CRYSTAL RIVER 50-302/2000-301 SEPTEMBER 25 - 29, 2000

INITIAL SUBMITTAL DOCUMENT

- INITIAL OUTLINE SUBMITTAL - OPERATING TEST SIMULATOR SCENARIOS - ADMINISTRATIVE JPMS/QUESTIONS - SIMULATOR JPMS - IN-PLANT JPMS

INITIAL SUBMITTAL

CRYSTAL RIVER 50-302/2000-301 SEPTEMBER 25 - 29, 2000

INITIAL OUTLINE SUBMITTAL

	Da	isea on r	UREG-1	021	For	m ES-40	1-3	Pg	26 of 45	- 10	Rev.8		
				K/A	Cate	gory	Poir	nts R	lev 1				
Tier	Group	К1	К2	К3	K4	K5	K6	A1	A2	A3	A4	G	Point Total
Tier 1	1	4	1	6				3	8	2097. 1	PALLER .	2	24
Plant	2	0	2	1				3	7			3	16
Evolutions	3	0	0	0				0	3			0	3
	Tier Totals	4	3	7				6	18			5	43
Tier 2	1	2	2	2	2	1	1	2	4	1	0	2	19
Plant	2	4	0	1	1	1	1	0	4	1	1	3	17
Systems	3	0	0	1	0	0	0	0	1	0	2	0	4
	Tier Totals	6	2	4	3	2	2	2	9	2	3	5	40
Tie	r 3	Cat1	Cat2	Cat3	Cat4			and a second					and the second second
Gen	eric	4	3	4	6								17

			((
	T	ľ		1		T		
K1	K2	K3	A1	A2	G	K/A Topic(s)	lmp.	Points
1						AK1.14 Knowledge of the operational implications of the following concepts as they apply to Continuous Rod Withdrawal: Interaction of ICS control stations as well as purpose, function, and modes of operation of ICS.	3.7	1
1						AK1.07 Knowledge of the operational implications of the following concepts as the apply to Dropped Control Rod: Effect of dropped rod on insertion limits and SDM.	3.9	1
		1						
		1				AK3.03 Knowledge of the reasons for the following responses as they apply to the Reactor Coolant Pump Malfunctions (Loss of RC Flow): Sequence of events for manually tripping reactor and RCP as a result of an RCP malfunction	4.0	1
1				1		EK1.2 Knowledge of the operational implications of the following concepts as they apply to the (Natural Circulation Cooldown): Normal, Abnormal and emergency operating procedures associated with Natural Circulation Cooldown. EA2.1 Ability to determine and interpret the following as they apply to the (Natural Circulation Cooldown). Facility conditions and selection of appropriate procedures during abnormal emergency operations. (Note 2)	4.0	2
	K1	iergency and A К1 К2 1	iergency and Abnorn К1 К2 К3 1	Intergency and Abnormal Pla K1 K2 K3 A1 1 1 1 1	tergency and Abnormal Plant Eve K1 K2 K3 A1 A2 1 1 1 1 1	Intergency and Abnormal Plant Evolution K1 K2 K3 A1 A2 G 1	Hergency and Abnormal Plant Evolutions - Tier1/Group1 K1 K2 K3 A1 A2 G K/A Topic(s) 1 K1 K2 K3 A1 A2 G K/A Topic(s) 1 K1 K2 K3 A1 A2 G K/A Topic(s) 1 K1 K2 K3 A1 A2 G K/A Topic(s) 1 K1 K2 K3 A1 A2 G K/A Topic(s) 1 K1 K3 A1 A2 G K/A Topic(s) 1 K2 K3 A1 A2 G K1.14 Knowledge of the operational implications of the following concepts as the apply to Dropped Control Rod: Effect of dropped rod on insertion limits and SDM. 1 K3 A1 AK3.03 Knowledge of the reasons for the following responses as they apply to the Reactor Coolant Pump Malfunctions (Loss of RC Flow): Sequence of events for manually tripping reactor and RCP as a result of an RCP malfunction 1 K3 K4 K4.2 K3 K4 K4.2 K4.2 K4.2 K4.2 K4.2 K4.2 K4.3 K4.3 K4.3 K4.3 K	tergency and Abnormal Plant Evolutions - Tier1/Group1 K1 K2 K3 A1 A2 G K/A Topic(s) Imp. 1 A11 AX1.14 Knowledge of the operational implications of the following concepts as the purpose, function, and modes of operation of ICS. 3.7 1 AK1.07 Knowledge of the operational implications of the following concepts as the apply to Dropped Control Rod: Effect of dropped rod on insertion limits and SDM. 3.9 1 AK3.03 Knowledge of the reasons for the following responses as they apply to the Reactor Coolant Pump Malfunctions (Loss of RC Flow): Sequence of events for manually tripping reactor and RCP as a result of an RCP malfunction 4.0 1 EK1.2 Knowledge of the operational implications of the following concepts as they apply to the (Natural Circulation Cooldown). Normal, Ahormal and emergency operating procedures associated with Natural Circulation Cooldown). Facility, conditions and selection of appropriate procedures during ahormal emergency.

(((
					tion C				
Emer	gency		bnorn		int Evo	blutio	ns - Tier1/Group1		
E/APE # / Name / Safety Function	K1	К2	КЗ	A1	A2	G	K/A Topic(s)	lmp.	Points
000024 Emergency Boration / I				1			AA1.17 Ability to operate and / or monitor the following as they apply to the Emergency Boration: Emergency Borate Control Valve and indicators.	3.9	1
000026 Loss of Component Cooling Water / VIII					2		AA2.05 Ability to determine and interpret the following as they apply to the Loss of Component Cooling Water: The normal values for CCW header flow rate and the flow rates to the components cooled by the CCWS. (Note 2)	2.5	
							AA2.01 Ability to determine and interpret the following as they apply to the Loss of Component Cooling Water: Location of a leak in the CCWS	3.5	2
000029 Anticipated Transient w/o Scram / I			1				EK3.01 Knowledge of the reasons for the following responses as they apply to the ATWS: Verifying a reactor trip; methods	4.5	1
000040 (E05) Steam Line Rupture - Excessive Heat Transfer / IV						1	G2.4.48 Ability to interpret control room indications to verify the status and operation of system, and understand how operator actions and directives affect plant and system conditions.	3.8	1
CE/A11; W/E08 RCS Overcooling - PTS / IV									
000051 Loss of Condenser Vacuum / IV			1				AK3.01 Knowledge of the reasons for the following responses as they apply to the Loss of Condenser Vacuum: Loss of steam dump capability upon loss of condenser vacuum.	3.1	1

				(
	PWR	R SRC) Exa	minat	tion O	utlir	ne Rev 1		
Eme	ergency	and A	bnorn	nal Pla	ant Evo	olutio	ns - Tier1/Group1		
E/APE # / Name / Safety Function	К1	К2	КЗ	A1	A2	G	K/A Topic(s)	lmp.	Points
							EA2.03 Ability to determine or interpret the following as they apply to a Station Blackout: Actions necessary to restore power. (Note 1)	4.7	
000055 Station Blackout / VI					1	1	G2.4.35 Knowledge of local auxiliary operator tasks during emergency operations including system geography and system implications.	3.5	2
000057 Loss of Vital AC Elec. Inst. Bus / VI				1			AA1.01 Ability to operate and/or monitor the following as they apply to the Loss of Vital AC Instrument Bus: Manual inverter swapping.	3.7	1
000059 Accidental Liquid RadWaste Rel. / IX			1				AK3.02 Knowledge of the reasons for the following responses as they apply to the accidental Liquid Radwaste Release: Implementation of the E-plan.**	4.5	1
000062 Loss of Nuclear Service Water / IV					<u> </u>				
000067 Plant Fire On-site / IX			1		1		AA2.12 Ability to determine and interpret the following as they apply to the Plant Fire on site: Location of vital equipment within fire zone.	3.9	
							AK3.04 Knowledge of the reasons for the following responses as they apply to the Plant Fire On Site: Actions contained in EOP for plant fire on site.**	4.1	2

((-	(
	PWF	SRC) Exa	minat	tion O	utlir	ne Rev 1		
Eme	ergency	and A	bnorn	nal Pla	ant Evo	olutio	ons - Tier1/Group1	r	
E/APE # / Name / Safety Function	К1	К2	КЗ	A1	A2	G	K/A Topic(s)	Imp.	Points
000068 (A06) Control Room Evac. / VIIi					2		AA2.1 Ability to determine and interpret the following as they apply to the (Shutdown Outside Control Room): Facility conditions and selection of appropriate procedures during abnormal and emergency operations. (Note 2)	4.2	
							AA2.2 Ability to determine and interpret the following as they apply to the (Shutdown Outside Control Room): Adherence to appropriate procedures and operation within the limitations in the facilities license and amendments.	4.2	2
000069 Loss of CTMT Integrity / V		1					AK2.03 Knowledge of the interrelations between the Loss of Containment Integrity and the following: Personnel access hatch and emergency access hatch.	2.9	
000074 Inad. Core Cooling / IV			1				EK3.08 Knowledge of the reasons for the following responses as they apply to the inadequate Core Cooling: Securing RCPs.	4.2	
E03 Inadequate Subcooling Margin / IV				1			EA1.1 Ability to operate and / or monitor the following as they apply to the (Inadequate Subcooling Margin) Components, and functions of control and safety systems, including instrumentation, signals, interlocks, failure modes, and automatic and manual features.		1
000076 High Reactor Coolant Activity / IX					1		AA2.02 Ability to determine and interpret the following as they apply to the High Reactor Coolant Activity: Corrective actions required for high fission product activity in RCS. (Note 2)		1

					tion C Int Evo		ne Rev 1 ns - Tier1/Group1		
E/APE # / Name / Safety Function	K 1	К2	КЗ	A1	A2	G	K/A Topic(s)	lmp.	Points
A02&A03 Loss of NNI-X/Y / VII	1						AK1.3 Knowledge of the operational implications of the following concepts as they apply to the (Loss of NNI-X): Annunciators and conditions indicating signals, and remedial actions associated with the (Loss of NNI-X).	3.8	1
K/A Category Totals:	4	1	6	3	8	2	Group Point Total =	2	4
Note 1 - Random generator chose a category which has no SRO K/As with importance 2.5 or greater. Chose a different category to obtain a K/A with importance greater than 2.5.			• ••••	*	•		NOTE 2 New K/A chosen for the same topic to obtain a K/A supporting plant specific SRO objectives and / or 10CFR 55.43 IAW Draft of NUREG 1021.		

				((
	PWI	R SR) Exa	mina	tion (Dutli	ne Rev 1		
Eme	ergency	and A	bnorn	nal Pla	ant Evo	olutio	ns - Tier1/Group2		
E/APE # / Name / Safety Function	К1	K2	КЗ	A1	A2	G	K/A Topic(s)	lmp.	Points
000007 (E02&E10) Reactor Trip - Stabilization - Recovery / I					1		EA2.2 Ability to determine and interpret the following as they apply to the (Vital System Status Verification): Adherence to appropriate procedures and operation within the limitations in the facility's license and amendments. (Note 3)	3.8	1
A01 Plant Runback / I		1					AK2.1 Knowledge of the interrelations between the (Plant Runback) and the following: Components, and functions of control and safety systems, including instrumentation, signals, interlocks, failure modes, and automatic and manual features.	3.5	1
A04 Turbine Trip / IV									
000008 Pressurizer Vapor Space Accident / III									
000009 Small Break LOCA / III		1					EK2.03 Knowledge of the interrelations between the small break LOCA and the following: S/Gs	3.3	1
E08 LOCA Cooldown - Depress. / IV						1	G2.1.28 Knowledge of the purpose and function of major system components and controls.	3.3	1
000022 Loss of Reactor Coolant Makeup / II									
000025 Loss of RHR System / IV					1	1	AA2.06 Ability to determine and interpret the following as they apply to the Loss of Residual Heat Removal System: Existence of proper RHR overpressure protection. G2.1.20 Ability to execute procedure steps.	3.4	
							(Note 2)	4.2	2 2
000027 Pressurizer Pressure Control System Malfunction / III						1	G2.2.22 Knowledge of limiting conditions for operations and safety limits.	4.1	1

Emor							ne Rev 1 ons - Tier1/Group2		
E/APE # / Name / Safety Function	K1	K2	Кз	A1	A2	G	K/A Topic(s)	Imp.	Points
000032 Loss of Source Range NI / VII	- -				1		AA2.04 Ability to determine and interpret the following as they apply to the Loss of Source Range Nuclear Instrumentation: Satisfactory source range/intermediate range overlap.	3.5	1
000033 Loss of Intermediate Range NI / VII					1		AA2.10 Ability to determine and interpret the following as they apply to the Loss of Intermediate Range Nuclear Instrumentation: Tech-spec limits if both Intermediate Range channels have failed. (Note 1)		1
000037 Steam Generator Tube Leak / III			1				AK3.07 Knowledge of the reasons for the following responses as they apply to the Steam Generator Tube Leak: Actions contained in EOP for S/G tube leak.	4.4	
000038 Steam Generator Tube Rupture / III					1		EA2.02 Ability to determine or interpret the following as they apply to a SGTR: Existence of an S/G tube rupture and its potential consequences. (Note 3)	4.8	1
000054 Loss of Main Feedwater / IV			Ī						
E04 Inadequate Heat Transfer - Loss of Secondary Heat Sink / IV				1			EA1.1 Ability to operate and / or monitor the following as they apply to the (Inadequate Heat Transfer): Components, and functions of control and safety systems, including instrumentation, signals, interlocks, failure modes, and automatic and manual features.	4.2	1
000058 Loss of DC Power / VI				1			AA1.03 Ability to operate and / or monitor the following as they apply to the Loss of DC Power: Vital and battery bus components	3.3	

(<u> </u>						(
	PWI	R SRO	O Exa	imina	tion (Dutli	ne Rev 1		
Emerg	jency	and A	bnorn	nal Pla	ant Evo	olutio	ns - Tier1/Group2		
E/APE # / Name / Safety Function	K1	K2	КЗ	A1	A2	G	K/A Topic(s)	Imp.	Points
000060 Accidental Gaseous Radwaste Rel. / IX					1		AA2.03 Ability to determine and interpret the following as they apply to the Accidental Gaseous Radwaste: The steps necessary to isolate a given radioactive gas leak, using P&IDs. (Note 3)	3.9	1
000061 ARM System Alarms / VII					1		AA2.06 Ability to determine and interpret the following as they apply to the Area Radiation Monitoring (ARM) System Alarms: Required actions if alarm channel is out of service.	4.1	1
000065 Loss of Instrument Air / VIII				1			AA1.02 Ability to operate and / or monitor the following as they apply to the Loss of Instrument Air: Components served by instrument air to minimize drain on system	2.8	1
K/A Category Totals:	0	2	1	3	7	3	Group Point Total =	16	16

NOTE 1: Random generator selected K3 to be replaced with another K3 - Only one K3 remains which deals with EOP guidance for an IR Instrument failure and it is not applicable to CR-3 EOPs - chose A2 as a replacement category.

1

NOTE 3 New K/A chosen for the same topic to obtain a K/A supporting plant specific SRO objectives and / or 10CFR 55.43 IAW Draft of NUREG 1021

NOTE 2 - Generic K/A category "CE/09 Functional recovery" chosen by random generator. This is a non-B&W topic. Replace with a Generic K/A category for topic 000025, Loss of RHR System. Basis of topic choice was the overall importance of the new topic.

((
	PW	R SR) Exa	mina	tion (Dutli	ne Rev 1		
Emer	gency	and A	bnorn	nal Pla	ant Evo	olutio	ns - Tier1/Group3		
E/APE # / Name / Safety Function	K1	К2	КЗ	A1	A2	G	K/A Topic(s)	Imp.	Points
000028 Pressurizer Level Malfunction / II	1								
000036 (A08) Fuel Handling Accident / VIII									
000056 Loss of Off-site Power / VI									
E13&E14 EOP Rules and Enclosures					1		EA2.2 Ability to determine and interpret the following as they apply to the (EOP Enclosures): Adherence to appropriate procedures and operation within the limitations in the facility's license and amendments. (Note 1)	4.0	1
105 Emergency Diesel Actuation / VI					1		AA2.1 Ability to determine and interpret the following as they apply to the (Emergency Diesel Actuation): Facility conditions and selection of appropriate procedures during abnormal and emergency operations. (Note 1)	4.2	1
107 Flooding / VIII					1		AA2.2 Ability to determine and interpret the following as they apply to the (Flooding): Adherence to appropriate procedures and operation within the limitations in the facility's license and amendments. (Note 1)	3.7	1
K/A Category Totals	: 0	0	0	0	3	0	Group Point Total =	3	3

NOTE 1 New K/A chosen for the same topic to obtain a K/A supporting plant specific SRO objectives and / or 10CFR 55.43 IAW Draft of NUREG 1021

		Р	WF	۲ SI	RO	Exa	ami	inat	tion	1 OI	utli	ne Rev. 1		
				P	'lan	t Sy	ster	ms ·	- Tie	er2/G	Grou	up1		
System # / Name	К1	К2	КЗ	К4	K 5	K6	A1	A2	A3	A4	G	K/A Topic	Imp.	Points
001 Control Rod Drive		1									1	K2.02 Knowledge of bus power supplies to the following: One-line diagram of power supply to trip breakers.** (Note 1)	3.7	
												G2.1.32 Ability to explain and apply all system limits and precautions.	3.8	2
003 Reactor Coolant Pump				1								K4.04 Knowledge of RCPs design features and / or interlocks which provide for the following: Adequate cooling of RCP motor and seals.	3.1	1
004 Chemical and Volume Control							1					A1.06 Ability to predict and / or monitor changes in parameters (to prevent exceeding design limits) associated with operating the CVCS controls including: VCT level	3.2	1
013 Engineered Safety Features Actuation			1									K3.01 Knowledge of the effect that a loss or malfunction of the ESFAS will have on the following: Fuel	4.7	1
014 Rod Position Indication								1				A2.01 Ability to (a) predict the impacts of the following malfunctions or operations on the RPIS; and (b) based on those predictions, use procedures to correct, control, or mitigate the consequences of those malfunctions or operations: Loss of offsite power.	3.3	1

		Ρ	WF	 					Οι r2/0		ne Rev. 1 up1		
System # / Name	К1	К2	КЗ		K6		I	A3		G		Imp.	Points
											K5.02 Knowledge of the operational implications of the following concepts as they apply to the NIS: Discriminator/compensation operation.	2.9	
015 Nuclear Instrumentation				1		1					A1.08 Ability to predict and / or monitor changes in parameters to prevent exceeding design limits associated with operating the NIS controls including: Changes in RCS temperature.	3.4	2
017 In-core Temperature Monitor								1		1	G2.4.44 Knowledge of emergency plan		
022 Containment Cooling		1					1				protective action recommendations.K2.01 Knowledge of power supplies to the following: Containment cooling fans.A2.04 Ability to (a) predict the impacts of the following malfunctions or operations on the CCS; and (b) based on those predictions use procedures to correct, control, or mitigate the consequences of those malfunctions or operations: Loss of service water	4.0 3.1 3.2	
026 Containment Spray							1				A2.04 Ability to (a) predict the impacts of the following malfunctions or operations on the CSS; and (b) based on those predictions use procedures to correct, control, or mitigate the consequences of those malfunctions or operations: Failure of Spray Pump.** (Note 2)		1
056 Condensate	1										K1.03 Knowledge of the physical connections and / or cause-effect relationships between the Condensate System and the following systems: MFW	2.6	

		P	WF						ο Οι 01/0	 ne Rev. 1 up1		
System # / Name	К1	К2	КЗ	Ī	<u> </u>		Γ	1	A4	K/A Topic	lmp.	Points
										K1.07 Knowledge of the physical connections and / or cause-effect relationships between the MFW and the following systems: ICS	3.2	
059 Main Feedwater	1			1	:					K4.16 Knowledge of MFW design feature(s) and/or interlocks which provide for the following: Automatic trips for MFW pumps.	3.2	2
061 Auxiliary/Emergency Feedwater						1				K6.02 Knowledge of the effect of a loss or malfunction of the following will have on the AFW components: Pumps	2.7	1
063 DC Electrical Distribution			1							K3.02 Knowledge of the effect that a loss or malfunction of the DC electrical system will have on the following: Components using DC control power.		1
068 Liquid Radwaste							1			A2.04 Ability to (a) predict the impacts of the following malfunctions or operations on the Liquid Radwaste System; and (b) based on those predictions, use procedures to correct, control or mitigate the consequences of those malfunctions or operations: Failure of automatic		

1

1

0 2

4

NOTE 1: Random generator chose K1 but K2 used to meet Tier 2 requirement for 2 or more topics from each K/A category

K/A Category Totals: 2

2 2 2

1

1 2

071 Waste Gas Disposal

072 Area Radiation Monitoring

NOTE 2: New K/A chosen for the same topic to obtain a K/A supporting plant specific SRO objectives and / or 10 CFR 55.43, IAW Draft of **NUREG 1021**

A3.01 Ability to monitor automatic operation of

the ARM system including: Changes in

isolation.

ventilation alignment.

1

1

19

3.3

3.1

Group Point Total = 19

	_	Ρ	WF	R SF	20	Exa	ami	nat	ion	Οι	utli	ne Rev. 1		
				P	lan	t Sy	stei	ns ·	Tie	r2/0	Grou	up2		
System # / Name	К1	К2	КЗ	К4	К5	К6	A1	A2	A3	A4	G	K/A Topic	lmp.	Points
002 Reactor Coolant					1							K5.10 Knowledge of the operational implications of the following concepts as they apply to the RCS: Relationship between reactor power and RCS differential temperature	4.1	1
006 Emergency Core Cooling												·····		
010 Pressurizer Pressure Control						1						K6.03 Knowledge of the effect of a loss or malfunction of the following will have on the PZR PCS: PZR sprays and heaters.	3.6	1
011 Pressurizer Level Control													-	
012 Reactor Protection								1				A2.06 Ability to (a) predict the impacts of the following malfunctions or operations on the RPS; and (b) based on those predictions, use procedures to correct, control or mitigate the consequences of those malfunctions or operations: Failure of RPS signal to trip the reactor.** (Note 2)	4.7	1
016 Non-nuclear Instrumentation			1									K3.03 Knowledge of the effect that a loss or malfunction of the NNIS will have on the following: SDS (Steam dump system)	3.1	1
027 Containment Iodine Removal											1	G2.1.28 Knowledge of the purpose and function of major system components and controls.	3.3	1
028 Hydrogen Recombiner and Purge Control								1				A2.02 Ability to (a) predict the impacts of the following malfunctions or operations on the RPS; and (b) based on those predictions, use procedures to correct, control or mitigate the consequences of those malfunctions or operations: LOCA condition and related concern over hydrogen.		
029 Containment Purge														
033 Spent Fuel Pool Cooling											1	G2.1.32 Ability to explain and apply all system limits and precautions.	3.8	1

(

		Ρ	WR	R SF	RO	Exa	ami	nat	ion	Οι	ıtliı	ne Rev. 1		
		8		P	lan	t Sy	ster	ns -	Tie	r2/G	Fou	.p2		
System # / Name	К1	К2	КЗ	К4	К5	К6	A1	A2	A3	A4	G	К/А Торіс	Imp.	Points
034 Fuel Handling Equipment										1		A2.01 Ability to (a) predict the impacts of the following malfunctions or operations on the Fuel Handling System; and (b) based on those predictions, use procedures to correct, control or mitigate the consequences of those malfunctions or operations: Dropped fuel element.** (Note	4.4	1
035 Steam Generator				1								2) K4.01 Knowledge of S/Gs design features and / or interlocks which provide for the following: S/G level control.	3.8	1
039 Main and Reheat Steam	1											K1.07 Knowledge of the physical connections and / or cause-effect relationships between the MRSS and the following systems: AFW	3.4	1
055 Condenser Air Removal	1											K1.06 Knowledge of the physical connections and / or cause-effect relationships between the CARS and the following systems: PRM system.	2.6	1
062 AC Electrical Distribution	1											K1.02 Knowledge of the physical connections and / or cause-effect relationships between the AC distribution system and the following systems: ED/G	4.4	1
064 Emergency Diesel Generator											1	G2.1.8 Ability to coordinate personnel activities outside the control room.	3.6	1
073 Process Radiation Monitoring 075 Circulating Water								1				A2.03 Ability to (a) predict the impacts of the following malfunctions or operations on the circulating water system; and (b) based on those predictions, use procedures to correct, control or mitigate the consequences of those malfunctions or operations: Safety features and relationship between condenser vacuum, turbine trip and steam dumps.	2.7	1

		Р	WF	R SI	RO	Exa	ami	- nat	ion	Οι	ıtliı	ne Rev. 1	<u> </u>	
				P	lan	t Sy	ster	ns -	Tie	r2/0	Grou	up2		
System # / Name	К1	К2	КЗ	К4	К5	К6	A1	A2	A3	A4	G	K/A Topic	Imp.	Points
079 Station Air								1				A2.01 Ability to (a) predict the impacts of the following malfunctions or operations on the SAS, station air system; and (b) based on those predictions, use procedures to correct, control or mitigate the consequences of those malfunctions or operations: Cross-connection with IAS, Instrument Air System.** (Note 1)	3.2	1
086 Fire Protection									1			A3.02 Ability to monitor automatic operation of the Fire Protection System including: Actuation of the FPS.	3.3	1
103 Containment	1											K1.02 Knowledge of the physical connections and/or cause-effect relationships between the containment system and the following systems: Containment isolation/containment integrity.	4.1	1
K/A Category Totals	: 4	0	1	1	1	1	0	4	1	1	3	Group Point Total =	17	17

1

NOTE 1: No A3 K/A 2.5 or greater - used A2 to get category greater than 2.5 for SRO

NOTE 2: New K/A chosen for the same topic to obtain a K/A supporting plant specific SRO objectives and / or 10 CFR 55.43, IAW Draft of NUREG 1021

		P	WR	SF	RO	Exa	imi	nat	ion	Ou	ıtlir	ne Rev. 1		······································
				P	lan	t Sy	ster	ns -	Tie	r2/0	Brou	រp3		
System # / Name	К1	К2	КЗ	К4	К5	K6	A1	A2	A3	A4	G	К/А Торіс	lmp.	Points
005 Residual Heat Removal								1				A2.01 Ability to (a) predict the impacts of the following malfunctions or operations on the RHRS; and (b) based on those predictions, use procedures to correct, control or mitigate the consequences of those malfunctions or operations: Failure modes for pressure, flow, pump motor amps, motor temperature, and tank level instrumentation.** (Note 1)	2.9	1
007 Pressurizer Relief/Quench Tank										1		A4.10 Ability to manually operate and/or monitor in the control room: Recognition of leaking PORV/code safety.	3.8	1
008 Component Cooling Water			1									K3.01 Knowledge of the effect that a loss or malfunction of the CCWS will have on the following: Loads cooled by CCWS.	3.5	1
041 Steam Dump/Turbine Bypass Control										1		A4.08 Ability to manually operate and/or monitor in the control room: Steam Dump Valves.	3.1	1
045 Main Turbine Generator														
076 Service Water														
078 Instrument Air														
K/A Category Totals:	0	0	1	0	0	0	0	1	0	2	0	Group Point Total =	4	4

{

NOTE 1: New K/A chosen for the same topic to obtain a K/A supporting plant specific SRO objectives and / or 10 CFR 55.43, IAW Draft of NUREG 1021

	1	Generic Knowledges and Abilities (Form ES-401-5)		
Category	KA #	К/А Торіс	Imp.	Points
	2.1.8	Ability to coordinate personnel activities outside the control room.	3.6	1
	2.1.11	Knowledge of less than one hour technical specification action statements for systems. (Note 1)	3.8	1
Conduct of Operations	2.1.19	Ability to use plant computer to obtain and evaluate parametric information on system or component status.	3.0	1
,	2.1.23	Ability to perform specific system and integrated plant procedures during all modes of plant operation.	4.0	1
	Total Points			4
F	2.2.2	Ability to manipulate the console controls as required to operate the facility between shutdown and designated power levels.	3.5	1
Equipment	2.2.13	Knowledge of tagging and clearance procedures	3.8	1
Control	2.2.22	Knowledge of limiting conditions for operations and safety limits.	4.1	1
	Total Points			3
	2.3.1	Knowledge of 10 CFR: 20 and related facility radiation control requirements.** (Note 1)	3.0	1
Radiation	2.3.2	Knowledge of facitity ALARA program.** (Note 1)	2.9	1
Control	2.3.8	Knowledge of the process for performing a planned gaseous radioactive release.	3.2	1
	2.3.9	Knowledge of the process for performing a containment purge.	3.4	1
	Total Points			4
	2.4.1	Knowledge of EOP entry conditions and immediate action steps.	4.6	11
	2.4.6	Knowledge of symptom based EOP mitigation strategies.** (Note 1)	4.0	1
	2.4.9	Knowledge of low power / shutdown implications in accident (e.g. LOCA or loss of RHR) mitigation strategies.** (Note+++ 1)	3.9	1
Emergency Broosdures /	2.4.30	Knowledge of which events related to system operations/status should be reported to outside agencies.	3.6	1
Procedures / Plan	2.4.44	Knowledge of emergency plan protective action recommendations.	4.0	1
	2.4.49	Ability to perform without reference to procedures those actions that require immediate operation of system components and controls.** (Note 1)	4.0	1
	Total Points			6

ť

TIER 3	Category	Totals:
--------	----------	---------

NOTES FROM Rev 0

Replaced 2.2.17 with 2.2.22 to achieve additional 10CFR 55.43 topic coverage. Replaced 2.4.17 with 2.4.44 to achieve additional 10CFR 55.43 topic

coverage

NOTE 1 For Rev 1 of this outline, these K/A's became "SRO Only" to comply with the ES-401 requirement for 10 SRO only K/As in this tier. Requirement is from Draft copy of NUREG 1021

	Base	d on NU	REG-102	21	Form	ES-401-4	4	Pg 33	of 45	_	Rev.8		
				ł	(/A C	ateg	ory F	Point	S				
Tier	Group	K1	K2	К3	K4	К5	K6	A1	A2	A3	A4	G	Point Total
Tier 1	1	2	1	3				3	3			4	16
Plant	2	2	2	4	ckei Carl			4	3			2	17
Evolutions	3	2	0	0				1	0			0	3
	Tier Totals	6	3	7				8	6			6	36
Tier 2	1	3	2	1	5	1	2	2	3	1	2	1	23
Plant	2	3	0	2	3	1	1	2	2	1	2	3	20
Systems	3	1	0	1	0	0	0	0	2	0	3	1	8
	Tier Totals	7	2	4	8	2	3	4	7	2	7	5	51
Tie	r 3	Cat1	Cat2	Cat3	Cat4								
Gen	eric	4	2	3	4								13

(((
		PWR	RO E	Exam	inatio	n Oı	utline		
Eme	rgency	and A	bnorn	nal Pla	ant Evo	olutio	ns - Tier1/Group1		
E/APE # / Name / Safety Function	К1	K2	К3	A1	A2	G	K/A Topic(s)	lmp.	Points
000005 Inoperable/Stuck Control Rod / I									
000015/17 RCP Malfunctions / IV			1				AK3.03 Knowledge of the reasons for the following responses as they apply to the Reactor Coolant Pump Malfunctions (Loss of RC Flow): Sequence of events for manually tripping reactor and RCP as a result of an RCP malfunction	3.7	1
E09 Natural Circ. / IV	1						EK1.2 Knowledge of the operational implications of the following concepts as they apply to the (Natural Circulation Cooldown): Normal, abnormal and emergency operating procedures associated with (Natural Circulation Cooldown) (Note 1)	3.7	1
000024 Emergency Boration / I				1			AA1.17 Ability to operate and / or monitor the following as they apply to the Emergency Boration: Emergency Borate Control Valve and indicators.	3.9	
000026 Loss of Component Cooling Water / VIII					1		AA2.01 Ability to determine and interpret the following as they apply to the Loss of Component Cooling Water: Location of a leak in the CCWS	2.9	
000027 Pressurizer Pressure Control System Malfunction / III						1	G2.2.22 Knowledge of limiting conditions for operations and safety limits.	3.4	
000040 (E05) Steam Line Rupture (Excessive Heat Transfer) / IV						1	G2.4.48 Ability to interpret control room indications to verify the status and operation of system, and understand how operator actions and directives affect plant and system conditions.	3.5	
CE/A11; W/E08 RCS Overcooling - PTS / IV							(Note 1)		<u> </u>

		PWR	ROE	Exam	inatio	n Oı	utline		
Eme							ons - Tier1/Group1		
E/APE # / Name / Safety Function	К1	K2	КЗ	A1	A2	G	K/A Topic(s)	lmp.	Points
000051 Loss of Condenser Vacuum / IV			1				AK3.01 Knowledge of the reasons for the following responses as they apply to the Loss of Condenser Vacuum: Loss of steam dump capability upon loss of condenser vacuum. (Note 2)	2.8	1
000055 Station Blackout						1	G2.4.35 Knowledge of local auxiliary operator tasks during emergency operations including system geography and system implications.	3.3	1
000057 Loss of Vital AC Elec. Inst. Bus / VI				1			AA1.01 Ability to operate and/or monitor the following as they apply to the Loss of Vital AC Instrument Bus: Manual inverter swapping. (Note 2)	3.7	1
000062 Loss of Nuclear Service Water / IV			1						· ·
000067 Plant Fire On-site / IX					1		AA2.12 Ability to determine and interpret the following as they apply to the Plant Fire on site: Location of vital equipment within fire zone.	2.9	1
000068 (A06) Control Room Evac. / VIII					1	:	AA2.2 Ability to determine and interpret the following as they apply to the (Shutdown outside Control Room): Adherence to appropriate procedures and operation within the limitations in the facilities license and amendments.	3.7	1
000069 Loss of CTMT Integrity / V		1					AK2.03 Knowledge of the interrelations between the Loss of Containment Integrity and the following: Personnel access hatch and emergency access hatch.	2.8	1
000074 Inad. Core Cooling / IV			1			,	EK3.08 Knowledge of the reasons for the following responses as they apply to the inadequate Core Cooling: Securing RCPs.	4.1	1

		PWR	ROE	Exam	inatic	n Ou	utline		
Emerg	gency	and A	bnorn	nal Pla	nt Ev	olutio	ns - Tier1/Group1		
E/APE # / Name / Safety Function	К1	К2	КЗ	A1	A2	G	K/A Topic(s)	Imp.	Point
E03 Inadequate Subcooling Margin / IV				1			EA1.1 Ability to operate and / or monitor the following as they apply to the (Inadequate Subcooling Margin) Components, and functions of control and safety systems, including instrumentation, signals, interlocks, failure modes, and automatic and manual features.	4.1	1
00076 High Reactor Coolant Activity / IX						1	G2.3.10 Ability to perform procedures to reduce excessive levels of radiation and guard against personnel exposure.	2.9	1
.02&A03 Loss of NNI-X/Y / VII	1						AK1.3 Knowledge of the operational implications of the following concepts as they apply to the (Loss of NNI-X): Annunciators and conditions indicating signals, and remedial actions associated with the (Loss of NNI-X).	3.8	1
K/A Category Totals:	2	1	3	3	3	4	Group Point Total =	16	16

Note 1 - Random Generator chose a non-B&W PWR topic on RCS overcooling and PTS. Replaced this topic with B&W PWR specific topic E09, Natural Circulation, K1. Note 2 - Random generator chose a category which has no RO K/As with importance 2.5 or greater. Chose a different category to obtain a K/A with importance greater than 2.5.

		PWR	RO I	Exam	inatio	n Oi	utline		
Eme	ergency	and A	bnorr	nal Pla	ant Evo	olutio	ons - Tier1/Group2		
E/APE # / Name / Safety Function	K1	K2	КЗ	A1	A2	G	K/A Topic(s)	Imp.	Points
000001 Continuous Rod Withdrawal / I	1						AK1.14 Knowledge of the operational implications of the following concepts as they apply to Continuous Rod Withdrawal: Interaction of ICS control stations as well as purpose, function, and modes of operation of ICS.	3.4	1
000003 Dropped Control Rod / I	1						AK1.07 Knowledge of the operational implications of the following concepts as the apply to Dropped Control Rod: Effect of dropped rod on insertion limits and SDM.	3.1	1
000007 (E02&E10) Reactor Trip - Stabilization - Recovery / I				1			EA1.3 Ability to operate and / or monitor the following as they apply to the (Post-Trip Stabilization): Desired operating results during abnormal and emergency situations.	3.5	1
A01 Plant Runback / I		1					AK2.1 Knowledge of the interrelations between the (Plant Runback) and the following: Components, and functions of control and safety systems, including instrumentation, signals, interlocks, failure modes, and automatic and manual features.	3.7	1
A04 Turbine Trip / IV							include, and automatic and mandal relations.	0.1	
000008 Pressurizer Vapor Space Accident / III								1	
000009 Small Break LOCA / III		1					EK2.03 Knowledge of the interrelations between the small break LOCA and the following: S/Gs	3.0	1
000011 Large Break LOCA / III									
N/E04 LOCA Outside Containment / III							(Note 1)		
BW/E08; W/E03 LOCA Cooldown/Depress. / IV						1	G2.1.28 Knowledge of the purpose and function of major system components and controls. (Note 1)	3.2	1
N/E11 Loss of Emergency Coolant Recirc. / IV		1	1	1					

						-			
_					inatio				
Eme	ergency	and A	bnorn	nal Pla	ant Evo	olutio	ons - Tier1/Group2		
E/APE # / Name / Safety Function	K1	K2	КЗ	A1	A2	G	K/A Topic(s)	lmp.	Points
W/E01 & E02 Rediagnosis & SI Termination / III									
000022 Loss of Reactor Coolant Makeup / II									
000025 Loss of RHR System / IV					1	1	AA2.06 Ability to determine and interpret the following as they apply to the Loss of Residual Heat Removal System: Existence of proper RHR overpressure protection.	3.2	
							G2.1.20 Ability to execute procedure steps. (Note 2)	4.3	2
000029 Anticipated Transient w/o Scram / I			1				EK3.01 Knowledge of the reasons for the following responses as they apply to the ATWS: Verifying a reactor trip; methods	4.2	1
000032 Loss of Source Range NI / VII					1		AA2.04 Ability to determine and interpret the following as they apply to the Loss of Source Range Nuclear Instrumentation: Satisfactory source range/intermediate range overlap	3.1	1
000033 Loss of Intermediate Range NI / VII			1				AK3.01 Knowledge of the reasons for the following responses as they apply to the loss of Intermediate Range Nuclear Instrumentation: Termination of startup following loss of intermediate range instrumentation. (Note 3)	3.2	1
000037 Steam Generator Tube Leak / III			1				AK3.07 Knowledge of the reasons for the following responses as they apply to the Steam Generator Tube Leak: Actions contained in EOP for S/G tube leak.	4.2	1
000038 Steam Generator Tube Rupture / III				1			EA1.41 Ability to operate and monitor the following as they apply to a SGTR: Venting of the S/G to the atmosphere.	3.4	1
000054 Loss of Main Feedwater / IV				1					

		PWR	ROE	Exam	inatio	n Ou	utline		
Emei	gency	and A	bnorn	nal Pla	ant Evo	olutio	ons - Tier1/Group2		
E/APE # / Name / Safety Function	К1	К2	КЗ	A1	A2	G	K/A Topic(s)	Imp.	Points
E04 Inadequate Heat Transfer - Loss of Secondary Heat Sink / IV				1			EA1.1 Ability to operate and / or monitor the following as they apply to the (Inadequate Heat Transfer): Components, and functions of control and safety systems, including instrumentation, signals, interlocks, failure modes, and automatic and manual features.	4.4	1
000058 Loss of DC Power / VI				1			AA1.03 Ability to operate and/or monitor the following as they apply to the Loss of DC Power: Vital and battery bus components (Note 3)	3.1	1
000059 Accidental Liquid RadWaste Rel. / IX									
000060 Accidental Gaseous Radwaste Rei. / IX			1				AK3.02 Knowledge of the reasons for the following responses as they apply to the Accidental Gaseous Radwaste Release: Isolation of the auxiliary building ventilation.	3.3	1
000061 ARM System Alarms / VII					1		AA2.06 Ability to determine and interpret the following as they apply to the Area Radiation Monitoring (ARM) System Alarms: Required actions if alarm channel is out of service. (Note 4)	3.2	1
W/E 16 High Containment Radiation / IV			1	1		ļ			
CE/E09 Functional Recovery							(Note 2)		
K/A Category Totals	: 2	2	4	4	3	2	Group Point Total =	17	17

Note 1 - Generic K/A chosen at random - Non-B&W topic - replaced with Generic K/A for BW/E08 which is a very important procedure dealing with similar evolutions.

Note 2 - Generic K/A category chosen by random generator. Non-B&W topic. Replaced with a Generic K/A category for topic 000025, Loss of RHR System. Basis of topic choice was overall importance of new topic. Note 3 - Random generator chose a category which has no RO K/As with importance 2.5 or greater. Chose a different category to obtain a K/A with importance greater than 2.5. Note 4 - Randomly generated K/A was of little operational importance. Higher importance K/A on the same topic chosen.

	PWR RO Examination Outline														
Emer	Emergency and Abnormal Plant Evolutions - Tier1/Group3														
E/APE # / Name / Safety Function	К1	К2	КЗ	A1	A2	G	K/A Topic(s)	lmp.	Points						
000028 Pressurizer Level Malfunction / II					·										
000036 (A08) Fuel Handling Accident / VIII	1						AK1.03 Knowledge of the operational implications of the following concepts as they apply to Fuel Handling Incidents: Indications of approaching criticality	4.0	1						
000056 Loss of Off-site Power / VI															
000065 Loss of Instrument Air / VIII				1			AA1.02 Ability to operate and/or monitor the following as they apply to the Loss of Instrument Air: Components served by instrument air to minimize drain on system	2.6	1						
E13&E14 EOP Rules and Enclosures	1						EK1.2 Knowledge of the operational implications of the following concepts as they apply to the (EOP Enclosures): Normal, abnormal and emergency operating procedures associated with (EOP Enclosures).	3.6	1						
A05 Emergency Diesel Actuation / VI								0.0							
A07 Flooding / VIII															
K/A Category Totals:	2	0	0	1	0	0	Group Point Total =	3	3						

				ΡW	/R f	RO	Exa	ami	ina	tior	1 O	utline		
				F	Plant	t Sy	<u>/ste</u> i	ms_	- Tie	<u>)/sr2/</u>	Gro	up1		
System # / Name	К1	К2	КЗ	К4	К5	К6	A1	A2	A3	A4	G	K/A Topic	lmp.	Points
001 Control Rod Drive										1	1	A4.03 Ability to manually operate and / or monitor from the control room: CRDS mode control. G2.1.32 Ability to explain and apply all system	4.0	
												limits and precautions.	3.4	2
												K2.01 Knowledge of the bus power supplies for the following: RCPs	3.1	
003 Reactor Coolant Pump		1		1								K4.04 Knowledge of RCPs design features and / or interlocks which provide for the following: Adequate cooling of RCP motor and seals.	2.8	2
004 Chemical and Volume Control				1			1					K4.03 Knowledge of CVCS design features and / or interlocks which provide for the following: Protection of ion exchangers (high letdown temperature will isolate ion exchangers)	2.8	
										-		A1.06 Ability to predict and/or monitor changes in parameters (to prevent exceeding design limits) associated with operating the CVCS controls including: VCT level	3.0	2
013 Engineered Safety Features Actuation			1	1								K3.01 Knowledge of the effect that a loss or malfunction of the ESFAS will have on the following: Fuel	4.4	
												K4.04 Knowledge of ESFAS design features and /or interlocks which provide for the following: Auxiliary feed actuation signal.	4.3	2

				PW	RF	RO	Exa	ami	nat	ion	Οι	utline		
				Р	lant	t Sy	ster	ns ·	Tie	r2/G	Grou	up1		
System # / Name	К1	К2	КЗ	К4	K5	К6	A1	A2	A3	A4	G	К/А Торіс	lmp.	Points
												K5.02 Knowledge of the operational implications of the following concepts as they apply to the NIS: Discriminator/compensation operation.	2.7	
015 Nuclear Instrumentation					1		1					A1.08 Ability to predict and/or monitor changes in parameters to prevent exceeding design limits associated with operating the NIS controls including: Changes in RCS temperature.	3.3	2
				- - - - - -								K6.01 Knowledge of the effect of a loss or malfunction of the following ITM system components: Sensors and detectors.	2.7	
)17 In-core Temperature Monitor						1				1		A4.02 Ability to manually operate and/or monitor in the control room: Temperature values used to determine RCS/RCP operation during inadequate core cooling (i.e., if applicable, average of five highest values)	3.8	2
022 Containment Cooling		1						1				K2.01 Knowledge of power supplies to the following: Containment cooling fans. A2.04 Ability to (a) predict the impacts of the following malfunctions or operations on the CCS; and (b) based on those predictions use procedures to correct, control, or mitigate the consequences of those malfunctions or operations: Loss of service water	3.0	

				PW	'R F	RO	Exa	ami	nat	ion	0	utline		
				P	lan	t Sy	ster	ns ·	- Tie	r2/C	iro	up1		
System # / Name	К1	К2	КЗ	K4	K5	K6	A1	A2	A3	A4	G	K/A Topic	lmp.	Points
												K1.03 Knowledge of the physical connections and/or cause-effect relationships between the Condensate System and the following systems: MFW (Note 1)	2.6	
056 Condensate	1							1				A2.04 Ability to (a) predict the impacts of the following malfunctions or operations on the Condensate System; and (b) based on those predictions, use procedures to correct, control, or mitigate the consequences of those malfunctions or operations: Loss of condensate		2
												pumps. K1.07 Knowledge of the physical connections and / or cause-effect relationships between the MFW and the following systems: ICS	2.6 3.2	2
059 Main Feedwater	1			1								K4.16 Knowledge of MFW design features and / or interlocks which provide for the following: Automatic trips for MFW pumps.	3.1	2
061 Auxiliary/Emergency Feedwater						1						K6.02 Knowledge of the effect of a loss or malfunction of the following will have on the AFW components: Pumps	2.6	- 1
068 Liquid Radwaste								1				A2.04 Ability to (a) predict the impacts of the following malfunctions or operations on the Liquid Radwaste System; and (b) based on those predictions, use procedures to correct, control or mitigate the consequences of those malfunctions or operations: Failure of automatic isolation. (Note 1)	3.3	

										ion r2/0		utline up1		
System # / Name	К1	К2	КЗ	К4	К5	K6	A1	A2	A3	A4	G	K/A Topic	Imp.	Points
071 Waste Gas Disposal				1					<u> </u>			K4.04 Knowledge of design features and/or interlocks which provide for the following: Isolation of waste gas release tanks.	2.9	1
072 Area Radiation Monitoring	1								1			K1.03 Knowledge of the physical connections and / or cause-effect relationships between the ARM system and the following systems: Fuel building isolation. (Note 1) A3.01 Ability to monitor automatic operation of	3.6	
												the ARM system including: Changes in ventilation alignment.	2.9	2
K/A Category Totals	: 3	2	1	5	1	2	2	3	1	2	1	Group Point Total =	23	23

NOTE 1 No randomly generated K/A >2.5. Selected other K/A within the topic >2.5.

	PWR RO Examination Outline Plant Systems - Tier2/Group2													
	<u> </u>			ſ		1	1	<u> </u>			Grou	up2	r	
System # / Name	K1	K2	K 3	K4	K5	K6	A1	A2	A3	A4	G	К/А Торіс	Imp.	Points
002 Reactor Coolant					1							K5.10 Knowledge of the operational implications of the following concepts as they apply to the RCS: Relationship between reactor power and RCS differential temperature	3.6	1
006 Emergency Core Cooling				1								K4.09 Knowledge of ECCS design features and/or interlocks which provide for the following: Valve positioning on safety injection signal.	3.9	1
010 Pressurizer Pressure Control						1						K6.03 Knowledge of the effect of a loss or malfunction of the following will have on the PZR PCS: PZR sprays and heaters.	3.2	1
011 Pressurizer Level Control							1					A1.03 Ability to predict and / or monitor changes in parameters (to prevent exceeding design limits) associated with operating the PZR LCS controls including: VCT Level	2.8	1
012 Reactor Protection							1	- - - - - - - - - - - - - - - - - - -				A1.01 Ability to predict and / or monitor changes in parameters (to prevent exceeding design limits) associated with operating the RPS controls including: Trip setpoint adjustment.	2.9	1
014 Rod Position Indication								1				A2.01 Ability to (a) predict the impacts of the following malfunctions or operations on the RPIS; and (b) based on those predictions, use procedures to correct, control, or mitigate the consequences of those malfunctions or operations: Loss of offsite power.	2.8	1
016 Non-nuclear Instrumentation			1									K3.03 Knowledge of the effect that a loss or malfunction of the NNIS will have on the following: SDS (Steam dump system)	3.0	
026 Containment Spray				1								K4.01 Knowledge of CSS design features and / or interlocks which provide for the following: Source of water for CSS, including recirculation phase after LOCA.	4.2	1

				PW	R F	RO	Exa	ami	inat	ion	Οι	utline		
				P	lant	t Sy	stei	ms ·	- Tie	r2/0	Grou	up2		
System # / Name	К1	К2	КЗ	K4	K5	К6	A1	A2	A3	A4	G	K/A Topic	lmp.	Points
029 Containment Purge										1		A4.01 Ability to manually operate and/or monitor in the control room: Containment purge flow rate.	2.5	1
033 Spent Fuel Pool Cooling											1	G2.1.32 Ability to explain and apply all system limits and precautions.	3.4	1
035 Steam Generator				1								K4.01 Knowledge of S/Gs design features and / or interlocks which provide for the following: S/G level control.	3.6	1
039 Main and Reheat Steam	1											K1.07 Knowledge of the physical connections and / or cause-effect relationships between the MRSS and the following systems: AFW	3.4	
055 Condenser Air Removal	1											K1.06 Knowledge of the physical connections and / or cause-effect relationships between the CARS and the following systems: PRM system. (Note 1)	2.6	1
062 AC Electrical Distribution	1											K1.02 Knowledge of the physical connections and / or cause-effect relationships between the AC distribution system and the following systems: ED/G	4.1	1
063 DC Electrical Distribution			1					-				K3.02 Knowledge of the effect that a loss or malfunction of the DC electrical system will have on the following: Components using DC control power. (Note 2)	3.5	1
064 Emergency Diesel Generator											1	G2.1.8 Ability to coordinate personnel activities outside the control room.	3.8	1
073 Process Radiation Monitoring										1		A4.01 Ability to manually operate and/or monitor in the control room: Effluent release.	3.9	1

				PW	'R F	RO	Exa	ami	nat	ion	Οι	utline		
				P	lant	t Sy	ster	ns -	Tie	r2/C	irou	Jp2		
System # / Name	K1	К2	кз	K4	K5	К6	A1	A2	A3	A4	G	К/А Торіс	lmp.	Points
075 Circulating Water								1				A2.03 Ability to (a) predict the impacts of the following malfunctions or operations on the circulating water system; and (b) based on those predictions, use procedures to correct, control or mitigate the consequences of those malfunctions or operations: Safety features and relationship between condenser vacuum, turbine trip and steam dumps. (Note 3)	2.5	1
079 Station Air											1	G2.1.31 Ability to locate control room switches, controls and indications and to determine that they are correctly reflecting the desired plant lineup.	4.2	1
086 Fire Protection									1			A3.02 Ability to monitor automatic operation of the Fire Protection System including: Actuation of the FPS.	2.9	1
K/A Category Totals:	3	0	2	3	1	1	2	2	1	2	3	Group Point Total =	20	20

NOTE 1 No randomly generated K/A >2.5. Selected other K/A within the topic >2.5. NOTE 3 Random generator selected K2 K/As which deal with power supplies to Circ. Water Components. Selected A2 K/A to obtain material of higher importance and relevance to CR-3.

NOTE 2 Random generator selected A4 K/As which are of minor relevance to CR-3 control room operations. Selected K3 K/A based on higher importance and relevance to CR3 operation.

				PW	R F	RO	Exa	ami	nat	ion	Οι	utline		
Plant Systems - Tier2/Group3														
System # / Name	К1	К2	кз	К4	K5	K6	A1	A2	A3	A4	G	K/A Topic	lmp.	Points
005 Residual Heat Removal										1		A4.02 Ability to manually operate and / or monitor in the control room: Heat exchanger bypass flow control.	3.4	1
007 Pressurizer Relief/Quench Tank										1		A4.10 Ability to manually operate and / or monitor in the control room: Recognition of leaking PORV/code safety.	3.6	1
008 Component Cooling Water			1									K3.01 Knowledge of the effect that a loss or malfunction of the CCWS will have on the following: Loads cooled by CCWS	3.4	1
027 Containment Iodine Removal											1	G2.1.28 Knowledge of the purpose and function of major system components and controls.	3.2	1
028 Hydrogen Recombiner and Purge Control								1				A2.02 Ability to (a) predict the impacts of the following malfunctions or operations on the HRPS; and (b) based on those predictions, use procedures to correct, control or mitigate the consequences of those malfunctions or operations: LOCA condition and related concern over hydrogen.	3.5	1
034 Fuel Handling Equipment								1				A2.01 Ability to (a) predict the impacts of the following malfunctions or operations on the Fuel Handling System; and (b) based on those predictions, use procedures to correct, control, or mitigate the consequences of those malfunctions or operations: Dropped fuel element.	3.6	1
041 Steam Dump/Turbine Bypass Control										1		A4.08 Ability to manually operate and / or monitor in the control room: Steam Dump Valves.	3.0	1
045 Main Turbine Generator									1					· · ·
076 Service Water							1							
078 Instrument Air														

				Ρ	W	R F	RO	Exa	ami	nat	tion	Οι	utline		
			· · · · · · · · · · · · · · · · · · ·		Р	lant	: Sy	ster	ns	- Tie	er2/C	Grou	սp3		
System # / Name	ĸ	1 K	(2 K	(3 ł	K4	K5	K6	A1	A2	A3	A4	G	К/А Торіс	lmp.	Points
103 Containment	1												K1.02 Knowledge of the physical connections and / or cause-effect relationships between the containment system and the following systems: Containment isolation/containment integrity.	3.9	1
K/A Category 7	otals: 1	C	0	1	0	0	0	0	2	0	3	1	Group Point Total =	8	8

		PWR RO Examination Outline				
		Generic Knowledge's and Abilities (Form ES-401-5)	<u> </u>	· · · · · · · · · · · · · · · · · · ·		
Category	KA #	K/A Topic	lmp.	Points		
	2.1.8	Ability to coordinate personnel activities outside the control room.	3.8	1		
Conduct of Operations	2.1.11	Knowledge of less than one hour technical specification action statements for systems.	3.0	1		
	2.1.19	Ability to use plant computer to obtain and evaluate parametric information on system or component status.	3.0	1		
	2.1.23	Ability to perform specific system and integrated plant procedures during all modes of plant operation.	1			
	Total Points			4		
Equipment	2.2.2	Ability to manipulate the console controls as required to operate the facility between shutdown and designated power levels.	4.0	1		
Control	2.2.13	3.6	1			
	Total Points			2		
Radiation	2.3.1	Knowledge of 10 CFR: 20 and related facility radiation control requirements.	2.6	1		
Control	2.3.2	Knowledge of facility ALARA program.	2.5	1		
Jontrol	2.3.9	Knowledge of the process for performing a containment purge.	2.5	1		
	Total Points			3		
	2.4.1	Knowledge of EOP entry conditions and immediate action steps.	4.3	1		
-	2.4.6	Knowledge of symptom based EOP mitigation strategies.	3.1	1		
Emergency Procedures /	2.4.9	Knowledge of low power / shutdown implications in accident (e.g. LOCA or loss of RHR mitigation strategies.	3.3	1		
Plan	2.4.49 Ability to perform without reference to procedures those actions that require immediate operation of system components and controls. 4.0					
	Total Points			4		
				L		
FIER 3 Category 1	Fotals:			13		

ES-301

	lity: Crystal River Unit 3 n Level: RO/SRO	Date of Examination: 09-25-2000 Operating Test No.: 1
	Administrative Topic/Subject Description	Describe method of evaluation: 1. ONE Administrative JPM, OR 2. TWO Administrative Questions
A.1	Plant Parameter Verification	JPM - Perform a reactivity balance calculation/001A4.11/3.5/4.1
	Plant Parameter Verification	JPM – Perform a Reactor Coolant Boron Change Calculation/004A4.04/3.2/3.6
A.2	Surveillance Testing	JPM – Perform a Reactor Coolant System Inventory Balance /2.2.12/3.0/3.4
A.3	Radiation Hazards	JPM - Using survey maps determine radiation requirements and stay times/2.3.1/2.6/3.0*
A.4	SRO Emergency action levels and classifications	JPM – Determine Emergency Action Level and Complete the State of Florida Notification Message Form for Nuclear Power Plants/2.4.41/4.1
A.4	RO Emergency Communications	JPM – Notify State Warning Point Tallahassee with the State of Florida Notification Message Form for Nuclear Power Plants (faulted)/2.4.43/2.8

* Modification of last years A.3 JPM (identified as a Needs Improvement Area)

~~~

ſ

.•

η

| Facility: Crystal River Unit 3<br>Exam Level: RO/SRO(I)                                                                  | Date of Examination: 09-25-2000<br>Operating Test No.: 1 |                    |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------|--|--|--|--|
| B.1 Control Room Systems                                                                                                 | NT TANAN MANA ANA ANA ANA ANA ANA ANA ANA AN             |                    |  |  |  |  |
| System/JPM Title/KA                                                                                                      | Type<br>Code*                                            | Safety<br>Function |  |  |  |  |
| a. Control Rod Drive (CRD)/Transfer Single Rod to Auxilia:<br>Supply/001A4.03/4.0/3.7                                    | ry Power D, S                                            | 1                  |  |  |  |  |
| b. AC. Electrical/Supply pressurizer heaters from the "B" E<br>Bus/062A2.05/2.9/3.3                                      | S 4160V N, S                                             | 6                  |  |  |  |  |
| c. Reactor Coolant (RCS)/Take Actions required for Loss of I<br>Pressure/010A1.07/3.7/3.7 (does not result in a Rx trip) | RCS A, D, S                                              | 3                  |  |  |  |  |
| d. Building Spray (BS)/Ensure BS actuation/026A3.01/4.3/4                                                                | 5 (EOP-03) A, D, S                                       | 5                  |  |  |  |  |
| e. Makeup and Purification System (MU)/ Re-establish<br>letdown/004A4.05/3.6/3.1**                                       | A, D, S                                                  | 2                  |  |  |  |  |
| f. Decay Heat Removal (DH)/ Perform ECCS Suction<br>Transfer/005A4.01/3.6/3.4**                                          | D, L, S                                                  | 4                  |  |  |  |  |
| g. Reactor Protection System (RPS)/Place RPS in Shutdown<br>Bypass/012A4.03/3.6/3.6                                      | C, N                                                     | 7                  |  |  |  |  |
| B.2 Facility Walk-Through                                                                                                |                                                          |                    |  |  |  |  |
| a. Fire Service (FS)/Recirculation of FSP-1/086A4.01/3.3/3.3                                                             | N                                                        | 8                  |  |  |  |  |
| b. Emergency Feedwater (EFW)/Placing EFP-2 in<br>Standby/068AA1.02/4.3/4.5**                                             | N                                                        | 4                  |  |  |  |  |
| c. Waste Gas (WG)/Release a Waste Gas Decay Tank to Plan<br>Ventilation/G2.3.11/2.7/3.2                                  | A, N, R                                                  | 9                  |  |  |  |  |
| *Type Codes: (D)irect, (M)odified from bank, (N)ew, (A)ltern<br>(L)ow-Power, (R)CA, **PRA High System Importance         | ate path, (C)ontrol room, (S)ir                          | nulator,           |  |  |  |  |

٦

| Facility: Crystal River Unit 3<br>Exam Level: SRO(U)                                                              | Date of Examination: 09-25<br>Operating Test No.: 1 | -2000              |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------|
| B.1 Control Room Systems                                                                                          |                                                     |                    |
| System/JPM Title/KA                                                                                               | Type<br>Code*                                       | Safety<br>Function |
| a. AC. Electrical/Supply pressurizer heaters from the "B" ES<br>Bus/062A2.05/2.9/3.3                              | 4160V N, S                                          | 6                  |
| b. Makeup and Purification System (MU)/ Re-establish<br>letdown/004A4.05/3.6/3.1**                                | A, D, S                                             | 2                  |
| c. Reactor Protection System (RPS)/Place RPS in Shutdown<br>Bypass/012A4.03/3.6/3.6                               | C, N                                                | 7                  |
| B.2 Facility Walk-Through                                                                                         |                                                     |                    |
| a. Fire Service (FS)/Recirculation of FSP-1/086A4.01/3.3/3.3                                                      | N                                                   | 8                  |
| <ul> <li>b. Waste Gas (WG)/Release a Waste Gas Decay Tank to Plan<br/>Ventilation/G2.3.11/2.7/3.3</li> </ul>      | t A, N, R                                           | 9                  |
| *Type Codes: (D)irect, (M)odified from bank, (N)ew, (A)lterna<br>(L)ow-Power, (R)CA, **PRA High System Importance | te path, (C)ontrol room, (S)ir                      | nulator,           |

~~~~ \* <sup>\*</sup>

ſ

| | Date of Examination: 09-28
Operating Test No.: 2 | 5-2000 |
|---|---|--------------------|
| B.1 Control Room Systems | | |
| System/JPM Title/KA | Type
Code* | Safety
Function |
| a. Control Rod Drive (CRD)/Latch and Position Indication ali
Group /001A4.03/4.0/3.7 | gn a Safety D, S | 1 |
| b. Nuclear Services Closed Cycle Cooling (SW)/Isolate Loads for
of SW/008A4.01/3.3/3.1** | ollowing a Loss D, S | 8 |
| c. Reactor Coolant (RCS)/Take Actions required for Loss of RC
Pressure/010A1.07/3.7/3.7 (results in a Rx trip) | S A, D, S | 3 |
| d. Makeup System (MU)/Restart a MU Pump following a Reac
System leak isolation/004A4.08/3.8/3.4** | tor Coolant D, S | 2 |
| e. Decay Heat Removal (DH)/ Following a LOCA, place a DH t
Removal/005A4.01/3.6/3.4** | rain in DH A, M, L, S | 4 |
| f. Air Handling (AH)/Following an ES actuation ensure Contai
is properly aligned/022A3.01/4.1/4.3 | nment Cooling A, N, S | 5 |
| g. Reactor Protection System (RPS)/Remove RPS from Shutdov
Bypass/012A4.03/3.6/3.6 | wn C, N | 7 |
| B.2 Facility Walk-Through | | |
| a. AC. Electrical/Supply pressurizer heaters from the "B" ES 4
Bus/062A2.05/2.9/3.3 | 4160V N | 6 |
| b. Emergency Feedwater (EFW)/Placing EFP-2 in
Standby/068AA1.02/4.3/4.5** | A, N | 4 |
| c. Waste Gas (WG)/Release a Waste Gas Decay Tank to Plant
Ventilation/G2.3.11/2.7/3.2 | D, R | 9 |
| *Type Codes: (D)irect, (M)odified from bank, (N)ew, (A)lternate
(L)ow-Power, (R)CA, **PRA High System Importance | e path, (C)ontrol room, (S)ir | nulator, |

| | Date of Examination: 09-25
Operating Test No.: 2 | 5-2000 |
|--|---|--------------------|
| B.1 Control Room Systems | | |
| System/JPM Title/KA | Туре
Code* | Safety
Function |
| a. Nuclear Services Closed Cycle Cooling (SW)/Isolate Loads fo
of SW/008A4.01/3.3/3.1** | ollowing a Loss D, S | 8 |
| B. Reactor Coolant (RCS)/Take Actions required for Loss of RC
Pressure/010A1.07/3.7/3.7 (results in a Rx trip) | S A, D, S | 3 |
| c. Decay Heat Removal (DH)/ Following a LOCA, place a DH tr
Removal/005A4.01/3.6/3.4** | rain in DH A, M, L | 4 |
| B.2 Facility Walk-Through | | |
| a. AC. Electrical/Supply pressurizer heaters from the "B" ES 4
Bus/062A2.05/2.9/3.3 | 4160V N | 6 |
| b. Waste Gas (WG)/Release a Waste Gas Decay Tank to Plant
Ventilation/G2.3.11/2.7/3.2 | D, R | 9 |
| *Type Codes: (D)irect, (M)odified from bank, (N)ew, (A)lternate
(L)ow-Power, (R)CA, **PRA High System Importance | e path, (C)ontrol room, (S)in | nulator, |

| Appendix D | Scenario Outline | Form ES-D-1 |
|---|--|---|
| Facility: Crystal Unit #3
(Backup scenario)
Examiners: George H | B PWR: B & W Scenario No.
opper Op | : 3-1 Op-Test No.: 1 Derators: |
| Objectives: | | |
| • The BOP will be eva
the surveillance proc | • | wn an emergency diesel generator using |
| • The OAC and SRO v corrective actions. | vill be evaluated on their abilit | y to diagnose a Tave failure and take |
| 1 0 | vill be evaluated on their ability
np and to prevent a premature r | y to reduce power to within the capacity reactor trip. |
| • The OAC and SRO v
failure and take corre | • | y to diagnose the neutron error instrumer |
| | vill be evaluated on their ability estore normal plant configurati | y to restore power to an Engineered ion. |
| • The operating crew w cooling actuation. | vill be evaluated on their respon | nse to a reactor building isolation and |
| • The OAC will diagno actions. | ose that an ATWAS has occurr | red and take appropriate corrective |
| • The operating crew w isolate the effected st | 5 | y to diagnose location of a steam leak and |
| • The BOP will be eval circuitry fails. | luated on his ability to isolate a | an OTSG when main feedwater isolation |
| Initial Conditions: The pl | lant is at 100% full power with | full ICS auto control. |
| breaker 1661's air compr
complete. DHP-1A, RW
is OOS for motor/pump a
screen wash system is OO | Pessor. They will notify the con
P-2A and EFP-3 are OOS for palignment. ARP-1B is OOS for
OS due to mechanical damage is
to secondary leak. EDG-1A is | ming routine maintenance on output
ntrol room when maintenance is
pump packing/seal adjustment. WTP-6B
or routine motor maintenance. The intake
from an intake crane accident. OTSG
is running for SP-354A and is ready to b |

• ••••

| Event | Malf. | Event | Event |
|-------|-------|----------------------------|---|
| No. | No. | Type* | Description |
| 1 | 1 | N(BOP)
N(SRO) | Shutdown EDG-1A following its monthly functional test. (SP-354A). |
| 2 | 2 | I(OAC)
I(SRO) | Selected Tave RC-12-TAS (RC-7A-TAI) fails high (gradual failure) (MALF). The OAC stabilizes the plant and transfers to good channel. (OP-501) |
| 3 | 3 | R(OAC)
R(SRO)
C(All) | The annunciator for "B" main feedwater pump high vibration
alarms. The "B" main feedwater pump trips due to high
vibration (MALF). No automatic runback occurs, the crew
runs the plant back to 55%. (AP-510 AP-545) |
| 4 | 4 | I(OAC)
I(SRO) | Neutron error fails high, IC-25-NEI (MALF). The OAC diagnoses the failure and takes manual control of both feedwater and the reactor to stabilize the plant. (OP-504) |
| 5 | 5 | C(BOP)
N(BOP)
N(SRO) | Shortly after the Primary Plant Operator trips EDG-1A's fuel rack (post run action) breaker 3211 trips (MALF). Power is restored to the "A" ES buses from breaker 3205. Makeup is reestablished. (AP-770) |
| 6 | 6 | M(All) | An unisolable steam leak develops in the reactor building on
the "B" OTSG. Reactor does not trip on reactor building
pressure (only one channel of RPS trips, AR-502) (MALF).
OAC must trip the reactor (CT). (EOP-02) |
| 7 | 7 | C(All) | Once the "B" OTSG is determined to be the generator with
the leak the BOP is directed to isolate the generator. The
MFWI does not actuate in manual or automatic (MALF).
The BOP performs the isolation by manually closing the
appropriate valves (CT). (EOP-05) |

* (N)ormal, (R)eactivity, (I)nstrument, (C)omponent, (M)ajor

Narrative Summary:

SP-354A, Monthly Functional Test of the Emergency Diesel Generator, EGDG-1A is in progress. The step to shut the diesel down has just been reached and the BOP will perform these actions. (SP-354A) (Technical specification opportunity for the SRO)

While the BOP is performing actions of SP-354A, selected Tave gradually fails high (K-3-2). The OAC and SRO will diagnose this failure, stabilize the plant and transfer to a good channel. (OP-501)

The "B" main feedwater pump's high vibration annunciator, L-02-02, will alarm (AR-504. The feedwater pump will trip and no automatic runback will occur. The crew will perform a plant runback manually in accordance with AP-545. (AP-545)

Following the runback IC-25-NEI fails high. The OAC and the SRO diagnose the failure and the OAC takes manual control of both feedwater and the reactor to stabilize the plant. (OP-504)

One of the auxiliary building operator's actions after a diesel is shutdown is to trip the fuel racks. Shortly after this action is taken breaker 3211, the normal supply breaker for the "A" 4160 V ES bus trips due to a control circuit failure. Power is restored to the bus by the BOP closing breaker 3205. The BOP and SRO will restore plant to normal configuration including restarting a makeup pump. (AP-770)

An unisolable steam leak develops in the reactor building on the "B" OTSG. An RBIC (4 psig in the reactor building) actuation is caused by the steam leak. The BOP will verify proper ES actuation. Because of a RPS failure only one (1) channel of RPS trips (AR-502; J-08-01 and J-08-04) on the 4 psig in the reactor building. The OAC recognizes an ATWAS and trips the reactor. (EOP-02)

Once the crew determines the leaking OTSG, that steam generator will be isolated. The MFWI does not actuate in manual or automatic. The BOP (OAC) performs the isolation by manually closing the feedwater valves. (EOP-05) If the feedwater is not isolated the overcooling will continue.

The exercise is terminated when a safe steaming path is established on the "A" OTSG and the cooldown rate is acceptable.

Procedures used during this scenario: (Annunciator Response, AR, not listed)

| AP-510 | EOP-02 | OP-501 | SP-354A |
|--------|--------|--------|---------|
| AP-545 | EOP-05 | | |
| AP-770 | | | |

| Target Quantitative Attributes – Scenario 3 | Actual Attributes |
|--|-------------------|
| 1. Total Malfunctions (5-8) | 6 |
| 2. Malfunctions after EOP entry (1-2) | 1 |
| 3. Abnormal Events (2-4) | 3 |
| 4. Major Transients (1-2) | 1 |
| 5. EOPs entered requiring substantive actions (1-2) | 2 |
| 6. EOP contingencies requiring substantive actions (0-2) | 1 |
| 7. Critical Task (2-3) | 2 |

Facility: Crystal Unit #3 PWR: B & W Scenario No.: 1-1,2,3Operators:Examiners: George HopperOperators:

Op-Test No.: 1

Objectives:

- The OAC and SRO will be evaluated on their ability to diagnose a power range nuclear instrumentation channel failure and take corrective actions.
- The BOP and the SRO will be evaluated on their ability to place a RPS channel in bypass and verify Technical Specification adherence.
- The OAC will be evaluated on his ability to diagnose the loss of automatic pressurizer level control and take manual actions to control the level.
- The operating crew will be evaluated on their ability to diagnose a high reactor coolant pump thrust bearing temperature and remove the pump from service.
- The operating crew will be evaluated on their ability to diagnose a failure of feedwater to reratio following removal of the reactor coolant pump from service and compensate for this failure.
- The operating crew will be evaluated on their ability to run the plant back following a dropped rod.
- The operating crew will be evaluated on their ability to diagnose a small break LOCA in the Reactor Building.
- The BOP will be evaluated on his ability to respond to an engineered safeguards actuation.
- The operating crew will be evaluated on their ability to respond to a reactor trip, a loss of subcooling margin.
- The OAC will be evaluated on his ability to respond to an emergency feedwater instrument failure and take manual action to control emergency feedwater flow.

Initial Conditions: The plant is at 100% full power with full ICS auto control.

<u>Turnover</u>: A line crew is in the CR-3 switchyard performing routine maintenance on output breaker 1661's air compressor. They will notify the control room when maintenance is complete. DHP-1A, RWP-2A and EFP-1 are OOS for pump packing/seal adjustment. WTP-6B is OOS for motor/pump alignment. ARP-1B is OOS for routine motor maintenance. The intake screen wash system is OOS due to mechanical damage from an intake crane accident. OTSG "B" has a 3 GPD primary to secondary leak. RM-G27 is OOS for repair.

| Event
No. | Malf.
No. | Event
Type* | Event
Description | |
|--------------|--------------|--------------------------------------|--|--|
| 1 | 1 | I(OAC)
I(SRO)
N(BOP)
N(SRO) | NI-7 power range detector fails high (fails to 102%) (MALF).
The crew will diagnose the failure and stabilize the plant then
transfer to a good channel. The crew then places "C" RPS
channel in bypass. (OP-501, OP-507) | |
| 2 | 2 | I(OAC) | MUV-31 (Pressurizer level control valve) controller set point fails high (MALF). The OAC will diagnose the failure and control pressurizer level in manual. | |
| 3 | 3 | C(All)
N(All)
R(OAC) | An annunciator indicates a high thrust bearing temperature for RCP-1C (MALF). A power reduction is required followed by removal of the RCP from service. (AR-501, OP-302) | |
| 4 | 4 | I(OAC)
I(SRO) | When the RCP is shutdown feedwater does not re-ratio (MALF). The crew will manually re-ratio feedwater. | |
| 5 | 5 | C(All)
R(OAC) | Control rod 7-4 drops into the core (MALF). The crew v manually run-back the plant. (AP-545) | |
| 6 | 6 | C(All) | A small RCS leak develops on letdown line in the reactor building (MALF)**. The crew will perform the actions of AP-520. (AP-520) | |
| 7 | 7 | M(All) | Leak size increases to 1000 gpm causing a reactor trip and ES actuation. Leak size causes loss of subcooling margin. The RCPs are tripped (CT). (EOP-02, EOP-03) | |
| 8 | 8 | C(BOP) | When the ES actuation occurs, RWP-2B does not start. T
BOP will start the pump (MALF) (CT). (EOP-02, EOP-0 | |
| 9 | 9 | I(OAC) | After RCPs are tripped emergency feedwater actuates. SP-29-LT fails low (SP-29-LI, EFIC low range instrument) (MALF). This will cause EFV-57 to ramp full open. The OAC will manually close EFV-57 (CT). (Rule 3) | |

* (N)ormal, (R)eactivity, (I)nstrument, (C)omponent, (M)ajor ** PRA significant accident

Narrative Summary:

NI-7 power range detector gradually fails to 102% preventing a SASS instigated swap of the NI signal feeding the ICS. The OAC will stop the transient caused by the NI failure. Once the transient is stopped the crew will select an accurate NI signal (OP-501) to the ICS and bypass the "C" RPS channel (OP-507). (Technical specification opportunity for the SRO)

Once all ICS stations are back in automatic the pressurizer level control valve, MUV-31, controller set point fails high. The OAC using diagnostic skills (pressurizer level and MU flow increasing and MUT level decreasing) will discover the failure and select MUV-31's controller to manual.

An annunciator indicates a high thrust bearing temperature, I-02-04 (AR-501). Using the thrust bearing temperature monitor the BOP will determine that RCP-1C has the high temperature. The operators will reduce power and remove RCP-1C service (OP-302).

When the RCP is shutdown, feedwater does not re-ratio and the OAC will have to re-ratio feedwater manually.

When feedwater flow has been properly aligned control rod 7-4 drops into the core. The OAC will have to reduce power to 45% (based on 3 RCPs operating) with ICS in manual (AP-545).

Once the runback is complete a small RCS leak develops on the letdown line in the reactor building. The crew will enter AP-520, and perform actions for a reactor coolant leak (AP-520).

The leak will become bigger (≈ 1000 gpm) causing a reactor trip, a loss of subcooling margin and a reactor building isolation and cooling actuation. The BOP will control the ES actuation while the OAC meets the immediate actions of EOP-02 and EOP-03 (BOP may take the EOP-03 immediate actions) (EOP-2, EOP-3, Rule 1, Rule 2).

When subcooling margin is lost (EOP-3) the reactor coolant pumps must be stopped before the reactor coolant reaches a greater than 70% void fraction which could happen in as little as two minutes. The safety significance of this action is that a greater than 70% void fraction does not leave enough water to keep the core covered if the pumps are lost after the 70% void fraction is reached.

Following the ES actuation, the BOP will discover that RWP-2B did not start. The BOP will start RWP-2B (EOP-02, EOP-03). If RWP-2B is not started there is no cooling water for the only functional decay heat pump (LPI).

When the reactor coolant pumps are turned off, EFIC automatically selects the Natural Circulation setpoint. When the operator selects the ISM setpoint (Rule 1) SP-29-LT (the level transmitter that feeds SP-29-LI, EFW low range level) fails low, EFV-57, emergency feedwater control valve, ramps open and has to be selected to manual and closed (Rule 3). If EFV-57 is not promptly closed and excessive heat transfer symptom will develop.

When EOP-08 actions are in progress with OTSG heat transfer, and stable RCS inventory control then the scenario can be terminated.

Procedures used during this scenario: (Annunciator Response, ARs, not listed)

| AP-510 | EOP-02 | OP-302 |
|--------|--------|--------|
| AP-520 | EOP-03 | OP-501 |
| AP-545 | EOP-08 | OP-507 |
| | EOP-13 | |

| Target Quantitative Attributes – Scenario 1 | Actual Attributes |
|--|-------------------|
| 1. Total Malfunctions (5-8) | 8 |
| 2. Malfunctions after EOP entry (1-2) | 2 |
| 3. Abnormal Events (2-4) | 2 |
| 4. Major Transients (1-2) | 1 |
| 5. EOPs entered requiring substantive actions (1-2) | 2 |
| 6. EOP contingencies requiring substantive actions (0-2) | 0 |
| 7. Critical Task (2-3) | 3 |

| Appendix D | Scer | nario Outline | Form ES- |
|---|--|--|---|
| Facility: Crystal | Unit #3 PWR: B & W | Scenario No.: 2-1,2,3 | Op-Test No.: 1 |
| Examiners: G | eorge Hopper | Operators: | |
| Objectives: | | | |
| | l be evaluated on his abi
over CFT pressure. | ility to diagnose Core Flood | Tank low pressure and |
| • The OAC and take corrective | | on their ability to diagnose | a Th instrument failure |
| | | on their ability to diagnose
the capacity of one CDP. | a failed CDP magnetic |
| | d SRO will be evaluated
r using manual ICS cont | on their ability to diagnose rol. | a failure of the ULD and |
| | g crew will be evaluated
ctions to remove the turb | on their ability to diagnose
bine from service. | loss of condenser vacuu |
| • The crew wil | l be evaluated on their a | bility to perform AP-660, T | urbine Trip. |
| | d SRO will be evaluate o
immediate actions. | on their ability to perform E | OP-02, Vital System Sta |
| | g crew will be evaluated
o keep pressurizer level | on their ability to diagnose as required. | an OTSG tube leak and |
| | ll be evaluated on his ab
opriate actions to correc | ility to diagnose the loss of
at this condition. | all feedwater to the OTS |
| Initial Conditions | s: The plant is at 100% f | full power with full ICS auto | o control. |
| breaker 1661's at
complete. DHP-1
is OOS for motor
screen wash syste | ir compressor. They will
A, RWP-2A and EFP-3
r/pump alignment. ARP
em is OOS due to mecha | tchyard performing routine
Il notify the control room wl
are OOS for pump packing
2-1B is OOS for routine mot
anical damage from an intak
eak. RM-G27 is OOS for re | hen maintenance is
t/seal adjustment. WTP-(
for maintenance. The int
te crane accident. OTSC |

| Event
No. | Malf.
No. | Event
Type* | Event
Description |
|--------------|--------------|----------------------------|---|
| 1 | 1 | N(BOP)
N(SRO) | A valid "B" core flood tank low pressure annunciator alarms
The BOP restores the core flood tank pressure. (AR-305, OP
401) |
| 2 | 2 | I(OAC)
I(SRO) | Selected "A" Thot, RC-4A-TE1, fails high (MALF). The OAC diagnoses the failure and stabilizes the plant then transfers to a good channel. (AR-503, OP-501) |
| 3 | 3 | C(BOP)
C(SRO)
R(OAC) | CDP-1A magnetic coupling fails (MALF). The crew reduce
power to a level within the capability of one CDP
(approximately 60%). (AR-602, OP-603, AP-510) |
| 4 | 4 | C(All) | The turbine building operator reports a hissing sound near th main feedwater pump exhaust lines. The crew notices a loss of condenser (MALF). (OP-607) |
| 5 | 5 | I(OAC)
I(SRO)
R(OAC) | While the crew reduces power to < 45% to trip the turbine
(degrading vacuum). The ULD fails to respond to operator
input (ULD failure) (MALF). The OAC reduces power usin
manual ICS control. (OP-204, AP-510) |
| 6 | 6 | C(OAC)
C(SRO | Once the crew is < 45% the OAC discovers the turbine trip
pushbutton does not function (MALF) and performs the
remedial actions for AP-660 and enters EOP-02 (CT). (AP-
660, EOP-02) |
| 7 | 7 | C(OAC)
C(SRO) | The turbine building operator reports steam blowing from
both main feedwater pump exhausts. When emergency
feedwater actuates (manually or automatically) EFP-2 will
fail to start (MALF). OAC will start EFP-1(CT). (EOP-06,
EOP-14 Enclosure 7) |
| 8 | 8 | M(All) | Following the turbine shutdown the "A" OTSG develops a 350 gpm tube leak (MALF) while the condenser continues to lose vacuum. The crew will diagnose location of the tube leak (CT). (EOP-06)** |

`

* (N)ormal, (R)eactivity, (I)nstrument, (C)omponent, (M)ajor ** PRA significant accident

Narrative Summary:

The core flood tank low pressure annunciator, E-08-05, comes into alarm (AR-305). The BOP corrects the valid low pressure in the "B" core flood tank (OP-401). (Technical specification opportunity for the SRO)

As the BOP is attending to the low CFT pressure the OAC and SRO diagnose a selected Th high failure. The OAC stabilizes the plant and transfers to a good channel (OP-501).

Annunciator alarm N-2-2 (AR-602) alerts the crew that the "A" condensate pump magnetic coupling is failing. Control room indication verifies the CDP problem and power is rapidly reduced to a level that is within the capability of one CDP (60%). The BOP removes CDP-1A from service (OP-603, AP-510).

Condenser vacuum begins to degrade due to a leak in the "A" main feedwater pump exhaust trunk (OP-607). Power is reduced to < 45% to trip the Turbine but not the Reactor. While the crew is reducing power to trip the Turbine, the ULD fails to respond to operator input. The OAC will finish the power reduction using manual ICS control.

When the OAC begins the immediate actions of AP-660, Turbine Trip, he discovers that the Turbine trip pushbutton does not function. The OAC performs the remedial actions, which includes closing the MSIVs and tripping the Reactor. (AP-660, EOP-02) Since the normal heat sink for the reactor is no longer available the reactor is tripped to protect the fuel.

After the Reactor trip the "A" OTSG develops a 350 gpm tube leak. Diagnosing the leaking steam generator post trip with out the "A" side steam line radiation monitor is important to the mitigation strategy for the casualty. This knowledge will help limit the spread of contamination and possible radioactive releases to the environment as two of the three fission product barriers have failed.

The condenser will eventually loose all vacuum and this will be verified by a call from the turbine building operator. (EOP-06)

When emergency feedwater is either manually or automatically actuated EFP-2 fails to start. The OAC will start EFP-1. (EOP-14 Enclosure 7) If EFP-1 is not started the symptom of inadequate heat transfer will have to be entered.

The exercise is terminated when both reactor and turbine are tripped, subcooling margin is minimized and a plant cooldown is started (EOP-06).

Procedures used during this scenario: (Annunciator Response, AR, not listed)

| AP-510 | EOP-02 | OP-401 |
|--------|--------|--------|
| AP-660 | EOP-06 | OP-501 |
| | EOP-14 | OP-603 |
| | | OP-607 |

 $\overline{\bigcirc}$

·

 \smile

| Target Quantitative Attributes – Scenario 2 | Actual Attributes |
|--|-------------------|
| 1. Total Malfunctions (5-8) | 7 |
| 2. Malfunctions after EOP entry (1-2) | 1 |
| 3. Abnormal Events (2-4) | 2 |
| 4. Major Transients (1-2) | 1 |
| 5. EOPs entered requiring substantive actions (1-2) | 1 |
| 6. EOP contingencies requiring substantive actions (0-2) | 0 |
| 7. Critical Task (2-3) | 3 |

| S-301 | | OPEI | and Event Check
RATING TEST 1 | NO.: Group 1** | | ES-301-3 |
|-------------------|-------------------|-------------------|----------------------------------|----------------|-----------------|--|
| Applicant
Type | Evolution
Type | Minimum
Number | | Scena
Numb | enario
Imber | |
| | | | 1 | 2 | 3 | 4 |
| | Reactivity | 1 | - | 3, 5 | | |
| | Normal | 0 | | | | |
| As RO | Instrument | 1 | | 2, 5 | | |
| | Component | 1 | | 4, 6, 8 | | |
| SRO-I#1 | Major | 1 | | 7 | | |
| | Reactivity | 0 | | | | |
| | Normal | 1 | 1, 3, 4 | | | |
| As SRO | Instrument | 1 | 1, 4 | | | |
| | Component | 1 | 3, 5, 6 | | | |
| | Major | 1 | 7 | | | |
| | Reactivity | 1 | 3, 5 | | | |
| | Normal | 0 | 3 | | | |
| As RO | Instrument | 1 | 1, 2, 4, 9 | | | |
| | Component | 1 | 3, 5, 6 | | | ······································ |
| SRO-I#2 | Major | 1 | 7 | | | |
| | Reactivity | 0 | | | | |
| | Normal | 1 | | 1 | | |
| As SRO | Instrument | 1 | | 2, 5 | | |
| | Component | 1 | | 3, 4, 6, 8 | | |
| | Major | 1 | | 7 | | |

Instructions: (1) Enter the operating test number and Form ES-D1 event numbers for each evolution type.

(2) Reactivity manipulations may be conducted under normal or controlled abnormal conditions (refer to Sections D.4.d) but must be significant per Section C.2.a of Appendix D.

to Sections D.4.d) but must be significant per Section C.2.a of Appendix D. **This form will be submitted again after the crew composition has been finalized and scenario outline approval.

Author: Melissa Dallian

Chief Examiner:

| 5-301 | | I ransient a
OPEI | and Event Checkl
RATING TEST N | NO.: Group 2** | Form | n ES-301-5 |
|-------------------|-------------------|----------------------|-----------------------------------|-------------------|-------|------------|
| Applicant
Type | Evolution
Type | Minimum
Number | Scenario
Number | | | |
| | | | 1 | 2 | 3 | 4 |
| | Reactivity | 1 | | 3, 5 | | |
| | Normal | 1 | 1, 3 | | | |
| RO#1 | Instrument | 2 | | 2, 5 | | |
| | Component | 2 | 3, 5, 6, 8 | 4, 6, 8 | | |
| | Major | 1 | 7 | 7 | | |
| | Reactivity | 1 | 3, 5 | | | |
| | Normal | 0 | 3 | | | , |
| As RO | Instrument | 1 | 1, 2, 4, 9 | | | |
| | Component | 1 | 3, 5, 6, 8 | | · | |
| SRO-I#3 | Major | 1 | 7 | | | |
| | Reactivity | 0 | | | | |
| | Normal | 1 | | 1 | | |
| As SRO | Instrument | 1 | | 2, 5 | | |
| | Component | 1 | | 3, 4, 6, 8 | | |
| Al di se | Major | 1 | | 7 | | |
| | Reactivity | 0 | | | | |
| | Normal | 1 | 1, 3, 4 | | | |
| SRO#1 | Instrument | 1 | 1, 4 | | | |
| | Component | 1 | 3, 5, 6 | | | |
| | Major | 1 | 7 | event numbers for | ····· | |

to Sections D.4.d) but must be significant per Section C.2.a of Appendix D. **This form will be submitted again after the crew composition has been finalized and scenario outline approval.

Author: _____

 $\tilde{}$

Chief Examiner:

| 5-301 | Transient and Event Checklist
OPERATING TEST NO.: Group 3** | | | Form | ES-301-5 | |
|-------------------|--|-------------------|---------------|----------------|----------|---|
| | <u> </u> | OPEH | RATING TEST N | O.: Group 3** | | |
| Applicant
Type | Evolution
Type | Minimum
Number | | Scenar
Numb | | F |
| | | | 1 | 2 | 3 | 4 |
| | Reactivity | 1 | | 3, 5 | | |
| | Normal | 1 | 1, 3 | | | |
| RO#2 | Instrument | 2 | | 2, 5 | | |
| | Component | 2 | 3, 5, 6, 8 | 4, 6, 8 | | |
| i. | Major | 1 | 7 | 7 | | |
| | Reactivity | 1 | 3, 5 | | | |
| | Normal | 0 | 3 | | | |
| As RO | Instrument | 1 | 1, 2, 4, 9 | | | |
| | Component | 1 | 3, 5, 6, 8 | | | |
| SRO-I#4 | Major | 1 | 7 | | | |
| | Reactivity | 0 | | | | |
| | Normal | 1 | | 1 | | |
| As SRO | Instrument | 1 | | 2, 5 | | |
| | Component | 1 | | 3, 4, 6, 8 | | |
| | Major | 1 | - NJ | 7 | | |
| | Reactivity | 0 | | | | |
| | Normal | 1 | 1, 3, 4 | | | |
| SRO#2 | Instrument | 1 | 1, 4 | | | |
| | Component | 1 | 3, 5, 6 | | | |
| | Component | 1 | | | | |

Major Instructions: (1) Enter the operating test number and Form ES-D1 event numbers for each evolution type. (2) Reactivity manipulations may be conducted under normal or controlled abnormal conditions (refer

7

to Sections D.4.d) but must be significant per Section C.2.a of Appendix D.

1

**This form will be submitted again after the crew composition has been finalized and scenario outline approval.

Author:


Chief Examiner:

INITIAL SUBMITTAL

-CRYSTAL RIVER 50-302/2000-301 SEPTEMBER 25 - 29, 2000

INITIAL SUBMITTAL

OPERATING TEST SIMULATOR SCENARIOS

| Appendix D | Se | cenario Outline | Form ES-D- |
|--|---|--|--|
| Facility: Crya
Examiners: | stal Unit #3 PWR: B &
George Hopper
Larry Mellen
Glen Sawyer | W Scenario No.: 1-1,2,3
Operators: | Rev. 1 Op-Test No.: 1 |
| Objectives: | | | |
| | and SRO will be evaluat tation channel failure and | • • | nose a power range nuclear |
| | and the SRO will be eval
Technical Specification | | lace a RPS channel in bypass |
| | will be evaluated on his
d take manual actions to | | s of automatic pressurizer level |
| | | ted on their ability to diagonate the pump from service | nose a high reactor coolant pum
e. |
| * | 0 | | nose a failure of feedwater to re
rvice and compensate for this |
| • The opera dropped re | • | ed on their ability to run t | he plant back following a |
| • The opera
Reactor B | - | ed on their ability to diagr | nose a small break LOCA in the |
| • The BOP | will be evaluated on his a | ability to respond to an en | gineered safeguards actuation. |
| • The opera subcooling | | ed on their ability to respo | ond to a reactor trip and a loss o |
| | | ability to respond to an en
ontrol emergency feedwat | nergency feedwater instrument er flow. |
| Initial Conditi | ons: The plant is at 100% | % full power with full ICS | auto control. |
| breaker 1661'
DHP-1A, RW
motor/pump a
wash system i | s compressor. They will
P-2A and EFP-1 are OO
lignment. ARP-1B is O | notify the control room w
S for pump packing/seal a
OS for routine motor mair
I damage from an intake c | tine maintenance on output
when maintenance is complete.
adjustment. WTP-6B is OOS fontenance. The intake screen
crane accident. OTSG "B" has |

| Event
No. | Malf.
No. | Event
Type* | Event
Description |
|--------------|--------------|--------------------------------------|---|
| 1 | 1 | I(OAC)
I(SRO)
N(BOP)
N(SRO) | NI-7 power range detector fails high (fails to 102%) (MALH
The crew will diagnose the failure and stabilize the plant the
transfer to a good channel. The crew then places "C" RPS
channel in bypass. (OP-501, OP-507) |
| 2 | 2 | I(OAC) | MUV-31 (Pressurizer level control valve) controller set poin
fails high (MALF). The OAC will diagnose the failure and
control pressurizer level in manual. |
| 3 | 3 | C(All)
N(All)
R(OAC) | An annunciator indicates a high thrust bearing temperature f
RCP-1C (MALF). A power reduction is required followed
by removal of the RCP from service. (AR-501, OP-302) |
| 4 | 4 | I(OAC)
I(SRO) | When the RCP is shutdown feedwater does not re-ratio (MALF). The crew will manually re-ratio feedwater. |
| 5 | 5 | C(All)
R(OAC) | Control rod 7-4 drops into the core (MALF). The crew will manually run-back the plant. (AP-545) |
| 6 | 6 | C(All) | A small RCS leak develops on letdown line in the reactor
building (MALF)**. The crew will perform the actions of
AP-520. (AP-520) |
| 7 | 7 | M(All) | Leak size increases to 1000 gpm causing a reactor trip and E actuation. Leak size causes loss of subcooling margin. The RCPs are tripped (CT). (EOP-02, EOP-03) |
| 8 | 8 | C(BOP) | When the ES actuation occurs, RWP-2B does not start. The BOP will start the pump (MALF) (CT). (EOP-03) |
| 9 | 9 | I(OAC) | Following EFIC actuation, SP-29-LT fails low (SP-29-LI,
EFIC low range instrument) (MALF). This will cause EFV
57 to ramp full open. The OAC will manually close EFV-57
(CT). (Rule 3) |

* (N)ormal, (R)eactivity, (I)nstrument, (C)omponent, (M)ajor ** PRA significant accident

Narrative Summary:

NI-7 power range detector gradually fails to 102% preventing a SASS initiated swap of the NI signal feeding the ICS. The OAC will stop the transient caused by the NI failure. Once the transient is stopped the crew will select an accurate NI signal (OP-501) to the ICS and bypass the "C" RPS channel (OP-507). (Technical specification opportunity for the SRO)

Once all ICS stations are back in automatic the pressurizer level control valve, MUV-31, controller set point fails high. The OAC using diagnostic skills (pressurizer level and MU flow increasing and MUT level decreasing) will discover the failure and select MUV-31's controller to manual.

An annunciator indicates a high thrust bearing temperature, I-02-04 (AR-501). Using the thrust bearing temperature monitor the BOP will determine that RCP-1C has the high temperature. The operators will reduce power and remove RCP-1C service (OP-302).

When the RCP is shutdown, feedwater does not re-ratio and the OAC will have to re-ratio feedwater manually.

When feedwater flow has been properly aligned control rod 7-4 drops into the core. The OAC will have to reduce power to 45% (based on 3 RCPs operating) with ICS in manual (AP-545).

Once the runback is complete a small RCS leak develops on the letdown line in the reactor building. The crew will enter AP-520, and perform actions for a reactor coolant leak (AP-520).

The leak will become bigger (≈ 1000 gpm) causing a reactor trip, a loss of subcooling margin and a reactor building isolation and cooling actuation. The BOP will control the ES actuation while the OAC meets the immediate actions of EOP-02 and EOP-03 (BOP may take the EOP-03 immediate actions) (EOP-2, EOP-3, Rule 1, Rule 2).

When subcooling margin is lost (EOP-3) the reactor coolant pumps must be stopped to ensure compliance with SBLOCA analysis ensuring continued core coverage and cooling.

Following the ES actuation, the BOP will discover that RWP-2B did not start. The BOP will start RWP-2B (EOP-03). If RWP-2B is not started there is no cooling water for required ECCS equipment.

Following EFIC actuation, SP-29-LT (the level transmitter that feeds SP-29-LI, EFW low range level) fails low, EFV-57, emergency feedwater control valve, ramps open and has to be selected to manual and closed (Rule 3). If EFV-57 is not promptly closed and excessive heat transfer symptom will develop.

When EOP-08 actions are in progress with OTSG heat transfer, and stable RCS inventory control then the scenario can be terminated.

Procedures used during this scenario: (Annunciator Response, ARs, not listed)

| AP-510 | EOP-02 | OP-302 |
|--------|--------|---------------|
| AP-520 | EOP-03 | OP-501 |
| AP-545 | EOP-08 | OP-507 |
| | EOP-13 | |
| | EOP-14 | |
| | | |

| Target Quantitative Attributes – Scenario 1 | Actual Attributes |
|--|-------------------|
| 1. Total Malfunctions (5-8) | 8 |
| 2. Malfunctions after EOP entry (1-2) | 2 |
| 3. Abnormal Events (2-4) | 2 |
| 4. Major Transients (1-2) | 11 |
| 5. EOPs entered requiring substantive actions (1-2) | 2 |
| 6. EOP contingencies requiring substantive actions (0-2) | 0 |
| 7. Critical Task (2-3) | 3 |

Examination Setup/Execution Scenario 1

Scenario Setup

- 1. [] Initialize the simulator to IC# 21 (GF or 11 on FAT) and UNFREEZE the simulator
- 2. [] In the "NRCEXAM" directory of LESSON PLAN, execute and start lesson plan #1
- 3. [] Trigger Lesson Plan Steps #1 and #2
- 4. [] Trigger Lesson Plan Steps #10 and #11
- 5. Place the following Red Tags on the main control panel:
 - a. [] DHP-1A, Red Tag
 - b. [] RWP-2A, Red Tag, Pull-to-Lock
 - c. [] EFP-1, Red Tag, Pull-to-Lock
 - d. [] WTP-6B, Red Tag, Pull-to-Lock
 - e. [] ARP-1B, Red Tag, Pull-to-Lock
 - f. [] RM-G27, Red Tag
- 6. Perform the following setup actions:
 - a. [] Ensure PPC group 59 on the right overhead CRT and group 108 on left overhead CRT
 - b. [] Ensure SPDS left screen selected to normal and right screen to imbalance
 - c. [] Ensure Batch Controller reset
 - d. [] Ensure steam line monitor reset
 - e. [] Ensure PPC/ANN alarms acknowledged
 - f. [] Ensure status board indicates $P \rightarrow S \ 3 \ GPD \ (B)$
 - g. [] Set MUT level to 80 inches and clear high pressure alarm by venting.
- 7. Ensure clean copies of the following "consumable" procedures are available.
 - a. [] AP-510
 - b. [] AP-520
 - c. [] AP-545
 - d. [] EOP-02
 - e. []EOP-03
 - f. []EOP-08
 - g. [] OP-302
 - h. [] OP-501
 - i. [] OP-507
- 7. Advance all MCB recorders and delete alarm summary on computer station.
- 8. FREEZE the simulator and notify the lead examiner that simulator is ready to begin.

Scenario Execute

- 1. When notified by the lead examiner UNFREEZE the simulator
- 2. When notified by the lead examiner TRIGGER LESSON PLAN step #3 (NI-7 failure)
- 3. When the crew begins to return the ICS to automatic TRIGGER LESSON PLAN step #5 (RCP-1C thrust bearing).
- 4. Once ICS is back in full automatic TRIGGER LESSON PLAN step #4 (MUV-31 failure).
- 5. Prior to shutting down RCP-1C TRIGGER LESSON PLAN step #6 (Feedwater does not re-ratio)
- 6. When notified by the lead examiner TRIGGER LESSON PLAN step #7 (Rod 7-4 drops)
- 7. When notified by the lead examiner TRIGGER LESSON PLAN step #8 (Small leak)
- 8. When notified by the lead examiner TRIGGER LESSON PLAN step #9 (Large leak)
- 9. Prior to RCP shutdown for loss of subcooling margin TRIGGER LESSON PLAN step #12 (SP-29-LI failure)

Booth Operator actions (Not included, standard call Chemistry, call HPs, etc.)

- 1. First call to engineering about RCP-1C, have the Operators check temperatures and trend.
- 2. Second call to engineering about RCP-1C, recommend removing RCP-1C from service.
- 3. Call to SPO to complete Enclosure 1 of EOP-14, enter "enc1", if required. Delay input of "enc1" for at least 3 minutes post trip to prevent continued MFWP operation on auxiliary steam.
- 4. Call to PPO to complete Enclosure 2 of EOP-14, enter "enc2", if required.
- 5. If call about presence of people in the RB, respond that there are no people in the RB.

TURNOVER SHEET

Initial Conditions: The plant is at 100% full power with the ICS in automatic control.

Turnover:

A line crew is in the CR-3 switchyard performing routine maintenance on output breaker 1661's compressor. They will notify the control room when maintenance is complete.

DHP-1A, RWP-2A and EFP-1 are OOS for pump packing/seal adjustment.

WTP-6B is OOS for motor/pump alignment.

ARP-1B is OOS for routine motor maintenance.

The intake screen wash system is OOS due to mechanical damage from an intake crane accident.

OTSG "B" has a 3 GPD primary to secondary leak.

RM-G27 is OOS for repair.

ITS Action Items:

3.5.3, Condition "A" for DHP-1A.3.7.9, Condition "A" for RWP-1A.

Activities to be Performed this Shift:

None planned.

