

June 7, 2007

Dear Workshop Attendees:

On behalf of the workshop organizers, I would like to thank you for attending and participating in the High-Megawatt Converter Workshop held at NIST on January 24, 2007. The enclosed CD contains the viewgraphs presented by each speaker[†] as well as the workshop proceedings summary[†] prepared by Ron Wolk.

For convenience, the CD contains a file in the top level directory called "Indexed Proceedings" that contains all of the files in an indexed format. Links to referenced presentations are also provided within the proceedings text. The "Indexed Proceedings" document is best viewed with a recent version of Acrobat Reader (e.g., version 8) so that the links are opened in a separate window. The multiple window format (tile or cascade) is controlled using the "Windows" pull down menu on the Acrobat Reader Toolbar. The "files" directory on the CD contains the Acrobat Reader 8 installer, as well as, the individual presentations and workshop "Proceedings Summary" document used to produce the "Indexed Proceedings" document.

The High-Megawatt Converter Workshop has been very beneficial to the ongoing interagency effort between NIST and the DOE Office of Clean Energy Systems in identifying technologies requiring development to meet the power converter cost and performance goals for the DOE SECA and FutureGen near zero-emission fuel cell power plant programs. Based upon the consensus of the workshop attendees, an industry-led high-megawatt power converter roadmapping effort is being planed, and an interagency working group is being formed to coordinate Federal programs in the high-megawatt converter area.

We look forward to your participation in future high-megawatt converter activities.

Best regards,

allen R. Hefmen

Allen R. Hefner National Institute of Standards and Technology Bldg. 225, Rm. B-314. Gaithersburg, MD 20878 <u>hefner@nist.gov</u> (301) 975-2071

[†] The content of the CD represents input from the participants and does not necessarily represent the opinions of the National Institute of Standards and Technology, the DOE Office of Clean Energy Systems, nor the US Army ERDC-CERL.

Proceedings of the High Megawatt Converter Workshop

January 24, 2007 National Institute of Standards and Technology Gaithersburg, MD

Sponsored by DOE Office of Clean Energy Systems National Institute of Standards and Technology US Army Engineer Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL)

Prepared By

Ronald H. Wolk Wolk Integrated Technical Services San Jose, CA

March 29, 2007

DISCLAIMER OF WARRANTIES AND LIMITATIONS OF LIABILITIES

This report was prepared by Wolk Integrated Technical Services (WITS) as an account of work sponsored by U. S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL), Champaign, IL.

WITS: a) makes no warranty or representation whatsoever, express or implied, with respect to the use of any information disclosed in this report or that such use does not infringe or interfere with privately owned rights including any party's intellectual property and b) assumes no responsibility for any damages or other liability whatsoever from your selection or use of this report or any information disclosed in this report.

Table of Contents

Section	Title	Page
1	Summary	1
2	Introduction	3
3	Markets for High Megawatt Power Converters A. Current Markets B. Future Commercial Markets C. Future DOD Markets	4 4 5 6
4	Integration of Workshop Presentation Information A. New Approaches to System Design B. New Topologies C. New Materials D. New Components i. Inverters ii. Transformers iii. Capacitors iv. Integrated Devices	8 9 12 14 14 16 17 18
5.	Grid Connection Issues	19
6.	IGFC Systems	20
7	NIST/DOE Project for Evaluation of PCS Options for IGFC Power Plants	22
8	Formation of Roadmap Committee	25
9	List of Workshop Presentations	27
10	Appendices A. Workshop Agenda B. List of Workshop Participants C. Workshop Invitation Letter	29 29 30 32

List of Abbreviations

AC	Alternating Current
ARL	Army Research Laboratory
BJT	Bipolar Junction Transistor
	US Army Engineer Research and Development Center, Construction
LINDC CLINE	Engineering Research Lab
DC	Direct Current
DIMOSFET	Dielectric Metal-Oxide-Semiconductor Field Effect Transistor
DOD	Department of Defense
DOE	Department of Energy
EMALS	Electromagnetic Aircraft Launch System
EMI	Electromagnetic Interference
EPRI	Electric Power Research Institute
FACTS	Flexible AC Transmission System
FC	Fuel Cell
FCE	Fuel Cell Energy
GTO	Gate Turnoff Thyristor
GW	GigaWatt
HF	High Frequency
HVDC	High Voltage Direct Current
IGBT	Insulated Gate Bipolar Transistor
IGCC	Integrated Coal Gasification Combined Cycle
IGCT	Integrated Gate Commutated Thyristor
IGFC	
	Integrated Coal Gasification Fuel Cell
IPS JBS	Integrated Power System Junction Barrier Schottky
JES JFET	Junction-Field Effect transistor
kHz	kiloHertz
kV	kiloVolt
kv kVA	
kW	kiloVolt Ampere kiloWatt
LC LV	Inductor-capacitor
L V MJ	Low Voltage
	MegaJoule Metal-Oxide-Semiconductor Field Effect Transistor
MOSFET MV	Medium Voltage
MVA	0
MW	MegaVolt Ampere MegaWatt
NIST	National Institute of Standards and Technology
ORNL	Oak Ridge National Laboratory
OSD	÷ .
PCS	Office of the Secretary of Defense Power Conditioning System
PEBB	- ·
	Power Electronic Building Blocks
PEEK	Polyetheretherketone
PEKK	Polyetherketone

PWM	Pulse Width Modulation
R&D	Research and Development
SECA	Solid State Energy Conversion Alliance
SOFC	Solid Oxide Fuel Cell
UMOSFET	U-Shaped Metal-Oxide Semiconductor Field Effect Transistor

1. Summary

On January 24, 2007, a group of forty-two Power Conditioning Systems (PCS) experts invited by the National Institute of Standards and Technology (NIST), the Department of Energy (DOE) Office of Clean Energy Systems, and the ERDC-CERL assembled at a High Megawatt Converter Workshop held at NIST headquarters in Gaithersburg, Maryland. An Organizing Committee consisting of Dr. Samuel Biondo (DOE), Dr. Allen Hefner (NIST) and Frank Holcomb (ERDC-CERL) recommended the invited participants and presenters. The objectives of the Workshop were to exchange information focused on state-of-the-art technologies for High Megawatt Converter systems, discuss the merits of proposed approaches to achieving significant cost reduction and improved DC to AC electrical conversion efficiency, discuss how Federal resources could potentially be utilized in a coordinated effort to address these issues, and to discuss the merits of establishing an industry-led Roadmap Committee to offer guidance that could facilitate the achievement of the desired goals.

Markets

There are significant opportunities for more widespread use of advanced PCS systems in current markets, future commercial markets, and future DOD markets.

Promising Areas for Improvement of PCS Cost and Performance

The various options presented at the Workshop for achievement of improved performance and reduced cost PCS were:

- Physics based simulation and design systems
- Advanced Topologies
- Advanced materials (i.e., SiC)
- Standardized components (i.e., PEBB)
- Intelligent integrated modules
- Improved components based on advanced technologies (i.e., nanocrystalline transformers, high temperature polymer capacitors)
- Relaxation of utility grid connection standards

Each of these areas appears to have significant potential for improving overall system performance.

NIST/DOE Evaluation of PCS Options for IGFC Power Plants

DOE and NIST have entered into an Interagency Agreement to evaluate various options to convert low voltage power produced in fuel cells in central station scale plants to the very much higher power levels required for delivery to the grid. Various conversion approaches that focus on the use of advanced technologies for low-voltage, medium-voltage, and high-power PCS approaches will be evaluated to determine areas requiring substantial federal government investment to meet the cost and efficiency goals of the SECA FutureGen Power Plant.

Roadmap

The Workshop participants agreed that an industry-led Roadmap process needed to be initiated to offer guidance for further development of PCS that could meet the requirements for more cost effective and more efficient power conversion. A number of attendees expressed a willingness to serve on such a committee and, in addition, the names of other potential committee members were proposed. Also, there were positive suggestions made that a federal interagency task group for high-megawatt power converter technologies could play an important role in this area.

2. Introduction

Power Conditioning Systems (PCS) are ubiquitous throughout modern society. They are used in systems that collect electricity from a variety of AC and DC generating sources, transmit either AC or DC electricity, and deliver the desired quality of AC and DC electricity required for use in motors, drives, lighting systems, computers, etc. Their continued development is evidenced by ever larger system capacity, lower cost, increased reliability, and higher efficiency.

Further development is required to achieve additional capabilities to support the commercialization of new technologies for higher efficiency power production, higher efficiency utilization of electricity, and to support industrial, commercial, residential, and defense applications.

There is a broad community of interest that can benefit from continued development of PCS technology. The federal government typically has provided R&D funding for precommercial R&D that has the potential for large and long-term public benefits. One of the current focuses of the U.S. Department of Energy R&D program for future power generation systems is the development of technology to support the future commercialization, beginning in 2020, of a very high efficiency, 100-800 MW central station, Integrated Coal Gasification Fuel Cell (IGFC) power plants. DOE has established a total cost goal for the Power Island in such plants of \$400/kW. That total goal is inclusive of individual component cost goals for the SOFC fuel cell stacks and PCS in the Power Island (\$100/kW and \$40-100/kW, respectively).

It is envisioned that the fuel cell building block used in the Power Island in an IGFC power plant will be low cost, mass produced, Solid Oxide Fuel Cell (SOFC) stacks based on technology currently being developed under the Solid State Energy Conversion Alliance (SECA) program. These stacks would be specifically designed to convert coalderived fuel gas to electricity. That program is targeting the completion of the research in 2012 that would support production of the SOFC stacks in the Power Island at a cost of \$100/kW.

Current PCS systems that are used in natural gas fueled, fuel cell, distributed generation power plants, with outputs of 100 kW to 1.2 MW, are estimated to cost \$260/kW at best and perhaps more depending on the specific application. Achievement of the DOE cost goal for the PCS of \$40-100/kW will require that a great deal of progress be achieved in the areas of system topology, materials, device design, and new approaches to connections to the AC electrical grid to reduce PCS costs from current levels to DOE targets. This goal is acknowledged within the PCS industry as a difficult stretch goal.

3. Markets For High Megawatt Power Converters

A. Current Markets

The array of markets that currently utilize high megawatt power electronics is quite broad and includes the following applications:

Generation – Wind farms, Fuel cells, Variable speed hydro Storage - Battery, Flywheel, Super Capacitor, Superconducting Magnet Transmission – HVDC (High Voltage DC), FACTS (Flexible AC Transmission System) Distribution – Customer power Industrial – Variable speed drives, Rail transportation, Ships Military – Ship Power, Aircraft launch, Weapons, Base power (Hingorani Slide 2)

Specific examples of several of these applications include:

- >1 GW Level Pacific Intertie HVDC System
 - o DC Link Voltage: ±500kV
 - Power Level: 3100 MW
 - Circuit Topology: Current Source Inverters
 - o Device: 6.5kV Thyristors stacked up for 133kV blocking
 - o Switching Frequency: 60Hz
 - Problems: >5 acres of land for LC filters
- >100 MW converters for reactive power compensation
 - Circuit Topology: multiple pulse (48-pulse) with transformer isolation
 - o Device: 6.5kV GTO
 - Switching Frequency: <500Hz
- >1 MW Distributed Generation
 - o 1.5 MW to 5 MW wind power generation
 - o 1 MW to 2.4 MW fuel cell power plants
 - o IGBT based with switching frequency >5kHz

(Lai Slide 4)

HVDC transmission lines can now be designed for operation at 800 kV DC. This new capability allows higher efficiency and reduced right-of-way requirements. These IGBT (Insulated Gate Bipolar Thyristor)-controlled HVDC systems are now capable of transmitting up to 6000 MW (Tang Slide 25).

PCS technology continues to evolve in terms of lower cost, higher efficiency, and more reliable components. Newer applications continue to evolve as newer materials and integrated devices become commercially available. An example of this progress is the use of silicon carbide components, of ever increasing capability, integrated into newer devices that can support more demanding applications.

"The availability of SiC unipolar/bipolar power devices can enable high-frequency operation for high-voltage and high-power applications leading to new PCS topologies,

which offer choices radically different than provided by Silicon-based IGCT (or IGBT). Further, the ability to withstand higher voltage without compromising switching and conduction losses and thermal sustenance can lead to simpler topological structures." (Mazumder Slide 2, presentation not provided)

Among the improved capabilities noted during the Workshop presentations were the commercial use of IGCT and the integration of multiple capabilities into Power Semiconductor Modules.

"The ACS 1000 is the first drive to use a new power semiconductor switching device called IGCT (Integrated Gate Commutated Thyristor). IGCT brings together a versatile new power handling device, the GCT, (Gate Commutated Thyristor) and the device control circuitry in an integrated package." (Enjeti Slide 11)

Commercial installations of MV IGCT Target PEBB (Power Electronic Building Blocks)-based PCS -9MVA IGCT

- 22 MVA Dynamic Voltage Restorer
- 18 MVA Frequency Changer
- 15 MVA Regenerative Fuel Cell
- 60 MVA (40 MW) Battery Energy Storage System

(<u>Hingorani</u> Slide 17)

Intelligent Power Modules that integrate gate drives and protection features in the module package are now being offered. Further integration of system components within a module package are anticipated along with integrating chip cooling in the module. (Leslie Slide 2)

B. Future Commercial Markets

Power conditioning system technology advances in the areas listed below are needed to provide the technology base for a future, cost-effective, and reliable national power delivery system capable of the following attributes:

- Smart power delivery system
- Advanced distribution automation
- Fast simulation and modeling
- Integration distributed energy resources
- Distributed storage technologies
- Improved power system operation and control
- Reduced vulnerability to natural disaster and attack
- Improved power quality (<u>Holcomb</u> Slide 9)

Fuel cells are an evolving technology providing a solution to the need for distributed, high value, on-site power. The current high cost of small (e.g. 250 kW modules combined in units of up to 2 MW) packaged power plants which is in the range of \$3500-5000/kW

has precluded wider scale applications. The typical cost of the PCS components of those systems is about 10% of the total.

DOE is in the second phase of a three phase Solid State Energy Conversion Alliance (SECA) program to develop much lower cost, natural gas fueled, packaged fuel cell power plant systems based on Solid Oxide Fuel Cell technology. The goal of that effort is to develop the technology to support mass-production of these units at a cost of \$400/kW. The cost goal for the PCS part of that system is \$40/kW. DOE has initiated another program to use those same types of fuel cells in large, 100-800 MW Integrated Gasification Fuel Cell central station power plants, with the same cost goal for the power island in that plant.

There are a number of fuel cell characteristics that impact the PCS

- Fuel cells respond slowly to changing loads
- Auxiliary power is needed for start-up and to power control systems
- Fuel cell stacks operate at a total voltage of less than 350V. It is possible to increase the voltage output of a pair of stacks by connecting them in series with a center tap to ground. However, it will be necessary to use the PCS to increase the stack output voltage from the cell level (<1 kV) to grid level (18kV).

A number of potential approaches to resolving these issues include:

- Modular topology
- Efficiency improvements with advanced materials (i.e., SiC) and advanced technology (i.e., IGCT)
- Soft switching and high frequency (Jones Slides 2-9)

Heretofore, the PCS systems used in small distributed power plants have focused on delivering power to the local load and interconnecting with the grid to allow both grid-independent and grid-parallel operation. Delivery of power to the grid for transmission to remote load centers will likely result in different problems that must be addressed with different PCS approaches.

C. Future DOD Markets

The DOD is moving in strategic directions that will include the use of much more electric power to support individual soldiers, various kinds of bases, vehicles and ships. Much of this power will be DC. The selected PCS must adapt to these needs.

A section of the 2005 Energy Policy Act directs the DOE to fund selected demonstration projects that involve using hydrogen and related products at existing facilities or installations, such as existing office buildings, military bases, vehicle fleet centers, transit bus authorities, or units of the National Park System (<u>Holcomb</u> Slide 7). Much of the forward deployments of Army personnel in:

- Base Camps
- Life Support Areas
- Advanced Operations Base
- Forward Operations Base
- Tactical Operations Center

require DC power to support their operations. (Holcomb Slide 13)

The DOD has several developments under way that require large amounts of electricity over short durations. These include the Electromagnetic Aircraft Launch System (EMALS) and rail gun. The EMALS, which will be used to replace steam powered aircraft launchers on aircraft carriers, requires 150 MW for 2-3 seconds. The system includes flywheel energy storage and IGBT inverters. (Staines I Slides 2 and 3)

Another application involves ship mounted rail guns that are used for the rapid firing of projectiles. The requirements for this system include:

- Current source to charge 200 MJ caps to 11 kV
- Max 10 shots per minute \rightarrow 35 MJ/s average
- Require high power density (> 2 MW/m³) to fit in available shipboard volume (<u>Staines I</u> Slides 9 and 10)

The development of an integrated power system (IPS) electric ship is also under way:

- The first surface combatant using IPS is DDG 1000 with two propulsion motors rated at 37 MW and ship service loads > 12 MW
- This is a major first step for IPS, but what are the next steps to meet the future IPS needs?
- Spiral insertion of new mission systems such as pulse energy weapons will increase the electric load demands even further (<u>Staines I</u> Slide 6).

4. Integration of Workshop Presentation Information

A. New Approaches to System Design

It was suggested that the current approach to designing systems for DOD, which is now Rule-based, will evolve into a system that is relational-based and has Physics-based analysis at its core.

Today

- Rule Based Design
- Standard Parts
- Increasing Complexity
- Specifications, Documents
- Small Samples Statistics

Tomorrow

- Relational Based Design
- Standard Processes
- Increasing Detail
- Model is the Specification
- Physics Based Analysis
- Statistics from All of Industry

(Ericsen Slide 2)

This evolution will mean that simulation, which is now used for analysis but requires detailed design information, will evolve to a situation where simulation will become part of the design process and *"The Model Will Be The Specification"* (Ericsen Slide 16). This approach has the potential to eliminate the need for expensive, full scale demonstrations. However, there are a number of things required for it to succeed.

- Physics-Based models
- Modeling standards
- Benchmark models
- Public library of models
- A body of international volunteer experts for all of the above
- Real-time simulation is needed for real hardware
- High speed real-time simulation is needed for high-speed controllers

(Ericsen Slides 19, 20 and 21)

The key parameter that has to be solved in the design of new ships is voltage. (Ericsen)

High-voltage, high-power building blocks are needed for continued improvement of PCS. The attributes required are:

- Packaged building blocks with functional specifications
- Programmable to serve multiple applications
- Can be connected in series and parallel to achieve higher ratings

(Hingorani Slide 22)

PEBB (Power Electronic Building Blocks) are devices that sense what they are plugged into and what is plugged into them. They make the electrical conversion needed via software programming. The functions contained in software include the inverter, breaker, frequency converter, motor controller, power supply, and actuator controller. PEBBS are an important approach to reduce the cost of custom design of new components. (Hingorani Slide 16)

B. New Topologies

Fuel cell power plant voltage limits are determined by the stack electrical isolation design or the voltage difference across all the cells in the stack relative to ground. A low fuel cell stack voltage differential is desired to minimize stack electrical isolation requirements, reduce fuel cell cost and simplify design. On the other hand, higher fuel cell stack voltage (to 750V, or even 1000V) is desired to minimize the cost of the PCS by reducing inverter cost and size and also by enhancing inverter efficiency. Connecting pairs of stacks in small (<2 MW) distributed generation power plants in series minimizes stack-to-ground voltage and maximizes inverter voltage input. (Berntsen Slides 2 and 3).

One approach to collecting DC current from the fuel cells in these small power plants is to use a DC bus that is fed by a multitude of stacks. This has the advantage of providing optimal KVA matching of inverters, and the capability of part-load operation with failed inverters and stacks, which results in a significant cost saving. However, this system has no ability to bias individual stack currents, which results in less than optimal fuel flow, power diode losses, and the expense of custom work on the DC bus. (Berntsen Slide 5)

In general, the relatively low voltage output of fuel cell stacks limit PCS options for multi-megawatt, multi-fuel cell stack systems envisioned for IGFC power plants. Common mode voltage can be a problem. The presence of high frequency common mode voltage with respect to ground contributes to circulating ground currents which can interfere with ground fault protection and also contribute to neutral shift and electromagnetic interference. Enjeti discussed the pros and cons of four topologies identified below, that can be used for large IGFC plants.

Topology	PCS Configuration
#1	2 fuel cell stacks (350V) series connected & center point grounded, one dc-
	dc converter followed by a 3-level inverter to produce 2300V 3-phase ac
#2	4 fuel cell stacks (350V) series connected in pairs and center point
	grounded, two dc-dc converters with outputs connected in series, followed
	by a 3-level inverter to produce 4160V 3-phase ac
#3	Each fuel cell stack (350V) connected to a dc-dc converter with isolation,
	followed by a 1-phase LV inverter. Several such modules are connected in
	cascade to form one MV ac system
#4	Fuel cell stacks followed by dc-dc converter & 3-phase inverters. Several
	of these modules are combined together via 3-phase transformers to realize
	a multilevel inverter system for medium voltage.

(Enjeti Slide 30)

Enjeti found two different methods for reducing the magnitude of the circulating current: the use of a common mode filter and the introduction of a shielded high frequency transformer.

Another set of three possible topology options that can be used in large, IGFC power plants is summarized below:

- Low-voltage DC-AC inverter + low frequency transformer
- Low-voltage power electronics including DC-DC and DC-AC + cascaded inverters
- High-voltage power electronics including DC-DC and diode clamped multilevel inverters

High-power high-efficiency DC-DC converters are needed for multilevel inverter based fuel cell power plants. The options for high power DC-DC converters include:

- Full-bridge converter
- Multilevel converter
- Three-phase DC-DC converter
- V6 DC-DC converter

Multilevel inverters allow significant reduction on current ripples and their associated losses. Cost reduction can be realized with passive component size reduction. High-power SiC Schottky diodes are needed for most circuit configurations. (Lai Slide 25)

Each power converter module of a Cascaded Multilevel Inverter typically consists of a dc/dc voltage regulator and an H-bridge inverter. Single-phase, multi-phase, three phase wye or delta connections are possible. It can be used in many power applications (<u>Ozpineci</u> Slide 3)

The advantages and disadvantages of this system are summarized below:

Advantages	Disadvantages	
Modular	Component count	
 Reduced manufacturing and 	 Extra switches and 	
maintenance costs	transformers	
Scalable	 Higher component cost 	
 Reduced design cost 	 Low voltage components 	
• Fault tolerant operation	More complicated control	
 Increased availability 	Isolated dc sources	
 Redundant levels 		
 Possible reconfiguration 		
Energy storage		
Low harmonic distortion		
 Reduced filters 		

(Ozpineci Slide 4)

Other attributes include

- Synthesis of desired ac voltage from several levels of dc voltages
- More levels produce a staircase waveform that approaches a sinusoid
- Harmonic distortion of output waveform decreases with more levels
- No voltage sharing problems with series connected devices
- Low dV/dt reduces switching losses and EMI
- Multilevel PWM is possible

(Ozpineci Slide 6)

Mazumder proposed a novel hybrid modulation scheme for bulk power transmission. It is high frequency and scalable, but SiC-based components are necessary to achieve its advantages. This proposed topology has three stages of power conversion with the following features:

- A HF sinusoidal phase-shift-modulated zero-voltage turn-on full-bridge inverter, which interfaces to a low-voltage and high-current fuel-cell stack
- A three-leg diode rectifier that transforms the bipolar ac voltage at the secondary of the HF transformer to a unipolar pulsating waveform (which has a 6-pulse envelope)
- An ac/ac PWM converter that converts the pulsating output of the rectifier to a line-frequency ac output using hybrid modulation
- A three-phase HF transformer provides galvanic isolation, boosts the stack voltage, and enables series connection of multiple modules on the secondary for scalability. (Mazumder Slide 3, presentation not provided)

The advantages claimed for this high-frequency operation at higher power applications are significant reductions in electromagnetic and electrostatic component sizes. This leads to lower footprint space and labor cost and also simplifies topological structure, thereby increasing system reliability. (Mazumder Slide 11, presentation not provided)

Polyphase Resonant Power Conditioning is a new method to generate high voltages from low with very high power, which may have the potential to reduce those costs. The key characteristics are described below.

- Essentially a large (polyphase and resonant) DC-DC Converter
 - At least 1/10 size, weight, and volume of any previous method
- Uses recently proven technologies
 - Traction Motor Metallized Hazy Polypropylene Self-Clearing Capacitors for energy storage
 - Multi-megawatt capable Insulated Gate Bipolar Transistors
- Transformer cores of Amorphous Nanocrystalline Alloy
 - 1,000 times more efficient than steel
 - 1/300 core volume and weight for same power as 60Hz steel
- Polyphase resonant voltage multiplication to further minimize transformer volume and weight
- Easily scaleable to 10's of MW and 100's of kV

- Easily optimized for various use (and lower power/voltage)
- Design is fault tolerant and inherently self-protective
 - Protect systems not necessary
 - Permits long cable lengths and remote location (<u>Reass I</u> Slide 4)

The present and future capabilities of Polyphase Resonant Conditioning are described below:

- IGBT Long pulse systems demonstrated
 - 140 kV, 1 MW Average (10 MW Long-Pulse)
 - Efficiency ~94%
- IGBT CW systems to 10 MW realizable
 - Efficiency ~97% possible
 - Similar footprint to SNS system
 - Does not require increase in component current or voltage ratings
- Medium pulse MOSFET (10 100uS) to 2.5 MW, 250 KW Average
 - 50 kV, 50 Amp, 250 KW Average
 - Small and compact
 - Agile in voltage, pulse width, and rep-rate
 - Semiconductors still limiting technology at these power levels

(<u>Reass I</u> Slide 16)

C. New Materials

The only new material discussed at the Workshop for improving the performance of PCS components was silicon carbide (SiC). Wide band gap materials such as SiC have the potential to positively impact the performance of:

- a. Power Circuits
- b. Power Components, active and passive
- c. Signal Electronics
- d. Control
- e. Software
- f. Thermal Management
- g. Mechanical Design & Packaging

SiC devices are not drop in replacements for Si devices. Achieving their full benefit comes from addressing all areas of the system that are impacted.(<u>Casey</u> Slide 11)

The use of SiC devices has the potential for allowing radically different choices in PCS topology. Among the attributes of SiC are:

- SiC Schottky diodes minimize reverse-recovery losses as compared to Si PiN diodes;
- Thus, SiC unipolar/bipolar power devices can enable high-frequency operation for high-voltage and high-power applications, which offer choices radically different than provided by IGCT. Currently, Northrup Grumman and

Cree are working on 13.5 kV, 10 kHz SiC MOSFETs and JBS. Purdue is working on even higher voltage SiC bipolar transistors;

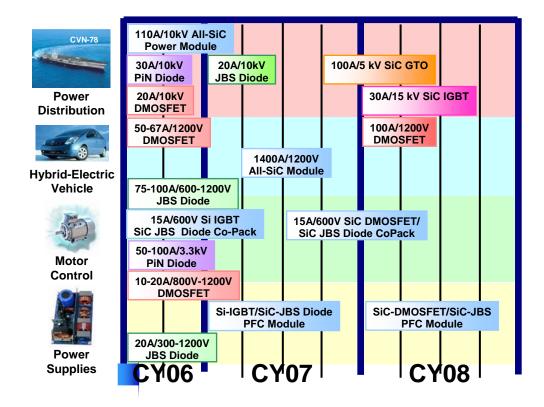
• Further ability to withstand higher voltage without compromising switching and conduction losses and thermal sustenance can lead to simpler topological structures

(Mazumder Slide 2, presentation not provided)

Quantitatively, the advantages of SiC properties over Si currently used in many typical devices are:

- 10 times higher Breakdown Field than Si allows
 - Tradeoff higher breakdown voltage
 - Lower specific on-resistance
 - Faster switching
- 3 times higher Thermal Conductivity than Si allows higher current densities
- 3 times higher Bandgap than Si allows higher temperature operation

(<u>Grider</u> Slide 3)


Among the devices containing SiC components that are currently under development are:

- DIMOSFETs
- UMOSFETs
- Vertical JFETs
- IGBTs
- BJTs
- Thyristors/GTOs

These devices are listed in order of increasing voltage, decreasing speed, and increasing operating temperature (<u>Grider</u> Slide 7)

The following planned schedule for delivering SiC-component containing devices to the market was presented by Cree.

Cree SiC Power Technology Roadmap

(Grider Slide 32)

D. New Components

The focus of component development for future PCS must be on the achievement of:

- Significant Reduction in:
 - o Cost
 - o Losses
 - o Size
 - o Weight

• Significant Improvement in Switching Frequency

(<u>Hingorani</u> Slide 18)

Discussion at the workshop covered inverters, transformers, capacitors and integrated devices as specific components in PCS.

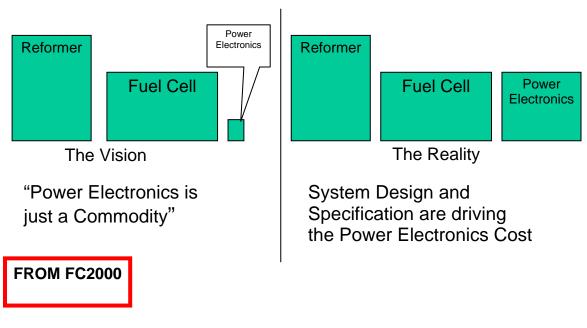
i. Inverters

One of the current major markets for inverters is solar power systems. The cost of 100 inverters for these systems is in the range of 7-10% of total solar system cost or about

\$500/kW for the complete inverter package. The total number of parts in that package is over 200. The total cost of \$500/kW is allocated as shown below, based on the Bill of Materials for that system. The cost of the semiconductor power components represents 4% of the total costs of the parts in the inverter.

Inverter Package Component	Fraction of Bill of
	Materials Cost,
	\$/kW
Inverter power components (Si-based)	4
Other inverter components (gate drives, bus caps, some of the bus	14
work, heat removal, some protection components, and connectors	
Most of the protection, thermals, mechanicals, and connectors	10
Displays and interfaces to work with the control, balance of	7
protection, and heat removal	
Power supplies and its protection and isolation	5
Transformer	20
Box	10
Controller	10
Filter	20
Total	100

(<u>Casey</u>)


A comparison below shows how the parts cost breakdown would change if Si components were changed to SiC components

	Today's Si Design	Hybrid Si/SiC-1	Hybrid Si/SiC-2
Semiconductors	4.11	6.81	6.81
Magnetics	9.83	4.91	2.455
Filter Caps	1.7	0.85	1.7
Heatsinks + Hardware	2.4	1.2	1.2
Fans	1	1	1
Sum (% of total parts cost)	19.04	14.77	13.165

A significant fraction of the costs of these inverters for solar power system applications is associated with the capabilities necessary to connect the solar power system to the grid. (Casey) Working with utilities to change those standards could result in a reduction of inverter complexity and parts count, which would significantly reduce the inverter system cost. Scaling up from the sizes used in solar power systems to high megawatt sizes anticipated in IGFC power plants should also result in a significant reduction in inverter costs.

As indicated in the following illustration, the early vision of fuel cell developers was that the PCS in a fuel cell power plant would represent a minor cost component. The reality is

that the PCS represents a very significant cost because of the small scale of current fuel cell power plants and the limited market size.

Who is doing the System Design ...?

(<u>Casey</u>)

The inverter issues for DOD markets are somewhat different than they are for solar power markets and include the following:

- Power density
- Switch power and voltage capability
- Pulsed operation/thermal management
- Present devices designed for continuous operation
- Internal connections and thermal designs should permit full utilization of the material in the device under pulsed operation
- Cost
- Advantages of lower weight and volume of an advanced switch needs to be accompanied by a reduced cost per kW

```
(Staines I Slide 3)
```

ii. Transformers

The costs of transformers represents a significant fraction of the total PCS cost. High frequency power transformer designs now provide a viable method to significantly reduce the physical size, weight, and footprint, as compared to conventional 60 Hz power transformers. (Reass II Slide 2)

The following conclusions apply to this system:

- C-core designs probably best for multiphase (more than 3) systems
 - Can drop single phase to continue operation
- Advanced core designs probably best for demanding requirements at mid-power levels using a 3 phase converter topology
- Winding techniques are also important
 - Reduce leakage inductance
 - Reduce field stresses

(<u>Reass II</u> Slide 23)

iii. Capacitors

Film capacitors are commonly used for Power Conversion:

- Depending on frequency, capacitors can be the largest component in the system
- Requirements are
 - Low inductance
 - High rms current capability
 - Low loss
 - 100% reversal
 - High energy density
 - GA-ESI paper/polypropylene capacitors developed for SNS

(Staines II Slide 2)

Significant R&D is under way to improve film properties. Currently polypropylene film capacitors have highest energy density at low temperature, but performance degrades rapidly above 40°C. Investigations of high-temperature films including Polyphenyl sulfide (PPS), and Polyetheretherketone (PEEK), and Polyetherketoneketone (PEKK) are in progress.

(Staines II Slide 4)

Improvements in capacitor capability could impact converter costs as follows:

- High energy density passive components reduce the need for high frequency switching
- Reduces switching loss and switch stress
- Could use cheaper, more mature switch technology without prohibitive size, weight
- Metallized film capacitors fail gracefully
- Capacitor monitoring could identify when maintenance is required to avoid failures

(<u>Staines II</u> Slide 6)

iv. Integrated Devices

Power semiconductor module integration has the potential to further reduce the cost of converters. Significant progress, as detailed below, has been made:

- Trends in IGBT Chip Technology
 - Size, Voltage, Power Losses & Frequency
 - Impact on Packaging
- Intelligent Power Modules
 - Integrating Gate Drive & Protection Features in the Module Package
- System in a Module
 - o Further Integration of System Components within a Module Package
- High Voltage Power Modules
- Integrating Chip Cooling in the Module
- Integrated Power Sub Systems

(Leslie Slide 2)

An Integrated "Intelligent" Power Module or "IGBT + Smarts" would have the following capabilities included:

- Gate drive, temperature sensing & protection elements are integrated in the power switch package
- Protection for:
 - o Overtemperature
 - Overcurrent & short circuit
 - o Low/high gate supply voltage
 - Fault signal feedback
- Improves switch performance since protection functions are integrated in package (Leslie Slide 8)

Further assembly of subsystems onto the chip could include:

- Power switches
- Energy storage devices
- Current sensing
- Gate drives
- Protection
- Cooling

(Leslie Slide 18)

5. Grid Connection Issues

The owners of electricity transmission systems set the technical requirements for interconnection to the AC grid, such as the amount and frequency of harmonics, circuit protection, and islanding. These requirements were developed for interconnection of relatively small solar powered systems, and somewhat larger wind systems. They are based on the requirements for connecting a relatively small scale distributed generation system to the grid. The requirements lead to additional investment in the PCS to meet those requirements. With a central station system producing multi-hundreds of MW, some of these requirements may be unnecessary and can be eliminated, thereby, reducing the required level of investment for the PCS system. For example, can the cost of small scale harmonic filtering required for small distributed generation PCS be eliminated in central station PCS applications? (Berntsen)

The technology for transmission of large quantities of electricity is evolving with increases in the number of HVDC and FACTS long distance transmission systems. HVDC and FACTS are complementary solutions. FACTS and HVDC controllers have been developed to improve the performance of long distance AC transmission. Later their use has been extended to load flow control in meshed and interconnected systems. (Tang Slide 25)

One example proposed for a new approach to integration of wind generation farms into the transmission grid may be preferred because obtaining transmission Right-Of-Way now can take much longer than building the wind farms. Underground DC transmission with voltage sourced converters could have lower cost, improved system integration, and much smaller permit and construction time. (<u>Hingorani</u> Slide)

The Workshop did not include anyone from the utility or transmission grid sector in attendance that could address the interconnection issues. It was felt that the Roadmap development should include people with that background.

6. IGFC Systems

DOE is funding development of fuel cell systems that would be incorporated into large central station, coal-gasification based power plants with capacities of hundreds of MW. The assumption is that these systems would be available for commercial deployment in 2020. The technology base for these plants will include commercial experience with IGCC plants, commercialization of SECA fuel cells and a significant test of 10-40 MW module island in a FutureGen-type IGCC plant. Design bases are being established for these power plants under DOE R&D contracts including the PCS section. The DOE cost goal for the entire Power Island, which will produce more than 50% of the power with fuel cells, and the bulk of the remainder with gas turbines, is \$400/kW. The PCS for the Power Island has a cost goal of \$40/kW. It is anticipated that IGFC plants will run fully loaded at steady state since they will be the most efficient coal plant on any utilities' system.

Current Fuel Cell Energy (FCE) products include 250 kW, 1 MW, and 2 MW Molten Carbonate Fuel Cell (MCFC) systems for distributed generation applications. Since the fuel cell stacks are relatively low voltage systems with individual stack voltages likely to be less than 500V, there are many options available to increase the output voltage to the level of the 18 kVA grid.

Overall system costs could be reduced by going to higher stack voltages, but the current, relatively low, price of 1200V IGBT's used in currently offered MCFC products makes it uneconomic to go to higher voltages in the rest of the system. The cost of the PCS amounts to about 10% of the cost of the current MCFC fuel cell product offered by FCE.

One option being considered by FCE to lower the cost of the PCS in their current product is to connect stack pairs in series. Among the issues being considered is the use of a common DC bus or dedicated/segregated PCS for individual stacks. Among the considerations for the use of a DC bus in high MW applications are:

- How many inverters can be eliminated?
- If inverters were produced at high volume and, therefore, lower cost, would the cost savings resulting from their elimination offset the added cost of a DC bus?
- In high MW applications, the value of efficiency improvements may allow higher investment in the PCS. (Berntsen)

Under its contract with DOE, Siemens is developing a design for a 100 MW IGFC power plant module. Each fuel cell in the module has an output of 1.5 MW. By using relatively small modules, it is possible to maximize current loading of the individual fuel cells. Two fuel cells are paired with the pair producing approximately 1000 VDV and 1000 amperes. The output from a single pair is fed to a, yet to be defined, 3 MW Electronic Power Converter (module controller). Four 3MW pairs make up a 12 MW block. Three 12 MW blocks are combined into a large block. Multiple large blocks are combined to reach the desired level of total power plant output.

The problems that a PCS design for this system must cope with include a 2:1 ratio of maximum fuel cell voltage to open circuit voltage, poor terminal voltage regulation under load, and the use of parallel inverters that can result in current flow surges and phase angle changes due to variations in voltage. Consolidating current on the DC side-position inverters at higher voltage can avoid AC problems. (Gordon Slide 6)

Any PCS topology selected:

- Must aggregate power from many fuel cell modules
- Must support individual current loading of the fuel cell modules ... (or minimum groups)
- Should permit individual modules and electronics to be taken off line while the system continues to run ... (or minimum groups)
- Deal with DC voltages that are not tightly uniform
- Must integrate AC power from other generators used to recover exhaust heat energy

(Gordon Slide 8)

The conclusions from the system analysis work to date are that:

- A complete system circuit design with the component means and the network for power consolidation is required to answer the \$/kW question for the high megawatt converter
- Once a complete system circuit design is mad, costing can be done and performance and cost tradeoffs for various elements can be evaluated

(<u>Gordon</u> Slide 19)

7. NIST/DOE Project for Evaluation of PCS Options for IGFC Power Plants

DOE and NIST have entered into an Interagency Agreement (IA) to have NIST lead an independent analysis of the expected impact of advanced PCS technologies on future IGFC power plants. Various conversion approaches that focus on the use of advanced technologies for low-voltage, medium-voltage, and high-power converters are being evaluated to determine areas requiring substantial federal government investment to meet the cost and efficiency goals of the SECA FutureGen Power Plant. (Hefner I Slide 3).

The approach and boundary conditions being used for this study are described below:

- Methodology for impact study:
 - Classify power converter architectures and component technologies that may reduce cost
 - Perform tabular calculations of cost for each option using estimated advantages of new technologies
 - Use component modeling, and circuit and system simulations to verify and refine calculations
- Consider power electronics and/or transformer up to 18kVAC, and assume transformer from 18 kVAC to transmission level voltage
- Boundary conditions and performance parameters:
 - FC Stack: center tap ~700 VDC, 1000 A
 - Individual FC stack current control (may be necessary for FC reliability)
 - Fault tolerant and serviceable
- Converter cost components:
 - Semiconductors
 - o Module Packaging
 - o Cooling System
 - o Magnetics: Filter Inductors and HF voltage isolation transformers
 - Transformer up to 18kV
 - o Breakers

(<u>Hefner I</u> Slide 5 and 6)

The initial baseline for the study is a center tapped fuel cell (approximately 700 VDC 0.6 MW) with a DCDC current regulator, a 480 VAC inverter, and 60 Hz transformers to raise the output voltage to 18 kVAC. This option is chosen as the baseline because it includes the individual functions necessary to expand to a DC common bus, and to high-voltage and/or high-power inverter topologies. The "present lowest-cost" option combines the DCDC regulator and 480 VAC inverter functions into a single converter stage that uses the "present lowest-cost" switching power device, a 1200 V IGBT module.

(<u>Hefner I</u> Slide 8)

For the low voltage inverter options, advanced semiconductor technologies such as SiC power devices enable the use of higher frequencies that may reduce the cost of passive components. The advanced semiconductor devices may also result in lower switching losses resulting in higher power conversion efficiency and lower cost thermal management systems. SiC power semiconductor devices have recently begun to emerge as commercial products where low current SiC Schottky diodes are becoming common place in computer server power-factor-correction circuits. 1200 V SiC MOSFET switches and 1200 V hybrid SiC-Schottky/Silicon-IGBT modules are also expected in the near future.

(Hefner I Slide 10)

The second class of power converters being evaluated uses a DCDC converter to step the voltage up to 6 kV and a medium-voltage inverter is used to produce 4160 VAC, then a transformer is used to raise the voltage to 18 kVAC. In this case, the DCDC converter can combine the function of increasing voltage with the function of regulating fuel cell current. The advantage of using a medium-voltage inverter is that it reduces the current for a given power processing level so that a single inverter can be used for multiple fuel cell stacks.

(<u>Hefner I</u> Slide 11)

Various semiconductor options exist for medium-voltage inverters including HV-IGBTs, IGCTs, and high-voltage SiC devices. Recently, commercial HV-IGBT modules have been introduced to increase the voltage and current level to 6.5 kV, 600A, and commercial 6.5 kV, 3000 A IGCT's have been introduced that provide improved GTO switching speed using a high current, low-inductance gate drive to switch-off the full wafer GTO in unity-gain mode. However, these existing semiconductor devices require the use of multi-level inverters for medium voltage applications. This is due to the lack of voltage margin when using a 6.5 kV switch and, also, to the relatively low switching frequency of the high voltage Silicon devices (<1 kHz). On the other hand, the high-voltage, high-frequency (10 kV, 20 kHz) SiC semiconductor devices currently under development by the DARPA HPE program would enable the use of a single level inverter with a much lower part count and lower filter inductance requirements. (Hefner I Slide 12 and 13)

Finally, various power converter architecture options are being evaluated for using a single medium-voltage, high-power inverter for multiple 700 V, 0.6 MW fuel cell stacks. Each architecture option imposes different requirements on the DCDC converter and DCAC inverter functions and thus realizes different benefits from advanced semiconductors, magnetics, and capacitors. For example, architectures requiring DCDC converters with high voltage-gain or voltage-isolation may also benefit from advanced magnetic materials, which, in effect, step-up the voltage using the high-frequency magnetic components rather than a much larger 60 Hz transformer. In each case, the power converter architecture and component technologies must be considered together to determine the overall benefits to the PCS system and to identify a complete set of advanced technologies required for a given approach.

(Hefner I Slide 14 and 15)

After the briefing on the approach being considered for the impact study and on the individual power converter technologies, the workshop participants were asked during an open discussion session to provide feedback on additional specifications and technologies to be aware of in the study. The questions posed during this session and the consensus for additional considerations to the impact study are summarized below.

Requested inputs from the Workshop participants:

- Preferred High-Megawatt architectures and topologies
- Specifications for filter requirements
 - Harmonics for power generation connectivity (e.g. IEEE1547)
 - EMI requirements
- Other advanced component technologies
 - Nano-crystalline magnetic materials for high-gain and voltage isolated converters
 - o Packaging and advanced cooling systems
 - o Interconnects and modularity
 - Capacitors (Dry Q cap: low cost, low maintenance)

(<u>Hefner II</u> Slide 2)

The experts at the Workshop recommended that the study be based on the following:

- Specifications for filter requirements
 - Inverter harmonics requirement –IEEE 519
 - o EMI requirements Mil STD 461 or equivalent
- Specifications for FC DC regulator
 - Ripple requirement <3% for frequencies < 1kHz
- Year 2020 FC may be 2000 V (center-tap)

(<u>Hefner II</u> Slide 3)

Of particular importance is the consensus on the power converter performance requirements and applicable standards. It was also recommended that the study be expanded to include the impact of increased fuel cell stack voltage that is expected to occur by the year 2020.

8. Formation of Roadmap Committee

The Workshop participants were asked to develop a consensus in regard to each of the questions listed below. Their consensus responses to each question are summarized below.

Question 1: Are there new materials, devices, and topologies that would accelerate the achievement of the cost and performance requirements for power conversion systems for these markets?

Consensus 1: Yes

Question 2: Should a Roadmap process be organized to support achievement of this objective?

Consensus 2: Yes. The Workshop participants agreed that a Roadmap process be initiated to offer guidance for further development of PCS that could meet the requirements for more cost effective and more efficient power conversion. A number of those present expressed a willingness to serve on such a committee and, in addition, the names of other potential committee members were proposed. Satcon agreed to take a leadership role in the formation of the committee. The proposed names are listed below.

Leo Casey, Satcon (Leader) Le Tang, ABB Siemens FCE NIST Frank Holcomb ORNL Utilities (TVA, AEP, National Grid, SCE) EPRI Jason Lai Prasad Enjeti ARL (Ed Schaefer) OSD

Question 3: Should it work down from topologies (market pull) or up from materials (technology push)

Consensus 3: It is too early to reach a decision on that question

Question 4: Should subcommittees be organized by market thrust, product power capacity, time frame of development, or some other basis?

Consensus 4: It is too early to reach a decision on that question

Question 5: Would the formation of an Interagency Task Force on this subject be of value?

Consensus 5: It would probably be useful at this time. There is an Interagency Committee in place that deals with power.

