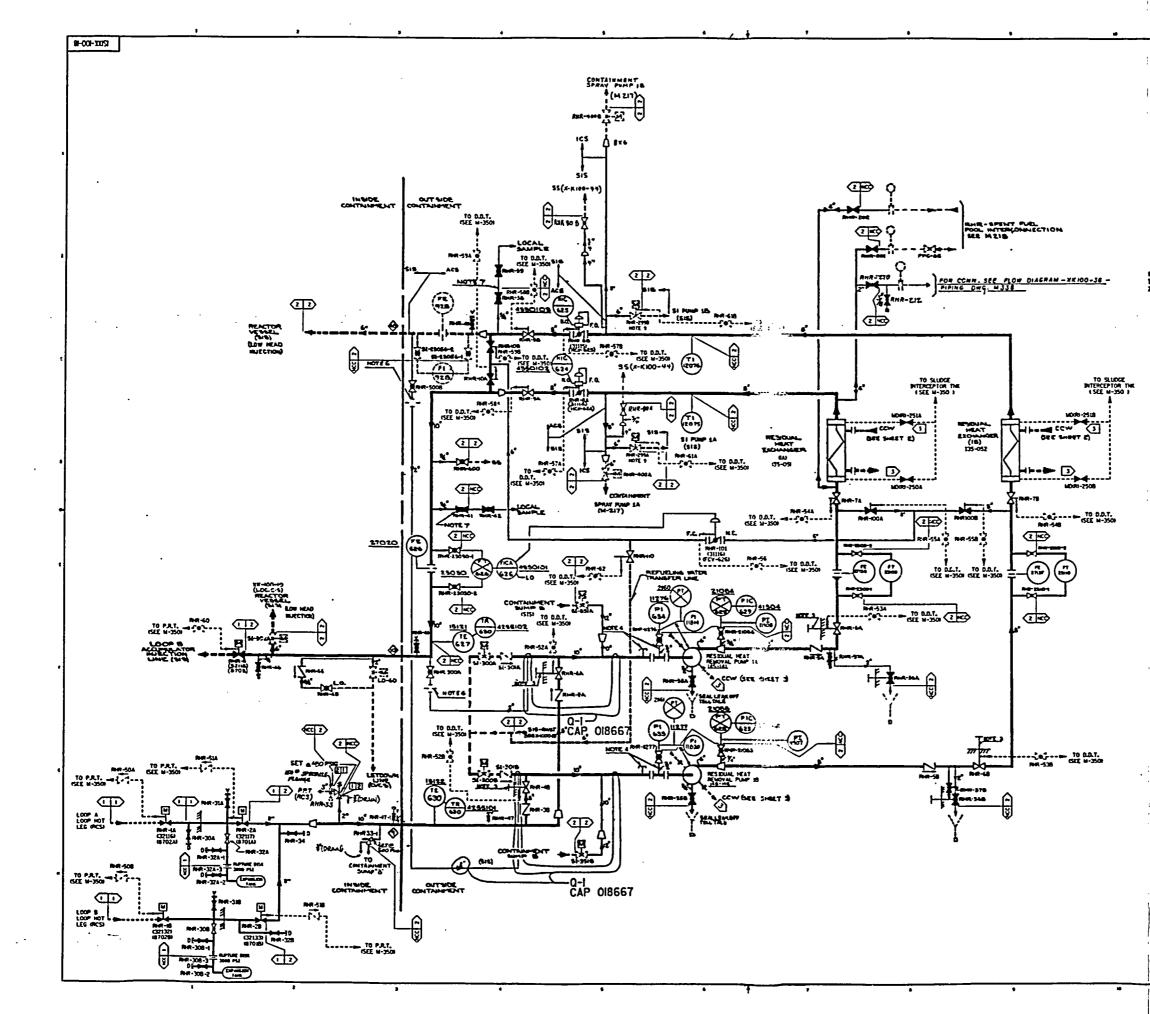


 $\left( \right)$ 





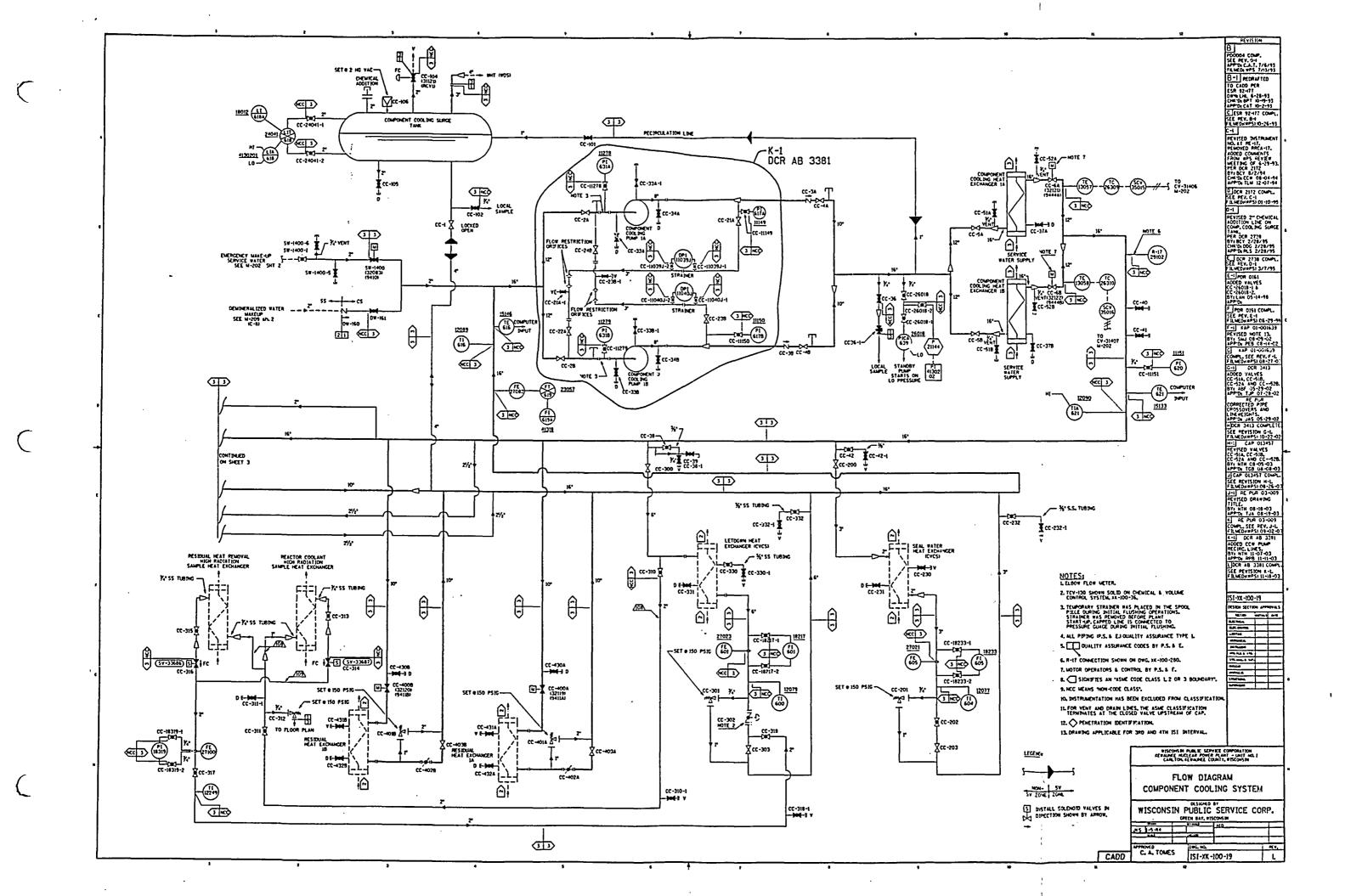


 $\left( \right)$ 

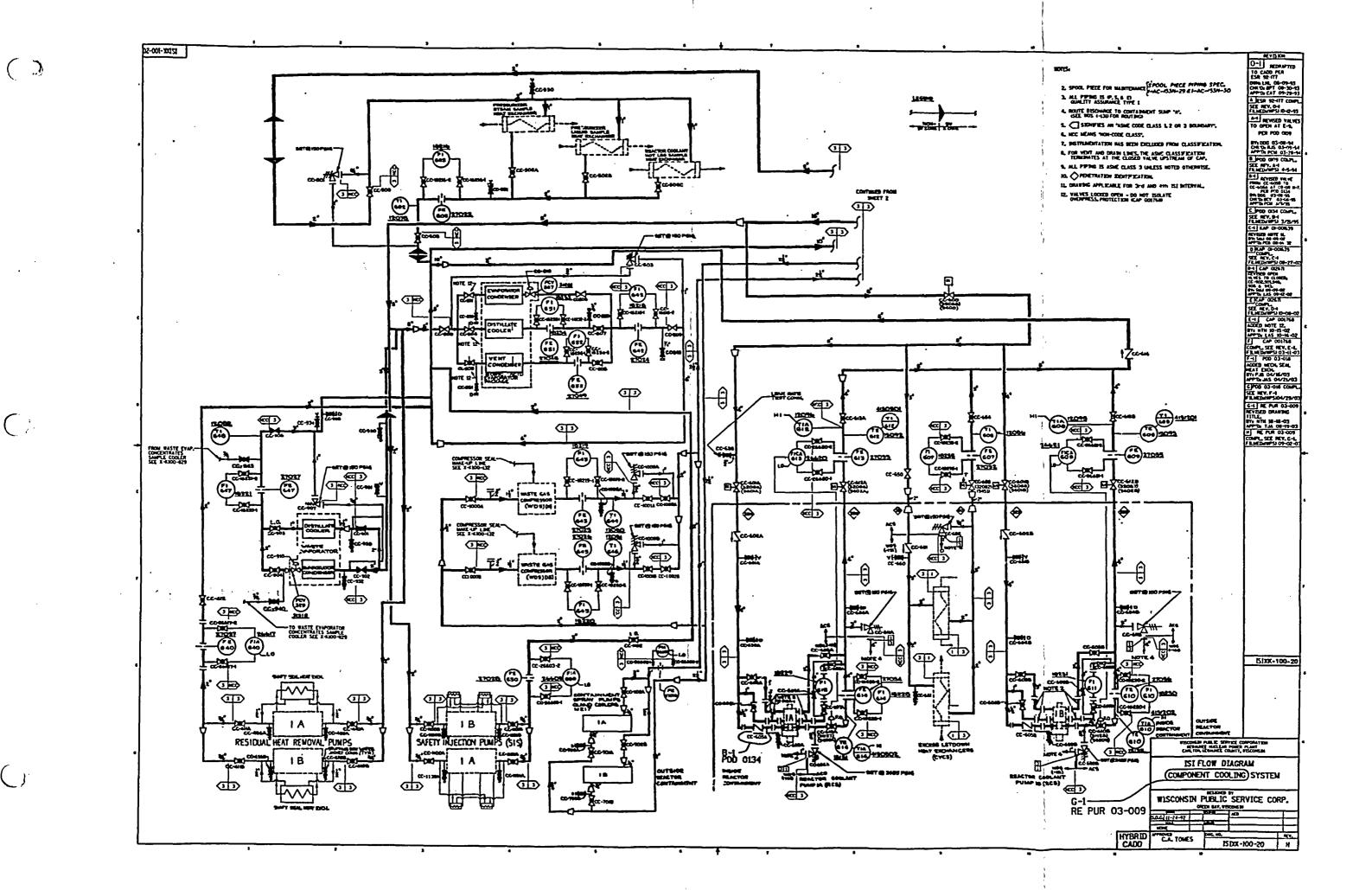



 $\left( \right)$ 



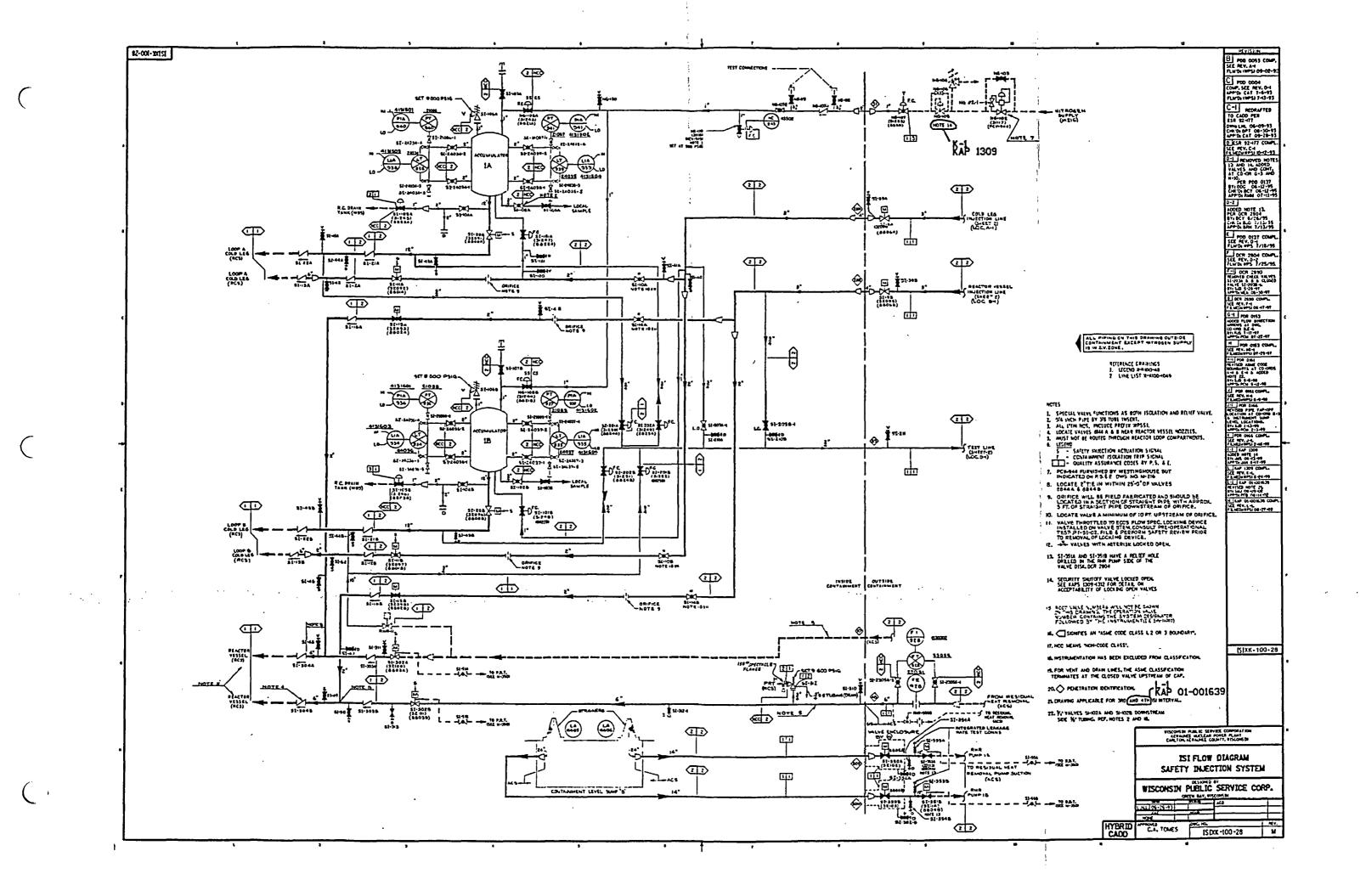


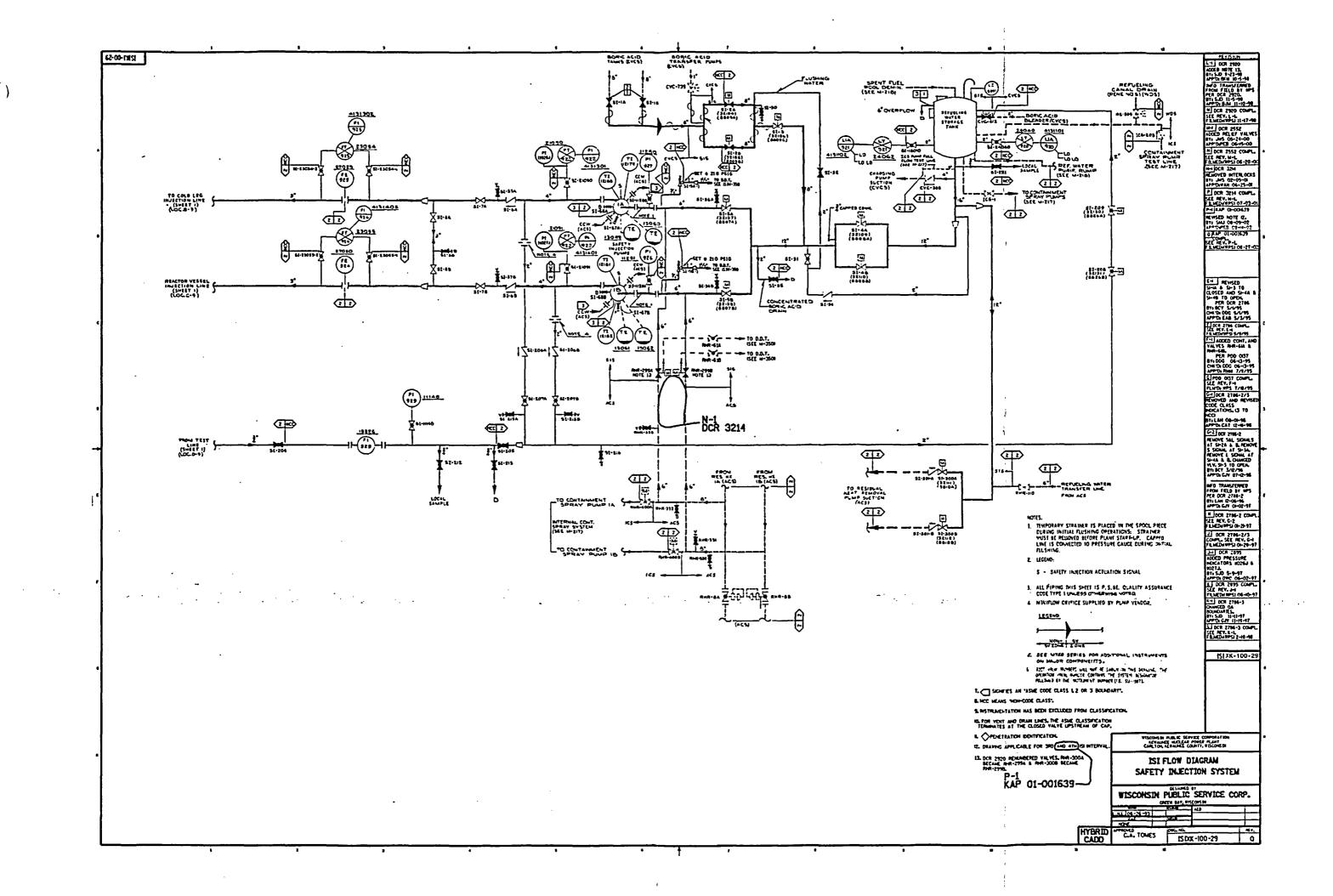


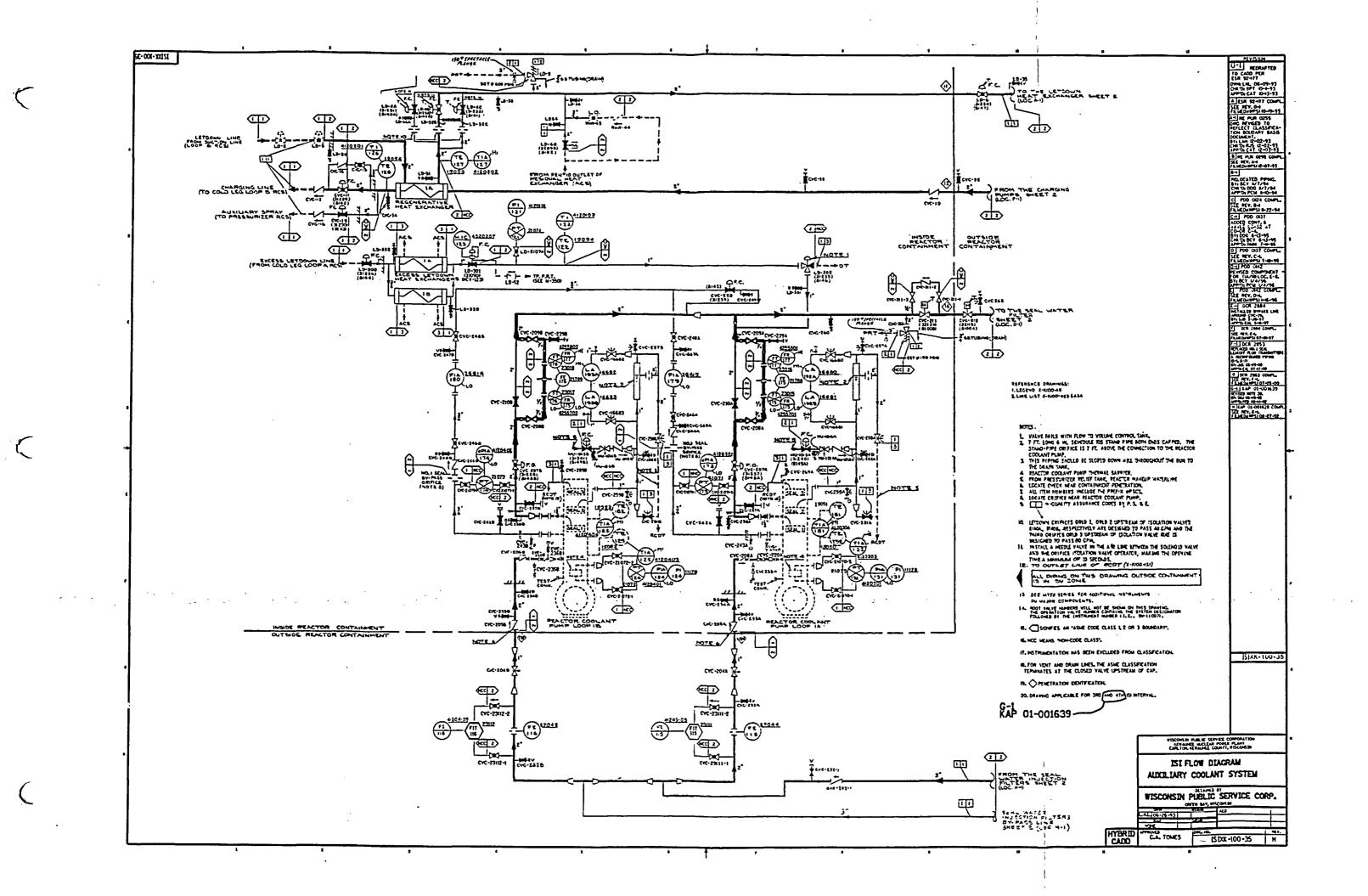



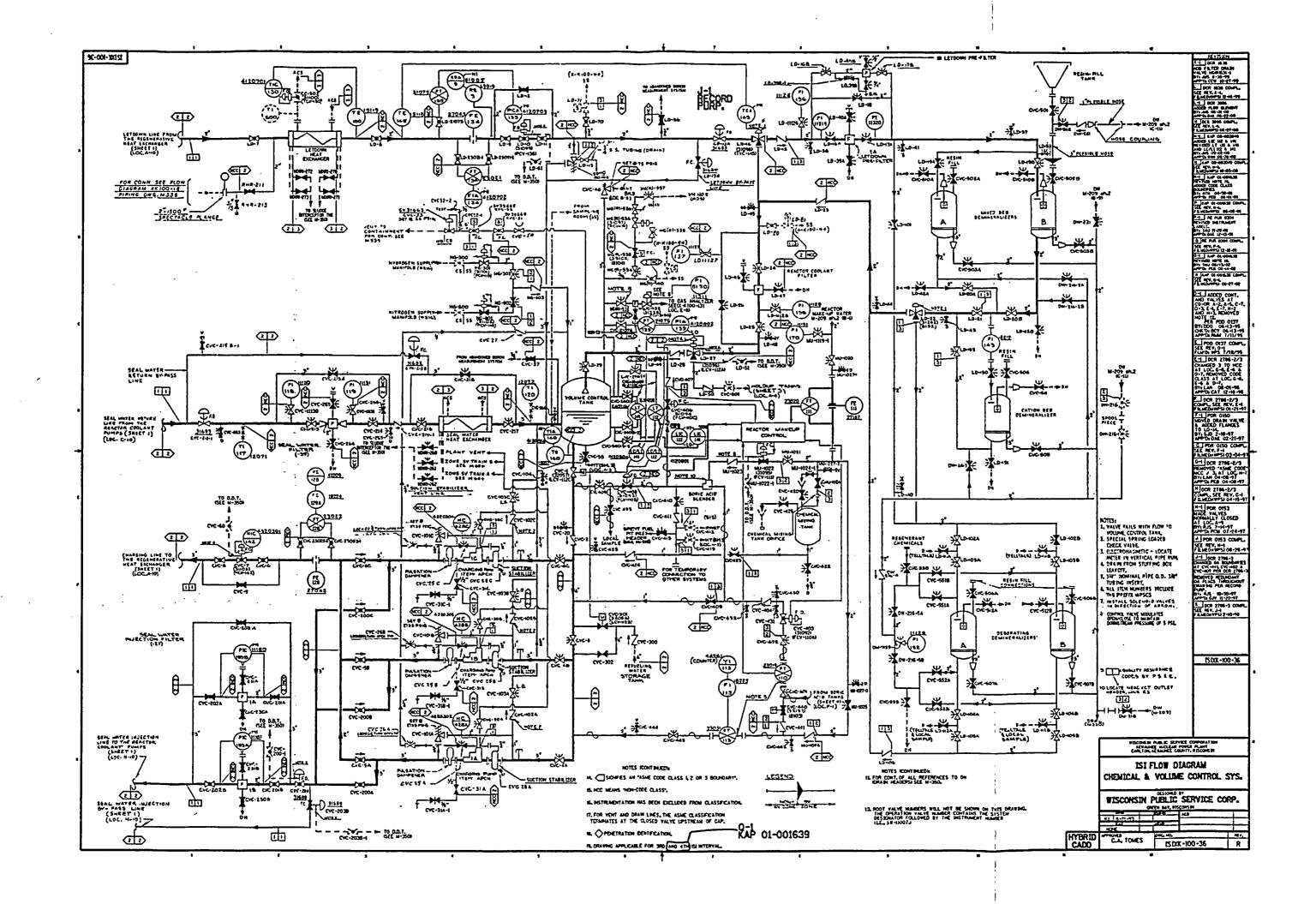

( )

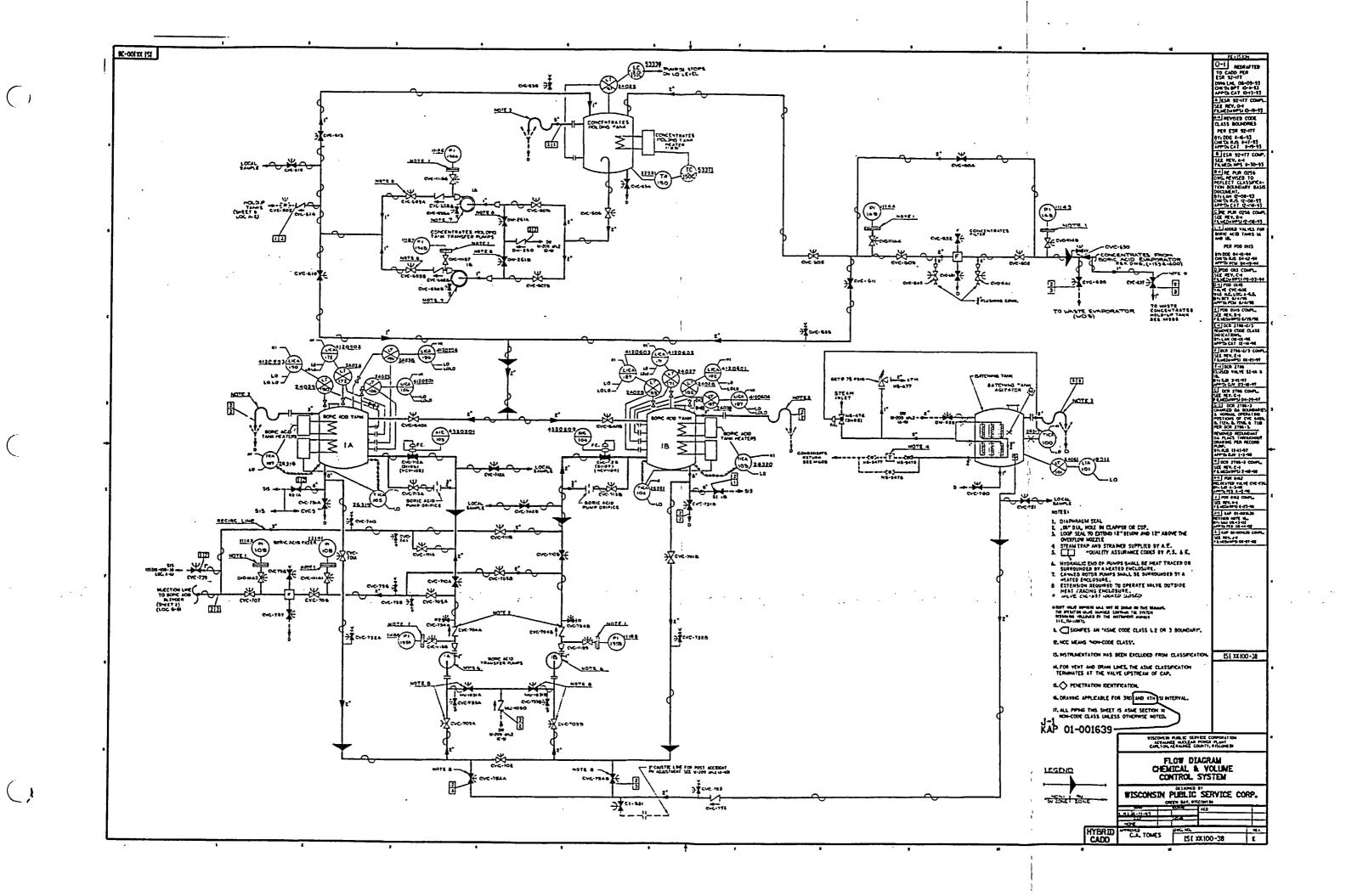
| EPENCE DRAW INGS: .<br>LECED X= K100-45<br>LING LIST X=K100-45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | RUSSON                                                                                                                                   | 2311<br>ME<br>UME<br>UME<br>UME<br>407<br>737<br>737<br>737<br>737<br>737<br>737<br>737<br>7 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| NOTES:<br>L<br>2. ALL ITOM NUMBER'S INCLUDE PRO<br>3. BOYL CAR OPERATE VALVE.<br>4. TOMOGRAPHY STEN BER IS PLACE<br>PRECEDURING INITIAL PLUSHING.<br>5. TALL PRIME IS US ADDRESS TO JOURNE<br>5. ALL PRIME IS US, SAEJ OULLY<br>4. ALL PRIME IS US, SAEJ OULLY<br>7. 3/4 PIPE X 3/8 TURE INSERT.<br>4. BEE MITTE CONTONENTS.<br>5. OCT 3250 ROLLARS TO ADDRESS.<br>5. OCT 3250 ROLLARS TO ADDRESS.<br>6. DOR 3250 ROLLARS PRO ADDRESS.<br>6. DOR 3250 ROLLARS PRO ADDRESS.<br>8. OCT 3250 ROLLARS PRO ADDRESS.<br>8. OCT 3250 ROLLARS PRO ADDRESS.<br>9. DOR 3250 ROLLARS PRO ADDRESS.<br>9. DOR 3250 ROLLARS PRO ADDRESS.<br>1. DOR 3250 ROLL | D W THE SPOOL<br>OPERATORS,<br>OPER PLANT START-UP<br>PRISSURE CALCE<br>Y ASSURANCE TYPE I,<br>PUMP YENDOR,<br>MG OUTSIDE<br>COMAL INSTRUMENTS<br>MG OUTSIDE<br>COMAL INSTRUMENTS<br>COMAL INSTRUMEN | ит»,<br>1410н. | LI RENOVED<br>S. D. S. D. S. D. S. S. S. D. S. | Dor, 175<br>175<br>175<br>175<br>175<br>175<br>175<br>175                                    |
| VICCOMENT PARLE SUPPLY CONTRACTOR<br>STRAND ALCUM FORD PLANT<br>CAR TON WILL CONTRACTOR<br>ISI FLOW DIAGRAM<br>RESIDUAL HEAT REMOVAL SYSTEM<br>WISCONSIN PUBLIC SERVICE CORP.<br>STR MAY, HIGGIN M<br>LALLON-76-73<br>LALLON-76-73<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                                                                                                                          |                                                                                              |
| HYBRID<br>CADO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50XX-100       | -18                                                                                                                                      | R<br>R                                                                                       |

