


# Power Distribution and Protection

# **Circuit Protection**



Technical Catalogue 2022





# **Air Circuit Breakers**

| Overview                                                                                 | 7              |
|------------------------------------------------------------------------------------------|----------------|
| TemPower 2 Air Circuit Breakers - Double Break                                           | 7              |
| Application                                                                              | 8              |
| Warnings                                                                                 | 8              |
| Reduce Fire Risk for Critical Buildings with 3C Technology                               | 10             |
| Power of Protection - System Protection Requirements                                     | 11             |
| Short Circuit kA Rating at 440VAC by Frame Size                                          | 13             |
| Performance Specification Ratings Chart 'S' Type AR                                      | 14             |
| Performance Specification Ratings Chart 'H' Type AR                                      | 16             |
|                                                                                          |                |
| Standard ACBs                                                                            | 18             |
| Stock ACB Types for AR2: 800A - 2000A                                                    | 19             |
|                                                                                          |                |
| Stock ACB types for AR3: 2500A - 3200A                                                   | 21             |
| Stock ACB types for AR3: 2500A - 3200A<br>Stock ACB types for AR4: 4000A                 | 21<br>23       |
|                                                                                          |                |
|                                                                                          |                |
| Stock ACB types for AR4: 4000A                                                           | 23             |
| Stock ACB types for AR4: 4000A Air Circuit Breakers Models                               | 23<br>25       |
| Stock ACB types for AR4: 4000A Air Circuit Breakers Models 1250-2000A (AR2) Frame Size 1 | 23<br>25<br>25 |

| Trip Units                                                                                     | 67  |
|------------------------------------------------------------------------------------------------|-----|
| AR ACB – TemPro PLUS and TemPro PREMIER Metering Trip Units                                    | 68  |
| The power of selectivity. Be selective with your protection release                            | 70  |
| AR Air Circuit Breaker – Trip Unit release specification                                       | 71  |
| Specifications: AR ACBs with AGR21C and AGR31C Trip Units                                      | 72  |
| Trip Unit Loss of control power –<br>Low ICT phase current 415 - 690 V AC Phase and DC voltage | 76  |
| L Curve Trip Unit Settings                                                                     | 79  |
| R Curve Trip Unit Settings                                                                     | 84  |
| S Curve Trip Unit Settings                                                                     | 88  |
| Connection – AGR11B                                                                            | 90  |
| Connection – AGR21C                                                                            | 92  |
| Connection – AGR31C                                                                            | 94  |
|                                                                                                |     |
| Accessories - Customer Fit                                                                     | 96  |
| Fixing Bolts for ACB                                                                           | 97  |
| Interpole Barrier                                                                              | 97  |
| Padlock Main Safety Shutters                                                                   | 97  |
| Lifting Lugs                                                                                   | 97  |
| Rear Insulation Barrier                                                                        | 98  |
| Spare Handles for Drawout ACBs                                                                 | 98  |
| Incorrect Insertion Device                                                                     | 98  |
| IP 41 Door Flange                                                                              | 99  |
| IP 55 Door Cover                                                                               | 100 |

| Communications Gateways - Anybus                                           | 101 |
|----------------------------------------------------------------------------|-----|
| T2ED Circuit Breaker External Display                                      | 102 |
| Ground Fault 4th Neutral CT                                                | 106 |
|                                                                            |     |
| Factory Fit Accessories                                                    | 107 |
| Remote Tripping Devices                                                    | 108 |
| Shunt Trip – AVR-1C Single Coil Type                                       | 109 |
| Shunt Trip – AVR - 1CD Double Coil Type                                    | 110 |
| Under Voltage Trip – Type AUR-1C                                           | 111 |
| Single Coil - Short Time Rated (STR) Shunt Trip                            | 113 |
| Tripping Options                                                           | 114 |
| Capacitor Trip Device                                                      | 114 |
| Carriage Mounted Shunt Trip Device                                         | 115 |
| Auxiliary Switches                                                         | 117 |
| Capacitor Trip Device                                                      | 118 |
| Cycle Counter                                                              | 118 |
| Door Interlock                                                             | 118 |
| Earthing Device                                                            | 118 |
| Spring Charge Indicator (Simple)                                           | 118 |
| Storage Draw Out Handle                                                    | 118 |
| Mechanical Interlock - 2 or 3 Way Horizontal                               | 119 |
| Spring Charged Operation: Manual Racking, Motor Charging,<br>LRC Operation | 121 |
| Motor Data, Spring Charged Operation, LRC Closing Data                     | 122 |

| Position Switches            | 124 |
|------------------------------|-----|
| Trapped Key Interlock        | 126 |
| Padlocking On Off Pushbutton | 128 |
| Padlocking Off               | 128 |
| Padlocking Position          | 129 |
| Retrofit Kits                | 129 |

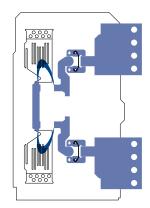


# **Overview**

## TemPower 2 Air Circuit Breakers -Double Break

TemPower 2 is the world's first "Double Break" ACB, having two breaking contacts per phase. The unique pole structure means that the short time withstand rating ( $I_{cw}$  for 1 second) is equal to the service short circuit breaking capacity ( $I_{cs}$ ) for all models. Full selectivity can be guaranteed up to the full system fault level. TemPower 2 ACBs have one of the world's smallest depth resulting in space saving in switchboards. More than twenty design patents have been registered for the TemPower 2 ACB.

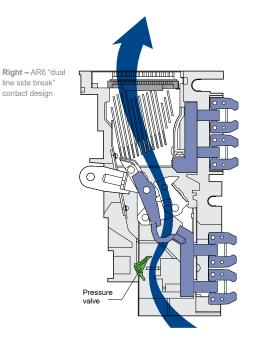
| AR2-S | 200 A - 2000 A          |
|-------|-------------------------|
| AR3-S | 1600 A, 2500 A - 3200 A |
| AR4-S | 4000 A                  |
| AR6-S | 5000 A - 6300 A         |


The "Double Break" system ensures extremely fast interruption of short circuit currents. The maximum clearing time is 30 ms, which is less than half that of most other ACBs.

Sharing the arc energy greatly reduces main contact wear. All the arc energy is effectively dissipated within the "Double Break" arc chamber, thus achieving the required clearance distance to earthed metal of zero.

The main 3 pole contacts close simultaneously as they are driven by a common drive bar, which also drives the  $4^{th}$  pole in 4 pole ACBs.




Above – AR2



Above – AR2 – AR4 "Double Break" contact design



Above – AR6 6300 A



The 'TemPower 2 AR6 (5000 A and 6300 A) has a unique contact design that interrupts the current at two points on the line side of the ACB, while dissipating heat from essential components such as the main contacts and terminals by efficient air convection through a pressure value.

The neutral pole in TemPower 2 ACBs is fully rated as standard and is of an early make/late break design. This eliminates the risk of abnormal line to neutral voltages, which may damage sensitive electronic equipment.

"Double Break" contacts increase service life – electrical and mechanical endurance ratings are the best available, and exceed the requirements of IEC 60947-2.

The AR2-AR4 series has a maximum total clearance time of 30ms which is the time from initiation of fault to arc extinction. The maximum total clearance time for the AR6 (5000 A / 6300 A) series is 50 ms.



## Application

8

| Industry            | Oil and gas, mining, food and beverage, utility         |  |  |  |  |
|---------------------|---------------------------------------------------------|--|--|--|--|
| Building            | Commercial, residential, government                     |  |  |  |  |
| Renewable<br>Energy | Wind farms, battery banks                               |  |  |  |  |
| Infrastructure      | Tunnel, railway, airport, shipping ports                |  |  |  |  |
| Critical Building   | Data centre, banking and insurance, healthcare building |  |  |  |  |
| OEMs                | Genset manufacturer                                     |  |  |  |  |

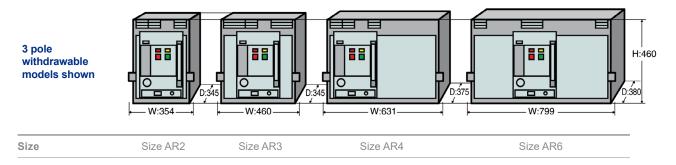
## Warnings

- Electrical work must be done by competent persons.
- Do not place the ACB in such an area that is subject to high temperatures, high humidity, dusty air, corrosive gases, strong vibration and shock, or other unusual conditions. Mounting the ACB in such an area could cause a fire or malfunction.
- Be careful to prevent foreign objects (such as debris, concrete powder, dust, chippings, and iron powder) and oil or rainwater from entering the ACB. These materials inside the ACB could cause a fire or malfunction.
- Prior to commencing any work on the ACB, open an upstream circuit breaker or the like to isolate all sources of power/voltage. Otherwise, electric shock may result.
- Fix the draw-out cradle of the ACB firmly on a flat, level surface using mounting screws. Otherwise, the draw-out operation may cause the breaker body or the draw-out cradle to fall, resulting in damage to the ACB or personal injury.
- Take care not to deform or bend protrusions in the bottom face of the draw-out cradle when fixing the draw-out cradle with mounting screws. Deformation of the protrusions may cause a malfunction.
- Connect conductors (including screws) to the main circuit terminals in the specified area. Otherwise, a short-circuit may result.
- When terminating conductors to the ACB, tighten terminal screws to the torque specified in this manual. Otherwise, a fire could result.
- For 4-pole ACBs, be sure to connect a 3-phase, 4-wire neutral conductor.



Rated from 200 A to 6300 A NHP can provide a withdrawable Terasaki Air Circuit Breaker (ACB) designed to meet the stringent demands of the industrial and marine market. The Terasaki ACB range is offered over two model series, the 'AR' series and the 'AR6' series.

#### The AR series is available in three frame sizes:


- Frame size 1 which ranges from 200 to 2000 A (AR2)
- Frame size 2 which ranges from 2500 to 3200 A (AR3)
- Frame size 3 which is rated at 4000 A (AR4)
- Fixed ACBs are also available from 200 to 3200 A

## The AR6 series is available in two models with the one fixed frame size:

- AR650 which is rated at 5000 A (AR6)
- AR660 which is rated at 6300 A (AR6)



#### Maximum Power from Minimum Volume





## Reduce Fire Risk for Critical Buildings with 3C Technology

Overheating is the commonest cause of failure in switchgear. A thermal management system is the best method of identifying potential future failures. Continuous overheating protection minimises the need for invasive maintenance and improves the integrity of critical assets.

TemPower 2 ACBs have a unique '3C' integrated monitoring system which continually checks the temperature condition of the ACB's main contacts, connections and conductive paths (3C).

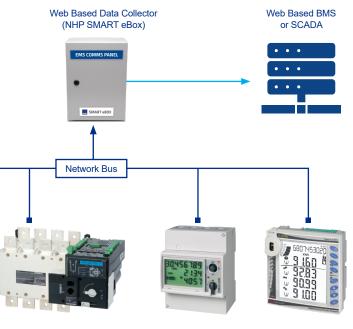


Communications

The TemPower 2 ACB can be equipped with a range of industrial communications options, allowing it to be easily integrated into an Energy Management System (EMS) or Building Management System (BMS).

#### **TemPower 2 Communication Options**

- ModBus RTU and TCP
- Profi-Bus
- Ethernet IP
- T2ED Ext. Display


"Datacentres have a constant, non-cyclic, high load which will tend to increase over time. Many overheating problems in electrical panels are caused by this type of load profile combined with a faulty connection. Terasaki's contact monitoring system is a good solution because it is based on actual temperature measurement, so it protects the connections as well as the circuit breakers".

Gary Burgon, Technical Director, The Rosebery Group



#### Data Centre Case Study: The Rosebery Group

The Rosebery Group used Terasaki's 3C Overheating Protection for a 12MW datacentre (pictured right). TemPower 2 ACBs with overheating protection, integrated display and data communication.



**Field Devices** 



## Power of Protection -System Protection Requirements

Hosting an impressive range of standard features and options, the Terasaki range of trip units are suitable for commercial, industrial and marine applications

The Terasaki Trip Unit is divided into 3 performance ranges; the TemPro AGR11, TemPro PLUS and TemPro PREMIER.

#### **Overload Protection**

Adjustable from 40 - 100% of rated current. True r.m.s. detection up to the 19<sup>th</sup> harmonic. All trip units have "thermal memory" as standard and optional neutral pole protection for triplen harmonics, such as, 3<sup>rd</sup>, 9<sup>th</sup> and 15<sup>th</sup>.

#### Rapid Short Circuit Protection

Total fault clearance in less than 30ms for up to 4000A to suit most critical load protection. Conventional ACBs take twice this time to interrupt a fault, but due to its unique "DoubleBreak" system, the TemPower 2 ACB is the quickest on the market compared to ACBs with comparable withstand ratings.

#### **Ground Fault Protection**

Restricted and unrestricted ground protection options are available with the TemPro Premier trip unit (AGR31) and TemPro PLUS trip unit (AGR21). There is no need for a separate relay, thus saving cost. Furthermore, fewer CTs and busbar joints are required which reduces heat and power consumption.



AGR-11B Basic Trip Unit with adjustment dials TemPro AGR11



AGR-21C Standard Trip Unit with Ammeter display TemPro PLUS



AGR-31C Advaned Trip Unit with LCD "Analyser" TemPro PREMIER



# The TemPower 2 range trip units are available in three protection types:

- L-characteristic for general feeder applications and will achieve most selectivity and protection requirements
- R-characteristic provides curve characteristics to IEC 60255-3 to use when selectivity cannot be achieved with other system protective devices (ie. fuses or other relays)
- S-characteristic specifically designed for generator applications

| Setting / Opt                | TemPro<br>AGR11 | Curve<br>Type | TemPro PLUS<br>(AGR21 | Curve<br>Type | TemPro PREMIER<br>(AGR31) | Curve<br>Type |
|------------------------------|-----------------|---------------|-----------------------|---------------|---------------------------|---------------|
| Current-la                   | V               | L             | V                     | L, R, S       | V                         | L, R, S       |
| Current-Ib                   | v               | L             | V                     | L, R, S       | $\checkmark$              | L, R, S       |
| Current-lc                   | V               | L             | V                     | L, R, S       | V                         | L, R, S       |
| Current-IN                   | V               | L             | V                     | L, R, S       | $\checkmark$              | L, R, S       |
| Current-Ig                   | X               | -             | V                     | L, R          | V                         | L, R, S       |
| Line voltage-Vab             | x               | -             | ×                     | _             | V                         | L, R, S       |
| Line voltage-Vbc             | X               | -             | ×                     | _             | V                         | L, R, S       |
| Line voltage-Vca             | x               | -             | ×                     | _             | $\checkmark$              | L, R, S       |
| Power factor-Pf              | X               | -             | ×                     | -             | V                         | L, R, S       |
| Frequency (Hz)               | x               | -             | ×                     | _             | $\checkmark$              | L, R, S       |
| Active power (kW)            | X               | -             | ×                     | _             | V                         | L, R, S       |
| Total real energy (kWh)      | x               | -             | ×                     | _             | $\checkmark$              | L, R, S       |
| Maximum current              | X               | -             | ×                     | -             | V                         | L, R, S       |
| Maximum active power (kW)    | x               | -             | ×                     | _             | $\checkmark$              | L, R, S       |
| Maximum voltage              | X               | -             | ×                     | _             | V                         | L, R, S       |
| Reactive power               | X               | -             | ×                     | _             | $\checkmark$              | L, R, S       |
| Apparent power               | X               | -             | ×                     | _             | V                         | L, R, S       |
| Harmonic current 3rd to 19th | x               | -             | ×                     | -             | $\checkmark$              | L, R, S       |
| Trip history (10 events)     | ×               | _             | V                     | L, R, S       | V                         | L, R, S       |

#### **Special Protection Options**

| Reverse<br>Power<br>Protection     | Provides protection when paralleling generators                                                                                            |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Load<br>Shedding<br>Relay          | Provides protection when paralleling generators                                                                                            |
| Neutral<br>Phase<br>Protection     | The N-phase protection function prevents<br>the neutral conductor from sustaining<br>damage or burnout due to large currents <sup>1)</sup> |
| Under and<br>Over Voltage<br>Alarm | With adjustable voltage pick up and an adjustable time delay. This provides fine tuning of all the voltage requirements <sup>1) 2)</sup>   |

| Zone<br>Interlocking         | Short time delay zone interlocking<br>guarantees selectivity and minimises<br>thermal and mechanical stress during<br>a fault                           |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Overheat<br>Protection       | Continuous monitoring of the contact<br>temperature provides input for<br>preventative and predictive maintenance<br>programs <sup>1)</sup>             |
| Phase Rotation<br>Protection | Protects from negative-phase current<br>occurring due to reverse phase or phase<br>loss and prevents motor burnout or<br>equipment damage <sup>1)</sup> |

For Trip Unit types with specific features and options refer the following pages

#### Notes

Available on some Trip Unit models.
 3 Phase UVT available only with external module.