9. List of Workshop Presentations

High Megawatt Converter Workshop January 24, 2007 NIST Headquarters Gaithersburg, MD

Berntsen

George Berntsen, Manager Electrical and Controls Engineering, Fuel Cell Energy; <u>Needs</u> and Wants-Suggestions for High Voltage and High Megawatt Applications

Casey

Denny Mahoney and Leo Casey, Satcon; <u>*High-Megawatt Converter Technology</u>* <u>*Workshop, January 24, 2007*</u></u>

Enjeti

Prasad Enjeti, Power Electronics Laboratory, Texas A&M University; <u>*High-Megawatt*</u> Converter Technology Workshop for Coal-Gas Based Fuel Cell Power Plants

Ericsen

Terry S Ericsen, Office of Naval Research, Advanced Electric Power Systems Thrust; *Model-Based Specification and Simulation-Based Design and Procurement*

Gordon

Tom Gordon, Siemens; DOE High-Megawatt Converter Technology Workshop

Grider

David Grider, Anant Agarwal, Brett Hull, Jim Richmond, Mrinal Das, Bob Callanan, Jon Zhang, Joe Sumakeris, Al Burk, Mike O'Loughlin, Adrian Powell, Mike Paisley, and John Palmour, Cree, Inc.; <u>*Recent Developments in SiC Power Technology at Cree*</u>

Hefner I

Allen Hefner, NIST; <u>*High Megawatt Fuel Cell Power Converter Technology Impacts</u></u> <u><i>Study (NIST/DOE Interagency Agreement)*</u></u>

Hefner II

Allen Hefner, NIST; <u>Discussion of High Megawatt Fuel Cell Power Converter</u> <u>Technology Impacts Study (NIST/DOE Interagency Agreement)</u>

Hingorani

High-Megawatt Converter Technology Workshop

Holcomb

Franklin H. Holcomb, ERDC-CERL; <u>DoD / Army Stationary Power Requirements-</u> Secure, Reliable, Efficient Energy, Home Station to Foxhole

Jones

Edward Jones, DOE Office of Clean Power Systems; <u>Advanced Technology Goals for</u> <u>High Megawatt Applications</u>

Lai

Jason Lai, Future Energy Electronics Center, Virginia Tech <u>Multilevel Converters for</u> <u>Large-Scale Fuel Cell Power Plants</u>

Leslie

Scott Leslie and John Donlon, Powerex, Inc.; <u>*Power Module Packaging & Integration*</u>

Mazumder

Sudip K. Mazumder, Director, Laboratory for Energy and Switching-electronics Systems University of Illinois, Chicago; *A High-power High-frequency and Scalable Multimegawatt Fuel-cell Inverter for Distributed Generation*, presentation not provided

Ozpineci

Burak Ozpineci, Power Electronics and Electric Machinery Research Center, Oak Ridge National Laboratory; *Cascaded Multilevel Inverters for Aggregation of Fuel Cells*

Reass I

W. A. Reass, D. M. Baca, and R. F. Gribble, Los Alamos National Laboratory; <u>*Possible*</u> <u>*Needs And Applications Of Polyphase Resonant Converters*</u>

Reass II

W. A. Reass, D. M. Baca, and R. F. Gribble, Los Alamos National Laboratory; <u>Multi-Megawatt High Frequency Polyphase Nanocrystalline Transformers</u>

Staines I

Geoff Staines, General Atomics – Electronic Systems Inc.; <u>*High-Voltage, High-Megawatt Power Requirements at GA*</u>

Staines II

Geoff Staines, General Atomics – Electronic Systems Inc.; <u>Capacitor Technology for</u> <u>High-Megawatt Power Conversion</u>

Tang

Le Tang, ABB US Corporate Research; <u>Enhanced Power, Reliability and Efficiency</u> in New HVDC and FACTS Development

Wolk

Ron Wolk, Wolk Integrated Technical Services; <u>*Roadmap Development-High Megawatt</u>* <u>*Converters for Commercial Scale Applications*</u></u>

10. Appendices

T :	**	Workshop Agenda
Time	Activity	Invited Speakers
8:00 AM	Breakfast	
8:20	Welcome	Al Hefner
8:25	Keynote	Sam Biondo, DOE Office of Clean Power Systems
8:30	1. Federal Needs and Wants	Edward Jones, DOE Office of Clean Power
	to Support Federal Advanced	Systems
	Technology for High	Frank Holcomb, DOD/Army/ERDC-CERL
	Megawatt Applications	Terry Ericsen, DOD/Navy/ONR
9:30	2. Industry Needs and	Leo Casey, Satcon
	Wants-Suggestions for High	Le Tang, ABB
	Voltage and High Megawatt	George Berntsen, FCE
	Applications	Tom Gordon, Siemens
10:30	Break	
10:45	2. Continued	Geoff Stains, GA-SEI
		Bill Reass, LANL
		Nari Hingorani - HVDC Transission and MVDC
		Distribution
11:30	3. Analysis of High	<u>Al Hefner</u> , NIST
AM	Megawatt Fuel Cell Power	DOE/NIST InterAgency Agreement
	Converter Technology	• Analysis of impacts of new technologies
	impacts	• Synopsis of topologies and component
		technologies to be considered
		• Inputs needed from converter community
Noon	Lunch	
1:00 PM	4. Advanced Power	Prasad Enjeti, Texas A&M Common Mode &
	Converter Technologies	IGCTs
	a. Topologies and Controls	Jason Lai, Virginia TechMulti-level Inverters
	1 0	Sudip Mazumder, University of Illinois, Chicago
		Borak Ozpineci, ORNL - Cascade Multilevel
2:15 PM	b. Components, Power	Dave Grider, Cree – SiC High Power Devices
	Semiconductors, Power	Scott Leslie, Powerex - IGBT Packaging and
	Package/Module and	Integration
	Cooling, Passives	Geoff Stains, GA-ESI - Capacitors
		William Reass, LANL - Nano-magnetics
3:15 PM	Break	
3:30 PM	5. Discussion of	Al Hefner, NIST - Facilitator
	Technologies to be	
	Considered in Impact Study	
3:45 PM	6. Roadmap development	Ron Wolk, WITS - Facilitator
	and government role	Organize Roadmap Committee
4:45 PM	Wrap-up	
5:00 PM		
5:00 PM	Adjourn	

Appendix A. Workshop Agenda

Name	Affiliation	Email	Telephone
Tarek Abdallah	U.S. Army CERL	t-abdallah@cecer.army.mil	217-373-4432
Allie Auld	University of California,	aea@apep.uci.edu	949-824-1999
	Irvine		ext. 141
Peter Barbosa	ABB Corporate Research	peter.barbosa@ch.abb.com	+41 58 586
	Switzerland	1	7540
George	FCE	berntsen@fce.com	203-825-6000
Berntsen			
Sam Biondo	DOE-Fossil Energy	samuel.biondo@hq.doe.gov	301-903-5910
Leo Casey	Satcon	leo.casey@satcon.com	617-897-2435
Muhammad	West Virginia University	machoudhry@mail.wvu.edu	304-293-6371 x
Choudhry			2524
Don Collins	DOE - NETL	donald.collins@netl.doe.gov	412-445-1320
Alan Cookson	NIST	alan.cookson@nist.gov	
Prasad Enjeti	Texas A&M	enjeti@tamu.edu	979-845-7466
John Donlon	Powerex	jdonlon@pwrx.com	724-925-4377
Terry Ericsen	ONR 334 Program Manager	ericset@onr.navy.mil	703-696-7741
Tom Gordon	Siemens	Thomas.gordon@siemens.com	412-256-5313
David Grider	Cree, Inc.	David_Grider@cree.com	919-313-5345
Allen Hefner	NIST	hefner@nist.gov	301-975-2071
Narain G.	Consultant	nhingorani@aol.com	650-941-5240
Hingorani			
Frank Holcomb	U.S. Army CERL	Franklin.H.Holcomb@erdc.usa	217-373-5864
		ce.army.mil	
Edward Jones	DOE	edwardj@vt.edu	301-903-3913
Hans Krattiger	ABB	hans.krattiger@us.abb.com	919-856-3878
Jason Lai	Virginia Tech	laijs@vt.edu	540-231-4741
Scott Leslie	Powerex	sleslie@pwrx.com	724-925-4482
Peter	Mesta Electronics Inc.	pete.levo@mesta.com	412-754-3000
Leventopoulos			x203
Dennis P.	SatCon Applied Technology	Dennis.Mahoney@satcon.com	617-897-2448
Mahoney			
Sudip	U. of Illinois, Chicago	mazumder@ece.uic.edu	312-355-1315
Mazumder			
Ty McNutt	Northrup Grumann	ty.mcnutt@ngc.com	410-765-4772
Ned Mohan	University of Minnesota	mohan@umn.edu	612-625-3362
Kevin Motto	Northrup Grumann	kevin.motto@ngc.com	410-552-2366,
Burak Ozpineci	ORNL	ozpinecib@ornl.gov	865-946-1329
Joe Pierre	Siemens	Joseph.pierre@siemens.com	412-256-5313
Duane Prusia	Powerex	Dprusia@pwrx.com	724-925-4377

Appendix B. List of Workshop Participants

William Reass	Los Alamos National Laboratory	wreass@lanl.gov	505-665-1013
Thomas Roettger	Northrup Grumann	thomas.roettger@ngc.com	410-552-2412
Karl Schoder	West Virginia University	Karl.Schoder@mail.wvu.edu	304-293-0405 x 2541
David Shero	Mesta Electronics Inc.	dave.shero@mesta.com	412-754-3000, x204
Marc Sherwin	Northrop Grumman	Marc.Sherwin@ngc.com	410-993-8318
Mike Spence	WVU	mspence2@mix.wvu.edu	304-296-5971
Geoff Staines	General Atomics Electronic Systems	geoff.staines@ga-esi.com	858-522-8278
Wayne Surdoval	NETL	Wayne.surdoval@netl.doe.gov	412-386-6002
Le Tang	US ABB	Le.tang@us.abb.com	919-856-3878
Albert J. Tucker	Consultant	ajtucker@ieee.org	443-321-4719
Wayne Weaver	U.S. Army CERL	wayne.w.weaver@erdc.usace.a rmy.mil	217-352-6511
Ron Wolk	Wolk Integrated Technical Services (WITS)	ronwolk@aol.com	408-996-7811

Invited Participants Who Were Unable to Attend

invited 1 articipants who were chable to Attend					
Sharon	Program Manager Defense	Sharon.Beermann-	571/218-4935		
Beermann-	Advanced Research Projects	curtin@darpa.mil			
Curtin	Agency Defense Sciences				
	Office				
Bimal K. Bose	University of Tennessee-	bbose@utk.edu	865-974-8398		
	Knoxville				
Frank	EPRI	fgoodman@epri.com	650-855-2872		
Goodman					
Richard D.	SAIC	richard.d.hepburn@saic.com	703-676-1416		
Hepburn		_			
Yuri	Consultant	ykhersonsky@ieee.org	714-956-9200		
Khersonsky					
Thomas Lipo	U. of Wisconsin at Madison	lipo@engr.wisc.edu	608-262-0287		
John Pazik	Office of Naval Research	pazikj@onr.navy.mil.			
Steve Shaw	Montana State University	sshaw@ece.montana.edu	406-994-2891		
Ralph	GE Central R&D	Teichman@crd.ge.com	518-387-4488		
Teichmann		_			
Ricardo S.	Jet Propulsion Laboratory	Ricardo.S.Zebulum@jpl.nasa.g	818-354-7623		
Zebulum		ov			

Appendix C. Workshop Invitation High-Megawatt Converter Technology Workshop January 24, 2007 National Institute of Standards and Technology (NIST) Building 215-AML, Room C103-C106 8:00 AM -5:00 PM

Invitation

DOE Office of Clean Power Systems, U.S. Army Construction Engineering Research and Development Center (ERDC), and NIST invite you to participate in this one-day Workshop on High Megawatt Converter Technology.

Background,

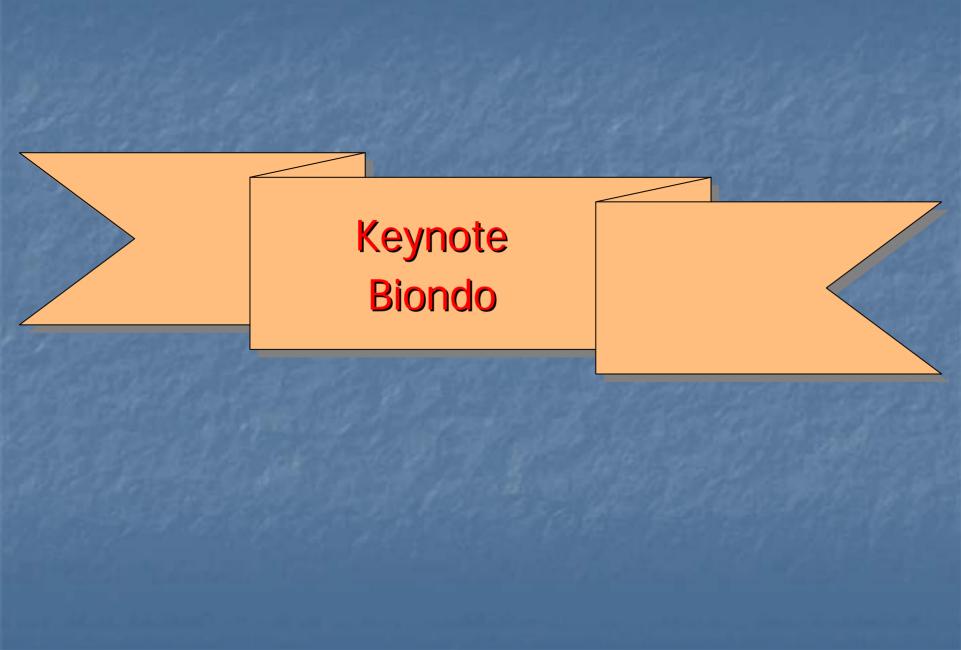
On May 10, 2006, a Workshop was held to discuss possible approaches to lower cost Power Conditioning Systems that are based on newer topologies that take advantage of higher inverter voltages and faster switching frequencies and advanced materials such as the use of SiC to replace Si in existing devices.

One of the outcomes of the May 10, 2006 Workshop was a DOE-NIST Interagency Agreement to support the analysis and simulation necessary to make consistent quantitative predictions of the overall life-cycle cost reduction that can be obtained using advanced topologies, components, and materials.

Objectives

Another Workshop is planned for January 24, 2007 that will provide a forum to review Federal and Industry Wants and Needs for High Megawatt Applications and to discuss the planned Interagency Agreement efforts. The desired outcome of the Workshop is the organization of a roadmapping exercise to define the R&D required to support the future availability of significantly lower cost High Megawatt converters for use in a variety of applications including but not limited to Integrated Gasification Fuel Cell Power Plants.

The planned Workshop Agenda along with the List of Speakers and the List of Invited Participants are included on the attached pages.


Registration

Please RSVP with name, affiliation, email address, and phone number to Ron Wolk (<u>ronwolk@aol.com</u>) to confirm attendance. In order to be admitted to the NIST site, any Workshop participant that is not a US citizen must submit Form NIST 1260 to Terri Kroft (terri.kroft@nist.gov) at least 48 hours prior to the Workshop.

Speaker Instructions

We are asking each speaker to limit the formal presentation to 15 minutes and include primarily high level summary material. Additional, more detailed, backup material can be included (but not presented) for distribution to the audience and publication in the Workshop proceedings.

High-Megawatt Converter Technology Workshop

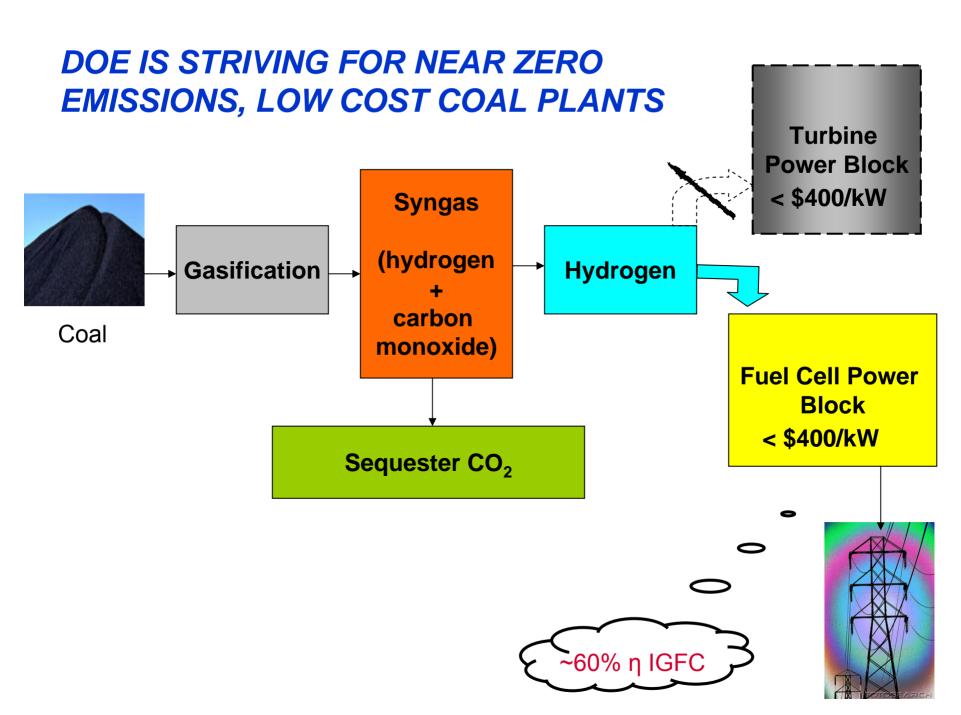
Sam Biondo

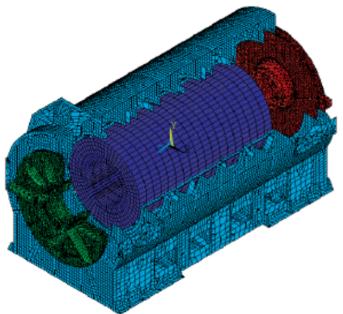
January 24, 2007 National Institute of Standards and Technology

RECALL THE INVITATION TO THIS MEETING STATES:

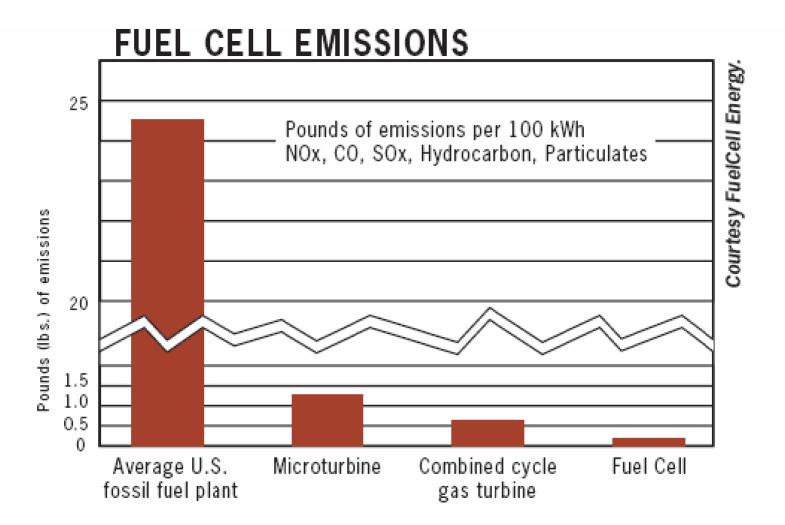
"[It] will provide a forum to review Federal and Industry Wants and Needs for High Megawatt Applications and to discuss the planned Interagency Agreement efforts. The desired outcome of the Workshop is the organization of a roadmapping exercise to define the R&D required to support the future availability of significantly lower cost High Megawatt converters for use in a variety of applications including but not limited to Integrated Gasification Fuel Cell Power Plants"

I WANT TO BRIEFLY SHARE SOME


BACKGROUND INFORMATION

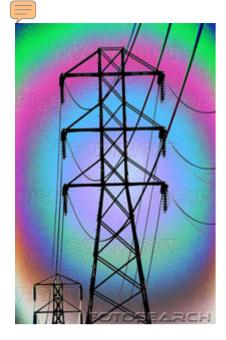

The Three Horsemen of the Energy R&D Apocalypse: pollution, high cost, low efficiency

Cropped from painting by Victor Mikhailovich Vasnetsov



	7FH2 Model 741 / 743 ‡		
	Hydrogen directly cooled rotor		
Cooling	and conventionally cooled stator		
Configuration	Single-end drive, end shield mounted		
Rated Speed	3600 rpm/60 Hz		
Output	195.5 MW/60 Hz		
Power Factor	0.85 lag		
MVA Rating	230 MVA/60 Hz		
Terminal Voltage	oltage 18 kV		
Temperature Rises	Allowable Class B per IEC/50 Hz		
	And ANSI/60 Hz Standards		
Insulation Class	Rotor - Class F; Stator - Better than Class F		
Excitation System	Bus Fed, Static Excitation		

[‡] Note: Could be W501G, with 1S.W501G


Fuel Cells are much cleaner but still relatively small and expensive

Efficiency Is Also Major Factor

Inspired by Mary Peters Fieser (1909–1997)

Line Losses Further Deplete Generation

- A typical loss factor of an ac overhead line is 4.4% per 100 miles at 345 kV.
- At 500 kV, the ac overhead losses are down to 2.5% per 100 miles.
- The losses for 400 kV dc overhead are lower than 1% per 100 miles[‡].

So further reducing generation losses will help offset foot-warming losses.

‡From Advanced Power Transmission of the Future, Mario Rabinowitz Armor Research, 715 Lakemead Way, Redwood City, CA 94062-3922 Mario715@earthlink.net

Wants/Needs In Re: Theory of the Government's Role

Needs are set by future turbine (7FB or W501G type) power block's expected low costs and high performance.

Wants will depend on the stretch goals

-purpose of stretch goals is to inspire efforts to go well beyond what is currently feasible; such goals are only achievable if they stimulate and inspire creativity, invention and innovation.

Stretch goal are not just desirable, they are needed to justify government funding.

Theory of the Government's Role

 Megawatt scale fuel cell power conditioning technology is needed -at very low cost; perhaps as low as \$40/kW
 -at very high efficiency; likely >98%
 -and perhaps better than today's (e.g.,7FH2/1S.W501G) demonstrated high availability

Theory of the Government's Role

- Need to understand what economists call "spillovers" and the concept of "market failures."
- (Note: Check out e.g., web articles on foreign direct investments (FDI) and spillovers in electronics in various countries, e.g., U.K., Taiwan, Baltics, etc...)

Spillovers

- From the firm's perspective, the firm invests in R&D until the expected risk-adjusted private returns of the last research project equals its costs.
- Average returns to R&D to the firm are high— 20 to 30 percent, on average¹— but the returns to society are even higher— often 50 percent or more.
- These R&D "spillovers" occur as others use research results and extend them in directions the original innovator often could not have imagined.
- The result of spillovers is that an innovator is compensated for only a fraction of the total returns.

Stiglitz (Nobel Prize in Economics in 2001) said,

"Market failures" cause firms acting in their own best interests to under-invest in R&D from society's perspective.

Under-investment occurs because firms cannot appropriate all the returns ["spillovers"] to their R&D investments

And because capital market imperfections may make financing R&D more expensive [i.e. R&D cannot be collateralized] than other investments.

Much of government direct R&D funding goes to **applied research and development** in industry,

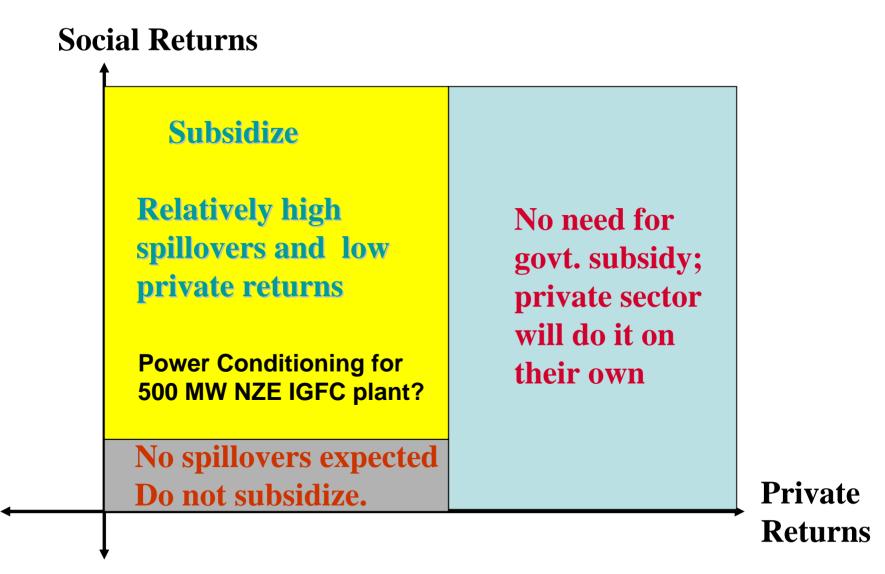
Traditionally, most of this funding has been to satisfy directly government objectives like space, defense, health research, environment, energy, transportation, agriculture, etc.

While the "market failures" may be less extreme in applied research and development than in basic research, they still exist.

Even the most applied R&D is inherently risky and can generate large "spillovers."

The rationale for government intervention is not that the government is better than the private sector at picking winners, but that there exist important spillovers even for applied technology.

The objective of the government is thus to identify winning projects that would be privately unprofitable but socially beneficial because of high spillovers.


Candidates for Subsidies: Expected Social v Private Returns

(adapted from Stiglitz and Wallsten: Public-Private Technology Partnerships: Promises and Pitfalls)

Candidates for Subsidies: Expected Social v Private Returns

(adapted from Stiglitz and Wallsten: Public-Private Technology Partnerships: Promises and Pitfalls)

R&D spillovers are "positive externalities."

Social Returns

•Invest in projects that have a high social rate of return, but that would be underfunded, delayed or otherwise inadequately pursued in the absence of government support.

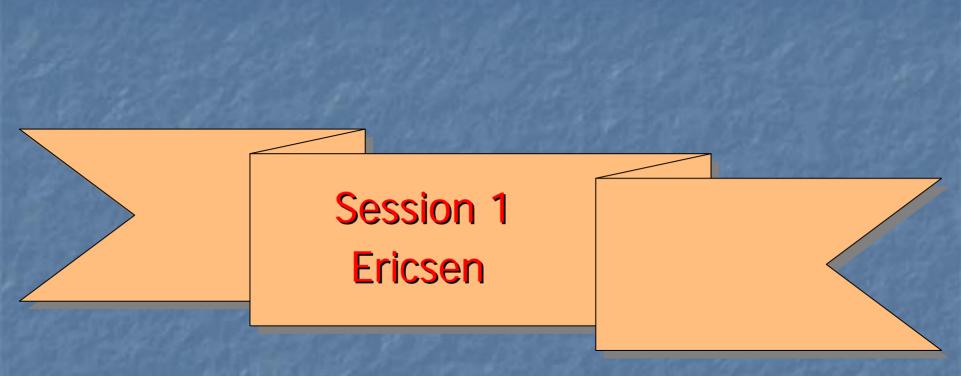
•Pursue projects for which the gap between the social and private rates of return ("the spillover gap") is large.

Tangible Benefits of Private/Public Collaboration

- Value of derivatives should provide incentives for both public and private organizations, and
- Collaboration would enable leveraging resources

Why does DOE care about these issues now?

 There are no current market incentives to develop power conditioning systems for multi-hundred megawatt fuel cells systems and to achieve stretch goals for cost, efficiency, and reliability.


 Such PCS systems would lead to substantial public benefits. The potential spillover gap is large. The Three Horsemen of the R&D Finance Apocalypse: the time value of money; the risk of technical failure; and the cost of the R&D program itself.

Cropped from painting by Victor Mikhailovich Vasnetsov

Thank you for your attention

Model-Based Specification and Simulation-Based Design and Procurement

Terry S Ericsen

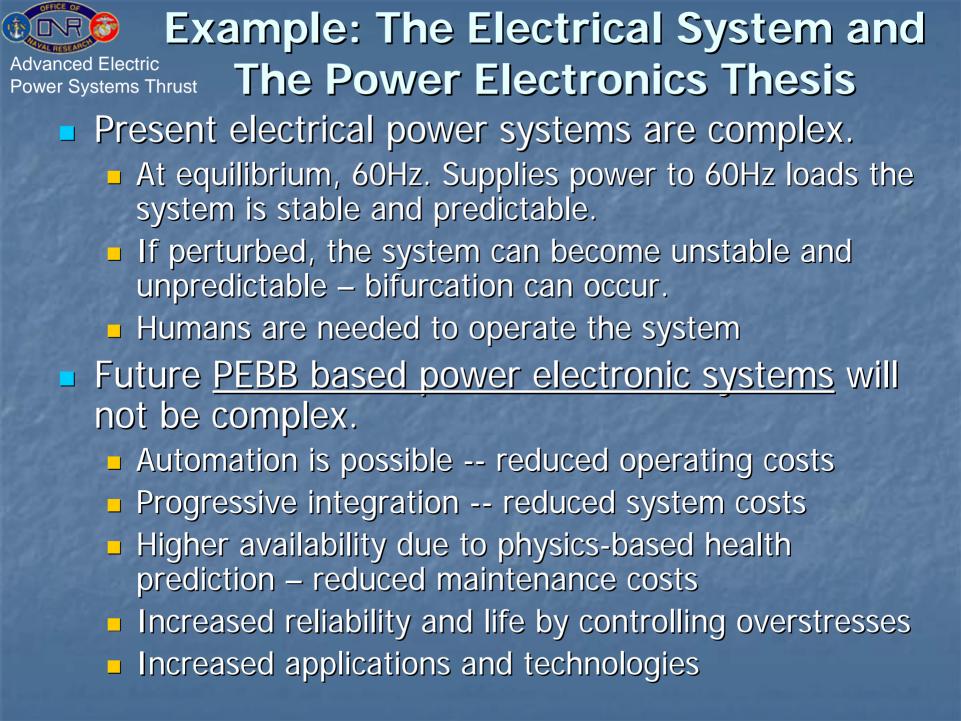
"System of Systems" Design Challenges

Today

- Rule Based Design
- Standard Parts
- Increasing Complexity
- Specifications, Documents
- Small Samples Statistics

Tomorrow

- Relational Based Design
- Standard Processes
- Increasing Detail
- Model is the Specification
- Physics Based Analysis
- Statistics from All of Industry



Advanced Electric

Complexity

Power Systems Thrust (From "Modeling and Simulation in System Engineering: Whither Simulation Based Acquisition?" By Andrew P. Sage and Stephen R. Olson, George Mason University)

- The more identical that a model must be to the actual system to yield predictable results, the more complex the system is.
- Complex systems "...have emergence ... the behavior of a system is different from the aggregate behavior of the parts and knowledge of the behavior of the parts will not allow us to predict the behavior of the whole system."
- "In systems that are 'complex,' structure and control emanate or grow from the bottom up."
- A system may have an <u>enormous number of parts</u>, but if these parts "<u>interact only in a known, designed, and</u> <u>structured fashion, the system is not complex</u>, although it may be big."
- Although a physical system maybe not be complex, if humans are a part of the system, it becomes complex

New Technology Drivers

- ① Power Density
- ① Energy Density
- ① System Efficiency

む Control

- Conversion Steps
- Number of Phase Legs
- ✤ Reconfiguration
- 1 Voltage
- 1 Current
- ✤ Frequency

Source Voltage, rms Line-Line (volt)	Estimated Device Blocking Voltage (volt)	Notes	
13,800	40,000	Many circuits are neededparallel, series, and steps	
4,160	12,000	Emerging solid- state solutions	
440	1,300	Solid-state solutions available	
115	350		

• Pulse forming networks require charging circuits ranging from **10kV** to **40kV**.

Pulse forming discharge circuits can require up to 100kV switching.
Modulator circuits require 10kV to 50kV for input voltages and output voltages ranging from 50kV to 1MV.

Level of Invention

by Michael S. Slocum

"Technical Maturity Using S-Curve Descriptors," TRIZ Journal Archives, http://www.triz-journal.com/archives/1998/12/a/

Level	Nature of Solution	Number of Trials or Variants Required to Find a Solution	Where Did The Solution Come From	Percentage of Patents in This Level
1	It was obvious!	A few	The designer's narrow specialty field	~ 30%
П	Some modifications were made	Dozens	A single branch of technology	~55%
ш	A radical change was made	Hundreds	Other branches of technology	<10%
IV	Solution is broadly applicable	Thousands to tens of thousands	From science – little known effects and phenomena of physics, chemistry and geometry	3-4%
V	A true discovery – previously unknown	Hundreds of thousands to millions	Beyond limits of contemporary science	< 1%

Aerospace

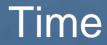
Commercial

\$

Assumptions:
1) Conservative
2) Minimum

Entropy
Production

(Power Density, Specific Power, Reliability, and etc.)


Technology Maturity Based on the Micro-Evolution of Biological Systems

Michael S. Slocum, "Technology Maturity Using S-curve Descriptors," Proceedings of the Altshuller Institute TRIZCON99

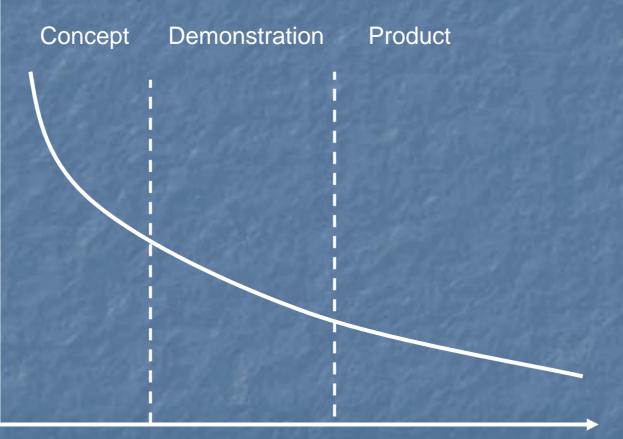
> New Technologies S -- Curve

Existing Technologies S -- Curve

Performance

5

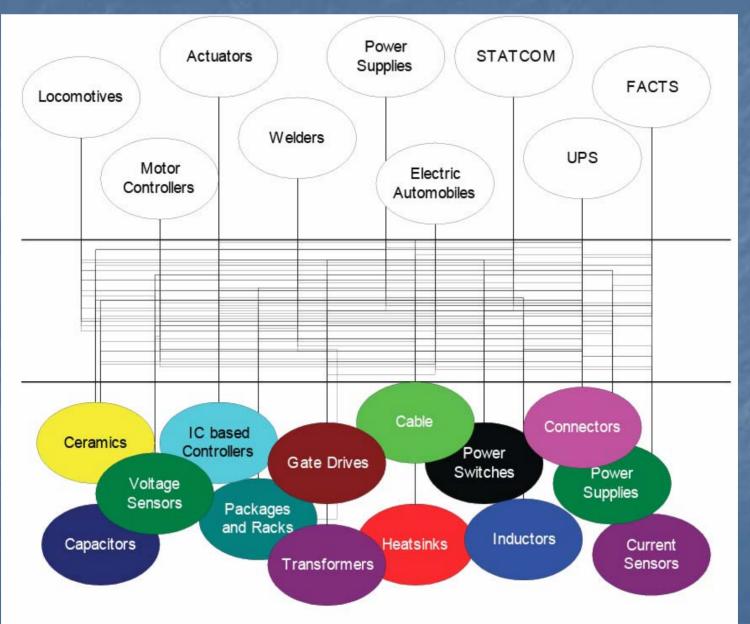
Development Process


Commercial Progressive Integration

Performance (Power Density, Specific Power, Reliability, and etc.)

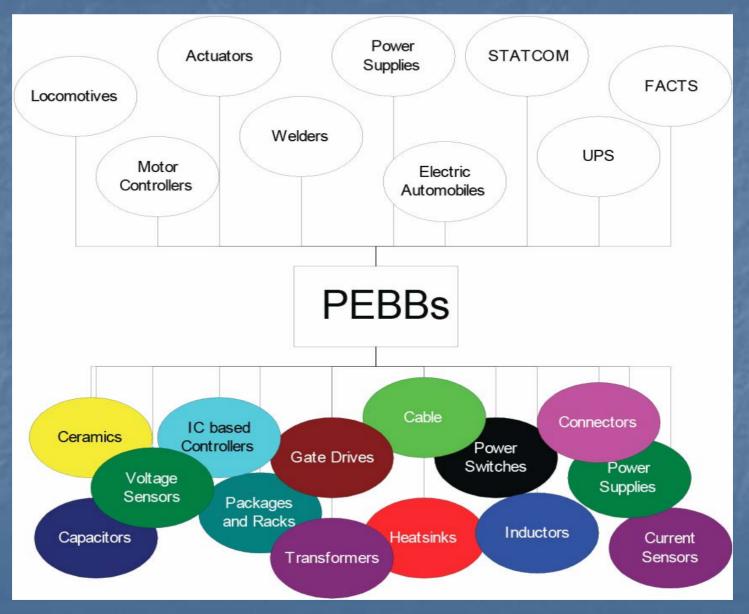
Management Influences

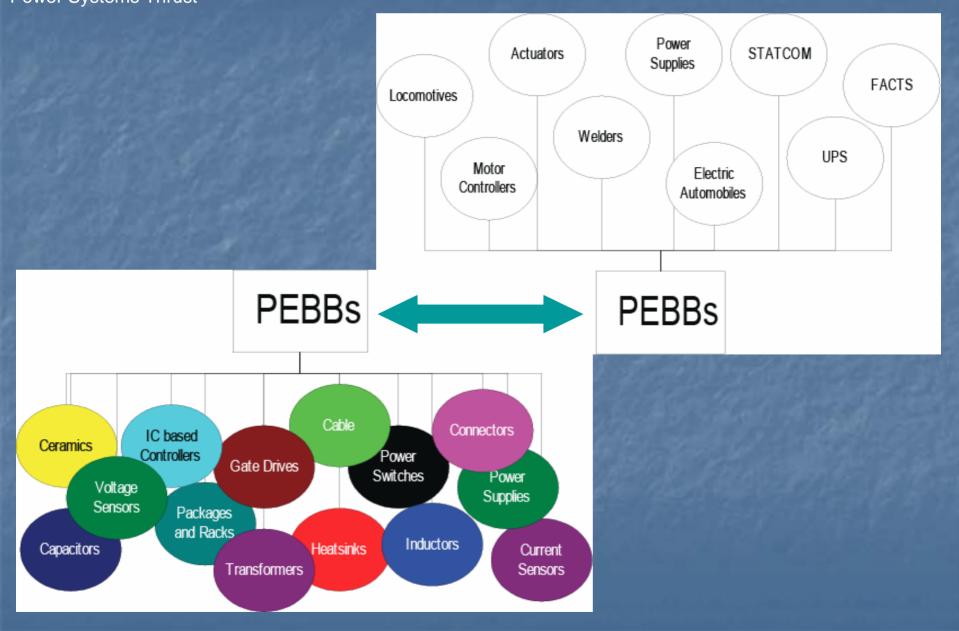
Influence


Development

Modeling and Simulation as Early as Possible in a Project

Traditional Power Electronics Industry


Power Systems Thrust


PEBB Based Power Electronics Industry

Power Systems Thrust

Asynchronous Processes for Multiplicative Product Development -- Concurrent Engineering

PEBB -- A Simple Set of Blocks for Power System Development (Functional)

1/0

filter

Thermal

Power Switching

1/0

filter

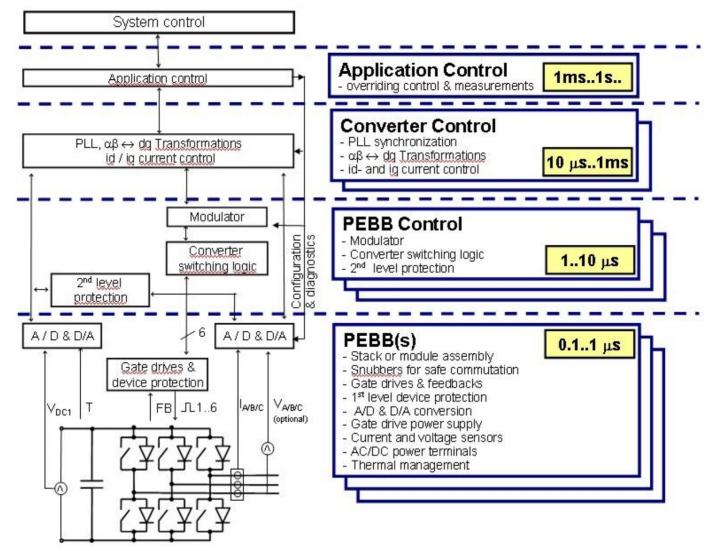
Senses what they are plugged into...

Makes the electrical conversion needed via software programming

PEBB defined by IEEE
(Power Engineering Society)
WG I8
TF2, PEBB Technologies

Senses what is plugged into them...

Functions In Software Inverter Breakers Frequency Converter Motor Controller Power Supply Actuator Controller


Industry Standards Initiated

Controls

Universal Control Architecture for Control Interfaces (temporal), IEEE Guide Initiated

PEBB Concept for Power Electronics

The Changing Role of Simulation

Today, simulation is used for evaluation -- Analysis.

- Simulation programs require detailed design information
 - Circuit parameters are entered before simulation begins.
 - Variations in design can be analyzed
- Tomorrow, simulation will become part of the design process --Synthesis.

Future Design Process Today

Tomorrow

odelind

Specs

Design through Simulation

Reality

Roger Dougal & Antonello Monti, University of South Carolina

The Design Cycle

Customer Designer

Products

Mission: Performance, Life, & Cost

Requirements

Supplier Designer

Physics-Based Models are Required

Product models must be specific
 Requirement models can be general

 In fact, requirement models with very specific details, in the design phase, can lead to an overly constrained problem.

Validation, Emulation, and Incremental Prototyping

Validation of models

- Controller In the Loop
- Processor In the Loop
- Hardware In the Loop
- Real-time simulation is needed for real hardware
- High speed real-time simulation is need for high-speed controllers
- Multi-rate simulation for distributed simulation environments

Needs

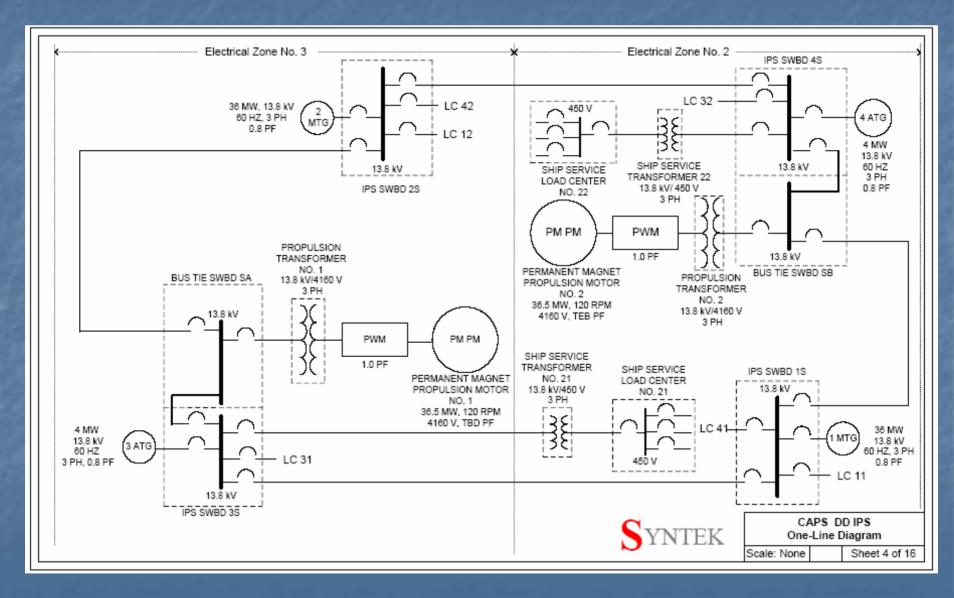
Modeling Standards
Benchmark Models
Public Library of Models
A body of international volunteer experts for all of the above
And ...

Advanced Electric Power Systems Thrust

 $p = \varepsilon \frac{dw}{dt}$

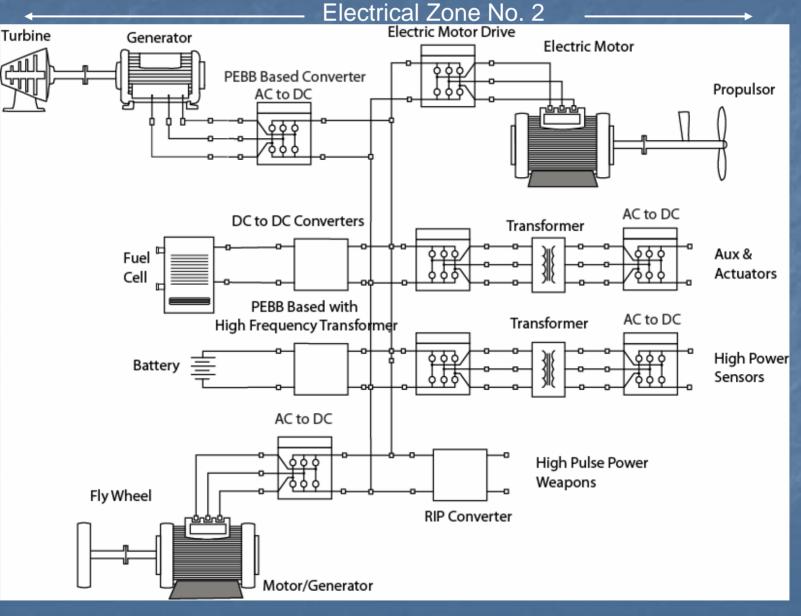
W = energy which is equal to the ceiling amount of the installed generation capacity (may increase over time with technology – <u>fractionally</u>)

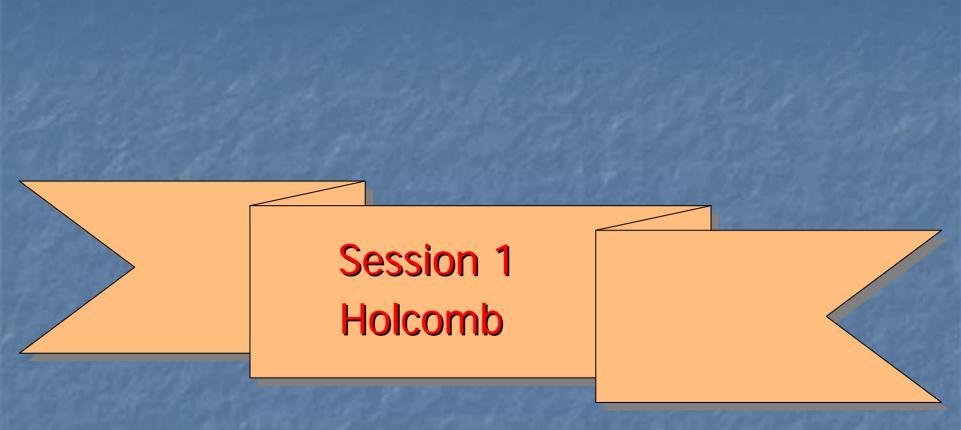
p, power requirements are increasing multiplicatively by 10x to 100x


ε = efficiency

Conditions:

- 1) Size, weight, cost stay the same or decrease
- 2) Open architecture, plug and play


Advanced Electric Notional Integrated Power System (IPS)


Power Systems Thrust

Advanced Electric

DoD / Army Stationary Power Requirements

Secure, Reliable, Efficient Energy Home Station to Foxhole

Franklin H. Holcomb Project Leader, Fuel Cell Team Ph. 217-373-5864 f-holcomb@cecer.army.mil www.dodfuelcell.com

24 JAN 07

US Army Corps of Engineers **Engineer Research and Development Center**

Presentation Outline

Introduction

 Power & Energy Technology Requirements & Goals
 Installations

- Warfighter

Engineer Research and Development Center (ERDC)

old Regions Research and Engineering aboratory (CRREL) Hanover, NH

Engineering Topographic Engineering Center (TEC) Alexandria, VA Research Laboratory CERL Champaign, IL

ERDC Headquarters, Vicksburg, MS Director and Commander • Coastal and Hydraulics Laboratory (CHL) • Environmental Laboratory (EL) • Geotechnical and Structures Laboratory (GSL) • Information Technology Laboratory (ITL)

Construction

ERDC-CERL Team & Collaborators

ERDC-CERL Researchers

Frank Holcomb Elect. Engineer

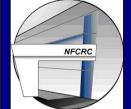
Roch Ducey Elect. Engineer

Tarek Abdallah Elect. Engineer

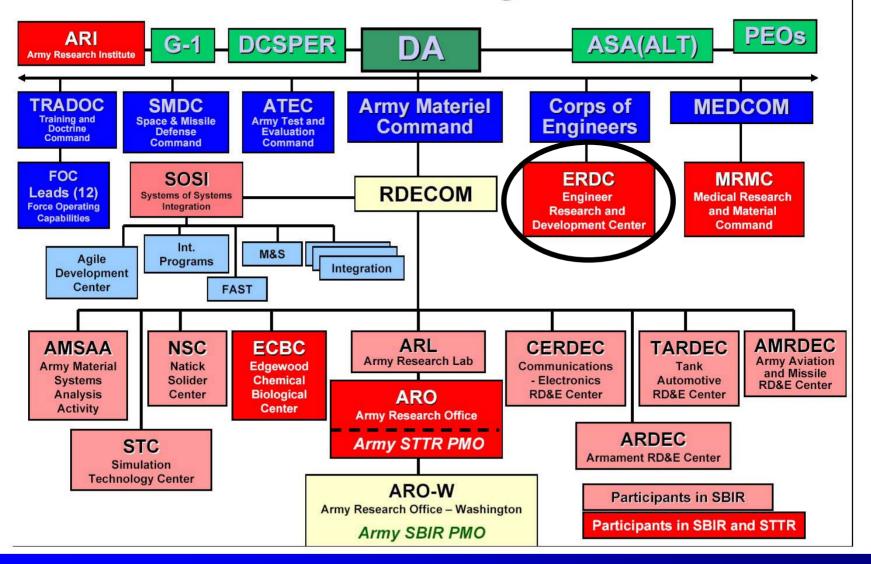
Dr. Chang Sohn Mech. Engineer

Major Collaborators

Joe Bush Mech. Engineer


Nicholas Josefik Mech. Engineer

Scott Lux Elect. Engineer



Dr. Carl Feickert Physicist

ARMY R&D Organizations

Army Energy Strategy for Installations

- The Strategy sets forth the Army's energy goals for 25 years and the Campaign Plan defines the intermediate actions, approaches, initiatives and funding over the 25 years to ensure the Army successfully achieves long-range energy and water management goals.
- The Strategy sets the general direction for the Army in five major initiatives:
 - Eliminate energy waste in existing facilities
 - Increase energy efficiency in new construction and renovations
 - Reduce dependence on fossil fuels
 - Conserve water resources
 - Improve energy security
- References
 - <u>http://hqda-energypolicy.pnl.gov/programs/plan.asp</u>
 - The Secretary of the Army and the Army Chief of Staff signed the Army Energy Strategy for Installations on 8 July 2005. <u>http://hqda-energypolicy.pnl.gov/docs/draft_strategy.pdf</u>


2005 Energy Policy Act

- The Domenici-Barton Energy Policy Act of 2005 was signed by President Bush on 08 AUG 05. Army / DoD related guidance includes:
 - Directs the federal government to use more renewable energy, with a goal of using 7.5 percent or more by 2013.
 - Directs the federal government to meter or submeter all federal buildings by October 1, 2012.
 - Requires a 20 percent reduction in federal building energy use by 2015.
 - Provides funding for energy efficiency programs for public buildings, including schools and hospitals.
 - Increases fuel efficiency requirements for federal vehicles.
 - Directs the DOE to fund selected demonstration projects that involve using hydrogen and related products at existing facilities or installations, such as existing office buildings, <u>military bases</u>, vehicle fleet centers, transit bus authorities, or units of the National Park System.
 - Requires sustainable design principles to be applied to the siting, design, and construction of all new and replacement federal buildings.
 - Green procurement guidance.

References

<u>http://energycommerce.house.gov/108/energy_pdfs_2.htm</u>

Vision for Army Power Delivery Home Station-to-Foxhole

Technology Advances Needed to Achieve Future National Power Delivery System (Ref)

- Smart power delivery system
- Advanced distribution automation
- Fast simulation and modeling
- Integrating distributed energy resources
- Distributed storage technologies
- Power system operation and control
- Reduce vulnerability to natural disaster & attack
- Improve power quality

Army challenge adapt national tech advancements to blend with & scale the power vision home station-to-foxhole

Ref: *Power Delivery System and Electricity Markets of the Future*, EPRI, Palo Alto, CA: 2003. 1009102

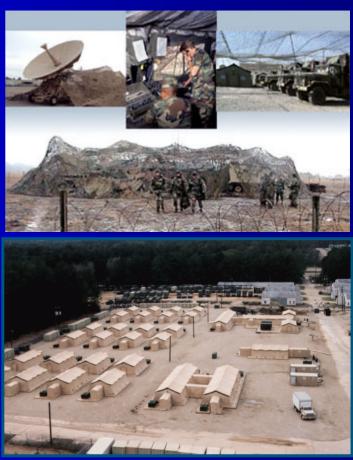
Power & Energy Technology Warfighter Goals

- Provide Warfighter Payoff!
- Meet Unique Operational Needs Of Each Service
- Compatibility With Diesel Fuel Logistics

TRADOC Pamphlet 525-66 (refers to Force Operating Capabilities (FOCs))

- FOC-08-04: Installations as our Flagships
 - Capstone Capabilities.
 - The role of installation is shifting to continuous support from home station to foxhole.
 - These capabilities apply to our permanent installations at home and abroad, as well as to those that support expeditionary and contingency activities.
 - In addition or adjunct to installation natural and built infrastructure needs inculcated into the other FOCs, the following encompasses those focused capabilities most critical to achieving required installation support for the Army:
 - Provide Power Projection
 - Maintain Readiness
 - Maintain Quality of Life
- References
 - http://www.tradoc.army.mil/tpubs/pams/p525-66.htm

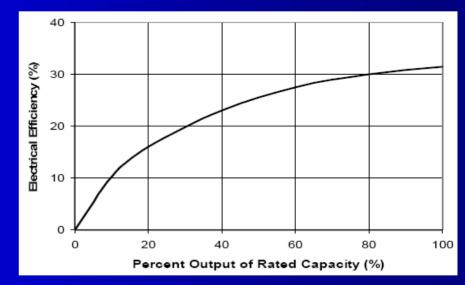
TRADOC Pamphlet 525-66


FOC-09-03: Power and Energy

- Capstone Capabilities.
 - Improve both strategic responsiveness and core warfighting abilities to effectively fight as an integral component of a joint, interdependent, full spectrum, mission-tailored force,
 - Optimize combat effectiveness via consumption reduction, alternative generation, management, and distribution of power and energy across the force, for all systems—automotive, electrical and soldier.
- (2) The use of a single fuel for both ground and aviation will simplify support operations. Efficiencies gained through improvements in the engineering and manufacturing processes will lessen fuel requirements for ground vehicles.
 - Fuel cells and other in-place technologies will negate the need for storage of large quantities of bulk fuels for ground vehicles alone.
- (3) The use of alternatives to fossil fuel, including fuel cells, fusion, fission, hydrogen energy, renewable sources, biomass, and magnetohydrodynamic thrusters, must be pursued for significant advances in efficiency to be made.
 - Systems of the future will look at power storage and distribution as two halves of the same whole, rather than as disparate systems.