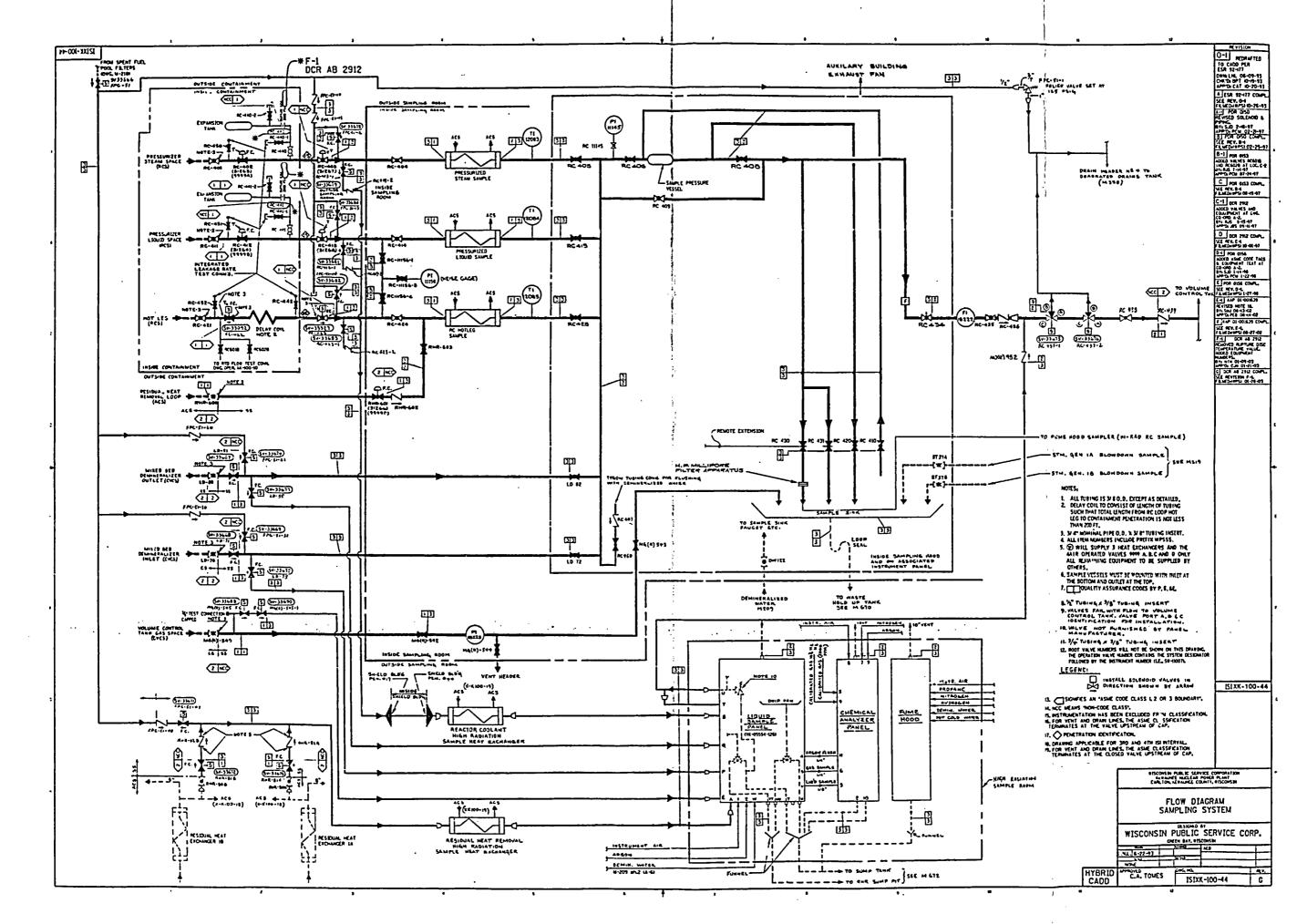

REFERENCE DRAWINGS: , L. LECEND X-KIOD-44 2. LINE LIST X-KIOD-3



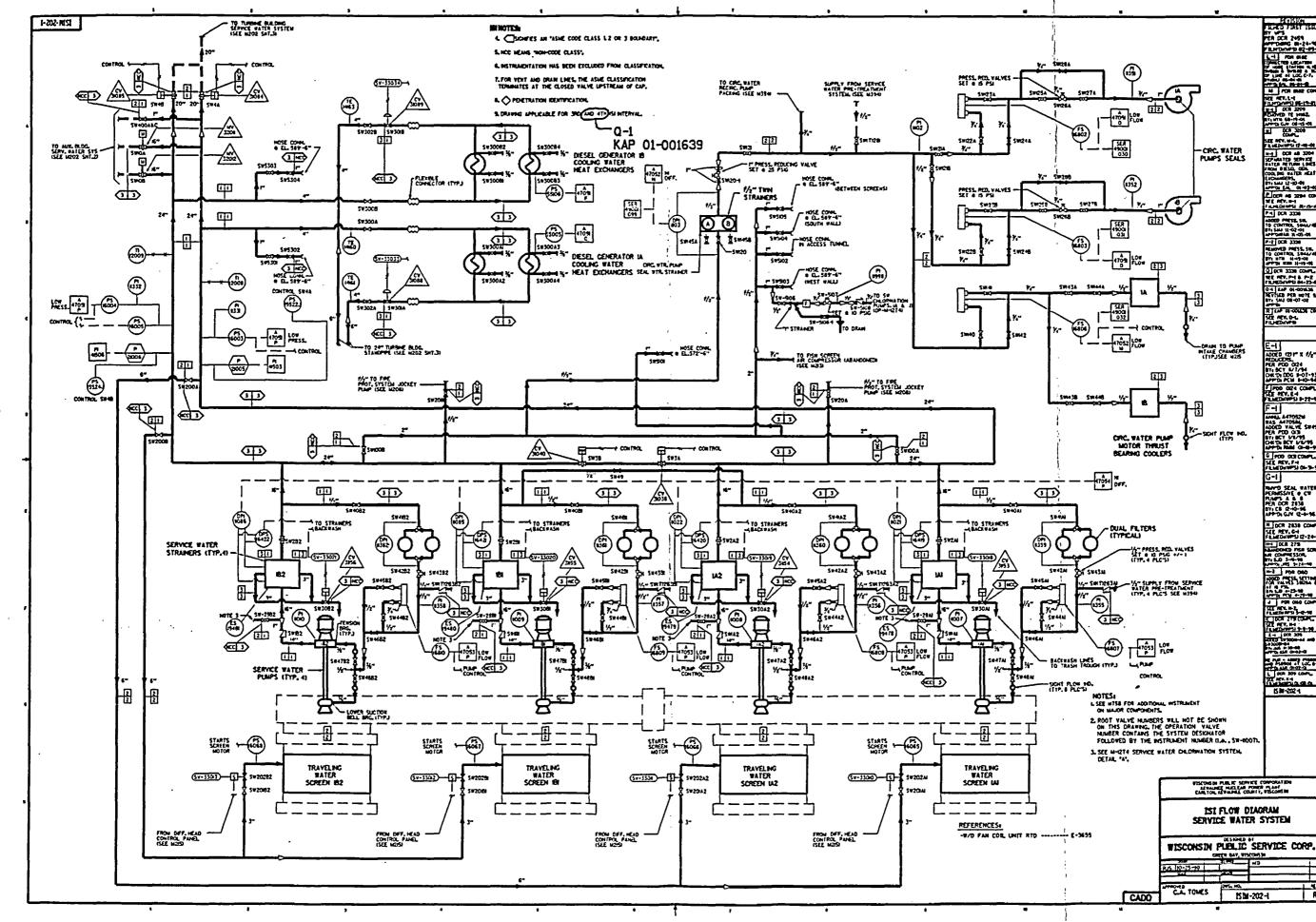





 $C_{\ell}$ 


()





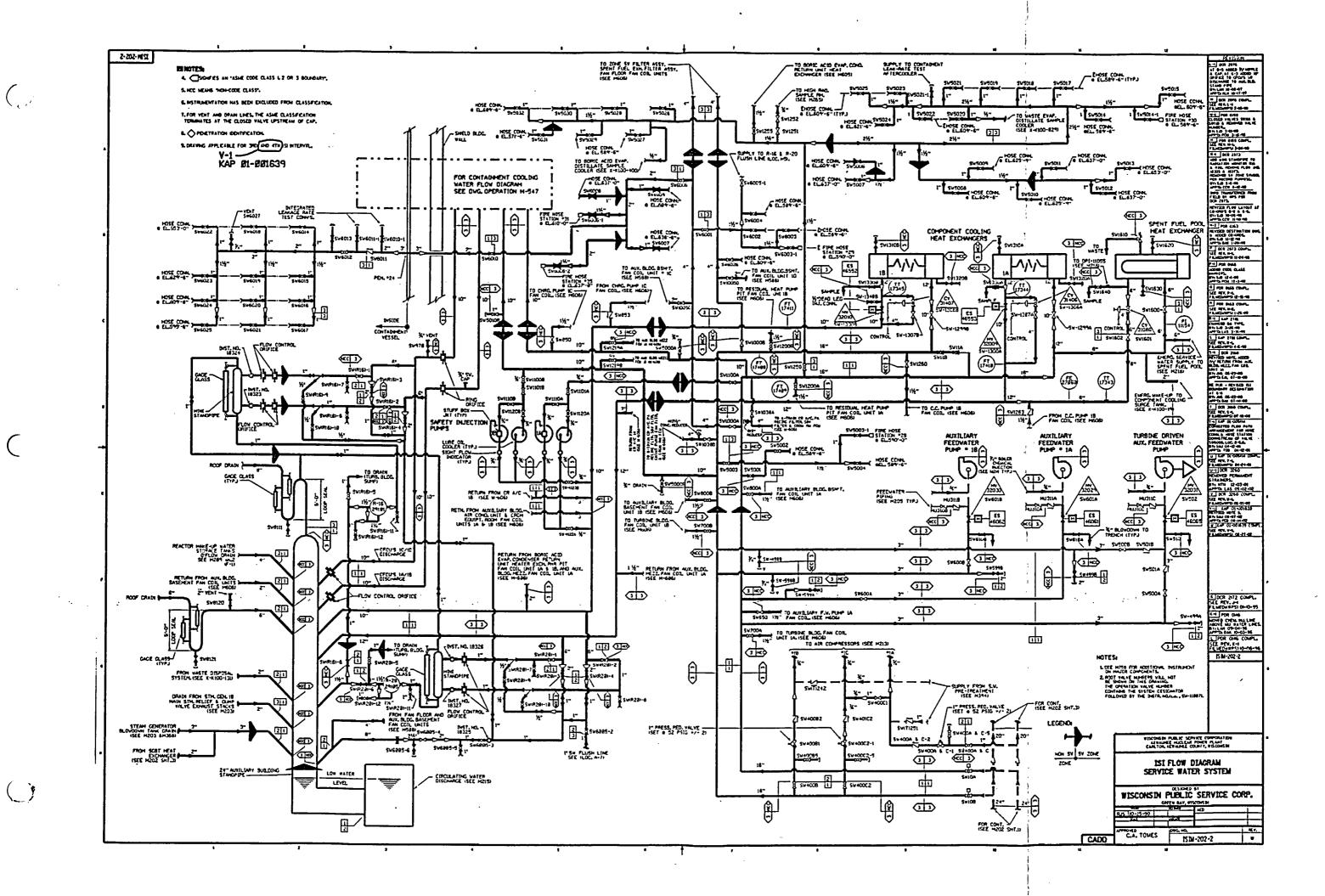



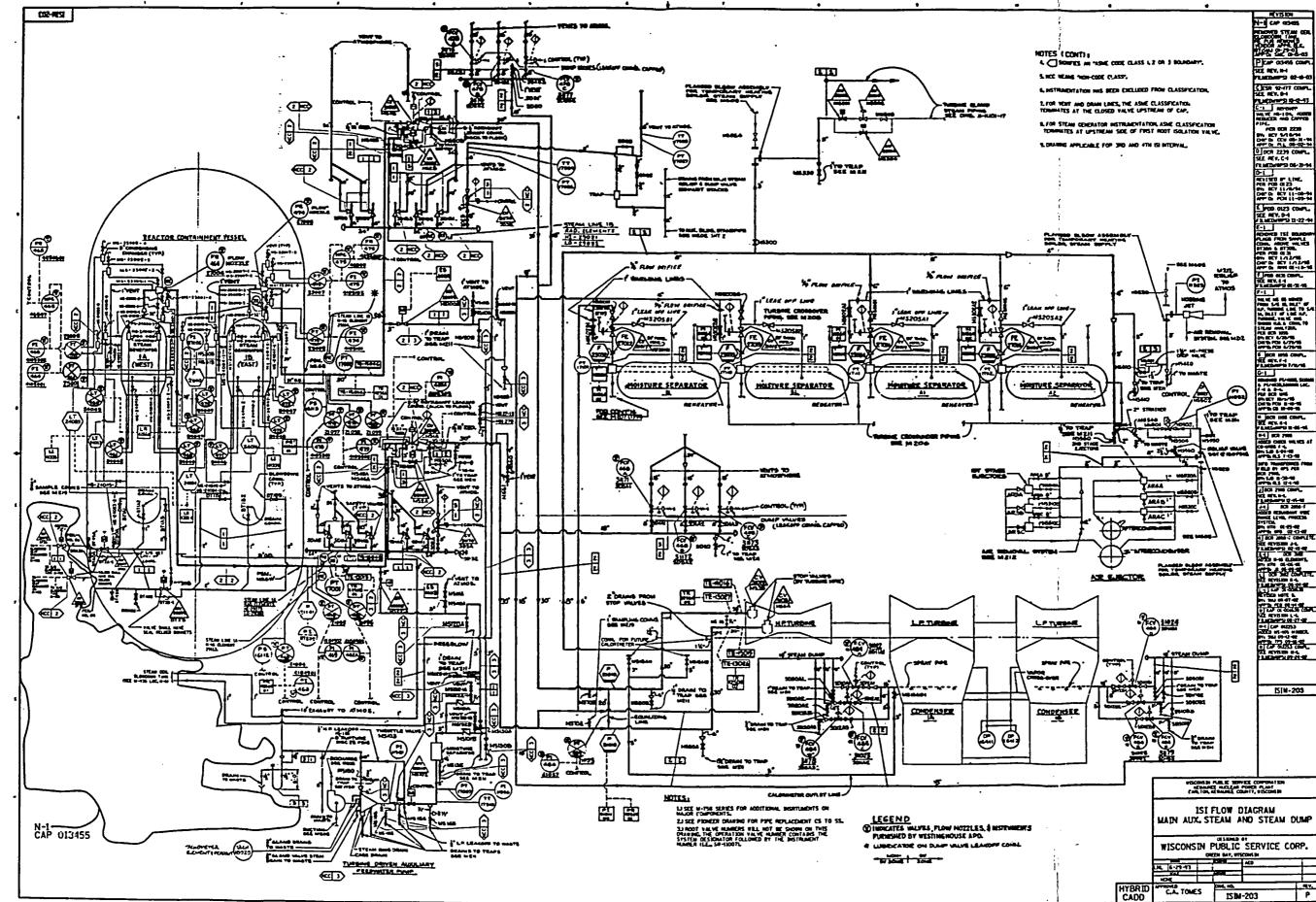




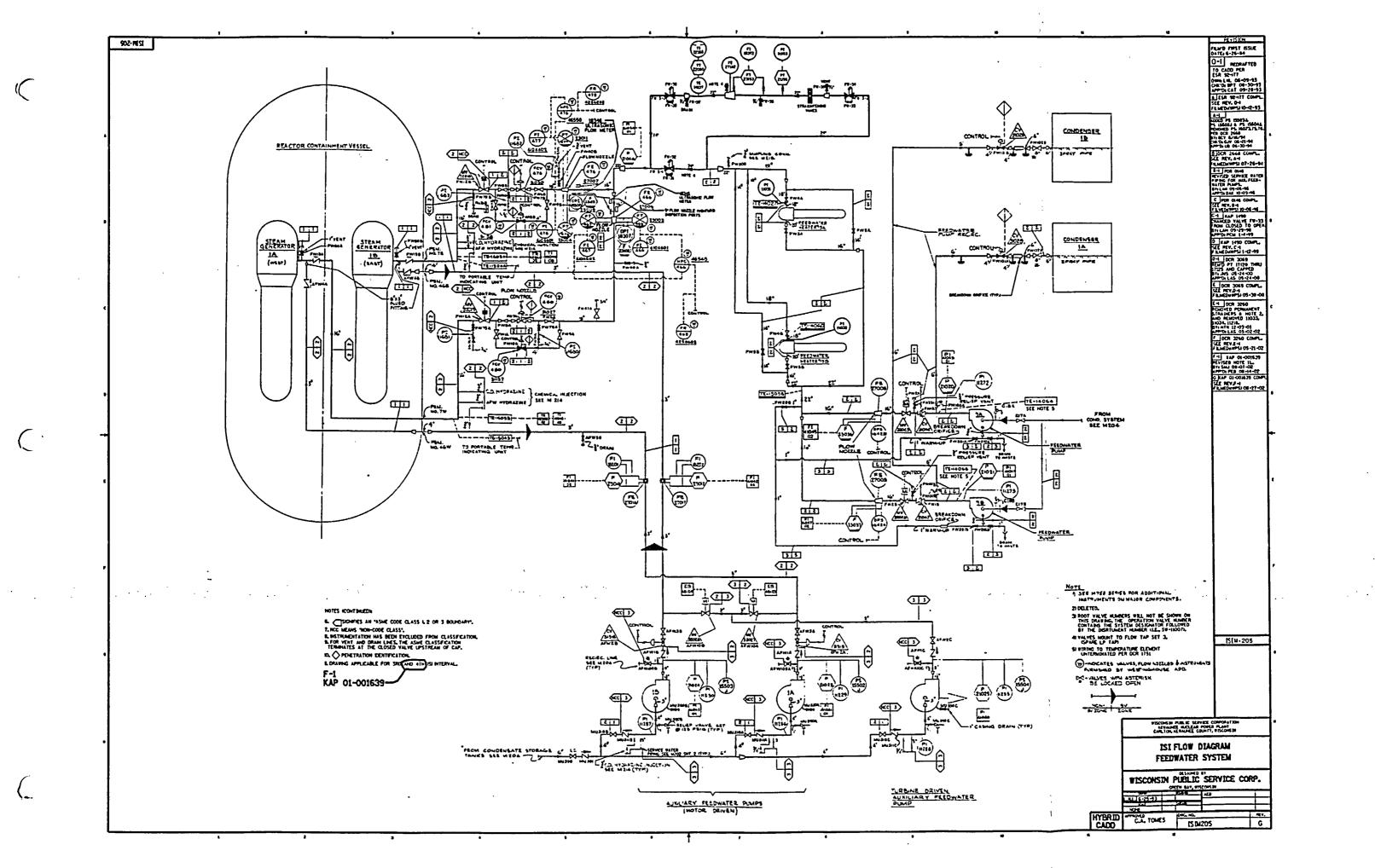



()





 $\langle \rangle$ 

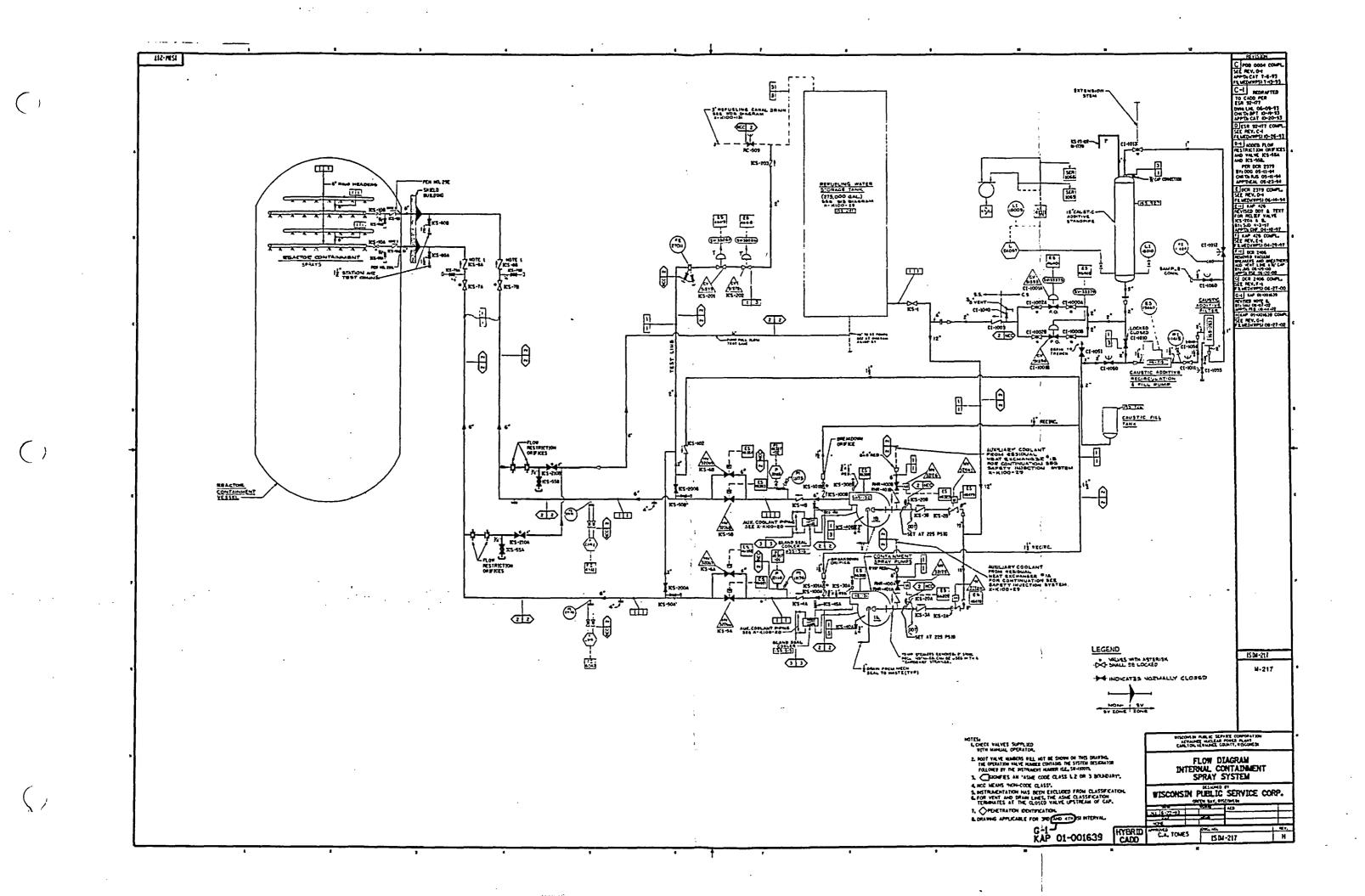
()


-1 /04 84 14182 000000055 1 5000 12-10-01 1-700 64 01-47-4 007 AB 3294 00 AEV. II-1 0 000 3338 CONTROL SMAL CONTROL SHALFS SH. CONTROL SHALFS HTTL H-19-CH PTH HIM H-19-CH RY.PH & PZ 1 SAP 01-001636 1 SED PER 1076 9 1 SAU 08-07-02 100 100 01-004256 (04 12 AEV. 0-L U-ED-(1475) 2-1 J 40000 mm x 1/2-NEDUCERS. PER POD 024 BY: BCY L/7/94 CHKTD: DDG 8-07-93 APPTA PCH 1-10-94 F POD 024 COMPL. SEE REV. E-1 FEMEDRINPSI 1-22-94 AS A4705M. DOED VALVE SU49. A POD 03 H BCY VL/95 & DA BCY VL/95 #70 RAM 01-0-95 EL REV. F-PERDESSIVE & CT PERDESSIVE & CT PUNPS A & B PER DOR 2138 LIEDKR 2838 COMPL SEE REV. 64 LIEDKRPS 12-24-9 LHED-KUPS 12-24-9 --- DCR 275 EMEDIAES PISH SCHEL ACCOMPANY JUS 3-24-98 PROJ JUS 3-24-98 100-04 10-00-02-02 Printer of Contract

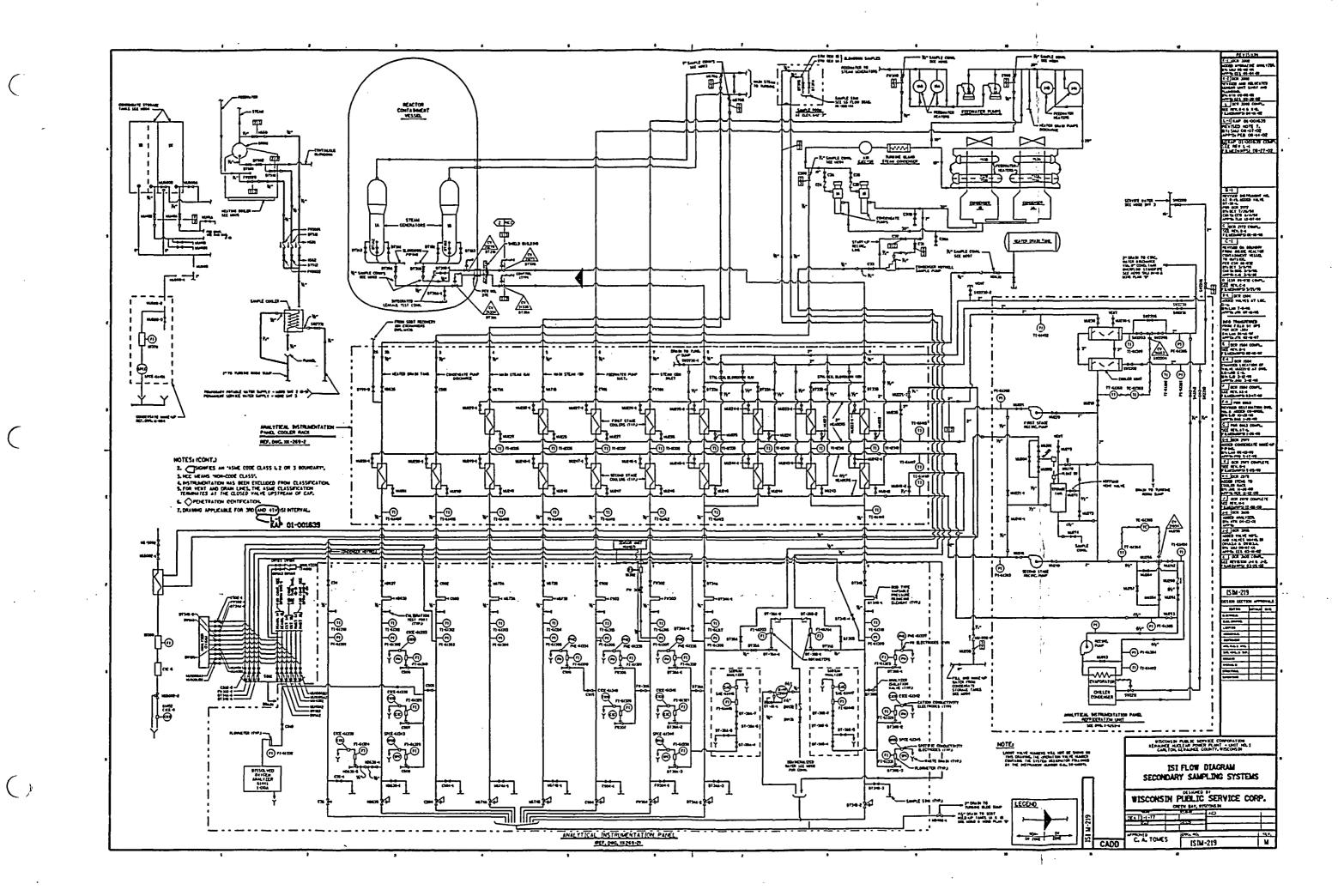
R

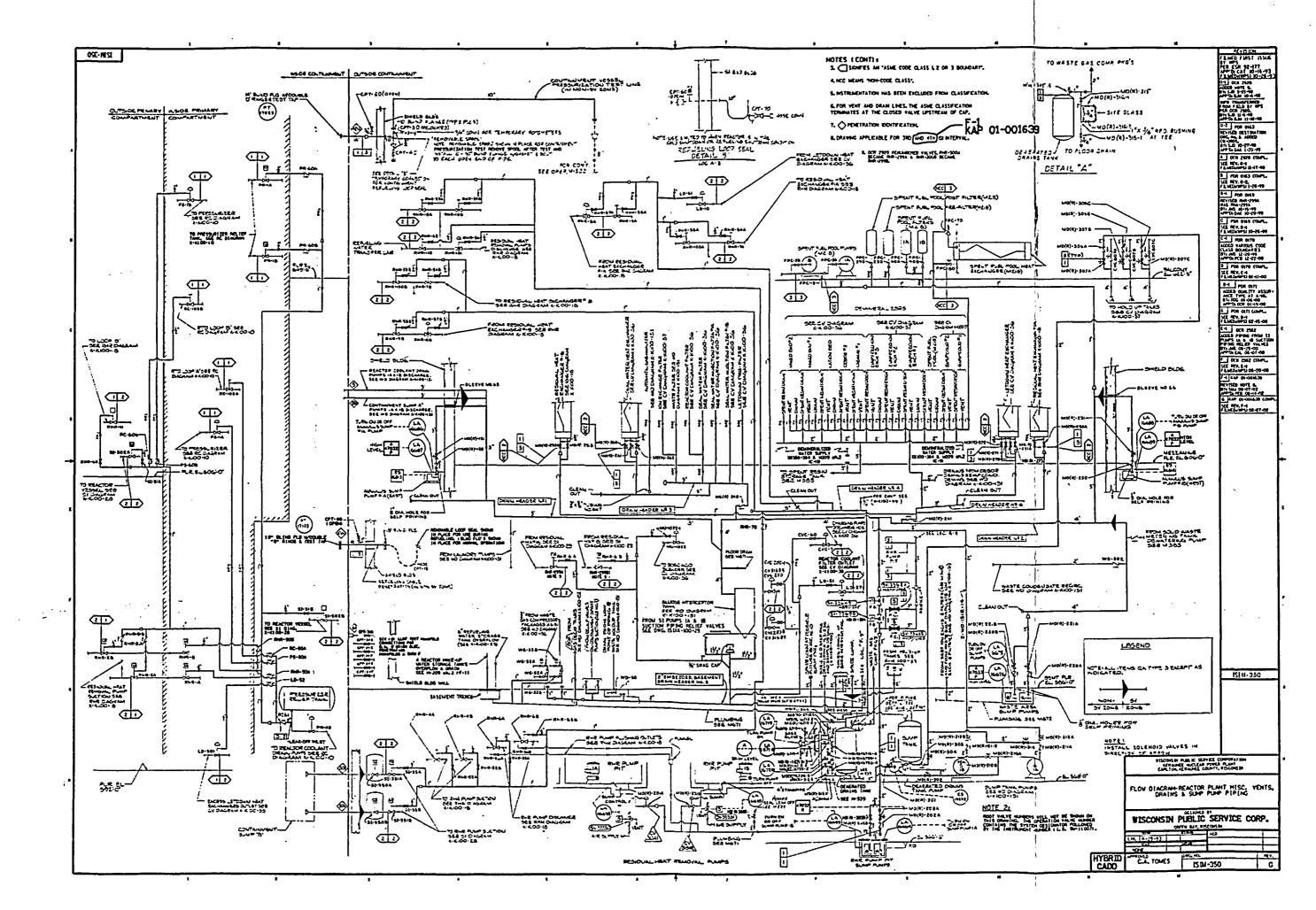




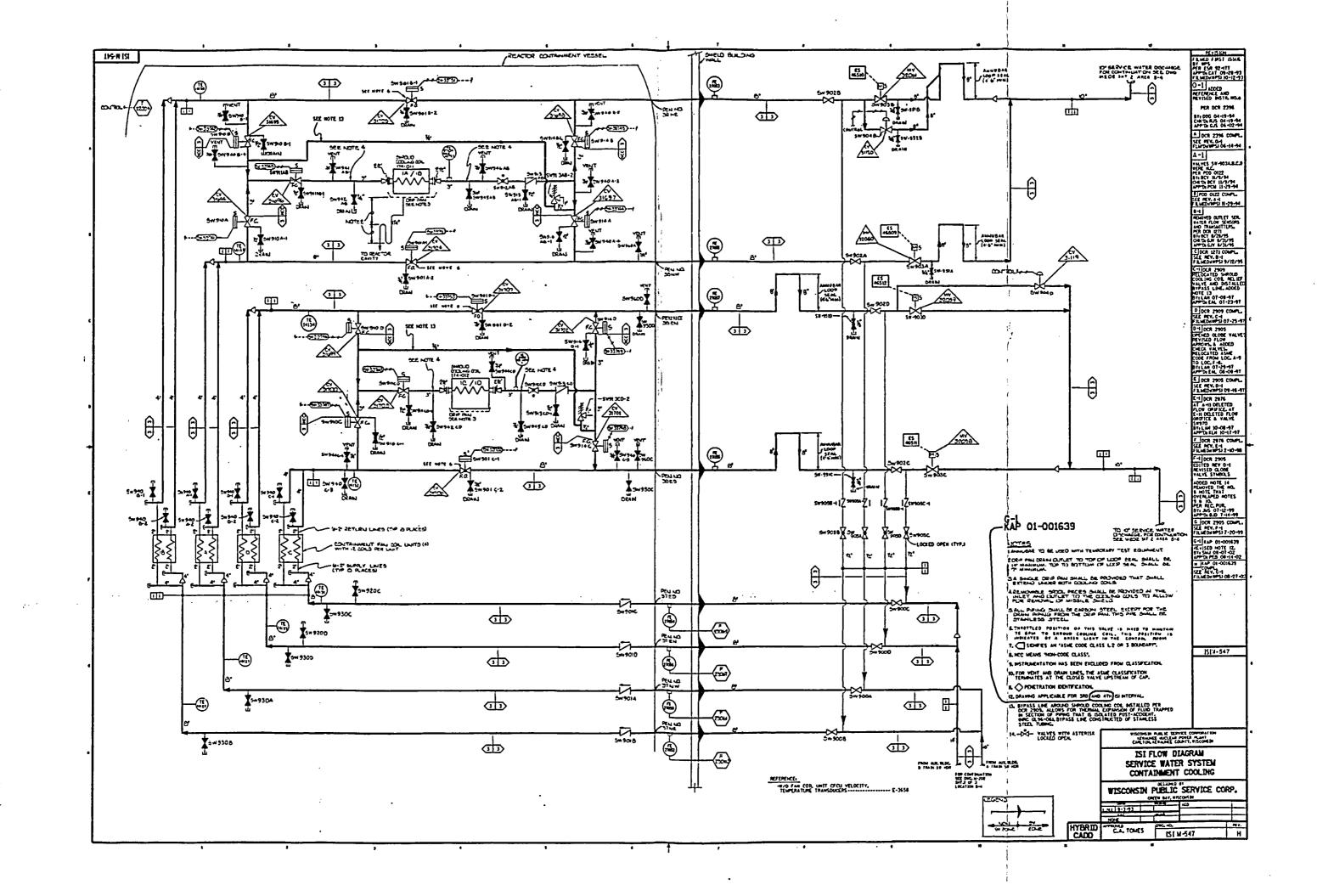

AL.