# Short Circuit kA Rating at 440 V AC by Frame Size

|     | Rating (A) |        |        |        |        |        |                   |        |        |
|-----|------------|--------|--------|--------|--------|--------|-------------------|--------|--------|
| kA  | 800        | 1250   | 1600   | 2000   | 2500   | 3200   | 4000              | 5000   | 6300   |
| 65  | AR208S     | AR212S | AR216S | AR220S |        |        |                   |        |        |
| 80  |            |        | AR216H | AR220H |        |        |                   |        |        |
| 85  |            |        |        |        | AR325S | AR332S |                   |        |        |
| 100 |            |        |        |        | AR325H | AR332H | AR440S<br>AR440SB |        |        |
| 120 |            |        |        |        |        |        |                   | AR650S | AR663S |
| 135 |            |        |        |        |        |        |                   | AR650H | AR663H |

ACBs



# Performance Specification of the Standard (S) Type AR

| Frame Size                                  | Symbol                        | Unit   | Condition                 | AR2 -S    | AR2 -S    |
|---------------------------------------------|-------------------------------|--------|---------------------------|-----------|-----------|
|                                             |                               |        |                           | 800       | 1250      |
| Number of Poles                             | -                             | -      | _                         | 3,4       | 3,4       |
| Available CT Ratings                        |                               |        |                           | 200       | 200       |
|                                             |                               |        |                           | 400       | 400       |
|                                             |                               |        |                           | 800       | 800       |
|                                             | Ict                           | (A)    |                           |           | 1000      |
|                                             |                               |        |                           |           | 1250      |
|                                             |                               |        |                           |           |           |
|                                             |                               |        |                           |           |           |
| Electrical Characteristics                  |                               |        |                           |           |           |
| Rated Maximum Operational Voltage           | Ue                            | (V)    | AC 50 / 60Hz              | 690       | 690       |
| Rated Insulation Voltage                    | Ui                            | (V)    | -                         | 1000      | 1000      |
| Rated Impulse Withstand Voltage             | Uimp                          | (kV)   | -                         | 12        | 12        |
| Ultimate Breaking Capacity                  |                               |        | 690V AC                   | 50        | 50        |
| (IEC, AS/NZS)                               |                               |        | 440V AC                   | 65        | 65        |
|                                             | Icu                           | (kA)   | 400 / 415V AC             | 65        | 65        |
| DC Voltage (IEC, AS/NZS)                    |                               |        | 250V DC                   | 40        | 40        |
| Service Breaking Capacity                   |                               | +      | 690V AC                   | 50        | 50        |
| (IEC, AS/NZS)                               |                               |        | 440V AC                   | 65        | 65        |
| IEC, AS/NZS)                                | Ics                           | (kA)   | 440V AC<br>400 / 415 V AC | 65        | 65        |
| DC Voltage (IEC, AS/NZS)                    |                               |        | 250V DC                   | 40        | 40        |
| Short-Time Withstand Current                |                               |        | 1 sec.                    | 65        | 65        |
| Short-Time Withstand Current                | Icw                           |        | 3 sec.                    | 50        | 50        |
| Latching Current                            |                               | (kA)   | 0.360.                    | 65        | 65        |
| Motor Charging Time                         |                               |        |                           | 10        | 10        |
| Closing Time (max.)                         |                               | sec.   |                           |           | 0.08      |
| Total Breaking Time (max.)                  |                               | sec.   |                           | 0.08      |           |
| Installation (Standard / Optional / - )     |                               | sec.   |                           | 0.03      | 0.03      |
| Fixed (Optional)                            |                               |        |                           |           |           |
| Fixed (Optional)<br>Withdrawable (Standard) |                               |        |                           |           |           |
| ; ;                                         |                               |        |                           |           |           |
| Dimensions (Fixed)                          | a (3P / 4P)                   |        |                           | 360 / 445 | 360 / 445 |
|                                             | b                             | (mm)   |                           | 460       | 460       |
|                                             | c                             | ()     |                           | 290       | 290       |
|                                             | d                             |        |                           | 75        | 75        |
| Dimensions (Withdrawable)                   | a (3P / 4P)                   | 1      |                           | 354 / 439 | 354 / 439 |
|                                             |                               |        |                           |           |           |
|                                             | b                             | (mm)   |                           | 460       | 460       |
|                                             | c                             |        |                           | 354       | 354       |
| - <u>a</u>    <u>-C</u> _Q                  | d                             |        |                           | 40        | 40        |
| Weight (Fixed)                              |                               |        | 3 pole                    | 53        | 53        |
|                                             |                               | (kg)   | 4 pole                    | 59        | 59        |
| Weight (Withdrawable)                       |                               |        | 3 pole                    | 73        | 73        |
| -                                           |                               | (kg)   | 4 pole                    | 86        | 86        |
| Endurance                                   |                               |        | 460V AC                   | 12000     | 12000     |
|                                             | Electrical                    | Cycles | 690V AC                   | 10000     | 10000     |
|                                             | Mechanical (with maintenance) | Cycles |                           | 30000     | 30000     |
|                                             | Mechanical                    |        |                           |           |           |
|                                             | (without maintenance)         | Cycles |                           | 15000     | 15000     |

|  | P |  |
|--|---|--|

| AR2 -S    | AR2 -S AR3 - S AR3 | AR3 - S    | AR4 - S    | AR6 - S   | AR6 - S    |            |
|-----------|--------------------|------------|------------|-----------|------------|------------|
| 1600      | 2000               |            |            | 4000      |            | 6300       |
|           |                    | 2500       | 3200       |           | 5000       |            |
| 3,4       | 3,4                | 3,4        | 3,4        | 3,4       | 3,4        | 3,4        |
| 200       | 200                | 200        | 200        | 4000      | 5000       | 6300       |
| 400 800   | 400<br>800         | 400<br>800 | 400<br>800 |           |            |            |
| 1000      | 1000               | 1250       | 1250       |           |            |            |
| 1250      | 1250               | 1600       | 1600       |           |            |            |
| 1600      | 1600               | 2000       | 2000       |           |            |            |
| 1000      | 2000               | 2500       | 3200       |           |            |            |
|           | 2000               | 2000       | 0200       |           |            |            |
| 690       | 690                | 690        | 690        | 690       | 690        | 690        |
| 1000      | 1000               | 1000       | 1000       | 1000      | 1000       | 1000       |
| 12        | 12                 | 12         | 12         | 12        | 12         | 12         |
| <br>50    | 50                 | 65         | 65         | 75        | 85         | 85         |
| 65        | 65                 | 85         | 85         | 100       | 120        | 120        |
| 65        | 65                 | 85         | 85         | 100       | 120        | 120        |
| 40        | 40                 | 40         | 40         | 40        | 40         | 40         |
| <br>50    | 50                 | 65         | 65         | 75        | 85         | 85         |
| 65        | 65                 | 85         | 85         | 100       | 120        | 120        |
| 65        | 65                 | 85         | 85         | 100       | 120        | 120        |
| 40        | 40                 | 40         | 40         | 40        | 40         | 40         |
| 65        | 65                 | 85         | 85         | 100       | 120        | 120        |
| 50        | 50                 | 65         | 65         | 85        | 85         | 85         |
| 65        | 65                 | 85         | 85         | 100       | 120        | 120        |
| 10        | 10                 | 10         | 10         | 10        | 10         | 10         |
| 0.08      | 0.08               | 0.08       | 0.08       | 0.08      | 0.08       | 0.08       |
| 0.03      | 0.03               | 0.03       | 0.03       | 0.03      | 0.05       | 0.05       |
|           |                    |            |            |           |            |            |
|           |                    |            |            | -         | -          | -          |
|           |                    |            |            |           | =          |            |
| 360 / 445 | 360 / 445          | 466 / 586  | 467 / 586  | -         | -          | -          |
| 460       | 460                | 460        | 460        | -         | -          | _          |
| 290       | 290                | 290        | 290        | -         | -          | _          |
| 75        | 75                 | 75         | 75         | _         | _          | _          |
| 354 / 439 | 354 / 439          | 460 / 580  | 461 / 580  | 631 / 801 | 799 / 1034 | 800 / 1034 |
|           |                    |            | 460        |           |            | 460        |
| 460       | 460                | 460        |            | 460       | 460        |            |
| 354       | 354                | 354        | 354        | 375       | 380        | 380        |
| 40        | 40                 | 40         | 40         | 53        | 60         | 60         |
| 54        | 54                 | 80         | 80         | -         | -          | -          |
| 60        | 60                 | 92         | 92         | -         | -          | _          |
| 79        | 79                 | 105        | 105        | 139       | 200        | 220        |
| 94        | 94                 | 125        | 125        | 176       | 260        | 285        |
| 12000     | 10000              | 7000       | 7000       | 3000      | 1000       | 1000       |
| 10000     | 7000               | 5000       | 5000       | 2500      | 500        | 500        |
| 30000     | 25000              | 20000      | 20000      | 15000     | 10000      | 10000      |
| 15000     | 12000              | 10000      | 10000      | 8000      | 5000       | 5000       |



## Performance Specification of the 'H' Type AR

| Frame Size                              | Symbol                        | Unit   | Condition     | AR2 - H   |
|-----------------------------------------|-------------------------------|--------|---------------|-----------|
|                                         |                               |        |               | 1250      |
| Number of Poles                         | _                             | -      | _             | 3,4       |
| Available CT Ratings                    |                               |        |               | 200       |
|                                         |                               |        |               | 400       |
|                                         |                               |        |               | 800       |
|                                         | Ict                           | (A)    |               | 1000      |
|                                         |                               |        |               | 1250      |
|                                         |                               |        |               |           |
|                                         |                               |        |               |           |
| Electrical Characteristics              |                               |        |               |           |
| Rated Maximum Operational Voltage       | Ue                            | (V)    | AC 50 / 60Hz  | 690       |
| Rated Insulation Voltage                | Ui                            | (V)    | -             | 1000      |
| Rated Impulse Withstand Voltage         | Uimp                          | (kV)   | -             | 12        |
| Ultimate Breaking Capacity              |                               |        | 690V AC       | 55        |
| (IEC, AS/NZS)                           |                               |        | 440V AC       | 80        |
|                                         | Icu                           | (kA)   | 400 / 415V AC | 80        |
| DC Voltage (IEC, AS/NZS)                |                               |        | 250V DC       | 40        |
| Service Breaking Capacity               |                               |        | 690V AC       | 55        |
| (IEC, AS/NZS)                           |                               |        | 440V AC       | 80        |
|                                         | Ics                           | (kA)   | 400 / 415V AC | 80        |
| DC Voltage (IEC, AS/NZS)                |                               |        | 250V DC       | 40        |
| Short-Time Withstand Current            |                               |        | 1 sec.        | 80        |
|                                         | Icw                           |        | 3 sec.        | 55        |
| Latching Current                        |                               | (kA)   |               | 80        |
| Motor Charging Time                     |                               | sec.   |               | 10        |
| Closing Time (max.)                     |                               | sec.   |               | 0.08      |
| Total Breaking Time (max.)              |                               | sec.   |               | 0.03      |
| Installation (Standard / Optional / - ) |                               |        |               |           |
| Fixed (Optional)                        |                               |        |               |           |
| Withdrawable (Standard)                 |                               |        |               | -         |
| Dimensions (Fixed)                      | a (3P / 4P)                   |        |               | 360 / 445 |
|                                         | b                             |        |               | 460       |
|                                         |                               | (mm)   |               |           |
|                                         | C                             |        |               | 290       |
| <u>, a</u> ,  , <u>C</u> , <u> U ,</u>  | d                             |        |               | 75        |
| Dimensions (Withdrawable)               | a (3P / 4P)                   |        |               | 354 / 439 |
|                                         | b                             |        |               | 460       |
|                                         | с                             | (mm)   |               | 354       |
|                                         |                               |        |               |           |
|                                         | d                             |        |               | 40        |
| Weight (Fixed)                          |                               | (kg)   | 3 pole        | 53        |
|                                         |                               |        | 4 pole        | 59        |
| Weight (Withdrawable)                   |                               | (kg)   | 3 pole        | 73        |
|                                         |                               |        | 4 pole        | 86        |
| Endurance                               | Electrical                    | Cycles | 460V AC       | 12000     |
|                                         |                               | Cycles | 690V AC       | 10000     |
|                                         | Mechanical (with maintenance) | Cycles |               | 30000     |
|                                         | Mechanical                    | Cycles |               | 15000     |



|  | AR2 -H<br>1600 |           | AR3 - H   | AR3 - H AR3 - H<br>2500 3200 | AR6 - H<br>5000 | AR6 - H    |
|--|----------------|-----------|-----------|------------------------------|-----------------|------------|
|  |                |           | 2500      |                              |                 | 6300       |
|  | 3,4            | 3,4       | 3,4       | 3,4                          | 3,4             | 3,4        |
|  | 200            | 200       | 200       | 200                          | 5000            | 6300       |
|  | 400            | 400       | 400       | 400                          |                 |            |
|  | 800            | 800       | 800       | 800                          |                 |            |
|  | 1000           | 1000      | 1250      | 1250                         |                 |            |
|  | 1250           | 1250      | 1600      | 1600                         |                 |            |
|  | 1600           | 1600      | 2000      | 2000                         |                 |            |
|  |                | 2000      | 2500      | 3200                         |                 |            |
|  |                |           |           |                              |                 |            |
|  | 690            | 690       | 690       | 690                          | 690             | 690        |
|  | 1000           | 1000      | 1000      | 1000                         | 1000            | 1000       |
|  | 12             | 12        | 12        | 12                           | 12              | 12         |
|  | 55             | 55        | 85        | 85                           | 85              | 85         |
|  | 80             | 80        | 100       | 100                          | 135             | 135        |
|  | 80             | 80        | 100       | 100                          | 135             | 135        |
|  | 40             | 40        | 40        | 40                           | 40              | 40         |
|  | 55             | 55        | 85        | 85                           | 85              | 85         |
|  | 80             | 80        | 100       | 100                          | 135             | 135        |
|  | 80             | 80        | 100       | 100                          | 135             | 135        |
|  | 40             | 40        | 40        | 40                           | 40              | 40         |
|  | 80             | 80        | 100       | 100                          | 135             | 135        |
|  | 55             | 55        | 75        | 75                           | 85              | 85         |
|  | 80             | 80        | 100       | 100                          | 135             | 135        |
|  | 10             | 10        | 10        | 10                           | 10              | 10         |
|  | 0.08           | 0.08      | 0.08      | 0.08                         | 0.08            | 0.08       |
|  | 0.03           | 0.03      | 0.03      | 0.03                         | 0.03            | 0.03       |
|  |                |           |           |                              |                 |            |
|  | -              | -         | -         | -                            | -               | -          |
|  |                |           |           |                              | =               | =          |
|  | 360 / 445      | 360 / 445 | 360 / 445 | 466 / 586                    | 467 / 586       | -          |
|  | 460            | 460       | 460       | 460                          | 460             | -          |
|  | 290            | 290       | 290       | 290                          | 290             | -          |
|  | 75             | 75        | 75        | 75                           | 75              | _          |
|  | 354 / 439      | 354 / 439 | 460 / 580 | 461 / 580                    | 799 / 1034      | 800 / 1034 |
|  |                |           |           |                              |                 |            |
|  | 460            | 460       | 460       | 460                          | 460             | 460        |
|  | 354            | 354       | 354       | 354                          | 380             | 380        |
|  | 40             | 40        | 40        | 40                           | 60              | 60         |
|  | 54             | 54        | 80        | 80                           | -               | -          |
|  | 60             | 60        | 92        | 92                           | -               | -          |
|  | 79             | 79        | 105       | 105                          | 200             | 220        |
|  | 94             | 94        | 125       | 125                          | 260             | 285        |
|  | 12000          | 10000     | 7000      | 7000                         | 1000            | 1000       |
|  | 10000          | 7000      | 5000      | 5000                         | 500             | 500        |
|  | 30000          | 25000     | 20000     | 20000                        | 10000           | 10000      |
|  | 15000          | 12000     | 10000     | 10000                        | 5000            | 5000       |



# **Standard ACBs**



## Stock ACB Types for AR2: 800A - 2000A

Stocked ACBs are kept on the shelf in a standard pre-built configuration providing fast customer delivery. ACB bodies (withdrawable part) and carriages (fixed part) are ordered separately according to the required carriage terminal configuration. Standard stocked types include: non-motorised versions, motorised versions, non-auto versions, motorised non-auto versions.



### Stocked ACB specification

- Approvals and test: AS/NZS 60947, IEC 60947, A.S.T.A. certified
- AR-S type ACB body, 3 pole
- TemPro PLUS overcurrent release (type AGR21CL-PG) (240 VAC control voltage)
- Adjustable 'LSI' + GF protection standard (GF comes set enabled as default)<sup>2)</sup>
- Single trip indicator contact for 'LSI + GF' standard
- MODBUS communications facility (data monitoring as standard)
- Ground fault ready (external 4th CT required, see below) 1)
- 240V AC continuous rated shunt trip

### Ordering Catalogue Numbers

- 7 C/O auxiliary switch
- IP 41 door flange
- ON / OFF push button covers are padlockable as standard
- Position padlock facility (locks ACB inside carriage in 'connected' or 'test' position)
- Additional feature options include either a spring charging 240V AC motor, Non-Auto disconnector or Non-Auto disconnector version, with 240V AC spring charge motor fitted <sup>3</sup>

| Description                             | Current<br>Rating (A) | 400 / 415V<br>Interrupting<br>Capacity<br>(kA) | ACB Body<br>AGR21<br>Trip Unit | ACB Body<br>AGR21 Trip Unit<br>With 240V AC<br>Spring Charge<br>Motor | ACB Body<br>Non-Auto<br>(No Trip Unit) | ACB Body<br>Non-Auto<br>(No Trip Unit) With<br>240V AC Spring<br>Charge Motor |
|-----------------------------------------|-----------------------|------------------------------------------------|--------------------------------|-----------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------|
| AR-S ACB body<br>with AGR21 Trip        | 1250                  | 65                                             | ARB2123 STD                    | ARB2123 MSTD                                                          | ARB2123 NASTD                          | ARB2123 NAMSTD                                                                |
| Unit <sup>1)</sup><br>Or Non Auto       | 1600                  | 65                                             | ARB2163 STD                    | ARB2163 MSTD                                                          | ARB2163 NASTD                          | ARB2163 NAMSTD                                                                |
| types without a trip unit <sup>3)</sup> | 2000                  | 65                                             | ARB2203 STD                    | ARB2203 MSTD                                                          | ARB2203 NASTD                          | ARB2203 NAMSTD                                                                |

Notes

- The above specification is fixed. If other accessories are required (e.g. UVT, Trip Unit, different shunt voltage) contact NHP to place a custom order.
- LSI+GF" is defined as being: long time delayed trip, short time delayed trip, instantaneous trip, ground fault trip

 This function provides ground fault protection to TN-C or TN-S power distribution systems on the load side.

 The GF protection setting is set to "enabled" as default. If GF is not required, GF must be disabled by the user, via the Trip Unit screen setting menu before ACB energisation.

 Non Auto stocked ACB versions do not include an AGR21 Over Current Release, GF, trip indicator, or communications. Other standard specification details and inclusions remain unchanged.