Forward Deployments

- Base Camps
- Life Support Areas
- Advanced Operations Base
- Forward Operations Base
- Tactical Operations Center
- Fuel Related Casualties
- Waste Disposal also an Issue



Military GenSets & Efficiency

Current DoD GenSet (2 kW – 60 kW) Inventory

Unit Rating (kW)	No. of Individual Units	Total Capacity (kW)
2	10,979	21,958
3	39,789	119,367
5	17,603	88,015
10	13,745	137,450
15	5,411	81,165
30	6,669	200,070
60	6,495	389,700
Total	100,691	1,037,725

Partial Loading = Very Low Efficiency

60 kW System

30 kW System

3 kW System

Related Initiatives

Scalable and Dynamic Power Delivery Systems for Military Installations

Congressional Projects

- Fuel Cell Demonstrations Tailored for Army Needs
- Next Generation Fuel Cell Technology Development

DOE Interagency Agreement

 Energy Conversion, Energy Storage, Power Conditioning Support to FutureGen Project

National Military Command Center (NMCC) Support

Designed, Installed, Tested Control Sys for Backup Switchgear

New Small Business Innovative Research (SBIR) Topics

- Intelligent Tactical Electric Grid Control
- Hydrogen Reformation of Renewable Ethanol for Military Applications

• Waste to Energy ECIP Project at Fort Stewart GA

- Co Production of Hydrogen, Heat, and Electricity via Fuel Cell

Current Leveraging Initiatives

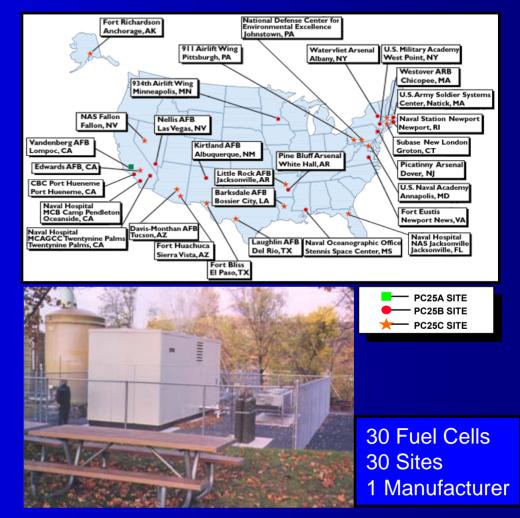
- University of CA Irvine / TARDEC → MOU
 - "Silent Watch" Modeling and Simulation
- 249th Engineer Battalion / Mobile Electric Power
 <u>"Silent Camp" Scoping</u>
- Fuels Reformation
 - Logistic Fuels, Ethanol, Other Bio Fuels
- Various CRADAs with Industry Partners
- Installation Electric Power Microgrid
 - RDECOM P&E IPT, Sandia National Lab Energy Surety, SERDP Proposal
- Army Energy Security Workshop

 NCA&T University Collaboration, DEC 2006

Backup Slides

- Selected Publications & References
- FY07 Waste to Energy ECIP Project-Fort Stewart
- DoD PEM & PAFC Demonstrations
- "Silent Camp" Concept
- Stryker Vehicle Silent Watch Concept
- DoD Fuel Cell & H2 Initiatives Website

Selected Publications & References


- Military Requirements of JP8 Reformers
 - <u>http://www.cecer.army.mil/techreports/Holcomb_JP8_Require</u> ments_TR/Holcomb_JP8_Requirements_TR.pdf
- Control Dynamics of Adaptive and Scalable Power and Energy Systems for Military Micro GridsReport
 - <u>http://www.cecer.army.mil/techreports/ERDC-CERL_TR-06-35/ERDC-CERL_TR-06-35.pdf</u>
- PEM Fuel Cell Demonstration Volume II Report
 - <u>http://www.cecer.army.mil/techreports/White_PEM_Vol2__TR</u>
 <u>/White_PEM_Vol2__TR.pdf</u>
- Fort Stewart Waste to Energy (H2) Report
 - <u>http://www.cecer.army.mil/techreports/Holcomb_CERL_TR-06-07/Holcomb_CERL_TR-06-07.pdf</u>

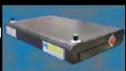
FY93-FY94 Phosphoric Acid Fuel Cell (PAFC) Project Sites

90 Fuel Cells56 Sites5 Manufacturers

FY01-FY04 Residential Proton Exchange Membrane Fuel Cell (PEMFC) Project Sites

Stryker Vehicle With MREF-APU "Silent Watch" Capability

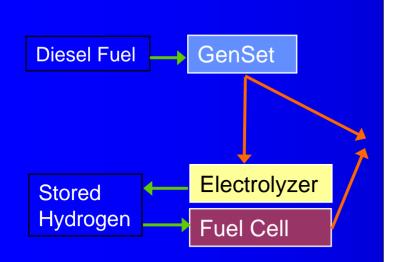
HyPM 7 Generates power on-demand for silent watch mission use.

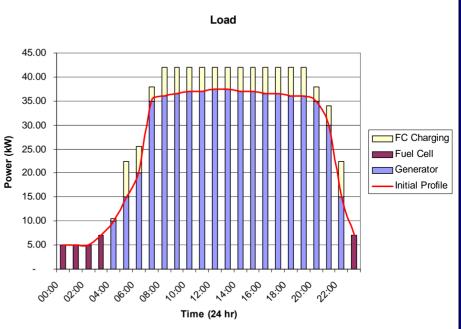

HyLZER 2.0

Generates Hydrogen for storage and later use by HyPM 7

Metal Hydride

Stores Hydrogen at low pressure for use ondemand by HyPM7 during power generation

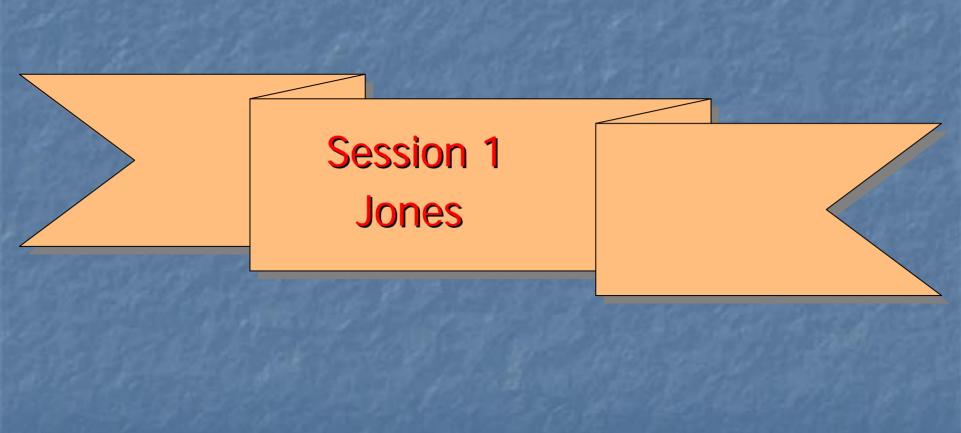

Current Prototype System is located behind turret and in front of the rear hatch ports of egress. System also includes on-board water storage vessel.



Slide 21

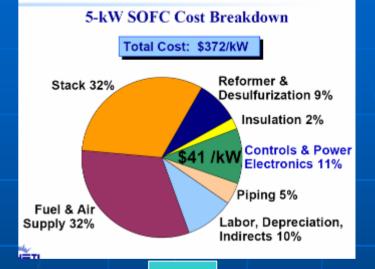
Silent Camp Concept


- Increase GenSet Output to Electrolyze Water
- Store H2 Produced from Electrolyzer
- Use Stored H2 and Fuel Cell to Power Loads at Night
- Shut GenSet Off During Fuel Cell Operation
- Can Maximize Silent Camp Operation or Fuel Savings


24 Hour Load Profile

FY07 Waste to Energy Energy Conservation Investment Program (ECIP) Project

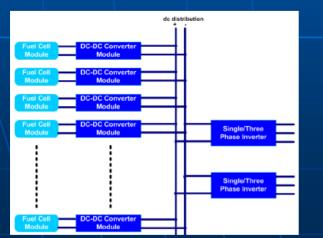
www.dodfuelcell.com


Advanced Technology Goals for High Megawatt Applications

Edward Jones DOE Office of Clean Power Systems January 24, 2006

The PCS Problem

"It is our assessment that state-of-the-art power conversion technology is not capable of converting the low voltage, high current dc quantity into a high voltage, low current ac quantity within the target cost of \$40/kW and acceptable availability numbers." --Ralph Teichmann, GE



Artist's depiction of FutureGen

Production Scale

 "Why not just use many kW-scale inverters?"
 Translation: modular topology?

DC Bus SECA interconnection Burak Ozpineci, ORNL

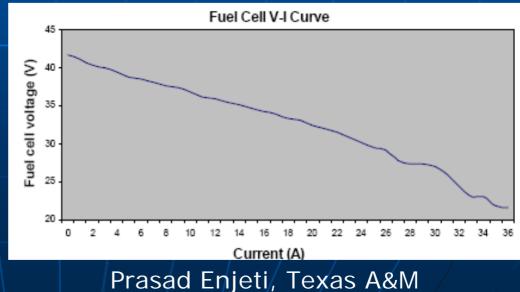
Cascade multilevel inverter Fang Peng, MSU

Voltage Step-up and Isolation

Step up stack voltage (<1kV) to 18kV for grid, and provide galvanic isolation</p>

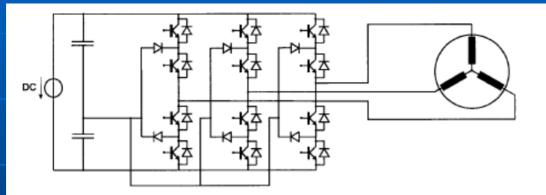
ABB autotransformer

Jason Lai's (VA Tech) DC-DC converter for kW SECA

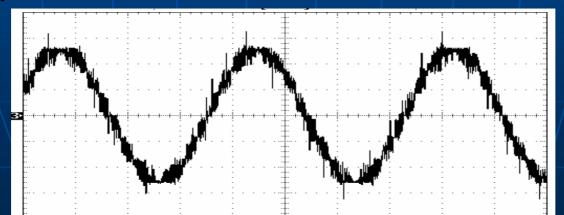

Conventional vs. Solid-state transformer

Storage

 Fuel cells have slow response to changing load


- Tenths of seconds vs. milliseconds
- The fuel flow rates cannot be adjusted rapidly and the internal chemistry must reach equilibrium before the cell can support increased load

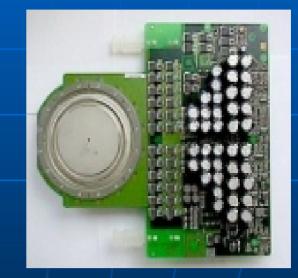
 Auxiliary power is needed for start-up and to power control signals


Ripple & Power Quality

Three-phase harmonic cancellation

Nikolaus Schibli EPFL


Ripple reduction in DC-DC converter



Prasad Enjeti Texas A&M

Efficiency Improvements

Advanced materials (i.e. SiC) and switch technology (i.e. IGCT)

1200V IGBT w/SiC Schottky Jim Richmond, Cree ABB IGCT Prasad Enjeti, Texas A&M

Soft switching and high frequency

Reliability, Durability, & Thermal Management Minimum reliability and durability requirements

1200V IGBT Modules for Excellent Thermal Benefits in Industrial Applications

From Wikipedia

Fairchild semiconductor

Component temperature limits

Footprint

An issue? High frequency to reduce passive components

Answering The Questions

 Discuss these issues as they arise today
 E-mail me: <u>Edward.Jones@hq.doe.gov</u>
 E-mail anyone, keep the discussion going

Needs and Wants-Suggestions for High Voltage and High Megawatt Applications

George Berntsen Manager, Electrical & Controls Engineering FuelCell Energy, Inc.

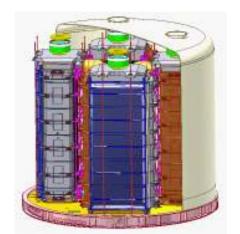
High Megawatt Converter Workshop

Fuel Cell Energy Proprietary & Confidential

Stack Voltage

Power plant voltage limits determined by stack electrical isolation design. Lower fuel cell stack voltage differential desired to:

- Minimize stack electrical isolation requirements
- Reduce fuel cell cost
- Simplify design

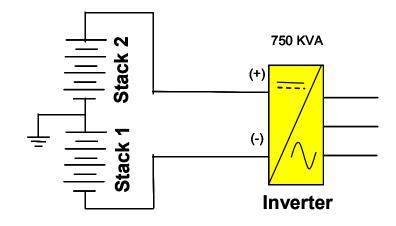

Higher fuel cell voltage (to 750V, 1000V?) desired to optimize Power Conversion:

- Reduce Inverter cost & size
- Enhanced Inverter efficiency

Fuel Cell Energy Proprietary & Confidential

High Megawatt Converter Workshop

Need to evaluate trade-offs:

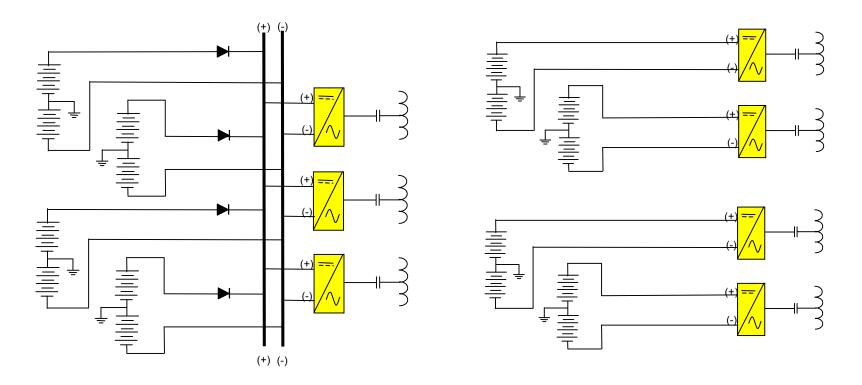

Engineer stack and inverter configuration for optimal voltage output:

⇒ Cost

- ⇒ Performance (efficiency)
- ⇒ Reliability

One Option Being Considered: Series Connect Stack Pairs

- Minimizes Stack-to-Ground Voltage
- Maximizes Inverter Voltage Input



Fuel Cell Energy Proprietary & Confidential

Common DC Bus or Dedicated/Segregated?

DC Bus Approach

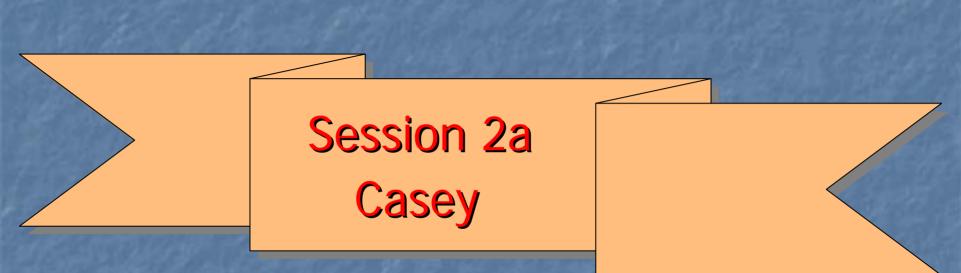
<u>Pros</u>

- Optimal KVA matching of inverters and stacks (\$\$\$ savings)
- Capable of Part load operation with failed inverter

<u>Cons</u>

• No ability to bias individual stack currents.

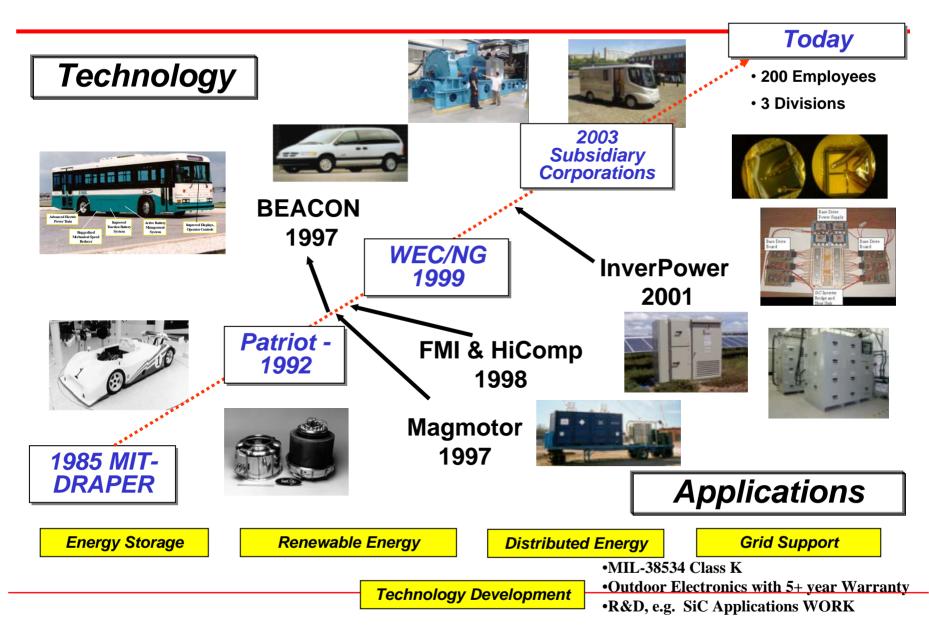
Less than optimal fuel flow – power output matching


- Custom DC bus-work \$\$\$
- Power Diode Losses

High MW Application DC Bus Considerations

> How many inverters can be eliminated?

- ➢In High Volume, would DC Bus Work costs be much less than Inverter savings?
- >In High MW, Efficiency less of a constraint than capital cost reduction



High-Megawatt Converter Technology Workshop January 24, 2007

Denny Mahoney and Leo Casey leo.casey@satcon.com

SatCon? SatCon Highlights Technology ... Applications ... Products

SatCon's Focus is Grid Electronics – getting electrons on and off the Grid, reliably, efficiently, enhancing Power Q, improving System Dynamics

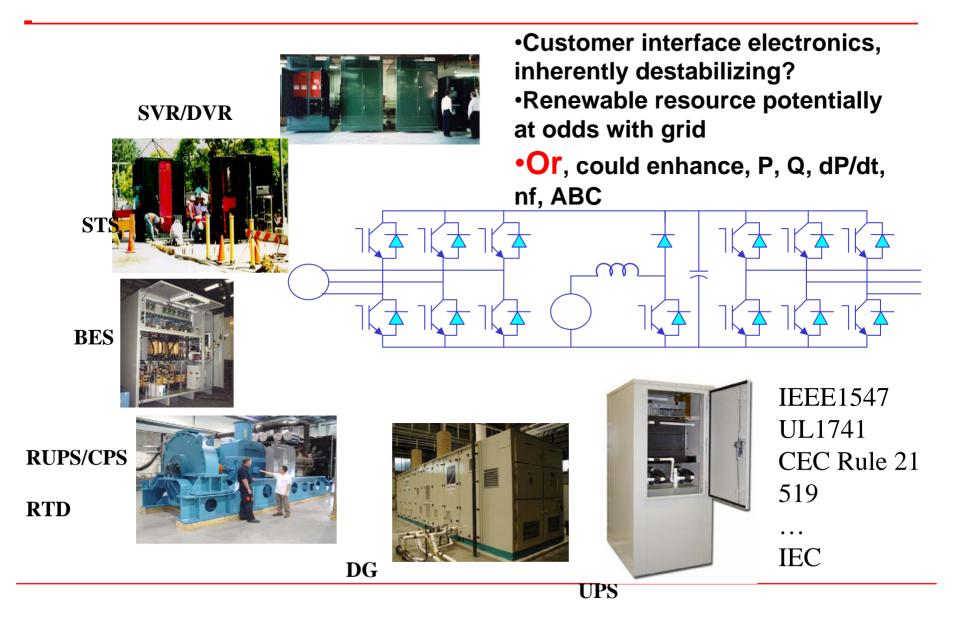
Solar Inverter Product Line

Highest efficiency listed for approved CEC inverters in its power rating *

- First 100 kW inverter shipped for European market *
- Only 500kW solar inverter rated by the California Energy Commission •

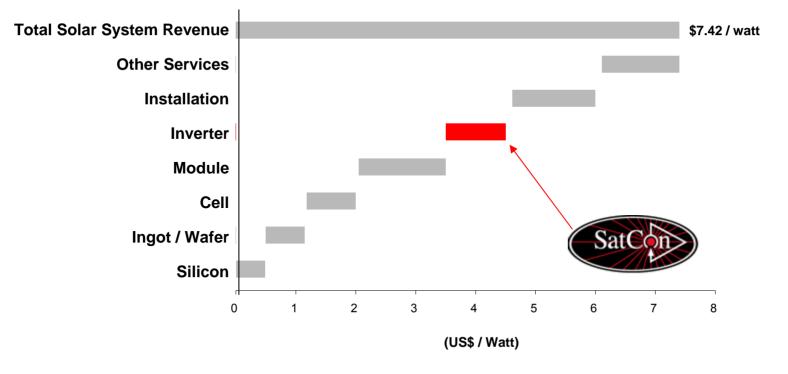
Additional Inverter Applications

Fuel Cells, Wind, ...


300kW

3MW

As Resource (Wind, PV, FC ...) Penetration grows it becomes Integral to Grid Stability and Control, SO ...

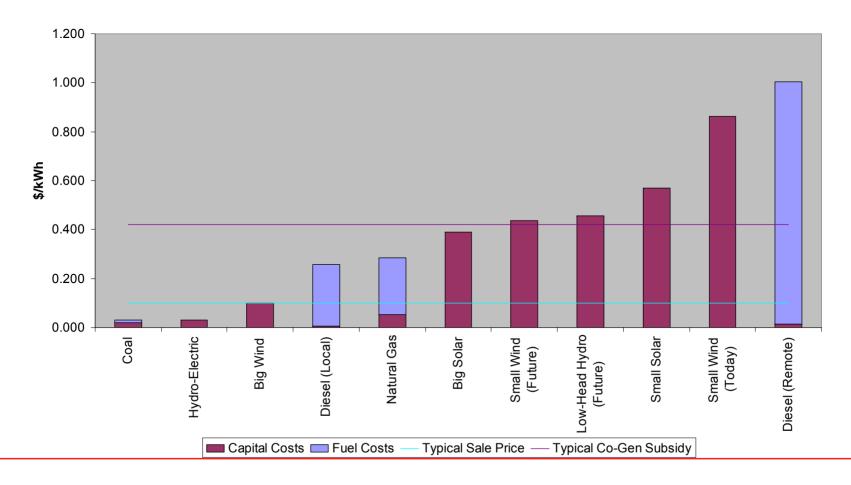

Inverter is the Glue

- Cost
- Performance
 - Power quality
 - Overload
 - ...
- Reliability

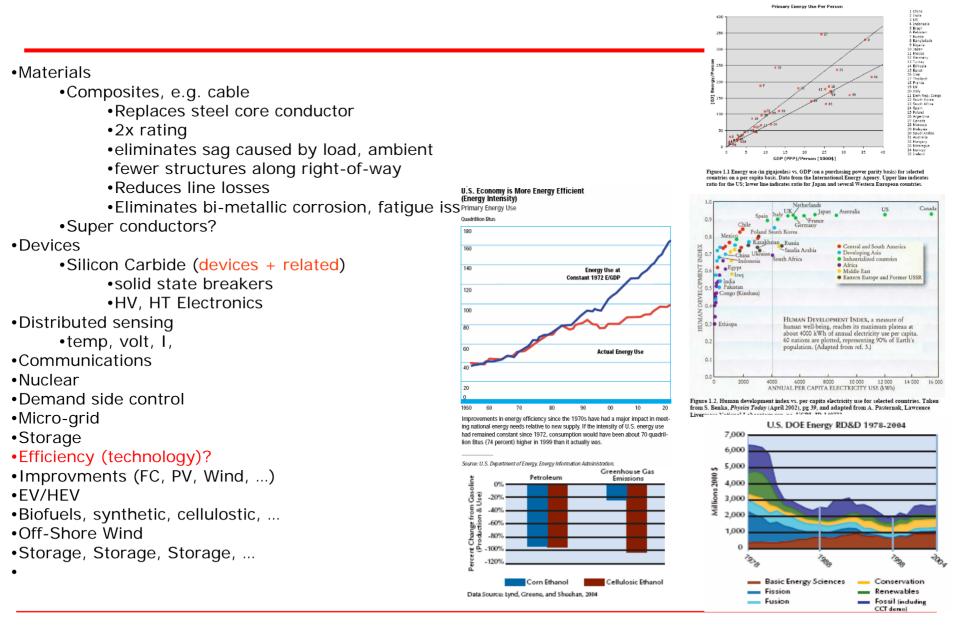
- A Grid Inverter is not just a motor drive
- Could be much more than a thermal power plant

Inverters' Role in the Solar Value Chain

- Inverters make the solar power useful
- Represents approximately 7% to 10% of system cost



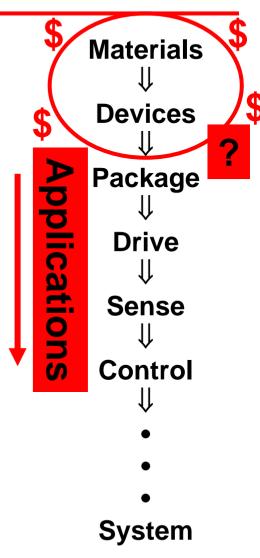
2005 Global Average Prices


Value Chain Opportunity

Economic Analysis

Representative Cost Comparison of Electrical Energy Generation

(Some) Grid Technology Developments


$\mathsf{Si} \to \mathsf{Si}/\mathsf{SiC} \to \mathsf{SiC}$

	Silicon SOA	Hybrid Si/SiC Design	Full SiC Design			
Size/Density/Efficiency	10 100 W/in ³	15 150 W/in³	35 350 W/in ³			
	(16 W/in ³ for SSIM)	(25 W/in ³ for SSIM)	(80 W/in ³ for SSIM)			
		(70% Vol., 50%Switching, ~75%P)	(30% Vol., 20%P)			
Cooling	80ºC max. liquid or 25 ºC Air	80ºC max. liquid or 25 ºC Air	>100°C liquid or 40-50 °C Air			
Response Time	10 ms for 5.6 kHz with V and I loops	5 ms for 10 kHz with V and I loops1mS for 100kHz with dead-beat control	50 μS for 100kHz with dead-beat control			
High Temperature Design	Si limits entire system to < 125°C	Si limits entire system to < 125⁰C	Partial High-Temperature design then eventually complete High- Temperature design if needed (analog degradation)			
Overload Capability	100-500 ms	2+ seconds	10+ seconds			
Robustness/Reliability	10-20,000 hr. MTBF	20-50,000 hr. MTBF	50-100,000 hr. MTBF			
Optimize Key Metric						
		Vol/wgt \$	nge			
			5			
Life Life						
lifetime 🔶 losses						

Realizing Potential of Wide Band Gap

- Power Circuits
- Power Components active and passive
- Signal Electronics
- Control
- Software
- Thermal Management
- Mechanical Design & Packaging
- Full benefit comes from addressing all areas SiC devices are NOT drop in replacements
 - ?

Is the performance acceptable? Are the devices reliable? Are they consistent (matched)? What are the next hurdles?

Some Cost Considerations

	Today's Si Design	Hybrid Si/SiC-1	Hybrid Si/SiC-2
Semiconductors	4.11	6.81	6.81
Magnetics	9.83	4.91	2.455
Filter Caps	1.7	0.85	1.7
Heatsinks + Hardware	2.4	1.2	1.2
Fans	1	1	1
Sum (% of total parts cost)	19.04	14.77	13.165

Assume: SiC will reach 3x Si, diode is 1/2 of active, LC product goes down by 4, choose L or C

Percentage Costs for Si/SiC Inverter

1% increase, 2% improvement round-trip efficiency

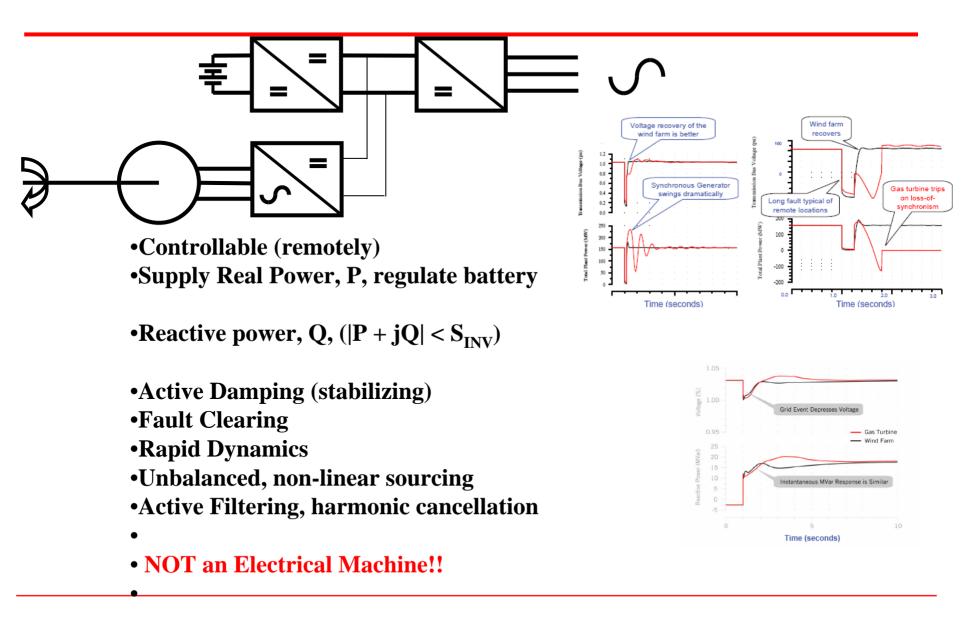
For the 100kW Inverter, feeding a 200kWHr battery, once per day charging cycle 2kWHr saving of off-peak energy, 2KWHr of peak electrical energy.

German feed in tariff for PV as an indicator (~55 c€kWh) we could argue that the 1% of efficiency is worth US \$1/day, or with a 20% return on investment approximately \$1,800

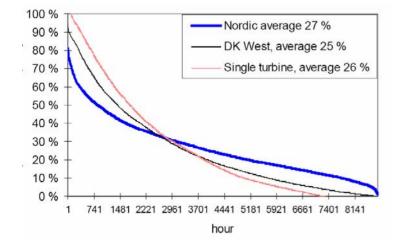
on the order of 10% of the parts cost of the inverter and so the increase in cost of the semiconductors in moving to a hybrid Si/SiC IGBT module is easily justified in savings due to improved efficiency

Or CEC have put a monetary value on KW capability of up to \$3.50/watt and so the 1% efficiency improvement would have a direct monetary value in a subsidy situation of up to \$3,500. Could be more for roundtrip and with 2 stage

Other factors: EMI, Snubbers, metal, MOVs, Electrolytics!, ...

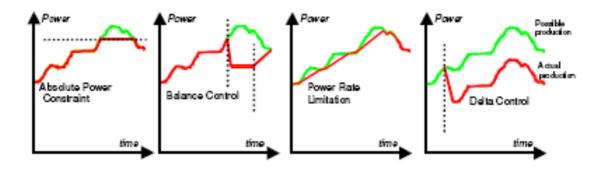

Medium Voltage Drives Today

ABB, NishiShiba, Siemens, ...

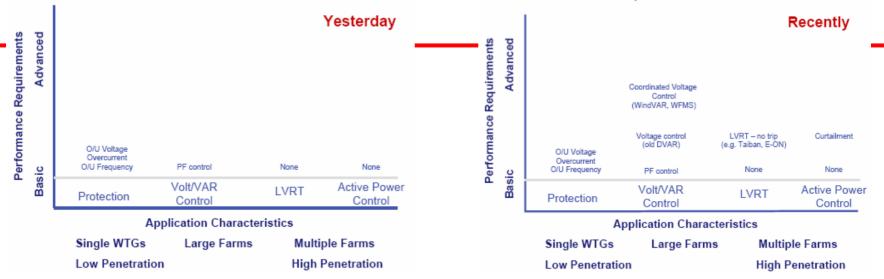

VSI-NPC Voltage Source Inverter Neutral-Point Clamped	VSI-MF Voltage Source Inverter Multilevel-Fuseless	VSI-NPC Voltage Source Inverter Neutral-Point Clamped	LCI Load Commutated Inverter
Pumps, fans, conveyors, extruders, mixers, compressors, grinding mills, suitable for retrofit of existing motors	Compressors, extruders, pumps, fans, grinding mils, conveyors, marine propulsion, bar and rod mils, blast furnance blowers, gas turbine starters	Pumps, fans, conveyors, extruders, compressors, grinding mills, marine propulsion, rolling mills, mine hoists	Compressors, pumps, fans, blast furnace blowers, pump storage plants
ACS 10001 ACS 1000	ACS 5000	ACS 6000	
੶৵© <mark>\$\$</mark>		∽┲ <mark>҈⋑┲┋╪┿</mark> ╋┲┈(M	
Air (A) / Water (W)	Air (A) / Water (W)	Water (W)	Air (A) / Water (W)
A: 315kW-2MW W: 1.8-5MW	A: 2-7 MW W: 5-24 MW	W: 3-27 MW	A: 2–31MW W: 7–72MW / higher on request
Diodes: 12/24-pulse rectifier	Diodes: 36-pulse rectifier	Diodes: 12/24-pulse rectifier (LSU) or IGCT: Active rectifier (ARU)	Thyristors: 6/12/24-pulse rectifier
IGCTs: 3-level VSI, sinuscidal output	IGCTs: 5-level VSI-MF, 9-level output waveform	IGCTs: 3-level VSI, 5-level output waveform	Thyristors: 6/12-pulse inverter
2.3/3.3/4.0/4.16 kV Optional: 6.0/6.6 kV with step-up transformer	6.0–6.9 kV Optional: 4.16 kV	3.0–3.3 kV Optional: 2.3 kV	2.1-10kV
66 Hz (optional 82.5 Hz)	75Hz (higher optional)	75Hz (Twin: 250Hz)	60Hz (optional 120Hz)
> 45Hz (max. 1:1.5)	> 30Hz (lower optional)	> 6.25Hz (max. 1:5)	Customized
			- The second sec
 Sinusoidal output Constant network power factor over whole speed range DTC (Direct Torque Control) Fuseless 	 Constant network power factor over whole speed range DTC (Direct Torque Control) Fuseless 	 Constant network power factor over whole speed range Optimized pulse pattern to minimize network harmonics (with IGCT) DTC (Direct Torque Control) Multi-motor drives with common DC bus Fuseless 	* Soft start of large synchronous motors and generators * Fuseless

Voltage, frequency, performance tradeoff

Fully Rated Inverter provides Many Possibilities



Increasing Penetration of Renewables

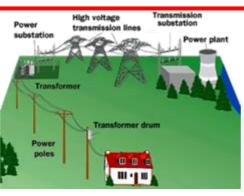

Denmark

- •14% of Electrical Energy
- •New Control Regs.

Grid Requirements Evolution

Grid Requirements Evolution

Grid Requirements Evolution


Near Future Zero-Power Active Anti-islanding, Performance Requirements Advanced Voltage LVRT with controlled Reserve Torsional, current injection Functions Control others Coordinated Voltage Zero VRT – no trip Frequency Anti-islanding Control (e.g. Quebec, Regulation (WindVAR, WFMS) Western Australia) Voltage contro LVRT - no trip Curtailment (old DVAR) (e.g. Taiban, E-ON) O/U Voltage Overcurrent Basic O/U Frequency PF control None None Volt/VAR Active Power LVRT Protection Control Control Application Characteristics Single WTGs Large Farms **Multiple Farms** Low Penetration **High Penetration**

Harmonization? Electronic Capability?

Power Distribution Options -- Battle

Thomas Edison and Joseph Swan

AC won (pre-electronics) •Transformer isolation •Impedance (V) transformation •Grounded Secondary (safety) •AC → DC, easy

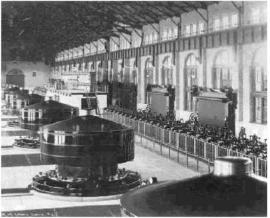
Pearl St, NY, 1882 Edison 85 Customers, 400 Lamps

Move it at HV

 $d = \sqrt{\frac{2\rho}{\omega\mu}}$ But •Skindepth • ϕ Imbalance •Reactive power •Peak to RMS

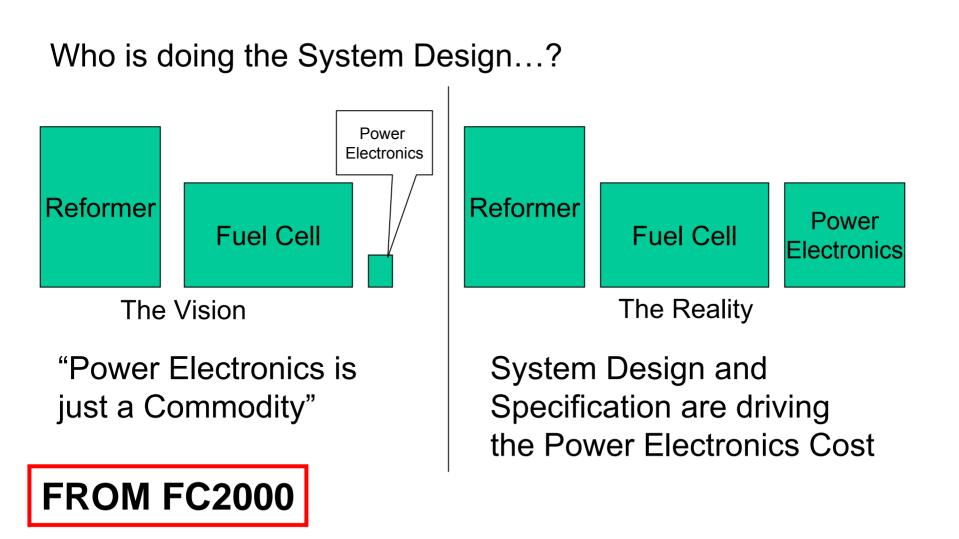
Edison was missing what? Loads Today?

Sources Today

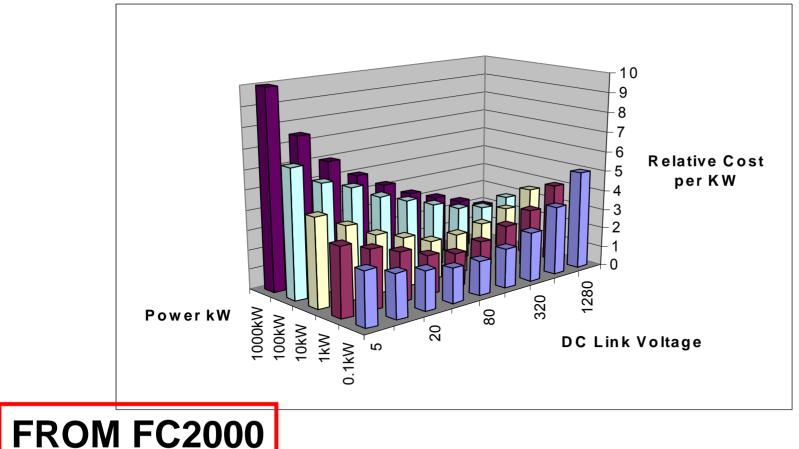

Storage?

d or δ, 60Hz Cu 8mm Al 10mm SiFe 0.1mm

Today, DC wins for T


DC Line AC Line

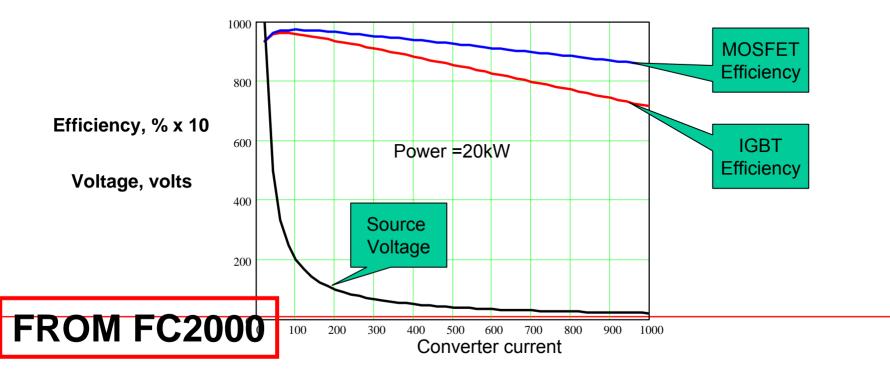
George Westinghouse and Nikola Tesla


Adams Hydroelectric Plant Niagara Falls 1895 Westinghouse, Tesla, Stanley

$FC \rightarrow dc/dc \rightarrow HVDC$?

Power Level and Circuit Topology define a balance of voltage and current that gives minimum cost

For a conceptual converter topology the curves might look like this:-



300V to 800V best for 10kW to 100kW power range, 800V and higher best for higher powers

Some general principles:-

Higher voltage semiconductor devices switch slower Conversion frequencies must be lower at high voltages

High efficiency is difficult to achieve economically when power is the product of low voltage and high current

"Power Quality" is multi-dimensional – some attributes are more important to some users

- Necessary to meet <u>load-specific</u> power quality:
 - Harmonic content
 - Transient performance
 - Frequency tolerance
 - Load Circuit Protection
- Stand alone systems may not be required to beat/meet all utility characteristics
 - Saves components
 - Simplifies design
 - Reduces overall cost of system
- Smart Load and Non Invasive Load Monitoring
 - Intelligent control in place of grid imitation

FROM FC2000

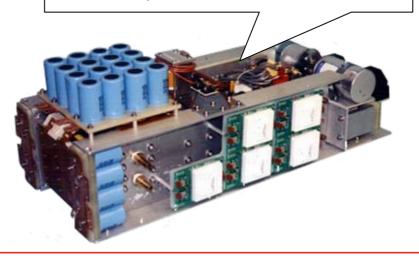
Don't judge distributed power electronics \$/kW costs based on motor drives

Motor drives are the most power dense and hence lowest \$/kW of all DC/DC and DC/AC power conversion equipment - they have the lowest passive component count.

Typical numbers for very high power density designs:

DC/DC or DC/AC Power Converter7kW/literDC/AC 3Φ Motor Drive28kW/liter

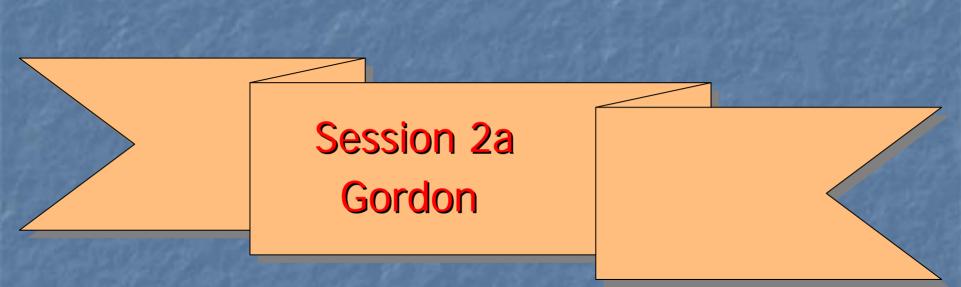
In high volume production cost follows power density (& weight) so that cost expectation for DC/DC & DC/AC Power Converters should be 3 to 4 times the \$/kW of motor drive converters.



Hardware confirms the power density ratio

100kW motor drive inverter 1.3 ft³, 56lb DC input 320V

> 15kW Fuel Cell Converter 1.5 ft³, 65lb DC input 48V/48V



Big Inverters

- \$200/kW?
- Extended Warranty?
- Performance?
- Research? -devices (SiC, GaN, Packaging, gate drives, control, passives,

overload capability

topology? Device dependent, say truly symmetric, bi-directional IGCT, 10kV+, building blocks, resonant transformers (isolation?), step-up to 25kV? CSI, ...