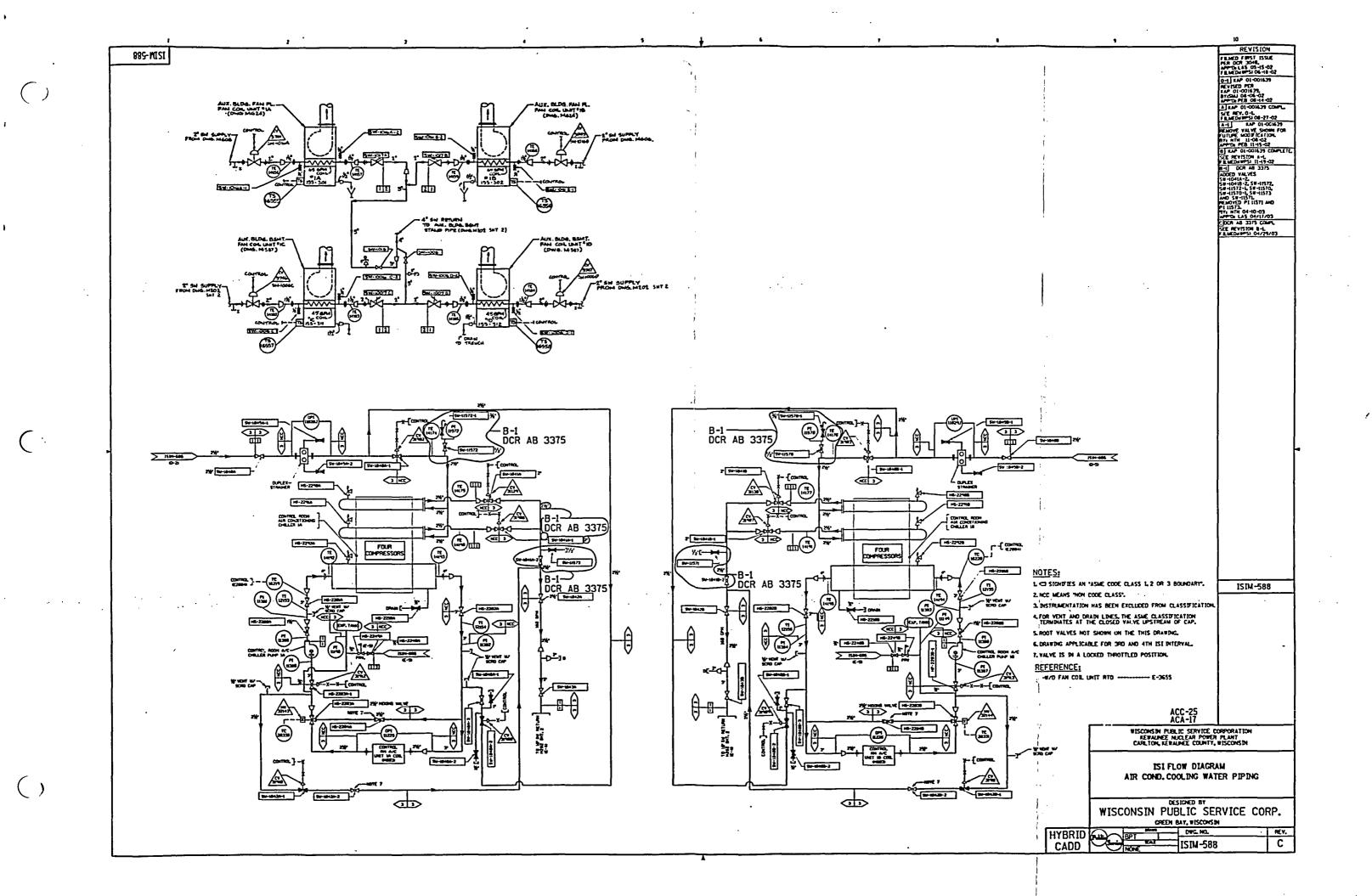


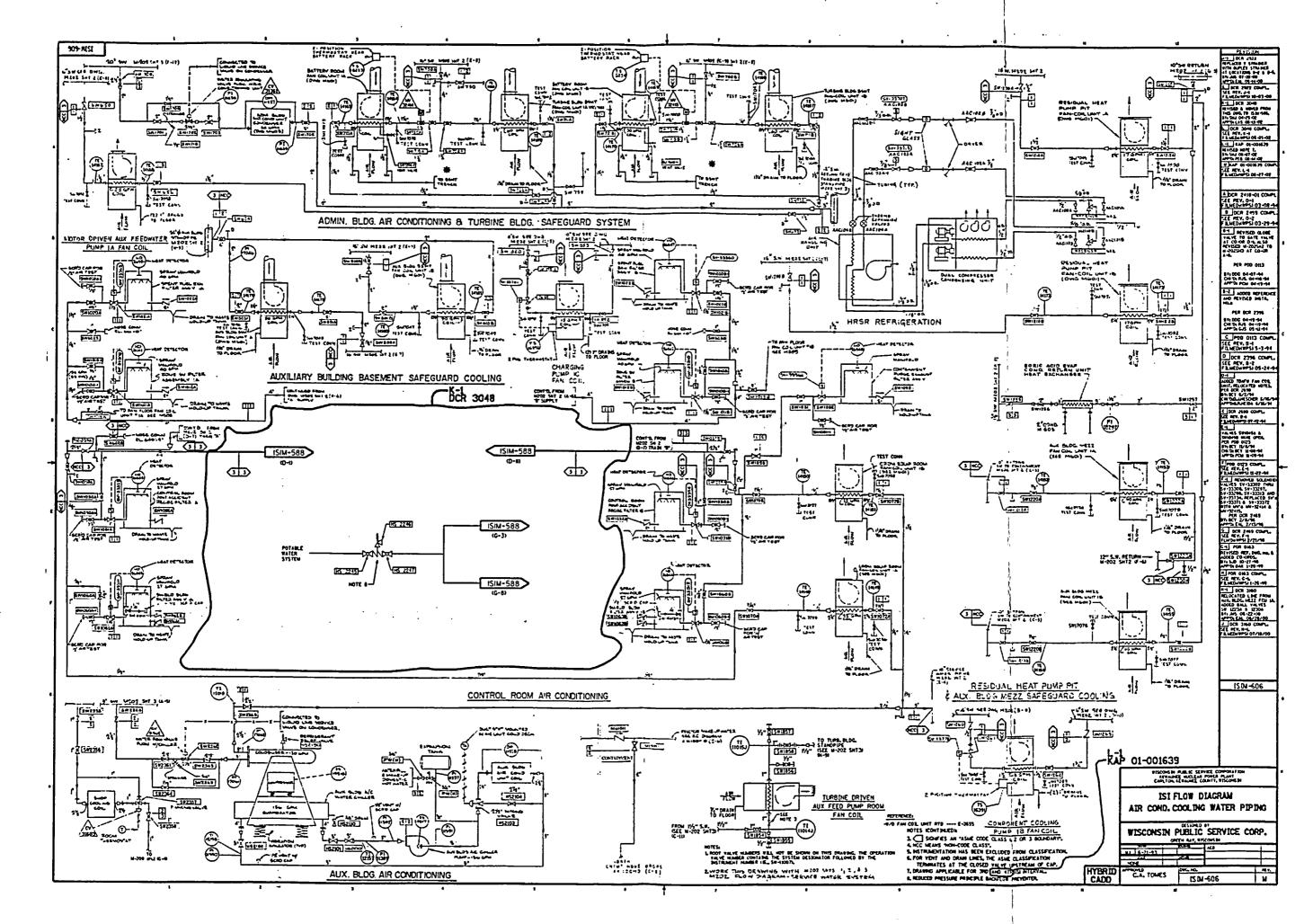


!




 $\langle$ 






.







. • .•

 $\mathcal{C}$ 

#### **Calibration Blocks**

Calibration blocks for the Fourth 10-Year Inservice Inspection (ISI) Interval will be the same as those utilized during the Second and Third Inspection Interval. The attached Calibration Block table (page B-2) provides a summary of these calibration blocks. Certifications for these calibration blocks is on file at the Kewaunee Nuclear Power Plant.

The calibration blocks used during the Second Inspection Interval were reviewed by Westinghouse Electric Corporation to verify that they satisfied the requirements of the 1980 Edition up to and including Winter 1981 Addenda of ASME Boiler and Pressure Vessel Code, Sections V and XI. Calibration blocks that deviated from the intent of the 1980 Edition up to and including Winter 1981 Addenda of ASME Boiler and Pressure Vessel Code, Sections V and XI. Calibration blocks, when required for the Third Inspection Interval, were manufactured to meet the requirements of the 1989 Edition of ASME Boiler and Pressure Vessel Code, Sections V and XI. New calibration blocks, when required for the Fourth Inspection Interval, will be manufactured to meet the requirements of the 1998 Edition 2000 Addenda of ASME Boiler and Pressure Vessel Code, Section V and XI.

(

(

## **Calibration Blocks**

|          |                              | KEWAUNEE NUCLE             | CAR POWER PLANT            |                                                                                                                             |
|----------|------------------------------|----------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| •        |                              | CALIBRATI                  | ON BLOCKS                  |                                                                                                                             |
| IDENTITY | SIZE/SCHEDULE                | IDENTITY OR<br>HEAT NUMBER | MATERIAL                   | COMPONENT/SYSTEM                                                                                                            |
| WPS-1    | 2.375"T x 7.9375"L x 8.125"W | B2836                      | A351 Grade CF8A            |                                                                                                                             |
| WPS-3    | 28" - 0.858"T                | 802E03230                  | A516 Grade 70 Carbon Steel | 28" - 0 .858"T Piping                                                                                                       |
| WPS-4    | 24" SCH 80 1.219"T           | N13070                     | A106 Grade B Carbon Steel  | 24" SCH 80 Main Steam Piping                                                                                                |
| WPS-5    | 14" SCH 140 1.250"T          | 2637-4-2                   | A376 TP316 Stainless Steel | 14" SCH 140 Pressurizer Surge Nozzle                                                                                        |
| WPS-6    | 16" SCH 140 1.438"T          | N92392                     | A106 Grade B Carbon Steel  | 16" SCH 140 Feedwater Piping                                                                                                |
| WPS-7    | 12" SCH 160 1.312"T          | 2872-8                     | A376 TP316 Stainless Steel | 12" SCH 160 Accumulator Discharge Piping                                                                                    |
| WPS-8    | 12" SCH 40 .406"T            | 2808-4-1-2                 | A312 TP304 Stainless Steel | 12" SCH 40 RHR Piping                                                                                                       |
| WPS-9    | 10" SCH 40S .365"T           | 1971-12-1-2                | A312 TP304 Stainless Steel | 10" SCH 40S RHR Piping                                                                                                      |
| WPS-10   | 10" SCH 140 1.00"T           | D61232                     | A312 TP304 Stainless Steel | 10" SCH 140 RHR Return and Pressurizer Surge<br>Piping: Charging Pump Pulsation Dampener and<br>Seal Water Injection Filter |
| WPS-11   | 8" SCH 140 .812"T            | 2876-1-1                   | A376 TP316 Stainless Steel | 8" SCH 140 RHR Piping                                                                                                       |
| WPS-12   | 8" SCH 40S .322"T            | M0937                      | A312 TP316 Stainless Steel | 8" SCH 40S RHR and SIS Piping                                                                                               |
| WPS-13   | 8" SCH 80 .500"T             | 139624                     | A106 Grade B Carbon Steel  | 8" SCH 80 Main Steam Piping                                                                                                 |
| WPS-14   | 8" SCH 100 .594"T            | 64078                      | A106 Grade B Carbon Steel  | 8" SCH 100 Feedwater Piping                                                                                                 |

n:\group\nuclear\docfiles\isi1\appendb.doc

(

## **Calibration Blocks**

|          |                      | KEWAUNEE NUCLI             | EAR POWER PLANT                       |                                                                                                                   |
|----------|----------------------|----------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------|
|          |                      | CALIBRATI                  | ON BLOCKS                             |                                                                                                                   |
| IDENTITY | SIZE/SCHEDULE        | IDENTITY OR<br>HEAT NUMBER | MATERIAL                              | COMPONENT/SYSTEM                                                                                                  |
| WPS-15   | 6" SCH 40 .280"T     | M9959                      | A312 TP304 Stainless Steel            | 6" SCH 40S RHR, SIS and Containment Spray<br>Piping                                                               |
| WPS-16   | 6" SCH 80 .432"T     | 240393                     | A106 Grade B Carbon Steel             | 6" SCH 80 Main Steam Piping                                                                                       |
| WPS-17   | 6" SCH 160 .719"T    | 2631-4-2                   | A376 TP316 Stainless Steel            | 6" SCH 160 SIS, Plocap, Pressurizer Safety<br>Piping, Pressurizer Safety Nozzles and Pressurizer<br>Relief Nozzle |
| WPS-18   | 4" SCH 160 .531"T    | M9290                      | A376 TP316 Stainless Steel            | 4" SCH 160 SIS, Pressurizer Spray Nozzle and<br>Control Rod Drive Mechanisms                                      |
| WPS-19   | 4" SCH 120 .438"T    | M6108                      | A376 TP316 Stainless Steel            | 4" SCH 120 Piping                                                                                                 |
| WPS-20   | 3" SCH 160 .438"T    | 453853                     | A376 TP316 Stainless Steel            | 3" SCH 160 RTD, Pressurizer Relief and<br>Pressurizer Spray Piping                                                |
| WPS-21   | 2" SCH 160 .344"T    | 08754                      | A312 TP304 Stainless Steel            | 2" SCH 160 RTD, SIS, Drain, Seal Injection,<br>Charging, Letdown and Auxiliary Spray Piping                       |
| WPS-22   | 1.5" SCH 160 .281"T  | 87623                      | A312 TP316H Stainless Steel           | 1.5" SCH 160 Seal Injection Piping                                                                                |
| WPS-23   | 5"T x 18"L x 5"W     | C0123-2                    | SA533 Grade B Class 1<br>Carbon Steel | Pressurizer and Steam Generator Channel Head to<br>Tube Sheet                                                     |
| WPS-24   | .312"T x 9"L x 2.5"W | F80085                     | SA240 TP304 Stainless Steel           | Volume Control Tank                                                                                               |

(

## **Calibration Blocks**

|          |                                   | KEWAUNEE NUCLE             | CAR POWER PLANT                       |                                                                                              |
|----------|-----------------------------------|----------------------------|---------------------------------------|----------------------------------------------------------------------------------------------|
|          |                                   | CALIBRATI                  | ON BLOCKS                             |                                                                                              |
| IDENTITY | SIZE/SCHEDULE                     | IDENTITY OR<br>HEAT NUMBER | MATERIAL                              | COMPONENT/SYSTEM                                                                             |
| WPS-25   | 14" SCH 40S .375"T                | F70623                     | A358 Class 2 TP304 Stainless<br>Steel | Letdown Heat Exchanger                                                                       |
| WPS-26   | 1.5"T x 13"L x 2.5"W              | B6272                      | SA516 Grade 70 Carbon Steel           | Pressurizer Skirt, 31" Main Steam Piping and 30"<br>Main Steam Tee                           |
| WPS-27   | 9.5"875"T                         | 155512                     | A351 CF8                              | Regenerative Heat Exchanger                                                                  |
| WPS-29   | 7"T x 5.75" Diameter Stud Segment | P3199                      | SA540 001-7                           |                                                                                              |
| WPS-30   | .5"T x 9"L x 2.5"W                | F80085                     | SA240 TP304 Stainless Steel           | Residual Heat Exchanger                                                                      |
| WPS-31   | 10" SCH 120 .843"T                | 6-448                      | A312 TP304 Stainless Steel            | 10" SCH 120 Piping                                                                           |
| WPS-32   | 16" SCH 100 1.031"T               | 89A410                     | A106 Grade B Carbon Steel             | 16" SCH 100 Feedwater Piping                                                                 |
| WPS-33   | 16" SCH 120 1.219"T               | 42794                      | SA333 Grade 6 Carbon Steel            | 16" SCH 120 Piping                                                                           |
| WPS-34   | 14" SCH 60 .594"T                 | N33188                     | SA106 Grade B Carbon Steel            | 14" SCH 60 Piping                                                                            |
| WPS-35   | 6"T x 20"L x 6"W                  | 125J596VAL                 | SA508 Class 2 Carbon Steel            | Reactor Vessel Closure Head and Reactor Vessel<br>Ligaments (Manual)                         |
| WPS-36   | 3.5"T x 18.25"L x 6"W             | C5128                      | SA533 Class 1 Carbon Steel            | Steam Generator Secondary Side: Steam<br>Generator Main Steam Nozzle Inside Radius<br>Corner |

n:\group\nuclear\docfiles\isil\appendb.doc

.

(

(

## **Calibration Blocks**

| ······································ | · · · · · · · · · · · · · · · · · · · | KEWAUNEE NUCLE             | EAR POWER PLANT                        |                                                                                                                                                 |
|----------------------------------------|---------------------------------------|----------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        |                                       | CALIBRATI                  | ON BLOCKS                              |                                                                                                                                                 |
| IDENTITY                               | SIZE/SCHEDULE                         | IDENTITY OR<br>HEAT NUMBER | MATERIAL                               | COMPONENT/SYSTEM                                                                                                                                |
| WPS-37                                 | 30" - 1.10"T                          | 3G5682                     | SA515 Grade 70 Class 1<br>Carbon Steel | 30" Main Steam Piping                                                                                                                           |
| WPS-38                                 | 16" SCH 60 .656"T                     | 94558                      | A106 Grade B Carbon Steel              | 16" SCH 60 Feedwater Piping                                                                                                                     |
| WPS-39                                 | 32" - 2.3"T                           | 125J596VAL                 | SA508 Class 2 Carbon Steel             | 32" - 2.3" T Main Steam Nozzles                                                                                                                 |
| WPS-40                                 | 5.75" Dia. x 56.625"L                 | 15045                      | SA540 Grade B24 Carbon<br>Steel        | Reactor Vessel Closure Head Studs                                                                                                               |
| WPS-41                                 | 4.50" Dia. x 30.50"L                  | 3P4028                     | SA540-68A Grade B24-<br>Carbon Steel   | Reactor Coolant Pump Main Flange Bolts                                                                                                          |
| WPS-42                                 | 16" Feedwater Nozzle Forging          | Q2Q149NQT<br>Q2Q150NQT     | SA508 Class 2A Carbon Steel            | Steam Generator Feedwater Nozzle Inner Radius                                                                                                   |
| WPS-RV-1                               | 16"T&L x 31"L&T x 8.625"W             | 22231/39088                | SA508 Class 3 Carbon Steel             | Reactor Vessel Flange to Vessel from Seal<br>Surface and Reactor Vessel Nozzle to Shell from<br>Nozzle Bore                                     |
| WPS-RV-2<br>(Modified<br>02/14/95)     | 9"T x 32"L x 6"W                      | 125J596VAL                 | SA508 Class 2 Carbon Steel             | Reactor Vessel Flange to Vessel (I.D.), Reactor<br>Vessel Integrally Welded Attachments and<br>Reactor Vessel Nozzle to Shell from Vessel Shell |

(

(

(

## **Calibration Blocks**

|                                          |                             | KEWAUNEE NUCLE             | CAR POWER PLANT                                              |                                                                                                                     |
|------------------------------------------|-----------------------------|----------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| · · · · · · · · · · · · · · · · · · ·    |                             | CALIBRATI                  | ON BLOCKS                                                    |                                                                                                                     |
| IDENTITY                                 | SIZE/SCHEDULE               | IDENTITY OR<br>HEAT NUMBER | MATERIAL                                                     | COMPONENT/SYSTEM                                                                                                    |
| WPS-RV-3                                 | 7"T x 28"L x 6"W            | 125J596VAL                 | SA508 Class 2 Carbon Steel                                   | Reactor Vessel Nozzle Inside Radius Section,<br>Reactor Vessel Upper Shell and Reactor Vessel<br>Intermediate Shell |
| WPS-RV-4                                 | 5"T x 18"L x 6"W            | 125J596VAL                 | SA508 Class 2 Carbon Steel                                   | Reactor Vessel Flange Ligaments, Reactor Vessel<br>Lower Head and Reactor Vessel Ring to Disc.                      |
| WPS-SIS-01 (Lost<br>by WNSD<br>08/10/94) | 6"T x 15"L x 4"W            | 125J596VAL                 | SA508 Class 2 Carbon Steel                                   | Reactor Vessel SIS Nozzle to Shell and Reactor<br>Vessel SIS Nozzle Inside Radius Section                           |
| WPS-RV-Safe-3<br>(Modified<br>02/14/95)  | 2.5"T x 12.5"L x 4"W        | 4952/P53627                | SA508 Class 2 Carbon<br>Steel/SA182 TP316 Stainless<br>Steel | Reactor Vessel Nozzle to Safe-Ends and Bore<br>Portion of Nozzle Inner Radius                                       |
| WPS-43 (Modified 02/14/95)               | 3.02"T x 12.0"L x 12.0"W    | C1488                      | A351 Grade CF8M                                              | Reactor Coolant Circumferential Piping: Reactor<br>Vessel Nozzle to Safe-ends                                       |
| WPS-44                                   | 3.18"T x 12.0"L x 12.0"W    | 5160C-1                    | SA351 Grade CF8A                                             | Reactor Coolant Longitudinal Piping Seams                                                                           |
| WPS-45                                   | 19.25"H x 11.65"L x 5.72" W | 280593                     | SA216-92 Grade WCC Carbon<br>Steel                           | 4" Pressurizer Spray Nozzle Inside Radius Section                                                                   |

.

(

(

## **Calibration Blocks**

|          | · · · · · · · · · · · · · · · · · · · | KEWAUNEE NUCLE             | CAR POWER PLANT                      |                                                                                                           |
|----------|---------------------------------------|----------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------|
|          | ·····                                 | CALIBRATIC                 | ON BLOCKS                            |                                                                                                           |
| IDENTITY | SIZE/SCHEDULE                         | IDENTITY OR<br>HEAT NUMBER | MATERIAL                             | COMPONENT/SYSTEM                                                                                          |
| WPS-46   | 8.375"H x 11.125"L x 7.68"W           | 280593                     | SA216-92 Grade WCC Carbon<br>Steel   | 14" Pressurizer Surge, 6" Pressurizer Safety and<br>6" Pressurizer Relief Nozzle Inside Radius<br>Section |
| WPS-47   | 15.9375"OD x 10.125" ID x 2.9"T       | 502979                     | A182 F316 Stainless Steel            | Reactor Coolant Pipe 12" Branch Connection<br>Nozzle                                                      |
| WPS-48   | 14.125" OD x 8.75" ID x 2.69"T        | 502979                     | A182 F316 Stainless Steel            | Reactor Coolant Pipe 10" Branch Connection<br>Nozzle                                                      |
| WPS-49   | 11.5625" OD x 7.0"ID x 2.34"T         | 502979                     | A182 F316 Stainless Steel            | Reactor Coolant Pipe 8" Branch Connection<br>Nozzle                                                       |
| WPS-50   | 9.1875" OD x 5.25" ID x 2.0" T        | 502979                     | A182 F316 Stainless Steel            | Reactor Coolant Pipe 6" Branch Connection<br>Nozzle                                                       |
| WPS-51   | 6" SCH 80S                            | 51069                      | A312 TP304 Stainless Steel           | 6" SCH 80S Containment Spray Piping                                                                       |
| WPS-52   | 1.5"T x 9.0"L x 2.0"W                 | 803N6600                   | A516 Grade 70 Carbon Steel           | Reactor Building Containment Vessel                                                                       |
| WPS-53   | 3.15"T x 13.82"L x 7.59"W             | 86616/3                    | SA533 Class 2 Type B Carbon<br>Steel | Replacement Steam Generator Secondary Side                                                                |

n:\group\nuclear\docfiles\isil\appendb.doc

## **Calibration Blocks**

|          | · · · · · · · · · · · · · · · · · · · | KEWAUNEE NUCLI             | EAR POWER PLANT                      |                                                                          |
|----------|---------------------------------------|----------------------------|--------------------------------------|--------------------------------------------------------------------------|
|          |                                       | CALIBRATI                  | ON BLOCKS                            |                                                                          |
| IDENTITY | SIZE/SCHEDULE                         | IDENTITY OR<br>HEAT NUMBER | MATERIAL                             | COMPONENT/SYSTEM                                                         |
| WPS-54   | 5.0"T x 18.50"L x 7.51"W              | 513150-000                 | SA508 Class 3A Carbon Steel          | Replacement Steam Generator Channel Head To<br>Tubesheet                 |
| WPS-55   | 3.27"T x 15.74"H x 19.68"W            | 513150-000/1Н738           | SA508 Class 3A/ SA336<br>Grade 316LN | Replacement Steam Generator Primary Side<br>Nozzle Inside Radius Section |
| WPS-56   | 16" 0.900"T                           | L42225                     | A106 Grade B Carbon Steel            | Replacement Steam Generator Feedwater Nozzle<br>To Pipe                  |
| WPS-57   | 3.28"T x 5.669"H x 19.68"W            | 513150-000/ПН738           | SA508 Class 3A/ SA336<br>Grade 316LN | Replacement Steam Generator Primary Nozzle To<br>Safe End                |
| WPS-58   | 19" - 1.380"T                         | 310WNH7                    | SA508 Class 3A Carbon Steel          | Steam Generator Feedwater Nozzle To Nozzle                               |
| WPS-59   | 3" SCH 160 0.438"T                    |                            | A106 Grade B Carbon Steel            | 3" SCH 160 Auxiliary Feedwater Piping                                    |
| WPS-60   | 3" SCH 80 0.300"T                     |                            | A106 Grade B Carbon Steel            | 3" SCH 80 Auxiliary Feedwater Piping                                     |
| WPS-61   | 4" SCH 80 0.337"T                     |                            | SA333 Carbon Steel                   | 4" SCH 80 Auxiliary Feedwater Piping                                     |
| WPS-62   | 12" SCH 40S 0.375"T                   |                            | A358 TP304 Stainless Steel           | 12" SCH 40S Containment Spray Piping                                     |
| WPS-63   | 2" – 3000 lb Coupling                 | EDN                        | SA182 SF304 Stainless Steel          | Accumulator Tank 1A and 1B - 2", 1" and 3/4"<br>Coupling                 |

n:\group\nuclear\docfiles\isil\appendb.doc

1 1

.

.

## **Calibration Blocks**

|               |                                       | KEWAUNEE NUCLE             | EAR POWER PLANT                    |                                                                                           |
|---------------|---------------------------------------|----------------------------|------------------------------------|-------------------------------------------------------------------------------------------|
|               | · · · · · · · · · · · · · · · · · · · | CALIBRATI                  | ON BLOCKS                          |                                                                                           |
| IDENTITY      | SIZE/SCHEDULE                         | IDENTITY OR<br>HEAT NUMBER | MATERIAL                           | COMPONENT/SYSTEM                                                                          |
| WPS-64        | 2" – 3000 lb Coupling                 | EDN                        | SA182 SF304 Stainless Steel        | Accumulator Tank 1A and 1B - 2", 1" and 34"<br>Coupling                                   |
| WPS-65        | 16" SCH 10S 0.250"T                   |                            | A358 Cl.1 TP304 Stainless<br>Steel | 16" SCH 10S Safety Injection Piping                                                       |
| WPS-66        | 12 SCH 10S 0.180"T                    |                            | A312 TP304 Stainless Steel         | 12" SCH 10S Safety Injection Piping                                                       |
| WPS-SIS-01-R1 | 6"T x 13"L x 4"W                      | 123J414                    | A508 Class 2 Carbon Steel          | Reactor Vessel SIS Nozzle to Shell and Reactor<br>Vessel SIS Nozzle Inside Radius Section |

n:\group\nuclear\docfiles\isi1\appendb.doc

÷

.