# Stock ACB Carriages for AR2 types: 800A - 2000A

3 pole carriage for standard stock ACB body types: STD, MSTD, NASTD and NAMSTD. STD and MSTD types are configured for AGR21 Trip Units.



| Description | Suits ACB Body | Current rating | Terminal Arrang | ement      | ACB Carriage    |
|-------------|----------------|----------------|-----------------|------------|-----------------|
|             | Catalogue No.  |                | Тор             | Bottom     | Catalogue No.4) |
|             |                |                | Horizontal      | Horizontal | ARC2123HHSTD    |
|             | ARB2123STD     | 1250A          | Vertical        | Vertical   | ARC2123VVSTD    |
|             |                |                | Horizontal      | Vertical   | ARC2123HVSTD    |
| AR-S ACB    |                |                | Vertical        | Horizontal | ARC2123VHSTD    |
| Carriage    |                | 1600A<br>2000A | Horizontal      | Horizontal | ARC2203HHSTD    |
|             | ARB2163STD     |                | Vertical        | Vertical   | ARC2203VVSTD    |
|             | ARB2203STD     |                | Horizontal      | Vertical   | ARC2203HVSTD    |
|             |                |                | Vertical        | Horizontal | ARC2203VHSTD    |

Notes

4) Stock carriages are suitable for use with the "stock body" shown above. If a different ACB specification is required, contact NHP sales for a custom manufactured order. ACBs and CARRIAGES for AGR31 ACB Trip Units have different wiring and terminal configurations compared to AGR21 types and are not interchangeable.



## Stock ACB types for AR3: 2500A - 3200A

Stocked ACBs are kept on the shelf in a standard pre-built configuration providing fast customer delivery. ACB bodies (withdrawable part) and carriages (fixed part) are ordered separately according to the required carriage terminal configuration. Standard stocked types include: non-motorised versions, motorised versions, non-auto versions, motorised non-auto versions.



### Stocked ACB specification

- Approvals and test: AS/NZS 60947, IEC 60947, A.S.T.A. certified
- AR-S type ACB body, 3 pole
- TemPro PLUS overcurrent release (type AGR21CL-PG) (240 VAC control voltage)
- Adjustable 'LSI' + GF protection standard (GF comes set enabled as default)<sup>2)</sup>
- Single trip indicator contact for 'LSI+GF' standard
- MODBUS communications facility (data monitoring as standard)
- Ground fault ready (external 4<sup>th</sup> CT required, see below)<sup>1)</sup>
- 240V AC continuous rated shunt trip

- 7 C/O auxiliary switch
- IP 41 door flange
- ON/OFF push button covers are padlockable as standard
- Position padlock facility (locks ACB inside carriage in 'connected' or 'test' position)
- Additional feature options include either a spring charging 240V AC motor, Non-Auto disconnector or Non-Auto disconnector version, with 240V AC spring charge motor fitted <sup>3</sup>

| Orc | ler | ing | Cata | logue | Num | bers |
|-----|-----|-----|------|-------|-----|------|
|     |     |     |      |       |     |      |

| Description                                               | Current<br>Rating (A) | 400 / 415V<br>Interrupting<br>Capacity<br>(kA) | ACB Body<br>AGR21<br>Trip Unit | ACB Body<br>AGR21 Trip Unit<br>With 240V AC<br>Spring Charge<br>Motor | ACB Body<br>Non-Auto<br>(No Trip Unit) | ACB Body<br>Non-Auto<br>(No Trip Unit) With<br>240V AC Spring<br>Charge Motor |
|-----------------------------------------------------------|-----------------------|------------------------------------------------|--------------------------------|-----------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------|
| AR-S ACB body<br>with AGR21 Trip<br>Unit <sup>1)</sup>    | 2500                  | 85                                             | ARB3253 STD                    | ARB3253 MSTD                                                          | ARB3253 NASTD                          | ARB3253 NAMSTD                                                                |
| Or Non Auto<br>types without a<br>trip unit <sup>3)</sup> | 3200                  | 85                                             | ARB3323 STD                    | ARB3323 MSTD                                                          | ARB3323 NASTD                          | ARB3323 NAMSTD                                                                |

Notes

 The above specification is fixed. If other accessories are required (e.g. UVT, Trip Unit, different shunt voltage) contact NHP to place a custom order.

LSI+GF" is defined as being: long time delayed trip, short time delayed trip, instantaneous trip, ground fault trip  This function provides ground fault protection to TN-C or TN-S power distribution systems on the load side.

 The GF protection setting is set to "enabled" as default. If GF is not required, GF must be disabled by the user, via the Trip Unit screen setting menu before ACB energisation.

 Non Auto stocked ACB versions do not include an AGR21 Over Current Release, GF, trip indicator, or communications. Other standard specification details and inclusions remain unchanged.



# Stock ACB Carriages for AR3 types: 2500A - 3200A

3 pole carriage for standard stock ACB body types: STD, MSTD, NASTD and NAMSTD. STD and MSTD types are configured for AGR21 Trip Units.

| Description | Suits ACB Body |                | Terminal Arrang | ACB Carriage |                  |
|-------------|----------------|----------------|-----------------|--------------|------------------|
|             | Catalogue No.  |                | Тор             | Bottom       | Catalogue No. 4) |
|             |                |                | Horizontal      | Horizontal   | ARC3323HHSTD     |
| AR-S ACB    | ARB3253STD     | 2500A<br>3200A | Vertical        | Vertical     | ARC3323VVSTD     |
| Carriage    | ARB3323STD     |                | Horizontal      | Vertical     | ARC3323HVSTD     |
|             |                |                | Vertical        | Horizontal   | ARC3323VHSTD     |

#### Notes

4) Stock carriages are suitable for use with the "stock body" shown above. If a different ACB specification is required, contact NHP sales for a custom manufactured order. ACBs and CARRIAGES for AGR31 ACB Trip Units have different wiring and terminal configurations compared to AGR21 types and are not interchangeable.



## Stock ACB types for AR4: 4000A

Stocked ACBs are kept on the shelf in a standard pre-built configuration providing fast customer delivery. ACB bodies (withdrawable part) and carriages (fixed part) are ordered separately according to the required carriage terminal configuration. Standard stocked types include: non-motorised versions, motorised versions, non-auto versions, motorised non-auto versions.

#### Stocked ACB specification

- Approvals and test: AS/NZS 60947, IEC 60947, A.S.T.A. certified
- AR-S type ACB body, 3 pole
- PLUS overcurrent release (type AGR21CL-PG) (240 V AC control voltage)
- Adjustable 'LSI' + GF protection standard (GF comes set enabled as default)<sup>2)</sup>
- Single trip indicator contact for 'LSI+GF' standard
- MODBUS communications facility (data monitoring as standard)
- Ground fault ready (external 4<sup>th</sup> CT required, see below) <sup>1)</sup>
- 240V AC continuous rated shunt trip
- 7 C/O auxiliary switch
- IP 41 door flange

#### Ordering Catalogue Numbers



- ON/OFF push button covers are padlockable as standard
- Position padlock facility (locks ACB inside carriage in 'connected' or 'test' position)
- Additional feature options include either a spring charging 240V AC motor, Non-Auto disconnector or Non-Auto disconnector version, with 240V AC spring charge motor fitted <sup>3</sup>)

| Description                                               | Current<br>Rating (A) | 400 / 415V<br>Interrupting<br>Capacity<br>(kA) | ACB Body<br>AGR21<br>Trip Unit | ACB Body<br>AGR21 Trip Unit<br>With 240V AC<br>Spring Charge<br>Motor | ACB Body<br>Non-Auto<br>(No Trip Unit) | ACB Body<br>Non-Auto<br>(No Trip Unit) With<br>240V AC Spring<br>Charge Motor |
|-----------------------------------------------------------|-----------------------|------------------------------------------------|--------------------------------|-----------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------|
| AR-S ACB body<br>with AGR21 Trip<br>Unit <sup>1)</sup>    | 4000                  | 100                                            | ARB4403 STD                    | ARB4403 MSTD                                                          | ARB4403 NASTD                          | ARB4403 NAMSTD                                                                |
| Or Non Auto<br>types without a<br>trip unit <sup>3)</sup> |                       |                                                |                                |                                                                       |                                        |                                                                               |

Notes

 The above specification is fixed. If other accessories are required (e.g. UVT, Trip Unit, different shunt voltage) contact NHP to place a custom order.

LSI+GF" is defined as being: long time delayed trip, short time delayed trip, instantaneous trip, ground fault trip  This function provides ground fault protection to TN-C or TN-S power distribution systems on the load side.

 The GF protection setting is set to "enabled" as default. If GF is not required, GF must be disabled by the user, via the Trip Unit screen setting menu before ACB energisation.

 Non Auto stocked ACB versions do not include an AGR21 Over Current Release, GF, trip indicator, or communications. Other standard specification details and inclusions remain unchanged.



### Stock ACB types for AR4: 4000A

3 pole carriage for standard stock ACB body types: STD, MSTD, NASTD and NAMSTD. STD and MSTD types are configured for AGR21 Trip Units.

| Description       | Suits ACB Body | Terminal Arrangement* |          | ACB Carriage<br>Catalogue No. <sup>4)</sup> |
|-------------------|----------------|-----------------------|----------|---------------------------------------------|
|                   | Catalogue No.  | Тор                   | Bottom   | Catalogue No."                              |
| AR-S ACB Carriage | ARB4403STD     | Vertical              | Vertical | ARC4403VVSTD                                |

 
 Notes

 4)
 Stock carriages are suitable for use with the "stock body" shown above. If a different ACB specification is required, contact NHP sales for a custom manufactured order. ACBs and CARRIAGES for AGR31 ACB Trip Units have different wiring and
 terminal configurations compared to AGR21 types and are not interchangeable.

not available in other terminal configurations



# 1250-2000 A (AR2) Frame Size 1

*The Terasaki 'TemPower 2 AR' series of Air Circuit Breakers (ACBs) are intended for both industrial and commercial applications.* 

## Key Features of the Terasaki TemPower 2 Range

#### **Highest Levels of Performance**

#### **Unique Breaking Contact Design**

TemPower 2 is the world's first Double Break ACB, having two breaking contacts per phase, allowing the short time withstand rating (Icw 1 second) to equal to the service short circuit breaking capacity (Ics) ensuring short circuit selectivity.

#### **Rapid Fault Clearance**

The TemPower 2 clears short-circuit faults in less that  $30 \text{ms}^{-1}$  which minimises thermal and mechanical stress on busbars and reduces arc flash energy during a fault.

#### Highest Levels of Protection and Safety

#### Flexible LSI Protection Curve Characteristics

TemPower 2 is the only ACB that offers trip units with timecurrent characteristics to comply with three different standards and super fine level setting adjustment.

## 3C Temperature Condition Monitoring and Fire Hazard Prevention System

TemPower 2 has a breakthrough self-monitoring temperature system for checking the condition of the main contacts and conductive path using integrated thermistors.

#### Early-make-late-break Neutral (N) design

4-pole models have a fully rated, early-make-late-break Neutral (N) design which eliminates the risk of abnormal line to neutral voltages, which may damage sensitive electronic equipment (i.e. Hospital etc).



#### Highest Levels of Reliability

#### **Operational Endurance**

Double Break contacts increase service life. Endurance ratings are the best available and exceed the requirements of AS/NZS 60 947-2

#### **Reduced Time to Repair and Easy Maintenance**

The modular Double Break contact construction allows on-site replacement of each contact set in minimal time.

Contact clusters are uniquely located on the ACB body, all serviceable parts are available for inspection, dramatically reducing power down time.

| General                    | The Terasaki AR ACB in frame size 1<br>is one of the worlds smallest 65kA lcu<br>rated ACBs at 440V AC. This small yet<br>powerful ACB makes it ideal for new and<br>retrofit installations |                 |  |  |  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|
| Nominal Current<br>Ratings | 800A, 1250A, 1600A, 2000A                                                                                                                                                                   |                 |  |  |  |
| Number of Poles            | 3 or 4                                                                                                                                                                                      |                 |  |  |  |
|                            | Standard                                                                                                                                                                                    | 65kA @ 440V AC  |  |  |  |
| Short Circuit              | Туре                                                                                                                                                                                        | 50kA @ 690V AC  |  |  |  |
| Ratings                    | High Capacity                                                                                                                                                                               | 80kA @ 440V AC  |  |  |  |
|                            | Туре                                                                                                                                                                                        | 65kA @ 690V A C |  |  |  |
| Connection Type            | Withdrawable as standard, fixed type as a special order                                                                                                                                     |                 |  |  |  |
| Terminal<br>Configurations | Vertical / Vertical, Horizontal / Horizontal,<br>Front / Front or combinations of the above                                                                                                 |                 |  |  |  |

AR208S

AR212S

AR216S

AR220S

AR212H

AR216H

AR220H

10

10

20

20

20

20

20

10

10

15

15

15

15

15

15

15

25

25

\_

\_

\_

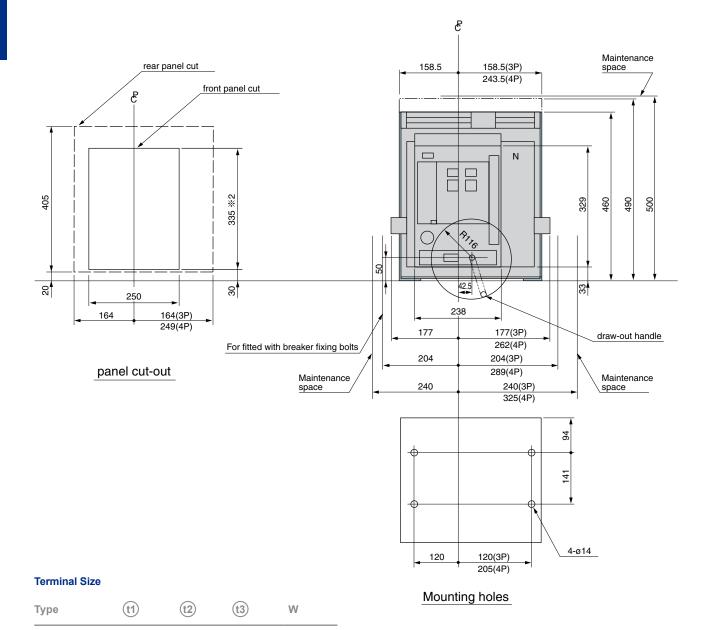
17.5

17.5

22.5

\_

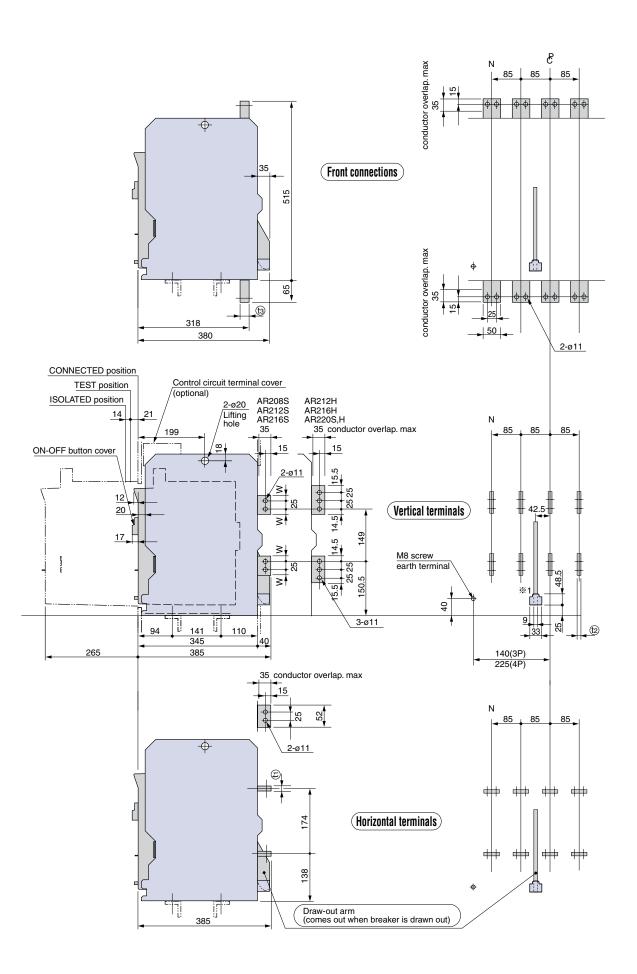
\_


\_

\_



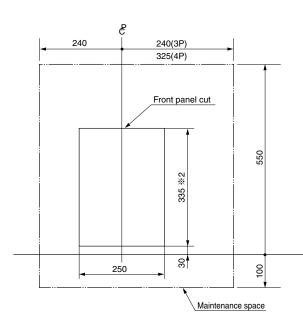
## Detailed Dimensions - Draw-Out Type


Type AR208S, AR212S, AR216S, AR220S, AR212H, AR216H, AR220H



#### Notes

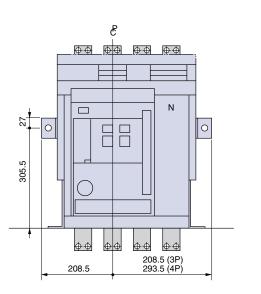
- 1: Conductors including connecting bolts should be separated min. 7 mm from Draw-out arm.
- 2: Panel cut should be 339 mm not 335 mm when the door flange is used.
- N represents the neutral pole of 4-pole ACBs. The neutral pole is positioned to the right as standard when viewed from the front of the ACB. However, the neutral pole can be customised so that it is positioned to the left.
- For High fault series vertical terminal is standard and horizontal terminal is optional, and front connection is not available.
- The vertical terminal for the main circuit with its length extended by 70 mm from the standard is specially available on request.
- · For the outline drawing for the version with earth leakage tripping, contact us.