DOE High-Megawatt Converter Technology Workshop

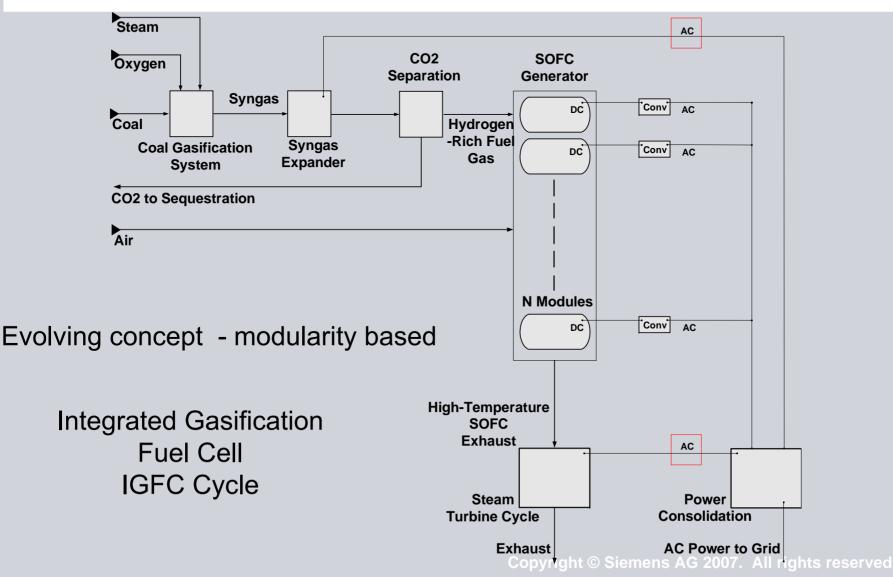
Tom Gordon, January 24, 2007

Copyright © Siemens AG 2007. All rights reserved Siemens PG/SFC DOE Integrated Coal Gasification Fuel Cell System with CO₂ Isolation

A Multi-Year, Multi-Phase Cost Shared Program

- Coal Syngas fueled, 100 MWe class fuel cell central station
- Efficiency > 50%, (based on HHV but excluding CO₂ Sequestration)
- 90% CO₂ Sequestration Potential
- \$400/kWe (power island)

DOE Integrated Coal Gasification Fuel Cell System with CO₂ Isolation


Early concept - modularity based

Copyright © Siemens AG 2007. All rights reserved Siemens PG/SFC

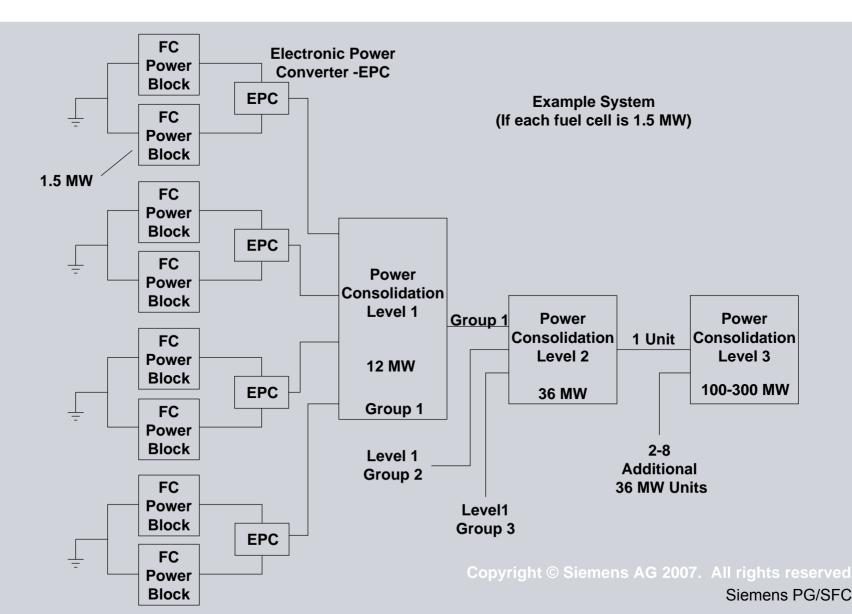
DOE Integrated Coal Gasification Fuel Cell System with CO₂ Isolation

Siemens PG/SFC

Direction – How To Realize High Power System

High power ratings will be accomplished with Multiple Modules
 of Fuel Cell Power Blocks Limitations include:

- Specific power (kWe/m³) ratings –transportation issues
- Avoidance of flow and thermal asymmetries
- Maximize current loading of the actual fuel cells –multiple modules foster this goal
- Fuel cell stack dielectric system limitations


Direction – Characteristics of Basic Fuel Cell Module

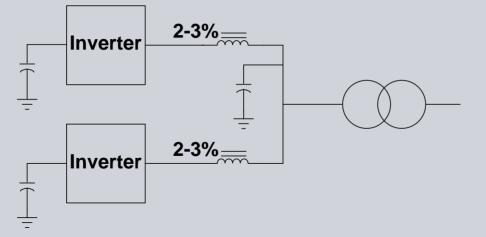
- Fuel cells are a soft voltage source –poor terminal voltage regulation under load
- Present SOFC's terminal voltage drop under fully loaded conditions may approach a ratio of nearly 2:1 vs. the maximum Vdc open circuit for the fuel cell
- SOFC modules for the IGFC system are expected to be in the range of 1000 Vdc open circuit and the 1000 ampere class
- Terminal voltage regulation improvements are anticipated but nevertheless this issue still must be accounted for ... along with transient excursions too

Direction – Requirements for PCS Topology

- PCS topology must aggregate power from many fuel cell modules
- Topology must support individual current loading of the fuel cell modules ... (or minimum groups)
- Topology should permit individual modules and electronics to be taken off line while the system continues to run ... (or minimum groups)
- The fuel cell modules would not be at tightly uniform DC voltages
- The PCS also must integrate AC power from generators used to recover exhaust heat energy
- An example system is presented in the next slide

System to Consolidate Fuel Cell Power

Elements Needed


- High power/ modular/ cost efficient/ loading control circuit building block (EPC-electronic power converter)
- Modular EPC for 0.7 to 2 MW fuel cell module
- Performance optimized and cost efficient power consolidation methods
- Power consolidation can be either DC based (capacitors) or AC based (transformers)
- Optimal inverter aggregation methods
- Practical and efficient transformer combinatory techniques

Some Issues Involved with Power Consolidation

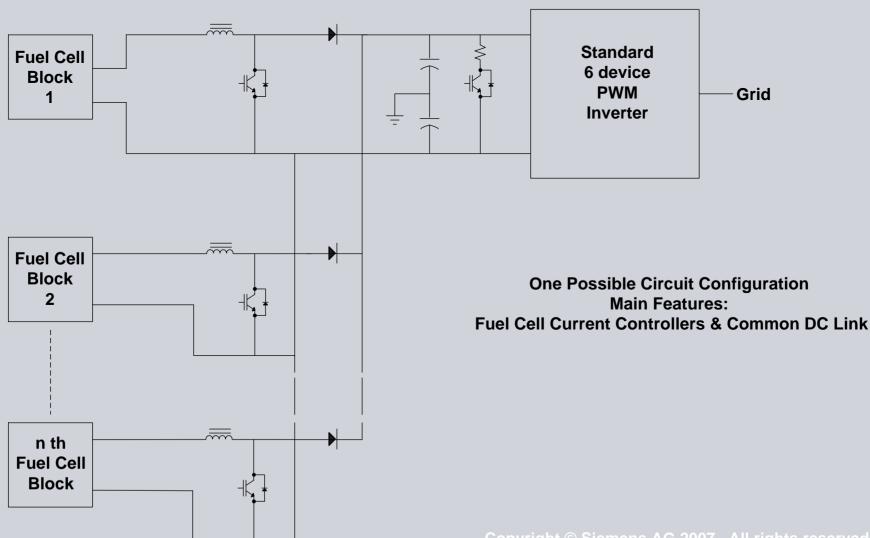
Issues Involved When Connecting Multiple Inverters from Separate DC LInks

If interconnection impedance ~5% then a 1% voltage error between any two inverters will give V/Z = 0.01/0.05 p.u. = 20% current flow

SIEMENS

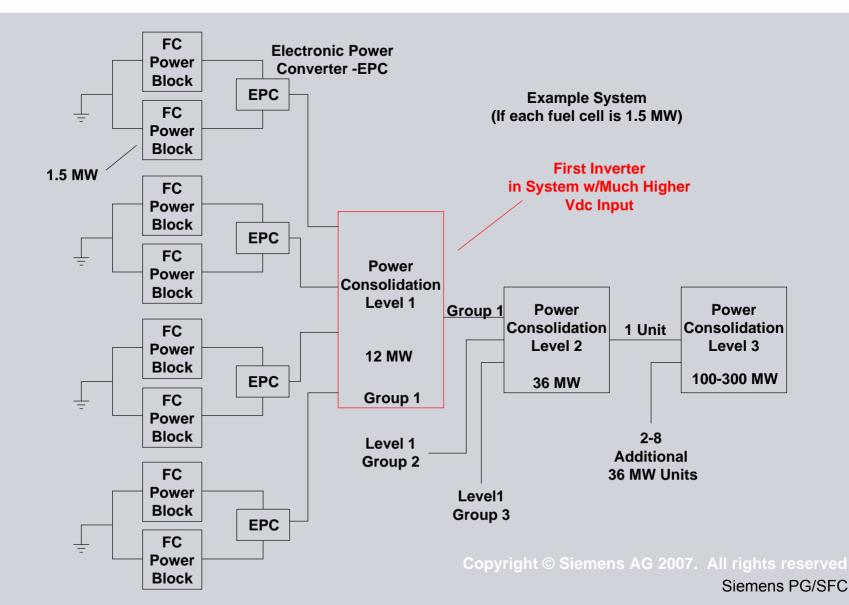
This corresponds to a 1% mismatch on the DC link or, a 0.6 degree phase reference error between the two inverter controllers

from Rolls-Royce Industrial Controls Presentation 18March99


Alternative Concept for Power Consolidation

_____ Standard SOFC 6 device **Fuel Cell PWM** Grid 1 MW Inverter ▶ GT ጲ **One Possible Circuit Configuration** Generator Main Features: Fuel Cell & Generator Current Control & Common DC Link GT & Generator

from Rolls-Royce Industrial Controls Presentation 18March99


Copyright © Siemens AG 2007. All rights reserved Siemens PG/SFC

Concept Extended to Multiple Fuel Cells

Copyright © Siemens AG 2007. All rights reserved Siemens PG/SFC

Consolidation Possibility based on Previous Concept

Power Consolidation - Review

- Previous concept not necessarily preferred ... it's an alternative with interesting advantages
- A disadvantage might be circuit protection at the lower stages since it would appear to be an all DC design (excepting a high frequency chopper transformer design approach to raise Vdc)
- With very limited samples we have seen chopper costs at about 1/8 total PCS costs when fully incorporated ... higher if standalone
- The final target power level also drives design choices as the next slides address

Voltage & Power Sensitivity Check

- from an EPRI study:

15 kV _{L-L} class circuit _peak load 4-6 MVA

25 kV _{L-L} class circuit _peak load 7-10 MVA

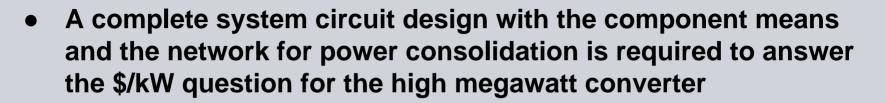
35 kV _{L-L} class circuit _peak load 10-16 MVA

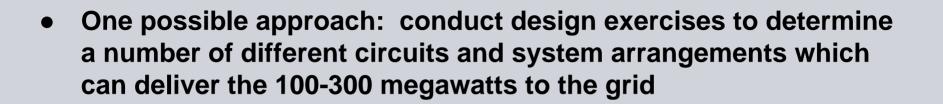
- Check Power Capability:

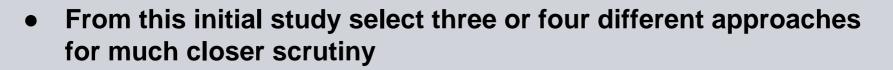
115 kV L-L @500A = 100 MVA

Voltage & Power Sensitivity Check and Other Possible Approaches

- Previous slide demonstrates high voltage systems are needed to deliver the power level of interest
- The same logic would apply to the converter system if enough power can be consolidated to supply higher level types of power converters
- Conclusion: Examination of PWM inverter systems is very appropriate but potential use of higher power multi-pulse stepped square wave inverters also should be considered

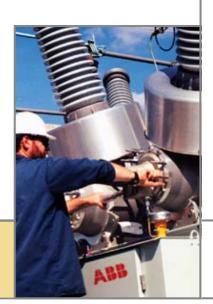

Voltage & Power Sensitivity Check and Other Possible Approaches


- Multi-pulse stepped square wave inverter systems switch at line frequency not kHz frequency and use GTO (gate turn off thyristor) switches not IGBT switches
- GTOs have much higher power handling capability ... cost advantages may exist by this approach
- Utility grade inverters use these devices and this method
- Applications include Static VAR Compensators (SVC), Flexible AC Transmission Systems (FACTS) and are built in the 100 – 500 MVA class


Modularity and Power Consolidation Review

- Both bottom up (load control) and top down (aggregate power rating & delivery) perspectives are needed for selection of a low cost high megawatt PCS topology and system design
- The load control building block at the fuel cell module level must be highly cost optimized since it will repeat many times
- Power consolidation strategies need to support the necessary modularity
- Converter \$/kW targets include and must be assessed on the complete network ... the complete consolidation network must be evaluated

 Once a complete system circuit design is made costing can be done and performance and cost tradeoffs for various elements can be evaluated

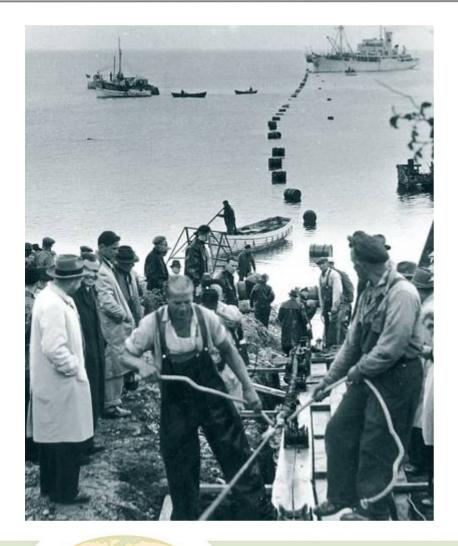

- Evaluate these on performance, availability, reliability, durability, redundancy strategies, cooling, fault tolerance, etc. ... both at the modular level and at the 300 MW grid level ... and which meet the various requirements for a modular design
- Gather costs (both existing & projected components) for the systems which meet the requirements and offer a durable and reliable design solution and then determine the \$/kW question for the electrical conversion system

Olof Heyman

Technology Manager ABB Grid Systems

Le Tang ABB US Corporate Research Raleigh, NC

Enhanced Power Reliability and Efficiency in new HVDC and FACTS development



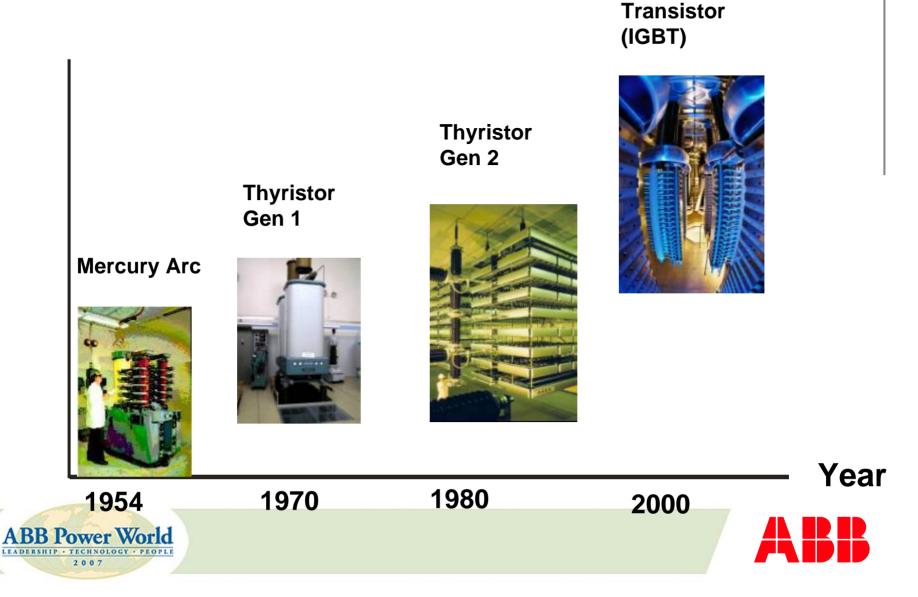
History and current HVDC & FACTS Technology

World's first HVDC transmission, Gotland Sweden

Rating: 100 kV 20 MW

Cable type: Mass-impregnated 1 x 90 mm² Cu

Length:


100 km

Year: 1954

HVDC & SVC development

HVDC Technologies

600 MW, 200x120x22 meters

350 MW, 120x50x11 meters

HVDC Classic, Thyristor Technology

- Switched Reactive Power Control
- Typical design: valve building plus switchyard
- Overhead lines for long distance bulk power
- Mass impregnated cables for sea
- Back to Back

HVDC Light^{®,} Voltage Source Technology

- Transistor (IGBT) controlled
- Continuous Reactive Power Control
- Dynamic voltage regulation
- Black start capability
- Typical design: all equipment (excluding transformers) in compact building
- Extruded cables suitable for undergrounding and sea

FACTS Technologies

Static Var Compensation (SVC)

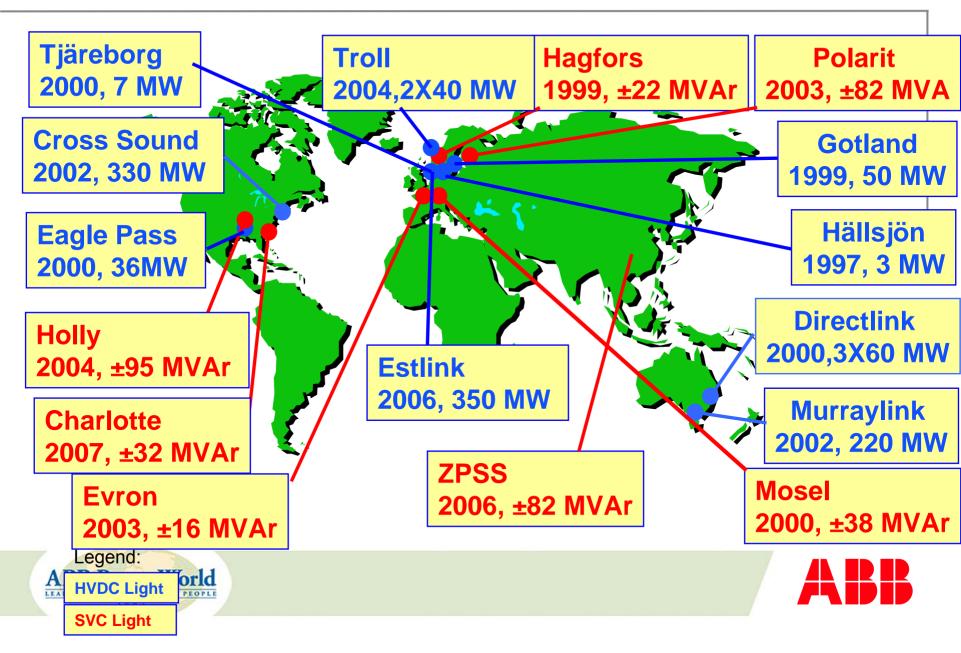
- Thyristor controlled
- Reactive Power Compensation
- Increase of transmission line capacity
- Steady state voltage regulation
- Transient voltage support
- Power oscillation damping

SVC Light (Statcom)

- Transistor (IGBT) controlled
- Flicker compensation
- Very fast response for load compensation

Series Compensation (SC)

- Increased transmission capacity
- Increased stability


HVDC and SVC, major building blocks

Classic	Light (Statcom)	
		Cable
	EFE EE	Semiconductor
		Control System

Projects based on HVDC/SVC Light® Technology

Next steps for Light Technology

Next step Light Concept

HVDC	E	EE	C C C C C C C C C C C C C C C C C C C	
DC Voltage	500 A	1000 A	1500 A	
+/- 80 kV	98 MW	194 MW	296 MW	
+-150 kV	185 MW	363 MW	555 MW	Delivered
+/- 320 kV	350 MW	700 MW	1100 MW	technology

SVC

				_
Voltage	500 A	1000 A	1500 A	
36 kV			+/- 100 MVar	
ABB Power LEADERSHIF • TECHNOL 2007				ABB

Technology

bles and Storage Integration

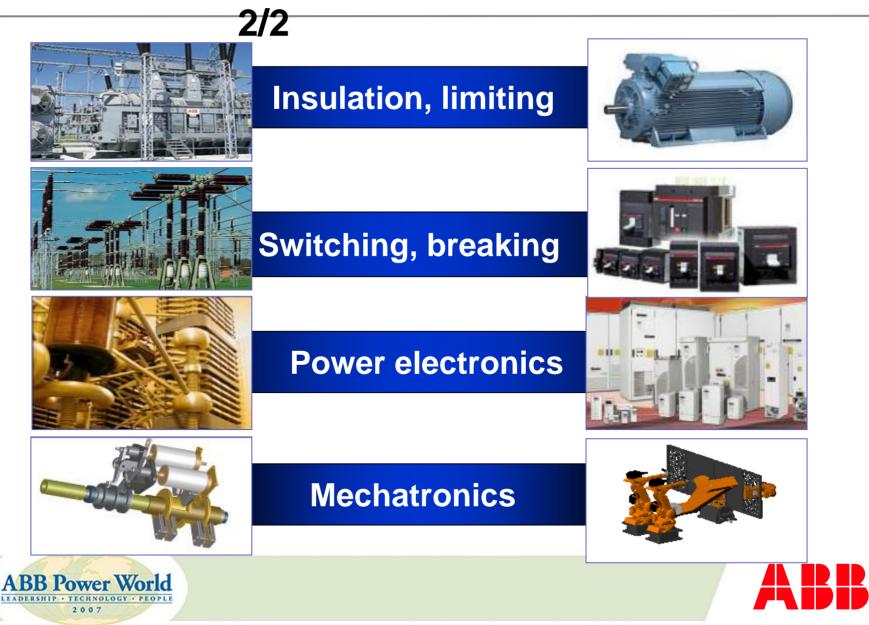
BB Power World

2007

Power electronics

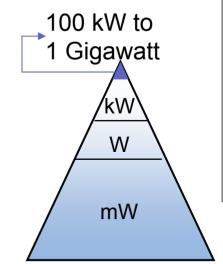
improve grid integration of

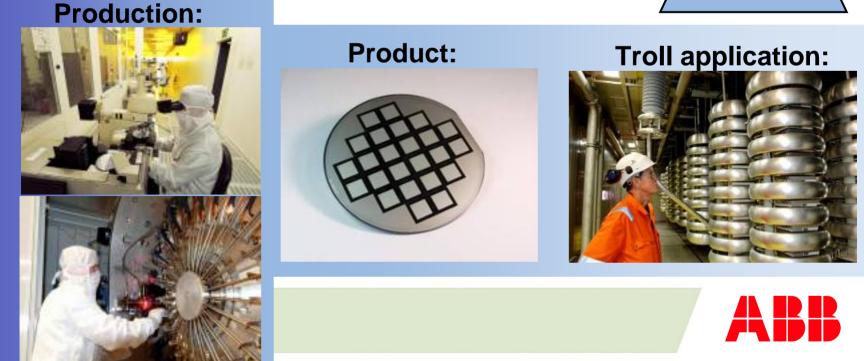
- Renewable generation
- Energy storage

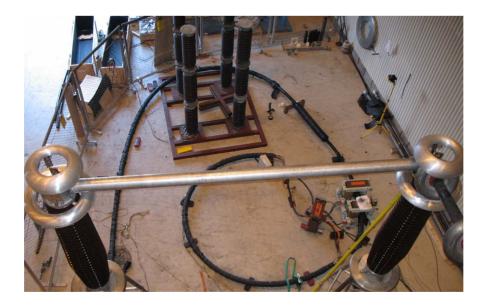

Example

- GVEA, Alaska, backup for transmission system loss, win time to start up local generation
- Battery energy storage system (with Saft NiCd batteries) to deliver 27 MW for

15 minutes (up to 46 MW)

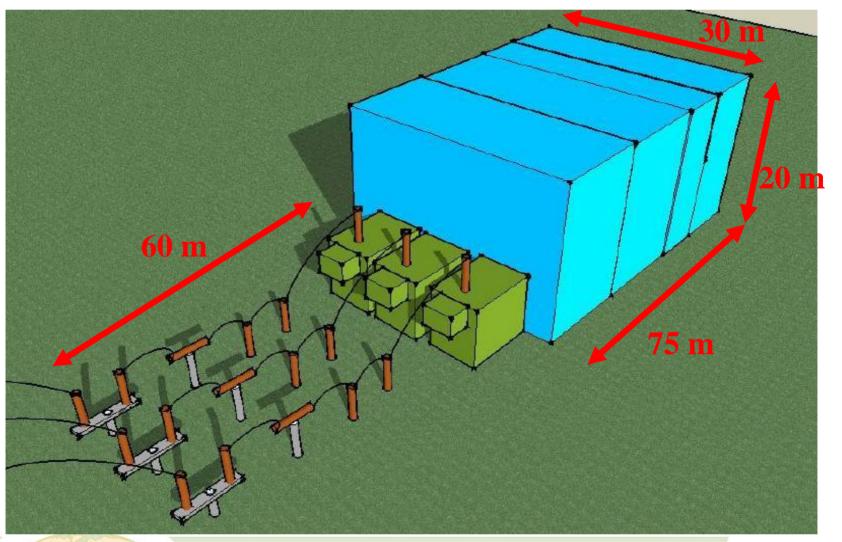

Avoids running backup generation units in costly idle mode


ABB Core Technology Areas


Core component: semiconductors

- ABB power semiconductor factory in Lenzburg, Switzerland
- Class 10 Cleanroom (500 times cleaner than a surgery room)
- Ensures highest reliability of system operations

Cable system development



- Voltage: $150 \rightarrow 320 \text{ [kV DC]}$
- Full type test, 30 days at 600 kV
- Completed Q4 2006

Layout for 320 kV, 350-1100 MW, Converter station

Reliability and efficiency for Light Technology

Proven offshore technology Troll A and Valhall

ABB Power World

2007

Customer's need

 Provide power to new compressors and at the same time minimize emission of CO₂ and the overall cost

ABB's response

 Turnkey 2x40 MW ±60 kV HVDC Light[®] offshore transmission system with high voltage Motorformer

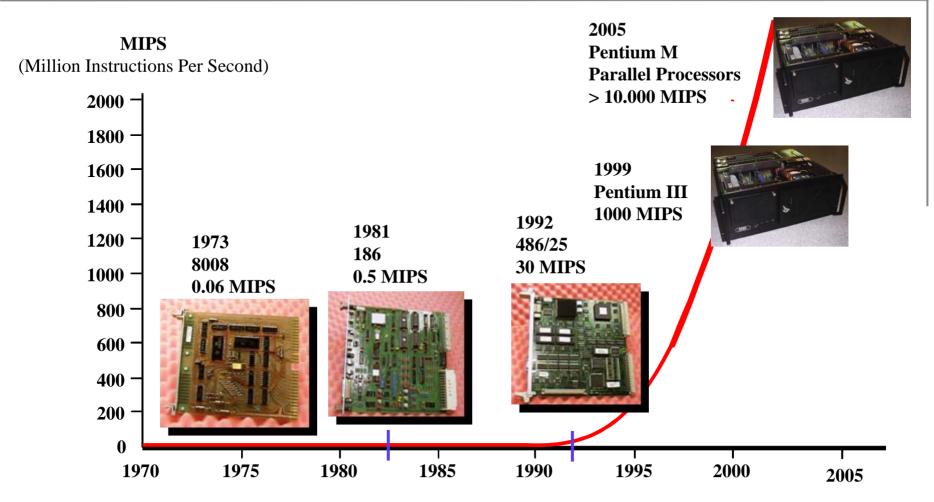
Customer's benefits

- Compact and low weight design reduces investments on platform
- Reliable power supply

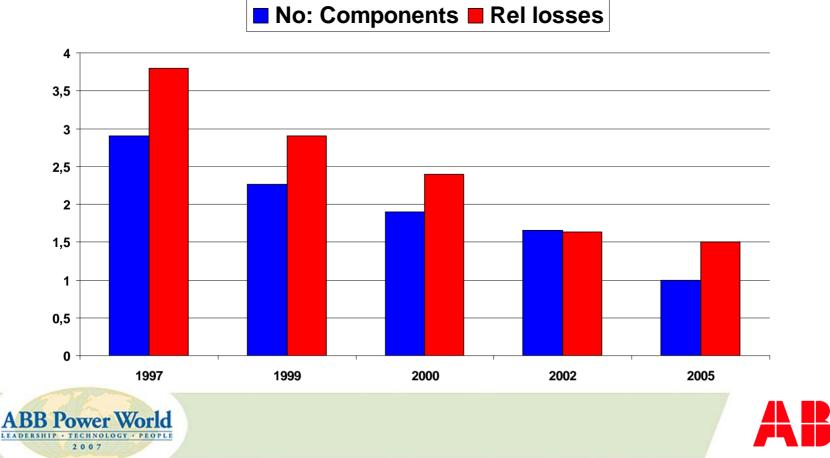
Offshore power supply, performance driver

- Increased reliability
 - Forced Outage Rate 5/year > 2/year > 1/year
- Increased availability
 - Maintenance intervals 1/year > 1/2years > 1/5years
- Reduced start-up time
 - Commissioning time month weeks days

Summary for Light reliability

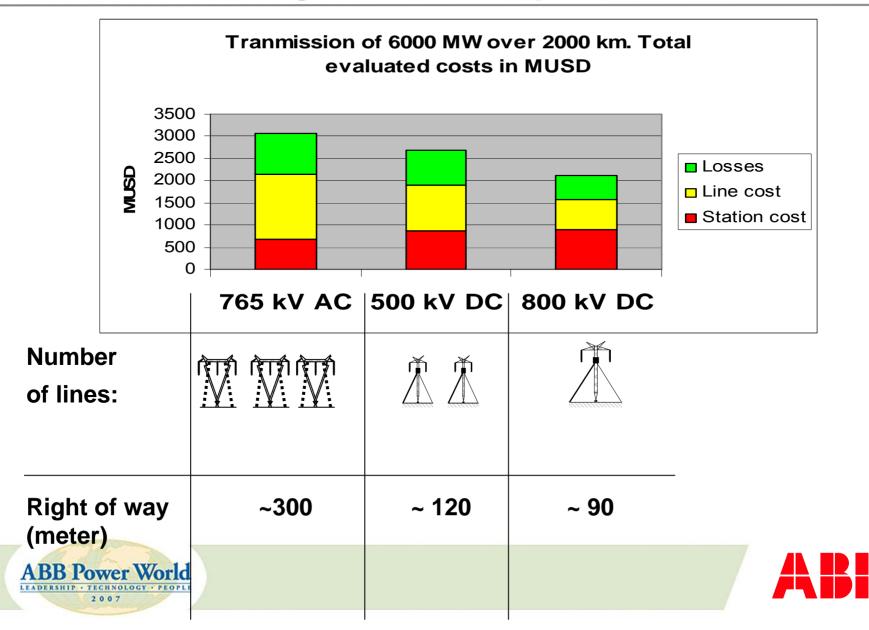

- Achievements so far in existing plants
 - Calculated number of outages / year have been reduced from 5 to ~ 2
 - Calculated availability has been increased from 96% to 98.5%
 - Further improvements are expected and have also been observed in existing plants
- "Best in class" existing plants
 - In Troll we have to date 4 converter years with zero outages and 100% availability. This is particularly extraordinary since this is achieved in the first year of operation.
 - In Cross Sound Cable we have 1 outage the last 12 calendar month (2 converter years) after completed implementation of improvement package.

Development computerized C&P


ABB Power World

IGBT/Control development HVDC Light®

- Number of components reduced 65% since 1997
- IGBT Voltage constant 2.5 kV
- Losses reduced 60% since 1997



800 kV DC for long distance bulk power transmission

800 kV DC for long distance bulk power transmission

800 kV Classic DC with OHL

Transmission capability:
 6400 – 9000 MW

Summery

HVDC&FACTS made for efficiency and reliability

- Efficient transmission
- Stabilizing networks
- Lower losses

- HVDC&FACTS new development adds to efficiency and reliability
 - Light Technology; a standardized way with high reliability
 - 800 kV DC; A new rating for higher efficiency

High-Megawatt Converter Technology Workshop

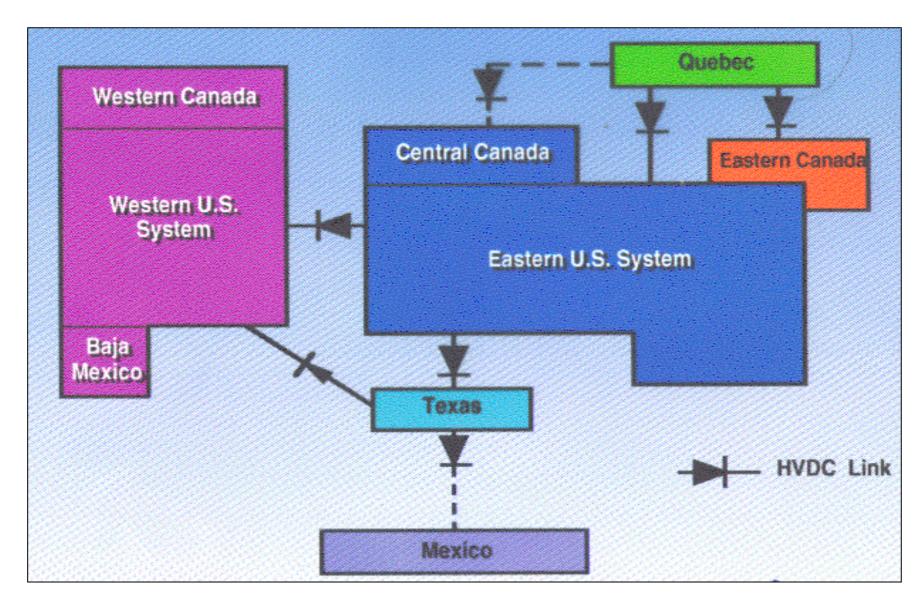
DOE Office of Clean Power Systems, U.S. Army Construction Engineering Research and Development Center (ERDC), and National Institute of Standards and Technology (NIST)

January 24, 2007, 8:00 AM -5:00 PM

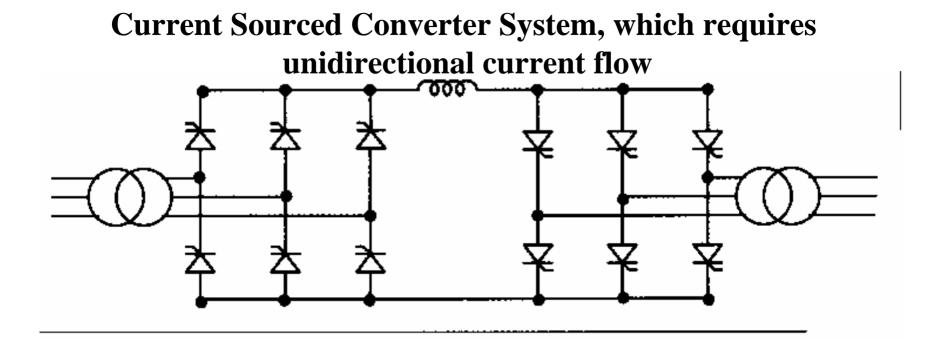
Nari Hingorani, 26480 Weston Drive, LOS ALTOS HILLS, CA 94022 nhingorani@aol.com

High MW Power Electronics - Areas of Applications

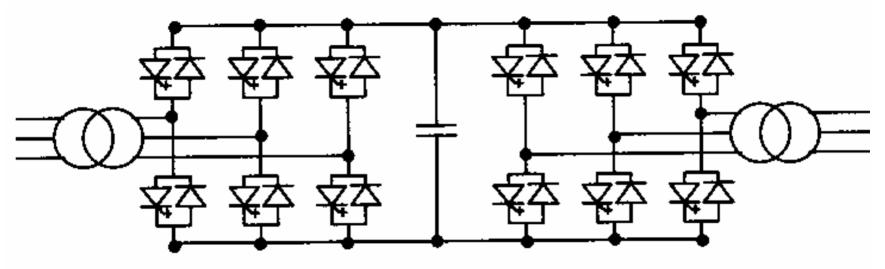
<u>Generation</u> Wind Farms Fuel Cell Variable Speed Hydro


Transmission HVDC Transmission FACTS

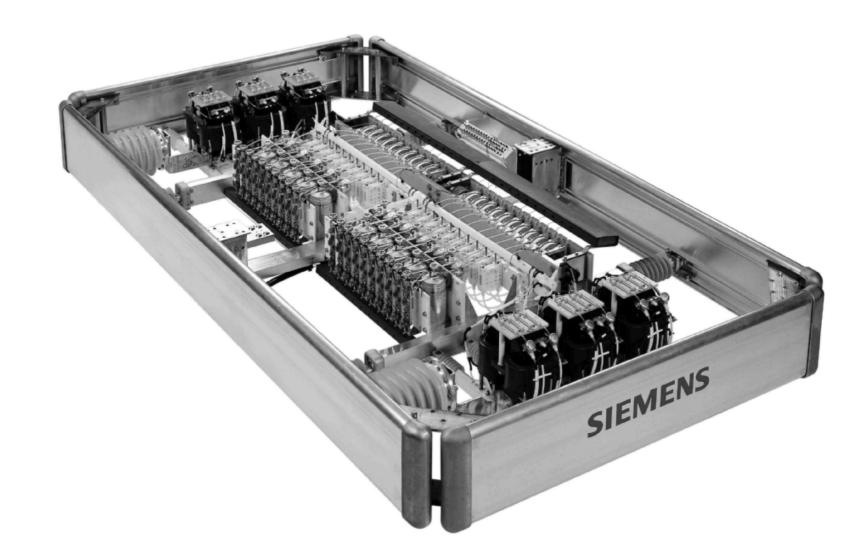
<u>Distribution</u> Custom Power **Storage**


Battery Flywheel Super Capacitor Superconducting-Magnet

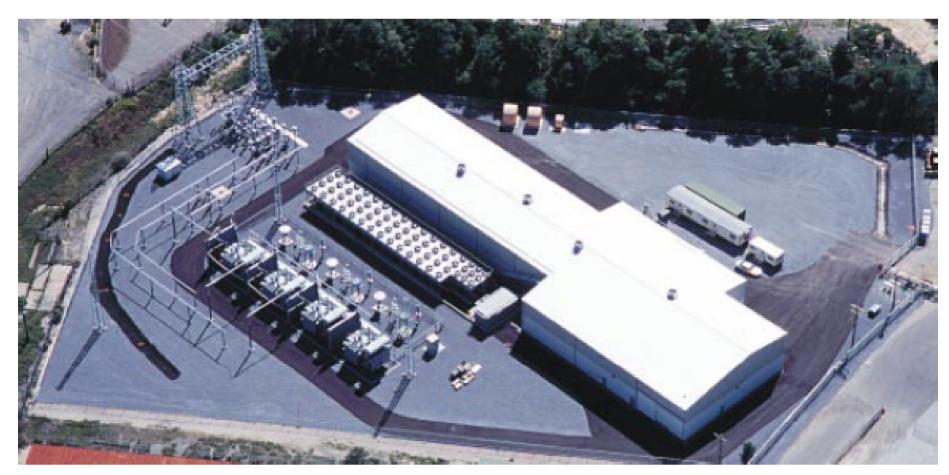
<u>Industrial</u> Variable Speed Drives Rail Transportation Ships


<u>Military</u> Ship Propulsion Aircraft Launch Weapons Bases

North America AC Power Systems and HVDC Interconnections HINGORANI



Voltage Sourced Converter System which requires unidirectional dc voltage



Suspended Thyristor Based Quadruple Valves making a 12-Pulse Converter rated 500kV (Pacific DC Intertie) (Siemens)

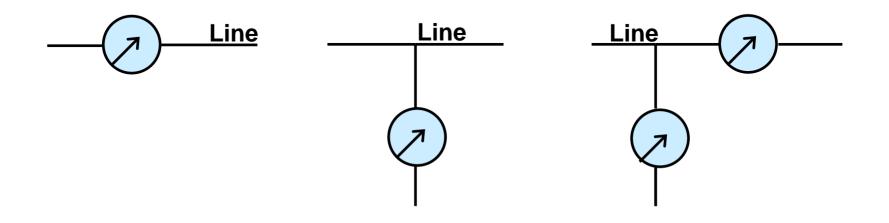
Building block for HVDC application including up-to thirty series Thyristor levels (Siemens).

Cross Sound Cable Interconnector Connecticut and Long Island, USA

Converter Station at Shoreham. 330MW. + -150kV. 80m x 25m x 11m (ABB)

ABB

<u>Constraints on Useable Transmission Capacity –</u> <u>FACTS</u>

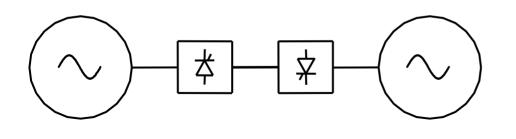

System Dynamics: Transient and Dynamic Stability Subsynchronous Oscillations Dynamic Overvoltages and Undervoltages Voltage Collapse Frequency Collapse

System Steady State: Uneven Power Flow Excess Reactive Power Flows

<u>Natural Limits</u> Insulation Voltage Capability Conductor Thermal Capability

Hingorani

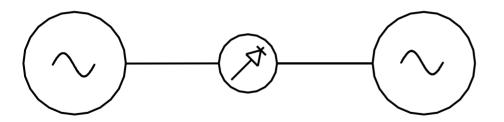
FACTS and Custom Power Concepts



• May be active static switch or impedance converter or a combination thereof.

• When in shunt, cause current injection into the line, and when in series, causes voltage injection in series with the line.

HINGORANI


HVDC and FACTS: Complementary Solutions

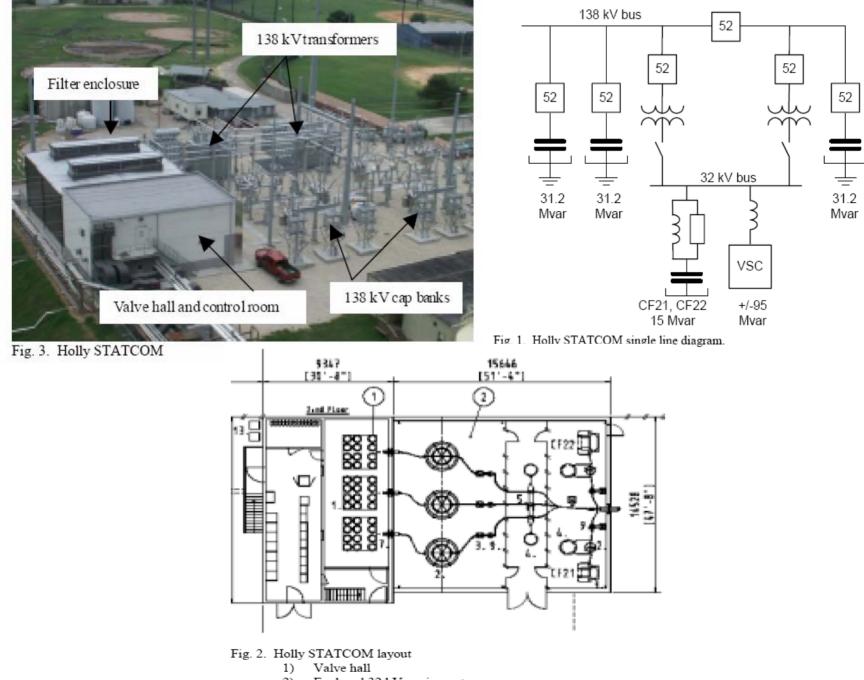
HVDC:

•Power control, voltage control, stability control

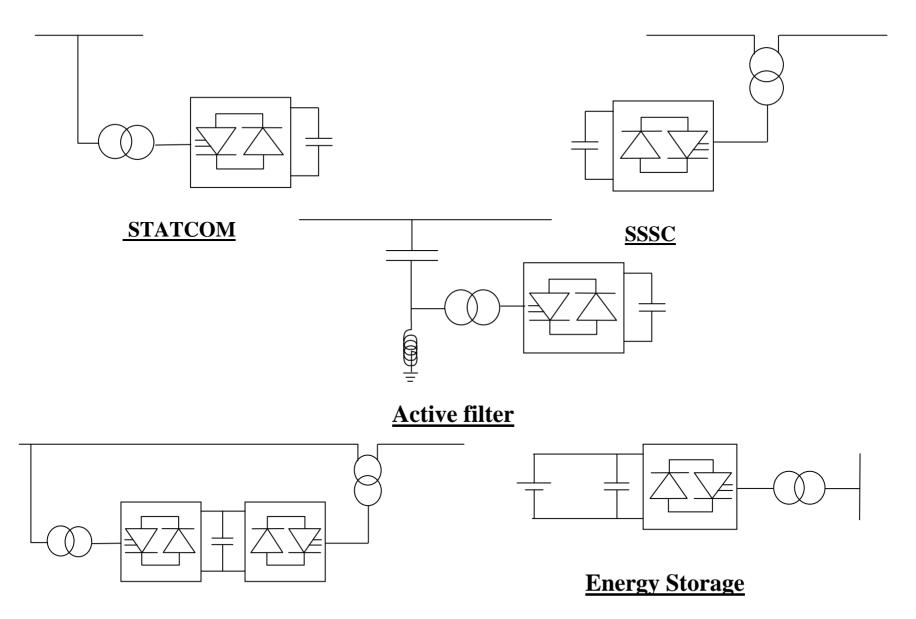
• Independent frequency and control

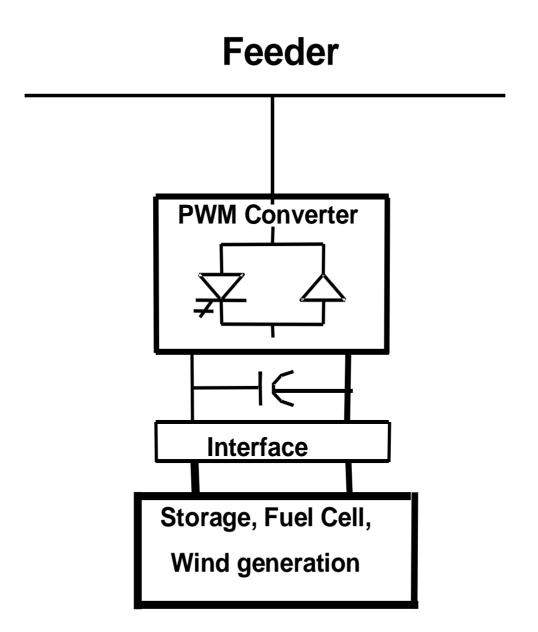
FACTS:

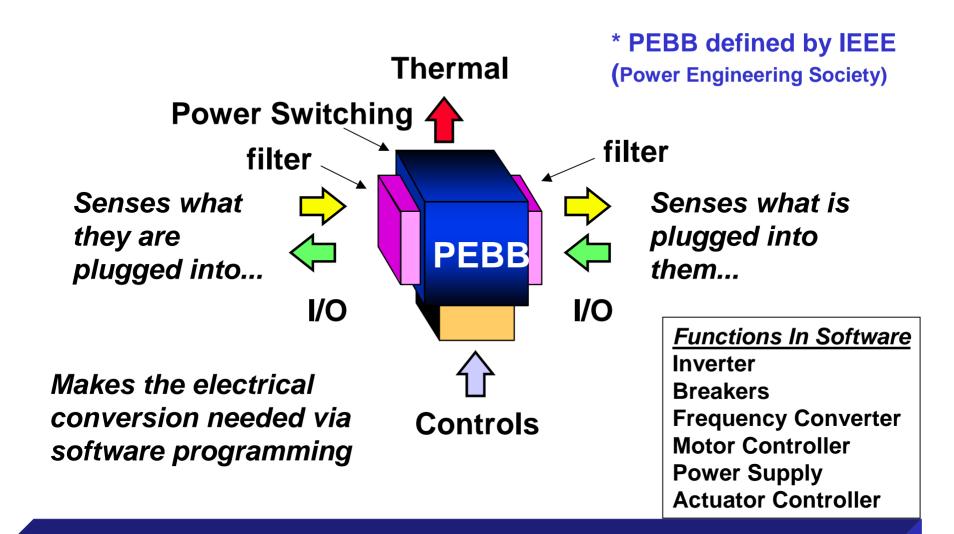
• Power control, voltage control, stability control


Installed Costs (million of dollars)

Throughput MW	HVDC 2 Terminals	FACTS
200 MW	\$M 40-50	\$M 5-10
500 MW	75-100	10-20
1000 MW	120-170	20-30
2000 MW	200-300	30-50


HINGORANI


Kayenta TCSC



2) Enclosed 32 kV equipment

<u>UPFC</u>

Like a child's set of blocks

Power Electronic Building Blocks PEBB

MV IGCT PEBB based Power Conditioning Systems

Chip Manufacturing Plant, DVRs (Dynamic Voltage Restorer) installed: 2 units, 22 MVA each

9MVA IGCT PEBB

Regenerative Fuel Cell (RFC), Power Quality for Columbus AFB Mississippi Delivery 2002, 15MVA

Frequency Changers (FC) DB Energie (Germany),11 units installed to date, 18 MVA each

with a leading power density in MV applications

BESS - Golden Valley Electric, World's Largest Battery Energy Storage System (BESS) installed at GVEA, Fairbanks, Alaska, 40MW / 60MVA

Future Power Electronics Needs

Significant Reduction in:

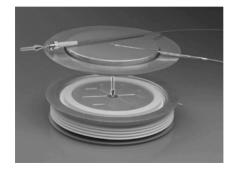
- Cost
- Losses
- Size
- Weight

Significant Improvement in Switching Frequency

A Perfect Power Semiconductor Switch

- Turn on and off instantaneously on command
- Zero switching losses
- Zero conduction losses
- Zero gate power requirements (accept digital signal for turn-on turn-off)

Need High-Voltage High-Power Building Blocks

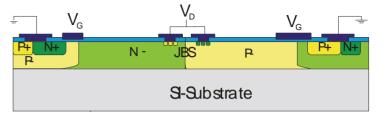

- Packaged Building Blocks with Functional Specifications
- Programmable to serve multiple applications
- Can be connected in series and parallel to achieve higher ratings

Conventional Thyristor

IGBT High Power Device

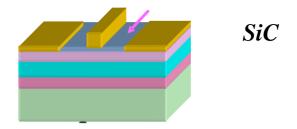
Direct Light Triggered Thyristor

Integrated Gate Commutated Thyristor


IGBT High Power Device

Press-Pack High Power Devices

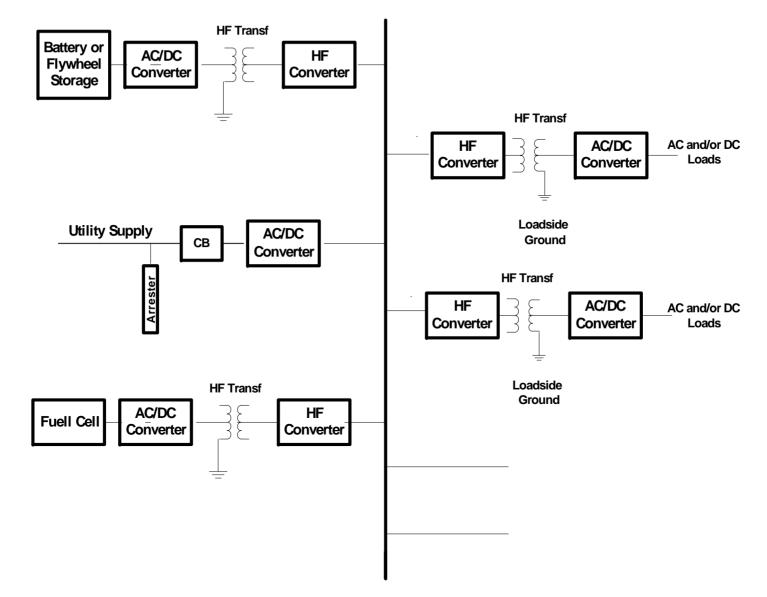
Advanced Power Devices


Reduce Losses and Raise Switching Frequency

Advanced Silicon Devices

Low Losses; Fast Switching; Low Thermal Resistance; Bidirectional; Integration of Passives

Wide Band Gap Devices
 Silicon Carbide


HVDC Transmission for Integration of Wind Generation Farms <u>in Transmission Grid</u>

- Obtaining Transmission ROW takes much longer than Building Wind Farms
- Underground DC Transmission with Voltage Sourced Converters could have
 - •Lower Cost
 - •Improved System Integration
 - •Much smaller Permit and Construction time

Narain G. Hingorani

Bipolar DC Bus

Proposed Conceptual Sub-transmission or Distribution System

Hingorani

POSSIBLE NEEDS AND APPLICATIONS OF POLYPHASE RESONANT CONVERTERS

by

W. A. Reass, D. M. Baca, and R. F. Gribble Los Alamos National Laboratory

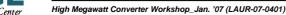
Jan 2007

Contact Information: William A. Reass; Phone: 505-665-1013, E-mail: <u>wreass@lanl.gov</u>

High voltage polyphase resonant converters are a relatively new technology that can generate 100's of kV from a low voltage input source (few kV). The technology is fault tolerant and a shorted load will not harm the load or the converter. Fault energies are typically less than 10 joules. With multi-phase converters (>3) a lost or failed phase does not inhibit system operation. In addition, for very high power systems, converter modules can be added (e.g. 10 each 10 MW converters for 100 MW) as needed depending on the system load demands. This talk will review the research and applications to date that have been performed by Los Alamos National Laboratory.

Outline

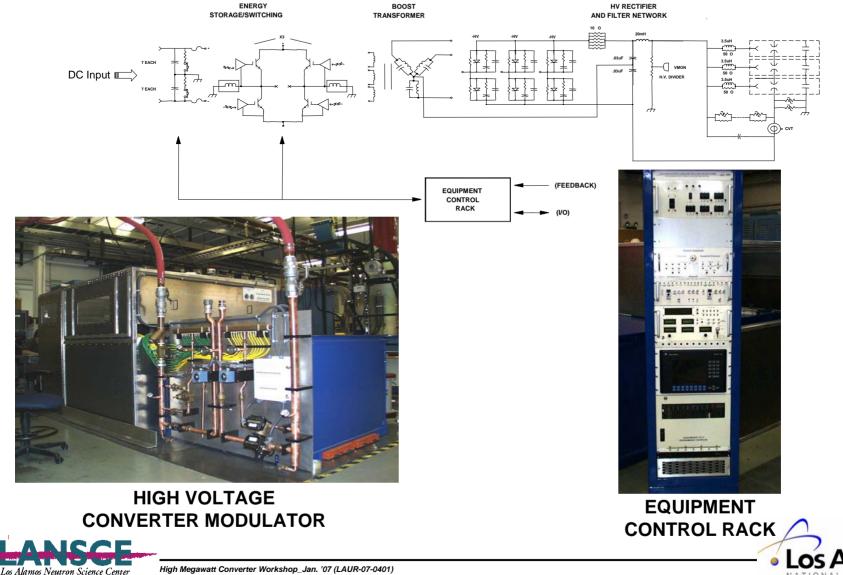
- Review of Polyphase Resonant Power Conditioning Technology
- Design Possibilities of Large "MW" Class Converter-Modulators
- Smaller, Higher Frequency MOSFET Converter-Modulators
- Conclusion



What is Polyphase Resonant Power Conditioning?