Appendix D

Operator Actions

Op-Test No.: 1 Scenario No.: 1 Event No.: 1

Event Description: NI-7 power range detector fails high (fails to 102%) (MALF). The crew will diagnose the failure, stabilize the plant and transfer to a good channel. The crew then places "C" RPS channel in bypass. (OP-501, OP-507)

| Time | Position | Applicant's Actions or Behavior |
|------|----------|---|
| | OAC | Diagnoses NI-7 failure SASS mismatch alarm (K-3-2 alarms) Reactor power, Feedwater flow and Turbine load all decreasing NI-7 indication |
| | SRO | Directs OAC to stabilize plant by taking required ICS stations to manual/hand |
| | OAC | Stabilizes the plant (no order required) Take Reactor diamond to manual (in Track, K-6-2 alarms, with first ICS station in hand/manual) Take Reactor Bailey to hand Take both Feedwater Loops to hand Adjusts stations for stable plant operation |
| | SRO | Declares NI-7 inoperable and enters ITS 3.3.1, condition "A".
Directs BOP to Bypass RPS channel "C" using OP-507, Operation
of the ES, RPS, and ATWAS Systems (may leave in tripped
condition) |
| | ВОР | Executes actions to place RPS channel "C" in bypass using OP-507 section 4.16 Verify no EFIC channel is in bypass Obtain bypass key Reposition channel bypass switch (J-7-3 alarms) |
| | SRO | Directs BOP to transfer NI feed to ICS per OP-501 |
| | ВОР | Executes actions to select alternate NI signal to ICS using OP-501 section 4.7 Determine proper operating channel Selects NI signal from NI-5/NI-6 |

Op-Test No.: 1 Scenario No.: 1 Event No.: 1

Event Description: NI-7 power range detector fails high (fails to 102%) (MALF). The crew will diagnose the failure, stabilize the plant and transfer to a good channel. The crew then places "C" RPS channel in bypass. (OP-501, OP-507)

| Time | Position | Applicant's Actions or Behavior |
|------|----------|--|
| | SRO | Directs OAC to return ICS stations to automatic and return to full power |
| | OAC | Returns ICS to automatic (no order required) Take both Feedwater Loops to automatic Take Reactor Bailey to automatic Take Reactor diamond to automatic (K-6-2 clears) Starts power increase Bumps ULD toggle up |

Op-Test No.: 1 Scenario No.: 1 Event No.: 2

Event Description: MUV-31 (Pressurizer level control valve) controller set point fails high (MALF). The OAC will diagnose the failure and control pressurizer level in manual.

| Time | Position | Applicant's Actions or Behavior |
|------|----------|---|
| | OAC | Diagnoses MUV-31 failure Pressurizer level increasing MUV-31 demand increasing MU flow increasing Selects MUV-31 to hand Verifies MUV-31 responding in hand Establishes appropriate MU flow Notifies SRO of failure and response |

3

Event Description: An annunciator indicates a high thrust bearing temperature for RCP-1C (MALF). A power reduction is required followed by removal of the RCP from service. (AR-501, OP-302)

| Time | Position | Applicant's Actions or Behavior |
|------|----------|---|
| | SRO | Following thrust bearing alarm (I-2-4 alarm) uses AR-501 to direct
BOP to determine affected RCP |
| ~ | ВОР | Determines RCP-1C upper thrust bearing face is the cause of alarm
- Indication at thrust bearing temperature monitor, RC-133-TI |
| | SRO | Per AR-501, directs OAC to start lift oil pumps for RCP-1C and directs BOP to trend RCP-1C parameters. |
| | OAC | Starts lift oil pumps
- Starts RCP-2C
- Starts RCP-3C |
| | ВОР | Trends RCP-1C parameters Displays group 80 using the plant computer Monitors RC-19C-PR1, RCP-1C seal recorder Monitors RC-133-TI |

Event Description: An annunciator indicates a high thrust bearing temperature for RCP-1C (MALF). A power reduction is required followed by removal of the RCP from service. (AR-501, OP-302)

| Time | Position | Applicant's Actions or Behavior |
|------|----------|---|
| | SRO | Enters OP-302, Reactor Coolant Pump, section 4.10, Abnormal RCP
Thrust Bearing Temperatures Contacts engineering Directs OAC to reduce power to ≤ 72% (using OP-204 power
operations or AP-510, Rapid Power Reduction, depending on
urgency) Adjust ICS load rate to desired setpoint Adjust Unit Load Master Demand to 10 (AP-510) or desired
MW electric power (OP-204) Maintain imbalance (AP-510) At < 75% set IC-2-MS (ICS high load limit) to 64.5%
(OP-204) Directs BOP to reduce power to ≤ 72% (using OP-204 power
operations or AP-510, Rapid Power Reduction, depending on
urgency) Notify plant personnel Notify chemistry of 15% power changes Maintain MUT level ≥ 55 inches (AP-510) Notify SPO to ensure proper operation of ASV-27 |
| | OAC | Reduces power to ≤ 72% (using OP-204 power operations or -
AP-510, Rapid Power Reduction, depending on urgency) Adjust ICS load rate to desired setpoint Adjust Unit Load Master Demand to 10 (AP-510) or desired
MW electric power (OP-204) Maintain imbalance (AP-510) At < 75% set IC-2-MS to 64.5% (OP-204) |
| | BOP | Reduces power to < 72% (using OP-204 power operations or AP-510, Rapid Power Reduction, depending on urgency) Notify plant personnel Notify chemistry of 15% power changes Maintain MUT level > 55 inches (AP-510) Notify SPO to ensure proper operation of ASV-27 |

Event Description: An annunciator indicates a high thrust bearing temperature for RCP-1C (MALF). A power reduction is required followed by removal of the RCP from service. (AR-501, OP-302)

| Time | Position | Applicant's Actions or Behavior |
|------|----------|--|
| | SRO | When power is \leq 72%, directs OAC to stop RCP-1C |
| | OAC | Stops RCP-1C |

 \int

Event Description: When RCP-1C is shutdown, feedwater does not re-ratio (MALF). The crew will manually re-ratio feedwater.

| Time | Position | Applicant's Actions or Behavior |
|------|----------|---|
| | OAC | Diagnoses feedwater does not re-ratio "A" and "B" feedwater flows approximately equal ΔTc shows "A" Tc hotter |
| | SRO | Directs OAC to re-ratio feedwater for 3 RCP operation |
| | OAC | Re-ratios feedwater Take both Feedwater Loops to hand Reduces "B" Feedwater Loop to approximately one-third of the current total FW flow requirement. Increases "A" Feedwater Loop to approximately two-thirds of the current total FW flow requirement;. Minimizes ΔTc |

7

Event Description: Control rod 7-4 drops into the core (MALF). The crew will manually runback the plant. (AP-545)

| Time | Position | Applicant's Actions or Behavior |
|------|----------|--|
| | OAC | Diagnoses dropped rod (7-4) Asymmetric rod runback alarm (K-4-2 alarms) PI indication CRD panel green rod in-limit light on CRD panel asymmetric rod amber light on |
| | SRO | Enters AP-545 and directs the OAC to Ensure plant runback is in progress Ensure feedwater is re-ratioed Ensure maximum power ≤ 45% Ensure narrow range Tc selected to TT3 Directs the BOP to Notify plant personnel Ensure RCS pressure is stable |
| | OAC | Performs AP-545 Ensure plant back is in progress (runback in manual) Ensure feedwater is properly ratioed (maintaining proper ratio with MFW Loop Demands in hand) Ensure maximum power ≤ 45% Ensure narrow range Tc selected to TT3 |
| | BOP | Performs AP-545
- Notifies plant personnel
- Ensure RCS pressure is stable |

Event Description: A small RCS leak develops on letdown line in the reactor building (MALF). The crew will perform the actions of AP-520. (AP-520)

| Time | Position | Applicant's Actions or Behavior |
|------|------------|--|
| | OAC
BOP | Diagnose RCS leak MUT level Pressurizer level Reactor Building Sump level Radiation Monitor trends |
| | SRO | Enters AP-520 and directs the BOP to Notify personnel Determine if leak is OTSG leakage Maintain pressurizer level Maintain MUT level Determine leak rate |
| | ВОР | Performs AP-520 Notifies personnel Determine if leak is OTSG leakage RM-A12 RM-G26 through RM-G28 Maintain pressurizer level Controls MUV-31 May close MUV-49 and MUV-567 Maintain MUT level Determine leak rate Makeup flow Seal injection flow Letdown flow Pressurizer level |

Event Description: Leak size increases to 1000 gpm causing a reactor trip and ES actuation. Leak size causes loss of subcooling margin. The RCPs are tripped (**CT**). (EOP-02, EOP-03)

| Time | Position | Applicant's Actions or Behavior |
|------|------------|---|
| | OAC
BOP | Diagnose RCS leak MUT level Pressurizer level Reactor Building Sump level Radiation Monitor trends Reactor trip |
| | OAC | May perform a manual reactor trip due to RCS leakage in excess of normal make-up capability. (AI-505) Perform immediate action of EOP-2, Vital System Status Verification Depresses reactor trip push button Verifies CRD groups 1 through 7 are fully inserted. Verifies NIs indicate reactor is shutdown Depresses turbine trip push button Verifies TVs and GVs are closed |
| | SRO | May direct a manual reactor trip due to RCS leakage in excess of normal make-up capability (AI-505) Enters EOP-2 directs OAC to Repeat immediate actions Scan for symptoms Verify all control rods are fully inserted (may not perform if transitioned to EOP-3) Verify all MFW is operating (may not perform if transitioned to EOP-3) Directs BOP to Scan for symptoms Notify SPO to complete enclosure 1 of EOP-14 |

Event Description: Leak size increases to 1000 gpm causing a reactor trip and ES actuation. Leak size causes loss of subcooling margin. The RCPs are tripped (**CT**). (EOP-02, EOP-03)

| Time | Position | Applicant's Actions or Behavior |
|------|------------|--|
| | OAC | Performs EOP-2 Repeats immediate actions Scans for symptoms Verifies all control rods are fully inserted (may not perform if transitioned to EOP-3) (all in-limit lights are on) Verify all MFW is operating (may not perform if transitioned to EOP-3) Main Feedwater Pumps are operating Main Feedwater flow present |
| | BOP | Performs EOP-2
- Scans for symptoms
- Notifies SPO to complete enclosure 1 of EOP-14 |
| | OAC
BOP | Diagnose loss of subcooling margin SPDS screen flashing alarm SPDS audible alarm |
| | BOP | Performs immediate actions of EOP-3, Inadequate Subcooling
Margin and Rule 1, EOP-13 Trips running RCPs (may be performed by OAC) Manually actuates ES Depresses HPI MAN ACT push buttons on "A" and "B" trains Depresses RB ISO MAN ACT push buttons on "A" and "B" trains Depresses ISCM push buttons for EFIC channels "A" and "B" Ensures Tincore is selected on SPDS. |

Event Description: Leak size increases to 1000 gpm causing a reactor trip and ES actuation. Leak size causes loss of subcooling margin. The RCPs are tripped (**CT**). (EOP-02, EOP-03)

| Time | Position | Applicant's Actions or Behavior |
|------|----------|---|
| | SRO | SRO enters EOP-3 and directs OAC to Verify RCPs tripped Verify EFW is operating and flow is controlled Directs BOP to Notify personnel Notify PPO to perform enclosure 2 of EOP-14 Verify proper HPI discharge flow path exists Ensure at least 1 HPI train is properly aligned Ensure at least 1 letdown isolation valve is closed Ensure DHV-3 is closed Ensure ES equipment properly aligned |
| | OAC | Performs EOP-3 Verifies RCPs tripped Verifies EFW is operating and flow is controlled Ensures level in OTSGs is at or trending toward ISCM level (Rule 3) SEE EVENT #9 |

Event Description: Leak size increases to 1000 gpm causing a reactor trip and ES actuation. Leak size causes loss of subcooling margin. The RCPs are tripped (**CT**). (EOP-02, EOP-03)

| Time | Position | Applicant's Actions or Behavior |
|------|----------|---|
| | ВОР | Performs EOP-3 Notify personnel Notify PPO to perform enclosure 2 of EOP-14 Verify proper HPI discharge flow path exists Verifies MUV-23 and MUV-24 are open OR MUV-25 and MUV-26 are open Verifies MUV-586 and MUV-587 are open Ensure at least 1 HPI train is properly aligned Ensures MUV-73 and MUV-58 are open Ensures MUV-73 and MUV-58 are open Ensures MUV-53 and MUV-58 are open Ensures MUV-53 and MUV-57 are closed Ensures MUV-53 and MUV-257 are closed Ensures MUV-543, MUV-544, MUV-545, MUV-546 are closed Ensures MUV-596 is closed OR MUV-18 and MUV-27 are closed Ensures MUV-567 is closed OR MUV-49 is closed Ensures DHV-3 is closed Ensures ES equipment properly aligned Ensures applicable ES actuations SEE EVENT #8 Bypasses ES actuation both auto and manual Controls ES systems as required |

Event Description: When the ES actuation occurs, RWP-2B does not start. The BOP will start RWP-2B (MALF) (CT). (EOP-03)

| Time | Position | Applicant's Actions or Behavior |
|------|----------|--|
| | ВОР | Ensures applicable ES actuations Verifies ES status lights green for applicable equipment Discovers RWP-2B not operating Manually starts RWP-2B |

Event Description: After RCPs are tripped emergency feedwater actuates. SP-29-LT fails low (SP-29-LI, EFIC low range instrument) (MALF). This will cause EFV-57 to ramp open give disproportionately high EFW flow to the "B" OTSG. The OAC will manually close EFV-57 (CT). (Rule 3)

| <u> </u> | · · · · · · · · · · · · · · · · · · · | |
|----------|---------------------------------------|--|
| Time | Position | Applicant's Actions or Behavior |
| | OAC | Verifies EFW is operating and flow is controlled Ensures level in OTSGs is at or trending toward ISCM level
(Rule 3) Discovers SP-29-LI failure SP-29-LI failed EFV-57 open (amber light) Excessive EFW flow to the "B" OTSG Selects EFV-57 to hand and closes |

| | Appendix D | Sc | enario Outline | Form ES-D-1 |
|---|---|--|---|---|
| | Facility: Crys | stal Unit #3 PWR: B&` | W Scenario No.: 2-1,2,3 Rev | . 1 Op-Test No.: 1 |
|) | Examiners: | George Hopper
Larry Mellen
Glen Sawyer | Operators: | |
| | Objectives: | | | |
| | • The BOP | will be evaluated on his a | bility to take actions to recove | er CFT pressure. |
| | • The SRO | will be evaluated on his a | bility to apply ITS to the CFT | low pressure condition. |
| | | and SRO will be evaluated active actions. | ed on their ability to diagnose | a Th instrument failure and |
| | | | ed on their ability to diagnose
to the capacity of one CDP. | a failed CDP magnetic |
| | | and SRO will be evaluat
wer using manual ICS co | ed on their ability to diagnose ntrol. | a failure of the ULD and |
| | | ating crew will be evaluat
the actions to remove the tu | ed on their ability to diagnose
arbine from service. | loss of condenser vacuum |
| | • The crew | will be evaluated on their | r ability to perform AP-660, T | urbine Trip. |
| | | and SRO will be evaluat on, immediate actions. | e on their ability to perform E | OP-02, Vital System Status |
| | • The opera take actio | ating crew will be evaluat
ns to keep pressurizer lev | ed on their ability to diagnose
el as required. | an OTSG tube leak and to |
| | | will be evaluated on his appropriate actions to corr | ability to diagnose the loss of rect this condition. | all feedwater to the OTSGs |
| | Initial Condit | ions: The plant is at 100% | 6 full power with full ICS auto | o control. |
| | breaker 1661
complete. DF
is OOS for m
screen wash s
"B" has a 3 C
pressure from | 's air compressor. They we
IP-1A, RWP-2A and EFF
notor/pump alignment. All
system is OOS due to mee
SPD primary to secondary | witchyard performing routine
will notify the control room wl
P-3 are OOS for pump packing
RP-1B is OOS for routine mot
chanical damage from an intak
v leak. RM-G27 is OOS for re
The alignment has been corre
ange. | hen maintenance is
(/seal adjustment. WTP-6B
or maintenance. The intake
te crane accident. OTSG
pair. "B" CFT has reduced |
| | | | | |

| Event
No. | Malf.
No. | Event
Type* | Event
Description |
|--------------|--------------|----------------------------|--|
| 1 | 1 | N(BOP)
N(SRO) | A valid "B" core flood tank low pressure condition exists.
The SRO enters ITS 3.5.1 condition B and directs the BOP to
restore pressure. The BOP restores the core flood tank
pressure. (AR-305, OP-401) The SRO exits ITS 3.5.1 when
CFT pressure is recovered. |
| 2 | 2 | I(OAC)
I(SRO) | Selected "A" Thot, RC-4A-TE1, fails high (MALF). The OAC diagnoses the failure and stabilizes the plant then transfers to a good channel. (AR-503, OP-501) |
| 3 | 3 | C(BOP)
C(SRO)
R(OAC) | CDP-1A magnetic coupling fails (MALF). The crew reduce
power to a level within the capability of one CDP
(approximately 60%). (AR-602, OP-603, AP-510) |
| 4 | 4 | C(All) | The turbine building operator reports a hissing sound near the main feedwater pump exhaust lines. The crew notices a loss of condenser vacuum (MALF). (OP-607) |
| 5 | 5 | I(OAC)
I(SRO)
R(OAC) | When the crew reduces power to $< 45\%$ to trip the turbine (degrading vacuum). The ULD fails to respond to operator input (ULD failure) (MALF). The OAC reduces power usin manual ICS control. (AP-510) |
| 6 | 6 | C(OAC)
C(SRO | Once the crew is < 45% the OAC discovers the turbine trip
pushbutton does not function (MALF) and performs the
remedial actions for AP-660 and enters EOP-02 (CT). (AP-
660, EOP-02) |
| 7 | 7 | C(OAC)
C(SRO) | Emergency feedwater EFP-2 will trip after starting (MALF)
OAC will start EFP-1 (CT). (EOP-02, EOP-14 Enclosure 7) |
| 8 | 8 | M(All) | Following the turbine shutdown the "A" OTSG develops a 350 gpm tube leak (MALF) while the condenser continues to lose vacuum. The crew will diagnose the existence of an OTSG tube leak without the aid of normal radiation monitoring(CT). (EOP-06)** |

* (N)ormal, (R)eactivity, (I)nstrument, (C)omponent, (M)ajor ** PRA significant accident

 \sum

Narrative Summary:

Core flood tank low pressure annunciator, E-08-05, is in alarm (AR-305). CFT-1B pressure is below the ITS minimum value. The SRO will enter ITS 3.5.1 condition B and direct the BOP to recover CFT pressure. The BOP corrects the valid low pressure in the "B" core flood tank (OP-401). The SRO exits ITS 3.5.1 when CFT pressure is recovered.

As the BOP is attending to the low CFT pressure the OAC and SRO diagnose a selected Th high failure. The OAC stabilizes the plant and transfers to a good channel (OP-501).

Annunciator alarm N-2-2 (AR-602) alerts the crew that the "A" condensate pump magnetic coupling is failing. Control room indication verifies the CDP problem and power is rapidly reduced to a level that is within the capability of one CDP (60%). The BOP removes CDP-1A from service (OP-603, AP-510).

Condenser vacuum begins to degrade due to a leak in the "A" main feedwater pump exhaust trunk (OP-607). Power is reduced to < 45% to trip the Turbine but not the Reactor. While the crew is reducing power to trip the Turbine, the ULD fails to respond to operator input. The OAC will finish the power reduction using manual ICS control (AP-510).

When the OAC begins the immediate actions of AP-660, Turbine Trip, he discovers that the Turbine trip pushbutton does not function. The OAC performs the remedial actions, which include closing the MSIVs and tripping the Reactor. (AP-660, EOP-02) Since the normal heat sink for the reactor is no longer available, the reactor is tripped to protect the fuel.

After the Reactor trip the "A" OTSG develops a 350 gpm tube leak. Diagnosing the leaking steam generator post trip with out the "A" side steam line radiation monitor is important to the mitigation strategy for the casualty. This knowledge will help limit the spread of contamination and possible radioactive releases to the environment as two of the three fission product barriers have failed.

The condenser will eventually lose all vacuum and this will be verified by a call from the turbine building operator. (EOP-06)

Soon after emergency feedwater is actuated EFP-2 will trip causing a loss of all main and emergency feedwater. The OAC will start EFP-1. (EOP-14 Enclosure 7) If EFP-1 is not started the symptom of inadequate heat transfer will develop.

The exercise is terminated when both reactor and turbine are tripped, subcooling margin is minimized and a plant cooldown is started (EOP-06).

Procedures used during this scenario: (Annunciator Response, AR, not listed)

| AP-510 | EOP-02 | OP-401 |
|--------|--------|--------|
| AP-660 | EOP-06 | OP-501 |
| | EOP-13 | OP-603 |
| | EOP-14 | OP-607 |
| | | |

٢

シノ

| Target Quantitative Attributes – Scenario 2 | Actual Attributes |
|--|-------------------|
| 1. Total Malfunctions (5-8) | 7 |
| 2. Malfunctions after EOP entry (1-2) | 1 |
| 3. Abnormal Events (2-4) | 2 |
| 4. Major Transients (1-2) | 1 |
| 5. EOPs entered requiring substantive actions (1-2) | 1 |
| 6. EOP contingencies requiring substantive actions (0-2) | 0 |
| 7. Critical Task (2-3) | 3 |

Examination Setup/Execution Scenario 2

Scenario Setup

- 1. [] Initialize the simulator to IC# 21 (GF or 11 on FAT) and UNFREEZE the simulator
- 2. [] In the "NRCEXAM " directory of LESSON PLAN, start lesson plan #2
- 3. [] Trigger Lesson Plan Steps #1 and #2
- 4. Place the following Red Tags on the main control panel:
 - a. [] DHP-1A, Red Tag
 - b. [] RWP-2A, Red Tag, Pull-to-Lock
 - c. [] EFP-3, Red Tag, Pull-to-Lock
 - d. [] WTP-6B, Red Tag, Pull-to-Lock
 - e. [] ARP-1B, Red Tag, Pull-to-Lock
 - f. [] RM-G27, Red Tag
- 5. Perform the following setup actions:
 - a. [] Ensure PPC group 59 on the right overhead CRT and group 108 on left overhead CRT
 - b. [] Ensure SPDS left screen selected to normal and right screen to imbalance
 - c. [] Ensure Batch Controller reset
 - d. [] Ensure steam line monitor reset
 - e. [] Ensure PPC/ANN alarms acknowledged
 - f. [] Ensure status board indicates $P \rightarrow S 3 \text{ GPD} (B)$
 - g. [] Reduce CFT-1B pressure to 570 575 psig (CFV-15 and CFV-29).
 - h. [] Set MUT level to 80 inches and clear high pressure alarm by venting.
- 6. Ensure clean copies of the following "consumable" procedures are available.
 - a. []AP-510
 - b. []AP-660
 - c. [] EOP-02
 - d. []EOP-06
 - e. []EOP-14
 - f. [] OP-401
 - g. [] OP-501
 - h. [] OP-603
 - i. [] OP-607
- 7. Advance all MCB recorders and delete alarm summary on computer station.
- 8. FREEZE the simulator and notify the lead examiner that simulator is ready to begin.

Scenario Execute

- 1. When notified by the lead examiner UNFREEZE the simulator
- 2. When notified by the lead examiner TRIGGER LESSON PLAN step #5 (Thot failure)
- 3. When notified by the lead examiner TRIGGER LESSON PLAN step #6 (Condensate pump mag coupling)
- 4. When notified by the lead examiner TRIGGER LESSON PLAN step #7 (Vacuum leak). Pre-setup a pending file with bearing friction at 0.5 for each of the Main Feedwater Pumps as well as Main Feedwater Pump trip for each of the Main Feedwater Pumps. TRIGGER one of the pumps bearing friction at 48% and the other at 41%. The Main Feedwater Pump trips will only be used if required to speed scenario along.
- 5. When crew starts power decrease for vacuum leak TRIGGER LESSON PLAN step #11 (ULD fails)
- 6. When crew reaches < 45% and prior to tripping the turbine, TRIGGER LESSON PLAN step #8 (Turbine trip p/b does not work)
- 7. When the reactor is tripped TRIGGER LESSON PLAN step #9 (OTSG leak)
- 8. After the reactor is tripped and when step 3.3 in EOP-02 is reached TRIGGER LESSON PLAN step #10 (EFP-2 trip) and step #9 (OTSG leak; should be started right before EFP failure)

Booth Operator actions (Not included, standard call Chemistry, call HPs, etc.)

- 1. Play role of SPO and PPO for nitrogen addition.
- 2. SPO calls control room about CDP-1A noise.
- 3. SPO calls control room about noise at "A" MFWP exhaust.
- 4. When control room asks about local vacuum readings, respond what vacuum is and say it is decreasing (1 minute)
- 5. When reactor power is < 45%, increase the size of the vacuum leak to quickly establish condenser vacuum > 5.5" absolute.
- Call to SPO to complete Enclosure 1 of EOP-14, enter "enc1".
 (Do NOT perform this enclosure until the crew has determined that NO Main Feedwater flow exists).
- 7. When HP is called, respond that "A" MS lines read 15-20 mR. (5 minutes).
- 8. Call to PPO to complete Enclosure 2 of EOP-14, enter "enc2", if required.
- 9. If called as SPO to trip the main turbine locally, wait 2 minutes and report the trip lever will not move to the trip position.;

TURNOVER SHEET

Initial Conditions: The plant is at 100% full power with full ICS auto control.

Turnover:

A line crew is in the CR-3 switchyard performing routine maintenance on output breaker 1661's air compressor. They will notify the control room when maintenance is complete.

DHP-1A, RWP-2A and EFP-3 are OOS for pump packing/seal adjustment.

WTP-6B is OOS for motor/pump alignment.

ARP-1B is OOS for routine motor maintenance.

The intake screen wash system is OOS due to mechanical damage from an intake crane accident.

OTSG "B" has a 3 GPD primary to secondary leak.

RM-G27 is OOS for repair.

CFT-1B sample line valve misalignment has caused reduced pressure in the "B" CFT. The valve alignment has been corrected and the pressure decrease has stopped. No further actions have been taken.

ITS Action Items:

3.5.3, Condition "A" for DHP-1A.3.7.9, Condition "A" for RWP-1A.3.7.5, Condition "B" for EFP-3.

Activities to be Performed this Shift:

Evaluate "B" CFT low pressure and recover to normal operating parameters.

| Appendix | D |
|----------------|---|
| 1 Ipp with all | ~ |

Operator Actions

Op-Test No.: 1 Scenario No.: 2 Event No.: 1

Event Description: A valid "B" core flood tank low pressure condition exists. The SRO enters ITS 3.5.1 and directs the BOP to restore pressure. The BOP restores the core flood tank pressure. (AR-305, OP-401)

| Time | Position | Applicant's Actions or Behavior |
|------|----------|---|
| | SRO | Enter ITS 3.5.1, condition B, for "B" CFT pressure.
Directs BOP to add nitrogen to CFT-1B using OP-401
Exits ITS 3.5.1 when CFT pressure has been restored. |
| | ВОР | Raises pressure of CFT-1B using OP-401 section 4.4 Directs SPO to align for nitrogen addition Cycles CFV-27 to raise CFT-1B pressure Directs SPO to secure nitrogen addition |

Event Description: Selected "A" Thot, RC-4A-TE1, fails high (MALF). The OAC diagnoses the failure and stabilizes the plant then transfers to a good channel. (AR-503, OP-501)

| Time | Position | Applicant's Actions or Behavior |
|------|----------|--|
| | OAC | Diagnoses RC-4A-TE1 failure SASS mismatch alarm (K-3-2 alarms) Reactor power decreasing Tave increasing RC-4A-TE1 indication |
| | SRO | Directs OAC to stabilize plant by taking required ICS stations to manual/hand |
| | OAC | Stabilizes the plant (no order required) Selects Reactor diamond to manual (in Track, K-6-2 alarms, with first ICS station in hand/manual) Selects Reactor Bailey to hand Selects both Feedwater Loops to hand Adjusts stations for stable plant operation |
| | SRO | Directs OAC to transfer RC Th "A" loop feed to ICS per OP-501 |
| | OAC | Executes actions to select alternate RC Th "A" loop signal to ICS using OP-501 section 4.7 Determine proper operating channel Selects RC Th "A" loop to TT4 |
| | SRO | Directs OAC to return ICS stations to automatic and return to full power |
| | OAC | Returns ICS to automatic (no order required) Selects both Feedwater Loops to automatic Selects Reactor Bailey to automatic Selects Reactor diamond to automatic (K-6-2 clears) Starts power increase Raises ULD demand |

Event Description: CDP-1A magnetic coupling fails (MALF). The crew reduces power to a level within the capability of one CDP (approximately 60%). (AR-602, OP-603, AP-510)

| Time | Position | Applicant's Actions or Behavior |
|------|------------|---|
| | OAC
BOP | Diagnoses CDP-1A magnetic coupling failure Magnetic coupling alarm (N-2-2) Condensate flow lowering. |
| | SRO | Enters AP-510, Rapid Power Reduction, and directs OAC to Adjust ICS load rate to desired setpoint Adjust Unit Load Master Demand to 10 (required power level approximately 60%) Maintain imbalance Directs BOP to reduce power to Notify plant personnel Notify chemistry of 15% power changes Maintain MUT level ≥ 55 inches Notify SPO to ensure proper operation of ASV-27 |
| | OAC | Performs AP-510 Adjusts ICS load rate to desired setpoint Adjusts Unit Load Master Demand to 10 (required power level approximately 60%) Maintains imbalance |
| | ВОР | Performs AP-510 Notify plant personnel Notify chemistry of 15% power changes Maintain MUT level ≥ 55 inches Notify SPO to ensure proper operation of ASV-27 |
| | SRO | At 60% power directs OAC to stop power reduction.
Directs BOP to shutdown CDP-1A |
| | OAC | Stops power reduction Selects Steam Generator master to hand (track) Selects Steam Generator master to auto (track clear) |
| | BOP | Stops CDP-1A |

3

Event Description: The turbine building operator reports a hissing sound near the main feedwater pump exhaust lines. The crew notices a loss of condenser vacuum (MALF). (OP-607)

| Time | Position | Applicant's Actions or Behavior |
|------|------------|--|
| | OAC
BOP | Diagnoses condenser vacuum lowering SPO reports hissing sound in turbine building Condenser vacuum indications |
| | SRO | Enter OP-607 section 4.5 Reviews condenser vacuum limits with operators Re-enters AP-510 for power reduction to < 45% (below turbine anticipatory trip) |

Event Description: As the crew reduces power to < 45% to trip the turbine (degrading vacuum), the ULD fails to respond to operator input (ULD failure) (MALF). The OAC reduces power using manual ICS control. (AP-510)

| Time | Position | Applicant's Actions or Behavior |
|------|----------|---|
| | SRO | Enters AP-510, Rapid Power Reduction, and directs OAC to Adjust ICS load rate to desired setpoint Adjust Unit Load Master Demand to 10 (required power level approximately < 45% - below turbine anticipatory trip setpoint) Maintain imbalance Directs BOP to reduce power to Notify plant personnel Notify chemistry of 15% power changes Maintain MUT level ≥ 55 inches Notify SPO to ensure proper operation of ASV-27 Maintain deaerator level Ensure FW block valves stay closed |
| | OAC | Performs AP-510 Adjusts ICS load rate to desired setpoint Adjusts Unit Load Master Demand to 10 (required power level approximately < 45% - below turbine anticipatory trip setpoint) Diagnoses ULD failure to respond; continues power reduction with Steam Generator master in hand Selects hand on Steam Generator master (track alarm) Lowers Steam Generator master demand |
| | BOP | Performs AP-510 Notifies plant personnel of AP-510 entry Notifies chemistry of power change Maintains MUT level ≥ 55 inches Notifies SPO to ensure proper operation of ASV-27 Maintains deaerator level Ensures FW block valves stay closed Selects FWV-29 and FWV-30 to closed Selects FWV-29 and FWV-30 toggle to manual |

Event Description: Once the crew is < 45% the OAC discovers the turbine trip pushbutton does not function (MALF), performs the remedial actions for AP-660 and enters EOP-02 (CT). (AP-660, EOP-02)

| Time | Position | Applicant's Actions or Behavior |
|------|----------|--|
| | SRO | At < 45% enters AP-660, Turbine Trip, and directs the OAC (BOP) to trip the turbine |
| | OAC | Performs AP-660 Depresses turbine trip push button Discovers turbine trip push button does not function. TVs and GVs do not close; performs remedial actions Closes MSV-411, MSV-412, MSV-413, MSV-414 Depresses reactor trip push button Performs immediate action of EOP-02, Vital System Status Verification Depresses reactor trip push button Verifies CRD groups 1 through 7 are fully inserted. Verifies NIs indicate reactor is shutdown Depresses turbine trip push button Verifies TVs and GVs are closed |
| | SRO | Enters EOP-2 directs OAC to Repeat immediate actions Scan for symptoms Verify all control rods are fully inserted Verify MFW flow exists Directs BOP to Scan for symptoms Notify SPO to complete enclosure 1 of EOP-14 |
| | OAC | Performs EOP-2 Repeats immediate actions Scans for symptoms Verifies all control rods are fully inserted (all in-limit lights are on) Discovers MFW is not operating (MSIV's closed) and EFW is not operating |

Event Description: Once the crew is < 45% the OAC discovers the turbine trip pushbutton does not function (MALF), performs the remedial actions for AP-660 and enters EOP-02 (CT). (AP-660, EOP-02)

| Time | Position | Applicant's Actions or Behavior |
|------|----------|---|
| | BOP | Performs EOP-2
- Scans for symptoms
- Notifies SPO to complete enclosure 1 of EOP-14 |
| | SRO | Directs OAC (BOP) to perform enclosure 7 of EOP-14 when OAC
reports MFW and EFW are not operating.
- SEE EVENT #7 |
| | SRO | Continues in EOP-2 (until OTSG tube leak is diagnosed) directs OAC to Verify MFW flow is not excessive Ensure OTSG trending toward low level limits Adjust MUV-31 to 100 inches Verify pressurizer level is ≥ 50 inches Directs BOP to maintain pressurizer level Close MUV-49 Open MUV-24 Ensure MUV-73 and MUV-58 open If pressurizer does not recover start second MUP, required cooling pumps, and open additional HPI valves |
| | OAC | Performs EOP-2 Verifies MFW flow is not excessive Ensures OTSG trending toward low level limits (SEE EVENT #7) Adjusts MUV-31 to 100 inches Verifies pressurizer level is ≥ 50 inches |

7

Event Description: Once the crew is < 45% the OAC discovers the turbine trip pushbutton does not function (MALF), performs the remedial actions for AP-660 and enters EOP-02 (CT). (AP-660, EOP-02)

| Time | Position | Applicant's Actions or Behavior |
|------|----------|---|
| | ВОР | Performs EOP-2 Closes MUV-49 Open MUV-24 Ensure MUV-73 and MUV-58 open Continues to fill pressurizer and (may) Starts second MUP Starts required cooling pumps Opens additional HPI valves (MUV-23, MUV-25 and MUV-26) |

Event Description: Emergency feedwater pump, EFP-2, will trip during EOP-2 follow-up actions (MALF). OAC will start EFP-1 (CT). (EOP-02, EOP-14 Enclosure 7)

| Time | Position | Applicant's Actions or Behavior |
|------|--------------|---|
| | OAC
(BOP) | Performs enclosure 7 of EOP-14 Verifies EFP-3 is not running Verifies EFP-2 is not running Verifies EDG-1A is not supplying the ES "A" 4160V bus Verifies EFP-1 is available Ensures EFP-1 is running Depresses manual permissive push buttons on EFIC channels "A" and "B" Ensures EFV-58 and EFV-57 are closed Ensures EFV-14 and EFV-33 are open Ensures EFP-3 is in pull-to-lock Starts EFP-1 Establish EFW flow to OTSG Throttles open EFW-58 and EFV-57 (rule 3 EOP-13) |

Event Description: Following the reactor trip, "A" OTSG develops a 350 gpm tube leak (MALF) while the condenser continues to lose vacuum. The crew will diagnose a SGTR without the aid of normal radiation monitoring equipment (CT). (AP-520, EOP-06)

| Time | Position | Applicant's Actions or Behavior |
|------|------------|--|
| | OAC
BOP | Diagnose "A" OTSG tube leak Decreasing pressurizer level Decreasing makeup tank (MUT) level Rising "A" OTSG level Differential EFW flow to the OTSGs "A" side MSSVs opening OAC controlling cooldown while reducing EFW flow |
| | SRO | Transitions to EOP-6, Steam Generator Tube Rupture, and directs OAC to Close MSV-55 Verify MSSVs closed Verify at least 1 RCP is running. Select all pressurizer heaters to off Directs BOP to Continue actions to recover pressurizer level Notify plant personnel Maintain MUT level ≥ 55 inches Complete enclosure 10 of EOP-14 |
| | OAC | Performs EOP-6 Closes MSV-55 Verifies MSSVs not closed. May attempt to reseat. Open ADV-25 to lower pressure Verify at least 1 RCP is running. Select all pressurizer heaters to off |

Event Description: Following the reactor trip, "A" OTSG develops a 350 gpm tube leak (MALF) while the condenser continues to lose vacuum. The crew will diagnose a SGTR without the aid of normal radiation monitoring equipment (CT). (AP-520, EOP-06)

| Time | Position | Applicant's Actions or Behavior |
|------|----------|--|
| | ВОР | Performs EOP-6 Continues actions to recover pressurizer level SEE EVENT #6 Closes MUV-53 and MUV-257 Notify plant personnel Maintain MUT level ≥ 55 inches Complete enclosure 10 of EOP-14 Ensures MUV-31 setpoint is 100 inches Verifies one SWP running Ensures one SW Raw Water pump is running Ensures breakers 1661 and 1662 are open Separates CR-3 from the grid by opening the field breaker and selecting the voltage regulator to off |

11

Examination Setup/Execution Scenario 3

Scenario Setup

- 1. [] Initialize the simulator to IC# 21 (GF or 11 on FAT) and UNFREEZE the simulator
- 2. [] In the "NRCEXAM " directory of LESSON PLAN, start lesson plan #3
- 3. [] Trigger Lesson Plan Steps #1 and #2
- 4. Place the following Red Tags on the main control panel:
 - a. [] DHP-1A, Red Tag
 - b. [] RWP-2A, Red Tag, Pull-to-Lock
 - c. [] EFP-3, Red Tag, Pull-to-Lock
 - d. [] WTP-6B, Red Tag, Pull-to-Lock
 - e. [] ARP-1B, Red Tag, Pull-to-Lock
 - f. [] RM-G27, Red Tag
- 5. Perform the following setup actions:
 - a. [] Ensure PPC group 59 on the right overhead CRT and group 108 on left overhead CRT
 - b. [] Ensure SPDS left screen selected to normal and right screen to imbalance
 - c. [] Ensure Batch Controller reset
 - d. [] Ensure steam line monitor reset
 - e. [] Ensure PPC/ANN alarms acknowledged
 - f. [] Ensure status board indicates $P \rightarrow S 3 \text{ GPD}$ (B)
 - g. [] Provide signed-off copy (up to shutdown) of SP-354A (fast start)
 - h. [] Ensure event point 1206, alarm B-8-3 and local EDG alarms clear
 - i. [] Ensure EGDG-1A is running at approximately 2700 KW and ± 1.5 megavars
 - j. [] Place EGDG-1A EDGA EXC VOLT ADJ SELECT switch is selected to CONT RM
 - h. [] Set MUT level to 80 inches and clear high pressure alarm by venting.
- 6. Ensure clean copies of the following "consumable" procedures are available.
 - a. []AP-510
 - b. []AP-660
 - c. [] EOP-02
 - d. []EOP-06
 - e. []EOP-14
 - f. [] OP-401
 - g. [] OP-501
 - h. [] OP-603
 - i. [} OP-607

- 7. Advance all MCB recorders and delete alarm summary on computer station.
- 8. FREEZE the simulator and notify the lead examiner that simulator is ready to begin.

Scenario Execute

- 1. When notified by the lead examiner UNFREEZE the simulator
- 2. When notified by the lead examiner TRIGGER LESSON PLAN step #3 (Selected RCS Narrow Range Pressure fail high)
- 3. When notified by the lead examiner TRIGGER LESSON PLAN step #4 (FWP-2B high vibration)
- 4. When notified by the lead examiner TRIGGER LESSON PLANT step #5 (FWP-2B trip on vibration with no runback)
- 5. When ICS is taken to track to perform the runback, delete the malfunction blocking the ICS runback. (This permits eventual return to automatic control on the ICS).
- 6. When notified by the lead examiner TRIGGER LESSON PLAN step #6 (neutron error fails high)
- 7. When lesson plan step #5 is active TRIGGER LESSON PLAN step #7 (EDG restore) or called by RO
- 8. When notified by the lead examiner TRIGGER LESSON PLAN step #8 (3211 trips)
- 9. When lesson plan step #8 is active TRIGGER LESSON PLAN step #10 (MFWI fails)
- 10. When MUP restored TRIGGER LESSON PLAN step #9 (steam leak 0.03)

Booth Operator actions (Not included, standard call Chemistry, call HPs, etc.)

- 1. To assist with EDG shutdown, review SP-354, steps 4.6.21 through 4.6.32. Report engine hours as 32.8, fuel oil pressure as 28 psig, and be prepared to reset local EDG alarms.
- 2. Associated with Scenario Execute step #3, the SPO will be asked to check FWP-2B vibration instrumentation. The SPO responds after 1 minute that FWP-2B is in the danger region (6 mils and slowly increasing) on all vibration instrumentation.
- 3. The fuel rack to EDG-1A will be tripped by the PPO.
- 4. When notified, take EFIC MFLI isolation key switches "both to both" (delay of approximately 3 minutes).
- 5. As PPO support MUP-1A startup with selection for ES start; and breaker manipulation for MUV-69 and MUV-62

TURNOVER SHEET

Initial Conditions: The plant is at 100% full power with full ICS auto control.

Turnover:

A line crew is in the CR-3 switchyard performing routine maintenance on output breaker 1661's compressor. They will notify the control room when maintenance is complete.

DHP-1A, RWP-2A and EFP-3 are OOS for pump packing/seal adjustment.

WTP-6B is OOS for motor/pump alignment.

ARP-1B is OOS for routine motor maintenance.

The intake screen wash system is OOS due to mechanical damage from an intake crane accident.

OTSG "B" has a 3 GPD primary to secondary leak.

RM-G27 is OOS for repair.

ITS Action Items:

3.5.3, Condition "A" for DHP-1A.3.7.9, Condition "A" for RWP-1A.3.7.5, Condition "B" for EFP-3.3.8.1, Condition "B" for EGDG-1A.

Activities to be Performed this Shift:

The "A" Diesel Generator (EGDG-1A) has been running for 4 hours (SP-354A) and is ready to be shutdown.

Appendix D

Operator Actions

Op-Test No.: 1 Scenario No.: 3 Event No.: 1

Event Description: Shutdown EGDG-1A following its monthly functional test. (SP-354A).

| Time | Position | Applicant's Actions or Behavior |
|------|----------|--|
| | SRO | Directs BOP to complete SP-354A |
| | BOP | Perform SP-354A section 4.6 Reduces EGDG-1A load to approximately 3 to 5 minutes Reduces EGDG-1A 200 KW Opens breaker 3209 Directs SPO to perform steps 4.6.4 and 4.6.5 Adjusts engine speed to within 59.7 Hz and 60.3 Hz Selects EGDG-1A manual voltage control to MAN Exercises EDG A MANUAL VOLTAGE ADJUST rheostat Selects EGDG-1A manual voltage control to AUTO Selects EGDG-1A manual voltage control to AUTO Selects EGDG A VOLT ADJ SELECT to DG RM (DIESEL GEN A VOLTAGE ADJ IN CONTROL RM clears) Directs SPO to perform step 4.6.13 Depresses EGDG-1A stop pushbutton Notifies Chemistry to sample coolant Ensures high lamp is on Verifies AHF-22A and/or AHF-22B are shutdown and not in pull-to-lock Resets time-to-start timer Records 33 ft. temperature Directs SPO to complete SP-354A starting with step 4.6.21 |

Event Description: Selected narrow range RC pressure, RC-3B-PT1, fails high (gradual failure) (MALF). The OAC takes manual control of pressurizer heaters, spray and PORV. The BOP transfers to good channel. (OP-501)

| Time | Position | Applicant's Actions or Behavior |
|------|----------|--|
| | OAC | Diagnoses RC-3B-PT1 failure SASS mismatch alarm (K-3-2 alarms) Pressurizer heater demand lowering Spray valve open in automatic PORV open indication (alarm and ultrasonic) "B" loop RC pressure recorders show increasing trend |
| | SRO | Directs OAC to stabilize plant by taking required RC pressure controls to manual |
| | OAC | Stabilizes the plant (no order required) Selects pressurizer spray valve to manual and close (may close block valve) Selects PORV to close (may close block valve) Takes pressurizer heater control to hand Adjusts pressurizer heater demand for stable plant operation |
| | SRO | Directs BOP to transfer RC pressure feed to NNI to "A" loop per OP-501 |
| | вор | Executes the actions to select alternate RC narrow range pressure signal to NNI using OP-501, section 4.7. Determines proper operating channel Selects controlling signal to "A" loop |
| | SRO | Directs OAC to return RC pressure control to automatic. |
| | OAC | Returns RC pressure control to automatic (no order required) Selects pressurizer spray valve to automatic (reopen block valve if closed) Selects PORV to open (reopen block valve if closed). Returns pressurizer heater demand station to automatic. |

 \sum

Event Description: The annunciator for "B" main feedwater pump high vibration alarms. The "B" main feedwater pump trips due to high vibration (MALF). No automatic runback occurs, the crew runs the plant back to 55%. (AP-510 AP-545)

| Time | Position | Applicant's Actions or Behavior |
|------|------------|---|
| | OAC
BOP | Diagnoses FWP-2B vibration problems FWP-2B vibration alarm (L-2-2) Report from SPO (once notified by control room to monitor FWP-2B vibration) |
| | SRO | Enters AP-510, Rapid Power Reduction, and directs OAC to Adjust ICS load rate to desired setpoint Adjust Unit Load Master Demand to 10 (required power level approximately 55%) Maintain imbalance Directs BOP to reduce power to Notify plant personnel Notify chemistry of 15% power changes Maintain MUT level ≥ 55 inches Notify SPO to ensure proper operation of ASV-27 |
| | OAC | Performs AP-510 Adjusts ICS load rate to desired setpoint Adjusts Unit Load Master Demand to 10 (required power level approximately 55%) Maintains imbalance |
| | ВОР | Performs AP-510 Notify plant personnel Notify chemistry of 15% power changes Maintain MUT level ≥ 55 inches Notify SPO to ensure proper operation of ASV-27 |
| | OAC | Prior to 55% FWP-2B trips; OAC diagnoses no runback present ULD meter indication Rod motion (initially insert but later pull) Feedwater flow Neutron error demanding rod withdrawal while > runback limit. Other ICS stations meter indication. |

3

Event Description: The annunciator for "B" main feedwater pump high vibration alarms. The "B" main feedwater pump trips due to high vibration (MALF). No automatic runback occurs, the crew runs the plant back to 55%. (AP-510 AP-545)

| Time Position Applicant's Actions or Bell | | Applicant's Actions or Behavior |
|---|-----|--|
| | SRO | Enters AP-545 and directs the OAC to Ensure the plant is running back Ensure feedwater valve positions Directs the BOP to Notify plant personnel Ensure RCS pressure is stable Notify PPO to select FWV-28 to both |
| | OAC | Performs AP-545 Runs plant back in manual using steam generator master Ensures FWV-28 open Ensures FWV-29 and FWV-30 closed |
| | вор | Performs AP-545 Notifies plant personnel Ensures RCS pressure is stable using pressurizer spray and heaters Notifies PPO to select FWV-28 to both |
| | SRO | Following runback, directs OAC to place ICS station(s) back in automatic. |
| | OAC | Places ICS station(s) back in automatic. Checks MEAS-VAR Adjusts station(s) as required Places station(s) in auto |

Event Description: Neutron error fails high, IC-25-NEI (MALF). The OAC diagnoses the failure and takes manual control of both feedwater and the reactor to stabilize the plant. (OP-504)

| Time | Position | Applicant's Actions or Behavior | |
|------|------------|--|--|
| | OAC
SRO | Diagnose IC-25-NEI failure
- Control rods inserting
- Feedwater flow increasing | |
| | SRO | Direct OAC to stop plant movement and stabilize the plant | |
| | OAC | Stops plant movement Places reactor diamond and master in hand Place feedwater loop masters in hand Adjusts ICS stations as required to stabilize the plant | |

Event Description: Shortly after the Primary Plant Operator trips EDG-1A's fuel rack (post run action) breaker 3211 trips (MALF). Makeup is reestablished. (AP-770)

| Time | Position | Applicant's Actions or Behavior |
|------|------------|--|
| | SRO
BOP | Diagnose the loss of power to the "A" 4160V ES bus Voltage indication Loss of some lighting Loss of "A" side ES equipment |
| | SRO | Enters AP-770 and directs the BOP to Make plant notifications Verify letdown flow Verify 1 SW pump is running Verify 1 SW RW pump is running Verify 1 MU pump running; if not concurrently perform enclosure 3 of AP-770 |
| | BOP | Performs AP-770 Makes plant notifications Verifies letdown flow Verifies 1 SW pump is running Verifies 1 SW RW pump is running Verifies 1 MU pump running; if not concurrently perform enclosure 3 of AP-770 Performs enclosure 3 of AP-770 Closes MUV-16 and MUV-31 Starts DCP-1B and RWP-3B Verifies MUV-53 and MUV-257 are open Starts MUP-2C; ensures MUP-3C is in normal after stop; starts MUP-4C; ensure MUP-5C in auto Ensure MUP-1A, MUP-1B and MUP-1C are in normal after stop Notify PPO to ES select MUP-1A Notify PPO to energize MUV-69 and MUV-62 Close MUV-69 and MUV-58 Open MUV-62 and MUV-73 Start MUP-1C |

Event Description: An unisolable steam leak develops in the reactor building on the "B" OTSG. Reactor does not trip on reactor building pressure (only one channel of RPS trips, AR-502) (MALF). OAC must trip the reactor (CT). (EOP-02)

| Time | Position | Applicant's Actions or Behavior |
|------|-------------------|--|
| | BOP
OAC
SRO | Diagnoses steam leak in reactor building Reactor building pressure 4 psig ES actuation (RB isolation) |
| | OAC | Diagnoses ATWAS and trips reactor Depresses reactor trip pushbutton Performs immediate actions of EOP-2 Depresses reactor trip push button Verifies CRD groups 1 through 7 are fully inserted. Verifies NIs indicate reactor is shutdown Depresses turbine trip push button Verifies TVs and GVs are closed |
| | SRO | Enters EOP-2 directs OAC to Repeat immediate actions Scan for symptoms Directs BOP to Ensure proper ES actuation Scan for symptoms |
| | OAC | Performs EOP-2 Repeats immediate actions Scans for symptoms Determines steam leak on "B" OTSG (see event 7) |
| | BOP | Performs EOP-2 Ensures proper ES actuation Scans for symptoms; backup for OAC |

 $\overline{\bigcirc}$

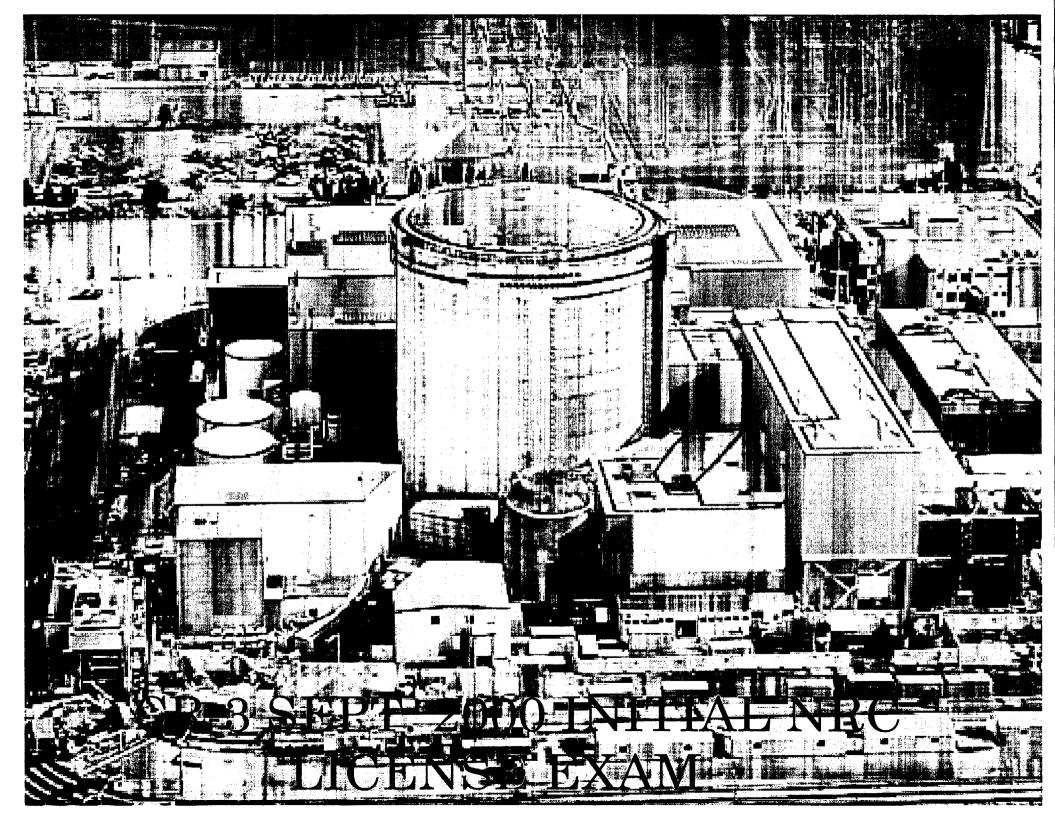
Event Description: Once the "B" OTSG is determined to be the generator with the leak the BOP is directed to isolate the generator. The MFWI does not actuate in manual or automatic (MALF). The BOP performs the isolation by manually closing the appropriate valves (CT). (EOP-05)

| Time | Position | Applicant's Actions or Behavior |
|------|----------|--|
| | SRO | Enters EOP-5, Excessive Heat Transfer and directs OAC to
- Isolate affected OTSG |
| | OAC | Performs EOP-5 Isolates "B" OTSG Depresses MAIN STM ISOLATION push buttons on EFIC channels A and B for "B" OTSG Depresses MAIN FEED ISOLATION push buttons on EFIC channels A and B for "B" OTSG and determines no isolation Closes FWV-32 Places FWV-29 toggle in MAN Closes FWV-29 Closes FWV-29 Closes FWV-28 Closes FWV-28 Closes FWV-15 Trips FWP 2A Closes MSV-56 Ensures MSV-25 and MSV-26 closed |

Event Description: Once the "B" OTSG is determined to be the generator with the leak the BOP is directed to isolate the generator. The MFWI does not actuate in manual or automatic (MALF). The BOP performs the isolation by manually closing the appropriate valves (CT). (EOP-05)

| Time | Position | Applicant's Actions or Behavior |
|------|----------|--|
| | SRO | Continues direction of EOP-05 having the OAC Close EFV-57 and EFV-55 Ensure proper MSLI and MFWI Ensure closed MSV-413 and MSV-414 Ensure closed MWV-32, FWV-29, FWV-33, FWV-28, FWV-15 and FWV-29 toggle in MAN Ensure FWP-2B and FWP-2A tripped Directing the BOP to Ensure closed MSV-130 and MSV-148 If pressurizer level falls below 50 inches Close MUV-49 Open MUV-24 Open MUV-73 and MUV-58 If needed start second MUP and associated cooling water pumps and open MUV-23, MUV-25, and MUV-26 as needed. If needed close MUV-53 and MUV-257 |
| | OAC | Performs EOP-05 Close EFV-57 and EFV-55 Ensure proper MSLI and MFWI Ensure closed MSV-413 and MSV-414 Ensure closed MWV-32, FWV-29, FWV-33, FWV-28, FWV-15 and FWV-29 toggle in MAN Ensure FWP-2B and FWP-2A tripped |

Event Description: Once the "B" OTSG is determined to be the generator with the leak the BOP is directed to isolate the generator. The MFWI does not actuate in manual or automatic (MALF). The BOP performs the isolation by manually closing the appropriate valves (CT). (EOP-05)


| Time | Position | Applicant's Actions or Behavior | |
|------|----------|--|--|
| | BOP | Performs EOP-5 Ensure closed MSV-130 and MSV-148 If pressurizer level falls below 50 inches Close MUV-49 Open MUV-24 Open MUV-73 and MUV-58 If needed start second MUP and associated cooling water pumps and open MUV-23, MUV-25, and MUV-26 as needed. If needed close MUV-53 and MUV-257 | |

INITIAL SUBMITTAL

CRYSTAL RIVER 50-302/2000-301 SEPTEMBER 25 - 29, 2000

INITIAL SUBMITTAL JPMS

ADMINISTRATIVE JPMs/QUESTIONS SIMULATOR JPMs IN-PLANT JPMs

| ES-301 | | Administrative Topics Outline | Form ES-301-1 |
|--------|---|---|------------------|
| | lity: Crystal River Unit 3
n Level: RO/SRO | Date of Examination
Operating Test No.: | |
| | Administrative
Topic/Subject
Description | Describe method of evaluation:
1. ONE Administrative JPM, OR
2. TWO Administrative Questions | |
| A.1 | Plant
Parameter
Verification | JPM - Perform a reactivity balance calculation/0 | 001A4.11/3.5/4.1 |
| | Plant
Parameter
Verification | JPM – Perform a Reactor Coolant Boron Change
Calculation/004A4.04/3.2/3.6 | 3 |
| A.2 | Surveillance
Testing | JPM – Perform a Reactor Coolant System Inven
/2.2.12/3.0/3.4 | tory Balance |
| A.3 | Radiation
Hazards | JPM - Using survey maps determine radiation r
stay times/2.3.1/2.6/3.0* | equirements and |
| A.4 | SRO
Emergency action levels
and classifications | JPM – Determine Emergency Action Level and
State of Florida Notification Message Form for N
Plants/2.4.41/4.1 | |
| A.4 | RO
Emergency
Communications | JPM – Notify State Warning Point Tallahassee
Florida Notification Message Form for Nuclear I
(faulted)/2.4.43/2.8 | |

· ·

.

.

* Modification of last years A.3 JPM (identified as a Needs Improvement Area)

| Facility: Crystal River Unit 3Date of ExamExam Level: RO/SRO(I)Operating Te | ination: 09-28
st No.: 1 | 5-2000 |
|--|-----------------------------|--------------------|
| B.1 Control Room Systems | | |
| System/JPM Title/KA | Type
Code* | Safety
Functior |
| a. Control Rod Drive (CRD)/Transfer Single Rod to Auxiliary Power
Supply/001A4.03/4.0/3.7 | D, S | 1 |
| b. AC. Electrical/Supply pressurizer heaters from the "B" ES 4160V
Bus/062A2.05/2.9/3.3 | N, S | 6 |
| c. Reactor Coolant (RCS)/Take Actions required for Loss of RCS
Pressure/010A1.07/3.7/3.7 (does not result in a Rx trip) | A, D, S | 3 |
| d. Building Spray (BS)/Ensure BS actuation/026A3.01/4.3/4.5 (EOP-03) | A, D, S | 5 |
| e. Makeup and Purification System (MU)/ Re-establish
letdown/004A4.05/3.6/3.1** | A, D, S | 2 |
| f. Decay Heat Removal (DH)/ Perform ECCS Suction
Transfer/005A4.01/3.6/3.4** | D, L, S | 4 |
| g. Reactor Protection System (RPS)/Place RPS in Shutdown
Bypass/012A4.03/3.6/3.6 | S, N | 7 |
| B.2 Facility Walk-Through | | |
| a. Fire Service (FS)/Recirculation of FSP-1/086A4.01/3.3/3.3 | N | 8 |
| b. Emergency Feedwater (EFW)/Placing EFP-2 in
Standby/068AA1.02/4.3/4.5** | N | 4 |
| c. Waste Gas (WG)/Release a Waste Gas Decay Tank to Plant
Ventilation/G2.3.11/2.7/3.2 | A, N, R | 9 |

| Facility: Crystal River Unit 3
Exam Level: SRO(U) | Date of Examination: 09-25
Operating Test No.: 1 | Date of Examination: 09-25-2000
Operating Test No.: 1 | |
|---|---|--|--|
| B.1 Control Room Systems | | | |
| System/JPM Title/KA | Туре
Code* | Safety
Function | |
| a. AC. Electrical/Supply pressurizer heaters from the "B"
Bus/062A2.05/2.9/3.3 | ES 4160V N, S | 6 | |
| b. Makeup and Purification System (MU)/ Re-establish
letdown/004A4.05/3.6/3.1** | A, D, S | 2 | |
| c. Reactor Protection System (RPS)/Place RPS in Shutdov
Bypass/012A4.03/3.6/3.6 | yn S, N | 7 | |
| B.2 Facility Walk-Through | | | |
| a. Fire Service (FS)/Recirculation of FSP-1/086A4.01/3.3/3 | .3 N | 8 | |
| b. Waste Gas (WG)/Release a Waste Gas Decay Tank to P
Ventilation/G2.3.11/2.7/3.3 | lant A, N, R | 9 | |

.

REGION II INITIAL LICENSE EXAMINATION JOB PERFORMANCE MEASURE

JPM A1a, Perform a Reactivity Balance Calculation

| CANDIDATE | | |
|--------------------------|-------------------------------|-------|
| EXAMINER | | |
| PREPARED/
REVISED BY: | | Date/ |
| REVIEWED BY: | (Operations Representative) | Date/ |
| VALIDATED BY: | (Operations Representative) | Date/ |
| APPROVED BY: | (Supervisor Initial Training) | Date/ |

CRYSTAL RIVER UNIT 3 ADMINISTRATIVE JOB PERFORMANCE MEASURE

Task: Perform a Reactivity Balance Calculation.

Alternate Path: N/A

JPM #: A1a (modified bank #253)

K/A Rating/Importance: 001A4.11/3.5/4.1 Task Number/Position: 1150202004/RO

Task Standard: Perform a reactivity balance calculation at < 15% power using SP-421.

| Preferred Evaluation Location: | Preferred Evaluation Method: |
|---------------------------------------|-------------------------------------|
| Simulator In-Plant AdminX | Perform X Simulate |
| References:
1. SP-421, Rev 50 | |
| Validation Time: 30 min. | Time Critical: No |
| Candidate: Printed Name | Time Start:
Time Finish: |
| Performance Rating: SAT UNSAT | Performance Time: |
| Examiner:
Printed Name
Comment: | /
Signature Date |
| | |
| | |

SIMULATOR OPERATOR SETUP INSTRUCTIONS:

) 1. N/A

SIMULATOR OPERATOR INSTRUCTIONS:

1. N/A

Tools/Equipment/Procedures Needed:

- 1. SP-421
- 2. Calculator
- 3. OP-103C

READ TO THE OPERATOR

Directions to the Student:

I will explain the initial conditions, and state the task to be performed. All steps, including any required communications, shall be performed for this JPM. I will provide initiating cues and reports on other actions when directed by you. Ensure you indicate to me when you understand your assigned task. To indicate that you have completed your assigned task, return the handout sheet to the examiner.

Initial Conditions:

You are the REACTOR OPERATOR. The plant is at 10% power. Steady state power conditions (+ 1%) have been maintained for the last 30 minutes. Core Burnup is 150 EFPD. Rod Index is 245 %WD. Group 8 is at 30.4 %WD Boron Concentration is 1350 ppm. Samarium is $-0.73 \% \Delta k/k$ Per the Saxon, Xenon is $-2.40 \% \Delta k/k$ and is increasing. Reactor Coolant average temperature is 555°F.

Initiating Cues:

You are requested to perform a reactivity balance (SP-421).

START TIME: _____

| <u>STEP 1</u> : | |
|---|---------------|
| Obtain a copy of appropriate procedure. | SAT |
| EXAMINER NOTE: Provide candidate with a clean copy of SP-421 and OP-
103C. Calculators will also be provided if the candidate does not
have one. | UNSAT |
| STANDARD: N/A | |
| COMMENTS: | |
| <u>STEP 2</u> : | Critical Step |
| Candidate should complete SP-421 including Enclosure 2A. | SAT |
| STANDARD: Candidate completes SP-421. Candidate returns materials to you. | UNSAT |
| EXAMINER NOTE : See attached key for answers; each reactivity listed on
Enclosure 2A should be within $\pm 0.05 \% \Delta k/k$. | |
| COMMENTS: | |
| | |
| END OF TASK | |

TIME STOP _____

CANDIDATE CUE SHEET

(TO BE RETURNED TO EXAMINER UPON COMPLETION OF TASK)

Initial Conditions:

You are the REACTOR OPERATOR. The plant is at 10% power. Steady state power conditions (+ 1%) have been maintained for the last 30 minutes. Core Burnup is 150 EFPD. Rod Index is 245 %WD. Group 8 is at 30.4 %WD Boron Concentration is 1350 ppm. Samarium is -0.73 % Δ k/k Per the Saxon, Xenon is -2.40% Δ k/k and is increasing. Reactor Coolant average temperature is 555°F.

Initiating Cues:

You are requested to perform a reactivity balance (SP-421).

ENCLOSURE 2A

REACTIVITY BALANCE DURING POWER OPERATION (< 15% FP)

REFERENCE CONDITIONS: 532°F, 0% FP, No Xenon, CRG 1-8 at 100% wd, HFP Samarium.

Excess Fuel Reactivity a. Core Burnup = <u>150</u> EFPD 1. Excess Fuel Reactivity from Curve 1 of OP-103C, **b**. + 13.4 % A K/ Reactivity Worth Curves. 2. Boron Reactivity a. Boron Concentration <u>1350</u> ppmB b. Using core burnup from Step 1(a), find the HZP inverse boron worth from Curve 4 of OP-103C, Reactivity worth Curves $_\frac{147}{2}$ ppm/% Δ k/k c. Divide Step 2(a) by the inverse boron worth in Step 2(b). 2(a)/2(b) = $_\frac{1350}{2}$ ppmB / $_\frac{147}{2}$ ppm/% Δ k/k = с. - 9.18 × A K/ 3. Xenon Reactivity Obtain Xenon reactivity from Saxon. (Submit printout.) a. IF Saxon is unavailable. b. - 2.40% AK/ THEN contact Reactor Engineering for a value. 4. RCS Temperature and Power Reactivity Deficit Average RC Temperature <u>555</u>°F a. Obtain temperature and power reactivity deficit from Curve **b**. - 0,34 % A K/ 6 of OP-103C, Reactivity Worth Curves. 5. Control Rod Reactivity Reactivity worth of inserted regulating rods as read from - 0.54 % A K/ а. Curve 8 or 8A of OP-103C, Reactivity Worth Curves: Rod Index ______% WD Worth of inserted Group 8 rods at 30.4 % withdrawn from Curve 9 of OP-103C, Reactivity Worth Curves. b. - 0.16 % A K/ Samarium Reactivity 6. Obtain Samarium reactivity from Saxon. (Submit printout.) a. IF Saxon is unavailable, b. - 6.73% A K/ THEN contact Reactor Engineering for a value. 7. <u>Net Reactivity</u> +0.05 % A K/ Net reactivity is the sum of Steps 1 thru 6. а. b. Inform the Shift Supervisor of the results. Acceptability 1. <u>IF</u> the absolute value of Step 7a is greater than 1.0% \triangle k/k, THEN IMMEDIATELY go to Step 5.2.2. 2. <u>IF</u> the absolute value of Step 7a is greater than 0.3% \triangle k/k. THEN go to Step 5.2.3. Calculated By ______ Signal _____ Date/Time ______ Date/Time Date/Time Checked By _____

| COMPARISON OF OVERALL CORE REACTIVITY BALANCE TO PREDICTED VALUE |
|---|
| Date Time Core AgeEFPD's (based on 2544 MWth) |
| Reactivity Balance =% \triangle k/k (0 ± 1% \triangle k/k required) |
| Computations are attached. |
| Computed By |
| The following reactivity values were normalized |
| |
| |
| |
| |
| |
| COMMENTS: |
| |
| |
| · |
| |
| |
| |
| Reactor Engineer |

•

¢

.

. Rev. 50

Effective Date <u>11/09/99</u>

SURVEILLANCE PROCEDURE

.

SP-421

FLORIDA POWER CORPORATION

CRYSTAL RIVER UNIT 3

REACTIVITY BALANCE CALCULATIONS

APPROVED BY: Procedure Owner

<u>Mike Collins for Mike Culver</u> (SIGNATURE ON FILE)

DATE: _____11/09/99

PROCEDURE OWNER: Reactor Engineer

TABLE OF CONTENTS

.

| SECTION | PAGE |
|--------------------------------------|---|
|] | PURPOSE 1 1 INTENT 1 1.2 CMIS EQUIPMENT 1 |
| 2 | REFERENCES 1 IMPLEMENTING REFERENCES 1 2.2 DEVELOPMENTAL REFERENCES 2 2.2.1 Improved Technical Specification References 2 |
| 3
3
3
3
3
3
3
3 | PERSONNEL INDOCTRINATION31SETPOINTS32DESCRIPTION33DEFINITIONS54RESPONSIBILITIES55LIMITS AND PRECAUTIONS66ACCEPTANCE CRITERIA67PREREQUISITES73.7.1Equipment73.7.2Supplies73.7.4Initial Conditions83.7.5Data Collection8 |
| 4
4
4
4
4
4 | NSTRUCTIONS 9 .1 SHUTDOWN MARGIN CALCULATIONS 9 .2 REACTIVITY BALANCE AT POWER 9 .3 COMPARISON OF OVERALL CORE REACTIVITY BALANCE TO 9 .4 SHUTDOWN VALUES 10 .4 SHUTDOWN VALUE FOR SINGLE ROD GROUP WITHDRAWAL 10 .5 WITHDRAWAL OF A SINGLE CONTROL ROD 11 .6 WITHDRAWAL OF SAFETY ROD GROUP 1 11 OLLOW-UP ACTIONS 11 |
| • | .1 <u>RESTORATION INSTRUCTIONS</u> |

.

TABLE OF CONTENTS (Cont'd)

| ENCLOSURES PAGE | | |
|-----------------|--|--|
| 1 | Shutdown Margin Calculation13 | |
| 14 | One Hour Misaligned Rod Shutdown Margin Calculation | |
| 2 | Reactivity Balance During Power Operation (> 15% FP) | |
| 24 | Reactivity Balance During Power Operation (< 15% FP) | |
| 3 | Comparison of Overall Reactivity Balance to Predicted Value 22 | |
| 4 | Shutdown Value Calculation for Single Rod Group Withdrawal | |

<u>1.0</u> <u>PURPOSE</u>

1.1 <u>INTENT</u>

- 1.1.1 This procedure is used for the following:
 - To implement the Improved Technical Specification (ITS) Surveillance Requirements which are listed in Section 2.2.1 of this procedure
 - o To calculate shutdown margin in Modes 1, 2, 3, 4 & 5 (In particular, during startups and shutdowns and when reactivity anomalies occur, such as a stuck rod.)
 - To determine how closely the plant's actual reactivity follows the predicted reactivity changes with burn-up
 - o To provide shutdown value calculations for the case of a single withdrawn rod group

1.2 <u>CMIS EQUIPMENT</u>

1.2.1 The following tags are listed in CMIS as being affected by this procedure:

None

- 2.0 REFERENCES
- 2.1 IMPLEMENTING REFERENCES
- 2.1.1 Improved Technical Specifications
- 2.1.2 SAXON (Plant Computer)
- 2.1.3 OP-103C, Cycle 11 Reactivity Worth Curves
- 2.1.4 OP-103D, Withdrawal Limit Curves

2.2 DEVELOPMENTAL REFERENCES

2.2.1 Improved Technical Specification References

LCO/Other Applicable Applicable Procedure ITS Surv. Perf. Requirements Freq. Surv. References During Modes During Modes Freq. Notes Section 3.1.1.1 3,4,5 3,4,5 D 40 4.1 3.1.8.4 1 1 D SP(3) 4.1 3.1.9.3 2 2 D SP(3) 4.1 3.1.2.1 2 1,2 SP(2) 31 4.2 (4.3*) 3.1.2.1 1,2 SP(4) SU+60 4.2 (4.3*) 1,2

SURVEILLANCE FREQUENCY:

S - At least once per 12 hours

D - At least once per 24 hours

M - At least once per 31 days

SP(2) - Startup after refueling

SP(4) - Every 31 EFPD (for the purposes of this procedure, every 31 days)

FREQUENCY NOTES:

- 31 Prior to entering Mode 1
- 40 Establish surveillance prior to ascension into applicable mode
- SP(3) During Physics Testing
- SU+60 Not required if fuel burnup is < 60 EFPD

APPLICABLE PROCEDURE SECTION:

* - The predicted reactivity values may be adjusted (normalized) per Section 4.3, to correspond to the measured core reactivity prior to exceeding a fuel burn up of 60 effective full power days (EFPD) after each fuel loading.

- 3.0
- PERSONNEL_INDOCTRINATION
- 3.1 <u>SETPOINTS</u>

None

- 3.2 DESCRIPTION
- 3.2.1 The shutdown margin shall be greater than or equal to the limit specified in the COLR. The minimum limit shall be \geq 1.0% delta-k/k. (Verified every 24 hours in Modes 3, 4 and 5.) [ITS 3.1.1]
- 3.2.2 The measured core reactivity balance shall be within ± 1.0% delta-k/k of predicted values. (Verified prior to entering Mode 1 after each fuel loading and every 31 EFPD after the core reaches 60 EFPD, in Modes 1 and 2.) [ITS 3.1.2]
- 3.2.3 With one control rod inoperable, or not aligned to within 6.5%wd of its group average, or both; the shutdown margin must be verified within one hour. Enclosure 1A was written specifically for this one hour verification. It removes the need to immediately run a new SAXON printout without removing all credit for xenon. This enclosure allows the use of the pre-misaligned rod SAXON printout value for xenon as long as two restrictions are met:
 - o the pre-misaligned rod SAXON printout accurately models the pre-misaligned power history and,
 - o the maximum post-misaligned rod power level is less than or equal to the power used for that hour in the pre-misaligned rod SAXON printout.

These two restrictions assure the xenon value used in the calculation is less than or equal to the actual xenon value in the core.

3.2.4 The predicted reactivity values may be adjusted (normalized) to correspond to the actual core conditions prior to exceeding a fuel burnup of 60 EFPDs after each fuel loading.

Curve 10 of OP-103C, Fuel Reactivity Worth Versus Cycle Lifetime at HFP, includes Group 8 worth at the HFP nominal position. Since the plant is operated at, or near, this HFP nominal position during steady state operation, no additional compensation for Group 8 worth is required. If for some reason Group 8 is not near its HFP nominal position, the reactivity balance could be slightly in error. However, the group would not be significantly away from its HFP nominal position unless the plant was in a transient. Under transient conditions, additional error is injected into many of the curves. The maximum possible error induced would be the difference in worth between the HFP nominal position and 100% wd. Group 8 position in Step 5b of Enclosure 2 is recorded simply to assist Reactor Engineering in long term trending of reactivity parameters.

3.2.6 A rod that is inoperable but is fully inserted is considered operable for the purposes of shutdown margin or shutdown value calculations since it is performing its function of adding negative core reactivity. Therefore, for this case, use Curve 18 of OP-103C in Enclosures 1 and 1A.

- 3.2.7 A rod that is stuck only partially inserted or fully withdrawn is considered inoperable for the purposes of shutdown calculations and achieving actual shutdown. Therefore, for this case, use Curve 19 of OP-103C in Enclosures 1 and 1A.
- 3.2.8 Section 4.4 provides a shutdown value calculation (using Enclosure 4). Basically, the calculation takes the shutdown margin calculation which assumes the stuck rod is out and then, after verifying there are no stuck rods, increases the shutdown value by the worth of the stuck rod. Then, the worth of the rod bank to be withdrawn is subtracted.
 - Step 7 of Enclosure 4 multiplies the Stuck Rod Worth (SRW) by 0.90 and Step 9 multiplies the Withdrawn Rod Group Worth by 1.10. In both cases this is to take into account the 10% uncertainty in rod worth. The SRW increases the shutdown value therefore decreasing its worth by 10% is conservative. The Withdrawn Worth decreases the shutdown value so an increase in its worth is conservative.
 - o Step 11 of Enclosure 4 compares the shutdown value calculated to $-1.5\% \Delta k/k$, not $-1.0\% \Delta k/k$. This is again for conservatism.

SP-421

3.2.5

Rev. 50

Page 4

- 3.2.9 Section 6 of Enclosure 1 and Enclosure 1A exists to predict when the decay of xenon will result in a violation of shutdown margin requirements. Simply put, it accomplishes this in three simple steps:
 - a. Determines the difference between the existing shutdown margin and the minimum allowed shutdown margin $(-1\% \triangle k/k)$.
 - b. Reduces the existing xenon reactivity by this difference. This provides the xenon reactivity at which minimum shutdown margin occurs.
 - c. Finds this calculated xenon value on the SAXON printout. This provides the time at which the shutdown margin requirement will be violated if no compensating steps are taken.
- 3.3 **DEFINITIONS**
- 3.3.1 S/D Shutdown
- 3.3.2 ITS Improved Technical Specifications
- 3.3.3 EFPD Effective Full Power Days
- 3.3.4 FP Full Power
- 3.3.5 NSS Nuclear Shift Supervisor
- **3.3.6** ρ **Reactivity**
- 3.3.7 \triangle K/K delta-k/k
- 3.3.8 HFP Hot Full Power
- 3.3.9 wd withdrawn
- 3.3.10 ppm parts per million
- 3.3.11 RCS Reactor Coolant System

3.4 **RESPONSIBILITIES**

- 3.4.1 Enclosures 1 and 1A, dealing with shutdown margin, and Enclosure 4, dealing with shutdown value, are intended to be performed by Nuclear Operators and Shift Technical Advisors.
- 3.4.2 Reactor Engineers may perform, verify or assist with the performance of any section of this procedure.

3.5 LIMITS AND PRECAUTIONS

- 3.5.1 Steady state power conditions $(\pm 1\% \text{ FP})$ shall be maintained while gathering data for the performance of this procedure.
- 3.5.2 Ensure that the algebraic signs and units for all reactivity component values are correct for the calculation in which they are being used.
- 3.5.3 When using previously printed out values of xenon and samarium from SAXON, ensure the input power history is correct.
- 3.5.4 Do not enter the red zone in the Control Room without permission from a control board operator or a Shift Supervisor.
- 3.5.5 The shutdown value calculations of Enclosure 4 are valid only for withdrawal of a maximum of one rod group at a time. All other rod groups must be inserted except group 8. Group 8 rods may be in any position but are preferred to be within \pm 5% wd of the HFP nominal position of 30.4%wd (100%wd after 650 (+/-10) EFPD).
- 3.5.6 The shutdown value calculation of Section 4.4 is valid for moving rods only if RCS temperature is within \pm 5°F of the temperature value used in the calculation. Otherwise, the calculation must be reperformed at the new RCS temperature prior to withdrawing rods.
- 3.6 ACCEPTANCE CRITERIA
 - 3.6.1 The shutdown margin shall be greater than or equal to the limit specified in the COLR. The minimum limit shall be \geq 1.0% delta-k/k. [ITS 3.1.1]
 - 3.6.2 The measured core reactivity balance shall be within \pm 1% delta-k/k of predicted values. [ITS 3.1.2]
 - 3.6.3 The curves in OP-103C shall be normalized to actual core conditions, if required, prior to 60 EFPD. [ITS 3.1.2.1]
 - 3.6.4 The shutdown value calculated for the case of a single withdrawn rod group (for groups 2 through 7) must be more negative than -1.5% delta k/k during modes 3 through 5. (Non-Technical Specification)

3.7 PREREQUISITES

3.7.1 Equipment

NOTE: Reactor Engineering determines equivalency for performing SAXON calculations.

- 3.7.1.1 <u>Plant</u> computer, or equivalent (when SAXON calculations are required)
- 3.7.1.2 Four function calculator
- 3.7.2 <u>Supplies</u>

None

3.7.3 <u>Personnel Requirements</u>

- 3.7.3.1 Two people are required to complete each section of this procedure. One to perform the calculation and another to provide an independent verification.
- 3.7.3.2 Procedural assistance in performance or interpretation may be obtained from the Reactor Engineer.
- 3.7.3.3 The approximate time frame to complete the various sections are:

(a) 4.1 - Normal S/D Margin Calculation - 30 minutes

- (b) 4.1 S/D Margin with an inoperable rod 40 minutes
- (c) 4.2 Reactivity Balance at Power 30 minutes
- (d) 4.3 Comparison of Overall Core Reactivity Balance to Predicted Values 30 minutes
- (e) 4.4 Shutdown Value Calculation for Single Rod Group Withdrawal - 50 minutes
- 3.7.3.4 All data taking and calculations may be performed in the Control Room.

- 3.7.4 <u>Initial Conditions</u>
- 3.7.4.1 Notify the NSS prior to the start of this procedure.

Initial, Date

3.7.4.2 For the performance of Section 4.2, REACTIVITY BALANCE AT POWER, reactor power is stable \pm 1% FP.

Initial/Date

3.7.4.3 For the performance of Section 4.4, SHUTDOWN VALUE FOR SINGLE GROUP WITHDRAWAL, ensure the unit is in mode 3, 4, or 5.

<u>N/4</u> Initial/Date

3.7.4.4 The Limits and Precautions and the Personnel Indoctrination have been read <u>and</u> understood.

Initial Date

- 3.7.5 Data Collection
- 3.7.5.1 As required by the section or enclosure being performed.

Page 8

4.0 INSTRUCTIONS

4.1 <u>SHUTDOWN MARGIN CALCULATIONS</u>

- NOTES: (1) A <u>fully</u> inserted dropped or stuck rod is not considered inoperable for shutdown margin calculations. For this case, Curve 18 of OP-103C is the appropriate curve for use in Enclosures 1 and 1A.
 - (2) A rod stuck only partially inserted or fully withdrawn is inoperable for the purposes of shutdown margin calculations. For this case, Curve 19 of OP-103C is the appropriate curve for use in Enclosures 1 and 1A.
- NOTE: The shutdown margin must be greater than or equal to the limit specified in the COLR. The minimum limit shall be $\geq 1.0\% \Delta k/k$. In other words, the value calculated in Step 5 of Enclosure 1 must be more negative than or equal to $-1.0\% \Delta k/k$.
- 4.1.1 Complete Enclosure 1, Shutdown Margin Calculation, for all shutdown margin calculations except the one hour misaligned rod shutdown margin verification.
- 4.1.2 Complete Enclosure 1A for a one hour misaligned rod shutdown margin calculation. [ITS 3.1.4, ACTION A.2.1.1, C.1.1 and D.1.1 (one untrippable rod only) and ITS 3.1.5, ACTION A.2.1.1]

4.2 REACTIVITY BALANCE AT POWER

- NOTE: In this calculation, the plant is assumed to be at equilibrium conditions. The reactivity effects of all the components are added together. The desired sum is "0" (when K = 1, $\rho = 0$). However, an acceptable value for ρ (Net) is $0\% \Delta k/k$ (+0.3% to -0.3%). The value of ρ (Net) <u>SHALL</u> be within 0% $\Delta k/k$ (+1.0% to -1.0%) per Improved Technical Specification 3.1.2.
- 4.2.1 Complete Enclosure 2 or 2A, depending on power level, for calculation.

- 4.3 COMPARISON OF OVERALL CORE REACTIVITY BALANCE TO PREDICTED VALUES
- 4.3.1 Calculate the reactivity balance using the method of Section 4.2 of this procedure. Record the computed value on Enclosure 3.
- 4.3.2 Forward Enclosure 3, with Enclosure 2 or 2A attached, to the Reactor Engineer.
 - NOTE: ITS 3.1.2.1 requires that adjustments to the predicted reactivity values to normalize them to the actual measured values be completed prior to exceeding a fuel burnup of 60 EFPD after each fuel loading.
- 4.3.3 The Reactor Engineer, or his designee, will document adjustments to the predicted reactivity values on Enclosure 3.
- 4.4 <u>SHUTDOWN VALUE FOR SINGLE ROD GROUP WITHDRAWAL</u>

CAUTION: This calculation is <u>NOT</u> valid for a rod stuck in a fully or partially withdrawn position.

IF there are any known or suspected stuck or inoperable rod(s), THEN the calculation can still be valid provided that the stuck or inoperable rod(s) are stuck in the fully inserted position (and are therefore operable for shutdown purposes).

NOTE: This section may be used to calculate the shutdown value for no rods withdrawn, one rod group already withdrawn or to pre-determine the shutdown value before withdrawing a rod group. It was written specifically for pre-determining before withdrawal but can be adapted to the others.

Since this calculation is used to ensure $K_{eff} < 0.99$ when exercising rods, conservatisms similar to those used in shutdown margin calculations are used. This includes a 10% conservatism on rod worths and preservation of the conservatisms inherent in Curve 18 of OP-103C.

4.4.1 Complete Enclosure 4, Shutdown Value Calculation for Single Rod Group Withdrawal. 4.4.2 <u>IF</u> the Enclosure 4 calculation is acceptable for the highest worth rod group, <u>THEN</u> it need not be repeated for the other rod groups.

4.5 WITHDRAWAL OF A SINGLE CONTROL ROD

- 4.5.1 The shutdown margin calculation of Enclosure 1 assumes the maximum worth stuck rod is fully withdraw. Therefore, in modes 3, 4, and 5 any single control rod can be fully withdrawn provided that:
 - o The shutdown margin calculation of Enclosure 1 is more negative than -1.0% Δ k/k.
 - All the rods in groups 1 through 7 are fully inserted except the rod to be withdrawn.

4.6 <u>WITHDRAWAL OF SAFETY ROD GROUP 1</u>

- 4.6.1 The shutdown margin calculation of Enclosure 1 assumes that rod group 1 or the maximum worth stuck rod, whichever is greater, is fully withdrawn. Therefore, in modes 3, 4, and 5 rod group 1 may be fully withdrawn without first performing Section 4.4 provided that:
 - o The shutdown margin calculation of Enclosure 1 is more negative than -1.0% \triangle k/k.
 - o All the rods in groups 2 through 7 are fully inserted.

5.0 FOLLOW-UP ACTIONS

5.1 <u>RESTORATION INSTRUCTIONS</u>

None required.

5.2 <u>CONTINGENCIES</u>

5.2.1 IF the value determined in Enclosure 1 or 1A, is <u>less</u> negative than $-1.0\% \Delta k/k$, <u>THEN</u> IMMEDIATELY inform the Nuclear Shift Supervisor and refer to ITS 3.1.1. 5.2.2 IF the absolute value of the value calculated in Step 7a, of Enclosure 2, or Step 7a of Enclosure 2A, is greater than $1.0\% \Delta k/k$, <u>THEN</u> IMMEDIATELY inform the Nuclear Shift Supervisor and refer to ITS 3.1.2.

5.2.3 <u>IF</u> the absolute value of the value calculated in Step 7a, of Enclosure 2, or Step 7a of Enclosure 2A, is greater than $0.3\% \Delta k/k$, <u>THEN</u> notify the Reactor Engineer to investigate the situation. The Reactor Engineer will document the results of the investigation on Enclosure 3.

| | · · · · | ENCLOSURE 1 (Page 1 of 3)
(Page 1 of 3) |
|----|----------------|---|
| 1. | <u>Core Bu</u> | rnup |
| 1 | <u>Core Bu</u> | rnup = EFPD |
| | ***** | ***** |
| | CAUTION | : In Modes 3, 4, or 5, 73°F boron requirements for shutdown apply if
OTSG levels are > 40 inches or if EFIC MSLI Actuation logic is
bypassed. |
| | ***** | |
| | NOTES: | For the remaining steps (2-4) the following NOTES apply: |
| | | (1) It is permissible to round to the nearest whole EFPD. |
| | | (2) It is permissible to round to the nearest whole %wd. |
| | | (3) For RCS > 532 degrees F, 532 degrees F data may be used. |
| | | (4) Two decimal place accuracy is required in calculations. |
| 2. | | eactivity |
| | a.
b. | |
| | 6 | Curve 18 or Curve 19 of OP-103C ppm
Actual Boron Concentration: ppm |
| | | Differential boron worth from Curve 3 of OP-103C, Reactivity
Worth Curves. |
| | e. | $\frac{1}{Reactivity During Modes 1, 2, 3, 4, and 5}$ Reactivity = [(b - c) x d/100] - 1.0 |
| J | | = [(|
| 3. | Con | trol Rod Group 8 Reactivity |
| | a. | Group 8 worth at the HFP nominal position* from Curve 9 of OP-103C, Reactivity Worth Curves% Δ k/k |
| | b.
c. | Current Group 8 Position:% WD |
| | _ | Reactivity Worth Curves% Δ k/k |
| | d. | Reactivity = $c - a$
= $(-) - (-)$ + /% $\Delta k/k$ |
| | NOTE: | (5) Using a xenon value of 0.0% delta k/k is conservative and may be
used at any time. |
| 4. | Xeno
a. | on Reactivity
Obtain Xenon reactivity from Saxon code (submit printout). |
| | | OR |
| | b. | <u>IF</u> the Saxon code is unavailable,
<u>THEN</u> use 0.0% \triangle k/k or contact Reactor Engineering for
a value (0.0% \triangle k/k is conservative and therefore |
| | | preferred). $-$ % Δ k/k |
| | | l position for Group 8 is 30.4% wd until 650 (+/-10) EFPD.
(+/-10) EFPD IT IS 100% WD. |

•

.

| | | ENCLOSURE 1
(Page 2 of 3) | 1 |
|---------|------------|---|---|
| ۰. | _ | SHUTDOWN MARGIN CALCULATION (Cont'd) | |
| 5.
ノ | <u>Shu</u> | <u>utdown Margin</u>
Determine the shutdown margin by adding Items 2, 3
and 4 above, and round to the nearest tenth. | |
| | | + + = + /% ∆ k/k | |
| | | Item 2 Item 3 Item 4 | |
| | NOT | E: <u>IF</u> no credit was taken for xenon in Section 4,
<u>THEN</u> it is permissible to N/A Section 6. | |
| 6. | | <u>Reduction of Shutdown Margin by Xenon Decay</u>
a. Reduce the shutdown margin in Step 5 by -1.0% ∆ k/k.
(value in 5) - (-1% ∆ k/k) | |
| | | $- _ % \Delta k/k - (-1% \Delta k/k) = _ % \Delta k/k$ | |
| | | b. Record the xenon reactivity from Step 4:% \triangle k/k | |
| | | c. Reduce the xenon reactivity by the value in 6a.
(value in Step 6b) - (value in Step 6a) | |
| | | % ∆ k/k - (% ∆ k/k) = + /% ∆ k/k | |
| | d.1 | <u>IF</u> the value of 6c is positive,
<u>THEN</u> sufficient shutdown margin will be preserved
even when xenon decays to zero.
Steps 6.d.2 - 6.d.5 do not need to be completed. | |
| 1 | 4.2 | <u>IF</u> the value of 6c is negative, | |
| | u. 2 | THEN determine from the SAXON printout when the | |
| | | xenon reactivity will drop to the resulting value
calculated in Step 6c. If it will not drop to this value, | |
| | | inform the NSS and NA step 6.d.3 to 6.d.5. | |
| | d.3 | Record when xenon reactivity will reach the value
calculated in 6c. It is acceptable to pick the nearest
hour preceding reaching that value. | |
| | | date time | |
| | d.4 | Record this date and time in the Nuclear Operators
logbook and the Nuclear Operators Turnover Sheet. | |
| | d.5 | Inform the NSS that boron must be increased to compensate for xenon decay prior to reaching this time. | |
| | | | |

SHUTDOWN MARGIN CALCULATION (Cont'd)

- 7. Shutdown Margin
 - IF the shutdown margin determined in Step 5 is less negative than -1.0% k/k а. (i.e., zero, positive or between 0.0 and -1.0). THEN the shutdown margin is unacceptable. IMMEDIATELY inform the Nuclear Shift Supervisor and refer to ITS 3.1.1.
 - b. IF the shutdown margin determined in Step 5 is more negative than -1.0%k/k, <u>THEN</u> the shutdown margin is acceptable.

Calculated By _____ Date/Time _____

Checked By _____ Date/Time _____

ENCLOSURE 1A (Page 1 of 3)

ONE HOUR MISALIGNED ROD SHUTDOWN MARGIN CALCULATION

- 1. Core Burnup
 - a. Core Burnup = _____ EFPD

•

- NOTES: For the remaining steps (2-4) the following NOTES apply:
 - (1) It is permissible to round to the nearest whole EFPD.
 - (2) It is permissible to round to the nearest whole %wd.
 - For RCS > 532 degrees F, 532 degrees F data may be used. (3)
 - (4) Two decimal place accuracy is required in calculations.

2. Boron Reactivity

- RCS temperature _____ °F a. Boron concentration required for shutdown from appropriate b. Curve 18 or Curve 19 of OP-103C. _____ppm Actual Boron Concentration: ____ ppm c.
- d. Differential boron worth from Curve 3 of OP-103C, Reactivity Worth Curves.
- % ∆ k/k/100 ppm Reactivity During Modes 1, 2, 3, 4, and 5 e. Reactivity = $[(b - c) \times d/100] - 1.0$ $= [(- -) \times - + 100] - 1.0 = + / - - \% \Delta k /$
- NOTE: (5) It is permissible to NA steps 3a, 3b, 3c and 3d, and use 0.0 % delta k/k for the APSR reactivity contribution if the current APSR position is between 26%wd and 34%wd.
- 3. Control Rod Group 8 Reactivity
 - Group 8 worth at the HFP nominal position* from Curve 9 of а. OP-103C, Reactivity Worth Curves. - ____% Δ k/k Current Group 8 Position: _____% WD
 - b.
 - Group 8 worth at current position from Curve 9 of OP-103C, c. Reactivity Worth Curves. - ____ $\% \triangle k/k$
 - d. Reactivity = c - a= (-) - (-)+ / - % \(k/

ONE HOUR MISALIGNED ROD SHUTDOWN MARGIN CALCULATION (Cont'd)

NOTE: (6) For the one hour misaligned rod calculation ONLY, the value for xenon calculated prior to the misaligned rod for this hour may still be used provided that:

- o the existing SAXON printout accurately reflects the core conditions prior to the misaligned rod, and
- o the maximum post-misaligned rod power level is less than, or equal to, the power level used on the existing SAXON printout for calculating this hour's xenon.
- NOTE: (7) Using a xenon value of 0.0% delta k/k is conservative and may be used at any time.

4. Xenon Reactivity

- a. Obtain Xenon reactivity from Saxon code (submit printout). OR
- b. <u>IF</u> the Saxon code is unavailable, <u>THEN</u> use 0.0% \triangle k/k or contact Reactor Engineering for a value (0.0% \triangle k/k is conservative and therefore preferred).

<u>Shutdown Margin</u>

a. Determine the shutdown margin by adding Items 2, 3 and 4 above, and round to the nearest tenth +/.- % $\Delta k/$

b.1 <u>IF</u> the shutdown margin determined in Step 5a is <u>less</u> <u>negative</u> than -1.0% k/k (i.e., zero, positive or between 0.0 and -1.0), <u>THEN</u> the shutdown margin is unacceptable. IMMEDIATELY inform the Nuclear Shift Supervisor and refer to ITS 3.1.1.

b.2 <u>IF</u> the shutdown margin determined in Step 5a is <u>more</u> <u>negative</u> than -1.0% k/k, <u>THEN</u> the shutdown margin is acceptable. Notify the Nuclear Shift Supervisor and continue to step 6.

Calculated By/Dat

% ∆ k/

Verified By/Dat

CONTINUED NEXT PAGE.

5.

ONE HOUR MISALIGNED ROD SHUTDOWN MARGIN CALCULATION (Cont'd)

- NOTE: (A) <u>IF</u> no credit was taken for xenon in Section 4, THEN it is permissible to N/A Section 6.
 - (B) Step 5 completed the one hour shutdown margin verification requirement. Since steps 6a through 6d.5 will require producing a new SAXON printout, it may be delayed one additional hour as long as the shutdown margin calculated in step 5 was greater than 1.5% delta k/k.
- 6. Reduction of Shutdown Margin by Xenon Decay
 - a. Reduce the shutdown margin in Step 5a by -1.0% ∆ k/k. (value in 5a) - (-1% ∆ k/k) - ______ % ∆ k/k - (-1% ∆ k/k) = - ____% ∆ k/
 - b. Record the xenon reactivity from Step 4: k/
 - c. Reduce the xenon reactivity by the value in 6a. (value in Step 6b) - (value in Step 6a) - $\% \triangle k/k - (- ____% \triangle k/k) = + / - ____% \triangle k/$
 - d.1 <u>IF</u> the value of 6c is positive, <u>THEN</u> sufficient shutdown margin will be preserved even when xenon decays to zero. Steps 6.d.2-6.d.5 do not need to be completed.
 - d.2 <u>IF</u> the value of 6c is negative, <u>THEN</u> determine from the SAXON printout when the xenon reactivity will drop to the resulting value calculated in Step 6c. If it will not drop to this value, inform the NSS and NA step 6.d.3 to 6.d.5.
 - d.3 Record when xenon reactivity will reach the value calculated in 6c. It is acceptable to pick the nearest hour preceding reaching that value. date _______time _____
 - d.4 Record this date and time in the Nuclear Operators logbook and the Nuclear Operators Turnover Sheet.

Initial/Dat

d.5 Inform the NSS that boron must be increased to compensate for xenon decay prior to reaching this time.

| Calculated By | Date/Time |
|---------------|-----------|
| Checked By | Date/Time |

__% ∆ k/

% _ k/

- %∆k/

+ / - ____% ∆ k/

- %∆k/

REACTIVITY BALANCE DURING POWER OPERATION (> 15% FP)

REFERENCE CONDITIONS: 579°F, 100% FP, No Xenon, CRG 1-7 at 100% wd, HFP Samarium,

CRG 8 at HFP nominal position

- 1. Excess Fuel Reactivity
 - EFPD a. Core Burnup = ____
 - Excess Fuel Reactivity from Curve 10 of OP-103C, Reactivity **b**. Worth Curves.
- 2. Boron Reactivity
 - Boron Concentration _____ ppmB a.

Using core burnup from Step 1 (a), find the HFP inverse boron worth from Curve 4 of OP-103C, Reactivity Worth Curves: b. $ppm/% \Delta k/k$

- с. Divide Step 2(a) by the inverse boron worth in Step 2 (b) $2(a)/2(b) = ____ ppmB / ____ ppm/% \Delta k/k =$
- 3. Xenon Reactivity (Use Step 3.1, 3.2, or 3.3)
- 3.1 Obtain Xenon reactivity from SAXON (submit printout). OR
- 3.2 a. Last power level was _____ % FP for _____ _ hrs. b. IF time at 100% FP power level was > 40 hrs., THEN obtain Xenon reactivity from Curve 12 of OP-103C, Reactivity Worth Curves.
- 3.3 IF the value cannot be derived from 3.1 or 3.2, THEN contact Reactor Engineering for a value.

4. Reactivity Effect From Temperature

- a. Average RC Temperature _____ ____ °F
- b. Reference temperature is 579°F.
- c. Temperature coefficient at _____ ppmB obtained from Curve 13 of OP-103C, Reactivity Worth Curves, is _____ x 10^{-2} % \triangle k/k°F.
- d. Reactivity = [T(ave) 579] [Temp. Coeff.] e. Reactivity = (_____ - ___ 579) (_____) =
- 5. <u>Control Rod Reactivity</u>
 - Reactivity worth of inserted regulating rods as read from а. Curve 14 of OP-103C, Reactivity Worth Curves.

Rod Index _____ % WD

- NOTE: Group 8 worth compensation is not required since Group 8 HFP nominal position is already included in Curve 10 of OP-103C (see paragraph 3.2.5 for additional detail). This data on Group 8 position is recorded for use, where necessary, by Reactor Engineering for long term trending.
- b. Record Group 8 position ______% wd.

| | | • |
|-----------|---|--------------------------------|
| | | ENCLOSURE 2
(Page 2 of 2) |
| | ACTIVITY BALANCE DURING POWER OPERATION (\geq 15% FP) ontinued) | |
| 6. | <u>Reactivity Effect of Power Doppler</u>
a. Core Power Level =% FP | |
| | b. Power Doppler reactivity correction from Curve 15
of OP-103C, Reactivity Worth Curves. | +% ∆ k/ |
| 7. | <u>Net Reactivity</u>
a. Net reactivity is the sum of Steps 1 thru 6.
b. Inform the Shift Supervisor of the results. | %∆ k/ |
| | Acceptability | |
| 1. | <u>IF</u> the absolute value of Step 7a is greater than 1.0% \triangle k, <u>THEN</u> IMMEDIATELY inform the Nuclear Shift Supervisor and ITS 3.1.2. | |
| | <u>IF</u> the absolute value of Step 7a is greater than 0.3% \triangle k,
<u>THEN</u> notify Reactor Engineering to investigate the situat
Reactor Engineering will document the results of the inves
Enclosure 3. | ion. |
| Cal | culated By Date Time | |
| Che | cked By Time | |

Page 20

ENCLOSURE 2A

REACTIVITY BALANCE DURING POWER OPERATION (< 15% FP)

REFERENCE CONDITIONS: 532°F, 0% FP, No Xenon, CRG 1-8 at 100% wd, HFP Samarium.