## Summary of Third Inspection Interval Examinations That Exceeded the Acceptance Criteria of Section XI

| YEAR | COMPONENT<br>IDENTIFICATION NUMBER | DRAWING NUMBER | RESOLUTION |
|------|------------------------------------|----------------|------------|
| 1995 | RTD-W73S                           | ISIM-1461      | EVALUATED  |
| 1995 | RTD-W75S                           | ISIM-1461      | EVALUATED  |
| 1995 | RSI-H14                            | ISIM-982       | EVALUATED  |
| 1995 | RSI-H88                            | ISIM-937-1     | EVALUATED  |
| 1995 | MSRH-H1                            | ISIM-968       | EVALUATED  |
| 1995 | FDW-H82                            | M-877-2        | REPAIRED   |
| 1995 | FDW-H84                            | M-877-2        | REPAIRED   |
| 1995 | FDW-H85                            | M-877-2        | REPAIRED   |
| 1995 | FDW-H88                            | M-877-2        | REPAIRED   |
| 1995 | FDW-H91                            | M-877-2        | REPAIRED   |
| 1995 | FDW-H172                           | M-877-2        | REPAIRED   |
| 1995 | FDW-H174                           | M-877-2        | REPAIRED   |
| 1995 | FDW-H100                           | ISIM-866       | REPAIRED   |
| 1995 | FDW-H102                           | ISIM-866       | REPAIRED   |
| 1995 | FDW-H97                            | ISIM-865       | REPAIRED   |
| 1995 | SW-H235                            | ISIM-900       | REPAIRED   |
| 1995 | RSW-H10                            | ISIM-869       | REPAIRED   |
| 1995 | SW-H142A                           | ISIM-924-2     | REPAIRED   |
| 1995 | RRHR-H17                           | ISIM-938-1     | REPAIRED   |
| 1995 | AC-H67                             | ISIM-913       | REPAIRED   |
| 1995 | SI-H17A                            | ISIM-934-2     | REPAIRED   |
| 1995 | RSI-H103                           | ISIM-939 SH1   | REPAIRED   |
| 1995 | RC-H11                             | ISIM-940-1     | REPAIRED   |
| 1995 | RRHR-H2                            | ISIM-957-1SH1  | REPAIRED   |
| 1995 | SI-13B                             | ISIM-936       | REPAIRED   |
| 1995 | FW-W28                             | ISIM-970       | EVALUATED  |

.

| YEAR | COMPONENT<br>IDENTIFICATION NUMBER | DRAWING NUMBER | RESOLUTION |
|------|------------------------------------|----------------|------------|
| 1995 | FW-W56                             | ISIM-971       | EVALUATED  |
| 1996 | SI-13A                             | ISIMM-982      | EVALUATED  |
| 1996 | FE-458                             | ISIM-1460      | REPAIRED   |
| 1996 | RC-103A                            | ISIM-1460      | REPAIRED   |
| 1996 | SG-W10                             | M-1206         | EVALUATED  |
| 1996 | FW-W29                             | ISIM-970       | EVALUATED  |
| 1996 | FW-W57                             | ISIM-971       | EVALUATED  |
| 1996 | SI-1A                              | ISIM-992-2     | REPAIRED   |
| 1996 | SI-1B                              | ISIM-992-2     | EVALUATED  |
| 1996 | P-MWB                              | M-1200         | REPAIRED   |
| 1998 | FDW-H56                            | ISIM-891-2     | REPAIRED   |
| 1998 | ASSW-1B1-S4                        | M-1220         | EVALUATED  |
| 1998 | PR-1A                              | ISIM-940-1     | EVALUATED  |
| 1998 | PR-1B                              | ISIM-940-1     | EVALUATED  |
| 1998 | SG-1A-22A                          | M-1201         | REPAIRED   |
| 1998 | SG-1A-22B                          | M-1201         | REPAIRED   |
| 1998 | SG-1A-22C                          | M-1201         | REPAIRED   |
| 1998 | CVC-11                             | ISIM-1473      | EVALUATED  |
| 1998 | FDW-H66                            | M-877-1        | REPAIRED   |
| 1998 | FDW-H67                            | M-877-1        | REPAIRED   |
| 1998 | LD-2                               | ISIM-1474      | REPAIRED   |
| 1998 | LD-3                               | ISIM-1474      | REPAIRED   |
| 1998 | LD-4B                              | M-1360         | REPAIRED   |
| 1998 | FW-W29                             | ISIM-970       | EVALUATED  |
| 1998 | FW-W57                             | ISIM-971       | EVALAUTED  |

| YEAR | COMPONENT<br>IDENTIFICATION NUMBER | DRAWING NUMBER | RESOLUTION |
|------|------------------------------------|----------------|------------|
| 1998 | RTD-H1                             | ISIM-1460      | REPAIRED   |
| 1998 | RSW-H14                            | ISIM-885-1     | REPAIRED   |
| 1998 | SI-H42                             | ISIM-934-1     | REPAIRED   |
| 1998 | SW-H144                            | ISIM-926       | REPAIRED   |
| 1998 | SI-H18                             | ISIM-934       | REPAIRED   |
| 1998 | SW-3A                              | ISIM-893       | EVALUATED  |
| 1998 | SW-4A                              | ISIM-893       | EVALUATED  |
| 1998 | SWSH-H11                           | ISIM-893       | REPAIRED   |
| 1998 | SWSH-H18                           | ISIM-893       | REPAIRED   |
| 1998 | FDW-H116                           | ISIM-970       | REPAIRED   |
| 1998 | MS-W19BC                           | ISIM-984-2SH3  | REPAIRED   |
| 2000 | ASSW-1B1-S4                        | M-1220         | EVALUATED  |
| 2000 | PR-1A                              | ISIM-940-1     | REPAIRED   |
| 2000 | PR-1B                              | IISM-940-1     | REPAIRED   |
| 2000 | ARG-S1                             | M-1208         | REPAIRED   |
| 2000 | LD-3                               | ISIM-1474      | EVALUATED  |
| 2000 | RHR-2B                             | ISIM-957-1SH1  | EVALUATED  |
| 2000 | SI-303A                            | ISIM-938-2SH1  | REPAIRED   |
| 2000 | CVC-11                             | ISIM-1473      | REPAIRED   |
| 2000 | SI-13B                             | ISIM-936       | EVALUATED  |
| 2000 | SI-304B                            | ISIM-939SH1    | REPAIRED   |
| 2000 | RV-CD35                            | M-1197         | EVALUATED  |
| 2000 | FW-W29                             | ISIM-970       | EVALUATED  |
| 2000 | FW-W57                             | ISIM-971       | EVALUATED  |
| 2001 | SG-IR16                            | M-1206         | REPAIRED   |
| 2001 | FW-W27BC                           | ISIM-970       | REAPIRED   |

| YEAR | COMPONENT<br>IDENTIFICATION NUMBER | DRAWING NUMBER | RESOLUTION |
|------|------------------------------------|----------------|------------|
| 2001 | FW-W55BC                           | ISIM-971       | REPAIRED   |
| 2001 | SG-W2                              | M-1206         | EVALUATED  |
| 2001 | SG-W10                             | M-1206         | EVALUATED  |
| 2001 | FDW-H55                            | ISIM-891-2     | EVALUATED  |
| 2001 | FDW-H58                            | ISIM-891-2     | REPAIRED   |
| 2001 | ASSW-1B1-S4                        | M-1220         | EVALUATED  |
| 2001 | RC-H9                              | ISIM-940-2     | REPAIRED   |
| 2001 | RSI-H80                            | ISIM-936       | REPAIRED   |
| 2001 | RSI-H5A                            | ISIM-936       | EVALUATED  |
| 2001 | PR-1B                              | ISIM-940-1     | EVALUATED  |
| 2001 | SI-W6S                             | ISIM-982       | REPAIRED   |
| 2001 | RHR-1A                             | ISIM-957-1SH1  | EVALUATED  |
| 2001 | RHR-1B                             | ISIM-957-1SH1  | EVALUATED  |
| 2001 | RHR-2B                             | ISIM-957-1SH1  | EVALUATED  |
| 2001 | RCVC-H48                           | ISIM-874-3     | REPAIRED   |
| 2001 | RCVC-H49                           | ISIM-874-3     | REPAIRED   |
| 2001 | RCVC-H222                          | ISIM-1474      | EVALUATED  |
| 2001 | RC-H30                             | ISIM-874-2     | EVALUATED  |
| 2001 | P-MWB                              | M-1200         | REPAIRED   |
| 2001 | RSI-H44                            | ISIM-939SH1    | EVALUATED  |
| 2001 | AHEL-1A-S2                         | M-1221         | REPAIRED   |
| 2001 | RCP-1A-SLB                         | M-1205         | EVALUATED  |
| 2001 | RSW-H12                            | ISIM-867       | EVALUATED  |
| 2001 | RSI-H70                            | ISIM-937-2SH1  | REPAIRED   |
| 2001 | RSI-H73                            | ISIM-937-2SH1  | REPAIRED   |
| 2001 | RSI-H74                            | ISIM-937-2SH1  | REPAIRED   |

### Summary of Third Inspection Interval Examinations That Exceeded the Acceptance Criteria of Section XI

| YEAR | COMPONENT<br>IDENTIFICATION NUMBER | DRAWING NUMBER | RESOLUTION |
|------|------------------------------------|----------------|------------|
| 2001 | RSW-H62                            | ISIM-889-1     | REPAIRED   |
| 2001 | SI-304B                            | ISIM-939SH1    | REAPIRED   |
| 2001 | FDW-H170                           | ISIM-971       | REPAIRED   |
| 2001 | FDW-H39                            | ISIM-891-1     | REPAIRED   |
| 2001 | FDW-H41                            | ISIM-891-1     | EVALUATED  |
| 2001 | FDW-H43                            | ISIM-891-1     | REPAIRED   |
| 2001 | FDW-H44                            | ISIM-891-1     | REPAIRED   |
| 2001 | MSRH-H2                            | ISIM-969       | EVALUATED  |
| 2001 | RHR-H24                            | ISIM-960-1     | REPAIRED   |
| 2001 | AC-H77                             | ISIM-890       | EVALUATED  |
| 2001 | RHR-H18                            | ISIM-960-1     | REPAIRED   |
| 2001 | SW-H414                            | ISIM-922       | EVALUATED  |
| 2001 | SW-H153                            | ISIM-901       | EVALUATED  |
| 2001 | SW-H150                            | ISIM-901       | EVALAUTED  |
| 2001 | SW-H531                            | ISIM-893       | EVALUATED  |
| 2001 | SW-H129                            | ISIM-926       | REPAIRED   |
| 2001 | LD-3                               | ISIM-1474      | REPAIRED   |
| 2001 | SI-13B                             | ISIM-936       | REPAIRED   |
| 2001 | RV-CD35                            | M-1197         | EVALUATED  |
| 2003 | SG-1B-CLMWB                        | M-1201         | REPAIRED   |
| 2003 | ASSW-1B1-S4                        | M-1220         | EVALUATED  |
| 2003 | AHCC1-1A-S3                        | M-1222         | REPAIRED   |
| 2003 | RV-CD35                            | M-1197         | EVALUATED  |
| 2003 | RV-CD37                            | M-1197         | EVALUATED  |
| 2003 | RC-H23                             | ISIM-874-2     | REPAIRED   |

.

| YEAR | COMPONENT<br>IDENTIFICATION NUMBER | DRAWING NUMBER | RESOLUTION         |
|------|------------------------------------|----------------|--------------------|
| 2003 | CVC-15                             | ISIM-874-3     | REPAIRED           |
| 2003 | SW-H153                            | ISIM-901       | EVALUATED          |
| 2003 | RSI-H7                             | ISIM-936       | EVALUATED          |
| 2003 | RSI-H7A                            | ISIM-936       | EVALUATED          |
| 2003 | RSI-H7B                            | ISIM-936       | EVALUATED          |
| 2003 | SI-21B                             | ISIM-938-1     | EVALUATED          |
| 2003 | SI-303B                            | ISIM-939 SH1   | REPAIRED           |
| 2003 | PR-FI                              | ISIM-940-2     | REPAIRED           |
| 2003 | RHR-1A                             | ISIM-957-1SH1  | REPAIRED/EVALUATED |
| 2003 | RHR-1B                             | ISIM-957-1SH1  | REPAIRED           |
| 2003 | RHR-2B                             | ISIM-957-1SH1  | REPAIRED           |
| 2003 | RHR-H18                            | ISIM-960-1     | EVALUATED          |
| 2003 | RHR-H24                            | ISIM-960-1     | EVALUATED          |
| 2003 | RTD-H7                             | ISIM-1461      | REPAIRED           |
| 2003 | RTD-H9                             | ISIM-1461      | EVALUATED          |
| 2003 | RTD-H12                            | ISIM-1461      | REPAIRED           |
| 2003 | RTD-W70S                           | ISIM-1461      | REPAIRED           |
| 2003 | FE-459                             | ISIM-1461      | REPAIRED           |
| 2003 | CVC-F2                             | ISIM-1471      | REPAIRED           |

### Appendix D

### Component Supports/Hangers and Welded Attachments That Are Identified on More Than One ISI Isometric Drawing

The following is a listing of those component supports/hangers that are required to be examined during the Fourth Inspection Interval and provide support for more than one component. These supports/hangers, therefore, appear on more than one ISI isometric drawing.

| HANGER<br>IDENTIFICATION | CORRESPONDING DRAWINGS |
|--------------------------|------------------------|
| RSW-H3                   | ISIM-868               |
|                          | ISIM-869               |
|                          | ISIM-889-1             |
|                          | ISIM-889-2             |
| RSW-H9                   | ISIM-869               |
|                          | ISIM-889-1             |

The following is a listing of those component supports/hangers that are required to be examined during the Fourth Inspection Interval and provide support for only one component. However, these supports/hangers are different from other supports in that they appear on more than one ISI isometric drawing.

| HANGER<br>IDENTIFICATION | CORRESPONDING DRAWINGS   |
|--------------------------|--------------------------|
| RSW-H2                   | ISIM-868<br>ISIM-889-1   |
| RSW-H10                  | ISIM-869<br>ISIM-888-1   |
| RSW-H39                  | ISIM-888-1<br>ISIM-889-1 |
| AC-H76                   | ISIM-881-1<br>ISIM-890   |
| AC-H16                   | ISIM-881-1<br>ISIM-913   |
| RSW-H36                  | ISIM-888-2<br>ISIM-889-1 |
| RSW-H63                  | ISIM-889-1<br>ISIM-889-2 |
| SW-H9                    | ISIM-893<br>ISIM-900     |

#### Appendix D

#### Component Supports/Hangers and Welded Attachments That Are Identified on More Than One ISI Isometric Drawing

| HANGER<br>IDENTIFICATION | CORRESPONDING DRAWINGS    |
|--------------------------|---------------------------|
| SW-H8                    | ISIM-893<br>ISIM-901      |
| SW-H10                   | ISIM-900<br>ISIM-901      |
| SW-H87                   | ISIM-900<br>ISIM-924-1    |
| SW-H147                  | ISIM-901<br>ISIM-926      |
| AC-H20                   | ISIM-914<br>ISIM-915      |
| SW-H134                  | ISIM-922<br>ISIM-924-1    |
| SW-H143                  | ISIM-924-2<br>ISIM-926    |
| FDW-H169                 | ISIM-970<br>ISIM-991SH1   |
| FDW-H170                 | ISIM-971<br>ISIM-972-1SH1 |

The following is a listing of those component supports/hangers that are required to be examined during the Fourth Inspection Interval, appear on more than one ISI isometric drawing, and have welded attachments on more than one line that is being supported by the support/hanger.

| HANGER<br>IDENTIFICATION | CORRESPONDING DRAWINGS |
|--------------------------|------------------------|
|                          | ISIM-868               |
| RSW-H3                   | ISIM-869               |
| K5 W-H5                  | ISIM-889-1             |
|                          | ISIM-889-2             |

#### **Appendix D**

#### Component Supports/Hangers and Welded Attachments That Are Identified on More Than One ISI Isometric Drawing

The following is a listing of those component supports/hangers that are required to be examined during the Fourth Inspection Interval, that appear on more than one drawing, and have welded attachments identified on more than one ISI isometric drawing, but the integrally welded attachment is attached to only one component.

| HANGER<br>IDENTIFICATION | CORRESPONDING DRAWINGS    |
|--------------------------|---------------------------|
| RSW-H9                   | ISIM-869<br>ISIM-889-1    |
| RSW-H39                  | ISIM-888-1<br>ISIM-889-1  |
| AC-H16                   | ISIM-881-1<br>ISIM-913    |
| RSW-H36                  | ISIM-888-2<br>ISIM-889-1  |
| RSW-H63                  | ISIM-889-1<br>ISIM-889-2  |
| SW-H9                    | ISIM-893<br>ISIM-900      |
| SW-H8                    | ISIM-893<br>ISIM-901      |
| SW-H10                   | ISIM-900<br>ISIM-901      |
| SW-H87                   | ISIM-900<br>ISIM-924-1    |
| AC-H20                   | ISIM-914<br>ISIM-915      |
| SW-H134                  | ISIM-922<br>ISIM-924-1    |
| SW-H143                  | ISIM-924-2<br>ISIM-926    |
| FDW-H169                 | ISIM-970<br>ISIM-991SH1   |
| FDW-H170                 | ISIM-971<br>ISIM-972-1SH1 |

## Appendix E

•

J.

| SNUBBER ID | DRAWING NO.   | CODE CLASS |
|------------|---------------|------------|
| RC-H29A    | ISIM-874-2    | 1          |
| RCVC-H35   | ISIM-874-3    | 1          |
| AC-H68     | ISIM-914      | 3          |
| SW-H401    | ISIM-924-1    | 3          |
| SI-H35     | ISIM-934-2    | 2          |
| RSI-H2     | ISIM-936      | 2          |
| RSI-H2A    | ISIM-936      | 2          |
| RSI-H38    | ISIM-936      | 2          |
| RSI-H78    | ISIM-936      | 2          |
| RSI-H101   | ISIM-936      | 2          |
| RSI-H102   | ISIM-936      | 2          |
| RSI-H99    | ISIM-937-1    | 2          |
| RSI-H98    | ISIM-937-2SH1 | 2          |
| RRHR-H18   | ISIM-938-1    | 1          |
| RRHR-H14   | ISIM-938-2SH1 | 2          |
| RRHR-H15   | ISIM-938-2SH1 | 2          |
| RSI-H59    | ISIM-939SH1   | 2          |
| RSI-H61    | ISIM-939SH1   | 2          |
| RSI-H63    | ISIM-939SH1   | 1          |
| RSI-H67    | ISIM-939SH1   | 1          |
| CS-H39     | ISIM-951      | 2          |
| ICS-H7     | ` ISIM-952    | 2          |
| ICS-H8     | ISIM-952      | 2          |
| ICS-H9     | ISIM-952      | . 2        |
| CS-H33A    | ISIM-953      | 2          |
| ICS-H10    | ISIM-954      | 2          |
| ICS-H11    | ISIM-954      | 2          |
| ICS-H12    | ISIM-954      | 2          |
| RHR-H38A   | ISIM-958-1-1  | 2          |

List of Non Exempt Snubbers Within Code Class Boundary

## Appendix E

| SNUBBER ID | DRAWING NO.   | CODE CLASS |
|------------|---------------|------------|
| RHR-H41A   | ISIM-958-1-1  | 2          |
| RHR-H35A   | ISIM-959-1-1  | 2          |
| RHR-H36A   | ISIM-959-2    | 2          |
| RHR-H12A   | ISIM-961-2    | 2          |
| RHR-H12B   | ISIM-961-2    | 2          |
| RHR-H16A   | ISIM-961-2    | 2          |
| RHR-H10H   | ISIM-962-2SH1 | 2          |
| RHR-H49    | ISIM-962-2SH1 | 2          |
| RSI-H83    | ISIM-982      | 2          |
| RSI-H100   | ISIM-982      | 2          |
| RTD-H2     | ISIM-1460     | • 1        |
| RTD-H6     | ISIM-1460     | 1          |
| RTD-H11    | ISIM-1461     | 1          |
| RTD-H8     | ISIM-1461     | 1          |
| RCVC-H36   | ISIM-1471     | 1          |
| RCVC-H34   | ISIM-1473     | 1          |
| RCVC-H33A  | ISIM-1473     | 1          |
| RCVC-H33B  | ISIM-1473     | 1          |
| RCVC-H32   | ISIM-1474     | 1          |
| RCVC-H245  | ISIM-1476     | 1          |
| SG-AH-1    | M-1206        | 2          |
| SG-AH-2    | M-1206        | 2          |

List of Non Exempt Snubbers Within Code Class Boundary

ز

#### Augmented Examination Programs

Augmented examinations are those examinations that are performed above and beyond the requirements of ASME Boiler and Pressure Vessel Code Section XI, examinations that are governed by Kewaunee Nuclear Power Plant Technical Specifications or required to be performed to ASME/ANSI OM Standard Part 4 as referenced in ASME Boiler and Pressure Vessel Code Section XI. Below is a summary of those examinations performed by the Kewaunee Nuclear Power Plant that are not specifically addressed by Section XI, or the examinations that will be performed in addition to the requirements of the Code on a routine basis during the Fourth Inspection Interval.

#### 1. <u>Program Summary</u>

Augmented examinations performed at the Kewaunee Nuclear Power Plant on a continuous or ongoing basis are as follows.

- a. IE Bulletins, NRC Order's and NRC Bulletins
  - i. IE Bulletin 79-13, "Cracking in Feedwater System Piping." Reference WPSC letter dated July 26, 1979, from E. R. Mathews (WPSC) to J. G. Keppler (NRC).
  - ii. IE Bulletin 79-17, "Pipe Cracks in Stagnant Borated Water Systems at PWR Plants." Reference WPSC letter dated August 29, 1979, from E. R. Mathews (WPSC) to J. G. Keppler (NRC).
  - iii. IE Bulletin 88-08, "Thermal Stresses in Piping Connected to Reactor Coolant Systems." Reference WPSC letter, NRC-89-113, dated August 31, 1989.
  - iv. Nuclear Regulatory Commission Interim Head Inspection Requirements NRC Order EA-03-009
  - v. Nuclear Regulatory Commission NRC Bulletin 2003-02: Leakage From Reactor Vessel Lower Head Penetrations and Reactor Coolant Pressure Boundary Integrity
- b. Generic Letters
  - i. Generic Letter 88-05, "Boric Acid Corrosion of Carbon Steel Reactor Coolant Boundary Components in PWR Plants." Reference WPSC letter, NRC-88-077, dated July 3, 1989.
- c. Updated Safety Analysis Report
  - i. Section 4.2.2, Reactor Coolant Pump Flywheels

#### **Augmented Examination Programs**

- d. Plant Technical Specifications
  - i. TS 4.14, Snubber Surveillance Testing
  - ii. TS 4.2.a.2, Pump and Valve Testing
  - iii. TS 4.2.b, Steam Generator Tubes
- e. Kewaunee Nuclear Power Plant Engineering Programs Inservice Inspection
  - i. Alloy 600 and SA182 Weld Program

#### 2. <u>Program Implementation</u>

Only certain augmented programs are included in this long-term plan. Those programs and their requirements are stated below. For information regarding other programs, contact the Plant Manager at the Kewaunee Nuclear Power Plant.

a. IE Bulletin 79-13, "Cracking in Feedwater System Piping"

This bulletin and its supplements reported that a significant number of PWR plants have experienced cracking of the steam generator feedwater nozzle-to-pipe weldment. Although a feedwater line break is an analyzed accident, the identified degradation of these joints in the absence of a routine inservice inspection requirement of these feedwater nozzle-to-piping welds is the basis for IE Bulletin 79-13. In 1979, the Kewaunee Nuclear Power Plant discovered shallow cracks in the feedwater nozzle-to-pipe weldments for both steam generators. Inspection and repair details are documented in WPSC letter dated July 26, 1979, from E. R. Mathews (WPSC) to J. G. Keppler (NRC). Following this incident, WPSC has inspected these areas on a routine basis. During the Steam Generator Replacement in 2001 Kewaunee Nuclear Power Plant replaced the weldments in the feedwater nozzle to pipe. In the Fourth Inspection Interval, Kewaunee will radiograph or ultrasonically examine these areas each period when practicable (i.e., when refueling outage schedule permits, to coincide with maintenance activities, etc.).

#### **Augmented Examination Programs**

b. IE Bulletin 79-17, "Pipe Cracks in Stagnant Borated Water Systems at PWR Plants"

This bulletin summarizes incidents where pipe cracking has occurred in stainless steel piping systems at PWR plants. In 1980, the KNPP conducted examinations in accordance with the requirements of the bulletin. No incidents of cracking were discovered as a result of these inspections. In order for stainless steel pipe systems to be susceptible to stress corrosion cracking, three factors must co-exist simultaneously: aggressive environment, tensile stress, and susceptible material. The presence of these three ingredients does not necessarily preclude stress corrosion cracking. Their presence only indicates susceptibility. The degrees to which any one of these factors must be present for stress corrosion cracking to occur depends on its magnitude and relationship with the other two factors. Specific information regarding each of these factors with respect to stress corrosion cracking of austenitic stainless steel is well defined in numerous documents within the metals and nuclear industries. Parameters that can influence stress corrosion cracking are summarized below.

#### **Environment**

- i. Either a surface imperfection or corrodant (B, Cl and F ) is necessary to create a site for stress corrosion cracking to occur.
- ii. The rate of stress corrosion cracking is proportional to the exponent of negative inverse temperature  $e^{-\frac{1}{T}}$ , and
- iii. High oxygen content.

#### Susceptible Material

Excess carbon, improper heat treatment, or poor welding techniques can cause the formation of metal carbides at grain boundaries and lower the chromium content there below 12 percent.

A minimum of 12 percent chrome is required for passivity in moist air. This condition is known as sensitization.

#### **Augmented Examination Programs**

#### **Tensile Stress**

The final factor of concern is the direction and magnitude of stress. The occurrence of stress corrosion cracking requires a tensile stress at the surface. Fabrication of the piping systems by welding results in some level of tensile stress.

These parameters have been reviewed for the stagnant borated water systems at the Kewaunee Nuclear Power Plant. This review and the historical performance of the weldments to date signify that these systems will not experience stress corrosion cracking. Good performance of the weldments can be attributed to the following:

- Routine testing to control and maintain water chemistry in accordance with current standards
- Utilization of qualified welding procedures and thin diameter pipe resulting in low residual stress
- Relatively low operating temperature
- Radiography of butt welds during fabrication resulting in defect-free welds

Since no areas of concern were noted in this review and because no evidence of cracking has been observed to date, no augmented volumetric or surface examinations have been scheduled during the Fourth Inspection Interval. However, some volumetric and/or surface examinations may be performed in systems which contain stagnant borated water as required by Tables IWB-2500-1 and IWC-2500-1 of ASME Boiler and Pressure Code, Section XI. All of the stagnant borated water systems identified in the bulletin are routinely examined by visual inspection during scheduled pressure tests required by Section XI.

#### **Augmented Examination Programs**

c.

IE Bulletin 88-08, "Thermal Stresses in Piping Connected to Reactor Coolant Systems"

Supplement 3 to the bulletin notified KNPP that there was a possibility for temperature stratification and oscillation to occur in the horizontal sections of the Loop A and B hot leg RHR inlet piping. One of the required actions was to inspect welds potentially affected (two on A loop, one on B loop) via ultrasonics using 0°, 45°, and 60° beam transducers. These inspections were completed and found no recordable indications. KNPP committed to inspecting one of the three welds each ISI period (three years) during the second inspection interval. Upon completion of the Second Inspection Interval, this inspection frequency was to then be re-evaluated. Due to the fact that no planer indications were discovered during any of the inspections performed during the Second and Third Inspection Interval and because no leakage has occurred at valves RHR-1A or RHR-1B, no additional examinations are scheduled for the Fourth Inspection Interval. In the future, should RCS valve leakage due to a packing leak or degradation of a valve seat occur, ISI techniques will be used to verify that degradation is not occurring.

d. Generic Letter 88-05, "Boric Acid Corrosion of Carbon Steel Reactor Coolant Boundary Components in PWR Plants"

Generic Letter 88-05 summarizes domestic PWR plant experiences where boric acid leakage has had the potential to degrade carbon steel Reactor Coolant System pressure boundary components. The NRC staff noted that boric acid leakage potentially affecting the integrity of the reactor coolant pressure boundary should be procedurally controlled to ensure continued compliance with the licensing basis. KNPP does not administer one all encompassing formal program for the control and correction of boric acid leakage. However, key elements identified in the generic letter are adequately implemented through existing surveillance, operating, and maintenance procedures, and provide assurance of compliance as required by the referenced generic letter. In letter, K-88-205 from the NRC to KNPP in response to KNPP Letter NRC-88-77, the NRC noted that KNPP should maintain in auditable form, records of the program and results obtained from implementation of the program. To this end, KNPP identified 39 valves, 4 flanges, 3 Conoseal Bolting Assemblies, 5 Manways, Reactor Vessel Closure Head, Reactor Vessel Bottom Head and 72 Reactor Coolant Pump Bolts with carbon and low alloy steel where leaks that are smaller than the allowable Technical Specification limit could cause degradation of the primary pressure boundary by boric acid corrosion:

| SI-13A | SI-22B  | FE-458 | SI-4A  | RHR-2B  | PR-3B  | LD-2  |
|--------|---------|--------|--------|---------|--------|-------|
| SI-13B | SI-303A | FE-459 | SI-4B  | RHR-11  | PS-1A  | LD-3  |
| SI-21A | SI-303B | SI-2A  | RHR-1A | RC-103A | PS-1B  | LD-4A |
| SI-21B | SI-304A | SI-2B  | RHR-1B | RC-103B | CVC-11 | LD-4B |

#### **Augmented Examination Programs**

 SI-22A
 SI-304B
 SI-3
 RHR-2A
 PR-3A
 CVC-15
 LD-4C

 PR-1A
 PR-1B
 PR-2A
 PR-2B
 PR-F1
 PR-F2
 RV-CD-34

 RV-CD35
 RV-CD37
 RC-402
 RC-412
 RV-CD-34

Reactor Vessel Closure Head -40 Control Rod Drive Mechanisms and 1 - 3/4" Head Vent Line.

Reactor Vessel Bottom Head - 36 Bottom Mounted Instrumentation (BMI's)

Steam Generator Manway Bolting: SG-1A-HLMWB, SG-1A-CLMWB, SG-1B-HLMWB and SG-1B-CLMWB: 16 Studs, 16 Nuts and 32 Washers each Manway.

Pressurizer Manway Bolting P-MWB (P-B1 thru P-B16)

Reactor Coolant Pump Main Flange Bolting: RCP-B1 through RCP-B48

Reactor Coolant Pump No.1 Seal Housing Bolting: RCP-B49 through RCP-B72

Note: Reactor Vessel Closure Head Studs, Nuts and Washers (48 each) are not included in the Generic Letter 88-05 Program due to cleaning and/or neolubing performed each 18 month Refueling Outage by Reactor Engineering Personnel.

During the Fourth Inspection Interval, pressure retaining components of these valves, flanges, manways, Reactor Vessel Closure Head, Reactor Vessel Bottom Head and Reactor Coolant Pumps will receive a VT-3 visual examination each period (3 1/3 Years). The results of these examinations shall be documented in the ISI reports and reported in the Inservice Inspection Summary Report following the outage in which the examinations were conducted.

e. Updated Safety Analysis Report, Section 4.2.2, Reactor Coolant Pump Flywheels

Section 4.2.2 reports that the reactor coolant pump flywheels are designed in part to preclude missile production by the pump flywheels. The design included a fracture mechanics evaluation of the reactor coolant pump flywheel. The evaluation considered the following assumptions:

- i Maximum tangential stress at an assumed over speed of 125%.
- ii A crack through the thickness of the flywheel at the bore.
- iii Four hundred (400) cycles of startup operation in forty years.

#### Augmented Examination Programs

Using critical stress intensity factors and crack growth data attained on flywheel material, the critical crack size for failure was shown to be greater than 17 inches radially and the crack growth rate was 0.030 inch to 0.060 inch per 1000 cycles. Periodic ultrasonic examinations will provide continued assurance that the flywheels are structurally sound. The ultrasonic examination procedure utilized for these periodic examinations must be capable of detecting at least ½-inch deep cracks from the ends of the flywheel. Flywheels on both reactor coolant pumps will be ultrasonically examined during the Fourth Inspection Interval. Examinations will be performed concurrent with scheduled maintenance.

f. Plant Technical Specification, TS 4.14, Snubber Testing

All safety-related hydraulic shock suppressors are visually examined and tested in accordance with the requirements of TS 4.14. Refer to TS 4.14 for details regarding this program.

g. Plant Technical Specification, TS 4.2.b, Steam Generator Tubes

Examination of steam generator tubing is governed by TS 4.2.b. Refer to TS 4.2.b for details regarding this program.

h. Nuclear Regulatory Commission Interim Head Inspection Requirements – NRC Order EA-03-0009

NRC Order EA-03-009 summarizes requirements for performing Reactor Vessel Closure Head Inspections as follows:

Interim Head Inspection Requirements - NRC Order EA-03-009

#### HIGH EDY>12

Each Outage A and (B, C, or D).  $\frac{\text{MODERATE}}{\text{EDY} \geq 8 \& \leq 12}$ Each Outage either A or (B, C, or D)

But, over the course of 2 outages, A must be performed once as well as (B, C, or D) once.

## LOW

EDY <8 Over the first 3 outages after the order was issued, KNPP must perform A once and either (B, C, or D) once.

After the above requirements are met, A must be done once every 3 outages and either (B, C, or D) once every 4 outages.