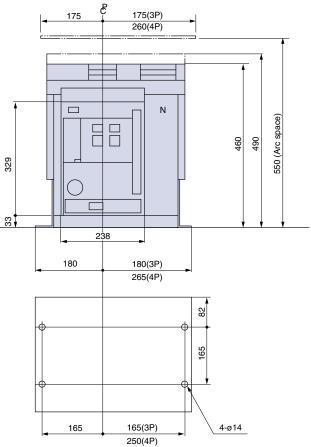







## Detailed Dimensions Fixed Type

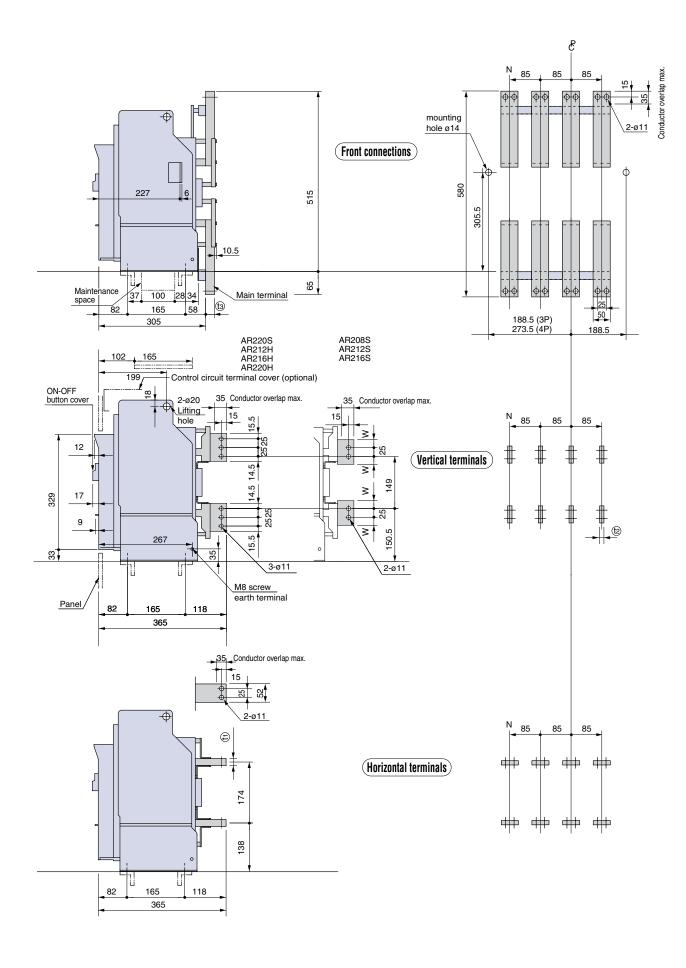

Type AR208S, AR212S, AR216S, AR220S, AR212H, AR216H, AR220H




#### Panel cutout

#### **Terminal Size**

| Туре   | (t1) | (t2) | (t3) | W    |
|--------|------|------|------|------|
| AR208S | 10   | 10   | 15   | 17.5 |
| AR212S | 10   | 10   | 15   | 17.5 |
| AR216S | 20   | 15   | 25   | 22.5 |
| AR220S | 20   | 15   | 25   | -    |
| AR212H | 20   | 15   | -    | -    |
| AR216H | 20   | 15   | -    | -    |
| AR220H | 20   | 15   | -    | -    |






#### Mounting holes

Notes

- % 2: Panel cut should be 339 mm not 335 mm when the door flange is used.
- N represents the neutral pole of 4-pole ACBs. The neutral pole is positioned to the right as standard when viewed from the front of the ACB. However, the neutral pole can be customised so that it is positioned to the left.
- For type AR-H high fault series, vertical terminals are standard, horizontal terminals are optional and front connections are not available.
- · For the outline drawing for the version with earth leakage tripping, contact us.



NHP

29

ACBs



## Ratings

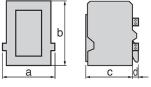
| AR-S Standard<br>Break / AR-H High<br>Break TemPower 2 |       | AR208S | AR212S | AR216S | AR220S | AR216H* | AR220H* |
|--------------------------------------------------------|-------|--------|--------|--------|--------|---------|---------|
| Rated Current (I <sub>N</sub> ) <sup>1) 2)</sup>       | А     | 800    | 1250   | 1600   | 2000   | 1600    | 2000    |
| Number of Poles<br>3) 4)                               |       | 3 or 4  | 3 or 4  |
|                                                        |       | 200 i)  | 200 i)  |
|                                                        |       | 400 i)  | 400 i)  |
| Current                                                | ٥     | 800    | 800    | 800    | 800    | 800     | 800     |
| Transformer<br>Ratings (I <sub>ct</sub> )              | A     |        | 1250   | 1250   | 1250   | 1250    | 1250    |
|                                                        |       |        |        | 1600   | 1600   | 1600    | 1600    |
|                                                        |       |        |        |        | 2000   |         | 2000    |
| Insulation Voltage<br>(U <sub>i</sub> ) (50 / 60 Hz)   | V AC  | 1000   | 1000   | 1000   | 1000   | 1000    | 1000    |
| Operational Voltage<br>(U <sub>e</sub> ) (50 / 60 Hz)  | VAC   | 690    | 690    | 690    | 690    | 690     | 690     |
| Impulse Voltage<br>(Uimp)                              | kV    | 12     | 12     | 12     | 12     | 12      | 12      |
| Rated Short Time                                       | 1 sec | 65     | 65     | 65     | 65     | 80      | 80      |
| Withstand (I <sub>CW</sub> )                           | 3 sec | 50     | 50     | 50     | 50     | 55      | 55      |
| Total Breaking Time                                    | Sec   | 0.03   | 0.03   | 0.03   | 0.03   | 0.03    | 0.03    |
| Motor Charging<br>Time (Max)                           | Sec   | 10     | 10     | 10     | 10     | 10      | 10      |
| Closing Time (Max)                                     | Sec   | 0.08   | 0.08   | 0.08   | 0.08   | 0.08    | 0.08    |
| Latching Current                                       | kA    | 65     | 65     | 65     | 65     | 65      | 65      |

#### Notes

- Values in open air at 45 °C. Contact NHP for other temperature ratings.
- Values for AR208S, AR212S, AR216S types with horizontal terminals. Values for others, including all AR-H types, have vertical terminals (see Horizontal options).
- For 2 pole ACBs use outside poles of 3 pole ACB.
- 4 Pole ACBs without Neutral phase protection cannot be applied to "IT" type earthing systems, which do not include a neutral.
- Please contact NHP for DC application ACBs. AGR Trip Units cannot be used with DC currents.
- NEMA / ANSI rated AR ACBs are not UL Certified. NEMA / ANSI ratings are shown for markets outside of North America, or for marine use, using NEMA ratings.
- When the INST trip function is set to NON, the MCR function should be enabled, otherwise, the breaking capacity equals the latching current.

i) = Available indent delivery only.

\* AR-H High Fault series ACBs are available on an INDENT delivery basis. Refer NHP for delivery.


## Short Circuit Capacity

| AS / NZS and IEC<br>Breaking and<br>Making Capacities |         | AR208S | AR212S | AR216S | AR220S | AR216H | AR220H |
|-------------------------------------------------------|---------|--------|--------|--------|--------|--------|--------|
| Development                                           | 690V AC | 50     | 50     | 50     | 50     | 55     | 55     |
| Breaking<br>Capacity kA <sup>5)</sup>                 | 550V AC | 50     | 50     | 50     | 50     | 55     | 55     |
| (ICS = ICU)<br>[kA sym rms] to                        | 500V AC | 65     | 65     | 65     | 65     | 65     | 65     |
| AS / NZS and IEC                                      | 440V AC | 65     | 65     | 65     | 65     | 80     | 80     |
|                                                       | 415V AC | 65     | 65     | 65     | 65     | 80     | 80     |
|                                                       | 690V AC | 105    | 105    | 105    | 105    | 121    | 121    |
| Making Capacity                                       | 550V AC | 105    | 105    | 105    | 105    | 143    | 143    |
| (kA peak) to<br>AS / NZS and IEC                      | 500V AC | 143    | 143    | 143    | 143    | 143    | 143    |
|                                                       | 440V AC | 143    | 143    | 143    | 143    | 176    | 176    |
|                                                       | 415V AC | 143    | 143    | 143    | 143    | 176    | 176    |

## Physical

| Number of<br>Operating Cycle     | 25                            | AR208S       | AR212S       | AR216S       | AR220S       | AR216H       |
|----------------------------------|-------------------------------|--------------|--------------|--------------|--------------|--------------|
| Mechanical<br>Life               | with<br>maintance             | 30000        | 30000        | 30000        | 25000        | 30000        |
|                                  | without<br>maintance          | 15000        | 15000        | 15000        | 12000        | 15000        |
|                                  | 460V AC                       | 12000        | 12000        | 12000        | 10000        | 12000        |
| Electrical<br>Life               | 690V AC (without maintenance) | 10000        | 10000        | 10000        | 7000         | 10000        |
| Outline                          | a                             | 354 /<br>439 |
| Dimensions:<br>ACB<br>+ Carriage | b                             | 460          | 460          | 460          | 460          | 460          |
|                                  | С                             | 345          | 345          | 345          | 345          | 345          |
|                                  | d                             | 40           | 40           | 40           | 40           | 40           |

| AR216H       | AR220H       |
|--------------|--------------|
| 30000        | 30000        |
| 15000        | 15000        |
| 12000        | 12000        |
| 10000        | 10000        |
| 354 /<br>439 | 354 /<br>439 |
| 460          | 460          |
| 345          | 345          |
| 40           | 40           |
|              |              |



## Standards

#### **Based Standards**

| AS/NZS 60947-2     | Australian / New Zealand Standard                |
|--------------------|--------------------------------------------------|
| IEC 60947-2        | International Electrotechnical Commission        |
| EN60947-2          | European Standard                                |
| JIS C8372          | Japanese Industrial Standard                     |
| NEMA PUB<br>NO.SG3 | National Electrical Manufacturers<br>Association |
| ANSI C37.13        | American National Standard Institute             |

#### **Certification and Authorisation**

| ASTA, UK    | ASTA Certification Services  |
|-------------|------------------------------|
| NK, Japan   | Nippon Kaiji Kyokai          |
| LR, UK      | Lloyd's Register of Shipping |
| ABS, USA    | American Bureau of Shipping  |
| GL, Germany | Germanischer Lloyd           |
| BV, France  | Bureau Veritas               |
|             |                              |

# Environmental

| Standard<br>Environment      | The standard environment for ACBs is as follows:                                                                                                                                                                                     |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ambient<br>Temperature       | <ul> <li>– 5°C to + 40°C. See following pages<br/>for ACB temperature ratings and busbar<br/>sizing for different temperatures</li> </ul>                                                                                            |
| Relative Humidity            | 45% to 85%                                                                                                                                                                                                                           |
| Altitude                     | Below 2000m. A derating factor applies for higher elevations                                                                                                                                                                         |
| Atmosphere                   | Excessive water vapor, oil vapor, smoke,<br>dust, or corrosive gases must not<br>exist. Sudden change in temperature,<br>condensation, or icing must not occur.<br>Otherwise, refer NHP for its range of<br>climate control products |
| Vibration                    | TemPower 2 ACBs are designed to<br>withstand electromagnetic and mechanical<br>vibrations in accordance to IEC 68-2-6.<br>(2-13.2Hz with amplitude of +/- 1 mm;<br>13.2 to 100Hz with an acceleration of 0.7 g)                      |
| Low and High<br>Temperatures | NHP can also supply environmental<br>control solutions for switchboards – low<br>and high temperature conditioning                                                                                                                   |

## Installation Types

| Fixed Type    | Yes |
|---------------|-----|
| Draw-out Type | Yes |

NHP

## Temperature Ratings

| JIS C 8201-2-1 Ann.1 Ann.2, IEC60947-2,<br>EN60947-2, AS3947.2 |                                                                                                         |                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Terminal Arrangement                                           |                                                                                                         |                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Horizontal<br>Terminals                                        | Vertical<br>Terminals                                                                                   | Front<br>Connections                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 800                                                            | 800                                                                                                     | 800                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 1250                                                           | 1250                                                                                                    | 1250                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 1600                                                           | 1600                                                                                                    | 1600                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 2000                                                           | 2000                                                                                                    | 2000                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 1250                                                           | 1250                                                                                                    | -                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| 1600                                                           | 1600                                                                                                    | -                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| 2000                                                           | 2000                                                                                                    | -                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                                | EN60947-2, A<br>Terminal Arra<br>Horizontal<br>Terminals<br>800<br>1250<br>1600<br>1250<br>1250<br>1600 | EN60947-2, AS3947.2           Terminal Arragement           Horizontal<br>Terminals         Vertical<br>Terminals           800         800           1250         1250           1600         1600           2000         2000           1250         1250           1600         1600 |  |  |  |  |  |

#### Notes

1) Contact NHP for details.

If different types of terminal arrangement are used for line and load sides refer to the ratings for the horizontal terminals.

Front connection cannot be specified with the different types of terminal arrangement for line and load sides.

#### **General Guidelines**

When a circuit breaker operates in an ambient temperature higher than the standard 50°C, the current carrying capacity of the circuit breaker may require a level of derating.

The degree to which circuit breaker derating is necessary depends upon the size and arrangement of busbars, ACB tag connection orientation, the size of the switchboard compartment where the ACB is mounted, the switchboard enclosure size, the degree of the enclosure ventilation, as well as other environmental factors.

The following tables can be used as a general guide to rating AR ACBs when the ambient temperature around the circuit breaker and its connections is known. It is possible however that varying conditions or the addition of other heat producing devices or even obstructions within the enclosure may require additional derating or an increased level of ventilation.

The values presented in the following tables are based upon test results and theoretical extrapolation. These tables are only intended to provide guidance and in no way substitute proven industrial design practices or temperature rise tests.

#### For When the Temperature Inside a Switchboard is Known

#### **Standard Fault Series**

#### **High Fault Series**

| Stanuaru Fault                | Jenies                               |                         |                 |                 |                  |                  | п  | ign Faul    | Series           |                  |
|-------------------------------|--------------------------------------|-------------------------|-----------------|-----------------|------------------|------------------|----|-------------|------------------|------------------|
| Based<br>Standards            | Ambient<br>Temperature<br>(°C)       | Туре                    | AR208S          | AR212S          | AR216S           | AR220S           | A  | R212H       | AR216H           | AR220H           |
|                               |                                      | Connecting<br>bar sizes | 2 x 50<br>x 6.3 | 2 x 80<br>x 6.3 | 2 x 100<br>x 6.3 | 3 x 100<br>x 6.3 |    | x 80<br>6.3 | 2 x 100<br>x 6.3 | 3 x 100<br>x 6.3 |
|                               | 40 (Standard Ambient<br>Temperature) |                         | 800             | 1250            | 1600             | 2000             | 1: | 250         | 1600             | 2000             |
| JIS C 8201-2-<br>1 Ann.1 Ann. | 45                                   |                         | 800             | 1250            | 1600             | 2000             | 1  | 250         | 1600             | 2000             |
| 2 IEC60947-2<br>EN 60947-2    | 50                                   |                         | 800             | 1250            | 1600             | 2000             | 1  | 250         | 1600             | 2000             |
| AS3947.2                      | 55                                   |                         | 800             | 1250            | 1540             | 1820             | 1  | 250         | 1600             | 820              |
|                               | 60                                   |                         | 800             | 1150            | 1460             | 1740             | 1  | 250         | 1550             | 1740             |
|                               | 40 (Standard Ambient<br>Temperature) |                         | 800             | 1250            | 1540             | 2000             | 1: | 250         | 1600             | 2000             |
|                               | 45                                   | 45                      |                 | 1190            | 1470             | 1960             | 1  | 250         | 1600             | 1960             |
| NEMA, SG-3<br>ANSI C37.13     | 50                                   | 50                      |                 | 1130            | 1390             | 1860             | 1  | 250         | 1600             | 1860             |
|                               | 55                                   |                         | 790             | 1070            | 1310             | 1750             | 1  | 250         | 1510             | 1750             |
|                               | 60                                   |                         | 740             | 1000            | 1230             | 1640             | 1  | 240         | 1420             | 1640             |

#### Notes Standard Fault Series

• The values are applicable for Draw-out type.

 The values of AR208S, AR212S and AR216S are for horizontal terminals on both line and load side.

 The values of AR220S, AR332S, AR440SB, AR440S, AR650S and AR663S are for vertical terminals on both line and load side.

· Above figures are subject to the design of the enclosure and rating of busbar.

#### Notes High Fault Series

• The values are for vertical terminals on both line and load side.

Above figures are subject to the design of the enclosure and rating of busbar.



#### TemPower 2 Busbar Connection Sizing

The temperatures shown represent the  $^\circ\text{C}$  ambient temperature inside a switchboard where the ACB is installed.

- Busbars are to be of high conducting copper
- The maximum permissible busbar temperature is 100°C
- Spacers must be used where multiple busbars are connected For example, 6.3 mm spacers for 6.3 mm busbars and 10 mm spacers for 10 mm busbars

Example of a typical selection situation:

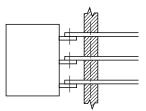
- Draw out ACB
- Horizontal connections
- 50°C ambient temperature
- Service current to be 1600 A

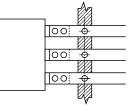
Horizontal Connections for a Draw Out ACB

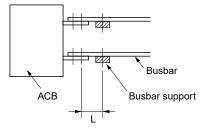
#### Solution:

Refer to the table for horizontal connections. By looking at the 50°C column and 1600A row, the ACB required would need to be an AR216S 1600A ACB, with 3 x 63 mm by 6.3 mm or 2 x 50 mm by 10 mm busbars connected.