.

| 1. | | |
|-----|--|----------|
| | a. Core Burnup = EFPD | |
| | b. Excess Fuel Reactivity from Curve 1 of OP-103C, | |
| | Reactivity Worth Curves. | +%∆k/ |
| | • | |
| 2. | Boron Reactivity | |
| | a. Boron Concentration ppmB | |
| | b. Using core burnup from Step 1(a), find the HZP inverse boron | |
| | b. Using Core burnup from Step 1(a), find the HZP inverse boron | |
| | worth from Curve 4 of OP-103C, Reactivity worth Curves | |
| | $ ppm/ \% \Delta k/k$ | |
| | c. Divide Step 2(a) by the inverse boron worth in Step 2(b). | |
| | $2(a)/2(b) = ppmB / ppm/ % \Delta k/k =$ | %∆k/ |
| | | |
| 3. | Xenon_Reactivity | |
| | a. Obtain Xenon reactivity from Saxon. (Submit printout.) | |
| | b. <u>IF</u> Saxon is unavailable, | |
| | <u>THEN</u> contact Reactor Engineering for a value. | 9 . L./ |
| | mention and the contact reactor engineering for a varue. | % ∆ k/ |
| | PCS Temperature and Barry Barry to State | |
| 4. | RCS Temperature and Power Reactivity Deficit | |
| | a. Average RC Temperature°F | |
| | b. Obtain temperature and power reactivity deficit from Curve | |
| | 6 of OP-103C, Reactivity Worth Curves. | %∆k/ |
| | | |
| 5. | <u>Control Rod Reactivity</u> | |
| | a. Reactivity worth of inserted regulating rods as read from | |
| | Curve 8 or 8A of OP-103C, Reactivity Worth Curves: | %∆k/ |
| | | % 4 K/ |
| | Rod Index % WD | |
| | | |
| | b Wonth of incontrol Choung and at a statute | |
| | b. Worth of inserted Group 8 rods at% withdrawn | |
| | from Curve 9 of OP-103C, Reactivity Worth Curves. | % ∆ k/ |
| _ | | |
| 6. | Samarium Reactivity | |
| | a. Obtain Samarium reactivity from Saxon. (Submit printout.) | |
| | b. <u>IF</u> Saxon is unavailable, | |
| | THEN contact Reactor Engineering for a value. | %∆k/ |
| | | ^ / A K/ |
| 7. | Net Reactivity | |
| | a. Net reactivity is the sum of Steps 1 thru 6. | % ∆ k/ |
| | b. Inform the Shift Supervisor of the results. | 7₀∆ K/ |
| | si inoni che sitte supervisor of the results. | |
| | Acceptability | |
| 1 | TE the phealute value of Step 7. is such that is at a fill | |
| 1. | IF the absolute value of Step 7a is greater than 1.0% Δ k/k, | |
| ~ | THEN IMMEDIATELY go to Step 5.2.2. | |
| Ζ. | IF the absolute value of Step 7a is greater than 0.3% \triangle k/k, | |
| | THEN go to Step 5.2.3. | |
| | | |
| | | |
| Cal | culated By Date/Time | |
| | | |
| Che | cked By Date/Time | |

ENCLOSURE 3

.

| COMPARISON OF OVERALL CORE REACTIVITY BALANCE TO PREDICTED VALUE |
|---|
| Date Time Core AgeEFPD's (based on 2544 MWth) |
| Reactivity Balance =% \triangle k/k (0 ± 1% \triangle k/k required) |
| Computations are attached. |
| Computed By |
| The following reactivity values were normalized |
| |
| |
| |
| |
| |
| COMMENTS: |
| |
| |
| |
| |
| |
| Reactor Engineer Date: |

.

| | | SHUTDOWN VALUE CALCULATION FORENCLOSURE 4SINGLE ROD GROUP WITHDRAWAL(Page 1 of 4) |
|-----|--------------|---|
| _ 1 | . Cor | re Burnup = EFPD |
| | RCS | 5 Temperature °F |
| 2 | . <u>Roc</u> | Position Status |
| | grp | o. 1 %wd grp. 3 %wd grp. 5 %wd grp. 7 %wd |
| | grp | o. 2 %wd grp. 4 %wd grp. 6 %wd grp. 8 %wd |
| | a. | Are all the rods in groups 1-7 fully inserted? circle one: Yes No |
| | b. | <u>IF</u> all rods in grps 1-7 are not fully inserted,
<u>THEN</u> review Step 3.5.5 and the CAUTION on Step 4.4.1.
Initial/Date |
| | CAL | JTION: In Modes 3,4 or 5, 73°F boron requirements for shutdown apply if OTSG
levels are > 40 inches or if EFIC MSLI Actuation logic is bypassed. |
| | NOT | TES: For the remaining steps the following NOTES apply: |
| | | (1) It is permissible to round to the nearest whole EFPD. |
| | | (2) It is permissible to round to the nearest whole %wd. |
| | | (3) Two decimal place accuracy is required in calculations. |
| 3. | Bor | ron Reactivity Contribution |
| | a. | Required boron concentration from Curve 18 of OP-103C ppmb |
| | b. | Actual boron concentration ppmb |
| | c. | Differential boron worth from Curve 3 of OP-103C%∆k/k/100ppmb |
| | d. | Reactivity = [(a-b) x c/100] -1.0
= [() x ÷ 100] -1.0 = + /% $\Delta k/k$ |
| 4. | Gro | pup 8 Reactivity Contribution |
| | a. | Group 8 HFP nominal position is: 0-650 (+/-10) EFPD <u>30.4%wd</u>
650 (+/-10) - 680 EFPD <u>100%wd</u> |
| | b. | Group 8 worth from Curve 9 of OP-103C at the HFP nominal position%_k/k |
| | c. | Current group 8 position%wd |
| | d. | Group 8 worth from Curve 9 of OP-103C at the current position% $\Delta k/k$ |
| | e. | Reactivity = d - b = () - () = + /% $\triangle k/k$ |

.

.

Page 23

| | | SHUTDOWN VALUE CALCULATION FOR
SINGLE ROD GROUP WITHDRAWAL | | ENCLOSURE 4
(Page 2 of 4) |
|-----|------------|---|---|------------------------------|
| Con | tinu | | | (rage 2 01 4) |
| 5. | | on Reactivity Contribution | | |
| | a. | <u>IF</u> credit is to be taken for transient xenon,
<u>THEN</u> this enclosure must be completed within one hour
of moving each rod group. This may require more than
one calculation to test all the rod groups. | | |
| | b. | Use SAXON (time:) | | |
| | | <u>OR</u> | | |
| | | use 0.0% \triangle k/k. Using 0.0% \triangle k/k is conservative. | - | % ∆ k/k |
| 6. | <u>Sam</u> | arium Reactivity Contribution | | |
| | Use | SAXON | | |
| | <u>or</u> | | | |
| | use | 0.0% $\Delta k/k$. Using 0.0% $\Delta k/k$ is conservative. | - | % ∆ k/k |
| 7. | <u>Stu</u> | ck Rod Worth Contribution | | |
| | Use | the value from Curve 11 of OP-103C | | |
| | a. | Stuck Rod Worth =%∆k/k | | |
| | b. | Rod Worth decreased by 10% value (7a x 0.90)
%∆k/k x 0.90 = | | % ∆ k/k |
| 8. | <u>Sub</u> | total With All Rods (1-7) In | | |
| | Add | the values of Steps 3 through 7 | | % ∆ k/k |

• •

.

|.

6.

7.

8.

.

,

SHUTDOWN VALUE CALCULATION FOR SINGLE ROD GROUP WITHDRAWAL

ENCLOSURE 4 (Page 3 of 4)

Continued NOTE: The values for rod groups on Curve 20 of OP-103C are valid only if all other rods in grps 1-7 are inserted.

- 9. Withdrawn Rod Group Contribution
 - a. Rod group no. that is, or is to be, withdrawn.

rod group _____

b. Worth of the rod group from Curve 20 of OP-103C

_____%∆k/k

c. Rod worth increased by the standard 10% conservatism

(value in 9b) x 1.10 = ____% $\Delta k/k \times 1.10 = -$ ____% $\Delta k/k$

10. Shutdown Value with the Rod Group withdrawn

NOTE: Subtracting a negative value is the same as adding a positive value.

(value in Step 8) - (value in Step 9)

(-____%\Delta k/k) - (-____%\Delta k/k)

____%∆ k/k

SHUTDOWN VALUE CALCULATION FOR SINGLE ROD GROUP WITHDRAWAL

Continued 11. <u>ACCEPTABILITY</u>

- a. Is the value in Step 10 more negative than -1.5%∆k/k? circle one: Yes No
- b. <u>IF</u> the value in Step 10 is more negative than $-1.5\% \triangle k/k$, <u>THEN</u> the k_{eff} remains less than 0.99, <u>AND</u> the value is acceptable. Rod withdrawal may be performed.
- c. <u>IF</u> the value in Step 10 is less negative than $-1.5\% \Delta k/k$, <u>THEN</u> the value is unacceptable for single group withdrawal of rod groups 2-7.
 - (1) Do not withdraw the rod group.
 - (2) <u>IF</u> the rod group is already withdrawn,
 - THEN immediately insert it.
 - (3) Inform the NSS
 - (4) Compare to 11.d., below.

d. <u>IF</u> the value in Step 10 is less negative than $-1.0\% \triangle k/k$, <u>THEN</u>: (1) Do not withdraw the rod group

- (2) <u>IF</u> the rod group is already withdrawn (including rod group 1),
- THEN immediately insert it.
- (3) Initiate a shutdown margin calculation
- (4) Inform the NSS. <u>IF</u> the rod group was already withdrawn, <u>THEN</u> k_{eff} was greater than or equal to 0.99 k_{eff}. Refer to the operational mode definitions of ITS Table 1.1.

Performed By: _____ Date: _____

Verified By: _____

Date: _____

Effective Date <u>3/6/00</u>

OPERATING PROCEDURE

OP-103C

FLORIDA POWER CORPORATION

CRYSTAL RIVER UNIT 3

CYCLE 12 REACTIVITY WORTH CURVES

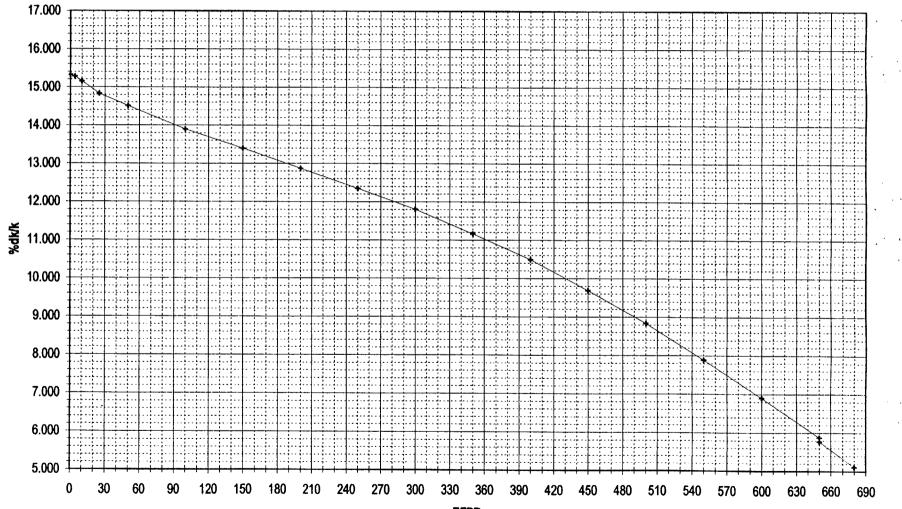
APPROVED BY: Procedure Owner

Mike Collins (SIGNATURE ON FILE)

DATE: 3/1/2000

PROCEDURE OWNER: Reactor Engineer

TABLE OF CONTENTS


Curve Description

Curve No.

| Fuel Reactivity Worth Versus Cycle Lifetime (0% FP) 1 |
|--|
| Differential Boron Worth (vs. RCS Boron conc HZP and HFP) 2 |
| Differential Boron Worth vs. Cycle Lifetime (70°, 300°, and 532°F) 3 |
| Inverse Boron Worth (vs. Cycle Lifetime - HZP and HFP) |
| Temperature Coefficient of Reactivity versus RCS Boron Concentration (HZP) 5 |
| RCS Temperature and Power Deficit from Hot Zero Power (vs. RCS Tave) 6 |
| Hot Zero Power Reactivity Worth of CRG 1 and CRG 1-4 |
| CRG 5-7 Integral Reactivity Worth (0% FP, No Xenon) |
| CRG 5-7 Integral Reactivity Worth - Peak Xenon (0% FP) |
| APSR Integral Reactivity Worth (0% FP) |
| Fuel Reactivity Worth Versus Cycle Lifetime (100% FP) |
| Maximum Stuck Rod Worth 11 |
| Equilibrium Xenon Worth versus Cycle Lifetime (100% FP) |
| Temperature Reactivity Coefficients versus Boron Concentration (HFP) 13 |
| CRG 5-7 Integral Reactivity Worth (100% FP, equil. xenon) 14 |
| Power Deficit From 100% FP 15 |
| Soluble Poison Concentration Control 16 |
| Soluble Poison Concentration Control 17A |
| Soluble Poison Concentration Control 17B |
| Boron Conc. for Shutdown Margin
Versus Cycle Lifetime (single stuck rod) 18 |
| Boron Conc. for Shutdown Margin vs. Cycle Lifetime (double stuck rod) 19 |
| Non-Sequential Control Rod Group Worths 20 |

Curve 1 (Page 1 of 4)

Fuel Reactivity Worth vs. Cycle Lifetime 0% FP, 532 F, ARO, No Xe, HFP Sm

EFPD

Curve 1 (Page 2 of 4)

•

-

~

| EFPD | % dk/k | EFPD | % dk/k | EFPD | % dk/k | EFPD | % dk/k | EFPD | % dk/k | EFPD | % dk/k |
|--|---------------|------|---------|---|---------|-------|---------|------|-----------|-------|---------|
| i ia | | 48 | 14.5346 | 96 | 13.9487 | 144 | 13.4565 | 192 | 12.9594 | 240 | 12.4528 |
| 1 | 15.3088 | 49 | 14.5217 | 97 | 13.9365 | 145 | 13.4464 | 193 | 12.9490 | 241 | 12.4422 |
| 2 | 15.2988 | | - ASSEE | 98 | 13.9244 | 146 | 13.4364 | 194 | 12.9386 | 242 | 12.4316 |
| 3 | 15.2888 | 51 | 14.4966 | 99 | 13.9122 | 147 | 13.4263 | 195 | 12.9282 | 243 | 12.4210 |
| reneration and the second s | | 52 | 14.4845 | ૾૾૾૾ૻૺૢૺૻૼૼૼૼૼૼૼૼૼૼૼૼૼૼૼૼૼૼૼૼૼૼૼૼૼૻૢૢૼૼૼૼૼૼૼૼ | | 148 | 13.4162 | 196 | 12.9178 | 244 | 12.4105 |
| 5 | 15.2575 | 53 | 14.4723 | 101 | 13.8899 | 149 | 13.4061 | 197 | 12.9075 | 245 | 12.3999 |
| 6 | 15.2362 | 54 | 14.4601 | 102 | 13.8798 | | | 198 | 12.8971 | 246 | 12.3893 |
| 7 | 15.2149 | 55 | 14.4479 | 103 | 13.8698 | 151 | 13.3857 | 199 | 12.8867 | 247 | 12.3787 |
| 8 | 15.1936 | 56 | 14.4357 | 104 | 13.8597 | 152 | 13.3753 | | - Section | 248 | 12.3681 |
| 9 | 15.1723 | 57 | 14.4236 | 105 | 13.8496 | 153 | 13.3649 | 201 | 12.8657 | 249 | 12.3575 |
| and the second sec | | 58 | 14.4114 | 106 | 13.8395 | 154 | 13.3545 | 202 | 12.8551 | 1.4.5 | <u></u> |
| 11 | 15.1297 | 59 | 14.3992 | 107 | 13.8294 | 155 | 13.3441 | 203 | 12.8445 | 251 | 12.3361 |
| 12 | 15.1084 | 60 | 14.3870 | 108 | 13.8194 | 156 | 13.3337 | 204 | 12.8339 | 252 | 12.3254 |
| 13 | 15.0871 | 61 | 14.3749 | 109 | 13.8093 | 157 | 13.3233 | 205 | 12.8233 | 253 | 12.3146 |
| 14 | 15.0658 | 62 | 14.3627 | 110 | 13.7992 | 158 | 13.3129 | 206 | 12.8127 | 254 | 12.3038 |
| 15 | 15.0445 | 63 | 14.3505 | 111 | 13.7891 | 159 | 13.3025 | 207 | 12.8022 | 255 | 12.2930 |
| 16 | 15.0231 | 64 | 14.3383 | 112 | 13.7791 | 160 | 13.2921 | 208 | 12.7916 | 256 | 12.2822 |
| 17 | 15.0018 | 65 | 14.3262 | 113 | 13.7690 | 161 | 13.2817 | 209 | 12.7810 | 257 | 12.2714 |
| 18 | 14.9805 | 66 | 14.3140 | 114 | 13.7589 | 162 | 13.2713 | 210 | 12.7704 | 258 | 12.2606 |
| 19 | 14.9592 | 67 | 14.3018 | 115 | 13.7488 | 163 | 13.2609 | 211 | 12.7598 | 259 | 12.2499 |
| 20 | 14.9379 | 68 | 14.2896 | 116 | 13.7387 | 164 | 13.2505 | 212 | 12.7492 | 260 | 12.2391 |
| 21 | 14.9166 | 69 | 14.2775 | 117 | 13.7287 | 165 | 13.2401 | 213 | 12.7386 | 261 | 12.2283 |
| 22 | 14.8953 | 70 | 14.2653 | 118 | 13.7186 | 166 | 13.2297 | 214 | 12.7281 | 262 | 12.2175 |
| 23 | 14.8739 | 71 | 14.2531 | 119 | 13.7085 | 167 | 13.2193 | 215 | 12.7175 | 263 | 12.2067 |
| 24 | 14.8526 | 72 | 14.2409 | 120 | 13.6984 | 168 | 13.2089 | 216 | 12.7069 | 264 | 12.1959 |
| and the string | ntra ang sa k | 73 | 14.2288 | 121 | 13.6883 | 169 | 13.1985 | 217 | 12.6963 | 265 | 12.1851 |
| 26 | 14.8184 | 74 | 14.2166 | 122 | 13.6783 | 170 | 13.1881 | 218 | 12.6857 | 266 | 12.1743 |
| 27 | 14.8055 | 75 | 14.2044 | 123 | 13.6682 | 171 | 13.1777 | 219 | 12.6751 | 267 | 12.1636 |
| 28 | 14.7926 | 76 | 14.1922 | 124 | 13.6581 | 172 | 13.1673 | 220 | 12.6645 | 268 | 12.1528 |
| 29 | 14.7797 | 77 | 14.1801 | 125 | 13.6480 | 173 | 13.1569 | 221 | 12.6539 | 269 | 12.1420 |
| 30 | 14.7668 | 78 | 14.1679 | 126 | 13.6379 | 174 | 13.1466 | 222 | 12.6434 | 270 | 12.1312 |
| 31 | 14.7539 | 79 | 14.1557 | 127 | 13.6279 | 175 | 13.1362 | 223 | 12.6328 | 271 | 12.1204 |
| 32 | 14.7410 | 80 | 14.1435 | 128 | 13.6178 | 176 | 13.1258 | 224 | 12.6222 | 272 | 12.1096 |
| 33 | 14.7281 | 81 | 14.1313 | 129 | 13.6077 | 177 | 13.1154 | 225 | 12.6116 | 273 | 12.0988 |
| 34 | 14.7152 | 82 | 14.1192 | 130 | 13.5976 | 178 | 13.1050 | 226 | 12.6010 | 274 | 12.0880 |
| 35 | 14.7023 | 83 | 14.1070 | 131 | 13.5875 | 179 | 13.0946 | 227 | 12.5904 | 275 | 12.0773 |
| 36 | 14.6894 | 84 | 14.0948 | 132 | 13.5775 | 180 | 13.0842 | 228 | 12.5798 | 276 | 12.0665 |
| 37 | 14.6765 | 85 | 14.0826 | 133 | 13.5674 | 181 | 13.0738 | 229 | 12.5693 | 277 | 12.0557 |
| 38 | 14.6636 | 86 | 14.0705 | 134 | 13.5573 | 182 | 13.0634 | 230 | 12.5587 | 278 | 12.0449 |
| 39 | 14.6507 | 87 | 14.0583 | 135 | 13.5472 | 183 | 13.0530 | 231 | 12.5481 | 279 | 12.0341 |
| 40 | 14.6378 | 88 | 14.0461 | 136 | 13.5372 | 184 | 13.0426 | 232 | 12.5375 | 280 | 12.0233 |
| 41 | 14.6249 | 89 | 14.0339 | 137 | 13.5271 | 185 | 13.0322 | 233 | 12.5269 | 281 | 12.0125 |
| 42 | 14.6120 | 90 | 14.0218 | 138 | 13.5170 | 186 | 13.0218 | 234 | 12.5163 | 282 | 12.0018 |
| 43 | 14.5991 | 91 | 14.0096 | 139 | 13.5069 | 187 | 13.0114 | 235 | 12.5057 | 283 | 11.9910 |
| 44 | 14.5862 | 92 | 13.9974 | 140 | 13.4968 | . 188 | 13.0010 | 236 | 12.4951 | 284 | 11.9802 |
| 45 | 14.5733 | 93 | 13.9852 | 141 | 13.4868 | 189 | 12.9906 | 237 | 12.4846 | 285 | 11.9694 |
| 46 | 14.5604 | 94 | 13.9731 | 142 | 13.4767 | 190 | 12.9802 | 238 | 12.4740 | 286 | 11.9586 |
| 47 | 14.5475 | 95 | 13.9609 | 143 | 13.4666 | 191 | 12.9698 | 239 | 12.4634 | 287 | 11.9478 |

. . . .

_

IT IS PERMISSIBLE TO INTERPOLATE BETWEEN EFPD RANGES - -

-

-- - - - - -

Curve 1 (Page 3 of 4)

| EFPD | % dk/k | EFPD | % dk/k | EFPD | % dk/k | EFPD | % dk/k | EFPD | % dk/k | EFPD | % dk/k |
|------|---------|--|---------|------|---------|------|--------|----------------|--------|----------|---------------|
| | | | | | | | | | | <u> </u> | |
| 288 | 11.9370 | 336 | 11.3411 | 384 | 10.7043 | 432 | 9.9738 | 480 | 9.1764 | 528 | 8.3087 |
| 289 | 11.9262 | 337 | 11.3281 | 385 | 10.6909 | 433 | 9.9577 | 481 | 9.1595 | 529 | 8.2898 |
| 290 | 11.9155 | 338 | 11.3152 | 386 | 10.6775 | 434 | 9.9416 | 482 | 9.1426 | 530 | 8.2709 |
| 291 | 11.9047 | 339 | 11.3022 | 387 | 10.6641 | 435 | 9.9254 | 483 | 9.1257 | 531 | 8.2519 |
| 292 | 11.8939 | 340 | 11.2893 | 388 | 10.6508 | 436 | 9.9093 | 484 | 9.1088 | 532 | 8.2330 |
| 293 | 11.8831 | 341 | 11.2763 | 389 | 10.6374 | 437 | 9.8932 | 485 | 9.0919 | 533 | 8.2141 |
| 294 | 11.8723 | 342 | 11.2633 | 390 | 10.6240 | 438 | 9.8770 | 486 | 9.0750 | 534 | 8.1952 |
| 295 | 11.8615 | 343 | 11.2504 | 391 | 10.6106 | 439 | 9.8609 | 487 | 9.0580 | 535 | 8.1763 |
| 296 | 11.8507 | 344 | 11.2374 | 392 | 10.5972 | 440 | 9.8448 | 488 | 9.0411 | 536 | 8.1574 |
| 297 | 11.8400 | 345 | 11.2245 | 393 | 10.5838 | 441 | 9.8286 | 489 | 9.0242 | 537 | 8.1385 |
| 298 | 11.8292 | 346 | 11.2115 | 394 | 10.5704 | 442 | 9.8125 | 490 | 9.0073 | 538 | 8.1195 |
| 299 | 11.8184 | 347 | 11.1985 | 395 | 10.5570 | 443 | 9.7964 | 491 | 8.9904 | 539 | 8.1006 |
| | 44 3040 | 348 | 11.1856 | 396 | 10.5436 | 444 | 9.7802 | 492 | 8.9735 | 540 | 8.0817 |
| 301 | 11.7946 | 349 | 11.1726 | 397 | 10.5302 | 445 | 9.7641 | 493 | 8.9566 | 541 | 8.0628 |
| 302 | 11.7817 | ······································ | | 398 | 10.5168 | 446 | 9.7480 | 494 | 8.9397 | 542 | 8.0439 |
| 303 | 11.7687 | 351 | 11.1463 | 399 | 10.5034 | 447 | 9.7319 | 495 | 8.9228 | 543 | 8.0250 |
| 304 | 11.7558 | 352 | 11.1329 | | | 448 | 9.7157 | 496 | 8.9059 | 544 | 8.0060 |
| 305 | 11.7428 | 353 | 11.1195 | 401 | 10.4739 | 449 | 9.6996 | 497 | 8.8890 | 545 | 7.9871 |
| 306 | 11.7298 | 354 | 11.1061 | 402 | 10.4578 | | | 498 | 8.8721 | 546 | 7.9682 |
| 307 | 11.7169 | 355 | 11.0927 | 403 | 10.4416 | 451 | 9.6666 | 499 | 8.8552 | 547 | 7.9493 |
| 308 | 11.7039 | 356 | 11.0793 | 404 | 10.4255 | 452 | 9.6497 | | SQUE. | 548 | 7.9304 |
| 309 | 11.6910 | 357 | 11.0659 | 405 | 10.4094 | 453 | 9.6327 | 501 | 8.8194 | 549 | 7.9115 |
| 310 | 11.6780 | 358 | 11.0525 | 406 | 10.3932 | 454 | 9.6158 | 502 | 8.8005 | | and the first |
| 311 | 11.6650 | 359 | 11.0391 | 407 | 10.3771 | 455 | 9.5989 | 503 | 8.7816 | 551 | 7.8727 |
| 312 | 11.6521 | 360 | 11.0257 | 408 | 10.3610 | 456 | 9.5820 | 504 | 8.7627 | 552 | 7.8528 |
| 313 | 11.6391 | 361 | 11.0124 | 409 | 10.3449 | 457 | 9.5651 | 505 | 8.7437 | 553 | 7.8330 |
| 314 | 11.6262 | 362 | 10.9990 | 410 | 10.3287 | 458 | 9.5482 | 506 | 8.7248 | 554 | 7.8131 |
| 315 | 11.6132 | 363 | 10.9856 | 411 | 10.3126 | 459 | 9.5313 | 507 | 8.7059 | 555 | 7.7932 |
| 316 | 11.6003 | 364 | 10.9722 | 412 | 10.2965 | 460 | 9.5144 | 508 | 8.6870 | 556 | 7.7734 |
| 317 | 11.5873 | 365 | 10.9588 | 413 | 10.2803 | 461 | 9.4975 | 509 | 8.6681 | 557 | 7.7535 |
| 318 | 11.5743 | 366 | 10.9454 | 414 | 10.2642 | 462 | 9.4806 | 510 | 8.6492 | 558 | 7.7337 |
| 319 | 11.5614 | 367 | 10.9320 | 415 | 10.2481 | 463 | 9.4637 | 511 | 8.6302 | 559 | 7.7138 |
| 320 | 11.5484 | 368 | 10.9186 | 416 | 10.2319 | 464 | 9.4468 | 512 | 8.6113 | 560 | 7.6939 |
| 321 | 11.5355 | 369 | 10.9052 | 417 | 10.2158 | 465 | 9.4299 | 513 | 8.5924 | 561 | 7.6741 |
| 322 | 11.5225 | 370 | 10.8918 | 418 | 10.1997 | 466 | 9.4130 | 514 | 8.5735 | 562 | 7.6542 |
| 323 | 11.5095 | 371 | 10.8784 | 419 | 10.1835 | 467 | 9.3961 | 515 | 8.5546 | 563 | 7.6343 |
| 324 | 11.4966 | 372 | 10.8650 | 420 | 10.1674 | 468 | 9.3792 | 516 | 8.5357 | 564 | 7.6145 |
| 325 | 11.4836 | 373 | 10.8516 | 421 | 10.1513 | 469 | 9.3623 | 517 | 8.5168 | 565 | 7.5946 |
| 326 | 11.4707 | 374 | 10.8382 | 422 | 10.1351 | 470 | 9.3454 | 518 | 8.4978 | 566 | 7.5748 |
| 327 | 11.4577 | 375 | 10.8249 | 423 | 10.1190 | 471 | 9.3285 | 519 | 8.4789 | 567 | 7.5549 |
| 328 | 11.4448 | 376 | 10.8115 | 424 | 10.1029 | 472 | 9.3116 | 520 | 8.4600 | 568 | 7.5350 |
| 329 | 11.4318 | 377 | 10.7981 | 425 | 10.0867 | 473 | 9.2947 | 521 | 8.4411 | 569 | 7.5152 |
| 330 | 11.4188 | 378 | 10.7847 | 426 | 10.0706 | 474 | 9.2778 | 522 | 8.4222 | 570 | 7.4953 |
| 331 | 11.4059 | 379 | 10.7713 | 427 | 10.0545 | 475 | 9.2609 | 523 | 8.4033 | 571 | 7.4754 |
| 332 | 11.3929 | 380 | 10.7579 | 428 | 10.0384 | 476 | 9.2440 | 524 | 8.3843 | 572 | 7.4556 |
| 333 | 11.3800 | 381 | 10.7445 | 429 | 10.0222 | 477 | 9.2271 | 525 | 8.3654 | 573 | 7.4357 |
| 334 | 11.3670 | 382 | 10.7311 | 430 | 10.0061 | 478 | 9.2102 | 526 | 8.3465 | 574 | 7.4159 |
| 335 | 11.3540 | 383 | 10.7177 | 431 | 9.9900 | 479 | 9.1933 | 527
EN EFPD | 8.3276 | 575 | 7.3960 |

· .

-- - - - -

IT IS PERMISSIBLE TO INTERPOLATE BETWEEN EFPD RANGES -- -

-

Curve 1 (Page 4 of

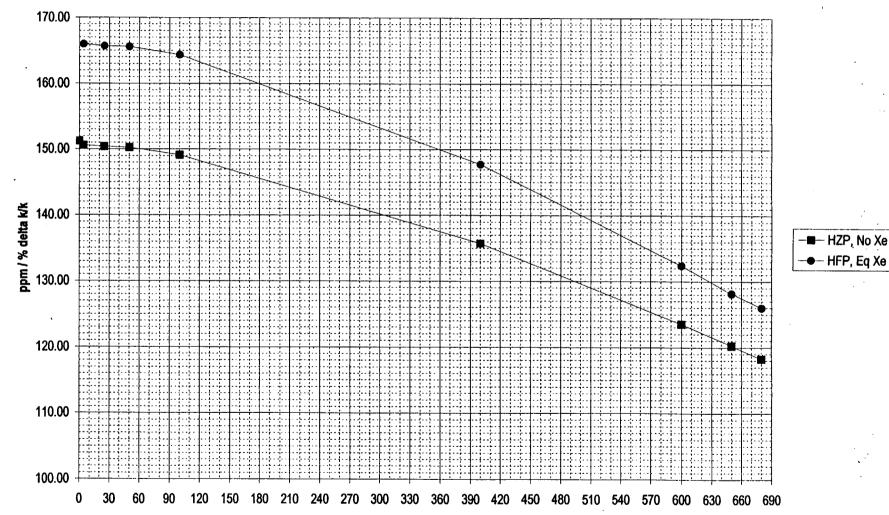
.

_

| EFPD | % dk/k | EFPD | % dk/k | EFPD | % dk/k | EFPD | % dk/k | EFPD | % dk/k | EFPD | % dk/k |
|------|--------|-------|--|-----------|---------------|-----------|----------|--|--------|---------------------------------------|--------------|
| 576 | 7.3761 | 624 | 6.4053 | 671 | 5.3070 | APSRs Out | | | | | |
| 577 | 7.3563 | 625 | 6.3847 | 672 | 5.2848 | APSRs Out | | + | | | <u> </u> |
| 578 | 7.3364 | 626 | 6.3641 | 673 | 5.2626 | APSRs Out | | 1 | | | |
| 579 | 7.3166 | 627 | 6.3435 | 674 | 5.2405 | APSRs Out | | + | | | <u> </u> |
| 580 | 7.2967 | 628 | 6.3229 | 675 | 5.2183 | APSRs Out | <u> </u> | | | | <u> </u> |
| 581 | 7.2768 | 629 | 6.3024 | 676 | 5.1961 | APSRs Out | | 1 | | | |
| 582 | 7.2570 | 630 | 6.2818 | 677 | 5.1739 | APSRs Out | <u> </u> | <u> </u> | | | |
| 583 | 7.2371 | 631 | 6.2612 | 678 | 5.1517 | APSRs Out | | | | | <u> </u> |
| 584 | 7.2172 | 632 | 6.2406 | 679 | 5.1296 | APSRs Out | | | | | |
| 585 | 7.1974 | 633 | 6.2200 | • | in the applet | APSRs Out | | <u> </u> | | | |
| 586 | 7.1775 | 634 | 6.1994 | | | | | | | · · · · · · · · · · · · · · · · · · · | |
| 587 | 7.1577 | 635 | 6.1788 | | | | | | | | |
| 588 | 7.1378 | 636 | 6.1582 | | <u> </u> | | | ļ | | | |
| 589 | 7.1179 | 637 | 6.1376 | | | | · |
 | | | |
| 590 | 7.0981 | 638 | 6.1171 | | | | | | | | |
| 591 | 7.0782 | 639 | 6.0965 | | | | | | | | |
| 592 | 7.0583 | 640 | 6.0759 | | | | | | | | |
| 593 | 7.0385 | 641 | 6.0553 | | <u> </u> | | | | | | |
| 594 | 7.0186 | 642 | 6.0347 | | | | | | · | | |
| 595 | 6.9988 | 643 | 6.0141 | | | | | | | | |
| 596 | 6.9789 | 644 | 5.9935 | | | | | ·
· · · · · · · · · · · · · · · · · · · | | | |
| 597 | 6.9590 | 645 | 5.9729 | <u> </u> | | | | | | | |
| 598 | 6.9392 | 646 | 5.9523 | | | | | | | | <u></u> |
| 599 | 6.9193 | 647 | 5.9318 | | | | · | | | | |
| | | 648 | 5.9112 | | | | | | | | |
| 601 | 6.8789 | 649 | 5.8906 | | | | | | | | |
| 602 | 6.8583 | Refer | 0.0000 | | | | | | | | |
| 603 | 6.8377 | a | | APSRs Out | | | | | | | |
| 604 | 6.8171 | 651 | 5.7506 | APSRs Out | | | | | | | |
| 605 | 6.7965 | 652 | 5.7284 | APSRs Out | | | | | | | |
| 606 | 6.7759 | 653 | 5.7062 | APSRs Out | | | | | | | |
| 607 | 6.7553 | 654 | 5.6840 | APSRs Out | | | | | | | |
| 608 | 6.7347 | 655 | 5.6619 | APSRs Out | | | | | | · | |
| 609 | 6.7141 | 656 | 5.6397 | APSRs Out | | | | | | | |
| 610 | 6.6936 | 657 | 5.6175 | APSRs Out | | | | | | | |
| 611 | 6.6730 | 658 | 5.5953 | APSRs Out | | | | | | | |
| 612 | 6.6524 | 659 | 5.5731 | APSRs Out | | | | | | | |
| 613 | 6.6318 | 660 | 5.5510 | APSRs Out | · · · · | | | | | | |
| 614 | 6.6112 | 661 | 5.5288 | APSRs Out | | | | | | | |
| 615 | 6.5906 | 662 | 5.5066 | APSRs Out | | | | | | ····· | |
| 616 | 6.5700 | 663 | 5.4844 | APSRs Out | | | | | | | <u> </u> |
| 617 | 6.5494 | 664 | 5.4622 | APSRs Out | | | | | | · | |
| 618 | 6.5288 | 665 | 5.4401 | APSRs Out | | | | | · | | |
| 619 | 6.5083 | 666 | 5.4179 | APSRs Out | | | | | | | · · |
| 620 | 6.4877 | 667 | 5.3957 | APSRs Out | | | | | | | |
| 621 | 6.4671 | 668 | 5.3735 | APSRs Out | | | | | | | |
| 622 | 6.4465 | 669 | 5.3514 | APSRs Out | | | | | | | |
| 623 | 6.4259 | 670 | 5.3292 | APSRs Out | | | | | | | |
| | | | the second s | ISSIBLE 1 | | | | | | | |

• • •

IT IS PERMISSIBLE TO INTERPOLATE BETWEEN EFPD RANGES


- -

-

-- - - - - -

Inverse Boron Worth

Curve 4 (Page 1 of 6)

CRG 1-7 at 100%WD, CRG 8 at HFP Nominal Position, HFP Sm

EFPD

(Page 2 of 6

. .

| | IBW, ppm/%dk/k | | | IBW, p | om/%dk/k | IBW, ppm/%dk/k | | |
|------------------------|---|----------|-----------------|----------|------------------|----------------|----------|----------|
| EFPD | EFPD HZP HFP | | EFPD | | | EFPD | HZP | HFP |
| ofranti≩toj + toj
S | Coloradore de la colorador | 166.0333 | 48 | 150.2804 | 165.3933 | 96 | 149.2488 | 164.4668 |
| 1 | 151.0975 | 166.0200 | 49 | 150.2752 | 165.3800 | 97 | 149.2266 | 164.4426 |
| 2 | 150.9350 | 166.0067 | -1 <u>.</u> 9". | | ૽ૻૡ૱૱ૼ૱ૢૼૼૼૼૼૼૡ૱ | 98 | 149.2044 | 164.4184 |
| 3 | 150.7725 | 165.9933 | 51 | 150.2478 | 165.5558 | 99 | 149.1822 | 164.3942 |
| in second | estration (| | 52 | 150.2256 | 165.5316 | | - CENCER | SE SKUP |
| 5 | 150.6000 | 165.9667 | 53 | 150.2034 | 165.5074 | 101 | 149.1153 | 164.3146 |
| 6 | 150.5900 | 165.9533 | 54 | 150.1812 | 165.4832 | 102 | 149.0706 | 164.2592 |
| 7 | 150.5800 | 165.9400 | 55 | 150.1590 | 165.4590 | 103 | 149.0259 | 164.2038 |
| 8 | 150.5700 | 165.9267 | 56 | 150.1368 | 165.4348 | 104 | 148.9812 | 164.1484 |
| 9 | 150.5600 | 165.9133 | 57 | 150.1146 | 165.4106 | 105 | 148.9365 | 164.0930 |
| 10 | 150.5500 | 165.9000 | 58 | 150.0924 | 165.3864 | 106 | 148.8918 | 164.0376 |
| 11 | 150.5400 | 165.8867 | 59 | 150.0702 | 165.3622 | 107 | 148.8471 | 163.9822 |
| 12 | 150.5300 | 165.8733 | 60 | 150.0480 | 165.3380 | 108 | 148.8024 | 163.9268 |
| 13 | 150.5200 | 165.8600 | 61 | 150.0258 | 165.3138 | 109 | 148.7577 | 163.8714 |
| 14 | 150.5100 | 165.8467 | 62 | 150.0036 | 165.2896 | 110 | 148.7130 | 163.8160 |
| 15 | 150.5000 | 165.8333 | 63 | 149.9814 | 165.2654 | 111 | 148.6683 | 163.7606 |
| 16 | 150.4900 | 165.8200 | 64 | 149.9592 | 165.2412 | 112 | 148.6236 | 163.7052 |
| 17 | 150.4800 | 165.8067 | 65 | 149.9370 | 165.2170 | 113 | 148.5789 | 163.6498 |
| 18 | 150.4700 | 165.7933 | 66 | 149.9148 | 165.1928 | 114 | 148.5342 | 163.5944 |
| 19 | 150.4600 | 165.7800 | 67 | 149.8926 | 165.1686 | 115 | 148.4895 | 163.5390 |
| 20 | 150.4500 | 165.7667 | 68 | 149.8704 | 165.1444 | 116 | 148.4448 | 163.4836 |
| 21 | 150.4400 | 165.7533 | 69 | 149.8482 | 165.1202 | 117 | 148.4001 | 163.4282 |
| 22 | 150.4300 | 165.7400 | 70 | 149.8260 | 165.0960 | 118 | 148.3554 | 163.3728 |
| 23 | 150.4200 | 165.7267 | 71 | 149.8038 | 165.0718 | 119 | 148.3107 | 163.3174 |
| 24 | 150.4100 | 165.7133 | 72 | 149.7816 | 165.0476 | 120 | 148.2660 | 163.2620 |
| in the second | ે પ્રાથમ (ક્રા, ક્રા, જ. ન | | 73 | 149.7594 | 165.0234 | 121 | 148.2213 | 163.2066 |
| 26 | 150.3948 | 165.6867 | 74 | 149.7372 | 164.9992 | 122 | 148.1766 | 163.1512 |
| 27 | 150.3896 | 165.6733 | 75 | 149.7150 | 164.9750 | 123 | 148.1319 | 163.0958 |
| 28 | 150.3844 | 165.6600 | 76 | 149.6928 | 164.9508 | 124 | 148.0872 | 163.0404 |
| 29 | 150.3792 | 165.6467 | 77 | 149.6706 | 164.9266 | 125 | 148.0425 | 162.9850 |
| 30 | 150.3740 | 165.6333 | 78 | 149.6484 | 164.9024 | 126 | 147.9978 | 162.9296 |
| 31 | 150.3688 | 165.6200 | 79 | 149.6262 | 164.8782 | 127 | 147.9531 | 162.8742 |
| 32 | 150.3636 | 165.6067 | 80 | 149.6040 | 164.8540 | 128 | 147.9084 | 162.8188 |
| 33 | 150.3584 | 165.5933 | 81 | 149.5818 | 164.8298 | 129 | 147.8637 | 162.7634 |
| 34 | 150.3532 | 165.5800 | 82 | 149.5596 | 164.8056 | 130 | 147.8190 | 162.7080 |
| 35 | 150.3480 | 165.5667 | 83 | 149.5374 | 164.7814 | 131 | 147.7743 | 162.6526 |
| 36 | 150.3428 | 165.5533 | 84 | 149.5152 | 164.7572 | 132 | 147.7296 | 162.5972 |
| 37 | 150.3376 | 165.5400 | 85 | 149.4930 | 164.7330 | 133 | 147.6849 | 162.5418 |
| 38 | 150.3324 | 165.5267 | 86 | 149.4708 | 164.7088 | 134 | 147.6402 | 162.4864 |
| 39 | 150.3272 | 165.5133 | 87 | 149.4486 | 164.6846 | 135 | 147.5955 | 162.4310 |
| 40 | 150.3220 | 165.5000 | 88 | 149.4264 | 164.6604 | 136 | 147.5508 | 162.3756 |
| 41 | 150.3168 | 165.4867 | 89 | 149.4042 | 164.6362 | 137 | | 162.3202 |
| 42 | 150.3116 | 165.4733 | 90 | 149.3820 | 164.6120 | 138 | 147.4614 | 162.2648 |
| 43 | | 165.4600 | 91 | 149.3598 | 164.5878 | 139 | 147.4167 | 162.2094 |
| 44 | 150.3012 | 165.4467 | 92 | 149.3376 | 164.5636 | 140 | 147.3720 | 162.1540 |
| 45 | 150.2960 | 165.4333 | 93 | 149.3154 | 164.5394 | 141 | 147.3273 | 162.0986 |
| 46 | 150.2908 | 165.4200 | 94 | 149.2932 | 164.5152 | 142 | | 162.0432 |
| 47 | 150.2856 | 165.4067 | 95 | 149.2710 | 164.4910 | 143 | 147.2379 | 161.9878 |

- -

- -

;. .

•

.

Curve 4 (Page 3 of 6

| EFPD
144
145
146
147
148
149
150
151 | HZP
147.1932
147.1485
147.1038
147.0591
147.0144 | m/%dk/k
HFP
161.9324
161.8770
161.8216 | EFPD
192
193 | HZP
145.0476 | HFP
159.2732 | EFPD
240 | HZP | m/%dk/k
HFP |
|--|---|--|--------------------|----------------------|----------------------|-------------------|----------------------|----------------------|
| 145
146
147
148
149
150
151 | 147.1485
147.1038
147.0591
147.0144 | 161.8770
161.8216 | | 145.0476 | 150 2722 | 240 | 440.0000 | 1 1 |
| 146
147
148
149
150
151 | 147.1038
147.0591
147.0144 | 161.8216 | 193 | | 100.6102 | 240 | 142.9020 | 156.6140 |
| 147
148
149
150
151 | 147.0591
147.0144 | | | 145.0029 | 159.2178 | 241 | 142.8573 | 156.5586 |
| 148
149
150
151 | 147.0144 | 404 3000 | 194 | 144.9582 | 159.1624 | 242 | 142.8126 | 156.5032 |
| 149
150
151 | | 161.7662 | 195 | 144.9135 | 159.1070 | 243 | 142.7679 | 156.4478 |
| 150
151 | 440.000 | 161.7108 | 196 | 144.8688 | 159.0516 | 244 | 142.7232 | 156.3924 |
| 151 | 146.9697 | 161.6554 | 197 | 144.8241 | 158.9962 | 245 | 142.6785 | 156.3370 |
| | 146.9250 | 161.6000 | 198 | 144.7794 | 158.9408 | 246 | 142.6338 | 156.2816 |
| | 146.8803 | 161.5446 | 199 | 144.7347 | 158.8854 | 247 | 142.5891 | 156.2262 |
| 152 | 146.8356 | 161.4892 | 200 | 144.6900 | 158.8300 | 248 | 142.5444 | 156.1708 |
| 153 | 146.7909 | 161.4338 | 201 | 144.6453 | 158.7746 | 249 | 142.4997 | 156.1154 |
| 154 | 146.7462 | 161.3784 | 202 | 144.6006 | 158.7192 | 250 | 142.4550 | 156.0600 |
| 155 | 146.7015 | 161.3230 | 203 | 144.5559 | 158.6638 | 251 | 142.4103 | 156.0046 |
| 156 | 146.6568 | 161.2676 | 204 | 144.5112 | 158.6084 | 252 | 142.3656 | 155.9492 |
| 157 | 146.6121 | 161.2122 | 205 | 144.4665 | 158.5530 | 253 | 142.3209 | 155.8938 |
| 158 | 146.5674 | 161.1568 | 206 | 144.4218 | 158.4976 | 254 | 142.2762 | 155.8384 |
| 159 | 146.5227 | 161.1014 | 207 | 144.3771 | 158.4422 | 255 | 142.2315 | 155.7830 |
| 160 | 146.4780 | 161.0460 | 208 | 144.3324 | 158.3868 | 256 | 142.1868 | 155.7276 |
| | 146.4333 | 160.9906 | 209 | 144.2877 | 158.3314 | 257 | 142.1421 | 155.6722 |
| | 146.3886 | 160.9352 | 210 | 144.2430 | 158.2760 | 258 | 142.0974 | 155.6168 |
| | 146.3439 | 160.8798 | 210 | 144.1983 | 158.2206 | 259 | 142.0527 | 155.5614 |
| | 146.2992 | 160.8244 | 212 | 144.1536 | 158.1652 | 260 | 142.0080 | 155.5060 |
| | 146.2545 | 160.7690 | 212 | 144.1089 | 158.1098 | 261 | 141.9633 | 155.4506 |
| | 146.2098 | 160.7136 | 213 | 144.0642 | 158.0544 | 262 | 141.9186 | 155.3952 |
| | 146.1651 | 160.6582 | 214 | 144.0195 | 157.9990 | 263 | 141.8739 | 155.3398 |
| | 146.1204 | 160.6028 | 215 | 143.9748 | 157.9436 | 263 | 141.8292 | 155.2844 |
| | 146.0757 | 160.5474 | 210 | 143.9301 | 157.8882 | 265 | 141.7845 | 155.2290 |
| | 146.0310 | 160.4920 | 217 | 143.8854 | 157.8328 | 265 | 141.7398 | 155.1736 |
| | 145.9863 | 160.4366 | 219 | 143.8407 | 157.7774 | 267 | 141.6951 | 155.1182 |
| | 145.9416 | 160.3812 | 213 | 143.7960 | 157.7220 | 268 | 141.6504 | 155.0628 |
| | 145.8969 | 160.3258 | 220 | 143.7513 | 157.6666 | 269 | 141.6057 | 155.0020 |
| | 145.8522 | 160.2704 | 222 | 143.7066 | 157.6112 | 209 | 141.5610 | 154.9520 |
| | 145.8075 | 160.2150 | 223 | | | | | |
| | 145.7628 | 160.1596 | 223 | 143.6619
143.6172 | 157.5558
157.5004 | 271 | 141.5163 | 154.8966 |
| | 145.7181 | 160.1042 | 224 | 143.5725 | 157.5004 | <u>272</u>
273 | 141.4716 | 154.8412 |
| | 145.6734 | 160.1042 | 225 | 143.5725 | 157.3896 | 273 | 141.4269 | 154.7858 |
| | 145.6287 | 159.9934 | 220 | 143.4831 | 157.3342 | 274 | | 154.7304 |
| | 145.5840 | 159.9380 | 228 | 143.4384 | 157.2788 | | 141.3375 | 154.6750 |
| | 145.5393 | 159.8826 | 220 | 143.3937 | 157.2234 | <u>276</u>
277 | 141.2928 | 154.6196 |
| | 145.4946 | 159.8272 | 229 | 143.3937 | 157.1680 | | 141.2481 | 154.5642 |
| | 145.4499 | 159.7718 | 230 | 143.3490 | 157.1000 | 278
279 | 141.2034 | 154.5088 |
| | 145.4052 | 159.7164 | 231 | 143.2596 | | | | 154.4534 |
| | 145.3605 | 159.6610 | 232 | 143.2598 | 157.0572 | 280 | 141.1140 | 154.3980 |
| | 145.3158 | 159.6056 | 233 | | 157.0018 | 281 | 141.0693 | 154.3426 |
| | 145.2711 | 159.5502 | 234 | 143.1702 | 156.9464 | 282 | 141.0246 | 154.2872 |
| | 145.2264 | 159.5502 | | 143.1255 | 156.8910 | 283 | 140.9799 | 154.2318 |
| | | | 236 | 143.0808 | 156.8356 | 284 | 140.9352 | 154.1764 |
| | 145.1817 | 159.4394 | 237 | 143.0361 | 156.7802 | 285 | 140.8905 | 154.1210 |
| | 145.1370
145.0923 | 159.3840
159.3286 | 238
239 | 142.9914
142.9467 | 156.7248
156.6694 | 286
287 | 140.8458
140.8011 | 154.0656
154.0102 |

•

. . .

. . .

Curve 4 (Page 4 of 6

| | IBW, pp | om/%dk/k | | IBW, pp | om/%dk/k | 1 | IBW, pp | m/%dk/k |
|------|----------|----------|------|----------|----------|-------|----------|----------------------|
| EFPD | HZP | HFP | EFPD | HZP | HFP | EFPD | HZP | HFP |
| 288 | 140.7564 | 153.9548 | 336 | 138.6108 | 151.2956 | 384 | 136.4652 | 148.6364 |
| 289 | 140.7117 | 153.8994 | 337 | 138.5661 | 151.2402 | 385 | 136.4205 | 148.5810 |
| 290 | 140.6670 | 153.8440 | 338 | 138.5214 | 151.1848 | 386 | 136.3758 | 148.5256 |
| 291 | 140.6223 | 153.7886 | 339 | 138.4767 | 151.1294 | 387 | 136.3311 | 148.4702 |
| 292 | 140.5776 | 153.7332 | 340 | 138.4320 | 151.0740 | 388 | 136.2864 | 148.4148 |
| 293 | 140.5329 | 153.6778 | 341 | 138.3873 | 151.0186 | 389 | 136.2417 | 148.3594 |
| 294 | 140.4882 | 153.6224 | 342 | 138.3426 | 150.9632 | 390 | 136.1970 | 148.3040 |
| 295 | 140.4435 | 153.5670 | 343 | 138.2979 | 150.9078 | 391 | 136.1523 | 148.2486 |
| 296 | 140.3988 | 153.5116 | 344 | 138.2532 | 150.8524 | 392 | 136.1076 | 148.1932 |
| 297 | 140.3541 | 153.4562 | 345 | 138.2085 | 150.7970 | 393 | 136.0629 | 148.1378 |
| 298 | 140.3094 | 153.4008 | 346 | 138.1638 | 150.7416 | 394 | 136.0182 | 148.0824 |
| 299 | 140.2647 | 153.3454 | 347 | 138.1191 | 150.6862 | 395 | 135.9735 | 148.0270 |
| 300 | 140.2200 | 153.2900 | 348 | 138.0744 | 150.6308 | 396 | 135.9288 | 147.9716 |
| 301 | 140.1753 | 153.2346 | 349 | 138.0297 | 150.5754 | 397 | 135.8841 | 147.9162 |
| 302 | 140.1306 | 153.1792 | 350 | 137.9850 | 150.5200 | 398 | 135.8394 | 147.8608 |
| 303 | 140.0859 | 153.1238 | 351 | 137.9403 | 150.4646 | 399 | 135.7947 | 147.8054 |
| 304 | 140.0412 | 153.0684 | 352 | 137.8956 | 150.4092 | .(1.) | 100.1041 | |
| 305 | 139.9965 | 153.0130 | 353 | 137.8509 | 150.3538 | 401 | 135.6889 | 147.6733 |
| 306 | 139.9518 | 152.9576 | 354 | 137.8062 | 150.2984 | 402 | 135.6278 | 147.5966 |
| 307 | 139.9071 | 152.9022 | 355 | 137.7615 | 150.2430 | 403 | 135.5667 | 147.5199 |
| 308 | 139.8624 | 152.8468 | 356 | 137.7168 | 150.1876 | 404 | 135.5056 | 147.4432 |
| 309 | 139.8177 | 152.7914 | 357 | 137.6721 | 150.1322 | 405 | 135.4445 | 147.3665 |
| 310 | 139.7730 | 152.7360 | 358 | 137.6274 | 150.0768 | 406 | 135.3834 | 147.2898 |
| 311 | 139.7283 | 152.6806 | 359 | 137.5827 | 150.0214 | 407 | 135.3223 | 147.2131 |
| 312 | 139.6836 | 152.6252 | 360 | 137.5380 | 149.9660 | 408 | 135.2612 | 147.1364 |
| 313 | 139.6389 | 152.5698 | 361 | 137.4933 | 149.9106 | 409 | 135.2001 | 147.0597 |
| 314 | 139.5942 | 152.5144 | 362 | 137.4486 | 149.8552 | 410 | 135.1390 | 146.9830 |
| 315 | 139.5495 | 152.4590 | 363 | 137.4039 | 149.7998 | 411 | 135.0779 | 146.9063 |
| 316 | 139.5048 | 152.4036 | 364 | 137.3592 | 149.7444 | 412 | 135.0168 | 146.8296 |
| 317 | 139.4601 | 152.3482 | 365 | 137.3145 | 149.6890 | 413 | 134.9557 | 146.7529 |
| 318 | 139.4154 | 152.2928 | 366 | 137.2698 | 149.6336 | 414 | 134.8946 | 146.6762 |
| 319 | 139.3707 | 152.2374 | 367 | 137.2251 | 149.5782 | 415 | 134.8335 | |
| 320 | 139.3260 | 152.1820 | 368 | 137.1804 | 149.5228 | 416 | 134.7724 | 146.5228 |
| 321 | 139.2813 | 152.1266 | 369 | 137.1357 | 149.4674 | 417 | 134.7113 | 146.4461 |
| 322 | 139.2366 | 152.0712 | 370 | 137.0910 | 149.4120 | 418 | 134.6502 | 146.3694 |
| 323 | 139.1919 | 152.0158 | 371 | 137.0463 | 149.3566 | 419 | 134.5891 | 146.2927 |
| 324 | 139.1472 | 151.9604 | 372 | 137.0016 | 149.3012 | 420 | 134.5280 | 146.2160 |
| 325 | 139.1025 | 151.9050 | 373 | 136.9569 | 149.2458 | 421 | 134.4669 | 146.1393 |
| 326 | 139.0578 | 151.8496 | 374 | 136.9122 | 149.1904 | 422 | 134.4058 | 146.0626 |
| 327 | 139.0131 | 151.7942 | 375 | 136.8675 | 149.1350 | 423 | 134.3447 | 145.9859 |
| 328 | 138.9684 | 151.7388 | 376 | 136.8228 | 149.0796 | 424 | 134.2836 | 145.9092 |
| 329 | 138.9237 | 151.6834 | 377 | 136.7781 | 149.0242 | 425 | 134.2225 | 145.8325 |
| 330 | 138.8790 | 151.6280 | 378 | 136.7334 | 148.9688 | 425 | 134.1614 | 145.7558 |
| 331 | 138.8343 | 151.5726 | 379 | 136.6887 | 148.9134 | 427 | 134.1014 | 145.6791 |
| 332 | 138.7896 | 151.5172 | 380 | 136.6440 | 148.8580 | 428 | 134.0392 | 145.6024 |
| 333 | 138.7449 | 151.4618 | 381 | 136.5993 | 148.8026 | 428 | 133.9781 | |
| 334 | 138.7002 | 151.4064 | 382 | 136.5546 | 148.7472 | 429 | 133.9781 | 145.5257
145.4490 |
| 335 | 138.6555 | 151.3510 | 383 | 136.5099 | 148.6918 | 430 | | |
| | 100.0000 | 101.0010 | 303 | 120.2099 | 140.0910 | 431 | 133.8559 | 145.3723 |

• • • •

Curve 4 (Page 5 of 6

| | | m/%dk/k | | IBW, pp | m/%dk/k | | IBW, pp | m/%dk/k |
|------|----------|----------|------|----------|----------|----------|----------|----------|
| EFPD | HZP | HFP | EFPD | HZP | HFP | EFPD | HZP | HFP |
| 432 | 133.7948 | 145.2956 | 480 | 130.8620 | 141.6140 | 528 | 127.9292 | 137.932 |
| 433 | 133.7337 | 145.2189 | 481 | 130.8009 | 141.5373 | 529 | 127.8681 | 137.855 |
| 434 | 133.6726 | 145.1422 | 482 | 130.7398 | 141.4606 | 530 | 127.8070 | 137.779 |
| 435 | 133.6115 | 145.0655 | 483 | 130.6787 | 141.3839 | 531 | 127.7459 | 137.702 |
| 436 | 133.5504 | 144.9888 | 484 | 130.6176 | 141.3072 | 532 | 127.6848 | 137.625 |
| 437 | 133.4893 | 144.9121 | 485 | 130.5565 | 141.2305 | 533 | 127.6237 | 137.548 |
| 438 | 133.4282 | 144.8354 | 486 | 130.4954 | 141.1538 | 534 | 127.5626 | 137.472 |
| 439 | 133.3671 | 144.7587 | 487 | 130.4343 | 141.0771 | 535 | 127.5015 | 137.395 |
| 440 | 133.3060 | 144.6820 | 488 | 130.3732 | 141.0004 | 536 | 127.4404 | 137.318 |
| 441 | 133.2449 | 144.6053 | 489 | 130.3121 | 140.9237 | 537 | 127.3793 | 137.242 |
| 442 | 133.1838 | 144.5286 | 490 | 130.2510 | 140.8470 | 538 | 127.3182 | 137.165 |
| 443 | 133.1227 | 144.4519 | 491 | 130.1899 | 140.7703 | 539 | 127.2571 | 137.088 |
| 444 | 133.0616 | 144.3752 | 492 | 130.1288 | 140.6936 | 540 | 127.1960 | 137.012 |
| 445 | 133.0005 | 144.2985 | 493 | 130.0677 | 140.6169 | 541 | 127.1349 | 136.935 |
| 446 | 132.9394 | 144.2218 | 494 | 130.0066 | 140.5402 | 541 | 127.0738 | 136.858 |
| 447 | 132.8783 | 144.1451 | 495 | 129.9455 | 140.4635 | 543 | 127.0138 | |
| 448 | 132.8172 | 144.0684 | 495 | 129.8844 | 140.4835 | <u> </u> | | 136.781 |
| 449 | 132.7561 | | | | | | 126.9516 | 136.705 |
| | | 143.9917 | 497 | 129.8233 | 140.3101 | 545 | 126.8905 | 136.628 |
| 450 | 132.6950 | 143.9150 | 498 | 129.7622 | 140.2334 | 546 | 126.8294 | 136.551 |
| 451 | 132.6339 | 143.8383 | 499 | 129.7011 | 140.1567 | 547 | 126.7683 | 136.475 |
| 452 | 132.5728 | 143.7616 | 500 | 129.6400 | 140.0800 | 548 | 126.7072 | 136.398 |
| 453 | 132.5117 | 143.6849 | 501 | 129.5789 | 140.0033 | 549 | 126.6461 | 136.321 |
| 454 | 132.4506 | 143.6082 | 502 | 129.5178 | 139.9266 | 550 | 126.5850 | 136.245 |
| 455 | 132.3895 | 143.5315 | 503 | 129.4567 | 139.8499 | 551 | 126.5239 | 136.168 |
| 456 | 132.3284 | 143.4548 | 504 | 129.3956 | 139.7732 | 552 | 126.4628 | 136.091 |
| 457 | 132.2673 | 143.3781 | 505 | 129.3345 | 139.6965 | 553 | 126.4017 | 136.0149 |
| 458 | 132.2062 | 143.3014 | 506 | 129.2734 | 139.6198 | 554 | 126.3406 | 135.9382 |
| 459 | 132.1451 | 143.2247 | 507 | 129.2123 | 139.5431 | 555 | 126.2795 | 135.861 |
| 460 | 132.0840 | 143.1480 | 508 | 129.1512 | 139.4664 | 556 | 126.2184 | 135.7848 |
| 461 | 132.0229 | 143.0713 | 509 | 129.0901 | 139.3897 | 557 | 126.1573 | 135.708 |
| 462 | 131.9618 | 142.9946 | 510 | 129.0290 | 139.3130 | 558 | 126.0962 | 135.6314 |
| 463 | 131.9007 | 142.9179 | 511 | 128.9679 | 139.2363 | 559 | 126.0351 | 135.5547 |
| 464 | 131.8396 | 142.8412 | 512 | 128.9068 | 139.1596 | 560 | 125.9740 | 135.4780 |
| 465 | 131.7785 | 142.7645 | 513 | 128.8457 | 139.0829 | 561 | 125.9129 | 135.4013 |
| 466 | 131.7174 | 142.6878 | 514 | 128.7846 | 139.0062 | 562 | 125.8518 | 135.3246 |
| 467 | 131.6563 | 142.6111 | 515 | 128.7235 | 138.9295 | 563 | 125.7907 | 135.2479 |
| 468 | 131.5952 | 142.5344 | 516 | 128.6624 | 138.8528 | 564 | 125.7296 | 135.1712 |
| 469 | 131.5341 | 142.4577 | 517 | 128.6013 | 138.7761 | 565 | 125.6685 | 135.0945 |
| 470 | 131.4730 | 142.3810 | 518 | 128.5402 | 138.6994 | 566 | 125.6074 | 135.0178 |
| 471 | 131.4119 | 142.3043 | 519 | 128.4791 | 138.6227 | 567 | 125.5463 | 134.9411 |
| 472 | 131.3508 | 142.2276 | 520 | 128.4180 | 138.5460 | 568 | 125.4852 | 134.8644 |
| 473 | 131.2897 | 142.1509 | 521 | 128.3569 | 138.4693 | 569 | 125.4241 | 134.7877 |
| 474 | 131.2286 | 142.0742 | 522 | 128.2958 | 138.3926 | 570 | 125.3630 | 134.7110 |
| 475 | 131.1675 | 141.9975 | 523 | 128.2347 | 138.3159 | 571 | 125.3019 | 134.6343 |
| 476 | 131.1064 | 141.9208 | 524 | 128.1736 | 138.2392 | 572 | 125.2408 | 134.5576 |
| 477 | 131.0453 | 141.8441 | 525 | 128.1125 | 138.1625 | 573 | 125.1797 | 134.4809 |
| 478 | 130.9842 | 141.7674 | 526 | 128.0514 | 138.0858 | 574 | 125.1797 | 134.4009 |
| 479 | 130.9231 | 141.6907 | 520 | 127.9903 | 138.0091 | 575 | 125.0575 | 134.3275 |

· .

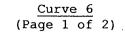
. . . .

(Page 6 of 6

· · ·

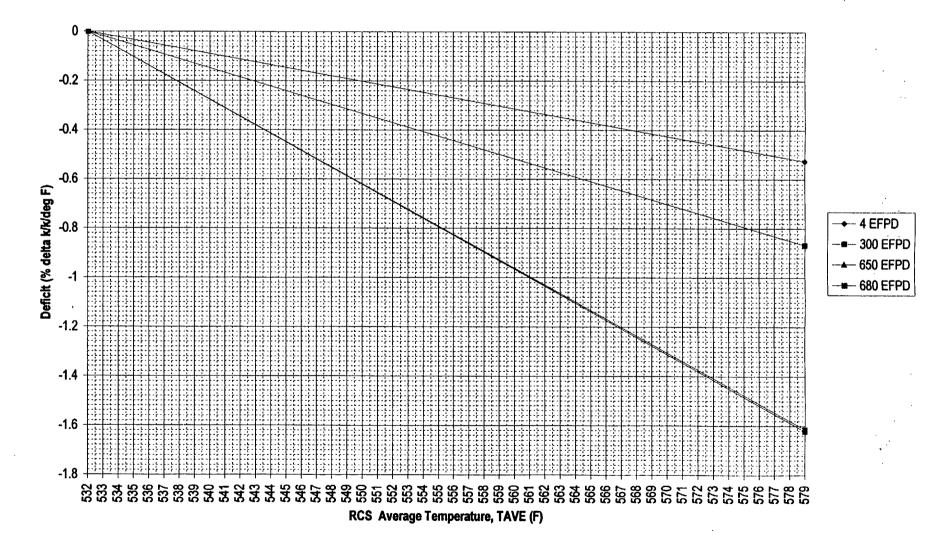
.

_


• -

| | IBW, pp | om/%dk/k | | IBW, pp | m/%dk/k | | 1 | 3W, ppm/%d | dk/k |
|------------|----------|----------------------|------|---|----------|-----------|----------|---|--|
| EFPD | HZP | HFP | EFPD | HZP | HFP | EFPD | HZP | HFP | |
| 576 | 124.9964 | 134.2508 | 624 | 121.9556 | 130.3604 | | 118.8480 | 126.6710 | APSRs Out |
| 577 | 124.9353 | 134.1741 | 625 | 121.8900 | 130.2750 | 672 | 118.7827 | 126.5987 | APSRs Out |
| 578 | 124.8742 | 134.0974 | 626 | 121.8244 | 130.1896 | 673 | 118.7173 | 126.5263 | |
| 579 | 124.8131 | 134.0207 | 627 | 121.7588 | 130.1042 | 674 | 118.6520 | 126.4540 | APSRs Out |
| 580 | 124.7520 | 133.9440 | 628 | 121.6932 | 130.0188 | | 118.5867 | 126.3817 | APSRs Out |
| 581 | 124.6909 | 133.8673 | 629 | 121.6276 | 129.9334 | | 118.5213 | 126.3093 | APSRs Out |
| 582 | 124.6298 | 133.7906 | 630 | 121.5620 | 129.8480 | | 118.4560 | 126.2370 | APSRs Out |
| 583 | 124.5687 | 133.7139 | 631 | 121.4964 | 129.7626 | | 118.3907 | 126.1647 | APSRs Out |
| 584 | 124.5076 | 133.6372 | 632 | 121.4308 | 129.6772 | | 118.3253 | | APSRs Out |
| 585 | 124.4465 | 133.5605 | 633 | 121.3652 | 129.5918 | | | | AFSROM |
| 586 | 124.3854 | 133.4838 | 634 | 121.2996 | 129.5064 | | | , se ge signification de la constantion | and the same and |
| 587 | 124.3243 | 133.4071 | 635 | 121.2340 | 129.4210 | | | | •••••••••••••••••••••••••••••••••••••• |
| 588 | 124.2632 | 133.3304 | 636 | 121.1684 | 129.3356 | | | | <u>_</u> |
| 589 | 124.2021 | 133.2537 | 637 | 121.1028 | 129.2502 | | | | |
| 590 | 124.1410 | 133.1770 | 638 | 121.0372 | 129.1648 | | | | |
| 591 | 124.0799 | 133.1003 | 639 | 120.9716 | 129.0794 | | | | |
| 592 | 124.0188 | 133.0236 | 640 | 120.9060 | 128.9940 | | | | |
| 593 | 123.9577 | 132.9469 | 641 | 120.8404 | 128.9086 | | | | |
| 594 | 123.8966 | 132.8702 | 642 | 120.7748 | 128.8232 | + | | | |
| 595 | 123.8355 | 132.7935 | 643 | 120.7092 | 128.7378 | | | | , |
| 596 | 123.7744 | 132.7168 | 644 | 120.6436 | 128.6524 | | + | | |
| 597 | 123.7133 | 132.6401 | 645 | 120.5780 | 128.5670 | <u>+</u> | | | |
| 598 | 123.6522 | 132.5634 | 646 | 120.5124 | 128.4816 | | | | ····· |
| 599 | 123.5911 | 132.4867 | 647 | 120.4468 | 128.3962 | | ++ | | ····· |
| V 10[0].0. | 120.0011 | | 648 | 120.3812 | 128.3108 | | | | |
| 601 | | | 649 | 120.3012 | 128.2254 | | + | | |
| 602 | 123.3988 | 132.2392 | 043 | 120.0100 | 120.2204 | | | | · · · · · · |
| 603 | 123.3332 | 132.1538 | | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | | APSRs Out | ···· | | · |
| 604 | 123.2676 | 132.0684 | 651 | 120.1547 | | APSRs Out | | | |
| 605 | 123.2020 | 131.9830 | 652 | 120.0893 | | APSRS Out | | | |
| 606 | 123.1364 | 131.8976 | 653 | 120.0893 | | APSRS Out | <u> </u> | | |
| 607 | 123.0708 | | 654 | | | APSRs Out | | | |
| 608 | 123.0052 | | 655 | | | | | | |
| 609 | | 131.6414 | 656 | 119.8933
119.8280 | | APSRs Out | <u> </u> | | |
| 610 | 122.8740 | 131.5560 | 657 | | | APSRs Out | ╄ | | |
| 611 | | 131.4706 | 658 | 119.7627 | | APSRs Out | | · | |
| 612 | | 131.3852 | 659 | 119.6973 | | APSRs Out | + | | |
| 613 | | 131.2998 | 660 | | | APSRs Out | | | |
| 614 | | 131.2998 | 661 | 119.5667 | | APSRs Out | | | |
| 615 | | 131.1290 | 662 | | | APSRs Out | | | |
| 616 | | | | | | APSRs Out | | | |
| 617 | | 131.0436
130.9582 | 663 | | | APSRs Out | - | | |
| 618 | | | 664 | | | APSRs Out | ·- | | |
| 619 | | 130.8728 | 665 | | | APSRs Out | | | |
| 620 | | 130.7874 | 666 | | | APSRs Out | | | |
| 620 | | 130.7020 | 667 | | | APSRs Out | | | |
| | | 130.6166 | 668 | | | APSRs Out | - | | |
| 622 | | 130.5312 | 669 | the second se | | APSRs Out | ļ | | |
| 623 | 122.0212 | 130.4458 | 670 | 118.9133 | 126.7433 | APSRs Out | | | |

- -


.

- - - -

RCS Temperature and Power Deficit from Hot Zero Power

CRG 1-7 at 100% WD, CRG 8 at HFP Nominal Position, Eq Xe, HFP Sm

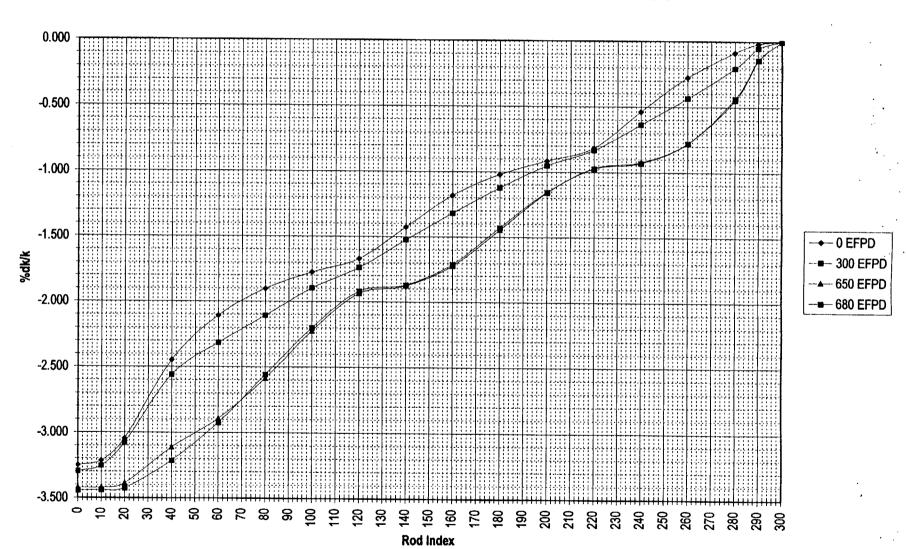
. Curve 6 (Page 2 of 2)

| RCS | | Defic | it, %dk/k | |
|-------------|---------|----------|-----------------|----------|
| Temperature | 4 EFPD | 300 EFPD | 650 EFPD | 680 EFPD |
| F | | | | (Note 2) |
| | | | | |
| 533 | -0.0112 | -0.0185 | -0.0345 | -0.0344 |
| 534 | -0.0224 | -0.0369 | -0.0691 | -0.0687 |
| 535 | -0.0336 | -0.0554 | -0.1036 | -0.1031 |
| 536 | -0.0448 | -0.0739 | -0.1381 | -0.1374 |
| 537 | -0.0560 | -0.0923 | -0.1727 | -0.1718 |
| 538 | -0.0671 | -0.1108 | -0.2072 | -0.2062 |
| 539 | -0.0783 | -0.1293 | -0.2417 | -0.2405 |
| 540 | -0.0895 | -0.1477 | -0.2763 | -0.2749 |
| 541 | -0.1007 | -0.1662 | -0.3108 | -0.3093 |
| 542 | -0.1119 | -0.1847 | -0.3453 | -0.3436 |
| 543 | -0.1231 | -0.2031 | -0.3799 | -0.3780 |
| 544 | -0.1343 | -0.2216 | -0.4144 | -0.4123 |
| 545 | -0.1455 | -0.2401 | -0.4489 | -0.4467 |
| 546 | -0.1567 | -0.2586 | -0.4834 | -0.4811 |
| 547 | -0.1679 | -0.2770 | -0.5180 | -0.5154 |
| 548 | -0.1791 | -0.2955 | -0.5525 | -0.5498 |
| 549 | -0.1903 | -0.3140 | -0.5870 | -0.5841 |
| 550 | -0.2014 | -0.3324 | -0.6216 | -0.6185 |
| 551 | -0.2126 | -0.3509 | -0.6561 | -0.6529 |
| 552 | -0.2238 | -0.3694 | -0.6906 | -0.6872 |
| 553 | -0.2350 | -0.3878 | -0.7252 | -0.7216 |
| 554 | -0.2462 | -0.4063 | -0.7597 | -0.7560 |
| 555 | -0.2574 | -0.4248 | -0.7942 | -0.7903 |
| 556 | -0.2686 | -0.4432 | -0.8288 | -0.8247 |
| 557 | -0.2798 | -0.4617 | -0.8633 | -0.8590 |
| 558 | -0.2910 | -0.4802 | -0.8978 | -0.8934 |
| 559 | -0.3022 | -0.4986 | -0.9324 | -0.9278 |
| 560 | -0.3134 | -0.5171 | -0.9669 | -0.9621 |
| 561 | -0.3246 | -0.5356 | -1.0014 | -0.9965 |
| 562 | -0.3357 | -0.5540 | -1.0360 | -1.0309 |
| 563 | -0.3469 | -0.5725 | -1.0705 | -1.0652 |
| 564 | -0.3581 | -0.5910 | -1.1050 | -1.0996 |
| 565 | -0.3693 | -0.6094 | -1.1396 | -1.1339 |
| 566 | -0.3805 | -0.6279 | -1.1741 | -1.1683 |
| 567 | -0.3917 | -0.6464 | -1.2086 | -1.2027 |
| 568 | -0.4029 | -0.6649 | -1.2431 | -1.2370 |
| 569 | -0.4141 | -0.6833 | -1.2777 | -1.2714 |
| 570 | -0.4253 | -0.7018 | -1.3122 | -1.3057 |
| 571 | -0.4365 | -0.7203 | * 1.3467 | -1.3401 |
| 572 | -0.4477 | -0.7387 | -1.3813 | -1.3745 |
| 573 | -0.4589 | -0.7572 | -1.4158 | -1.4088 |
| 574 | -0.4700 | -0.7757 | -1.4503 | -1.4432 |
| 575 | -0.4812 | -0.7941 | -1.4849 | -1.4776 |
| 576 | -0.4924 | -0.8126 | -1.5194 | -1.5119 |
| 577 | -0.5036 | -0.8311 | -1.5539 | -1.5463 |
| 578 | -0.5148 | -0.8495 | -1.5885 | -1.5806 |

. ·

(1) It is permissible to interpolate between EFPD ranges.(2) CRG-8 at 100% wd.

- -



-- - - - - -

,

Curve 8 (Page 1 of 6)

Curves 8 and 8A are for 0%FP. The "8" set of curves are for Xenon-free startups and "8A" set of curves are for peak Xenon startups. If core average Xenon (as determined from SAXON) is less than 25% of 100% FP equilibrium Xenon and is decreasing, then use the Xenon-free set of curves. If Xenon exceeds 25% of 100% equilibrium Xenon or is increasing, use the peak Xenon curves.

CRG 5-7 Integral Reactivity Worth 0% FP, 532 Degrees F, NO XENON, CRG 1-4 at 100%WD, CRG 8 at Nominal HFP Position Curve 8 (Page 2 of 6)

<u>Curve 8</u> (Page 3 of 6)

| | | | | | · . | • | | | rve 8 |
|-----------|--------|---------------|-------------|----------|-----------|--------|---------------|-------------|----------|
| | | | | | · | | | (Page | 3 of |
| Rod Index | CRG 5 | -7 Integral V | Vorth, No X | e, %dk/k | Rod Index | CRG 5 | -7 Integral V | North, No X | e. %dk/k |
| %wd | 0 EFPD | - | | 680 EFPD | %wd | 0 EFPD | | 650 EFPD | |
| 0 | -3.250 | -3.296 | -3.422 | -3.443 | 48 | -2.287 | -2.447 | -3.018 | -3.097 |
| 1 | -3.249 | -3.295 | -3.422 | -3.443 | 49 | -2.270 | -2.434 | -3.007 | -3.082 |
| 2 | -3.248 | -3.293 | -3.421 | -3.443 | 50 | -2.253 | -2.422 | -2.997 | -3.068 |
| 3 | -3.246 | -3.290 | -3.421 | -3.443 | 51 | -2.236 | -2.410 | -2.987 | -3.054 |
| 4 | -3.245 | -3.288 | -3.421 | -3.442 | 52 | -2.221 | -2.399 | -2.977 | -3.04 |
| 5 | -3.242 | -3.285 | -3.420 | -3.442 | 53 | -2.205 | -2.388 | -2.967 | -3.027 |
| 6 | -3.239 | -3.281 | -3.420 | -3.442 | 54 | -2.190 | -2.377 | -2.957 | -3.013 |
| 7 | -3.235 | -3.276 | -3.420 | -3.442 | 55 | -2.175 | -2.367 | -2.947 | -2.999 |
| 8 | -3.230 | -3.271 | -3.419 | -3.441 | 56 | -2.161 | -2.356 | -2.937 | -2.985 |
| 9 | -3.224 | -3.264 | -3.419 | -3.441 | 57 | -2.147 | -2.346 | -2.926 | -2.97(|
| 10 | -3.217 | -3.256 | -3.419 | -3.440 | 58 | -2.133 | -2.336 | -2.916 | -2.955 |
| 10 | -3.208 | -3.247 | -3.418 | -3.440 | 59 | -2.130 | -2.326 | -2.905 | -2.940 |
| 12 | -3.198 | -3.236 | -3.418 | -3.439 | 60 | -2.107 | -2.316 | -2.893 | -2.924 |
| 12 | -3.198 | -3.230 | -3.417 | -3.439 | 61 | -2.093 | -2.305 | -2.881 | -2.92 |
| 13 | -3.167 | -3.209 | -3.417 | -3.430 | 62 | -2.093 | -2.305 | -2.868 | |
| 14 | -3.173 | | -3.416 | -3.437 | 63 | -2.060 | -2.295 | | -2.889 |
| 15 | | -3.193 | | | 64 | | · | -2.854 | -2.871 |
| | -3.140 | -3.175 | -3.411 | -3.434 | | -2.054 | -2.273 | -2.839 | -2.851 |
| 17 | -3.120 | -3.155 | -3.407 | -3.432 | 65 | -2.041 | -2.261 | -2.823 | -2.831 |
| 18 | -3.098 | -3.132 | -3.402 | -3.430 | 66 | -2.028 | -2.249 | -2.806 | -2.810 |
| 19 | -3.074 | -3.107 | -3.396 | -3.427 | 67 | -2.016 | -2.237 | -2.789 | -2.788 |
| 20 | -3.047 | -3.080 | -3.388 | -3.423 | 68 | -2.003 | -2.225 | -2.772 | -2.766 |
| 21 | -3.018 | -3.050 | -3.378 | -3.419 | 69 | -1.991 | -2.213 | -2.754 | -2.744 |
| 22 | -2.988 | -3.020 | -3.368 | -3.414 | 70 | -1.980 | -2.202 | -2.736 | -2.723 |
| 23 | -2.956 | -2.988 | -3.356 | -3.408 | 71 | -1.969 | -2.190 | -2.719 | -2.701 |
| 24 | -2.923 | -2.955 | -3.344 | -3.402 | 72 | -1.958 | -2.179 | -2.701 | -2.681 |
| 25 | -2.889 | -2.922 | -3.331 | -3.395 | 73 | -1.948 | -2.168 | -2.685 | -2.661 |
| 26 | -2.855 | -2.890 | -3.317 | -3.388 | 74 | -1.939 | -2.158 | -2.669 | -2.643 |
| 27 | -2.821 | -2.857 | -3.303 | -3.380 | 75 | -1.931 | -2.148 | -2.654 | -2.626 |
| 28 | -2.787 | -2.826 | -3.288 | -3.370 | 76 | -1.924 | -2.139 | -2.639 | -2.610 |
| 29 | -2.753 | -2.795 | -3.273 | -3.361 | 77 | -1.918 | -2.131 | -2.626 | -2.596 |
| 30 | -2.721 | -2.767 | -3.258 | -3.350 | 78 | -1.912 | -2.123 | -2.613 | -2.583 |
| 31 | -2.689 | -2.740 | -3.243 | -3.338 | 79 | -1.907 | -2.115 | -2.601 | -2.570 |
| 32 | -2.659 | -2.715 | -3.228 | -3.326 | 80 | -1.901 | -2.107 | -2.588 | -2.557 |
| 33 | -2.629 | -2.691 | -3.213 | -3.313 | 81 | -1.896 | -2.099 | -2.575 | -2.544 |
| 34 | -2.601 | -2.669 | -3.198 | -3.300 | 82 | -1.891 | -2.090 | -2.561 | -2.530 |
| 35 | -2.573 | -2.648 | -3.183 | -3.286 | 83 | -1.885 | -2.081 | -2.546 | -2.515 |
| 36 | -2.546 | -2.629 | -3.169 | -3.272 | 84 | -1.879 | -2.071 | -2.530 | -2.499 |
| 37 | -2.521 | -2.610 | -3.154 | -3.257 | 85 | -1.872 | -2.061 | -2.514 | -2.483 |
| 38 | -2.496 | -2.593 | -3.140 | -3.243 | 86 | -1.866 | -2.051 | -2.496 | -2.466 |
| 39 | -2.472 | -2.576 | -3.127 | -3.228 | 87 | -1.860 | -2.040 | -2.479 | -2.449 |
| 40 | -2.448 | -2.560 | -3.113 | -3.213 | 88 | -1.853 | -2.029 | -2.461 | -2.431 |
| 41 | -2.426 | -2.544 | -3.100 | -3.198 | 89 | -1.846 | -2.018 | -2.442 | -2.413 |
| 42 | -2.404 | -2.529 | -3.087 | -3.183 | 90 | -1.839 | -2.007 | -2.423 | -2.394 |
| 43 | -2.383 | -2.514 | -3.075 | -3.168 | 91 | -1.833 | -1.995 | -2.403 | -2.375 |
| 44 | -2.363 | -2.500 | -3.063 | -3.154 | 92 | -1.826 | -1.984 | -2.384 | -2.356 |
| 45 | -2.343 | -2.486 | -3.051 | -3.139 | 93 | -1.819 | -1.973 | -2.364 | -2.336 |
| 46 | -2.324 | -2.473 | -3.040 | -3.125 | 94 | -1.812 | -1.961 | -2.344 | -2.317 |
| 47 | -2.305 | -2.459 | -3.029 | -3.111 | 95 | -1.806 | -1.950 | -2.324 | -2.297 |

- -

Curve 8 (Page 4 of 6)

.

| od Index | | -7 Integral V | | | Rod Index | | | Vorth, No Xe | |
|----------|--------|---------------|----------|--------|-----------|--------|--------|--------------|--------|
| %wd | 0 EFPD | | 650 EFPD | | %wd | 0 EFPD | | 650 EFPD | |
| 96 | -1.799 | -1.939 | -2.304 | -2.277 | 144 | -1.372 | -1.480 | -1.856 | -1.849 |
| 97 | -1.793 | -1.928 | -2.284 | -2.258 | 145 | -1.358 | -1.469 | -1.850 | -1.844 |
| 98 | -1.787 | -1.917 | -2.264 | -2.238 | 146 | -1.345 | -1.459 | -1.844 | -1.837 |
| 99 | -1.781 | -1.907 | -2.244 | -2.219 | 147 | -1.332 | -1.448 | -1.837 | -1.831 |
| 100 | -1.775 | -1.896 | -2.224 | -2.200 | 148 | -1.319 | -1.438 | -1.830 | -1.824 |
| 101 | -1.770 | -1.887 | -2.205 | -2.181 | 149 | -1.307 | -1.428 | -1.823 | -1.817 |
| 102 | -1.765 | -1.877 | -2.186 | -2.162 | 150 | -1.294 | -1.418 | -1.816 | -1.809 |
| 103 | -1.760 | -1.868 | -2.167 | -2.144 | 151 | -1.282 | -1.408 | -1.808 | -1.801 |
| 104 | -1.755 | -1.860 | -2.149 | -2.126 | 152 | -1.270 | -1.398 | -1.800 | -1.793 |
| 105 | -1.751 | -1.851 | -2.132 | -2.109 | 153 | -1.259 | -1.388 | -1.792 | -1.784 |
| 106 | -1.746 | -1.843 | -2.114 | -2.092 | 154 | -1.247 | -1.378 | -1.783 | -1.775 |
| 107 | -1.742 | -1.836 | -2.097 | -2.075 | 155 | -1.236 | -1.368 | -1.774 | -1.766 |
| 108 | -1.737 | -1.828 | -2.081 | -2.060 | 156 | -1.225 | -1.359 | -1.765 | -1.756 |
| 109 | -1.733 | -1.820 | -2.065 | -2.044 | 157 | -1.214 | -1.349 | -1.755 | -1.745 |
| 110 | -1.728 | -1.813 | -2.050 | -2.029 | 158 | -1.204 | -1.339 | -1.745 | -1.735 |
| 111 | -1.724 | -1.806 | -2.035 | -2.015 | 159 | -1.193 | -1.330 | -1.734 | -1.723 |
| 112 | -1.719 | -1.798 | -2.021 | -2.001 | 160 | -1.183 | -1.320 | -1.723 | -1.712 |
| 113 | -1.714 | -1.791 | -2.008 | -1.988 | 161 | -1.173 | -1.310 | -1.711 | -1.700 |
| 114 | -1.709 | -1.784 | -1.995 | -1.976 | 162 | -1.164 | -1.300 | -1.700 | -1.687 |
| 115 | -1.703 | -1.776 | -1.983 | -1.965 | 163 | -1.154 | -1.290 | -1.687 | -1.675 |
| 116 | -1.697 | -1.769 | -1.972 | -1.954 | 164 | -1.145 | -1.281 | -1.675 | -1.662 |
| 117 | -1.691 | -1.761 | -1.962 | -1.944 | 165 | -1.136 | -1.271 | -1.662 | -1.648 |
| 118 | -1.685 | -1.753 | -1.952 | -1.934 | 166 | -1.127 | -1.261 | -1.649 | -1.635 |
| 119 | -1.677 | -1.745 | -1.943 | -1.926 | 167 | -1.119 | -1.251 | -1.636 | -1.621 |
| 120 | -1.670 | -1.737 | -1.935 | -1.918 | 168 | -1.110 | -1.241 | -1.622 | -1.607 |
| 121 | -1.662 | -1.729 | -1.928 | -1.911 | 169 | -1.102 | -1.231 | -1.608 | -1.593 |
| 122 | -1.653 | -1.720 | -1.922 | -1.906 | 170 | -1.094 | -1.221 | -1.594 | -1.578 |
| 123 | -1.644 | -1.711 | -1.917 | -1.901 | 171 | -1.086 | -1.212 | -1.580 | -1.563 |
| 124 | -1.634 | -1.702 | -1.913 | -1.897 | 172 | -1.078 | -1.202 | -1.565 | -1.549 |
| 125 | -1.624 | -1.692 | -1.909 | -1.894 | 173 | -1.070 | -1.192 | -1.551 | -1.534 |
| 126 | -1.613 | -1.682 | -1.906 | -1.891 | 174 | -1.063 | -1.182 | -1.536 | -1.519 |
| 127 | -1.601 | -1.671 | -1.904 | -1.889 | 175 | -1.056 | -1.172 | -1.521 | -1.504 |
| 128 | -1.589 | -1.661 | -1.903 | -1.888 | 176 | -1.049 | -1.163 | -1.506 | -1.489 |
| 129 | -1.577 | -1.650 | -1.901 | -1.887 | 177 | -1.042 | -1.153 | -1.491 | -1.474 |
| 130 | -1.564 | -1.639 | -1.900 | -1.887 | 178 | -1.035 | -1.143 | -1.476 | -1.459 |
| 131 | -1.551 | -1.628 | -1.899 | -1.886 | 179 | -1.028 | -1.133 | -1.461 | -1.444 |
| 132 | -1.538 | -1.616 | -1.898 | -1.885 | 180 | -1.020 | -1.124 | -1.446 | -1.429 |
| 133 | -1.524 | -1.605 | -1.897 | -1.885 | 181 | -1.015 | -1.114 | -1.431 | -1.414 |
| 134 | -1.510 | -1.594 | -1.896 | -1.884 | 182 | -1.009 | -1.105 | -1.416 | -1.399 |
| 135 | -1.496 | -1.582 | -1.894 | -1.883 | 183 | -1.002 | -1.095 | -1.401 | -1.385 |
| 136 | -1.482 | -1.571 | -1.892 | -1.881 | 184 | -0.996 | -1.086 | -1.386 | -1.370 |
| 137 | -1.468 | -1.559 | -1.889 | -1.879 | 185 | -0.990 | -1.076 | -1.371 | -1.356 |
| 138 | -1.454 | -1.548 | -1.886 | -1.876 | 186 | -0.984 | -1.067 | -1.356 | -1.342 |
| 139 | -1.441 | -1.536 | -1.882 | -1.872 | 180 | -0.979 | -1.058 | -1.341 | -1.342 |
| 140 | -1.427 | -1.525 | -1.877 | -1.869 | 187 | -0.973 | -1.038 | -1.341 | -1.313 |
| 141 | -1.413 | -1.514 | -1.873 | -1.865 | 189 | -0.967 | -1.049 | -1.320 | -1.299 |
| 142 | -1.399 | -1.502 | -1.868 | -1.860 | 190 | -0.967 | -1.040 | -1.297 | -1.299 |
| 142 | -1.399 | -1.302 | -1.862 | -1.855 | 190 | -0.962 | -1.031 | -1.297 | -1.200 |

- - -

- -

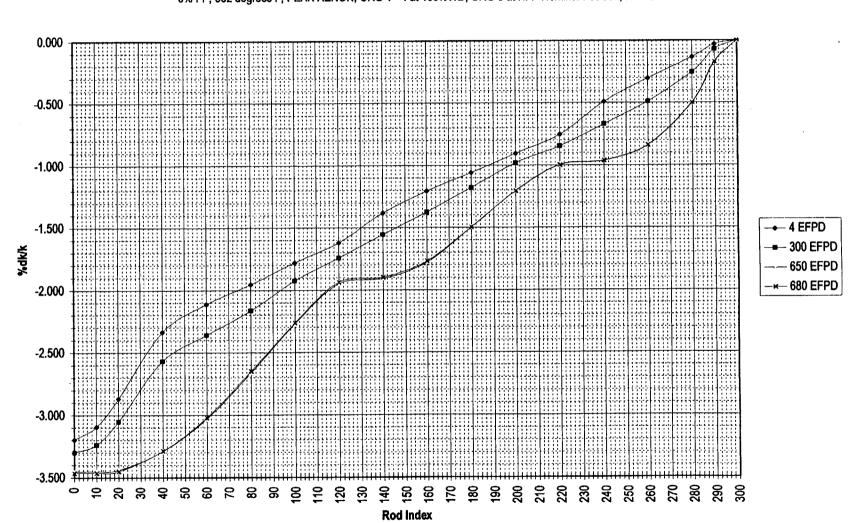
<u>Curve 8</u> (Page 5 of 6)

.

| d Index | | -7 Integral V | | | Rod Index | | 7 Integral V | | |
|---------|--------|---------------|----------|--------|-----------|--------|--------------|--------|--------|
| %wd | 0 EFPD | 1 | 650 EFPD | | %wd | 0 EFPD | 300 EFPD | 1 | |
| 192 | -0.952 | -1.013 | -1.269 | -1.259 | 240 | -0.536 | -0.636 | -0.922 | -0.930 |
| 193 | -0.947 | -1.005 | -1.255 | -1.245 | 241 | -0.520 | -0.625 | -0.918 | -0.926 |
| 194 | -0.942 | -0.997 | -1.241 | -1.232 | 242 | -0.505 | -0.614 | -0.914 | -0.922 |
| 195 | -0.937 | -0.989 | -1.227 | -1.219 | 243 | -0.490 | -0.603 | -0.909 | -0.917 |
| 196 | -0.933 | -0.981 | -1.213 | -1.206 | 244 | -0.476 | -0.592 | -0.904 | -0.912 |
| 197 | -0.928 | -0.973 | -1.200 | -1.193 | 245 | -0.461 | -0.582 | -0.899 | -0.907 |
| 198 | -0.924 | -0.966 | -1.186 | -1.181 | 246 | -0.447 | -0.571 | -0.893 | -0.901 |
| 199 | -0.920 | -0.959 | -1.173 | -1.168 | 247 | -0.433 | -0.561 | -0.887 | -0.895 |
| 200 | -0.916 | -0.952 | -1.160 | -1.156 | 248 | -0.419 | -0.551 | -0.881 | -0.888 |
| 201 | -0.912 | -0.946 | -1.147 | -1.144 | 249 | -0.406 | -0.541 | -0.874 | -0.881 |
| 202 | -0.908 | -0.939 | -1.135 | -1.132 | 250 | -0.392 | -0.531 | -0.867 | -0.874 |
| 203 | -0.904 | -0.933 | -1.123 | -1.121 | 251 | -0.380 | -0.521 | -0.860 | -0.866 |
| 204 | -0.901 | -0.927 | -1.111 | -1.109 | 252 | -0.367 | -0.511 | -0.853 | -0.858 |
| 205 | -0.897 | -0.921 | -1.099 | -1.098 | 253 | -0.354 | -0.501 | -0.845 | -0.850 |
| 206 | -0.893 | -0.916 | -1.088 | -1.087 | 254 | -0.342 | -0.492 | -0.837 | -0.841 |
| 207 | -0.890 | -0.910 | -1.076 | -1.076 | 255 | -0.330 | -0.482 | -0.828 | -0.832 |
| 208 | -0.886 | -0.905 | -1.066 | -1.066 | 256 | -0.319 | -0.472 | -0.819 | -0.822 |
| 209 | -0.882 | -0.899 | -1.055 | -1.056 | 257 | -0.307 | -0.463 | -0.810 | -0.812 |
| 210 | -0.877 | -0.894 | -1.045 | -1.046 | 258 | -0.296 | -0.453 | -0.800 | -0.801 |
| 211 | -0.873 | -0.888 | -1.035 | -1.037 | 259 | -0.285 | -0.444 | -0.790 | -0.790 |
| 212 | -0.868 | -0.883 | -1.026 | -1.028 | 260 | -0.274 | -0.434 | -0.779 | -0.778 |
| 213 | -0.863 | -0.877 | -1.017 | -1.019 | 261 | -0.263 | -0.424 | -0.769 | -0.766 |
| 214 | -0.857 | -0.871 | -1.009 | -1.011 | 262 | -0.252 | -0.414 | -0.757 | -0.754 |
| 215 | -0.851 | -0.866 | -1.001 | -1.004 | 263 | -0.242 | -0.404 | -0.745 | -0.741 |
| 216 | -0.845 | -0.860 | -0.993 | -0.996 | 264 | -0.232 | -0.394 | -0.733 | -0.728 |
| 217 | -0.838 | -0.853 | -0.986 | -0.990 | 265 | -0.222 | -0.384 | -0.720 | -0.714 |
| 218 | -0.831 | -0.847 | -0.980 | -0.983 | 266 | -0.212 | -0.374 | -0.707 | -0.700 |
| 219 | -0.823 | -0.840 | -0.974 | -0.978 | 267 | -0.202 | -0.363 | -0.693 | -0.685 |
| 220 | -0.814 | -0.833 | -0.969 | -0.973 | 268 | -0.192 | -0.353 | -0.679 | -0.670 |
| 221 | -0.805 | -0.826 | -0.964 | -0.968 | 269 | -0.183 | -0.342 | -0.664 | -0.655 |
| 222 | -0.795 | -0.818 | -0.960 | -0.964 | 270 | -0.173 | -0.331 | -0.649 | -0.639 |
| 223 | -0.784 | -0.810 | -0.956 | -0.961 | 271 | -0.164 | -0.320 | -0.633 | -0.622 |
| 224 | -0.773 | -0.802 | -0.953 | -0.958 | 272 | -0.155 | -0.309 | -0.616 | -0.605 |
| 225 | -0.761 | -0.793 | -0.950 | -0.955 | 273 | -0.146 | -0.297 | -0.599 | -0.587 |
| 226 | -0.748 | -0.784 | -0.948 | -0.954 | 274 | -0.137 | -0.285 | -0.580 | -0.569 |
| 227 | -0.734 | -0.774 | -0.947 | -0.952 | 275 | -0.128 | -0.273 | -0.561 | -0.549 |
| 228 | -0.720 | -0.764 | -0.945 | -0.951 | 276 | -0.119 | -0.260 | -0.541 | -0.529 |
| 229 | -0.706 | -0.754 | -0.944 | -0.950 | 277 | -0.111 | -0.247 | -0.519 | -0.507 |
| 230 | -0.691 | -0.744 | -0.943 | -0.949 | 278 | -0.102 | -0.234 | -0.497 | -0.485 |
| 231 | -0.676 | -0.734 | -0.942 | -0.948 | 279 | -0.094 | -0.219 | -0.472 | -0.461 |
| 232 | -0.661 | -0.723 | -0.941 | -0.948 | 280 | -0.085 | -0.205 | -0.447 | -0.436 |
| 233 | -0.645 | -0.712 | -0.940 | -0.947 | 281 | -0.077 | -0.190 | -0.420 | -0.409 |
| 234 | -0.630 | -0.701 | -0.938 | -0.945 | 282 | -0.069 | -0.174 | -0.391 | -0.381 |
| 235 | -0.614 | -0.690 | -0.937 | -0.944 | 283 | -0.061 | -0.158 | -0.361 | -0.353 |
| 235 | -0.598 | -0.680 | -0.935 | -0.942 | 284 | -0.053 | -0.142 | -0.330 | -0.323 |
| 230 | -0.582 | -0.669 | -0.932 | -0.942 | 285 | -0.046 | -0.142 | -0.299 | -0.292 |
| 237 | -0.567 | -0.658 | -0.932 | -0.937 | 286 | -0.039 | -0.110 | -0.267 | -0.262 |
| 200 | -0.557 | -0.647 | -0.929 | -0.001 | 287 | -0.033 | -0.094 | -0.236 | -0.231 |

· .