- New method to generate high voltages from low with very high power
- Essentially a large (polyphase and resonant) DC-DC Converter
 - At least 1/10 size, weight, and volume of any previous method
- Uses recently proven technologies
 - Traction Motor Metallized Hazy Polypropylene Self-Clearing Capacitors for energy storage
 - Multi-megawatt capable Insulated Gate Bipolar Transistors
- Transformer cores of Amorphous Nanocrystalline Alloy
 - 1,000 times more efficient than steel
 - 1/300 core volume and weight for same power as 60Hz steel
- Polyphase resonant voltage multiplication to further minimize transformer volume and weight
- Easily scaleable to 10's of MW and 100's of kV
 - Easily optimized for various use (and lower power/voltage)
- Design is fault tolerant and inherently self-protective
 - Protect systems not necessary
 - Permits long cable lengths and remote location

Alamos Neutron Science

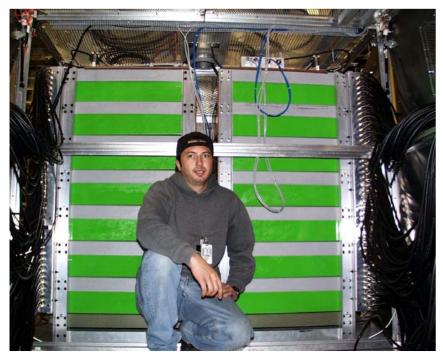

Polyphase Resonant Power Conditioning Uses LANL/LANL Funded Technology Developments

- Low Inductance Self-Healing Capacitors – Thomson Passive Components (AVX), France
- Low Inductance High Power Capacitors – General Atomics Energy Products, San Diego, Ca.
- Amorphous Nanocrystalline Core Material
 MK Magnetics (Stangenes), Adelanto, Ca.
- New Engineering Techniques
 - Polyphase Resonant Voltage Multiplication
 - Resonant Rectification
 - Self DeQing (No crowbars and self protective)
 - Snubberless IGBT Switching

Simplified Block Diagram of Polyphase Resonant Converter Modulator (10 MW Long Pulse)

Los Alamos High Frequency "Polyphase Resonant Power Conditioning" Compared To Conventional 60Hz Technology Is Significantly Smaller

10 Megawatt Pulse, 20 KHz, 140 kV Polyphase Resonant Converter-Modulator



- Developed for Oak Ridge SNS Accelerator
- All components operate at 10 MW level
- Can be optimized for 10 MW CW
- Can be optimized for 30 MW Long Pulse
- Resonant conversion is fault tolerant
- Small and compact
- Reliable components
- Can operate with kilometer cable lengths
- No protection networks needed

Los Alamos Low Voltage Energy Storage Compared To Conventional High Voltage Method Is Very Compact And Reliable

- 300,000 hour lifetime
- Graceful degradation
- High frequency design, variable rep-rate capabilities
- Extremely high volumetric efficiency
- High safety factor

Self-Healing Metallized Hazy Polypropylene

- Limited lifetime
- Explosive failure modes
- Highly frequency dependant and lossy
- Large footprint
- Poor safety factors and dangerous
- Crow Bar required

Nanocrystalline High Frequency Transformers Are Over 150 Times Lighter And Significantly Smaller

Typical H.V. Transformer

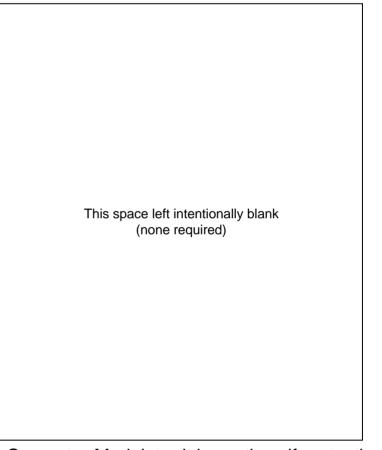
- 100 kV, 60 Hz
- 20 Amp RMS
- 2 MW Average
- <u>35 Tons</u>
- ~30 KW Loss

HVCM Transformer

- 140 kV, 20 KHz
- 20 Amp RMS
- 1 MW Average (3) present use
- <u>450 LBS for 3</u>
- 3 KW Loss At 2 MW

Load Protection Networks Not Needed For Los Alamos Technology

Typical H.V. Crowbar Protect Network

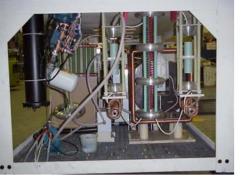


- Large
- Reliability concerns
- Maintenance concerns

High Megawatt Converter Workshop_Jan. '07 (LAUR-07-0401)

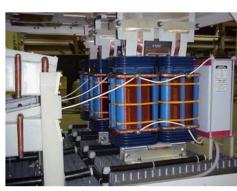
Resonant Converter Protect Network

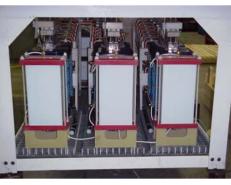
- Converter-Modulator inherently self protective
- Automatic fault "ride-through"
- Safe for all components


Tank Basket Assembly; 1 MW Average, 10 MW Long Pulse

Filter Network

Tank Basket Assembly


Output Sockets <u>&</u> Varistor Assembly


Oil Pump & Voltage Divider

Diode Rectifiers

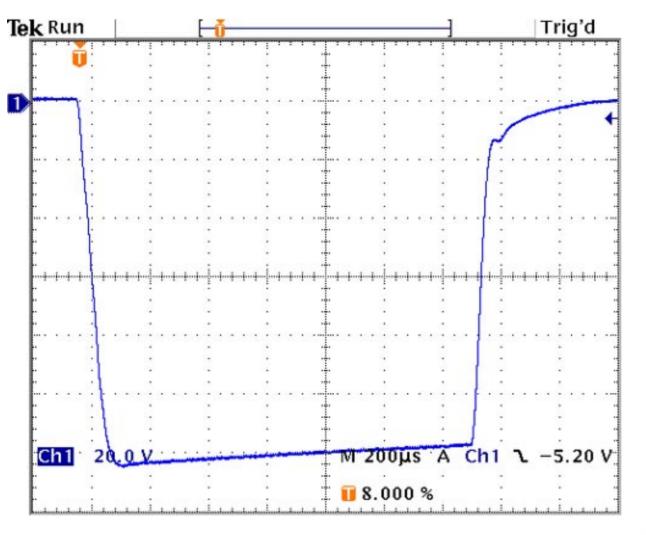
Transformers

Transformer Resonating Capacitors

IGBT Switch Plate Assembly; 1 MW Average, 10 MW Long Pulse

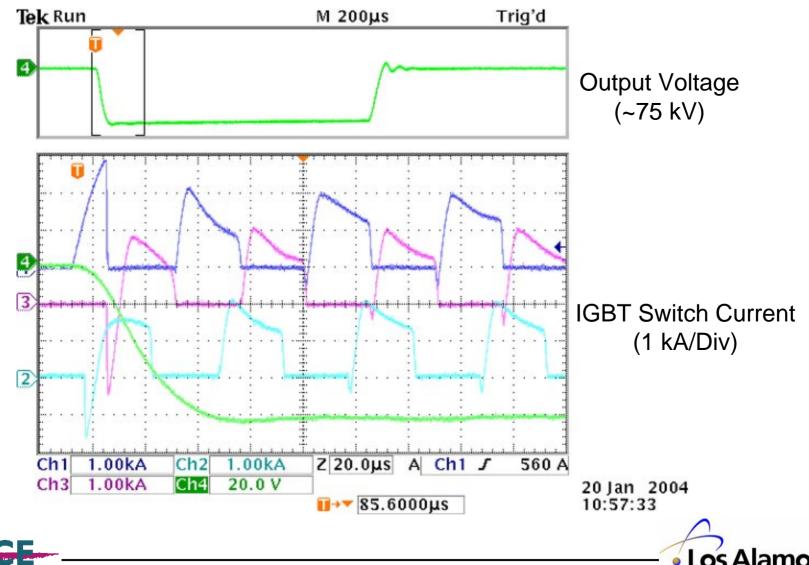

• Already operates at 10 MW switching level

Views of Installed Converters at Oak Ridge


SCL-ME1 with 12 pack

• Los Alamos

DTL-ME3 with Klystrons "The Workhorse"

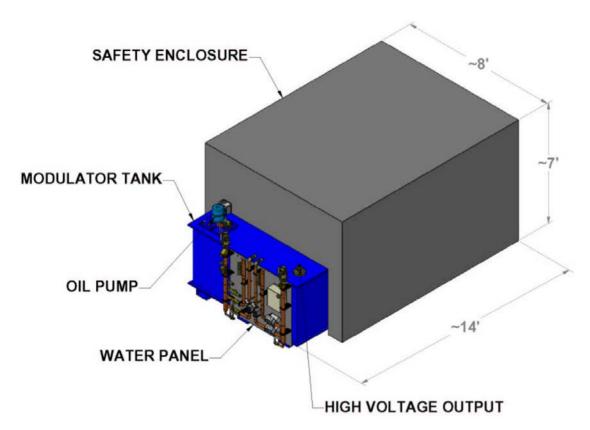

125 kV, 10 MW Pulse for 402 MHz Klystrons

12 Klystron, 75 kV Operation (9.25 MW)

High Megawatt Converter Workshop_Jan. '07 (LAUR-07-0401)

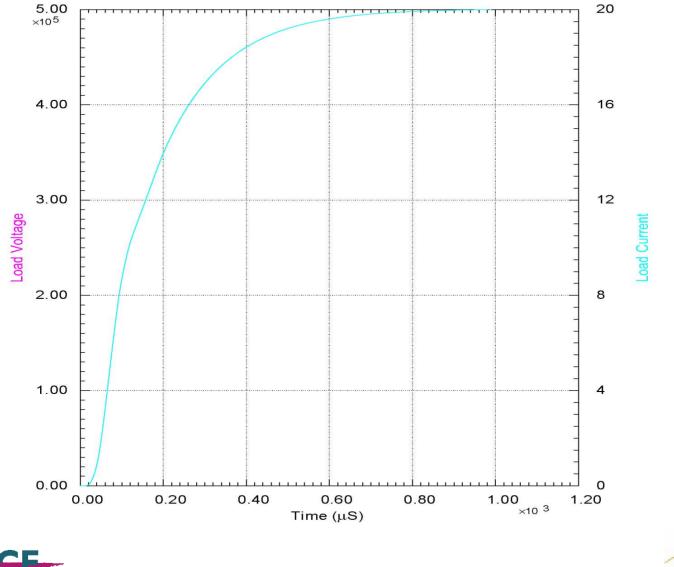
Los Alamos Neutron Science Center

Capabilities of Polyphase Resonant Conditioning

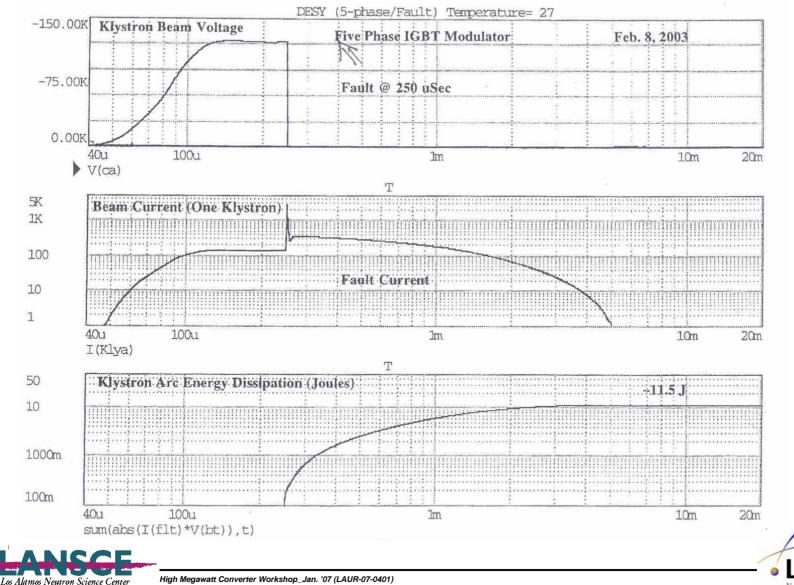

- IGBT Long pulse systems demonstrated
 - 140 kV, 1 MW Average (10 MW Long-Pulse)
 - Efficiency ~94%
- IGBT CW systems to 10 MW realizable
 - Efficiency ~97% possible
 - Similar footprint to SNS system
 - Does not require increase in component current or voltage ratings
- Medium pulse MOSFET (10 100uS) to 2.5 MW, 250 KW Average
 - 50 kV, 50 Amp, 250 KW Average
 - Small and compact
 - Agile in voltage, pulse width, and rep-rate
- Semiconductors Still Limiting Technology at These Power Levels

View Of a Proposed 30 MW Pentaphase Converter-Modulator System (Pulsed)

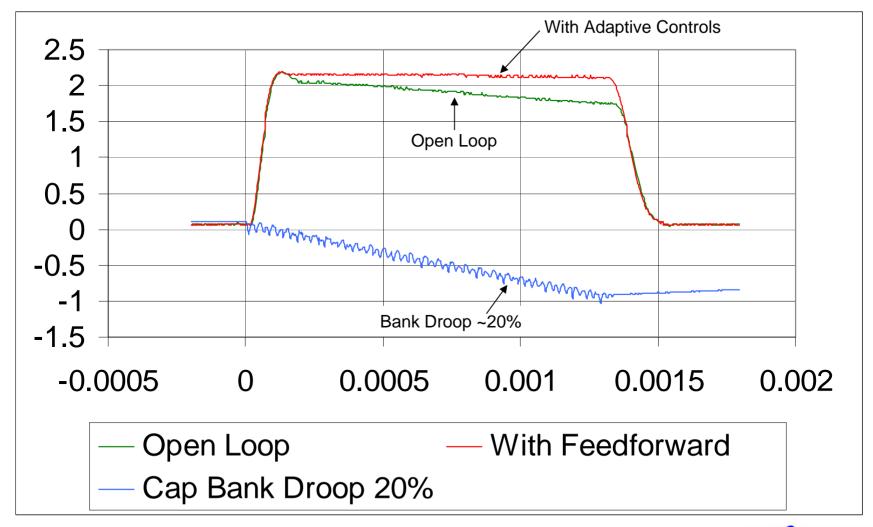
Size: 7' X 8' X 14'



- Fault tolerant, automatic fault "ride-through"
- Can operate with long output cables (over 1 kilometer)
- Cannot harm load or self
- Multiple units operate from common DC bus
- Different Optimization for CW
- Present Designs Limited by Switching Devices

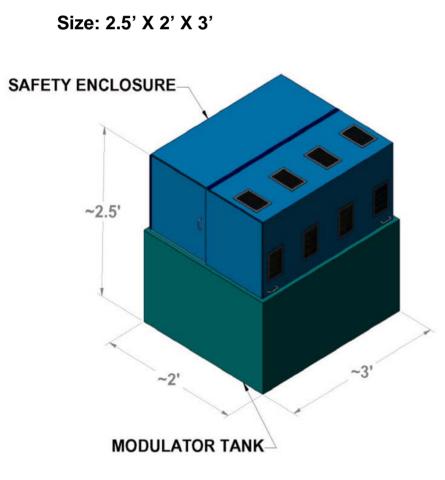


500 kV Converter Rise Time Detail



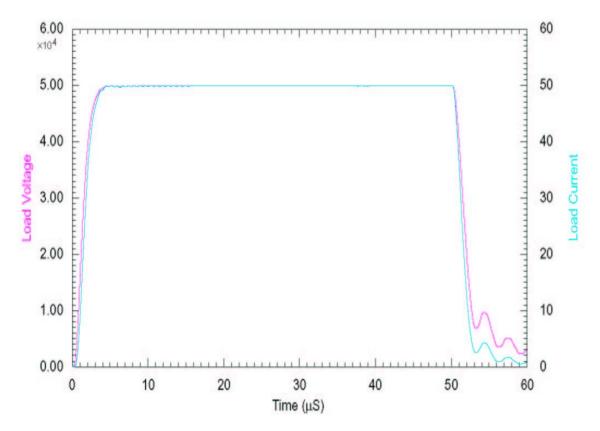
LANSCE Los Alamos Neutron Science Center

Klystron Fault Energy – 1KM Of Cable (125 kV)



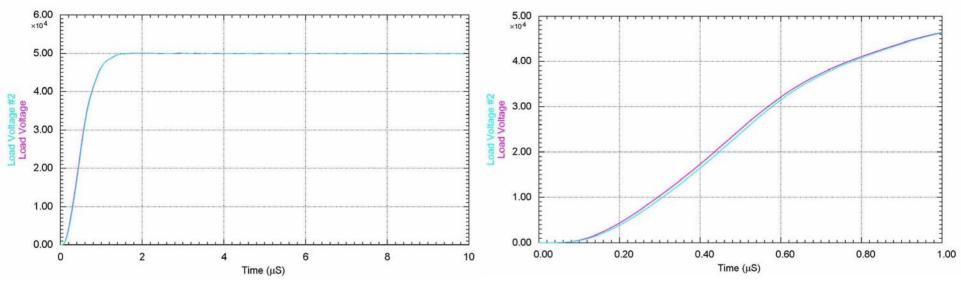
Novel Adaptive Feedforward/Feedback For Converter Control

View of 2.5 MW Pulse, 250 KW Average, MOSFET Converter-Modulator



- Design Based On Available Components And MOSFET Switches
- Higher Frequency And Smaller
- Can Be Optimized For Mobile/Airborne Applications
 - Typical Uses May Be Search Radar, DE, And Medical Applications
- Pulse Width/Rep-rate/Voltage Agile
- "CW" Designs Also Possible

Model Output Of Medium Pulse Converter



- Rectified 480V 3Ø Input
- 50 kV Output
- 50 Amp Output
- Tr, Tf ~ 800nS
 - ~ 94% Efficiency
 - Other Optimizations
 Possible
- Pulse Width And Voltage Agile
- Multi KHz Rep-Rate

Los Alamos Neutron Science Center

Soft Failure Mechanism 12 Pulse / 10 Pulse

10 & 12 Pulse Output Voltages "Overlay" (2 failed switching assemblies) Slight Change In Rise Time For 10 Pulse vs. 12 Pulse Operation (no significant difference)

Possible Applications Of Fault Tolerant Polyphase Resonant Converters

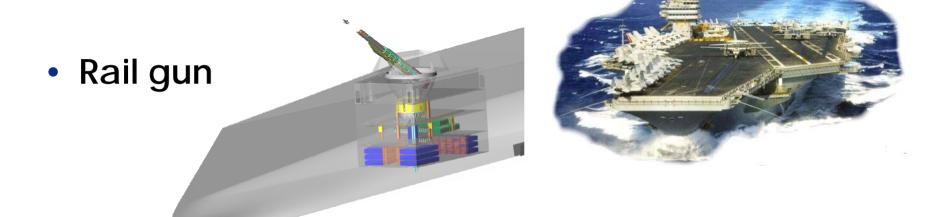
- Motor Drives
 - At Remote Locations
- Radar Modulators
- Power Distribution Networks
- Directed Energy, Area Denial Systems
- High Power Transducers/Drivers
- Electronic Pulse Generators
- Power Converters/Chargers For Pulse Power Application

Conclusion

Alamos Neutron Science Cente

- Los Alamos Developed Polyphase Resonant Power Conditioning Design Topology Techniques Now Proven
- Semiconductors Limiting Elements in Present Designs
- Designs Can Be Optimized For Any Load Or Pulse Requirement
- Efficient Adaptive Feedback Control Methods Now Possible
- Inherently Self And Load Protective
- Significant Change In High Power, Power Conditioning Topology
- Ideal For Many Military, Medical, Broadcast, And Scientific Applications
- Systems Installed At LANL, ORNL, And SLAC

High-Megawatt Converter Technology Workshop


High-Voltage, High-Megawatt Power Requirements at GA

Dr Geoff Staines General Atomics – Electronic Systems Inc 24 Jan, 2007

Selected GA Power Conversion Projects

Electromagnetic Aircraft Launch System (EMALS)

Electric ship integrated power system

EMALS Concept

- IGBT-based inverters
- 150 MW over 2-3 seconds

EMALS Inverter Issues

- Power density
- Switch power and voltage capability
- Pulsed operation/thermal management
 - Present devices designed for continuous operation
 - Internal connections and thermal designs should permit full utilization of the material in the device under pulsed operation

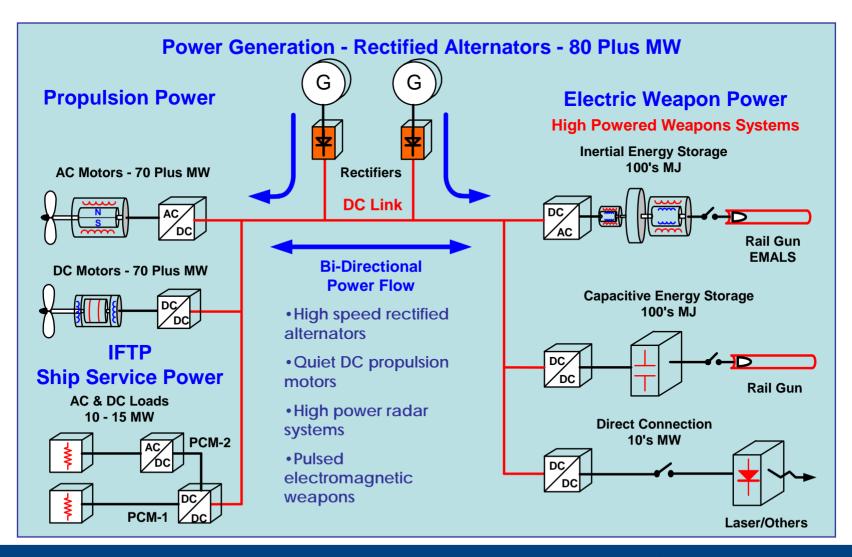
Cost

 Advantages of lower weight and volume of an advanced switch needs to be accompanied by a reduced cost per kW

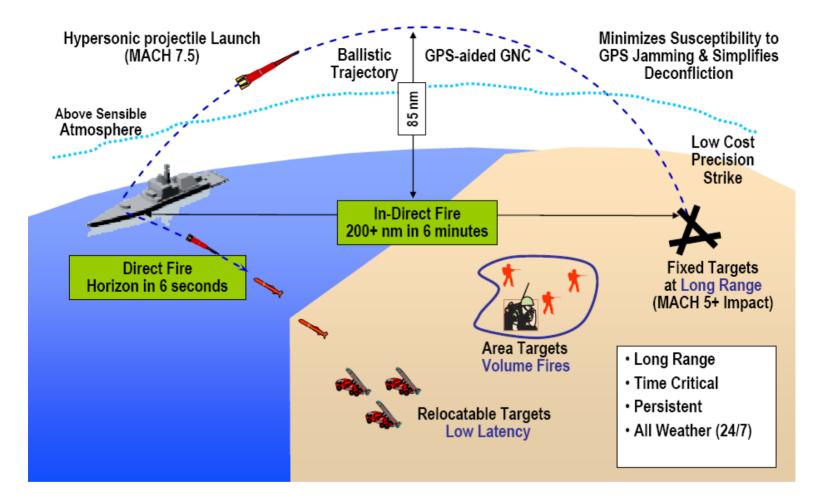
PARAMETER	Where We Are	Where We Want to Be	
Voltage	3300 V	5000 – 6000 V	
Current	1500 A	2000 – 3000 A	
Repetitive Peak Current	2400 A	4800 A	
Forward Voltage Drop	2.5 V	2.0 V	
Turn On Time	0.2 μs	0.02 μs	
Turn Off Time	0.8 µs	0.08 µs	
Switching Frequency	15-20 kHz	20 kHz	
Thermal Resistance (junc-case)	0.0085 K/W	0.0042 K/W	
Thermal Resistance (case-sink)	0.004 K/W	0.002 K/W	

Integrated Power System (IPS) Electric Propulsion and Ship Service Power

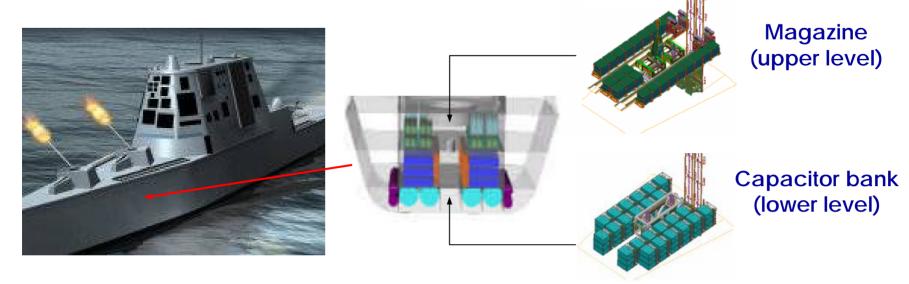
 The first surface combatant using IPS is DDG 1000 with two propulsion motors rated at 37 MW and ship service loads > 12 MW


DDG 1000

- This is a major first step for IPS, but what are the next steps to meet the future IPS needs?
- Spiral insertion of new mission systems such as pulse energy weapons will increase the electric load demands even further



Flexible Power Generation, Distribution and Management


Rail Gun Mission

Rail Gun Power Requirements

- Current source to charge 200 MJ caps to 11 kV
- Max 10 shots per minute → 35 MJ/s average
- Prime power from two 35 MW MT-30 turbines
- Require high power density (> 2 MW/m³) to fit in available shipboard volume

Charging of msec-Pulse EM Weapon Systems

- Repetitive operation requires MW-class charger
- Largest part of rail gun system is cap bank
- 2 J/cc available for charging times < 20 sec
- Fast charging minimizes capacitor volume, even for single-shot operation
- Energy density of established capacitor films is saturated – look for reductions in rest of system
- Charging supply is next largest sub-system
- High power density MW-class chargers fundamental to practical pulsed EM weapons

High Megawatt Fuel Cell Power Converter Technology Impacts Study

(NIST/DOE Interagency Agreement)

Allen Hefner NIST

The Semiconductor Electronics Division

Outline

I. Introduction

II. Analysis of new technology impacts

III. PCS approaches being considered

- A. Low Voltage Inverters
- **B. Medium Voltage Inverters**
- **C. High Power Architectures**
- **IV. Inputs from High-MW community**

I. Introduction

Objective: Perform Independent Analysis (non commercial bias) of technologies that may reduce cost of Power Conditioning System (PCS) for future Fuel Cell Power Plants

Motivation:

- DoE SECA cost goals:
 - FC generator plant \$400/kw
 - including \$40-100/kW for power converter
- Today's FCE cost:
 - FC generator plant \$3,000/kW
 - including \$260/kW for power converter (to 18 kVAC)

Outline

I. Introduction

II. Analysis of new technology impacts

III. PCS approaches being considered

- A. Low Voltage Inverters
- **B. Medium Voltage Inverters**
- **C. High Power Architectures**
- **IV. Inputs from High-MW community**

II. Analysis of Technology Impacts

- Methodology for impact study:
 - Classify power converter architectures and component technologies that may reduce cost
 - Perform tabular calculations of cost for each option using estimated advantages of new technologies
 - Use component modeling, and circuit and system simulations to verify and refine calculations
- Consider power electronics and/or transformer up to 18kVAC, and assume transformer from 18 kVAC to transmission level voltage

Analysis of Technology Impacts (cont.)

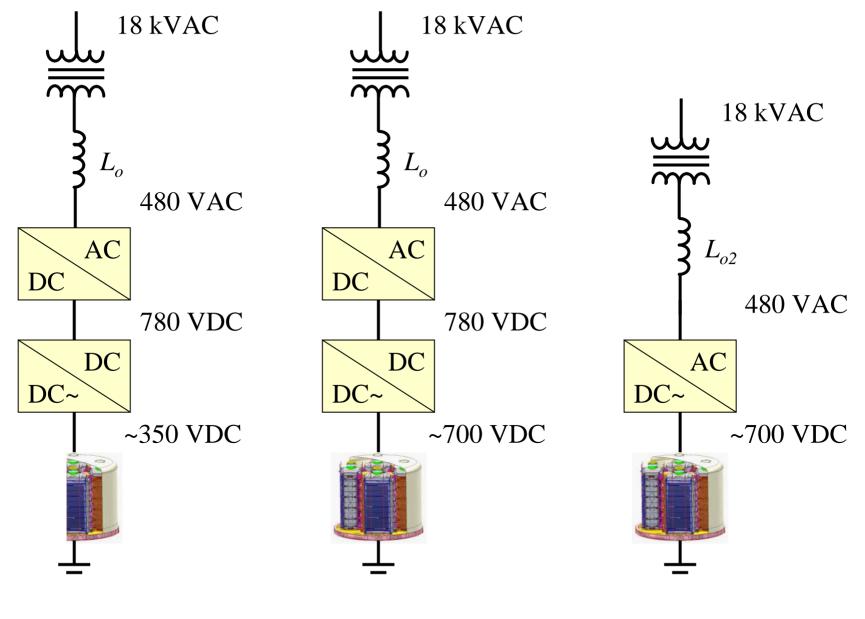
- Boundary conditions and performance parameters:
 - FC Stack: center tap ~700 VDC, 1000 A
 - Individual FC stack current control (may be necessary for FC reliability)
 - Fault tolerant and serviceable
- Converter cost components:
 - Semiconductors
 - Module Packaging
 - Cooling System
 - Magnetics: Filter Inductors and

HF voltage isolation transformers

- Transformer up to 18kV
- Breakers

Outline

- I. Introduction
- II. Analysis of new technology impacts


III. PCS approaches being considered

- A. Low Voltage Inverters
- **B. Medium Voltage Inverters**
- **C. High Power Architectures**
- **IV. Inputs from High-MW community**

IIIA. Low-Voltage Inverters

(Inverter to 480 VAC, then transformer to 18 kVAC)

- 1) First Generation: ~350 VDC FC, two stage DCDC/inverter: 750 VDC, 480 VAC
- 2) Baseline: Center-tap ~700 VDC FC, two stage regulator/inverter: 750VDC, 480 VAC
 - 1200 V is "Sweet spot" is silicon semiconductors
- 3) Present Generation: ~700 VDC FC, single stage inverter: 480 VAC
 - Fewer semiconductors because single stage
 - Larger filter inductor due to unregulated DC (filter sized for max VDC)
 - LV-DC Common Bus would stress FCs

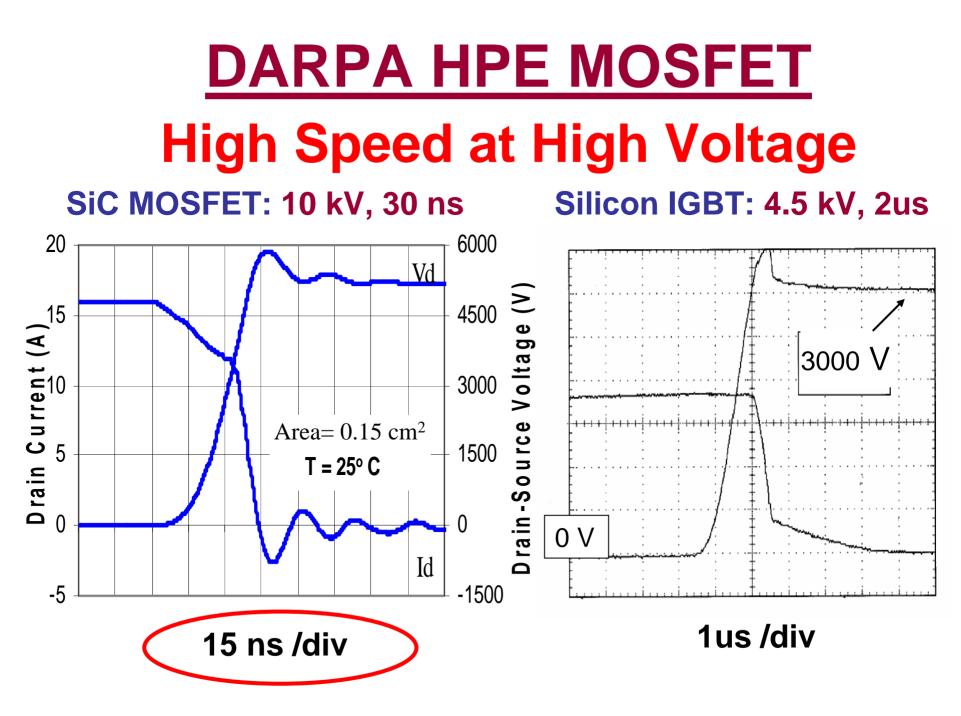
1) First Generation

2) Baseline

3) Present Generation

Low-Voltage Semiconductors

- **Baseline:** 1200 V silicon IGBT switch and silicon PiN diode
 - 1200 V is sweet spot for silicon IGBTs at 15 20 kHz switching
- 1200 V silicon IGBT switch and SiC Schottky diode
 - More efficient at 20 kHz \rightarrow less heat removal cost
 - \rightarrow lower temperature and longer life
 - Less EMI \rightarrow less filter inductor cost
 - What is cost break point or 1200 V SiC Schottky?
- 1200 V SiC MOSFET Switch and SiC Schottky diode
 - Higher Frequency for DCDC but not necessary for inverter
 - What is cost break point for 1200 V SiC MOSFET Switch?


IIIB. Medium-Voltage Inverters

(Inverter to 4160 VAC, then transformer to 18 kVAC)

- Low voltage inverters require:
 - high current (1000 A) for 0.6 MW FC
 - high part count for 300 MW Power Plant (500 Inverters!!!)
- Medium Voltage Inverter: DCDC converter(s) to 6 kVDC, 4160 VAC inverter, transformer to 18 kVAC
 - Lower current semiconductor for inverter (140 A) for 0.6 MW FC
 - Multiple FCs for one high power inverter

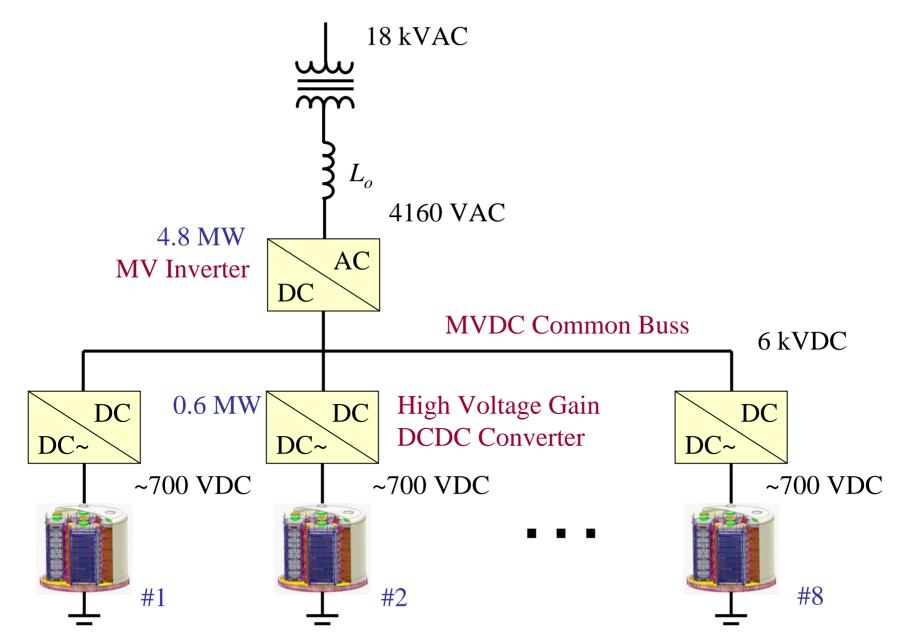
High-Voltage Semiconductors

- **Baseline:** High Voltage Silicon Semiconductors (IGBT, IGCT)
 - Typically ~6 kV blocking voltage maximum
 - Require multi-level inverter for 4160 VAC (more semiconductors)
 - Low switching frequency (2 kHz) requires larger filter
- High-Voltage, High Frequency SiC Switch and Diodes
 - 10 kV, 20 kHz MOSFET switch and Schottky diode
 - Less filter inductor requirements due to high frequency
 - Fewer Semiconductors due to fewer levels
 - What is cost break point for HV-SiC Power Semicoductors?

IIIC. High Power Architectures

(8 X ~700 VDC FC to 4160 VAC)

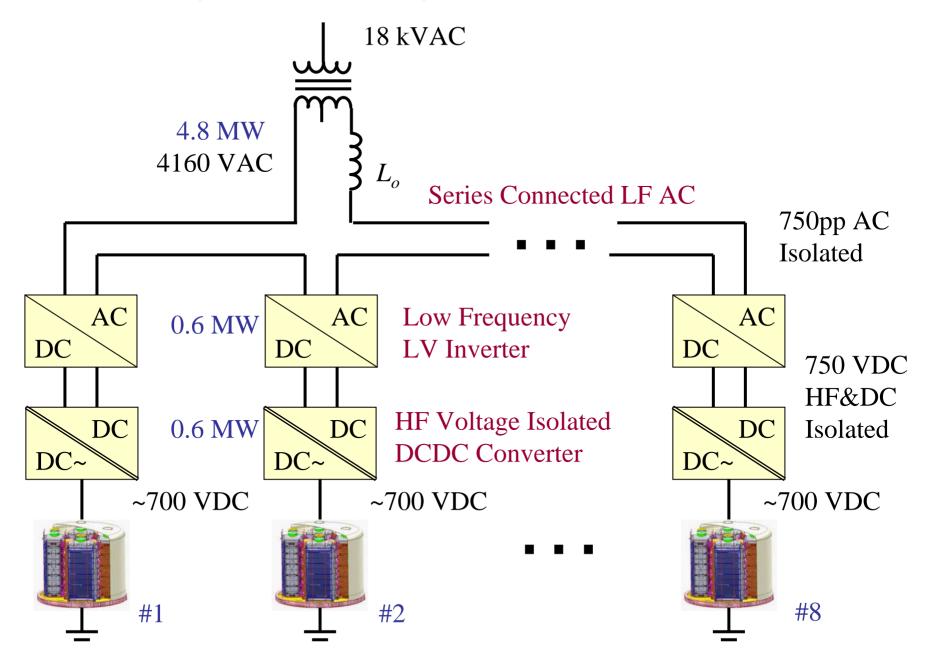
- Individual LV-to-MV DCDC converters, Common MV inverter 8 X 0.6 MW DCDC converter form ~700 V to 6 kVDC, MVDC Common Bus,
 - 1 X 4.8 MW inverter to 4160 VAC
 - Reduces number of MV inverters but MV inverter current to 1000 A
 - Requires high voltage gain DC-DC converter
- 2) Series voltage-isolated LV-DC regulators, Common MV inverter
 8 X 0.6 MW voltage-isolated 750 VDC provides 6 kVDC,
 1 X 4.8 MW inverter to 4160 VAC
 - Reduces number of MV inverters but MV inverter current to 1000 A
 - Requires high-voltage isolation for 750 VDC regulator


High Power Architectures (Continued)

(8 X ~700 VDC FC to 4160 VAC)


3) Cascade: Series-connected voltage-isolated LV-DC regulators, with low frequency phase-interleaved inverters
 8 X 0.6 MW voltage-isolated 750 VDC regulators series 8 X 750 V, 2.5 kHz phase interleaved inverters

- Uses 1200 V, 1000 A semiconductors to produce 4160 VAC
- 2.5 kHz switching provides effective 20 kHz
- improves tradeoff between switching loss and filter size
- Requires high-frequency, high-voltage isolation for 750 VDC regulator


1) Individual LV-to-MV DCDC converters, Common MV inverter

2) Series connected, voltage-isolated LV-DC regulators, Common MV inverter

3) Cascade: voltage-isolated LV-DC regulators with phased interleaved LV inverters

Outline

- I. Introduction
- II. Analysis of new technology impacts
- III. PCS approaches being considered
 - A. Low Voltage Inverters
 - **B. Medium Voltage Inverters**
 - C. High Power Architectures

IV. Inputs from High-MW community

Needed: Inputs from High MW Community

- Preferred High-Megawatt architectures and topologies
- Specifications for filter requirements
 - Harmonics for power generation connectivity (e.g. IEEE1547)
 - EMI requirements
- Other advanced component technologies
 - Nano-crystalline magnetic materials for high-gain and voltage isolated converters
 - Packaging and advance cooling systems
 - Interconnects and modularity
 - Capacitors (Dry Q cap: low cost, low maintenance)

High-Megawatt Converter Technology Workshop for Coal-Gas Based Fuel Cell Power Plants January 24, 2007 at NIST

> Dr. Prasad Enjeti TI Professor Power Electronics Laboratory Texas A&M University College Station, Texas Email: enjeti@tamu.edu

Power Electronics & Fuel Cell Power Systems Laboratory http://enjeti.tamu.edu Texas A&M University http://www.tamu.edu

1

Introduction

- Fuel cells have been recognized as one of the most promising clean energy sources for power generation.
- High temperature fuel cells such as solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) have been shown to be over 60% efficient at 500kW rating and above.
- Since the voltage produced by each cell is around 0.6 V DC many cells need to be stacked in series

Dimensions		Emissions			
Height 27.5'		NOx	<	0.3 ppmv	
Width	49.4'	SOx	<0.01 ppmv		
Length	59.6'	со	<10 ppmv		
Features Benefit		voc	<10 ppmv		
2000 kW net	Clean energy	Available Heat		Heat	
480 VAC, 50 or 60 Hz	Efficient	Exhaust Temperature		≈650° F	
By-product heat availability	Easily sited	Exhaust Flowrate		27,200 lbs/hr	
Modular and scalable	Quiet Operation	Exhaust Heat Available		≈2.8 mm Btu/hr.	
Internal fuel reforming	High-quality powe r				
Few moving parts					
Small package					
Fuel-flexible					

DFC 3000, 2MW Fuel Cell Plant Fuel Cell Energy Inc.

Fuel Cell Power Systems Laboratory

Texas A&M University

A 250kW PSOFC / MTG System

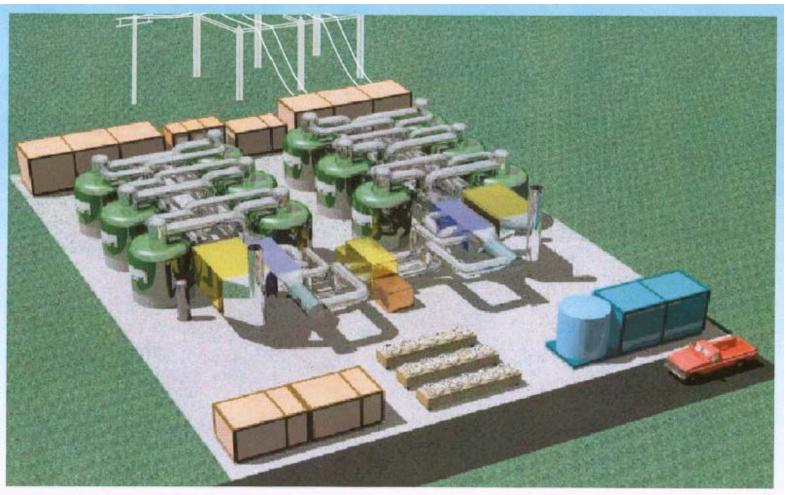
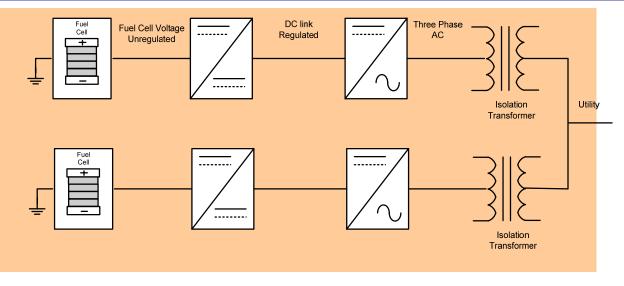


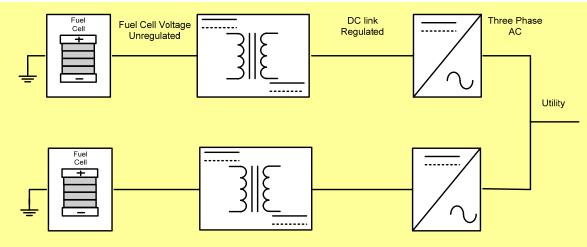
Figure 1. The SWPC 220 kW PSOFC/MTG

Fuel Cell Power Systems Laboratory

A Direct Fuel Cell Turbine Hybrid by: Fuel Cell Energy Inc.



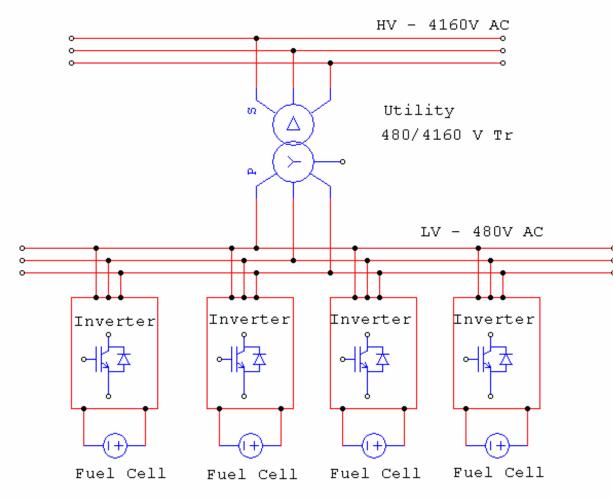
20 MW HIGH EFFICIENCY DFC[®]/TURBINE HYBRID POWER PLANT



Fuel Cell Power Systems Laboratory

Multi Stack Fuel Cell Systems & Associated Power Electronics

With 50/60 Hz Isolation Transformer

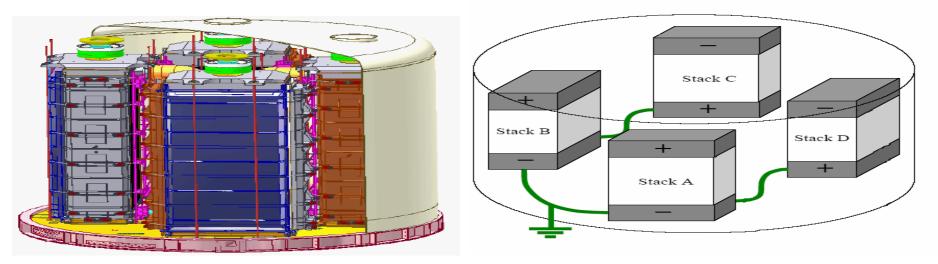


Without 50/60 Hz Isolation Transformer

Fuel Cell Power Systems Laboratory

Standard Power Conversion Topology # 1

Note: Fuel cells share common fuel supply and control systems, pumps etc. • Each Fuel Cell & its Inverter is rated for say 300kW


- Inverters employ 1200V Si or SiC devices
- Modular system
- Fuel Cells can share a common fuel supply, heat exchangers etc.
- Failure in power electronics and/or a fuel cell only disables one unit

Power Electronics & Fuel Cell Power Systems Laboratory http://enjeti.tamu.edu

Fuel Stack Voltage Limitation

- Since each cell produces only 0.6V, there is a maximum number of cells that one can stack before thermal/water management issues can be safely managed. In addition, electrostatic potential to ground within the fuel cell stack needs to be limited for safe operation
- Considering the above factors the maximum voltage that a fuel cell stack can safely produce is around 350V

Fuel Cell Power Systems Laboratory

Commercially Available Medium Voltage Power Converters for Utility Applications

Power Electronics & Fuel Cell Power Systems Laboratory http://enjeti.tamu.edu

Applications of medium voltage converters

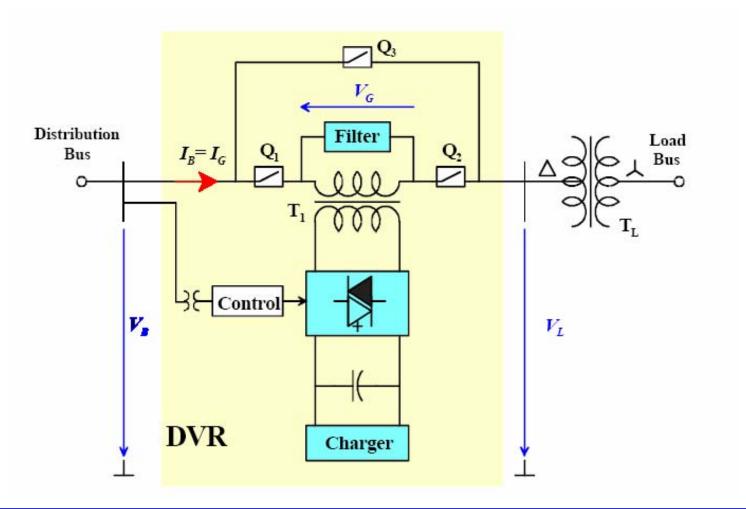
- Medium voltage converters are mainly used in the industry for
 - Voltage disruption compensation
 - Dynamic Voltage Restorer ABB
 - MegaDySC Soft Switching Technologies
 - Medium voltage ASD's
 - NPC Drives (IGCT's) ABB
 - Series Connected 1-phase Inverters GE Robicon Toshiba

Power Conversion for High Power Hybrid Fuel Cell / Turbine System

Feature	IGBT	GTO	IGCT
device on-state loss	100 %	70 %	50 %
device turn-off loss	100 %	100 %	100 %
device turn-on loss	100 %	30 %	5 %
gate drive power	1 %	100 %	50 %
short-circuit current	self limited $(= f(t))$	external (choke)	external (choke)
dv/dt snubber	no	yes	no
di/dt snubber	no	yes	yes
switch chip	discrete	monolithic	monolithic
diode chip	discrete	monolithic	monolithic
chip mount	solder	pressure	pressure

Power Conversion for High Power Hybrid Fuel Cell / Turbine System

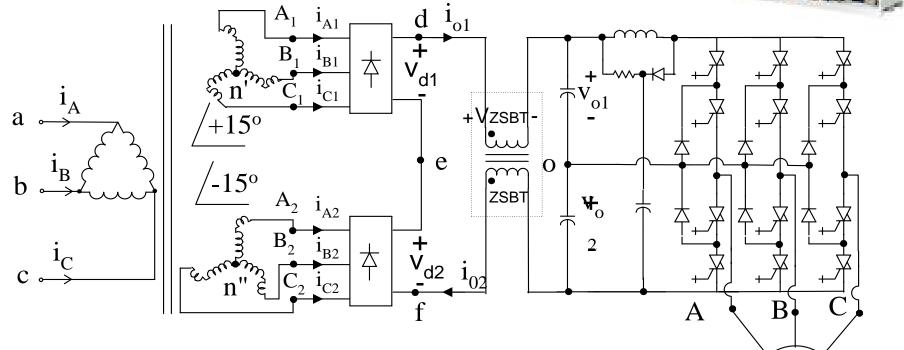
IGCT – Integrated gate commutated thyristor (ABB)



The ACS 1000 is the first drive to use a new power semiconductor switching device called IGCT (Integrated Gate Commutated Thyristor). This advanced, highpower semiconductor approaches the "ideal switch" for mediumvoltage applications. IGCT brings together a versatile new power handling device, the GCT, (Gate Commutated Thyristor) and the device control circuitry in an integrated package.