#### **Augmented Examination Programs**

- A = Bare metal visual examination of 100% of the RPV head surface (including 360° around each RPV head penetration nozzle).
- B = Ultrasonic testing of each RPV head penetration nozzle (i.e., nozzle base material) from two (2) inches above the J-groove weld to the bottom of the nozzle and an assessment to determine if leakage has occurred into the interference fit zone.
- C = Eddy Current testing of the wetted surface of each J-Groove weld and RPV head penetration nozzle base material to at least two (2) inches above the J-groove weld.
- D = Dye Penetrant testing of the wetted surface of each J-Groove weld and RPV head penetration nozzle base material to at least two (2) inches above the J-groove weld.
- EDY = Total Effective Degradation Years, normalized to a reference temperature of 600F. The calculated value of EDY shall determine the susceptibility category and the appropriate inspection for the RPV head during each refueling outage.
- i. Nuclear Regulatory Commission NRC Bulletin 2003-02: Leakage From Reactor Vessel Lower Head Penetrations and Reactor Coolant Pressure Boundary Integrity.

NRC Bulletin 2003-02 summarizes domestic PWR plant experiences where boric acid leakage has had the potential to degrade Reactor Pressure Vessel Lower Heads for in-core nuclear instrumentation. During the Fourth Inspection Interval, the 36 Bottom Mounted Instrumentation (BMI's) at the Kewaunee Nuclear Power Plant will receive a 100% Bare Metal VT-3 visual examination each Refueling Outage. The results of these inspections shall be documented in the Annual ISI reports and reported in the Inservice Inspection Summary Report following the outage in which the examinations were conducted.

#### **Augmented Examination Programs**

j. Kewaunee Nuclear Power Plant Alloy 600 and SA182 Weld Program.

The following components/welds at the Kewaunee Nuclear Power Plant contain Alloy 600 or SA182 material in the Reactor Coolant Pressure Boundary:

| <b>IDENTITY</b><br>1. 40 Control Rod Drive<br>Mechanisms (Penetration No.<br>1,2,3,4,5,6,7,8,9,10,11,12,13,<br>14,15,16,17,18,19,20,21,22,23,<br>22,23,24,25,26,27,28,29,30,31,<br>32, 33,34,35,37,38,39,40 and 4<br>and 1- 3/4" Head Vent Line |                                                                          | MATERIAL<br>Alloy 600                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------|
| 2. RV-P1 through RV-P36                                                                                                                                                                                                                         | Reactor Vessel Bottom Head "Botton<br>Mounted Instrumentation's (BMI's)" | n Alloy 600                              |
| 3. SI-W54DM                                                                                                                                                                                                                                     | Reactor Vessel 4" Nozzle Safe End                                        | Alloy 600<br>with Nozzle End<br>of SA182 |
| 4. SI-W112DM                                                                                                                                                                                                                                    | Reactor Vessel 4" Nozzle Safe End                                        | Alloy 600<br>with Nozzle End<br>of SA182 |
| 5. RC-W76DM                                                                                                                                                                                                                                     | Steam Generator A 29" ID Nozzle<br>Safe End                              | Alloy 600 with<br>Alloy 690 Cladding     |
| 6. RC-W77DM                                                                                                                                                                                                                                     | Steam Generator A 31" ID Nozzle<br>Safe End                              | Alloy 600 with<br>Alloy 690 Cladding     |
| 7. RC-W78DM                                                                                                                                                                                                                                     | Steam Generator B 29" ID Nozzle<br>Safe End                              | Alloy 600 with<br>Alloy 690 Cladding     |
| 8. RC-W79DM                                                                                                                                                                                                                                     | Steam Generator B 31" ID Nozzle<br>Safe End                              | Alloy 600 with<br>Alloy 690 Cladding     |
| 9. PR-W1DM                                                                                                                                                                                                                                      | Pressurizer Relief 6" Nozzle Safe End                                    | SA182                                    |
| 10. PR-W16DM                                                                                                                                                                                                                                    | Pressurizer Safety 6" Nozzle Safe End                                    | SA182                                    |

#### **Augmented Examination Programs**

| 10. | <u>IDENTITY</u><br>PR-W16DM | LOCATION<br>Pressurizer Safety 6" Nozzle Safe End | MATERIAL<br>SA182 |
|-----|-----------------------------|---------------------------------------------------|-------------------|
| 11. | PR-W26DM                    | Pressurizer Safety 6" Nozzle Safe End             | SA182             |
| 12. | PS-W61DM                    | Pressurizer Spray 4" Nozzle Safe End              | SA182             |
| 13. | RC-W67DM                    | Pressurizer Surge 14" Nozzle Safe End             | SA182             |

During the Fourth Inspection Interval, the following pressure retaining component welds will receive a 100% Bare Metal VT-3 Examination each Refueling Outage.

- 1. Reactor Vessel Closure Head 40 Control Rod Drive Mechanism's and 1- 3/4" Head Vent Line
- 2. Reactor Vessel Bottom Head "Bottom Mounted Instrumentation's (BMI's)" RV-P1 through RV-P36

The results of these examinations shall be documented in the ISI reports and reported in the Inservice Inspection Summary Report following the outage in which the examinations were conducted.

During the Fourth Inspection Interval, the following pressure retaining welds will receive a Liquid Penetrant and Ultrasonic Examination following Insulation Removal and a VT-2 Examination with the Insulation in place as required by and at the frequency stated in ASME Boiler and Pressure Vessel Code Section XI 1998 Edition 2000 Addenda.

1. SI-W54DM 2. SI-W112DM 3. RC-W76DM 4. RC-W77DM 5. RC-W78DM 6. RC-W79DM 7. PR-W1DM 8. PR-W16DM 9. PR-W26DM 10. PS-W61DM 11. RC-W67DM

The results of these examinations shall be documented in the ISI reports and reported in the Inservice Inspection Summary Report following the outage in which the examinations were conducted.

## Appendix G

## Acronyms

| ACAuxiliary Coolant                          |
|----------------------------------------------|
| AFWAuxiliary Feedwater                       |
| ANIIAuthorized Nuclear Inservice Inspector   |
| ANSIAmerican National Standards Institute    |
| ASMEAmerican Society of Mechanical Engineers |
| ATWSAnticipated Transients Without Scram     |
| CCWComponent Cooling Water                   |
| CFRCode of Federal Regulations               |
| CHGCharging                                  |
| CRDHControl Rod Drive Housing                |
| CRDMControl Rod Drive Mechanism              |
| CVCChemical & Volume Control                 |
| ECCSEmergency Core Cooling System            |
| ECDEngineering Control Directive             |
| ECPEngineering Control Procedure             |
| EOIEnd of Interval                           |
| FSARFinal Safety Analysis Report             |
| FWFeedwater                                  |
| HXHeat Exchanger                             |
| ICSInternal Containment Spray                |
| IRSInside Radius Section                     |
| ISIInservice Inspection                      |
| IWAIntegrally Welded Attachment              |
| KNPPKewaunee Nuclear Power Plant             |
| LDLetdown                                    |
| LOCALoss of Coolant Accident                 |
| MSMain Steam                                 |
| MSIVMain Steam Isolation Valves              |
| NDENon-Destructive Examination               |
| NPSNominal Pipe Size                         |
|                                              |

## Appendix G

### Acronyms

| NRCNuclear Regulatory Commission          |
|-------------------------------------------|
| NRRNuclear Reactor Regulation (Office of) |
| NUREGNuclear Regulatory Commission Report |
| PORCPlant Operations Review Committee     |
| PRPressurizer Relief                      |
| PRAProbablistic Risk Assessment           |
| PSPressurizer Spray                       |
| PWRPressurized Water Reactor              |
| PZRPressurizer                            |
| QAQuality Assurance                       |
| RCReactor Coolant                         |
| RCPReactor Coolant Pump                   |
| RCPBReactor Coolant Pressure Boundary     |
| RCSReactor Coolant System                 |
| RHRResidual Heat Removal                  |
| RTDReactor Temperature Detection          |
| RVReactor Vessel                          |
| RWSTRefueling Water Storage Tank          |
| SFPSpent Fuel Pool                        |
| SGSteam Generator                         |
| SISafety Injection                        |
| SRPStandard Review Plan                   |
| SWService Water System                    |
| SWSHService Water Screen House            |
| VCTVolume Control Tank                    |
| WWestinghouse                             |
| WCAPWestinghouse Commercial Atomic Power  |
| WDWaste Disposal                          |
| WPSCWisconsin Public Service Corporation  |
|                                           |

## Appendix H

## Category B-J Welds Examined During First and Second Interval For Use in Cross Referencing of Westinghouse and Kewaunee Weld Identification

| IDENT         | IFICATION NO. | YEAR     | DRAWING NO. |               | 2000                      |
|---------------|---------------|----------|-------------|---------------|---------------------------|
| Original      | Current       | EXAMINED | Original    | Current (ISI) | ADDENDA<br>ITEM<br>NUMBER |
| RC-7          | RC-W9         | 1976     | WPS-104     | ISIM-1703     | B9.11                     |
| RCC-A-11      | RC-W19        | 1976     | WPS-104     | ISIM-1703     | B9.11                     |
| RCC-A-12      | RC-W20        | 1976     | WPS-104     | ISIM-1703     | B9.11                     |
| 2-SI-23       | SI-W61        | 1976     | WPS-132     | ISIM-938-1    | B9.11                     |
| 1-W2          | SI-W63        | 1976     | WPS-132     | ISIM-938-1    | B9.11                     |
| 5-RC-206-AF   | SI-W74        | 1976     | WPS-131     | ISIM-938-1    | B9.11                     |
| 9-W3          | SI-W71        | 1976     | WPS-131     | ISIM-938-1    | B9.11                     |
| 2-RC-845-B    | RHR-W1        | 1976     | WPS-115     | ISIM-957-1SH1 | B9.11                     |
| 3-W1          | RHR-W2        | 1976     | WPS-115     | ISIM-957-1SH1 | B9.11                     |
| 4-W2          | RHR-W3        | 1976     | WPS-115     | ISIM-957-1SH1 | B9.11                     |
| 5-W3          | RHR-W4        | 1976     | WPS-115     | ISIM-957-1SH1 | B9.11                     |
| 6-SJ-5        | SI-W49        | 1976     | WPS-120     | ISIM-939SH1   | B9.11                     |
| 4-W2          | SI-W105       | 1976     | WPS-121     | ISIM-938-2SH1 | B9.11                     |
| 4-W2          | PR-W30        | 1976     | WPS-118     | ISIM-940-2    | B9.11                     |
| 3-W2          | PR-W19        | 1976     | WPS-118     | ISIM-940-2    | B9.11                     |
| 4-W3          | PR-W20        | 1976     | WPS-118     | ISIM-940-2    | B9.11                     |
| 3-RC-40       | SI-W52        | 1976     | WPS-120     | ISIM-939SH1   | B9.11                     |
| 3-RTD-1-JA    | RTD-W31       | 1976     | WPS-123     | ISIM-1460     | B9.21                     |
| 2-RTD-201-BJ  | RTD-W84       | 1976     | WPS-137     | ISIM-1461     | B9.21                     |
| 2-RC-32I      | PS-W1         | 1976     | WPS-122     | ISIM-874-2    | B9.21                     |
| 3-W1          | PS-W2         | 1976     | WPS-122     | ISIM-874-2    | B9.21                     |
| 2-RC-45K      | PS-W30        | 1976     | WPS-122     | ISIM-874-1    | B9.21                     |
| 3-W2          | PS-W31        | 1976     | WPS-122     | ISIM-874-1    | B9.21                     |
| 4-W3          | PS-W32        | 1976     | WPS-122     | ISIM-874-1    | B9.21                     |
| 3-SW-2        | PR-W4         | 1976     | WPS-119     | ISIM-940-1    | B9.21                     |
| 24-SW-1       | RTD-W106B     | 1976     | WPS-140     | ISIM-1461     | B9.21                     |
| 23-RTD-205-BJ | RTD-78B       | 1976     | WPS-141     | ISIM-1461     | B9.21                     |
| 1-SW8 Loop A4 | RC-W23BC      | 1976     | WPS-114     | ISIM-1703     | B9.31                     |
| 1-CVC-3891    | CVC-W58S      | 1976     | WPS-129     | ISIM-1471     | B9.40                     |

•

## Category B-J Welds Examined During First and Second Interval For Use in Cross Referencing of Westinghouse and Kewaunee Weld Identification

| IDENTIFICATION NO. |           | YEAR     | DRA      | WING NO.      | 2000                      |
|--------------------|-----------|----------|----------|---------------|---------------------------|
| Original           | Current   | EXAMINED | Original | Current (ISI) | ADDENDA<br>ITEM<br>NUMBER |
| 2-CVC-3889         | CVC-W57S  | 1976     | WPS-129  | ISIM-1471     | B9.40                     |
| 3-CVC-3888         | CVC-W56S  | 1976     | WPS-129  | ISIM-1471     | B9.40                     |
| 5-CVC-3886         | CVC-W55S  | 1976     | WPS-129  | ISIM-1471     | B9.40                     |
| 1-SW8              | RC-W14BC  | 1976     | WPS-126  | ISIM-1703     | B9.32                     |
| 2-SI-302           | SI-W10S   | 1976     | WPS-125  | ISIM-982      | B9.40                     |
| 1-RTD-60           | RTD-WIS   | 1976     | WPS-124  | ISIM-1460     | B9.40                     |
| 2-RTD-61           | RTD-W2S   | 1976     | WPS-124  | ISIM-1460     | B9.40                     |
| 1-SW5              | RC-W21BC  | 1976     | WPS-128  | ISIM-1703     | B9.32                     |
| 2-RTD-85           | RTD-W32S  | 1976     | WPS-128  | ISIM-1460     | B9.40                     |
| 1-SW               | CVC-W152S | 1976     | WPS-147  | ISIM-1476     | B9.40                     |
| 2-CVC-3518MY       | CVC-W151S | 1976     | WPS-147  | ISIM-1476     | B9.40                     |
| 3-CVC-3134MY       | CVC-W150S | 1976     | WPS-147  | ISIM-1476     | B9.40                     |
| 4-CVC-3538MY       | CVC-W149S | 1976     | WPS-147  | ISIM-1476     | B9.40                     |
| 2-SIS-576-CH       | SI-W86S   | 1976     | WPS-144  | ISIM-936      | B9.40                     |
| 1-RTD-273-BJ       | RTD-W58S  | 1976     | WPS-141  | ISIM-1461     | B9.40                     |
| 2-RTD-271-BJ       | RTD-W57S  | 1976     | WPS-141  | ISIM-1461     | B9.40                     |
| 1-SW8              | RC-W52BC  | 1976     | WPS-140  | ISIM-1704     | B9.32                     |
| 2-RTD-87-SB        | RTD-W85S  | 1976     | WPS-140  | ISIM-1461     | B9.40                     |
| 1-RC-538-ZE        | LD-W4S    | 1976     | WPS-145  | ISIM-1474     | B9.40                     |
| 1-SW8              | RC-W44BC  | 1976     | WPS-142  | ISIM-1704     | B9.32                     |
| 1-7A-461-T         | RC-W51BC  | 1976     | WPS-138  | ISIM-1704     | B9.32                     |
| 2-RC-574-SB        | CVC-W96S  | 1976     | WPS-138  | ISIM-1473     | B9.40                     |
| 3-RC-575-1         | CVC-W95S  | 1976     | WPS-138  | ISIM-1473     | B9.40                     |
| 4-RC-576-1         | CVC-W94S  | 1976     | WPS-138  | ISIM-1473     | B9.40                     |
| 5-RC-577-1         | CVC-W93S  | 1976     | WPS-138  | ISIM-1473     | B9.40 <sup>(1)</sup>      |
| 6-RC-578-1         | CVC-W92S  | 1976     | WPS-138  | ISIM-1473     | B9.40 <sup>(1)</sup>      |
| 7-RC-579-1         | CVC-W91S  | 1976     | WPS-138  | ISIM-1473     | B9.40 <sup>(1)</sup>      |

<sup>(1)</sup>Configuration on WPS-138 does not match ISIM-1473.

| IDENTIFICATION NO. |              | YEAR     | DRA        | WING NO.      | 2000                      |
|--------------------|--------------|----------|------------|---------------|---------------------------|
| Original           | Current      | EXAMINED | Original   | Current (ISI) | ADDENDA<br>ITEM<br>NUMBER |
| 1-CVC-6271-G2      | NOT ASSIGNED | 1976     | WPS-146    | -             | N/A                       |
| 2-CVC-6272-G2      | NOT ASSIGNED | 1976     | WPS-146    | -             | N/A                       |
| 3-CVC-6274-G2      | NOT ASSIGNED | 1976     | WPS-146    | -             | N/A                       |
| 1-SI-568           | SI-W104BC    | 1976     | WPS-127    | ISIM-938-2SH1 | B9.32                     |
| 2-SI-741           | SI-W103S     | 1976     | WPS-127    | ISIM-937-2SH1 | B9.40                     |
| 1-SI-500-SB        | SI-W42BC     | 1976     | WPS-143    | ISIM-939SH1   | B9.32                     |
| 1-SW7              | RC-W43BC     | 1976     | WPS-137    | ISIM-1704     | B9.32                     |
| 7                  | RC-W39       | 1978     | WPS-1-4200 | ISIM-1704     | B9.11                     |
| 7                  | SI-W116      | 1978     | WPS-1-4101 | ISIM-935      | B9.11                     |
| 9                  | SI-W113      | 1978     | WPS-1-4101 | ISIM-935      | B9.11                     |
| 3B                 | RC-W65       | 1978     | WPS-1-4500 | ISIM-892      | B9.11                     |
| 8                  | RHR-W31      | 1978     | WPS-1-4203 | ISIM-957-1SH1 | B9.11                     |
| 9                  | RHR-W32      | 1978     | WPS-1-4203 | ISIM-957-1SH1 | B9.11                     |
| 11                 | RHR-W34      | 1978     | WPS-1-4203 | ISIM-957-1SH1 | B9.11                     |
| 12                 | RHR-W35      | 1978     | WPS-1-4203 | ISIM-957-1SH1 | B9.11                     |
| 22                 | SI-W19       | 1978     | WPS-1-4105 | ISIM-939SH1   | B9.11                     |
| 24                 | SI-W17       | 1978     | WPS-1-4105 | ISIM-939SH1   | B9.11                     |
| 2                  | RC-W27       | 1978     | WPS-1-4104 | ISIM-1703     | B9.11                     |
| 3                  | RC-W28       | 1978     | WPS-1-4103 | ISIM-982      | B9.11                     |
| 5                  | SI-W110      | 1978     | WPS-1-4206 | ISIM-938-2SH1 | B9.11                     |
| 5                  | RTD-W29      | 1978     | WPS-1-4106 | ISIM-1460     | B9.21                     |
| 4                  | RTD-W82      | 1978     | WPS-1-4207 | ISIM-1461     | B9.21                     |
| 11                 | PS-W11       | 1978     | WPS-1-4504 | ISIM-874-2    | B9.21                     |
| 12                 | PS-W12       | 1978     | WPS-1-4504 | ISIM-874-2    | B9.21                     |
| 11                 | PS-W39       | 1978     | WPS-1-4505 | ISIM-874-1    | B9.21                     |
| 12                 | PS-W40       | 1978     | WPS-1-4505 | ISIM-874-1    | B9.21                     |
| 17                 | PS-W45       | 1978     | WPS-1-4505 | ISIM-874-1    | B9.21                     |
| 1 (BC)             | RC-W4BC      | 1978     | WPS-1-4104 | ISIM-1703     | B9.31                     |
| 1 (BC)             | RC-W44BC     | 1978     | WPS-1-4215 | ISIM-1704     | B9.32                     |

| IDENTIFICATION NO. |              | YEAR     | DRA        | WING NO.      | 2000                      |
|--------------------|--------------|----------|------------|---------------|---------------------------|
| Original           | Current      | EXAMINED | Original   | Current (ISI) | ADDENDA<br>ITEM<br>NUMBER |
| 24                 | CVC-W35S     | 1978     | WPS-1-4112 | ISIM-1471     | B9.40                     |
| 25                 | CVC-W34S     | 1978     | WPS-1-4112 | ISIM-1471     | B9.40                     |
| 34A                | CVC-W24S     | 1978     | WPS-1-4113 | ISIM-1471     | B9.40                     |
| 35                 | CVC-W23S     | 1978     | WPS-1-4113 | ISIM-1471     | B9.40                     |
| 5                  | WD-W4S       | 1978     | WPS-1-4111 | ISIM-1369-2   | B9.40                     |
| 6                  | WD-W5S       | 1978     | WPS-1-4111 | ISIM-1369-2   | B9.40                     |
| 4                  | SI-W7S       | 1978     | WPS-1-4109 | ISIM-982      | B9.40                     |
| 14                 | RTD-W13S     | 1978     | WPS-1-4107 | ISIM-1460     | B9.40                     |
| 15                 | RTD-W14S     | 1978     | WPS-1-4107 | ISIM-1460     | B9.40                     |
| 16                 | RTD-W15S     | 1978     | WPS-1-4107 | ISIM-1460     | B9.40                     |
| 6                  | RTD-W36S     | 1978     | WPS-1-4108 | ISIM-1460     | B9.40                     |
| 7                  | RTD-W37S     | 1978     | WPS-1-4108 | ISIM-1460     | B9.40                     |
| 17                 | CVC-W136S    | 1978     | WPS-1-4216 | ISIM-1476     | B9.40                     |
| 18                 | CVC-W135S    | 1978     | WPS-1-4216 | ISIM-1476     | B9.40                     |
| 19                 | CVC-W134S    | 1978     | WPS-1-4216 | ISIM-1476     | B9.40                     |
| 40                 | CVC-W112S    | 1978     | WPS-1-4216 | ISIM-1476     | B9.40                     |
| 41                 | CVC-W111S    | 1978     | WPS-1-4216 | ISIM-1476     | B9.40                     |
| 4                  | SI-W84S      | 1978     | WPS-1-4212 | ISIM-936      | B9.40                     |
| 10                 | RTD-W65S     | 1978     | WPS-1-4209 | ISIM-1461     | B9.40                     |
| 11                 | RTD-W66S     | 1978     | WPS-1-4209 | ISIM-1461     | B9.40                     |
| 18                 | RTD-W100S    | 1978     | WPS-1-4208 | ISIM-1461     | B9.40                     |
| 19                 | RTD-W101S    | 1978     | WPS-1-4208 | ISIM-1461     | B9.40                     |
| 78                 | NOT ASSIGNED | 1978     | WPS-1-4211 | -             | N/A                       |
| 79                 | NOT ASSIGNED | 1978     | WPS-1-4211 | -             | N/A                       |
| 80                 | NOT ASSIGNED | 1978     | WPS-1-4211 | -             | N/A                       |
| 5                  | SI-W100S     | 1978     | WPS-1-4214 | ISIM-937-2SH1 | B9.40                     |
| 4                  | SI-W39S      | 1978     | WPS-1-4110 | ISIM-937-1    | B9.40                     |
| 3                  | RC-W28       | 1979     | WPS-1-4103 | ISIM-982      | B9.11                     |
| 2                  | RC-W59       | 1979     | WPS-1-4205 | ISIM-1704     | B9.11                     |

## Category B-J Welds Examined During First and Second Interval For Use in Cross Referencing of Westinghouse and Kewaunee Weld Identification

| IDENTIFICATION NO. |           | YEAR     | DRA        | DRAWING NO.   |                           |
|--------------------|-----------|----------|------------|---------------|---------------------------|
| Original           | Current   | EXAMINED | Original   | Current (ISI) | ADDENDA<br>ITEM<br>NUMBER |
| 7                  | PR-W7     | 1979     | WPS-1-4503 | ISIM-940-1    | B9.21                     |
| 1 (BW)             | SI-W87B   | 1979     | WPS-1-4212 | ISIM-936      | B9.21                     |
| 10                 | LD-W13S   | 1979     | WPS-1-4213 | ISIM-1474     | B9.40                     |
| 23                 | CVC-W75S  | 1979     | WPS-1-4210 | ISIM-1473     | B9.40                     |
| 24                 | CVC-W74S  | 1979     | WPS-1-4210 | ISIM-1473     | B9.40                     |
| 25                 | CVC-W73S  | 1979     | WPS-1-4210 | ISIM-1473     | B9.40                     |
| 26                 | CVC-W72S  | 1979     | WPS-1-4210 | ISIM-1473     | B9.40                     |
| 7                  | CVC-W156S | 1979     | WPS-1-4506 | ISIM-874-3    | B9.40                     |
| 8                  | CVC-W157S | 1979     | WPS-1-4506 | ISIM-874-3    | B9.40                     |
| 8 .                | RC-W42    | 1981     | WPS-1-4200 | ISIM-1704     | B9.11                     |
| 9                  | RC-W45    | 1981     | WPS-1-4200 | ISIM-1704     | B9.11                     |
| 12                 | SI-W66    | 1981     | WPS-1-4201 | ISIM-938-1    | B9.11                     |
| 13                 | SI-W65    | 1981     | WPS-1-4201 | ISIM-938-1    | B9.11                     |
| 8                  | SI-W56    | 1981     | WPS-1-4202 | ISIM-938-1    | B9.11                     |
| 9.                 | SI-W55    | 1981     | WPS-1-4202 | ISIM-938-1    | B9.11                     |
| 9                  | RHR-W8    | 1981     | WPS-1-4102 | ISIM-957-1SH1 | B9.11                     |
| 10                 | RHR-W9    | 1981     | WPS-1-4102 | ISIM-957-1SH1 | B9.11                     |
| 19                 | RHR-W42   | 1981     | WPS-1-4203 | ISIM-957-1SH1 | B9.11                     |
| 21                 | RHR-W44   | 1981     | WPS-1-4203 | ISIM-957-1SH2 | B9.11                     |
| 18                 | SI-W23    | 1981     | WPS-1-4105 | ISIM-939SH1   | B9.11                     |
| 19                 | SI-W22    | 1981     | WPS-1-4105 | ISIM-939SH1   | B9.11                     |
| 21                 | SI-W20    | 1981     | WPS-1-4105 | ISIM-939SH1   | B9.11                     |
| 2                  | RC-W60    | 1981     | WPS-1-4204 | ISIM-936      | B9.11                     |
| 6                  | RTD-W80   | 1981     | WPS-1-4207 | ISIM-1461     | B9.21                     |
| 8                  | RTD-W107  | 1981     | WPS-1-4207 | ISIM-1461     | B9.21                     |
| 25                 | PS-W24    | 1981     | WPS-1-4504 | ISIM-874-2    | B9.21                     |
| 26                 | PS-W25    | 1981     | WPS-1-4504 | ISIM-874-2    | B9.21                     |
| 30                 | PS-W47    | 1981     | WPS-1-4504 | ISIM-874-1    | B9.21                     |
| 32                 | PS-W49    | 1981     | WPS-1-4504 | ISIM-874-1    | B9.21                     |

.

.

| IDEN     | <b>FIFICATION NO.</b> | YEAR     | DRA        | WING NO.      | 2000                      |
|----------|-----------------------|----------|------------|---------------|---------------------------|
| Original | Current               | EXAMINED | Original   | Current (ISI) | ADDENDA<br>ITEM<br>NUMBER |
| 33       | PS-W50                | 1981     | WPS-1-4504 | ISIM-874-1    | B9.21                     |
| 1 (BW)   | RTD-W25B              | 1981     | WPS-1-4107 | ISIM-1460     | B9.21                     |
| 1 (BC)   | RC-W33BC              | 1981     | WPS-1-4500 | ISIM-1704     | B9.31                     |
| 1 (BC)   | RC-W32BC              | 1981     | WPS-1-4205 | ISIM-1704     | B9.31                     |
| 15       | CVC-W44S              | 1981     | WPS-1-4112 | ISIM-1471     | B9.40                     |
| 17       | CVC-W42S              | 1981     | WPS-1-4112 | ISIM-1471     | B9.40                     |
| 19       | CVC-W40S              | 1981     | WPS-1-4112 | ISIM-1471     | B9.40                     |
| 21       | CVC-W4S               | 1981     | WPS-1-4113 | ISIM-1471     | B9.40                     |
| 22       | CVC-W3S               | 1981     | WPS-1-4113 | ISIM-1471     | B9.40                     |
| 12       | WD-W11S               | 1981     | WPS-1-4111 | ISIM-1369-2   | B9.40                     |
| 8        | SI-W4S                | 1981     | WPS-1-4109 | ISIM-982      | B9.40                     |
| 4        | RTD-W22S              | 1981     | WPS-1-4107 | ISIM-1460     | B9.40                     |
| 5        | RTD-W21S              | 1981     | WPS-1-4107 | ISIM-1460     | B9.40                     |
| 19       | RTD-W49S              | 1981     | WPS-1-4108 | ISIM-1460     | B9.40                     |
| 20       | RTD-W50S              | 1981     | WPS-1-4108 | ISIM-1460     | B9.40                     |
| 20       | CVC-W133S             | 1981     | WPS-1-4215 | ISIM-1476     | B9.40                     |
| 21       | CVC-W132S             | 1981     | WPS-1-4215 | ISIM-1476     | B9.40                     |
| 22       | CVC-W131S             | 1981     | WPS-1-4215 | ISIM-1476     | B9.40                     |
| 23       | CVC-W130S             | 1981     | WPS-1-4215 | ISIM-1476     | B9.40                     |
| 9        | SI-W77S               | 1981     | WPS-1-4212 | ISIM-936      | B9.40                     |
| 10       | SI-W79S               | 1981     | WPS-1-4212 | ISIM-936      | B9.40                     |
| 11       | SI-W78S               | 1981     | WPS-1-4212 | ISIM-936      | B9.40                     |
| 22       | RTD-W77S              | 1981     | WPS-1-4209 | ISIM-1461     | B9.40                     |
| 11       | RTD-W96S              | 1981     | WPS-1-4208 | ISIM-1461     | B9.40                     |
| 12       | RTD-W95S              | 1981     | WPS-1-4208 | ISIM-1461     | B9.40                     |
| 4        | LD-W7S                | 1981     | WPS-1-4213 | ISIM-1474     | B9.40                     |
| 5        | WD-W17S               | 1981     | WPS-1-4211 | ISIM-1474     | B9.40                     |
| 11       | CVC-W87S              | 1981     | WPS-1-4210 | ISIM-1473     | B9.40                     |
| 12       | CVC-W86S              | 1981     | WPS-1-4210 | ISIM-1473     | B9.40                     |

| IDENTIFICATION NO. |           | YEAR     | DRA        | WING NO.      | 2000                      |
|--------------------|-----------|----------|------------|---------------|---------------------------|
| Original           | Current   | EXAMINED | Original   | Current (ISI) | ADDENDA<br>ITEM<br>NUMBER |
| 17                 | CVC-W81S  | 1981     | WPS-1-4210 | ISIM-1473     | B9.40                     |
| 18                 | CVC-W80S  | 1981     | WPS-1-4210 | ISIM-1473     | B9.40                     |
| 7                  | SI-W36S   | 1981     | WPS-1-4110 | ISIM-937-1    | B9.40                     |
| 8                  | SI-W35S   | 1981     | WPS-1-4110 | ISIM-937-1    | B9.40                     |
| 19                 | CVC-W171S | 1981     | WPS-1-4506 | ISIM-874-3    | B9.40                     |
| 11                 | SI-W94S   | 1981     | WPS-1-4214 | ISIM-937-2SH1 | B9.40                     |
| 6                  | RC-W8     | 1985 ·   | WPS-1-4100 | ISIM-1703     | B9.11                     |
| 7                  | RC-W9     | 1985     | WPS-1-4100 | ISIM-1703     | B9.11                     |
| 10                 | RC-W18    | 1985     | WPS-1-4100 | ISIM-1703     | B9.11                     |
| 8                  | SI-W117   | 1985     | WPS-1-4101 | ISIM-935      | B9.11                     |
| 10                 | SI-W115   | 1985     | WPS-1-4101 | ISIM-935      | B9.11                     |
| 5                  | SI-W73    | 1985     | WPS-1-4201 | ISIM-938-1    | B9.11                     |
| 6                  | SI-W72    | 1985     | WPS-1-4201 | ISIM-938-1    | B9.11                     |
| 10                 | SI-W68    | 1985     | WPS-1-4201 | ISIM-938-1    | B9.11                     |
| 2                  | RC-W62    | 1985     | WPS-1-4500 | ISIM-892      | B9.11                     |
| 3                  | RC-W63    | 1985     | WPS-1-4500 | ISIM-892      | B9.11                     |
| 6                  | RC-W66    | 1985     | WPS-1-4500 | ISIM-892      | B9.11                     |
| 23                 | RHR-W22   | 1985     | WPS-1-4102 | ISIM-957-1SH1 | B9.11                     |
| 15                 | RHR-W38   | 1985     | WPS-1-4203 | ISIM-957-1SH1 | B9.11                     |
| 18                 | RHR-W41   | 1985     | WPS-1-4203 | ISIM-957-1SH1 | B9.11                     |
| 7                  | SI-W48    | 1985     | WPS-1-4105 | ISIM-939SH1   | B9.11                     |
| 10                 | SI-W45    | 1985     | WPS-1-4105 | ISIM-939SH1   | B9.11                     |
| 3                  | RC-W61    | 1985     | WPS-1-4204 | ISIM-936      | B9.11                     |
| 4                  | SI-W88    | 1985     | WPS-1-4204 | ISIM-936      | B9.11                     |
| 10                 | SI-W89    | 1985     | WPS-1-4206 | ISIM-938-2SH1 | B9.11                     |
| 5                  | PR-W20    | 1985     | WPS-1-4501 | ISIM-940-2    | B9.11                     |
| 2                  | SI-W53    | 1985     | WPS-1-4105 | ISIM-939SH1   | B9.11                     |
| 17                 | RC-W11L   | 1985     | WPS-1-4100 | ISIM-1703     | B9.12 (2)                 |
| 18                 | RC-W10L   | 1985     | WPS-1-4100 | ISIM-1703     | B9.12 (2)                 |