.


<u>Curve 8</u> (Pagé 6 of 6)

| Rod Index | CRG 5 | -7 Integral W | Vorth, No Xe | e, %dk/k |
|-----------|--------|---------------|--------------|----------|
| %wd | 0 EFPD | 300 EFPD | 650 EFPD | 680 EFPD |
| 288 | -0.026 | -0.079 | -0.204 | -0.201 |
| 289 | -0.021 | -0.065 | -0.174 | -0.171 |
| 290 | -0.016 | -0.052 | -0.144 | -0.142 |
| 291 | -0.012 | -0.041 | -0.115 | -0.114 |
| 292 | -0.008 | -0.030 | -0.088 | -0.087 |
| 293 | -0.006 | -0.021 | -0.064 | -0.063 |
| 294 | -0.003 | -0.014 | -0.042 | -0.042 |
| 295 | -0.002 | -0.008 | -0.025 | -0.024 |
| 296 | -0.001 | -0.003 | -0.011 | -0.011 |
| 297 | 0.000 | 0.000 | -0.002 | -0.002 |
| 298 | 0.000 | 0.001 | 0.002 | 0.002 |
| 299 | 0.000 | 0.001 | 0.002 | 0.002 |
| 300 | 0.000 | 0.000 | 0.000 | 0.000 |

.

- -

.

CRG 5-7 Integral Reactivity Worth - Peak Xenon 0% FP, 532 degrees F, PEAK XENON, CRG 1 - 4 at 100%WD, CRG 8 at HFP Nominal Position, HFP Sm Curve 8A (Page 1 of 5)

Curve 8A (Page 2 of 5)

| d Index | | | orth, Peak X | | Rod Index | | Integral Wo | | |
|----------|--------|--------|--------------|--------|-----------|--------|-------------|----------|--------|
| %wd | 4 EFPD | | 650 EFPD | | %wd | 4 EFPD | | 650 EFPD | |
| 0 | -3.197 | -3.300 | -3.452 | -3.464 | 48 | -2.229 | -2.473 | -3.189 | -3.184 |
| 1 | -3.188 | -3.295 | -3.452 | -3.464 | 49 | -2.217 | -2.463 | -3.176 | -3.171 |
| 2 | -3.180 | -3.291 | -3.452 | -3.464 | 50 | -2.206 | -2.452 | -3.163 | -3.158 |
| 3 | -3.171 | -3.287 | -3.452 | -3.464 | 51 | -2.196 | -2.442 | -3.151 | -3.145 |
| 4 | -3.162 | -3.282 | -3.452 | -3.464 | 52 | -2.185 | -2.433 | -3.138 | -3.132 |
| 5 | -3.152 | -3.277 | -3.452 | -3.464 | 53 | -2.175 | -2.423 | -3.125 | -3.119 |
| 6 | -3.142 | -3.271 | -3.452 | -3.464 | 54 | -2.166 | -2.414 | -3.113 | -3.106 |
| 7 | -3.131 | -3.264 | -3.452 | -3.464 | 55 | -2.157 | -2.405 | -3.100 | -3.093 |
| 8 | -3.120 | -3.256 | -3.451 | -3.464 | 56 | -2.148 | -2.396 | -3.087 | -3.079 |
| 9 | -3.107 | -3.248 | -3.451 | -3.463 | 57 | -2.139 | -2.388 | -3.073 | -3.065 |
| 10 | -3.093 | -3.238 | -3.451 | -3.463 | 58 | -2.130 | -2.379 | -3.060 | -3.051 |
| 11 | -3.078 | -3.227 | -3.450 | -3.462 | 59 | -2.121 | -2.370 | -3.045 | -3.037 |
| 12 | -3.062 | -3.215 | -3.450 | -3.461 | 60 | -2.113 | -2.361 | -3.030 | -3.021 |
| 13 | -3.044 | -3.201 | -3.449 | -3.461 | 61 | -2.104 | -2.352 | -3.014 | -3.005 |
| 14 | -3.025 | -3.185 | -3.448 | -3.460 | 62 | -2.096 | -2.343 | -2.997 | -2.988 |
| 15 | -3.004 | -3.168 | -3.447 | -3.458 | 63 | -2.087 | -2.334 | -2.979 | -2.970 |
| 16 | -2.981 | -3.149 | -3.446 | -3.457 | 64 | -2.078 | -2.324 | -2.960 | -2.950 |
| 17 | -2.957 | -3.128 | -3.444 | -3.455 | 65 | -2.070 | -2.313 | -2.940 | -2.930 |
| 18 | -2.930 | -3.105 | -3.443 | -3.454 | 66 | -2.061 | -2.303 | -2.919 | -2.909 |
| 19 | -2.901 | -3.080 | -3.441 | -3.452 | 67 | -2.052 | -2.292 | -2.898 | -2.887 |
| 20 | -2.870 | -3.052 | -3.439 | -3.449 | 68 | -2.043 | -2.281 | -2.876 | -2.865 |
| 21 | -2.838 | -3.023 | -3.436 | -3.447 | 69 | -2.034 | -2.270 | -2.854 | -2.843 |
| 22 | -2.805 | -2.993 | -3.434 | -3.444 | 70 | -2.025 | -2.260 | -2.832 | -2.821 |
| 23 | -2.770 | -2.961 | -3.431 | -3.440 | 71 | -2.017 | -2.249 | -2.810 | -2.799 |
| 24 | -2.735 | -2.930 | -3.427 | -3.436 | 72 | -2.009 | -2.238 | -2.789 | -2.778 |
| 25 | -2.701 | -2.898 | -3.423 | -3.432 | 73 | -2.001 | -2.228 | -2.769 | -2.758 |
| 26 | -2.666 | -2.866 | -3.419 | -3.427 | 74 | -1.993 | -2.218 | -2.750 | -2.739 |
| 27 | -2.632 | -2.835 | -3.414 | -3.421 | 75 | -1.986 | -2.209 | -2.733 | -2.721 |
| 28 | -2.599 | -2.805 | -3.408 | -3.415 | 76 | -1.979 | -2.200 | -2.717 | -2.705 |
| 29 | -2.568 | -2.777 | -3.401 | -3.408 | 77 | -1.973 | -2.191 | -2.702 | -2.691 |
| 30 | -2.539 | -2.750 | -3.394 | -3.400 | 78 | -1.967 | -2.182 | -2.688 | -2.677 |
| 31 | -2.512 | -2.725 | -3.386 | -3.391 | 79 | -1.961 | -2.174 | -2.674 | -2.663 |
| 32 | -2.486 | -2.703 | -3.377 | -3.382 | 80 | -1.954 | -2.165 | -2.661 | -2.650 |
| 33 | -2.460 | -2.682 | -3.368 | -3.372 | 81 | -1.948 | -2.156 | -2.647 | -2.636 |
| 33 | -2.440 | -2.662 | -3.358 | -3.361 | 82 | -1.941 | -2.146 | -2.632 | -2.621 |
| 35 | -2.440 | -2.644 | -3.347 | -3.350 | 83 | -1.934 | -2.136 | -2.616 | -2.605 |
| 36 | -2.420 | -2.627 | -3.336 | -3.338 | 84 | -1.926 | -2.125 | -2.599 | -2.589 |
| 37 | -2.383 | -2.612 | -3.325 | -3.326 | 85 | -1.918 | -2.114 | -2.582 | -2.571 |
| 38 | -2.366 | -2.597 | -3.313 | -3.314 | 86 | -1.909 | -2.102 | -2.562 | -2.553 |
| 39 | -2.350 | -2.583 | -3.301 | -3.301 | 87 | -1.901 | -2.090 | -2.545 | -2.535 |
| 39
40 | -2.335 | -2.569 | -3.289 | -3.288 | 88 | -1.892 | -2.030 | -2.525 | -2.516 |
| | | | -3.269 | | 89 | -1.883 | -2.078 | -2.525 | -2.496 |
| 41 | -2.320 | -2.556 | | -3.275 | | -1.874 | -2.065 | -2.300 | -2.490 |
| 42 | -2.306 | -2.543 | -3.264 | -3.262 | 90 | | | -2.465 | -2.470 |
| 43 | -2.292 | -2.531 | -3.252 | -3.249 | 91 | -1.864 | -2.040 | | |
| 44 | -2.278 | -2.519 | -3.239 | -3.236 | 92 | -1.855 | -2.026 | -2.443 | -2.434 |
| 45 | -2.265 | -2.507 | -3.226 | -3.223 | • 93 | -1.845 | -2.013 | -2.422 | -2.413 |
| 46 | -2.253 | -2.496 | -3.214 | -3.210 | 94 | -1.836 | -2.000 | -2.400 | -2.392 |
| 47 | -2.240 | -2.484 | -3.201 | -3.197 | 95 | -1.826 | -1.987 | -2.379 | -2.370 |

. .

.

- --

Curve 8A (Page 3 of 5)

•

· .

| od Index | CRG 5-7 | '-Integral Wo | orth, Peak X | le, %dk/k | Rod Index | | 7 integral Wo | | |
|----------|---------|------------------|--------------|-----------|-----------|--------|------------------|----------|--------|
| %wd | 4 EFPD | 300 EFPD | 650 EFPD | 680 EFPD | %wd | 4 EFPD | | 650 EFPD | |
| 96 | -1.817 | -1.975 | -2.357 | -2.349 | 144 | -1.340 | -1.516 | -1.894 | -1.883 |
| 97 | -1.808 | -1.962 | -2.335 | -2.327 | 145 | -1.331 | -1.507 | -1.889 | -1.878 |
| 98 | -1.799 | -1.949 | -2.313 | -2.305 | 146 | -1.321 | -1.498 | -1.885 | -1.873 |
| 99 | -1.790 | -1.937 | -2.292 | -2.284 | 147 | -1.312 | -1.489 | -1.879 | -1.868 |
| 100 | -1.781 | -1.925 | -2.270 | -2.262 | 148 | -1.302 | -1.480 | -1.874 | -1.863 |
| 101 | -1.773 | -1.914 | -2.249 | -2.241 | 149 | -1.294 | -1.471 | -1.868 | -1.857 |
| 102 | -1.764 | -1.903 | -2.228 | -2.220 | 150 | -1.285 | -1.462 | -1.862 | -1.851 |
| 103 | -1.756 | -1.892 | -2.208 | -2.200 | 151 | -1.276 | -1.453 | -1.856 | -1.845 |
| 104 | -1.749 | -1.882 | -2.188 | -2.180 | 152 | -1.268 | -1.445 | -1.849 | -1.838 |
| 105 | -1.741 | -1.872 | -2.168 | -2.160 | 153 | -1.259 | -1.436 | -1.841 | -1.831 |
| 106 | -1.733 | -1.862 | -2.148 | -2.140 | 154 | -1.251 | -1.428 | -1.834 | -1.824 |
| 107 | -1.726 | -1.853 | -2.130 | -2.121 | 155 | -1.243 | -1.419 | -1.826 | -1.816 |
| 108 | -1.719 | -1.844 | -2.111 | -2.103 | 156 | -1.235 | -1.410 | -1.817 | -1.807 |
| 100 | -1.711 | -1.835 | -2.094 | -2.085 | 157 | -1.227 | -1.402 | -1.808 | -1.799 |
| 110 | -1.704 | -1.826 | -2.077 | -2.068 | 158 | -1.220 | -1.393 | -1.798 | -1.789 |
| 111 | -1.697 | -1.818 | -2.060 | -2.051 | 159 | -1.212 | -1.384 | -1.788 | -1.779 |
| 112 | -1.689 | -1.809 | -2.000 | -2.035 | 160 | -1.205 | -1.375 | -1.778 | -1.769 |
| 113 | -1.681 | -1.801 | -2.030 | -2.020 | 161 | -1.197 | -1.366 | -1.766 | -1.758 |
| 114 | -1.674 | -1.792 | -2.015 | -2.006 | 162 | -1.190 | -1.357 | -1.755 | -1.747 |
| 114 | -1.665 | -1.784 | -2.002 | -1.992 | 163 | -1.182 | -1.347 | -1.743 | -1.735 |
| 115 | -1.657 | -1.776 | -1.990 | -1.980 | 164 | -1.175 | -1.338 | -1.730 | -1.723 |
| 117 | -1.649 | -1.768 | -1.978 | -1.968 | 165 | -1.168 | -1.329 | -1.718 | -1.711 |
| 118 | -1.649 | -1.760 | -1.967 | -1.957 | 166 | -1.160 | -1.319 | -1.704 | -1.698 |
| 119 | -1.631 | -1.752 | -1.957 | -1.937 | 167 | -1.153 | -1.310 | -1.691 | -1.685 |
| 120 | -1.621 | -1.743 | -1.949 | -1.938 | 168 | -1.146 | -1.300 | -1.677 | -1.671 |
| 120 | | -1.735 | -1.941 | -1.930 | 169 | -1.139 | -1.290 | -1.663 | -1.658 |
| | -1.611 | -1.735 | -1.935 | -1.930 | 170 | -1.132 | -1.281 | -1.649 | -1.644 |
| 122 | -1.601 | | -1.935 | -1.924 | 170 | -1.125 | -1.271 | -1.634 | -1.629 |
| 123 | -1.590 | -1.718
-1.709 | | -1.918 | 171 | -1.117 | -1.261 | -1.619 | -1.615 |
| 124 | -1.579 | | -1.925 | -1.914 | 172 | -1.110 | -1.251 | -1.604 | -1.600 |
| 125 | -1.567 | -1.700 | -1.922 | | 173 | -1.103 | -1.231 | -1.589 | -1.586 |
| 126 | -1.555 | -1.691 | -1.919 | -1.908 | | -1.096 | -1.241 | -1.574 | -1.571 |
| 127 | -1.543 | -1.681 | -1.918 | -1.907 | 175 | | | -1.559 | -1.556 |
| 128 | -1.530 | -1.672 | -1.917 | -1.906 | 176 | -1.088 | -1.221
-1.210 | -1.559 | -1.530 |
| 129 | -1.517 | -1.663 | -1.917 | -1.905 | 177 | -1.081 | -1.210 | -1.543 | -1.526 |
| 130 | -1.504 | -1.653 | -1.916 | -1.905 | 178 | -1.074 | -1.200 | -1.526 | -1.520 |
| 131 | -1.491 | -1.643 | -1.917 | -1.905 | 179 | -1.066 | | | |
| 132 | -1.478 | -1.634 | -1.917 | -1.906 | 180 | -1.059 | -1.179 | -1.497 | -1.495 |
| 133 | -1.465 | -1.624 | -1.917 | -1.906 | 181 | -1.051 | -1.169 | -1.481 | -1.480 |
| 134 | -1.453 | -1.614 | -1.917 | -1.906 | 182 | -1.044 | -1.158 | -1.466 | -1.465 |
| 135 | -1.440 | -1.604 | -1.917 | -1.906 | 183 | -1.036 | -1.148 | -1.450 | -1.450 |
| 136 | -1.428 | -1.594 | -1.916 | -1.905 | 184 | -1.028 | -1.137 | -1.435 | -1.435 |
| 137 | -1.416 | -1.584 | -1.915 | -1.904 | 185 | -1.021 | -1.127 | -1.420 | -1.420 |
| 138 | -1.404 | -1.574 | -1.913 | -1.902 | 186 | -1.013 | -1.116 | -1.405 | -1.406 |
| 139 | -1.393 | -1.565 | 1.911 | -1.900 | 187 | -1.005 | -1.106 | -1.390 | -1.391 |
| 140 | -1.382 | -1.555 | -1.908 | -1.897 | 188 | -0.997 | -1.096 | -1.375 | -1.376 |
| 141 | -1.371 | -1.545 | -1.905 | -1.894 | 189 | -0.989 | -1.085 | -1.360 | -1.362 |
| 142 | -1.361 | -1.535 | -1.902 | -1.891 | 190 | -0.981 | -1.075 | -1.345 | -1.347 |
| 143 | -1.350 | -1.526 | -1.898 | -1.887 | 191 | -0.974 | -1.065 | -1.330 | -1.333 |

.

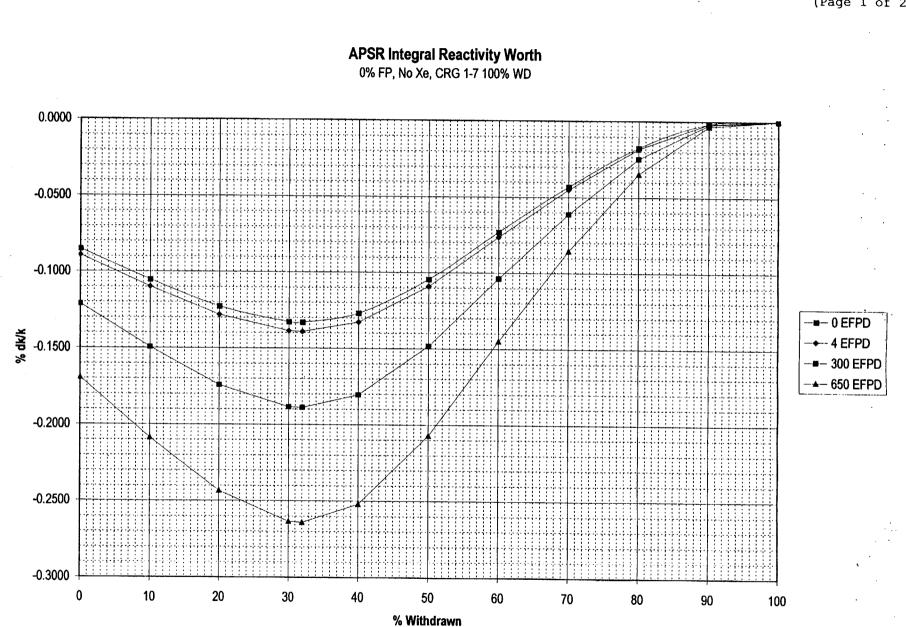
- -

-

-

Curve 8A | (Page 4 of 5)

| Rod Index | | 7 Integral W | | the second se | Rod Index | | | orth, Peak X | |
|-----------|--------|--------------|----------|---|-----------|--------|--------|--------------|--------|
| %wd | 4 EFPD | | 650 EFPD | | %wd | | | 650 EFPD | |
| 192 | -0.966 | -1.055 | -1.316 | -1.318 | 240 | -0.491 | -0.670 | -0.962 | -0.964 |
| 193 | -0.958 | -1.045 | -1.301 | -1.304 | 241 | -0.479 | -0.660 | -0.959 | -0.961 |
| 194 | -0.950 | -1.036 | -1.287 | -1.290 | 242 | -0.468 | -0.650 | -0.956 | -0.958 |
| 195 | -0.943 | -1.026 | -1.273 | -1.276 | 243 | -0.457 | -0.641 | -0.953 | -0.954 |
| 196 | -0.935 | -1.017 | -1.259 | -1.262 | 244 | -0.446 | -0.632 | -0.949 | -0.951 |
| 197 | -0.928 | -1.008 | -1.245 | -1.248 | 245 | -0.436 | -0.622 | -0.945 | -0.946 |
| 198 | -0.921 | -0.999 | -1.231 | -1.234 | 246 | -0.426 | -0.613 | -0.940 | -0.942 |
| 199 | -0.913 | -0.991 | -1.217 | -1.220 | 247 | -0.416 | -0.604 | -0.935 | -0.937 |
| 200 | -0.906 | -0.982 | -1.203 | -1.207 | 248 | -0.407 | -0.595 | -0.930 | -0.932 |
| 201 | -0.899 | -0.974 | -1.190 | -1.194 | 249 | -0.397 | -0.586 | -0.925 | -0.926 |
| 202 | -0.893 | -0.967 | -1.177 | -1.180 | 250 | -0.388 | -0.577 | -0.919 | -0.920 |
| 203 | -0.886 | -0.959 | -1.164 | -1.167 | 251 | -0.379 | -0.569 | -0.912 | -0.914 |
| 204 | -0.879 | -0.952 | -1.151 | -1.154 | 252 | -0.370 | -0.560 | -0.906 | -0.907 |
| 205 | -0.872 | -0.945 | -1.138 | -1.142 | 253 | -0.361 | -0.551 | -0.899 | -0.900 |
| 206 | -0.866 | -0.938 | -1.126 | -1.129 | 254 | -0.353 | -0.543 | -0.891 | -0.893 |
| 207 | -0.859 | -0.931 | -1.114 | -1.117 | 255 | -0.344 | -0.534 | -0.883 | -0.885 |
| 208 | -0.852 | -0.925 | -1.102 | -1.105 | 256 | -0.336 | -0.525 | -0.875 | -0.876 |
| 209 | -0.846 | -0.918 | -1.090 | -1.094 | 257 | -0.328 | -0.516 | -0.866 | -0.867 |
| 210 | -0.839 | -0.912 | -1.079 | -1.083 | 258 | -0.320 | -0.508 | -0.857 | -0.858 |
| 211 | -0.831 | -0.906 | -1.069 | -1.072 | 259 | -0.312 | -0.499 | -0.847 | -0.848 |
| 212 | -0.824 | -0.899 | -1.059 | -1.062 | 260 | -0.304 | -0.490 | -0.836 | -0.838 |
| 213 | -0.816 | -0.893 | -1.049 | -1.052 | 261 | -0.296 | -0.481 | -0.825 | -0.827 |
| 214 | -0.808 | -0.887 | -1.040 | -1.043 | 262 | -0.288 | -0.471 | -0.814 | -0.816 |
| 215 | -0.800 | -0.880 | -1.031 | -1.034 | 263 | -0.280 | -0.462 | -0.802 | -0.804 |
| 216 | -0.792 | -0.874 | -1.023 | -1.026 | 264 | -0.272 | -0.452 | -0.789 | -0.791 |
| 217 | -0.783 | -0.867 | -1.015 | -1.018 | 265 | -0.264 | -0.443 | -0.776 | -0.778 |
| 218 | -0.773 | -0.861 | -1.008 | -1.011 | 266 | -0.257 | -0.433 | -0.762 | -0.765 |
| 219 | -0.764 | -0.854 | -1.002 | -1.005 | 267 | -0.249 | -0.422 | -0.748 | -0.751 |
| 220 | -0.753 | -0.847 | -0.996 | -0.999 | 268 | -0.241 | -0.412 | -0.733 | -0.736 |
| 221 | -0.743 | -0.840 | -0.991 | -0.994 | 269 | -0.233 | -0.401 | -0.718 | -0.721 |
| 222 | -0.731 | -0.832 | -0.986 | -0.989 | 270 | -0.224 | -0.391 | -0.702 | -0.705 |
| 223 | -0.720 | -0.825 | -0.983 | -0.985 | 270 | -0.216 | -0.379 | -0.686 | -0.689 |
| 223 | -0.720 | -0.823 | -0.980 | -0.982 | 271 | -0.208 | -0.368 | -0.669 | -0.672 |
| 225 | -0.694 | -0.809 | -0.978 | -0.980 | 272 | -0.199 | -0.356 | -0.651 | -0.655 |
| 226 | -0.681 | -0.800 | -0.976 | -0.978 | 273 | -0.193 | -0.344 | -0.632 | -0.636 |
| 227 | -0.667 | -0.792 | -0.975 | -0.977 | 275 | -0.182 | -0.331 | -0.612 | -0.616 |
| 228 | -0.653 | -0.792 | -0.974 | -0.976 | 275 | -0.102 | -0.317 | -0.591 | -0.596 |
| 229 | -0.639 | -0.774 | -0.973 | -0.976 | 277 | -0.163 | -0.303 | -0.569 | -0.574 |
| 230 | -0.624 | -0.765 | -0.973 | -0.975 | 278 | -0.153 | -0.303 | -0.545 | -0.550 |
| 230 | -0.610 | -0.755 | -0.973 | -0.975 | 278 | -0.134 | -0.272 | -0.520 | -0.525 |
| 232 | -0.596 | -0.735 | -0.973 | -0.975 | 279 | -0.144 | -0.272 | -0.320 | -0.525 |
| 232 | -0.596 | -0.746 | -0.973 | -0.975 | 280 | -0.134 | -0.235 | -0.493 | -0.499 |
| 233 | -0.567 | | | | | | | | |
| | | -0.727 | -0.972 | -0.974 | 282 | -0.113 | -0.219 | -0.435 | -0.441 |
| 235 | -0.554 | -0.718 | · -0.971 | -0.973 | 283 | -0.102 | -0.200 | -0.404 | -0.409 |
| 236 | -0.540 | -0.708 | -0.970 | -0.972 | 284 | -0.091 | -0.180 | -0.371 | -0.377 |
| 237 | -0.527 | -0.698 | -0.969 | -0.971 | 285 | -0.080 | -0.161 | -0.338 | -0.344 |
| 238 | -0.515 | -0.689 | -0.967 | -0.969 | 286 | -0.069 | -0.141 | -0.304 | -0.310 |
| 239 | -0.503 | -0.679 | -0.965 | -0.967 | 287 | -0.059 | -0.122 | -0.270 | -0.275 |


• •

<u>Curve 8A</u> (Page 5 of 5)

| Rod Index | CRG 5- | 7 Integral W | orth, Peak X | (e, %dk/k | | | | | |
|-----------|--------|--------------|--------------|-----------|---|---|---|------|--|
| %wd | 4 EFPD | 300 EFPD | 650 EFPD | 680 EFPD | | | | | |
| 288 | -0.049 | -0.104 | -0.235 | -0.241 | | | | | |
| 289 | -0.040 | -0.086 | -0.201 | -0.207 | | | | | |
| 290 | -0.032 | -0.070 | -0.168 | -0.173 | | | | | |
| 291 | -0.024 | -0.054 | -0.136 | -0.140 | | | | | |
| 292 | -0.018 | -0.041 | -0.105 | -0.108 | - | | | | |
| 293 | -0.012 | -0.029 | -0.076 | -0.079 | | | | | |
| 294 | -0.008 | -0.019 | -0.051 | -0.053 | | | | - | |
| 295 | -0.004 | -0.011 | -0.030 | -0.031 | | | | | |
| 296 | -0.002 | -0.005 | -0.013 | -0.013 | | | | | |
| 297 | 0.000 | -0.001 | -0.002 | -0.002 | | | | | |
| 298 | 0.000 | 0.001 | 0.003 | 0.003 | | | - |
 | |
| 299 | 0.000 | 0.001 | 0.003 | 0.003 | | 1 | | | |
| 300 | 0.000 | 0.000 | 0.000 | 0.000 | | | | | |

.

; .

Curve 9 (Page 1 of 2)

Curve 9 (Page 2 of 2)

_

| Rod | 0 EFPD | 4 EFPD | 300 EFPD | 650 EFPD | Rod | 0 EFPD | 4 EFPD | 300 EFPD | 650 EFPD |
|-----------------------------|--|---------|---|--------------------|-------------|------------------------|---|---|---|
| %WD | %dk/k | %dk/k | %dk/k | %dk/k | %WD | %dk/k | %dk/k | %dk/k | %dk/k |
| | a statistica and a stat | • | and the second for the | and a state of the | 51 | -0.1012 | -0.1058 | -0.1439 | -0.2009 |
| 1 | -0.0873 | -0.0912 | -0.1240 | -0.1732 | 52 | -0.0981 | -0.1025 | -0.1394 | -0.1947 |
| 2 | -0.0893 | -0.0933 | -0.1268 | -0.1772 | 53 | -0.0950 | -0.0993 | -0.1350 | -0.1885 |
| 3 | -0.0912 | -0.0954 | -0.1297 | -0.1811 | 54 | -0.0918 | -0.0960 | -0.1305 | -0.1823 |
| 4 | -0.0932 | -0.0974 | -0.1325 | -0.1850 | 55 | -0.0887 | -0.0927 | -0.1261 | -0.1761 |
| 5 | -0.0952 | -0.0995 | -0.1353 | -0.1890 | 56 | -0.0856 | -0.0894 | -0.1216 | -0.1699 |
| 6 | -0.0972 | -0.1016 | -0.1381 | -0.1929 | 57 | -0.0824 | -0.0862 | -0.1172 | -0.1636 |
| 7 | -0.0992 | -0.1036 | -0.1409 | -0.1969 | 58 | -0.0793 | -0.0829 | -0.1127 | -0.1574 |
| 8 | -0.1012 | -0.1057 | -0.1437 | -0.2008 | 59 | -0.0762 | -0.0796 | -0.1082 | -0.1512 |
| 9 | -0.1031 | -0.1078 | -0.1466 | -0.2047 | · · · · · · | | Carlos - | | and the first |
| | | | | 1.1.1 | 61 | -0.0700 | -0.0732 | -0.0995 | -0.1390 |
| 11 | -0.1069 | -0.1117 | -0.1519 | -0.2121 | 62 | -0.0670 | -0.0701 | -0.0953 | -0.1331 |
| 12 | -0.1086 | -0.1135 | -0.1544 | -0.2156 | 63 | -0.0640 | -0.0669 | -0.0910 | -0.1271 |
| 13 | -0.1104 | -0.1154 | -0.1569 | -0.2191 | 64 | -0.0610 | -0.0638 | -0.0868 | -0.1212 |
| 14 | -0.1121 | -0.1172 | -0.1593 | -0.2226 | 65 | -0.0580 | -0.0607 | -0.0825 | -0.1152 |
| 15 | -0.1139 | -0.1190 | -0.1618 | -0.2261 | 66 | -0.0550 | -0.0575 | -0.0782 | -0.1093 |
| 16 | -0.1156 | -0.1208 | -0.1643 | -0.2295 | 67 | -0.0520 | -0.0544 | -0.0740 | -0.1033 |
| 17 | -0.1174 | -0.1227 | -0.1668 | -0.2330 | 68 | -0.0491 | -0.0513 | -0.0697 | -0.0974 |
| 18 | -0.1191 | -0.1245 | -0.1693 | -0.2365 | 69 | -0.0461 | -0.0481 | -0.0654 | -0.0914 |
| 19 | -0.1209 | -0.1263 | -0.1718 | -0.2400 | , t s - | 12.2 | | يە تەھى ۋە يەھەر يە | ્ ં હાર્કો ફિંદ |
| | | 14 | 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 71 | -0.0405 | -0.0423 | -0.0575 | -0.0804 |
| 21 | -0.1236 | -0.1292 | -0.1757 | -0.2454 | 72 | -0.0379 | -0.0397 | -0.0539 | -0.0753 |
| 22 | -0.1247 | -0.1303 | -0.1771 | -0.2474 | 73 | -0.0354 | -0.0370 | -0.0503 | -0.0702 |
| 23 | -0.1257 | -0.1313 | -0.1786 | -0.2494 | 74 | -0.0328 | -0.0343 | -0.0467 | -0.0652 |
| 24 | -0.1267 | -0.1324 | -0.1800 | -0.2514 | 75 | -0.0303 | -0.0316 | -0.0430 | -0.0601 |
| 25 | -0.1277 | -0.1334 | -0.1814 | -0.2534 | 76 | -0.0277 | -0.0290 | -0.0394 | -0.0550 |
| 26 | -0.1287 | -0.1345 | -0.1829 | -0.2554 | 77 | -0.0252 | -0.0263 | -0.0358 | -0.0500 |
| 27 | -0.1297 | -0.1355 | -0.1843 | -0.2574 | 78 | -0.0226 | -0.0236 | -0.0321 | -0.0449 |
| 28 | -0.1307 | -0.1366 | -0.1857 | -0.2594 | 79 | -0.0201 | -0.0210 | -0.0285 | -0.0398 |
| 29 | -0.1317 | -0.1376 | -0.1872 | -0.2614 | | | Jay Sakahara | · Barth may | |
| - 1 | | | ويتعاديه المعاد | 1999 (C | 81 | -0.0159 | -0.0166 | -0.0226 | -0.0316 |
| 30.4 | -0.1328 | -0.1388 | -0.1887 | -0.2635 | 82 | -0.0143 | -0.0150 | -0.0204 | -0.0285 |
| 31 | -0.1329 | -0.1388 | -0.1888 | -0.2637 | 83 | -0.0128 | -0.0133 | -0.0181 | -0.0253 |
| ې د د مېرون
د د د کې د د | Static Control of the second | | | | 84 | -0.0112 | -0.0117 | -0.0159 | -0.0222 |
| 33 | -0.1322 | -0.1382 | -0.1879 | -0.2625 | 85 | -0.0096 | -0.0100 | -0.0136 | -0.0190 |
| 34 | -0.1315 | -0.1374 | -0.1869 | -0.2610 | 86 | -0.0080 | -0.0084 | -0.0114 | -0.0159 |
| 35 | -0.1307 | -0.1366 | -0.1858 | -0.2595 | 87 | -0.0064 | -0.0067 | -0.0091 | -0.0128 |
| 36 | -0.1300 | -0.1358 | -0.1847 | -0.2580 | 88 | -0.0048 | -0.0051 | -0.0069 | -0.0096 |
| 37 | -0.1292 | -0.1350 | -0.1836 | -0.2565 | 89 | -0.0033 | -0.0034 | -0.0046 | -0.0065 |
| 38 | -0.1285 | -0.1343 | -0.1826 | -0.2550 | | | 1997 - 2019 - 2019
2019 - 2019 - 2019 - 2019
2019 - 201 | | 1229 |
| 39 | -0.1277 | -0.1335 | -0.1815 | -0.2535 | 91 | -0.0015 | -0.0016 | -0.0021 | -0.0030 |
| | | | | S. C. C. | 92 | -0.0013 | -0.0014 | -0.0019 | -0.0027 |
| 41 | -0.1247 | -0.1303 | -0.1772 | -0.2475 | 93 | -0.0012 | -0.0012 | -0.0017 | -0.0023 |
| 42 | -0.1224 | -0.1280 | -0.1740 | -0.2430 | 94 | -0.0010 | -0.0011 | -0.0014 | -0.0020 |
| 43 | -0.1202 | -0.1256 | -0.1708 | -0.2385 | 95 | -0.0008 | -0.0009 | -0.0012 | -0.0017 |
| 44 | -0.1179 | -0.1232 | -0.1676 | -0.2341 | 96 | -0.0007 | -0.0007 | -0.0010 | -0.0013 |
| 45 | -0.1157 | -0.1209 | -0.1644 | -0.2296 | 97 | -0.0005 | -0.0005 | -0.0007 | -0.0010 |
| 46 | -0.1134 | -0.1185 | -0.1611 | -0.2251 | 98 | -0.0003 | -0.0004 | -0.0005 | -0.0007 |
| 47 | -0.1111 | -0.1162 | -0.1579 | -0.2206 | 99 | -0.0002 | -0.0002 | -0.0002 | -0.0003 |
| 48 | -0.1089 | -0.1138 | -0.1547 | -0.2161 | | र्ड ३ ⁸ र २ | | ាត់តិថ្ងាំទីឆ្នាំ១ ដំបំ
សំណាម សំណាម សំណាម
សំណាម សំណាម សំណាម | ૾૾ૻ૽ૼ૽ૺૼૼ૽ૺૼૼૼૼૼૼૺ૽ૼૼૼૼૼૻૣ૾ૢૼ૾ૼૼૼ૱ૼ૱
૾૾ૺ૾૾૱૽ૼ૱૾૾૽૾ૺૼૻ૾ૺૼ૽ૼૻ૾ૢ૽ૼ૾૽ૼ૱૿૾ૺૺૺ૽૾૾૽ૺ૾૽ૺ૾ૺ૾૾ૺ૽૽ૺ૾ૺ૽૽ૺ૾ૺ૽૽ૺ૽૽ૺ૽૽ૺ૽૽ૺ૽ |
| 49 | -0.1066 | -0.1114 | -0.1515 | -0.2116 | | | | | ······ |
| S. 1. 34 | | | | | | | | | |

. . .

•

IT IS PERMISSIBLE TO INTERPOLATE BETWEEN EFPD RANGES

-- ----

•

REGION II INITIAL LICENSE EXAMINATION JOB PERFORMANCE MEASURE

JPM A1b, Perform a Reactor Coolant Boron Change Calculation

| CANDIDATE | | |
|---------------|-------------------------------|----------------|
| | | |
| | | |
| EXAMINER | | |
| | | |
| | | |
| | | |
| PREPARED/ | | |
| REVISED BY: | ····· | Date/ |
| | | |
| REVIEWED BY: | | Date/ |
| | (Operations Representative) | D <i>uto</i> , |
| | | |
| VALIDATED BY: | | Date/ |
| | (Operations Representative) | |
| | | |
| APPROVED BY: | | Date/ |
| | (Supervisor Initial Training) | |

CRYSTAL RIVER UNIT 3 ADMINISTRATIVE JOB PERFORMANCE MEASURE

Task: Perform a reactor coolant boron change calculation.

Alternate Path: N/A

JPM #: A1b (modified bank #264)

K/A Rating/Importance: 004A4.04/3.2/3.6 Task Number/Position: 0040102002/RO

Task Standard: Perform a reactor coolant boron change calculation using OP-304.

| Preferred Evaluation Location: | Preferred Evaluation Method: |
|--|---|
| Simulator In-Plant AdminX | Perform X Simulate |
| References:
1. OP-304, Rev 16 | |
| Validation Time: 30 min. | Time Critical: No |
| کے یہ سے میں اور کر نہ جب سے واق کر میں مصرح واق ہو ہو میں میں اور | میں بندی میں بران میں میں نیا ہے جو میں میں بندین کر اور اور میں میں میں اور اور میں میں میں میں میں میں میں م |
| Candidate: Printed Name | Time Start:
Time Finish: |
| Performance Rating: SAT UNSAT | Performance Time: |
| Examiner: | / |
| Printed Name | Signature Date |
| Comment: | |
| | |
| | |
| | |
| | ······································ |

SIMULATOR OPERATOR SETUP INSTRUCTIONS:

/ 1. N/A

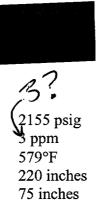
SIMULATOR OPERATOR INSTRUCTIONS:

1. N/A

Tools/Equipment/Procedures Needed:

- 1. OP-304
- 2. Calculator

READ TO THE OPERATOR


Directions to the Student:

I will explain the initial conditions, and state the task to be performed. All steps, including any required communications, shall be performed for this JPM. I will provide initiating cues and reports on other actions when directed by you. Ensure you indicate to me when you understand your assigned task. To indicate that you have completed your assigned task, return the handout sheet to the examiner.

Initial Conditions:

You are the REACTOR OPERATOR. Current plant conditions are:

> Reactor Coolant (RCS) Pressure RCS Boron Concentration RCS Temperature Pressurizer level Make-up Tank level

Initiating Cues:

You are requested to determine the volume of the two feed sources used to change the boron concentration of the reactor coolant in preparation for shutdown and cooldown. The two feed sources are the "B" BAST (12,789 ppm) and Demineralized Water (assume feed source temperature of 150°F) with the final plant conditions:

RCS Pressure RCS Boron Concentration RCS Temperature Pressurizer level Make-up Tank level 45 psig 2900 ppm 140°F 75 inches 70 inches

START TIME: _____

| CTED 1. | |
|---|---------------|
| <u>STEP 1</u> : | |
| Obtain a copy of appropriate procedure. | SAT |
| EXAMINER NOTE: Provide candidate with a clean copy of OP-304.
Calculators will also be provided if the candidate does not
have one. | UNSAT |
| STANDARD: N/A | |
| COMMENTS: | |
| STEP 2: | Critical Step |
| Candidate should complete OP-304 Enclosures 9 and 10. | SAT |
| STANDARD: Candidate completes OP-304 Enclosure 9 and 10. | UNSAT |
| EXAMINER NOTE: See attached key for answers; each volume should be within <u>+</u> 20 gallons. | |
| COMMENTS: | |
| | |
| END OF TASK | |

TIME STOP _____

CANDIDATE CUE SHEET

(TO BE RETURNED TO EXAMINER UPON COMPLETION OF TASK)

Initial Conditions:

You are the REACTOR OPERATOR. Current plant conditions are:

| Reactor Coolant (RCS) Pressure | 2155 psig |
|--------------------------------|------------|
| RCS Boron Concentration | 3 ppm |
| RCS Temperature | 579°F |
| Pressurizer level | 220 inches |
| Make-up Tank level | 75 inches |

Initiating Cues:

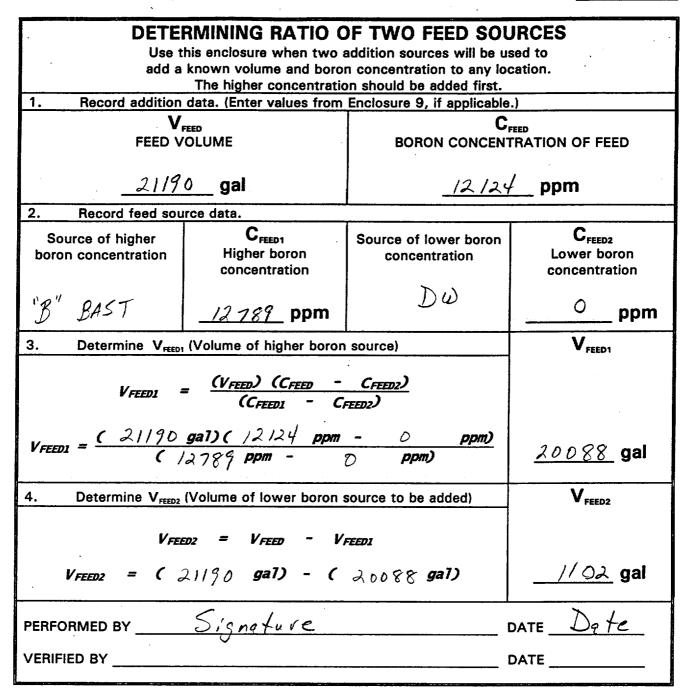
You are requested to determine the volume of the two feed sources used to change the boron concentration of the reactor coolant in preparation for shutdown and cooldown. The two feed sources are the "B" BAST (12,789 ppm) and Demineralized Water (assume feed source temperature of 150°F) with the final plant conditions:

RCS Pressure RCS Boron Concentration RCS Temperature Pressurizer level Make-up Tank level 45 psig 2900 ppm 140°F 75 inches 70 inches

(Page 1 of 2) **BORATION DURING COOLDOWN** 1. Record initial plant data. **RCS** Pressure **MUT Level RCS** Temp **PZR Level** 2155 psig 579 °F 220 in 75 in Record final plant data. 2. **RCS** Pressure **RCS Temp PZR Level MUT Level** $45 _ psig$ 75 in 140 °F 70 in 3. Record boron data. C2_{RCS} C1_{RCS} Initial RCS boron conc Final RCS boron conc 2900 Ppm З ppm 4. Determine M1_{RCS} (Initial mass of RCS) M1_{RCS} Use Enclosure 3 Use Initial RCS temp, PZR level, and MUT level 552004 lbm 5. Determine M2_{RCS} (Final mass of RCS) M2_{RCS} **Use Enclosure 3** Use Final RCS temp, PZR level, and MUT level <u>725374</u> lbm Determine ΔM_{RCS} (Mass change of RCS) 6. ΔM_{BCS} $\Delta M_{RCS} = M 2_{RCS} - M 1_{RCS}$ AMRGS = (725374 1bm) - (552004 1bm) 173370 lbm 7. Determine M_{FEED} (Mass of feed solution) MFEED MFEED & AMRCS <u>173370</u> lbm Continue calculation on next page

a tanàna dia mampikana amin'ny kaodim-paositra dia kaominina mandritra dia mampikana amin'ny fisiana amin'ny fi Ny INSEE dia mampikana mandritra dia mampikana mandritra dia mampikana mandritra dia mampikana mandritra dia man

ENCLOSURE 9


ENCLOSURE 9 (Page 2 of 2)

| BORON DURING COOLDOWN (cont'd | (k | | | | |
|--|--|--|--|--|--|
| 8. Determine UFEED (Specific volume of feed source). | | | | | |
| Use Enclosure 1
Use temperature of feed source | υ _{FEED}
<u><u>0, 0/6 34</u>
Ibm</u> | | | | |
| 9. Determine ΔV_{RCS} (RCS volume change due to contraction during contraction during contraction during contract of the second sec | poldown) | | | | |
| $\Delta V_{RCS} = M_{FEED} \upsilon_{FEED}$ | ΔV_{RCS} | | | | |
| $\Delta V_{RCS} = (173370 \text{ 1bm}) (0,01634 \frac{ft^3}{1\text{ bm}}) (7.48 \frac{ga1}{ft^3})$ | <u> 21190</u> gal | | | | |
| 10. Determine V _{FEED} (Feed volume) | | | | | |
| $V_{FEED} = \Delta V_{RCS}$ | V _{feed} | | | | |
| | <u>21190</u> gal | | | | |
| 11. Determine C _{FEED} (Boron concentration of Feed solution) | | | | | |
| $C_{FEED} = M2_{RCS} C2_{RCS} - M1_{RCS} C1_{RCS}$ M_{FEED} | | | | | |
| C _{FEED} = (7253747bm) (2900 ppm) - (5520047bm) (3 ppm)
(1733707bm) | <u>_/2/24</u> ppm | | | | |
| COMPLETE AND ATTACH ENCLOSURE 10 FOR RATIO OF FEED SOURCES TO BE USED. | | | | | |
| PERFORMED BY Signature | DATE <u>Date</u> | | | | |
| | DATE | | | | |

. . . .

. ...

ENCLOSURE 10

en la casa de la casa de 1978 de 1978 de la casa de la c

Rev. 16

Effective Date <u>04/20/00</u>

OPERATING PROCEDURE

•

•

OP-304

FLORIDA POWER CORPORATION

CRYSTAL RIVER UNIT 3

SOLUBLE POISON CONCENTRATION CONTROL

| APPROVED BY: | Procedure Owner |
|------------------|---|
| | <u>J. W. Smith for JHT</u>
(SIGNATURE ON FILE) |
| DATE: | 04/19/00 |
| PROCEDURE OWNER: | Manager Nuclear Operations
Support |

TABLE OF CONTENTS

| SECTION | PAG | E |
|------------|--|---|
| <u>1.0</u> | <u>PURPOSE</u> | L |
| <u>2.0</u> | REFERENCES 2.1 DEVELOPMENTAL REFERENCES 2.1 | |
| <u>3.0</u> | PERSONNEL INDOCTRINATION 3 3.1 SETPOINTS 3 3.2 LIMITS AND PRECAUTIONS 4 | 3 |
| <u>4.0</u> | INSTRUCTIONS 6 4.1 BORON CONCENTRATION / ADDITION CALCULATION (<10 PPM)
(CAT.1) 4.2 BORON CONCENTRATION CALCULATION FOR A CHANGE IN RCS
BORON CONCENTRATION (CAT. 1) | 6 |
| <u>5.0</u> | FOLLOW-UP ACTIONS 13 5.1 RESTORATION 13 | |
| ENCLOSURE | S | |

| 1 | Short Table of Specific Volume |
|--------|---|
| 2 | Definition of Terms 15 |
| 3 | Reactor Coolant Volume Tables 17 |
| 4 | On-Line Reactivity Management 24 |
| 5 | Continuous Feed and Bleed 26 |
| 6 | Feed Volumes for Batch Boration or Dilution Bleed Precedes Feed 27 |
| | |
| 7 | Feed Volumes for Batch Boration or Dilution Feed Precedes Bleed 28 |
| 8 | Feed Volumes for Batch Boration or Dilution Feed Precedes Bleed 28
Boron Change Due to Batch Feed 29 |
| 8
9 | |

<u>1.0</u> <u>PURPOSE[NOCS 007366]</u>

- 1.1 Provide a procedure for calculating the boron concentration in the reactor coolant system during heatup, power operation, and cooldown.
- 1.2 Provide a procedure for calculating the volume requirements for boration or deboration operations.
- 1.3 Provide a procedure for normal online operations (Tave \approx 579°F, pzr level \approx 220") when relatively minor changes in boron concentration are expected (Section 4.1).
- 1.4 Provide a procedure for any operation when changes in boron concentration are expected (Section 4.2).

REFERENCES

<u>2.0</u>

2.1 DEVELOPMENTAL REFERENCES

None

- P.

| <u>3.0</u> | PERSONNEL INDOCTRINATION | |
|------------|-----------------------------------|--|
| | DESCRIPTION | VALUE |
| 3.1 | <u>SETPOINTS</u> | |
| 3.1.1 | Continuous feed & bleed
permit | o Safety Groups at 100%,
<u>AND</u> Group 5 ≤ 80% |
| | | OR |
| | | o Safety groups at 100%, |
| | | AND Group 5 at 100%, |
| 3.1.2 | Formulas: | <u>AND</u> Group 6 ≥ 95%
 |
| J.1.6 | | |
| | $C_1V_1 + C_2V_2 = C_rV_r$ | C = Concentration of solution
(ppm) |

and the state of the second second second

V = Volume of solution (gals.)

.

. ·

3.2

LIMITS AND PRECAUTIONS

| | LIMIT | BASIS |
|-------|---|---|
| 3.2.1 | Deboration is prohibited
during periods when RCS | TS 3.4.4
TS 3.4.5 |
| | flow < 2700 gpm | TS 3.4.6 |
| | | TS 3.4.7 |
| | · | SR 3.9.4.1 |
| 3.2.2 | At least one RCP must
remain running during RCS
boration to the
concentration for 1% SDM at
73°F OR to the refueling
boron concentration, per
the Reactor Engineer, if
the shutdown is a refueling
shutdown | Prevents formation of RCS fluid with
relatively low boron concentration
[NOCS 062336] |
| 3.2.3 | PZR Spray flow must be
maintained following
changes in RCS boron
concentration of >20 ppmb | Allows boron equalization between
RCS and PZR [NOCS 062335] |
| 3.2.4 | While making boron
concentration changes in a
subcritical reactor, have
Chemistry dept. sample the
RCS at approximately every
30 ppmb change OR every
30 minutes if 30 ppmb
change cannot be determined | Prevent inadvertent criticality due
to deboration |

· ~ ~ ~

Page 4

مبورة كالمرور بالمح

3.2 LIMITS AND PRECAUTIONS (Cont'd)

| | LIMIT | BASIS |
|-------|---|---|
| 3.2.5 | Stop boration or deboration
operations immediately if
control rod position
indication, neutron count
rate, or neutron error
behave in an erratic or
unexpected manner | Prevent inadvertent boration/
deboration of the RCS |
| 3.2.6 | Stop boration or deboration
operations if makeup system
operation is disrupted
(loss of letdown,
ES actuation, etc.) | To maintain control of the plant
should unexpected conditions arise. |
| 3.2.7 | While on DH Cooling with no
RCPs in operation,
additions to the RCS are to
be of a boron concentration
greater than or equal to
the value required by
OP-103C Curve 18, to ensure
a 1% SDM at 73°F. | Prevents reduction of SDM while on
DH cooling. |
| 3.2.8 | If two sources are utilized
for boron addition, the
higher concentration should
be added first. | Prevents deboration. |
| 3.2.9 | While on DH Cooling with no
RCPs in operation,
If two sources are utilized
for boron additions and the
second source is less than
1% shutdown boron
requirements, the second
source shall be limited to
batch adds of 200 gallons
or less. | Prevents deboration. |

and the second secon

4.0 INSTRUCTIONS

| | ACTIONS | DETAILS |
|-------|--|---|
| 4.1 | BORON CONCENTRATION / ADDITI | ON CALCULATION (<10 PPM) (CAT.1) |
| 4.1.1 | DETERMINE desired boron
concentration change | o <u>IF ></u> 20% RTP,
<u>THEN</u> COMPLETE Enclosure 4, On-Lin
Reactivity Management |
| | | o Enclosure 4 is not required at th recommendation of Reactor Enginee |
| | | o Enclosure 4 is <u>not</u> required for equilibrium additions |
| | | o <u>IF</u> <110 gallons of Demin Water
added to the RCS,
<u>THEN</u> Enclosure 4 is not required
<u>AND</u> GO TO Step 4.1.10 |
| | | /
Initial/Dat |
| 4.1.2 | DETERMINE desired feed
source(s) | oCALL Chemistry to verify
current feed source boron
concentrations |
| | | oENSURE statusboard is updated
with current boron
concentrations |
| | | /
Initial/Date |
| 4.1.3 | <u>IF</u> the Rods.XLS spreadsheet
computer program is
available and desired to be | o ATTACH computer printout
AND GO TO Step 4.1.10 |
| | used,
<u>THEN</u> make necessary entries
into the program AND print
results | o <u>IF</u> manual calculation is to be
used,
<u>THEN</u> N/A this step |
| | | /
Initial/Date |

Ξ.

1.84

-1

BORON CONCENTRATION / ADDITION CALCULATION (<10 PPM) (CAT.1) (Cont'd)

| | ACTIONS | DETAILS |
|-----------|---|--|
| | combined additions (fo | 4.1.7, multiple steps may be used for
or example: an equilibrium add and a
y those steps used need to be filled
ssary). |
| 4.1.4 | For a Demin Water boron reduction use: | o RCS volume from OP-103F, RC System
Inventory Vs Tave |
| | RCS Volume (gal) | <u>OR</u> |
| | Initial boron
Final boron | o Use 65,000 gal when at Tave = 579
and pzr level = 220" |
| | DW gal = <u>RCS gal (∆ boron)</u>
Final boron | |
| | = <u>(gal)(ppm-</u>
(ppm) | gal |
| 4.1.5 | For a change in boron
concentration using a
single borated water source | o If lowering RCS concentration use
a positive value for ∆ boron |
| | use: | o If raising RCS concentration use a
negative value for ∆ boron |
| | Source (tank)
Borated source ppm
RCS boron initial | o RCS volume from OP-103F, RC System
Inventory Vs Tave |
| | RCS Volume (gal)
RCS boron final | <u>OR</u> |
| | | o Use 65,000 gal when at T = 579
and pzr level = 220" |
| Borated s | source gal = <u>RCS volume (RCS</u>
Final boron - Bora | <u>f boron)</u>
ated source |
| | = <u>(gal)(</u>
(ppm - | <u> </u> |

4.1

4.1 <u>BORON CONCENTRATION / ADDITION CALCULATION (<10 PPM) (CAT.1)</u> (Cont'd)

| | ACTIONS | <u> </u> | DETAILS |
|---------|---|------------------------------|--------------------------|
| 4.1.6 | For an equilibrium add
(boron source + DW) use: | o Sourc | ce (tank) |
| | Borated source ppm
RCS boron ppm
Total add gal | | Y. |
| | Borated source gal = <u>RCS</u>
Fèe | boron (total
d source ppm | add gal) |
| | = <u>(ppm)(</u>
(| <u>gal)</u> =
ppm) | gal |
| | DW = Total add gal - Bora | ated source gal | |
| | = (gal) - (| gal) = | gal |
| 4.1.7 | For an equilibrium add
(using two borated source
use: | o Sourc
es) o Sourc | e 1 (tank)
e 2 (tank) |
| | Borated source 1 ppm
Borated source 2 ppm
RCS boron ppm
Total add volume gal | _ | |
| Borated | source 1 gal= <u>(Total add vo</u> | | |
| | | - | |
| | = <u>(gal</u>
(ppm | – ppm |) <u>ppmy</u> |
| | = ga | 1 from Tank | |
| Borated | source 2 gal = Total add | volume gal - B | orated source 1 gal |
| | = ga | 1 | gal |
| | | | |

4.1 <u>BORON CONCENTRATION / ADDITION CALCULATION (<10 PPM) (CAT.1)</u> (Cont'd)

| | ACTIONS | DETAILS |
|--------|---|---|
| 4.1.8 | SIGN for all manual
calculations (other than
calculations performed
using worksheet(s)) | /
Performer's signature/Date |
| 4.1.9 | Independently VERIFY all
manual calculations made
(other than calculations
performed using
worksheet(s)) | /
Independent Verifier/Date |
| 4.1.10 | Make necessary additions to
the MUT/RCS
<u>AND</u> RECORD addition
source(s) and volume(s) in
the Main Control Room Log | <pre>o MAKE additions in
accordance with OP-402,
Makeup and Purification
System, OR
o Additions made in accordance
with OP-403 series.
/
Initial/Date</pre> |
| | NOTE: An acid overshoot < 3 | he calculations as required
gallons or a water overshoot < 15
re reperformance of calculation. |
| 4.1.11 | IF the volume(s) of the
actual addition(s)
recorded per step 4.1.10
in the Main Control Room
Log are different than
their pre-addition
calculations,
THEN SUBSTITUTE the actual
volume(s) of the
addition(s) in the
original calculation(s)
used to perform the
addition(s) | <pre>o Re-perform the calculation (s) using the appropriate calculation(s) Step 4.1.3 Step 4.1.4 Step 4.1.5 Step 4.1.6 Step 4.1.7 Enclosure 8, Boron Change Due to Batch Feed</pre> |

o IF no calculation(s) is/are to be
reperformed
THEN N/A this step

______ Initial/Date

••.•

Hereit and

4.2 <u>BORON CONCENTRATION CALCULATION FOR A CHANGE IN RCS BORON</u> CONCENTRATION (CAT. 1)

| 4.2.2 DETERMINE desired Feed
Source(s) o CALL Cher
conditions
etc.) 4.2.3 IE the Rods.XLS spreadsheet
computer program is
available and desired to be
used,
IHEN make necessary entries
into the program o NSS verity
used to d
Rods.XLS | DETAILS |
|---|--|
| 4.2.2 DETERMINE desired Feed
Source(s) o CALL Cher
conditions
etc.) 4.2.3 IF the Rods.XLS spreadsheet
computer program is
available and desired to be
used,
IHEN make necessary entries
into the program o NSS verity
used to of
Rods.XLS | TP,
ETE Enclosure 4,
activity Management |
| Engineer i
o Based on r
calculatio
o Based on e
conditions
etc.)
4.2.2 DETERMINE desired Feed
Source(s)
4.2.3 IF the Rods.XLS spreadsheet
computer program is
available and desired to be
used,
THEN make necessary entries
into the program | sure 4 is not required |
| calculatio o Based on e conditions etc.) a.2.2 DETERMINE desired Feed Source(s) a.2.3 IF the Rods.XLS spreadsheet concentration of the program is available and desired to be used, THEN make necessary entries into the program | ndation of the Rx
f applicable |
| 4.2.2 DETERMINE desired Feed Source(s) 4.2.3 <u>IF</u> the Rods.XLS spreadsheet computer program is available and desired to be used, <u>THEN</u> make necessary entries into the program ATTACH computer conditions etc.) | |
| Source(s) current
concentration
o ENSURE si
with current
concentration
available and desired to be
used,
<u>THEN</u> make necessary entries
into the program o ATTACH co | xpected plant
(plant C/D, refueling, |
| Source(s) current
concentration
o ENSURE si
with current
concentration
available and desired to be
used,
THEN make necessary entries
into the program o ATTACH co | <u>Initial</u> /Dej
Initial/Date |
| with curr
concentration
i.2.3 <u>IF</u> the Rods.XLS spreadsheet <u>o NSS verification</u>
computer program is <u>used to o</u>
available and desired to be <u>Rods.XLS</u>
used, <u>printout</u>
<u>THEN</u> make necessary entries
into the program oATTACH co | mistry to verify
feed source boron
ations |
| computer program isused toavailable and desired to beRods.XLSused,printoutTHEN make necessary entriesoneinto the programoneATTACH co | tatusboard is updated
rent boron
ations
<u>ブルラット Da</u>
Initial/Date |
| into the program oATTACH co | fy appropriate data was
generate the desired
spreadsheet
(s) |
| | omputer printout
D step 4.2.5 |
| o <u>IF</u> manual ca
used,
<u>THEN</u> N/A th ⁻ | alculation is to be
is step
<u>JA /</u>
Initial/Date |

NSS Verification/Date

4.2

BORON CONCENTRATION CALCULATION FOR A CHANGE IN RCS BORON CONCENTRATION (CAT. 1) (Cont'd)

| | ACTIONS | DETAILS | | |
|-------|---|---|------|--|
| 4.2.4 | DETERMINE volumes and
boron concentrations
required for desired
change | o PERFORM hand calculation
using the appropriate
enclosure | by | |
| | Change | Enclosure 5, Continuous
Feed and Bleed | | |
| | | Enclosure 6, Feed Volume
for Batch Boration or
Dilution - Bleed Precede
Feed | | |
| | | Enclosure 7, Feed Volume
for Batch Boration or
Dilution - Feed Precedes
Bleed | | |
| | | Enclosure 8, Boron Chang
Due to Batch Feed | e | |
| | | Enclosure 9, Boration
During Cooldown | | |
| | | Enclosure 10, Determinin
Ratio of Two Feed Source | | |
| | | <u>Initials</u> / | | |
| | | <u>SSOD</u>
SSOD Verification/D | Date | |
| 4.2.5 | Make necessary additions to
the MUT/RCS
<u>AND</u> RECORD addition
source(s) and volume(s) in
the Main Control Room Log | MAKE additions in accorda
with OP-402, Makeup and
Purification System,
OR Additions made in accorda
with OP-403 series | | |
| | | /
Initial/D | ate | |

. •

4.2

BORON CONCENTRATION CALCULATION FOR A CHANGE IN RCS BORON CONCENTRATION (CAT. 1) (Cont'd)

ACTIONS DETAILS

NOTE: An acid overshoot ≤ 3 gallons or a water overshoot ≤ 15 gallons does not require reperformance of calculation.

- 4.2.6 <u>IF</u> the volume(s) of the actual addition(s) recorded per step 4.2.5 in the Nuclear Operators logbook are different then the preaddition calculations, <u>THEN</u> SUBSTITUTE the actual volume(s) of addition in the calculation(s) used to perform the addition(s)
- o RE-PERFORM the calculation(s)
 using the appropriate enclosure(s)
- Enclosure 5, Continuous Feed and Bleed
- Enclosure 6, Feed Volumes for Batch Boration or Dilution Bleed Precedes Feed
- Enclosure 7, Feed Volumes for Batch Boration or Dilution Bleed Precedes Feed
- ____ Enclosure 8, Boron Change Due to Batch Feed
- ____ Enclosure 9, Boration During Cooldown
- ____ Enclosure 10, Determining Ratio of Two Feed Sources
- o IF no calculation(s) is/are to be
 reperformed
 THEN N/A this step

Initial/Date

17 C

4.2.7 COLLECT Data

o ___ATTACH all printouts and Enclosures used in performing this procedure

Initial/Date

<u>5.0</u>

FOLLOW-UP ACTIONS

| | ACTIONS | DETAILS |
|-----|-------------|---------|
| 5.1 | RESTORATION | |

None

ENCLOSURE 1

SHORT TABLE OF SPECIFIC VOLUME

| TEMP °F | <u>15 PSIA</u> | 2100 PSIA | <u>2170 PSIA</u> | 2200 PSIA |
|-----------------|----------------|-------------|------------------|-------------|
| | (0 PSIG) | (2085 PSIG) | (2155 PSIG) | (2185 PSIG) |
| 620 | | 0.02435 | 0.02429 | 0.02426 |
| 610 | | 0.02377 | 0.02371 | 0.02369 |
| 600 | | 0.02326 | 0.02322 | 0.02320 |
| 590 | | 0.02281 | 0.02377 | 0.02275 |
| 580 | | 0.02240 | 0.02236 | 0.02235 |
| 57 9 | | 0.02236 | 0.02232 | 0.02231 |
| 570 | | 0.02203 | 0.02200 | 0.02199 |
| 560 | | 0.02170 | 0.02167 | 0.02166 |
| 550 | | 0.02139 | 0.02136 | 0.02135 |
| 540 | | 0.02110 | 0.02108 | 0.02107 |
| 535 | | 0.02097 | 0.02095 | 0.02094 |
| 532 | | 0.02088 | 0.02086 | 0.02085 |
| 530 | | 0.02083 | 0.02081 | 0.02080 |
| 520 | | 0.02058 | 0.02057 | 0.02056 |
| 200 | 0.01664 | | | |
| 190 | 0.01657 | | | |
| 180 | 0.01651 | | | |
| 170 | 0.01645 | | | |
| 160 | 0.01639 | | | |
| 150 | 0.01634 | | . | |
| 140 | 0.01629 | | | |
| 130 | 0.01625 | | | |
| 120 | 0.01620 | | | |
| 110 | 0.01616 | | | |
| 100 | 0.01613 | | | |
| 90 | 0.01610 | | | |
| 80 | 0.01603 | | | |
| | | | | |

OP-304

.

Page 14

ENCLOSURE 2 (Page 1 of 2)

a a share a she water a sh

| | | DEFINITION OF TERMS |
|--------------------|-------|---|
| TERM | UNITS | DEFINITION |
| M _{rcs} | Jpm | MASS OF THE RCS (used when mass does not change) |
| M1 _{rcs} | lpw | INITIAL MASS OF THE RCS |
| M2 _{rcs} | Tbm | FINAL MASS OF THE RCS |
| ∆M _{RCS} | 7 bm | CHANGE IN MASS OF THE RCS |
| M | lpw | TOTAL MASS OF FEED |
| | lpw | MASS OF FIRST FEED SOURCE |
| M
FEED2 | lpw | MASS OF SECOND FEED SOURCE |
| C _{RCS} | ppm | RCS BORON CONCENTRATION (used when concentration does not change) |
| C1 _{RCS} | ppm | INITIAL RCS BORON CONCENTRATION |
| C2 _{RCS} | ppm | FINAL RCS BORON CONCENTRATION |
| C | ppm | BORON CONCENTRATION OF FEED SOURCE (when only one will be used) |
| C _{FEED1} | ppm | BORON CONCENTRATION OF FIRST FEED SOURCE (higher concentration) |
| C _{FEED2} | ppm | BORON CONCENTRATION OF SECOND FEED SOURCE (lower concentration) |
| V _{RCS} | gal | VOLUME OF THE RCS (used when volume does not change) |
| V1 _{RCS} | gal | INITIAL VOLUME OF THE RCS |
| V2 _{RCS} | gal | FINAL VOLUME OF THE RCS |
| V | gal | VOLUME OF FEED SOURCE (when only one will be used) |
| V _{FEED1} | gal | VOLUME OF FIRST FEED SOURCE (higher concentration) |
| V | gal | VOLUME OF SECOND FEED SOURCE (lower concentration) |

.

<u>ENCLOSURE 2</u> (Page 2 of 2)

۰.

an an an an an an Arthur

| ERM | UNITS | DEFINITION OF TERMS |
|-------------------|----------------------|---|
| RCS | ft ³ /lbm | SPECIFIC VOLUME OF THE RCS (used when volume does not change) |
|)1 _{RCS} | ft³/lbm | INITIAL SPECIFIC VOLUME OF THE RCS |
|)2 _{RCS} | ft³/1bm | FINAL SPECIFIC VOLUME OF THE RCS |
|)
FEED | ft³/lbm | SPECIFIC VOLUME OF FEED SOURCE (when only one will be used) |
|)
FEED1 | ft³/lbm | SPECIFIC VOLUME OF FIRST FEED SOURCE |
| FEED2 | ft³/lbm | SPECIFIC VOLUME OF SECOND FEED SOURCE |
| XE | %∆k/k | REACTIVITY DUE TO XENON |
| 21 _{xe} | %∆k/k | INITIAL REACTIVITY DUE TO XENON |
| 2 _{xe} | %∆k/k | FINAL REACTIVITY DUE TO XENON |
| RP | %∆k/k | REACTIVITY DUE TO REACTOR POWER |
| 1, _{RP} | %∆k/k | INITIAL REACTIVITY DUE TO REACTOR POWER |
| 22 _{RP} | %∆k/k | FINAL REACTIVITY DUE TO REACTOR POWER |
| ₹ _{RI} | %∆k/k | REACTIVITY DUE TO ROD POSITION |
| 1. | %∆k/k | INITIAL REACTIVITY DUE TO ROD POSITION |
| 82 _{ri} | %∆k/k | FINAL REACTIVITY DUE TO ROD POSITION |
| R | %∆k/k | CHANGE IN REACTIVITY |
| B | ppm
%∆k/k | INVERSE BORON WORTH |
| В | ppm | CHANGE IN BORON CONCENTRATION |

. •

·

.

| REACTOR COOLANT IN LBMENCLOSURE 3PRESSURIZER(140F, 45 PSIG)(Page 1 of 7)LEVELMAKEUP TANK LEVEL | | | | | | | | | | | | |
|--|--------------------|--------|---------------------|--------------------|--------|------------------|--------|--------|--------|--------|--------|--------|
| | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
| 40 | 710806 | 712085 | 713364 | 714643 | 715922 | 717201 | 718480 | 719759 | 721038 | 722316 | 723595 | 724874 |
| 45 | 711791 | 713070 | 714349 | 715628 | 716907 | 718186 | 719465 | 720743 | 722022 | 723301 | 724580 | 725859 |
| 50 | 712776 | 714055 | 715334 | 716613 | 717892 | 719171 | 720449 | 721728 | 723007 | 724286 | 725565 | 726844 |
| 55 | 713761 | 715040 | 716319 | 717598 | 718876 | 720155 | 721434 | 722713 | 723992 | 725271 | 726550 | 727829 |
| 60 | 714746 | 716025 | 717304 | 718582 | 719861 | 721140 | 722419 | 723698 | 724977 | 726256 | 727535 | 728813 |
| 65 | 715731 | 717009 | 718288 | 719567 | 720846 | 722125 | 723404 | 724683 | 725962 | 727241 | 728519 | 729798 |
| 70 | 716715 | 717994 | 719273 | 720552 | 721831 | 723110 | 724389 | 725668 | 726946 | 728225 | 729504 | 730783 |
| 75 | 717700 | 718979 | 720258 | 721537 | 722816 | 724095 | 725374 | 726652 | 727931 | 729210 | 730489 | 731768 |
| 80 | 718685 | 719964 | 721243 | 722522 | 723801 | 725079 | 726358 | 727637 | 728916 | 730195 | 731474 | 732753 |
| 85 | 719670 | 720949 | 722228 | 723507 | 724785 | 726064 | 727343 | 728622 | 729901 | 731180 | 732459 | 733738 |
| 90 | 720655 | 721934 | 723212 | 724491 | 725770 | 727049 | 728328 | 729607 | 730886 | 732165 | 733444 | 734722 |
| 95 | 721640 | 722918 | 724197 | 725476 | 726755 | 728034 | 729313 | 730592 | 731871 | 733149 | 734428 | 735707 |
| 100 | 722624 | 723903 | 725182 | 726461 | 727740 | 729019 | 730298 | 731577 | 732855 | 734134 | 735413 | 736692 |
| 105 | 723609 | 724888 | 726167 | 727446 | 728725 | 730004 | 731282 | 732561 | 733840 | 735119 | 736398 | 737677 |
| 110 | 724594 | 725873 | 727152 | 728431 | 729710 | 730988 | 732267 | 733546 | 734825 | 736104 | 737383 | 738662 |
| 115 | 72557 9 | 726858 | 728137 | 729415 | 730694 | 731973 | 733252 | 734531 | 735810 | 737089 | 738368 | 739647 |
| 120 | 726564 | 727843 | 729121 | 730400 | 731679 | 732958
733943 | 734237 | 735516 | 736795 | 738074 | 739352 | 740631 |
| 125 | 727548 | 728827 | 730106 | 731385 | 732664 | 733943 | 735222 | 736501 | 737780 | 739058 | 740337 | 741616 |
| 130 | 728533 | 729812 | 731091 | 732370 | 733649 | 734928 | 736207 | 737495 | 738764 | 740043 | 741322 | 742601 |
| 135 | 729518 | 730797 | 732076 | 733355 | 734634 | 735913 | 737191 | 738470 | 739749 | 741028 | 742307 | 743586 |
| 140 | 730503 | 731782 | 733061 | 734340 | 735618 | 736897 | 738176 | 739455 | 740734 | 742013 | 743292 | 744571 |
| 145 | 731488 | 732767 | 734046 | 735324 | 736603 | 737882 | 739161 | 740440 | 741719 | 742998 | 744277 | 745555 |
| 150 | 732473 | 733751 | 735030 | 736309 | 737588 | 738867 | 740146 | 741425 | 742704 | 743983 | 745261 | 746540 |
| 155 | 733457 | 734736 | 736015 | 737294 | 738573 | 739852 | 741131 | 742410 | 743688 | 744967 | 746246 | 747525 |
| 160 | 734442 | 735721 | 737000 | 73827 9 | 739558 | 740837 | 742116 | 743394 | 744673 | 745952 | 747231 | 748510 |
| 165 | 735427 | 736706 | 737985 | 739264 | 740543 | 741821 | 743100 | 744379 | 745658 | 746937 | 748216 | 749495 |
| 170 | 736412 | 737691 | 738970 | 740249 | 741527 | 742806 | 744085 | 745364 | 746643 | 747922 | 749201 | 750480 |
| 175 | 737397 | 738676 | 739954 | 741233 | 742512 | 743791 | 745070 | 746349 | 747628 | 748907 | 750186 | 751464 |
| 180 | 738382 | 739660 | 740939 | 742218 | 743497 | 744776 | 746055 | 747334 | 748613 | 749891 | 751170 | 752449 |
| 185 | 739366 | 740645 | 741924 | 743203 | 744482 | 745761 | 747040 | 748319 | 749597 | 750876 | 752155 | 753434 |
| 190 | 740351 | 741630 | 742909 | 744188 | 745467 | 746746 | 748024 | 749303 | 750582 | 751861 | 753140 | 754419 |
| 195 | 741336 | 742615 | 7438 9 4 | 745173 | 746452 | 747730 | 749009 | 750288 | 751567 | 752846 | 754125 | 755404 |
| 200 | 742321 | 743600 | 744879 | 746157 | 747436 | 748715 | 749994 | 751273 | 752552 | 753831 | 755110 | 756389 |
| 205 | 743306 | 744585 | 745863 | 747142 | 748421 | 749700 | 750979 | 752258 | 753537 | 754816 | 756094 | 757373 |
| 210 | 744290 | 745569 | 746848 | 748127 | 749406 | 750685 | 751964 | 753243 | 754522 | 755800 | 757079 | 758358 |
| 215 | 745275 | 746554 | 747833 | 749112 | 750391 | 751670 | 752949 | 754227 | 755506 | 756785 | 758064 | 759343 |
| 220 | 746260 | 747539 | 748818 | 750097 | 751376 | 752655 | 753933 | 755212 | 756491 | 757770 | 759042 | 760328 |
| 225 | 747245 | 748524 | 7 49 803 | 751082 | 752360 | 753639 | 754918 | 756197 | 757476 | 758755 | 760034 | 761313 |
| 230 | 748230 | 749509 | 750788 | 752066 | 753345 | 754624 | 755903 | 757182 | 758461 | 759740 | 761019 | 762297 |
| 235 | 749215 | 750493 | 751772 | 753051 | 754330 | 755609 | 756888 | 758167 | 759446 | 760725 | 762003 | 763282 |
| 240 | 750199 | 751478 | 752757 | 754036 | 755315 | 756594 | 757873 | 759152 | 760430 | 761709 | 762988 | 764267 |
| | | | | | - | | | | | | | |

TABLE BASED ON RC SP VOL = .016290 FT3/LBM, PZR SP VOL = .016290 FT3/LBM & MU Sys SP VOL = .01613 FT3/LBM

| | | | | | DEACTO | | | | | | | |
|----------------|------------------|------------------|------------------|------------------|---------------------------------------|---------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| | | | | | | R COOLANT | | | | | | CLOSURE 3 |
| PRESSU | DT7CD | | | | (300F, 550 PSIG)
Makeup Tank Level | | | | | | | e 2 of 7) |
| LEVE | | | | | MAKE | UP TANK | LEVEL | | | | | |
| LEVE | L 40 | 45 | 50 | | <u> </u> | ~ | | | | | | |
| 40 | 40
663390 | 45
664669 | 50
665049 | 55 | 60
60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
| 45 | 664193 | 665471 | 665948
666750 | 667227 | 668506 | 669785 | 671064 | 672342 | 673621 | 674900 | 676179 | 677458 |
| 50 | 664995 | 666274 | 667553 | 668029
668831 | 669308 | 670587 | 671866 | 673145 | 674424 | 675702 | 676981 | 678260 |
| 55 | 665797 | 667076 | 668355 | 669634 | 670110
670013 | 671389 | 672668 | 673947 | 675226 | 676505 | 677784 | 679063 |
| 60 | 666599 | 667878 | 669157 | 670436 | 670913
671715 | 672192 | 673470 | 674749 | 676028 | 677307 | 678586 | 679865 |
| 65 | 667402 | 668681 | 669960 | 671238 | 672517 | 672994
673796 | 674273 | 675552 | 676830 | 678109 | 679388 | 670667 |
| 70 | 668204 | 669483 | 670762 | 672041 | 673320 | 674598 | 675075
675877 | 676354 | 677633 | 678912 | 680912 | 681469 |
| 75 | 669006 | 670285 | 671564 | 672843 | 674122 | 675401 | 676680 | 677156
677959 | 678435
679237 | 679714 | 680993 | 682272 |
| 80 | 669809 | 671088 | 672366 | 673645 | 674924 | 676203 | 677482 | 678761 | 680040 | 680516 | 681795 | 683074 |
| 85 | 670611 | 671890 | 673169 | 674448 | 675726 | 677005 | 678284 | 679563 | 680842 | 681319
682121 | 682597 | 683876 |
| 90 | 671413 | 672692 | 673971 | 675250 | 676529 | 677808 | 679087 | 680365 | 681644 | 682121
682022 | 683400 | 684679 |
| 95 | 672216 | 673494 | 674773 | 676052 | 677331 | 678610 | 679889 | 681168 | 682447 | 682923
683725 | 684202 | 685481 |
| 100 | 673018 | 674297 | 675576 | 676854 | 678133 | 679412 | 680691 | 681970 | 683249 | 684528 | 685004
685807 | 686283 |
| 105 | 673820 | 675099 | 676378 | 677657 | 678936 | 680215 | 681493 | 682772 | 684051 | 685330 | 686609 | 687086 |
| 110 | 674622 | 675901 | 677180 | 678459 | 679738 | 681017 | 682296 | 683575 | 684853 | 686132 | 687411 | 687888
688690 |
| 115 | 675425 | 676704 | 677983 | 679261 | 680540 | 681819 | 683098 | 684377 | 685656 | 6869 35 | 688214 | 689492 |
| 120 | 676227 | 677506 | 678785 | 680064 | 681343 | 682621 | 683900 | 685179 | 686458 | 687737 | 689016 | 690295 |
| 125 | 677029 | 678308 | 679587 | 680866 | 682145 | 683424 | 684703 | 685982 | 687260 | 688539 | 689818 | 691097 |
| 130 | 677832 | 679111 | 680389 | 681668 | 682947 | 684226 | 685505 | 686784 | 688063 | 689342 | 690620 | 691899 |
| 135 | 678634 | 679913 | 681192 | 682471 | 683749 | 685028 | 686307 | 687586 | 688865 | 690144 | 691423 | 692702 |
| 140 | 679436 | 680715 | 681994 | 683273 | 684552 | 685831 | 687110 | 688388 | 689667 | 690946 | 692225 | 693504 |
| 145 | 680239 | 681517 | 682796 | 684075 | 685354 | 686633 | 687912 | 689191 | 690470 | 691748 | 693027 | 694306 |
| 150 | 681041 | 682320 | 683599 | 684677 | 686156 | 687435 | 688714 | 689993 | 691272 | 692551 | 693830 | 695109 |
| 155 | 681843 | 683122 | 684401 | 685680 | 686959 | 688238 | 689516 | 690795 | 692074 | 693353 | 694632 | 695911 |
| 160 | 682645 | 683924 | 685203 | 686482 | 687761 | 68 9 040 | 690319 | 691598 | 692876 | 694155 | 695434 | 696713 |
| 165 | 683448 | 684727 | 686005 | 687284 | 688563 | 689842 | 691121 | 692400 | 693679 | 694958 | 696237 | 697515 |
| 170 | 684250 | 685529 | 686808 | 688087 | 689366 | 690644 | 691923 | 693202 | 694481 | 695760 | 697039 | 698318 |
| 175 | 685052 | 686331 | 687610 | 688889 | 690168 | 691447 | 692726 | 694004 | 695283 | 696562 | 697841 | 699120 |
| 180 | 685855 | 687134 | 688412 | 689691 | 690970 | 692249 | 693528 | 694807 | 696086 | 697365 | 698643 | 699922 |
| 185 | 686657 | 687936 | 689215 | 690494 | 691772 | 693051 | 694330 | 695609 | 696888 | 698167 | 699446 | 700725 |
| 190 | 687459
688262 | 688738 | 690017 | 691296 | 692575 | 693854 | 695133 | 696411 | 697690 | 698969 | 700248 | 701527 |
| 195 | 688262 | 689540 | 690819 | 692098 | 693377 | 694656 | 695935 | 697214 | 698473 | 699771 | 701050 | 702329 |
| 200 | 689064 | 690343 | 691622 | 692900 | 694179 | 695458 | 696737 | 698016 | 699295 | 700574 | 701853 | 703132 |
| 205
210 | 689866
690668 | 691145 | 692424 | 693703 | 694982 | 696261 | 697539 | 698818 | 700097 | 701376 | 702655 | 703934 |
| 210 | 691471 | 691947
692750 | 693226 | 694505 | 695784 | 697063 | 698342 | 699621 | 700899 | 70217 8 | 703457 | 704736 |
| 213 | 692273 | 692750 | 694028 | 695307 | 696586 | 697865 | 699144 | 700423 | 701702 | 702981 | 704260 | 705538 |
| 225 | 693075 | 693552 | 694831 | 696110 | 697389 | 698667 | 699946 | 701225 | 702504 | 703783 | 705062 | 706341 |
| 225 | 693075
693878 | 694354
695157 | 695633
696435 | 696912
697714 | 698191 | 699470
700272 | 700749 | 702027 | 703306 | 704585 | 705864 | 707143 |
| 235 | 694680 | 695959 | 697238 | 697714
698517 | 698993
699795 | 700272 | 701551 | 702830 | 704109 | 705388 | 706666 | 707945 |
| 240 | 695482 | 696761 | 698040 | 699319 | 700598 | 701074
701877 | 702353 | 703632 | 704911 | 706190 | 707469 | 708748 |
| ~ · · v | VJJ7VL | VJV/VI | 070040 | 022212 | 100320 | 101011 | 703156 | 704434 | 705713 | 706992 | 708271 | 709550 |

TABLE BASED ON RC SP VOL = .017415 FT3/LBM, PZR SP VOL = .019996 FT3/LBM & MU Sys SP VOL = .01613 FT3/LBM

 $\{i_i\}^{i}$

. .

| 40 45 50 55 60 65 70 75 80 85 90 95 40 555506 556785 558064 559343 560622 561901 563180 564438 567737 567016 568295 569574 45 555611 557390 558649 560313 561137 565668 566947 568226 569505 570744 55 557321 558600 559879 561157 562436 566743 568157 569436 57010 571318 57010 571318 57131 571313 57215 574926 57926 57926 57926 57926 57926 57926 57926 57926 571321 571323 571323 571323 571324 571323 571325 57321 571324 571324 571324 573233 57014 571393 560134 56453 566931 560463 566947 56874 568363 569911 571250 572259 57 | REACTOR COOLANT IN LBMENCLOSURE 3(532F, 2155 PSIG)(Page 3 of 7)PRESSURIZERMAKEUP TANK LEVELLEVEL | | | | | | | | | | | | |
|---|--|----------------|---------------------|----------------|---------------------|----------------|-----------------|----------------|--------|--------|--------|--------|--------|
| 40 555506 556745 558064 559343 560622 561901 563180 564458 567737 567016 568295 56974 45 556111 557390 558669 559948 561227 562506 563784 56642 567621 568900 570179 50 557321 558000 559374 56110 564389 565685 566947 56226 569505 570744 55 557321 558000 559879 561157 562436 56472 566273 569436 570714 571388 60 557926 559204 560483 562367 564350 566492 56971 571250 572529 573808 65 559740 561019 562281 566330 566404 56433 56971 571250 572529 573808 70 559130 56124 562903 564181 566613 566925 56971 571250 572529 573808 70 | | 40 | 45 | 50 | 55. | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
| 45 556111 557320 558676 559745 560533 56123 563784 566632 567621 568900 570179 50 556716 557995 559274 560533 561831 563110 564389 556684 566947 568226 569505 57014 571218 60 557226 559204 560483 561762 56341 564320 565599 566878 568157 569436 570110 57139 65 55830 550414 562367 566244 567433 568676 57044 571224 57259 57323 57044 571293 57259 56425 566204 567433 568676 57044 571245 57044 571246 57328 57323 560353 566404 569735 560363 569741 570445 571246 573738 575124 573246 573738 575017 75 559740 561024 562903 564181 566463 56992 571181 572460 573738 575017 90 561524 562333 56 | 40 | 555506 | 556785 | 558064 | | | | | | | | | |
| 50 556716 557951 558274 560533 561831 563110 564389 565688 566947 568226 569305 570784 55 557321 558000 559879 561157 562436 5663715 5669436 570714 571388 60 55726 559204 560431 566320 566539 566878 568157 569346 570714 571393 65 55830 55940 561048 562367 566204 567483 56875 57044 57139 572598 70 559135 560414 561093 562372 564251 565305 56808 560871 571250 572529 573188 80 560345 561624 562903 564181 565460 566739 568018 569971 571250 573388 575229 573184 574433 575622 80 560345 56183 56474 569228 570507 57185 573138 57444 57 | 45 | 556111 | 5573 9 0 | | | | | | | | | | |
| 55 557321 558000 559879 561157 562436 563715 564994 566273 567522 568831 570110 571388 60 557926 559204 560443 561762 563041 564320 565599 566878 568157 564836 57014 571388 61 558530 558646 564925 566204 567483 567615 57040 571319 572598 70 559135 560414 561693 562972 564251 565530 566808 569366 570645 57129 573088 506345 561624 562093 564181 564660 566739 569366 570645 57134 574413 80 560350 562229 563507 564786 566055 567344 568623 569902 571181 572466 574743 575622 90 561544 566391 566739 569275 571786 573064 574343 576227 <t< td=""><td>50</td><td>556716</td><td>557995</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | 50 | 556716 | 557 9 95 | | | | | | | | | | |
| 60557926559204560483561762563041564320565599566878568157569436570714571993655583055980956108856236756364656492556620456748356876157004057131957259870559135560414561693562297564251565305566083569366570645571924573203755597405610195622985635775648665667395680185689295697157125057252957308805609355622295635075647865660655673445686235699025711815734645744135756229056155456283356418156560556734456862356990257118657343457562295562159563438564717565996567275568554569833571111572995574274575533576832100562764564043565322567810569899570368571365574373571855743711056397456525356653256781056989957036857144576088577367578866120565183567672568346569625570973572252573311574845766335797975785661305669335676725689515702057029557144157603857777578561 | 55 | 557321 | | | | | | | | | | | |
| 65 558830 559809 561088 562367 563646 564925 566204 567483 588761 570040 571319 572598 70 559135 560414 561693 562272 564251 565530 566808 568087 569366 571250 572598 573203 80 560345 561624 562903 564181 565460 566739 568018 56927 570576 571855 573134 574413 85 560950 562229 563507 564786 566670 567344 568623 569902 571181 572598 57327 90 562159 563438 564717 565996 567275 568554 569333 571111 572399 573648 576227 100 562764 564043 565322 566601 567430 569129 570437 57116 573648 574343 5756227 100 562764 564043 565322 5676740 569089 570437 | 60 | 557926 | 559204 | | | | | | | | | | |
| 70 559135 560414 561693 562972 564251 565530 566808 58087 569366 570645 571924 573203 75 559740 561019 562298 563577 564856 566134 567413 568692 569971 571250 572529 573808 80 560345 561245 562930 564181 565640 566734 568022 50971 571250 572529 573808 80 560357 564786 566005 567344 56823 569902 571181 572460 573738 575017 90 561554 562833 564112 565396 567275 568554 569333 571111 572395 574274 575533 576832 100 56275 567840 569333 571142 572295 574274 575553 57632 57632 568780 599135 570437 57126 574274 575553 576333 576832 569763 574274 | | | | | | | | | | | | | |
| 75 559740 561019 562298 563577 564856 566134 567413 568692 569971 571250 57229 573808 80 560345 561624 562903 564181 565460 566739 568018 569297 570576 571855 573134 574413 85 56050 562229 563507 564786 566670 567344 56823 569902 571181 572460 573738 575017 90 561514 562833 564112 565391 566670 567949 569228 570507 571286 573364 576227 95 562159 563438 564717 565996 567275 568554 569833 571111 572390 573669 574448 576522 100 56374 565253 566512 567805 569045 570373 571266 574845 574375 574364 5765345 576136 577437 110 563857 567136 | 70 | 5 59135 | 560414 | | | | | | | | | | |
| 80 560345 561624 562903 564181 565460 566739 568018 569297 570576 571855 573134 574413 85 560950 562229 563507 564786 566065 567344 568223 569902 571181 572460 57338 575017 90 561554 562833 564112 565391 566670 567949 569228 570507 571786 573064 574343 576227 100 562764 564043 565322 566601 567880 569159 570437 571716 572995 574274 57553 576832 100 563794 565325 567810 569089 570368 571042 572321 573600 574879 576158 577437 110 563794 565235 5667810 569099 571365 572426 574205 57484 57663 57441 120 565183 566462 567714 569020 571299 | 75 | | | | | | | | | | | | |
| 85 560950 562229 563507 564786 566065 567344 568623 569902 571181 572460 573738 575017 90 561554 562833 564112 565391 566670 567949 569228 570507 571786 573064 574343 575622 95 562159 563438 564717 565996 567275 568554 569833 571111 572990 574948 576227 100 562764 564043 565322 566601 569833 571042 572321 573600 574879 576158 577437 110 563974 565253 566532 567810 569089 570368 57142 572353 57683 577673 57844 576763 578041 115 564579 565857 567136 568415 569694 570973 572252 573531 57443 578075 5778775 578646 120 565183 566462 567741 | 80 | 560345 | 561624 | | | | | | | | | | |
| 90561554562833564112565391566670567949569228570507571786573064574343575622955621595634385647175659965672755685545698335711115723905736695749485762271005627645640435653225660156788056915957043757171657299557427457555357683210556336956464856927567206568484569763571042572321573600574879576158577437110563974565253566532567810569089570368571647572926574205574845767585770411155645795658575671365684155696945709735722525733157481057608857736757864612056518356646256774156902057029957157857285757143657541457669357797257925113056639356767256834659023571509572787574666573455766245779035798558166135566988568277569556570834572113573927575276576555577834579113580391581670145568207569417570965713735746257790357764579043580327582280155569417570696571975573254 | 85 | 560950 | 562229 | 563507 | | | | | | | | | |
| 955621595634385647175659965672755685545698335711115723905736695749485762271005627645640435633225666015678805691595704375717165729955742745755535768321055633695646485659275672065684845697635710425723215736005748795761585774371105639745652535665325678105690895703685716475729265742055754845767635780411155645795658575671365684155690945709735722525735315748105766385773675786461205651835664625677415690205702995715785728575714365754145766935779725792511255657885670675683465696255709045721835734615747405760195772985785775798561305663935676725689515702305711305732255753455766245779035791825804611355669045707555720445733235746025758135761345791135803915816701405676035688225706657134557642557784457913358032258160158280150568812570091571370572649573235576486 | 90 | 561554 | 5 628 33 | | | | | | | | | | |
| 100562764564043565322566601567880569159570437571716572995574274575553576832105563369564648565927567206568484569763571042572321573600574879576158577437110563974565253566532567810569089570368571647572926574205575484576763578041115564579565857567136568415569694570973572522573531574810576088577367578646120565183566462567741569020570299571578572857571436575414576693577972579251130566393567672568951570230571509572787574671575950577229578508579787581066140567603568822570160571439572718573997575276576555577834579113580391581670145568207569486570765572044573323574602575881577160578439579717580966582275150568125700915713705726495733235746025758815771605784395797175809665822751505681257009157137057264957332357460257588157764579043580322581601582880155569417 | 95 | 562159 | 563438 | 564717 | | 567275 | | | | | | | |
| 105563369564648565927567206568484569763571042572321573600574879576158577437110563974565253566532567810569089570368571647572926574205575484576763578041115564579565857567136568415569694570973572252573531574810576088577367578646120565183566462567741569020570299571578572857571436575414576693577972579251125565788567667568346569020570299571578572857571436575414576693577972579251125565788567672568346569020571509572787574661576019577298578577579856130566393567672568351570230571509572787574661575950577229578182580461135566998568277569556570834572113573927575276576555577834579113580391581670145568207569486570765572044573323574602575881577160578439579717580996582275150568812570091571370572649573254577900578369579433580322581601\$82880155569417570696571975573254 </td <td>100</td> <td>562764</td> <td>564043</td> <td></td> | 100 | 562764 | 564043 | | | | | | | | | | |
| 1105639745652535665325678105690895703685716475729265742055754845767635780411155645795658575671365684155696945709735722525735315748105760885773675786461205651835664625677415690205702995715785728575714365754145766935779725792511255657885670675683465696255709045721835734615747405760195772985785775798561305663935676725689515702305715095727875740665753455766245779035791825804611355669985682775695565708345721135739275752765765555778345791135803915816701405676035688825701605714395727185739775752765765555778345791135803915816701455682075694865707655720445732335746025758815771605784395797175809658227515056812570091571370572649573234575207576866577764579043580322581601582801555694175706965719755732545754257702157830057957958085858213758341658469416057022 <t< td=""><td>105</td><td>563369</td><td>564648</td><td>565927</td><td>567206</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | 105 | 563369 | 564648 | 565927 | 567206 | | | | | | | | |
| 11556457956585756713656841556969457097357225257353157481057608857736757864612056518356646256774156902057029957157857285757143657541457669357797257925112556578856706756834656962557090457218357346157474057601957729857857757985613056639356767256895157023057150957278757406657534557662457790357918258046113556699856827756955657083457211357399757527657655557783457911358039158167014056760356882570160571439572718573977575276576555577834579113580391581670145568207569486570765572044573232574602575881577160578439579717580996582275150568125700915713705726495733235746125770905783695796485802275822065834851605702257130157258057385957513757641657769557874580253581532582811584694170571232572510573789575068576347577626578905580184581463582741584020585299175571836< | 110 | 563974 | 565253 | 5 66532 | | | | | | | | | |
| 1205651835664625677415690205702995715785728575714365754145766935779725792511255657885670675683465696255709045721835734615747405760195772985785775798561305663935676725689515702305715095727875740665753455766245779035791825804611355669985682775695565708345721135733925746715759505772295785085797875810661405676035688825701605714395727185739975752765765555778345791135803915816701455682075694865707655720445732335746025758815771605784395797175809965822751505688125700915713705726495732857520757648657776457904358032258160158288015556941757069657197557325457453357581257709057836957964858092758220658348516057022571301572580573859575137576416577695578974580253581532582811584090165570627571906573185574463575742577021578300579579580858582137583416584694170571232 <td></td> <td>564579</td> <td>565857</td> <td>567136</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | 564579 | 565857 | 567136 | | | | | | | | | |
| 1255657885670675683465696255709045721835734615747405760195772985785775798561305663935676725689515702305715095727875740665753455766245779035791825804611355669985682775695565708345721135733925746715759505772295785085797875810661405676035688825701605714395727185739975752765765555778345791135803915816701455682075694865707655720445733235746025758815771605784395797175809965822751505688125700915713705726495739285752075764865776457904358032258160158288015556941757069657197557325457453357581257709057836957964858092758220658348516057002257130157258057385957513757641657769557897458025358153258281158409016557062757190657318557463575742577021578300579579580858582137583416584694170571232572510573789575068576347577626578905580184581463582741584020585299175571836 <td>120</td> <td>565183</td> <td>566462</td> <td>567741</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | 120 | 565183 | 566462 | 567741 | | | | | | | | | |
| 13056639356767256895157023057150957278757406657534557662457790357918258046113556699856827756955657083457211357339257467157595057722957850857978758106614056760356888257016057143957271857399757527657655557783457911358039158167014556820756948657076557204457332357460257588157716057843957971758099658227515056881257009157137057264957392857520757648657776457904358032258160158288015556941757069657197557325457453357581257709057836957964858092758220658348516057022571301572580573859575137576416577695578974580253581532582811584090165570627571906573185574463575742577021578300579579580858582137583416584694170571232572510573789575068576347577626578905580184581463582741584020585299175571836573115574394575673576952578231579510580789582067583346584625583904 | | 565788 | 567067 | 568346 | 569625 | | | | | | | | |
| 135566998568277569556570834572113573392574671575950577229578508579787581066140567603568882570160571439572718573997575276576555577834579113580391581670145568207569486570765572044573323574602575881577160578439579717580996582275150568812570091571370572649573928575207576486577764579043580322581601582880155569417570696571975573254574533575812577090578369579648580927582206583485160570022571301572580573859575137576416577695578974580253581532582811584090165570627571906573185574463575742577021578300579579580858582137583416584694170571232572510573789575068576347577626578905580184581463582741584020585299175571836573115574394575673576952578231579510580789582067583346584625583904 | 130 | 566393 | 567672 | 568951 | 570230 | 571509 | | | | | | | |
| 140567603568882570160571439572718573997575276576555577834579113580391581670145568207569486570765572044573323574602575881577160578439579717580996582275150568812570091571370572649573928575207576486577764579043580322581601582880155569417570696571975573254574533575812577090578369579648580927582206583485160570022571301572580573859575137576416577695578974580253581532582811584090165570627571906573185574463575742577021578300579579580858582137583416584694170571232572510573789575068576347577626578905580184581463582741584020585299175571836573115574394575673576952578231579510580789582067583346584625583904 | 135 | 566998 | 568277 | 569556 | | | | | | | | | |
| 14556820756948657076557204457323574602575881577160578439579717580996582275150568812570091571370572649573928575207576486577764579043580322581601582880155569417570696571975573254574533575812577090578369579648580927582206583485160570022571301572580573859575137576416577695578974580253581532582811584090165570627571906573185574463575742577021578300579579580858582137583416584694170571232572510573789575068576347577626578905580184581463582741584020585299175571836573115574394575673576952578231579510580789582067583346584625583904 | 140 | 567603 | 5 6 8882 | 570160 | 571439 | | | | | | | | |
| 150568812570091571370572649573928575207576486577764579043580322581601582880155569417570696571975573254574533575812577090578369579648580927582206583485160570022571301572580573859575137576416577695578974580253581532582811584090165570627571906573185574463575742577021578300579579580858582137583416584694170571232572510573789575068576347577626578905580184581463582741584020585299175571836573115574394575673576952578231579510580789582067583346584625583904 | | | 569486 | 570765 | 572044 | 573323 | | | | | | | |
| 155569417570696571975573254574533575812577090578369579648580927582206583485160570022571301572580573859575137576416577695578974580253581532582811584090165570627571906573185574463575742577021578300579579580858582137583416584694170571232572510573789575068576347577626578905580184581463582741584020585299175571836573115574394575673576952578231579510580789582067583346584625583904 | | 568812 | 570091 | 571370 | 572649 | | | | | | | | |
| 160570022571301572580573859575137576416577695578974580253581532582811584090165570627571906573185574463575742577021578300579579580858582137583416584694170571232572510573789575068576347577626578905580184581463582741584020585299175571836573115574394575673576952578231579510580789582067583346584625583904 | | 569417 | 570696 | 571975 | 573254 | | | | | | | | |
| 165570627571906573185574463575742577021578300579579580858582137583416584694170571232572510573789575068576347577626578905580184581463582741584020585299175571836573115574394575673576952578231579510580789582067583346584625583904 | | 570022 | 571301 | 572580 | 573859 | 575137 | | | | | | | |
| 170 571232 572510 573789 575068 576347 577626 578905 580184 581463 582741 584020 585299 175 571836 573115 574394 575673 576952 578231 579510 580789 582067 583346 584625 583904 | | | 571906 | 573185 | 574463 | 575742 | | | | | | | |
| 175 571836 573115 574394 575673 576952 578231 579510 580789 582067 583346 584625 583904 | | | 572510 | 573789 | 575068 | 576347 | | | | | | | |
| | | 571836 | 573115 | 57 4394 | 575673 | 576952 | 5 78231 | 579510 | | | | | |
| | 180 | 572441 | 573720 | 574999 | 576278 | 577557 | 578836 | 580114 | 581393 | 582672 | 583951 | 585230 | 586509 |
| 185 573046 574325 575604 576883 578162 579440 580719 581998 583277 584556 585835 587114 | | | 574325 | 575604 | 576883 | | | | | | | | |
| 190 573651 574930 576209 577487 578766 580045 581324 582603 583882 585161 586440 587719 | | | 574930 | 576209 | 577487 | 578766 | 580045 | | | | | | |
| 195 574256 575535 576813 578092 579371 580650 581929 583208 584487 585766 587044 588323 | | | | 576813 | 5780 9 2 | 57 9371 | 5 806 50 | 5 81929 | | | | | |
| 200 574860 576139 577418 578697 579976 581255 582534 583813 585092 586370 587649 588928 | | | | 577418 | 578697 | | | | | | | | |
| 205 575465 576744 578023 579302 580581 581860 583139 584417 585696 586975 588254 589533 | | | 576744 | 578023 | 579302 | 580581 | 581860 | | | | | | |
| 210 576070 577349 578628 579907 581186 582465 583743 585022 586301 587580 588859 590138 | | | 577349 | 578628 | 579907 | | | | | | | | |
| 215 576675 577954 579233 580512 581790 583069 584348 585627 586906 588185 589464 590743 | | | 577954 | 579233 | 580512 | 581790 | 583069 | 584348 | | | | | |
| 220 577280 578559 579837 581116 582395 583674 584953 586232 587511 588790 590069 591347 | 220 | 577280 | 578559 | | | | | | | | | | |
| 225 577885 579163 580442 581721 583000 584279 585558 586837 588116 589394 590673 591952 | | | | | | | | | | | | | |
| 230 578489 579768 581047 582326 583605 584884 586163 587442 588720 589999 591278 592557 | | | 579768 | | | | | | | | | | |
| 235 579094 580373 581652 582931 584210 585489 586767 588046 589325 590604 591883 593162 | | 579094 | | | | | | | | | | | |
| 240 579699 580978 582257 583536 584815 586093 587372 588651 589930 591209 592488 593767 | 240 | 579699 | 580978 | | | | | | | | | | |

TABLE BASED ON RC SP VOL = .020864 FT3/LBM, PZR SP VOL = .026525 FT3/LBM & MU Sys SP VOL = .01613 FT3/LBM

| | | | | | | COOLANT | | | | | EN | CLOSURE 3 |
|-------------------|------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| (579F, 2155 PSIG) | | | | | | | | | | | | e 4 of 7) |
| PRESSU | | | | | MAKE | UP TANK I | _EVEL | | | | | - |
| LEVE | | | | | | | | | | | | |
| | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
| 40 | 521279 | 522558 | 523836 | 525115 | 526394 | 527673 | 528952 | 530231 | 531510 | 532789 | 534067 | 535346 |
| 45 | 521884 | 523162 | 524441 | 525720 | 526999 | 528278 | 529557 | 530836 | 532115 | 533393 | 534672 | 535 951 |
| 50 | 522488 | 523767 | 525046 | 526325 | 527604 | 528883 | 530162 | 531440 | 532719 | 533 998 | 535277 | 536556 |
| 55 | 523093 | 524372 | 525651 | 526930 | 528209 | 529488 | 530766 | 532045 | 533324 | 534603 | 535882 | 537161 |
| 60 | 523698 | 524977 | 526256 | 527535 | 528813 | 530092 | 531371 | 532650 | 533929 | 535208 | 536487 | 537766 |
| 65 | 524303 | 525582 | 526861 | 528139 | 529418 | 530697 | 531976 | 533255 | 534534 | 535813 | 537092 | 538370 |
| 70 | 524908 | 526186 | 527465 | 528744 | 530023 | 531302 | 532581 | 533860 | 535139 | 5 36418 | 537696 | 538975 . |
| 75 | 525512 | 526791 | 528070 | 529349 | 530628 | 531907 | 533 186 | 534465 | 535743 | 537022 | 538301 | 539580 |
| 80 | 526117 | 527396 | 528675 | 529954 | 531233 | 532512 | 533791 | 5350 69 | 536348 | 537627 | 5 38906 | 540185 |
| 85 | 526722 | 528001 | 529230 | 530559 | 531838 | 533116 | 534395 | 535674 | 53 6953 | 538232 | 539511 | 540790 |
| 90 | 527327 | 528606 | 529885 | 531163 | 532442 | 533721 | 535000 | 536279 | 537558 | 538837 | 540116 | 5 4139 5 |
| 95 | 527932 | 529211 | 530489 | 531768 | 533047 | 534326 | 535605 | 536884 | 538163 | 53 9 442 | 540720 | 5 41999 |
| 100 | 528536 | 529815 | 531094 | 532373 | 533652 | 534931 | 536210 | 537489 | 538768 | 540046 | 541325 | 542604 |
| 105 | 529141
52974 6 | 530420 | 531 699 | 532978 | 534257 | 535536 | 536815 | 538093 | 539372 | 540651 | 541930 | 543209 |
| 110 | | 531025 | 532304 | 533583 | 534862 | 536141 | 537419 | 538698 | 539977/ | 541256 | 542535 | 543814 |
| 115 | 530351 | 531630 | 532909 | 534188 | 535466 | 536745 | 538024 | 539303 | 540582 | 541861 | 543140 | 544419 |
| 120
125 | 530956
531561 | 532235 | 533514 | 534792 | 536071 | 537350 | 538629 | 539908 | 541187 | 542466 | 543745 | 545023 |
| 125 | 532165 | 532839
533444 | 534118
534723 | 535397
536002 | 536676 | 537955 | 539234 | 540513 | 514792 | 543071 | 544349 | 545628 |
| 135 | 532770 | 534049 | 535328 | | 537281 | 538560 | 539839 | 541118 | 542396 | 543675 | 544954 | 546233 |
| 135 | 533375 | 534654 | 535933 | 536607
537212 | 537886
538491 | 5 3916 5 | 540443 | 541722 | 543001 | 544280 | 545559 | 546838 |
| 145 | 533980 | 535259 | 536538 | 537816 | 539095 | 539769
540374 | 541048
541653 | 542327 | 543606 | 544885 | 546164 | 547443 |
| 150 | 534585 | 535864 | 537142 | 538421 | 539700 | 540979 | | 542932 | 544211 | 545490 | 546769 | 548048 |
| 155 | 535189 | 536468 | 537747 | 539026 | 540305 | 541584 | 542258
542863 | 543537
544142 | 544816 | 546095 | 547373 | 548652 |
| 160 | 535794 | 537073 | 538352 | 539631 | 540910 | 542189 | 543468 | 544746 | 545421
546025 | 546699
547304 | 547978 | 549257 |
| 165 | 536399 | 537678 | 538957 | 540236 | 541515 | 542794 | 544072 | 545351 | 546630 | 547304
547909 | 548583
549188 | 549862 |
| 170 | 537004 | 538283 | 539562 | 540841 | 542119 | 543398 | 544677 | 545956 | 547235 | 548514 | 549188 | 550467 |
| 175 | 537609 | 538888 | 540167 | 541445 | 542724 | 544003 | 545282 | 546561 | 547840 | 549119 | 550398 | 551072 |
| 180 | 538214 | 539492 | 540771 | 542050 | 543329 | 544608 | 545887 | 547166 | 548445 | 549723 | 551002 | 551676
552281 |
| 185 | 538818 | 540097 | 541376 | 542655 | 543934 | 545213 | 546492 | 547771 | 549049 | 550328 | 551602 | |
| 190 | 539423 | 540702 | 541981 | 543260 | 544539 | 545818 | 547096 | 548375 | 549654 | 550933 | 552212 | 552886
553491 |
| 195 | 540028 | 541307 | 542586 | 543865 | 545144 | 546422 | 547701 | 548980 | 550259 | 551538 | 552817 | 554096 |
| 200 | 540633 | 541912 | 543191 | 544469 | 545748 | 547027 | 548306 | 549585 | 550864 | 552143 | 553422 | 554701 |
| 205 | 541238 | 542517 | 543795 | 545074 | 546353 | 547632 | 548911 | 550190 | 551469 | 552748 | 554026 | 555305 |
| 210 | 541842 | 543121 | 544400 | 545679 | 546958 | 548237 | 549516 | 550795 | 552074 | 553352 | 554631 | 555910 |
| 215 | 542447 | 543726 | 545005 | 546284 | 547563 | 548842 | 550121 | 551399 | 552678 | 553957 | 555236 | 556515 |
| 220 | 543052 | 544331 | 545610 | 546889 | 548168 | 549447 | 550725 | 552004 | 553283 | 554562 | 555841 | 557120 |
| 225 | 543657 | 544936 | 546215 | 547494 | 548772 | 550051 | 551330 | 552609 | 553888 | 555167 | 556446 | 557725 |
| 230 | 544262 | 545541 | 546820 | 548098 | 549377 | 550656 | 551935 | 553214 | 554493 | 555772 | 557051 | 558329 |
| 235 | 544867 | 546145 | 547424 | 548703 | 549982 | 551261 | 552540 | 553819 | 555098 | 556376 | 557655 | 558934 |
| 240 | 545471 | 546750 | 5 48029 | 549308 | 550587 | 551866 | 553145 | 554424 | 555702 | 556981 | 558260 | 559539 |
| | | | | | | | | | | | 330200 | |

TABLE BASED ON RC SP VOL = .022330 FT3/LBM, PZR SP VOL = .026525 FT3/LBM & MU Sys SP VOL = .01613 FT3/LBM

ENCLOSURE 3 (Page 5 of 7)

- -

REACTOR COOLANT IN LBM (WITH DH LOOP A RUNNING)

. .