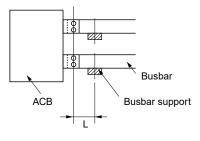
| Standard<br>Series | 40°C       |              |              | 50°C       |              |             | 60°C       |              |             |  |
|--------------------|------------|--------------|--------------|------------|--------------|-------------|------------|--------------|-------------|--|
|                    | ACB        | 6.3 mm Bar   | 10 mm Bar    | ACB        | 6.3 mm Bar   | 10 mm Bar   | ACB        | 6.3 mm Bar   | 10 mm Bar   |  |
| 800                | AR208S     | 1 - 63 X 6.3 | 1 - 50 X 10  | AR208S     | 1 - 63 X 6.3 | 1 - 50 X 10 | AR208S     | 2 - 40 X 6.3 | 1 - 50 X 10 |  |
| 1000               | AR212S     | 2 - 50 X 6.3 | 1 - 50 X 6.3 | AR212S     | 2 - 50 X 6.3 | 1 - 63 X 10 | AR212S     | 2 - 50 X 6.3 | 1 - 63 X 10 |  |
| 1000               | AR212H     | 2 - 63 X 6.3 | 2 - 50 X 10  | AR212H     | 3 - 50 X 6.3 | 2 - 50 X 10 | AR212H     | 3 - 50 X 6.3 | 2 - 50 X 10 |  |
| 1250               | AR212S     | 2 - 63 X 6.3 | 2 - 50 X 10  | AR212S     | 3 - 50 X 6.3 | 2 - 50 X 10 | AR212S     | 3 - 50 X 6.3 | 2 - 50 X 10 |  |
| 1250               | AR212H     | 3 - 50 X 6.3 | 2 - 50 X 10  | AR212H     | 3 - 63 X 6.3 | 2 - 50 X 10 | AR212H     | 4 - 63 X 6.3 | 2 - 50 X 10 |  |
| 1400               | AR216S / H | 2 - 63 X 6.3 | 2 - 50 X 10  | AR216S / H | 3 - 50 X 6.3 | 2 - 50 X 10 | AR216S / H | 4 - 63 X 6.3 | 2 - 50 X 10 |  |
| 1600               | AR216S / H | 3 - 50 X 6.3 | 2 - 50 X 10  | AR216S / H | 3 - 63 X 6.3 | 2 - 50 X 10 | AR216S / H | 4 - 63 X 6.3 | 2 - 63 X 10 |  |
| 2000               | AR220S / H | 4 - 63 x 6.3 | 3 - 63 x 10  | AR220S / H | 5 - 63 X 6.3 | 3 - 63 - 10 | AR220S / H | -            | 3 - 80 x 10 |  |
| 2000               | AR320H     | 4 - 63 x 6.3 | 3 - 63 x 10  | AR320H     | 5 - 63 x 6.3 | 3 - 63 x 10 | AR320H     | -            | 3 - 80 x 10 |  |


#### Vertical Connections for a Draw Out ACB

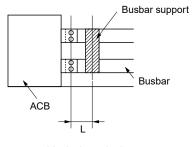

| Max.            | 40°C       |               |             | 50°C       |               |              | 60°C       |               |             |
|-----------------|------------|---------------|-------------|------------|---------------|--------------|------------|---------------|-------------|
| Service<br>Amps | ACB        | 3.6 mm Bar    | 10 mm Bar   | ACB        | 6.3 mm Bar    | 10 mm Bar    | ACB        | 6.3 mm Bar    | 10 mm Bar   |
| 800             | AR208S     | 1 - 63 X 6.3  | 1 - 50 X 10 | AR208S     | 1 - 63 X 6.3  | 1 - 50 X 10  | AR208S     | 1 - 63 X 6.3  | 1 - 50 X 10 |
| 1000            | AR212S     | 1 - 80 X 6.3  | 1 - 50 X 10 | AR212S     | 1 - 80 X 6.3  | 1 - 50 X 10  | AR212S     | 1 - 80 X 6.3  | 1 - 50 X 10 |
| 1000            | AR212H     | 2 - 63 X 6.3  | 1 - 80 X 10 | AR212H     | 2 - 63 X 6.3  | 1 - 80 X 10  | AR212H     | 2 - 80 X 6.3  | 2 - 50 X 10 |
| 1250            | AR212S     | 2 - 63 X 6.3  | 1 - 63 X 10 | AR212S     | 2 - 63 X 6.3  | 1 - 63 X 10  | AR212S     | 2 - 80 X 6.3  | 2 - 50 X 10 |
| 1250            | AR212S     | 1 - 100 X 6.3 | 1 - 63 X 10 | AR212S     | 1 - 100 X 6.3 | 1 - 63 X 10  | AR212S     | 2 - 80 X 6.3  | 2 - 50 X 10 |
| 1250            | AR212H     | 2 - 63 X 6.3  | 1 - 80 X 10 | AR212H     | 2 - 63 X 6.3  | 1 - 80 X 10  | AR212H     | 2 - 80 X 6.3  | 2 - 50 X 10 |
| 1400            | AR216S / H | 2 - 63 X 6.3  | 1 - 80 X 10 | AR216S / H | 2 - 63 X 6.3  | 1 - 80 X 10  | AR216S / H | 2 - 80 X 6.3  | 2 - 50 X 10 |
| 1600            | AR216S / H | 2 - 80 X 6.3  | 1 - 80 X 10 | AR216S / H | 2 - 80 X 6.3  | 1 - 100 X 10 | AR216S / H | 2 - 100 X 6.3 | 2 - 63 X 10 |
| 2000            | AR220S / H | 2 - 100 X 6.3 | 2 - 63 X 10 | AR220S / H | 2 - 125 x 6.3 | 2 - 80 x 10  | AR220S / H | 3 - 100 x 6.3 | 2 - 80 x 10 |
| 2000            | AR320H     | 2 - 100 x 6.3 | 2 - 63 x 10 | AR320H     | 2 - 125 x 6.3 | 2 - 80 x 10  | AR320H     | 3 - 100 x 6.3 | 2 - 80 x 10 |




## Technical Data – Busbar Connection Supports


The busbars to the ACB should be firmly supported near the ACB terminal. Fault current flow through the busbars can develop significant electromagnetic force between the busbars, and the support must be strong enough to withstand such forces. The ACB terminals should not be relied upon as a busbar support, as in addition to potential electrical forces, the weight may also cause damage to the ACB terminals and mouldings.

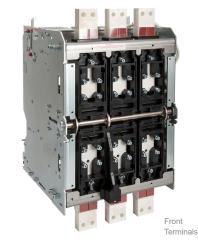







Horizontal terminals




Vertical terminals



Vertical terminals







| Short Circuit Current (kA) |          | 30  | 50  | 65  | 80  | 100 | 120 |
|----------------------------|----------|-----|-----|-----|-----|-----|-----|
| Distance L (mm)            | AR2 type | 300 | 250 | 150 | 150 | -   | -   |



## Technical Data – Dielectric Strength, Internal Resistance, Power Consumption

### **Dielectric Strength**

| Circuit           |                                                                |                         | Withstand Voltage<br>(at 50 / 60Hz)           |                       | Rated Impulse<br>Withstand Voltage<br>U <sub>imp</sub> |
|-------------------|----------------------------------------------------------------|-------------------------|-----------------------------------------------|-----------------------|--------------------------------------------------------|
| Main Circuit      |                                                                |                         | Between terminals,<br>terminal group to earth | AC 3500V for 1 minute | 12kV                                                   |
| Control Circuits  | Auxiliary switches                                             | For general service     | terminal group to earth                       | AC 2500V for 1 minute | 6kV                                                    |
|                   |                                                                | For microload           | terminal group to earth                       | AC 2000V for 1 minute | 4kV                                                    |
|                   | Position switches                                              |                         | terminal group to earth                       | AC 2000V for 1 minute | 4kV                                                    |
|                   | Trip Unit                                                      |                         | terminal group to earth                       | AC 2000V for 1 minute | 4kV                                                    |
|                   | Power supply for undervoltage<br>/ reverse power trip function |                         | terminal group to earth                       | AC 2500V for 1 minute | 6kV                                                    |
| Other Accessories |                                                                | terminal group to earth | AC 2000V for 1 minute                         | 4kV                   |                                                        |
|                   |                                                                |                         |                                               |                       |                                                        |

Notes

The values shown above are those measured on phase connections and cannot be applied to control terminals on the ACB.

## Internal Resistance and Power Loss

|                                                    | Standard Series |        |        |        |  |
|----------------------------------------------------|-----------------|--------|--------|--------|--|
| Туре                                               | AR208S          | AR212S | AR216S | AR220S |  |
| Rated Current (A)                                  | 800             | 1250   | 1600   | 2000   |  |
| DC Internal Resistance Per Pole (m $\Omega$ )      | 0.033           | 0.033  | 0.028  | 0.024  |  |
| DC Power Consumption for 3 poles (W) <sup>1)</sup> | 64              | 155    | 215    | 288    |  |
| AC Power Consumption for 3 poles (W)               | 200             | 350    | 350    | 490    |  |

#### **High Fault Series**

| AR212H | AR216H | AR220H |
|--------|--------|--------|
| 1250   | 1600   | 2000   |
| 0.024  | 0.024  | 0.024  |
| 113    | 184    | 288    |
| 260    | 350    | 490    |

Notes

1) Above figures are based on the calculation of 3 x I2R. For more information please contact NHP.



# 2500-3200 A (AR3) Frame Size 2

The Terasaki 'TemPower 2 AR' series of Air Circuit Breakers (ACBs) are intended for both industrial and commercial applications.

## Key Features of the Terasaki TemPower 2 Range

#### **Highest Levels of Performance**

#### Unique Breaking Contact Design

TemPower 2 is the world's first Double Break ACB, having two breaking contacts per phase, allowing the short time withstand rating (Icw 1 second) to equal to the service short circuit breaking capacity (Ics) ensuring short circuit selectivity.

#### **Rapid Fault Clearance**

The TemPower 2 clears short-circuit faults in less that 30 ms\* which minimises thermal and mechanical stress on busbars and reduces arc flash energy during a fault.

### Highest Levels of Protection and Safety

#### Flexible LSI Protection Curve Characteristics

TemPower 2 is the only ACB that offers trip units with timecurrent characteristics to comply with three different standards and super fine level setting adjustment.

## 3C Temperature Condition Monitoring and Fire Hazard Prevention System

TemPower 2 has a breakthrough self-monitoring temperature system for checking the condition of the main contacts and conductive path using integrated thermistors.

#### Early-make-late-break Neutral (N) design

4-pole models have a fully rated, early-make-late-break Neutral (N) design which eliminates the risk of abnormal line to neutral voltages, which may damage sensitive electronic equipment (ie. Hospital etc).



### Highest Levels of Reliability

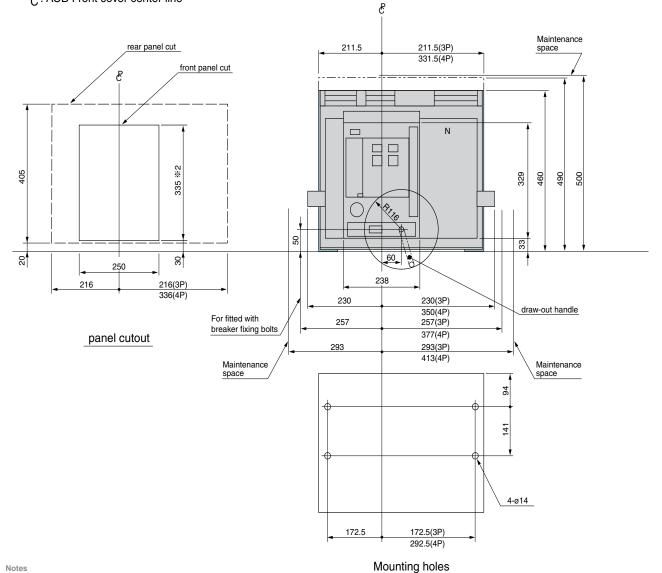
#### **Operational Endurance**

Double Break contacts increase service life. Endurance ratings are the best available and exceed the requirements of AS/NZS 60 947-2

#### **Reduced Time to Repair and Easy Maintenance**

The modular Double Break contact construction allows on-site replacement of each contact set in minimal time.

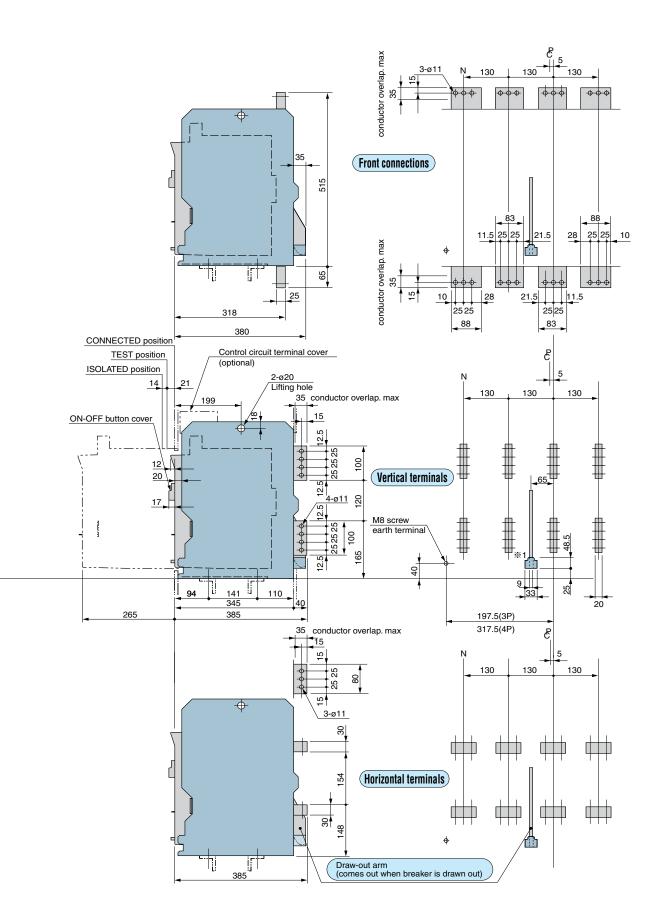
Contact clusters are uniquely located on the ACB body, all serviceable parts are available for inspection, dramatically reducing power down time.


| General                    | The Terasaki AR ACB in frame size 2 is<br>a compact design 85kA Icu rated ACBs<br>at 440V AC. |                 |  |  |
|----------------------------|-----------------------------------------------------------------------------------------------|-----------------|--|--|
| Nominal Current<br>Ratings | 2500A, 3200A                                                                                  |                 |  |  |
| Number of Poles            | 3 or 4                                                                                        |                 |  |  |
|                            | Standard                                                                                      | 85kA @ 440V AC  |  |  |
| Short Circuit              | Туре                                                                                          | 65kA @ 690V AC  |  |  |
| Ratings                    | High Capacity                                                                                 | 100kA @ 440V AC |  |  |
|                            | Туре                                                                                          | 85kA @ 690V AC  |  |  |
| Connection Type            | Withdrawable as standard, fixed type as a special order                                       |                 |  |  |
| Terminal<br>Configurations | Vertical / Vertical, Horizontal / Horizontal,<br>Front / Front or combinations of the above   |                 |  |  |



## Detailed Dimensions - Draw-Out Type

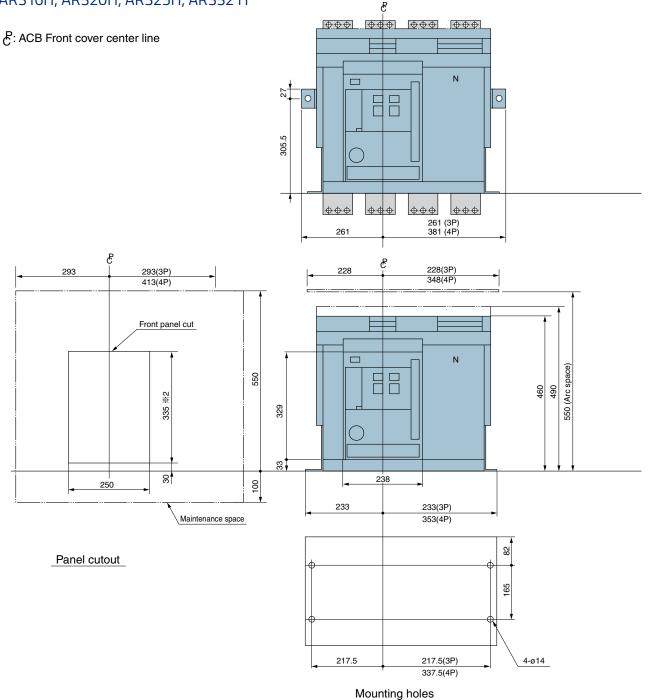
Type AR325S, AR332S AR316H, AR320H, AR325H, AR332H


 $\mathcal{C}$ : ACB Front cover center line



### Notes

- 1) Conductors including connecting bolts should be separated min. 7 mm from Drawout arm.
- 2) Panel cut should be 339 mm not 335 mm when the door flange is used.
- N represents the neutral pole of 4-pole ACBs. The neutral pole is positioned to the right as standard when viewed from the front of the ACB. However, the neutral pole can be customised so that it is positioned to the left.
- For High fault series vertical terminal is standard and horizontal terminal is optional, and front connection is not available.
- The vertical terminal for the main circuit with its length extended by 70mm from the standard is specially available on request.
- For the outline drawing for the version with earth leakage tripping, contact us. ۰

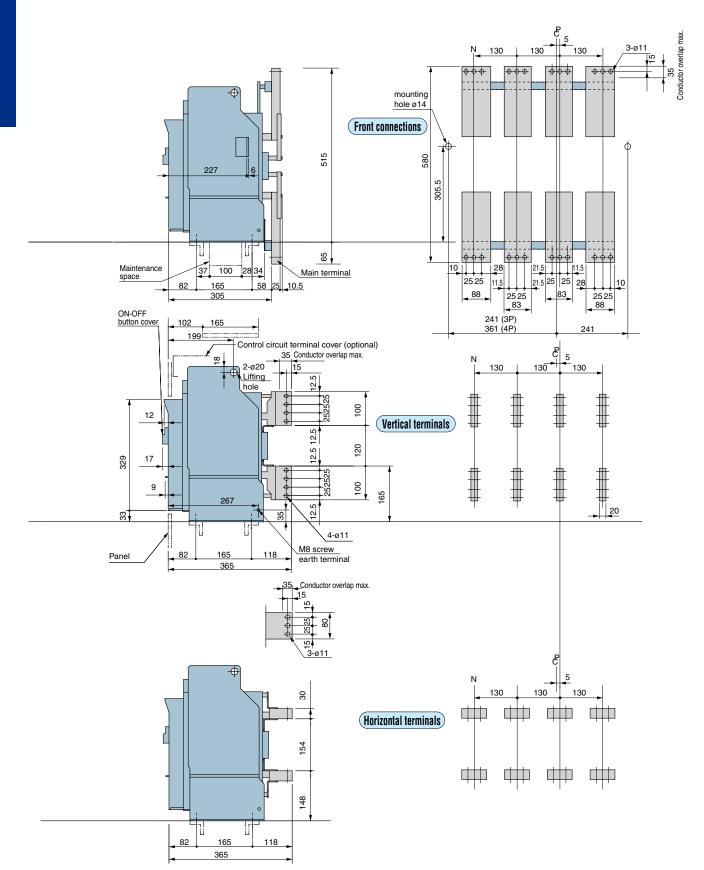







## **Detailed Dimensions - Fixed Type**

Type AR325S, AR332S, AR316H, AR320H, AR325H, AR332 H




### Notes

\* 2: Panel cut should be 339 mm not 335 mm when the door flange is used.

- N represents the neutral pole of 4-pole ACBs. The neutral pole is positioned to the right as standard when viewed from the front of the ACB. However, the neutral pole can be customised so that it is positioned to the left.
- For type AR-H high fault series, vertical terminals are standard, horizontal terminals are optional and front connections are not available.
- · For the outline drawing for the version with earth leakage tripping, contact us.