| IDENTIFICATION NO. |           | YEAR     | DRAWING NO. |               | 2000                      |
|--------------------|-----------|----------|-------------|---------------|---------------------------|
| Original           | Current   | EXAMINED | Original    | Current (ISI) | ADDENDA<br>ITEM<br>NUMBER |
| 19                 | RC-W17L   | 1985     | WPS-1-4100  | ISIM-1703     | B9.12 (2)                 |
| 20                 | RC-W16L   | 1985     | WPS-1-4100  | ISIM-1703     | B9.12 (2)                 |
| 1 (BC)             | RC-W3BC   | 1985     | WPS-1-4102  | ISIM-1703     | B9.31                     |
| 1 (BC)             | RC-W13BC  | 1985     | WPS-1-4102  | ISIM-1703     | B9.32                     |
| 3                  | SI-W9S    | 1985     | WPS-1-4109  | ISIM-982      | B9.40                     |
| 10                 | SI-W3S    | 1985     | WPS-1-4109  | ISIM-982      | B9.40                     |
| 10                 | CVC-W49S  | 1985     | WPS-1-4112  | ISIM-1471     | B9.40                     |
| 13                 | CVC-W46S  | 1985     | WPS-1-4112  | ISIM-1471     | B9.40                     |
| 18                 | CVC-W41S  | 1985     | WPS-1-4112  | ISIM-1471     | B9.40                     |
| 16                 | CVC-W9S   | 1985     | WPS-1-4113  | ISIM-1471     | B9.40                     |
| 19                 | CVC-W16S  | 1985     | WPS-1-4113  | ISIM-1471     | B9.40                     |
| 22                 | CVC-W76S  | 1985     | WPS-1-4210  | ISIM-1473     | B9.40                     |
| 27                 | CVC-W71S  | 1985     | WPS-1-4210  | ISIM-1473     | B9.40                     |
| 28                 | CVC-W70S  | 1985     | WPS-1-4210  | ISIM-1473     | B9.40                     |
| 31                 | CVC-W67S  | 1985     | WPS-1-4210  | ISIM-1473     | B9.40                     |
| 32                 | CVC-W66S  | 1985     | WPS-1-4210  | ISIM-1473     | B9.40                     |
| 4                  | SI-W84S   | 1985     | WPS-1-4212  | ISIM-936      | B9.40                     |
| 5                  | SI-W83S   | 1985     | WPS-1-4212  | ISIM-936      | B9.40                     |
| 45                 | CVC-W108S | 1985     | WPS-1-4215  | ISIM-1476     | B9.40                     |
| 48                 | CVC-W105S | 1985     | WPS-1-4215  | ISIM-1476     | B9.40                     |
| 51                 | CVC-W102S | 1985     | WPS-1-4215  | ISIM-1476     | B9.40                     |
| 56                 | CVC-W97S  | 1985     | WPS-1-4215  | ISIM-1476     | B9.40                     |
| 2                  | CVC-W154S | 1985     | WPS-1-4506  | ISIM-874-3    | B9.40                     |
| 2                  | SI-W86S   | 1986     | WPS-1-4212  | ISIM-936      | B9.40                     |
| 3                  | SI-W85S   | 1986     | WPS-1-4212  | ISIM-936      | B9.40                     |
| 6                  | SI-W82S   | 1986     | WPS-1-4212  | ISIM-936      | B9.40                     |
| 7                  | SI-W81S   | 1986     | WPS-1-4212  | ISIM-936      | B9.40                     |
| 1 (BW)             | RTD-W106B | 1987     | WPS-1-4208  | ISIM-1461     | B9.21                     |
| 2                  | RTD-W24S  | 1987     | WPS-1-4107  | ISIM-1460     | B9.40                     |

| IDENTIFICATION NO. |                  | YEAR     | DRA        | WING NO.      | 2000                      |
|--------------------|------------------|----------|------------|---------------|---------------------------|
| Original           | Current          | EXAMINED | Original   | Current (ISI) | ADDENDA<br>ITEM<br>NUMBER |
| 4                  | RTD-W22S         | 1987     | WPS-1-4107 | ISIM-1460     | B9.40                     |
| 10                 | RTD-W16S         | 1987     | WPS-1-4107 | ISIM-1460     | B9.40                     |
| 8                  | RTD-W38S         | 1987     | WPS-1-4108 | ISIM-1460     | B9.40                     |
| 9                  | RTD-W39S         | 1987     | WPS-1-4108 | ISIM-1460     | B9.40                     |
| 2                  | SI-W10S          | 1987     | WPS-1-4109 | ISIM-982      | B9.40                     |
| 4                  | SI-W8S           | 1987     | WPS-1-4109 | ISIM-982      | B9.40                     |
| 5                  | SI-W7S           | 1987     | WPS-1-4109 | ISIM-982      | B9.40                     |
| 7                  | SI-W5S           | 1987     | WPS-1-4109 | ISIM-982      | B9.40                     |
| 8                  | SI-W4S           | 1987     | WPS-1-4109 | ISIM-982      | B9.40                     |
| 9                  | RTD-W98S         | 1987     | WPS-1-4208 | ISIM-1461     | B9.40                     |
| 10                 | RTD-W97S         | 1987     | WPS-1-4208 | ISIM-1461     | B9.40                     |
| 14                 | RTD-W93S         | 1987     | WPS-1-4208 | ISIM-1461     | B9.40                     |
| 15                 | RTD-W92S         | 1987     | WPS-1-4208 | ISIM-1461     | B9.40                     |
| 2                  | SI-W86S          | 1987     | WPS-1-4212 | ISIM-936      | B9.40                     |
| 3                  | SI-W85S          | 1987     | WPS-1-4212 | ISIM-936      | B9.40                     |
| 4                  | SI-W60           | 1988     | WPS-1-4202 | ISIM-938-1    | B9.11                     |
| 6                  | SI-W58           | 1988     | WPS-1-4202 | ISIM-938-1    | B9.11                     |
| 7                  | SI-W57           | 1988     | WPS-1-4202 | ISIM-938-1    | B9.11                     |
| 9                  | SI-W55           | 1988     | WPS-1-4202 | ISIM-938-1    | B9.11                     |
| 26                 | SI-W15           | 1988     | WPS-1-4105 | ISIM-939SH1   | B9.11                     |
| 6                  | SI-W107          | 1988     | WPS-1-4206 | ISIM-938-2SH1 | B9.11                     |
| 7                  | SI-W106          | 1988     | WPS-1-4206 | ISIM-938-2SH1 | B9.11                     |
| 9                  | PR-W25           | 1988     | WPS-1-4501 | ISIM-940-2    | B9.11                     |
| 3                  | SI-W110          | 1988     | WPS-1-4206 | ISIM-938-2SH1 | B9.11                     |
| 4                  | SI-W109          | 1988     | WPS-1-4206 | ISIM-938-2SH1 | B9.11                     |
| 4                  | PR-W5            | 1988     | WPS-1-4503 | ISIM-940-1    | B9.21                     |
| 9                  | 37096-1 (PR-W10) | 1988     | WPS-1-4503 | ISIM-940-1    | B9.21                     |
| 10                 | 37096-2 (PR-W9)  | 1988     | WPS-1-4503 | ISIM-940-1    | B9.21                     |
| 11                 | PR-W11           | 1988     | WPS-1-4503 | ISIM-940-1    | B9.21                     |

| IDENTIFICATION NO. |           | YEAR     | DRA        | WING NO.      | 2000<br>ADDENDA           |
|--------------------|-----------|----------|------------|---------------|---------------------------|
| Original           | Current   | EXAMINED | Original   | Current (ISI) | ADDENDA<br>ITEM<br>NUMBER |
| 22                 | PS-W21    | 1988     | WPS-1-4504 | ISIM-874-2    | B9.21                     |
| 24                 | PS-W23    | 1988     | WPS-I-4504 | ISIM-874-2    | B9.21                     |
| 27                 | PS-W26    | 1988     | WPS-1-4504 | ISIM-874-2    | B9.21                     |
| 2                  | SI-W41S   | 1988     | WPS-1-4110 | ISIM-937-1    | B9.40                     |
| 6                  | SI-W37S   | 1988     | WPS-1-4110 | ISIM-937-1    | B9.40                     |
| 10                 | CVC-W15S  | 1988     | WPS-1-4113 | ISIM-1471     | B9.40                     |
| 13                 | CVC-W12S  | 1988     | WPS-1-4113 | ISIM-1471     | B9.40                     |
| 36                 | CVC-W62S  | 1988     | WPS-1-4210 | ISIM-1473     | B9.40                     |
| 37                 | CVC-W61S  | 1988     | WPS-1-4210 | ISIM-1473     | B9.40                     |
| 38                 | CVC-W60S  | 1988     | WPS-1-4210 | ISIM-1473     | B9.40                     |
| 39                 | CVC-W59S  | 1988     | WPS-1-4210 | ISIM-1473     | B9.40                     |
| 4                  | LD-W3S    | 1988     | WPS-1-4211 | ISIM-1474     | B9.40                     |
| 6                  | SI-W99S   | 1988     | WPS-1-4214 | ISIM-937-2SH1 | B9.40                     |
| 8                  | SI-W97S   | 1988     | WPS-1-4214 | ISIM-937-2SH1 | B9.40                     |
| 31                 | CVC-W122S | 1988     | WPS-1-4215 | ISIM-1476     | B9.40                     |
| 34                 | CVC-W119S | 1988     | WPS-1-4215 | ISIM-1476     | B9.40                     |
| 37                 | CVC-W116S | 1988     | WPS-1-4215 | ISIM-1476     | B9.40                     |
| 40                 | CVC-W113S | 1988     | WPS-1-4215 | ISIM-1476     | B9.40                     |
| 46                 | CVC-W107S | 1988     | WPS-1-4215 | ISIM-1476     | B9.40                     |
| 10                 | CVC-W162S | 1988     | WPS-1-4506 | ISIM-874-3    | B9.40                     |
|                    | RTD-W66S  | 1989     | WPS-1-4209 | ISIM-1461     | B9.40                     |
| -                  | RTD-W67S  | 1989     | WPS-1-4209 | ISIM-1461     | B9.40                     |
| 3                  | RC-W35    | 1990     | WPS-1-4200 | ISIM-1704     | B9.11                     |
| 6                  | RC-W66    | 1990     | WPS-1-4500 | ISIM-892      | B9.11                     |
| 3                  | SI-W122   | 1990     | WPS-1-4101 | ISIM-935      | B9.11                     |
| 4                  | SI-W121   | 1990     | WPS-1-4101 | ISIM-935      | B9.11                     |
| 2                  | SI-W76    | 1990     | WPS-1-4201 | ISIM-938-1    | B9.11                     |
| 14                 | SI-W64    | 1990     | WPS-1-4201 | ISIM-938-1    | B9.11                     |
| 10                 | RHR-W9    | 1990     | WPS-1-4102 | ISIM-957-1SH1 | B9.11                     |

| IDENTIFICATION NO. |          | YEAR | DRAWING NO.           |               | 2000                        |
|--------------------|----------|------|-----------------------|---------------|-----------------------------|
| Original           | Current  |      | <sup>5</sup> Original | Current (ISI) | - ADDENDA<br>ITEM<br>NUMBER |
| 9                  | RHR-W8   | 1990 | WPS-1-4102            | ISIM-957-1SH1 | B9.11                       |
| 2                  | RHR-W25  | 1990 | WPS-1-4203            | ISIM-957-1SH1 | B9.11                       |
| 9                  | RHR-W32  | 1990 | WPS-1-4203            | ISIM-957-1SH1 | B9.11                       |
| 4                  | SI-W12   | 1990 | WPS-1-4103            | ISIM-982      | B9.11                       |
| 3                  | RTD-W30  | 1990 | WPS-1-4106            | ISIM-1460     | B9.21                       |
| 4                  | RTD-W29  | 1990 | WPS-1-4106            | ISIM-1460     | B9.21                       |
| 5                  | RTD-W28  | 1990 | WPS-1-4106            | ISIM-1460     | B9.21                       |
| 4                  | PS-W32   | 1990 | WPS-1-4505            | ISIM-874-1    | B9.21                       |
| 8                  | PS-W36   | 1990 | WPS-1-4505            | ISIM-874-1    | B9.21                       |
| 9                  | PS-W37   | 1990 | WPS-1-4505            | ISIM-874-1    | B9.21                       |
| 1BC                | RC-W33BC | 1990 | WPS-1-4500            | ISIM-1704     | B9.31                       |
| 1BC                | RC-W34BC | 1990 | WPS-1-4203            | ISIM-1704     | B9.31                       |
| 1BC                | RC-W22BC | 1990 | WPS-1-4103            | ISIM-1703     | B9.31                       |
| 14                 | RTD-W12S | 1990 | WPS-1-4107            | ISIM-1460     | B9.40                       |
| 16                 | RTD-W10S | 1990 | WPS-1-4107            | ISIM-1460     | B9.40                       |
| 17                 | RTD-W9S  | 1990 | WPS-1-4107            | ISIM-1460     | B9.40                       |
| 13                 | RTD-W43S | 1990 | WPS-1-4108            | ISIM-1460     | B9.40                       |
| 16                 | RTD-W46S | 1990 | WPS-1-4108            | ISIM-1460     | B9.40                       |
| 5                  | SI-W83S  | 1990 | WPS-1-4212            | ISIM-936      | B9.40                       |
| 4                  | WD-W3S   | 1990 | WPS-1-4111            | ISIM-1369-2   | B9.40                       |
| 8                  | RTD-W99S | 1990 | WPS-1-4208            | ISIM-1461     | B9.40                       |
| 19                 | RTD-W88S | 1990 | WPS-1-4208            | ISIM-1461     | B9.40                       |
| 19                 | RTD-W74S | 1990 | WPS-1-4209            | ISIM-1461     | B9.40                       |
| 35                 | CVC-W63S | 1990 | WPS-1-4210            | ISIM-1473     | B9.40                       |
| 6                  | RC-W38   | 1992 | WPS-1-4200            | ISIM-1704     | B9.11                       |
| 11                 | RC-W49   | 1992 | WPS-1-4200            | ISIM-1704     | B9.11                       |
| 12                 | RC-W55   | 1992 | WPS-1-4200            | ISIM-1704     | B9.11                       |
| 15                 | RHR-W14  | 1992 | WPS-1-4102            | ISIM-957-1SH1 | B9.11                       |
| 17                 | RHR-W16  | 1992 | WPS-1-4102            | ISIM-957-1SH1 | B9.11                       |

# Category B-J Welds Examined During First and Second Interval For Use in Cross Referencing of Westinghouse and Kewaunee Weld Identification

| IDENTIFICATION NO. |          | YEAR     | DRA        | WING NO.      | 2000<br>ADDENDA           |
|--------------------|----------|----------|------------|---------------|---------------------------|
| Original           | Current  | EXAMINED | Original   | Current (ISI) | ADDENDA<br>ITEM<br>NUMBER |
| 20                 | RHR-W19  | 1992     | WPS-1-4102 | ISIM-957-1SH1 | B9.11                     |
| 9                  | RHR-W8   | 1992     | WPS-1-4102 | ISIM-957-1SH1 | B9.11                     |
| 5                  | RHR-W28  | 1992     | WPS-1-4203 | ISIM-957-1SH1 | B9.11                     |
| 6                  | RHR-W29  | 1992     | WPS-1-4203 | ISIM-957-1SH1 | B9.11                     |
| 12                 | RHR-W35  | 1992     | WPS-1-4203 | ISIM-957-1SH1 | B9.11                     |
| 9                  | RHR-W32  | 1992     | WPS-1-4203 | ISIM-957-1SH1 | B9.11                     |
| 13                 | SI-W28   | 1992     | WPS-1-4105 | ISIM-939SH1   | B9.11                     |
| 15                 | SI-W26   | 1992     | WPS-1-4105 | ISIM-939SH1   | B9.11                     |
| 23                 | SI-W18   | 1992     | WPS-1-4105 | ISIM-939SH1   | B9.11                     |
| 8                  | PR-W23   | 1992     | WPS-1-4501 | ISIM-940-2    | B9.11                     |
| 3                  | PR-W28   | 1992     | WPS-1-4502 | ISIM-940-2    | B9.11                     |
| 3                  | RTD-W83  | 1992     | WPS-1-4207 | ISIM-1461     | B9.21                     |
| 4                  | RTD-W82  | 1992     | WPS-1-4207 | ISIM-1461     | B9.21                     |
| 5                  | RTD-W81  | 1992     | WPS-1-4207 | ISIM-1461     | B9.21                     |
| 6                  | RTD-W80  | 1992     | WPS-1-4207 | ISIM-1461     | B9.21                     |
| 7                  | RTD-W79  | 1992     | WPS-1-4207 | ISIM-1461     | B9.21                     |
| 38                 | PS-W55   | 1992     | WPS-1-4504 | ISIM-874-1    | B9.21                     |
| 39                 | PS-W56   | 1992     | WPS-1-4504 | ISIM-874-1    | B9.21                     |
| 40                 | PS-W57   | 1992     | WPS-1-4504 | ISIM-874-1    | B9.21                     |
| 41                 | PS-W58   | 1992     | WPS-1-4504 | ISIM-874-1    | B9.21                     |
| 42                 | PS-W59   | 1992     | WPS-1-4504 | ISIM-874-1    | B9.21                     |
| 4                  | RTD-W59S | 1992     | WPS-1-4209 | ISIM-1461     | B9.40                     |
| 23                 | RTD-W78B | 1992     | WPS-1-4209 | ISIM-1461     | B9.21                     |
| 1BC                | RC-W54BC | 1992     | WPS-1-4204 | ISIM-1704     | B9.31                     |
| 1BC                | RC-W53BC | 1992     | WPS-1-4505 | ISIM-1704     | B9.32                     |
| 28BC               | PS-W27BC | 1992     | WPS-1-4506 | ISIM-874-2    | B9.32                     |
| 2                  | SI-W41S  | 1992     | WPS-1-4110 | ISIM-937-1    | B9.40                     |
| 7                  | WD-W6S   | 1992     | WPS-1-4111 | ISIM-1369-2   | B9.40                     |
| 10                 | WD-W9S   | 1992     | WPS-1-4111 | ISIM-1369-2   | B9.40                     |

| IDENTIFICATION NO. |           | YEAR     | DRA        | DRAWING NO.   |                           |
|--------------------|-----------|----------|------------|---------------|---------------------------|
| Original           | Current   | EXAMINED | Original   | Current (ISI) | ADDENDA<br>ITEM<br>NUMBER |
| 14                 | WD-W13S   | 1992     | WPS-1-4111 | ISIM-1369-2   | B9.40                     |
| 17                 | WD-W16S   | 1992     | WPS-1-4111 | ISIM-1369-2   | B9.40                     |
| 29                 | CVC-W30S  | 1992     | WPS-1-4112 | ISIM-1471     | B9.40                     |
| 32                 | CVC-W27S  | 1992     | WPS-1-4112 | ISIM-1471     | B9.40                     |
| 4                  | CVC-W21S  | 1992     | WPS-1-4113 | ISIM-1471     | B9.40                     |
| 7                  | CVC-W18S  | 1992     | WPS-1-4113 | ISIM-1471     | B9.40                     |
| 8                  | RTD-W63S  | 1992     | WPS-1-4209 | ISIM-1461     | B9.40                     |
| 9                  | RTD-W64S  | 1992     | WPS-1-4209 | ISIM-1461     | B9.40                     |
| 13                 | RTD-W68S  | 1992     | WPS-1-4209 | ISIM-1461     | B9.40                     |
| 16                 | RTD-W71S  | 1992     | WPS-1-4209 | ISIM-1461     | B9.40                     |
| 8                  | CVC-W90S  | 1992     | WPS-1-4210 | ISIM-1473     | B9.40                     |
| 13                 | CVC-W85S  | 1992     | WPS-1-4210 | ISIM-1473     | B9.40                     |
| 16                 | CVC-W82S  | 1992     | WPS-1-4210 | ISIM-1473     | B9.40                     |
| 19                 | CVC-W79S  | 1992     | WPS-1-4210 | ISIM-1473     | B9.40                     |
| 21                 | CVC-W77S  | 1992     | WPS-1-4210 | ISIM-1473     | B9.40                     |
| 9                  | SI-W77S   | 1992     | WPS-1-4212 | ISIM-936      | B9.40                     |
| 3                  | LD-W6S    | 1992     | WPS-1-4213 | ISIM-1474     | B9.40                     |
| 7                  | LD-W10S   | 1992     | WPS-1-4213 | ISIM-1474     | B9.40                     |
| 7                  | CVC-W146S | 1992     | WPS-1-4215 | ISIM-1476     | B9.40                     |
| 12                 | CVC-W141S | 1992     | WPS-1-4215 | ISIM-1476     | B9.40                     |
| 24                 | CVC-W129S | 1992     | WPS-1-4215 | ISIM-1476     | B9.40                     |
| 29                 | CVC-W124S | 1992     | WPS-1-4215 | ISIM-1476     | B9.40                     |
| 16                 | CVC-W168S | 1992     | WPS-1-4506 | ISIM-874-3    | B9.40                     |
| 7                  | RC-W39    | 1993     | WPS-1-4200 | ISIM-1704     | B9.11                     |
| 10                 | RC-W48    | 1993     | WPS-1-4200 | ISIM-1704     | B9.11                     |
| 17                 | RC-W41L   | 1993     | WPS-1-4200 | ISIM-1704     | B9.12 (2)                 |
| 18                 | RC-W40L   | 1993     | WPS-1-4200 | ISIM-1704     | B9.12 (2)                 |

| IDENTIFICATION NO. |          | YEAR     | DRAWING NO. |               | 2000                      |
|--------------------|----------|----------|-------------|---------------|---------------------------|
| Original           | Current  | EXAMINED | Original    | Current (ISI) | ADDENDA<br>ITEM<br>NUMBER |
| 19                 | RC-W47L  | 1993     | WPS-1-4200  | ISIM-1704     | B9.12 (2)                 |
| 20                 | RC-W46L  | 1993     | WPS-1-4200  | ISIM-1704     | B9.12 (2)                 |
| 22                 | RTD-W3S  | 1993     | WPS-1-4107  | ISIM-1460     | B9.40                     |
| 21                 | RTD-W51S | 1993     | WPS-1-4108  | ISIM-1460     | B9.40                     |
| 24                 | RTD-W54S | 1993     | WPS-1-4108  | ISIM-1460     | B9.40                     |
| 5                  | CVC-W54S | 1993     | WPS-1-4112  | ISIM-1471     | B9.40                     |
| 6                  | CVC-W53S | 1993     | WPS-1-4112  | ISIM-1471     | B9.40                     |
| 7                  | CVC-W52S | 1993     | WPS-1-4112  | ISIM-1471     | B9.40                     |
| 20                 | CVC-W39S | 1993     | WPS-1-4112  | ISIM-1471     | B9.40                     |
| 23                 | CVC-W36S | 1993     | WPS-1-4112  | ISIM-1471     | B9.40                     |

### Category B-J Welds Examined During First and Second Interval For Use in Cross Referencing of Westinghouse and Kewaunee Weld Identification

(2) Kewaunee Nuclear Power Plant assigned Item Number.

#### **Basis Document for ISI Code Class Boundaries**

#### Introduction

1.

The purpose of this appendix is to document the Licensing position for the ASME Boiler and Pressure Vessel Code Section XI boundaries at the Kewaunee Nuclear Power Plant. This document, when used in conjunction with the ISI Flow Diagrams, provides the technical basis for the ISI classification boundaries. These boundaries are defined as required by ASME Section XI, IWA-1400(a). Wisconsin Public Service Corporation has no formal commitment to Regulatory Guide 1.26. Although this document was frequently used to assist in establishing the current ISI classification boundaries, it was referred to for guidance only. The boundaries described in this document apply to inspection, repair and replacement activities for the Fourth Inspection Interval (June 16, 2004 to June 16, 2014). Following publication of Regulatory Guide 1.26, Westinghouse Electric Corporation provided Wisconsin Public Service Corporation with color coded P&IDs showing the classification boundaries for the First Inspection Interval. Gilbert/Commonwealth reviewed and concurred with these boundaries for the Second Inspection Interval with minor changes that were subsequently incorporated. These changes related to new piping that was added to the plant by implementation of post construction design changes. The Third Inspection Interval showing classification boundaries was prepared by the Wisconsin Public Service Corporation Kewaunee Nuclear Power Plant Licensing Department.

#### 2. Background

As part of the design of the Kewaunee Nuclear Power Plant, Pioneer Services and Engineering Company, the architect-engineer, established the original Quality Assurance Boundaries. In June 1970, the Atomic Energy Commission issued quality assurance criteria for nuclear power plants. During construction, the 10 CFR 50, Appendix B program was the primary program used in the design, fabrication, and testing of QA-1 safety-related structures, systems, and components. QA-1 identified those structures, systems, and components that prevent or mitigate the consequences of postulated accidents that could cause undue risk to the health and safety of the public. Valve type and placement that are used to represent boundaries for the Section XI classification system are based on the original design and QA classification. With only three exceptions, the Spent Fuel Storage Pool System (QA-3), Service Water System Service Water Pump Strainers (4 Total) 3" Backwash Lines (QA-3) and Service Water Side of Spent Fuel Pool Heat Exchanger up to 6" valves SW-1601 and SW-1602 (QA-3), all Section XI Boiler and Pressure Vessel Code piping falls within the QA-1 boundary at the Kewaunee Nuclear Power Plant. The QA boundary classification system assures the highest possible degree of quality standards consistent with the importance of the safety function at the Kewaunee Nuclear Power Plant. The QA boundaries are defined on the Operations P&IDs.

As explained above, the Kewaunee Nuclear Power Plant was designed, fabricated, and the Section XI pre-service examinations were completed before the ISI classification rules were formalized and published. For this reason, it is not practical and/or not possible for the Kewaunee Nuclear Power Plant to always apply the current ISI classification guidance to all

### **Basis Document for ISI Code Class Boundaries**

portions of safety-related systems that were reviewed for inclusion in the Section XI code class boundary.

Following publication of Regulatory Guide 1.26, Westinghouse Electric Corporation provided Wisconsin Public Service Corporation with color coded P&IDs showing the classification boundaries for the first interval. Gilbert/Commonwealth reviewed and concurred with these boundaries for the second interval.

- 3. Summary of Design Basis Accidents
  - a. One of the primary objectives of an ISI Plan is to ensure that systems and/or portions of systems necessary to protect the health and safety of the public are included in the ASME Boiler and Pressure Vessel Code, Section XI boundary. This section summarizes the safety aspects of the plant and demonstrates that the ASME Boiler and Pressure Vessel Code boundary encompasses systems and/or portions of piping systems necessary to ensure that the guidelines of 10 CFR 100 are maintained.

American Nuclear Society (ANS) has classified plant conditions into four categories in accordance with the anticipated frequency of occurrence and potential radiological consequences to the public. The four categories are as follows.

| Condition I   | Normal Operation and Operational Transients |
|---------------|---------------------------------------------|
| Condition II  | Faults of Moderate Frequency                |
| Condition III | Infrequent Faults                           |
| Condition IV  | Limiting Faults                             |

The postulated design basis accidents for the Kewaunee Nuclear Power Plant are as follows.

- i. Uncontrolled RCCA Withdrawal from a Subcritical Condition
- ii. Uncontrolled RCCA Withdrawal at Power
- iii. RCCA Misalignment
- iv. Chemical and Volume Control System Malfunction
- v. Startup of an Inactive Reactor Coolant Loop
- vi. Excessive Heat Removal Due to Feedwater System Malfunctions

#### **Basis Document for ISI Code Class Boundaries**

- vii. Excessive Load Increase Incident
- viii. Loss of Reactor Coolant Flow
- ix. Loss of External Electrical Load
- x. Loss of Normal Feedwater
- xi. Anticipated Transients Without SCRAM
- xii. Loss of all AC Power to the Plant Auxiliaries
- xiii. Fuel Handling Accidents
- xiv. Accidental Release Recycle of Waste Liquid
- xv. Accidental Release Waste Gas
- xvi. Steam Generator Tube Rupture
- xvii. Steam Line Break
- xviii. Rupture of a Control Rod Drive Mechanism Housing (RCCA Ejection)
- xix. Turbine Missile Damage to Spent Fuel Pool
- xx. Reactor Coolant System Pipe Ruptures (Loss of Coolant Accident)
- b. Each of these accidents is summarized below with respect to the piping systems and/or portions of piping systems needed to prevent or mitigate the consequences of the postulated accident.
  - i.
- Uncontrolled RCCA Withdrawal from a Subcritical Condition

An uncontrolled addition of reactivity due to uncontrolled withdrawal of a rod cluster control assembly results in a power excursion. The transient will be terminated by the following automatic protection or control system actions:

- (1) Source Range High Neutron Flux Reactor Trip
- (2) Intermediate Range High Neutron Flux Rod Stop
- (3) Automatic Reactor Trip Activated at 40 percent full power (unless it has been manually bypassed)
- (4) Power Range High Neutron Flux Reactor Trip (Low Setting)

#### **Basis Document for ISI Code Class Boundaries**

- (5) Power Range High Neutron Flux Rod Stop
- (6) Power Range High Neutron Flux Reactor Trip (High Setting)

Termination of the startup accident by the above protection channels prevents core damage. In addition, the reactor trip from high reactor coolant pressure serves as a backup to terminate the accident before an overpressure condition could occur.

No piping is needed as a primary flow path to terminate this postulated accident.

ii. Uncontrolled RCCA Withdrawal at Power

An uncontrolled RCCA withdrawal at power results in a gradual increase in core power followed by an increase in core heat flux. The resulting mismatch between core power and steam generator heat load results in an increase in reactor coolant temperature and pressure. Unless terminated by manual or automatic action, the power mismatch and resultant coolant temperature rise would eventually result in DNB. Therefore, to prevent the possibility of damage to the cladding, the Reactor Protection System is designed to terminate any such transient before the DNBR falls below 1.30. Protection is provided by the nuclear flux overpower and overtemperature  $\Delta T$  trips.

No piping is needed as a primary flow path to terminate this postulated accident.

### iii. RCCA Misalignment

RCC assembly misalignment accidents include: a) dropped full-length assemblies; b) dropped full-length assembly banks; c) statically misaligned full-length assemblies.

Dropped or misaligned RCC assemblies are not deemed to be any hazard to the safe operation of the plant because these events are clearly indicated to the operation crew and the case of the worst misaligned or dropped rod does not result in DNBR less than 1.30.

For all cases of dropped banks, the reactor is tripped by the power range negative flux rate trip and consequently dropped banks do not cause core damage.

No piping is needed as a primary flow path to terminate this postulated accident.

#### **Basis Document for ISI Code Class Boundaries**

iv. Chemical and Volume Control System Malfunction

The malfunction of the Chemical and Volume Control System is assumed to deliver unborated water to the Reactor Coolant System. There is only a single source of reactor makeup water for the Reactor Coolant System, the reactor makeup water storage tank. Inadvertent dilution can be readily terminated by isolating this single source. Because of the procedures involved in the dilution process, an erroneous dilution is considered unlikely. Nevertheless, if an unintentional dilution of boron in the reactor coolant does occur, numerous alarms and indications are available to alert the operator to the condition. The maximum reactivity addition due to the dilution is slow enough to allow the operator to determine the cause of the addition and take corrective action before excessive shutdown margin is lost.