...

. . • •

•••

PRESSURIZER LEVEL

.

. .

RC TEMPERATURE

| 0 731358 728728 725400 721438 10 732354 730717 726390 722423 115 734353 731717 728361 723372 20 736349 733701 728361 723372 21 736349 733701 728361 723372 220 736349 733609 731311 723361 300 737347 736690 731311 723331 40 738344 736690 733321 728331 40 738344 736690 733321 728331 50 741340 736640 734311 730300 50 743336 740663 732811 732269 60 743333 742637 742631 733221 736208 80 748329 744642 740251 736208 736201 741317 90 749325 746631 743221 738171 734674 740251 736208 | | 80 | 100 | 120 | 140 |
|---|---------------------|------------------|--------|------------------|--------|
| 10 733354 730717 727380 724407 15 734353 731712 728371 724392 20 735351 732707 729361 7255376 30 737347 734696 731311 726361 30 737347 734696 731321 726301 40 739344 736685 733321 726315 45 740342 737680 73321 732564 50 741340 736676 743231 732564 50 742333 742653 738261 733224 65 744333 742653 738261 732233 70 745333 742653 738261 732234 80 747329 744647 740251 736204 80 743232 746636 742231 738177 90 749322 746636 742231 738177 90 75324 747626 744211 741317 <td< td=""><td>0</td><td></td><td></td><td>725400</td><td>721438</td></td<> | 0 | | | 725400 | 721438 |
| 15 734353 731712 728371 728372 20 735351 732707 7283761 725376 25 736349 733701 730351 726361 30 737347 734696 731341 727346 35 738345 735690 723311 726310 40 739644 736680 734311 730200 55 742338 739669 736291 732264 60 743336 740663 738271 733234 60 743337 746637 738271 733234 70 745333 742653 738271 735223 75 746331 744642 741241 731512 80 747329 746631 742321 73161 90 749325 746631 742321 73161 100 75322 746631 74231 733161 100 75322 746631 743221 740146 | 5 | | 729723 | | |
| 25 736349 733701 730351 726361 30 737347 734696 731331 726361 35 738345 736680 733311 726330 40 739444 736680 734311 720315 45 740342 737680 734311 730301 731284 55 742338 739669 736291 732269 60 743334 740653 739261 732284 65 744334 740653 739261 735223 70 745331 746637 740251 735208 80 747329 744642 741241 737199 90 749325 746631 742211 738167 95 750324 74620 745201 741131 100 751322 746631 743221 738167 100 751322 746631 743221 73817 100 751322 746632 745201 741131 | 10 | | | | |
| 25 736349 733701 730351 726361 30 737347 734696 731331 726361 35 738345 736680 733311 726330 40 739444 736680 734311 720315 45 740342 737680 734311 730301 731284 55 742338 739669 736291 732269 60 743334 740653 739261 732284 65 744334 740653 739261 735223 70 745331 746637 740251 735208 80 747329 744642 741241 737199 90 749325 746631 742211 738167 95 750324 74620 745201 741131 100 751322 746631 743221 738167 100 751322 746631 743221 73817 100 751322 746632 745201 741131 | 20 | | | 729361 | |
| 35 738345 735690 732331 726330 40 73944 736685 733321 729315 45 740342 737680 734311 730300 50 742336 739669 736291 732269 60 743336 740663 737281 732269 60 743336 740663 73221 734238 70 745333 742653 739261 735223 75 746331 743647 740251 736208 80 747329 744642 741241 731224 90 749325 746631 743221 739161 95 750324 746620 745201 741131 100 751322 746615 746191 742115 110 753318 751604 748172 740035 120 755314 752532 752132 749035 135 758309 755572 754112 749036 | 25 | 736349 | 733701 | | 726361 |
| 40 739344 736685 733321 729315
45 740342 737680 734511 730300
50 741340 738674 733501 731284
55 74238 739669 736291 732269
60 743336 740663 737281 733254
65 744334 741658 738271 734238
70 745333 742653 739261 735223
75 746331 743647 740251 736208
80 747329 744642 741241 737192
85 748327 745636 742231 738177
90 749325 746631 743221 738177
90 749325 746631 743221 738177
90 749322 748662 745201 741131
105 753320 748613 74526 744211 740146
100 751322 748660 745201 741131
105 753318 750609 747181 743120
115 754318 750609 747181 743100
115 753314 752599 749162 745069
125 756314 752599 749162 745069
125 756314 752599 749162 745069
125 756314 752599 749162 745069
125 756314 752599 749162 745069
125 756310 75577 753122 748023
140 759307 756577 753122 748023
140 759307 756577 753122 748023
140 759307 756577 753122 749093
155 762302 759561 756029 751962
160 763300 765553 757062 753991
170 762396 762544 759062 754916
175 766294 765539 760052 755902 768855
185 760295 765517 76517 765027 753912
160 763300 765553 757062 753912
160 763300 765553 757062 753912
160 763300 765553 757062 753912
160 763292 765517 76517 764012 75889
185 766294 76553 76702 75391
170 762392 765517 76517 764012 75885
185 766294 76553 76302 75890
180 767293 766523 76302 758916
175 766294 76553 76502 75892
185 76289 766523 76302 758950
185 76289 766523 76302 758854
185 76289 766523 76302 758854
195 770287 767517 764012 75885
185 762291 765517 764012 75885
185 762291 776517 764012 75885
260 77224 77448 77490 766593 765747
230 777274 77448 77483 77463
270 775278 77249 778458 77493 776574
230 777274 77443 774480 770943 76678
240 779271 77649 77483 77483 776578
250 78226 78426 78446 77883 776578
260 78226 78426 78446 77883 776578
260 78226 78426 78446 77883 776578
260 78226 78426 784426 77843 776578
260 78226 78426 78442 77843 776578
260 78226 78 | 30 | | | | |
| 45 740342 737680 734311 730300 50 741340 738674 735301 732269 60 743336 739669 736231 732269 60 743336 740663 737281 732264 65 744334 741658 738271 734238 70 745333 742653 739261 734238 70 745333 742653 739261 734238 70 745333 742653 739261 734231 90 749325 746631 743221 739161 95 750324 747626 744211 701464 100 751322 748610 74181 743107 105 75314 752509 749162 746024 120 75314 752599 749162 746039 120 755314 752597 75112 749039 130 757311 754588 751142 747039 < | 35 | 738345 | | 732331 | 726330 |
| 50 741340 738674 735301 731284 55 742338 739669 736291 732269 60 743336 740663 737281 732264 65 744334 741658 738271 734238 70 745333 742653 738261 735223 75 746331 743647 740251 736208 80 747329 7446642 741241 7311792 90 749325 746631 743221 739161 95 750324 747626 744211 740146 100 751322 748620 745201 741131 105 752320 749615 746191 742115 110 753314 752599 749162 740035 120 755314 75582 75112 749003 130 757311 754588 75112 749039 140 759307 755527 754112 749039 | 45 | | | | 729515 |
| 60 743336 740663 737281 733254 65 744334 741658 738271 734238 70 745333 742653 739261 735223 75 746331 743647 740251 736208 80 747329 744642 741241 731127 90 749325 746631 74221 731161 95 750324 747626 744211 740146 100 751322 748620 745201 741131 105 752320 749615 746191 742115 110 753318 750609 747181 74308 120 755314 753599 750152 746034 130 757311 754386 75112 749098 135 758309 75552 75102 749038 140 759307 7555102 750977 753122 749038 145 760305 757572 754112 749993 | 50 | 741340 | | 735301 | 731284 |
| 65 744334 741658 738271 734238 70 745333 742653 738271 735223 75 746331 743647 740251 735223 80 747329 744642 741241 738177 90 749325 746631 743221 738177 90 749325 746631 743221 738161 95 750324 747626 744211 740146 100 751322 748620 745211 740146 100 753318 750609 747181 742115 110 753316 751609 747181 743100 115 754316 751609 748172 744025 120 755314 752132 748023 74023 130 757311 753582 751122 748023 140 759307 755122 754908 75592 751962 751962 140 759307 755122 754906 | 55 | 742338 | | | 732269 |
| 70 745333 742653 739261 735223 75 746331 743647 740251 736208 80 747329 744642 741241 737192 85 748327 746631 742231 738161 90 749325 746631 742231 739161 95 750324 747626 744211 740146 100 751322 748620 745201 741131 105 752320 749615 746191 742115 110 753318 750609 747181 743100 115 754316 751604 748172 744085 120 755314 752599 749162 746054 130 757311 754588 751142 749039 135 768309 755577 753122 749038 140 759307 75512 754924 749028 150 761202 759561 756092 751962 | 65
65 | 743330
744224 | 740663 | /3/281
729271 | /33254 |
| 75 746331 743647 740251 736208 80 747329 744642 741241 737192 85 748327 745636 742231 738177 90 749325 746631 743221 73817 90 749325 746631 743221 739161 95 750324 747626 744211 740146 100 751322 748620 745201 741131 105 753318 750609 747181 743005 110 753318 750609 747181 740359 120 755314 752599 749162 746035 130 757311 754588 751142 746039 135 758309 75582 752132 748023 140 759307 756177 73112 749038 150 761304 758566 751062 759907 155 762302 758561 756092 751962 | 70 | | | 739261 | |
| 85 748327 745636 74221 738177 90 749325 746631 743221 739161 95 750324 747626 744211 740146 100 751322 748620 744211 740146 100 753318 750609 747181 744085 110 753314 75299 749162 745069 120 753314 75299 749162 746034 130 757311 753593 750152 746024 130 757311 754359 751142 749008 145 760305 75772 753122 749008 145 760305 75777 753122 749008 145 760305 75777 753122 749008 145 760305 75777 753122 749008 145 760300 760555 757082 753931 150 762302 758050 756027 753931 | 75 | 746331 | | 740251 | |
| 90 749325 746631 743221 739161
95 750324 747626 744211 740146
100 751322 748620 745201 741131
105 752320 749615 746191 742115
110 753318 750609 747181 743100
115 754316 751604 748172 744085
120 755314 752599 749162 746054
130 757311 754588 751142 747039
135 758309 755582 752132 748023
140 759307 756577 753122 749008
145 760305 757572 754112 749993
150 761304 758566 755102 750977
155 762302 759561 756092 751962
160 763300 76555 757082 752946
165 764298 761550 757082 753931
170 765296 762544 753062 755900
180 767293 764534 761042 756885
185 768291 765528 762032 757870
190 769289 766523 763022 758870
190 769289 766523 763022 758870
190 763289 766512 765002 760824
200 771285 768512 766302 768853
185 778273 77517 764012 759839
200 771285 768512 766302 760824
205 772284 769507 765992 761808
210 773282 770501 766993 763778
220 775278 772490 768963 764762
225 776276 773485 766963 766731
235 778273 773474 771913 767716
240 779271 776474 77488 776993 766731
235 778273 773474 771913 767716
240 779271 776459 772923 768701
245 782676 773485 776903 770670
255 78226 778458 774903 770670
255 78226 784426 78458 774903 770670
255 78226 784426 78458 774903 770670
255 782658 784431 779853 77563
260 783264 780447 778853 77563
260 783264 784426 78863 774609
275 786258 784426 78843 776578
285 788254 784426 784426 78863 774659
290 789253 786405 784426 78863 774659
290 789253 786405 784426 78863 778578
285 788254 784540 78443 776578 | | | | 741241 | 737192 |
| 95 750324 747626 744211 740146
100 751322 748620 745201 741131
105 752320 749615 746191 742115
110 753318 750609 747181 743100
115 754316 751604 748172 744085
120 755314 752599 749162 745069
125 756313 753593 750152 746054
130 757311 754588 751142 747039
135 758309 755582 752132 748023
140 759307 756577 753122 749008
145 760305 757572 754112 749993
150 761304 758566 755102 750977
155 762302 759561 756092 751962
160 763300 760555 757082 752946
165 764298 760555 757082 753931
170 765296 762544 759062 754916
175 766294 763539 760052 753931
170 765286 765528 763022 758916
180 767293 764534 761042 756885
185 768291 765528 763022 758939
190 769289 766523 763022 758874
195 770287 767517 764012 758839
200 771285 768512 763022 758834
195 770287 767517 764012 758839
200 771285 768512 763022 758834
195 770287 767517 764012 758839
200 771285 768512 765002 76829
200 771285 768512 765002 76829
200 771285 768512 765002 76885
185 768291 7765528 762032 757870
190 769289 766523 763022 758874
195 770287 767517 764012 759839
200 771285 768517 763912 76807 766392
761088
210 773282 770501 766992 761088
210 773284 769507 765992 761808
210 773284 77490 768963 766731
235 778273 775474 773485 769953 767778
220 775278 772490 768963 766731
235 778273 775474 773483 776933 776778
220 775278 772490 768963 766731
235 778273 775474 773833 776538
250 781267 778458 773933 7766731
235 778273 775474 77383 7767383 7766731
235 778273 775474 77383 776538 7766731
235 778273 775474 77383 7766731
235 778273 775474 77383 7766731
235 778273 775474 77383 7766731
235 778273 775474 77383 776592 76876
245 788264 780447 776833 773593 771655
260 783264 780447 776833 773593 771655
260 783264 780447 77883 773593 771655
260 783264 78454 783431 779353 773593
260 783264 78454 783431 779353 773593
260 783264 78454 783431 77853 773593
260 783264 78454 784540 788433 776578
285 788254 788454 78454 | | | | | |
| 100 751322 748620 745201 741131 105 752320 749615 746191 742115 110 753318 750609 747181 743100 115 754316 751604 748172 744085 120 755314 752599 749162 745069 125 756313 753583 750152 746054 130 757311 754588 751142 747039 135 758309 755582 752132 748023 140 759307 756577 753122 749008 145 760305 75772 75112 749993 150 761304 758566 755102 750977 155 762300 760555 757082 753931 170 765296 761550 758072 753931 170 765294 763539 76002 758854 195 770287 76517 764012 758854 | | | | | |
| 105 752320 749615 746191 742115 110 753318 750609 747181 743100 115 753314 752599 749162 744085 120 755314 752599 749162 744085 130 757311 754588 751142 747039 135 758309 75582 752122 749008 140 759307 756577 753122 749038 140 759307 756577 753122 749038 145 760305 757572 754112 749993 150 761304 758366 755102 750927 155 762302 759361 756092 751962 160 763300 760555 757082 752946 165 764298 761534 761042 756885 170 765296 762544 75002 758301 170 768291 765528 762032 75870 <tr< td=""><td>100</td><td></td><td></td><td></td><td></td></tr<> | 100 | | | | |
| 115 754316 751604 748172 744085 120 755314 752599 749162 745069 130 757311 754588 751142 747039 135 758309 755582 752132 748023 140 759307 756577 753122 749008 145 760305 757572 754112 749993 150 761304 758566 755102 750977 155 762302 759561 756092 751962 160 763300 760555 757082 752946 165 766294 763539 760052 753900 180 767233 764534 761042 756885 185 768291 765523 763022 758854 195 770287 76517 764012 758839 200 771285 768512 765092 761808 210 773282 770501 766993 762793 < | 105 | | | 746191 | 742115 |
| 120 755314 752599 749162 745069 125 756313 753593 750152 746054 130 757311 754582 752132 748023 140 759307 755582 752132 748023 140 759307 755577 753112 749093 145 760305 757577 753122 749008 145 760300 755561 756092 751962 150 761304 758566 755102 750977 155 762302 759561 756092 751962 160 763300 760555 757082 752946 165 764298 761550 758072 753931 170 765294 763539 760052 755900 180 767293 764534 761042 758854 195 770287 767517 764012 758839 200 771285 766512 760022 768844 | 110 | | | | |
| 125 756313 753593 750152 746054 130 757311 754588 751142 747039 135 758309 755582 752132 748023 140 759307 756577 753122 749008 145 760305 757572 754112 749993 150 761304 758566 755102 750977 155 762302 759561 756092 751962 160 763300 760555 757082 752946 165 7664298 761550 758072 753931 170 765296 762544 759062 754916 175 766294 763539 760052 75807 180 767293 766523 763022 758839 190 769289 766517 764012 758932 200 771285 768512 765002 760824 205 776276 773485 769953 766747 | 115 | | | | |
| 130 757311 754588 751142 747039 135 758309 755582 752132 748023 140 759307 756577 753122 748008 145 760305 757572 754112 749993 150 761304 758566 755102 750977 155 762302 759561 756092 751962 160 763300 760555 757082 753931 170 765296 766550 758072 753931 170 765296 766554 75002 754916 175 766294 763539 760052 759001 180 767293 764534 761042 756885 185 768289 766523 763022 758870 190 769289 766517 764012 759839 200 771285 76507 766983 762793 210 773282 770501 766983 762793 <t< td=""><td>125</td><td></td><td>753593</td><td></td><td></td></t<> | 125 | | 753593 | | |
| 140 759307 756577 753122 749008 145 760305 757572 754112 749993 150 761304 758566 755102 750977 155 762302 759561 756092 751962 160 763300 760555 757082 752946 165 764298 761550 758072 753931 170 765296 766554 758072 753931 170 765296 766554 758072 753931 170 766294 763539 760052 755900 180 767293 766523 763022 758870 190 769289 766523 763022 758854 195 770287 776517 765012 759839 200 771285 768517 76502 760824 205 772284 769507 765992 761808 210 773282 770501 766983 762793 < | 130 | 757311 | 754588 | 751142 | 747039 |
| 145 760305 757572 754112 749993 150 761304 758566 755102 750977 155 762302 759561 756092 751962 160 763300 760555 757082 752946 165 764298 761550 758072 753931 170 765296 762544 759062 754916 175 766294 763539 760052 755900 180 767293 764534 761042 756885 185 768291 765528 763022 758854 195 770287 767517 764012 759839 200 771285 768512 765092 761808 210 773282 770501 766983 762793 215 774280 771490 768963 764772 220 775278 772947 774485 769953 765747 230 777274 774485 769953 76 | | 758309 | | | |
| 150 761304 758566 755102 750977 155 762302 759561 756092 751962 160 763300 760555 757082 752946 165 764298 761550 758072 753931 170 765296 762544 759062 754916 175 766294 763539 760052 758070 180 767293 764534 761042 756885 185 768291 765528 762032 75870 190 769289 766512 763022 758839 200 771285 768512 765002 760824 205 772284 769507 765992 761808 210 773282 770501 766983 762793 215 774280 771496 767973 765747 230 777274 774480 770943 766731 235 778273 775474 771933 766731 < | | | | 753122 | |
| 155 762302 759561 756092 751962 160 763300 760555 757082 752946 165 764298 761550 758072 753931 170 765296 762544 759062 754916 175 766294 763539 760052 755900 180 767293 764534 761042 756885 185 768289 766523 763022 758874 190 769289 766517 764012 759839 200 771285 768507 765992 761808 210 773282 770501 766993 766773 210 773282 770501 7669953 765747 220 775278 772490 768963 766771 220 775278 772490 768953 765747 230 777274 774480 770993 766771 235 778273 773485 774903 766731 | 150 | | | | |
| 165 764298 761550 758072 753931 170 765296 762544 759062 754916 175 766294 763539 760052 755900 180 767293 764534 761042 758854 185 768291 765528 762032 758854 190 769289 766523 763022 758854 195 770287 765517 764012 759839 200 771285 768512 765002 760824 205 772284 769507 765992 761808 210 773282 770501 766983 762793 215 774280 771496 767973 763778 220 775278 772490 768963 766731 235 778273 774480 770943 766731 235 778273 77463 773913 769685 250 781267 778458 774903 770670 255 782265 79453 77383 773624 26 | 155 | 762302 | 759561 | 756092 | 751962 |
| 170 765296 762544 759062 754916 175 766294 763539 760052 755900 180 767293 764534 761042 756885 185 768291 765528 762032 757870 190 769289 766523 763022 758854 195 770287 767517 764012 759839 200 771285 768512 765002 760824 205 772284 769507 765992 761808 210 773282 770501 766983 762793 215 774280 771496 767973 763778 220 775278 772490 768963 766731 235 778273 775474 771933 767716 240 779271 776469 773923 768701 245 780269 774435 775893 771655 260 783264 780447 776883 776393 265 784262 781442 777873 773624 <td< td=""><td></td><td></td><td></td><td></td><td>752946</td></td<> | | | | | 752946 |
| 175 766294 763539 760052 755900 180 767293 764534 761042 756885 185 768291 765528 762032 757870 190 769289 766523 763022 758854 195 770287 767517 764012 759839 200 771285 768512 765002 760824 205 772284 769507 765992 761808 210 773282 770501 766983 762793 215 774280 771496 767973 763778 220 775278 772490 768963 766731 235 776276 773485 769953 766731 235 778273 774480 770943 766731 235 778267 778458 774903 770670 240 779271 776469 772923 768701 245 780269 777463 77383 773624 250 781267 779453 775893 771655 | 165 | | | | |
| 180 767293 764534 761042 756885 185 768291 765528 762032 757870 190 769289 766523 763022 758854 195 770287 767517 764012 759839 200 771285 766512 765002 760824 205 772284 769507 765992 761808 210 773282 770501 766983 762793 215 774280 771496 767973 763778 220 775278 772490 768963 764762 230 777274 774485 769953 766731 235 778273 775474 771933 766761 240 779271 776469 773913 769685 250 781267 778458 774903 770670 245 780269 777463 77383 773624 250 781267 778458 774903 770670 < | | | | | |
| 190 769289 766523 763022 758854 195 770287 767517 764012 759839 200 771285 768512 765002 760824 205 772284 769507 765992 761808 210 773282 770501 7669883 762793 215 774280 771496 767973 763778 220 775278 772490 768963 766721 230 777274 774485 769953 765747 230 777274 774480 770943 766731 235 778273 775474 771933 766761 240 779271 776469 772923 768701 245 780269 777463 773913 769685 250 781267 778458 774903 770670 255 782265 779453 775893 771655 260 783264 784426 778863 77669 | 180 | 767293 | 764534 | 761042 | |
| 195 770287 767517 764012 759839 200 771285 768512 765002 760824 205 772284 769507 765992 761808 210 773282 770501 766983 762793 215 774280 771496 767973 763778 220 775278 772490 768963 764762 225 776276 773485 769953 765747 230 777274 774480 770943 766731 235 778273 775474 771933 766761 240 779271 77649 772923 768701 245 780269 777463 773913 769685 250 781267 778458 774903 770670 255 782265 779453 775893 771655 260 783264 780447 776883 776578 275 786258 784426 780843 776578 280 787256 784426 780843 776578 | 185 | | | | 757870 |
| 200 771285 768512 765002 760824 205 772284 769507 765992 761808 210 773282 770501 766983 762793 215 774280 771496 767973 763778 220 775278 772490 768963 764762 225 776276 773485 769953 765747 230 777274 774480 770943 766731 235 778273 775474 771933 766761 240 779271 776469 772923 768701 245 780269 777463 773913 769685 250 781267 778458 774903 770670 255 782265 779453 775893 771655 260 783264 780447 776883 772639 265 784262 781442 777873 773624 270 785260 782436 778633 775593 | 190 | | 766523 | | 758854 |
| 205 772284 769507 765992 761808 210 773282 770501 766983 762793 215 774280 771496 767973 763778 220 775278 772490 768963 764762 225 776276 773485 769953 765747 230 777274 774480 770943 766731 235 778273 775474 771933 766731 245 780269 777463 773913 766855 250 781267 778458 774903 770670 255 782265 779453 775893 771655 260 783264 780447 776883 772639 265 784262 781442 777873 773624 270 785260 782436 778853 775593 280 78255 784426 780843 776578 280 78253 784426 780843 775593 <t< td=""><td>200</td><td></td><td>768512</td><td></td><td>760824</td></t<> | 200 | | 768512 | | 760824 |
| 215 774280 771496 767973 763778 220 775278 772490 768963 764762 225 776276 773485 769953 765747 230 777274 774480 770943 766731 235 778273 775474 771933 766731 240 779271 776469 772923 768701 245 780269 777463 773913 769685 250 781267 778458 774903 770670 255 782265 779453 775893 771655 260 783264 780447 776883 772639 265 784262 781442 777873 773624 270 785260 782436 778863 774609 275 786258 783431 779853 775593 280 787256 784426 780843 776578 285 788254 785420 781833 77563 290 789253 786415 782823 778547 | 205 | 772284 | 769507 | 765992 | 761808 |
| 220 775278 772490 768963 764762 225 776276 773485 769953 765747 230 777274 774480 770943 766731 235 778273 775474 771933 766716 240 779271 776469 772923 768701 245 780269 777463 773913 769685 250 781267 778458 774903 770670 255 782265 779453 775893 771655 260 783264 780447 776883 772639 265 784262 781442 777873 773624 270 785260 782436 778863 774609 275 786258 783431 779853 775593 280 787256 784426 780843 776578 285 788254 785420 781833 77553 290 789253 786415 782823 778547 < | 210 | | | 766983 | 762793 |
| 225 776276 773485 769953 765747 230 777274 774480 770943 766731 235 778273 775474 771933 766731 240 779271 776469 772923 768701 245 780269 777463 773913 769685 250 781267 778458 774903 770670 255 782265 779453 775893 771655 260 783264 780447 776883 772639 265 784262 781442 777873 773624 270 785260 782436 778863 774609 275 786258 783431 779853 775593 280 787256 784426 780843 776578 285 788254 785420 781833 77553 295 790251 787409 783813 779532 300 791249 788404 784803 780516 This table based on DH Volume of 629 Cu. Ft. with DH 780516 780516 <td></td> <td></td> <td></td> <td>767973</td> <td></td> | | | | 767973 | |
| 230 777274 774480 770943 766731 235 778273 775474 771933 767716 240 779271 776469 772923 768701 245 780269 777463 773913 769685 250 781267 778458 774903 770670 255 782265 779453 775893 771655 260 783264 780447 776883 772639 265 784262 781442 777873 773624 270 785260 782436 778853 775593 280 787256 784426 780843 776578 280 787256 784426 780843 776578 285 788254 785420 781833 77563 290 789253 786415 782823 778547 295 790251 787409 783813 779532 300 791249 788404 784803 780516 < | | | | | |
| 240 779271 776469 772923 768701 245 780269 777463 773913 769685 250 781267 778458 774903 770670 255 782265 779453 775893 771655 260 783264 780447 776883 772639 265 784262 781442 777873 773624 270 785260 782436 778863 774609 275 786258 783431 779853 775593 280 787256 784426 780843 776578 285 788254 785420 781833 777563 290 789253 786415 782823 778547 295 790251 787409 783813 779532 300 791249 788404 784803 780516 This table based on DH Volume of 629 Cu. Ft. with DH 780516 780516 | 230 | 777274 | 774480 | | |
| 245 780269 777463 773913 769685 250 781267 778458 774903 770670 255 782265 779453 775893 771655 260 783264 780447 776883 772639 265 784262 781442 777873 773624 270 785260 782436 778863 774609 275 786258 783431 779853 775593 280 787256 784426 780843 776578 285 788254 785420 781833 777563 290 789253 786415 782823 778547 295 790251 787409 783813 779532 300 791249 788404 784803 780516 This table based on DH Volume of 629 Cu. Ft. with DH 780516 780516 | | | | | |
| 250 781267 778458 774903 770670 255 782265 779453 775893 771655 260 783264 780447 776883 772639 265 784262 781442 777873 773624 270 785260 782436 778863 774609 275 786258 783431 779853 775593 280 787256 784426 780843 776578 285 788254 785420 781833 77563 290 789253 786415 782823 778547 295 790251 787409 783813 779532 300 791249 788404 784803 780516 This table based on DH Volume of 629 Cu. Ft. with DH 780516 780516 | | | | | |
| 255 782265 779453 775893 771655 260 783264 780447 776883 772639 265 784262 781442 777873 773624 270 785260 782436 778863 774609 275 786258 784426 780843 775593 280 787256 784426 780843 776578 285 788254 785420 781833 77563 290 789253 786415 782823 778547 295 790251 787409 783813 779532 300 791249 788404 784803 780516 This table based on DH Volume of 629 Cu. Ft. with DH 780516 780516 | | | | | |
| 265 784262 781442 777873 773624 270 785260 782436 778863 774609 275 786258 783431 779853 775593 280 787256 784426 780843 776578 285 788254 785420 781833 77563 290 789253 786415 782823 778547 295 790251 787409 783813 779532 300 791249 788404 784803 780516 This table based on DH Volume of 629 Cu. Ft. with DH 780516 | 255 | 782265 | | | |
| 270 785260 782436 778863 774609 275 786258 783431 779853 775593 280 787256 784426 780843 776578 285 788254 785420 781833 777563 290 789253 786415 782823 778547 295 790251 787409 783813 779532 300 791249 788404 784803 780516 This table based on DH Volume of 629 Cu. Ft. with DH 780516 780516 | | | | | |
| 275 786258 783431 779853 775593 280 787256 784426 780843 776578 285 788254 785420 781833 777563 290 789253 786415 782823 778547 295 790251 787409 783813 779532 300 791249 788404 784803 780516 This table based on DH Volume of 629 Cu. Ft. with DH 780516 | | | | | |
| 280 787256 784426 780843 776578 285 788254 785420 781833 777563 290 789253 786415 782823 778547 295 790251 787409 783813 779532 300 791249 788404 784803 780516 This table based on DH Volume of 629 Cu. Ft. with DH | | | 102430 | | |
| 285 788254 785420 781833 777563 290 789253 786415 782823 778547 295 790251 787409 783813 779532 300 791249 788404 784803 780516 This table based on DH Volume of 629 Cu. Ft. with DH 780516 | 280 | 787256 | | | |
| 295 790251 787409 783813 779532
300 791249 788404 784803 780516
This table based on DH Volume of 629 Cu. Ft. with DH | | 788254 | | 781833 | 777563 |
| 300 791249 788404 784803 780516
This table based on DH Volume of 629 Cu. Ft. with DH | | | | | |
| This table based on DH Volume of 629 Cu. Ft. with DH | | | | | |
| Loop A Running | This table based of | on DH Volume | | Ft. with DH | ,00310 |
| | Loop A Running | | | | |

_

- -

-- ---

ENCLOSURE 3 (Page 6 of 7)

REACTOR COOLANT IN LBM (WITH DH LOOP B RUNNING)

| | | (WITH DH LO | OP B RUNNING) | |
|------------|------------------|--------------------|---------------------|------------------|
| | URIZER | | | |
| LEVEL | | | PERATURE | |
| | 80 | 100 | 120 | 140 |
| 0 | 728185 | 725567 | 722253 | 718308 |
| 5 | 729183 | 726561 | 723243 | 719292 |
| 10 | 730181 | 727556 | 724233 | 720277 |
| 15 | 731179 | 728550 | 725223 | 721262 |
| 20 | 732178 | 729545 | 726213 | 722246 |
| 25 | 733176 | 730539 | 727203 | 723231 |
| 30 | 734174 | 731534 | 728193 | 724216 |
| 35 | 735172 | 73252 9 | 729183 | 725200 |
| 40 | 736170 | 733523 | 730173 | 726185 |
| 45 | 737169 | 734518 | 731163 | 727170 |
| 50
55 | 738167 | 735512 | 732154 | 728154 |
| 60 | 739165
740163 | 736507
737502 | 733144
734134 | 729139 |
| 65 | 741161 | 738496 | 735124 | 730123
731108 |
| 70 | 742159 | 739491 | 736114 | 732093 |
| 75 | 743158 | 740485 | 737104 | 733077 |
| 80 | 744156 | 741480 | 738094 | 734062 |
| 85 | 745154 | 742475 | 739084 | 735047 |
| 90 | 746152 | 743469 | 740074 | 736031 |
| 95 | 747150 | 744464 | 741064 | 737016 |
| 100 | 748149 | 745458 | 742054 | 738001 |
| 105 | 749147 | 746463 | 743044 | 738985 |
| 110 | 750145 | 747448 | 744034 | 739970 |
| 115
120 | 751143 | 748442 | 745024 | 740954 |
| 120 | 752141
753139 | 749437
750431 | 746014
747004 | 741939 |
| 130 | 754138 | 751426 | 747004
747994 | 742924
743908 |
| 135 | 755136 | 752421 | 748984 | 744893 |
| 140 | 756134 | 753415 | 749974 | 745878 |
| 145 | 757132 | 754410 | 750964 | 746862 |
| 150 | 758130 | 755404 | 751955 | 747847 |
| 155 | 759129 | 756399 | 752945 | 748832 |
| 160 | 760127 | 757393 | 753 9 35 | 749816 |
| 165 | 761125 | 758388 | 754925 | 750801 |
| 170 | 762123 | 759383 | 755915 | 751786 |
| 175
180 | 763121
764119 | 760377
761372 | 756905
757895 | 752770 |
| 185 | 765118 | 761372 | 758885 | 753755
754739 |
| 190 | 766116 | 763361 | 759875 | 755724 |
| 195 | 767114 | 764356 | 760865 | 756709 |
| 200 | 768112 | 765350 | 761855 | 757693 |
| 205 | 769110 | 766345 | 762845 | 758678 |
| 210 | 770109 | 767339 | 763835 | 759663 |
| 215 | 771107 | 768334 | 764825 | 760647 |
| 220 | 772105 | 769329 | 765815 | 761632 |
| 225 | 773103 | 770323 | 766805 | 762617 |
| 230
235 | 774101
775099 | 771318
772312 | 767795 | 763601 |
| 240 | 776098 | 773307 | 768785
769775 | 764586
766571 |
| 245 | 777096 | 774302 | 770765 | 766555 |
| 250 | 778094 | 775296 | 771756 | 767540 |
| 255 | 779092 | 776291 | 772746 | 768524 |
| 260 | 780090 | 777285 | 773736 | 769509 |
| 265 | 781089 | 778280 | 774726 | 770494 |
| 270 | 782087 | 779275 | 775716 | 771478 |
| 275 | 783085 | 780269 | 776706 | 772463 |
| 280 | 784083 | 781264 | 777696 | 773448 |
| 285
290 | 785081 | 782258 | 778686 | 774432 |
| 290 | 786079
787078 | 783253 | 779676 | 775417 |
| 300 | 788076 | 784247
785242 | 780666
781656 | 776402
777386 |
| | on DH Volume | of 578 Cu. Ft. | | 0066111 |
| unnina | | JI JI CUI PL | | |

- -

This Table base Loop B Running

-- ---

ENCLOSURE 3 (Page 7 of 7)

.

REACTOR COOLANT IN LBM (WITH DH LOOP A & B RUNNING)

۰.,

Science of the second science of the

| | | (WITH DH LO | DOP A & B RUNNING) | |
|--------|---------------------|---------------------|---------------------|--------|
| PRESSU | RIZER | | | |
| LEVEL | | RC 1 | TEMPERATURE | |
| | 80 | 100 | 120 | 140 |
| | ••• | 200 | 2 | 2.10 |
| 0 | 763401 | 760656 | 757183 | 753047 |
| 5 | 764400 | 761651 | 758173 | 754031 |
| 10 | | | | |
| | 765398 | 762646 | 759163 | 755016 |
| 15 | 766396 | 763640 | 760153 | 756000 |
| 20 | 767394 | 7646 35 | 761143 | 756985 |
| 25 | 768392 | 765629 | 762133 | 757970 |
| 30 | 769391 | 766624 | 763123 | 758954 |
| 35 | 770389 | 767619 | 7 64 113 | 759939 |
| 40 | 771387 | 768613 | 765103 | 760924 |
| 45 | 772385 | 769608 | 766093 | 761908 |
| 50 | 773383 | 770602 | 767083 | 762893 |
| 55 | 774381 | 771597 | 768073 | 763878 |
| 60 | 775380 | 772592 | 769063 | 764862 |
| 65 | 776378 | | | |
| | | 773586 | 770053 | 765847 |
| 70 | 777376 | 774581 | 771043 | 766832 |
| 75 | 778374 | 775575 | 772033 | 767816 |
| 80 | 77 9 372 | 776570 | 773023 | 768801 |
| 85 | 780371 | 77756 4 | 774014 | 769785 |
| 90 | 781369 | 778559 | 775004 | 770770 |
| 95 | 782367 | 779554 | 7759 94 | 771755 |
| 100 | 783365 | 780548 | 776984 | 772739 |
| 105 | 784363 | 781543 | 777974 | 773724 |
| 110 | 785361 | 782537 | 778964 | 774709 |
| 115 | 786360 | 783532 | 779954 | 775693 |
| | 787358 | | | |
| 120 | | 784527 | 780944 | 776678 |
| 125 | 788356 | 755521 | 781934 | 777663 |
| 130 | 789354 | 786516 | 782924 | 778647 |
| 135 | 790352 | 787510 | 783914 | 779632 |
| 140 | 791351 | 788505 | 784904 | 780617 |
| 145 | 7923 49 | 789500 | 7858 94 | 781601 |
| 150 | 793347 | 7 9 0494 | 786884 | 782586 |
| 155 | 794345 | 791489 | 787874 | 783570 |
| 160 | 795343 | 792483 | 788864 | 784555 |
| 165 | 796341 | 793478 | 789854 | 785540 |
| 170 | 797340 | 794473 | 790844 | 786524 |
| 175 | 798338 | 795467 | 791834 | 787509 |
| 180 | 799336 | 796462 | | |
| | | | 792824 | 788494 |
| 185 | 800334 | 797456 | 793815 | 789478 |
| 190 | 801332 | 798451 | 7 94 805 | 790463 |
| 195 | 802331 | 799446 | 795795 | 791448 |
| 200 | 803329 | 800440 | 796785 | 792432 |
| 205 | 804327 | 801435 | 797775 | 793417 |
| 210 | 805325 | 802429 | 798765 | 794402 |
| 215 | 806323 | 803424 | 7 99 755 | 795386 |
| 220 | 807321 | 804418 | 800745 | 796371 |
| 225 | 808320 | 805413 | 801735 | 797355 |
| 230 | 809318 | 806408 | 802725 | 789340 |
| 235 | 810316 | 807402 | 803715 | 799325 |
| 240 | 811314 | 808397 | 804705 | |
| 245 | 812312 | | | 800309 |
| | | 809391 | 805695 | 801294 |
| 250 | 813311 | 810386 | 806685 | 802279 |
| 255 | 814309 | 811381 | 807675 | 803263 |
| 260 | 815307 | 812375 | 808665 | 804248 |
| 265 | 816305 | 813370 | 809655 | 805233 |
| 270 | 817303 | 814364 | 810645 | 806217 |
| 275 | 818301 | 815359 | 811635 | 807202 |
| 280 | 819300 | 816354 | 812625 | 808187 |
| 285 | 820298 | 817348 | 813616 | 809171 |
| 290 | 821296 | 818343 | 814606 | 810156 |
| 295 | 822294 | 819337 | 815596 | 811140 |
| 300 | 823292 | | | |
| | 043474 | 820332 | 816586 | 812125 |

This Table based on DH Volume of 1144 Cu. Ft. with both DH Loops A & B Running

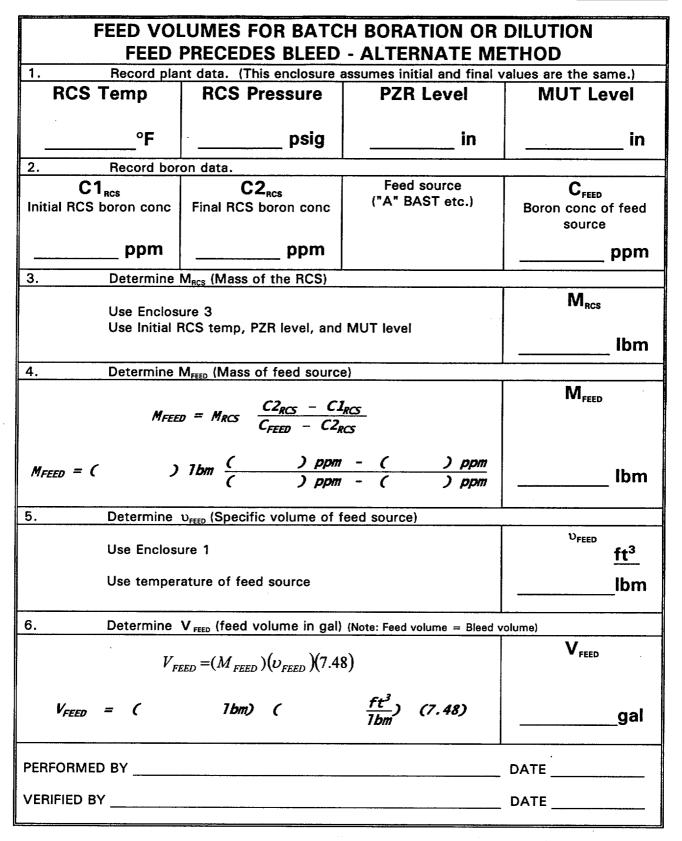
- - -

| · · · · · · · · · · · · · · · · · · · | | | <u>ENCLOSURE</u>
(Page 1 of |
|---|---|---|--|
| | | ITY MANAGEMENT | and and a second se |
| 1. Record initial pla | | | |
| Rx POWER | ROD INDEX | R1 _{XE}
Saxon | Saxon EFPD |
| % | % | %∆k/k | •••••••••••••••••••••••••••••••••••••• |
| 2. Record final plan | nt data. | | |
| Rx POWER | ROD INDEX | USE CAUTION TO
ENSURE PROPER SIGNS
ARE MAINTAINED | R2 _{XE}
Saxon |
| % | % | DURING ALL
CALCULATIONS. | %∆k/k |
| 3. Determine React | ivity for reactor power F | R1 _{RP} (Initial) and R2 _{RP} (Final) | |
| Use OP-103C cu | rve 15 | R1 _{RP} | R2 _{RP} |
| | | %∆k/k | %∆k/k |
| 4. Determine React | ivity for rod index R1 _{RI} (| Initial) and R2 _{BI} (Final) | |
| Use OP-103C cu | rve 14 | R1 _{RI} | R2 _{RI} |
| | | %∆k/k | %∆k/k |
| 5. Determine total I | reactivity $R1_{T}$ (Initial) and | d R2 _T (Final) | <u></u> |
| $RI_T = RI_{RP} +$ | RI _{RI} + RI _{XE} | R1 _T | R2 _T |
| $RI_T = \frac{\%\Delta k}{k} + \frac{1}{k}$ | $\frac{\cancel{k}\Delta k}{k} + \frac{\cancel{k}\Delta k}{k}$ | | |
| $R2_T = R2_{RP} +$ | $R2_{RI} + R2_{XE}$ | | |
| $R2_T = \frac{\%\Delta k}{k} + -$ | $\frac{X\Delta k}{k} + \frac{X\Delta k}{k}$ | %∆k/k | %∆k/k |
| 6. Determine ΔR (C | hange in reactivity) | | |
| | | | ΔR |
| | $\Delta \boldsymbol{R} = \boldsymbol{R} \boldsymbol{2}_{T} - \boldsymbol{R} \boldsymbol{1}_{T}$ | | |
| Δ | $R = \frac{\%\Delta k}{k} - \frac{\%\Delta k}{k}$ | | %∆k/k |
| | | | |

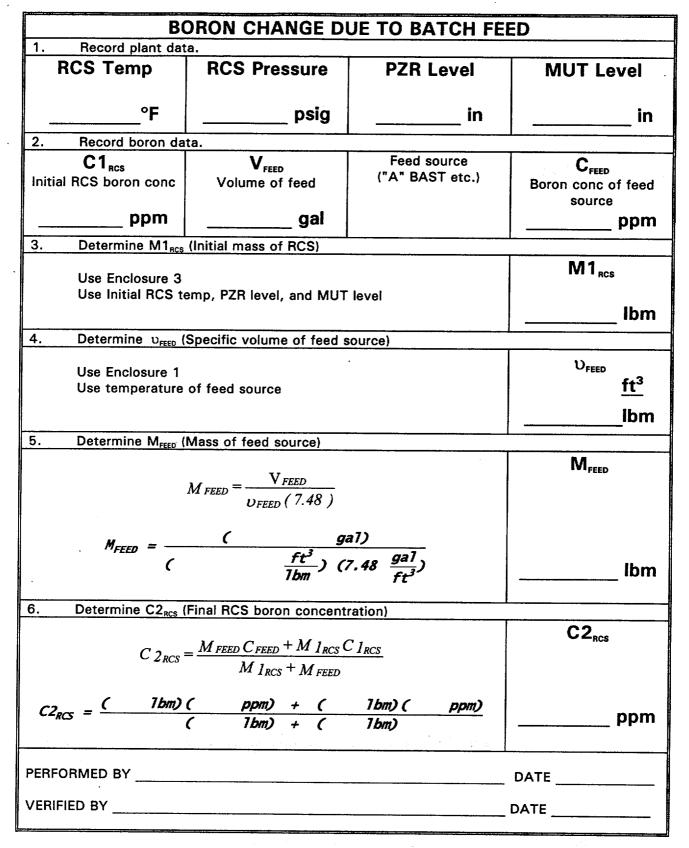
ENCLOSURE 4 (Page 2 of 2)

•

| | ont'd) |
|---|-----------------------|
| 7. Determine IB (Inverse Boron worth) | |
| Use OP-103C curve 4 for current EFPD | IB |
| If reactor power is >18%, use HFP values. | <u>ppm</u>
%∆k/k |
| 8. Determine △B (Change in RCS boron). Raise boron if positive, low | er boron if negative. |
| $\Delta B = (\Delta R) (IB)$ | Δ B |
| $\Delta B = \left(\frac{\frac{N\Delta k}{k}}{k}\right)\left(\frac{ppm}{\frac{N\Delta k}{k}}\right)$ | ppm |
| | DATE |
| | |


| CONTINUO | US FEED AND BLE | ED | |
|---|---|---|---|
| 1. Record plant dat | ta. (This enclosure assum | es initial and final value | s are the same.) |
| RCS Temp | RCS Pressure | PZR Level | MUT Level |
| °F | psig | in | in |
| 2. Record boron da | ita. | | |
| C1 _{RCS}
Initial RCS boron conc | | Feed source
("A" BAST etc.) | C _{FEED}
Boron conc of feed
source |
| ppm | ppm | | ppm |
| 3. Determine M _{BCS} (| Mass of the RCS) | | |
| Use Enclosure 3 | emp, PZR level, and MUT | level | M _{RCS}
Ibm |
| 4. Determine M _{FEED} | (Total mass of feed) | | • |
| | $D = (M_{RCS}) LN \frac{C_{FEED} - C}{C_{FEED} - C}$ $lbm)LN (ppm) - (pp$ | | M _{FEED} |
| | · · · · · · · · · · · · · · · · · · · | | |
| 5. Determine U _{FEED} (| Specific volume of feed s | ource) | |
| Use Enclosure 1
Use temperature | of feed source | | UFEED <u>ft³</u>
lbm |
| 6. Determine V _{FEED} | (Volume of feed source) (| Note: Feed volume = Bleed vo | |
| | $EED = (M_{FEED}) (v_{FEED}) (7.48)$ | <u></u> | V _{feed} |
| <i>V_{FEED}</i> = (| $1bm$) ($\frac{ft^3}{1bm}$) | (7.48 <u>ga1</u>)
ft ³) | gal |
| PERFORMED BY | | | DATE |
| | · | | DATE |

1.18


| | | ta. (This enclosure assum
RCS Pressure | PZR Level | MUT Level |
|------------|--|--|---|---|
| _ | °F | psig | in | in |
| 2. | Record boron da | ita. | | |
| Initi | C1 _{RCS}
al RCS boron conc | C2 _{RCS}
Final RCS boron conc | Feed source
("A" BAST etc.) | C _{FEED}
Boron conc of feed
source |
| | ppm | ppm | | ppm |
| 3. | Determine M _{RCS} (| Mass of the RCS) | | |
| | Use Enclosure 3 | | | M _{RCS} |
|
ŀ. | ····· | emp, PZR level, and MUT | level | lbm |
| •• | Determine M _{FEED} | (Mass of feed source) | | |
| | | <u> </u> | | |
| M, | | $ED = M_{RCS} \frac{C2_{RCS} - C1}{C_{FEED} - C1}$ $7bm \frac{()}{()} ppm$ | | M _{FEED} |
| | FEED = () | 1bm () ppm
() ppm | - () ppm
- () ppm | |
| <i>M</i> , | FEED = () | <i>1bm</i> () ppm
() ppm
Specific volume of feed s | - () ppm
- () ppm | |
| - | Determine v _{FEED} (
Use Enclosure 1
Use temperature | <i>1bm</i> () ppm
() ppm
Specific volume of feed so
of feed source | <u>- () ppm</u>
- () ppm
ource) | اbm
^ن FEED <u>ft</u> 3 |
| | Determine U _{FEED} (
Use Enclosure 1
Use temperature
Determine V _{FEED} (| <i>1bm</i> () ppm
() ppm
Specific volume of feed s | - () ppm
- () ppm
ource)
Feed volume = Bleed volume} | اbm
^ن FEED <u>ft</u> 3 |

- -

- -

. A en

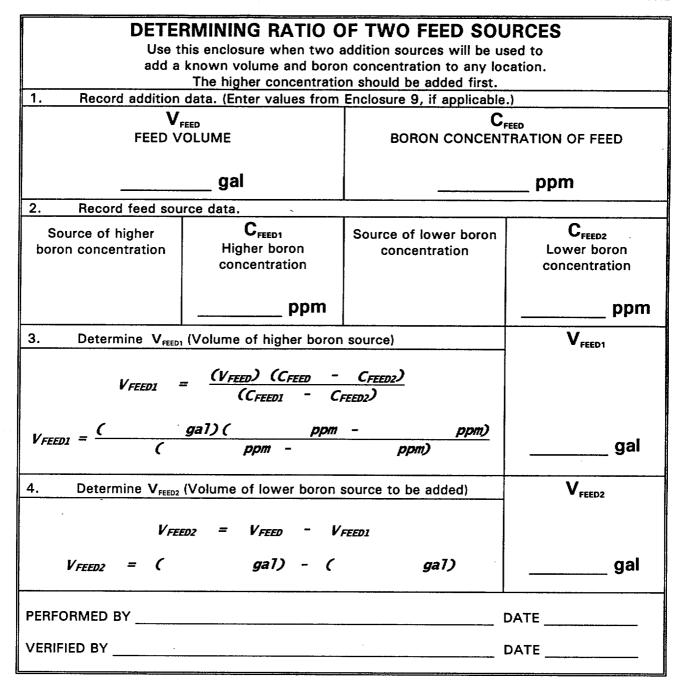
__ __.

- --

-

ENCLOSURE 9 (Page 1 of 2)


and and


a na hanan kuna a sanga da sanga sa sanga sa

| <u> </u> | BORATION DURI | NG COOLDOWN | |
|------------------------------------|--|---------------------------------------|---------------------------------------|
| 1. Record initial p | | | · · · · · · · · · · · · · · · · · · · |
| RCS Temp | RCS Pressure | PZR Level | MUT Level |
| °F | psig | in | in |
| 2. Record final pla | Int data. | | |
| RCS Temp | RCS Pressure | PZR Level | MUT Level |
| °F | psig | in | in |
| 3. Record boron d | ata. | | |
| C | 1 _{RCS} | C2 | |
| Initial RCS | boron conc | Final RCS t | |
| | ppm | | Ppm |
| 4. Determine M1 _{BC} | s (Initial mass of RCS) | · · · · · · · · · · · · · · · · · · · | MAR |
| Use Enclosure 3
Use Initial RCS | temp, PZR level, and MUT | level | M1 _{RCS} |
| | | | lbm |
| 5. Determine M2 _{ac} | s (Final mass of RCS) | | |
| Use Enclosure 3 | | | M2 _{RCS} |
| | ,
emp, PZR level, and MUT le | evel | |
| | | | lbm |
| δ. Determine ΔM_{RC} | s (Mass change of RCS) | | |
| | $\Delta M_{RCS} = M 2_{RCS} - M 1_{RCS}$ | | $\Delta M_{	extsf{RCS}}$ |
| $\Delta M_{RCS} = ($ | 1 <i>bm) - (</i> | 1bm) | lbm |
| 7. Determine M _{FEED} | (Mass of feed solution) | , | |
| | $M_{FEED} = \Delta M_{RCS}$ | | |
| | | l . | lbm |
| Continue ca | lculation on next pa | | |
| | | - 3 - | |

ふうぶ きぬき

ENCLOSURE 9 (Page 2 of 2)

REGION II INITIAL LICENSE EXAMINATION JOB PERFORMANCE MEASURE

JPM A2, Perform a Reactor Coolant System Inventory Balance

| CANDIDATE | | |
|--------------------------|-------------------------------|-------|
| EXAMINER | | |
| PREPARED/
REVISED BY: | | Date/ |
| REVIEWED BY: | (Operations Representative) | Date/ |
| VALIDATED BY: | (Operations Representative) | Date/ |
| APPROVED BY: | (Supervisor Initial Training) | Date/ |

CRYSTAL RIVER UNIT 3 ADMINISTRATIVE JOB PERFORMANCE MEASURE

Task: Perform a reactor coolant system inventory balance.

Alternate Path: N/A

JPM #: A2 (modified bank #284)

K/A Rating/Importance: G2.2.12/3.0/3.4 Task Number/Position: 0020202004/RO

Task Standard: Perform a reactor coolant system inventory balance using SP-317.

| Preferred Evaluati | ion Location: | | Preferred Evaluation Method: | |
|---------------------------------|---------------|--------|---|------|
| Simulator In- | -Plant Ad | lminX | Perform X Simulate | |
| References:
1. SP-317, Rev 4 | 9 | | | |
| Validation Time: | | | Time Critical: No | |
| | Printed | | <u>Time Start:</u>
<u>Time Finish:</u> | |
| Performance Ratir | ng: SAT | _UNSAT | Performance Time: | |
| Examiner: | Printed Name | | /////// | Date |
| Comment: | | | | |
| <u> </u> | ······ | | | |
| | | | | |
| | | | | |

SIMULATOR OPERATOR SETUP INSTRUCTIONS:

- 1. N/A

SIMULATOR OPERATOR INSTRUCTIONS:

1. N/A

Tools/Equipment/Procedures Needed:

- 1. SP-317
- 2. Calculator

READ TO THE OPERATOR

Directions to the Student:

I will explain the initial conditions, and state the task to be performed. All steps, including any required communications, shall be performed for this JPM. I will provide initiating cues and reports on other actions when directed by you. Ensure you indicate to me when you understand your assigned task. To indicate that you have completed your assigned task, return the handout sheet to the examiner.

Initial Conditions:

You are the REACTOR OPERATOR. You collect the following plant data at 1830 for performance of SP-317:

Reactor Coolant (RCS) pressure RCS Tave Pressurizer level Make-up tank level Reactor Coolant Drain Tank (RCDT) level RCV-150 is closed. All dumpster readings have been reset to 0. 2150 psig (RC-003A-PIR1, loop A ribbon).
579°F (RC-12-TAI).
220 inches (RC-001-LIR1 ribbon).
98 inches (MU-014-LIR1 ribbon).
94 inches (WD-23-LI1).

Initiating Cues:

You are requested to complete SP-317 with the following data collected at 0230 the next day:

Reactor Coolant (RCS) pressure RCS Tave Pressurizer level Make-up tank level Reactor Coolant Drain Tank (RCDT) level No water additions or removals were made. 2150 psig (RC-003A-PIR1, loop A ribbon).
579°F (RC-12-TAI).
220 inches (RC-001-LIR1 ribbon).
82 inches (MU-014-LIR1 ribbon).
100 inches (WD-23-LI1).

All standpipe flush water flow-rates are 0.05 gpm Dumpster readings are:

RC-134-FZ 136

RC-135-FZ 153

RC-136-FZ 104

RC-137-FZ 201

MUV-27 has a packing leak of 38 drops per minute.

Controlled Bleed-off for the Reactor Coolant pumps:

X922 1.48

X923 1.35

X924 1.47

X925 1.52

Chemistry Department reports Primary-to-Secondary leakage 0.02 gpm.

START TIME: _____

| <u>STEP 1</u> : | |
|---|---------------|
| Obtain a copy of appropriate procedure. | SAT |
| EXAMINER NOTE: Provide candidate with a clean copy of SP-317.
Calculators will also be provided if the candidate does not
have one. | UNSAT |
| STANDARD: N/A | |
| COMMENTS: | |
| <u>STEP 2:</u> | Critical Step |
| Candidate should complete SP-317. | SAT |
| STANDARD: Candidate completes SP-317. | UNSAT |
| EXAMINER NOTE: See attached key for answers; section G parts 2, 3 and 4 of the enclosure should have leak rates of \pm 0.1 gpm. | |
| COMMENTS: | |
| END OF TASK | |

~

•••

TIME STOP _____

CANDIDATE CUE SHEET

(TO BE RETURNED TO EXAMINER UPON COMPLETION OF TASK)

Initial Conditions:

You are the REACTOR OPERATOR. You collect the following plant data at 1830 for performance of SP-317:

Reactor Coolant (RCS) pressure RCS Tave Pressurizer level Make-up tank level Reactor Coolant Drain Tank (RCDT) level RCV-150 is closed. All dumpster readings have been reset to 0. 2150 psig (RC-003A-PIR1, loop A ribbon).
579°F (RC-12-TAI).
220 inches (RC-001-LIR1 ribbon).
98 inches (MU-014-LIR1 ribbon).
94 inches (WD-23-LI1).

Initiating Cues:

You are requested to complete SP-317 with the following data collected at 0230 the next day:

2150 psig (RC-003A-PIR1, loop A ribbon). Reactor Coolant (RCS) pressure 579°F (RC-12-TAI). **RCS** Tave 220 inches (RC-001-LIR1 ribbon). Pressurizer level 82 inches (MU-014-LIR1 ribbon). Make-up tank level 100 inches (WD-23-LI1). Reactor Coolant Drain Tank (RCDT) level No water additions or removals were made. All standpipe flush water flow-rates are 0.05 gpm Dumpster readings are: 136 RC-134-FZ **RC-135-FZ** 153 RC-136-FZ 104 RC-137-FZ 201 MUV-27 has a packing leak of 38 drops per minute. Controlled Bleed-off for the Reactor Coolant pumps: X922 1.48 X923 1.35 X924 1.47 X925 1.52 Chemistry Department reports Primary-to-Secondary leakage 0.02 gpm.

RCS LEAKAGE CALCULATION

ENCLOSURE 1 (Page 1 of 3)

Α.

Β.

с.

| <u>TI</u> | <u>ME</u> : | (, <u>_</u> g , |
|---|---|------------------|
| 1)
2)
3) | Start date/time <u>Date / 1830</u>
Stop date/time <u>Dete 1 / 0230</u>
Run time (time difference between A1 and A2) | <u>480</u> min |
| <u>RC</u> | DRAIN TANK: | |
| 1)
2)
3)
5)
7)
8)
9)
0 | a) Level at start of pumping
b) Level at end of pumping
c) Level change due to pumping (B7a minus B7b) = $\frac{\nu/4}{\nu/4}$ in.
Total Level Change (B6 plus B7c)
Total inventory change (B8 x 32.9 gal/in) $\frac{197,4}{2}$ gal | <u>0,41 g</u> рт |
| <u>RC</u> | P SEALS: | PCD 1D |
| | | |

- 1) CONTROLLED BLEED OFF
 - a) controlled bleed off
 - b) total of all pumps

2) DUMPSTER FLOWS

- a) dumpster reading at stop time
- b) dumpster reading at start time
- c) dumpster difference (C2a minus C2b)
- d) dumpster conversion
 (gals/click)
- e) dumpster flow-rate (C2c x C2d/A3) gpm
- f) standpipe flush water flow-rate gpm
- g) RCP seal leakage C2e minus C2f) gpm
- h) total RCP seal leakage gpm (SUM of C2g values for all 4 RCPs)

| RCP-1A
X922 | RCP-1B
X923 | RCP-1C
X924 | RCP-1D
X925 |
|----------------|----------------|----------------|----------------|
| 1.48 | 1.35 | 1.47 | 1.52 |
| | 5 | . 82 | |

| RC-134-FZ | RC-135-FZ | RC-136-FZ | RC-137-FZ | |
|-----------|-----------|-----------|-----------|--|
| 136 | 153 | 104 | 201 | |
| 0 | · 0 | D | 0 | |
| 136 | 153 | 104 | 201 | |
| 0.25 | 0.25 | 0.25 | 0.25 | |
| 0.07 | 0.08 | 0,05 | 0,10 | |
| 0.05 | 0.05 | 0.05 | 0.05 | |
| 0.02 | 0.03 | 0 | 0.05 | |
| 6.10 | | | | |

RCS INVENTORY CHANGES: (NOTE: If no change is observed, N/A D. respective correction factor.)

- PRESSURIZER 1)
 - RC-001-LIRI ribbon measurement source a) 220 in. level at start time b) <u>220</u> in. level at stop time c) level change (D1b minus D1c) <u>o</u>in. d) -----12.2 gal/in. (Enclosure 3) e) correction factor Х <u>0 g</u>al. inventory change (D1d x D1e) = f)
- $\mathsf{T}_{\mathsf{avg}}$ 2)

| e) | measurement source
temperature at start time
temperature at stop time
temperature change (D2b minus D2c)
correction factor
inventory change (D2d x D2e) | $\frac{RC - 12 - TAI}{579 ^{\circ}F}$ $= \frac{0}{579 ^{\circ}F}$ $= \frac{0}{79 ^{\circ}F}$ $= \frac{0}{98.4 \text{gal}/^{\circ}F} (\text{Enclosure 2})$ $= \frac{0}{9 ^{\circ}gal}.$ |) |
|----|--|--|---|
| | | | |

- MAKE-UP TANK 3)
 - MU-014-LIRI ribbon measurement source a) _____in. level at start time b) 82 in. level at stop time c) <u>16</u> in. =
 - d) level change (D3b minus D3c) correction factor
 - e) f) inventory change (D3d x D3e)
- RCS PRESSURE (2130 to 2170 psig) 4)
 - a) measurement source b) average pressure at start time c) average pressure at stop time
- WATER ADDITIONS OR REMOVALS 5)
 - a) additions

tota]

<u>30.8</u> gal/in. *442.8* gal.

RC-003A -PIRI loop A ribbun

30.8

2150 psig

2150 psig

total

х

D gal. _____ + _____ + _____ + _____ +

b) removals

____ + _____ + _____ + ____ _ + _

6) TOTAL INVENTORY RATE-OF-CHANGE

(D1f minus D2f plus D3f plus D5a minus D5b) / A3

(0 - 0 + 492.8 + 0 - 0) / 480 = 1.03 gpm

E. <u>COMPONENT IDENTIFIED LEAKAGE</u>:

NOTE: Multiply leakage drops per minute by 0.00001 (10⁻⁵) to obtain leakage in gpm.

| | Component | Leakage Rate | |
|--------------|--|--------------------------------|-----------------|
| | mur - 27 | 0.00036 gpm | 1
1 |
| - | | gpm | 1 |
| - | | gpm | |
| Tota | l component leakage rate | | <u>0.00</u> gpm |
| <u>RCP</u> S | EAL LEAKAGE COLLECTION POINT: [N | IOCS 040486] | |
| 1) | RB Sump (RCV-150 Closed) (otherw
(RCDT rate of change plus Total
(B10 plus C2h) | vise N/A)
RCP seal leakage) | 0.51_gpm |
| 2) | RC Drain Tank (RCV-150 Open) (of
(RCDT rate of change minus Tota
water flow-rates) (B10 minus C21
(C2f = RCP-1A + RCP-1B + RCP-1C | l of RCP standpipe flush | <u></u> |
| RCS | LEAKAGES [NOCS 000597] | | |
| 1) | Primary-to-Secondary Leakage (fr
(<0.1 gpm rounded to near | | <u> </u> |
| 2) | Identified Leakage (E plus F plu
(<10 gpm rounded to neare | | 0.5 gpm |
| 3) | Unidentified Leakage (D6 minus (
(<1.0 gpm rounded to near | 52)
rest tenth) | <u>0.5 gpm</u> |
| 4) | Controlled Bleed Off (C1b)
(<10 gpm rounded to neare | est tenth) | <u>5.8</u> gpm |
| formed | By (Start) | Time1830 D | ate Date |

| Performed By (Start) | Signature | Time | 1830 | Date | Date |
|---------------------------|-----------|------|------|------|---------|
| Performed By (Stop) | Signature | Time | 0230 | Date | Date +1 |
| Independently Reviewed By | | Time | | Date | |

F.

G.

Effective Date <u>6/20/00</u>

SURVEILLANCE PROCEDURE

SP-317

FLORIDA POWER CORPORATION

CRYSTAL RIVER UNIT 3

RC SYSTEM WATER INVENTORY BALANCE

APPROVED BY: Procedure Owner

<u>John W. Smithf or JHT</u> (SIGNATURE ON FILE)

DATE: <u>6/19/00</u>

PROCEDURE OWNER:

Manager, Nuclear Plant Operations Support

TABLE OF CONTENTS

| SECTION | PAGE |
|------------|--|
| <u>1.0</u> | <u>PURPOSE</u> |
| | 1.2 <u>CMIS EQUIPMENT</u> 1 |
| <u>2.0</u> | REFERENCES |
| • | 2.1 <u>DEVELOPMENTAL REFERENCES</u> |
| <u>3.0</u> | PERSONNEL INDOCTRINATION3 |
| | 3.1 <u>SETPOINTS</u> |
| | 3.2 <u>DESCRIPTION</u> |
| | 3.2.1Calculation Information3.2.2Measurement Sources3 |
| | 3.2.3 Pretest Instructions |
| | 3.3 DEFINITIONS AND ABBREVIATIONS |
| | 3.4 RESPONSIBILITIES |
| | 3.5 LIMITATIONS AND PRECAUTIONS |
| | 3.6 ACCEPTANCE CRITERIA |
| | 3.7 <u>PREREQUISITES</u> |
| 4.0 | INSTRUCTIONS |
| <u>4.0</u> | 4.1 INITIAL TEST DATA |
| | 4.1 <u>INITIAL TEST DATA</u> |
| | |
| | |
| | 4.4 <u>FINAL TEST DATA</u> |
| | 4.5 <u>CALCULATION OF LEAKAGE</u> 10 |
| <u>5.0</u> | FOLLOW-UP ACTIONS11 |
| | 5.1 <u>RESTORATION INSTRUCTIONS</u> 11 |
| | 5.2 <u>CONTINGENCIES</u> |
| ENCLOSU | RES |
| 1 | RCS Leakage Calculation12 |
| 2 | RCS Tavg Vs. Correction Factor15 |
| 3 | RCS Pressure Vs. Pressurizer Level Correction Factor16 |

| 4 | Calculated | CBO Flow | |
|---|------------|----------|--|
| | | | |

1.0 PURPOSE

1.1 <u>INTENT</u>

1.1.1 Reactor coolant system leakages shall be determined and demonstrated to be within the acceptance criteria during the modes and at the frequencies indicated in Section 2.1.1 below. [NOCS 001013, 005528, 062795, 090200]

1.2 <u>CMIS EQUIPMENT</u>

1.2.1 The following tags are listed in CMIS as being affected by this procedure:

None

| RC-135-FZ | RCT-1 | WDT-4 |
|-----------|-----------|-----------|
| RC-136-FZ | RCV-8 | WDT-5 |
| RC-137-FZ | RCV-9 | WDV-60 |
| RCP-1A | RCV-10 | WDV-61 |
| RCP-1B | RCV-150 | WDV-247 |
| RCP-1C | WD-23-LT1 | RC-4A-TE4 |
| RCP-1D | WDP-8 | RC-4B-TE1 |

2.0 REFERENCES

2.1 DEVELOPMENTAL REFERENCES

2.1.1 <u>Technical Specification Reference</u>

| Applicable
References | Surv. Perf.
During Modes | LCO/Other
Requirements
<u>During Modes</u> | | Freq.
<u>Notes</u> | Mode
<u>Notes</u> |
|--------------------------|-----------------------------|--|----|-----------------------|----------------------|
| 3.4.12.1 | 1 thru 3 | 1 thru 4 | 3D | | 20 |
| FPC | 1 thru 3 | 1 thru 4 | М | | 25 |

SURVEILLANCE FREQUENCY:

- 3D 3 days (at least once per 72 hrs. during steady state operations).
- M At least once per 31 days.

FREQUENCY NOTES:

None

MODE NOTES:

- 20 Not required to be performed in Mode 3 until 12 hours of Steady State Operation, but must be performed prior to entry into Mode 2.
- 25 RCS pressure at 2150 \pm 20 psig.
- 2.1.2 ASME Steam Tables
- 2.1.3 Engineering Calculation M93-0009R2

3.0 PERSONNEL INDOCTRINATION

3.1 <u>SETPOINTS</u>

3.1.1 Refer to Technical Specification 3.4.12 for maximum allowed leakage values.

3.2 DESCRIPTION

3.2.1 <u>Calculation Information</u>

- 3.2.1.1 Leak rates produced by this procedure are time averaged over the time interval chosen to record data. The total inventory rate-of-change will be the amount of indicated leakage from the RCS, i.e., $(\Delta PZR | evel + \Delta MUT | evel + Additions -T_{avg} Correction)$ divided by Run Time (in minutes) to yield gallons per minute.
- 3.2.1.2 Notations contained in this procedure such as (C.2.a) or (F.2) refer to line items on Enclosure 1 (i.e., C.2.a is Section C, Step 2, line 'a' on Enclosure 1).
- 3.2.1.3 In all calculations, carry the algebraic sign throughout the calculation except where instructed to use the absolute value.
- 3.2.1.4 All data recorded in Section G of Enclosure 1, with the exception of item G.1, will be rounded off to the nearest tenth. Item G.1 and all other Sections will use data rounded to the nearest hundredth. [NOCS 000597]

3.2.2 <u>Measurement Sources</u>

- 3.2.2.1 The following steps describe the measurement sources for leakage calculations. The same instrument must be used for the test duration.
- 3.2.2.2 Reactor Coolant Drain Tank (RCDT) Level WDT-5 (B.1)
 - o WD-23-LI1 (convert to inches) or
 - o Calibrated DVM connected to Main Control Board PSA, TB-43-20(+) and TB-43-19(-) [Measured voltage x 16 = level in inches] or
 - o Computer Point #X368
- 3.2.2.3 Pressurizer (PZR) Level RCT-1 (D.1.a)
 - o RC-001-LIR1 or RC-001-LIR3 or
 - o Computer Point R874

3.2.2.4 T_{ave} (D.2.a)

- o RC-12-TAI (Unit T_{ave} Indicator)
- o <u>IF</u> RC-12-TAI is off scale low <u>THEN</u> any of the following computer points may be used:

RECL-239 T-Hot WR A Loop (RC-4A-TE4) RECL-18 T-HoT WR B Loop (RC-4B-TE1)

- 3.2.2.5 Makeup Tank Level (MUT) MUT-1 (D.3.a)
 - MU-014-LIR1 (MU-14-MS must be maintained in the same position for the duration of the test) or
 - o Computer point X359
- 3.2.2.6 RCS Pressure (D.4.a)
 - o RC-003A-PIR1 or
 - o RC-003A-PIR2 or
 - o Computer Point R762 (Convert to psig)

3.2.3 <u>Pretest Instructions</u>

- 3.2.3.1 <u>IF</u> the RCDT level will not be acceptable throughout the duration of this procedure, <u>THEN</u> lower RCDT level to ensure adequate volume will be maintained.
 - NOTE: Venting the RCDT through WDV-60 and WDV-61 would permit any increase in pressure or transient within the RCDT to affect the loop seal on WDT-4, Misc. Waste Storage Tank.
 - 3.2.3.2 ____ ENSURE the RCDT is vented to the waste gas header for the duration of this procedure.
 - 3.2.3.3 <u>IF</u> leakage is detected through RCV-8, -9, or -10, <u>THEN</u> PLACE the RCDT on recirculation using OP-407J
 - 3.2.3.4 To take credit for RCS Controlled Leakage measurements, RCS pressure must be between 2130 psig and 2170 psig.

3.3 DEFINITIONS AND ABBREVIATIONS

- 3.3.1 DVM Digital Volt Meter
- 3.3.2 MUT Makeup Tank
- 3.3.3 RC Reactor Coolant
- 3.3.4 RCDT Reactor Coolant Drain Tank
- 3.3.5 RCP Reactor Coolant Pump
- 3.3.6 RCS Reactor Coolant System
- 3.3.7 MU Make-up and Purification System
- 3.3.8 CBO Controlled Bleed Off

3.4 <u>RESPONSIBILITIES</u>

- 3.4.1 The Manager, Nuclear Operation Support, is responsible for the content of this procedure, shall act as Interpretation Contact for any questions regarding intent, and has final authority regarding the procedure.
- 3.4.2 This procedure is designed and written to be performed by Nuclear Operators reporting directly to the Shift Supervisor. No additional skills are required.

3.5 LIMITATIONS AND PRECAUTIONS

- 3.5.1 This leak rate determination, while regularly scheduled to be performed on a 72 hr. basis, shall not be limited to any specific interval, but shall be performed whenever any abnormal or unexpected change (abnormal MUT level shift, excessive makeup flow, etc.) is noted.
- 3.5.2 To avoid addition or removal of water from the RC or MU systems during or immediately prior to leak rate checks, the following operations should be minimized during leak rate determinations:
 - Makeup or chemical addition to the MU system or RCS from other systems.
 - o Sampling of the RCS, MU system, or interconnected systems.
 - o Venting or draining from the RC or MU systems.
 - o Changing MU demineralizers or filters in service.
 - o Boration or Deboration.

- 3.5.3 The RC, MU System, and interconnected systems should be maintained in a steady state condition during leakage measurements.
- 3.5.4 The following operations should be minimized during leakage measurements:
 - o Variations in reactor power.
 - o Variations in RCS pressure and temperature.
 - o Operations that affect pressurizer level.
 - o RC pump configuration changes.
 - o Valve lineups that affect the RC and MU Systems.
 - o Change of coolers in service that affect the RC and MU Systems.
 - o Change in pumps in service that affect the RC and MU Systems.
 - o Other operations which could affect total contained volume or density of the fluid in the operating primary system.
- 3.5.5 The following is recommended:
 - o RC T_m and reactor power be in automatic control.
 - o Pressurizer level control and RCP seal injection flow control in automatic with pressurizer level at $220" \pm 5"$ when Tave is 579 F, or between 60" and 125" when in Mode 3, and MUT level between 55" and 100" with enough level such that water will not have to be added during this test.
 - The same signal source be utilized when recording the various parameters. Differences between signal sources could be misinterpreted as RCS leakage when comparing successive readings.

3.6 ACCEPTANCE CRITERIA

- 3.6.1 RCS leakage shall be limited to the following:
 - a. 1 gpm unidentified leakage
 - b. 0.1 gpm primary-to-secondary leakage through any one OTSG. (Since current sampling methods do not provide individual OTSG leak rates, the <u>total</u> leak rate shall not exceed 0.1 gpm.)
 - c. 10 gpm identified leakage from RCS
 - d. 10 gpm RCP Controlled Bleed Off Flow at a RCS pressure of 2130 to 2170 psig (Non Tech Spec)

3.7 **PREREQUISITES**

3.7.1 Section 3.0, Personnel Indoctrination, has been read and understood by those performing this procedure.

Juitial, Date Initial/Date

- 3.7.2 NOTIFY the Shift Supervisor that the Surveillance Procedure is to be performed and the nature of the test.
- 3.7.3 For performance of this procedure, a calculator is required.

4.0 INSTRUCTIONS

- NOTE: RCDT pressure should be less than 3 psig prior to beginning this procedure.
- NOTE: Dumpster readings (C.2.a, C.2.b, C.2.c, C.2.e, C.2.g and C.2.h) are not required if RCV-150 is open.

4.1 INITIAL TEST DATA

4.1.1 RECORD the following data on Enclosure 1:

- RECORD the instruments selected as sources (B.1, D.1.a, D.2.a, D.3.a, D.4.a)
- o RECORD DVM Information (B.2, and B.3) if DVM is used
- o Start Time (A.1)
- o RCDT Level (B.5)
- RCP Seal Leakage (dumpster) integrator readings (C.2.b)
- o Pressurizer Level (D.1.b)
- o T_{ava} (D.2.b)
- o MUT Level (D.3.b)
- o RCS Pressure (D.4.b)

4.2 SUPPLEMENTAL DATA

- NOTE: RCP CBO Flow may also be calculated using third stage seal cavity pressure (RC-19A-PR1, RC-19A-PR2, RC-19B-PR1 and RC-19B-PR2) and Enclosure 4, Calculated CBO Flow. Linear interpolation of Enclosure 4 is acceptable.
- 4.2.1 DETERMINE <u>AND</u> RECORD individual RCP Seal Controlled Bleed Off Flow (C.1.a).
- 4.2.2 OBTAIN the RCP Standpipe Flushwater flow rate from the Control Center Notebook. CONVERT to gpm <u>AND</u> RECORD on Enclosure 1 (C.2.f).

- 4.2.3 RECORD component identified leakage (i.e., valve packing, pump seal, fitting leakage, etc.) (E).
- 4.2.4 RECORD the latest value for primary to secondary leakage from the Chemistry Department, CH-266 (G.1).

4.3 SPECIAL TEST DATA

- 4.3.1 <u>IF</u> the RCDT is pumped down during the test interval, <u>THEN</u> DETERMINE <u>AND</u> RECORD the change in level due to pumping (B.7.a, b, and c).
- 4.3.2 <u>IF</u> it becomes necessary to sample the RCS during leak rate determination, <u>THEN</u> DETERMINE from Chemistry the total gallons removed from the RCS <u>AND</u> RECORD the absolute value on Enclosure 1 (D5.b). Otherwise N/A.
- 4.3.3 <u>IF</u> it becomes necessary to vent or drain from the RCS during leak rate determination, <u>THEN</u> DETERMINE the total gallons removed from the RCS <u>AND</u> RECORD the absolute value on Enclosure 1 (D.5.b). Otherwise N/A.
- 4.3.4 <u>IF</u> it becomes necessary to add water to the RCS, MU&P System, or interconnected systems during leak rate determination, <u>THEN</u> DETERMINE the total gallons added <u>AND</u> RECORD the value on Enclosure 1 (D.5.a). Otherwise N/A.

NOTE: To obtain leakage in "gpm", multiply the number of drops per minute times 10^{-s} (0.00001).

4.4 FINAL TEST DATA

- 4.4.1 The test interval should be approximately 8 hours. Plant conditions may exist such that periods of less than 8 hours may be desirable and must be authorized by the Nuclear Shift Supervisor; however, the minimum test interval necessary to satisfy the acceptance criteria shall be 4 hours.
- 4.4.2 RECORD the following data on Enclosure 1:
 - o Stop Time (A.2)
 - o RCDT Level (B.4)
 - o RCP Seal Leakage (dumpster) integrator readings (C.2.a)
 - o Pressurizer Level (D.1.c)
 - o T_{avg} (D.2.c)
 - o MUT Level (D.3.c)
 - o RCS Pressure (D.4.c)

4.5 CALCULATION OF LEAKAGE

- 4.5.1 CALCULATE the test Run Time (A.3).
- 4.5.2 COMPLETE Section B of Enclosure 1.
- 4.5.3 CALCULATE Total Seal Leakage in Section C of Enclosure 1 (C.1.b and C.2.h).
- 4.5.4 COMPLETE Section D of Enclosure 1.
- 4.5.5 Total the identified component leakages in Section E of Enclosure 1.

NOTE: If RCV-150 is closed, RCP seal leakage goes to the RB sump (F.1), and if RCV-150 is open, RCP seal leakage goes to the RCDT (F.2).

- 4.5.6 CALCULATE "RCP Seal Leakage Collection Point" leakage in Section F of Enclosure 1.
- 4.5.7 CALCULATE "RCS Leakages" in Section G of Enclosure 1.
- 4.5.8 PERFORM an independent review of all calculations on Enclosure 1.
- 4.5.9 INFORM the Shift Supervisor of the completion and the results of this procedure.

5.0 FOLLOW-UP ACTIONS

5.1 <u>RESTORATION INSTRUCTIONS</u>

None

5.2 <u>CONTINGENCIES</u>

- 5.2.1 <u>IF</u> acceptance criteria 3.6.1a, 3.6.1b, and 3.6.1c cannot be met, <u>THEN</u> NOTIFY the Shift Supervisor that Technical Specification 3.4.12 actions apply.
- 5.2.2 <u>IF</u> acceptance criteria 3.6.1d cannot be met, <u>THEN</u> NOTIFY the Shift Supervisor.

RCS LEAKAGE CALCULATION

ENCLOSURE 1

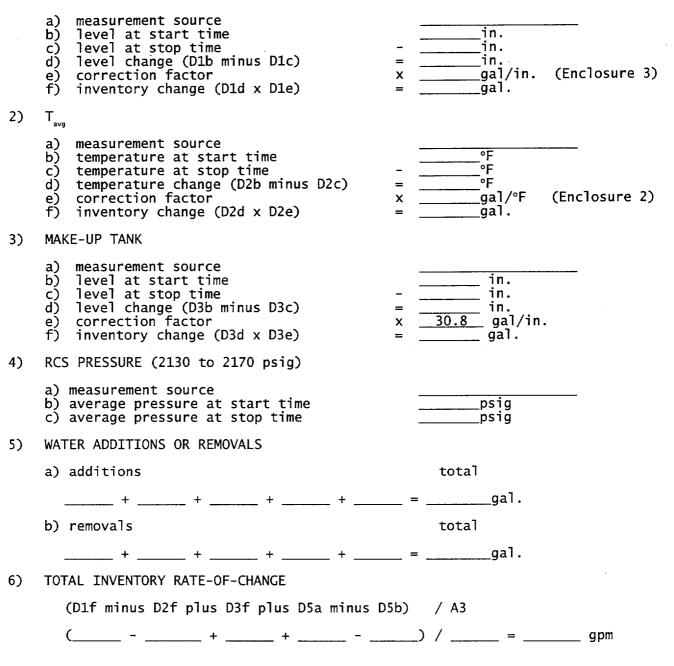
(Page 1 of 3)

TIME: Α. 1) Start date/time 2) Stop date/time min Run time (time difference between A1 and $\overline{A2}$) 3) RC DRAIN TANK: Β. 1) Measurement source DVM instrument number (otherwise N/A) 2) 3) DVM calibration due date (otherwise N/A) Level at Stop time Level at Start time Level change (B4 minus B5) Level change due to pumping: (otherwise N/A) a) Level at start of pumping b) Level at end of pumping 4) in. in. 5) 6) 7) in. in. in. c) Level change due to pumping (B7a minus B7b) = in. Total Level Change (B6 plus B7c) in. 8) 9) Total inventory change (B8 x 32.9 gal/in) qal. 10) RCDT rate-of-change (B9/A3) gpm **RCP SEALS:** с. RCP-1B RCP-1C RCP-1D RCP-1A X922 X923 X924 X925 1) CONTROLLED BLEED OFF a) controlled bleed off b) total of all pumps RC-134-FZ RC-135-FZ RC-136-FZ RC-137-FZ 2) DUMPSTER FLOWS a) dumpster reading at stop time b) dumpster reading at start time c) dumpster difference (C2a minus C2b)

- d) dumpster conversion (gals/click)
- e) dumpster flow-rate (C2c x C2d/A3) gpm
- f) standpipe flush water flow-rate gpm
- g) RCP seal leakage C2e minus C2f) gpm
- h) total RCP seal leakage gpm (SUM of C2g values for all 4 RCPs)

0.25

0.25


0.25

0.25

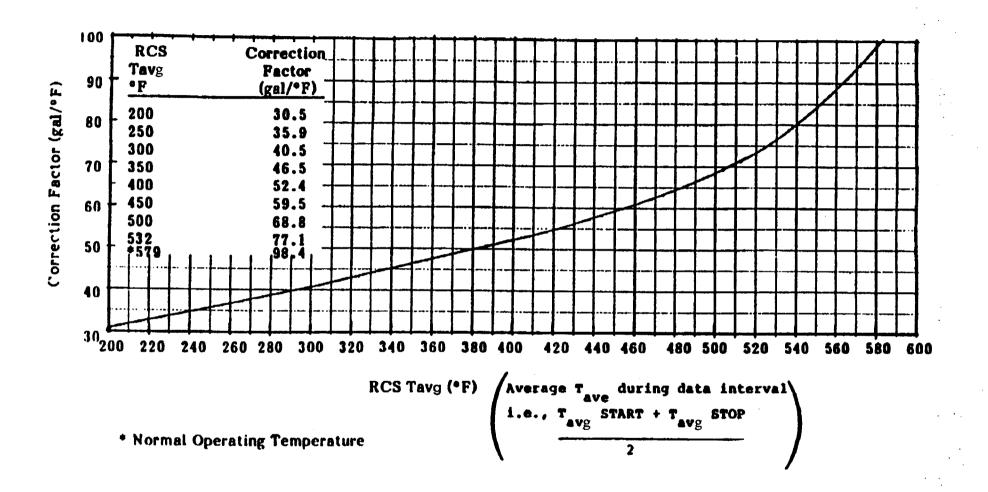
ENCLOSURE 1 (Page 2 of 3)

D. <u>RCS INVENTORY CHANGES</u>: (NOTE: If no change is observed, N/A respective correction factor.)

1) PRESSURIZER

Ε. COMPONENT IDENTIFIED LEAKAGE:

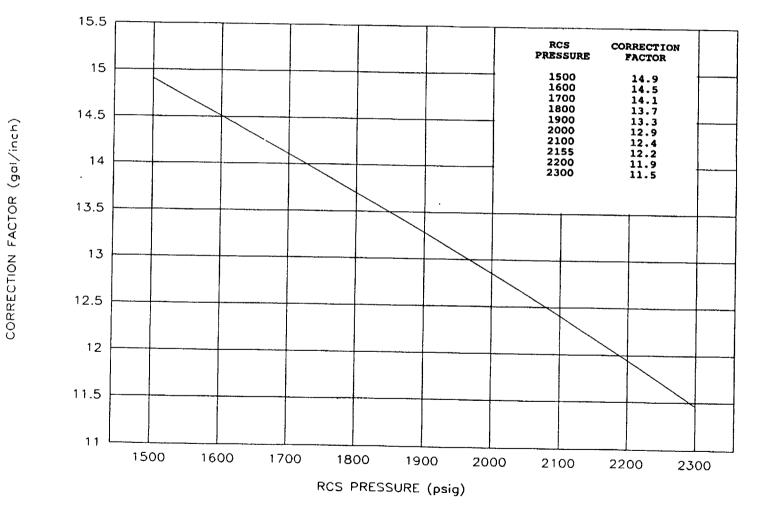
•


. •

Multiply leakage drops per minute by 0.00001 (10 $^{\circ}$) to obtain leakage in gpm. NOTE:

| | | Component | Leakage Rate | |
|--------------------------------|------------|--|----------------------------|------------|
| | | | | gpm |
| | | | | <u>gpm</u> |
| | | | | <u>apm</u> |
| | | | | <u>apm</u> |
| • | | · | | <u>jpm</u> |
| | | | | <u>30m</u> |
| | | <u> </u> | | <u>1pm</u> |
| | | | | <u>10m</u> |
| | Tot | al component leakage rate | | gpm |
| F. | <u>RCP</u> | SEAL LEAKAGE COLLECTION POINT: [NOCS | 5 040486] | |
| | 1) | RB Sump (RCV-150 Closed) (otherwise
(RCDT rate of change plus Total RCF
(B10 plus C2h) | e N/A)
P seal leakage) | gpm |
| | 2) | RC Drain Tank (RCV-150 Open) (other
(RCDT rate of change minus Total of
water flow-rates) (B10 minus C2f)
(C2f = RCP-1A + RCP-1B + RCP-1C + F | F RCP standpipe flus | hgpm |
| G. | <u>RCS</u> | LEAKAGES [NOCS 000597] | | |
| | 1) | Primary-to-Secondary Leakage (from
(<0.1 gpm rounded to nearest | Chem. Dept.)
hundredth) | gpm |
| | 2) | Identified Leakage (E plus F plus (
(<10 gpm rounded to nearest | 1)
tenth) | gpm |
| | 3) | Unidentified Leakage (D6 minus G2)
(<1.0 gpm rounded to nearest | tenth) | gpm |
| | 4) | Controlled Bleed Off (C1b)
(<10 gpm rounded to nearest | tenth) | gpm |
| | | | | |
| Performed By (Start) Da | | | Date | |
| Performed By (Stop) Dat | | | Date | |
| Independently Reviewed By Time | | | Time | Date |

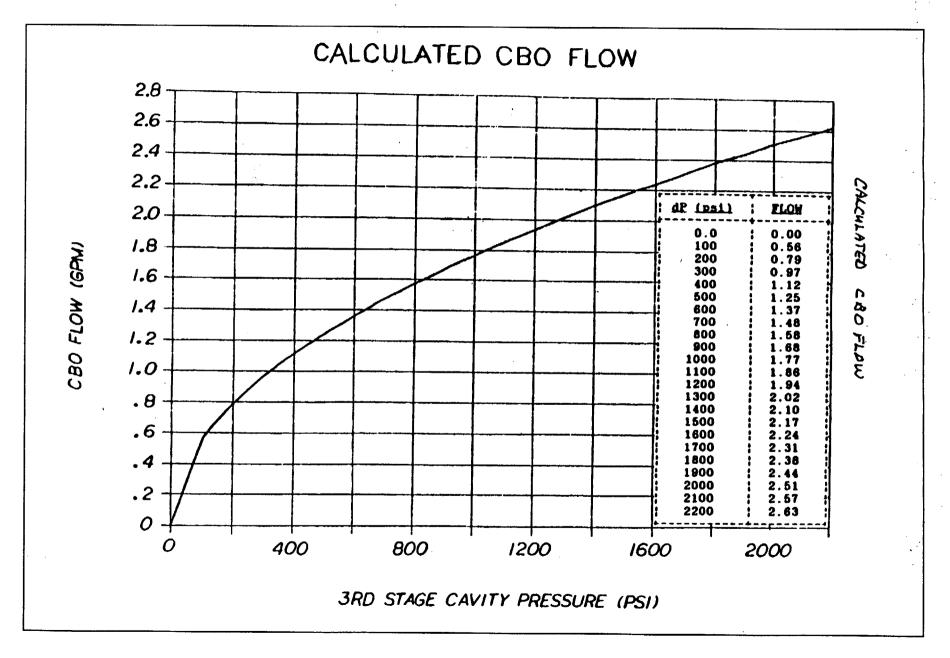
.


RCS Tavg CORRECTION FACTOR

ENCLOSURE 2

RCS PRESSURE VS. PRESSURIZER LEVEL CORRECTION_FACTOR

PRESSURIZER LEVEL CORRECTION



.

ENCLOSURE 3

۰.,

ENCLOSURE 4

SP-317

REGION II INITIAL LICENSE EXAMINATION JOB PERFORMANCE MEASURE

JPM A3, Using Survey Maps Determine Radiation Requirements and Stay Times

| CANDIDATE | | |
|---------------|-------------------------------|-------|
| | | |
| | | |
| EXAMINER | | |
| | | |
| | | |
| PREPARED/ | | Detal |
| REVISED BY: | | Date/ |
| | | |
| REVIEWED BY: | | Date/ |
| | (Operations Representative) | |
| VALIDATED BY: | | Date/ |
| VALIDATED DT | (Operations Representative) | |
| | · - | Date/ |
| APPROVED BY: | (Supervisor Initial Training) | Date/ |
| | (Supervisor initial framing) | |

CRYSTAL RIVER UNIT 3 ADMINISTRATIVE JOB PERFORMANCE MEASURE

C

Task: Using survey maps determine radiation requirements and stay times.

Alternate Path: N/A

JPM #: A3 (modified bank #235)

K/A Rating/Importance: G2.3.1/2.6/3.0 Task Number/Position: 1190103003/PPO

Task Standard: Using survey maps determine radiation requirements and stay times.

| Preferred Evaluation Location: | Preferred Evaluation Method: | | | |
|----------------------------------|------------------------------|--|--|--|
| Simulator In-Plant AdminX | Perform XSimulate | | | |
| References:
1. HPP-300, Rev 7 | | | | |
| Validation Time: 15 min. | Time Critical: No | | | |
| Candidate: Printed Name | Time Start:
Time Finish: | | | |
| Performance Rating: SAT UNSAT | Performance Time: | | | |
| Examiner: Printed Name | / | | | |
| Comment: | | | | |
| | | | | |
| | | | | |
| | | | | |

SIMULATOR OPERATOR SETUP INSTRUCTIONS:

1. N/A

SIMULATOR OPERATOR INSTRUCTIONS:

1. N/A

Tools/Equipment/Procedures Needed:

- 1. Survey Map
- 2. Calculator

READ TO THE OPERATOR

Directions to the Student:

I will explain the initial conditions, and state the task to be performed. All steps, including any required communications, shall be performed for this JPM. I will provide initiating cues and reports on other actions when directed by you. Ensure you indicate to me when you understand your assigned task. To indicate that you have completed your assigned task, return the handout sheet to the examiner.

Initial Conditions:

You are the REACTOR OPERATOR. The plant is at full power.

Initiating Cues:

Using the supplied survey map determine the maximum stay time (including transit time) without exceeding the annual administrative limit or the Health Physics Dose goal for each of the following workers:

Worker 1 has an accumulated annual dose of 3820 mR – WB; his accumulated weekly dose is

Worker 2 has an accumulated annual dose of 3980 mR – WB; his accumulated weekly dose is 40 mR.

These 2 workers will be repairing a drain value on the WDP-1A's ("A" Waste Gas Compressor) seal water tank. The transit time to the job is 1 minute. Area dose rates for transit are 2 mR/hr.

No extensions have been granted.