Power Electronics & Fuel Cell Power Systems Laboratory http://enjeti.tamu.edu

Medium voltage DVR - ABB



Power Electronics & Fuel Cell Power Systems Laboratory http://enjeti.tamu.edu

Texas A&M University http://www.tamu.edu

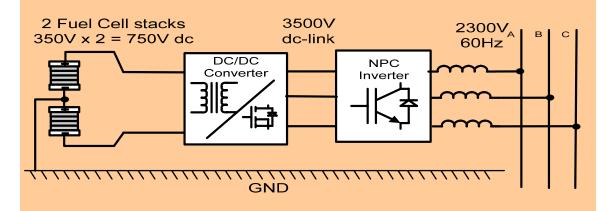
Medium Voltage Adjustable Speed AC Motor Drive – ABB: ACS 1000, Silcovert – ASI-Robicon Vout: 4kV; Po = 12 MW

• Possible to use HV - IGBTs with SiC diodes

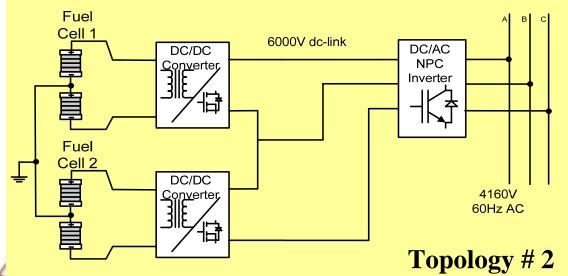
Power Electronics & Fuel Cell Power Systems Laboratory http://enjeti.tamu.edu Texas A&M University http://www.tamu.edu

Μ

Power Conversion Topology # 1 For Utility Interface of Fuel Cell Systems



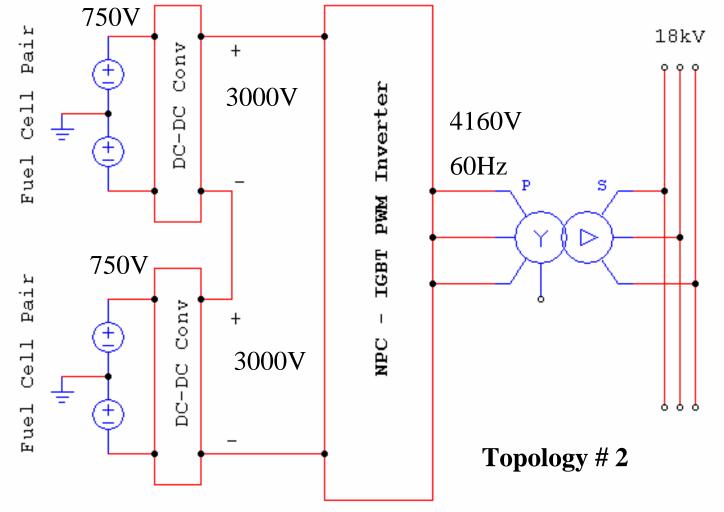
- IGCT / IGBT devices are available in higher voltage and current ratings
- 3 level PWM output voltage is high quality & suitable for 4160V, 60Hz utility interface
 - Each fuel cell stack voltage does not exceed 350V (dc)



Power Electronics & Fuel Cell Power Systems Laboratory http://enjeti.tamu.edu

Multi Stack Fuel Cell Systems & Associated Power Electronics

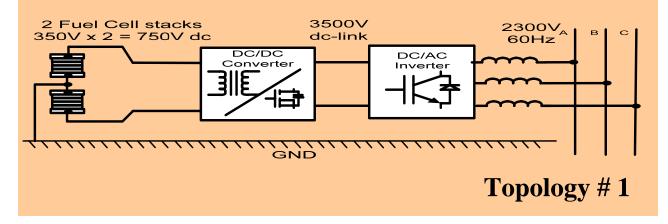
Topology #1

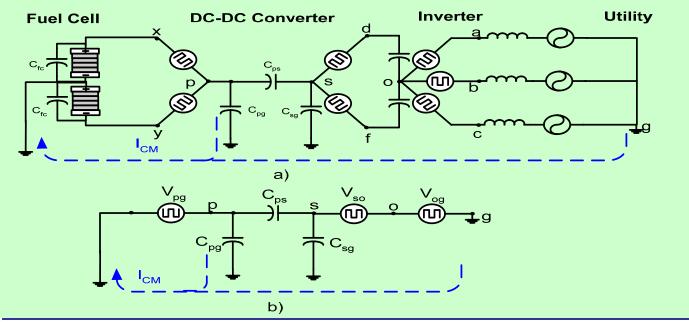


- Two stack fuel cell systems with a high frequency DC-DC converter and DC-AC Inverter
- One dc-dc converter one Inverter for one pair of fuel cell stack: IGBT or IGCT Inverter
- Four stack fuel cell systems with two cascaded high frequency DC-DC converter and one DC-AC Inverter is employed
- Each fuel cell stack is subjected to a maximum voltage of 350V
- Topology offers control flexibility of fuel cell stack pairs. Control of dc-dc converters is possible to allow each pair of fuel cell stacks to supply different output power

Fuel Cell Power Systems Laboratory

Multi Stack Fuel Cell Systems & Associated Power Electronics

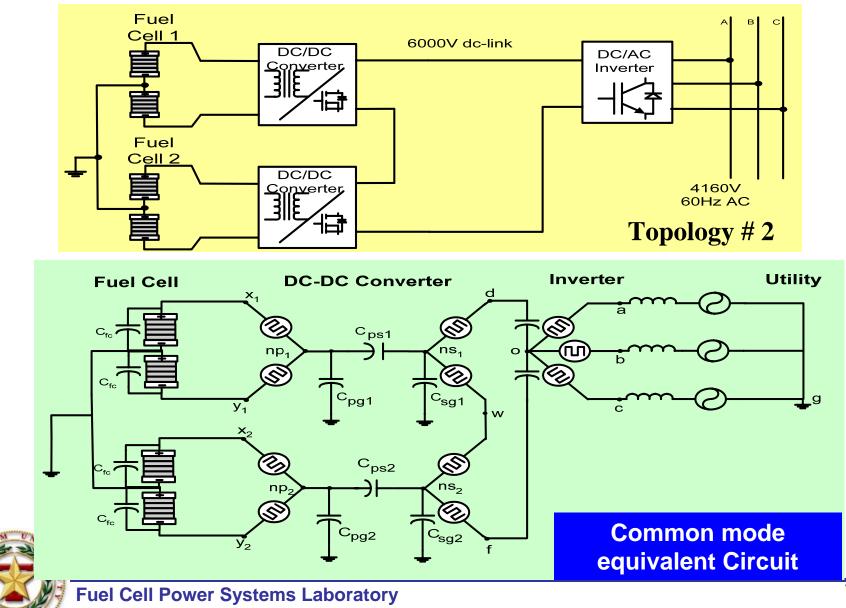


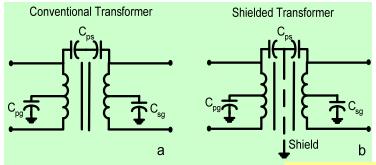


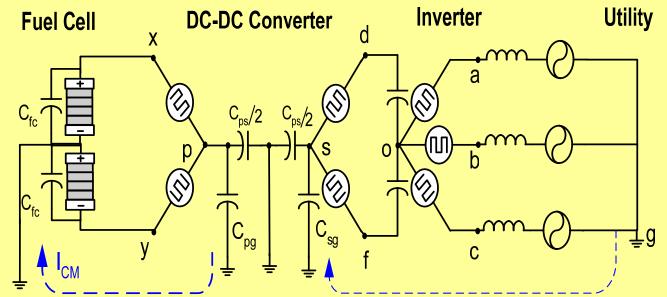
Power Electronics & Fuel Cell Power Systems Laboratory http://enjeti.tamu.edu Texas A&M University http://www.tamu.edu

Additional Considerations: Common mode currents

• The transformer in the DC-DC converter is modeled by lumped capacitances from primary and secondary to ground, and a capacitance from secondary to primary



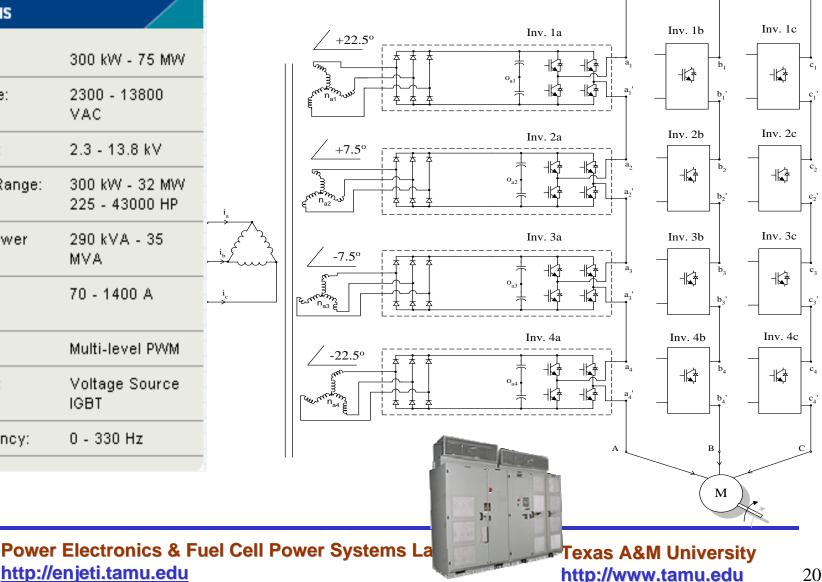

Fuel Cell Power Systems Laboratory


Additional Considerations: Common mode currents

Multi stack DC-DC converter and inverter analysis

 A shielded transformer is proposed to isolate the interaction between the DC-DC converter & Inverter stages

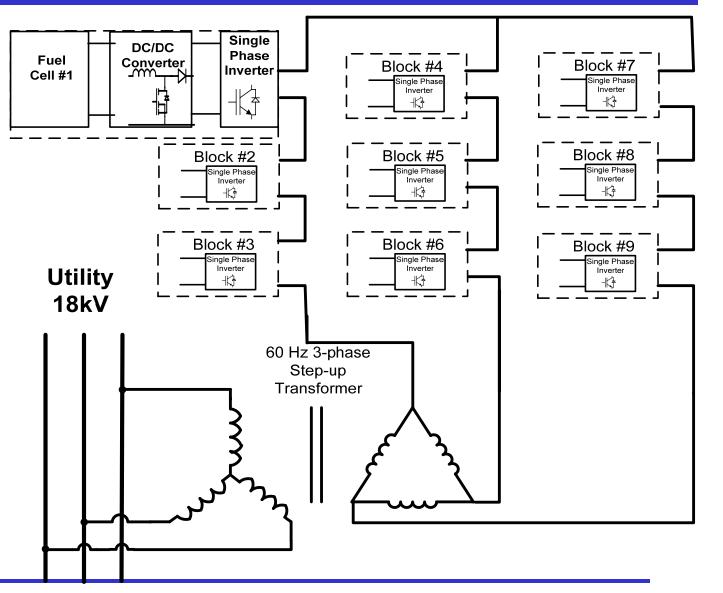
• To further reduce Icm a common mode filter needs to be installed at the output of the DC-DC Converter


Fuel Cell Power Systems Laboratory

Medium Voltage Adjustable Speed AC Motor **Drive: ASI-Robicon – Perfect Harmony**

SPECIFICATIONS

Power Range:	300 kVV - 75 MVV	
Output Voltage:	2300 - 13800 VAC	
Motor Voltage:	2.3 - 13.8 kV	
Motor Power Range:	300 kVV - 32 MVV 225 - 43000 HP	ia
Continuous Power Range:	290 kVA - 35 MVA	i _b
Rated Output Current:	70 - 1400 A	, →→
Topology:	Multi-level PVVM	
Power Device:	Voltage Source IGBT	
Output Frequency:	0 - 330 Hz	

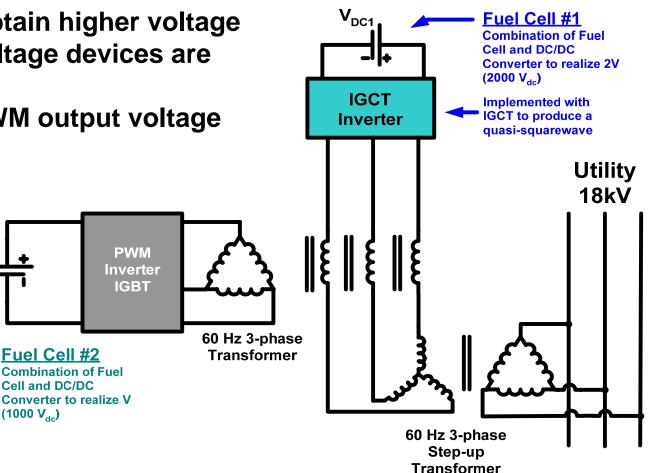

http://enjeti.tamu.edu

20

Power Conversion Topology #3

- Modular 1-phase converters can be connected in cascade to realize higher output voltage
- Advantage:
 Lower voltage
 power
 electronics
- Disadvantage: Common mode elevation of different fuel cell stacks may be unacceptable

Power Electronics & Fuel Cell Power Systems Laboratory http://enjeti.tamu.edu Texas A&M University http://www.tamu.edu

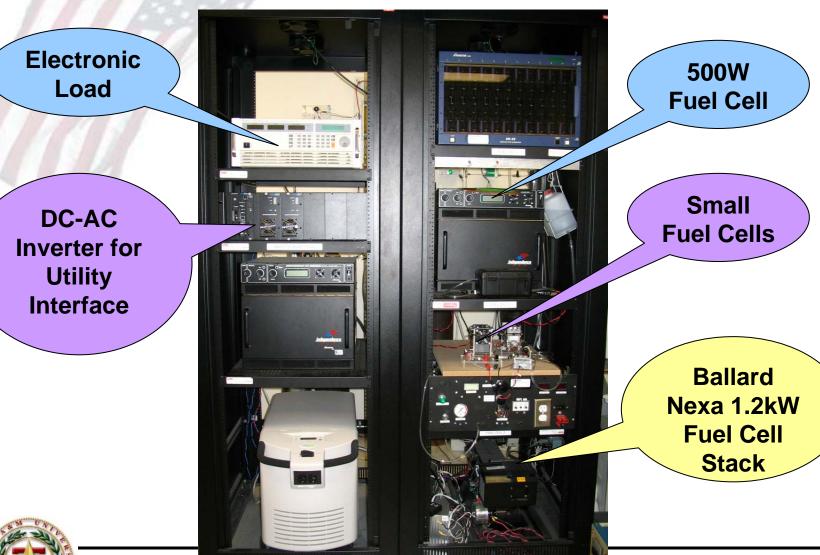

Power Conversion Topology #4

- Several 3-phase converters can be combined to obtain higher voltage
- HV and Low voltage devices are combined
- High quality PWM output voltage

Fuel Cell #2

Cell and DC/DC

(1000 V_{dc})


Power Electronics & Fuel Cell Power Systems Laboratory http://enjeti.tamu.edu

Texas A&M University http://www.tamu.edu

Comparison of Power Conversion Topologies

Topology # 1	2 fuel cell stacks (350V) series connected & center point grounded, one dc-dc converter followed by a 3-level inverter to produce 2300V 3- phase ac		
Topology # 2	4 fuel cell stacks (350V) series connected in pairs and center point grounded, two dc-dc converters with outputs connected in series, followed by a 3-level inverter to produce 4160V 3-phase ac		
Topology # 3	Each fuel cell stack (350V) connected to a dc-dc converter with isolation, followed by a 1-phase LV inverter. Several such modules are connected in cascade to form one MV ac system		
Topology # 4	Fuel cell stacks followed by dc-dc converter & 3- phase inverters. Several of these modules are combined together via 3-phase transformers to realize a multilevel inverter system for medium voltage.		
Power Electronics & http://enjeti.tamu.ec	& Fuel Cell Power Systems Laboratory Texas A&M University http://www.tamu.edu 23		

Fuel Cell Applications Laboratory in Dept of Electrical & Computer Engineering

Prepared by: Dr. Prasad Enjeti Power Electronics & Fuel Cell Applications Laboratory Department of Electrical Engineering Texas A&M University http://enjeti.tamu.edu

Small Fuel Cells: 20W to 50W Systems

Prepared by: Dr. Prasad Enjeti Power Electronics & Fuel Cell Applications Laboratory Department of Electrical Engineering Texas A&M University http://enjeti.tamu.edu

Questions?

Power Electronics & Fuel Cell Power Systems Laboratory http://enjeti.tamu.edu

Texas A&M University http://www.tamu.edu

Multilevel Converters for Large-Scale Fuel Cell Power Plants

DOE Workshop on Development of Large Scale Inverters Systems (>100 MW) for Coal-Gas Based Fuel Cell Power Plants

> Gaithersburg, MD January 24, 2007

Dr. Jason Lai Virginia Tech Future Energy Electronics Center Blacksburg, VA 24061-0111

Outlines

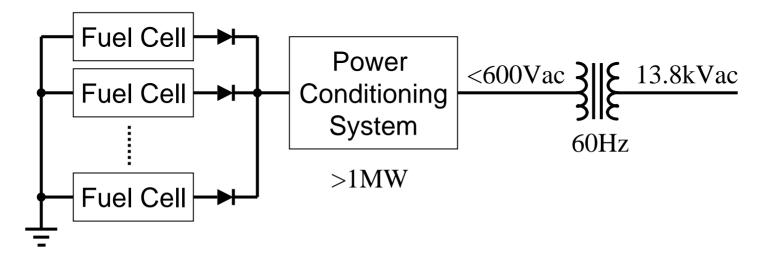
- Technical Issues and State-of-the-Art Large-Scale Power Electronics
- Configurations of Fuel Cell Power Conditioning Systems
- Multilevel Converter Based Fuel Cell PCS
- Control of Paralleled Inverters
- Device Requirements
- Summary

Photograph: a 400-kW current source DC-DC converter

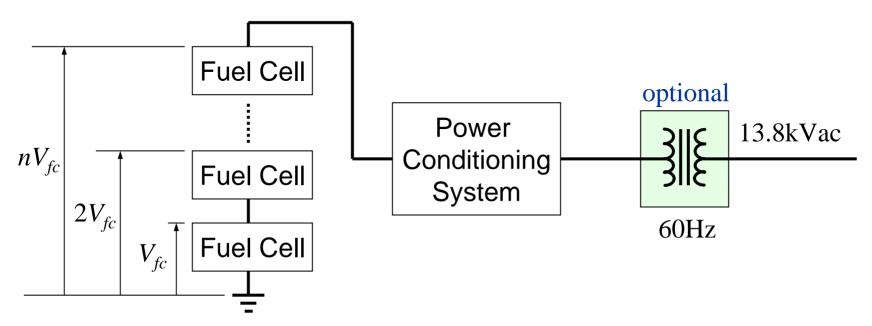
Issues

- Parallel/Module size what's the best size for a single module (1MW, 10MW, ..., etc.)?
- Fuel cell voltage level low-voltage stack versus high-voltage stack, what's the limit of fuel cell voltage level?
- Voltage stacking method stacking fuel cells versus stacking converters, problem with common voltage.
- Semiconductor device silicon versus silicon carbide, HV device versus LV device. What are needed?
- Circuit topology voltage source versus current source converters, multilevel versus multiphase converters
- Fuel cell current ripple potential problem with single-phase inverter induced fuel cell current ripples

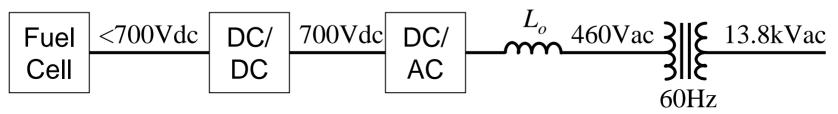
State-of-the-Art High Power Electronics


• >1GW Level Pacific Intertie HVDC System

- DC Link Voltage: ±500kV
- Power Level: 3100MW
- Circuit Topology: Current Source Inverters
- Device: 6.5kV Thyristors stacked up for 133kV blocking
- Switching Frequency: 60Hz
- Problems: >5 acres of land for LC filters
- >100MW converters for reactive power compensation
 - Circuit Topology: multiple pulse (48-pulse) with transformer isolation
 - Device: 6.5kV GTO
 - Switching Frequency: <500Hz</p>
- >1MW Distributed Generation
 - > 1.5MW to 5MW wind power generation
 - > 1MW to 2.4MW fuel cell power plants
 - IGBT based with switching frequency >5kHz

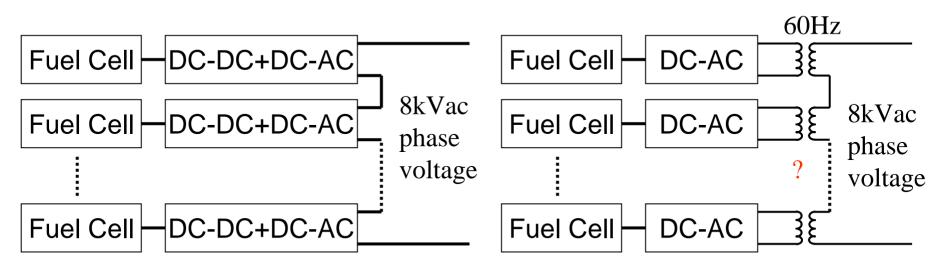

Configuration with Paralleling Multiple Fuel Cells and a Large PCS

- Multiple sub-MW fuel cells in parallel
- MW-level power conditioning system
- Low voltage power electronics
- Low frequency transformer (bulky, expensive)
- Need diode to block circulating current between fuel cells (lossy)


Configuration with Series Connected Fuel Cells and a High-Voltage PCS

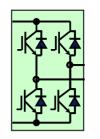
- Multiple fuel cells connected in series to obtain high voltage
- High voltage power electronics is needed
- Low-frequency transformation becomes optional depending on how high is the power electronics output voltage
- Problem is common-mode (CM) voltage of top level fuel cells

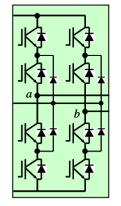
Low-Voltage Power Electronics Options



- 1. Fuel cell + DC-DC converter + DC-AC inverter + LF transformer
- Fuel cell independently sends power to grid regardless its output level
- Fixed dc bus allows output inductor L_o to be optimized

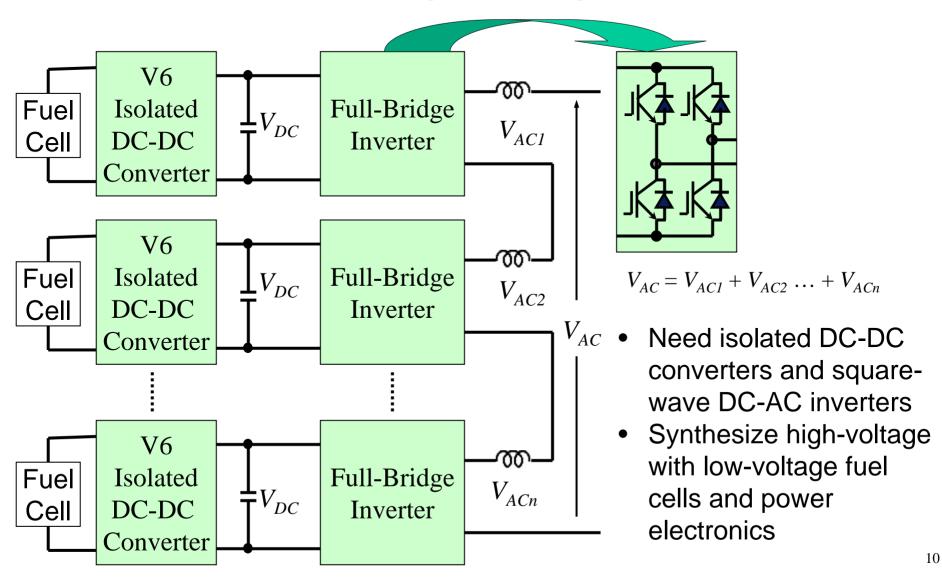
- 2. Fuel cell + DC-AC inverter + LF transformer
- Fuel cell sends power out only at sufficiently high enough output levels
- Variable dc bus needs large output inductor L_o



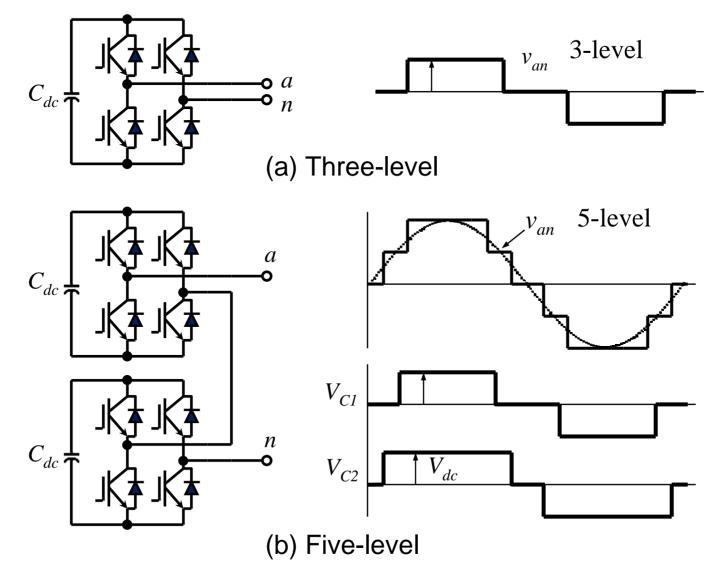

Options with Cascaded Multilevel Inverters

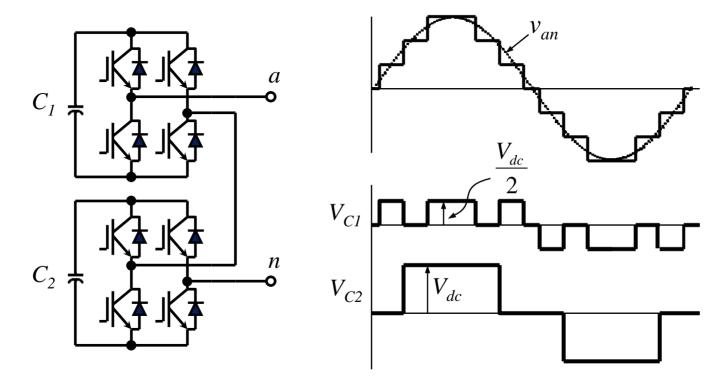
Two options to avoid high common mode voltage on upper level fuel cells

- 1. Add DC-DC in front of DC-AC
 - Need isolated DC-DC converter
 - Cost and complexity are nontrivial
- 2. Add low-frequency transformer after DC-AC
 - Low-frequency square-wave transformer is not • practical unless DC-AC inverter is highfrequency PWM modulated
 - Low-frequency ripple is a problem to fuel cells

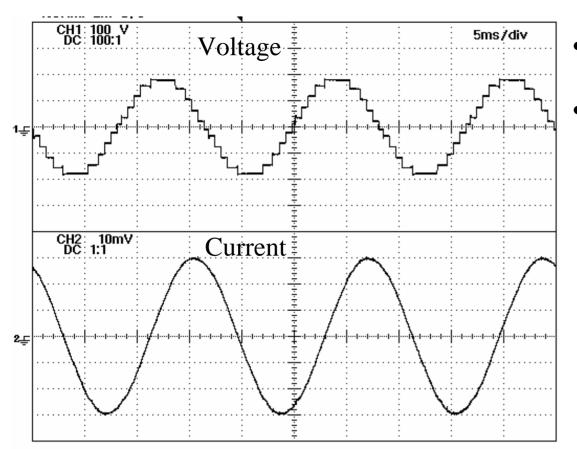


3-level **DC-AC** Inverter Options

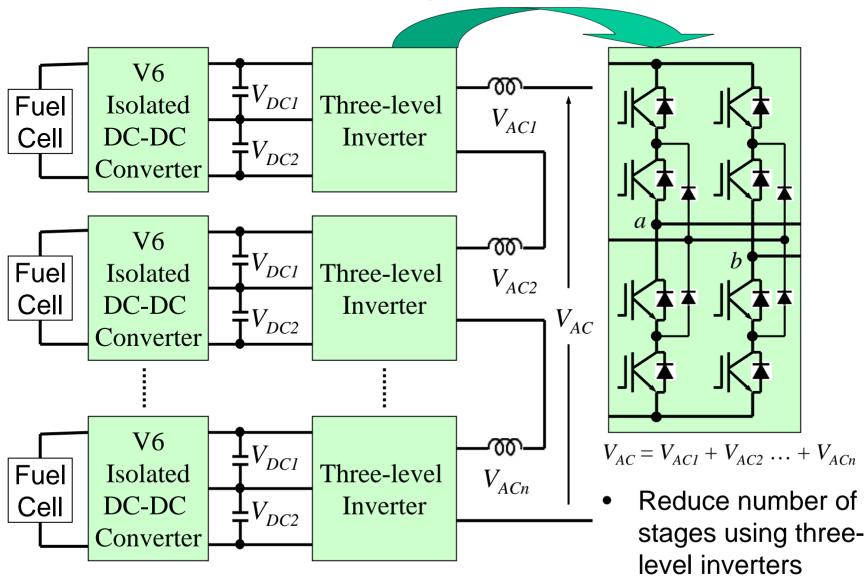

MW Power Plant Using Full-Bridge Inverters Cascaded for High-Voltage AC Systems


Future Energy Electronics Center

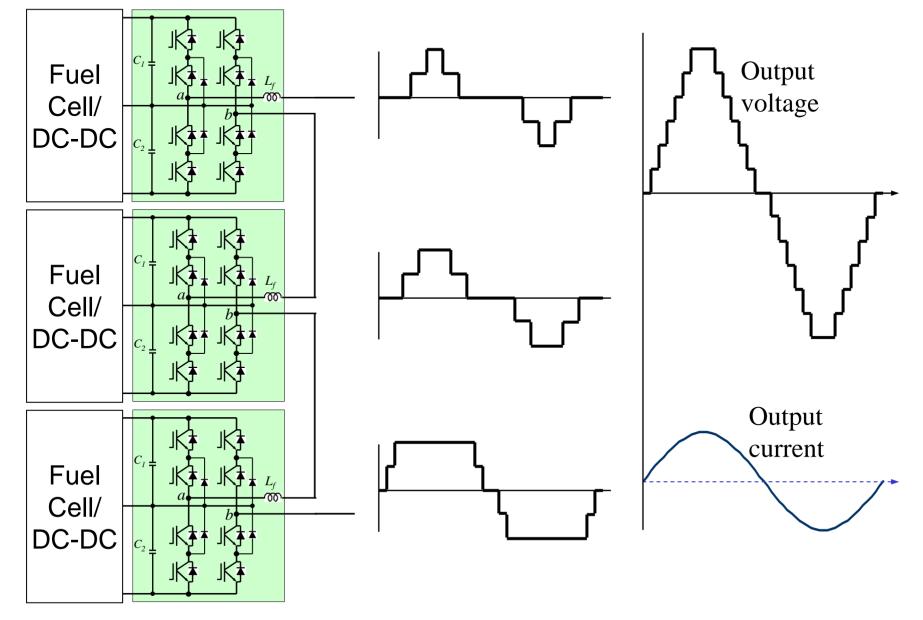
Voltage Waveform of Cascaded Full-Bridge (FB) Inverters


Achieving More Levels with Unequal DC Bus Voltages for Cascaded Inverter

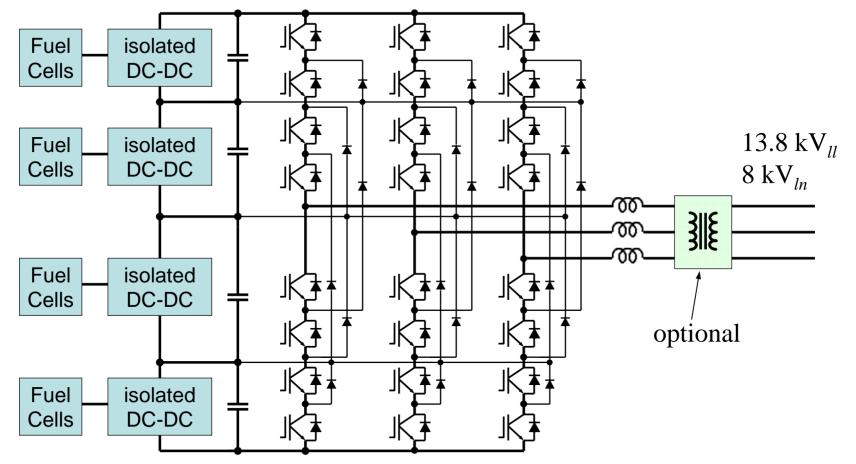
- With unequal voltage levels, the output waveform has more ways to synthesize
- Two sets of cascaded inverters achieves 7-level output waveform


Voltage and Current Waveforms of 11-Level Cascaded Inverter

- 11-level staircase voltage with cascaded inverters
- Only inductor is used as the filter to obtain clean sinusoidal current


Virginia IIII Tech

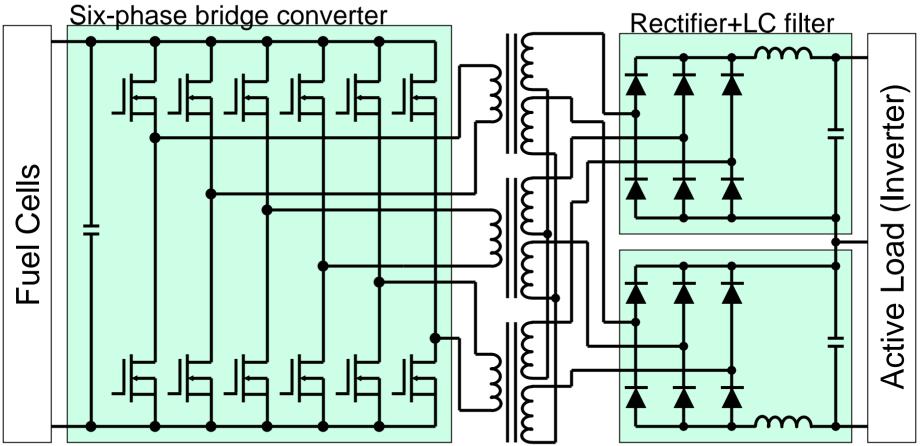
MW Power Plant Using Three-Level Inverters Cascaded for High-Voltage AC Systems



Cascaded Inverter with 13-Level Output

Use Fiver-Level Diode-Clamp Inverter for Possibility of Direct High Voltage Connection

- Need isolated DC-DC to avoid CM voltage and to boost DC bus voltage
- Given 10-kV SiC device, low-frequency transformer can be eliminated
- Sensors and controls are non-trivial with 5-level inverters

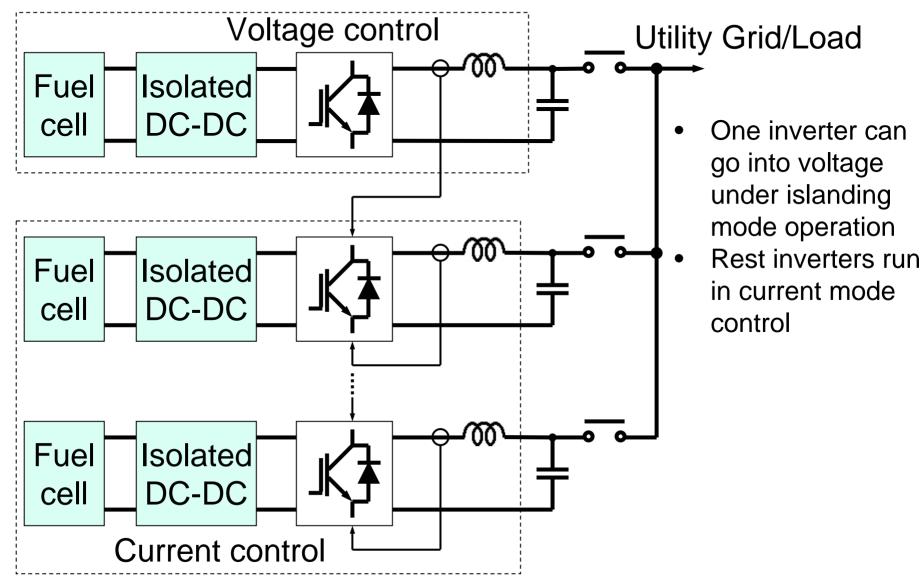


DC-DC Converter is Essential for Most Topology Options

- Except for low-voltage power electronics with "fuel cell + inverter + transformer" option, all other circuit topologies need DC-DC converter for at least one of the following reasons:
 - ✓ Avoid excessive CM voltage in series fuel cell stacks
 - ✓ Isolate fuel cell output for cascaded inverters
 - ✓ Boost voltage for multilevel inverter inputs
 - ✓ Regulate voltage for inverter inputs
- Options of high-power DC-DC converters
 - ✓ Full-bridge converter
 - ✓ Multilevel converter
 - ✓ Three-phase DC-DC converter
 - ✓ V6 DC-DC converter

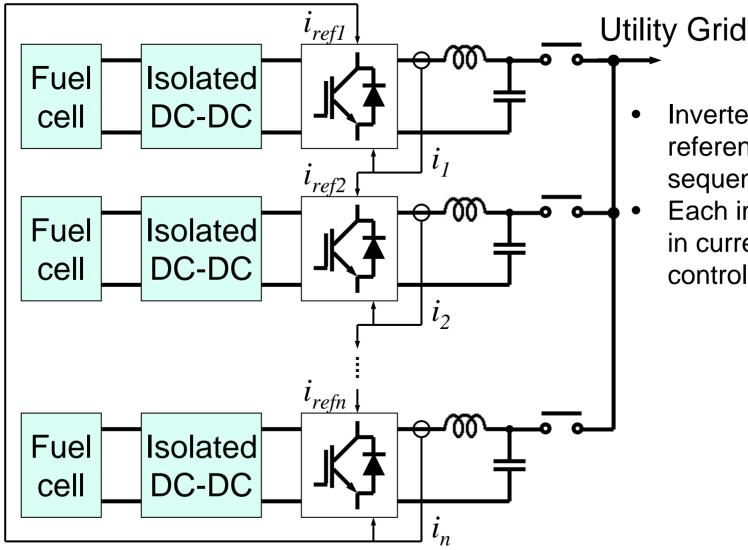
V6 Converter – Ideal for Fuel Cell Power Conversion

- Three full-bridge phase-shift modulated converters interleaved operation
- High-frequency ripples are cancelled → minimizing filter size and loss
- Y-connected transformer secondary resets circulating current to achieve high efficiency zero-voltage zero-current (ZVZCS) switching

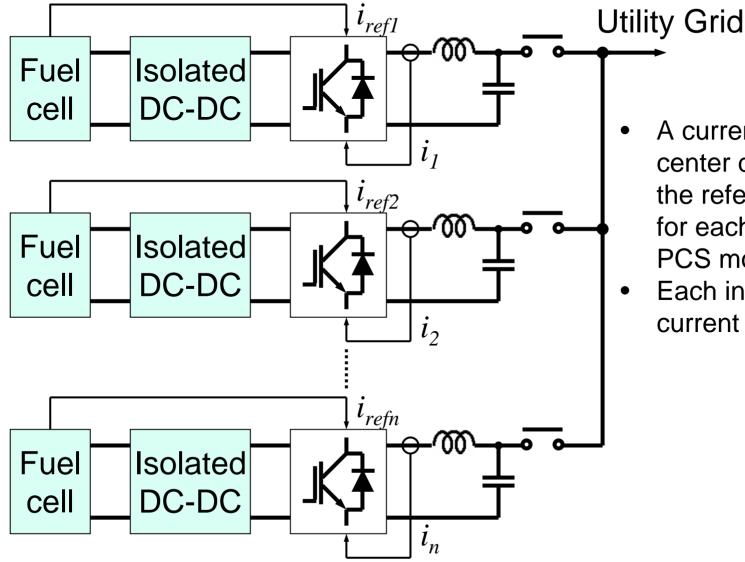


Options of Paralleling Fuel Cell Inverters

- Mix voltage mode and current mode for universal applications that can run both grid-tie and islanding modes
- Circular chain current control to send current command sequentially
- Current distribution control with a center controller to determine current command for each inverter

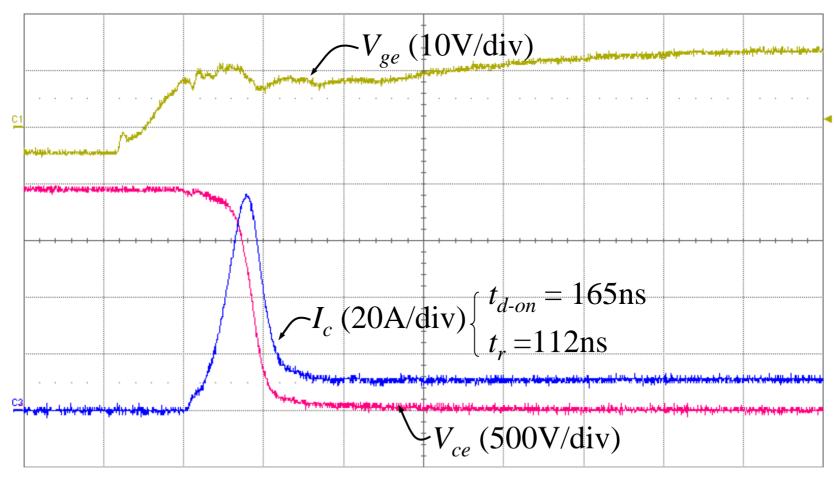


Parallel Fuel Cell Inverters with Mix of Voltage and Current Control Modes


Parallel Fuel Cell Inverters with Circular Chain Control

- Inverter determines reference current sequentially
- Each inverter runs in current mode control

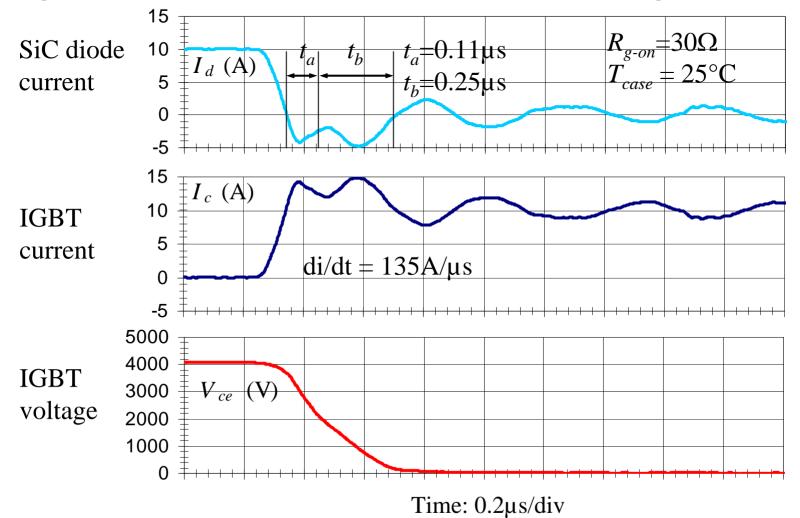
Parallel Fuel Cell Inverters with Current Distribution Control


- A current distribution center determines the reference current for each fuel cell-PCS module
- Each inverter runs in current mode control

What Semiconductor Devices are Needed?

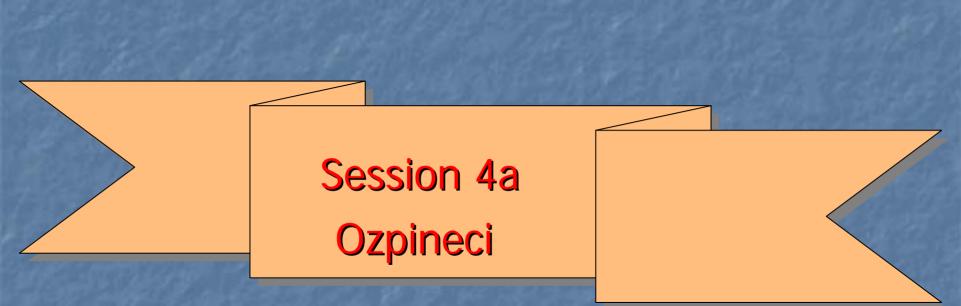
- For low-voltage power electronics options
 - ✓ 1200V-level SiC Schottky diodes to reduce the turn-on loss
 - ✓ >1kA Si IGBT
- For cascaded inverter options
 - ✓ 1200-V level SiC Schottky diodes for DC-DC converter output
 - ✓ >1kA Si IGBT
- For diode-clamp multilevel inverter options
 - ✓ 10-kV SiC device (MOSFET or IGBT)
 - ✓ 10-kV SiC diode

HV-IGBT Turn-on with Si Diode $V_{dc} = 2000V, I_c = 11A, R_{g-on} = 15\Omega, E_{on} = 11.2mJ$



Time (200ns/div)

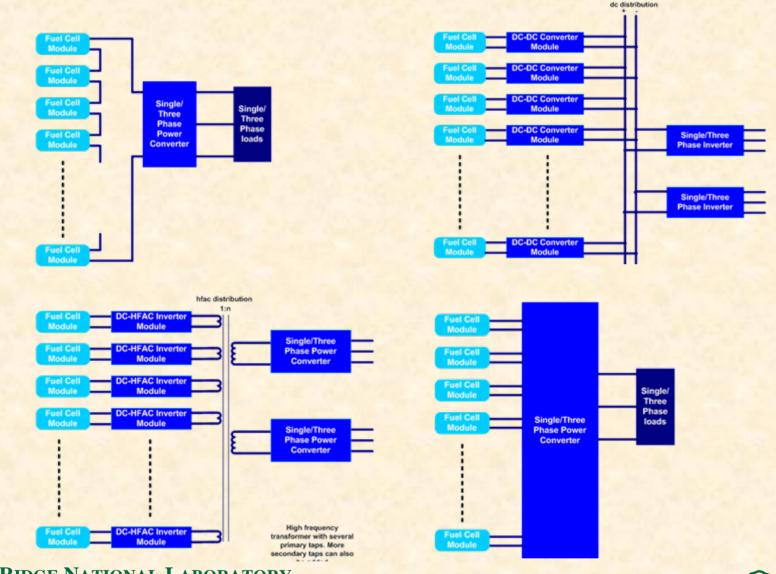
HV-IGBT Turn-on with SiC Diode $V_{dc} = 4000$ V, $I_c = 10$ A, $R_{g-on} = 15\Omega$, $E_{on} = 3.5$ mJ


Significant reduction in turn-on loss even with a higher bus voltage

Summary

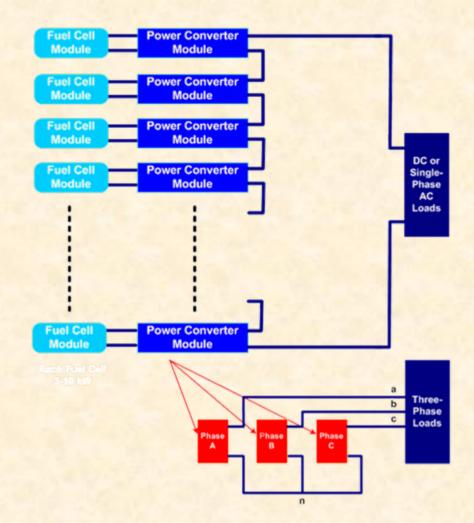
- Three possible options for multi-MW fuel cell power plants
 - ✓ Low-voltage DC-AC inverter + low frequency transformer
 - Low-voltage power electronics including DC-DC and DC-AC + cascaded inverters
 - ✓ High-voltage power electronics including DC-DC and diode clamped multilevel inverters
- High-power high-efficiency DC-DC converters are needed for multilevel inverter based fuel cell power plants
- Multilevel inverters allow significant reduction on current ripples and their associated losses
- Cost reduction can be realized with passive component size reduction
- High-power SiC Schottky diodes are needed for most circuit configurations

Cascaded Multilevel Inverters for Aggregation of Fuel Cells


Burak Ozpineci

Power Electronics and Electric Machinery Research Center Oak Ridge National Laboratory

High Megawatt Converter Technology Workshop


January 24, 2007

Several Possible Configurations

Cascade Multilevel Inverters (CMLI)

 Each power converter module typically consists of a dc/dc voltage regulator and an H-bridge inverter

- Single-phase, multiphase, three phase wye or delta connections are possible
- Can be used in many power applications

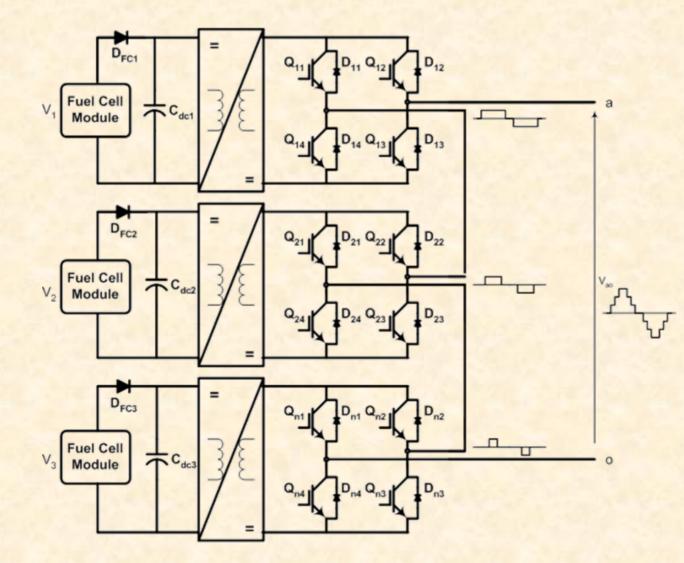
Properties

Advantages

Modular

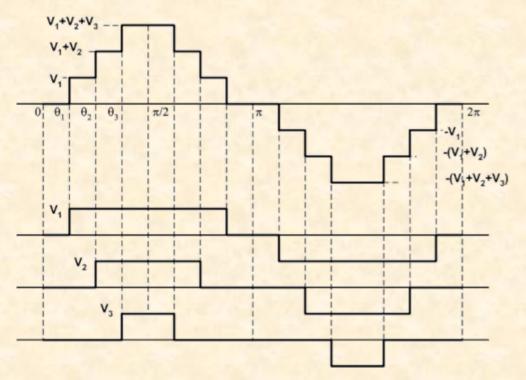
- Reduced manufacturing and maintenance costs
- Scalable
 - Reduced design cost

Fault tolerant operation

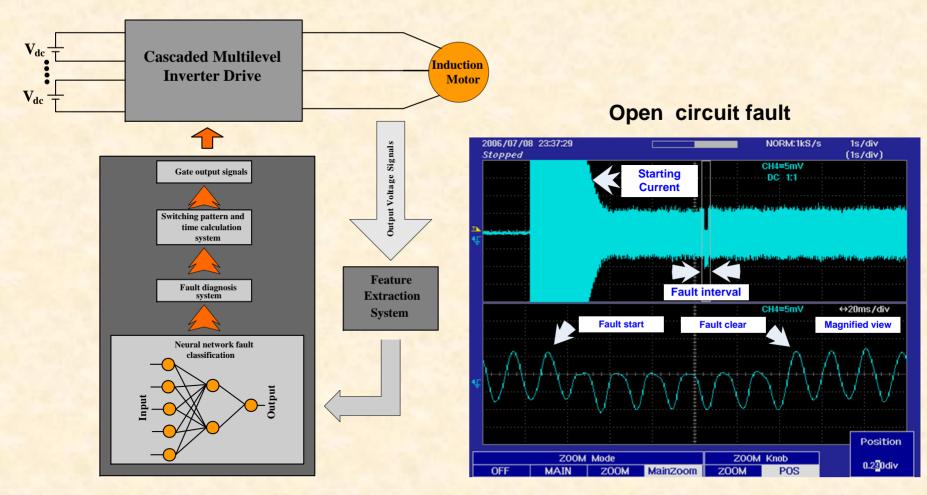

- Increased availability
- Redundant levels
- Possible reconfiguration
- Energy storage
- Low harmonic distortion Reduced filters

Disadvantages

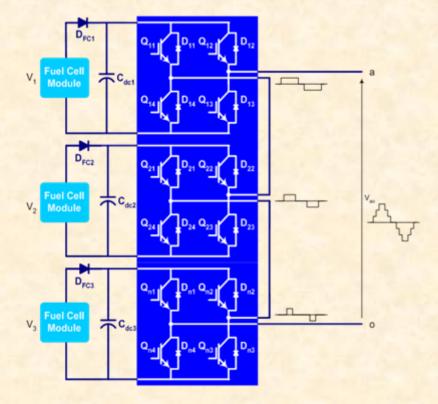
- Component count
 - Extra switches and transformers
 - Higher component cost
 - Low voltage components
- More complicated control
- Isolated dc sources