To recover shutdown margin, boron concentration can be increased by the addition of boron from the refueling water storage tank via valve CVC-301, through the charging pumps to the Reactor Coolant System.

Per DCR 2786, the boric acid tanks are no longer the safety related source of boron for reactor shutdown. Accordingly, piping from the boric acid tanks through the boric acid blender and valve CVC-440 have been removed from the Section XI code class boundary.

v.

Startup of an Inactive Reactor Coolant Loop

The startup of an idle reactor coolant pump in an operating plant would result in the injection of cold water (from the idle loop hot leg) into the core which causes a rapid reactivity insertion and subsequent core power increase. For startup of an inactive loop at 12 percent power, the power and temperature excursions are not severe and place no undue restriction on the plant.

No piping is needed to mitigate this transient other than an intact Reactor Coolant System.

### **Basis Document for ISI Code Class Boundaries**

vi. Excess Heat Removal Due to Feedwater System Malfunctions

The malfunction of the feedwater system such that the feedwater temperature is decreased or the flow is increased causes a decrease in the RCS temperature and an attendant increase in core power level due to negative reactivity coefficients and/or control system action. The overpower-overtemperature protection prevents any power increase which would lead to a DNBR less than 1.30. Continuous addition of cold feedwater after a reactor trip is prevented since the reduction of Reactor Coolant System temperature, pressure, and pressurizer level leads to the actuation of safety injection on low pressurizer pressure. The safety injection signal trips the main feedwater pumps and closes the feedwater pump discharge valves as well as closing the main feedwater control valves.

Portions of the safety injection system including feedwater isolation via valves FW-12A and FW-12B are needed to terminate this malfunction.

#### vii. Excessive Load Increase Incident

An excessive load increase causes a rapid increase in steam generator steam flow. The resulting mismatch between core heat generation and secondary side level demand results in a decrease in reactor coolant temperature which causes a core power increase due to negative moderator feedback and/or control system action. The Reactor Control System is designed to accommodate a 10 percent step load increase or a five percent per minute ramp load increase (without a reactor trip) in the range 15 to 95 percent of full power. Any loading rate in excess of these values may cause a reactor trip actuated by the Reactor Protection System. If the load increase exceeds that capability of the Reactor Control System, the transient is terminated in sufficient time to prevent the DNBR from being reduced below 1.30, since the core is protected by the combination of the high nuclear flux trip and the overpower and over temperature  $\Delta T$  trips.

No piping is needed as a primary flow path to terminate this postulated accident.

#### **Basis Document for ISI Code Class Boundaries**

viii. Loss of Reactor Coolant Flow

A loss-of-coolant flow incident can result from a mechanical or electrical failure in one or more reactor coolant pumps or from a fault in the power supply to these pumps. If the reactor is at power at the time of the incident, the immediate effect of loss-of-coolant flow is a rapid increase in coolant temperature. This increase could result in departure from nucleate boiling (DNB) with subsequent fuel damage if the reactor is not tripped promptly. The following trip circuits provide the necessary protection against a loss-of-coolant flow incident.

- (1) Low voltage on pump power supply bus.
- (2) Pump circuit breaker opening (low frequency on pump power supply bus opens pump circuit breaker)
- (3) Low reactor coolant flow

Simultaneous loss of electrical power to all reactor coolant pumps at full power is the most severe credible loss-of-coolant flow condition. For this condition, reactor trip together with flow sustained by the inertia of the coolant and rotating pump parts will be sufficient to prevent fuel failure, Reactor Coolant System overpressure, and prevent the DNB ratio from going below 1.30.

The primary flow path needed to terminate this postulated accident includes primary coolant from the reactor coolant system, though the steam generators; including the auxiliary feedwater system, main steam piping to the turbine stop valves and main steam relief valves.

Loss of External Electrical Load

The loss of external electrical load may result from an abnormal increase in network frequency, opening of the main breaker from the generator, which causes a rapid large Nuclear Steam Supply System load reduction by the action of the turbine control, or by a trip of the turbine generator.

ix.

### **Basis Document for ISI Code Class Boundaries**

The plant is designed to accept a full-load rejection without actuating a reactor trip. The automatic steam bypass system with 85 percent steam dump capacity (40 percent to the condenser and 45 percent to the atmosphere) is able to accommodate this load rejection by reducing the transient imposed upon the Reactor Coolant System. The reactor power is reduced to the new equilibrium power level at a rate consistent with the capability of the Rod Control System. The pressurizer relief valves may be actuated, but the pressurizer safety valves and the steam generator safety valves do not lift for a step loss of load with steam dump to auxiliary load.

In the event the steam bypass valves fail to open following a large load loss, the steam generator safety valves may lift causing the reactor to be tripped by the high pressurizer pressure signal, the high pressurizer level signal or the low-low steam generator level signal. The steam generator shell side pressure and reactor coolant temperatures will increase rapidly. The pressurizer safety valves and steam generator safety valves are, however, sized to protect the Reactor Coolant System and steam generator against overpressure for all load losses without taking credit for the steam bypass system.

The primary flow path needed to terminate this postulated accident includes primary coolant from the reactor coolant system, though the steam generators; including the auxiliary feedwater system, main steam piping to the turbine stop valves and main steam relief valves. The pressurizer safety valves and steam generator safety valves provide a key role in mitigating the consequences of this postulated accident. The integrity of the core is maintained by the high pressurizer pressure reactor trip.

X.

#### Loss of Normal Feedwater

A loss of normal feedwater (from a pipe break, pump failure, valve malfunctions, or loss of off-site power) results in a reduction in capability of the secondary system to remove the heat generated in the reactor core. If the reactor were not tripped during this accident, Reactor Coolant System damage could possibly occur from a sudden loss-of-heat sink.

The following provides the necessary protection against a loss of normal feedwater:

(1) Reactor trip on low-low water level in either steam generator.

### **Basis Document for ISI Code Class Boundaries**

- (2) Reactor trip on steam flow-feedwater flow mismatch in coincidence with low water level in either steam generator.
- (3) Two motor-driven auxiliary feedwater pumps which are started automatically on:
  - (a) Low-low level in either steam generator, or
  - (b) Opening of both feedwater pump circuit breakers, or
  - (c) Safety Injection signal, or
  - (d) Loss of off-site power, or
  - (e) Manually
- (4) One turbine-driven pump which is started automatically on:
  - (a) Low-low level in both steam generator, or
  - (b) Loss of voltage on both 4 kV buses, or
  - (c) Steam Generator AMSAC low-low level, or
  - (d) Manually

The motor-driven auxiliary feedwater pumps are supplied by the emergency diesel generators if a loss of outside power occurs and the turbine-driven pump utilizes steam from the secondary system. The Service Water System is the emergency supply to the auxiliary pumps.

Three auxiliary feedwater pumps are provided in the plant (two motordriven and one turbine-driven. Necessary protection against consequences of a loss of normal feedwater including that caused by loss of off-site power would therefore be available allowing for an active failure on one of the operable auxiliary feedwater pumps even when one of the pumps is down for maintenance.

When all three pumps are operable, there is considerable backup in equipment and control to insure that reactor trip and automatic auxiliary feedwater flow occur following loss of normal feedwater.

### **Basis Document for ISI Code Class Boundaries**

The loss of normal feedwater does not result in any adverse condition in the core, because it does not result in water discharging from the pressurizer relief or safety valves. In addition, it does not result in uncovering the tubesheets of the steam generator that is being supplied with auxiliary feedwater.

Piping needed to mitigate the consequences of this accident include the AFW pumps and associated piping to the steam generators; service water to the diesel generator cooling water heat exchangers if loss of feedwater is caused by loss of off-site power; auxiliary steam to the TDAFW pump; and service water to the suction of the auxiliary feedwater pumps.

xi. Anticipated Transients Without Scram

An Anticipated Transient Without Scram (ATWS) is a postulated anticipated operational occurrence (such as loss of feedwater, loss of condenser vacuum, or loss of off-site power) that is accompanied by a failure of the Reactor Protection System (RPS) to shut down the reactor.

The Code of Federal Regulations (CFR), Section 10 CFR 50.62 specifies ATWS mitigation system requirements. An actuation on low steam generator water level design has been implemented. The basic logic of AMSAC is to trip the turbine and start all three auxiliary feedwater pumps when low-low steam generator water level signals are present on 3 of 4 channels for a specified time period.

The NRC Safety Evaluation Report and a subsequent NRC Special Inspection Report reviewed the Kewaunee design and installation against 14 key elements for compliance. The NRC concluded that the Kewaunee AMSAC is acceptable and in compliance with the ATWS rule, 10 CFR 50.62.

In 1998, in response to an engineering evaluation of the AFW system, a plant design change added a Diverse Scram System (DSS). The DSS is initiated on a signal from the existing AMSAC system and de-energizes the Rod Drive MG Set exciter field. Removing the Rod Drive MG set exciter field will interrupt power to the control rod grippers, allowing the control rode to free fall into the core, ending the ATWS event.

The DSS was installed to ensure the AFW pumps would continue to run throughout a loss of main feedwater ATWS. The DSS in conjunction with the AMSAC system will end the transient before the AFW flow to the steam generators increases to a point where AFW pump NPSH could be lost. The loss of main feedwater ATWS, mitigated by the DSS and

#### **Basis Document for ISI Code Class Boundaries**

AMSAC system, was analyzed using a similar methodology as the loss of main feedwater transient.

The original AMSAC submittal to the NRC was amended to include the DSS. The NRC Safety Evaluation Report concluded that the Kewaunee DSS design was acceptable. The WPSC Safety Evaluation for the original AMSAC and the DSS included a review of the 14 key elements of ATWS compliance used by the NRC. This review concluded that the original AMSAC design reviewed by the NRC was unaffected by the addition of the DSS.

Piping needed to mitigate the consequences of an ATWS event includes the auxiliary feedwater pumps and associated piping to the steam generators; service water to the diesel generator cooling water heat exchangers if caused by loss of off-site power; auxiliary steam to the TDAFW pump; and service water to the suction of the auxiliary feedwater pumps.

#### xii. Loss of all AC Power to the Plant Auxiliaries

In the event of a complete loss of off-site power and a turbine trip, there will be a loss of power to the plant auxiliaries (i.e., the reactor coolant pumps, main feedwater pumps, etc.). The events following a loss of off-site power with turbine trip are described in the sequence below:

- (1) The reactor is tripped and plant vital instruments are supplied by the emergency power sources.
- (2) The diesel generators will start on loss of voltage on the 4 kV buses to supply plant vital loads.
- (3) As the steam system pressure subsequently increases, the steam generator power relief valves are automatically opened to the atmosphere. Steam bypass to the condenser is assumed not available because of loss of the circulating water pumps.
- (4) If the steam flow rate through the power relief valves is not sufficient (or if the power relief valves are not available), the steam generator self-actuated safety valves may lift to dissipate the sensible heat of the fuel and coolant plus the residual heat produced in the reactor.

#### **Basis Document for ISI Code Class Boundaries**

(5) As the no-load temperature is approached, the steam power relief valves (or self-actuated safety valves if the power relief valves are not available for any reason) are used to dissipate the residual heat and to maintain the plant at the hot shutdown condition.

The auxiliary feedwater system is started automatically on loss of off-site power. The steam-driven auxiliary feedwater pump utilizes steam from the secondary system and exhausts to the atmosphere. The motor-driven auxiliary feedwater pumps are supplied by power from the diesel generators. The pumps take suction directly from the condensate storage tank for delivery to the steam generators. However, the service water system has been designated as the safety-related source of coolant.

Upon the loss of power to the reactor coolant pumps, coolant flow necessary for core cooling and the removal of residual heat is maintained by natural circulation in the reactor coolant loops.

The loss of off-site power to the plant auxiliaries does not cause any adverse condition in the core since it does not result in water relief from the pressurizer relief or safety valves nor does it result in the loss of the steam generator(s) as a heat sink for residual heat removal.

Piping needed to mitigate the consequences of a postulated loss of AC power accident includes an intact Reactor Coolant System to promote natural circulation; the auxiliary feedwater pumps and associated piping to the steam generators; service water to the diesel generator cooling water heat exchangers; auxiliary steam to the TDAFW pumps; service water to the suction of the auxiliary feedwater pumps; and the steam generator safety and relief valves.

xiii. Fuel Handling Accidents

The following fuel handling accidents are evaluated to ensure that no hazards are created.

- (1) A fuel assembly becomes stuck inside the reactor vessel.
- (2) A fuel assembly or RCCA is dropped onto the floor of the reactor refueling cavity or spent fuel pool.
- (3) A fuel assembly becomes stuck in the penetration valve.

#### **Basis Document for ISI Code Class Boundaries**

(4) A fuel assembly becomes stuck in the transfer tube or the carriage becomes stuck.

The possibility of a fuel handling incident of the severity considered in the analysis is very remote because of the many administrative controls and physical limitations imposed on fuel handling operations. Boron concentration in the coolant is raised to the refueling concentration and verified by sampling. Refueling boron concentration is sufficient to maintain the clean, cold, fully loaded core subcritical with all rod cluster assemblies withdrawn. The refueling cavity is filled with water meeting the same boric acid specifications.

As the vessel head is removed, a visual check is made to verify that RCCA drive shafts are free of the mechanism housings.

After the vessel head is removed, the rod cluster control drive shafts are disconnected from their respective assemblies using the manipulator crane and the shaft unlatching tool. A spring scale is used to indicate that the drive shaft is free of the RCCA as the lifting force is applied.

Adequate cooling of fuel during underwater handling is provided by convective heat transfer to the surrounding water. The fuel assembly is immersed continuously while in the refueling cavity or spent fuel pool.

Even if a spent fuel assembly becomes stuck in the transfer tube, the fuel assembly is completely immersed and natural convention will maintain adequate cooling to remove the decay heat.

Two Nuclear Instrumentation System source-range channels are continuously in operation and provide warning of any approach to criticality during refueling operations. This instrumentation provides a continuous audible signal in the containment, and would annunciate a local horn and an annunciator in the plant control room if the count rate increased above a preset low level.

Refueling boron concentration is sufficient to maintain the clean, cold, full loaded core subcritical by at least 5%  $\Delta$ K/K with all rod cluster control assemblies inserted. At this boron concentration, the core would also be more than two percent subcritical with all control rods withdrawn.

#### **Basis Document for ISI Code Class Boundaries**

All these safety feature make the probability of a fuel handling incident very low. Nevertheless, it is possible that a fuel assembly could be dropped during the handling operations. Therefore, this incident was analyzed both from the standpoint of radiation exposure and accidental criticality.

No piping beyond the refueling cavity and SFP system is needed to mitigate this accident.

#### xiv. Accidental Release – Recycle of Waste Liquid

Accidents in the Auxiliary Building which would result in the release of radioactive liquids are those which may involve the rupture or leaking of system piping or storage tanks. Should failure of any tank located in the Auxiliary Building occur, its content will remain in the Auxiliary Building. The Auxiliary Building, including floor drains and ventilation, is designed to contain leakage resulting from accidents of this type. Building structures are not within the scope of Section XI. No process piping is needed to maintain the release below 10 CFR 100 limits.

#### xv. Accidental Release - Waste Gas

The gas decay tanks contain the gases vented from the Reactor Coolant System, the volume control tank, and the liquid holdup tanks. Sufficient volume is provided in each of four tanks to store the gases involve during a reactor shutdown. The system is adequately sized to permit storage of these gases for forty-five days prior to discharge.

Two accidents were analyzed regarding release of waste gas: failure of the volume control tank, and rupture of the gas decay tank. In both cases, the reactive gases contained in the tank were assumed to escape to atmosphere. It was concluded by dose assessment calculations that a rupture in the waste gas system or in the volume control tank would present no undue hazard to public health and safety.

No process piping systems are required to maintain the release below 10 CFR 100 guidelines.

xvi. Steam Generator Tube Rupture

The analysis of this accident assumes a complete severance of a single steam generator tube with the reactor at power. This accident leads to an increase in contamination of the secondary system due to leakage of radioactive coolant from the Reactor Coolant System.

#### **Basis Document for ISI Code Class Boundaries**

Recovery from a steam generator tube rupture is accomplished by:

- (1) Identifying and isolating the ruptured steam generator.
- (2) Cooldown to provide adequate subcooling need to depressurize the RCS.
- (3) Depressurize the RCS to less than or equal steam generator pressure to stop RCS leakage.

Piping needed to mitigate the consequences of this accident includes in the following:

- (4) AFW pumps and associated piping to the steam generators.
- (5) Service water to the suction of the AFW pumps.
- (6) Auxiliary steam piping to the TDAFW pump.
- (7) Safety Injection piping from the RWST to the reactor vessel and Reactor Coolant Coldlegs.
- (8) Main steam piping to the Main Steam Isolation valve.
- (9) Service water to the SI pump stuffing boxes and lube oil coolers.

#### xvii. Steam Line Break

A steam line break results in an uncontrolled steam release from a steam generator. The steam release results in an initial increase in steam flow which decreases during the accident as the steam pressure falls. The energy removal from the Reactor Coolant System causes a reduction of coolant temperature and pressure. In the presence of a negative coolant temperature coefficient, the cooldown results in a reduction of core shutdown margin. If the most reactive RCCA is assumed stuck in its fully withdrawn position, there is an increased possibility that the core will become critical and return to power. A return to power following a steam line break is a potential problem mainly because of the high hot channel factors that exist when the most reactive assembly is assumed stuck in its fully withdrawn position. Assuming the most pessimistic combination of circumstances which could lead to power generation following a steam line break, the core is ultimately shut down by boric acid injection delivered by the Emergency Core Cooling System.

#### **Basis Document for ISI Code Class Boundaries**

The following piping systems or portions of systems provide the necessary protection against a steam pipe rupture:

- (1) Service Water to the SI pump stuffing boxes and lube oil coolers.
- (2) Safety Injection System piping from the RWST to the reactor (reactivity control, inventory, and pressure control).
- (3) Feedwater System piping to the containment isolation valves FW-12A and FW-12B.
- (4) Main Steam piping to the Main Steam isolation valves.
- xviii. Rupture of a Control Rod Drive Mechanism Housing (RCCA Ejection)

This accident is a result of an extremely unlikely mechanical failure of a control rod mechanism pressure housing such that the Reactor Coolant System pressure would then eject the RCCA (RCCA Ejection) and drive shaft. The consequences of this mechanical failure, in addition to being a minor loss-of-coolant accident, may also be a rapid reactivity insertion together with an adverse core power distribution, possibly leading to localized fuel rod damage for severe cases. The resultant core thermal power excursion is limited by the Doppler reactivity effect of the increased fuel temperature and terminated by reactor trip actuated by high neutron flux signals.

Analysis was performed for beginning and end of life at zero and full power.

The analyses indicates that the fuel and clad limits will not be exceeded. It was concluded that there was no danger of sudden fuel dispersal into the coolant. The pressure surge was shown to be insufficient to exceed 2750 psia, and it was concluded that there was no danger of consequential damage to the primary circuit. The amount of fission products released as a result of clad rupture during DNB is considerably less than in the case of the double-ended main coolant pipe break (the Design Basis Accident), and therefore within the guidelines of 10 CFR 100.

Piping needed to terminate this accident includes the following:

- (1) Safety injection piping from the RWST to the reactor vessel.
- (2) Pressurizer spray and pressure relief valves.

### **Basis Document for ISI Code Class Boundaries**

- (3) Main Steam piping to Main Steam Isolation valves.
- (4) AFW pumps and associated piping to the steam generators.
- (5) Service water to the suction of the AFW pumps.
- (6) Auxiliary steam to the TDAFW pump.
- xix. Turbine Missile Damage to Spent Fuel Pool

Deleted from USAR as referenced in USAR Section 14.2.7.

xx. Reactor Coolant System Pipe Ruptures (Loss of Coolant Accident)

A loss-of-coolant accident is defined as a rupture of the Reactor Coolant System piping or of any line connected to the system. A large break LOCA accident is defined as a rupture 0.5 ft.<sup>2</sup> or larger of the Reactor Coolant System piping including the double-ended rupture of the large pipe in the Reactor Coolant System or of any line connected to the system. A small break LOCA is defined as a rupture smaller than 0.5 ft.<sup>2</sup> Reactor Coolant System piping. Breaches equal to or smaller than  $^{3}/_{8}$ inch diameter instrument tubing can be made up with normal charging and are considered to be leaks.

For the purposes of determining which piping is needed to recover from these accidents the design basis LOCA is the most limiting case. Recovery from the double-ended Reactor Coolant System break requires support from the following piping systems:

- (1) Accumulator injection to the reactor vessel.
- (2) Safety Injection System piping from the RWST to the reactor vessel and Reactor Coolant System Coldlegs.
- (3) Service water piping to the SI pump stuffing boxes and lube oil coders, CCW HXs, and containment FCUs.
- (4) Internal containment spray from RWST to containment spray ring harder.
- (5) RHR piping from RWST and containment sump to reactor coolant loop.

### **Basis Document for ISI Code Class Boundaries**

- (6) RHR pump discharge to SI pump and ICS pump suction.
- (7) Component Cooling Water to RHR HXs, RHR pump shaft seal HXs, safety injection pump shaft seal HXs, and ICS pump gland coolers.
- (8) Letdown piping to LD-3.
- c. Piping needed to prevent or mitigate the consequences of the postulated design bases accidents summarized above is listed in Table 1. Piping listed in Table 1 represents the minimum extent of the ASME Boiler and Pressure Vessel Section XI boundary.

• • • •

| Sum | Summary of Piping Systems or Portions of Piping Systems Needed to Mitigate and/or<br>Terminate Design Basis Accidents at Kewaunee Nuclear Power Plant           |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| •   | Chemical and Volume Control System piping from the refueling water storage tank through valve CVC-301 through the charging pumps to the Reactor Coolant System. |  |  |  |
| •   | Feedwater System piping out to feedwater isolation valves FW-12A and FW-12B.                                                                                    |  |  |  |
| •   | Pressurizer safety valves and associated piping.                                                                                                                |  |  |  |
| •   | Steam generator safety and relief valves including associated piping from the steam generators to the main steam stop valves.                                   |  |  |  |
| •   | Auxiliary Feedwater System pumps and associated piping to the steam generators.                                                                                 |  |  |  |
| •   | Service Water to the diesel generator cooling water heat exchangers.                                                                                            |  |  |  |
| •   | Auxiliary steam to the TDAFW pump.                                                                                                                              |  |  |  |
| •   | Service water to the suction of the auxiliary feedwater pumps.                                                                                                  |  |  |  |
| •   | Reactor Coolant System pressure boundary.                                                                                                                       |  |  |  |
| •   | Spent Fuel Pool System.                                                                                                                                         |  |  |  |
| •   | Safety injection piping from RWST to the reactor vessel and reactor coolant system coldlegs.                                                                    |  |  |  |
| •   | Service water to the safety injection pump stuffing boxes and lube oil coolers, component cooling water heat exchangers and containment fan coil units.         |  |  |  |
| •   | Accumulator injection to the reactor vessel and reactor coolant system coldlegs.                                                                                |  |  |  |
| •   | Internal containment spray from the RWST to containment.                                                                                                        |  |  |  |
| •   | Residual Heat Removal System piping from the RWST and containment sump to the reactor coolant loops.                                                            |  |  |  |
| •   | Residual Heat Removal pump discharge piping to suction of safety injection and containment spray pumps.                                                         |  |  |  |
| •   | Component Cooling Water to RHR HXs, RHR pump shaft seal HXs, safety injection pump seal HXs, and ICS pump gland coolers.                                        |  |  |  |
| •   | Letdown piping to LD-3.                                                                                                                                         |  |  |  |

- 4. Guidance from Regulatory Guide 1.26, 10 CFR Part 50, and Section XI This appendix provides the documentation and technical basis for the determination of the ASME Section XI ISI Classification Boundaries at Kewaunee Nuclear Power Plant in accordance with ASME Section XI of the Boiler and Pressure Vessel Code, IWA-1400(a). Specific references are made to various regulatory and licensing documents used by the staff of the NRR for guidance during review of applications to operate nuclear power plants. Regulatory Guide 1.26, "Quality Group Classification and Standards for Water-, Steam-, and Radioactive Waste- Containing Components of Nuclear Power Plants," describes a quality classification system related to specified national standards that may be used to determine quality standards acceptable to the NRC staff for satisfying General Design Criterion 1 for Class 2 and Class 3 components. As stated in 10 CFR Part 50, Appendix B, it is also the responsibility of the owner to test systems that contain fluids other than those that contain water, steam, and radioactive waste containing components that are important to safety. However, these systems are not required to be included within the ISI boundaries, but they are tested in accordance with plant approved procedures commensurate with the safety function to be performed.
  - a. General Design Criterion 1, "Quality Standards and Records," of Appendix A, "General Design Criteria for Nuclear Power Plants," to 10 CFR Part 50, "Licensing of Production and Utilization Facilities," requires that structures, systems and components important to safety be tested to quality standards commensurate with the importance of the safety functions to be performed. Also, in accordance with IWA-1400 of ASME Section XI of the Boiler and Pressure Vessel Code, the Owner is responsible for the determination of the appropriate Code classes for each component of the power plant, identification of the system boundaries for each class of components subject to inspection and the components exempt from examination requirements.

- During construction, 10 CFR Part 50, Appendix B was the primary document used b. in the design, fabrication, and testing of QA-1 safety-related structures, systems, and components. QA-1 identified those structures, systems, and components that prevent or mitigate the consequences of postulated accidents that could cause undue risk to the health and safety of the public. Types of valves and their location within the system, that were used to establish boundaries for the Section XI classification system, were based on the original design and QA classification. With only three exceptions, the Spent Fuel Storage Pool System (QA-3), Service Water System Service Water Pump Strainers (4 Total) 3" Backwash Lines (QA-3) and Service Water Side of Spent Fuel Pool Heat Exchanger up to 6" valves SW-1601 and SW-1602 (QA-3), all Section XI Boiler and Pressure Vessel Code piping falls within the QA-1 boundary at the Kewaunee Nuclear Power Plant. 10 CFR Part 50.2, Regulatory Guide 1.26 and KNPP USAR, Section 14 were used extensively for the classification of components for ISI at Kewaunee Nuclear Power Plant. 10 CFR Part 50.55a requires that components of the reactor coolant pressure boundary, as defined in 10 CFR Part 50.2, be tested to the highest available national standards. The highest available national standard for ISI classification is ISI Class 1 and is described in Regulatory Guide 1.26.
- 5. Exceptions to Regulatory Guide 1.26 and Classification Boundary Termination Philosophy
  - a. The classification of piping systems for the purpose of inservice inspection requirements has been performed to 10 CFR Part 50.2, Regulatory Guide 1.26 and KNPP USAR, Section 14. This classification is not consistent with the ASME Section III design requirements for classification of safety-related systems. The purpose of the Section III classification system is to ensure the integrity of the components in terms of material properties and design parameters. The purpose of the Section XI classification system is in part, to identify systems or portions of systems necessary to mitigate the consequences of postulated design basis accidents and the classification of systems for ISI is limited to systems important to safety that contain water, steam or radioactive materials.

- b. Regulatory Guide 1.26, Footnote 4 defines a system boundary as including those portions of the system required to accomplish the specified safety function and connected piping up to and including the first valve (including a safety or relief valve) that is either normally closed or capable of automatic closure when the safety function is required. However, due to the fact that Kewaunee Nuclear Power Plant was constructed and licensed prior to the development of the regulatory guide, strict adherence to this document was not practical when classifying ISI Class 3 systems. In particular, with the service water system, provisions for system isolation are not always available with remote operated valves due to the original plant General Design Criteria which was not formalized and published as 10 CFR Part 50, Appendix A prior to 1971. Therefore, the use of manual valves was not restricted. For these cases, guidance was taken from the Kewaunee Nuclear Power Plant Updated Safety Analysis Report. Where normally open manual valves are used to designate an ISI boundary, the valves are accessible to an operator so that the piping can be isolated if necessary. In addition, postulated leakage in the service water system downstream of the open manual valves where ISI classification breaks were taken has been shown to have little effect on functionality of the service water system or the frequency of core damage as calculated in the KNPP PRA. No classification boundary breaks were taken at normally open manual valves inside containment. Hence, all systems at KNPP are being tested to quality standards commensurate with the safety function to be performed.
- c. Instrumentation impulse lines beyond the root valves have not been classified for ISI since they are under the jurisdiction of IEEE and not ASME, and these lines are not required for the system to perform its safety function nor upon a single active failure would they prevent the system from performing its safety function when required. The lines are typically 0.065-in. wall thickness and rated to withstand in excess of 5000 psig. Therefore, no leakage is expected from this tubing. However, should a leak occur, there would be no danger to health and public safety since the sumps and drains are capable of handling all leakage of this magnitude. In addition, since this tubing is 3/8-in. diameter, essentially one charging pump has the capability to provide adequate reactor water makeup if needed to maintain the appropriate reactor coolant levels. KNPP Technical Specifications mandates that at least two charging pumps be operable. This ensures that adequate makeup is available should a leak of this size occur.
- d. New construction that has added small diameter piping or tubing required for the sole purpose of testing has also not been classified for ISI. For example, 3/8-in. tubing to the RTD flow measurement test connections has not been classified for ISI. These lines originally terminated at one valve. Tubing was subsequently added to allow for system performance testing and provides no safety function. Therefore, the classification boundaries for these configurations have remained unchanged from the original classification boundaries.

### **Basis Document for ISI Code Class Boundaries**

- e. The reactor coolant system and the chemical and volume control system employ the use of four flow restricting devices that provide adequate protection against the unlikely event of a line break beyond these devices. Since any leakage through these devices would be controlled and capable of being made up by the charging system, they are being used to provide for a Class 1 to Class 2 boundary transition in the same manner as a closed valve.
- 6. Technical Basis

This section contains the bases and justification for defining the ISI classification boundaries. Plant Operations Flow Diagrams that contained piping systems or portions of piping systems addressed by 10 CFR Part 50.2, Regulatory Guide 1.26 and KNPP USAR, Section 14 were selected for review to determine their relevance to the ISI Program. Selected Flow Diagrams were then used to create ISI Flow Diagrams that identify the ISI boundaries for the fourth inspection interval. The systems or portions of systems that have been included in the ISI Program at KNPP are documented and graphically depicted on these drawings.

- a. ISIXK-100-10
  - i. The reactor coolant pressure boundary (RCPB) has been reviewed using 10 CFR Part 50.2 and classified ISI Class 1 in accordance with 10 CFR Part 50.55a(c).
  - ii. The RPV flange seal leakoff lines have been classified as ISI Class 1 up to the reducers that reduce the line size to 3/8-in. According to the KNPP USAR Section 4.3.1 and 14.3.1, the normal reactor makeup system (Charging) is capable of supplying adequate coolant in the event of a line break of small cross section permitting the operator to execute an orderly shutdown. Therefore, in accordance with 10 CFR Part 50.55a(c)(2)(i), this portion of the system need not meet the requirements for Class 1.
  - iii. The pressurizer relief valves provide the boundary for the reactor coolant system in accordance with 10 CFR Part 50.2, "Reactor Coolant Pressure Boundary" (2)(iii).
  - iv. The tubes and primary coolant side of the steam generators contains reactor coolant and has therefore been classified ISI Class 1. Portions of the RPV head vent system up to the flow restricting orifice have been classified ISI Class 1; and ISI Class 2 up to valves RC-46 and RC-49; in accordance with the RCPB as defined in 10 CFR Part 50.2. This flow restricting device provides adequate protection against the unlikely event of a line break. Since any leakage through the orifice would be controlled and capable of being made up by the charging system, it is being used to provide for a Class 1 to Class 2 boundary transition.

#### **Basis Document for ISI Code Class Boundaries**

v. The incore flux thimble tube has been classified ISI Class 1 up to the seal table since it contains reactor coolant. The swagelock fitting provides for a high degree of leak tightness by design and, therefore, provides an adequate Class 1 boundary. Although these tubes are approximately 3/8-in. and normal makeup is capable of supplying the required amount of coolant as stated in the KNPP USAR, Section 14.3.1, KNPP has elected to classify this tubing as ISI Class 1 up to the Seal Table since it is not isolable up to that point. The RVLIS has not been classified for ISI since it is instrument tubing under the jurisdiction of IEEE, not ASME, and is capable of being made up by the charging system.