START TIME: _____

| STEP 1: | Critical Step |
|--|---------------|
| EXAMINER NOTE: Provide candidate with survey of the Waste Gas | SAT |
| Compressor Area. Calculators will also be provided if the candidate does not have one. | UNSAT |
| Candidate uses survey map to determine stay times. | |
| STANDARD: Candidate determines the stay time for worker 1 is 6 hours; for worker 2 the stay time is 4 hours. | |
| <u>COMMENTS:</u> | |
| END OF TASK | |

< </

TIME STOP _____

-

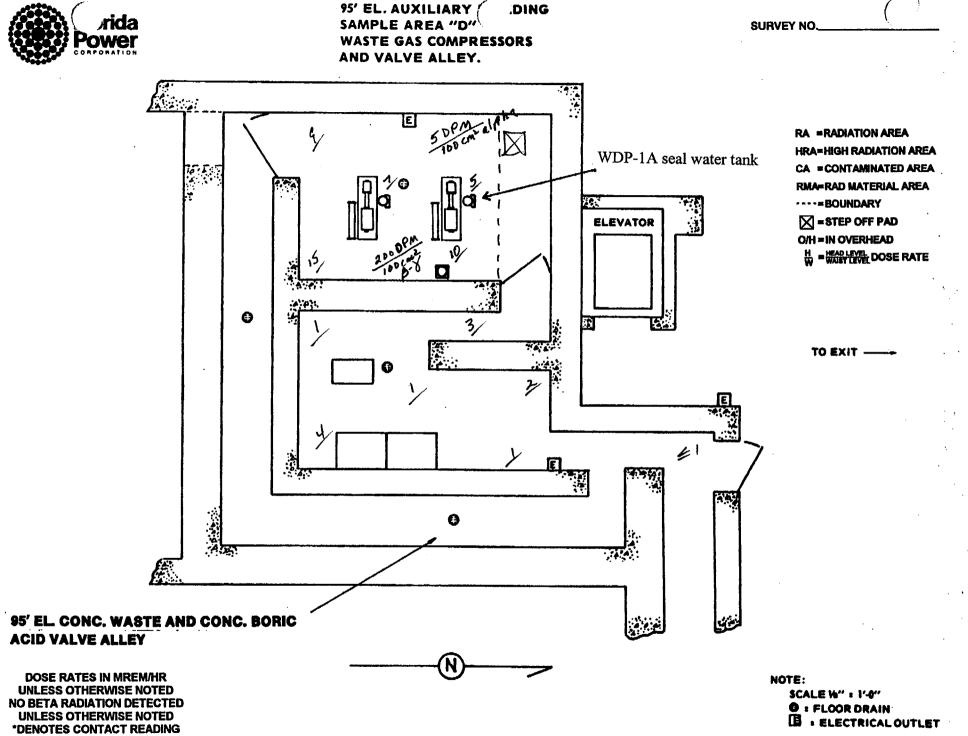
CANDIDATE CUE SHEET

(TO BE RETURNED TO EXAMINER UPON COMPLETION OF TASK)

Initial Conditions:

You are the REACTOR OPERATOR. The plant is at full power.

Initiating Cues:


Using the supplied survey map determine the maximum stay time (including transit time) without exceeding the annual administrative limit or the Health Physics Dose goal for each of the following workers:

Worker 1 has an accumulated annual dose of 3820 mR – WB; his accumulated weekly dose is 170 mR.

Worker 2 has an accumulated annual dose of 3980 mR – WB; his accumulated weekly dose is 40 mR.

These 2 workers will be repairing a drain valve on the WDP-1A's ("A" Waste Gas Compressor) seal water tank. The transit time to the job is 1 minute. Area dose rates for transit are 2 mR/hr.

No extensions have been granted.

(MC) Rev. 7

Effective Date ____02/10/97___

HEALTH PHYSICS PROCEDURE

HPP-300

FLORIDA POWER CORPORATION

CRYSTAL RIVER UNIT 3

FEDERAL DOSE EQUIVALENT LIMITS, ADMINISTRATIVE DOSE EQUIVALENT LEVELS AND HEALTH PHYSICS DOSE GOALS

APPROVED BY: Interpretation Contact

(SIGNATURE ON FILE)

DATE:

INTERPRETATION CONTACT: Manager Radiation Protection

TABLE OF CONTENTS

| SECTION |
|---|
| <u>1.0 PURPOSE</u> |
| 2.0 REFERENCES 1 2.1 IMPLEMENTING REFERENCES 1 2.2 DEVELOPMENTAL REFERENCES 1 |
| 3.0 PERSONNEL INDOCTRINATION |
| 3.1 DESCRIPTION |
| 3.2 DEFINITIONS |
| 3.3 RESPONSIBILITIES |
| 3.4 LIMITS AND PRECAUTIONS |
| 3.4.1 Annual External Dose Equivalents for Adult - "complete" |
| <u>NRC Form 5</u> |
| 3.4.2 Annual External Dose Equivalents for Adult - |
| "incomplete" NRC Form 54 |
| 3.4.3 Annual Internal Dose Equivalents for Adult - "complete" |
| NRC Form 5 |
| 3.4.4 Annual Internal Dose Equivalents for Adult - |
| "incomplete" NRC Form 55 |
| 3.4.5 Health Physics Dose Goals for Adult5 |
| 3.4.6 Dose Equivalent Limits/Levels for Pregnant Women |
| 3.4.7 Dose Equivalent Limits/Levels for Escorted Radiation |
| <u>Workers</u> |
| 3.4.8 Dose Equivalent Limits/Levels for Minors |
| 3.4.9 Emergency Worker Dose Limits7 |
| 3.4.10 Planned Special Exposure Dose Equivalents |
| 3.5 <u>PREREQUISITES</u> |
| 4.0 INSTRUCTIONS |
| |
| 5.0 FOLLOW-UP ACTIONS |
| 5.1 DOCUMENTATION |
| 5.2 ADMINISTRATIVE OVEREXPOSURE |
| 5.3 EXCEEDING HP DOSE GOALS 9 |
| 5.4 FEDERAL OVEREXPOSURE |

<u>1.0</u>

PURPOSE The purpose of this procedure is to state the Federal/Administrative Dose Equivalent Limits and Health Physics Dose Goals at CR-3. REFERENCES 2.0 IMPLEMENTING REFERENCES 2.1 HPP-217, "Planned Special Exposures" 2.1.1 HPP-218, "Reportable Events" 2.1.2 CR-3 Radiological Protection Standard 2.1.3 DEVELOPMENTAL REFERENCES 2.2 2.2.1 §10CFR19 §10CFR20.1201 2.2.2 §10CFR20.1206 2.2.3 §10CFR20.1207 2.2.4 2.2.5 §10CFR20.1208 §10CFR20.1301 2.2.6 EM-209, "Re-entry Procedure" 2.2.7 "Radiological Emergency Response Plan" 2.2.8 EPA-400 "EPA Protection Action Guides" 2.2.9 ANI/MAELU "Engineering Inspection Criteria for Nuclear Liability 2.2.10 Insurance", section 8.4, "External Dosimetry" PERSONNEL INDOCTRINATION 3.0

- DESCRIPTION 3.1
- Administrative dose equivalent levels are necessary to ensure no 3.1.1 regulatory dose equivalent limits are exceeded. The regulatory limits for absorbed doses are specified in 10 CFR 20.

3.2 **DEFINITIONS**

- 3.2.1 <u>ALARA ("As Low As Reasonably Achievable")</u> making every reasonable effort to maintain exposures to radiation as far below the dose equivalent limits specified in §§ 10 CFR 20 as is practical, consistent with the state of technology and economic considerations.
- 3.2.2 <u>Bioassay</u> the determination of kinds, quantities or concentrations and in some cases the location of radioactive material in the human body.
- 3.2.3 <u>CEDE (Committed Effective Dose Equivalent)</u> the sum of the products of the weighting factors applicable to each of the body organs or tissues that are irradiated and the committed dose equivalent to these organs or tissue.
- 3.2.4 <u>CDE (Committed Dose Equivalent)</u> the dose equivalent to organs or tissues that will be received from an intake of radioactive material during the 50 year period following the intake.
- 3.2.5 <u>Declared Pregnant Woman</u> a woman who has voluntarily informed her employer (Health Services), in writing, of her pregnancy and estimated date of conception.
- 3.2.6 <u>DDE (Deep-Dose Equivalent)</u> external whole-body exposure in which the dose equivalent is taken at a tissue depth of 1 cm (1000 mg/cm²).
- 3.2.7 DNPO Director, Nuclear Plant Operations
- 3.2.8 <u>Dose Equivalent (DE) or "Dose"</u> the product of the absorbed dose in tissue, quality factor and all other necessary modifying factors at the location of interest. Any dose equivalent is expressed in Rems.
- 3.2.9 <u>Embryo/fetus</u> the developing human organism from conception to birth.
- 3.2.10 <u>LDE (Eye Dose Equivalent)</u> external exposure of the lens of the eye in which the dose equivalent is taken at a tissue depth of 0.3 cm (300 mg/cm²).
- 3.2.11 <u>Monitor (monitoring)</u> For the purpose of this procedure, monitoring means the measurement of radiation levels, concentrations, surface area concentrations or quantities of radioactive material and the use of the results of these measurements to evaluate potential exposures and doses.
- 3.2.12 <u>Planned Special Exposure (PSE)</u> an infrequent exposure to radiation, separate from and in addition to the annual dose limits.
- 3.2.13 <u>Rad</u> a special unit of absorbed dose. One (1) Rad is equal to an absorbed dose of 100 ergs/gram.

- 3.2.14 <u>Radiation (ionizing radiation)</u> alpha particles, beta particles, gamma-rays, X-rays, neutrons, high-speed electrons and other particles capable of producing ions.
- 3.2.15 <u>RDMS (computer system)</u> Radiological Data Management System
- 3.2.16 <u>Rem</u> the special unit of any of the quantities expressed as a dose equivalent. The dose equivalent in Rems is equal to the absorbed dose in Rads multiplied by the quality factor.
- 3.2.17 MRP Manager Radiation Protection
- 3.2.18 <u>RWP Dose Margin</u> a weekly dose allowance assigned by Health Physics, set by means of a Radiation Work Permit via RDMS.
- 3.2.19 <u>SDE (Shallow Dose Equivalent)</u> external exposure of the skin or extremity in which the dose equivalent is taken at a tissue depth of 0.007 centimeter (7 mg/cm²) averaged over an area of 1 square centimeter:
 - o <u>SDE-WB</u> shallow dose equivalent, whole body
 - o SDE-ME shallow dose equivalent, maximally exposed extremity
- 3.2.20 <u>TEDE (Total Effective Dose Equivalent)</u> the sum of the effective deep-dose equivalent (for external exposures) and the committed effective dose equivalent (for internal exposures).
- 3.2.21 <u>TODE (Total Organ Dose Equivalent)</u> is the sum of the deep-dose equivalent and the committed dose equivalent for the maximally exposed organ or tissue.
- 3.2.22 <u>UNMONITORED INDIVIDUALS</u> An Individual that will be allowed RCA access without monitoring as required by 10 CFR 20.1502 and who will not receive dose in excess of the limits stated in section 3.4.8.3 of this procedure.
- 3.2.23 <u>Week</u> 7 consecutive days starting on Sunday.
- 3.2.24 <u>Whole Body</u> For the purposes of external exposure, head, trunk (including male gonads), arms above the elbow, or legs above the knee.

3.3 <u>RESPONSIBILITIES</u>

3.3.1 All personnel are responsible for maintaining their cumulative radiation dose equivalents ALARA; thus ensuring no radiation exposure limits/levels are exceeded.

Page 3

3.4

LIMITS AND PRECAUTIONS

Annual External Dose Equivalents for Adult - "complete" NRC Form 5 3.4.1 ADMINISTRATIVE LIMIT FEDERAL LIMIT 4.0 Rem (or 1 REM if 5.0 Rem TEDE 0 lifetime dose \geq age), Rem 12 Rem 15 LDE ο 40 Rem 50 Rem SDE-WB 0 40 Rem Rem 50 SDE-ME 0 The 4 Rem TEDE administrative limit may be increased to 5 Rem with 3.4.1.1 authorization from the DNPO. Annual External Dose Equivalents for Adult - "incomplete" NRC Form 5 3.4.2 Reduce values listed in 3.4.1 by 25% for each unknown quarter of ο the current year. Annual Internal Dose Equivalents for Adult - "complete" NRC Form 5 3.4.3 NOTE: CR-3 does not monitor internal dose due to no workers likely to receive, in 1 year, an intake in excess of 10 percent of the applicable ALIs listed in 10CFR20, appendix B, table 1. NOTE: CR-3's levels are set at 80% of the Federal limits. The following is a list of the internal dose levels that require 3.4.3.1 monitoring for internal dose: ADMINISTRATIVE FEDERAL 0.4 Rem 0.5 Rem o CEDE 4.0 Rem 5.0 Rem CDE ο .08 ALI 0.1 ALI ALI 0 160 DAC-Hrs 200 DAC-Hrs o DAC-Hrs

3.4.3.2

The following is a list of the internal dose limits:

| | | FEDERAL | ADMINISTRATIVE | | |
|---|---------|------------------|------------------|--|--|
| 0 | CEDE | (5 Rem) - (DDE) | (4 Rem) - (DDE) | | |
| 0 | CDE | (50 Rem) - (DDE) | (40 Rem) - (DDE) | | |
| 0 | ALI , | 1 ALI | .8 ALI | | |
| 0 | DAC-Hrs | 2000 DAC-Hrs | 1600 DAC-Hrs | | |

3.4.4 <u>Annual Internal Dose Equivalents for Adult - "incomplete" NRC Form 5</u>

o Reduce values listed in 3.4.3 by 25% for each unknown quarter of the current year.

3.4.5 <u>Health Physics Dose Goals for Adult</u>

NOTE: All Health Physics dose goals are automatically initiated by RDMS.

o 0.2 Rem/week; or

o 0.2 to 2.5 Rem/week based upon RWP Margin setpoints;

3.4.6 Dose Equivalent Limits/Levels for Pregnant Women

3.4.6.1 Pregnant workers will be provided the opportunity, without harassment, to voluntarily elect to utilize additional protection to their embryo/fetus as outlined in CR-3's Prenatal Radiation Exposure Policy (Radiological Protection Standard, section 8.0). NOTE: The outlined limits apply to the gestation period of the embryo/fetus.

- 3.4.6.2 <u>Federal</u> Dose Equivalent Limits for the embryo/fetus of a "declared" Pregnant Woman:
 - o 0.5 Rem TEDE to the embryo/fetus; and
 - o proportioned equally over the entire period of pregnancy without substantial variation above a uniform monthly exposure rate.
 - NOTE: Declared pregnant women will <u>not</u> be routinely assigned work in "airborne radioactivity areas" during pregnancy or after delivery, if the mother is nursing her child.
 - NOTE: These Health Physics dose goals are not initiated automatically by RDMS.
 - NOTE: Adult females that have <u>not</u> declared their pregnancy (as outlined in Radiological Protection Standard, 8.1.2) shall have the same dose limits as other radiation workers.
- 3.4.6.3 Adult female workers that formally declare their pregnancy will have their occupational dose limited by one of the following Administrative Options:
 - o Option 1 Reassignment with no further occupational exposure or
 - o <u>Option 2</u> 0.4 Rem TEDE, not to exceed 0.040 Rem/month, to the embryo/fetus over the entire gestation period.
 - 3.4.7 Dose Equivalent Limits/Levels for Escorted Radiation Workers
 - 3.4.7.1 The dose equivalent limits/levels for "monitored" Escorted Radiation Workers are the same as those for other radiation workers.
 - 3.4.7.2 The Annual Dose Equivalent Limit for Unmonitored Individuals is 10% of the applicable dose limits listed for radiation workers under 3.4.1.
- 3.4.7.3 The Health Physics <u>Dose Goal</u> for Unmonitored Individuals is 0.100 Rem/yr.

3.4.8 Dose Equivalent Limits/Levels for Minors

- 3.4.8.1 All minors must be issued a permanently assigned TLD prior to any entry into an RCA. Minors frequenting the restricted area (but not the RCA) will be evaluated for external dose monitoring in accordance with guidance given in the Radiation Protection Standard.
- 3.4.8.2 The Annual Dose Equivalent Limit for Minors is 10% of the applicable dose limits for a radiation worker listed under 3.4.1.
- 3.4.8.3 The Health Physics Dose Goals for Minors is 0.100 Rem/yr.
- 3.4.9 <u>Emergency Worker Dose Limits</u>
 - NOTE: Dose limits are for non-pregnant adults only.
 - NOTE: Emergency worker TEDE limits are implemented by the "Radiological Emergency Response Plan," section 14 and Emergency Procedures (EM-209).
 - NOTE: Every emergency team member must have a complete NRC Form 4 on file.
- 3.4.9.1 Dose limits for general emergency activities are:
 - o 5 Rem TEDE;
 - o 15 Rem LDE;
 - o 50 Rem TODE, SDE-WB, SDE-ME.
 - 3.4.9.2 Dose limits for protecting valuable property are:
 - o 10 Rem TEDE;
 - o 30 Rem LDE;
 - o 100 Rem TODE, SDE-WB, SDE-ME.

Exposures at this level should be on a volunteer basis with approval from the Emergency Coordinator.

3.4.9.3 Dose limits for life saving or protection of large populations are:

- o 25 Rem TEDE;
- o 75 Rem LDE;
- o 250 Rem TODE, SDE-WB, SDE-ME.

Exposures at this level should be on a volunteer basis with approval from the Emergency Coordinator.

3.4.9.4 The dose limits for <u>life saving or protection of large populations</u> for persons fully aware of the risk involved are:

 $o \geq 25 \text{ Rem TEDE};$

 $o \geq 75 \text{ Rem LDE};$

 $o \geq 250 \text{ Rem TODE}, \text{SDE-WB}, \text{SDE-ME}.$

Exposures at this level should be on a volunteer basis with approval from the Emergency Coordinator. Volunteers should be healthy, above the age of 45, and preferably be those whose normal duties have trained them for such missions.

- 3.4.9.5 All exposure received, during an emergency, in excess of the annual limits listed under 3.4.1 must be applied to the individuals allotted dose for Planned Special Exposures.
- 3.4.10 Planned Special Exposure Dose Equivalents

NOTE: Specific instructions for Planned Special Exposures are outlined in HPP-217.

- 3.4.10.1 The maximum dose an individual receiving PSEs can receive in <u>1 year</u> is the most limiting of:
 - o 10 Rem, TEDE (5 rem of routine and 5 rem of PSE); or 100 Rem, TODE (50 rem of routine and 50 rem of PSE);
 - o 30 Rem, LDE (15 rem of routine and 15 rem of PSE);
 - o 100 Rem, SDE-WB (50 rem of routine and 50 rem of PSE);
 - o 100 Rem, SDE-ME (50 rem of routine and 50 rem of PSE).

3.4.10.2 The maximum dose an individual can receive in <u>lifetime</u> from PSEs is the most limiting of:

- o 25 Rem, TEDE; or 250 Rem, TODE;
- o 75 Rem, LDE;
- o 250 Rem, SDE-WB;
- o 250 Rem, SDE-ME.

3.5 <u>PREREQUISITES</u>

None

4.0 INSTRUCTIONS

None

- 5.0 FOLLOW-UP ACTIONS
- 5.1 DOCUMENTATION

None

5.2 ADMINISTRATIVE OVEREXPOSURE

- 5.2.1 <u>IF</u> an administrative dose equivalent level is exceeded, <u>THEN notify a Health Physics Supervisor and the Manager Radiation</u> Protection immediately.
- 5.3 EXCEEDING HP DOSE GOALS
- 5.3.1 If an HP Dose Goal is exceeded, notify the HPS.
- 5.4 FEDERAL OVEREXPOSURE
- 5.4.1 Refer to HPP-218, "Reportable Events" for instructions.

REGION II INITIAL LICENSE EXAMINATION JOB PERFORMANCE MEASURE

JPM A4S, Determine Emergency Action Level and Complete the State of Florida Notification Message Form for Nuclear Plants

| CANDIDATE | | |
|--------------------------|-------------------------------|-------|
| EXAMINER | | |
| PREPARED/
REVISED BY: | | Date/ |
| REVIEWED BY: | (Operations Representative) | Date/ |
| VALIDATED BY: | (Operations Representative) | Date/ |
| APPROVED BY: | (Supervisor Initial Training) | Date/ |

CRYSTAL RIVER UNIT 3 ADMINISTRATIVE JOB PERFORMANCE MEASURE

| Task: | Determine emergency action level and complete the State of Florida Notification |
|-------|---|
| | Message Form for Nuclear Power Plants. |

Alternate Path: N/A

JPM #: A4S (new)

K/A Rating/Importance: G2.4.41/2.3/4.1 Task Number/Position: 1150101002/SRO

Task Standard: Determine emergency action level and complete the State of Florida Notification Message Form for Nuclear Power Plants using EM-202.

| Preferred Evaluation Location: | Preferred Evaluation Method: |
|-----------------------------------|------------------------------|
| Simulator In-Plant Admin | X PerformX Simulate |
| References:
1. EM-202, Rev. 63 | |
| Validation Time: 15 min. | Time Critical: Yes |
| Candidate: Printed Name | Time Start:
Time Finish: |
| Performance Rating: SAT UNSA | AT Performance Time: |
| Examiner: Printed Name | / |
| Comment: | |
| | |
| | |
| | |

SIMULATOR OPERATOR SETUP INSTRUCTIONS:

1. N/A

SIMULATOR OPERATOR INSTRUCTIONS:

1. N/A

Tools/Equipment/Procedures Needed:

1. EM-202

READ TO THE OPERATOR

Directions to the Student:

I will explain the initial conditions, and state the task to be performed. All steps, including any required communications, shall be performed for this JPM. I will provide initiating cues and reports on other actions when directed by you. Ensure you indicate to me when you understand your assigned task. To indicate that you have completed your assigned task, return the handout sheet to the examiner.

Initial Conditions:

You are the NUCLEAR SHIFT MANAGER.

Initiating Cues:

Determine the emergency action level and complete the State of Florida Notification Message Form for Nuclear Power Plants.

START TIME: _____

| STEP 1: | Critical Step |
|--|---------------|
| EXAMINER NOTE: This classification is to be made following one of the simulator scenarios.
Candidate determines classification and completes Enclosure 2 of EM-202. | SAT
UNSAT |
| STANDARD: Candidate determines the classification is an Alert. Candidate completes Enclosure 2, see key. | |
| <u>COMMENTS:</u> | |
| END OF TASK | |

5

TIME STOP _____

CANDIDATE CUE SHEET

(TO BE RETURNED TO EXAMINER UPON COMPLETION OF TASK)

Initial Conditions:

You are the NUCLEAR SHIFT MANAGER.

Initiating Cues:

Determine the emergency action level and complete the State of Florida Notification Message Form for Nuclear Power Plants.

| FLORIDA NUCLEAR PLANT EMERGENCY NOTIFICATION FORM |
|---|
| 1. THIS IS CRYSTAL RIVER UNIT 3. A. 🖬 THIS IS A DRILL B. 🗆 THIS IS AN ACTUAL EVENT. I HAVE A MESSAGE.
ENSURE: 🖬 STATE 📓 CITRUS 📓 LEVY 📓 RAD. CONTROL-ORLANDO (M-FONLY) ARE ON LINE.
2. A. Time/Date contact made B. Reported by: (Name/Title) |
| C. Message Number D. Reported from: 🖾 Control Room 🔲 TSC 🔲 EOF |
| 3. SITE A. CRYSTAL RIVER UNIT 3 B. ST LUCIE UNIT 1 D. TURKEY POINT UNIT 3 |
| |
| 4. ACCIDENT CLASSIFICATION A. ONOTIFICATION OF UNUSUAL EVENT C. SITE AREA EMERGENCY |
| B. ALERT D. GENERAL EMERGENCY |
| |
| 5. CURRENT EMERGENCY DECLARATION: TIME: TIME DATE DATE |
| 6. REASON FOR EMERGENCY DECLARATION: SCENARIO : RCS LEAK RESULTING IN LOSS OF ASCAN |
| SCENARIO #2; OTSG LEAK REQUIRING ONE OR MORE INJECTION VALVES OR CAUSING ES ACTUATION ON LOW |
| A BEN ADD TOLD COMPANY OVEREDED AND WE REPUTE TRIP OCCURRED AND MANUPL REPORTER |
| TRIP FROM CONTROL ROOM WAS SUCCESSFUL AND REACTOR IS SAUTDOWN,
T. ADDITIONAL INFORMATION OR UPDATE: |
| (BROKEN EQUIPMENT) |
| |
| 8. INJURIES REQUIRING OFFSITE SUPPORT: A. DNO Yes DUnk B. Contaminated: DNO Yes DUnk CURRENT MET DATA 9. WEATHER DATA: A. Wind direction fromdegrees.
B. Downwind Sectors affected (minimum of 3): TO MATCH MET DATA 0. RELEASE STATUS: A. X No Release (Go to Item 12) C. A Release occurred, but stopped
B. A Release is occurring 11. OFFSITE RELEASE SIGNIFICANCE CATEGORY (at the Site Boundary)
A. Information not available at this time. B. Release within normal operating limits (Tech Specs/ODCM)
C. Non-Significant Fraction of PAG Range (release is > normal limits and <pag levels)<="" li=""> </pag> |
| D. D PAG Range (Protective Actions required) |
| |
| 12. UTILITY RECOMMENDED PROTECTIVE ACTIONS |
| A. X NONE B. C SHELTER ZONES/AREAS: |
| EVACUATE ZONES/AREAS: |
| OR C. LT MILES NO ACTION EVACUATE SECTORS SHELTER SECTORS |
| 2-5 |
| 5-10 |
| 13. <u>HAS EVENT BEEN TERMINATED?:</u> A. 🖾 NO B. 🗆 YES: Time Date |
| 14. <u>SUPPLEMENTAL FORM IS ATTACHED?</u> : A. 🛛 NO B. 🗌 YES:
'5. <u>MESSAGE RECEIVED BY</u> : Name Time Date
THIS IS CRYSTAL RIVER UNIT 3. 🖬 THIS IS A DRILL 🗆 THIS IS AN ACTUAL EMERGENCY. END OF MESSAGE.
EC/EOF DIRECTOR INITIALS: <u>2~171 ACS</u> |

.

| | the state of the second se | | an a | 2. | salahizmentil simulatio | Sec. 16 | ENOLUSURE 2 |
|-------------------------|--|--------------|--|------------|---------------------------------------|-------------------------------|---|
| (Page 2 of 5) | | | | | | | |
| | SUP
oplemental data is to be comp | PLEMENTA | L DATA SHEE | il
Fai | n Alert or higher en | 1 er i | gency declaration) |
| The following sur | plemental data is to be comp
Supplement | t to Message | Number | | | | |
| | PLANT (| CONDITIO | NS INFORM | AT. | ION | | - |
| CRITICAL SAFETY | FUNCTIONS: | | | • | • | | |
| | | | | N | 0 | | |
| . REACTOR SHU | | | | | | | |
| B. CORE ADEQUA | | | | | | | |
| | ERGENCY POWER AVAILABLE | | | | | | |
| FISSION PRODUCT | <u> </u> | ne condition | for each barrie |)/) | | | |
| BARRIER | INTACT | И СНИ | LLENGED | 3 | LOST | 1 | |
| FUEL | No indication of clad
damage | | ntact but losing
ing, water level, | | Clad has failed,
indicated by high | | Cooling restored, no further degradation |
| CLADDING | C Strieße | | etc. | | temps., high
containment rad, | | expected. |
| | | | | | etc | L | Leakage reduced to |
| PRI. REACTOR | Leakage is within normal
charging or makeup pump | | is within safety
tion capacity | | Leakage exceeds safety injection | | within injection |
| COOLANT | capacity | | | | capacity | capacity (system
repaired) | |
| CONTAINMENT | No evidence of containment | No | eakage but | | Evidence of | | Repair Efforts have isolated leak or |
| CONTRACTO | leakage or tube rupture
release is only through | ator | nent pressure is
above safety | | containment
leakage (known | | reduced |
| | condenser | system | actuation points | | release path or rad
surveys) | | containment pressure has |
| | | | | | | | reduced to stop
leakage |
| | | | | | | | |
| | | TIME: | DA | TE | | - | |
| COMPLETED BY:_ | • | | | | | _ | |
| | RADIOLOG | GICAL DOS | E ASSESSMEN | IT. | DATA | | |
| | US: A. INO Release (no f | | | | A Release occurr | ed, | but stopped |
| . RELEASE STAT | B. A Release is occ | | • • | | | | |
| · | | | | | | | |
| 2. <u>RELEASE RATE</u> | <u>.</u> | | Manager I | | efouit | | |
| _ | ASES:Curies per s | | Measured C | | | | |
| B. C IODINES: | Curies per s | second L | Measured L | | GIAUL | | |
| 3. <u>TYPE OF RELEA</u> | <u>ISE:</u> | | | | | | |
| | Time/Date started: | | B. LI LIQ | UIC |) Time/Date Starte | | |
| · | Time /Date Stopped: | | - • . | | Time/Date Stopp | ed: | |
| 4. PROJECTED OF | FSITE DOSE RATE: | | | | | | |
| DISTANCE | THYROID DOSE RATE | (CDE) | TC | DTA | L DOSE RATE (TE | DE | 1 |
| 1 Mile (Site bound | ary) A | mrem/hr | В | | mrem/hr | | · |
| 2 Miles | | mrem/hr | D | | mrem/hr | | |
| | | mrem/hr | Ē. | | mrem/hr- | | |
| 5 Miles | G | • | | | mrem/hr | | |
| 10 Miles | | _000 600000 | | | | | |
| | A (used for the above data): | | | | | | |
| | from degrees. | | | | | | |
| • | MPH (2.24 X meters/so | | | | | | |
| | (Sigma Theta or Wind | | | _ | | | |
| COMPLETED BY: | · | TI | ME: | D | ATE: | | |

STATE OF FLORIDA NOTIFICATION PROTOCOL [NOCS 96024]

WITHIN 15 MINUTES of declaration of emergency classification, NOTIFY STATE WARNING POINT TALLAHASSEE. (This also notifies Citrus and Levy counties and the Department of Health, Bureau of Radiation Control (DHBRC)-Orlando. If information is not available, do not delay notification to State Warning Point Tallahassee.

Using one of the following communications networks listed by priority:

- STATE Hot Ringdown (SHRD) Station 120 or 121
- Commercial Telephone System 1-850-413-9911 or 1-800-320-0519 or 1-850-413-9900
- Florida Emergency Satellite Communication System (ESATCOM)
- Local Government Radio (LGR) via Citrus County
- Portable Satellite Phone (Located in TSC cabinet)

If the Commercial Telephone is used for notification, a separate notification to Citrus (746-2555) and Levy County (1-352-486-5212 or 1-352-486-5111 after hours) is required.

INITIAL NOTIFICATION

Once communications are established with the SWPT Duty Officer and the station roll call is complete, READ the message in its entirety and REPEAT information and answer questions as requested. FAX the State Form by using Group 1 from the Fax machine.

SECTORS AFFECTED

| DEGREES
349-11 (349-371)
12-33 (372-393)
34-56 (394-416)
57-78 (417-438)
79-101 (439-461) | <u>SECTORS</u>
HJK
JKL
KLM
LMN
MNP | DECREES
102-123 (462-483)
124-146 (484-506)
147-168 (507-528)
169-191 (529-540)
192-213 | SECTORS
N P Q
P Q R
Q R A
R A B
A B C | DECREES
214-236
237-258
259-281
282-303
304-326
327-348 | SECTORS
BCD
CDE
DEF
EFG
FGH
GHJ |
|--|---|--|--|---|---|
|--|---|--|--|---|---|

STABILITY CLASS

| <u>SIGMA THETA (deg)</u>
≥ 22.5 | <u>WIND RANGE (deg)</u>
≥ 135 | <u>STABILITY CLASS</u>
A (most
dispersed plume) |
|---|-------------------------------------|---|
| <pre><22.5 to 17.5 <17.5 to 12.5 <12.5 to 7.5 < 7.5 to 3.8 <3.8 to 2.1</pre> | 134 to 105
104 to 75
74 to 45 | B
C
D
F |
| | 44 to 23
< 23 to 12 | Ē |
| <2.1 | <12 | 6 |

UPDATE NOTIFICATION

Update SWPT every sixty minutes after initial notification and upgrades of emergency classification.

The use of the FLORIDA NUCLEAR PLANT NOTIFICATION FORM is required for:

- Initial notification that an emergency condition exists (Item 4)

- Any change in emergency classification (Item 4)
- Any change in Protective Action Recommendations (Item 12)
- Termination of an emergency classification (Item 13)

Other updated information not meeting the above criteria does not require the use of the Form.

lphahe sixty minute update notification is still required with a statement there is no change from last update, unless the SWPT agrees to less frequent updates.

(Page 4 of 5)

3

GUIDANCE FOR COMPLETING THE FLORIDA NUCLEAR PLANT EMERGENCY NOTIFICATION FORM

- Select appropriate box based on a drill or actual event. Ensure offsite agencies are on-line. If not, separate notifications to Citrus and Levy County are required.
- 2. A. Enter the time contact is made with the State Warning Point or Risk County. This time must be within 15 minutes of the "Current Emergency Declaration" time or within 60 minutes of the previous notification if used for an update (Item 5).
 - B. Enter name and title of person making the notification.

- C. Enter message number (beginning with #1 and following through sequentially in all facilities).
- D. Enter location from which the notification is made.
- 3. Check Crystal River Unit 3.
- 4. Check the classification corresponding to current plant conditions. If, prior to the initial notification or since the previous notification, conditions were met (even briefly) for a higher classification, ensure that classification and condition is noted in Item 7, "Additional Information or Update."
- 5. Enter the emergency declaration time and date for the current accident classification.
- 6. Enter wording to indicate what Emergency Action Level or Fission Product Barrier status that was used to declare the event. This information should remain the same throughout update messages unless there is a classification change.
- 7. Enter additional significant events here, including if conditions briefly existed for a higher emergency classification but no longer exist, or conditions that would have independently warranted declaration of an equal or lower classification (e.g. a fire within the Protected Area during a SITE AREA or GENERAL EMERGENCY).
- 8. Item "A"; Check "YES" only if there are injuries that require off-site support (EMS, hospital). Check "Unk" if the extent of the injuries is unknown at this time or if it is not yet known if offsite treatment is necessary. Check "Unk" in item "B" if the nature of the injuries has prevented thorough monitoring onsite or if there is any doubt whether contamination is present.
- 9. Enter the wind direction in degrees in Item "A" and the three downwind sectors in Item "B." The downwind sectors confirm wind direction because of potential confusion with degrees "from" versus degrees "to."
- 10. Check Item "A" if there are no indications of a release, then go to Item 12. Check Item "B" if a release is occurring, even though it may be less than normal operating limits. Check Item "C" if a release has occurred but stopped. Specific dose information will be supplied on the supplemental data sheet after the TSC is declared operational at an ALERT or higher. RELEASE: any increase in count rate on an effluent monitor that is a direct result of an event that has initiated an emergency declaration, or radioactivity escaping unmonitored from the plant, but detected by environmental monitoring.
- 11. Check Item "A" if Release Significance Category (See page 5 of 5) information is not available at the time of notification and follow up as soon as possible with information. Check Item "B" if the current release is or the previous release was within normal operating limits (ITS/ODCM). Releases monitored by RM-A1 or RM-A2 are within normal operating limits if the low-range gas channel is below its high alarm setpoint. Check Item "C" if the current release is or the previous was greater than normal operating limits, but less than EPA PAG values. This involves any radiological release that may occur when there is no fuel damage. No PARs are required at this level. Check Item "D" if there is any indication of fuel damage (cladding failure or melt) and there is any indication of a release (effluent monitors, surveys, etc.). PARs would be automatically required. This terminology should be easily understood by decision-makers at all levels within the utility and at the State and local levels.
- 12. Check Item "A" if no Protective Actions are necessary. Check Item "B" if PARs are necessary and enter Zone designation. (Item "C" is used by other Florida nuclear sites.)
- 13. Enter the time the event has been terminated or when the transition from the "Emergency Phase" to the "Recovery Phase" has taken place.
- 14. Check "no" unless a Supplemental Form has been completed for this particular message. If a Supplemental Form is attached, the Form is to be read as part of the emergency notification from the TSC or EOF and faxed.
- 15. Enter the name of the SWPT Duty Officer or the individual that receives the notification. Enter time and date call is completed or when Form is provided to Deputy State Coordinating Officer at the EOF.

plemental Page - Complete at the TSC or EOF at an Alert Classification or higher and provide to State &

EM-202

Rev. 63

ENCLOSURE (Page 5 of 5)

RELEASE SIGNIFICANCE CATEGORIES

| CORE | RELEASE | RELEASE STG |
|----------------|---------------------|----------------------------|
| • | No release | NR |
| No Core Damage | Release in progress | <nol, ns<="" td=""></nol,> |
| | No release | NR |
| Clad Failure | Release in progress | PAG |
| | No release | NR |
| Core Melt | Release in progress | EHE (PAG* State Form) |

NR: NO RELEASE

This category indicates no release is occurring. This category is appropriate regardless of core status, if there are no indications of a release (e.g., unexplained containment pressure decrease, unexplained abnormal radiation levels in Auxiliary Building or Intermediate Building, on the berm, or in the field). Do not assume Design Basis Leakage is occurring if it has not been detected. If a release occurred but has now stopped, maintain the appropriate category below until EPZ doses have dissipated.

<NOL: RELEASE WITHIN NORMAL OPERATING LIMITS (ITS/ODCM)

This category indicates releases that are monitored by RM-A1 or RM-A2, occurring when the fuel is undamaged. These releases are within normal operating limits if the low-range gas channel is below its high alarm setpoint. Do not make this selection for releases not monitored by RM-A1 or RM-A2 unless they have been evaluated per the ODCM.

NS: NON-SIGNIFICANT FRACTION OF PROTECTIVE ACTION GUIDELINE VALUES

This category indicates releases that are occurring when the fuel is undamaged. It includes releases exceeding RM-A1 or RM-A2 high alarm setpoint and releases not monitored by RM-A1 or RM-A2 (e.g., releases due to LOCA, Waste Gas System failures, and steam generator tube ruptures). These releases will not produce site boundary doses that approach the EPA Protective Action Guideline values of 1 REM TEDE and/or 5 REM thyroid. No Protective Action Recommendations are necessary.

PAG: AT OR NEAR PROTECTIVE ACTION GUIDELINE VALUES

This category indicates releases that are occurring after at least some fuel cladding failure has taken place. It includes damage to irradiated fuel stored in the fuel pools. Site Boundary doses greater than the EPA Protective Action Guideline of 1 REM TEDE and/or 5 REM thyroid are possible. The category is appropriate even if only minor offsite doses are detected. Evacuation of at least 5 miles, 360° should be recommended. Shelter or evacuation beyond 5 miles should be determined based on plant status and dose projections.

EHE: EARLY HEALTH EFFECTS (not on State Notification Form, see NOTE below)

This category indicates releases that are occurring after severe core damage has taken place and where containment has failed early in the event. Doses of 25 REM TEDE and/or 2500 RADS thyroid could cause early health effects and these doses are easily possible within three miles from the Evacuation of the Energy Complex should be performed and evacuation of the 10-mile EPZ plant. should be recommended (never sheltering) even if evacuees are exposed to the plume.

* NOTE: This category is not listed on the State Notification Form because the State implements protective actions at the PAG range above. However, it will be posted on status boards in the TSC and EOF.

Rev. 63

Effective Date <u>5/31/00</u>

EMERGENCY PLAN IMPLEMENTING PROCEDURE

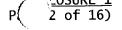
EM-202

FLORIDA POWER CORPORATION

CRYSTAL RIVER UNIT 3

DUTIES OF THE EMERGENCY COORDINATOR

| APPROVED BY: | Procedure Owner |
|------------------|--|
| | <u>John D. Stephenson</u>
(SIGNATURE ON FILE) |
| DATE: | 5/29/00 |
| PROCEDURE OWNER: | Radiological Emergency
Planning |


ENCLOSURE 1 (Page 1 of 16)

EMERGENCY CLASSIFICATION TABLE EMERGENCY ACTION LEVEL INDEX

| ABNORMAL RADLE | VELS/ RADIOL | OGICAL EFFLU | IENT | |
|--|--------------|--------------|------|-----|
| | UE | | SAE | GE |
| CATEGORY
Gaseous Effluents | 1.1 | 1.2 | 1.3 | 1.4 |
| Liquid Effluents | 1.5 | 1.6 | | |
| Unexpected Radiation Levels | 1.7 | 1.8 | | |
| Fuel Handling Spent Fuel Pool or
Transfer Canal Water Level | 1.9 | 1.10 | | |

| NATURAL/MAN-MAD | HAZARDS AND | EC JUDGMENT | | |
|--|-------------|-------------|------|-------|
| CATEGORY | UE | ALERT | SAE | GE |
| Earthquake Experienced | 2.1 | 2.2 | | |
| External Flooding | 2.3 | 2.4 | | ····· |
| Hurricane | 2.5 | | | |
| Tornado/High Winds | 2.6 | 2.7 | | |
| Aircraft/Vehicle Crash | 2.8 | 2.9 | | |
| Toxic or Flammable Gases | 2.10 | 2.11 | | |
| Explosions/Catastrophic
Pressurized Equipment Failure | 2.12 | 2.13 | | |
| Fire | 2.14 | 2.15 | | |
| Control Room Evacuation | | 2.16 | 2.17 | |
| Security Event | 2.18 | 2.19 | 2.20 | 2.21 |
| Internal Flooding | 2.22 | 2.23 | | |
| Emergency Coordinator Judgment | 2.24 | 2.25 | 2.26 | 2.27 |

| SY | STEM MALFUNC | TION | | |
|---|--------------|-------|------|--|
| CATEGORY | UE | ALERT | SAE | GE |
| Loss of Communications | 3.1 | | | |
| Failure of Reactor Protection | | 3.2 | 3.3 | 3.4 |
| Inability to Reach ITS Time
Limits | 3.5 | | | |
| Loss of Alarms/Indications | 3.6 | 3.7 | 3.8 | |
| Fuel Clad Degradation | 3.9 | | | |
| Turbine Failure | 3.10 | 3.11 | | |
| RCS Leakage | 3.12 | | | |
| Inability to Maintain Hot
Shutdown | | | 3.13 | |
| Inadvertent Criticality | 3.14 | | | |
| Inability to Maintain Plant in
Cold Shutdown | | 3.15 | | |
| Loss of Water Level in Reactor
Vessel that has Uncovered or
Will Uncover Fuel | | | 3.16 | and the second |
| | LOSS OF POW | | | |
| CATEGORY | UE | ALERT | SAE | GE |
| Loss of AC Power | 4.1 | 4.2 | 4.3 | 4.4 |
| Loss of AC Power (Shutdown) | | 4.5 | | |
| Loss of Vital DC Power | | | 4.6 | · |
| Loss of Vital DC Power
(Shutdown) | 4.7 | | | |

EMERGENCY CLASSIFICATION TABLE FISSION PRODUCT BARRIER MATRIX APPLICABLE MODES: 1-4 COMPLETE FOR ALL BARRIERS

| FUEL CLAD LOSS FACTOR (+4) | | RCS LOSS FA | CTOR (+4) | CONTAINMENT LOSS FACTOR (+2) | | |
|--|--------|---|------------------------|--|--|--|
| 1. CORE CONDITIONS IN REGION 3 OR
SEVERE ACCIDENT REGION OF ICC
CURVES | | 1. RCS LEAK OR OTSG TUBE LE/
LOSS OF ADEQUATE SUBCOC | | 1. RAPID UNEXPLAINED RB PRESSURE
DECREASE FOLLOWING INITIAL INCREASE | | |
| 2. RCS ACTIVITY >300 µCi/gm I-131 | | 2. RM-G29 OR 30 > 10 R/hr FOR 1
LONGER | 5 MINUTES OR | 2. CONTAINMENT PRESSURE OR SUMP LEVEL
RESPONSE NOT CONSISTENT WITH LOCA
CONDITIONS | | |
| 3. RM-G29 OR 30 >100 R/hr FOR 15 MINUTES
OR LONGER | | 3. EC DEEMS RCS BARRIER IS L | OST | 3. AN OTSG HAS > 10 GPM TUBE LEAK AND AN
UNISOLABLE STEAM LEAK OUTSIDE RB
FROM THE AFFECTED OTSG | | |
| 4. EC DEEMS FUEL CLAD BARRIER IS LOST | | | | 4. CONTAINMENT ISOLATION IS INCOMPLETE
AND RELEASE PATH TO THE ENVIRONMENT
EXISTS | | |
| | | | | 5. EC DEEMS CONTAINMENT BARRIER IS
LOST | | |
| IF ANY ITEM IS CHECKED, BARRIER IS LOST, ENTER
4 FOR FUEL CLAD FACTOR IN CLASSIFICATION TABLE
BELOW | | IF ANY ITEM IS CHECKED, BARRIER IS LOST
ENTER 4 FOR RCS FACTOR IN CLASSIFICATION TABLE
BELOW | | IF ANY ITEM IS CHECKED, BARRIER IS LOST
ENTER 2 FOR CONTAINMENT FACTOR IN
CLASSIFICATION TABLE BELOW | | |
| FUEL CLAD POTENTIAL LOSS FACTO | R (+3) | RCS POTENTIAL LOSS FACTOR (+3) | | CONTAINMENT POTENTIAL LOSS FACTOR (+1.5) | | |
| 1. RCS CONDITIONS WARRANT ENTRY INTO
EOP-07 | 1 | 1. RCS LEAK OR OTSG TUBE LE
OR MORE INJECTION VALVES | | 1. RB PRESSURE >54 psig | | |
| 2. CORE EXIT THERMOCOUPLES >700°F | - | 2. RCS LEAK OR OTSG TUBE LE
ACTUATION ON LOW RCS PR | | 2. RB HYDROGEN CONCENTRATION >4% | | |
| 3. EC DEEMS FUEL CLAD BARRIER IN
JEOPARDY | | 3. RCS PRESSURE/TEMPERATURE RELATIONSHIP
VIOLATES NDT LIMITS | | 3. RB PRESSURE >30 psig WITH NO BUILDING
SPRAY AVAILABLE | | |
| | 1 | 4. HPI/PORV OR HPI/SAFETY VA
PROGRESS | LVE COOLING IS IN | 4. RMG-29 OR 30 READINGS >25,000 R/hr | | |
| | | 5. EC DEEMS RCS BARRIER IN JEOPARDY | | 5. CORE CONDITIONS IN SEVERE ACCIDENT
REGION OF ICC CURVES FOR >15 MINUTES | | |
| | | | | 6. EC DEEMS CONTAINMENT BARRIER IN
JEOPARDY | | |
| IF ANY ITEM IS CHECKED, BARRIER IS POTENTIALLY
LOST , ENTER 3 FOR FUEL CLAD FACTOR IN
CLASSIFICATION TABLE BELOW | | IF ANY ITEM IS CHECKED, BARRIER IS POTENTIALLY LOST,
ENTER 3 FOR RCS FACTOR IN CLASSIFICATION TABLE
BELOW | | IF ANY ITEM IS CHECKED, BARRIER IS POTENTIALLY
LOST , ENTER 1.5 FOR CONTAINMENT FACTOR IN
CLASSIFICATION TABLE BELOW | | |
| | | <u>CLASSIFICA</u> | TION TABLE | | | |
| ENTER LOSS FACTO | OR POT | ENTIAL LOSS FACTOR OR ZERO F | OR EACH BARRIER THEN T | OTAL AND DETERMINE CLASS BELOW | | |
| FUEL CLAD FACTOR | | + RCS FACTOR | + CONTAINME | ENT FACTOR = | | |
| IF TOTAL IS: | | | | | | |
| > 2 E | | > 0 BUT < 2 | UN | USUAL EVENT
ALERT | | |
| | | | | REA EMERGENCY | | |
| | | > 4 BUT < 8.5 | | RALEMERGENCY | | |
| | | | | | | |

(Pag 1 of 16)

EMERGENCY CLASSIFICATION TABLE ACCIDENT CONDITION:

SYSTEM MALFUNCTION

| | | | SITE AREA EMERGENCY | GENERAL EMERGENCY |
|---|---|---|--|--|
| CATEGORY | UNUSUAL EVENT | ALERT | | Not Applicable |
| Loss of | 3.1 MODES: ALL | Not Applicable | Not Applicable | NOL APPTICADIC |
| Communication | (1 or 2) | | | |
| MODES: ALL | Loss of <u>all</u> the following
in-plant communications
capability: | | | |
| | a. FPC Internal Telephone
System
b. PAX | | | |
| | c. Portable UHF Radios | | | |
| | <u>OR</u> | | | |
| | Loss of <u>all</u> of the following
Offsite Communication
capability: | | | |
| | a. FPC Telephone System
b. State Hot Ringdown (SHRD)
c. All FTS 2000 NRC phones | | | |
| | (ENS, HPN, etc.)
d. State-Wide Emergency
Satellite Communication
(FSATCOM) System | | | |
| | e. Cellular Phones
Not Applicable | 3.2 MODES: 1,2,3 | 3.3 MODES: 1,2 | 3.4 MODES: 1,2 |
| Failure of Reactor
Protection | NOL APPTICADIE | | (1 and 2) | (1 and 2 and 3) |
| MODES: 1,2,3 for ALERT | | (1 and 2)
1. RPS Trip setpoint exceeded
and no Reactor trip occurred | 1. RPS Trip setpoint exceeded
and no Reactor trip
occurred | 1. RPS Trip setpoint exceeded
and no Reactor trip
occurred |
| MODES: 1,2 for SITE AREA
and GENERAL Emergencies | | AND | AND | AND |
| | | 2. Manual Reactor trip from
Control Room was successful
and reactor is shutdown | 2. Manual Reactor trip from
Control Room was <u>not</u>
successful in shutting down
the reactor | 2. Manual Reactor trip from
Control Room was <u>not</u>
successful in shutting down
the reactor
<u>AND</u> |
| | | | | 3. (a or b) |
| · · · | | | | a. Core exit thermocouple
temperatures > 700°F, as
indicated on SPDS. |
| | | | | OR |
| | | | | b. Adequate Secondary Cooling
not available |

REGION II INITIAL LICENSE EXAMINATION JOB PERFORMANCE MEASURE

JPM A4R, Notify State Warning Point Tallahassee with the State of Florida Notification Message Form for Nuclear Power Plants

| CANDIDATE | | |
|--------------------------|-------------------------------|-------|
| EXAMINER | | |
| PREPARED/
REVISED BY: | | Date/ |
| REVIEWED BY: | (Operations Representative) | Date/ |
| VALIDATED BY: | (Operations Representative) | Date/ |
| APPROVED BY: | (Supervisor Initial Training) | Date/ |

CRYSTAL RIVER UNIT 3 ADMINISTRATIVE JOB PERFORMANCE MEASURE

Task: Notify State Warning Point Tallahassee with the State of Florida Notification Message Form for Nuclear Power Plants.

Alternate Path: State Hot Ringdown phone will not work.

JPM #: A4R (new)

K/A Rating/Importance: G2.4.43/2.8/3.5 Task Number/Position: 1150402005/RO

Task Standard: Notify State Warning Point Tallahassee with the State of Florida Notification Message Form for Nuclear Power Plants using EM-202.

| Preferred Evalua | tion Location | <u>:</u> | Preferred Eva | aluation Method: | _ |
|------------------------------|---------------|-----------|----------------|--|--------|
| Simulator I | n-Plant | AdminX | PerformX_ | Simulate | — |
| References:
1. EM-202, Re | w. 63 | | | | |
| Validation Time | - | | e Critical: No | | |
| Candidate: | | nted Name | | <u>Time Start:</u>
<u>Time Finish</u> : | |
| Performance Ra | ting: SAT | UNSAT | <u>Perform</u> | ance Time: | |
| Examiner: | Printed N | lame | | Signature | _/Date |
| Comment: | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |

SIMULATOR OPERATOR SETUP INSTRUCTIONS:

1. Fail the State Hot Ringdown phone.

SIMULATOR OPERATOR INSTRUCTIONS:

1. Role-play as State Warning Point Tallahassee.

Tools/Equipment/Procedures Needed:

1. EM-202

READ TO THE OPERATOR

Directions to the Student:

I will explain the initial conditions, and state the task to be performed. All steps, including any required communications, shall be performed for this JPM. I will provide initiating cues and reports on other actions when directed by you. Ensure you indicate to me when you understand your assigned task. To indicate that you have completed your assigned task, return the handout sheet to the examiner.

Initial Conditions:

You are the Reactor Operator. The Nuclear Shift Manager has just given you a completed Florida Nuclear Plant Emergency Notification Form

Initiating Cues:

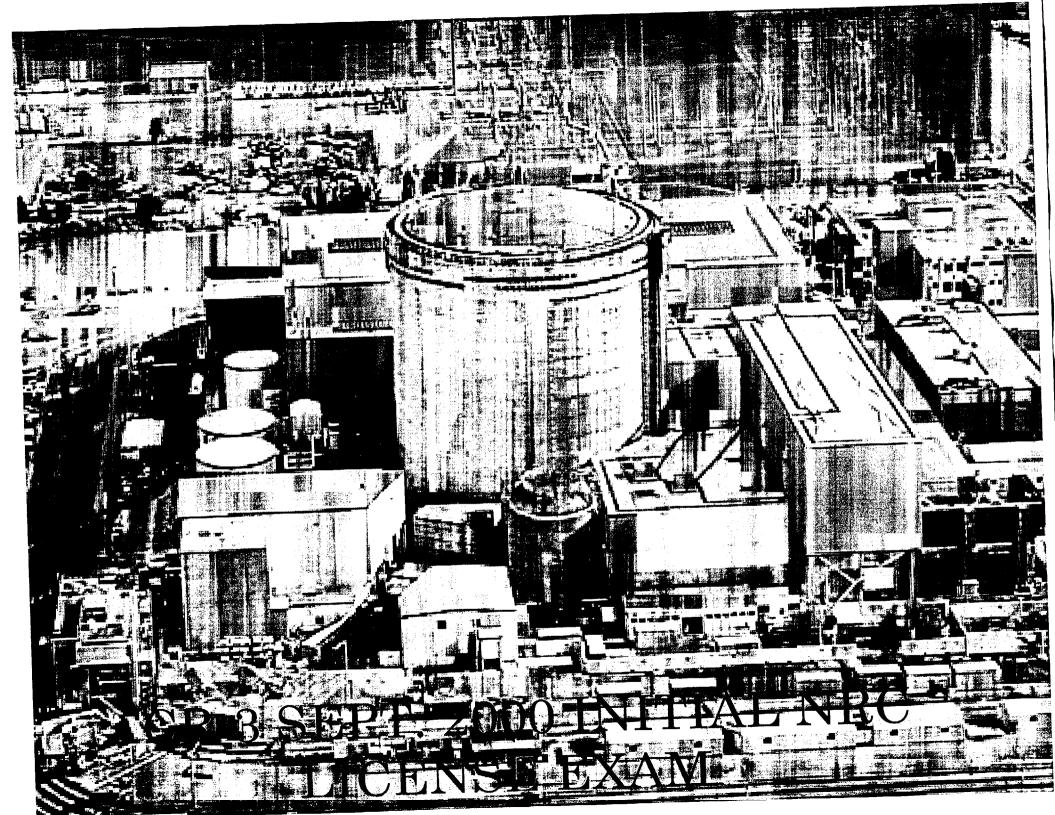
You are requested to make notification to the State of Florida.

START TIME: _____

| <u>STEP 1</u> : | Critical Step |
|---|---------------|
| EXAMINER NOTE: Hand the candidate completed Enclosure 2 of EM-202 | SAT |
| Candidate establishes communications with the State of Florida. | UNSAT |
| STANDARD: Candidate uses the State Hot Ringdown phone and is not connected.
Candidate uses the Commercial Telephone System and is connected. | |
| COMMENTS: | |
| <u>STEP 2:</u> | Critical Step |
| Candidate conveys information found on Enclosure 2 of EM-202. | SAT |
| STANDARD: Candidate will read the form to State Warning Point Tallahassee by
the number and letter, filling in details as listed or as required.
Candidate will fill in the following information on the form: 2A, 2B,
and 15. | UNSAT |
| COMMENTS: | |
| END OF TASK | |

TIME STOP _____

CANDIDATE CUE SHEET


(TO BE RETURNED TO EXAMINER UPON COMPLETION OF TASK)

Initial Conditions:

You are the Reactor Operator. The Nuclear Shift Manager has just given you a completed Florida Nuclear Plant Emergency Notification Form

Initiating Cues:

You are requested to make notification to the State of Florida.

REGION II INITIAL LICENSE EXAMINATION JOB PERFORMANCE MEASURE

JPM B1a1, Transfer a single rod to the Auxiliary Power Supply

| CANDIDATE | | |
|--------------------------|-------------------------------|-------|
| | | |
| EXAMINER | | |
| | | |
| PREPARED/
REVISED BY: | | Date/ |
| | | |
| REVIEWED BY: | (Operations Representative) | Date/ |
| VALIDATED BY: | | Date/ |
| | (Operations Representative) | |
| APPROVED BY: | | Date/ |
| | (Supervisor Initial Training) | |

CRYSTAL RIVER UNIT 3 SIMULATOR JOB PERFORMANCE MEASURE

Task: Transfer a single rod to the Auxiliary Power Supply.

Alternate Path: N/A

JPM #: B1a1 (bank #240)

K/A Rating/Importance: 001A4.03/4.0/3.7 Task Number/Position: 0010102010/RO

Task Standard: Transfer a single rod to the Auxiliary Power Supply using OP-502

| Preferred Evaluation Location | <u>.:</u> | Preferred Evaluation Method: | |
|----------------------------------|-----------|-------------------------------------|----------|
| Simulator X_ In-Plant | Admin | Perform X Simulate | _ |
| References:
1. OP-502, Rev 41 | | | |
| Validation Time: 10 min. | | Time Critical: No | |
| | nted Name | Time Start:
Time Finish: | |
| Performance Rating: SAT | UNSAT | Performance Time: | |
| Examiner: Printed N | lame | Signature | /Date |
| Comment: | | | |
| | | | |
| | | | |
| | | | <u> </u> |

SIMULATOR OPERATOR SETUP INSTRUCTIONS:

- Normal 100% power operations. IC #11 1.
- 2.

SIMULATOR OPERATOR INSTRUCTIONS:

1. None

Tools/Equipment/Procedures Needed:

1. OP-502

READ TO THE OPERATOR

Directions to the Student:

I will explain the initial conditions, and state the task to be performed. All steps, including any required communications, shall be performed for this JPM. I will provide initiating cues and reports on other actions when directed by you. Ensure you indicate to me when you understand your assigned task. To indicate that you have completed your assigned task, return the handout sheet to the examiner.

Initial Conditions:

You are the REACTOR OPERATOR. The plant is at 100% power. Control Rod troubleshooting is underway.

Initiating Cues:

You are requested to transfer Rod 5-4 to the Auxiliary Power Supply. Following transfer of the rod, leave the reactor diamond and reactor demand station in manual for further manipulations.

START TIME: _____

| STEP 1: | |
|---|--|
| Obtain a copy of appropriate procedure. | SAT |
| EXAMINER CUE: For purposes of this JPM assume SRO concurs with each rod manipulation. | UNSAT |
| STANDARD: Candidate obtains a copy of OP-502 | |
| COMMENTS: | |
| STEP 2: (step 4.16.1) | Critical Step |
| PROCEDURE CAUTION: Tave control may go to Feedwater regulation | SAT |
| Place Reactor Diamond in MANUAL 1Depress MANUAL 2Verify Manual light on, Auto. light is OFF/ | UNSAT |
| Initial/Date | |
| STANDARD: Candidate locates the Reactor Diamond control station, depresses
MANUAL and verifies that the green MAN light is ON and the white
AUTO light is OFF. (Annunciator K-6-2) Candidate initials and dates
the step in the procedure. | |
| COMMENTS: | |
| | ······································ |

| <u>STEP 3</u> : | (step 4.16.2) | |
|-----------------|---|---------------|
| | Place Reactor Demand control station in HAND | SAT |
| 1 | Depress HAND Verify Reactor Demand in Mini Track, AUTO and HAND light | UNSAT |
| | on | |
| | /
Initial/Date | |
| | | |
| STANDA | <u>RD:</u> The candidate will depress the white HAND pushbutton and verify the
Reactor Demand control station is in Mini Track by verifying that both
red AUTO and white HAND lights are ON. Candidate initials and | |
| | dates the step in the procedure. | |
| | NTS: | |
| | | 1 |
| <u>STEP</u> 4: | (step 4.16.3) | Critical Step |
| <u>STEP</u> 4: | | Critical Step |
| STEP 4: | Select GROUP SELECT Switch to desired group
Group 1 Group 5 | SAT |
| STEP 4: | Select GROUP SELECT Switch to desired group
Group 1 Group 5
Group 2 Group 6 | |
| STEP 4: | Select GROUP SELECT Switch to desired group
Group 1 Group 5 | SAT |
| STEP 4: | Select GROUP SELECT Switch to desired group Group 1 Group 5 Group 2 Group 6 Group 3 Group 7 | SAT |
| | Select GROUP SELECT Switch to desired group Group 1 Group 5 Group 2 Group 6 Group 3 Group 7 Group 4 Group 8 | SAT |
| | Select GROUP SELECT Switch to desired group
Group 1 Group 5
Group 2 Group 6
Group 3 Group 7
Group 4 Group 8
<u>Initial/Date</u>
<u>ARD</u> : Candidate rotates GROUP SELECT Switch to Group 5. Candidate
initials and dates the step in the procedure. | SAT |

| | (4 | Critical Step |
|--------------|---|---------------|
| STEP 5: | (step 4.16.4) | |
| | Select All or desired rod | SAT |
| | Use SINGLE SELECT Switch | UNSAT |
| | Initial/Date | |
| STAND4 | ARD: Candidate rotates SINGLE SELECT Switch to Rod 4. Candidate initials and dates the step in the procedure. | |
| COMME | ENTS: | |
| OTED (| (step 4.16.5) | Critical Step |
| STEP 6: | Select SEQ OR. | SAT |
| | Verify SEQ OR. Light On
SEQ light On | UNSAT |
| | Initial/Date | |
| <u>STAND</u> | ARD: Candidate depresses SEQ/SEQ OR pushbutton and verifies amber
SEQ OR light ON and green SEQ light ON. Candidate initials and
dates the step in the procedure. | |
| COMM | ENTS: | |
| | | |

| STEP 7: (step 4.16.6) | Critical Step |
|---|---------------|
| Select AUXIL.
Verify AUXIL. Light on, GROUP light off
Verify CONTROL ON white light for the group selected in Step
4.16.3 is on | SAT
UNSAT |
| Initial/Date | |
| STANDARD: Candidate depresses GROUP/AUXIL pushbutton and verifies AUXIL white light ON and GROUP green light OFF. The operator will also verify the CONTROL ON white light for group 5 is ON. Candidate initials and dates the step in the procedure. | |
| COMMENTS: | |
| <u>STEP 8</u> : (step 4.16.7) | Critical Step |
| Place SPEED SELECTOR switch in JOG
Verify SY white light comes on | SAT |
| Initial/Date | UNSAT |
| STANDARD: Candidate Rotates RUN/JOG switch to JOG and verifies that the white SY light is ON. Candidate initials and dates the step in the procedure. | |
| COMMENTS: | |
| STEP 9: (step 4.16.8) | Critical Step |
| Select CLAMP
Verify CLAMP light on | SAT |
| Verify CLAMP REL. light off | UNSAT |
| STANDARD: Candidate depresses CLAMP/CLAMP RELEASE pushbutton and verifies green CLAMP light ON and amber CLAMP REL light OFF. Candidate initials and dates the step in the procedure. | |
| COMMENTS: | |
| | |

| STEP 10: (step 4.16.9) | Critical Step |
|---|---------------|
| STEP 10. (step 4.10.9) PROCEDURE CAUTION: If Amber control on lights for more than one group is on, STOP, and notify SSOD. Depress MAN TRANS | SAT
UNSAT |
| STEP 11: (stop 4.16.10) | Critical Step |
| <u>STEP 11</u> : (step 4.16.10) | |
| Select CLAMP REL. | SAT |
| Verify CLAMP REL. light on Verify CLAMP light off / | UNSAT |
| Initial/Date | |
| STANDARD: Candidate depresses CLAMP/CLAMP RELEASE pushbutton and verifies amber CLAMP REL light ON and green CLAMP light OFF. Candidate initials and dates the step in the procedure. COMMENTS: | |
| | |

| STEP 12: (step 4.16.11) | Critical Step |
|--|---------------|
| Select GROUP
Verify GROUP light on
Verify AUXIL light off
Verify SY light off
<u>Initial/Date</u>
<u>STANDARD:</u> Candidate depresses GROUP/AUXIL pushbutton and verifies green
GROUP light ON and amber AUXIL light OFF. The operator will
also verify the SY white light OFF. Candidate initials and dates the
step in the procedure. | SAT
UNSAT |
| COMMENTS: | |
| STEP 13: (step 4.16.12) If latching Safety Rods in accordance with Section 4.2, return to Section 4.2.3 after completion of this step. Refer to Section 4.2 / Initial/Date | SAT
UNSAT |
| EXAMINER CUE: Rod 5-4 is on the Auxiliary Power Supply | |
| STANDARD: This step N/A. | |
| COMMENTS: | |
| END OF TASK | |

 \smile

`~

<

TIME STOP _____

.

CANDIDATE CUE SHEET

(TO BE RETURNED TO EXAMINER UPON COMPLETION OF TASK)

Initial Conditions:

You are the REACTOR OPERATOR. The plant is at 100% power. Control Rod troubleshooting is underway.

Initiating Cues:

You are requested to transfer Rod 5-4 to the Auxiliary Power Supply. Following transfer of the rod, leave the reactor diamond and reactor demand station in manual for further manipulations.

| 4.16 | (CAT. 2) [NOCS 040591] | ON TO THE AUXILIARY POWER SUPPLY |
|--------|--|---|
| | ACTIONS | DETAILS |
| | CAUTTON: Tave control may g | ************************************** |
| 4.16.1 | Place Reactor Diamond in
MANUAL | Depress MANUAL Verify Manual light on,
Auto. light is OFF |
| | | /
Initial/Date |
| 4.16.2 | Place Reactor Demand
control station in HAND | 1 Depress HAND
2 Verify Reactor Demand in
Mini Track, "AUTO." and
"HAND" light on

Initial/Date |
| 4.16.3 | Select "GROUP SELECT"
Switch to desired group | Group 1 Group 5 Group 2 Group 6 Group 3 Group 7 Group 4 Group 8 Initial/Date |
| 4.16.4 | Select All or desired rod | o Use "SINGLE SELECT" Switch

Initial/Date |
| 4.16.5 | Select "SEQ OR."
[NOCS 001778] | o Verify "SEQ OR." light On
o "SEQ" light On/
Initial/Date |
| 4.16.6 | Select "AUXIL." | o Verify "AUXIL." light on,
"GROUP" light off
o Verify "CONTROL ON" white
light for the group
selected in Step 4.16.3 is
on
/
Initial/Date |

.

4.16 TRANSFERRING A GROUP OR ROD ON TO THE AUXILIARY POWER SUPPLY (CAT. 2) (Cont'd)

| | ACTIONS | DETAILS |
|---------|--|--|
| 4.16.7 | Place "SPEED SELECTOR"
switch in "JOG" | o VERIFY "SY" light comes on |
| | | /
Initial/Dat |
| 4.16.8 | Select "CLAMP" | <pre>o VERIFY "CLAMP" light on o VERIFY "CLAMP REL." light off</pre> |
| | | Initial/Dat |
| | CAUTION: If Amber control | ************************************** |
| 4.16.9 | Depress "MAN TRANS" | <pre>o VERIFY "TR CF" light on
o VERIFY Amber "CONTROL ON"
light(s) for only the
selected Group or rod come
on</pre> |
| | |
Initial/Dat |
| 4.16.10 | Select "CLAMP REL." | o VERIFY "CLAMP REL." light |
| | | o VERIFY "CLAMP" light off |
| | | /
Initial/Dat |
| 4.16.11 | Select "GROUP" | <pre>o VERIFY "GROUP" light on
o VERIFY "AUXIL" light off
o VERIFY "SY" light off</pre> |
| | | /
Initial/Dat |
| 4.16.12 | If latching Safety Rods in
accordance with
Section 4.2, return to
Section 4.2.3 after | o Refer to Section 4.2 |
| | completion of this step | Initial/Da |

REGION II INITIAL LICENSE EXAMINATION JOB PERFORMANCE MEASURE

JPM B1b1, Supply pressurizer heaters from the B ES 4160V Bus

| CANDIDATE | | |
|--------------------------|-------------------------------|-------|
| EXAMINER | | |
| PREPARED/
REVISED BY: | | Date/ |
| REVIEWED BY: | (Operations Representative) | Date/ |
| VALIDATED BY: | (Operations Representative) | Date/ |
| APPROVED BY: | (Supervisor Initial Training) | Date/ |

CRYSTAL RIVER UNIT 3 SIMULATOR JOB PERFORMANCE MEASURE

Task: Supply pressurizer heaters from the B ES 4160V Bus.

Alternate Path: N/A

JPM #: B1b1 (new)

K/A Rating/Importance: 062A2.05/2.9/3.3 Task Number/Position: 0620402006/RO

Task Standard: Supply pressurizer heaters from the B ES 4160V Bus using AP-770

| Preferred Evaluation Location | on: | Preferred Evaluation Method: | |
|----------------------------------|-------|------------------------------|-----------|
| Simulator X_ In-Plant | Admin | Perform XSimulate | |
| References:
1. AP-770, Rev 28 | | | |
| Validation Time: 10 min. | | Time Critical: No | |
| Candidate: | | Time Start:
Time Finish: | |
| Performance Rating: SAT _ | UNSAT | Performance Time: | |
| Examiner: Printed | Name | Signature | /
Date |
| Comment: | | | |
| | | | |
| | | | |
| | | | |

SIMULATOR OPERATOR SETUP INSTRUCTIONS:

- 1. The plant is in Mode 3 following a LOOP.
- 2. Both ES Buses are powered from their respective diesel.
- 3. The B Emergency Diesel Generator load is \leq 2700 KW.
- 4. The 480V Reactor Aux Bus 3B must be de-energized.
- 5. Have RCS pressure slightly lower than the control setpoints of the pressurizer heaters.
- 6. IC #61 (son 6-9-00)
- 7. Check SPDS screens
- 8. Input "enc1"
- 9. Ensure MUT level is not too high and the pressure alarm is not in

SIMULATOR OPERATOR INSTRUCTIONS:

- 1. Respond from the booth as SPO for Enclosure 4 of AP-770 using LP #6, JPM B1b1.
- 2. Opening of PZR HTR MCC3B breakers done from schematic (PZR MCC part of step 4.3).
- 3. SPO portion of step 4.7 done from schematic (PZR MCC).

Tools/Equipment/Procedures Needed:

1. AP-770, signed up to step 3.31

READ TO THE OPERATOR

Directions to the Student:

I will explain the initial conditions, and state the task to be performed. All steps, including any required communications, shall be performed for this JPM. I will provide initiating cues and reports on other actions when directed by you. Ensure you indicate to me when you understand your assigned task. To indicate that you have completed your assigned task, return the handout sheet to the examiner.

Initial Conditions:

You are the BALANCE OF PLANT OPERATOR. A Loss of Offsite Power (LOOP) is in progress. The Reactor Operator is re-establishing letdown.

Initiating Cues:

You are requested to power the pressurizer heaters from the B ES 4160V Bus.

| ſ | STEP 1: | | |
|---|----------------|---|---------------|
| | | Obtain a copy of appropriate procedure. | SAT |
| | STANDA | RD: Candidate obtains a copy of AP-770, completed up to step 3.31. | UNSAT |
| | COMME | NTS: | |
| | <u>STEP 2:</u> | (step 4.1) | |
| | | If 480V REACTOR AUX BUS 3B is energized, then go to Step 4.7 in this | SAT |
| | | enclosure. | UNSAT |
| | STANDA | <u>RD</u> : Candidate verifies that the 480V REACTOR AUX BUS 3B is not energized and continues on in the procedure | |
| | COMME | NTS: | |
| | | | |
| | | | |
| | STEP 3: | (step 4.2) | Critical Step |
| | <u>STEP 3:</u> | (step 4.2)
Ensure 480V feeder and Cross-Tie Bkrs are open. | Critical Step |
| | STEP 3: | Ensure 480V feeder and Cross-Tie Bkrs are open.
Bkr 3399 | SAT |
| | STEP 3: | Ensure 480V feeder and Cross-Tie Bkrs are open. | _ |
| | STEP 3: | Ensure 480V feeder and Cross-Tie Bkrs are open.
Bkr 3399
Bkr 3393
Bkr 3394
Bkr 3306 | SAT |
| | STEP 3: | Ensure 480V feeder and Cross-Tie Bkrs are open.
Bkr 3399
Bkr 3393
Bkr 3394 | SAT |
| | STEP 3: | Ensure 480V feeder and Cross-Tie Bkrs are open.
Bkr 3399
Bkr 3393
Bkr 3394
Bkr 3306
Bkr 3396 | SAT |
| | | Ensure 480V feeder and Cross-Tie Bkrs are open.
Bkr 3399
Bkr 3393
Bkr 3394
Bkr 3306
Bkr 3396
Bkr 3312 | SAT |
| | | Ensure 480V feeder and Cross-Tie Bkrs are open.
Bkr 3399
Bkr 3393
Bkr 3394
Bkr 3306
Bkr 3396
Bkr 3312
Bkr 3392
<u>RD</u> : Candidate will locate each breaker and for those that are not already
open, rotate the control handle to the open position. Breakers 3399,
3393, 3394, 3396, 3312 and 3392 are open. Candidate may match
targets for 3312 and 3392. Breaker 3306 will have to be opened.
Candidate may verify green target and will verify green light ON and
red light OFF for each breaker. | SAT |

| STEP 4: (step 4.3) Prepare 480V Buses for backfeed. Notify SPO to ensure all breakers on the following are open: 480V PLANT AUX BUX 3 480V REACTOR AUXBUS 3B 480V PZR HTR MCC 3B | SAT
UNSAT |
|---|---------------|
| STANDARD: Candidate contacts and instructs the SPO to perform step 4.3 of Enclosure 4 of AP-770. (Alarms P-2-9, P-2-10 and I-8-2) | |
| COMMENTS: | |
| STEP 5: (step 4.4) | Critical Step |
| When notified that all Bkrs on the following are open:
480V PLANT AUX BUX 3
480V REACTOR AUXBUS 3B
480V PZR HTR MCC 3B
Then energize 480V PLANT AUX BUS 3
1 Close Bkr 3222
2 Close Bkr 3312 | SAT
UNSAT |
| STANDARD: Candidate locates breaker 3222 and rotates the control handle in the CLOSE direction (Candidate may match targets first). Candidate will verify red target and red light ON and green light OFF. Candidate locates breaker 3312 and rotates the control handle in the CLOSE direction (P-2-7 clears). Candidate will verify red target and red light ON and green light OFF. Candidate verifies the 480V PLANT AUX BUS is reading approximately 480V. | |
| <u>COMMENTS:</u> | |

| COTTO | (atom 4.5) | Critical Step |
|-----------------|---|---------------|
| <u>STEP 6</u> : | (step 4.5) | _ |
| | Energize 480V Reactor AUX BUS 3B. | SAT |
| | 1. Close Bkr 3392 2. Close Bkr 3396 | UNSAT |
| <u>STANDA</u> | <u>RD:</u> Candidate locates breaker 3392 and rotates the control handle in the CLOSE direction. Candidate will verify red target and red light ON and green light OFF. Candidate locates breaker 3396 and rotates the control handle in the CLOSE direction (G-2-2 clears). Candidate will verify red target and red light ON and green light OFF. Candidate verifies the 480V Reactor AUX BUS 3B is reading approximately 480V. | |
| | | |
| <u>STEP 7</u> : | (step 4.6) | |
| | Energize 480V PZR HTR MCC 3B | SAT |
| | Notify SPO to close 480V REACTOR AUX BUS 3B-1C BREAKER
3356 FEED TO PZR HTR MCC3B | UNSAT |
| STAND | ARD: Candidate contacts and instructs the SPO to perform step 4.6 of Enclosure 4 of AP-770. (P-3-9 clears) | |
| COMME | ENTS: | |
| | | 1 |

| STEP 8: | (step 4.7) | Critical Step |
|-----------------|--|---------------|
| | | SAT |
| | Energize 3 groups of PZR Htrs. | |
| | 1.Ensure EDG-1B load is ≤ 2700 KW.2.Place all PZR Htr banks in OFF | UNSAT |
| | 2 Place all PZR Htr banks in OFF
Bank A | |
| | Bank B | |
| | Bank C | |
| | Bank D | |
| | Back E | |
| | 3. Notify SPO to close the following Bkrs on 480V PZR HTR | |
| | MCC 3B | |
| | 1A PZR HEATER CONTROL TRANSFORMER B-1 | |
| | 1B PZR HEATER CONTROL TRANSFORMER B-2 | |
| | 4. Notify SPO to close the following Bkrs on 480V PZR HTR | |
| | MCC 3BB | |
| | 1D PZR HEATER GROUP 10 | |
| | 3C PZR HEATER GROUP 12 | |
| | 4C PZR HEATER GROUP 13 | |
| STANDA | <u>RD</u> : Candidate reads EDG-1B digital load meter to ensure load is ≤ 2700 KW. Candidate rotates each pressurizer heater bank control switch to the OFF direction. Candidate contacts and instructs the SPO to perform step 4.7 details 3 and 4 of Enclosure 4 of AP-770. | |
| COMME | NTS: | |
| STEP 9: | (step 4.8) | |
| | If PZR Htrs are desired, then select PZR Htr Bank E to control RCS | SAT |
| | PRESS. | UNSAT |
| EXAMI | VER NOTE: Heaters should not be required at this point because RCS pressure is high (letdown has not been re-established). | |
| | <u>RD</u> : N/A | |
| STANDA | | |
| STANDA
COMME | NTS: | |

| <u>STEP 10</u> : (step 4.9) | |
|--|-------|
| Exit this enclosure. | SAT |
| STANDARD: Candidate exits the enclosure. | UNSAT |
| COMMENTS: | 4 |
| | |
| END OF TASK | |

TIME STOP _____

CANDIDATE CUE SHEET

(TO BE RETURNED TO EXAMINER UPON COMPLETION OF TASK)

Initial Conditions:

You are the BALANCE OF PLANT OPERATOR. A Loss of Offsite Power (LOOP) is in progress. The Reactor Operator is re-establishing letdown.

Initiating Cues:

You are requested to power the pressurizer heaters from the B ES 4160V Bus.

EMERGENCY DIESEL GENERATOR ACTUATION

1.0 ENTRY CONDITIONS

IF any ES 4160V Bus UV occurs,

THEN use this procedure.

2.0 IMMEDIATE ACTIONS

NOTE

There are no immediate actions for this procedure.

| Approved by MNP | O L.K. Clewett
(SIGNATURE ON FILE) | Date | 5/3/00 |
|-----------------|---------------------------------------|------|--|
| AP-770 | PAGE 1 of 113 | | EDGA |
| | | | n an |

BLANK PAGE

| AP-770 | REV 29 | PAGE 2 of 113 | EDGA |
|--------|--------|---------------|------|
| | | | |

3.0 FOLLOW-UP ACTIONS

ACTIONS

DETAILS

- 3.1 ____ Notify personnel of plant conditions.
- ____ PA announcement
- <u>/</u> STA
- / Plant operators
- _____NSM (evaluate plant conditions for entry into the Emergency Plan)

- 04

- 3.2 _____ IF Rx is <u>NOT</u> tripped, <u>THEN</u> ensure Rx power is $\leq 100\%$.
- 3.3 <u>IF</u> any ES 4160V Bus is energized, <u>THEN</u> GO TO Step 3.17 in this procedure.

| AP-770 | REV 29 | PAGE 3 of 113 | EDGA | |
|--------|--------|---------------|------|--|
| | | | | |

BLANK PAGE

| AP-770 | REV 29 | PAGE 4 of 113 | EDGA |
|--------|--------|---------------|------|
| | | | |

3.0 FOLLOW-UP ACTIONS (CONT'D)

ACTIONS

DETAILS

| STATUS | | | | | |
|---------------------------------------|---|--|--|--|--|
| Both ES 4160V Buses de-energized. | | | | | |
| | | | | | |
| 3.4 Prevent MUP Auto start. | 1 Ensure ES actuations are bypassed or reset: | | | | |
| | Auto | | | | |
| | Manual | | | | |
| | 2 Ensure <u>all</u> MUPs are selected to normal after stop: | | | | |
| | MUP-1A | | | | |
| · · · · · · · · · · · · · · · · · · · | MUP-1B | | | | |
| | MUP-1C | | | | |

- 3.5 ____ Select RWP-2B to "PULL TO LOCK".
- 3.6 ____ Select both Emergency SW Pumps to "PULL TO LOCK".

| SWP-1A |
|--------|
| SWP-1B |

| 1 | AP-770 | REV 29 | PAGE 5 of 113 | EDGA |
|---|--------|--------|---------------|------|
| | AP-770 | NEV 23 | | |

BLANK PAGE

| AP-770 | REV 29 | PAGE 6 of 113 | EDGA | |
|--------|--------|---------------|------|--|
| | | | | |

ACTIONS

3.7 ____ Ensure at least 1 ES Bus is available for recovery.

DETAILS

- 1 Notify PPO to verify EDG lockouts are not tripped:
 - "86B-3209 A EDG LOCKOUT RELAY" (A ES 4160V SWGR Room)
 - "86B-3210 B EDG LOCKOUT RELAY" (B ES 4160V SWGR Room)
- 2 Verify ES 4160V lockouts are not tripped:

| A ES Bus | B ES Bus |
|----------|----------|
| 86B-3205 | 86B-3206 |
| 86B-3207 | 86B-3208 |
| 86B-3211 | 86B-3212 |

- 3 <u>IF</u> a lockout is tripped on both ES 4160V Buses, <u>THEN</u> **PERFORM** Enclosure 1, Recovery of Faulted ES Bus, in this procedure.
- 4 <u>IF</u> a lockout is tripped on only 1 ES 4160V Bus, <u>THEN</u> **CONCURRENTLY PERFORM** Enclosure 1, Recovery of Faulted ES Bus, in this procedure.

| - | | ······ | | |
|---|--------|--------|---------------|------|
| | AP-770 | REV 29 | PAGE 7 of 113 | EDGA |

BLANK PAGE

| AP-770 | REV 29 | PAGE 8 of 113 | EDGA | |
|--------|--------|---------------|------|---|
| | | | | 4 |

ACTIONS

DETAILS

STATUS

At least 1 ES 4160V Bus available for recovery.

3.8 ____ Ensure all ES 4160V feeder Bkrs are open.

| A ES Bus | B ES Bus |
|----------|----------|
| 3207 | 3212 |
| 3209 | 3206 |
| 3205 | 3208 |
| 3211 | 3210 |

- 3.9 ____ Start efforts to restore ES Bus power source.
- IF EDG is <u>NOT</u> running, <u>THEN</u> notify PPO to **CONCURRENTLY PERFORM** Enclosure 2, Failed EDG Recovery, in this procedure.
- Motify Maintenance to start repair efforts for offsite power restoration.
- ____ Consider 500KV backfeed as offsite power source.

| 1 | | | | |
|---|--------|--------|---------------|------|
| | AP-770 | REV 29 | PAGE 9 of 113 | EDGA |
| | | | | |

BLANK PAGE

| AP-770 | REV 29 | PAGE 10 of 113 | EDGA | |
|--------|--------|----------------|------|--|
| | | | | |

ACTIONS

DETAILS

3.10 _____ IF at any time, all of the 1 Ensur following occur: reset

ES actuates

____ Any ES Bus de-energized

<u>THEN</u> open associated MUP breakers.

1 Ensure ES actuations are bypassed or reset:

___ Auto

Manual

2 ____ Place MUP on de-energized bus in normal after stop.

3.11 ____ WHEN any of the following exist:

Any EDG running

Any offsite power source available

THEN continue in this procedure.

| AP-770 | REV 29 | PAGE 11 of 113 | EDGA |
|--------|---------------|----------------|------|
| | | | |

3.10 IF ES actuates, AND any ES Bus is de-energized, THEN open...

| AP-770 | REV 29 | PAGE 12 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

ACTIONS

3.12 ____ IF any EDG is running, <u>THEN</u> ensure proper EDG voltage and frequency.

DETAILS

- $\begin{array}{rl} 1 & \underline{IF} \ EDG \ output \ voltage \ is \\ < \ 4150V, \\ \underline{THEN} \ raise \ EDG \ output \ voltage: \end{array}$
 - Select affected "EDG A(B) EXC VOLT ADJ SELECT" to "CONT RM".
 - Ensure EDG voltage is ≈ 4160V using "EDG A(B) EXC VOLT ADJUST".
- 2 ____ Ensure frequency is \approx 60 Hz by adjusting "EDG A(B) SPEED".
- 3 ____ Ensure EDG output Bkr closes.
- 3.13 ____ IF any ES 4160V Bus is energized, <u>THEN</u> GO TO Step 3.17 in this procedure.

3.10 IF ES actuates, AND any ES Bus is de-energized, THEN open...

| AP-770 | REV 29 | PAGE 14 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

ACTIONS

- 3.14 ____ IF at any time, <u>all</u> of the following exist:
 - A ES 4160V BUS de-energized
 - Fault does <u>NOT</u> exist
 - ____ Any offsite power source available
 - $\frac{\text{THEN}}{\text{A ES } 4160\text{V BUS.}}$

DETAILS

- 1 <u>IF</u> "DIESEL GEN A BREAKER CLOSED" annunciator alarm (Q-02-03) is lit, <u>THEN</u> defeat A ES 4160V BUS lockout:
 - Notify PPO to open
 "AY KNIFE SWITCH
 A ES 4160V BUS
 UV RELAY POWER"
 (4160V ES BUS 3A-13).
 - <u>WHEN</u> AY knife switch is open, <u>THEN</u> depress "4160V ESA UV RESET" push button.
 - Verify "DIESEL GEN A BREAKER CLOSED" annunciator alarm clears.
 - Notify PPO to close "AY KNIFE SWITCH A ES 4160V BUS UV RELAY POWER".
- 2 <u>Select feeder Bkr from available</u> power source to "CLOSE" until "4KV ES BUS A DEAD" annunciator alarm clears (normally < 10 seconds).
- 3 ____ Depress "4160V ESA UV RESET" push button.

3.10 IF ES actuates, AND any ES Bus is de-energized, THEN open...

3.14 IF de-energized A ES BUS is NOT faulted, AND offsite power exists...

| AP-770 | REV 29 | PAGE 16 of 113 | EDGA | |
|--------|--------|----------------|------|--|
| | | | | |

ACTIONS

- 3.15 ____ <u>IF</u> at any time, <u>all</u> of the following exist:
 - ____ B ES 4160V BUS de-energized
 - Fault does <u>NOT</u> exist
 - ____ Any offsite power source available
 - THEN energize B ES 4160V BUS.

DETAILS

- 1 ____ <u>IF</u> "DIESEL GEN B BREAKER CLOSED" annunciator alarm (Q-05-03) is lit, <u>THEN</u> defeat B ES 4160V BUS lockout:
 - Notify PPO to open
 "AY KNIFE SWITCH
 B ES 4160V BUS
 UV RELAY POWER"
 (4160V ES BUS 3B-2).
 - <u>WHEN</u> AY knife switch is open, <u>THEN</u> depress "4160V ESB UV RESET" push button for the affected ES 4160V Bus.
 - Verify "DIESEL GEN B BREAKER CLOSED" annunciator alarm clears.
 - Notify PPO to close "AY KNIFE SWITCH B ES 4160V BUS UV RELAY POWER".
 - 2 <u>Select feeder Bkr from available</u> power source to "CLOSE" until "4KV ES BUS B DEAD" annunciator alarm clears (normally < 10 seconds).
 - 3 ____ Depress "4160V ESB UV RESET" push button.

3.10 IF ES actuates, AND any ES Bus is de-energized, THEN open...

3.14 IF de-energized A ES BUS is NOT faulted, AND offsite power exists...

3.15 IF de-energized B ES BUS is NOT faulted, AND offsite power exists...

| AP-770 | REV 29 | PAGE 18 of 113 | EDGA | |
|--------|--------|----------------|------|--|
| | | | | |

ACTIONS

DETAILS

3.16 <u>WHEN</u> any ES 4160V Bus is energized, <u>AND</u> adequate SCM exists, <u>THEN</u> continue in this procedure.

| AP-770 | REV 29 | PAGE 19 of 113 | EDGA |
|--------|--------|----------------|------|
| - | | | |

| Applicable | carry-over | steps: |
|------------|------------|--------|
|------------|------------|--------|

3.10 IF ES actuates, AND any ES Bus is de-energized, THEN open...

3.14 IF de-energized A ES BUS is NOT faulted, AND offsite power exists...

3.15 IF de-energized B ES BUS is NOT faulted, AND offsite power exists...

| AP-770 | REV 29 | PAGE 20 of 113 | EDGA | |
|--------|--------|----------------|------|--|
| | | | | |

ACTIONS

DETAILS

STATUS

At least 1 ES 4160V Bus energized.

- 3.17 ____ Verify letdown flow exists.

<u>IF letdown flow does NOT</u> • Close MUV-49 exist, THEN isolate letdown.

- _ <u>IF</u> MUV-49 will <u>NOT</u> close, THEN close:
 - MUV-50
 - MUV-51

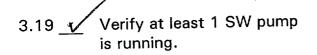
3.18 \checkmark IF both of the following are de-energized:

4160V UNIT BUS 3A

🗸 4160V UNIT BUS 3B

THEN notify SPO to CONCURRENTLY PERFORM EOP-14, Enclosure 14, Main Generator Purging.

| Applicable | carry-over | steps: |
|------------|------------|--------|
|------------|------------|--------|


3.10 IF ES actuates, AND any ES Bus is de-energized, THEN open...

3.14 IF de-energized A ES BUS is NOT faulted, AND offsite power exists...

3.15 IF de-energized B ES BUS is NOT faulted, AND offsite power exists...

| AP-770 | REV 29 | PAGE 22 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

ACTIONS

IF no SW pumps are

THEN start an available

running,

SW pump.

| SWP-1A | | | |
|--------|--|--|--|
| SWP-1B | | | |
| SWP-1C | | | |

DETAILS

1 Close SW valves to RCPs:

| RCP-1A | SWV-80 | SWV-84 |
|--------|--------|--------|
| RCP-1B | SWV-79 | SWV-83 |
| RCP-1C | SWV-82 | SWV-86 |
| RCP-1D | SWV-81 | SWV-85 |

2 ____ Start available SW pump.

[Rule 5, EDG Control]

| AP-770 | REV 29 | PAGE 23 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

3.10 IF ES actuates, AND any ES Bus is de-energized, THEN open...

3.14 IF de-energized A ES BUS is NOT faulted, AND offsite power exists...

3.15 IF de-energized B ES BUS is NOT faulted, AND offsite power exists...

| AP-770 | REV 29 | PAGE 24 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

ACTIONS

3.20 <u>V</u> Ensure at least 1 SW Raw Water pump is running.

[Rule 5, EDG Control]

| | =1 |
|--------|----|
| RWP-2A | |
| RWP-2B | |
| RWP-1 | |

DETAILS

3.21 <u>v</u>

Verify at least 1 MUP is running.

| MUP-1A | |
|--------|--|
| MUP-1B | |
| MUP-1C | |

 <u>IF</u> no MUPs are running, <u>AND</u> MUP restart is desired, <u>THEN</u> CONCURRENTLY PERFORM Enclosure 3, MUP Restart, in this procedure.

| AP-770 | REV 29 | PAGE 25 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

3.10 IF ES actuates, AND any ES Bus is de-energized, THEN open...

3.14 IF de-energized A ES BUS is NOT faulted, AND offsite power exists...

3.15 IF de-energized B ES BUS is NOT faulted, AND offsite power exists...

| AP-770 | REV 29 | PAGE 26 of 113 | EDGA | |
|--------|--------|----------------|------|--|
| | | | | |

ACTIONS

3.22 <u>IF</u> running MUP is aligned to DC cooling, <u>THEN</u> ensure cooling pumps are running.

[Rule 5, EDG Control]

DETAILS

<u>IF MUP-1A is running,</u> <u>AND</u> aligned to DC cooling, <u>THEN</u> start cooling pumps:

DCP-1A

RWP-3A

<u>IF MUP-1C is running,</u>
 <u>AND</u> aligned to DC cooling,
 <u>THEN</u> start cooling pumps:

DCP-1B

RWP-3B

3.23 Verify ES MCC 3AB is energized.

<u>IF</u> ES MCC 3AB is <u>NOT</u> energized, <u>THEN</u> energize ES MCC 3AB.

- 1 <u>IF</u> energized ES 480V Bus is powered from EDG, <u>THEN</u> ensure EDG load is \leq 2975 KW.
- 2 ____ Depress transfer push button for ES MCC 3AB to energized bus.

| AP-770 REV 29 PAGE 27 of 113 EDGA |
|-----------------------------------|
|-----------------------------------|

3.10 IF ES actuates, AND any ES Bus is de-energized, THEN open...

3.14 IF de-energized A ES BUS is NOT faulted, AND offsite power exists...

3.15 IF de-energized B ES BUS is NOT faulted, AND offsite power exists...

| AP-770 | REV 29 | PAGE 28 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

ACTIONS

DETAILS

3.24 Verify proper CC cooling.

• ___ CC ventilation running

• CC chiller running

IF proper CC cooling does <u>NOT</u> exist, <u>THEN</u> **CONCURRENTLY PERFORM** EOP-14, Enclosure 17, Control Complex Emergency Ventilation and Cooling.

| AP-770 | REV 29 | PAGE 29 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

| Applicable | carry-over | steps: |
|------------|------------|--------|
|------------|------------|--------|

.....

3.10 IF ES actuates, AND any ES Bus is de-energized, THEN open...

3.14 IF de-energized A ES BUS is NOT faulted, AND offsite power exists...

3.15 IF de-energized B ES BUS is NOT faulted, AND offsite power exists...

| AP-770 | REV 29 | PAGE 30 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

ACTIONS

DETAILS

3.25 <u>IF</u> at any time, letdown flow restoration is desired, THEN CONCURRENTLY PERFORM EOP-14, Enclosure 4, Letdown Recovery.

3.26 V IF DHR operation is required, THEN CONCURRENTLY PERFORM AP-404, Loss of Decay Heat Removal, beginning with Step 3.1

 $3.27 \underline{/} \underline{IF}$ both of the following are de-energized:

4160V UNIT BUS 3A

4160V UNIT BUS 3B

THEN stop CDT-1 flow to condenser.

1 Select GWPs to "PULL TO LOCK":

✓ GWP-1A

✓ GWP-1B

2 Notify SPO to close the following valves (95 ft TB near GWPs):

√ GWV-9 "GWP-1A SUCTION ISOLATION"

🖌 GWV-10 "GWP-1B SUCTION ISOLATION"

______ GWV-195 "GWV-196 UPSTREAM ISOLATION"

| | | | the second s |
|--------|--------|----------------|--|
| AP-770 | REV 29 | PAGE 31 of 113 | EDGA |

3.10 IF ES actuates, AND any ES Bus is de-energized, THEN open...

3.14 IF de-energized A ES BUS is NOT faulted, AND offsite power exists...

3.15 IF de-energized B ES BUS is NOT faulted, AND offsite power exists...

3.25 IF letdown flow restoration is desired, THEN CONCURRENTLY PERFORM...

| AP-770 | REV 29 | PAGE 32 of 113 | EDGA |
|--------|--------|--|------|
| | | ······································ | |

ACTIONS

- 3.28 ____ Verify ES 480V UV lockouts are not actuated.
 - IF ES 480V UV lockouts are actuated, THEN reset lockouts.
- 1 <u>IF</u> AB is accessible, <u>THEN</u> notify PPO to perform the following for affected ES 480V Bus (119 ft AB by BASTs):
 - Select CAHE-3A "A BAST HEATER" to "OFF".
 - Select CAHE-3B "B BAST HEATER" to "OFF".
 - $\begin{array}{r} 2 \underbrace{\qquad \ \ \, IF \ AB \ is \ \underline{NOT} \ accessible,} \\ \underline{THEN} \ derate \ affected \ EDG \ by \\ 50 \ KW. \end{array}$

[Rule 5, EDG Control]

- 3 ____ Select BWST Htr control switch to "LOCAL".
- 4 Bypass or reset ES actuations:
 - ___ Auto

Manual

5 Reset affected ES 480V UV lockouts:

| | 480V ES BUS A | 480V ES BUS B |
|---|-----------------------|----------------------|
| 1 | UV LK/OT
8627/ESA | UV LK/OT
8627/ESB |
| 2 | UV LK/OT
86X27/ESA | |

٦

| AP-770 | REV 29 | PAGE 33 of 113 | EDGA | |
|--------|--------|----------------|------|---|
| | | | | ć |

DETAILS

3.10 IF ES actuates, AND any ES Bus is de-energized, THEN open...

3.14 IF de-energized A ES BUS is NOT faulted, AND offsite power exists...

3.15 IF de-energized B ES BUS is NOT faulted, AND offsite power exists...

3.25 IF letdown flow restoration is desired, THEN CONCURRENTLY PERFORM...

| AP-770 | REV 29 | PAGE 34 of 113 | EDGA | 1 |
|--------|--------|----------------|------|---|
| | | | | |

ACTIONS

DETAILS

3.29 Verify IA PRESS is > 90 psig.

- Ensure IAP-4 is running.
- Notify SPO to start available air compressors:
 - ___ IAP-3A ___ IAP-3B ___ IAP-3C

AP-770

3.10 IF ES actuates, AND any ES Bus is de-energized, THEN open...

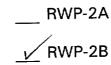
3.14 IF de-energized A ES BUS is NOT faulted, AND offsite power exists...

3.15 IF de-energized B ES BUS is NOT faulted, AND offsite power exists...

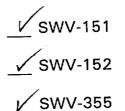
3.25 IF letdown flow restoration is desired, THEN CONCURRENTLY PERFORM...

| AP-770 | REV 29 | PAGE 36 of 113 | EDGA | |
|--------|--------|----------------|------|--|
| | | | | |

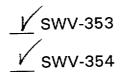
ACTIONS


3.30 ____ Ensure emergency RB cooling is in service.

[Rule 5, EDG Control]


DETAILS

1 At least 1 Emergency SW Pump running:


2 At least 1 Emergency SW Raw Water Pump running:

- 3 _____IF ES has actuated, <u>THEN</u> only 1 ES selected RB cooling unit running in low speed.
- 4 $\underbrace{\bigvee}_{\text{IF}}$ ES has <u>NOT</u> actuated, <u>THEN</u> both ES selected RB cooling units running in low speed.
- 5 CI valves to RB cooling units closed:

6 SW valves to RB cooling units open:

3.10 IF ES actuates, AND any ES Bus is de-energized, THEN open...

3.14 IF de-energized A ES BUS is NOT faulted, AND offsite power exists...

3.15 IF de-energized B ES BUS is NOT faulted, AND offsite power exists...

3.25 IF letdown flow restoration is desired, THEN CONCURRENTLY PERFORM...

| AP-770 | REV 29 | PAGE 38 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | L |

ACTIONS

3.31 <u>IF</u> at any time, PZR Htrs require power, THEN energize PZR Htrs.

DETAILS

- $1 \checkmark IF B ES 4160V BUS is energized$ from any of the following:
 - Any offsite power source
 - B EDG with ≤ 2700 KW load

THEN CONCURRENTLY PERFORM Enclosure 4, B ES 4160V BUS Supply to PZR Htrs, in this procedure.

2 <u>IF</u> B ES 4160V BUS is <u>NOT</u> available, <u>AND</u> A ES 4160V BUS is energized from <u>any</u> of the following:

Any offsite power source

A EDG with \leq 2700 KW load

THEN CONCURRENTLY PERFORM Enclosure 5, A ES 4160V BUS Supply to PZR Htrs, in this procedure.

| AP-770 | REV 29 | PAGE 39 of 113 | EDGA |
|--------|--------|----------------|------|
|--------|--------|----------------|------|

3.10 IF ES actuates, AND any ES Bus is de-energized, THEN open...

3.14 IF de-energized A ES BUS is NOT faulted, AND offsite power exists...

3.15 IF de-energized B ES BUS is NOT faulted, AND offsite power exists...

3.25 IF letdown flow restoration is desired, THEN CONCURRENTLY PERFORM...

3.31 IF PZR Htrs require power, THEN energize PZR Htrs.

| AP-770 REV 29 PAGE 40 of 113 EDGA | AP-770 REV 29 | PAGE 40 of 113 | EDGA |
|-----------------------------------|---------------|----------------|------|
|-----------------------------------|---------------|----------------|------|

ACTIONS

DETAILS

3.32 ____ IF both ES 4160V Buses are energized, <u>THEN</u> GO TO Step 3.41 in this procedure.

| AP-770 | REV 29 | PAGE 41 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

3.10 IF ES actuates, AND any ES Bus is de-energized, THEN open...

3.14 IF de-energized A ES BUS is NOT faulted, AND offsite power exists...

3.15 IF de-energized B ES BUS is NOT faulted, AND offsite power exists...

3.25 IF letdown flow restoration is desired, THEN CONCURRENTLY PERFORM...

3.31 IF PZR Htrs require power, THEN energize PZR Htrs.

| AP-770 REV 29 PAGE 42 of 113 EDGA |
|-----------------------------------|
|-----------------------------------|

ACTIONS

DETAILS

STATUS

- Only 1 ES 4160V Bus energized.
- 3.33 ____ Prevent MUP Auto start on de-energized bus.