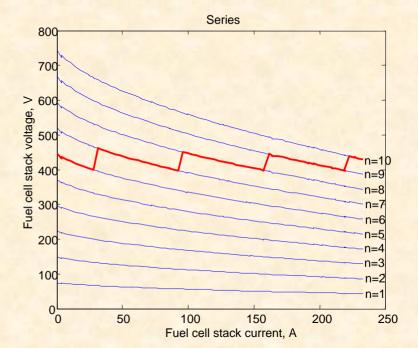
Circuit Diagram


Waveform Generation

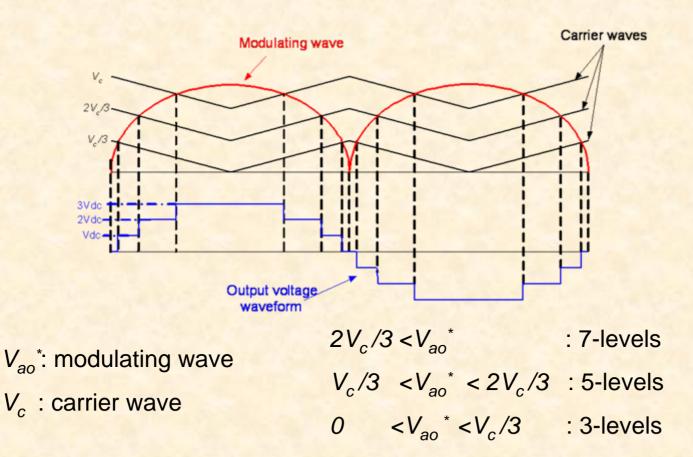
- Synthesize desired ac voltage from several levels of dc voltages
- More levels produce a staircase waveform that approaches a sinusoid
- Harmonic distortion of output waveform decreases with more levels
- No voltage sharing problems with series connected devices
- Low dV/dt reduces switching losses and EMI
- Multilevel PWM is possible



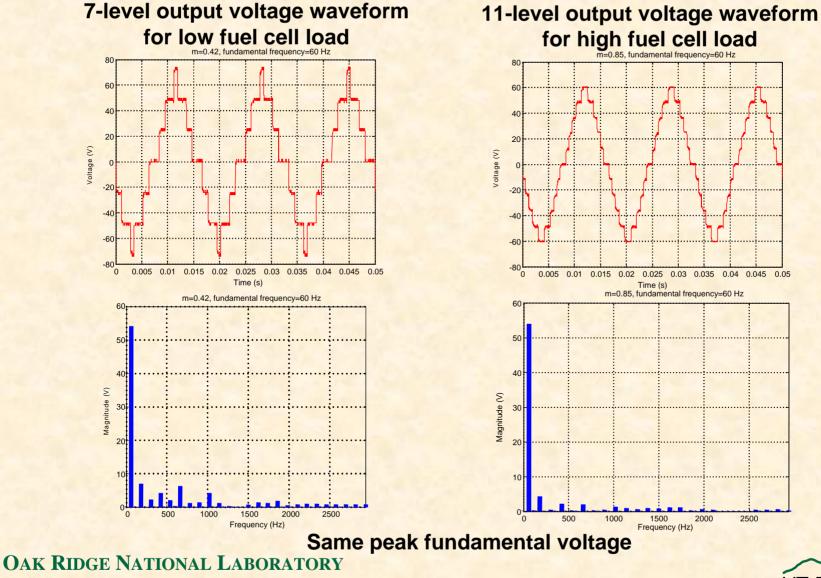
Fault Tolerant Operation



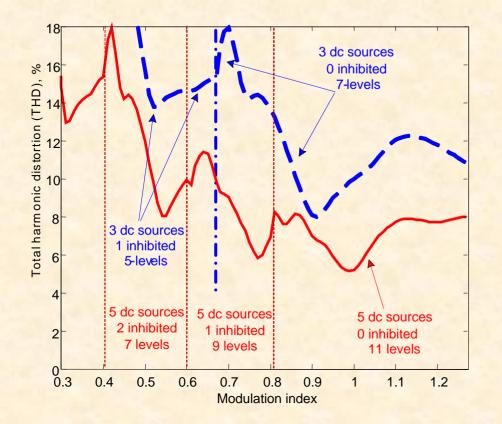
Alternative CMLI


7-level cascaded multilevel inverter

Level reduction technique for a 10 dc source CMLI

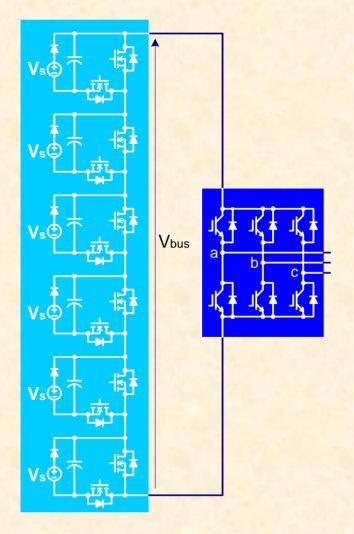


Multilevel Modulation at Fundamental Frequency


Output Voltage Waveforms

U. S. DEPARTMENT OF ENERGY

Total Harmonic Distortion


No filtering

- For lower total harmonic distortion
 - Multilevel PWM
 - Optimized switching angles

Total harmonic distortion of the output voltage with respect to the modulation index (up to 41st harmonic)

Another Alternative CMLI

- Vertical switch (S_{v1}) OFF
 Horizontal switch (S_{v1}) ON
 ⇒Fuel cell supplies power
- Vertical switch (S_{v1}) ON
 Horizontal switch (S_{v1}) OFF
 ⇒Fuel cell inhibited

For More Information

http://www.ornl.gov/peemrc/ http://www.ntrc.gov/

http://www.ornl.gov/~webworks/cppr/y2001/rpt/121814.pdf

TRADE STUDY ON AGGREGATION OF MULTIPLE 10-KW SOLID OXIDE FUEL CELL POWER MODULES

OAK RIDGE NATIONAL LABORATORY MANAGED BY UTBATTULE FOR THE DEPARTMENT OF INDRCY	08NL/Thi-304424	
	TRADE STUDY ON AGGREGATION OF MULTIPLE 10-KW SOLID OXIDE FUEL CELL POWER MODULES	
	B. Orpineci L. M. Tolbert D. J. Adum:	
	Oak Ridge National Laboratory	
		UT
		1.5

Recent Developments in SiC Power Technology at Cree

High Megawatt Converter Technology Workshop January 24, 2007

David Grider

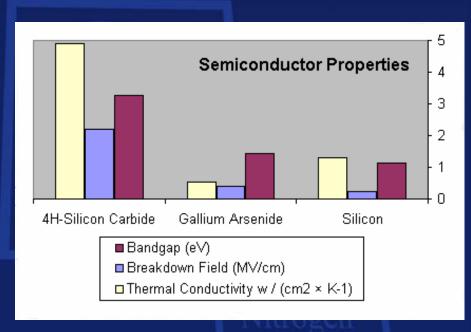
Anant Agarwal, Brett Hull, Jim Richmond, Mrinal Das, Bob Callanan, Jon Zhang, Joe Sumakeris, Al Burk, Mike O'Loughlin, Adrian Powell, Mike Paisley, and John Palmour

> Cree, Inc. 4600 Silicon Drive Durham, NC 27703; USA

david_grider@cree.com

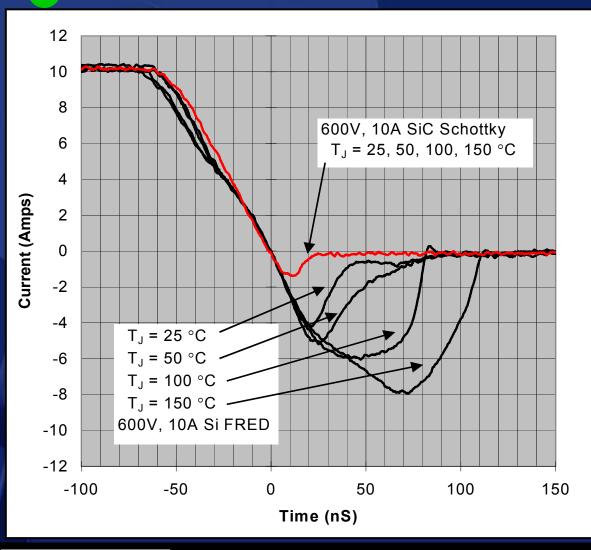
SiC Power Devices

- SiC Material Advantages for Power
- 1200 V JBS Diodes
- 1200 V SiC DMOSFETs
- SiC Device Scaleup & Yield Improvement
- 10 kV SiC DMOSFETs
- SiC PiN Diodes, p-IGBTs, and Thyristors


SiC Materials Advantages For Power Device Technology

10X Breakdown Field of Si

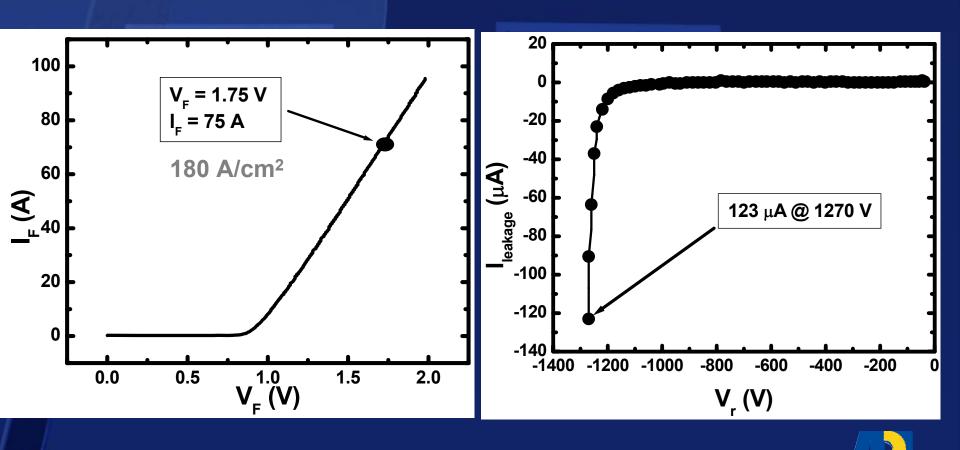
- Tradeoff higher breakdown voltage
- Lower specific on-resistance
- Faster switching


3X Thermal Conductivity of Si – Higher current densities 3X Bandgap of Si

Higher temperature operation

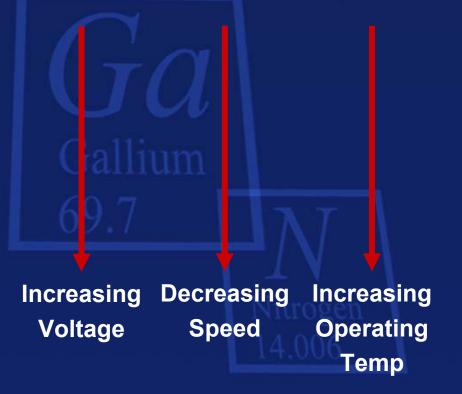
600 volt SiC Schottky and Si PiN Diode Reverse Recovery Comparison

- <u>Si PiN Diode</u> Reverse recovery increases with temperature, slew rate and forward current
- <u>SiC Schottky</u>
 Virtually no reverse recovery, regardless of temperature, slew rate,


1200 V 75 A JBS diodes

1200 V / 75 A

1200 V / 75A diode I-V Characteristics



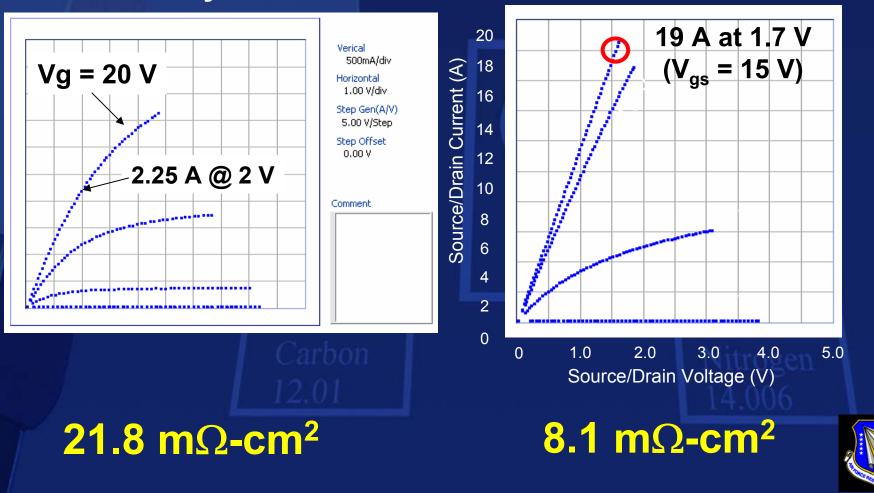
A SiC Switch Is Required For Even More Efficiency Improvement

SiC Power Switches Currently Being pursued:

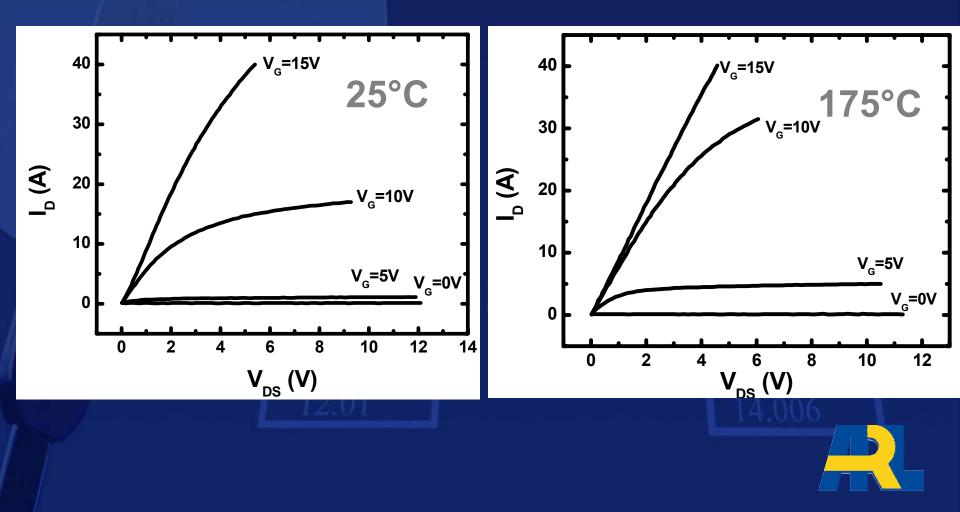
DIMOSFETs
UMOSFETs
Vertical JFETs
IGBTs
BJTs
Thyristors/GTOs

Double Implanted MOSFET (DMOSFET)

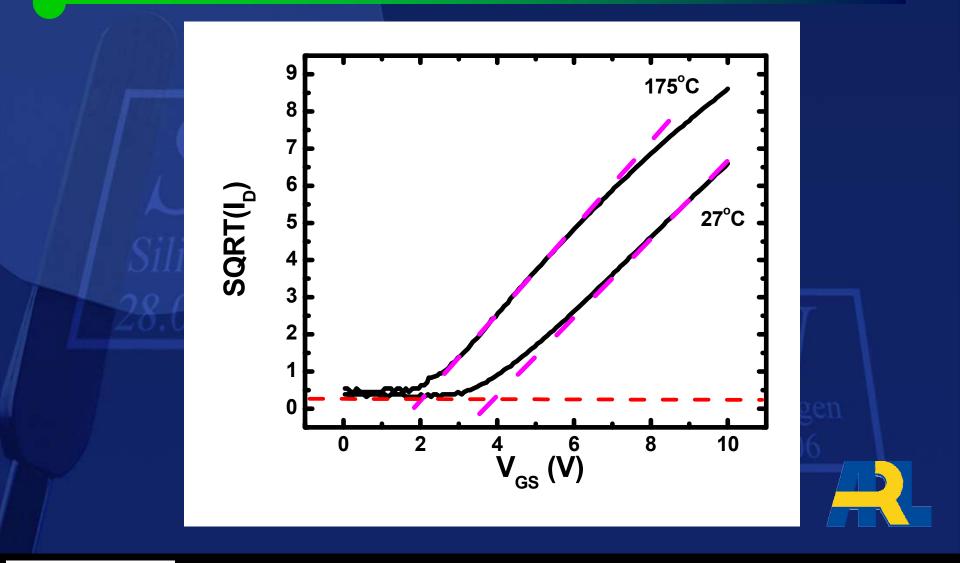
Pursuing DMOSFET As Switch From 600V Up To 10kV **DMOSFET** Requirements Low R_{on,sp} **Low Conduction Losses High Switching Speed** Low Switching Losses ۲ **Manufacturable High-**• **Yield Design/Process**


Acceptable Reliability

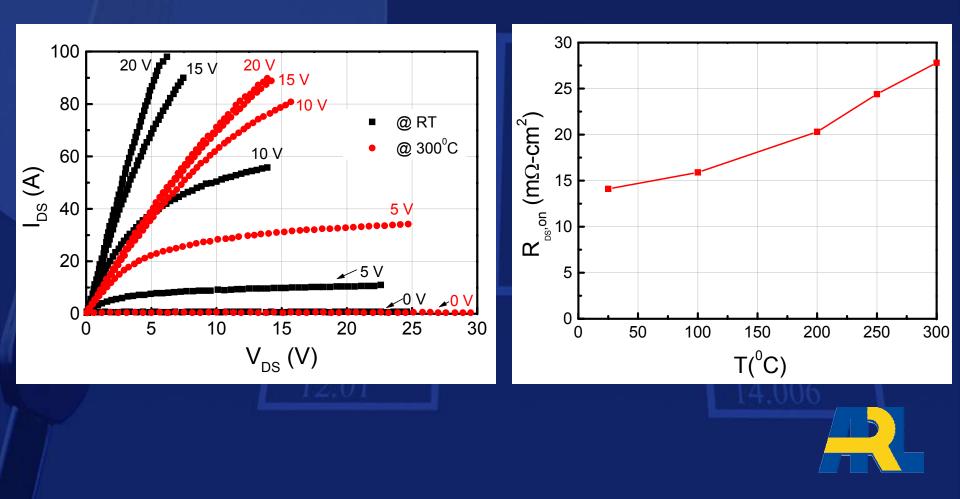
Dramatic Reduction in 25 °C 1.2 kV DMOSFET On-Resistance


January 2004

March 2006



1200 V/15 A SiC Power MOSFET – DC Data



V_{TH} Reduces from 4 V to 2 V at 175°C

High Temp DC Data – R_{ON} doubles at 300°C

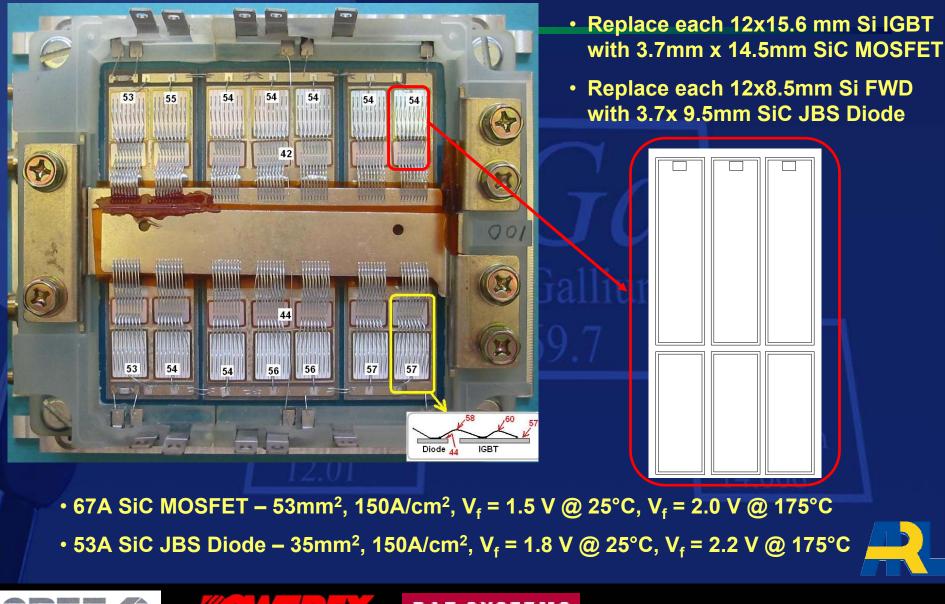
Comparison of Switching Energy of 1200V SiC DMOSFET and Si IGBT

SiC MOSFET	Turn-on 25 °C 201 μJ	Turn-on 150 °C 173.5 μJ	Turn-off 25 °C 57.8 μJ	Turn-off 150 °C 60.2 μJ
Si IGBT	239 µJ	315 µJ	565.9 µJ	1200 µJ

- SiC MOSFET total switching loss:
 - 258.8 µJ @ 25 °C
 - 233.7 μJ @ 150 °C
- Si IGBT total switching loss:
 - 804.9 μJ @ 25 °C
 - 1515 μJ @ 150 °C

Cree C2D10120 1.2 kV / 10 A SiC Schottky used in both cases as inductor diode

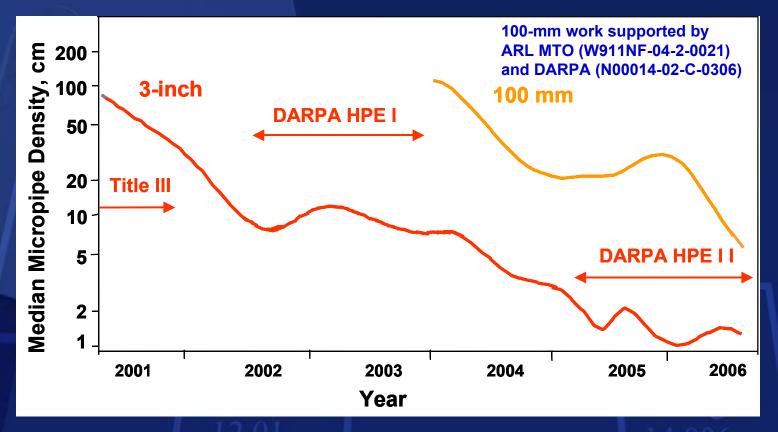
Comparison of Switching Losses of 1200V SiC DMOSFET and Si IGBT


- SiC MOSFET has substantially lower inductive switching losses than competitive Si IGBT especially at high temperature,
 At 25 °C, total inductive switching loss of SiC DMOSFET is less than 1/3 of Si IGBT
 Turn-on losses are similar and turn-off losses are about 1/10 of Si IGBT
 At 150 °C, total inductive switching loss of
 - SiC DMOSFET is less than 1/6 that of a Si IGBT
 - Turn-on losses are about 1/2 and turn-off losses are about 1/20 of Si IGBT

Next Steps ⇒ -Scale Up & Cost Reduction -Insertion Into SiC Power Modules Primary Concern ⇒ Yield

All SiC Dual 1200V/1400A Module w/ 67A MOSFET Die

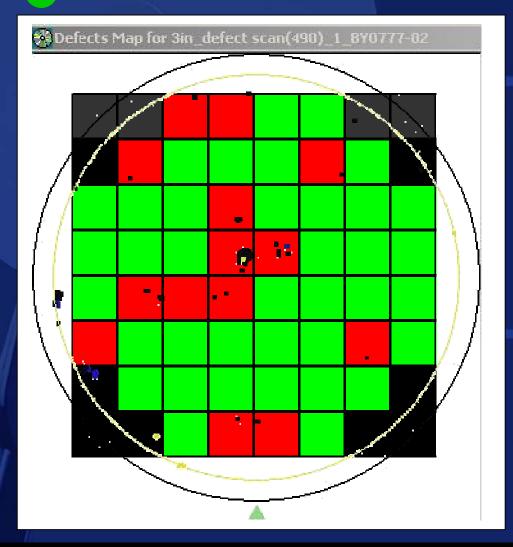
BAE SYSTEMS Creating Technology That Creates Solutions


Producibility of 1200V SiC Power Devices

High Quality SiC Material for SiC Power Devices

- Reduced 4HN-SiC Micropipe Density for Increased SiC Power Device Yield
- Pre-Screening of SiC Substrate and Epi Material for Enhanced SiC Power Device Yield
- Improved SiC Power Device Fabrication
- Large Area SiC DMOSFET Devices
 - 10A/9kV SiC DMOSFETs
- SiC DMOSFET Stability and Reliability

Cree SiC Micropipe Density Dramatically Reduced For Enhanced SiC Device Yield

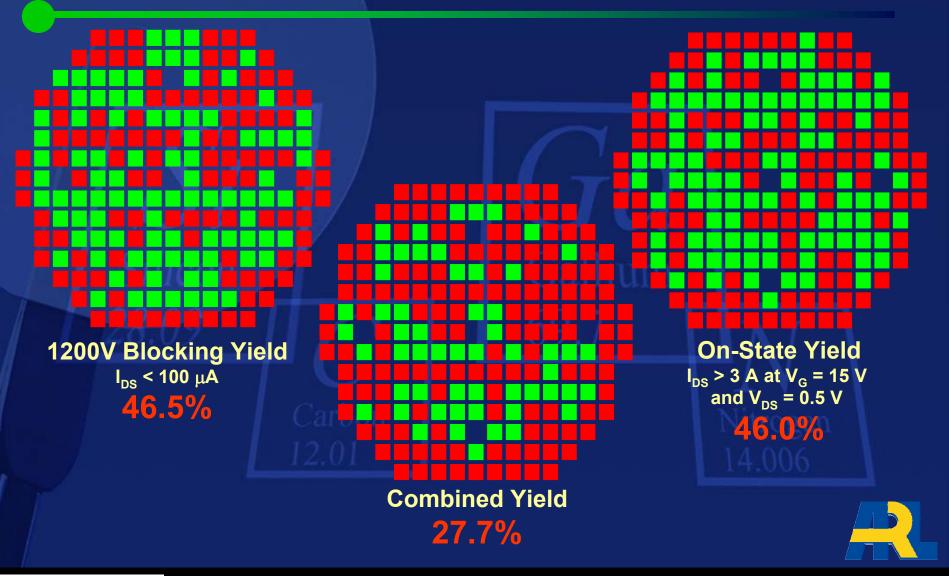


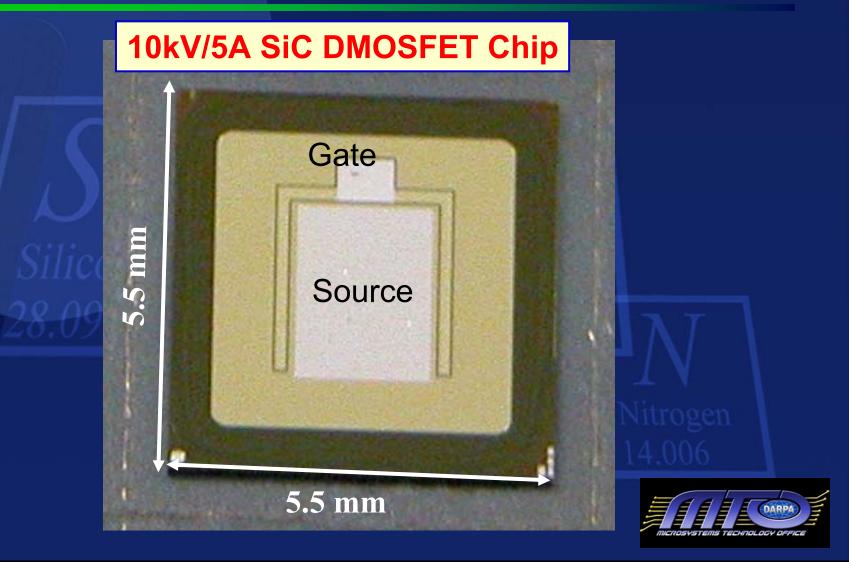
Cree Monthly Median Production SiC Substrate Micropipe Density (MPD)

Zero Micropipe Density 3-inch 4HN SiC Wafer Demonstrated!

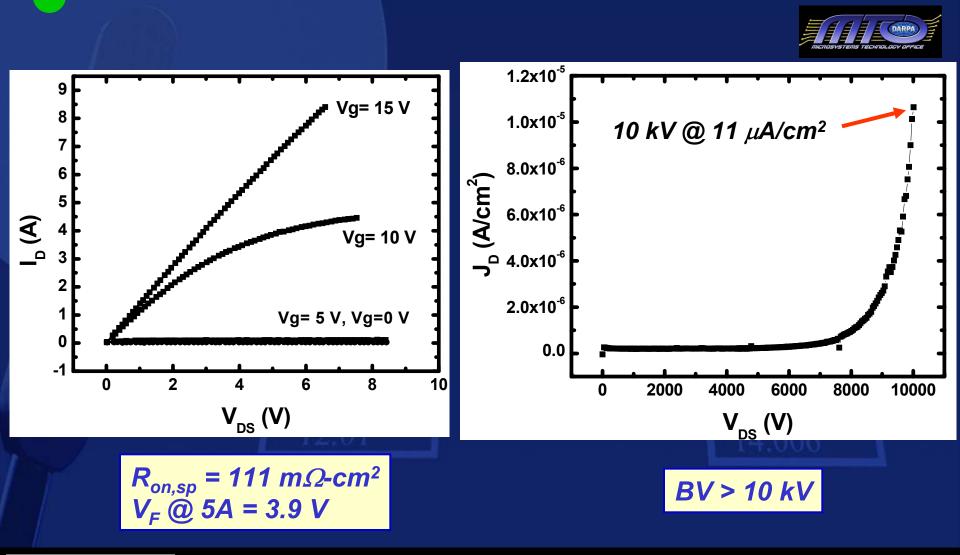
Pre-Screening of SiC Material To Maximize SiC Device Yield

- Distribution of Catastrophic SiC Material Defects Determined by Candella Tool
 - SiC substrate & epi defects
 - 2.31 defects cm⁻² on this wafer
- Project 8x8 mm SiC Devices on Candella Material Defect Map
- Provides Estimate of SiC
 Device Yield From Material
 Defect Distribution

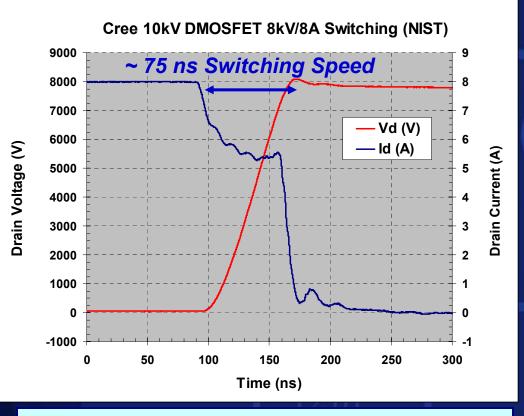

- 73% material yield on this wafer



15A/1200V SiC DMOSFET Device Yield Maps

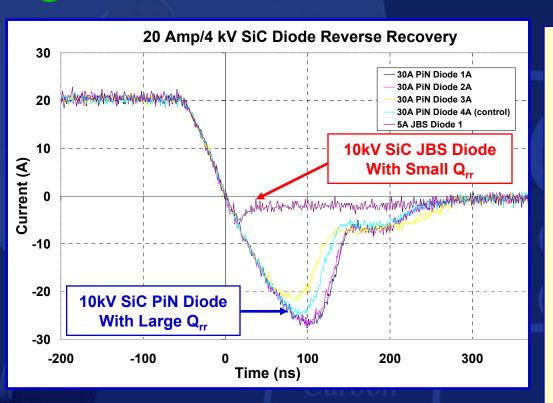


10kV SiC DMOSFET Area Scaled Up By Factor of 36x During HPE-II



10kV/5A 4H-SiC DMOSFET Forward & Reverse Characteristics

10kV SiC DMOSFET Demonstrated For 20 kHz Switching of SiC Module



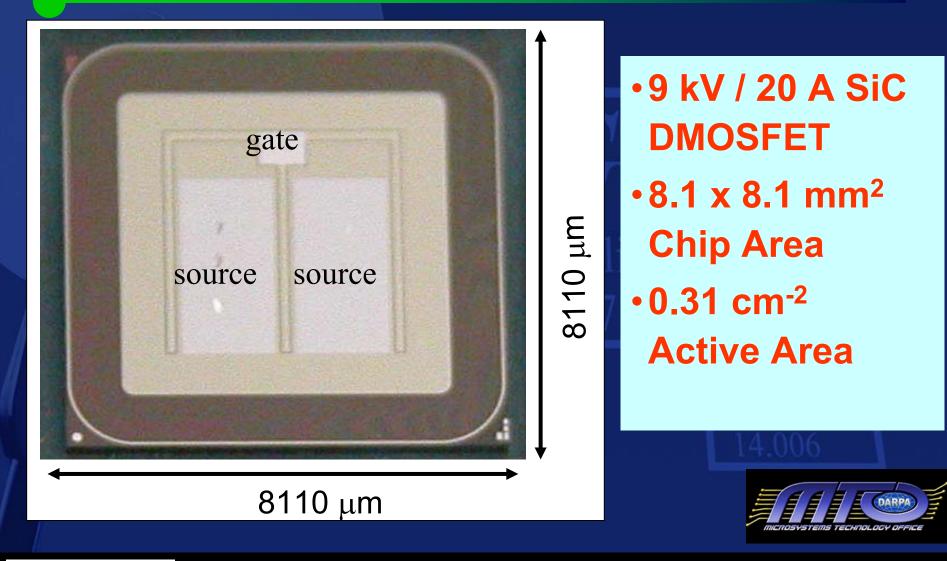
Measured Switching Speed of ~ 75 ns for 10kV SiC DMOSFET at 25°C

- 10kV/10A SiC DMOSFETs Have Been Demonstrated
- 10kV SiC DMOSFETs
 Capable of T_i = 200°C Operation
- 10kV SiC DMOSFETs Have Switching Speed ~ 75 ns
- Enables 20kHz Switching of 10kV SiC Half H-Bridge Module
- Remaining Issue –
 10kV SiC DMOSFET Needs to Be Scaled Up to 20A with 30% Yield

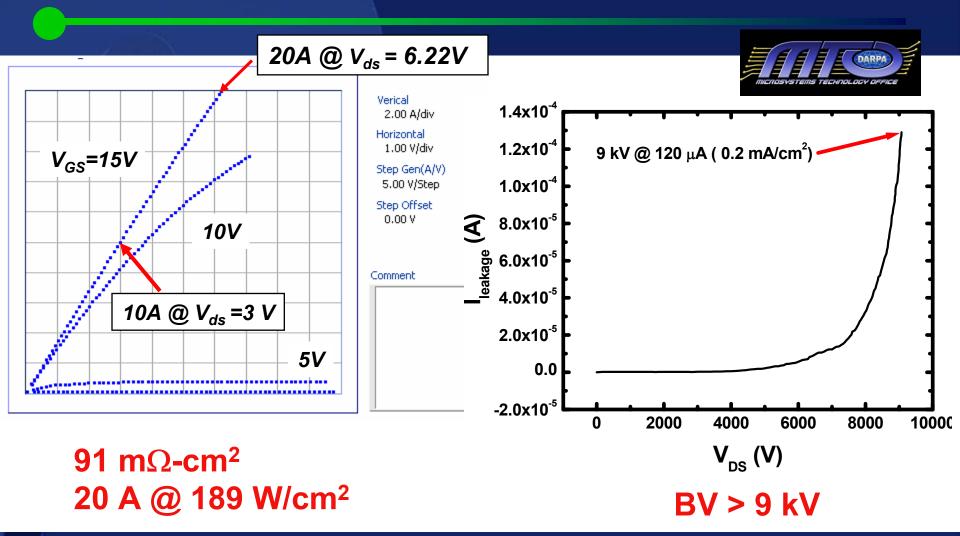
10kV SiC JBS Diode Demonstrated For 20 kHz Switching of SiC Module

10kV/20A SiC JBS Diode Has Much Smaller Reverse Recovery and Higher Switching Speed Compared to PiN

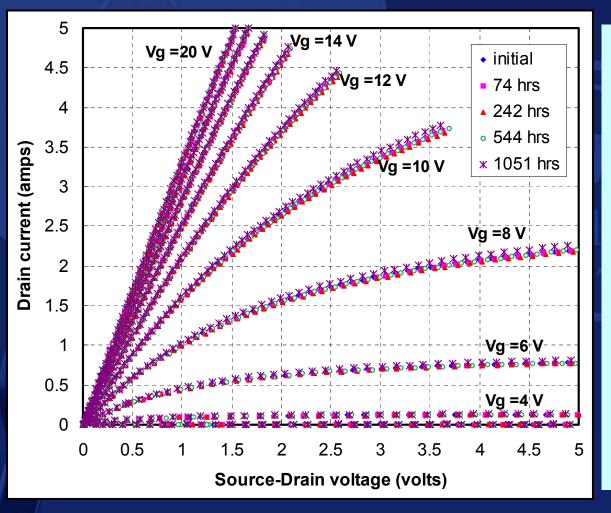
- SiC PiN Reverse Recovery Energy Dissipated On SiC DMOSFET
- Solution Use SiC Junction Barrier Schottky (JBS) Diodes With Much Smaller Reverse Recovery (Q_{rr}) and Higher Switching Speed
- HPE-II Refocused on 10kV/20A SiC JBS Diodes
- 10kV/5A SiC JBS Diodes Have Been Demonstrated with Single Wafer Blocking Yield > 40%
- Remaining Issue 10kV SiC JBS Diode Needs to Be Scaled Up to 20A with 30%Yield



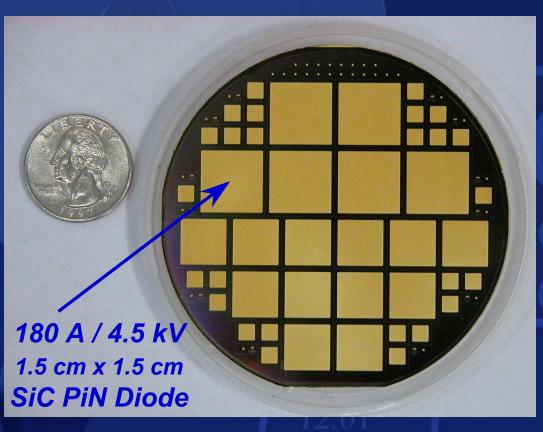
10kV 20A Dual SiC MOSFET Module



Demonstrated Capability of Fabricating Large 9kV SiC DMOSFET Devices

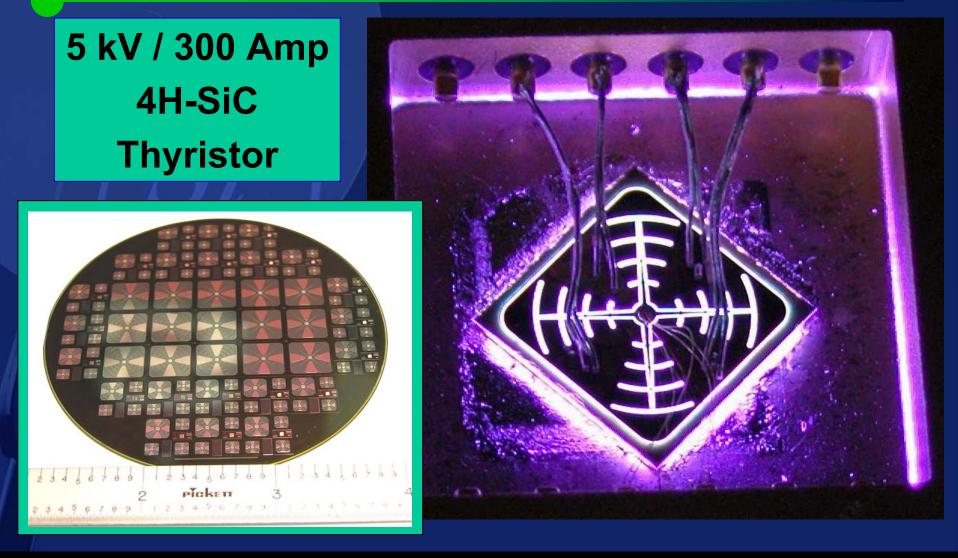


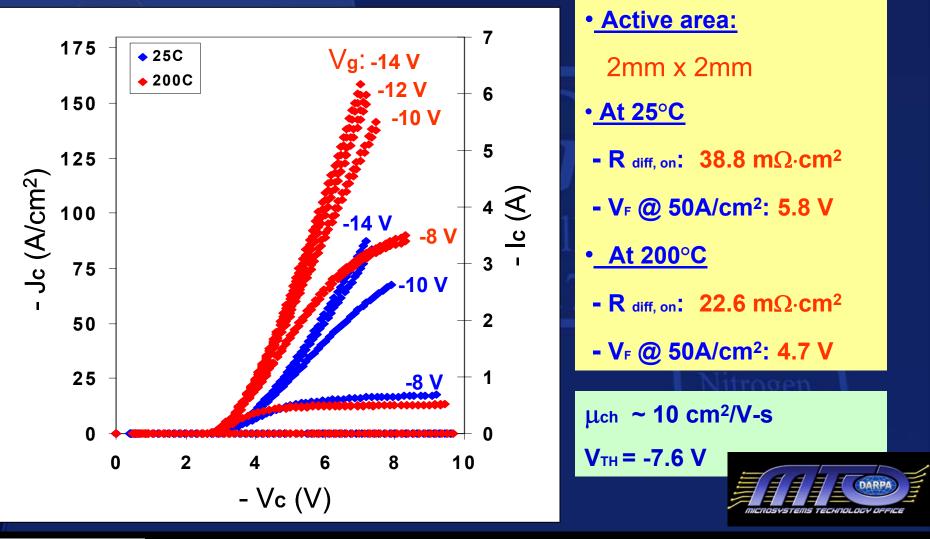
9kV/20A 4H-SiC DMOSFET Demonstrated


Stability of 1200V/5A SiC DMOSFETs Under High Temp Forward Gate Bias Stress

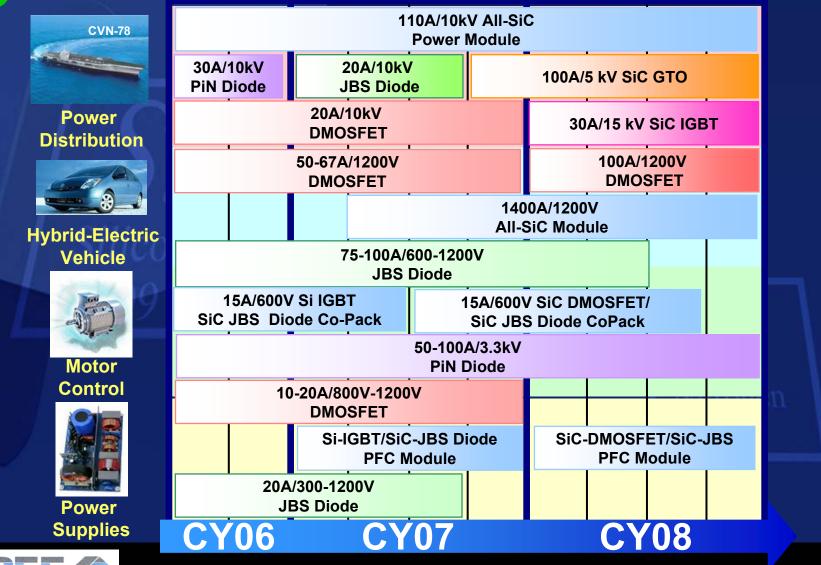
- Forward Gate Bias Stress of Packaged 1200V/5A SiC DMOSFETs (0.0753 cm²)
 - Stressed at 175°C $V_a = 15 V$
 - Source/Drain Grounded
 - Similar to Si MOSFET Stress
 Test Adjusted for Oxide Field
- SiC DMOSFETs Cooled to RT and Remeasured
- 1200V SiC DMOSFET
 I-V Curve Remains Virtually
 Unchanged Up To ~ 1050 Hrs
 High Temp Forward Gate
 Stress

180 A / 4.5 kV SiC PiN Diode


- Largest SiC Device Demonstrated
- Over 65% Device Yield
 On 3-inch 4HN-SiC Wafer
- 1.5 cm x 1.5 cm SiC PiN Diode Blocking Voltage Limited by Thinner Blocking Layer
- Result of High Quality Material Growth and Device Fabrication
- Demonstrates That Large Area SiC Power Devices Can Be Fabricated With Good Yield



1 cm x 1 cm SiC Thyristor



2mm x 2mm 7.5 kV 4H-SiC p-IGBT Forward Characteristics

SiC Power Technology Roadmap

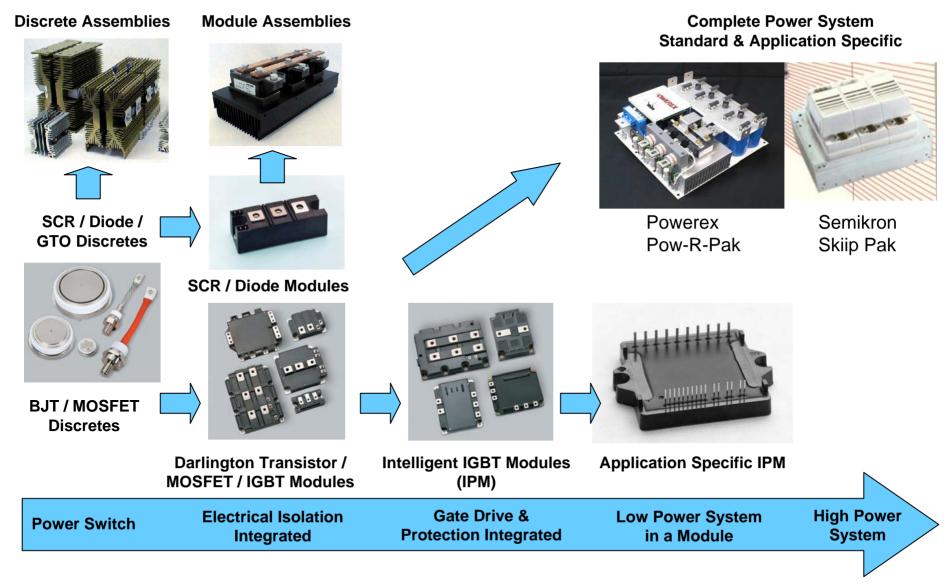
Creating Technologies That Create Solutions

Silicon Carbide The Material Difference

Power Module Packaging & Integration

Scott Leslie Chief Technologist

John Donlon Applications Engineer

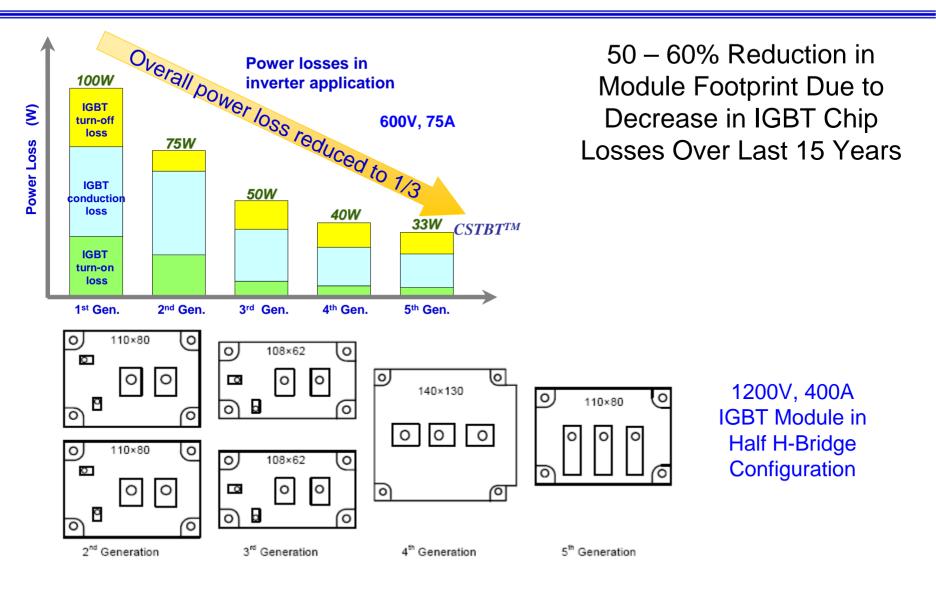


Power Semiconductor Module Integration - Outline

- Trends in IGBT Chip Technology
 - Size, Voltage, Power Losses & Frequency
 - Impact on Packaging
- Intelligent Power Modules
 - Integrating Gate Drive & Protection Features in the Module Package
- System in a Module
 - Further Integration of System Components within a Module Package
- High Voltage Power Modules
- Integrating Chip Cooling in the Module
- Integrated Power Sub-Systems

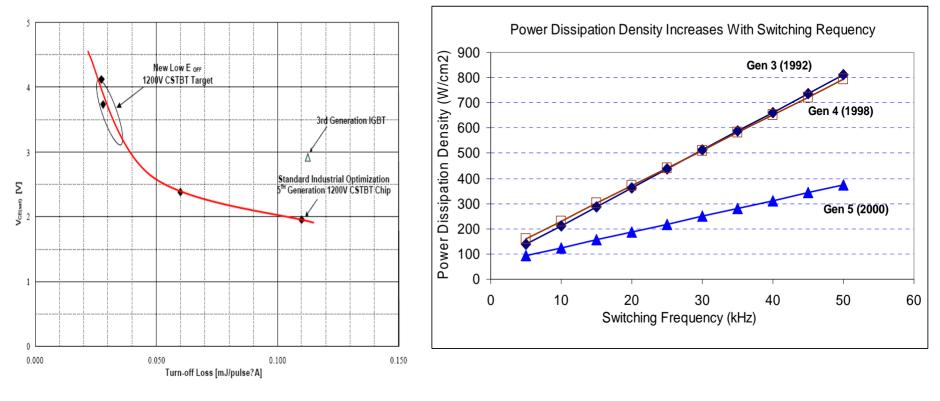
Power Semiconductor Device Evolution

IGBT Chip Design Evolution



- Vertical channel requires less area compared to the horizontal channel of planar structure
- No R_{JFET} between adjacent cells

- Greater cell density
- More uniform current flow through chip
- Robust Turn-Off Switching Capability
- Greater cell density
- Lower V_{CE(SAT)}

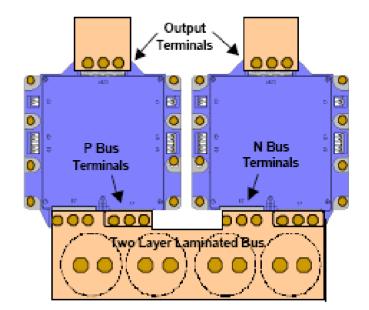


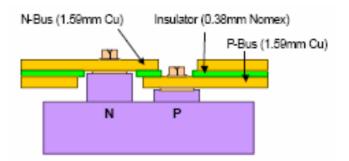
More Switching Power in a Smaller Package