# Ratings

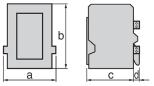
| AR-S Standard Break<br>/ AR-H High Break<br>TemPower 2 |       | AR325S | AR332S | AR316H | AR320H | AR325H* | AR332H* |
|--------------------------------------------------------|-------|--------|--------|--------|--------|---------|---------|
| Rated Current (I <sub>N</sub> ) <sup>1) 2)</sup>       | А     | 2500   | 3200   | 1600   | 2000   | 1600    | 2000    |
| Number of Poles <sup>3) 4)</sup>                       |       | 3 or 4  | 3 or 4  |
|                                                        |       | 200    | 200    | 200    | 200    | 200     | 200     |
|                                                        |       | 400    | 400    | 400    | 400    | 400     | 400     |
| Current                                                |       | 800    | 800    | 800    | 800    | 800     | 800     |
| Transformer                                            | А     | 1250   | 1250   | 1250   | 1250   | 1250    | 1250    |
| Ratings (I <sub>ct</sub> )                             |       | 1600   | 1600   | 1600   | 1600   | 1600    | 1600    |
|                                                        |       | 2000   | 2000   |        | 2000   | 2000    | 2000    |
|                                                        |       | 2500   | 3200   |        |        | 2500    | 3200    |
| Insulation Voltage<br>(U <sub>i</sub> ) (50 / 60Hz)    | VAC   | 1000   | 1000   | 1000   | 1000   | 1000    | 1000    |
| Operational Voltage<br>(U <sub>e</sub> ) (50 / 60Hz)   | VAC   | 690    | 690    | 690    | 690    | 690     | 690     |
| Impulse Voltage<br>(Uimp)                              | kV    | 12     | 12     | 12     | 12     | 12      | 12      |
| Rated Short Time                                       | 1 sec | 85     | 85     | 100    | 100    | 100     | 100     |
| Withstand (I <sub>CW</sub> )                           | 3 sec | 65     | 65     | 75     | 75     | 75      | 75      |
| Total Breaking Time                                    | Sec   | 0.03   | 0.03   | 0.03   | 0.03   | 0.03    | 0.03    |
| Motor Charging<br>Time (Max)                           | Sec   | 10     | 10     | 10     | 10     | 10      | 10      |
| Closing Time (Max)                                     | Sec   | 0.08   | 0.08   | 0.08   | 0.08   | 0.08    | 0.08    |
| Latching Current                                       | kA    | 85     | 85     | 85     | 85     | 85      | 85      |
|                                                        |       |        |        |        |        |         |         |

# Short Circuit Capacity

| AS / NZS and IEC<br>Breaking and<br>Making Capacities |         | AR325S | AR332S | AR316H | AR320H | AR325H* | AR332H* |
|-------------------------------------------------------|---------|--------|--------|--------|--------|---------|---------|
| Due okin u                                            | 690V AC | 65     | 65     | 85     | 85     | 85      | 85      |
| Breaking<br>Capacity kA <sup>5)</sup>                 | 550V AC | 65     | 65     | 85     | 85     | 85      | 85      |
| (ICS = ICU)<br>[kA sym rms] to                        | 500V AC | 85     | 85     | 85     | 85     | 85      | 85      |
| AS / NZS and IEC                                      | 440V AC | 85     | 85     | 100    | 100    | 100     | 100     |
|                                                       | 415V AC | 85     | 85     | 100    | 100    | 100     | 100     |
|                                                       | 690V AC | 143    | 143    | 187    | 187    | 187     | 187     |
| Making Capacity                                       | 550V AC | 143    | 143    | 187    | 187    | 187     | 187     |
| (kA peak) to<br>AS / NZS and IEC                      | 500V AC | 187    | 187    | 187    | 187    | 187     | 187     |
|                                                       | 440V AC | 187    | 187    | 220    | 220    | 220     | 220     |
|                                                       | 415V AC | 187    | 187    | 220    | 220    | 220     | 220     |

### Notes

- Values in open air at 45 °C. Refer chart at rear of catalogue for other temperature ratings.
- Values for AR208S, AR212S, AR216S types with horizontal terminals. Values for others, including all AR-H types, have vertical terminals (see Horizontal options).
- For 2 pole ACBs use outside poles of 3 pole ACB.
- 4 Pole ACBs without Neutral phase protection cannot be applied to "IT" type earthing systems, which do not include a neutral.
- Please contact NHP for DC application ACBs. AGR Trip Units cannot be used with DC currents.
   NEMA / ANSI rated AR ACBs are
- NEMA / ANSI rated AR ACBs are not UL Certified. NEMA / ANSI ratings are shown for markets outside of North America, or for marine use, using NEMA ratings.
- When the INST trip function is set to NON, the MCR function should be enabled, otherwise, the breaking capacity equals the latching current.


i) = Available indent delivery only.

\* AR-H High Fault series ACB's are available on an INDENT delivery basis. Refer NHP for delivery.



# Physical

| Number of<br>Operating Cycles | 5                             | AR325S       | AR332S       | AR316H       | AR320H       | AR325H*      | AR332H*      |
|-------------------------------|-------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Mechanical<br>Life            | with<br>maintance             | 20000        | 20000        | 25000        | 25000        | 20000        | 20000        |
|                               | without<br>maintance          | 10000        | 10000        | 12000        | 12000        | 10000        | 10000        |
|                               | 460V AC                       | 7000         | 7000         | 10000        | 10000        | 7000         | 7000         |
| Electrical<br>Life            | 690V AC (without maintenance) | 5000         | 5000         | 7000         | 7000         | 5000         | 5000         |
| Outline                       | а                             | 460 /<br>580 |
| Dimensions:                   | b                             | 460          | 460          | 460          | 460          | 460          | 460          |
| ACB<br>+ Carriage             | С                             | 345          | 345          | 345          | 345          | 345          | 345          |
|                               | d                             | 40           | 40           | 40           | 40           | 40           | 40           |



# Standards

### **Based Standards**

| AS/NZS 60947-2     | Australian / New Zealand Standard                |
|--------------------|--------------------------------------------------|
| IEC 60947-2        | International Electrotechnical Commission        |
| EN60947-2          | European Standard                                |
| JIS C8372          | Japanese Industrial Standard                     |
| NEMA PUB<br>NO.SG3 | National Electrical Manufacturers<br>Association |
| ANSI C37.13        | American National Standard Institute             |

### **Certification and Authorisation**

| ASTA, UK    | ASTA Certification Services  |
|-------------|------------------------------|
| NK, Japan   | Nippon Kaiji Kyokai          |
| LR, UK      | Lloyd's Register of Shipping |
| ABS, USA    | American Bureau of Shipping  |
| GL, Germany | Germanischer Lloyd           |
| BV, France  | Bureau Veritas               |
|             |                              |

# **Environmental**

| Standard<br>Environment      | The standard environment for ACBs is as follows:                                                                                                                                                                                     |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ambient<br>Temperature       | <ul> <li>– 5°C to + 40°C. See following pages<br/>for ACB temperature ratings and busbar<br/>sizing for different temperatures</li> </ul>                                                                                            |
| Relative Humidity            | 45% to 85%                                                                                                                                                                                                                           |
| Altitude                     | Below 2000m. A derating factor applies for higher elevations                                                                                                                                                                         |
| Atmosphere                   | Excessive water vapor, oil vapor, smoke,<br>dust, or corrosive gases must not<br>exist. Sudden change in temperature,<br>condensation, or icing must not occur.<br>Otherwise, refer NHP for its range of<br>climate control products |
| Vibration                    | TemPower 2 ACBs are designed to<br>withstand electromagnetic and mechanical<br>vibrations in accordance to IEC 68-2-6.<br>(2-13.2Hz with amplitude of +/- 1 mm;<br>13.2 to 100Hz with an acceleration of 0.7g)                       |
| Low and High<br>Temperatures | NHP can also supply environmental<br>control solutions for switchboards – low<br>and high temperature conditioning                                                                                                                   |

# Installation Types

| Fixed Type    | Yes |
|---------------|-----|
| Draw-out Type | Yes |



| Based         JIS C 8201-2-1 Ann.1 Ann.2, IEC60947-2,           Standard         EN60947-2, AS3947.2 |                         |                       |                      |  |  |  |
|------------------------------------------------------------------------------------------------------|-------------------------|-----------------------|----------------------|--|--|--|
| Туре                                                                                                 | Terminal Arr            | angement              |                      |  |  |  |
|                                                                                                      | Horizontal<br>Terminals | Vertical<br>Terminals | Front<br>Connections |  |  |  |
| AR325S                                                                                               | 2430                    | 2500                  | 2500                 |  |  |  |
| AR332S                                                                                               | 2790                    | 3200                  | 3150                 |  |  |  |
| AR316H                                                                                               | 1600                    | 1600                  | -                    |  |  |  |
| AR320H                                                                                               | 2000                    | 2000                  | -                    |  |  |  |
| AR325H                                                                                               | 2430                    | 2500                  | -                    |  |  |  |
| AR332H                                                                                               | 2790                    | 3200                  | -                    |  |  |  |

### Notes

1) Contact NHP for details.

If different types of terminal arrangement are used for line and load sides refer to the ratings for the horizontal terminals.

Front connection cannot be specified with the different types of terminal arrangement for line and load sides.

## **General Guidelines**

When a circuit breaker operates in an ambient temperature higher than the standard 40°C, the current carrying capacity of the circuit breaker may require a level of derating.

The degree to which circuit breaker derating is necessary depends upon the size and arrangement of busbars, ACB tag connection orientation, the size of the switchboard compartment where the ACB is mounted, the switchboard enclosure size, the degree of the enclosure ventilation, as well as other environmental factors.

The following tables can be used as a general guide to rating AR ACBs when the ambient temperature around the circuit breaker and its connections is known. It is possible however that varying conditions or the addition of other heat producing devices or even obstructions within the enclosure may require additional derating or an increased level of ventilation.

The values presented in the following tables are based upon test results and theoretical extrapolation. These tables are only intended to provide guidance and in no way substitute proven industrial design practices or temperature rise tests.

## For When the Temperature Inside a Switchboard is Known

### **Standard Fault Series**

| Based<br>Standards             | Ambient<br>Temperature (°C)     | Туре                    | AR325S       | AR332S       |  |
|--------------------------------|---------------------------------|-------------------------|--------------|--------------|--|
| otanuarus                      |                                 | Connecting<br>bar sizes | 2 x 50 x 6.3 | 2 x 80 x 6.3 |  |
|                                | 40 (Standard Am<br>Temperature) | bient                   | 2500         | 3200         |  |
| JIS C 8201-2-1<br>Ann.1 Ann. 2 | 45                              |                         | 2500         | 3200         |  |
| IEC60947-2<br>EN 60947-2       | 50                              |                         | 2500         | 3200         |  |
| AS3947.2                       | 55                              |                         | 2500         | 2990         |  |
|                                | 60                              |                         | 2400         | 2850         |  |
|                                | 40 (Standard Am<br>Temperature) | bient                   | 2500         | 3200         |  |
|                                | 45                              |                         | 2500         | 3010         |  |
| NEMA, SG-3<br>ANSI C37.13      | 50                              |                         | 2440         | 2860         |  |
|                                | 55                              |                         | 2300         | 2690         |  |
|                                | 60                              |                         | 2150         | 2520         |  |

### **High Fault Series**

| •            |               |               |               |
|--------------|---------------|---------------|---------------|
| AR316H       | AR320H        | AR325H        | AR332H        |
| 2 x 80 x 6.3 | 2 x 100 x 6.3 | 3 x 100 x 6.3 | 3 x 100 x 6.3 |
| 1600         | 2000          | 2500          | 3200          |
| 1600         | 2000          | 2500          | 3200          |
| 1600         | 2000          | 2500          | 3200          |
| 1600         | 2000          | 2500          | 2990          |
| 1600         | 2000          | 2400          | 2850          |
| 1600         | 2000          | 2500          | 3200          |
| 1600         | 2000          | 2500          | 3010          |
| 1600         | 2000          | 2440          | 2860          |
| 1600         | 1950          | 2300          | 2960          |
| 1550         | 1830          | 2150          | 2520          |

Notes Standard Fault Series

• The values are applicable for both Draw-out and Fixed type.

The values of AR332S are for vertical terminals on both line and load side.

Above figures are subject to the design of the enclosure and rating of busbar.

Notes High Fault Series

• The values are for vertical terminals on both line and load side.

NHE



## TemPower 2 Busbar Connection Sizing

The temperatures shown represent the  $^\circ C$  ambient temperature inside a switchboard where the ACB is installed.

- Busbars are to be of high conducting copper
- The maximum permissible busbar temperature is 100°C
- Spacers must be used where multiple busbars are connected For example, 6.3 mm spacers for 6.3 mm busbars and 10 mm spacers for 10 mm busbars

Solution:

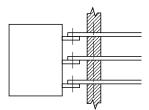
Refer to the table for horizontal connections. By looking at the 50°C column and 1600A row, the ACB required would need to be an AR316H 1600A ACB, with 3 x 63 mm by 6.3 mm or 2 x 50 mm by 10 mm busbars connected.

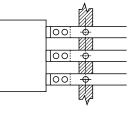
Example of a typical selection situation:

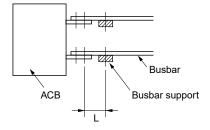
- Draw out ACB
- Horizontal connections
- 50°C ambient temperature
- Service current to be 1600 A

## Horizontal Connections for a Draw Out ACB

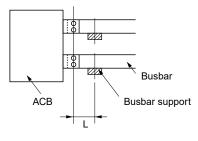
| Standard<br>Series | 40°C       |              |              | 50°C       |              |             | 60°C       |              |             |
|--------------------|------------|--------------|--------------|------------|--------------|-------------|------------|--------------|-------------|
|                    | ACB        | 6.3 mm Bar   | 10 mm Bar    | ACB        | 6.3 mm Bar   | 10 mm Bar   | ACB        | 6.3 mm Bar   | 10 mm Bar   |
| 1600               | AR316H     | 3 - 50 X 6.3 | 2 - 50 X 10  | AR316H     | 3 - 63 X 6.3 | 2 - 50 X 10 | AR316H     | 4 - 63 X 6.3 | 2 - 63 X 10 |
| 2000               | AR320H     | 4 - 63 X 6.3 | 3 - 63 X 6.3 | AR320H     | 5 - 63 X 6.3 | 3 - 63 X 10 | AR320H     | -            | 3 - 80 X 10 |
| 2200               | AR325S / H | 4 - 80 X 6.3 | 3 - 63 X 10  | AR325S / H | 4 - 80 X 6.3 | 3 - 80 X 10 | AR325S / H | -            | 3 - 80 X 10 |
| 2500               | AR325S / H | -            | 3 - 80 X 10  | AR325S / H | -            | 4 - 80 X 10 | AR325S / H | -            | 4 - 80 X 10 |
| 2800               | AR325S / H | -            | 4 - 80 X 10  | -          | -            | -           | -          | -            | -           |


### Vertical Connections for a Draw Out ACB

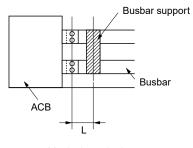

| Max.<br>Service<br>Amps | 40°C       |               |              | 50°C       |               |              | 60°C       |               |              |
|-------------------------|------------|---------------|--------------|------------|---------------|--------------|------------|---------------|--------------|
|                         | АСВ        | 3.6 mm Bar    | 10 mm Bar    | АСВ        | 6.3 mm Bar    | 10 mm Bar    | ACB        | 6.3 mm Bar    | 10 mm Bar    |
| 1600                    | AR316H     | 2 - 80 X 6.3  | 1 - 80 X 10  | AR316H     | 2 - 80 X 6.3  | 1 - 100 X 10 | AR316H     | 2 - 100 X 6.3 | 2 - 63 X 10  |
| 2000                    | AR320H     | 2 - 100 X 6.3 | 2 - 63 X 10  | AR320H     | 2 - 125 X 6.3 | 2 - 80 X 10  | AR320H     | 3 - 100 X 6.3 | 2 - 80 X 10  |
| 2200                    | AR325S / H | 2 - 125 X 6.3 | 2 - 63 X 10  | AR325S / H | 2 - 125 X 6.3 | 2 - 63 X 10  | AR325S / H | 3 - 100 X 6.3 | 2 - 80 X 10  |
| 2500                    | AR325S / H | 2 - 125 X 6.3 | 2 - 80 X 10  | AR325S / H | 3 - 100 X 6.3 | 2 - 100 X 10 | AR325S / H | 3 - 100 X 6.3 | 2 - 100 X 10 |
| 2800                    | AR332S / H | 3 - 100 X 6.3 | 2 - 100 X 10 | AR332S / H | 3 - 100 X 6.3 | 2 - 100 X 10 | AR332S / H | 3 - 125 X 6.3 | 3 - 100 X 10 |
| 3000                    | AR332S / H | 3 - 125 X 6.3 | 3 - 80 X 10  | AR332S / H | 4 - 125 X 6.3 | 3 - 100 X 10 | AR332S / H | 4 - 125 X 6.3 | 3 - 100 X 10 |
| 3200                    | AR332S / H | 4 - 125 X 6.3 | 3 - 100 X 10 | AR332S / H | 4 - 160 X 6.3 | 4 - 100 X 10 | AR332S / H | 4 - 125 X 6.3 | 4 - 100 X 10 |




## Technical Data – Busbar Connection Supports


The busbars to the ACB should be firmly supported near the ACB terminal. Fault current flow through the busbars can develop significant electromagnetic force between the busbars, and the support must be strong enough to withstand such forces. The ACB terminals should not be relied upon as a busbar support, as in addition to potential electrical forces, the weight may also cause damage to the ACB terminals and mouldings.








Horizontal terminals



Vertical terminals



Vertical terminals







| Short Circuit C    | urrent (kA) | 30  | 50  | 65  | 80  | 100 | 120 |
|--------------------|-------------|-----|-----|-----|-----|-----|-----|
| Distance L<br>(mm) | AR3 type    | 350 | 300 | 250 | 150 | 150 | 100 |

# Technical Data – Dielectric Strength, Internal Resistance, Power Consumption

## **Dielectric Strength**

| Circuit          |                                             |                     | Withstand Voltage<br>(at 50 / 60Hz)           |                       | Rated Impulse<br>Withstand Voltage<br>U <sub>imp</sub> |
|------------------|---------------------------------------------|---------------------|-----------------------------------------------|-----------------------|--------------------------------------------------------|
| Main Circuit     |                                             |                     | Between terminals,<br>terminal group to earth | AC 3500V for 1 minute | 12kV                                                   |
|                  | Auxiliary switches                          | For general service | terminal group to earth                       | AC 2500V for 1 minute | 6kV                                                    |
|                  | ,                                           | For microload       | terminal group to earth                       | AC 2000V for 1 minute | 4kV                                                    |
| Control Circuits | Position switches                           |                     | terminal group to earth                       | AC 2000V for 1 minute | 4kV                                                    |
|                  | Trip Unit                                   |                     | terminal group to earth                       | AC 2000V for 1 minute | 4kV                                                    |
|                  | Power supply for un<br>/ reverse power trip | 0                   | terminal group to earth                       | AC 2500V for 1 minute | 6kV                                                    |
| Other Accessorie | es                                          |                     | terminal group to earth                       | AC 2000V for 1 minute | 4kV                                                    |

Notes

The values shown above are those measured on phase connections and cannot be applied to control terminals on the ACB.