1 Ensure ES actuations are bypassed or reset:

Auto

Manual

- 2 ____ Place MUP on de-energized bus in normal after stop.
- 3.34 ____ Ensure all ES 4160V feeder Bkrs are open on de-energized bus.

| A ES Bus | B ES Bus |
|----------|----------|
| 3207 | 3212 |
| 3209 | 3206 |
| 3205 | 3208 |
| 3211 | 3210 |

| 1 | AP-770 | REV 29 | PAGE 43 of 113 | EDGA |
|---|---------|--------|----------------|------|
| | ,,,,,,, | | | |

3.10 IF ES actuates, AND any ES Bus is de-energized, THEN open...

3.14 IF de-energized A ES BUS is NOT faulted, AND offsite power exists...

3.15 IF de-energized B ES BUS is NOT faulted, AND offsite power exists...

3.25 IF letdown flow restoration is desired, THEN CONCURRENTLY PERFORM...

3.31 IF PZR Htrs require power, THEN energize PZR Htrs.

| AP-770 | REV 29 | PAGE 44 of 113 | EDGA |
|--------|--|----------------|------|
| | ······································ | | |

ACTIONS

3.35 _____ IF EDG associated with de-energized bus is running, <u>THEN</u> ensure proper EDG voltage and frequency.

DETAILS

- 1 ___ IF associated EDG output voltage is < 4150V,
 - THEN raise EDG output voltage:
 - Select affected "EDG A(B) EXC VOLT ADJ SELECT" to "CONT RM".
 - Ensure EDG voltage is ≈ 4160V using "EDG A(B) EXC VOLT ADJUST".
- 2 ____ Ensure frequency is \approx 60 Hz by adjusting "EDG A(B) SPEED".
- 3 ____ Ensure EDG output Bkr closes.
- 3.36 _____ IF both ES 4160V Buses are energized, <u>THEN</u> GO TO Step 3.41 in this procedure.

| AP-770 | REV 29 | PAGE 45 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

3.10 IF ES actuates, AND any ES Bus is de-energized, THEN open...

3.14 IF de-energized A ES BUS is NOT faulted, AND offsite power exists...

3.15 IF de-energized B ES BUS is NOT faulted, AND offsite power exists...

3.25 IF letdown flow restoration is desired, THEN CONCURRENTLY PERFORM...

3.31 IF PZR Htrs require power, THEN energize PZR Htrs.

| AP-770 | REV 29 | PAGE 46 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

ACTIONS

3.37 ____ Ensure ES Bus is available for recovery.

DETAILS

- 1 Notify PPO to verify lockouts are not tripped:

 - "86B-3210 B EDG LOCKOUT RELAY" (B ES 4160V SWGR Room)
- 2 Verify ES 4160V lockouts are not tripped:

| A ES Bus | B ES Bus |
|----------|----------|
| 86B-3205 | 86B-3206 |
| 86B-3207 | 86B-3208 |
| 86B-3211 | 86B-3212 |

3 <u>IF</u> any lockout is tripped, <u>THEN</u> **CONCURRENTLY PERFORM** Enclosure 1, Recovery of Faulted ES Bus, in this procedure.

| 1 | AP-770 | REV 29 | PAGE 47 of 113 | EDGA |
|---|--------|---------------------------------------|----------------|------|
| | | · · · · · · · · · · · · · · · · · · · | | |

3.10 IF ES actuates, AND any ES Bus is de-energized, THEN open...

3.15 IF de-energized B ES BUS is NOT faulted, AND offsite power exists...

3.25 IF letdown flow restoration is desired, THEN CONCURRENTLY PERFORM...

3.31 IF PZR Htrs require power, THEN energize PZR Htrs.

| AP-770 | REV 29 | PAGE 48 of 113 | EDGA | |
|--------|--------|----------------|------|--|
| | | | | |

ACTIONS

- 3.38 ____ IF at any time, <u>all</u> of the following exist:
 - A ES 4160V BUS de-energized
 - Fault does <u>NOT</u> exist
 - ____ Any offsite power source available
 - THEN energize A ES 4160V BUS.

DETAILS

- 1 <u>IF</u> "DIESEL GEN A BREAKER CLOSED" annunciator alarm (Q-02-03) is lit, <u>THEN</u> defeat A ES 4160V BUS lockout:
 - Notify PPO to open
 "AY KNIFE SWITCH
 A ES 4160V BUS
 UV RELAY POWER"
 (4160V ES BUS 3A-13).
 - <u>WHEN</u> AY knife switch is open, <u>THEN</u> depress "4160V ESA UV RESET" push button.
 - Verify "DIESEL GEN A BREAKER CLOSED" annunciator alarm clears.
 - Notify PPO to close "AY KNIFE SWITCH A ES 4160V BUS UV RELAY POWER".
- 2 <u>Select feeder Bkr from available</u> power source to "CLOSE" until "4KV ES BUS A DEAD" annunciator alarm clears (normally < 10 seconds).
- 3 ___ Depress "4160V ESA UV RESET" push button.

| | AP-770 | REV 29 | PAGE 49 of 113 | EDGA |
|---|--------|---------|----------------|------|
| 1 | | 1121 20 | | |

3.10 IF ES actuates, AND any ES Bus is de-energized, THEN open...

3.25 IF letdown flow restoration is desired, THEN CONCURRENTLY PERFORM...

3.31 IF PZR Htrs require power, THEN energize PZR Htrs.

3.38 IF de-energized A ES BUS is NOT faulted, AND offsite power exists...

| AP-770 | REV 29 | PAGE 50 of 113 | EDGA | |
|--------|--------|----------------|------|--|
| | | | | |

ACTIONS

- 3.39 ____ <u>IF</u> at any time, <u>all</u> of the following exist:
 - ____ B ES 4160V BUS de-energized
 - Fault does <u>NOT</u> exist
 - ____ Any offsite power source available
 - THEN energize B ES 4160V BUS.

DETAILS

- 1 <u>IF</u> "DIESEL GEN B BREAKER CLOSED" annunciator alarm (Q-05-03) is lit, <u>THEN</u> defeat B ES 4160V BUS lockout:
 - Notify PPO to open
 "AY KNIFE SWITCH
 B ES 4160V BUS
 UV RELAY POWER"
 (4160V ES BUS 3B-2).
 - <u>WHEN</u> AY knife switch is open, <u>THEN</u> depress "4160V ESB UV RESET" push button for the affected ES 4160V Bus.
 - Verify "DIESEL GEN B
 BREAKER CLOSED"
 annunciator alarm clears.
 - Notify PPO to close "AY KNIFE SWITCH B ES 4160V BUS UV RELAY POWER".
- 2 <u>Select feeder Bkr from available</u> power source to "CLOSE" until "4KV ES BUS B DEAD" annunciator alarm clears (normally < 10 seconds).
- 3 ____ Depress "4160V ESB UV RESET" push button.

| AD 770 | REV 29 | PAGE 51 of 113 | EDGA |
|--------|--------|----------------|------|
| AP-770 | REV 29 | FAGE ST OF THE | |

3.10 IF ES actuates, AND any ES Bus is de-energized, THEN open...

3.25 IF letdown flow restoration is desired, THEN CONCURRENTLY PERFORM ...

3.31 IF PZR Htrs require power, THEN energize PZR Htrs.

3.38 IF de-energized A ES BUS is NOT faulted, AND offsite power exists...

3.39 IF de-energized B ES BUS is NOT faulted, AND offsite power exists...

| AP-770 REV 29 PAGE 52 of 113 EDGA | AP-770 REV 29 | PAGE 52 of 113 | EDGA |
|-----------------------------------|---------------|----------------|------|
|-----------------------------------|---------------|----------------|------|

ACTIONS

3.40 _____ IF at any time, all the following exist:

- De-energized ES Bus NOT faulted
- EDG on affected Bus NOT running

THEN attempt recovery of failed EDG.

DETAILS

• Notify PPO to **CONCURRENTLY PERFORM** Enclosure 2, Failed EDG Recovery, in this procedure.

3.10 IF ES actuates, AND any ES Bus is de-energized, THEN open...

3.25 IF letdown flow restoration is desired, THEN CONCURRENTLY PERFORM...

3.31 IF PZR Htrs require power, THEN energize PZR Htrs.

3.38 IF de-energized A ES BUS is NOT faulted, AND offsite power exists...

3.39 IF de-energized B ES BUS is NOT faulted, AND offsite power exists...

3.40 IF a de-energized bus is NOT faulted, AND EDG is NOT running, THEN...

| | | | r | |
|--------|--------|----------------|------|--|
| AP-770 | REV 29 | PAGE 54 of 113 | EDGA | |
| | | | | |

ACTIONS

DETAILS

STATUS

At least 1 ES 4160V Bus energized.

- 3.41 ____ <u>IF</u> at any time, heat tracing is desired, <u>THEN</u> restore heat tracing.
- 1 ____ IF ES 4160V Bus is powered from an EDG, THEN ensure EDG load is \leq 3028 KW.
- 2 Notify PPO to depress "RESET" push button on the following:
 - HTCP-5 "DIESEL LOAD SHEDDING PANEL" (119 ft AB by ES MCC 3A2)
 - HTCP-2 "DIESEL LOAD SHEDDING PANEL" (95 ft AB by elevator)

| AP-770 | REV 29 | PAGE 55 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

3.10 IF ES actuates, AND any ES Bus is de-energized, THEN open...

3.25 IF letdown flow restoration is desired, THEN CONCURRENTLY PERFORM ...

3.31 IF PZR Htrs require power, THEN energize PZR Htrs.

3.38 IF de-energized A ES BUS is NOT faulted, AND offsite power exists...

3.39 IF de-energized B ES BUS is NOT faulted, AND offsite power exists...

3.40 IF a de-energized bus is NOT faulted, AND EDG is NOT running, THEN...

3.41 IF heat tracing is desired, THEN restore heat tracing.

| AP-770 |) REV 29 | PAGE 56 of 113 | EDGA |
|--------|----------|----------------|------|
| | | | |

ACTIONS

DETAILS

3.42 ____ Verify SF cooling is in operation.

<u>IF</u> SF cooling is <u>NOT</u> in operation, THEN establish SF cooling.

[Rule 5, EDG Control]

1 ____ IF SFP that was previously running is available, <u>THEN</u> start previously running pump.

2 ____ IF SFP that was previously running is <u>NOT</u> available, THEN perform the following:

___ Start available SFP.

<u>IF</u> SFHE-1A is in service, <u>THEN</u> notify PPO to ensure SW alignment (119 ft AB by SFPs):

> ___ Close SWV-22 "SFHE-1B INLET ISO".

___ Open SWV-21 "SFHE-1A INLET ISO".

<u>IF SFHE-1B is in service,</u>
 <u>THEN</u> notify PPO to ensure
 SW alignment
 (119 ft AB by SFPs):

Close SWV-21 "SFHE-1A INLET ISO".

Open SWV-22 "SFHE-1B INLET ISO".

3.10 IF ES actuates, AND any ES Bus is de-energized, THEN open...

3.25 IF letdown flow restoration is desired, THEN CONCURRENTLY PERFORM ...

3.31 IF PZR Htrs require power, THEN energize PZR Htrs.

3.38 IF de-energized A ES BUS is NOT faulted, AND offsite power exists...

3.39 IF de-energized B ES BUS is NOT faulted, AND offsite power exists...

3.40 IF a de-energized bus is <u>NOT</u> faulted, <u>AND</u> EDG is <u>NOT</u> running, <u>THEN</u>...

3.41 IF heat tracing is desired, THEN restore heat tracing.

| AP-770 | REV 29 | PAGE 58 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

ACTIONS

DETAILS

- 3.43 ____ IF any EDG is running, <u>THEN</u> notify NSM to order EDG fuel as required.
- 3.44 ____ IF all the following exist:
 - A ES 480V BUS energized
 - Fire does <u>NOT</u> exist
 - ____ FSP-2A or FSP-2B running
 - THEN stop running FSPs.
- <u>IF</u> FSP-2A is running, <u>THEN</u> notify SPO to restore FSP-2A to normal in accordance with OP-880, Fire Service System, Section 4.2, FSP-2A Operation.
- <u>IF</u> FSP-2B is running, <u>THEN</u> notify SPO to restore FSP-2B to normal in accordance with OP-880, Fire Service System, Section 4.3, FSP-2B Operation.

| AP-770 | REV 29 | PAGE 59 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

3.10 IF ES actuates, AND any ES Bus is de-energized, THEN open...

3.25 IF letdown flow restoration is desired, THEN CONCURRENTLY PERFORM...

3.31 IF PZR Htrs require power, THEN energize PZR Htrs.

3.38 IF de-energized A ES BUS is NOT faulted, AND offsite power exists...

3.39 IF de-energized B ES BUS is NOT faulted, AND offsite power exists...

3.40 IF a de-energized bus is NOT faulted, AND EDG is NOT running, THEN...

3.41 IF heat tracing is desired, THEN restore heat tracing.

| AP-770 REV 29 | PAGE 60 of 113 | EDGA |
|---------------|----------------|------|
|---------------|----------------|------|

ACTIONS

DETAILS

- 3.45 <u>IF</u> offsite power is supplying all available ES 4160V Buses, <u>THEN</u> EXIT this procedure.
- 3.46 _____ IF 230KV switchyard is <u>NOT</u> available, <u>THEN</u> consider 500KV backfeed as a source of offsite power.
- 3.47 <u>IF</u> at any time, B EDG load is > 3175 KW for 24 hrs, <u>THEN</u> ensure TBP-2 is stopped.
- 3.48 <u>IF</u> at any time, EDG load is > 2825 KW, <u>THEN</u> notify TSC for guidance on maintaining EDGs within 2000 hr or continuous ratings.

See Table 1

3.49 <u>WHEN</u> offsite power is available, <u>THEN</u> continue in this procedure.

| AP-770 | REV 29 | PAGE 61 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

3.25 IF letdown flow restoration is desired, THEN CONCURRENTLY PERFORM...

3.41 IF heat tracing is desired, THEN restore heat tracing.

| AP-770 REV 29 PAGE 62 of 113 EDGA | AP-770 | | | EDGA |
|-----------------------------------|--------|--|--|------|
|-----------------------------------|--------|--|--|------|

ACTIONS

DETAILS

- 3.50 IF A ES 4160V BUS is supplied from A EDG, <u>THEN</u> **PERFORM** Enclosure 6, A EDG Shutdown, in this procedure.
- 3.51 _____ IF B ES 4160V BUS is supplied from B EDG, <u>THEN</u> **PERFORM** Enclosure 7, B EDG Shutdown, in this procedure.
- 3.52 <u>Notify PPO to restore EDGs</u> to ES standby in accordance with OP-707, Operation of the ES Emergency Diesel Generators, Section 4.12, Operation of EDG.

3.53 **EXIT** this procedure.

| AP-770 | REV 29 | PAGE 63 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

BLANK PAGE

| AP-770 | REV 29 | PAGE 64 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

4.0 ENCLOSURE 1 RECOVERY OF FAULTED ES BUS

ACTIONS

DETAILS

- 1.1 ____ Notify Maintenance to repair fault on affected Bus.
- 1.2 <u>WHEN</u> fault is repaired, <u>THEN</u> reset lockouts for affected Bus.

| A ES Bus | B ES Bus |
|----------|----------|
| 86B-3205 | 86B-3206 |
| 86B-3207 | 86B-3208 |
| 86B-3211 | 86B-3212 |

- 1.3 <u>IF</u> affected EDG is <u>NOT</u> running, <u>THEN</u> reset affected EDG lockout.
- Notify PPO to reset affected EDG lockout:
 - ____ "86B-3209 A EDG LOCKOUT RELAY" (A ES 4160V SWGR Room)
 - "86B-3210 B EDG LOCKOUT RELAY" (B ES 4160V SWGR Room)

| AP-770 | REV 29 | PAGE 65 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

BLANK PAGE

| AP-770 REV 29 PAGE 66 of 113 EDGA | AP-770 | REV 29 | PAGE 66 of 113 | EDGA |
|-----------------------------------|--------|--------|----------------|------|
|-----------------------------------|--------|--------|----------------|------|

4.0 ENCLOSURE 1 RECOVERY OF FAULTED ES BUS (CONT'D)

ACTIONS

1.4 <u>IF</u> affected ES Bus is de-energized, <u>AND</u> EDG is running, <u>THEN</u> reset affected EDG lockout.

DETAILS

- 1 ____ Dispatch PPO to affected ES 4160V ES Bus SWGR Room.
- 2 Place and maintain affected EDG output Bkr control switch in the "TRIP" position:
 - Bkr 3209
 - Bkr 3210
- 3 Notify PPO to reset affected EDG lockout:

 - "86B-3210 B EDG LOCKOUT RELAY" (B ES 4160V SWGR Room)
- 4 <u>WHEN</u> affected EDG lockout is reset, <u>THEN</u> close affected EDG output Bkr:
 - Bkr 3209
 - Bkr 3210

1.5 **EXIT** this enclosure.

| AP-770 | REV 29 | PAGE 67 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

BLANK PAGE

| AP-770 | REV 29 | PAGE 68 of 113 | EDGA | |
|--------|--------|----------------|------|--|
| AP-770 | REV 29 | PAGE 68 of 113 | EDGA | |

4.0 ENCLOSURE 2 FAILED EDG RECOVERY

ACTIONS

DETAILS

- 2.1 ____ Prevent any failed EDG from starting during recovery efforts.
- Select EDG "CONTROL" switch to "At Engine" for any failed EDG (119 ft AB A(B) EDG Engine Room).
- 2.2 ____ Ensure condition causing failure of EDG is corrected.
- 2.3 <u>WHEN</u> condition causing failure of EDG has been corrected, <u>THEN</u> prepare EDG for start.
- 1 Ensure 86 lockout is reset for affected EDG:
 - "86B-3209 A EDG LOCKOUT RELAY" (A ES 4160V SWGR Room)
- 2 <u>Reset EDG "86 DG" lockout</u> (119 ft AB A(B) EDG Control Room).
- 3 ____ Ensure fuel rack is reset (119 ft AB A(B) EDG Engine Room).
- 4 ____ Depress "RESET" push button (119 ft AB A(B) EDG Engine Room).

| 1 | AP-770 | REV 29 | PAGE 69 of 113 | EDGA |
|---|--------|---------------|----------------|------|

BLANK PAGE

.....

| AP-770 REV 29 | PAGE 70 of 113 | EDGA | |
|---------------|----------------|------|--|
|---------------|----------------|------|--|

4.0 ENCLOSURE 2 FAILED EDG RECOVERY (CONT'D)

ACTIONS

DETAILS

- 2.4 <u>WHEN</u> at least 2 min have elapsed, <u>THEN</u> start recovered EDG.
- 1 ____ Notify Control Room EDG is being started.

2 <u>Select EDG "CONTROL" switch to</u> "Normal" (119 ft AB A(B) EDG Engine Room).

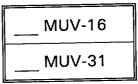
2.5 ____ EXIT this enclosure.

| AP-770 | REV 29 | PAGE 71 of 113 | EDGA |
|--------|---------|----------------|------|
| | 1127 20 | | l |

BLANK PAGE

| AP-770 | REV 29 | PAGE 72 of 113 | EDGA | |
|--------|--------|----------------|------|--|
| | | | | |

4.0 ENCLOSURE 3 MUP RESTART


ACTIONS

DETAILS

3.1 <u>IF</u> bus is being supplied by the EDG, <u>THEN</u> ensure adequate EDG margin exists for MUP and required cooling water pumps.

[Rule 5 EDG Control]

3.2 ____ Ensure MU control valves are closed.

3.3 ____ Start required cooling water pumps for affected MUP.

[Rule 5, EDG Control]

3.4 ____ Ensure both MUP recirc to MUT valves are open.

|
MUV-53 |
|-------------|
|
MUV-257 |

| AP-770 | REV 29 | PAGE 73 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

BLANK PAGE

| AP-770 | REV 29 | PAGE 74 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | LDGA |

4.0 ENCLOSURE 3 MUP RESTART

ACTIONS

DETAILS

3.5 ___ Prepare MUP for restart. 1 Ensure affected MUP main lube oil pump is running:

____ MUP-2A

MUP-2B

MUP-2C

2 Ensure affected MUP backup lube oil pump is in normal after stop:

____ MUP-3A

MUP-3B

MUP-3C

3 Ensure affected MUP main gear oil pump is running:

MUP-4A

MUP-4B

____ MUP-4C

4 Ensure affected MUP backup gear oil pump is selected to "AUTO":

MUP-5A

MUP-5B

____ MUP-5C

|
AP-770 | REV 29 | PAGE 75 of 113 | EDGA |
|------------|--------|----------------|------|
| | | | |

BLANK PAGE

| AP-770 | REV 29 | PAGE 76 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | 1 |

4.0 ENCLOSURE 3 MUP RESTART (CONT'D)

ACTIONS

DETAILS

3.6 ____ Select all MUPs to normal after stop.

| MUP-1A |
|--------|
| MUP-1B |
| MUP-1C |

- 3.7 <u>IF A Train MUP will be</u> started, <u>THEN</u> ensure suction alignment to MUT.
- 1 ____ IF MUP-1C is <u>NOT</u> ES selected, <u>THEN</u> notify PPO to select "PUMP 3C" on 4160V ES BUS 3B-5
- 2 Ensure MUV-62 is closed.
- $3 _ IF MUT \text{ level is } \geq 55 \text{ in,} \\ THEN \text{ ensure MUV-73 is closed.}$
- $\begin{array}{l} 4 & \underline{\text{IF}} \text{ MUT level is } < 55 \text{ in,} \\ \\ \underline{\text{THEN}} \text{ ensure MUV-73 is open.} \end{array}$
- 5 Ensure MUV-69 is open.
- 6 ____ Ensure MUV-58 is open.

| AP-770 | REV 29 | PAGE 77 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

.....

| AP-770 REV 29 PAGE 78 of 113 ED | GA |
|---------------------------------|----|
|---------------------------------|----|

4.0 ENCLOSURE 3 MUP RESTART (CONT'D)

ACTIONS

3.8 _____ IF B Train MUP will be started, <u>THEN</u> ensure suction alignment to MUT.

- 1 <u>IF</u> MUP-1A is <u>NOT</u> ES selected, <u>THEN</u> notify PPO to select "PUMP 3A" on 4160V ES BUS 3A-10
- 2 ____ Ensure MUV-69 is closed.
- $3 _ IF MUT level is \ge 55 in,$ THEN ensure MUV-58 is closed.
- 4 <u>IF MUT level is < 55 in, THEN ensure MUV-58 is open.</u>
- 5 ____ Ensure MUV-62 is open.
- 6 Ensure MUV-73 is open.

| AP-770 | REV 29 | PAGE 79 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

| AP-770 | REV 29 | PAGE 80 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

4.0 ENCLOSURE 3 MUP RESTART (CONT'D)

100

| ACTIONS | DETAILS |
|---------------------------|---|
| 3.9 Start ES selected MUP | MUP-1A |
| aligned to MUT. | MUP-1B |
| [Rule 5, EDG Control] | MUP-1C |
| 3.10 Maintain PZR level. | Ensure MUV-596 is open. Ensure MUV-27 is open. Control PZR level using MUV-31 |
| 3.11 Maintain MUT level | Cycle appropriate BWST to MUP valve |
| ≥ 55 in. | to maintain MUT level: MUV-73 MUV-58 |

| AP-770 | REV 29 | PAGE 81 of 113 | EDGA |
|--------|--------|----------------|------|

· ____

| AP-770 REV 29 PAGE 82 of 113 EDGA | |
|-----------------------------------|--|
|-----------------------------------|--|

4.0 ENCLOSURE 3 MUP RESTART (CONT'D)

ACTIONS

DETAILS

- 3.12 Restore seal injection.
- 1 ____ Ensure MUV-596 is open.
- 2 ____ Ensure MUV-18 is open.
- 3 <u>Throttle open MUV-16 to establish</u> total seal injection flow rate of 12 gpm over a 2 min time period.

Time 12 gpm established ___ : ___

4 <u>WHEN</u> ≥ 10 min have elapsed with total seal injection flow rate of 12 gpm, <u>THEN</u> increase seal injection flow rate to 24 gpm.

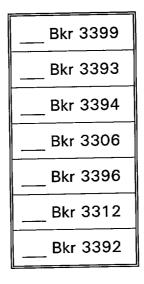
Time 24 gpm established ____ : ____

 $5 \underbrace{WHEN}_{with seal injection flow rate of}_{uith seal injection flow rate of}_{24 gpm,}_{\underline{THEN} increase total seal injection}_{flow rate to 36 gpm (32-40 gpm).}$

3.13 ___ EXIT this enclosure.

| AP-770 | REV 29 | PAGE 83 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

· -----



| AP-770 REV 29 | PAGE 84 of 113 | EDGA | |
|---------------|----------------|------|--|
|---------------|----------------|------|--|

4.0 ENCLOSURE 4 B ES 4160V BUS SUPPLY TO PZR HTRS

ACTIONS

- 4.1 ____ IF 480V REACTOR AUX BUS 3B is energized, <u>THEN</u> GO TO Step 4.7 in this enclosure.
- 4.2 ____ Ensure 480V feeder and Cross-Tie Bkrs are open.

- 4.3 ___ Prepare 480V Buses for backfeed.
- Notify SPO to ensure all Bkrs on the following are open:
 - ____ 480V PLANT AUX BUS 3 (Unit 480V SWGR Room)

 - 480V PZR HTR MCC 3B (119 ft IB by East door)

| AP-770 | REV 29 | PAGE 85 of 113 | EDGA |
|--------|---------------|----------------|------|
| | | | |

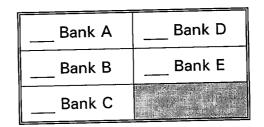
| | GA |
|--|----|
|--|----|

4.0 ENCLOSURE 4 B ES 4160V BUS SUPPLY TO PZR HTRS (CONT'D)

| | ACTIONS | DETAILS |
|-----|--|--|
| 4.4 | WHEN notified that all Bkrs on the following are open: 480V PLANT AUX BUS 3 480V REACTOR AUX BUS 3B 480V PZR HTR MCC 3B THEN energize 480V PLANT AUX BUS 3 | 1 Close Bkr 3222
2 Close Bkr 3312 |
| 4.5 | Energize 480V REACTOR
AUX BUS 3B. | 1 Close Bkr 3392
2 Close Bkr 3396 |
| 4.6 | Energize 480V PZR HTR
MCC 3B. | Notify SPO to close
480V REACTOR AUX BUS 3B-1C
"BREAKER 3356 FEED TO
PZR HTR MCC 3B" |

| AP-770 | REV 29 | PAGE 87 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

(Unit 480V SWGR Room).


| AP-770 | REV 29 | PAGE 88 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

4.0 ENCLOSURE 4 B ES 4160V BUS SUPPLY TO PZR HTRS (CONT'D)

ACTIONS

4.7 ____ Energize 3 groups of PZR Htrs.

- 1 ____ Ensure EDG-1B load is \leq 2700 KW.
- 2 Place all PZR Htr banks in "OFF":

- 3 Notify SPO to close the following Bkrs on 480V PZR HTR MCC 3B (119 ft IB by east door):
 - ____ 1A "PZR HEATER CONTROL TRANSFORMER B-1"
 - ____ 1B "PZR HEATER CONTROL TRANSFORMER B-2"
- 4 Notify SPO to close the following Bkrs on 480V PZR HTR MCC 3B (119 ft IB by east door):
 - 1D "PZR HEATER GROUP 10"
 - 3C "PZR HEATER GROUP 12"
 - 4C "PZR HEATER GROUP 13"

| AP-770 | REV 29 | PAGE 89 of 113 | EDGA |
|--------|--------|----------------|------|

| AP-770 | REV 29 | PAGE 90 of 113 | EDGA | |
|--------|--|----------------|------|--|
| | ······································ | | | |

4.0 ENCLOSURE 4 B ES 4160V BUS SUPPLY TO PZR HTRS (CONT'D)

ACTIONS

- 4.8 <u>IF PZR Htrs are desired,</u> <u>THEN select PZR Htr Bank E</u> to control RCS PRESS.
- 4.9 **EXIT** this enclosure.

| | AP-770 | REV 29 | PAGE 91 of 113 | EDGA |
|--|--------|--------|----------------|------|
|--|--------|--------|----------------|------|

| AP-770 | REV 29 | PAGE 92 of 113 | EDGA |
|--------|--------|----------------|------|
|--------|--------|----------------|------|

4.0 ENCLOSURE 5 A ES 4160V BUS SUPPLY TO PZR HTRS

ACTIONS

DETAILS

- 5.1 _____ IF 480V REACTOR AUX BUS 3A is energized, <u>THEN</u> GO TO Step 5.7 in this enclosure.
- 5.2 ____ <u>IF any</u> of the following are running:
 - ___ DHP-1A
 - ____ BSP-1A
 - ___ RWP-3A
 - ___ DCP-1A
 - ____ AHF-15A

<u>THEN</u> notify TSC for further guidance and **EXIT** this enclosure.

5.3 ____ Ensure 480V REACTOR AUX BUS 3A feeder Bkrs are open.

|
Bkr 330 | 5 |
|-------------|---|
|
Bkr 339 | 5 |

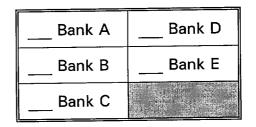
| AP-770 | REV 29 | PAGE 93 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

| AP-770 REV 29 PAGE 94 of 113 | EDGA |
|------------------------------|------|
|------------------------------|------|

4.0 ENCLOSURE 5 A ES 4160V BUS SUPPLY TO PZR HTRS (CONT'D)

| ACTIONS | DETAILS |
|---|---|
|
repare 480V Buses for
ackfeed. | Notify SPO to ensure all Bkrs on the following are open: 480V REACTOR AUX BUS 3A (Unit 480V SWGR Room) 480V PZR HTR MCC 3A (119 ft IB by east door) |
|
<u>WHEN</u> notified that all Bkrs
on the following are open:
480V REACTOR AUX
BUS 3A
480V PZR HTR
MCC 3A
<u>THEN</u> energize
480V REACTOR AUX
3US 3A. | 1 Close Bkr 3321
2 Close Bkr 3395 |
| Energize 480V PZR HTR
MCC 3A. | Notify SPO to close
480V REACTOR AUX BUS 3A-1C
"BREAKER 3355 FEED TO
PZR HTR MCC 3A"
(Unit 480V SWGR Room). |

| AP-770 | REV 29 | PAGE 95 of 113 | EDGA |
|-----------|---------|----------------|------|
| / / / / 0 | ••=• -• | | |


| AP-770 | REV 29 | PAGE 96 of 113 | EDGA |
|--------|--------|----------------|------|
| | | 1 | |

4.0 ENCLOSURE 5 A ES 4160V BUS SUPPLY TO PZR HTRS (CONT'D)

ACTIONS

5.7 ____ Energize 3 groups of PZR Htrs.

- 1 ____ Ensure EDG-1A load is \leq 2700 KW.
- 2 Place all PZR Htr banks in "OFF":

- 3 Notify SPO to close the following Bkrs on 480V PZR HTR MCC 3A (119 ft IB by east door):

 - ____ 2A "PZR HEATER CONTROL TRANSFORMER A-2"
- 4 Notify SPO to close the following Bkrs on 480V PZR HTR MCC 3A (119 ft IB by east door):
 - 1C "PZR HEATER GROUP 7"
 - 2C "PZR HEATER GROUP 8"
 - 3C "PZR HEATER GROUP 9"

| AP-770 | REV 29 | PAGE 97 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

-____

| AP-770 | REV 29 | PAGE 98 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

4.0 ENCLOSURE 5 A ES 4160V BUS SUPPLY TO PZR HTRS (CONT'D)

ACTIONS

- 5.8 <u>IF PZR Htrs are desired,</u> <u>THEN select PZR Htr Bank D</u> to control RCS PRESS.
- 5.9 **EXIT** this enclosure.

| AP-770 | REV 29 | PAGE 99 of 113 | EDGA |
|--------|--------|----------------|------|
| | | | |

| AP-770 | REV 29 | PAGE 100 of 113 | EDGA |
|--------|--------|-----------------|------|
| | | | (|

4.0 ENCLOSURE 6 A EDG SHUTDOWN

ACTIONS

6.1 ____ Prepare A EDG to synchronize with offsite power source.

- 1 Ensure plant conditions are stable.
- 2 Ensure HPI is bypassed or reset.
- 3 ____ Depress "4160V ESA UV RESET" push button.
- 4 ____ Notify PPO to obtain key 94 from Control Room.
- 5 ____ While maintaining frequency, notify PPO to select A EDG "SPEED DROOP" to "60" in increments of 10 (119 ft AB A EDG Engine Room).
- 6 ____ Select "EDG A EXC VOLT ADJ SELECT" to "CONT RM".
- 7 ____ Notify PPO to select
 "A EDG Unit-Parallel Switch" to "PAR" (119 ft AB A EDG Control Room).
- 8 Adjust "EDG A EXC VOLT ADJUST" to maintain A EDG voltage 4150 to 4250 volts.
- 9 Ensure at least 1 of the following breakers is closed:
 - 1691
 - 1692
 - 4900
 - ____ 4902

| AP-770 | REV 29 | PAGE 101 of 113 | EDGA |
|--------|--------|-----------------|------|
| | | | |

| AP-770 REV 29 | PAGE 102 of 113 | EDGA |
|---------------|-----------------|------|
|---------------|-----------------|------|

4.0 ENCLOSURE 6 A EDG SHUTDOWN (CONT'D)

DETAILS ACTIONS 1 ____ Select synchroscope for Bkr to be 6.2 ____ Synchronize A EDG with paralleled to "ON". offsite power source. 2 ____ Adjust "EDG A EXC VOLT ADJUST" to match incoming and running voltages. 3 ____ Adjust "EDG A SPEED" to establish synchroscope moving slow in the "FAST" direction. 4 ____ Close oncoming Bkr at \approx 11 o'clock. 5 Select synchroscope to "OFF". 1 ____ Maintain -1.5 to +1.5 MVAR by 6.3 Reduce A EDG load. adjusting "EDG A EXC VOLT ADJUST". 2 IF A EDG load is > 1200 KW, THEN adjust "EDG A SPEED" to reduce load to \approx 1200 KW. 3 ____ WHEN load has been reduced to \approx 1200 KW for 3 to 5 min, THEN adjust "EDG A SPEED" to reduce load to \approx 200 KW. 4 ____ Establish \approx +0.1 MVAR by adjusting "EDG A EXC VOLT ADJUST". 5 Open Bkr 3209

| AP-770 | REV 29 | PAGE 103 of 113 | EDGA |
|--------|--------|-----------------|------|
| | | | |

| AP-770 REV 29 | PAGE 104 of 113 | EDGA |
|---------------|-----------------|------|
|---------------|-----------------|------|

4.0 ENCLOSURE 6 A EDG SHUTDOWN (CONT'D)

ACTIONS

6.4 Stop A EDG.

DETAILS

- 1 ____ Notify PPO to adjust A EDG "SPEED DROOP" to "0" in increments of 10 (119 ft AB A EDG Engine Room).
- 2 ____ Notify PPO to select
 "A EDG Unit-Parallel Switch" to "UNIT" (119 ft AB A EDG Control Room).
- 3 <u>Maintain 59.8 to 60.2 Hz by</u> adjusting "EDG A SPEED".
- 4 <u>Select "EDG A VOLT ADJUST</u> MODE SELECT" to "MAN".
- 5 <u>Maintain EDG voltage at</u> 3933 to 4400V by adjusting "EDG A MANUAL VOLTAGE ADJUST".
- 6 <u>Select</u> "EDG A VOLT ADJUST MODE SELECT" to "AUTO".
- 7 <u>Select "EDG A EXC VOLT ADJ</u> SELECT" to "DG RM".
- 8 ____ Depress A EDG "STOP" push button.

6.5 **EXIT** this enclosure.

| AP-770 | REV 29 | PAGE 105 of 113 | EDGA |
|--------|--------|-----------------|------|
| | | | |

| AP-770 | REV 29 | PAGE 106 of 113 | EDGA |
|--------|--------|-----------------|------|
|--------|--------|-----------------|------|

4.0 ENCLOSURE 7 B EDG SHUTDOWN

<u>ACTIONS</u>

7.1 ____ Prepare B EDG to synchronize with offsite power source.

- 1 Ensure plant conditions are stable.
- 2 Ensure HPI is bypassed or reset.
- 3 ____ Depress "4160V ESB UV RESET" push button.
- 4 ____ Notify PPO to obtain key 94 from Control Room.
- 5 ____ While maintaining frequency, notify PPO to select B EDG "SPEED DROOP" to "60" in increments of 10 (119 ft AB B EDG Engine Room).
- 6 _____ Select "EDG B EXC VOLT ADJ SELECT" to "CONT RM".
- 7 _____ Notify PPO to select
 "B EDG Unit-Parallel Switch" to "PAR" (119 ft AB B EDG Control Room).
- 8 <u>Adjust "EDG B EXC VOLT</u> ADJUST" to maintain B EDG voltage 4150 to 4250 volts.
- 9 Ensure at least 1 of the following breakers is closed:
 - ____1691
 - 1692
 - ____ 4900
 - ____ 4902

| AP-770 | REV 29 | PAGE 107 of 113 | EDGA |
|--------|--------|-----------------|------|
| | | | |

| AP-770 | REV 29 | PAGE 108 of 113 | EDGA |
|--------|--------|-----------------|------|
| | | | |

4.0 ENCLOSURE 7 B EDG SHUTDOWN (CONT'D)

ACTIONS

7.2 ____ Synchronize B EDG with offsite power source.

DETAILS

- 1 ____ Select synchroscope for Bkr to be paralleled to "ON".
- 2 ____ Adjust "EDG B EXC VOLT ADJUST" to match incoming and running voltages.
- 3 <u>Adjust "EDG B SPEED"</u> to establish synchroscope moving slow in the "FAST" direction.
- 4 ____ Close oncoming Bkr at \approx 11 o'clock.
- 5 Select synchroscope to "OFF".

7.3 Reduce B EDG load.

- 1 ____ Maintain -1.5 to +1.5 MVAR by adjusting "EDG B EXC VOLT ADJUST".
- $\begin{array}{rrr} 2 & & \underline{\text{IF B EDG load is}} > 1200 \text{ KW}, \\ & \underline{\text{THEN}} \text{ adjust "EDG B SPEED"} \\ & \text{to reduce load to} \approx 1200 \text{ KW}. \end{array}$
- $\begin{array}{r} 3 & \underline{\text{WHEN}} \text{ load has been reduced to} \\ \approx 1200 \text{ KW for 3 to 5 min,} \\ \underline{\text{THEN}} \text{ adjust "EDG B SPEED"} \\ \text{to reduce load to} \approx 200 \text{ KW.} \end{array}$
- 4 ____ Establish ≈ +0.1 MVAR by adjusting "EDG B EXC VOLT ADJUST".
- 5 _ Open Bkr 3210

| AP-770 | REV 29 | PAGE 109 of 113 | EDGA |
|--------|--------|-----------------|------|
| | | | |

| PAGE 110 of 113 | EDGA | |
|-----------------|-----------------|----------------------|
| | PAGE 110 of 113 | PAGE 110 of 113 EDGA |

4.0 ENCLOSURE 7 B EDG SHUTDOWN (CONT'D)

ACTIONS

7.4 Stop B EDG.

DETAILS

- 1 <u>Notify PPO to adjust B EDG</u> "SPEED DROOP" to "0" in increments of 10 (119 ft AB B EDG Engine Room).
- 2 ____ Notify PPO to select
 "B EDG Unit-Parallel Switch" to "UNIT" (119 ft AB B EDG Control Room).
- 3 <u>Maintain 59.8 to 60.2 Hz by</u> adjusting "EDG B SPEED".
- 4 ____ Select "EDG B VOLT ADJUST MODE SELECT" to "MAN".
- 5 <u>Maintain EDG voltage at</u> 3933 to 4400V by adjusting "EDG B MANUAL VOLTAGE ADJUST".
- 6 ____ Select "EDG B VOLT ADJUST MODE SELECT" to "AUTO".
- 7 ____ Select "EDG B EXC VOLT ADJ SELECT" to "DG RM".
- 8 ____ Depress B EDG "STOP" push button.

7.5 **EXIT** this enclosure.

| AP-770 | REV 29 | PAGE 111 of 113 | EDGA |
|-------------|--------|-----------------|------|
| • • • • • • | | | |

| AP-770 REV 29 PAGE 112 of 113 EDGA | AP-770 | REV 29 | | EDGA |
|------------------------------------|--------|--------|--|------|
|------------------------------------|--------|--------|--|------|

| | Load range in KW |
|--------------|------------------|
| Maximum load | 3474 |
| 30 min | 3376 to 3474 |
| 200 hr | 3176 to 3375 |
| 2000 hr | 2826 to 3175 |
| Continuous | 0 to 2825 |

Table 1: EDG Ratings

| AP-770 | REV 29 | PAGE 113 of 113 (LAST PAGE) | EDGA |
|--------|--------|-----------------------------|------|
| | | | |

REGION II INITIAL LICENSE EXAMINATION JOB PERFORMANCE MEASURE

JPM B1c1, Take Actions required for Loss of RCS Pressure

| CANDIDATE | | |
|--------------------------|-------------------------------|-------|
| EXAMINER | | |
| PREPARED/
REVISED BY: | | Date/ |
| REVIEWED BY: | (Operations Representative) | Date/ |
| VALIDATED BY: | (Operations Representative) | Date/ |
| APPROVED BY: | (Supervisor Initial Training) | Date/ |

CRYSTAL RIVER UNIT 3 SIMULATOR JOB PERFORMANCE MEASURE

Task: Take actions required for loss of Reactor Coolant (RCS) pressure.

Alternate Path: RCV-14 and RCV-13 will not close.

JPM #: B1c1 (bank #238)

K/A Rating/Importance 010A1.07/3.7/3.7 Task Number/Position: 00020402013/RO

Task Standard: Take actions required for loss of Reactor Coolant (RCS) pressure using AP-520.

| Preferred Evalua | tion Location: | Preferred Evaluation Method: | |
|-------------------------------|-----------------|------------------------------|---|
| SimulatorXI | n-Plant Admin | Perform X Simulate | |
| References:
1. AP-520, Rev | y 3 | | |
| Validation Time: | 10 min. | Time Critical: No | |
| Candidate: | Printed Name | Time Start:
Time Finish: | |
| Performance Ra | ting: SAT UNSAT | Performance Time: | |
| Examiner: | Printed Name | / | e |
| Comment: | | | |
| | | | |
| | | | |
| | | | |

SIMULATOR OPERATOR SETUP INSTRUCTIONS:

- 1. The plant is at approximately 67% power.
- 2. RCV-13 and RCV-14 will not close (failures) (0.2 setting).
- 3. IC #62 (son 6-9-00).
- 4. Check SPDS screens.
- 5. Ensure MUT level is not too high and pressure alarm is cleared.

SIMULATOR OPERATOR INSTRUCTIONS:

- 1. Booth operator will take the roles for the various operators for notifications.
- 2. As PPO, if called RCV-13 and RCV-14 cannot be closed from the breakers.

Tools/Equipment/Procedures Needed:

1. AP-520

2. Steam Tables

READ TO THE OPERATOR

Directions to the Student:

I will explain the initial conditions, and state the task to be performed. All steps, including any required communications, shall be performed for this JPM. I will provide initiating cues and reports on other actions when directed by you. Ensure you indicate to me when you understand your assigned task. To indicate that you have completed your assigned task, return the handout sheet to the examiner.

Initial Conditions:

You are the REACTOR OPERATOR. Reactor Coolant System (RCS) pressure is decreasing slowly. The reason for the RCS pressure decrease is unknown at this time.

Initiating Cues:

You are requested to perform required actions.

START TIME: _____

| STEP 1: | |
|--|--------------|
| Obtain a copy of appropriate procedure. | SAT |
| STANDARD: Candidate obtains a copy of AP-520 | UNSAT |
| EXAMINER NOTE: Candidate may take a "prompt and prudent" action,
attempting to isolate RCV-13 and RCV-14. They will not
close which forces use of the procedure. | |
| COMMENTS: | |
| STEP 2: (step 3.1) Notify personnel of entry into AP-520 PA announcement STA Plant operators NSM (evaluate plant conditions for potential entry into Emergency Plan) STANDARD: Candidate uses PA system to announce entry into AP-520. Candidate calls by telephone or radios the STA, Plant Operators, and NSM. COMMENTS: | SAT
UNSAT |
| STEP 3: (step 3.2) If RB is occupied, then evacuate RB. 1. Depress RB EVACUTION pushbutton. 2. Notify personnel over PA. 3. Repeat PA announcement. EXAMINER CUE: No one is in the RB STANDARD: N/A COMMENTS: | SAT
UNSAT |

| $\underline{\text{STEP 4}:} (\text{step 3.3})$ | |
|---|--------------|
| Verify OTSG tube leakage has not increased. | SAT
UNSAT |
| COMMENTS: | |
| | |
| <u>STEP 5</u> : (step 3.4) | |
| If a significant rise in RCS leakage exists, then go to step 3.11 in this procedure. | SAT
UNSAT |
| STANDARD: Candidate determines by use of pressurizer, Make-up Tank, sump levels and radiation monitor trending that there is no significant rise in RCS leakage and continues on in AP-520. | |
| COMMENTS: | |
| | |

| STEP 6: (step 3.5) | Critical Step |
|--|---------------|
| PROCEDURE STATUS: RCS Press lowering. | SAT |
| Verify proper operation of PZR hearers.
PZR HEATER CONTROL
PZR Htr Banks
RC-203-JI
RC-204-JI
If PZR Htrs are not operating properly, then notify Maintenance to initiate
repair efforts. | UNSAT |
| STANDARD: Operator verifies that red light for each energized heater is ON.
Candidate verifies RC-203-JI and RC-204-JI each have a reading and are approximately equal (KW). | |
| COMMENTS: | |

| STEP 7: | (step 3.6) | Critical Step |
|------------------|---|---------------|
| $\frac{D1LI}{I}$ | (500) 5.0) | |
| | IF RCS PRESS continues to lower, then isolate possible sources of RCS | SAT |
| | PRESS reduction. | |
| | Close the following valves: | UNSAT |
| | DHV-91 | |
| | RCV-53 | |
| | RCV-11 | |
| | PORV | |
| 1 | RCV-13 | |
| | RCV-14 | |
| | | |
| EXAMIN | ER NOTE: Candidate may spot RCV-14 early and attempt closing | |
| 0 | RCV-13 and RCV-14 prior to other valves in this step. Candidate | |
| | may conclude that this is in fact the cause of the RCS pressure | |
| | decrease and continue to the next step. | |
| | RD: Candidate verifies DHV-91 and RCV-53 are closed with green light | |
| STANDA | ON and red light OFF (may hold valves in the closed direction). | |
| ļ | Candidate rotates control switch for RCV-11 (Alarm I-6-2), PORV | |
| 1 | (Alarm I-5-2), RCV-13 and RCV-14 to CLOSE and verifies for each | |
| | valve green light ON and red light OFF. | |
| | valve green light ON and for light OTT. | |
| EVANIN | NER NOTE:RCV-13 and RCV-14 will not close (RCV-13 light will | |
| EAAWIII | remain red; RCV-14 amber light remains on). Candidate may call | |
| | PPO to try and close at breaker; booth operator will call back and | |
| | say closure is not possible. | |
| | say crosure is not possible. | |
| COMME | NTS: | |
| | | |
| | | |

| (TTDD 0 (1 - 27) | Critical Step |
|--|---------------|
| STEP 8: (step 3.7) If RCS PRESS continues to lower, and RCV-13 is not closed, then stop RCP-1B 1 | SAT
UNSAT |
| EXAMINER CUE: JPM is terminated (when RCP is shutdown). | |
| <u>COMMENTS:</u> | |
| END OF TASK | |

TIME STOP

CANDIDATE CUE SHEET

(TO BE RETURNED TO EXAMINER UPON COMPLETION OF TASK)

Initial Conditions:

You are the REACTOR OPERATOR. Reactor Coolant System (RCS) pressure is decreasing slowly. The reason for the RCS pressure decrease is unknown at this time.

Initiating Cues:

You are requested to perform required actions.

| LOCOP | REV 03 | AP-520 |
|-------|----------|--------|
| | <u> </u> | |

LOSS OF RCS COOLANT OR PRESSURE

1.0 ENTRY CONDITIONS

IF any of the following occur:

- A significant rise in RCS leakage
- An uncontrolled RCS PRESS reduction

THEN use this procedure.

2.0 IMMEDIATE ACTIONS

<u>NOTE</u>

There are no immediate actions for this procedure.

| Approved by MNPO | Date11/05/99 | |
|------------------|---------------|-------|
| AP-520 | PAGE 1 of 117 | LOCOP |

3.0 FOLLOW-UP ACTIONS

DETAILS ACTIONS Notify personnel of entry PA announcement 3.1 into AP-520 STA **Plant operators** NSM (evaluate plant condition for potential entry into Emergency Plan) 1 ____ Depress "RB EVACUATION" IF RB is occupied, 3.2 push button. THEN evacuate RB. 2 ____ Notify personnel over PA. 3 ____ Repeat PA announcement.

3.0 FOLLOW-UP ACTIONS (CONT'D)

ACTIONS

DETAILS

3.3

Verify OTSG tube leakage has not increased.

• ____ Notify Chemistry to sample OTSGs.

Observe radiation monitors and recorder traces for the following:

RM-A12 (Condenser Exh)

____ RM-G26-RI (B1 MS line)

RM-G27-RI (A2 MS line)

RM-G25-RI (A1 MSV-25)

RM-G28-RI (B2 MSV-26)

IF OTSG tube leak > 1 gpm exists, <u>AND</u> DHR is <u>NOT</u> in operation, <u>THEN</u> **GO TO** EOP-06, Steam Generator Tube Rupture, beginning with Step 3.1

3.4 <u>IF a significant rise in RCS</u> leakage exists, <u>THEN GO TO Step 3.11</u> in this procedure.

3.0 FOLLOW-UP ACTIONS (CONT'D)

ACTIONS

DETAILS

<u>STATUS</u> RCS PRESS lowering.

- 3.5 ____ Verify proper operation of PZR heaters.
- "PZR HEATER CONTROL"
- PZR Htr Banks
- RC-203-JI
- RC-204-JI

<u>IF PZR Htrs are NOT</u> operating properly, <u>THEN</u> notify Maintenance to initiate repair efforts.

- 3.6 <u>IF RCS PRESS continues</u> to lower, <u>THEN</u> isolate possible sources of RCS PRESS reduction.
- Close the following valves:

| DHV-91 |
|--------|
| RCV-53 |
| RCV-11 |
| PORV |
| RCV-13 |
| RCV-14 |

| • | | | |
|--------|--------|---------------|-------|
| AP-520 | REV 03 | PAGE 7 of 117 | LOCOP |
| | | | |

3.0 FOLLOW-UP ACTIONS (CONT'D)

ACTIONS

3.7 <u>IF RCS PRESS continues</u> to lower, <u>AND RCV-13 is NOT</u> closed, <u>THEN stop RCP-1B</u>

DETAILS

- 1 <u>IF Rx power is > 75%,</u> <u>THEN CONCURRENTLY PERFORM</u> AP-510, Rapid Power Reduction, beginning with Step 3.1
- $2 _ \underline{WHEN}_{THEN} \text{ Rx power is } < 75\%,$ THEN stop RCP-1B

3.8 IF RCS PRESS continues to lower, <u>THEN</u> trip the Rx and **CONCURRENTLY PERFORM** EOP-2, Vital System Status Verification, beginning with Step 2.1

急

REGION II INITIAL LICENSE EXAMINATION JOB PERFORMANCE MEASURE

JPM B1d1, Ensure BS actuation

| CANDIDATE | | |
|--------------------------|-------------------------------|-------|
| | | |
| EXAMINER | | |
| PREPARED/
REVISED BY: | | Date/ |
| REVIEWED BY: | (Operations Representative) | Date/ |
| VALIDATED BY: | (Operations Representative) | Date/ |
| APPROVED BY: | (Supervisor Initial Training) | Date/ |

CRYSTAL RIVER UNIT 3 SIMULATOR JOB PERFORMANCE MEASURE

Task: Ensure Building Spray (BS) actuation.

Alternate Path: BSP-1A will not start in manual. BSV-4 is set on local.

JPM #: B1d1 (bank #247)

K/A Rating/Importance 026A3.01/4.3/4.5 Task Number/Position: 0260502001/RO

Task Standard: Initiate Building Spray for high Reactor Building temperature using EM-225C.

| Preferred Evaluation Location: | Preferred Evaluation Method: |
|--------------------------------|------------------------------|
| Simulator X In-Plant Admin | Perform X Simulate |
| References: | |
| 1. EM-225, Rev 1 | |
| Validation Time: 5 min. | Time Critical: No |
| Candidate: Printed Name | Time Start:
Time Finish: |
| Performance Rating: SAT UNSAT | Performance Time: |
| Examiner: Printed Name | / |
| Comment: | |
| | |
| | |

SIMULATOR OPERATOR SETUP INSTRUCTIONS:

- 1. A LOCA is in progress.
- 2. Reactor Building pressure is < 30 psig.
- 3. BSP-1A will not start in manual.
- 4. The BWST level is > 20 ft.
- 5. Use EOP-03 for setup conditions.
- 6. IC #63.
- 7. Input "enc1" and "enc2".
- 8. Acknowledge SCM alarm.
- 9. Check CRTs to ensure RB temperatures (if displayed) are high.
- 10. Activate LP for B1d1.
- 11. Set BSV-4 to local.

SIMULATOR OPERATOR INSTRUCTIONS:

1. Booth operator will take the roles for the various operators for notifications

Tools/Equipment/Procedures Needed:

1. EM-225C

READ TO THE OPERATOR

Directions to the Student:

I will explain the initial conditions, and state the task to be performed. All steps, including any required communications, shall be performed for this JPM. I will provide initiating cues and reports on other actions when directed by you. Ensure you indicate to me when you understand your assigned task. To indicate that you have completed your assigned task, return the handout sheet to the examiner.

Initial Conditions:

You are the REACTOR OPERATOR. A LOCA is in progress. The Shift Supervisor has entered EOP-03. Reactor Building (RB) temperatures are high. The Emergency Coordinator (EC) has given concurrence to start Building Spray to reduce RB temperatures.

Initiating Cues:

You are requested to start Building Spray (BSP-1A preferred) per section 4.6 of EM-225C.

START TIME: _____

| STEP 1: | |
|---|--------------|
| Obtain a copy of appropriate procedure. | SAT |
| STANDARD: Candidate obtains a copy of EM-225C. | UNSAT |
| EXAMINER NOTE: Provide student a copy of EM-225C | |
| COMMENTS: | |
| STEP 2: $(step 4.6)$ | |
| STEP 2: (step 4.6) If a building spray pump is required and EC concurrence has been obtained, then perform the following: STANDARD: Candidate performs the following steps. | SAT
UNSAT |
| COMMENTS: | |
| <u>STEP 3:</u> (step 4.6.1) | |
| Ensure load is available on the emergency diesel generators per EOP-13, Rule 5. | SAT
UNSAT |
| STANDARD: N/A, the emergency diesel generators are not running. | |
| COMMENTS: | |

| STEP 4: (step 4.6.2) | Critical Step |
|---|--|
| Ensure Building Spray flow controls are set at 1500 gp
pumps are aligned to BWST, or 1200 gpm and LOCA
RB sump.
<u>STANDARD</u> : Candidate verifies suction source to Building Spra
ensures the REMOTE/LOCAL lever on BSV-3 an
REMOTE and the 1500 gpm. (BSV-4 is set to LO
moved to REMOTE).
<u>COMMENTS</u> : | L if aligned to the
UNSAT
uy pumps and
ad BSV-4 is set to |
| | Critical Step |
| <u>STEP 5:</u> (step 4.6.3) | Critical Step |
| Notify the control room to start one building spray pu | mp. SAT |
| EXAMINER CUE: (If required) the TSC requests you start | Building Spray. UNSAT |
| STANDARD: Candidate rotates the control handle for BSP-1A t
and notes that the pump did not start (green light r
light remains OFF). Pump start failure is reported
Candidate repeats the guidance of EM-225C secti
1B (some of the required steps may have been per
with BSP-1A alignment). (JPM ends). | to Shift Supervisor.
on 4.6 to start BSP- |
| EXAMINER NOTE: Role-play as Shift Supervisor when start problem with BSP-1A. Direct establish Building Spray with the "E | candidate to |
| COMMENTS: | |
| END OF TASK | |

÷,

TIME STOP _____

CANDIDATE CUE SHEET

(TO BE RETURNED TO EXAMINER UPON COMPLETION OF TASK)

Initial Conditions:

You are the REACTOR OPERATOR. A LOCA is in progress. The Shift Supervisor has entered EOP-03. Reactor Building (RB) temperatures are high. The Emergency Coordinator (EC) has given concurrence to start Building Spray to reduce RB temperatures.

Initiating Cues:

You are requested to start Building Spray (BSP-1A preferred) per section 4.6 of EM-225C.

Rev. 1

I

EMERGENCY PLAN IMPLEMENTING PROCEDURE

EM-225C

FLORIDA POWER CORPORATION

CRYSTAL RIVER UNIT 3

POST ACCIDENT MONITORING OF REACTOR BUILDING TEMPERATURE (This Procedure Addresses EQ Components)

APPROVED BY: Procedure Owner

L.K. Clewett (SIGNATURE ON FILE)

DATE: <u>5/23/00</u>

PROCEDURE OWNER: Manager, Nuclear Plant Operations

TABLE OF CONTENTS

| SECTION | <u>I</u> | PAGE | Ē |
|------------|--|------|--------|
| <u>1.0</u> | <u>PURPOSE</u> | . 1 | L |
| <u>2.0</u> | <u>REFERENCES</u> 2.1 <u>DEVELOPMENTAL REFERENCES</u> | . 1 | L
1 |
| <u>3.0</u> | PERSONNEL INDOCTRINATION3.1DEFINITIONS3.2RESPONSIBILITIES3.3LIMITS AND PRECAUTIONS | | 1
2 |
| <u>4.0</u> | <u>INSTRUCTIONS</u> | . 2 | 2 |
| <u>5.0</u> | FOLLOW-UP ACTIONS | 3 | 3 |
| ENCLOSURE | | | |
| 1 | Limiting RB Temperature | •• ! | 5 |

1.0 PURPOSE

The purpose of this procedure is to provide guidance to the TSC Accident Assessment Team to monitor <u>and take action to ensure</u> Reactor Building (RB) <u>temperatures remain below the qualified</u> <u>threshold limits for environmentally qualified components.</u> If temperatures approach a predetermined limit, then actions will be taken to reduce RB temperatures to acceptable values.

2.0 <u>REFERENCES</u>

2.1 DEVELOPMENTAL REFERENCES

- 2.1.1 ITS 3.6.5 Containment Air Temperature
- 2.1.2 Environmental and Seismic Qualification Program Manual
- 2.1.3 <u>IOC NOE 97-2534, Assessment to support EM-225C for SBLOCA EQ</u> <u>Concerns, dated 12/4/97</u>
- 2.1.4 Calculation M-97-0072, CR-3 Containment Analysis for SBLOCA, Rev. 2
- 2.1.5 <u>PC 97-7607</u>
- 2.1.6 <u>IOC NSM 98-0592, Close out of the DR/JCO related to PC 97-7607 RB</u> EQ Temperatures from a SBLOCA event, dated 4/2/98
- 2,1,7 Calculation M-97-0132, CR3 Containment Analysis, Rev. 6
- 2.1.8 PC 00-0830, Enclosure 1 curve in EM-225C appears to be incorrect, dated 3/16/00
- 2.1.9 Calculation M-90-0021, Building Spray and Decay Heat NPSH, Rev. 11
- 3.0 PERSONNEL INDOCTRINATION
- 3.1 DEFINITIONS

None

3.2 **RESPONSIBILITIES**

The TSC Accident Assessment Team is responsible for monitoring RB temperatures post accident, and to provide recommendations to the Emergency Coordinator to initiate building spray if temperatures reach the limits established in this procedure.

3.3 LIMITS AND PRECAUTIONS

- 3.3.1 Large break LOCA's and larger small break LOCA's will result in RB Pressures that actuate building spray automatically. Actions to manually start building spray to reduce RB temperatures will not be required in these situations.
- 3.3.2 Prior to starting any ES powered component, adequate load margin must be available if the ES 4160 volt busses are energized from the emergency diesel generators.
- 3.3.3 Prior to starting a building spray pump, building spray flow control valves must be set for 1200 gpm if ECCS suction has been transferred to the RB Sump.
- 3.3.4 If a SGTR is in progress then ensure adequate RB sump level is available prior to transferring or starting a BS pump from the RB Sump. With a SGTR, sufficient RB sump level might not be available due to loss from the SGTR. Reference calculation M-90-0021 for BSP NPSH requirements.

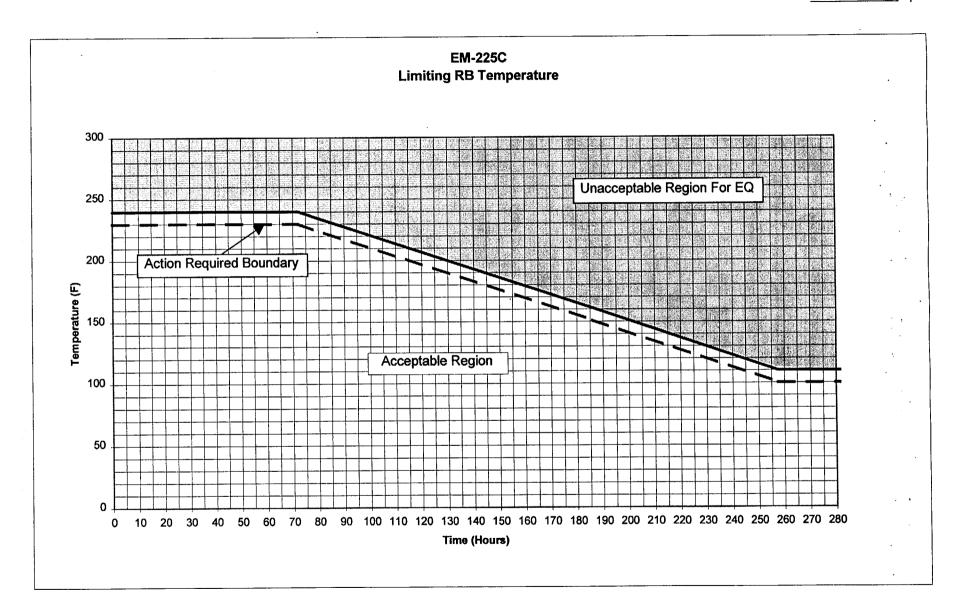
4.0 <u>INSTRUCTIONS</u>

- 4.1 <u>IF</u> at least one building spray pump is running, TH<u>EN</u> exit this procedure. No further action is required.
- 4.2 <u>IF</u> an RCS leak is occurring in the reactor building, <u>THEN</u> begin plotting average RB temperature on Enclosure 1 <u>for at</u> <u>least 1 hour intervals in the beginning of the event. The plotting</u> interval can be changed based on plant conditions.

RB Temperature is the average of the following four temperature elements:

| TEMPERATURE
ELEMENT | CONTROL ROOM
RECORDER | RECALL
POINT | COMPUTER
POINT | RB ELEV. |
|------------------------|--------------------------|-----------------|-------------------|----------|
| AH-536-TE | AH-536-TIR | RECL-77 | S358 | 102 |
| AH-537-TE | | RECL-78 | S359 | 125 |
| AH-538-TE | | RECL-80 | 5382 | 180 |
| AH-539-TE | \vee | RECL-81 | S383 | 235 |
| AVERAGE | | | S837 | |

4.4 <u>IF</u> average RB Temperature is in the "Acceptable" Region of Enclosure 1 and decreasing, <u>THEN</u> exit this procedure.


- 4.5 <u>IF</u> at any time average RB temperature <u>reaches</u> "Action Required <u>boundary</u>" region of Enclosure 1, <u>THEN</u> obtain Emergency Coordinator concurrence to start at least one building spray pump.
- 4.6 <u>IF</u> a building spray pump is required and EC concurrence has been obtained, THEN perform the following:
- 4.6.1 Ensure load is available on the emergency diesel generators per EOP-13, Rule 5.
- 4.6.2 Ensure Building Spray flow controls are set at 1500 GPM and "Remote" if pumps are aligned to BWST, or 1200 GPM and "LOCAL" if aligned to the RB Sump.
- 4.6.3 Notify the control room to start one building spray pump.
- 4.7 Continue to monitor RB Temperature.
- 4.8 <u>IF</u> RB Temperature does not lower to the acceptable region of Enclosure 1, <u>THEN</u> notify control room to start a second building spray pump if available.
 - NOTE: If building spray pumps are running, Emergency Operating Procedures provide guidance to secure them. If building spray pumps are secured, begin additional monitoring of RB Temperatures until a continuing decreasing trend is <u>achieved.</u>
- 4.9 <u>WHEN</u> building spray pumps are running, <u>THEN</u> exit this procedure.
- 5.0 FOLLOW-UP ACTIONS

I

4.3

None

ENCLOSURE 1

REGION II INITIAL LICENSE EXAMINATION JOB PERFORMANCE MEASURE

JPM B1e1, Re-establish Letdown

| CANDIDATE | | |
|---------------|-------------------------------|-------|
| | | |
| EAAMINER | | |
| PREPARED/ | | |
| | | Date/ |
| REVIEWED BY: | | Date/ |
| | (Operations Representative) | |
| VALIDATED BY: | | Date/ |
| | (Operations Representative) | |
| APPROVED BY: | | Date/ |
| | (Supervisor Initial Training) | |

CRYSTAL RIVER UNIT 3 SIMULATOR JOB PERFORMANCE MEASURE

Task: Re-establish letdown.

Alternate Path: MUV-50 has no power.

JPM #: B1e1 (bank #31)

K/A Rating/Importance: 004A4.05/3.6/3.1 Task Number/Position: 0040502004/RO

Task Standard: Re-establish letdown fusing EOP-14 enclosure 4.

| Preferred Evaluation Location: | Preferred Evaluation Method: |
|---|------------------------------|
| Simulator X In-Plant Admin | Perform X Simulate |
| References:
1. EOP-14 enclosure 4, Rev 7 | |
| Validation Time: 10 min. | Time Critical: No |
| Candidate: Printed Name | Time Start:
Time Finish: |
| Performance Rating: SAT UNSAT | Performance Time: |
| Examiner: Printed Name | / |
| Comment: | |
| | |
| | |
| | |

SIMULATOR OPERATOR SETUP INSTRUCTIONS:

- 1. RBIC has occurred due to a steam leak in the RB.
- 2. The steam leak has been isolated.
- 3. HPI has been bypassed and is being controlled (rule 2)
- 4. Letdown is isolated.
- 5. MUV-50 looses power when the control switch is rotated.
- 6. IC #64.
- 7. Input "enc2".

SIMULATOR OPERATOR INSTRUCTIONS:

- 1. Booth operator will take the roles for the various operators for notifications.
- 2. Use LP B1e1 to implement PPO steps.

Tools/Equipment/Procedures Needed:

- 1. EOP-14 enclosure 4
- 2. EOP-2, signed off to step 3.23

READ TO THE OPERATOR

Directions to the Student:

I will explain the initial conditions, and state the task to be performed. All steps, including any required communications, shall be performed for this JPM. I will provide initiating cues and reports on other actions when directed by you. Ensure you indicate to me when you understand your assigned task. To indicate that you have completed your assigned task, return the handout sheet to the examiner.

Initial Conditions:

You are the REACTOR OPERATOR.

A small steam leak in the RB has caused a reactor trip and an ES actuation (RBIC). Prior to having the symptom of excessive primary to secondary heat transfer, the leak was isolated.

The ES actuation has been reset and associated components controlled.

Initiating Cues:

You are requested to re-establish letdown with the MUDM-1A ("A" makeup demineralizer) in service.

START TIME: _____

| <u>STEP 1</u> : | |
|--|---------------|
| Obtain a copy of appropriate procedure. | SAT |
| STANDARD: Candidate obtains a copy of EOP-02 and EOP-14 enclosure 4. | UNSAT |
| COMMENTS: | |
| STEP 2: (step 4.1) | Critical Step |
| Ensure letdown is isolated. 1. Close MUV-49 2. If MUV-50 has power, then close MUV-50 3. If MUV-50 does not have power, then notify PPO to close MUV-45 BLOCK ORIFICE OUTLET ISO 4. Close MUV-51 EXAMINER NOTE: MUV-50 looses control power when the valve attempts to close. STANDARD: Candidate observes MUV-49 green light ON and red light OFF (ES status light green). Candidate rotates control switch for MUV-50 to close when control power is lost. Candidate calls PPO to perform detail 3 of step 4.1 in enclosure 4 of EOP-14. Candidate rotates knob | SAT
UNSAT |
| on MUV-51 controller clockwise to hard stop. | |

| STEP 3: | (step 4.2) | Critical Step |
|--|---|---------------|
| STEP 3: (step 4.2) If RBIC actuation has occurred, then ensure SW valves to letdown coolers to be placed in service have been reset. o o | | SAT
UNSAT |
| COMME | | |
| STEP 4: | (step 4.3) | Critical Step |
| | Ensure SW valves are open for letdown coolers to be placed in service.MUHE-1AMUHE-1BMUHE-1CSWV-47SWV-48SWV-47SWV-50SWV-49SWV-50 | SAT
UNSAT |
| | ARD: Candidate will rotate the control switch for each of the following valves: SWV-47, SWV-48, SWV-49 and SWV-50. Candidate verifies red light ON and green light OFF. | |
| COMME | INTS: | |

| STEP 5: (step 4.4) | Critical Step |
|---|---------------|
| Ensure MU valves are open for letdown coolers to be placed in service.
<u>MUHE-1A</u> <u>MUHE-1B</u> <u>MUHE-1C</u>
<u>MUV-38</u> <u>MUV-39</u> <u>MUV-498</u>
<u>MUV-40</u> <u>MUV-41</u>
<u>MUV-567</u> <u>MUV-567</u> <u>MUV-567</u>
<u>STANDARD:</u> Candidate will rotate the control switch for each of the following
valves: MUV-38, MUV-39, and MUV-567 Candidate verifies red
light ON and green light OFF. MUV-40 and MUV-41 are already
open, candidate will verify red light ON and green light OFF. | SAT
UNSAT |
| COMMENTS:
STEP 6: (step 4.5) | Critical Step |
| If power is available to MU Demin bypass valves, then bypass MU Demins. 1. Ensure MUV-124 is open. 2. Open MUV-200. 3. Ensure MUV-117 is open. 4. Close MUV-116. 5. Ensure MUV-124 open by red light ON and green light OFF. Candidate verifies MUV-124 open by red light ON and green light OFF. Candidate rotates control switch for MUV-200 to open and verifies red light ON and green light OFF. Candidate rotates control switch for MUV-117 to open and verifies red light ON and green light OFF. Candidate rotates control switch for MUV-116 to close and verifies green light ON and red light OFF. Candidate verifies MUV-133 closed by green light ON and red light OFF. COMMENTS: | SAT
UNSAT |

| STEP 7: | (step 4.6)
If MU Demins are not bypassed, then notify PPO to open MUV-126 MU
DEMIN BYPASS.
ARD: N/A | SAT
UNSAT |
|-----------------|---|-------------------------|
| COMME | ENTS: | |
| <u>STEP 8</u> : | (step 4.7) Establish a letdown flowpath. 1 If MUV-194 is NOT open, then ensure a prefilter is in service. 2 Ensure 1 of the following exists: Post-filter in service MUV-100 open ARD: Candidate verifies MUV-194 red light is ON and green light OFF. Candidate rotates inlet valve and outlet valve for at least one post-filter, open and verifies red light ON and green light OFF. Candidate | Critical Step SAT UNSAT |
| COMM | verifies post filter(s) are in service. | |

| CTED O. | $(\operatorname{step} 4.8)$ | Critical Step |
|---------|--|---------------|
| | (step 4.8) Establish letdown flow. 1 If recovering from high temp, then select MUV-49 HIGH TEMP BYPASS switch to BYPASS. 2 Open MUV-49. 3 Throttle open MUV-51 to establish desired letdown flow rate. 4 Open MUV-50. 5 If MUV-45 is closed, then notify PPO to open MUV-45 BLOCK ORIFICE OUTLET ISO. 6 Throttle MUV-51 to obtain desired letdown flow rate. RD: Candidate rotates control switch for MUV-49 to open and verifies red light ON and green light OFF. Candidate rotates knob on MUV-51 controller counter-clockwise until flow is > 0gpm but less than 100 gpm. Candidate contacts PPO to perform step 4.8 detail 5 of enclosure 4 of EOP-14. Candidate may rotate knob on MUV-51 controller to adjust letdown flow. VER CUE (if needed): Establish normal letdown flow. | SAT
UNSAT |
| | (step 4.9)
When letdown TEMP is < 130°F, then ensure MUV-49 HIGH TEMP
BYPASS switch is selected to NORM.
<u>ARD:</u> Candidate observes the MUV-49 HIGH TEMP BYPASS switch and
verifies that it is selected to NORM.
<u>NTS:</u> | SAT
UNSAT |

| STEP 11: (step 4.10) | Critical Step |
|--|---------------|
| If MUDM-1A is to be placed in service, and power is available, then align MUDM-1A. 1. Ensure MUV-124 is open. 2. Open MUV-116. 3. Close MUV-200. 4. Ensure MUV-201 is closed. 5. Close MUV-117. 6. If MUV-126 MU DEMIN BYPASS was opened in step 4.6, then notify PPO to close MUV-126. | SAT
UNSAT |
| STANDARD: Candidate verifies MUV-124 open by red light ON and green light
OFF. Candidate rotates control switch for MUV-116 to open and
verifies red light ON and green light OFF. Candidate verifies MUV-
200 closed by green light ON and red light OFF. Candidate rotates
control switch for MUV-201 to close and verifies green light ON and
red light OFF. Candidate verifies MUV-117 closes by light ON and
red light OFF. | |
| EXAMINER CUE: With letdown restored and the "A" Makeup Demineralizer
in service, the JPM has ended. | |
| COMMENTS: | |
| END OF TASK | |

 \checkmark

``

ĺ.

TIME STOP _____

CANDIDATE CUE SHEET

(TO BE RETURNED TO EXAMINER UPON COMPLETION OF TASK)

Initial Conditions:

You are the REACTOR OPERATOR. A small steam leak in the RB has caused a reactor trip and an ES actuation (RBIC). Prior to having the symptom of excessive primary to secondary heat transfer, the leak was isolated. The ES actuation has been reset and associated components controlled.

Initiating Cues:

You are requested to re-establish letdown with the MUDM-1A ("A" makeup demineralizer) in service.

ENCLOSURE 4 LETDOWN RECOVERY

ACTIONS

DETAILS

4.1 Ensure letdown is isolated.

- 1 Close MUV-49
- $2 \frac{\text{IF MUV-50 has power,}}{\text{THEN close MUV-50}}$
- <u>IF MUV-50 does NOT have power,</u> <u>THEN notify PPO to close MUV-45</u> "BLOCK ORIFICE OUTLET ISO" (119 ft AB Block Orifice Room).
- 4 Close MUV-51
- 4.2 <u>IF RBIC actuation has</u> occurred, <u>THEN</u> ensure SW valves to letdown coolers to be placed in service have been reset.
- IF MUHE-1A, <u>OR</u> MUHE-1C is to be placed in service, <u>THEN</u> notify PPO to depress the following "OPEN" push buttons (95 ft AB Triangle Room):
 - ___ "SWV-47 A & C LETDOWN COOLER SUPPLY"
 - ____ "SWV-50 A & C LETDOWN COOLER RETURN"
- <u>IF</u> MUHE-1B is to be placed in service, <u>THEN</u> notify PPO to depress the following "OPEN" push buttons (95 ft AB Triangle Room):
 - ____ "SWV-48 B LETDOWN COOLER SUPPLY"
 - __ "SWV-49 B LETDOWN COOLER RETURN"

| EOP-14 | REV 07 | PAGE 47 of 465 | ENCLS |
|--------|---------|----------------|-------|
| | · · · · | | |

| | · · · · · · · · · · · · · · · · · · · | | | |
|--------|---------------------------------------|----------------|-------|--|
| EOP-14 | REV 07 | PAGE 48 of 465 | ENCLS | |

ENCLOSURE 4 LETDOWN RECOVERY (CONT'D)

ACTIONS

DETAILS

4.3 ____ Ensure SW valves are open for letdown coolers to be placed in service.

| MUHE-1A | MUHE-1B | MUHE-1C |
|---------|---------|---------|
| SWV-47 | SWV-48 | SWV-47 |
| SWV-50 | SWV-49 | SWV-50 |

4.4 ____ Ensure MU valves are open for letdown coolers to be placed in service.

| MUHE-1A | MUHE-1B | MUHE-1C |
|---------|---------|---------|
| MUV-38 | MUV-39 | MUV-498 |
| MUV-40 | MUV-41 | |
| MUV-567 | MUV-567 | MUV-567 |

- 4.5 <u>IF power is available to MU</u> Demin bypass valves, THEN bypass MU Demins.
- 1 Ensure MUV-124 is open.
- 2 Open MUV-200
- 3 Ensure MUV-117 is open.
- 4 Close MUV-116
- 5 ____ Ensure MUV-133 is closed.
- 4.6 IF MU Demins are <u>NOT</u> bypassed, <u>THEN</u> notify PPO to open MUV-126 "MU DEMIN BYPASS" (119 ft AB Block Orifice Room).

| EOP-14 | REV 07 | PAGE 49 of 465 | ENCLS |
|--------|--------|----------------|-------|
| | | | |

| EOP-14 | REV 07 | PAGE 50 of 465 | ENCLS |
|--------|--------|----------------|-------|
| | | | ENOLO |

ENCLOSURE 4 LETDOWN RECOVERY (CONT'D)

DETAILS ACTIONS 1 IF MUV-194 is NOT open, Establish a letdown 4.7 THEN ensure a prefilter is in flowpath. service. 2 Ensure 1 of the following exists: Post-filter in service MUV-100 open 1 ____ IF recovering from high TEMP, 4.8 Establish letdown flow. THEN select "MUV-49 HIGH TEMP. BYPASS" switch to "BYPASS". 2 Open MUV-49 3 Throttle open MUV-51 to establish desired letdown flow rate. 4 ____ Open MUV-50 5 ____ IF MUV-45 is closed, THEN notify PPO to open MUV-45 "BLOCK ORIFICE OUTLET ISO" (119 ft AB Block Orifice Room). Throttle MUV-51 to obtain desired 6 ____ letdown flow rate.

••••

| EOP-14 | REV 07 | PAGE 52 of 465 | ENCLS | |
|--------|--------|----------------|-------|--|

ENCLOSURE 4 LETDOWN RECOVERY (CONT'D)

ACTIONS

DETAILS

- 4.9 <u>WHEN</u> letdown TEMP is < 130°F, <u>THEN</u> ensure "MUV-49 HIGH TEMP. BYPASS" switch is selected to "NORM."
- 4.10 <u>IF MUDM-1A is to be</u> placed in service, <u>AND</u> power is available, <u>THEN</u> align MUDM-1A
- 1 Ensure MUV-124 is open.
- 2 Open MUV-116
- 3 Close MUV-200
- 4 Ensure MUV-201 is closed.
- 5 Close MUV-117
- 6 <u>IF MUV-126</u> "MU DEMIN BYPASS" was opened in Step 4.6, <u>THEN</u> notify PPO to close MUV-126 (119 ft AB Block Orifice Room).

| EOP-14 | REV 07 | PAGE 53 of 465 | ENCLS |
|--------|--------|----------------|-------|
| | | | |

.

.

BLANK PAGE

EOP-14 REV 07 PAGE 54 of 465 ENCLS

ENCLOSURE 4 LETDOWN RECOVERY (CONT'D)

ACTIONS

4.11 <u>IF MUDM-1B is to be</u> placed in service, <u>AND</u> power is available, THEN align MUDM-1B

DETAILS

- 1 Open MUV-133
- 2 ____ Ensure MUV-117 is open.
- 3 Close MUV-200
- 4 Ensure MUV-201 is closed.
- 5 Close MUV-124
- 6 ____<u>IF</u> MUV-126 "MU DEMIN BYPASS" was opened in Step 4.6, <u>THEN</u> notify PPO to close MUV-126 (119 ft AB Block Orifice Room).
- 4.12 _____
 IF normal MU flow does NOT exist,
 1 _____ Open MUV-596

 NOT exist,
 AND normal MU flow is desired,
 2 _____ Open MUV-27

 desired,
 THEN establish normal MU flowpath.
 3 _____ Adjust MUV-31 as desired.
- 4.13 ____ EXIT this enclosure.

| EOP-14 | REV 07 | PAGE 55 of 465 | ENCLS |
|--------|--------|----------------|-------|
| | | | |

. .

en g e generation

| EOP-14 | REV 07 | PAGE 56 of 465 | ENCLS | |
|--------|--------|----------------|-------|--|
| | | | | |

.

| | | | - | |
|-----|---|---|---|------|
| . • | · | • | | VSSV |

.

VITAL SYSTEM STATUS VERIFICATION

1.0 ENTRY CONDITIONS

IF in Modes 1 through 4,

AND NOT on Decay Heat,

AND either of the following:

- Rx trip has occurred
- Rx trip should have occurred

THEN use this procedure.

| Approved by MNPO | D.M. Porter for M. Annacone
(SIGNATURE ON FILE) | _ Date | 11/05/99 |
|------------------|--|--------|----------|
| EOP-02 | PAGE 1 of 47 | | VSSV |

| EOP-02 | REV 05 | PAGE 2 of 47 | VSSV |
|--------|--------|--------------|------|
| | | | |

2.0 IMMEDIATE ACTIONS

ACTIONS

DETAILS

CAUTION

If Steps 2.1 through 2.3 are not performed prior to subsequent actions, adequate heat removal capability may not exist.

2.1 <u>V</u> Depress Rx trip push button.

- 2.2 Verify CRD groups 1 through 7 are fully inserted.
 - IF any CRD group has NOT fully inserted, <u>THEN</u> de-energize CRD system.
- 1 ____ Open 480V Bkr 3305 2 ____ Open 480V Bkr 3312 3 ____ Close 480V Bkr 3305
- 4 ____ Close 480V Bkr 3312

| EOP-02 | REV 05 | PAGE 3 of 47 | VSSV |
|--------|--------|--------------|------|
|--------|--------|--------------|------|

| EOP-02 | REV 05 | PAGE 4 of 47 | VSSV |
|--------|--------|--------------|------|

2.0 IMMEDIATE ACTIONS (CONT'D)

ACTIONS

DETAILS

2.3 \checkmark Verify NIs indicate Rx is shutdown.

 <u>IF</u> Rx is <u>NOT</u> shutdown, <u>THEN</u> start emergency boration and adequate primary to secondary heat transfer.

- 1 ____ Depress "HPI MAN ACT" push buttons on Trains A and B.
- 2 ____ Ensure EFIC has actuated.
- 3 ____ Attempt to match MFW to Rx power.
- 4 <u>IF MFW is NOT</u> available, THEN trip Main Turbine.
- 5 Open CAV-60
- 6 ____ Start CAP-1A and CAP-1B
- 7 <u>WHEN</u> Rx is shutdown, <u>THEN</u> continue in this procedure.
- 2.4 ____ Depress Main Turbine trip push button.
- 2.5 Verify TVs and GVs are closed.
 - <u>IF</u> any TV, <u>AND</u> any GV are <u>NOT</u> closed, THEN close all MSIVs.

|
MSV-412 |
|-------------|
|
MSV-413 |
|
MSV-414 |
|
MSV-411 |

| EOP-02 | REV 05 | PAGE 5 of 47 | VSSV |
|--------|--------|--------------|------|
| | | | |

.

BLANK PAGE

.

· ·

3.0 FOLLOW-UP ACTIONS

ACTIONS

DETAILS

- 3.1 V Notify personnel of entry into EOP-02
- _ PA announcement
- 📈 STA
- 📈 Plant Operators
- <u>NSM</u> (evaluate plant conditions for potential entry into Emergency Plan)

3.2 V Notify SPO to CONCURRENTLY PERFORM EOP-14, Enclosure 1, SPO Post-Trip Actions.

| EOP-02 | REV 05 | PAGE 7 of 47 | VSSV |
|--------|--------|--------------|------|
| | | | |

| E | 0 | P- | 0 | 2 |
|---|---|----|---|---|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |

AGE

3.0 FOLLOW-UP ACTIONS

ACTIONS

DETAILS

- 3.3 Verify all control rods are fully inserted.
 - <u>IF > 1 control rod is NOT</u> fully inserted, <u>THEN</u> start RCS boration.
- - ____ Ensure at least 1 post-filter is in service.
 - Open CAV-60
 - Start CAP-1A or CAP-1B
- ____<u>IF</u> BASTs are <u>NOT</u> available, THEN use BWST:
 - Open MUV-73
 - Open MUV-58
 - ____ Align letdown to an RCBT.

• ____ CONCURRENTLY PERFORM AP-490, Reactor Coolant System Boration, beginning with Step 3.1 (to terminate boration).

| EOP-02 | REV 05 | PAGE 9 of 47 | VSSV |
|--------|--------|--------------|------|
| | | | |

•

| EOP-02 | REV 05 | PAGE 10 of 47 | VSSV |
|--------|--------|---------------|------|

3.0 FOLLOW-UP ACTIONS (CONT'D)

ACTIONS

DETAILS

3.4 Verify MFW is operating.

 <u>IF</u> MFW is <u>NOT</u> operating, <u>THEN</u> ensure EFW or AFW is operating. • Verify at least 1 of the following pumps are running and flow is controlled:

EFP-3

EFP-2

🖌 EFP-1

____ FWP-7

[Rule 3, EFW/AFW Control]

• ____ <u>IF</u> no EFW or AFW pumps are running, <u>THEN</u> **CONCURRENTLY PERFORM** EOP-14, Enclosure 7, EFWP Management.

| EOP-02 | REV 05 | PAGE 11 of 47 | VSSV |
|--------|--------|---------------|------|
| | | | |

| EOP-02 | REV 05 | PAGE 12 of 47 | VSSV |
|--------|--------|---------------|------|

3.0 FOLLOW-UP ACTIONS (CONT'D)

ACTIONS

DETAILS

3.5 Verify MFW flow is not excessive.

IF MFW flow is excessive, THEN trip MFWPs and establish EFW to OTSGs.

- Trip both MFWPs:
 - FWP-2A

FWP-2B

 Ensure at least 1 of the following EFWPs are running and flow is controlled:

[Rule 3, EFW/AFW Control]

IF no EFWPs are running, THEN CONCURRENTLY PERFORM EOP-14, Enclosure 7, EFWP Management.

3.6 🗹 Ensure level in available OTSGs is at or trending toward required level.

See Table 1

| EOP-02 | REV 05 | PAGE 13 of 47 | VSSV |
|--------|--------|---------------|------|

EOP-02

.

BLANK PAGE

. .

3.0 FOLLOW-UP ACTIONS (CONT'D)

ACTIONS

DETAILS

- 3.7 Adjust MUV-31 setpoint to 100 in.
- 3.8 \checkmark Verify PZR level is \ge 50 in.
 - <u>IF PZR level is < 50 in,</u> <u>THEN</u> restore PZR level.
- 1 ___ Close MUV-49
- 2 ____ Open MUV-24
- 3 Ensure BWST to MUP valves are open:
 - MUV-73
 - MUV-58
- 4 <u>IF PZR level does NOT</u> recover, <u>THEN</u> take additional action to restore PZR level:
 - ____ Start a second MUP and required cooling pumps.
 - [Rule 5, EDG Control]
 - Open additional HPI valves:
 - MUV-23
 - MUV-25
 - ____ MUV-26

| EOP-02 | REV 05 | PAGE 15 of 47 | VSSV |
|--------|--------|---------------|------|
| | | | |

| | | | - |
|--------|--------|---------------|------|
| EOP-02 | REV 05 | PAGE 16 of 47 | VSSV |

3.0 FOLLOW-UP ACTIONS (CONT'D)

ACTIONS

DETAILS

3.9 <u>IF PZR Htrs are required,</u> <u>THEN</u> ensure PZR Htrs are controlling in Auto or Manual.

3.10 Verify MSSVs are closed.

<u>IF</u> MSSVs are <u>NOT</u> closed, <u>THEN</u> attempt to reseat MSSVs.

- 1 ____ IF OTSG PRESS is > desired setpoint, <u>THEN</u> control OTSG PRESS using TBVs (preferred) or ADVs.
- 2 ____ IF OTSG PRESS is ≤ desired setpoint, <u>AND</u> any MSSV is open, <u>THEN</u> momentarily lower associated OTSG PRESS to reseat MSSV.
- 3 <u>IF</u> any MSSV has <u>NOT</u> reseated, <u>THEN</u> notify Maintenance to start repair efforts.

| EOP-02 | REV 05 | PAGE 17 of 47 | VSSV |
|--------|--------|---------------|------|
| | | | |

BLANK PAGE

EOP-02 REV 05 PAGE 18 of 47 VSSV

3.0 FOLLOW-UP ACTIONS (CONT'D)

ACTIONS

DETAILS

- 3.11 Verify OTSG PRESS is at desired setpoint.
 - <u>IF</u> OTSG PRESS is <u>NOT</u> at desired setpoint, <u>THEN</u> check operation of TBVs and ADVs.
- 1 <u>IF</u> MSSVs are closed, <u>AND</u> OTSG PRESS is <u>NOT</u> at desired setpoint, <u>THEN</u> control OTSG PRESS using TBVs or ADVs.
- 2 <u>IF TBVs can NOT</u> be controlled, <u>THEN</u> notify SPO to isolate affected TBV (119 ft TB south of hotwell):
 - ___ MSV-21 "MSV-9 UPSTREAM ISO"
 - ___ MSV-22 "MSV-10 UPSTREAM ISO"
 - ___ MSV-23 "MSV-11 UPSTREAM ISO"
 - _ MSV-24

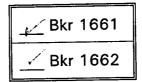
"MSV-14 UPSTREAM ISO"

- 3 <u>IF ADVs can NOT</u> be controlled, <u>THEN</u> notify SPO to isolate affected ADV (119 ft IB):
 - ___ MSV-27 "MSV-25 UPSTREAM ISO "

__ MSV-28 "MSV-26 UPSTREAM ISO "

| EOP-02 | REV 05 | PAGE 19 of 47 | VSSV | |
|--------|--------|---------------|------|--|
|--------|--------|---------------|------|--|

. .


| EOP-02 REV 05 PAGE 20 of 47 VSSV |
|----------------------------------|
|----------------------------------|

3.0 FOLLOW-UP ACTIONS (CONT'D)

ACTIONS

3.12 Ensure Main Generator output Bkrs are open.

DETAILS

- IF any output Bkr is NOT open, <u>THEN</u> attempt to open output Bkr using backup trip coils.
- 1 Select affected output Bkr to "BACKUP":

____ "BKR 1661 TRIP COIL SELECTOR SWITCH"

____ "BKR 1662 TRIP COIL SELECTOR SWITCH"

2 Select output Bkrs to "TRIP":

Bkr 1661

Bkr 1662

3 <u>IF</u> any output Bkr is <u>NOT</u> open, <u>THEN</u> notify System Dispatcher to separate CR-3 from grid.

| EOP-02 | REV 05 | PAGE 21 of 47 | VSSV |
|--------|--------|---------------|------|
| | | | |

EOP-02

BLANK PAGE

.

ACTIONS

DETAILS

3.13 Verify ES buses are energized.

| A ES Buses | B ES Buses |
|---------------|------------------|
| <u> </u> | _ <u>_</u> 4160V |
| <u>√</u> 480V | 480V |

<u>IF</u> both ES 4160V buses are de-energized, <u>THEN</u> **GO TO** EOP-12, Station Blackout, beginning with Step 3.1

3.14 Verify ES 4160V bus UV has not occurred.

- 🗹 86/27 BTA "RESET" light lit
- _____ 86/27 BTB "RESET" light lit

IF any ES 4160V bus UV has occurred, <u>THEN</u> **CONCURRENTLY PERFORM** AP-770, Emergency Diesel Generator Actuation, beginning with Step 3.1

| EOP-02 | REV 05 | PAGE 23 of 47 | VSSV |
|--------|--------|---------------|------|
| | | | |

BLANK PAGE

| EOP-02 | REV 05 | PAGE 24 of 47 | VSSV | |
|--------|--------|---------------|------|--|
| | | | 1 | |

ACTIONS

 $3.15 \underbrace{\nu}_{\text{have,}}$ IF at any time, ES systems

OR should have actuated, THEN ensure ES equipment is properly aligned.

DETAILS

1 Ensure applicable ES actuations:

____ HPI (1625 psig RCS PRESS)

____ LPI (500 psig RCS PRESS)

KRBIC (4 psig RB PRESS)

RB Spray (30 psig RB PRESS)

2 Bypass or reset ES actuation:

🖌 Auto

Manual

3 Control ES systems as required.

[Rule 2, HPI Control]

[Rule 5, EDG Control]

4 <u>IF</u> RBIC has actuated, <u>AND</u> adequate SCM exists, <u>THEN</u> stop <u>all</u> RCPs:

RCP-1A

____ RCP-1C

RCP-1B

+ RCP-1D

| EOP-02 | REV 05 | PAGE 25 of 47 | VSSV | |
|--------|--------|---------------|--|--|
| | | | han a second | |

3.15 IF ES systems have, OR should have actuated, THEN ensure...

| · · · · · · · · · · · · · · · · · · · | | | · · · · · · · · · · · · · · · · · · · |
|---------------------------------------|--------|---------------|---------------------------------------|
| EOP-02 | REV 05 | PAGE 26 of 47 | VSSV |
| | | | |

ACTIONS

DETAILS

3.16 <u>Verify</u> ICS power is available.

"ICS PWR ON" light lit

Trip both MFWPs:

available, <u>THEN</u> trip MFWPs and control OTSG parameters.

IF ICS power is NOT

·

____ FWP-2A

_ FWP-2B

• Ensure at least 1 of the following EFWPs are running and flow is controlled:

____ EFP-3

EFP-2

[Rule 3, EFW/AFW Control]

- ____ <u>IF</u> no EFWPs are running, <u>THEN</u> **CONCURRENTLY PERFORM** EOP-14, Enclosure 7, EFWP Management.
- Ensure ADVs control OTSG PRESS:

MSV-25

MSV-26

| EOP-02 | REV 05 | PAGE 27 of 47 | VSSV |
|--------|--------|---------------|------|
| | | | |

3.15 IF ES systems have, <u>OR</u> should have actuated, <u>THEN</u> ensure...

.

| ······································ | | | |
|--|--------|---------------|------|
| EOP-02 | REV 05 | PAGE 28 of 47 | VSSV |

ACTIONS

DETAILS

3.17 Verify IA PRESS > 90 psig.

IF IA PRESS is ≤ 90 psig, <u>THEN</u> CONCURRENTLY PERFORM AP-470, Loss of Instrument Air, beginning with Step 3.1

3.18 <u>Select MBVs to "MAN" and "CLOSE".</u>

| <u>/</u> FWV-30 |
|-----------------|
| <u> </u> |

<u>IF</u> any MBV is <u>NOT</u> closed, <u>THEN</u> trip MFWPs and establish EFW to OTSGs. Trip both MFWPs:

____ FWP-2A

____ FWP-2B

- Ensure at least 1 of the following EFWPs are running and flow is controlled:
 - EFP-3

EFP-2

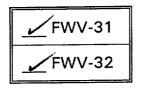
[Rule 3, EFW/AFW Control]

• ____ <u>IF no EFWPs are running,</u> <u>THEN CONCURRENTLY PERFORM</u> EOP-14, Enclosure 7, EFWP Management.

| EOP-02 | REV 05 | PAGE 29 of 47 | VSSV |
|--------|--------|---------------|------|
| | | | |

3.15 IF ES systems have, <u>OR</u> should have actuated, <u>THEN</u> ensure...

.


.

| | · · · · · · · · · · · · · · · · · · · | | |
|--------|---------------------------------------|---------------|------|
| EOP-02 | REV 05 | PAGE 30 of 47 | VSSV |
| | | ···· | |

ACTIONS

DETAILS

- IF any LLBV is <u>NOT</u> closed, THEN close associated LLCV.
- Select associated LLCV to "HAND" and demand to "0":

FWV-37

FWV-38

3.20 _____ Ensure MSR high PRESS bundle isolation valves are closed.

|
_MSV-29 |
|-------------|
|
_MSV-30 |
|
_MSV-31 |
|
MSV-32 |

- 3.21 \checkmark IF CR-3 is separated from \checkmark Open field Bkr. grid, THEN shutdown Main Generator.
 - ____ Select voltage regulator to "OFF".

| EOP-02 | REV 05 | PAGE 31 of 47 | VSSV |
|--------|--------|---------------|------|
| | | | |

3.15 IF ES systems have, <u>OR</u> should have actuated, <u>THEN</u> ensure...

| EOP-02 | REV 05 | PAGE 32 of 47 | VSSV |
|--------|--------|---------------|------|
| | | | |

ACTIONS

DETAILS

3.22 ____ Verify at least 1 RCP is running.

IF no RCPs are running, <u>THEN</u> ensure EFW or AFW is operating. • Verify at least 1 of the following pumps are running and flow is controlled:

FFP-3

EFP-2

____ EFP-1

FWP-7

[Rule 3, EFW/AFW Control]

- <u>IF</u> no EFW or AFW pumps are running, <u>THEN CONCURRENTLY PERFORM</u> EOP-14, Enclosure 7, EFWP Management.
- 3.23 ____ Verify letdown flow exists.

IF letdown flow does NOT exist, <u>AND</u> restoration is desired, <u>THEN</u> **CONCURRENTLY PERFORM** EOP-14, Enclosure 4, Letdown Recovery (if accessible).

| | ····· | | ſ · · · · · · · · · · · · · · · · · · · |
|--------|--------|---------------|---|
| EOP-02 | REV 05 | PAGE 33 of 47 | VSSV |
| 1 | | | |

3.15 IF ES systems have, <u>OR</u> should have actuated, <u>THEN</u> ensure...

. •

| EOP-02 | REV 05 | PAGE 34 of 47 | VSSV |
|--------|--------|---------------|------|

ACTIONS

DETAILS

3.24 ___ Verify adequate SCM exists.

IF adequate SCM does <u>NOT</u> exist, <u>THEN</u> **GO TO** EOP-03, Inadequate Subcooling Margin, beginning with Step 2.1

[Rule 1, Loss of SCM]

3.25 Maintain MUT level \geq 55 in.

• Cycle appropriate BWST to MUP valve to raise MUT level:

MUV-73

___ MUV-58

| EOP-02 | REV 05 | PAGE 35 of 47 | VSSV |
|--------|--------|---------------|------|
| | | | |

3.15 IF ES systems have, <u>OR</u> should have actuated, <u>THEN</u> ensure...

| EOP-02 | REV 05 | PAGE 36 of 47 | VSSV |
|--------|--------|---------------|------|
| | | | |

ACTIONS

DETAILS

3.26 ____ Verify acceptable primary to secondary heat transfer exists.

 <u>IF</u> inadequate primary to secondary heat transfer exists,
 <u>THEN</u> GO TO EOP-04,
 Inadequate Heat Transfer,
 beginning with Step 3.1

IF excessive primary to secondary heat transfer exists, THEN GO TO EOP-05, Excessive Heat Transfer, beginning with Step 3.1

| EOP-02 REV 05 PAGE 37 of 47 V | /SSV |
|-------------------------------|------|

3.15 IF ES systems have, <u>OR</u> should have actuated, <u>THEN</u> ensure...

| EOP-02 | REV 05 | PAGE 38 of 47 | VSSV |
|--------|--------|---------------|------|
| | | | |

ACTIONS

DETAILS

- 3.27 ____ Verify OTSG tube leakage has not increased.
- ____ Notify Chemistry to sample OTSGs.
- Observe radiation monitors and recorder traces for the following:
 - RM-A12 (Condenser Exh)

RM-G26-RI (B1 MS line)

RM-G27-RI (A2 MS line)

RM-G25-RI (A1 MSV-25)

RM-G28-RI (B2 MSV-26)

IF OTSG tube leakage > 1 gpm exists, <u>THEN</u> **GO TO** EOP-06, Steam Generator Tube Rupture, beginning with Step 3.1

| EOP-02 | REV 05 | PAGE 39 of 47 | VSSV |
|--------|--------|---------------|------|

3.15 IF ES systems have, <u>OR</u> should have actuated, <u>THEN</u> ensure...

| EOP-02 REV 05 PAGE 40 of 47 VSSV | | | | • |
|----------------------------------|--------|--------|---------------|------|
| | EOP-02 | REV 05 | PAGE 40 of 47 | VSSV |

ACTIONS

DETAILS

3.28 ____ Verify RCS leakage has not increased.