IGBT Switching Frequency Now Up to 50 kHz

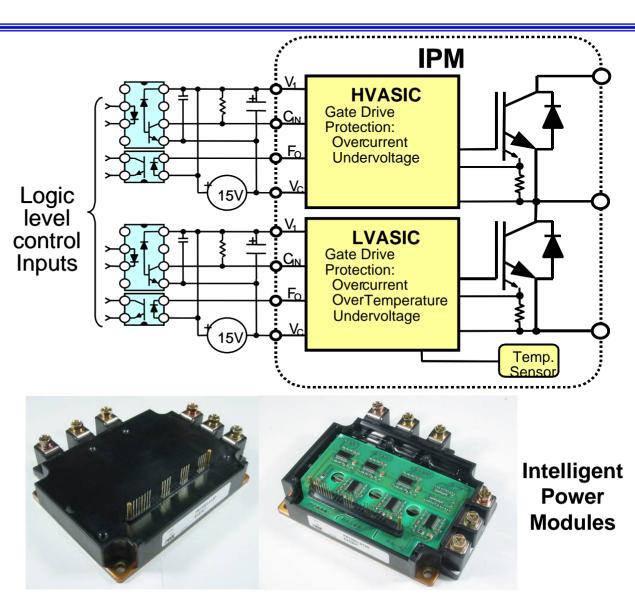
Conduction vs Switching Loss Trade-Off

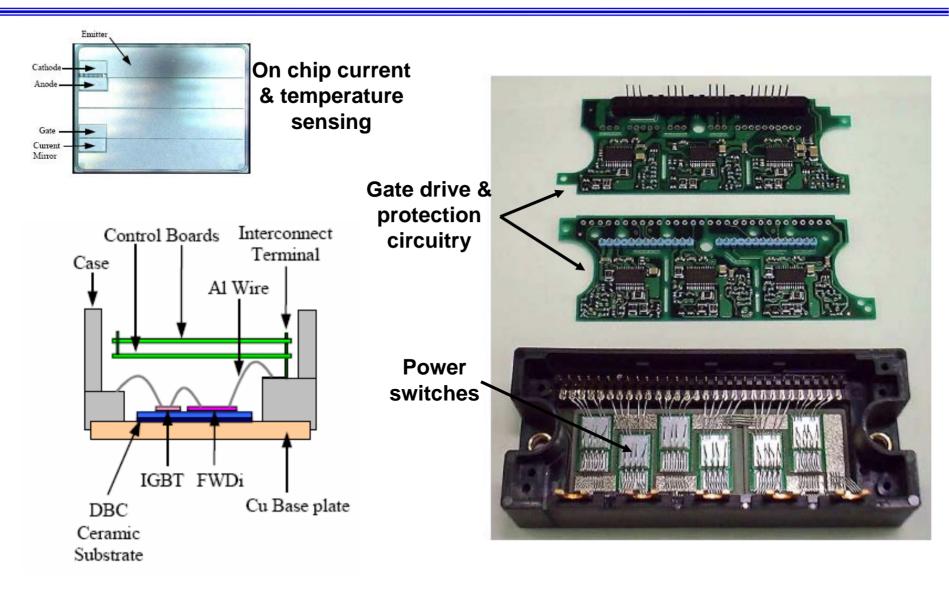
Vcc = 600V, Ic = 100A, 50% Duty Cycle -- Calculated




Module Design Reduces System Inductance & Complexity

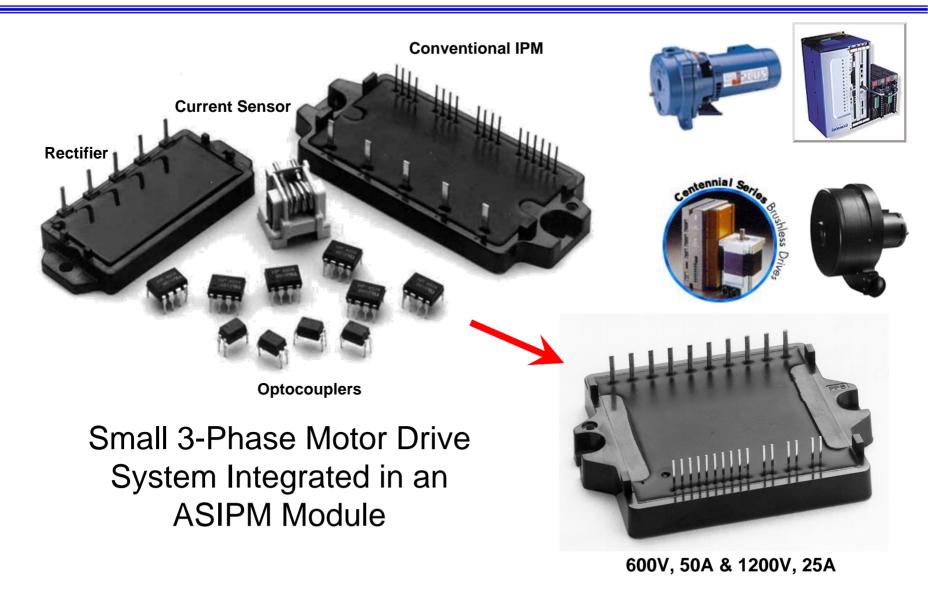
1200V, 900A Mega Power Dual IGBT Module with Internal Laminated Bus




Integrated "Intelligent" Power Module = IGBT + Smarts

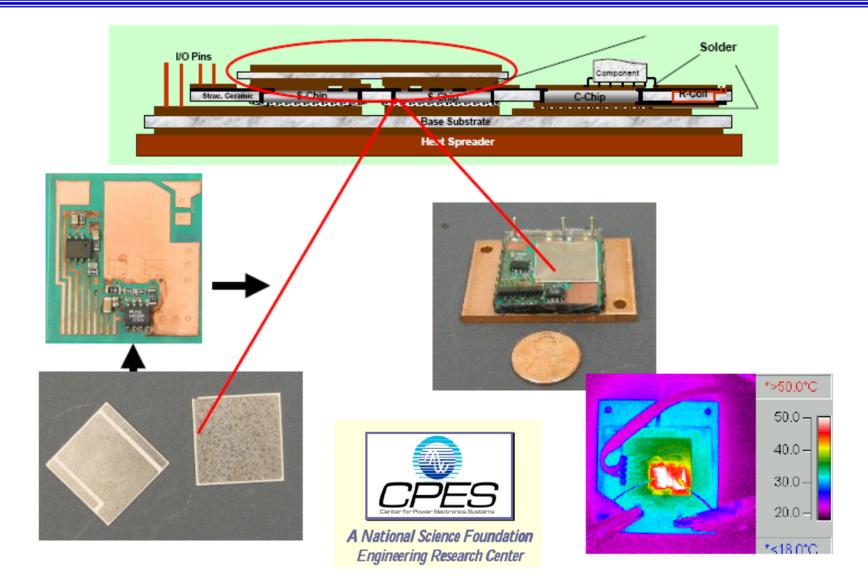
- Gate drive, temperature sensing & protection elements are integrated in the power switch package
- Protection for:
 - Overtemperature
 - Overcurrent & short circuit
 - Low/high gate supply voltage
 - Fault signal feedback
- Improves switch performance since protection functions are integrated in package

IGBT Module Integration – Sensing & Protection

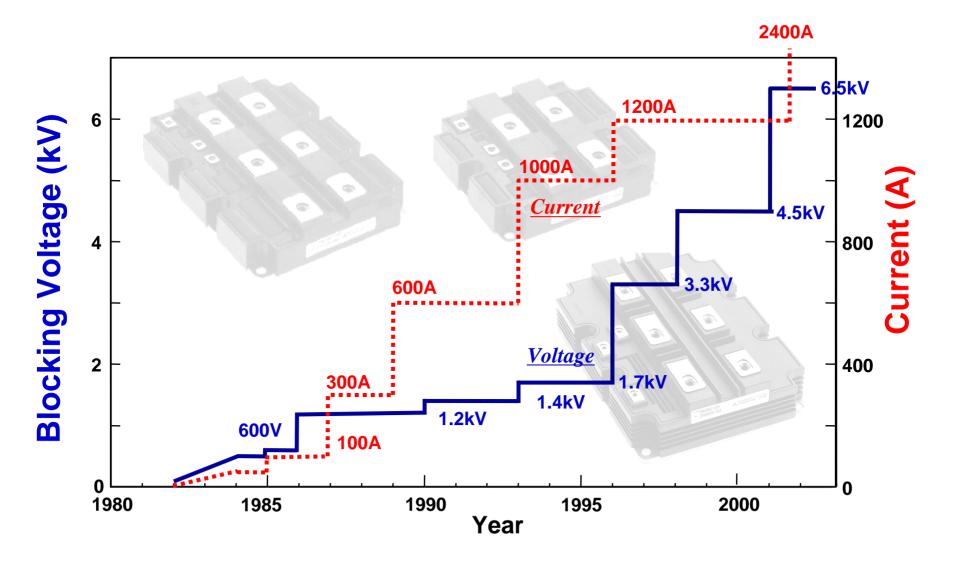


Fault Types & Intelligent Power Module Countermeasures

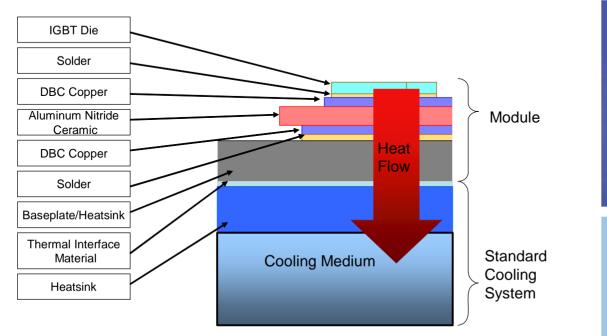
- Chip Overtemperature
 - Gate Drive Turns IGBT Off Fault Signal Sent to Controller
- Over Current/Short Circuit
 - Short Circuit & RBSOA (Switching Protection)
 - Gate Drive Turns IGBT Off Fault Signal Sent to Controller
- Gate Drive Supply Under Voltage
 - Gate Drive Turns IGBT Off Fault Signal Sent to Controller

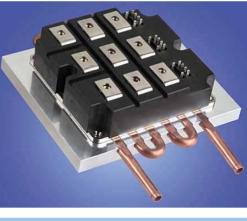


Complete Power System Integration in a Module

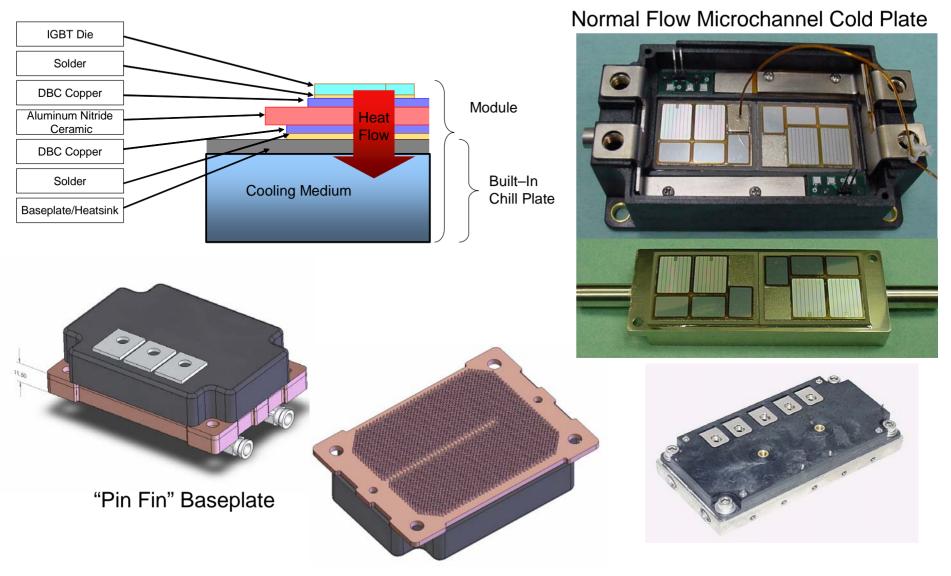


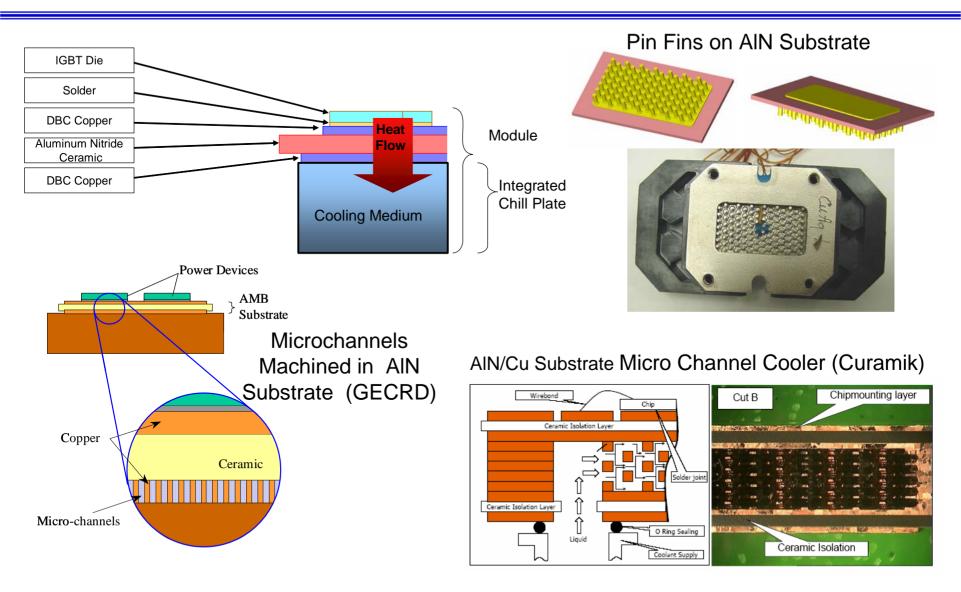
Integration of Passives in Power Semiconductor Modules



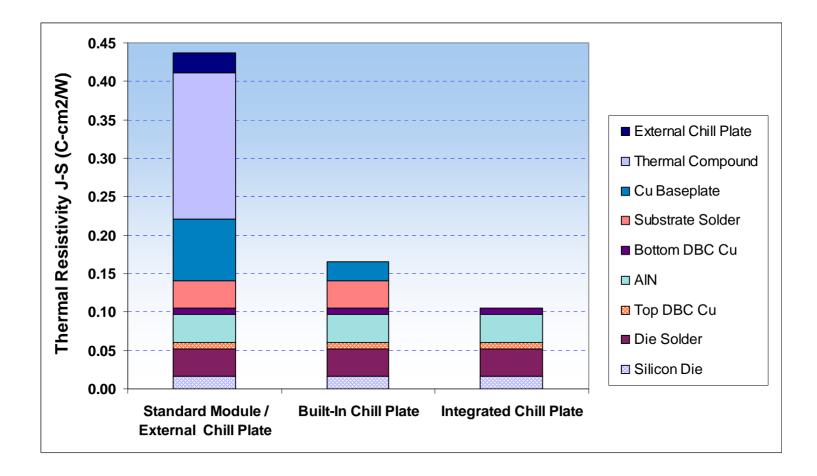

HV-IGBT Voltage Ratings Now Up to 6.5kV

Standard Power Module Cooling



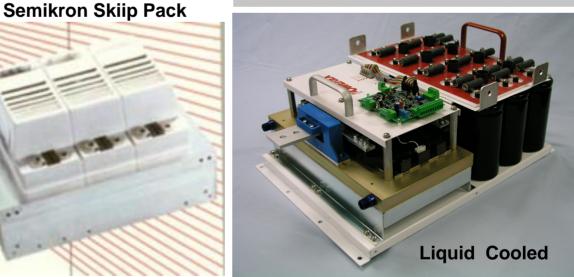


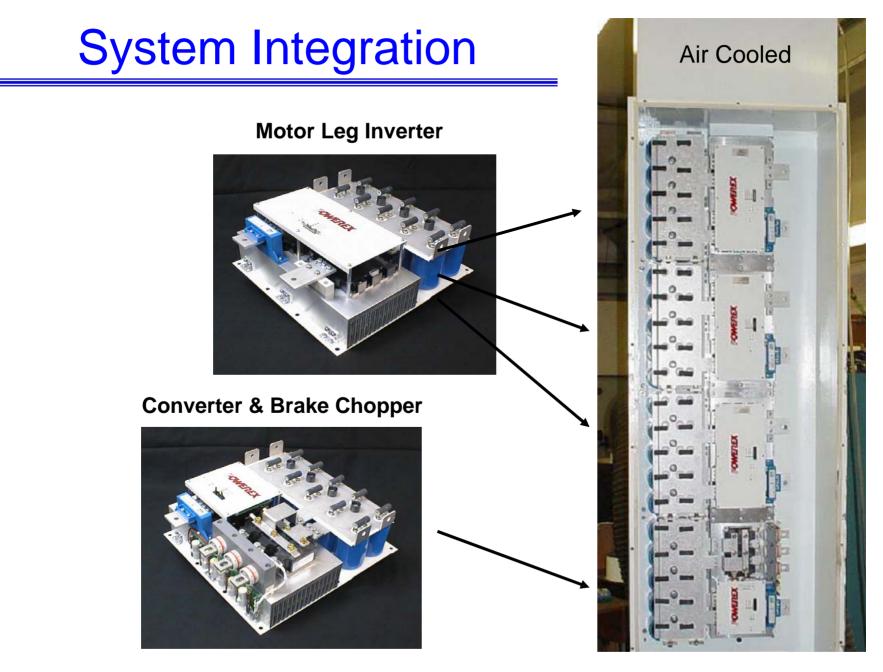
Modules with Built-In Heatsink – Reduced Heat Flow Path



Modules with Integrated Heatsink – Reduced Heat Flow Path

Thermal Resistivity Comparison of Paths to Cooling Medium




Assembly Subsystems – Beyond Systems in a Module

- Power switches
- Energy storage devices
- Current sensing
- Gate drives
- Protection
- Cooling

Power Module Packaging & Integration

Scott Leslie Chief Technologist

John Donlon Applications Engineer

MULTI-MEGAWATT HIGH FREQUENCY POLYPHASE NANOCRYSTALLINE TRANSFORMERS*

W. A. Reass, D. M. Baca, and R. F. Gribble Los Alamos National Laboratory
P.O. Box 1663, Los Alamos, NM 87545, USA

Jan 2007

Contact Information: William A. Reass; Phone: 505-665-1013, E-mail: <u>wreass@lanl.gov</u> David M. Baca; Phone: 505-665-8355, E-mail: <u>dbaca@lanl.gov</u>

* Work supported by the Office of Basic Energy Science, Office of Science of the US Department of Energy, and by Office of Naval Research

Abstract

High frequency power transformer designs now provide a viable method to significantly reduce the physical size, weight, and footprint as compared to conventional 60 Hz power transformers. In addition, recent developments in transformer core materials also give the ability to operate at high flux densities (> 1T) with excellent efficiencies. These authors prefer amorphous nanocrystalline alloy that provides the highest flux swing and lowest loss in the 20 kHz frequency range. The amorphous nanocrystalline alloy is a glassy amorphous spin-cast material available in ribbon tapes from various vendors. The tapes are then wound into the desired shapes and then processed to achieve the nanocrystalline structure. A cut-core design gives a simple transformer fabrication and assembly topology without a significant loss of electrical performance. Further optimizations can improve efficiency and/or size, depending on the specific application or requirement.

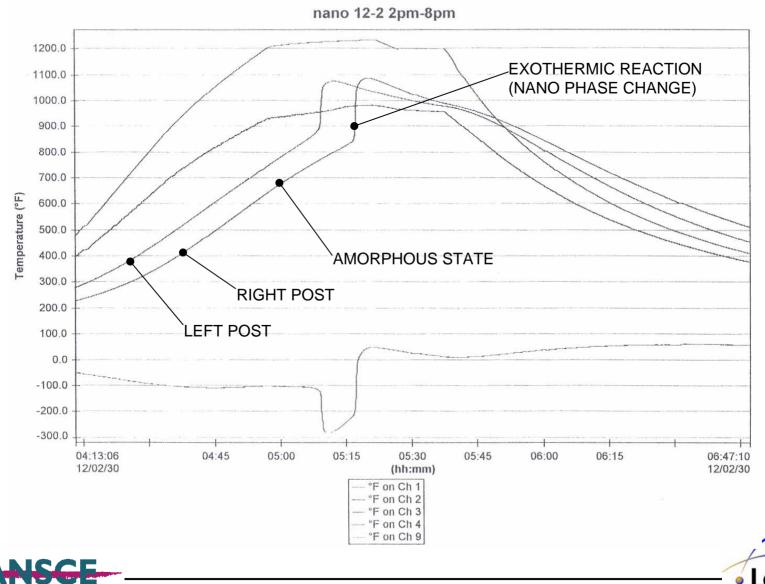
High Frequency Nanocrystalline Transformers Are Over 150 Times Lighter And Significantly Smaller (At Same Power)

HVCM Transformer

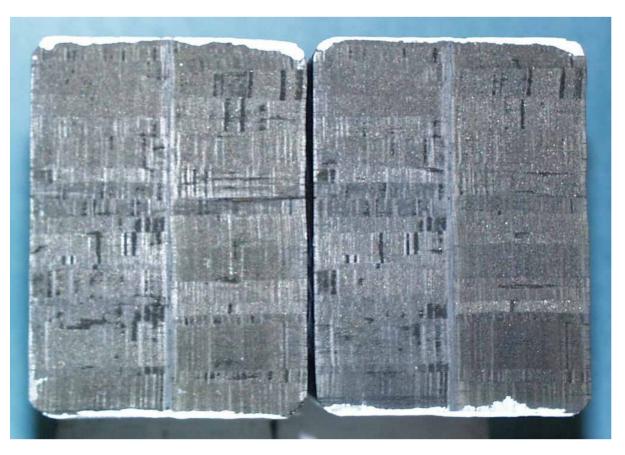
- 150 kV, 20 KHz
- 20 Amp RMS
- 1 MW Average (3) Present Use
- <u>450 LBS for 3</u>
- 3 KW Loss At 2 MW
- "C" Core Design (Parallel Windings)

Typical H.V. Transformers

- 100 kV, 60 Hz
- 20 Amp RMS
- 2 MW Average
- <u>35 Tons</u>
- ~30 KW Loss


Nanocrystalline Transformer Development

- Funding Provided To Develop Manufacturing Processes
- Winding (Nano Shrinks ~1% During Processing)
 - Loose
 - Compressible Mandrel
- Process Regulation (Exothermic Reaction)
 - Temperature Control Feedback Controlled Oven Temperature
- Stack Lamination Insulation
 - Wet Lay-Up
 - Dry
- Core Cutting
 - Water Jet, EDM, Diamond Saw
- Core Annealing
 - Dimensional Stability
- Pole Face Lapping, Etching
 - Pole Face Stack Resistance
 - Eddy Current Losses

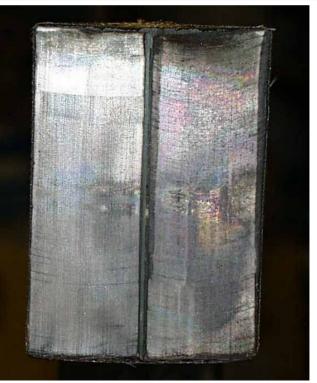

Nanocrystalline Core Phase Change

High Megawatt Converter Workshop_Jan. '07 (LAUR-07-0400)

Los Alamos Neutron Science Center

Russian EDM Cut Nano Core

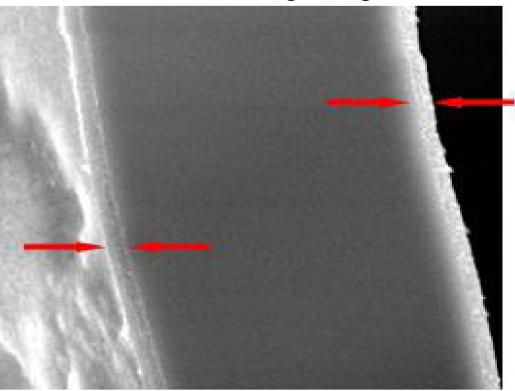
- Not A Good Process
- Significant Pole Face Pitting



VacuumSchmelze Cores

- Loose Lay-Up
- Poor Dimensional Characteristics
- Low Stacking Factor
- Wet Lay-Up
- Fiberglass Tape For Mechanical Strength

- Poor Adhesion
- Lamination Cupping
- No Pole Face Etching
 - Lower Pole Face Resistance

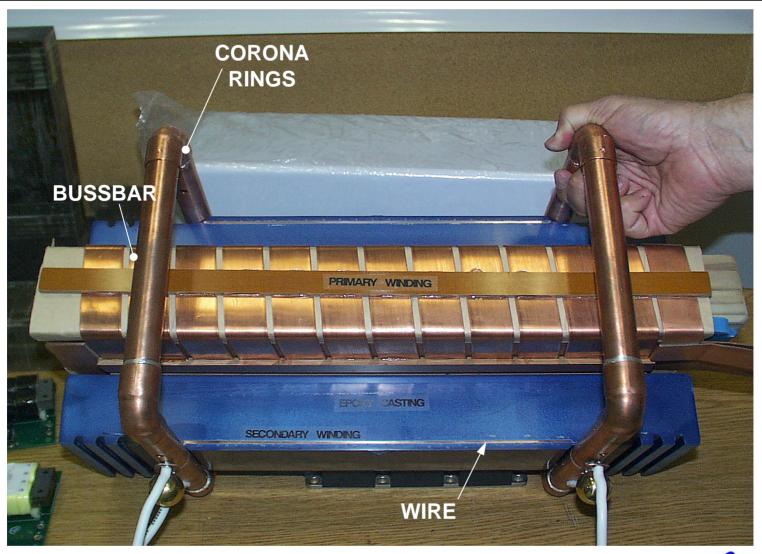


Nanocrystalline Transformer Development Results

Oxide Insulating Coating

Nano Material Characteristics

Mu	50,000
Lamination Thickness	.0007''
Lamination Insulation	<1 µM
Stacking Factor	~90%
Bsat	12.3 kG
Core Loss (our use)	~300 W
Core Weight (our use)	~95 lbs
Power (each core)	330 kW



- Near Zero Magnetostriction
 - No Significant Core Vibration Or Noise

Boost Transformer Winding Design (140 kV)

Recent Developments

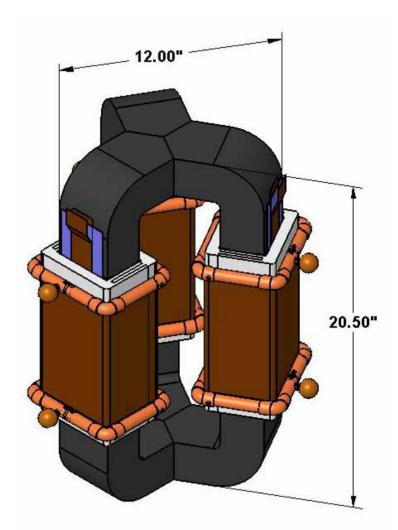
- Wider Strip Width
 - Improved Core Geometries
- Improved Manufacturing
 - Better Experience Base
 - Better Mechanical Fabrication Techniques
 - Can Possibly Manufacture Exotic Shapes
- Improved Electrical Performance
- More Vendors
 - Japan
 - Russia
 - Germany
 - China

Advanced Transformer Geometry

• Polyphase Y

• Ring And Bar

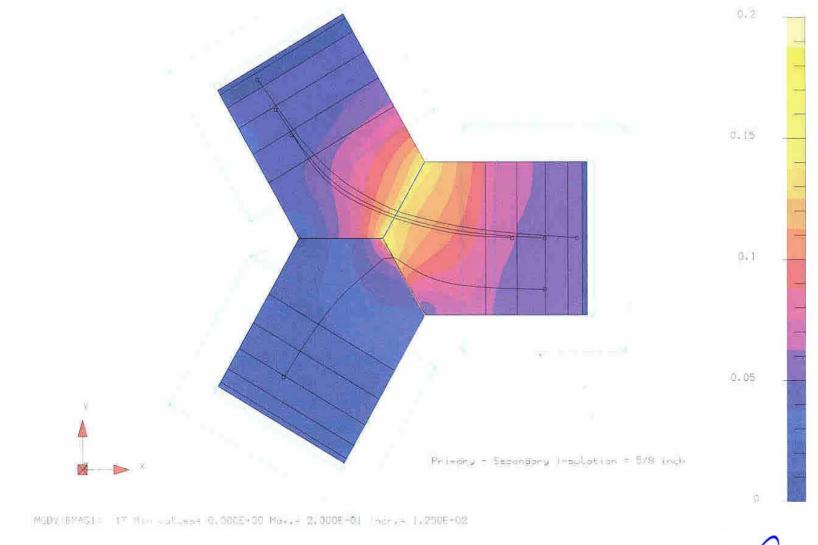
• Triangle And Bar


Polyphase Y

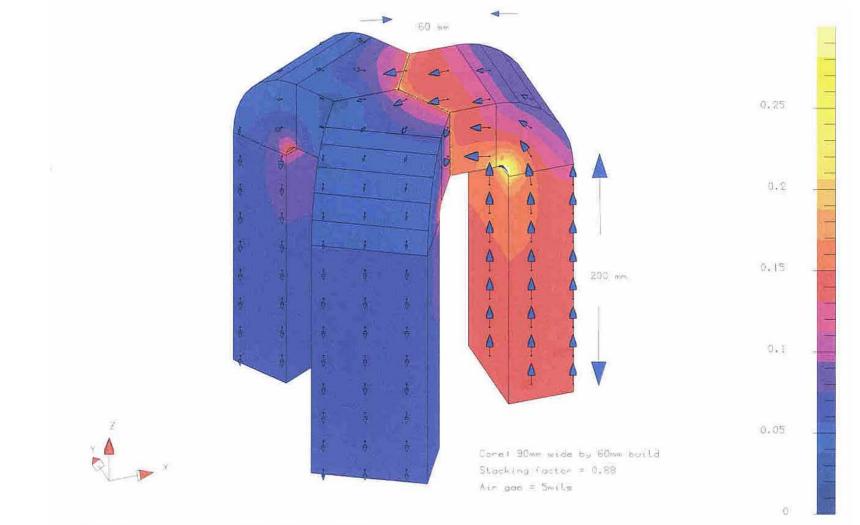
ADVANTAGES

- Good Flux Balance
- Highest Performance
- 2 Gaps Per Winding Pair

DISADVANTAGES


- Windings On Core
- Hard To Manufacture
- Sensitive To Tolerances
- Could Not Manufacture
 Previously

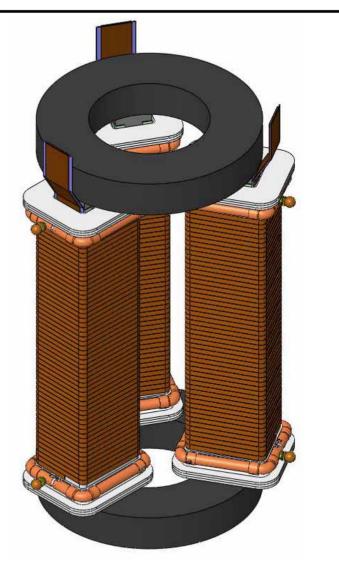
Flux Asymmetry Caused By Chamfer



High Megawatt Converter Workshop_Jan. '07 (LAUR-07-0400)

Flux Concentration On Inner ID

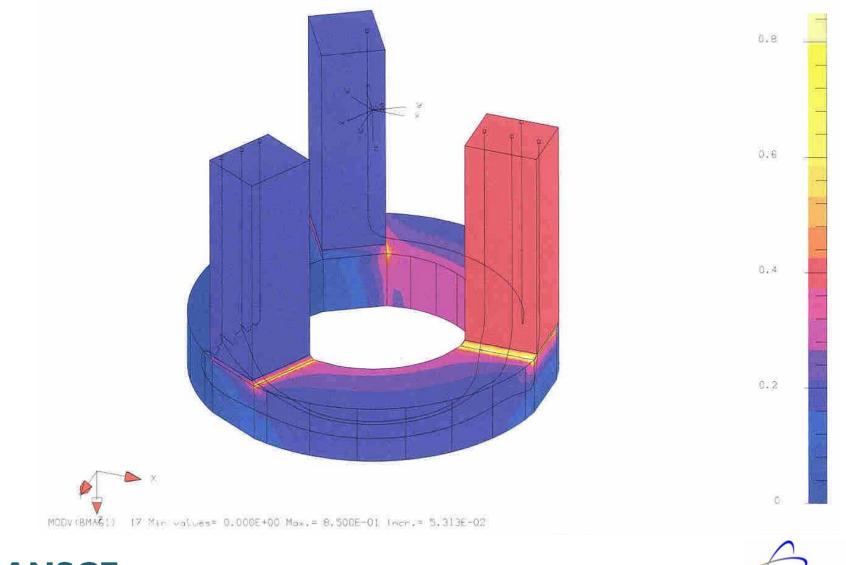
MODV(BMAGE) 17 Min values= 0.000E+00 Max.= 3.000E-01 Incr.= 1.875E-02

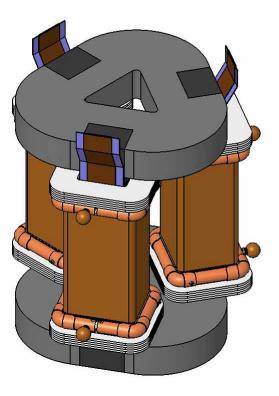

Ring Bar Transformer

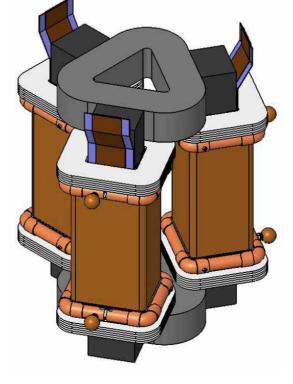
ADVANTAGES

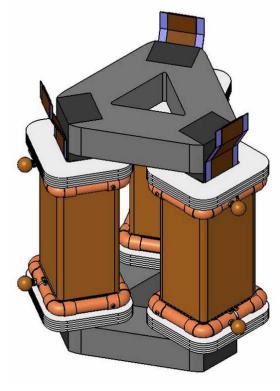
- Simple Topology
- Can Use Winding Bobbins

DISADVANTAGES


- Higher Reluctance Path
- 2X Core Gaps
- Mechanical Robustness (?)
- Secondary Tabs On Narrow Dimension

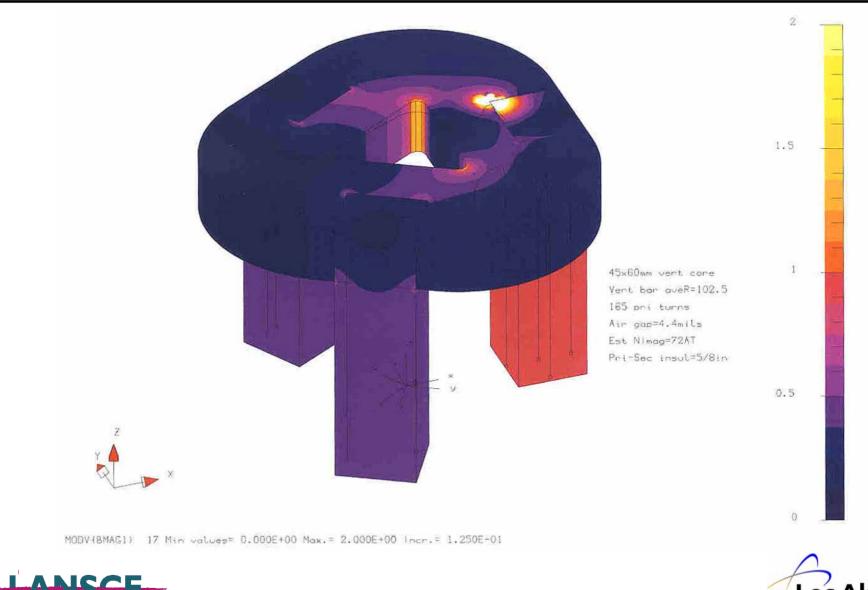

Some Flux Concentration At Interface



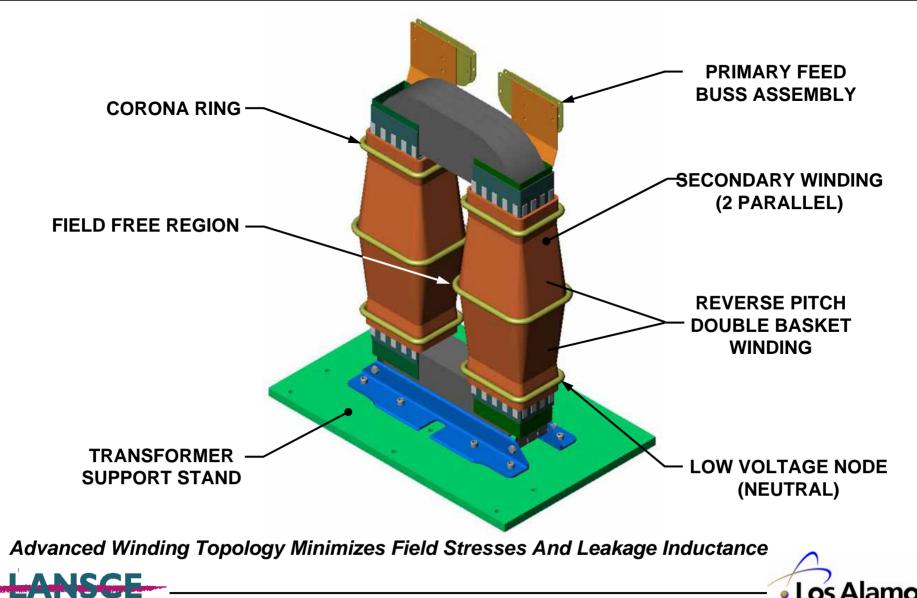

High Megawatt Converter Workshop_Jan. '07 (LAUR-07-0400)

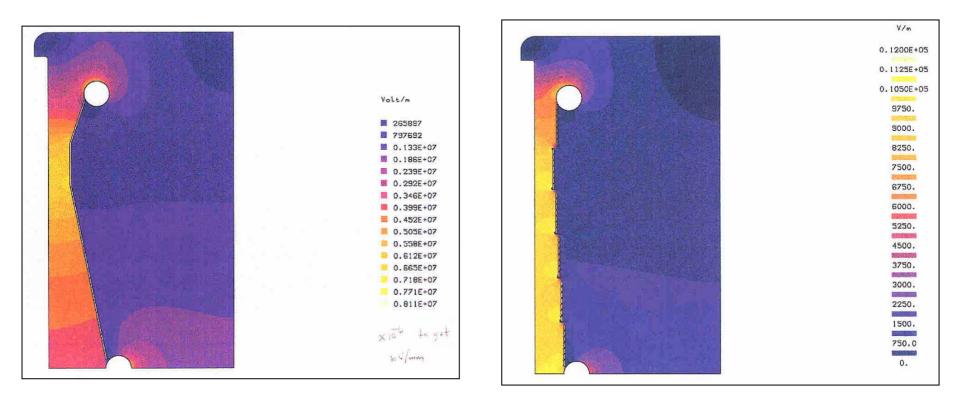
Triangular Bar Transformer Design Possibilities

OPTION 1


OPTION 2

OPTION 3


Flux Concentration At Corner And Interface

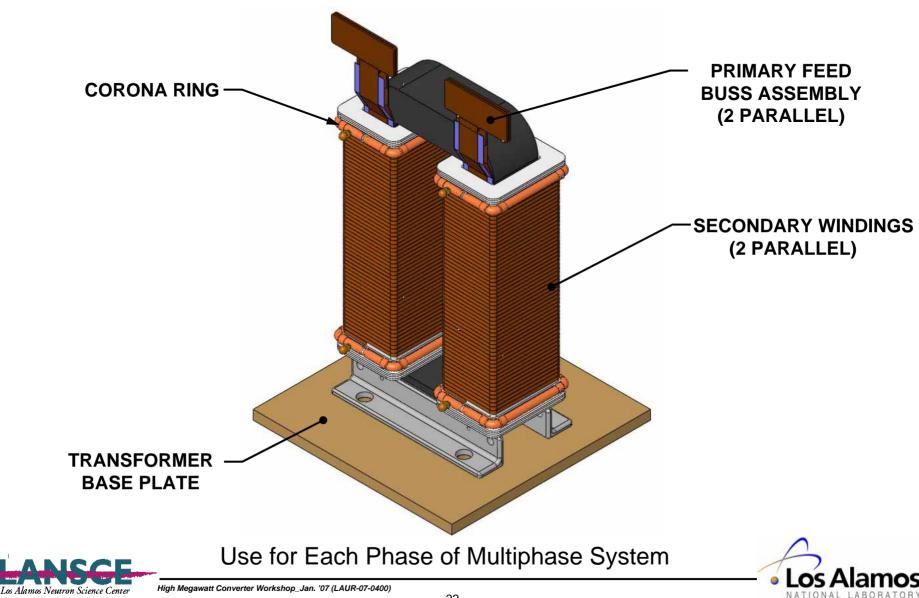

Los Alamos Neutron Science Center

C-Core Designs Offer Higher Efficiency

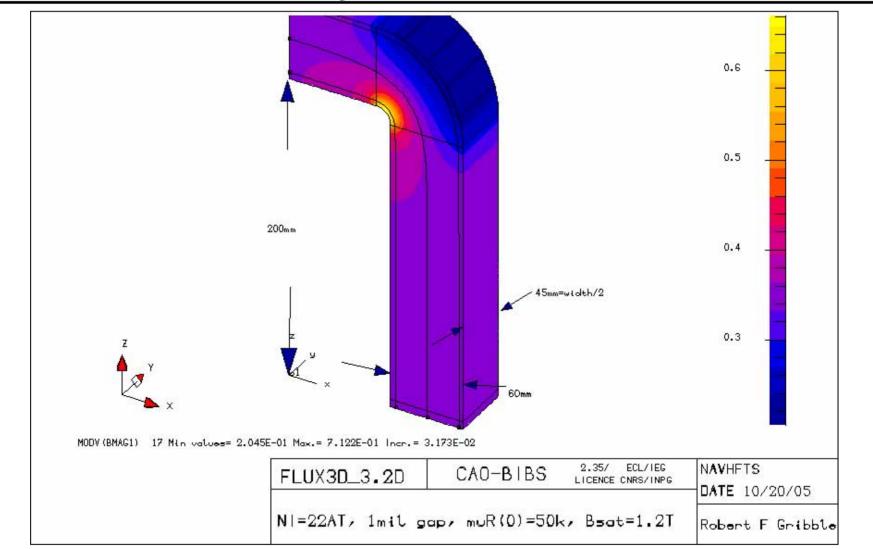
Los Alamos Neutron Science Center

Winding Taper Improves Performance

• Double Basket Design has Lower Field Stress


High Megawatt Converter Workshop_Jan. '07 (LAUR-07-0400)

- Lower Leakage Inductance (than single layer solenoid with same field stress)
- Minimized End Effects
- Hard to Wind
- Reduced Copper Strength

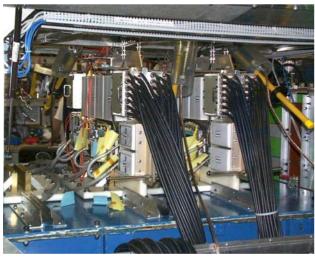


A Simple C-Core Design

"C-Core" Flux Density

Transformer Conclusions

- C-core designs probably best for multiphase (more than 3) systems
 - Can drop single phase to continue operation
- Advanced core designs probably best for demanding requirements at mid-power levels using a 3 phase converter topologies
- Winding techniques are also important
 - Reduce leakage inductance
 - Reduce field stresses



What We Should Also Accomplish

20 KHz, 10 MW Polyphase Pulsed Converter

20 KHz IGBT Switching Assemblies

- We Can Reconfigure Los Alamos 10 MW, 20 KHz Pulse Converter To Evaluate Transformers
 - Appropriate Utilities In Facility For Full Power Testing
- We Can Use Facility To Test Critical Components And Performance
- Converter Can Be Upgraded To 2.7 MW CW (Now > 1 MW CW)
- Use Facility To Test Designs
 - Catalog Performances
- Facility Is Unique

Conclusion

Los Alamos Has Delivered Multi-Megawatt Class High Frequency Converter And Transformer Systems To Multiple Institutions. We look Forward To Teaming And Assisting The Further Development Of This And Related Technologies.

Contact Information:

William A. Reass; Phone: 505-665-1013, E-mail: <u>wreass@lanl.gov</u> David M. Baca; Phone: 505-665-8355, E-mail: <u>dbaca@lanl.gov</u>

High-Megawatt Converter Technology Workshop

Capacitor Technology for High-Megawatt Power Conversion

Dr Geoff Staines General Atomics – Electronic Systems Inc 24 Jan, 2007

Film Capacitors for Power Conversion

- Depending on frequency, capacitors can be the largest component in the system
- Requirements are
 - Low inductance
 - High rms current capability
 - Low loss
 - 100% reversal
 - High energy density
 - GA-ESI paper/polypropylene capacitors developed for SNS

IGBT switch plate assembly (LANL SNS modulator)

GA-ESI Research Objectives

- Long DC life at high energy density
- High-temperature Polymers
- Novel construction technique for high current and high energy density
- Improved metallized electrodes for selfhealing and low ESR
- Packaging for high temperature and thermal management
- Thin film winding for low voltage applications

High Temperature Polymers

- Polypropylene film capacitors have highest energy density at low temperature
- Performance degrades rapidly above 40°C
- Investigating high-temperature films including
 - Polyphenyl sulfide (PPS)
 - Polyetheretherketone (PEEK)
 - Polyetherketoneketone (PEKK)

Improved Metallization

- Self-healing capacitors use thin metallization deposited on dielectric films instead of foil
- Fault current causes vaporization of metallized layer, quenching the fault discharge
- Thin (~300Å) metallization limits current and thermal dissipation
- Challenge is to improve thermal conductivity without sacrificing self-healing properties
- Self-healing allows operation up to limit of film breakdown voltage for higher energy density

Impact on Converter Costs

- High energy density passive components reduce the need for high frequency switching
- Reduces switching loss and switch stress
- Could use cheaper, more mature switch technology without prohibitive size, weight
- Metallized film capacitors fail gracefully
- Capacitor monitoring could identify when maintenance required to avoid failures

Summary

- Depending on frequency, capacitors can be the largest components in power converters
- Future development to focus on
 - Increasing energy density
 - Reducing loss
 - Improving thermal management
- Significant improvements in fast capacitor technology expected from improved engineering using proven film technology
- Smaller passive components may reduce requirement for high switching speeds

Discussion of: High Megawatt Fuel Cell Power Converter Technology Impacts Study

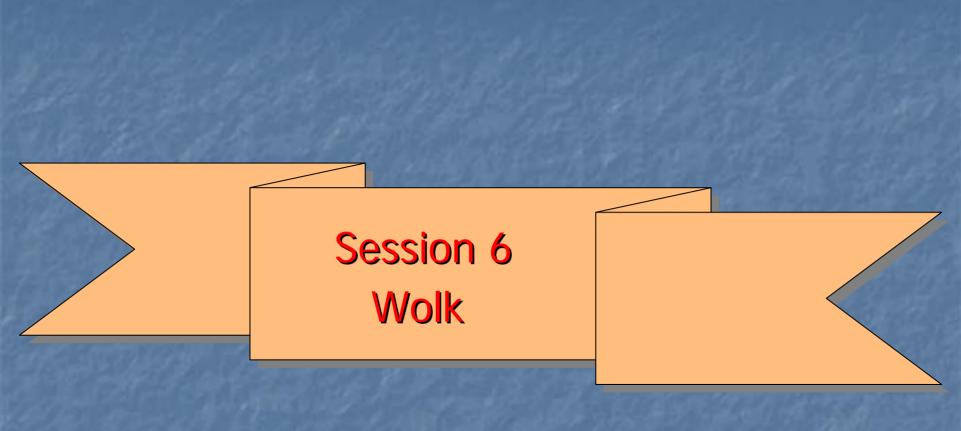
(NIST/DOE Interagency Agreement)

Allen Hefner NIST

The Semiconductor Electronics Division

Needed: Inputs from High MW Community

- Preferred High-Megawatt architectures and topologies
- Specifications for filter requirements
 - Harmonics for power generation connectivity (e.g. IEEE1547)
 - EMI requirements
- Other advanced component technologies
 - Nano-crystalline magnetic materials for high-gain and voltage isolated converters
 - Packaging and advance cooling systems
 - Interconnects and modularity
 - Capacitors (Dry Q cap: low cost, low maintenance)


Consensus at High MW Meeting

- Specifications for filter requirements
 - Inverter Harmonics requirment: IEEE519
 - EMI requirements: Mil STD 461 or equivalent
- Specifications FC DC regulator

- Ripple requirement:

<3% for frequencies < 1kHz

• Year 2020 FC may be 2000 V (center-tap)

Roadmap Development

High Megawatt Converters for Commercial Scale Applications

Ron Wolk High Megawatt Converter Workshop January 24, 2007

Potential Markets

DOE Applications

- 250-800 MW SECA-Based IGFC FutureGen Power Plants (with CO2 capture)
- Freedom Car
- HVDC Power Transmission
- DOD Applications
 - Pulsed power
 - Vehicle motive power
 - Ship power generation and distribution
 - Ship propulsion

Roadmap Development Issues

- Are there new materials, devices, and topologies that would accelerate the achievement of the cost and performance requirements for power conversion systems for these markets?
- How should a Roadmap process to achieve this objective be organized?
- Should it work down from topologies (market pull) or up from materials (technology push)
- Should a continuous integration and evaluation process be used to identify the most promising targets of opportunity?

What's Next ?

- Formation of a committee to participate in developing the Roadmap
- Volunteers to staff the committee and its subcommittees
- Should subcommittees be organized by market thrust, product power capacity, time frame of development, other bases?
- Timeline for development of the Roadmap
- Would the formation of an Interagency Task Force on this subject be of value?

Yuri Khersonsky Consultant

(Contributed but not presented at Workshop)

High Megawatt Converters Workshop on January 24, 2007

Navy Traditional Requirements for Megawatt Converters

- 3 R:
- Reliability
- Reparability
- Redundancy
- 3 S:
- Survivability
- Shock & Vibration
- Size & Weight

Numerical:

- 300% Overload
- <3% THD as a Load
- <1% THD as a Source General:
- Noise Immunity
- Low EMI
- Parallelability

Fault Management Issues in Megawatt Converters

Fault Management Goals:

- Protection from Failed Components
- Elimination of Nuisance Trips
- Do not start the fire

Fault Management Strategy:

- Continuous Fault Monitoring
- Faults Detection with minimum delays
- Redundancy of Faults Detection
- Fault Isolation

Standardization objects

- Power sizes (dimensions)
- Power Interfaces (connections)
- Signal Interfaces
- Communications protocols
- Protection and Fault management
- Safety requirements

5 Rules of useful Standard

- 1. It does not regulate
- 2. It describes what need to be done and considered, not how it should be done
- 3. It establishes multiple sizes & interfaces levels (one size fits all does not work)
- 4. It formulates requirements based on collective experience and consensus
- 5. It leaves room for future enhancements

Acknowledgements

The organizers would like to thank the following people for their contributions to the workshop and proceedings:

Colleen Hood, Terri Kroft, Angel Rivera-López, José M. Ortiz-Rodríguez, Madelaine Hernández-Mora, Dean Smith