# Internal Resistance and Power Loss

|                                                    | Standard | d Series |
|----------------------------------------------------|----------|----------|
| Туре                                               | AR325S   | AR332S   |
| Rated Current (A)                                  | 2500     | 3200     |
| DC Internal Resistance Per Pole (m $\Omega$ )      | 0.014    | 0.014    |
| DC Power Consumption for 3 poles (W) <sup>1)</sup> | 263      | 430      |
| AC Power Consumption for 3 poles (W)               | 600      | 780      |

**High Fault Series** 

| AR316H | AR320H | AR325H | AR332H |
|--------|--------|--------|--------|
| 1600   | 2000   | 2500   | 3200   |
| 0.014  | 0.014  | 0.014  | 0.014  |
| 108    | 168    | 263    | 430    |
| 310    | 430    | 600    | 780    |

Notes

 Above figures are based on the calculation of 3 x I2R. For more information please contact NHP.



# 4000 A (AR4) Frame Size 3

The Terasaki 'TemPower 2 AR' series of Air Circuit Breakers (ACBs) are intended for both industrial and commercial applications.

## Key Features of the Terasaki TemPower 2 Range

## **Highest Levels of Performance**

### **Unique Breaking Contact Design**

TemPower 2 is the world's first Double Break ACB, having two breaking contacts per phase, allowing the short time withstand rating ( $I_{cw}$  1 second) to equal to the service short circuit breaking capacity ( $I_{cs}$ ) ensuring short circuit selectivity.

### **Rapid Fault Clearance**

The TemPower 2 clears short-circuit faults in less that 30 ms\* which minimises thermal and mechanical stress on busbars and reduces arc flash energy during a fault.

## Highest Levels of Protection and Safety

### Flexible LSI Protection Curve Characteristics

TemPower 2 is the only ACB that offers trip units with timecurrent characteristics to comply with three different standards and super fine level setting adjustment.

# 3C Temperature Condition Monitoring and Fire Hazard Prevention System

TemPower 2 has a breakthrough self-monitoring temperature system for checking the condition of the main contacts and conductive path using integrated thermistors.

### Early-make-late-break Neutral (N) design

4-pole models have a fully rated, early-make-late-break Neutral (N) design which eliminates the risk of abnormal line to neutral voltages, which may damage sensitive electronic equipment (i.e. Hospital etc).



AR440SB



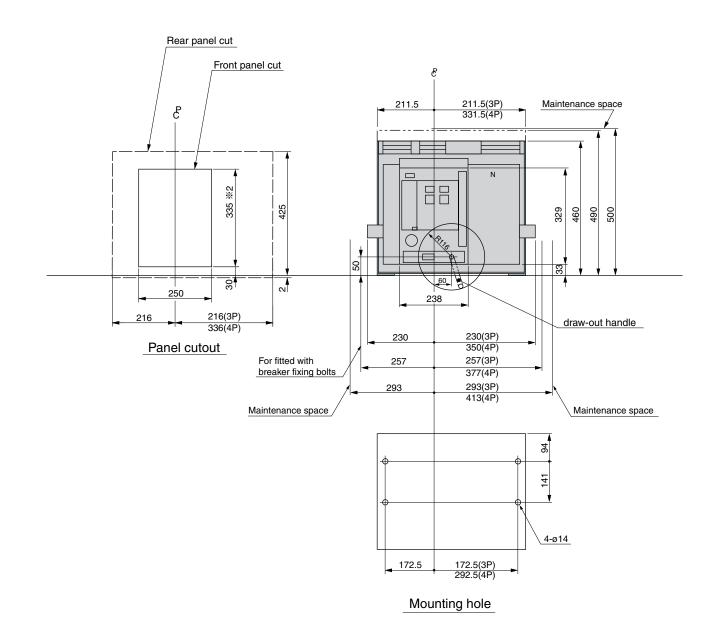
## Highest Levels of Reliability

### **Operational Endurance**

Double Break contacts increase service life. Endurance ratings are the best available and exceed the requirements of AS/NZS 60 947-2

### **Reduced Time to Repair and Easy Maintenance**

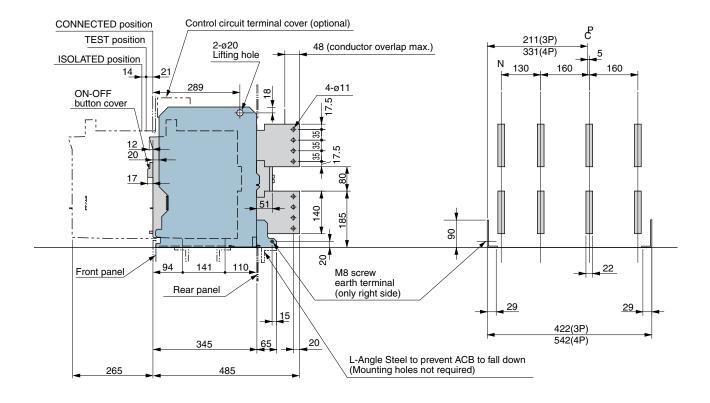
The modular Double Break contact construction allows on-site replacement of each contact set in minimal time.


Contact clusters are uniquely located on the ACB body, all serviceable parts are available for inspection, dramatically reducing power down time.

| General                    | The Terasaki AR4 ACB in frame size<br>3 comes in a fully body width type as<br>standard. A compact design called the<br>AR4SB is also available as a special<br>order from Japan. The AR4 is 'standard<br>type' rated for 100kA I <sub>cu</sub> at 440V AC. |                 |  |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|
| Nominal Current<br>Ratings | 4000A                                                                                                                                                                                                                                                       |                 |  |
| Number of Poles            | 3 or 4                                                                                                                                                                                                                                                      |                 |  |
|                            | Standard                                                                                                                                                                                                                                                    | 100kA @ 440V AC |  |
| Short Circuit              | Туре                                                                                                                                                                                                                                                        | 75kA @ 690V AC  |  |
| Ratings                    | High Capacity                                                                                                                                                                                                                                               | 120kA @ 440V AC |  |
|                            | Туре                                                                                                                                                                                                                                                        | 75kA @ 690V AC  |  |
| Connection Type            | Withdrawable as standard, fixed type is not available                                                                                                                                                                                                       |                 |  |
| Terminal<br>Configurations | Vertical / Vertical only                                                                                                                                                                                                                                    |                 |  |



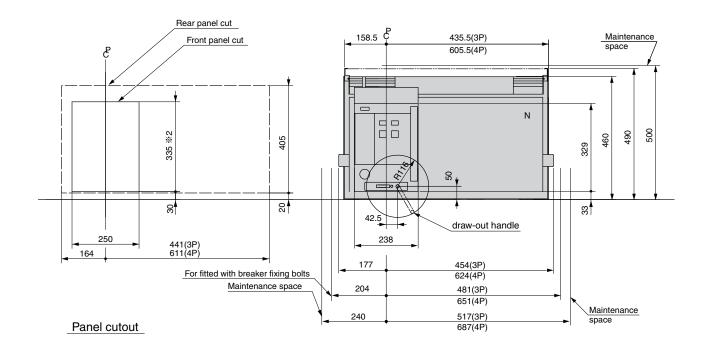
# Detailed Dimensions - Draw-out Type


Type AR440SB



### 

N represents the neutral pole of 4-pole ACBs.

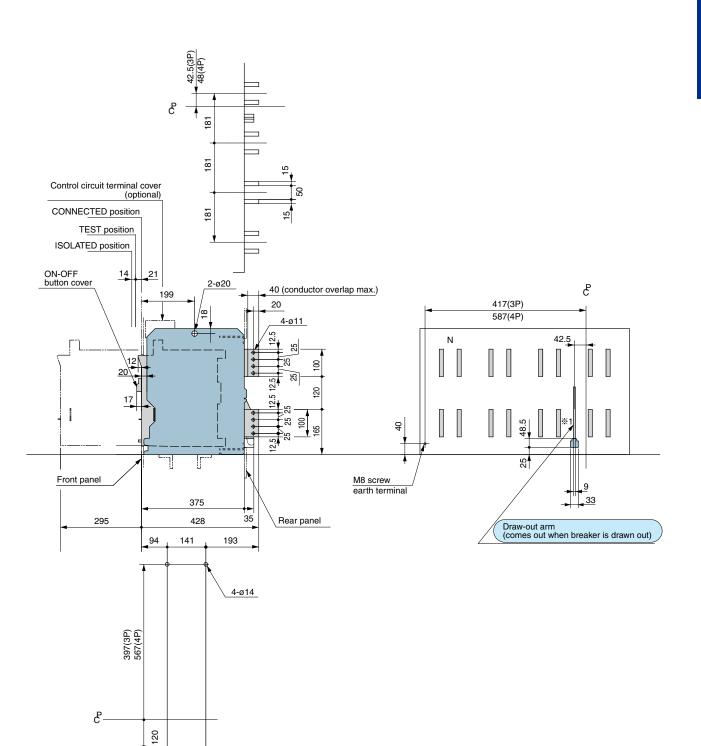







# Detailed Dimensions - Draw-Out Type

Type AR440S, AR420H (3 poles only), AR440H (3 poles only)




### Notes

- % 1: Conductors including connecting bolts should be separated min. 7 mm from Draw-out arm.
- $\div$  2: Panel cut should be 339 mm not 335 mm when the door flange is used.
- N represents the neutral pole of 4-pole ACBs.
- AR420H and AR440H are 3 poles only.

t





# Ratings

| AR-S Standard<br>Break / AR-H High<br>Break TemPower 2 |       | AR440S | AR420H | AR440H |
|--------------------------------------------------------|-------|--------|--------|--------|
| Rated Current<br>(I <sub>N</sub> ) <sup>1) 2)</sup>    | А     | 4000   | 2000   | 4000   |
| Number of Poles<br>3) 4)                               |       | 3 or 4 | 3 or 4 | 3 or 4 |
| Current<br>Transformer<br>Ratings (I <sub>ct</sub> )   | А     | 4000   | 2000   | 4000   |
| Insulation Voltage<br>(U <sub>i</sub> ) (50 / 60 Hz)   | VAC   | 1000   | 1000   | 1000   |
| Operational Voltage<br>(U <sub>e</sub> ) (50 / 60 Hz)  | VAC   | 690    | 690    | 690    |
| Impulse Voltage<br>(Uimp)                              | kV    | 12     | 12     | 12     |
| Rated Short Time                                       | 1 sec | 100    | 100    | 100    |
| Withstand (I <sub>CW</sub> )                           | 3 sec | 85     | 85     | 85     |
| Total Breaking Time                                    | Sec   | 0.03   | 0.03   | 0.03   |
| Motor Charging<br>Time (Max)                           | Sec   | 10     | 10     | 10     |
| Closing Time (Max)                                     | Sec   | 0.08   | 0.08   | 0.08   |
| Latching Current                                       | kA    | 100    | 100    | 100    |
|                                                        |       |        |        |        |

# Short Circuit Capacity

| AS / NZS and IEC<br>Breaking and<br>Making Capacities |         | AR440S | AR420H | AR440H |
|-------------------------------------------------------|---------|--------|--------|--------|
| Decelsing                                             | 690V AC | 75     | 75     | 75     |
| Breaking<br>Capacity kA <sup>5)</sup>                 | 550V AC | 75     | 75     | 75     |
| (ICS = ICU)<br>[kA sym rms] to                        | 500V AC | 90     | 90     | 90     |
| AS / NZS and IEC                                      | 440V AC | 100    | 120    | 120    |
|                                                       | 415V AC | 100    | 120    | 120    |
|                                                       | 690V AC | 165    | 165    | 165    |
| Making Capacity                                       | 550V AC | 165    | 165    | 165    |
| (kA peak) to<br>AS / NZS and IEC                      | 500V AC | 198    | 198    | 198    |
|                                                       | 440V AC | 220    | 264    | 264    |
|                                                       | 415V AC | 220    | 264    | 264    |

### Notes

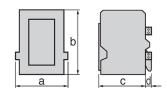
- Values in open air at 45°C. Refer chart at rear of catalogue for other temperature ratings.
- Values for AR208S, AR212S, AR216S types with horizontal terminals. Values for others, including all AR-H types, have vertical terminals (see Horizontal options).
- 3) For 2 pole ACBs use outside poles of 3 pole ACB.
- 4) 4 Pole ACBs without Neutral phase protection cannot be applied to "IT" type earthing systems, which do not include a neutral.
- 5) Please contact NHP for DC application ACBs. AGR Trip Units cannot be used with DC currents.
- NEMA / ANSI rated AR ACBs are not UL Certified. NEMA / ANSI ratings are shown for markets outside of North America, or for marine use, using NEMA ratings.
- When the INST trip function is set to NON, the MCR function should be enabled, otherwise, the breaking capacity equals the latching current.

i) = Available indent delivery only.

 $^{\ast}$  AR-H High Fault series ACB's are available on an INDENT delivery basis. Refer NHP for delivery.

# Physical

| Number of<br>Operating Cycles | 3                             | AR440S       | AR420H | AR440H |
|-------------------------------|-------------------------------|--------------|--------|--------|
| Mechanical<br>Life            | with<br>maintance             | 15000        | 15000  | 10000  |
|                               | without<br>maintance          | 8000         | 8000   | 8000   |
| Flectrical                    | 460V AC                       | 3000         | 3000   | 3000   |
| Electrical<br>Life            | 690V AC (without maintenance) | 2500         | 2500   | 2500   |
| Outline                       | а                             | 631 /<br>801 | 631    | 631    |
| Dimensions:                   | b                             | 460          | 460    | 460    |
| ACB<br>+ Carriage             | С                             | 375          | 375    | 375    |
|                               | d                             | 53           | 53     | 53     |


# Standards

### **Based Standards**

| AS/NZS 60947-2     | Australian / New Zealand Standard                |
|--------------------|--------------------------------------------------|
| IEC 60947-2        | International Electrotechnical Commission        |
| EN60947-2          | European Standard                                |
| JIS C8372          | Japanese Industrial Standard                     |
| NEMA PUB<br>NO.SG3 | National Electrical Manufacturers<br>Association |
| ANSI C37.13        | American National Standard Institute             |

### **Certification and Authorisation**

| ASTA, UK    | ASTA Certification Services  |
|-------------|------------------------------|
| NK, Japan   | Nippon Kaiji Kyokai          |
| LR, UK      | Lloyd's Register of Shipping |
| ABS, USA    | American Bureau of Shipping  |
| GL, Germany | Germanischer Lloyd           |
| BV, France  | Bureau Veritas               |
|             |                              |



# Environmental

| Standard<br>Environment      | The standard environment for ACBs is as follows:                                                                                                                                                                                     |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ambient<br>Temperature       | <ul> <li>– 5°C to + 40°C. See following pages<br/>for ACB temperature ratings and busbar<br/>sizing for different temperatures</li> </ul>                                                                                            |
| Relative Humidity            | 45% to 85%                                                                                                                                                                                                                           |
| Altitude                     | Below 2000m. A derating factor applies for higher elevations                                                                                                                                                                         |
| Atmosphere                   | Excessive water vapor, oil vapor, smoke,<br>dust, or corrosive gases must not<br>exist. Sudden change in temperature,<br>condensation, or icing must not occur.<br>Otherwise, refer NHP for its range of<br>climate control products |
| Vibration                    | TemPower 2 ACBs are designed to<br>withstand electromagnetic and mechanical<br>vibrations in accordance to IEC 68-2-6.<br>(2-13.2Hz with amplitude of +/- 1 mm;<br>13.2 to 100Hz with an acceleration of 0.7g)                       |
| Low and High<br>Temperatures | NHP can also supply environmental<br>control solutions for switchboards – low<br>and high temperature conditioning                                                                                                                   |

# Installation Types

| Fixed Type    | No  |
|---------------|-----|
| Draw-out Type | Yes |

NHP



## Temperature Ratings

| Based    | JIS C 8201-2-1 Ann.1 Ann.2, IEC60947-2, |           |             |  |  |  |
|----------|-----------------------------------------|-----------|-------------|--|--|--|
| Standard | EN60947-2, AS3947.2                     |           |             |  |  |  |
| Туре     | Terminal Arrangement                    |           |             |  |  |  |
|          | Horizontal                              | Vertical  | Front       |  |  |  |
|          | Terminals                               | Terminals | Connections |  |  |  |
| AR440S   | _                                       | 4000      | -           |  |  |  |

#### Notes

1) Contact NHP for details.

If different types of terminal arrangement are used for line and load sides refer to the ratings for the horizontal terminals.

Front connection cannot be specified with the different types of terminal arrangement for line and load sides.

## **General Guidelines**

When a circuit breaker operates in an ambient temperature higher than the standard 40°C, the current carrying capacity of the circuit breaker may require a level of derating.

The degree to which circuit breaker derating is necessary depends upon the size and arrangement of busbars, ACB tag connection orientation, the size of the switchboard compartment where the ACB is mounted, the switchboard enclosure size, the degree of the enclosure ventilation, as well as other environmental factors.

The following tables can be used as a general guide to rating AR ACBs when the ambient temperature around the circuit breaker and its connections is known. It is possible however that varying conditions or the addition of other heat producing devices or even obstructions within the enclosure may require additional derating or an increased level of ventilation.

The values presented in the following tables are based upon test results and theoretical extrapolation. These tables are only intended to provide guidance and in no way substitute proven industrial design practices or temperature rise tests.