IF RCS leakage has increased, <u>THEN</u> CONCURRENTLY PERFORM AP-520, Loss of RCS Coolant or Pressure, beginning with Step 3.1

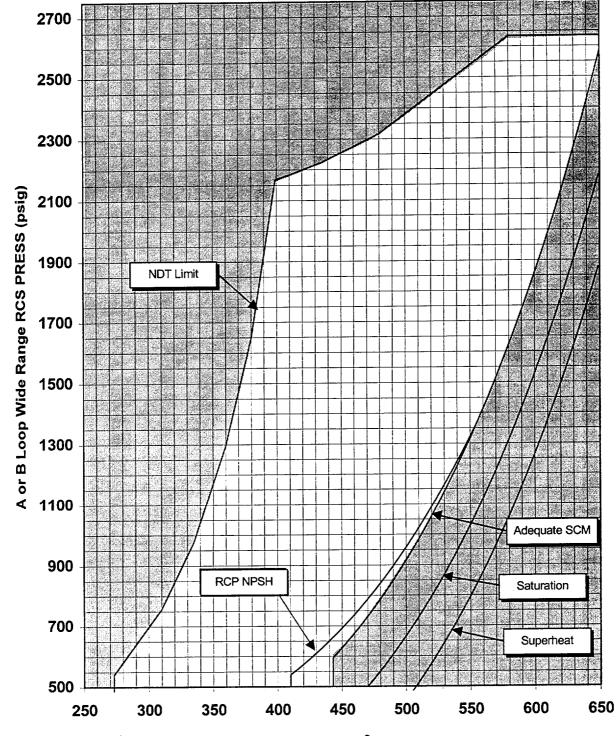
IF RCS leakage is > 100 gpm, <u>THEN</u> GO TO EOP-08, LOCA Cooldown, beginning with Step 3.1

3.29 ____ GO TO EOP-10, Post-Trip Stabilization, beginning with Step 3.1

| EOP-02 | REV 05 | PAGE 41 of 47 | VSSV |
|--------|--------|---------------|------|
| | | | |

. .

.

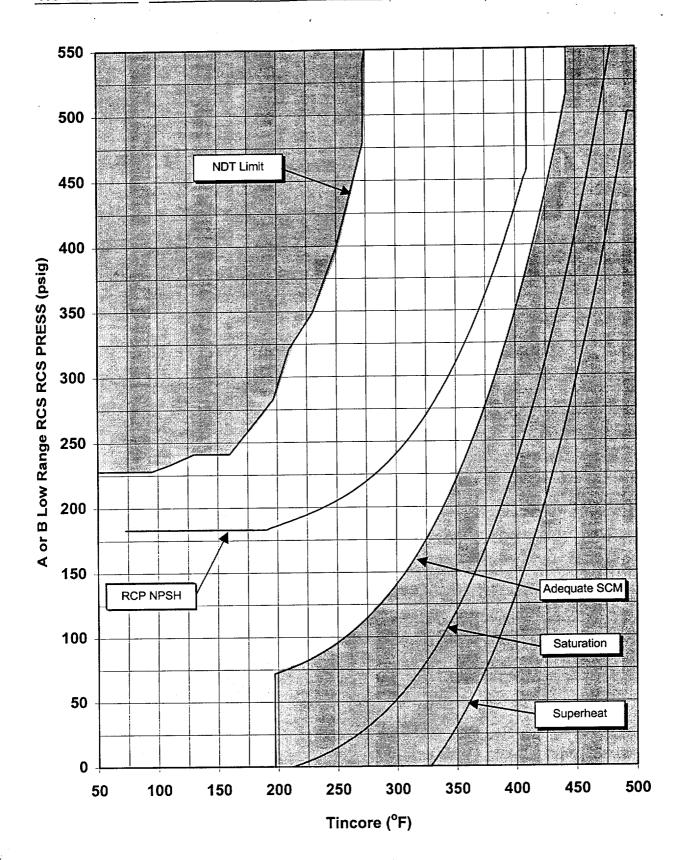

.

BLANK PAGE

.

.

EOP-02


Tincore (°F)

| EOP-02 | REV 05 | PAGE 43 of 47 | VSSV |
|--------|--------|---------------|------|
| | | | |

BLANK PAGE

| EOP-02 | REV 05 | PAGE 44 of 47 | VSSV |
|--------|--------|---------------|------|
| | | | |

4.0 FIGURE 2 RCS PRESS AND TEMP (LOW RANGE)

| EOP-02 | REV 05 | PAGE 45 of 47 | VSSV |
|--------|---------------|---------------|------|
| | | | |

BLANK PAGE

.

| EOP-02 | REV 05 | PAGE 46 of 47 | vs |
|--------|--------|---------------|----|

| | "LLL" | > 20 in | ≥ 1 RCP running with
adequate SCM |
|----|------------|---------|--------------------------------------|
| ls | "NAT CIRC" | > 70% | No RCPs running
with adequate SCM |
| | "ISCM" | > 90% | Inadequate SCM |

Table 1: Required OTSG levels

| EOP-02 | REV 05 | PAGE 47 of 47 (LAST PAGE) | VSSV |
|--------|--------|---------------------------|------|
|--------|--------|---------------------------|------|

REGION II INITIAL LICENSE EXAMINATION JOB PERFORMANCE MEASURE

 \langle

JPM B1f1, Perform ECCS Suction Transfer

| CANDIDATE | | |
|--------------------------|-------------------------------|-------|
| | | |
| EXAMINER | | |
| | | |
| PREPARED/
REVISED BY: | | Date/ |
| | | |
| REVIEWED BY: | (Operations Representative) | Date/ |
| VALIDATED BY: | | Date/ |
| | (Operations Representative) | |
| APPROVED BY: | | Date/ |
| | (Supervisor Initial Training) | |

CRYSTAL RIVER UNIT 3 SIMULATOR JOB PERFORMANCE MEASURE

Task: Perform ECCS Suction Transfer

Alternate Path: N/A

JPM #: B1f1 (bank #173)

K/A Rating/Importance: 009EK3.21/4.2/4.5 Task Number/Position: 0050502005/RO

Task Standard: While aligning DHR the BWST decreases below 15 ft, perform ECCS Suction Transfer using EOP-14 Enclosure 19.

| Preferred Evaluation Location: | Preferred Evaluation Method: | | |
|--|------------------------------|--|--|
| Simulator X In-Plant Admin | Perform X Simulate | | |
| References:1.EOP-14 Enclosure 192.EOP-08 | | | |
| Validation Time: 15 min. | Time Critical: No | | |
| Candidate: Printed Name | Time Start:
Time Finish: | | |
| Performance Rating: SAT UNSAT | Performance Time: | | |
| Examiner: Printed Name | /
Signature Date | | |
| Comment: | | | |
| | | | |
| | | | |
| | | | |

Tools/Equipment/Procedures Needed:

- 1. EOP-08, with applicable sign-offs complete
- 2. EOP-14, Enclosure 19

READ TO THE OPERATOR

Directions to the Student:

I will explain the initial conditions, and state the task to be performed. All steps, including any required communications, shall be performed for this JPM. I will provide initiating cues and reports on other actions when directed by you. Ensure you indicate to me when you understand your assigned task. To indicate that you have completed your assigned task, return the handout sheet to the examiner.

Initial Conditions:

You are the REACTOR OPERATOR. A LOCA has occurred. Cooldown is in progress using EOP-08 BWST level is 20 feet.

Initiating Cues:

You are requested to transfer the ECCS suction.

START TIME: _____

| STEP 1: | |
|--|-------|
| Obtain a copy of appropriate procedure. | SAT |
| STANDARD: Candidate obtains a copy of EOP-08 and EOP-14 enclosure 19. | UNSAT |
| COMMENTS: | |
| PROCEDURE CAUTION: DHV-34 AND DHV-35 must be closed prior to BWST level < 7ft. | SAT |
| STEP 2: (step 19.1 of EOP-14 enclosure 19) | UNSAT |
| If 1 LPI pump is aligned for DHR, then go to step 19.17 in this enclosure. | |
| STANDARD: Candidate continues to step 19.2. | |
| COMMENTS: | |
| | |

~

| STEP 3: (step 19.2) |) | | Critical Step |
|----------------------|-------------------------------------|---|---------------|
| Engure of | least 1 train of | LPI is properly aligned. | SAT |
| | to DHP valve | | |
| | Train | B Train | UNSAT |
| | $\frac{11am}{1V-34}$ | | |
| | | red cooling water pumps operating: | |
| | Train | B Train | |
| | CP-1A | | |
| _ | | RWP-3B | |
| | | DHP-1B | |
| | ule 5, EDG Co | | |
| | solation valves | | |
| | | B Train | |
| | HV-210 | | |
| | jection valves | | |
| | • | B Train | |
| | HV-5 | DHV-6 | |
| DHV-
OFF f | 210 and DHV or each valve. | ight OFF for each pump. Candidate verifies
-211 are open by red light ON and green light
Candidate verifies DHV-5 and DHV-6 are open
green light OFF for each valve. | |
| STEP 4: (step 19.3 |) | | Critical Step |
| Adjust LI | PI control valve | e setpoint for RB sump operation. | SAT |
| While ob | serving for pro | per control, adjust LPI control valve setpoint to | |
| 2000 gpn | | | UNSAT |
| | Train | B Train | |
| | HV-110 | DHV-111 | |
| | | | |
| D
STANDARD: Candi | date adjusts th
and verifies flo | umb wheels of DHV-110 and DHV-111 to 2000 w follows. | |
| D
STANDARD: Candi | date adjusts th
and verifies flo | umb wheels of DHV-110 and DHV-111 to 2000 w follows. | |

-

| STEP 5: (step 19.4) | Critical Step |
|--|---------------|
| When BWST level is < 15 ft, then adjust BS for RB sump operation. | SAT
UNSAT |
| STANDARD: Candidate selects BSV-3 and BSV-4 control stations to
<u>REMOTE/LOCAL</u> switch to LOCAL.
<u>COMMENTS</u>
1200 9 MM | |
| STEP 6: (si | Critical Step |
| | SAT |
| A • | UNSAT |
| • | |
| STANDARE/-11 and DHV-12 to open
1 green light OFF. | |
| COMMENT | |
| STEP 7: (step 19.6) | Critical Step |
| PROCEDURE CAUTION: Aligning ECCS to RB sump may cause high radiation in | SAT |
| AB. | UNSAT |
| Align ECCS pump suction to RB sump.Open RB sump to DHP valves:A TrainDHV-42DHV-43 | |
| STANDARD: Candidate rotates control switches for DHV-42 and DHV-43 to open and verifies for each valve red light ON and green light OFF. | |
| COMMENTS: | |

| STEP 8: (step 19.7) | Critical Step |
|---|---------------|
| $\underline{\text{STEP 8}}: (\text{step 19.7})$ | |
| Isolate BWST from LPI. | SAT |
| Close BWST to DHP valves: | |
| A Train B Train | UNSAT |
| DHV-34 DHV-35 | |
| STANDARD: Candidate rotates control switches for DHV-34 and DHV-35 to close and verifies for each valve green light ON and red light OFF. | e |
| COMMENTS: | |
| | |
| END OF TASK | |

TIME STOP _____

CANDIDATE CUE SHEET

(TO BE RETURNED TO EXAMINER UPON COMPLETION OF TASK)

Initial Conditions:

You are the REACTOR OPERATOR. A LOCA has occurred. Cooldown is in progress using EOP-08 BWST level is 20 feet.

Initiating Cues:

You are requested to transfer the ECCS suction.

|
LOCACD | REV 08 | EOP-08 |
|------------|--------|--------|

LOCA COOLDOWN

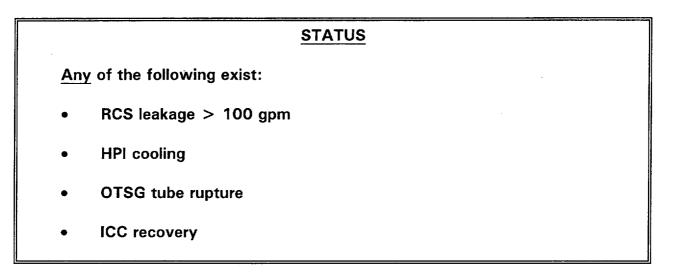
1.0 ENTRY CONDITIONS

IF directed by other procedures,

THEN use this procedure.

2.0 IMMEDIATE ACTIONS

NOTE


There are no immediate actions for this procedure.

| Approved by MNP | O D.M. Porter for M. Annacone
(SIGNATURE ON FILE) | Date | 11/05/99 |
|-----------------|--|------|----------|
| EOP-08 | PAGE 1 of 135 | | LOCACD |

3.0 FOLLOW-UP ACTIONS

ACTIONS

DETAILS

- 3.1 📈 Notify personnel of entry into EOP-08
- 📝 PA announcement

- 🖌 Plant Operators
- NSM (evaluate plant conditions for potential entry into **Emergency Plan)**

3.2 🗸 Notify PPO to CONCURRENTLY PERFORM EOP-14, Enclosure 2, PPO Post Event Actions.

| | · · · · · · · · · · · · · · · · · · · | | |
|--------|---------------------------------------|---------------|--------|
| EOP-08 | REV 08 | PAGE 3 of 135 | LOCACD |

<u>ACTIONS</u>

DETAILS

3.3 <u>IF</u> at any time, ES systems have,

<u>OR</u> should have actuated, <u>THEN</u> ensure ES equipment is properly aligned. 1 Ensure applicable ES actuations:

HPI (1625 psig RCS PRESS)

∠ LPI (500 psig RCS PRESS)

✓ RBIC (4 psig RB PRESS)

_____ RB Spray (30 psig RB PRESS)

2 Bypass or reset ES actuation:

🖌 Auto

🖌 Manual

3 <u>Control ES systems as required.</u>

[Rule 2, HPI Control]

[Rule 5, EDG Control]

4 <u>*I*F</u> RBIC has actuated, <u>AND</u> adequate SCM exists, THEN stop all RCPs:

✓ RCP-1A
 ✓ RCP-1C
 ✓ RCP-1B
 ✓ RCP-1D

| | | | ····· |
|--------|--------|---------------|--------|
| EOP-08 | REV 08 | PAGE 5 of 135 | LOCACD |
| | | | |

ACTIONS

DETAILS

3.4 <u>IF</u> at any time, Tincore indicates superheat conditions, <u>THEN</u> **GO TO** EOP-07, Inadequate Core Cooling, beginning with Step 3.1

3.5 Verify proper CC cooling.

- ____ CC ventilation running in emergency recirc mode
- ____ CC chiller running
- ↓ IF proper CC cooling does <u>NOT</u> exist, <u>THEN</u> CONCURRENTLY **PERFORM** EOP-14, Enclosure 17, Control Complex Emergency Ventilation and Cooling.
- 3.6 <u>✓</u> IF at any time, LPI flow is > 1400 gpm in any injection line, <u>THEN</u> GO TO Step 3.105 in this procedure.

| E | OP | -08 | 3 |
|---|-----------|-----|---|
| | | | |

ACTIONS

DETAILS

STATUS

LPI flow > 1400 gpm in any injection line.

3.105 <u>/</u> <u>IF</u> at any time, BWST level is < 20 ft, <u>THEN</u> **PERFORM** EOP-14, Enclosure 19, ECCS Suction Transfer.

3.106 V IF all the following exist:

A Train LPI flow > 1400 gpm

B Train LPI flow > 1400 gpm

<u>THEN</u> close CFT isolation valves (if accessible).

1 Notify PPO to unlock and close CFT isolation valve Bkrs on ES MCC 3AB (119 ft AB):

6B "CFV-5 A CFT ISO"

6C "CFV-6 B CFT ISO"

2 <u>WHEN</u> CFT isolation valve Bkrs are closed, THEN close CFT isolation valves:

CFV-5

CFV-6

| EOP-08 | REV 08 | PAGE 121 of 135 | LOCACD | |
|--------|--------|-----------------|--------|---|
| | | | | 1 |

<u>ACTIONS</u>

DETAILS

3.107 \checkmark Ensure PORV is closed.

<u>IF</u> PORV fails to close, <u>THEN</u> close RCV-11

3.108 <u>Ensure all high point vents</u> are closed.

| PZR | RCV-159 |
|-----------|---------|
| | RCV-160 |
| A hot leg | RCV-157 |
| | RCV-158 |
| B hot leg | RCV-163 |
| | RCV-164 |

| EOP-08 REV 08 PAGE 123 of 135 LOCA | CD |
|------------------------------------|----|
|------------------------------------|----|

ACTIONS

DETAILS

| 3.109 🖌 IF at any time, all of the | 1 Ensure BSPs are stopped: |
|------------------------------------|------------------------------------|
| following exist: | BSP-1A |
| BSPs running ≥ 5 hrs | BSP-1B |
| RB PRESS < 10 psig | 2 Select BSVs to "MAN" and closed: |
| RB PRESS stable or | |
| lowering | BSV-3 |
| RB atmosphere I ¹³¹ | BSV-4 |
| < 13 µCi/cc | 3 Select BSVs to "AUTO": |
| TSC has approved BS
termination | BSV-3 |
| THEN stop BSPs. | BSV-4 |
| | |

.

3.110 ✓ Notify PPO to **CONCURRENTLY PERFORM** EOP-14, Enclosure 21, RB Hydrogen Monitor Log.

| | | | · · · · · · · · · · · · · · · · · · · |
|--------|--------|-----------------|---------------------------------------|
| EOP-08 | REV 08 | PAGE 125 of 135 | LOCACD |
| | | | |

ACTIONS

DETAILS

- 3.111 <u>WHEN</u> ECCS suction transfer is complete, <u>THEN</u> notify TSC to determine if boron precipitation control is required.
- 3.112 <u>IF EFP-2 is running,</u> <u>THEN CONCURRENTLY</u> **PERFORM** EOP-14, Enclosure 7, EFWP Management.
- 3.113 <u>IF</u> boron precipitation control is required, <u>THEN</u> **PERFORM** EOP-14, Enclosure 20, Boron Precipitation Control.

| EOP-08 | REV 08 | PAGE 127 of 135 | LOCACD |
|--------|--------|-----------------|--------|
| | | | |

<u>ACTIONS</u>

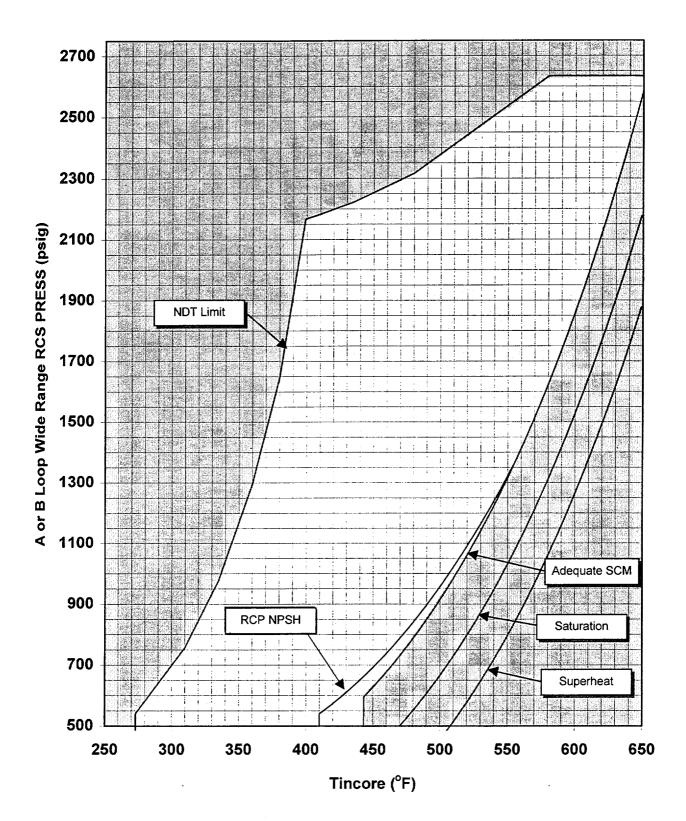
DETAILS

- 3.114 ____ Notify TSC for further guidance.
- Notify TSC to consider the following as applicable:

___ RCP shutdown guidance

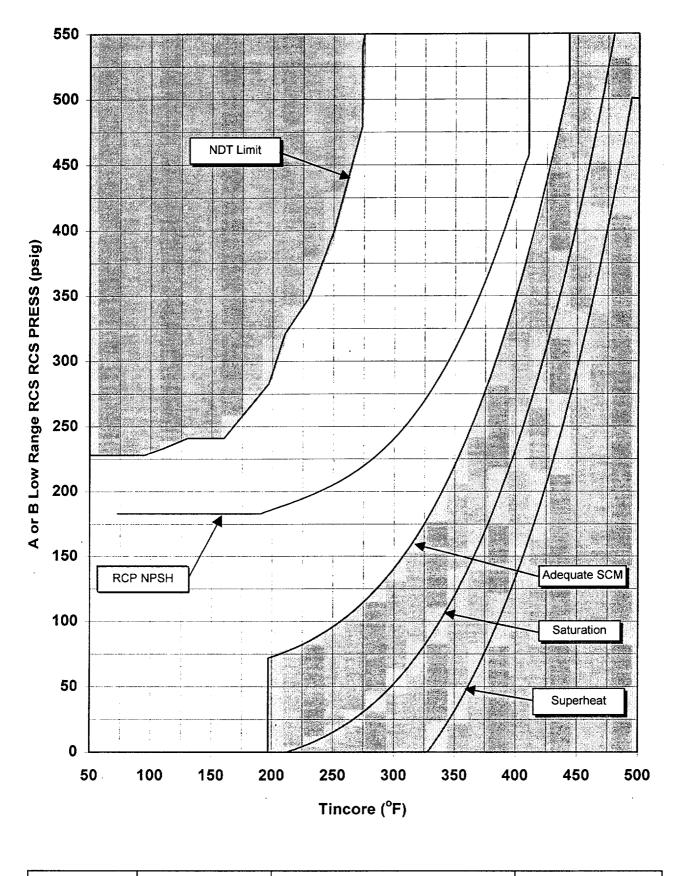
HPI termination

EFW termination


RB hydrogen control

- RB sump level monitoring
- ____ RB sump boron concentration monitoring
- ____ Radioactive release paths from containment isolation valves
- Long-term core cooling (EM-225E, Guidelines For Long Term Cooling)

3.115 **EXIT** this procedure.


| EOP-08 | REV 08 | PAGE 129 of 135 | LOCACD |
|--------|--------|-----------------|--------|
| | | | |

4.0 FIGURE 1 RCS PRESS AND TEMP (WIDE RANGE)

EOP-08 REV 08 PAGE 131 of 135 LOCACD

4.0 FIGURE 2 RCS PRESS AND TEMP (LOW RANGE)

| EOP-08 | REV 08 | PAGE 133 of 135 | LOCACD |
|--------|--------|-----------------|--------|
| | | | |

ENCLOSURE 19 ECCS SUCTION TRANSFER

ACTIONS

DETAILS

CAUTION

DHV-34 and DHV-35 must be closed prior to BWST level < 7 ft.

19.1 ____ IF 1 LPI pump is aligned ` for DHR, <u>THEN</u> GO TO Step 19.17 in this enclosure.

| EOP-14 | REV 07 | PAGE 337 of 465 | ENCLS |
|--------|---------------|-----------------|-------|
| | | | |

ACTIONS

19.2 ____ Ensure at least 1 train of LPI is properly aligned.

DETAILS

1 BWST to DHP valves open:

| A Train | B Train |
|---------|---------|
| DHV-34 | DHV-35 |

2 LPI pumps and required cooling water pumps operating:

| A Train | B Train |
|---------|---------|
| DCP-1A | DCP-1B |
| RWP-3A | RWP-3B |
| DHP-1A | DHP-1B |

[Rule 5, EDG Control]

3 DHP isolation valves open:

| A Train | B Train |
|---------|---------|
| DHV-210 | DHV-211 |

4 LPI injection valves open:

| A Train | B Train |
|---------|---------|
| DHV-5 | DHV-6 |

| EOP-14 | REV 07 | PAGE 339 of 465 | ENCLS |
|--------|--------|-----------------|--------|
| | | | EntoEo |

| · | ACTIONS | <u>D</u> | ETAILS |
|------|---|---|--|
| 19.3 | Adjust LPI control valve setpoint for RB sump operation. | 2000 gpm: | for proper contro
ol valve setpoint 1 |
| | | A Train
DHV-110 | B Train |
| | No. | DHV-110 | DHV-111 |
| | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| 19.4 | <u>WHEN</u> BWST level is
< 15 ft,
<u>THEN</u> adjust BS for RB | Select 1200 gpr
BSP discharge v | |
| 19.4 | < 15 ft,
THEN adjust BS for RB | BSP discharge v | |
| 19.4 | < 15 ft,
THEN adjust BS for RB | BSP discharge v | alves: |
| 19.4 | < 15 ft,
THEN adjust BS for RB | BSP discharge v | alves:
B Train |

.5 ____ Align LPI pump discharge to MUP suction.

- <u>IF</u> DHP-1A is running, <u>THEN</u> open DHV-11
- ____<u>IF</u> DHP-1B is running, <u>THEN</u> open DHV-12

| EOP-14 | REV 07 | PAGE 341 of 465 | ENCLS |
|--------|---------------|-----------------|-------|
| | | | |

ACTIONS

DETAILS

CAUTION

Aligning ECCS to RB sump may cause high radiation in AB.

- 19.6 ____ Align ECCS pump suction Open RB sump to DHP valves: to RB sump.

| A Train | B Train |
|---------|---------|
| DHV-42 | DHV-43 |

- 19.7 ____ Isolate BWST from LPI. Close BWST to DHP valves:

| A Train | B Train |
|---------|---------|
| DHV-34 | DHV-35 |

| EOP-14 | REV 07 | PAGE 343 of 465 | ENCLS |
|--------|---------------|-----------------|-------|
| | | | |

ACTIONS

DETAILS

19.8 Isolate flow to MUT.

• Ensure at least 1 letdown isolation valve is closed:

| A Train | B Train |
|---------|---------|
| MUV-567 | MUV-49 |

• Ensure at least 1 train of RCP CBO isolation valves are closed:

| A Train | B Train |
|---------|---------|
| MUV-258 | MUV-253 |
| MUV-259 | |
| MUV-260 | |
| MUV-261 | |

19.9 <u>IF</u> adequate SCM exists, <u>THEN</u> stop all RCPs.

| RCP-1A | |
|--------|--|
| RCP-1C | |
| RCP-1B | |
| RCP-1D | |

| EOP-14 | REV 07 | PAGE 345 of 465 | ENCLS |
|--------|--------|-----------------|-------|
| | | | |

ACTIONS

DETAILS

19.10 Ensure at least 1 seal injection isolation value is closed.

| A Train | B Train |
|---------|---------|
| MUV-596 | MUV-18 |

- 19.11 <u>IF MUP recirc valves are</u> open, <u>THEN</u> align recirc flow to RB sump.
- 1 Ensure at least 1 train of HPI recirc to sump valves are open:

| A Train | B Train |
|---------|---------|
| MUV-543 | MUV-545 |
| MUV-544 | MUV-546 |

2 Ensure at least 1 MUP recirc to MUT valve is closed:

| A Train | B Train |
|---------|---------|
| MUV-53 | MUV-257 |

- 19.12 ____ Stop any MUP not aligned to a running LPI pump.
- IF DHV-11 is <u>NOT</u> open, <u>THEN</u> stop the A ES selected MUP.
- IF DHV-12 is <u>NOT</u> open, <u>THEN</u> stop the B ES selected MUP.

.

| EOP-14 REV 07 | PAGE 347 of 465 | ENCLS |
|---------------|-----------------|-------|
|---------------|-----------------|-------|

ACTIONS

DETAILS

19.13 ____ Isolate MUT (if accessible).

Notify PPO to close MUV-64
 "MUT OUTLET"
 (95 ft AB outside RC evaporator).

19.14 Isolate BWST from HPI.

1 Notify PPO to bypass MUT low level interlocks:

____ Obtain key 47 for remote shutdown transfer cabinet.

 Select "BWST ISOL. VALVE INTERLOCK BYPASS MUV-58" switch to "BYPASS" (B ES 4160V SWGR Room "RS AUX B" cabinet).

 Select "BWST ISOL. VALVE INTERLOCK BYPASS MUV-73" switch to "BYPASS" (A ES 4160V SWGR Room "RS AUX A" cabinet).

2 <u>WHEN</u> MUT low level interlocks have been bypassed, <u>THEN</u> close BWST to MUP valves while observing MUPs for signs of cavitation:

MUV-73

___ MUV-58

| EOP-14 | REV 07 | PAGE 349 of 465 | ENCLS | |
|--------|---------------|-----------------|-------|--|
| | | | | |

ACTIONS

DETAILS

19.15 Notify Chemistry to periodically perform CH-632D, Sampling and Analysis of the Reactor Building Sump, for boron concentration.

19.16 **EXIT** this enclosure.

| EOP-14 | REV 07 | PAGE 351 of 465 | ENCLS |
|--------|--------|-----------------|-------|
| | | | |

ACTIONS

DETAILS

STATUS

- HPI or LPI flow exists.
- 1 LPI pump aligned for DHR.
- Adequate SCM exists.
- 19.17 <u>IF DHP-1B is aligned for</u> DHR, <u>THEN</u> **GO TO** Step 19.31 in this enclosure.

| | | | I |
|--------|--------|-----------------|-------|
| EOP-14 | REV 07 | PAGE 353 of 465 | ENCLS |

ACTIONS

DETAILS

STATUS

- HPI or LPI flow exists.
- DHP-1A aligned for DHR.
- 19.18 Ensure B Train LPI is properly aligned.
- 1 Ensure DHV-35 is open.
- 2 Ensure LPI pump and required cooling water pumps are running:

| DCP-1B |
|--------|
| RWP-3B |
| DHP-1B |

[Rule 5, EDG Control]

- 3 ____ Ensure DHV-211 is open.
- 4 Ensure DHV-6 is open.
- 19.19 Adjust LPI control valve setpoint for RB sump operation.
- While observing for proper control, adjust DHV-111 setpoint to 2000 gpm.

| EOP-14 | REV 07 | PAGE 355 of 465 | ENCLS |
|--------|--------|-----------------|-------|
| | | | |

ACTIONS

DETAILS

19.20 <u>WHEN</u> BWST level is < 15 ft, <u>THEN</u> adjust BS for RB sump operation. Select 1200 gpm and "LOCAL" for BSV-4

19.21 ____ Open DHV-12

CAUTION

Aligning ECCS to RB sump may cause high radiation in AB.

19.22 ___ Open DHV-43

19.23 Close DHV-35

| EOP-14 | REV 07 | PAGE 357 of 465 | ENCLS |
|--------|---------------|-----------------|-------|
| | | | |

ACTIONS

DETAILS

- 19.24 ____ Isolate flow to MUT.
- Ensure at least 1 letdown isolation valve is closed:

| A Train | B Train |
|---------|---------|
| MUV-567 | MUV-49 |

• Ensure at least 1 train of RCP CBO isolation valves are closed:

| A Train | B Train |
|---------|---------|
| MUV-258 | MUV-253 |
| MUV-259 | |
| MUV-260 | |
| MUV-261 | • |

19.25 ___ Stop all RCPs.

| RCP-1A |
|--------|
| RCP-1C |
| RCP-1B |
| RCP-1D |

| EOP-14 | REV 07 | PAGE 359 of 465 | ENCLS |
|--------|--------|-----------------|-------|
| | | L | · · · |

ACTIONS

DETAILS

19.26 Ensure at least 1 seal injection isolation value is closed.

| A Train | B Train |
|---------|---------|
| MUV-596 | MUV-18 |

- 19.27 <u>IF MUP recirc valves are</u> open, <u>THEN</u> align recirc flow to RB sump.
- 1 Ensure at least 1 train of HPI recirc to sump valves are open:

| A Train | B Train |
|---------|---------|
| MUV-543 | MUV-545 |
| MUV-544 | MUV-546 |

2 Ensure at least 1 MUP recirc to MUT valve is closed:

| A Train | B Train |
|---------|---------|
| MUV-53 | MUV-257 |

| EOP-14 | REV 07 | PAGE 361 of 465 | ENCLS |
|--------|--------|-----------------|-------|
| | | | |

<u>ACTIONS</u>

DETAILS

19.28 Isolate MUT (if accessible).

Notify PPO to close MUV-64
 "MUT OUTLET"
 (95 ft AB outside RC evaporator).

19.29 Isolate BWST from HPI.

- 1 Notify PPO to bypass MUT low level interlock:
 - ____ Obtain key 47 for remote shutdown transfer cabinet.
 - Select "BWST ISOL. VALVE INTERLOCK BYPASS MUV-58" switch to "BYPASS" (B ES 4160V SWGR Room "RS AUX B" cabinet).
- 2 <u>WHEN</u> MUT low level interlock has been bypassed, <u>THEN</u> close MUV-58 while observing MUP for signs of cavitation.

19.30 **EXIT** this enclosure.

| EOP-14 | REV 07 | PAGE 363 of 465 | ENCLS |
|--------|--------|-----------------|-------|
| ···· | | | |

ACTIONS

DETAILS

STATUS

- HPI or LPI flow exists.
- DHP-1B aligned for DHR.
- 19.31 ____ Ensure A Train LPI is properly aligned.
- 1 ____ Ensure DHV-34 is open.

2 Ensure LPI pump and required cooling water pumps are running:

| DCP-1A |
|--------|
| RWP-3A |
| DHP-1A |

[Rule 5, EDG Control]

3 ____ Ensure DHV-210 is open.

4 ____ Ensure DHV-5 is open.

- 19.32 Adjust LPI control valve setpoint for RB sump operation.
- While observing for proper control, adjust DHV-110 setpoint to 2000 gpm.

| EOP-14 | REV 07 | PAGE 365 of 465 | ENCLS |
|--------|--------|-----------------|-------|
| | | | |

<u>ACTIONS</u>

DETAILS

19.33 <u>WHEN</u> BWST level is < 15 ft, <u>THEN</u> adjust BS for RB sump operation. Select 1200 gpm and "LOCAL" for BSV-3

19.34 Open DHV-11

CAUTION

Aligning ECCS to RB sump may cause high radiation in AB.

19.35 ___ Open DHV-42

19.36 Close DHV-34

| EOP-14 | REV 07 | PAGE 367 of 465 | ENCLS |
|--------|--------|-----------------|-------|
| | | | |

ACTIONS

DETAILS

- 19.37 ____ Isolate flow to MUT.
- Ensure at least 1 letdown isolation valve is closed:

| A Train | B Train |
|---------|---------|
| MUV-567 | MUV-49 |

• Ensure at least 1 train of RCP CBO isolation valves are closed:

| A Train | B Train |
|---------|---------|
| MUV-258 | MUV-253 |
| MUV-259 | |
| MUV-260 | |
| MUV-261 | |

19.38 Stop all RCPs.

| RCP-1A |
|--------|
| RCP-1C |
| RCP-1B |
| RCP-1D |

| ſ | EOP-14 | REV 07 | PAGE 369 of 465 | ENCLS |
|---|--------|--------|-----------------|-------|
| L | | | | |

<u>ACTIONS</u>

DETAILS

19.39 Ensure at least 1 seal injection isolation valve is closed.

| A Train | B Train |
|---------|---------|
| MUV-596 | MUV-18 |

- 19.40 <u>IF</u> MUP recirc valves are open, <u>THEN</u> align recirc flow to RB sump.
- 1 Ensure at least 1 train of HPI recirc to sump valves are open:

| A Train | B Train |
|---------|---------|
| MUV-543 | MUV-545 |
| MUV-544 | MUV-546 |

2 Ensure at least 1 MUP recirc to MUT valve is closed:

| A Train | B Train |
|---------|---------|
| MUV-53 | MUV-257 |

| EOP-14 | REV 07 | PAGE 371 of 465 | ENCLS |
|--------|--------|-----------------|-------|
| | | | |

ACTIONS

DETAILS

19.41 ___ Isolate MUT (if accessible). Notify PPO to close MUV-64
 "MUT OUTLET"
 (95 ft AB outside RC evaporator).

19.42 Isolate BWST from HPI.

1 Notify PPO to bypass MUT low level interlock:

____ Obtain key 47 for remote shutdown transfer cabinet.

 Select "BWST ISOL. VALVE INTERLOCK BYPASS MUV-73" switch to "BYPASS" (A ES 4160V SWGR Room "RS AUX A" cabinet).

2 <u>WHEN</u> MUT low level interlock has been bypassed, <u>THEN</u> close MUV-73 while observing MUP for signs of cavitation.

19.43 **EXIT** this enclosure.

| EOP-14 | REV 07 | PAGE 373 of 465 | ENCLS |
|--------|---------------|-----------------|-------|
| | | | |

REGION II INITIAL LICENSE EXAMINATION JOB PERFORMANCE MEASURE

JPM B1g1, Place the RPS in Shutdown Bypass

| CANDIDATE | | 100 | |
|---------------------|-------------------------------|-------------|----------|
| | | | |
| EXAMINER | | | |
| | | | |
| PREPARED/ | | | |
| REVISED BY: | | Date/ | <u> </u> |
| REVIEWED BY: | | Date/ | |
| | (Operations Representative) | D'utor | |
| VALIDATED BY: | | Date/ | |
| | (Operations Representative) | | |
| APPROVED BY: | | Date/ | |
| | (Supervisor Initial Training) | | |

CRYSTAL RIVER UNIT 3 IN-PLANT JOB PERFORMANCE MEASURE

Task: Place the RPS in shutdown bypass.

Alternate Path: N/A

JPM #: B1g1 (new)

K/A Rating/Importance 012A4.03/3.6/3.6 Task Number/Position: 0120102009/RO

Task Standard: Place the RPS in shutdown bypass using OP-507.

| Preferred Evaluation | ation Location | <u>:</u> | Preferred E | Evaluation Met | hod: |
|-------------------------------|--|----------|-------------|-----------------------------------|-------|
| Simulator X | _In-Plant | _ Admin | Perform | Simulate | X |
| References:
1. OP-507, Rev | v 18 | | | | |
| Validation Time | - | | Time Critic | | |
| Candidate: | | | | <u>Time Start:</u>
Time Finish | : |
| Performance Ra | ting: SAT | UNSAT | Perfor | mance Time: _ | |
| Examiner: | Printed Na | ame | | Signature | /Date |
| Comment: | | | | | |
| · | | | | n n x ar | |
| | / | | | | |
| <u></u> | ······································ | · | | | |

SIMULATOR OPERATOR SETUP INSTRUCTIONS:

- 1. A plant shutdown is in progress.
- 2. Control Rod Groups 1 through 7 are fully inserted.
- 3. The Reactor is tripped.
- 4. Reactor Coolant pressure is 1750 psig.
- 5. The High Flux Trip has been reset to 5% (0.032).
- 6. IC #66.
- 7. If required ensure MUT level is not too high and clear MUT pressure alarm.

SIMULATOR OPERATOR INSTRUCTIONS:

1. Booth operator will take the roles for the various operators

Tools/Equipment/Procedures Needed:

1. OP-507, steps 4.14.1 through 4.14.4 should be already signed.

READ TO THE OPERATOR

Directions to the Student:

I will explain the initial conditions, and state the task to be performed. All steps, including any required communications, shall be performed for this JPM. I will provide initiating cues and reports on other actions when directed by you. Ensure you indicate to me when you understand your assigned task. To indicate that you have completed your assigned task, return the handout sheet to the examiner.

Initial Conditions:

You are the REACTOR OPERATOR. A plant shutdown is in progress. Control Rod Groups 1 through 7 are fully inserted. The Reactor is tripped. Reactor Coolant pressure is approximately 1750 psig. The High Flux Trip has been reset to 5%.

Initiating Cues:

You are requested to place the RPS in shutdown bypass.

START TIME: _____

| STEP 1: | |
|--|---------------|
| $\underline{\mathbf{SIEr}}$ | |
| Obtain a copy of appropriate procedure. | SAT |
| STANDARD: Candidate obtains a copy of OP-507, steps 4.14.1 through 4.14.4 are signed off. | UNSAT |
| COMMENTS: | |
| <u>STEP 2</u> : (step 4.14.5) | Critical Step |
| PROCEDURE CAUTION: High Flux Trip must be reset to less than 5% RTP in all
four (4) RPS Channels prior to performing this step.
PROCEDURE NOTE: EFIC EFW actuation logic for loss of both MFW pumps is
automatically bypassed when the RPS is placed in Shutdown Bypass.
Initiate Shutdown Bypass in all (4) RPS Channels.
A RPS Channel (J-5-2 alarms)
B RPS Channel (J-6-2 alarms)
C RPS Channel (J-7-2 alarms)
D RPS Channel (J-8-2 alarms) | SAT
UNSAT |
| STANDARD: Candidate obtains the key and unlocks the RPS cabinet doors. Candidate obtains the shutdown bypass key for each RPS channel. Candidate places each key in shutdown bypass key switch and rotates to the bypass position. Candidate verifies lights (output state and output memory) on each Shutdown Bypass bistable are bright and the Manual Bypass light at the top of each cabinet is bright. Candidate initials and dates step. COMMENTS: | |

| <u>STEP 3</u> : (step 4.14.6) | |
|--|---------------|
| EXAMINER CUE: The Shutdown Bypass functional test has been performed. | SAT
UNSAT |
| Ensure Shutdown Bypass functional test has been performed.
Refer to ITS 3.3.1 (SR 3.3.1.4)
/ | |
| STANDARD: Candidate initials and dates step. | |
| COMMENTS: | |
| <u>STEP 4</u> : (step 4.14.7) | Critical Step |
| Reset shutdown bypass bistables in all four (4) RPS channels. o | SAT
UNSAT |
| output memory toggles on the shutdown bypass bistable and verifies
that both the output state and output memory lights are dim.
Candidate also verifies that the subsystem status light on the Reactor
Trip Module is dim. Candidate initials and dates step. | |
| COMMENTS: | |

| <u>STEP 9</u> : | (step 4.14.8) | Critical Step |
|-----------------|--|---------------|
| STANDA | Reset all four (4) RPS channels. o Depress subsystem reset toggle on Reactor Trip module o Verify Protective Subsystem amber indicating lights, on top of each cabinet, are dim for the respective channel being reset A RPS Channel (J-5-1 clears) B RPS Channel (J-6-1 clears) C RPS Channel (J-6-1 clears) D RPS Channel (J-7-1 clears) D RPS Channel (J-8-1 clears) / | SAT
UNSAT |
| | END OF TASK | |

~

 $\langle \rangle$

TIME STOP _____

CANDIDATE CUE SHEET

(TO BE RETURNED TO EXAMINER UPON COMPLETION OF TASK)

Initial Conditions:

You are the REACTOR OPERATOR. A plant shutdown is in progress. Control Rod Groups 1 through 7 are fully inserted. The Reactor is tripped. Reactor Coolant pressure is 1750 psig. The High Flux Trip has been reset to 5%.

Initiating Cues:

You are requested to place the RPS in shutdown bypass.

4.14 PLACING THE RPS IN SHUTDOWN BYPASS (CAT. 1)

. •

| | ACTIONS | DETAILS |
|---------|--|---|
| 4.14.1 | ENSURE Control Rod Groups 1
through 7 are fully
inserted | o REFER TO OP-502, Control Rod
Drive System
<u>Initial/Date</u> |
| <u></u> | NOTE: The following step wil
Bypass Valves. | l add a 125# bias to the Turbine |
| 4.14.2 | ENSURE the Reactor is
tripped | o V DEPRESS the Reactor trip
pushbutton
$I_{nitial_1} D_q te$
Initial/Date |
| 4.14.3 | DEPRESSURIZE the RCS to
approximately 1750 psig and
stabilize RCS pressure | o CONTROL pressure using RCV-14
<u>Thitid / Date</u>
Initial/Date |
| 4.14.4 | ENSURE High Flux Trip has
been reset in all four (4)
Channels to less than 5%
RTP | NOTIFY I&C to PERFORM SP-113H,
High Flux Trip Set Point |

•

Initial/Date

PLACING THE RPS IN SHUTDOWN BYPASS (CAT. 1) (Cont'd) 4.14

| | ACTIONS | DETAILS |
|--------|--|--|
| | four (4) RPS Channe | ************************************** |
| | NOTE: EFIC EFW actuation log
automatically bypassed
Bypass. | gic for loss of both MFW pumps is
I when the RPS is placed in Shutdown |
| 4.14.5 | INITIATE Shutdown Bypass in
all (4) RPS Channels | o "A" RPS Channel
o "B" RPS Channel
o "C" RPS Channel
o "D" RPS Channel |
| | | Initial/Date |
| 4.14.6 | intent of the OP-209
"SHUTDOWN BYPASS". | revious steps in this section meets the
requirement for placing RPS in
The NSM must ensure that the CRDs are
withdrawn until the remaining steps are
TTS 3.3.1).
Refer to ITS 3.3.1 (SR 3.3.1.4)
/
Initial/Date |
| | | Initial/Date |
| 4.14.7 | RESET shutdown bypass
bistables in all four (4)
RPS channels | DEPRESS both output state
and output memory toggles or
Shutdown Bypass Bi-stable VERIFY both output state and
output memory lights are dim
"A" RPS Channel "B" RPS Channel "C" RPS Channel "D" RPS Channel |
| | | o VERIFY the Subsystem Status
light on Reactor Trip Module
is dim |
| | | /
Initial/Date |
| OP-507 | - | . 19 Page 66 |

4.14 PLACING THE RPS IN SHUTDOWN BYPASS (CAT. 1) (Cont'd)

.

| ACTIONS | | DETAILS | |
|---------|------------------------------------|--|---|
| 4.14.8 | RESET all four (4) RPS
channels | o DEPRESS subs
toggle on Re
module | - |
| | | O VERIFY Prote
amber indica
top of each
for the resp
being reset
"A" RE
"B" RE | ective Subsystem
ating lights, on
cabinet, are dim
pective channel
PS Channel
PS Channel
PS Channel |
| | | | S Channel |
| | | | /
Initial/Date |

Page 67

REGION II INITIAL LICENSE EXAMINATION JOB PERFORMANCE MEASURE

JPM B2a1, Recirculation of FSP-1

| CANDIDATE | | | |
|---------------|-------------------------------|-------|--|
| | | | |
| | | | |
| EXAMINER | | | |
| | | | |
| | | | |
| PREPARED/ | | Date/ | |
| | | Dato/ | |
| DEVIEWED DV. | | Date/ | |
| REVIEWED BY: | (Operations Representative) | Datc/ | |
| VALIDATED BY: | | Date/ | |
| VALIDATED BT. | (Operations Representative) | Dato/ | |
| APPROVED BY: | | Date/ | |
| | (Supervisor Initial Training) | | |

CRYSTAL RIVER UNIT 3 IN-PLANT JOB PERFORMANCE MEASURE

Task: Recirculation of FSP-1.

Alternate Path: N/A

JPM #: B2a1 (new)

<u>K/A Rating/Importance</u>: 086A4.01/3.3/3.3 <u>Task Number/Position</u>: 0860104001; 1190404001/SPO

Task Standard: Recirculation of FSP-1 using AP-330 enclosure 3.

| Preferred Evaluation Location: | Preferred Evaluation Method: |
|----------------------------------|-------------------------------------|
| Simulator In-PlantX Admin | Perform SimulateX |
| References:
1. AP-330, Rev 13 | |
| Validation Time: 7 min. | <u>Time Critical</u> : No |
| Candidate | Time Start:
Time Finish: |
| Performance Rating: SAT UNSAT | Performance Time: |
| Examiner: Printed Name Comment: | / |
| | |
| | |
| X | |

Tools/Equipment/Procedures Needed:

1. AP-330, Enclosure 3

READ TO THE OPERATOR

Directions to the Student:

I will explain the initial conditions, and state the task to be performed. All steps, including any required communications, shall be simulated for this JPM. Under no circumstances are you to operate any plant equipment. I will provide initiating cues and reports on other actions when directed by you. Ensure you indicate to me when you understand your assigned task. To indicate that you have completed your assigned task, return the handout sheet to the examiner.

Initial Conditions:

You are the SECONDARY PLANT OPERATOR. AP-330, Loss of Nuclear Service Cooling has been entered.

Initiating Cues:

You are requested to perform Enclosure 3, FSP-1 Recirc., of AP-330.

| STEP 1: | |
|---|---------------|
| Obtain a copy of appropriate procedure. | SAT |
| STANDARD: Candidate obtains a copy of AP-330 Enclosure 3. | UNSAT |
| EXAMINER NOTE: When the candidate indicates where they would obtain a copy of AP-330 Enclosure 3, provide them with the enclosure. | |
| COMMENTS: | |
| $\underline{\text{STEP 2}}: (\text{step 3.1})$ | Critical Step |
| Align FSP-1 to recirc FST-1A.
o Obtain key 20 from Control Room.
o Close FSV-28 FST-1B INLET ISO
o Open FSV-24 FSP RECIRC LINE TO FST ISO | SAT
UNSAT |
| EXAMINER NOTE: Key 20 is not required the Fire Pump House is no longer locked, see AI-505. | |
| STANDARD: Candidate will enter the Fire Service Pump House. Candidate will rotate FSV-28 hand wheel in the clockwise direction (observes stem lowering) to hard stop. | |
| EXAMINER CUE: Hand wheel rotates, stem moves, and handwheel comes to a hard stop. | |
| STANDARD: Candidate will rotate FSV-24 hand wheel in the counter-clockwise direction (observes stem rising) to hard stop. | |
| EXAMINER CUE: Handwheel rotates, stem moves, and hand wheel comes to a hard stop. | |
| COMMENTS: | |

| <u>STEP 3</u> : (step 3.2) | Critical Step |
|--|---------------|
| Slowly open FSV-18 FSP-1 RECIRC ISO until FSP-1 starts. | SAT |
| STANDARD: Candidate rotates FSV-18 hand wheel in the counter-clockwise direction until examiner informs candidate that FSP-1 has started. | UNSAT |
| EXAMINER NOTE: FSP-1 should start when FSV-18 is about 1 turn open. | |
| EXAMINER CUE: FSP-1 is running. | |
| COMMENTS: | |
| STEP 4: (step 3.3) | Critical Step |
| Adjust FSV-18 FSP-1 RECIRC ISO to obtain 480 to 600 gpm recirc flow as read on FS-12-FIS. | SAT
UNSAT |
| STANDARD: Candidate locates FS-12-FIS and examiner will indicate 400 gpm.
Candidate rotates FWV-18 in the counter-clockwise direction further.
Candidate locates FS-12-FIS and examiner will indicate 560 gpm. | |
| EXAMINER NOTE: Indicate 400 gpm when candidate first checks FS-12-FIS; indicate 560 gpm the next time gage is checked. | |
| COMMENTS: | |
| <u>STEP 5</u> : (step 3.4) | |
| Exit this enclosure. | SAT |
| STANDARD: Candidate informs control room (examiner) the Enclosure 3 of AP-330 is complete. | UNSAT |
| EXAMINER NOTE: Take the part of the Control Room in communication with the SPO. | |
| COMMENTS: | |
| END OF TASK | |

~

Ì

Ľ

CANDIDATE CUE SHEET

(TO BE RETURNED TO EXAMINER UPON COMPLETION OF TASK)

Initial Conditions:

You are the SECONDARY PLANT OPERATOR. AP-330, Loss of Nuclear Service Cooling has been entered.

Initiating Cues:

You are requested to perform Enclosure 3, FSP-1 Recirc., of AP-330.

4.0 ENCLOSURE 3 FSP-1 RECIRC

ACTIONS

DETAILS

- 3.1 ____ Align FSP-1 to recirc FST-1A
- ____ Obtain key 20 from Control Room.
- Close FSV-28
 "FST-1B INLET ISO"
 (119 ft Berm between FSTs).
- ____ Open FSV-24 "FSP RECIRC LINE TO FST ISO" (119 ft FSPH northwest wall).

3.2 _____ Slowly open FSV-18 "FSP-1 RECIRC ISO" until FSP-1 starts (119 ft FSPH south wall).

3.3 <u>Adjust FSV-18</u> "FSP-1 RECIRC ISO" to obtain 480 to 600 gpm recirc flow as read on FS-12-FIS (119 ft FSPH).

3.4 ____ EXIT this enclosure.

| AP-330 | REV 13 | PAGE 65 of 85 | LSW |
|--------|--------|---------------|-----|
| | | | |

REGION II INITIAL LICENSE EXAMINATION JOB PERFORMANCE MEASURE

JPM B2b1, Placing EFP-2 in Standby

| CANDIDATE | | |
|---------------|-------------------------------|-------|
| | | |
| | | |
| EXAMINER | | |
| | | |
| PREPARED/ | | |
| REVISED BY: | | Date/ |
| | | |
| REVIEWED BY: | | Date/ |
| | (Operations Representative) | |
| VALIDATED BY: | | Date/ |
| | (Operations Representative) | |
| APPROVED BY: | | Date/ |
| | (Supervisor Initial Training) | |

CRYSTAL RIVER UNIT 3 IN-PLANT JOB PERFORMANCE MEASURE

Task: Placing EFP-2 in standby.

Alternate Path: N/A

JPM #: B2b1 (new)

K/A Rating/Importance: 068AA1.02/4.3/4.5 Task Number/Position: 1190403001/PPO

Task Standard: Place EFP-2 in standby using AP-990, Enclosure 3.

| Preferred Evaluation Location: | Preferred Evaluation Method: |
|--|-------------------------------------|
| Simulator In-PlantX Admin | Perform SimulateX |
| References:
1. AP-990 enclosure 3, Rev 15 | |
| Validation Time: 20 min. | <u>Time Critical</u> : No |
| Candidate:Printed Name | Time Start:
Time Finish: |
| Performance Rating: SAT UNSAT | Performance Time: |
| Examiner: Printed Name | / |
| Comment: | |
| | |
| | |
| | |

Tools/Equipment/Procedures Needed:

1. AP-990, Enclosure 3

READ TO THE OPERATOR

Directions to the Student:

I will explain the initial conditions, and state the task to be performed. All steps, including any required communications, shall be simulated for this JPM. Under no circumstances are you to operate any plant equipment. I will provide initiating cues and reports on other actions when directed by you. Ensure you indicate to me when you understand your assigned task. To indicate that you have completed your assigned task, return the handout sheet to the examiner.

Initial Conditions:

You are the PRIMARY PLANT OPERATOR. A Shutdown Outside the Control Room is in progress.

Initiating Cues:

You are requested to perform the PPO portions of Enclosure 3 of AP-990 to place EFP-2 in standby.

START TIME:

| <u>STEP 1</u> : | |
|--|-------|
| Obtain a copy of appropriate procedure. | SAT |
| STANDARD: Candidate obtains a copy of AP-990 Enclosure 3. | UNSAT |
| EXAMINER NOTE: When the candidate indicates where they would obtain a copy of AP-990 Enclosure 3, provide them with the enclosure. | |
| <u>COMMENTS:</u> | |

| <u>STEP 2</u> : (step 3.1) | | Critical Step |
|--|---|---------------|
| EXAMINER CUE: | The Control Room radios you to complete step 3.1 of AP-
990 Enclosure 3. | SAT
UNSAT |
| EXAMINER NOTE | :PPO has the EFIC cabinet key on the PPO key ring. | |
| Notify PPO
1
2
3
4
<u>STANDARD:</u> Candid
to the I
momen
red LE
(PPO k
locates
positio
Candid | O to place EFW bistables for EFIC channels A and B in manual.
Momentarily place the MAN/RES toggle switch to the MAN
position on EFW module (B-4-12).
Verify the following status lights are solid on EFW module B-
4-12:
Tripped 1
Tripped 2
Momentarily place the MAN/RES toggle switch to the man
position on EFW module (A-4-12).
Verify the following status lights are solid on EFW module A-
4-12:
Tripped 1
Tripped 1
Tripped 2
Hate locates EFIC cabinet key (PPO key ring) and unlocks door
B EFIC cabinet. Candidate locates module B-4-12 and
ntarily places toggle in the MAN position and verifies that the
D status lights are solid. Candidate locates EFIC cabinet key
key ring) and unlocks door to the A EFIC cabinet. Candidate
a module A-4-12 and momentarily places toggle in the MAN
n and verifies that the red LED status lights are solid.
late notifies the Control Room that step 3.1 of AP-990
ure 3 is complete. | |
| EXAMINER CUE: | (For each module) The status lights are solid (or as you see them). | |
| EXAMINER NOTE | :Take the part of the Control Room in communication with the SPO. | |
| COMMENTS: | | |

| <u>STEP 3</u> : | (step 3.2) | |
|-----------------|---|---------------|
| | When EFW bistables for EFIC channels A and B are in manual, then close | SAT |
| | ASV-5. | UNSAT |
| STANDA | RD: N/A, performed in control room. | |
| COMME | NTS: | |
| STEP 4: | (step 3.3) | Critical Step |
| | | SAT |
| EXAMIN | <u>NER CUE</u> : The Control Room radios you to complete step 3.3, detail 2, of AP-990 Enclosure 3, manually close ASV-204. | UNSAT |
| | Ensure ASV-204 is closed. 1 Notify RO to open DPDP 8A-17 ASV-204 MOTOR POWER. 2 Notify PPO to manually close ASV-204 EFP-2 STEAM SUPPLY ISO If ASV-204 fails to close, then trip EFP-2. | |
| <u>STAND</u> | ARD: Candidate disengages motor (may hold lever entire time) for ASV-204
and rotates hand wheel clockwise until hard stop is reached (candidate
may use ASV-204 local light to verify closure). Candidate notifies the
Control Room that step 3.3 detail 2 of AP-990 Enclosure 3 is
complete. | |
| EXAMI | NER CUE: Hand wheel rotates and comes to a hard stop. | |
| EXAMI | <u>NER NOTE</u> : Take the part of the Control Room in communication with the SPO. | |
| COMME | ENTS: | |

| <u>STEP 5</u> : (step 3.4) | |
|----------------------------|-------|
| Exit this procedure. | SAT |
| STANDARD: N/A | UNSAT |
| COMMENTS: | |
| END OF TASK | |

TIME STOP _____

CANDIDATE CUE SHEET

(TO BE RETURNED TO EXAMINER UPON COMPLETION OF TASK)

Initial Conditions:

You are the PRIMARY PLANT OPERATOR. A Shutdown Outside the Control Room is in progress.

Initiating Cues:

You are requested to perform the PPO portions of Enclosure 3 of AP-990 to place EFP-2 in standby.

4.0 ENCLOSURE 3 PLACING EFP-2 IN STANDBY

ACTIONS

DETAILS

NOTE

Lighting may not be available in the A EFIC Room.

- 3.1 ____ Notify PPO to place EFW bistables for EFIC channels A and B in manual.
- 1 ____ Momentarily place the "MAN/RES" toggle switch to the "MAN" position on EFW module B-4-12 (124 ft CC B EFIC Room).
- 2 Verify the following status lights are solid on EFW module B-4-12:

TRIPPED 1

TRIPPED 2

- 3 <u>Momentarily place the</u> "MAN/RES" toggle switch to the "MAN" position on EFW module A-4-12 (124 ft CC A EFIC Room).
- 4 Verify the following status lights are solid on EFW module A-4-12:

TRIPPED 1

TRIPPED 2

3.2 <u>WHEN</u> EFW bistables for EFIC channels A and B are in manual, <u>THEN</u> close ASV-5

| AP-990 | REV 15 | PAGE 99 OF 163 | SOCR |
|--------|--------|----------------|------|
| | 1 | | |

4.0 ENCLOSURE 3 PLACING EFP-2 IN STANDBY (CONT'D)

ACTIONS

3.3 Ensure ASV-204 is closed. 1 Notify RO to open DPDP 8A-17 "ASV-204 MOTOR POWER" (A ES 4160V SWGR Room). 2 Notify PPO to manually close ASV-204 "EFP-2 STEAM SUPPLY ISO" (95 ft IB by EFP-2). IF ASV-204 fails to close, THEN trip EFP-2 Notify PPO to manually trip ASV-50 "EFP-2 TRIP & THROTTLE VALVE" (95 ft IB by EFP-2).

DETAILS

3.4 ___ EXIT this enclosure.

| AP-990 | REV 15 | PAGE 101 OF 163 | SOCR |
|--------|--------|-----------------|------|
| | | | |

REGION II INITIAL LICENSE EXAMINATION JOB PERFORMANCE MEASURE

JPM B2c1, Release a Waste Gas Decay Tank to Plant Ventilation

| CANDIDATE | | |
|---------------|-------------------------------|-------|
| | | |
| | | |
| EXAMINER | | |
| | | |
| PREPARED/ | | |
| | | Date/ |
| | | |
| REVIEWED BY: | | Date/ |
| | (Operations Representative) | |
| VALIDATED BY: | | Date/ |
| | (Operations Representative) | |
| APPROVED BY: | | Date/ |
| | (Supervisor Initial Training) | |

CRYSTAL RIVER UNIT 3 IN-PLANT JOB PERFORMANCE MEASURE

Task: Release waste gas decay tank to plant ventilation.

Alternate Path: When the release is started RM-A2 and RM-A11 goes into high alarm; WDV-439 does not close.

JPM #: B2c1 (new)

K/A Rating/Importance: G2.3.11/2.7/3.2 Task Number/Position: 07103004/PPO

Task Standard: Release waste gas decay tank to plant ventilation using OP-412B.

| Preferred Evaluation Location: | | | Preferred Evaluation Method: | | |
|--------------------------------|-------------|---------|-------------------------------------|-----------------------------|-----------|
| Simulator I | n-PlantX | Admin | Perform | Simulate | _X |
| References:
1. OP-412B Re | v 14 | | | | |
| Validation Time: | | | <u>Time Critic</u> | <u>al</u> : No | |
| Candidate: | | ed Name | | Time Start:
Time Finish: | |
| Performance Rat | ing: SAT | UNSAT | Perfor | mance Time: | |
| Examiner: | Printed Nan | ne | | Signature | /
Date |
| Comment: | | | | | |
| | | | | | |
| | <u></u> | | | | |
| | | | | | |

Tools/Equipment/Procedures Needed:

- 1. OP-412B completed up to step 4.1.32
- 2. Waste Gas Release Permit
- 3. Key to WDV-478
- 4. Calculator

READ TO THE OPERATOR

Directions to the Student:

I will explain the initial conditions, and state the task to be performed. All steps, including any required communications, shall be simulated for this JPM. Under no circumstances are you to operate any plant equipment. I will provide initiating cues and reports on other actions when directed by you. Ensure you indicate to me when you understand your assigned task. To indicate that you have completed your assigned task, return the handout sheet to the examiner.

Initial Conditions:

You are the PRIMARY PLANT OPERATOR. The previous shift has started the process of releasing the C Waste Gas Decay Tank to plant ventilation.

Initiating Cues:

You are requested to continue with the release of the C Waste Gas Decay Tank, starting with step 4.1.32 of OP-412B.

START TIME: _____

| STEP 1: | |
|---|---------------|
| | SAT. |
| Obtain a copy of appropriate procedure. | SAT |
| STANDARD: Candidate obtains a copy of OP-412B. | UNSAT |
| | |
| EXAMINER NOTE: When the candidate has completed reading the cue provide them with the partially completed OP-412B. | |
| | |
| COMMENTS: | |
| <u>COMMENTS.</u> | |
| STEP 2: (step 4.1.32) | Critical Step |
| | |
| Perform valve alignment for WGDT C discharge. | SAT |
| 1 Close the following:
WDV-392, WGDT WDT 1C Inlet Isol. | UNSAT |
| WDV-435, WGDT WDT 1C Drain Isol. | |
| WDV-395, WGDT WDT 1C Outlet Isol to recycle. | |
| 2 Open the following: | |
| WDV-439. Waste Gas Discharge CV | |
| WDV-438, WGDT WDT IC Outlet Release | |
| WDV-477, Outlet Isolation to RM-11A | |
| STANDARD: Candidate verifies green light ON and red light OFF for WDV-392 | |
| Candidate verifies green light ON and red light OFF for WDV-395. | |
| Candidate rotates control switch for WDV-439 open and verifies red | |
| light ON and green light OFF. Candidate rotates control switch for | |
| WDV-438 open and verifies red light ON and green light OFF. | |
| Candidate rotates hand wheel for WDV-477 counter-clockwise until | |
| hard stop. | |
| EXAMINER CUE: WDV-435 was closed earlier by an operator in the valve | |
| alley, WDV-392 and WDV-395 green lights are ON and red | |
| lights are OFF. WDV-439 and WDV-438 red lights are ON | |
| and green lights are OFF. WDV-477 hand wheel rotates | |
| and comes to a hard stop. | |
| COMMENTS: | |
| | |
| | |

| STEP 3: (step 4.1.33) | Critical Step |
|---|---------------|
| Complete valve alignment for WGDT Release. | SAT |
| 1 Close WDV-566, Nitrogen Gas Sampler Purge | |
| 2 Close WDV-549, Nitrogen Gas Sampler Purge Isol | UNSAT |
| 3. Open WDV-565, Nitrogen Gas Sampler Purge | |
| | |
| STANDARD: Candidate rotates manual valve operator of WDV-566 in clockwise | |
| direction until hard stop. Candidate rotates hand wheel of WDV-549 | |
| in clockwise direction until hard stop. Candidate rotates manual valve | • |
| operator of WDV-565 in counter-clockwise direction until hard stop. | |
| | |
| EXAMINER CUE: WDV-566 hand wheel rotates and comes to a hard stop. | |
| WDV-549 hand wheel rotates and comes to a hard stop. WDV- | |
| 565 hand wheel rotates and comes to a hard stop. | |
| | |
| COMMENTS: | |
| | |
| STEP 4: (step 4.1.34) | |
| $\underline{\text{STEP 4}}: (\text{step 4.1.34})$ | |
| | SAT |
| If RM-A11 is inoperable, then complete enclosure 2, Independent | |
| Verification of Discharge Valves Lineup. | UNSAT |
| 1 Perform independent verification of discharge lineup. | |
| 2. Annotate completion of two independent verifications of the | |
| discharge lineup on the GRWRP. | |
| | |
| EXAMINER CUE: RM-A11 is operable. | |
| | |
| STANDARD: N/A | |
| | |
| <u>COMMENTS:</u> | |
| | |

| STEP 5: (step 4.1.35) Notify Security of Waste Gas Release. Verify roof patrols have been secured. EXAMINER CUE: This has been completed by the Control Room. STANDARD: N/A | SAT
UNSAT |
|---|--------------|
| COMMENTS: | |
| STEP 6: (step 4.1.36) Ensure Channel Check on WD-19-FR is completed. o WD-19-FR Channel Check Complete 1. 1. | SAT
UNSAT |

| STEP 7: (step 4.1.37) | | Critical Step |
|---|---|---------------|
| PROCEDURE CAUTION: | Do not pressurize GM tube in RM-A11 above 8 psig. | SAT |
| o Unlo
conservative
o F
OR
o F
STANDARD: Candidate un
clockwise to
hand wheel o
will verify W
WDV-437, a
red indicatin
WDV-439 to
5). Candida | ease to ventilation filter units.
ck and throttle WDV-478 adjusting flow to the most
of the following:
low less than 10 scfm on WD-19-FR.
low less than limits established on GRWRP.
hlocks WDV-478 and rotates hand wheel counter-
a throttled position. After cues 1 and 2, candidate rotates
of WDV-478 clockwise to hard stop (Cue 3). Candidate
WDV-393, WDV-394, WDV-395, WDV-439, WDV-436,
and WDV-438 are closed by green indicating light ON and
g light off (Cue 4). Candidate rotates control switch for
o close and verifies green light ON and red light OFF (Cue
te informs Control Room that the release is terminated and
alves are closed for a RM-A2 and RM-A11 actuation. | |
| EXAMINER CUE: 1. | After candidate has throttled WDV-478 open, RM-
A2 and RM-A11 are in high alarm. | |
| 2. | The Control Room requests you terminate the release and verify the appropriate valves have closed. | |
| 3. | WDV-478 hand wheel rotates and comes to a hard stop. | |
| 4. | WDV-439 red light is ON and green light is OFF.
All other valves listed have green lights ON and red
lights OFF. | |
| 5. | WDV-439 green light is ON and red light is OFF. | |
| This | completes the JPM. | |
| COMMENTS: | | |
| | | |

TIME STOP _____

CANDIDATE CUE SHEET

(TO BE RETURNED TO EXAMINER UPON COMPLETION OF TASK)

Initial Conditions:

You are the PRIMARY PLANT OPERATOR. The previous shift has started the process of releasing the C Waste Gas Decay Tank to plant ventilation.

Initiating Cues:

You are requested to continue with the release of the C Waste Gas Decay Tank, starting with step 4.1.32 of OP-412B.

ENCLOSURE 1

GASEOUS RADWASTE RELEASE PERMIT

۰.

| ESTIMATED RELEASE CONDITIONS (CHEMISTRY) | | | | | |
|--|------------------------------------|--|--|--|--|
| RELEASE POINT ID: WDT-1C (WGDT-3C) | PERMIT NUMBER: 00 00 27.023. 015.G | | | | |
| MONITOR: RM-A11 | | | | | |
| MAX WARNING SETPOINT: 6.4 E+5 CPM | MAX RELEASE RATE: 15 CFM | | | | |
| MAX HI TRIP SETPOINT: 8. D E+5 CPM | RELEASE TO TERMINATE AT: / D PSIG | | | | |
| SPECIAL REQUIREMENTS: | | | | | |
| | | | | | |
| | | | | | |
| RELEASE APPROVED BY: | | | | | |
| A. Chemist | B. Chamist | | | | |

| ACTUAL RELEASE CONDITIONS (OPERATIONS) | | | | | |
|--|---------------|------------|------------------|--|--|
| RELEASE APPROVED BY | A. Saja | | DATE: 9-28-00 | | |
| RM-A11 WARNING SETPO | DINT: 64 | 10,000 CPM | | | |
| RM-A11 HI TRIP SETPO | | 00,000 CPM | | | |
| | DATE | TIME | WDT-1C PRESSURE | | |
| START | | | PSIG | | |
| STOP | | | PSIG | | |
| NET | N/A | MIN | PSIG | | |
| RM-A11 CHANNEL CHECH
COMPLETE PER OP-4121 | к
в ву: А. | Operator | DATE:
9-28-10 | | |
| RM-A11 CHAINNEL CHECK
COMPLETE PER OP-412BBY: A. OperatorDATE:
9-28-10RM-A11 SOURCE CHECK
COMPLETE PER OP-412BBY: A. OperatorDATE:
9-28-00 | | | | | |
| WD-19-FR CHANNEL CHECK DATE:
COMPLETE PER OP-412B BY: | | | | | |
| IF RM-A11 INOPERABLE, THEN 2BY/DATE:BY/DATE:INDEPENDENT VERIFI-CATIONS OFDISCHARGE VALVE LINEUP PER OP-412B:BY/DATE: | | | | | |
| IF WD-19-FR INOPERABLE, THEN ESTIMATE FLOW RATE AT LEAST DATE:
ONCE PER 4 HOURS PER OP-412B AND ATTACH DATA SHEET BY: | | | | | |
| COMPLETED BY: | | | DATE: | | |
| POST RELEASE APPROVED BY (NSS): DATE: | | | | | |

(MC) Rev. 14

Effective Date <u>12/07/99</u>

OPERATING PROCEDURE

OP-412B

FLORIDA POWER CORPORATION

CRYSTAL RIVER UNIT 3

WGDT RELEASE TO VENTILATION

APPROVED BY: Procedure Owner

John Addison for JHT (SIGNATURE ON FILE)

DATE: <u>12/07/99</u>

PROCEDURE OWNER: Manager, Nuclear Operations Support

TABLE OF CONTENTS

| <u>SECT</u> | | <u>PAGE</u> |
|-------------|---|--|
| <u>1.0</u> | PURPOSE | 1 |
| <u>2.0</u> | REFERENCES | $ \begin{array}{c} 1 \\ 1 \\ $ |
| <u>3.0</u> | PERSONNEL INDOCTRINATION
3.1 <u>SETPOINTS</u>
3.2 <u>LIMITS AND PRECAUTIONS</u> | • • 4. |
| <u>4.0</u> | INSTRUCTIONS
4.1 GAS RELEASE TO PLANT VENT (CAT. 1) | 4
4 |
| | FOLLOW-UP ACTIONS | |
| <u>6.0</u> | RESTORATION INSTRUCTIONS | . 26 |
| ENCL | <u>OSURES</u> | |
| | 1 Manual Release Rate Data Sheet | . 27 |
| | 2 Independent Verification of Discharge Valve Lineup | . 28 |

.

.....

| <u>1.0</u> | PURPOSE [NOCS 005802, 005803, 007382, 090050, 090130] |
|------------|--|
| 1.1 | To provide guidelines for the release of WGDTs through the AB
Ventilation System to the Atmosphere. |
| 2.0 | REFERENCES |
| 2.1 | DEVELOPMENTAL REFERENCES |
| 2.1.1 | FD-302-691, Gas Waste Disposal |
| 2.1.2 | FD-302-692, Waste Gas Sampling |
| 2.1.3 | MAR 87-10-27-01, Resolution of Backup Met Tower Instrument Failures |

3.0 PERSONNEL INDOCTRINATION

| DESCRIPTION | | VALUE | |
|-------------|---|----------------------------------|--|
| 3.1 | <u>SETPOINTS</u> | | |
| 3.1.1 | Waste Gas Decay Tanks
Relief Valve | 125 PSIG | |
| 3.1.2 | Waste Gas Decay Tanks
Rupture Disc | 150 PSIG | |
| 3.1.3 | Waste Gas Decay Tank
Valves; WDV-390, WDV-391, &
WDV-392 Auto Close | 80 PSIG | |
| 3.1.4 | Waste Gas Discharge
Pressure Reducing Valve
WDV-857 | 8 PSIG | |
| 3.1.5 | WDV-393, 394, 395, & 439
close | RMA-11 High Alarm | |
| 3.1.6 | WDV-436, 437, & 438 Close | RMA-2 High Rad Alarm | |
| 3.1.7 | WDV-439 Close | Greater than or equal to 15 SCFM | |

3.2 LIMITS AND PRECAUTIONS

. -

| | LIMIT | BASIS |
|-------|--|---|
| 3.2.1 | A Gaseous Radwaste Release
Permit shall be initiated
and approved for gas decay
tanks prior to release of
waste gas to environment | Ensure ODCM Limits are not exceeded |
| 3.2.2 | For work located in
Radiation Controlled Areas,
consideration must be given
to ALARA program | Personnel protection |
| 3.2.3 | <u>IF</u> either RMA-11,
<u>OR</u> WD-19-FR becomes
inoperative,
<u>THEN</u> TERMINATE the release
immediately
[NOCS 009658, 009659] | Offsite Dose Calculation Manual
(ODCM 2.2, Tables 2-3 and 2-4) |
| 3.2.4 | A gaseous release may be
started or restarted if
either RMA-11 or WD-19-FR
is out of service, in
accordance with the ODCM
[NOCS 009658, 009659] | Offsite Dose Calculation Manual
(ODCM 2.2, Tables 2-3 and 2-4) |

| | ACTIONS | DETAILS |
|-------|--|--|
| 4.1 | GAS RELEASE TO PLANT VENT (C | <u>AT. 1)</u> |
| 4.1.1 | <u>IF</u> water is to be drained
from WGDT to be released,
<u>THEN</u> PERFORM this Step | o Refer to OP-412A,
Section 4.3 |
| 4.1.2 | RECORD Pressure of Tank to
be released | o <u>80</u> PSIG |
| | NOTE: To Close WDV-390, WDV
switch is required. | -391, or WDV-392 use of the "OVERRIDE" |
| 4.1.3 | ENSURE WGDT to be released
is isolated | <pre>o IF WGDT "A",</pre> |
| | | o <u>IF</u> WGDT "C",
<u>THEN</u> ENSURE CLOSED:
<u>✓</u> WDV-392, WGDT WDT 1C Inlet
Isol
<u>✓</u> WDV-395, WGDT WDT 1C Outle
to Header
<u>✓</u> WDV-438, WGDT WDT 1C Outle
Release |

4.1 GAS RELEASE TO PLANT VENT (CAT. 1) (Cont'd)

| ACTIONS | | DETAILS | |
|---------|--|--|--|
| 4.1.4 | SELECT "OVERRIDE" switch to
ON, for WGDT to be released | • 🗹 | |
| 4.1.5 | NOTIFY Chemistry to
generate GRWRP for WGDT to
be released | o ENSURE Chemistry submits
GRWRP to Operation after
sampling and analysis is
complete | |

4.1 GAS RELEASE TO PLANT VENT (CAT. 1) (Cont'd)

| | ACTIONS | | DETAILS |
|-------|---|------------|---|
| 4.1.6 | NOTIFY Security of pending
Waste Gas Release | o 🖌 | NOTIFY 2 hours prior to start of release |
| 4.1.7 | PERFORM method of WD-19-FR
channel check; determined
by NSS/NSM [NOCS 021217] | o <u>/</u> | <u>IF</u> Flow Check is to be
performed,
<u>THEN</u> GO TO Step 4.1.8 |
| | | OR | |
| | | o | <u>IF</u> PT-168 <u>B</u> , Section 4. <u>1</u> , is
to be performed,
<u>THEN</u> GO TO Step 4.1.17 |
| | | <u>OR</u> | |
| | | o | <u>IF</u> WD-19-FR inoperable,
<u>THEN</u> GO TO Step 4.1.17 |
| | · | | |
| 4.1.8 | ESTABLISH and PREPARE a
Flow Element Testing Source
to WD-19-FE | 1/
2/ | OBTAIN Hand Loader with
Tygon Tubing
CONNECT Tygon tubing to
WDV-1163, Waste Gas Analyzer |

4.1

GAS RELEASE TO PLANT VENT (CAT. 1) (Cont'd)

| | ACTIONS | | DETAILS |
|--------|---|---|--|
| 4.1.9 | ISOLATE WD-137-PT | • 🖌
• 🖌
• 🟒 | VERIFY LOCKED CLOSED,
WDV-478, Inlet Isol to
RM-A11
CLOSE, WDV-480, WD-137-PT
Isolation
CLOSE, WD-137-PT Isolation
Valve V-1 |
| 4.1.10 | ENSURE WD-137-PT is drained | 1. <u>/</u>
2. <u>/</u> | OPEN WD-137-PT Drain
Connection
<u>WHEN</u> all condensate is
drained,
<u>THEN</u> CLOSE WD-137-PT drain
connection |
| 4.1.11 | CONNECT Tygon Tubing to
WD-137-PT drain connection | o _⁄ | <u> </u> |
| 4.1.12 | PERFORM Valve Alignment for
Flow Test | $1. \sqrt{2}$ $2. \sqrt{2}$ $3. \sqrt{4}$ $4. \sqrt{2}$ | OPEN, WDV-480
OPEN, Drain Connection on
WD-137-PT
OPEN, WDV-477, Outlet
Isolation to RM-A11
OPEN, WDV-439, Waste Gas
Discharge Control Valve |

.

| | ACTIONS | DETAILS |
|--------|--|--|
| | | |
| 4.1.13 | THROTTLE WDV-1163 and
establish approximately 5
PSIG using Hand Loader,
<u>AND</u>
RECORD final pressure | o Final Pressure <u>5</u> PSIG |
| 4.1.14 | ESTABLISH flow through
Waste Gas Release Lines
<u>AND</u>
after flow has stabilized,
RECORD flowrate | UNLOCK & THROTTLE, WDV-478,
adjusting flow to
approximately 5 SCFM, <u>DO NOT</u>
<u>Exceed 10 SCFM</u> <u>IF</u> flow cannot be
established,
<u>THEN</u> ENSURE Hand Loader is
reset to 5 PSIG Final flow |
| | | 4. <u>IF</u> flow still cannot be
established,
<u>THEN</u> the channel check of
WD-19-FR is Unsat |

OP-412B

| | ACTIONS | DETAILS |
|--------|--|--|
| 4.1.15 | <u>IF</u> Channel Check is SAT,
<u>THEN</u> RECORD Initials,
"Channel Check" and date on
WD-19-FR
<u>OR</u>
<u>IF</u> Channel Check is UNSAT,
<u>THEN</u> NOTIFY NSS/NSM | Channel Check complete SAT OR UNSAT NOTIFY Security if release will be delayed |
| 4.1.16 | RESTORE WD-137-PT from Flow
Test Equipment | <pre>1 CLOSE WDV-1163, to stop
Nitrogen to WD-137-PT
2 REMOVE Tygon Tubing from
WDV-1163
3 CLOSE WD-137-PT Drain
Connection
4 CLOSE WDV-480
5 REMOVE Tygon Tubing from
Drain Connection
6 OPEN WDV-480
8 CLOSE WDV-477 Isol Valve
V-1
7 OPEN WDV-480
8 CLOSE WDV-439
9 LOCK CLOSED WDV-478
10 CLOSE WDV-477
11 VERIFY WD-19-FR is
indicating approximately 0.0
SCFM
12 OPEN WDV-1163</pre> |

Page 9

| | ACTIONS | | DETAILS |
|--------|--|---|---|
| 4.1.17 | VERIFY "POWER" lights are
lit on Radiation Monitoring
Panel | • / | RMA-2G
RMA-11 |
| 4.1.18 | TEST and ADJUST RMA-2G
"WARNING" setpoint per
GRWRP
[NOCS 001943, 009670] | $1. \checkmark$ $2. \checkmark$ $3. \checkmark$ $4. \checkmark$ | SILENCE" pushbutton
VERIFY "HORN SILENCE"
pushbutton is backlit
RECORD background count |
| | | AND | |
| | | read | ST "WARNING" potentiometer to
below background count rate
anel meter |
| | | 5. <u>√</u>
6. <u>√</u>
7. <u>√</u> | switch
VERIFY alarm at Control
Center Rate Meter and Main
Control Board Annunciator |
| | | AND | - |
| | | ADJU:
"WARI
cont | ST "WARNING" potentiometer to
NING" setpoint per GRWRP for
inuous Aux. Building release
ted in Control Room) |
| | | 8. <u>/</u>
9. <u>/</u> | RELEASE "ALARM SETTING"
switch
RECORD "Warning" Setpoint
here/え <u>○</u> CPM. |
| | | | |
| | | | |
| | | | |
| | | | |

| | ACTIONS | | DETAILS |
|--------|--|---|---|
| 4.1.19 | TEST and ADJUST RMA-2G
"HIGH" setpoint per GRWRP
[NOCS 001943, 009670] | 2. <u>/</u> s | DEPRESS and HOLD "BYPASS
MA-2" pushbutton
SELECT & HOLD "ALARM
SETTING" switch to "HIGH"
Sosition |
| | | AND | |
| | | read be | "HIGH" potentiometer to
low background count rate
] meter |
| | | | ELEASE "ALARM SETTING" |
| | | 4. 🟒 V | witch
ERIFY alarm at Control
Center Rate Meter and Main |
| | | 5. 🖌 S | Control Board Annunciator
ELECT & HOLD "ALARM
ETTING" switch to "HIGH"
osition |
| | | AND | |
| | | to "HIG
continu
(posted
6 R
7 R
8 R
9 D
5.
10 R | "HIGH" potentiometer mete
H" setpoint per GRWRP for
hous Aux. Building release
in Control Room)
ELEASE "ALARM SETTING"
witch
ECORD "High" Setpoint her
200 K CPM.
ESET all alarms
EPRESS & RELEASE "HORN
ILENCE" pushbutton
ELEASE "RMA-2 Bypass"
ushbutton |
| | | | |
| | | | |
| | | | |
| | | | |

| | ACTIONS | | DETAILS |
|--------|--|---|--|
| 4.1.20 | TEST and ADJUST RMA-11
"WARNING" setpoint per
GRWRP
[NOCS 001943, 009670] | $1. \checkmark$ $2. \checkmark$ $3. \checkmark$ $4. \checkmark$ | SILENCE" pushbutton
VERIFY "HORN SILENCE"
pushbutton is backlit
RECORD background count
rate <u>3K</u> CPM
SELECT & HOLD "ALARM
SETTING" switch to "WARNING"
position |
| | | 5. <u>~</u>
6. <u>/</u>
7. <u>/</u> | AND
ADJUST "WARNING"
potentiometer to read below
background count rate on
panel meter
RELEASE "ALARM SETTING"
switch
VERIFY alarm at Control
Center Rate Meter and Main
Control Board Annunciator
SELECT & HOLD "ALARM
SETTING" switch to "WARNING"
position |
| | | 8. <u>/</u>
9. <u>/</u> | ADJUST "WARNING"
potentiometer to "WARNING"
setpoint per GRWRP
RELEASE "ALARM SETTING"
switch
RECORD "Warning" Setpoint
 |

.

4.1

| | ACTIONS | | DETAILS |
|------|--|---|--|
| 1.21 | TEST and ADJUST RMA-11
"HIGH" setpoint per GRWRP
[NOCS 001943, 009670] | 1. <u>/</u>
2. <u>/</u> | |
| | | | AND |
| | | 3. <u>/</u>
4. <u>/</u>
5. <u>/</u> | switch
VERIFY alarm at Control
Center Rate Meter and Main
Control Board Annunciator |
| | | | AND |
| | | 6. <u>~</u>
7. <u>/</u>
8. <u>~</u> | ADJUST "HIGH" potentiometer
to "HIGH" setpoint per GRWM
RELEASE "ALARMSETTING"
switch
RECORD "HIGH" Setpoint
<u>8.065</u> CPM, and on GRWM
for batch release
RESET all alarms |
| | | 9. <u>/</u>
10. <u>/</u> | RELEASE "RMA-11 Bypass"
pushbutton
DEPRESS and release "HORN
SILENCE" pushbutton |

.

•

. .

| | ACTIONS | | DETAILS |
|--------|---|---|--|
| 4.1.22 | ENSURE RMA-2/RMA-11 Channel
Check is complete
[NOCS 009670] | 0 | RMA-2/RMA-11 Channel Check
Complete
1 ENSURE Steps 4.1.18,
4.1.19, 4.1.20, and
4.1.21 are complete |
| | | | 2 ANNOTATE completion of
RMA-11 Channel Check on
the GRWRP |
| | | | <u>OR</u> |
| | | 0 | <u>IF</u> RMA-2/RMA-11 Channel
Check is unsatisfactory,
<u>THEN</u> NOTIFY NSS/NSM to refer
to ODCM Section 2.2 and
Table 2-3. |
| 4.1.23 | PERFORM Check Source or
Wand Check on RMA-11
[NOCS 009671] | 0 | VERIFY meter responds to
check source/Wand check by
observing increasing value
on meter |
| | | 0 | |
| | | | <u>OR</u> |
| | | 0 | <u>IF</u> Wand Test is
unsatisfactory,
<u>THEN</u> NOTIFY NSS/NSM to refer
to ODCM Section 2.2 and
Table 2-3. |

•

.

| | ACTIONS | | DETAILS |
|--------|--|-------------|---|
| 4.1.24 | NOTIFY NSS/NSM to verify
Radiation Monitor Setpoints
per Release Permit
[NOCS 001943] | 0
0
0 | RMA-2 Gas setpoints verified RMA-11 Gas setpoints verified NSS/NSM has authorized and signed GRWRP |
| 4.1.25 | ENSURE proper alignment of
HVAC | 0 | ENSURE two of the following
Auxiliary Building Exhaust Fans
are in service
AHF-14A
AHF-14C
OR
AHF-14B
AHF-14B |

| <u> </u> | ACTIONS | DETAILS | |
|----------|---|---|--|
| 4.1.26 | RECORD Meteorological
conditions from Primary Met
Tower
<u>OR</u> Secondary Met Tower | Data from Primary Met Tower 33 ft Wind Speed meters/sec 33 ft Wind Direction degrees 175 ft Wind Speed meter sec 175 ft Wind Direction degrees Delta Temperature OR Data from Secondary Met Tower Sigma-Theta degrees | <u>262</u>
8,7
267
14_°F
r |
| 4.1.27 | <u>IF</u> Delta Temperature is
greater than or equal to
Zero <u>OR</u>
Primary Met Tower Delta
Temperature is unavailable
and Secondary Met Tower
Sigma-Theta is less than
3 degrees,
<u>THEN</u> CONTACT Chemistry for
release approval | o <u>M</u> A NOTIFY Security if rele
will be delayed | ease |
| 4.1.28 | ENSURE RMA-2 Sample Pump is
operable | o _/ NOTIFY Chemistry to ver
Particulate Filter and
Charcoal Filter instal
RMA-2 | • |
| | | AND | |
| | | | |

•

| | ACTIONS | DETAILS |
|--------|--|---|
| 4.1.29 | PERFORM Valve Alignment for
Tank being discharged | o <u> </u> |
| | | <u>OR</u> |
| | | o <u> </u> |
| | | <u>OR</u> |
| | | o <u>IF</u> aligning WGDT "C",
<u>THEN</u> GO TO Step 4.1.32 |
| 4.1.30 | PERFORM Valve Alignment for
WGDT "A" Discharge | CLOSE the following:
— WDV-390, WGDT WDT 1A Inlet
Isol — WDV-433, WGDT WDT 1A Drain
Isol — WDV-393, WGDT WDT 1A Outlet
Isolation to Recycle OPEN the following:
— WDV-439, Waste Gas Discharge
CV — WDV-436, WGDT WDT 1A Outlet
Release — WDV-477, Outlet Isolation to |
| | | RM-11A
3 GO TO Step 4.1.33 |

| | ACTIONS | DETAILS |
|--------|---|---|
| 4.1.31 | PERFORM Valve Alignment for
WGDT "B" Discharge | 1. CLOSE the following:
WDV-391, WGDT WDT 1B Inlet
Isol |
| | | WDV-434, WGDT WDT 1B Drain
Isol |
| | | WDV-394, WGDT WDT 1B Outlet
Isol to Recycle |
| | | 2. OPEN the following: |
| | | WDV-439, Waste Gas Discharge
CV |
| | | WDV-437, WGDT WDT 1B Outlet
Release |
| | | WDV-477, Outlet Isolation to
RM-11A |
| | | 3 GO TO Step 4.1.33 |
| 4.1.32 | PERFORM Valve Alignment for | 1. CLOSE the following: |
| 4.1.32 | WGDT "C" Discharge | WDV-392, WGDT WDT 1C Inlet
Isol |
| | | WDV-435, WGDT WDT 1C Drain
Isol |
| | | WDV-395, WGDT WDT 1C Outlet
Isol to Recycle |
| | | 2. OPEN the following: |
| | | WDV-439, Waste Gas Discharge
CV |
| | - | WDV-438, WGDT WDT 1C Outlet |
| | | Release
WDV-477, Outlet Isolation to |
| | | RM-11A |
| 4.1.33 | COMPLETE Valve Alignment | 1 CLOSE WDV-566, Nitrogen Gas |
| | for WGDT Release | Sampler Purge
2 CLOSE WDV-549, Nitrogen Gas |
| | | Sampler Purge Isol |
| | | 3 OPEN WDV-565, Nitrogen Gas
Sampler Purge |

.

| ACTIONS | DETAILS |
|---|---|
| <u>IF</u> RMA-11 is inoperable,
<u>THEN</u> COMPLETE Enclosure 2,
Independent Verification of | 1 PERFORM independent
verification of discharge
lineup |
| Discharge Valves Lineup
[NOCS 009658] | 2 ANNOTATE completion of two
independent verifications of
the discharge lineup on the
GRWRP |
| NOTIFY Security of Waste
Gas Release | o VERIFY roof patrols have
been secured |
| ENSURE Channel Check on | o WD-19-FR Channel Check Complete |
| WD-19-FR is completed
[NOCS 009659, 009674,
021217] | 1 Step 4.1.15 has been
completed SAT |
| | OR |
| | PT-168 <u>B</u> , Section 4. <u>1</u> has been completed SAT |
| | 2 ANNOTATE completion of
WD-19-FR Channel Check on
the GRWRP |
| | <u>OR</u> |
| | o WD-19-FR is Inoperable and
GO TO Step 4.1.39 |
| | IF RMA-11 is inoperable,
<u>THEN COMPLETE Enclosure 2</u> ,
Independent Verification of
Discharge Valves Lineup
[NOCS 009658]
NOTIFY Security of Waste
Gas Release
ENSURE Channel Check on
WD-19-FR is completed
[NOCS 009659, 009674, |

֥

• • •

| | ACTIONS | | D | ETAILS |
|--------|---|------------|-----------|--|
| | ************************************** | G-M Tube i | n RMA-11 | above 8 PSIG. |
| 4.1.37 | START WGDT Release to
Ventilation Filter Units | 0 | adjusti | and THROTTLE WDV-478
ng flow to the most
ative of the
ng: |
| | | | o | Flow less than
10 SCFM on WD-19-FR |
| | | | <u>OR</u> | |
| | | | 0 | Flow less than
limits established
on GRWRP |

Page 20

| | ACTIONS | | DETAILS |
|--------|--|--------------------------------------|--|
| 4.1.38 | DETERMINE if WD-19-FR is
operating properly
[NOCS 009659] | o | <u>IF</u> flow rate appears
accurate,
<u>THEN</u> GO TO Step 4.1. <u>40</u> |
| | | <u>OR</u> | |
| | | o | <u>IF</u> no flow rate is indicated
or appears inaccurate,
<u>THEN</u> CLOSE, WDV-478
<u>AND</u> NOTIFY the NSS/NSM |
| 4.1.39 | OBTAIN NSS/NSM permission
to use Manual Release Rate
Calculations and start WGDT | 1 | REFER to ODCM, Section 2.2
and Table 2-3
OBTAIN NSS/NSM permission |
| | release
[NOCS 009659, 021217] | 3 | UNLOCK and THROTTLE WDV-478
adjusting pressure on
WD-118-PI, Nitrogen Gas
Sampler Purge to 1 PSIG |
| | | 4 | BEGIN Manual Release Rate
Calculations using
Enclosure 1 |
| | · • · | ~ W T | ************************************** |
| 4.1.40 | THROTTLE WDV-478 to
maintain release rate below
limits | o MAIN
most
limi
o _
o _ | TAIN Release Rate below the
conservative of the followin
its:
Less than 10 SCFM
Less than limits
established on GRWRP |

OP-412B

| | ACTIONS | DETAILS |
|--------|--|--|
| 4.1.41 | MAKE notifications of WGDT
Release in progress | NOTIFY the Control Room of the
Release start and VERIFY the
following: RMA-11 indication is
functioning with no Failure
Alarms |
| | | 2 NOTIFY Chemistry of Release
start |
| 4.1.42 | RECORD pertinent Release
data | 1. RECORD the following on RMA-11:
RMA-11 recorder time
GRWRP number |
| | | 2. RECORD the following on the GRWRF
Date of Release start
Time of Release start
Initial WGDT pressure |
| | | |
| | NOTE: Waste Gas Analyzer wil
present in WGDT. | l not operate unless 10 psig is |
| 4.1.43 | | <pre>o DETERMINE Pressure from following
 WD-16-PI, WGDT WDT 1A for
WGDT "A"
 WD-17-PI, WGDT WDT 1B for
WGDT "B"
 WD-18-PI, WGDT WDT 1C for
WGDT "C"</pre> |
| 4.1.43 | present in WGDT.
<u>WHEN</u> WGDT is greater than
or equal to 10 PSIG,
<u>THEN</u> CLOSE Release Outlet | <pre>o DETERMINE Pressure from following
 WD-16-PI, WGDT WDT 1A for
WGDT "A"
 WD-17-PI, WGDT WDT 1B for
WGDT "B"
 WD-18-PI, WGDT WDT 1C for</pre> |
| 4.1.43 | present in WGDT.
<u>WHEN</u> WGDT is greater than
or equal to 10 PSIG,
<u>THEN</u> CLOSE Release Outlet | DETERMINE Pressure from following |
| 4.1.43 | present in WGDT.
<u>WHEN</u> WGDT is greater than
or equal to 10 PSIG,
<u>THEN</u> CLOSE Release Outlet | DETERMINE Pressure from following
WD-16-PI, WGDT WDT 1A for
WGDT "A"
WD-17-PI, WGDT WDT 1B for
WGDT "B"
WD-18-PI, WGDT WDT 1C for
WGDT "C" CLOSE Outlet Valve of Vented Tank
<u>IF</u> WGDT "A",
<u>THEN</u> CLOSE, WDV-436 |
| 4.1.43 | present in WGDT.
<u>WHEN</u> WGDT is greater than
or equal to 10 PSIG,
<u>THEN</u> CLOSE Release Outlet | <pre>o DETERMINE Pressure from following
WD-16-PI, WGDT WDT 1A for
WGDT "A"
WD-17-PI, WGDT WDT 1B for
WGDT "B"
WD-18-PI, WGDT WDT 1C for
WGDT "C"
o CLOSE Outlet Valve of Vented Tank
<u>IF</u> WGDT "A",
<u>THEN</u> CLOSE, WDV-436
<u>OR</u>
<u>IF</u> WGDT "B",</pre> |

Page 22

| | ACTIONS | DETAILS |
|--------|---|---|
| 4.1.44 | NOTIFY Control Room | o NOTIFY time release was secured |
| 4.1.45 | RESTORE Waste Gas System
standby condition | <pre>o IF the WGDT being released
is dedicated for MUT Venting
<u>THEN</u> SELECT "OVERRIDE"
Switch to ON
<u>IF</u> not dedicated for MUT
Venting
<u>THEN</u> SELECT "OVERRIDE"
Switch to OFF
o RECORD GRWRP Number and Time
on RMA-11 Recorder
o RECORD Date/Time and
Pressure on GRWRP, Section
II
o LOCK CLOSED, WDV-478
o CLOSE the following:
 WDV-439
 WDV-477
 WDV-565</pre> |
| 4.1.46 | NOTIFY Chemistry that
release is completed | ° |
| 4.1.47 | COMPLETE Section II of
GRWRP and Sign | <u>IF</u> Release was performed using Manual
Release Rate Calculations,
<u>THEN</u>
ATTACH Enclosure 1,
Manual Release Rate Data
Sheet, to the GRWRP
ANNOTATE completion of
Manual Release Rate
Calculations on the GRWRP |

| | ACTIONS | DETAILS |
|--------|--|---------|
| 4.1.48 | ENSURE Shift Supervisor
signs GRWRP for release
termination
<u>AND</u>
RETURN original copy of
GRWRP to Chemistry | O |
| | | |

4.1.49 NOTIFY Security that Release is completed

.

o ___

| 5.0 | FOLLOW-UP ACTIONS | |
|-----|-------------------|--|
|-----|-------------------|--|

| ACTIONS | DETAILS |
|---------|---------|
| | |

• · ·

• :

None

6.0 RESTORATION INSTRUCTIONS

| ACTIONS | DETAILS |
|---------|---------|
| ACTIONS | DETAILS |

None

ENCLOSURE 1

MANUAL RELEASE RATE DATA SHEET [NOCS 009659, 021217]

| Time* | WGDT
Pressure
(PSIG) | ∆ WGDT
Pressure
(PSIG) | ∆ Pressure
X 119.28
∆ Time (min) | Release
Rate (SCFM) | Initials
&
Date |
|-------|----------------------------|------------------------------|--|------------------------|-----------------------|
| | | N/A | N/A | N/A | |
| | | | X 119.28 = | | |
| | | | X 119.28 = | | |
| | | | X 119.28 = | | |
| | | | X 119.28 = | | |
| | | | X 119.28 = | | |
| | | | X 119.28 = | | |
| | | | X 119.28 = | | |
| | | | X 119.28 = | | |

*Every two hours or per NSS/NSM

Reviewed by _____ Time ____ Date _____

ENCLOSURE 2 (Page 1 of 2)

INDEPENDENT VERIFICATION OF DISCHARGE VALVES LINEUP [NOCS 009658]

| ACTIONS | DETAILS |
|---|---|
| 1. <u>IF</u> preparing WGDT "A" for
discharge,
<u>THEN</u> PERFORM the following: | ENSURE CLOSED the following:
WDV-390, WGDT WDT 1A Inlet
Isol
WDV-433, WGDT WDT 1A Drain
Isol
WDV-393, WGDT WDT 1A Outlet
Isol to Recycle ENSURE OPEN the following:
WDV-439, Waste Gas Discharge
CV
WDV-436, WGDT WDT 1A Outlet
Release
WDV-477, Outlet Isol to
RM-11A GO TO Step 4 |
| 2. IF preparing WGDT "B" for
discharge,
THEN PERFORM the following: | ENSURE CLOSED the following: WDV-391, WGDT WDT 1B Inlet Isol WDV-434, WGDT WDT 1B Drain Isol WDV-394, WGDT WDT 1B Outlet Isol to Recycle ENSURE OPEN the following: WDV-439, Waste Gas Discharg CV WDV-437, WGDT WDT 1B Outlet Release WDV-477, Outlet Isol to RM-11A GO TO Step 4 |

.

OP-412B

ENCLOSURE 2 (Page 2 of 2)

INDEPENDENT VERIFICATION OF DISCHARGE VALVES LINEUP

| | ACTIONS | DETAILS |
|----|--|---|
| 3. | <u>IF</u> preparing WGDT "C" for
discharge,
<u>THEN</u> PERFORM the following: | ENSURE CLOSED the following:
WDV-392, WGDT WDT 1C Inlet
Isol
WDV-435, WGDT WDT 1C Drain
Isol
WDV-395, WGDT WDT 1C Outlet
Isol to Recycle ENSURE OPEN the following:
WDV-439, Waste Gas Discharge
CV
WDV-438, WGDT WDT 1C Outlet
Release
WDV-477, Outlet Isol to
RM-11A GO TO Step 4 |
| 4. | COMPLETE Valve Alignment for WGDT
Release | ENSURE CLOSED WDV-566,
Nitrogen Gas Sampler Purge ENSURE CLOSED WDV-549,
Nitrogen Gas Sampler Purge
Isol ENSURE OPEN WDV-565,
Nitrogen Gas Sampler Purge |