- vi. The pressurizer relief tank has not been classified since it is not needed to mitigate any of the postulated design basis accidents listed in Section 3 of this appendix.
- vii. Portions of the pressurizer vent piping up to the flow restricting orifice have been classified ISI Class 1; and ISI Class 2 up to valves RC-46 and RC-49; in accordance with the RCPB as defined in 10 CFR Part 50.2. This flow restricting device provides adequate protection against the unlikely event of a line break. Since any leakage through the orifice would be controlled and capable of being made up by the charging system, it is being used to provide for a Class 1 to Class 2 boundary transition.
- viii. The loop B accumulator injection line shown on this drawing beyond valve RHR-11 has been classified ISI Class 2 in accordance with Regulatory Guide 1.26, Article C.1.b(2) and C.1.a(1).
- ix. There are cases where normally closed valves or valves capable of automatic closure do not exist or are not in locations that make it practical to terminate the ISI boundary at locations consistent with the guidelines of Regulatory Guide 1.26. The following classification boundary breaks at normally open manual valves were used due to the fact that Kewaunee Nuclear Power Plant was designed, constructed and licensed prior to the publication of ISI classification guidelines such as Regulatory Guide 1.26, 10 CFR Part 50, Appendix A and Appendix B.

RC-700 (E-8), NPS 0.375" RC-704 (D-8), NPS 0.375" Reducers in RPV flange seal leakoff lines (G-6), NPS 0.375"

Reference paragraph 6.a.v for additional information regarding classification transitions at normally open manual valves.

### **Basis Document for ISI Code Class Boundaries**

- b. ISIXK-100-18
  - i. Portions of the residual heat removal system have been classified ISI Class 2 in accordance with Regulatory Guide 1.26, Article C.1.b(2) and C.1.a(1).
  - A portion of the residual heat removal system up to and including motor operated valves RHR-2A, RHR-2B and RHR-11 are part of the reactor coolant pressure boundary as defined in 10 CFR Part 50.2 and has been classified ISI Class 1.
  - iii. The tube side of the residual heat removal pump shaft seal water heat exchangers are supplied by component cooling water and has been classified ISI Class 3.
  - iv. The shell side of the residual heat removal heat exchangers has been classified ISI Class 3 in accordance with Regulatory Guide 1.26, Article C.2.b.
  - v. There were no classification boundary breaks at normally open manual valves for this drawing other than instrumentation, vents and drains.
- c. ISIXK-100-19
  - i. Portions of the component cooling water system have been classified ISI Class 3 in accordance with Regulatory Guide 1.26, Article C.2.b. This system supplies cooling water to components that are important to safety such as the shell side of the RHR heat exchangers.
  - ii. The component cooling surge tank protects and accommodates the component cooling water system from sudden changes in volume due to temperature changes or a leak in the reactor coolant pump thermal barrier, and is therefore, classified ISI Class 3 in accordance with Regulatory Guide 1.26, Article C.2.b.
  - iii. The shell side of the letdown heat exchanger and the reactor coolant pump seal water heat exchanger are within the component cooling water system boundary as defined in Footnote 4 of Regulatory Guide 1.26, and have been classified ISI Class 3 in accordance with Regulatory Guide 1.26, Article C.2.b.
  - iv. The shell side of the residual heat removal high radiation sample heat exchanger and the reactor coolant high radiation sample heat exchanger have not been classified since they do not perform a safety function and are not required for safe shutdown in the event of an accident.

#### **Basis Document for ISI Code Class Boundaries**

v. There are cases where normally closed valves or valves capable of automatic closure do not exist or are not in locations that make it practical to terminate the ISI boundary at locations consistent with the guidelines of Regulatory Guide 1.26. The following classification boundary breaks at normally open manual valves were used due to the fact that Kewaunee Nuclear Power Plant was designed, constructed and licensed prior to the publication of ISI classification guidelines such as Regulatory Guide 1.26, 10 CFR Part 50, Appendix A and Appendix B.

CC-310 (F-6), NPS 2" Flange to waste disposal system (A-4), NPS 3"

- d. ISIXK-100-20
  - i. The waste gas compressors have not been classified in part since they do not contain water, steam, or radioactive fluid as described in Regulatory Guide 1.26. Failure of the waste gas compressors will not result in exceeding the 10 CFR 100 guidelines. Furthermore, this component has not been classified since it is not needed to mitigate any of the postulated design basis accidents listed in Section 3 of this appendix.
  - ii. The reactor coolant pump bearing cooling water for both reactor coolant pumps is supplied by component cooling water and is within the component cooling water system boundary as defined in Footnote 4 of Regulatory Guide 1.26, and have been classified ISI Class 3 in accordance with Regulatory Guide 1.26, Article C.2.b.
  - iii. The shell side of the excess letdown heat exchangers is supplied by component cooling water and is within the component cooling water system boundary as defined in Footnote 4 of Regulatory Guide 1.26, and has been classified ISI Class 3 in accordance with Regulatory Guide 1.26, Article C.2.b.
  - iv. The shell side of the safety injection pump seal water heat exchangers, the containment spray pump gland seal coolers, the RHR pump seal water heat exchangers, RHR pump stuffing box water jackets and connected piping have been classified ISI Class 3 in accordance with Regulatory Guide 1.26, Article C.2.b.
  - v. The shell side of the pressurizer steam sample heat exchanger, the pressurizer liquid sample heat exchanger and the reactor coolant hot leg sample heat exchanger have not been classified since they are not needed to mitigate any of the postulated design basis accidents listed in Section 3 of this appendix.

## **Basis Document for ISI Code Class Boundaries**

- vi. The boric acid evaporator and the waste evaporator condenser and distillate cooler have not been classified since they are not needed to mitigate any of the postulated design basis accidents listed in Section 3 of this appendix.
- vi. There are cases where normally closed valves or valves capable of automatic closure do not exist or are not in locations that make it practical to terminate the ISI boundary at locations consistent with the guidelines of Regulatory Guide 1.26. The following classification boundary breaks at normally open manual valves were used due to the fact that Kewaunee Nuclear Power Plant was designed, constructed and licensed prior to the publication of ISI classification guidelines such as Regulatory Guide 1.26, 10 CFR Part 50, Appendix A and Appendix B.

CC-500 (B-2), NPS 2" CC-503 (B-3), NPS 2" CC-800 (C-3), NPS 6" CC-809 (C-6), NPS 6" CC-1000A (E-3), NPS 1.5" CC-1000B (F-3), NPS 1.5" CC-1002A (E-6), NPS 1.5"

- e. ISIXK-100-28
  - i. Portions of the safety injection system are part of the RCPB as defined in 10 CFR Part 50.2 and have been classified ISI Class 1.
  - ii. Remaining portions of the safety injection system, within the system boundary as defined in Footnote 4 of Regulatory Guide 1.26, including the accumulators, have been classified ISI Class 2 in accordance with Regulatory Guide 1.26, Article C.1.a(3) and Article C.1.e.
  - iii. The containment sump suction piping has been classified ISI Class 2 in accordance with Regulatory Guide 1.26, Article C.1.a(2) and C.1.b(2).
  - iv. The classification transition from ISI Class 1 to ISI Class 2 occurs at the valves RHR-11, SI-303A, SI-303B, SI-12A, SI-12B, SI-16A, SI-16B, SI-21A and SI-21B in accordance with Regulatory Guide 1.26, Article C.1.b(2) and C.1.a(1).
  - v. There were no classification boundary breaks at normally open manual valves for this drawing.

#### **Basis Document for ISI Code Class Boundaries**

- f. ISIXK-100-29
  - i. The RWST and connected piping have been classified ISI Class 2 in accordance with Regulatory Guide 1.26, Article C.1.a(1), (2), (3) and C.1.b(1). The RWST supplies borated water to the safety injection pumps, the residual heat removal pumps and the internal containment spray pumps.
  - ii. The tube side of the safety injection pump seal water heat exchangers has been classified ISI Class 2 since this fluid is supplied from the safety injection pump cavity and is part of the safety injection system boundary as defined in Footnote 4 of Regulatory Guide 1.26.
  - iii. Per DCR 2786, the boric acid tanks are no longer the safety related source of boron for reactor shutdown. Accordingly, the chemical and volume control system piping from the boric acid tanks to valves SI-2A and SI-2B have been reclassified as Section XI Non Code Class.
  - iv. There were no classification boundary breaks at normally open manual valves for this drawing other than instrumentation, vents and drains.
- g. ISIXK-100-35

ii.

- i. Portions of the chemical and volume control system through the tube side of the regenerative heat exchanger to CVC-11 and CVC-15 is a preferred flow path to mitigate the consequences of a boron dilution malfunction. However, this flow path is not essential as the shutdown function can be satisfied by the safety injection following a reactor trip. As a good practice, KNPP has elected to classify this piping ISI Class 2. WPSC may, at some time in the future, elect to revise the current classification boundary for this portion of piping from ISI Class 2 to Non-Code Class.
  - Portions of the chemical and volume control system from valve LD-3 through the shell side of the regenerative heat exchanger to the tube side of the letdown heat exchanger are not needed to mitigate any of the postulated design basis accidents listed in Section 3 of this appendix. Piping beyond the RCPB as defined by 10 CFR 50.2, i.e., LD-6, need not be included in the ISI boundaries since it is not needed to terminate any of the postulated design basis accidents described in Section 3 of this appendix. As a good practice, KNPP has elected to classify this piping ISI Class 2. KNPP may, at some time in the future, elect to revise the current classification boundary for this portion of piping from ISI Class 2 to Non-Code Class.

## **Basis Document for ISI Code Class Boundaries**

- iii. Portions of the chemical and volume control system are part of the reactor coolant pressure boundary as defined by 10 CFR Part 50.2, including the reactor coolant pump seal water to valves CVC-205A and CVC-205B, the auxiliary spray line up to fail closed valve CVC-15, the tube side of the excess letdown heat exchangers up to valve LD-301, the charging line to valve CVC-11, the letdown line to valve LD-3 and the No. 1 seal bypass orifice for the reactor coolant pumps. This flow restricting device provides adequate protection against the unlikely event of a line break. Since any leakage through the orifice would be controlled and capable of being made up by the charging system, it is being used to provide for a Class 1 to Class 2 boundary transition.
- iv. Portions of the chemical and volume control system piping from the discharge of the charging pumps provide water for reactor coolant pump seal injection. Neither the reactor coolant pump seal injection piping upstream of CVC-205A and CVC-205B, the return piping downstream of the No. 1 seal bypass orifice or the return piping from the No. 2 seal is needed to mitigate any of the postulated design basis accidents listed in Section 3 of this appendix. As a good practice, KNPP has elected to classify this piping ISI Class 2. KNPP may, at some time in the future, elect to revise the current classification boundary for this portion of piping from ISI Class 2 to Non-Code Class.
- v. There were no classification boundary breaks at normally open manual valves for this drawing.
- h. ISIXK-100-36

i.

Discharge piping from the charging pumps to the regenerative heat exchanger is a preferred flow path to mitigate the consequences of a boron dilution malfunction. However, this flow path is not essential as the shutdown function can be satisfied by the safety injection following a reactor trip. As a good practice, KNPP has elected to classify this piping ISI Class 2. KNPP may, at some time in the future, elect to revise the current classification boundary for this portion of piping from ISI Class 2 to Non-Code Class.

#### **Basis Document for ISI Code Class Boundaries**

- ii. The portion of the chemical and volume control system piping from the discharge of the charging pumps provides water for reactor coolant pump seal injection. The reactor coolant pump seal injection piping is not needed to mitigate any of the postulated design basis accidents listed in Section 3 of this appendix. Piping beyond the RCPB as defined by 10 CFR 50.2, i.e., CVC-202-1 and CVC-203B, need not be included in the ISI boundaries since it is not needed to terminate any of the postulated design basis accidents described in Section 3 of this appendix. As a good practice, WPSC has elected to classify this piping ISI Class 2. KNPP may, at some time in the future, elect to revise the current classification boundary for this portion of piping from ISI Class 2 to Non-Code Class.
- iii. The reactor coolant pump seal water return piping to the volume control tank and the tube side of the seal water heat exchanger are not needed to mitigate any of the postulated design basis accidents listed in Section 3 of this appendix. Piping beyond the RCPB as defined by 10 CFR 50.2, i.e., CVC-212, need not be included in the ISI boundaries since it is not needed to terminate any of the postulated design basis accidents described in Section 3 of this appendix. As a good practice, KNPP has elected to classify this piping ISI Class 2. KNPP may, at some time in the future, elect to revise the current classification boundary for this portion of piping from ISI Class 2 to Non-Code Class.
- iv. Portions of the chemical and volume control system including the tube side of the letdown heat exchanger to the volume control tank are not needed to mitigate any of the postulated design basis accidents listed in Section 3 of this appendix. This piping is not required to be included in the ISI boundaries. As a good practice, KNPP has elected to classify this piping ISI Class 2. KNPP may, at some time in the future, elect to revise the current classification boundary for this portion of piping from ISI Class 2 to Non-Code Class.

The deborating demineralizers, the cation bed and the mixed bed demineralizers have not been classified since they are not needed to mitigate any of the postulated design basis accidents listed in Section 3 of this appendix.

v.

### **Basis Document for ISI Code Class Boundaries**

vi.

The chemical and volume control system piping from the refueling water storage tank through valve CVC-301 to the charging pumps is a preferred flow path to mitigate the consequences of a boron dilution malfunction. However, this flow path is not essential as the shutdown function is satisfied by safety injection following a reactor trip. Since this malfunction is very slow to develop, the operators will have sufficient time to detect and correct for this condition without automatic equipment actuation. KNPP considered pursuing an alternative to classifying this piping as non-code class. Following Regulatory Guide 1.26 classification termination criteria for systems in support of reactor shutdown, this piping has been classified ISI Class 2. As a good practice, KNPP has elected to classify this piping ISI Class 2. KNPP may, at some time in the future, elect to revise the current classification boundary for this portion of piping from ISI Class 2 to Non-Code Class.

vii. There are cases where normally closed valves or valves capable of automatic closure do not exist or are not in locations that make it practical to terminate the ISI boundary at locations consistent with the guidelines of Regulatory Guide 1.26. The following classification boundary breaks at normally open manual valves were used due to the fact that Kewaunee Nuclear Power Plant was designed, constructed and licensed prior to the publication of ISI classification guidelines such as Regulatory Guide 1.26, 10 CFR Part 50, Appendix A and Appendix B.

MG(R)-531 (C-6), NPS 0.375" MG(R)-540 (C-6), NPS 0.75"

i. ISIXK-100-38

i.

- Per DCR 2786, the boric acid tanks are no longer the safety-related source of boron for reactor shutdown. The safety-related source of boron is now the RWST. The chemical and volume control system piping including the boric acid tanks shown on ISIK-100-38 have been classified as ASME Section XI Non-Code Class.
- j. ISIXK-100-44
  - i. Portions of the sampling system that penetrate the reactor containment are part of the reactor coolant pressure boundary as defined in 10 CFR Part 50.2 and have been classified ISI Class 1 up to the outermost containment isolation valve capable of automatic closure.

#### **Basis Document for ISI Code Class Boundaries**

- ii. Portions of the sampling system that do not penetrate the reactor containment but are a part of other systems performing safety functions and not isolated from these systems have been classified ISI Class 2 in accordance with Footnote 4 of Regulatory Guide 1.26 defining system boundaries.
- iii. Remaining portions of the sampling system have not been classified since they are not needed to mitigate any of the postulated design basis accidents listed in Section 3 of this appendix.
- iv. There were no classification boundary breaks at normally open manual valves for this drawing.
- k. ISIM-202-1
  - i. Portions of the service water system including the service water pumps and the tube side of the diesel generator cooling water heat exchangers up to valves SW-301A and SW-301B have been classified ISI Class 3 in accordance with Regulatory Guide 1.26, Article C.2.a and C.2.b.
  - ii. Diesel generator cooling water heat exchanger discharge piping beyond valves SW-301A and SW-301B to the 24" turbine building standpipe has not been classified for ISI. The safety function of the service water pipe to the diesel generator cooling water heat exchangers is satisfied after service water has exited the heat exchangers. The discharge piping beyond this point is not needed to mitigate any of the postulated design basis accidents listed in Section 3 of this appendix.
  - iii. Adequate provisions for system isolation have been provided with at least one manual isolation valve provided for normally operating return lines.
  - iv. There are cases where normally closed valves or valves capable of automatic closure do not exist or are not in locations that make it practical to terminate the ISI boundary at locations consistent with the guidelines of Regulatory Guide 1.26. The following classification boundary breaks at normally open manual valves were used due to the fact that Kewaunee Nuclear Power Plant was designed, constructed and licensed prior to the publication of ISI classification guidelines such as Regulatory Guide 1.26, 10 CFR Part 50, Appendix A and Appendix B.

SW-400A&C (A-1), NPS 1" SW-200A (D-1), NPS 6" SW-200B (D-1), NPS 6" SW-100A (D-9), NPS 2"

**Basis Document for ISI Code Class Boundaries** 

SW-100B (D-3), NPS 2" SW-20A (D-8), NPS 1.5" SW-20B (D-4), NPS 1.5" SW-28A1 (F-9), NPS 1" SW-28A2 (F-7), NPS 1" SW-28B1 (F-4), NPS 1" SW-28B2 (F-2), NPS 1"

#### I. ISIM-202-2

- i. Portions of the service water system including service water to the auxiliary feedwater pumps, the tube side of the component cooling heat exchangers and the containment fan coil units, the shell side of the spent fuel pool heat exchanger, the emergency makeup line to the component cooling surge tank, the shell side of the safety injection pump stuffing box jackets and the safety injection pump lube oil coolers have been classified ISI Class 3 in accordance with Regulatory Guide 1.26, Article C.2.a and C.2.b.
- Discharge piping outside of containment from the component cooling heat exchangers, the containment fan coil units, the shell side of the spent fuel pool heat exchanger, the shell side of the safety injection pump stuffing box jackets and the safety injection pump lube oil coolers is not needed to mitigate any of the postulated design basis accidents listed in Section 3 of this appendix. This piping is not required to be included in the ISI boundaries. As a good practice, KNPP has elected to classify this piping ISI Class 3. KNPP may, at some time in the future, elect to revise the current classification boundary for this portion of piping from ISI Class 3 to Non-Code Class.
- iii. The service water system was designed to also provide cooling water to non safety related components (e.g., the steam generator blowdown heat exchangers). The design of this system allows for the discharge of both safety related and non safety related service water into a common standpipe. This non safety related piping has not been classified for ISI.
- iv. There are cases where normally closed valves or valves capable of automatic closure do not exist or are not in locations that make it practical to terminate the ISI boundary at locations consistent with the guidelines of Regulatory Guide 1.26. The following classification boundary breaks at normally open manual valves were used due to the fact that Kewaunee Nuclear Power Plant was designed, constructed and licensed prior to the publication of ISI classification guidelines such as Regulatory Guide 1.26, 10 CFR Part 50, Appendix A and Appendix B.

**Basis Document for ISI Code Class Boundaries** 

SW-29101-1 (F-1), NPS 1" SW-29101-2 (F-2), NPS 1" SW-29101-5 (F-3), NPS 1" SW-29105-1 (F-6), NPS 1" SW-29105-2 (F-5), NPS 1" SW-29105-5 (F-4), NPS 1" SW-850 (C-5), NPS 1.5" SW-1219A (C-6), NPS 1.5" SW-1219B (C-6), NPS 1.5" SW-650 (G-7), NPS 1.5" SW-700A (G-7), NPS 1.5" SW-700B (F-7), NPS 1.5" SW-800A (E-7), NPS 1.5" SW-800B (E-7), NPS 1.5" SW-1000A (D-7), NPS 4" SW-1000B (C-7), NPS 4" SW-1200A (D-8), NPS 1.5" SW-1200B (E-7), NPS 1.5" SW-1250 (D-8), NPS 1.5" SW-1260 (D-9), NPS 1.5" SW-400A&C (H-10), NPS 1" SW-400C2 (H-8), NPS 1" SW-400B (H-8), NPS 1" SW-5003 (E-7), NPS 1.5"

- m. ISIM-203
  - i.

ii.

The secondary side of the steam generators up to and including the main steam isolation valves and the main steam relief valves have been classified ISI Class 2 in accordance with Regulatory Guide 1.26, Article C.1.d.

- Portions of the blowdown system up to and including the motor operated valves located outside the reactor containment, BT-3A and BT-3B are part of the steam generator secondary and the feedwater system boundary as defined in Footnote 4 of Regulatory Guide 1.26. These portions have been classified ISI Class 2 in accordance with Regulatory Guide 1.26, Article C.1.d.
- iii. The main steam supply from valves MS-100A and MS-100B up to and including the turbine driven auxiliary feedwater pump performs the function of supplying steam for the system that supplies auxiliary feedwater to the steam generators and has therefore, been classified ISI Class 3 in accordance with Regulatory Guide 1.26, Article C.2.a. It should be noted that while performing the function of supplying steam to

#### **Basis Document for ISI Code Class Boundaries**

the turbine driven auxiliary feedwater pump, the associated steam supply piping can be isolated from the main steam system by 3" Motor Operated Valves MS-100A and MS-100B, thus satisfying the Main Steam classification boundary as defined in Article C.1.d of Regulatory Guide 1.26. KNPP may, at some time in the future, elect to revise the current classification boundary for this portion of piping from ISI Class 3 to ISI Class 2 due to ASME Boiler and Pressure Vessel Code Section XI 1998 Edition through 2000 Addenda additional Nondestructive examination requirements for Auxiliary Feedwater Piping

- iv. The steam generator blowdown tank has not been classified since it is not needed to mitigate any of the postulated design basis accidents listed in Section 3 of this appendix.
- v. There were no classification boundary breaks at normally open manual valves for this drawing other than instrumentation, vents and drains.
- n. ISIM-205
  - i. Portions of the auxiliary feedwater system are part of the steam generator secondary and the feedwater system boundary as defined in Footnote 4 of Regulatory Guide 1.26. These portions have been classified ISI Class 2 in accordance with Regulatory Guide 1.26, Article C.1.d up to and including the control and motor operated valves located outside the reactor containment, AFW-2A, AFW-2B, AFW-10A and AFW-10B.
  - ii. The auxiliary feedwater pumps and connected piping have been classified ISI Class 3 in accordance with Regulatory Guide 1.26, Article C.2.a(1). The KNPP USAR Section 6.6.2 states that the normal feedwater supply to the auxiliary feedwater pumps is from the condensate storage tank and that the emergency supply is from the service water system. Section 6.6.3 of the USAR states that the condensate storage tanks were designed as Class III and the service water system providing suction to the auxiliary feedwater pumps has been designed as Class I (as defined in Section 1.3.1 of the USAR). Therefore, the condensate storage tanks and connecting piping to the suction side of the auxiliary feedwater pumps have not been classified for ISI since the service water system provides the safety related source of cooling water.
  - iii. There are cases where normally closed valves or valves capable of automatic closure do not exist or are not in locations that make it practical to terminate the ISI boundary at locations consistent with the guidelines of Regulatory Guide 1.26. The following classification boundary breaks at normally open manual valves were used due to the fact that Kewaunee

### **Basis Document for ISI Code Class Boundaries**

Nuclear Power Plant was designed, constructed and licensed prior to the publication of ISI classification guidelines such as Regulatory Guide 1.26, 10 CFR Part 50, Appendix A and Appendix B.

AFW-100A (G-8), NPS 1.5" AFW-100B (G-6), NPS 1.5" AFW-100C (G-9), NPS 1.5"

#### o. ISIM-214

- i. Portions of the feedwater system up to and including the feedwater isolation valve(s) are part of the steam generator secondary and the feedwater system boundary as defined in Footnote 4 of Regulatory Guide 1.26. These portions have been classified ISI Class 2 in accordance with Regulatory Guide 1.26, Article C.1.d.
- ii. The AFW hydrazine tank, the CD hydrazine tank and the morpholine tank are for chemical injection and have not been classified since they are not needed to mitigate any of the postulated design basis accidents listed in Section 3 of this appendix. Therefore, in this case, the ISI classification boundaries are terminated at the same location as the QA-1 to QA-2 boundaries.
- The AFW pumps including chemical injection piping to valves CI-122A, CI-122B, and CI-122C have been classified ISI Class 3 in accordance with Regulatory Guide 1.26, Article C.2.a footnote 3.
- iv. There are cases where normally closed values or values capable of automatic closure do not exist or are not in locations that make it practical to terminate the ISI boundary at locations consistent with the guidelines of Regulatory Guide 1.26. The following classification boundary breaks at normally open manual values were used due to the fact that Kewaunee Nuclear Power Plant was designed, constructed and licensed prior to the publication of ISI classification guidelines such as Regulatory Guide 1.26, 10 CFR Part 50, Appendix A and Appendix B.

CI-128A (G-4), NPS 0.75" CI-128B (G-4), NPS 0.75" CI-232A (F-8), NPS 0.75" CI-232B (F-8), NPS 0.75"

## **Basis Document for ISI Code Class Boundaries**

- p. ISIM-217
  - i. The containment spray pumps and connected piping up to and including the spray nozzles have been classified ISI Class 2 in accordance with Regulatory Guide 1.26, Article C.1.a(2) and C.1.a(3).
  - ii. The tube side of the containment spray pump gland seal coolers have been classified ISI Class 2 since this fluid is supplied from the containment spray pump cavity and is part of the containment spray system boundary as defined in Footnote 4 of Regulatory Guide 1.26.
  - iii. The refueling water storage tank and connected piping have been classified ISI Class 2 in accordance with Regulatory Guide 1.26, Article C.1.a(1), (2) and (3). The RWST supplies borated water to the safety injection pumps, the residual heat removal pumps and the containment spray pumps for either a loss-of-coolant accident or a steam line break accident.
  - iv. The caustic additive standpipe and pump have not been classified since they are not needed to terminate any of the postulated design basis accidents listed in Section 3 of this appendix. Furthermore, the caustic (sodium hydroxide) is a corrosive chemical possessing properties that differentiate this fluid from those that are within the scope of Regulatory Guide 1.26.
  - v. There were no classification boundary breaks at normally open manual valves for this drawing.
- q. ISIM-218

i.

- The refueling water storage tank and connected piping up to valves FPC-1100, FPC-1000 and FPC-1010 have been classified ISI Class 2 in accordance with Regulatory Guide 1.26, Article C.1.a(1), (2) and (3). The RWST supplies borated water to the safety injection pumps, the residual heat removal pumps and the containment spray pumps for either a loss-of-coolant accident, steam break accident, or boron dilution malfunction.
- ii. Portions of the spent fuel pool cooling system have been classified ISI Class 3 in accordance with Regulatory Guide 1.26, Article C.2.a(4).
- iii. There are cases where normally closed valves or valves capable of automatic closure do not exist or are not in locations that make it practical to terminate the ISI boundary at locations consistent with the guidelines

### **Basis Document for ISI Code Class Boundaries**

of Regulatory Guide 1.26. The following classification boundary breaks at normally open manual valves were used due to the fact that Kewaunee Nuclear Power Plant was designed, constructed and licensed prior to the publication of ISI classification guidelines such as Regulatory Guide 1.26, 10 CFR Part 50, Appendix A and Appendix B.

FPC-206 (B-1), NPS 2" FPC-200 (B-2), NPS 2" FPC-6A (B-3), NPS 3" FPC-6B (B-4), NPS 3" FPC-5A (B-3), NPS 4" FPC-5B (B-4), NPS 4"

#### r. ISIM-219

- i. Secondary sampling system and blowdown piping are not needed to mitigate any of the postulated design basis accidents listed in Section 3 of this appendix. However, the piping up to valves BT-32A and BT-32B and the steam generators are a part of other systems performing safety functions and have been classified ISI Class 2 in accordance with Footnote 4 of Regulatory Guide 1.26 defining system boundaries.
- ii. Remaining portions of the secondary sampling system have not been classified since they are not needed to mitigate any of the postulated design basis accidents listed in Section 3 of this appendix.
- s. ISIM-350

i.

- Portions of miscellaneous vent and drain lines on the tube side of the RHR heat exchangers are not needed to mitigate any of the postulated design basis accidents listed in Section 3 of this appendix. However, these portions are part of the ISI Class 2 system boundaries as defined in Footnote 4 of Regulatory Guide 1.26.
- ii. Portions of miscellaneous vent and drain lines on the tube side of the seal water heat exchanger and the letdown heat exchanger are not needed to mitigate any of the postulated design basis accidents listed in Section 3 of this appendix. However, these portions are part of the ISI Class 2 system boundaries as defined in Footnote 4 of Regulatory Guide 1.26.
- iii. Remaining portions of miscellaneous vent and drains have not been classified since they are not needed to mitigate any of the postulated design basis accidents listed in Section 3 of this appendix.

## **Basis Document for ISI Code Class Boundaries**

- iv. There were no classification boundary breaks at normally open manual valves for this drawing.
- t. ISIM-547
  - i. Portions of the service water system including service water to and from the four containment fan coil units have been classified ISI Class 3 in accordance with Regulatory Guide 1.26, Article C.2.a.
  - The shroud cooling coils have not been classified since they are not needed to mitigate any of the postulated design basis accidents listed in Section 3 of this appendix. Furthermore, the shroud cooling coils will isolate from the service water system in the event of an accident.
  - iii. There were no classification boundary breaks at normally open manual valves for this drawing.
- u. ISIM-588

iii.

- i. Portions of the service water system that provide cooling water to the control room air conditioning coils have been classified ISI Class 3 in accordance with Regulatory Guide 1.26, Article C.2.b.
- Balance of plant systems and components that are supplied by the service water system are not within the scope of Section XI and have not been classified since the classification of systems for ISI is limited to systems important to safety that contain water, steam or radioactive materials. This piping typically provides water for the cooling of area fan coil units. The fan coil units control the temperature of various rooms within the auxiliary building. Regulatory Guide 1.26 limits the extent of the ISI boundaries, with respect to cooling of rooms, to the containment vessel and the control room.

There are cases where normally closed valves or valves capable of automatic closure do not exist or are not in locations that make it practical to terminate the ISI boundary at locations consistent with the guidelines of Regulatory Guide 1.26. The following classification boundary breaks at normally open manual valves were used due to the fact that Kewaunee Nuclear Power Plant was designed, constructed and licensed prior to the publication of ISI classification guidelines such as Regulatory Guide 1.26, 10 CFR Part 50, Appendix A and Appendix B.

HS-2202A (E-4), NPS 3.0" HS-2202B (E-6), NPS 3.0" HS-2248A (E-2), NPS 0.75" HS-2248B (E-6), NPS 0.75"

#### **Basis Document for ISI Code Class Boundaries**

- v. ISIM-606
  - i. Portions of the service water system that provide cooling water to the control room air conditioning coils have been classified ISI Class 3 in accordance with Regulatory Guide 1.26, Article C.2.b.
  - Balance of plant systems and components that are supplied by the service water system are not within the scope of Section XI and have not been classified since the classification of systems for ISI is limited to systems important to safety that contain water, steam or radioactive materials. This piping typically provides water for the cooling of area fan coil units. The fan coil units control the temperature of various rooms within the turbine and auxiliary buildings. Regulatory Guide 1.26 limits the extent of the ISI boundaries, with respect to cooling of rooms, to the containment vessel and the control room.
  - iii. The service water system was designed to also provide cooling water to non safety related components (e.g., the steam generator blowdown heat exchangers). The design of this system allows for the discharge of both safety related and non safety related service water into a common standpipe. This non safety related piping has not been classified for ISI.
  - iv. There are cases where normally closed valves or valves capable of automatic closure do not exist or are not in locations that make it practical to terminate the ISI boundary at locations consistent with the guidelines of Regulatory Guide 1.26. The following classification boundary breaks at normally open manual valves were used due to the fact that Kewaunee Nuclear Power Plant was designed, constructed and licensed prior to the publication of ISI classification guidelines such as Regulatory Guide 1.26, 10 CFR Part 50, Appendix A and Appendix B.

.

**Basis Document for ISI Code Class Boundaries** 

SW-650 (A-1), NPS 1.5" SW-700A (A-4), NPS 1.5" SW-700B (A-7), NPS 1.5" SW-800A (C-3), NPS 1.5" SW-800B (B-3), NPS 1.5" SW-850 (B-5), NPS 1.5" SW-1030A (E-1), NPS 1" SW-1030B (E-7), NPS 1" SW-1039A (D-1), NPS 2.5" SW-1059B (E-7), NPS 1.5" SW-1200A (A-10), NPS 1.5" SW-1200B (B-8), NPS 1.5" SW-1219A (E-10), NPS 1.5" SW-1219B (F-10), NPS 1.5" SW-1225 (A-12), NPS 2" SW-1260 (G-10), NPS 1.5" SW-1263 (G-11), NPS 1.5" SW-6028 (D-1), NPS 1" SW-1223A (E-12), NPS 1.5"