## For When the Temperature Inside a Switchboard is Known

### **Standard Fault Series**

|                                |                                      |                                      |              |              | riigii raui  | l Jenes |
|--------------------------------|--------------------------------------|--------------------------------------|--------------|--------------|--------------|---------|
| Based<br>Standards             | Ambient<br>Temperature               | Туре                                 | AR440SB      | AR440S       | AR420H       | AR440   |
|                                | (°C)                                 | Connecting<br>bar sizes              | 2 x 50 x 6.3 | 2 x 80 x 6.3 | 2 x 80 x 6.3 | 2 x 100 |
|                                | (                                    | 40 (Standard Ambient<br>Temperature) |              | 4000         | 2000         | 4000    |
| JIS C 8201-2-1<br>Ann.1 Ann. 2 | 45<br>50<br>55                       |                                      | 4000         | 4000         | 2000         | 4000    |
| IEC60947-2<br>EN 60947-2       |                                      |                                      | 3940         | 4000         | 2000         | 4000    |
| AS3947.2                       |                                      |                                      | 3820         | 3940         | 2000         | 3940    |
|                                | 60                                   |                                      | 3690         | 3760         | 2000         | 3760    |
|                                | 40 (Standard Ambient<br>Temperature) |                                      | 3310         | 3700         | 2000         | 3700    |
|                                | 45                                   | 45                                   |              | 3580         | 2000         | 3580    |
| NEMA, SG-3<br>ANSI C37.13      | 50                                   | 50                                   |              | 3470         | 2000         | 3470    |
|                                | 55                                   | 55                                   |              | 3350         | 2000         | 3350    |
|                                | 60                                   | 60                                   |              | 3140         | 2000         | 3140    |
|                                |                                      |                                      |              |              |              |         |

### **High Fault Series**

| 2 x 80 x 6.3       2 x 100 x 6.3         2000       4000         2000       4000         2000       3940         2000       3760         2000       3700         2000       3580         2000       3350         2000       3140 | AR420H       | AR440H        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|
| 2000       4000         2000       4000         2000       3940         2000       3760         2000       3700         2000       3580         2000       3470         2000       3350                                          | 2 x 80 x 6.3 | 2 x 100 x 6.3 |
| 2000       4000         2000       3940         2000       3760         2000       3700         2000       3580         2000       3470         2000       3350                                                                  | 2000         | 4000          |
| 2000       3940         2000       3760         2000       3700         2000       3580         2000       3470         2000       3350                                                                                          | 2000         | 4000          |
| 2000     3760       2000     3700       2000     3580       2000     3470       2000     3350                                                                                                                                    | 2000         | 4000          |
| 2000         3700           2000         3580           2000         3470           2000         3350                                                                                                                            | 2000         | 3940          |
| 2000         3580           2000         3470           2000         3350                                                                                                                                                        | 2000         | 3760          |
| 2000         3470           2000         3350                                                                                                                                                                                    | 2000         | 3700          |
| 2000 3350                                                                                                                                                                                                                        | 2000         | 3580          |
|                                                                                                                                                                                                                                  | 2000         | 3470          |
| 2000 3140                                                                                                                                                                                                                        | 2000         | 3350          |
|                                                                                                                                                                                                                                  | 2000         | 3140          |

### Notes Standard Fault Series

### Notes High Fault Series

The values are for vertical terminals on both line and load side.

- Above figures are subject to the design of the enclosure and rating of busbar.
- Above figures are subject to the design of the enclosure and rating of busbar.

The values are applicable for Draw-out type.

The values of AR440SB and AR440S are for vertical terminals on both line and load side



## TemPower 2 Busbar Connection Sizing

The temperatures shown represent the  $^\circ\text{C}$  ambient temperature inside a switchboard where the ACB is installed.

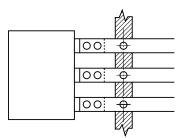
- Busbars are to be of high conducting copper
- The maximum permissible busbar temperature is 100°C
- Spacers must be used where multiple busbars are connected For example, 6.3 mm spacers for 6.3 mm busbars and 10 mm spacers for 10 mm busbars

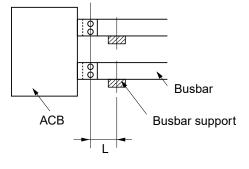
Example of a typical selection situation:

- Draw out ACB
- Vertical connections
- 50°C ambient temperature
- Service current to be 3600 A

### Solution:

Refer to the table for horizontal connections. By looking at the 50°C column and 3600A row, the ACB required would need to be an AR440S 3600A ACB, with 4 x 160 mm by 6.3 mm or 4 x 100 mm by 10 mm busbars connected.


### Vertical Connections for a Draw Out ACB


| Max. 40°C Service |        | 50°C          |              |        | 60°C          |              |        |               |              |
|-------------------|--------|---------------|--------------|--------|---------------|--------------|--------|---------------|--------------|
| Amps              | ACB    | 3.6 mm Bar    | 10 mm Bar    | ACB    | 6.3 mm Bar    | 10 mm Bar    | ACB    | 6.3 mm Bar    | 10 mm Bar    |
| 3600              | AR440S | 4 - 160 X 6.3 | 4 - 100 X 10 | AR440S | 4 - 160 X 6.3 | 4 - 100 X 10 | AR440S | 4 - 160 X 6.3 | 4 - 100 X 10 |
| 4000              | AR440S | 4 - 160 X 6.3 | 4 - 100 X 10 | AR440S | 4 - 160 X 6.3 | 4 - 200 X 10 | AR440S | -             | -            |



## Technical Data – Busbar Connection Supports

The busbars to the ACB should be firmly supported near the ACB terminal. Fault current flow through the busbars can develop significant electromagnetic force between the busbars, and the support must be strong enough to withstand such forces. The ACB terminals should not be relied upon as a busbar support, as in addition to potential electrical forces, the weight may also cause damage to the ACB terminals and mouldings.





Vertical terminals



| Short Circuit      | Current (kA) | 30  | 50  | 65  | 80  | 100 | 120 |
|--------------------|--------------|-----|-----|-----|-----|-----|-----|
| Distance L<br>(mm) | AR4 type     | 350 | 300 | 250 | 150 | 150 | 100 |



# Technical Data – Dielectric Strength, Internal Resistance, Power Consumption

## **Dielectric Strength**

| Circuit          |                                                                |                     | Withstand Voltage<br>(at 50 / 60 Hz)          |                       | Rated Impulse<br>Withstand Voltage<br>Uimp |
|------------------|----------------------------------------------------------------|---------------------|-----------------------------------------------|-----------------------|--------------------------------------------|
| Main Circuit     |                                                                |                     | Between terminals,<br>terminal group to earth | AC 3500V for 1 minute | 12kV                                       |
|                  |                                                                | For general service | terminal group to earth                       | AC 2500V for 1 minute | 6kV                                        |
|                  | Auxiliary switches                                             | For microload       | terminal group to earth                       | AC 2000V for 1 minute | 4kV                                        |
| Control Circuits | Position switches                                              |                     | terminal group to earth                       | AC 2000V for 1 minute | 4kV                                        |
|                  | Trip Unit                                                      |                     | terminal group to earth                       | AC 2000V for 1 minute | 4kV                                        |
|                  | Power supply for undervoltage<br>/ reverse power trip function |                     | terminal group to earth                       | AC 2500V for 1 minute | 6kV                                        |
| Other Accessorie | 2S                                                             |                     | terminal group to earth                       | AC 2000V for 1 minute | 4kV                                        |

Notes

The values shown above are those measured on phase connections and cannot be applied to control terminals on the ACB.

# Internal Resistance and Power Loss

|                                                    | Standard Series |
|----------------------------------------------------|-----------------|
| Туре                                               | AR440S          |
| Rated Current (A)                                  | 4000            |
| DC Internal Resistance Per Pole (m $\Omega$ )      | 0.014           |
| DC Power Consumption for 3 poles (W) <sup>1)</sup> | 672             |
| AC Power Consumption for 3 poles (W)               | 1060            |

Notes

 Above figures are based on the calculation of 3 x I2R. For more information please contact NHP.



# 5000 A-6300 A (AR6) Frame Size 4

The 'TemPower 2 AR6' (5000 A and 6300 A) has a unique contact design that interrupts the current at two points on the line side of the ACB, while dissipating heat from essential components such as the main contacts and terminals by efficient air convection through a pressure value.

## Key Features of the Terasaki TemPower 2 Range

## **Highest Levels of Performance**

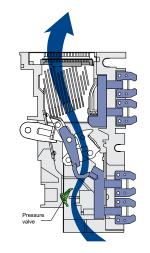
### **Unique Breaking Contact Design**

TemPower 2 is the world's first Double Break ACB, having two breaking contacts per phase, allowing the short time withstand rating ( $I_{cw}$  1 second) to equal to the service short circuit breaking capacity ( $I_{cs}$ ) ensuring short circuit selectivity.

## Highest Levels of Protection and Safety

### Flexible LSI Protection Curve Characteristics

TemPower 2 is the only ACB that offers trip units with timecurrent characteristics to comply with three different standards and super fine level setting adjustment.


# 3C Temperature Condition Monitoring and Fire Hazard Prevention System

TemPower 2 has a breakthrough self-monitoring temperature system for checking the condition of the main contacts and conductive path using integrated thermistors.

### Early-make-late-break Neutral (N) design

4-pole models have a fully rated, early-make-late-break Neutral (N) design which eliminates the risk of abnormal line to neutral voltages, which may damage sensitive electronic equipment (ie. Hospital etc).





## Highest Levels of Reliability

### **Operational Endurance**

Double Break contacts increase service life. Endurance ratings are the best available and exceed the requirements of AS/NZS 60 947-2

### **Reduced Time to Repair and Easy Maintenance**

Contact clusters are uniquely located on the ACB body, all serviceable parts are available for inspection, dramatically reducing power down time.

| General                    | The Terasaki AR6 ACB in frame size<br>4 comes in a fully body width type as<br>standard. The AR6 'standard type' is<br>rated for 120kA Icu at 440V AC. |                 |  |  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|
| Nominal Current<br>Ratings | 5000A, 6300A                                                                                                                                           |                 |  |  |
| Number of Poles            | 3 or 4                                                                                                                                                 |                 |  |  |
|                            | Standard                                                                                                                                               | 120kA @ 440V AC |  |  |
| Short Circuit              | Туре                                                                                                                                                   | 85kA @ 690V AC  |  |  |
| Ratings                    | High Capacity                                                                                                                                          | 135kA @ 440V AC |  |  |
|                            | Туре                                                                                                                                                   | 85kA @ 690V AC  |  |  |
| Connection Type            | Withdrawable as standard, fixed type is not available                                                                                                  |                 |  |  |
| Terminal<br>Configurations | Vertical / Vertical only                                                                                                                               |                 |  |  |

# Detailed Dimensions - Draw-Out Type





### Notes % 2: Panel cut should be 339 mm not 335 mm when the door flange is used.

• N represents the neutral pole of 4-pole ACBs.

NHP





Details



# Ratings

| AR-S Standard<br>Break / AR-H High<br>Break TemPower 2 |       | AR650S | AR663S | AR663H* |
|--------------------------------------------------------|-------|--------|--------|---------|
| Rated Current<br>(I <sub>N</sub> ) <sup>1) 2)</sup>    | A     | 5000   | 6300   | 6300    |
| Number of Poles <sup>3) 4)</sup>                       |       | 3 or 4 | 3 or 4 | 3 or 4  |
| Current Transformer<br>Ratings (I <sub>ct</sub> )      | A     | 5000   | 6300   | 6300    |
| Insulation Voltage<br>(U <sub>i</sub> ) (50 / 60 Hz)   | VAC   | 1000   | 1000   | 1000    |
| Operational Voltage<br>(U <sub>e</sub> ) (50 / 60 Hz)  | VAC   | 690    | 690    | 690     |
| Impulse Voltage<br>(Uimp)                              | kV    | 12     | 12     | 12      |
| Rated Short Time                                       | 1 sec | 120    | 120    | 135     |
| Withstand (I <sub>CW</sub> )                           | 3 sec | 85     | 85     | 85      |
| Total Breaking Time                                    | Sec   | 0.05   | 0.05   | 0.05    |
| Motor Charging Time<br>(Max)                           | Sec   | 10     | 10     | 10      |
| Closing Time (Max)                                     | Sec   | 0.08   | 0.08   | 0.08    |
| Latching Current                                       | kA    | 120    | 120    | 120     |

# Short Circuit Capacity

| AS / NZS and IEC<br>Breaking and<br>Making Capacities |          | AR650S | AR663S | AR663H* |
|-------------------------------------------------------|----------|--------|--------|---------|
| Decelsing                                             | 690 V AC | 85     | 85     | 85      |
| Breaking<br>Capacity kA <sup>5)</sup>                 | 550 V AC | 100    | 100    | 85      |
| (ICS = ICU)<br>[kA sym rms] to                        | 500 V AC | 120    | 120    | 135     |
| AS / NZS and IEC                                      | 440 V AC | 120    | 120    | 135     |
|                                                       | 415 V AC | 120    | 120    | 135     |
|                                                       | 690 V AC | 187    | 187    | 187     |
| Making Capacity                                       | 550 V AC | 230    | 230    | 187     |
| (kA peak) to<br>AS / NZS and IEC                      | 500 V AC | 264    | 264    | 297     |
|                                                       | 440 V AC | 264    | 264    | 297     |
|                                                       | 415 V AC | 264    | 264    | 297     |

#### Notes

- Values in open air at 45°C. Refer chart at rear of catalogue for other temperature ratings.
- Values for AR208S, AR212S, AR216S types with horizontal terminals. Values for others, including all AR-H types, have vertical terminals (see Horizontal options).
- 3) For 2 pole ACBs use outside poles of 3 pole ACB.
- 4) 4 Pole ACBs without Neutral phase protection cannot be applied to "IT" type earthing systems, which do not include a neutral.
- 5) Please contact NHP for DC application ACBs. AGR Trip Units cannot be used with DC currents.
- NEMA / ANSI rated AR ACBs are not UL Certified. NEMA / ANSI ratings are shown for markets outside of North America, or for marine use, using NEMA ratings.
- When the INST trip function is set to NON, the MCR function should be enabled, otherwise, the breaking capacity equals the latching current.

i) = Available indent delivery only.

 $^{\ast}$  AR-H High Fault series ACB's are available on an INDENT delivery basis. Refer NHP for delivery.



[ Þ [

 $\geq$ 

# Physical

| Number of Operating<br>Cycles |                               | AR650S        | AR663S        | AR663H*       |
|-------------------------------|-------------------------------|---------------|---------------|---------------|
| Mechanical                    | with<br>maintance             | 10000         | 10000         | 10000         |
| Life                          | without<br>maintance          | 5000          | 5000          | 5000          |
|                               | 460V AC                       | 1000          | 1000          | 1000          |
| Electrical<br>Life            | 690V AC (without maintenance) | 500           | 500           | 500           |
|                               | а                             | 799 /<br>1034 | 799 /<br>1034 | 799 /<br>1034 |
| Outline Dimensions:           | b                             | 460           | 460           | 460           |
| ACB + Carriage                | С                             | 380           | 380           | 380           |
|                               | d                             | 60            | 60            | 60            |

# Standards

### **Based Standards**

| AS/NZS 60947-2     | Australian / New Zealand Standard                |
|--------------------|--------------------------------------------------|
| IEC 60947-2        | International Electrotechnical Commission        |
| EN60947-2          | European Standard                                |
| JIS C8372          | Japanese Industrial Standard                     |
| NEMA PUB<br>NO.SG3 | National Electrical Manufacturers<br>Association |
| ANSI C37.13        | American National Standard Institute             |
|                    |                                                  |

### **Certification and Authorisation**

| ASTA, UK    | ASTA Certification Services  |
|-------------|------------------------------|
| NK, Japan   | Nippon Kaiji Kyokai          |
| LR, UK      | Lloyd's Register of Shipping |
| ABS, USA    | American Bureau of Shipping  |
| GL, Germany | Germanischer Lloyd           |
| BV, France  | Bureau Veritas               |

# Environmental

| Standard<br>Environment      | The standard environment for ACBs is as follows:                                                                                                                                                                                     |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ambient<br>Temperature       | <ul> <li>– 5°C to + 40°C. See following pages<br/>for ACB temperature ratings and busbar<br/>sizing for different temperatures</li> </ul>                                                                                            |
| Relative Humidity            | 45% to 85%                                                                                                                                                                                                                           |
| Altitude                     | Below 2000m. A derating factor applies for higher elevations                                                                                                                                                                         |
| Atmosphere                   | Excessive water vapor, oil vapor, smoke,<br>dust, or corrosive gases must not<br>exist. Sudden change in temperature,<br>condensation, or icing must not occur.<br>Otherwise, refer NHP for its range of<br>climate control products |
| Vibration                    | TemPower 2 ACBs are designed to<br>withstand electromagnetic and mechanical<br>vibrations in accordance to IEC 68-2-6.<br>(2-13.2Hz with amplitude of +/- 1 mm;<br>13.2 to 100Hz with an acceleration of 0.7g)                       |
| Low and High<br>Temperatures | NHP can also supply environmental<br>control solutions for switchboards – low<br>and high temperature conditioning                                                                                                                   |

# Installation Types

| Fixed Type    | No  |
|---------------|-----|
| Draw-out Type | Yes |



## Temperature Ratings

| Based    | JIS C 8201-2-1 Ann.1 Ann.2, IEC60947-2, |           |             |  |  |  |
|----------|-----------------------------------------|-----------|-------------|--|--|--|
| Standard | EN60947-2, AS3947.2                     |           |             |  |  |  |
| Туре     | Terminal Arr                            | angement  |             |  |  |  |
|          | Horizontal                              | Vertical  | Front       |  |  |  |
|          | Terminals                               | Terminals | Connections |  |  |  |
| AR650S   | _                                       | 5000      | -           |  |  |  |

#### Notes

1) Contact NHP for details.

If different types of terminal arrangement are used for line and load sides refer to the ratings for the horizontal terminals.

Front connection cannot be specified with the different types of terminal arrangement for line and load sides.

## **General Guidelines**

High

When a circuit breaker operates in an ambient temperature higher than the standard 40°C, the current carrying capacity of the circuit breaker may require a level of derating.

The degree to which circuit breaker derating is necessary depends upon the size and arrangement of busbars, ACB tag connection orientation, the size of the switchboard compartment where the ACB is mounted, the switchboard enclosure size, the degree of the enclosure ventilation, as well as other environmental factors.

The following tables can be used as a general guide to rating AR ACBs when the ambient temperature around the circuit breaker and its connections is known. It is possible however that varying conditions or the addition of other heat producing devices or even obstructions within the enclosure may require additional derating or an increased level of ventilation.

The values presented in the following tables are based upon test results and theoretical extrapolation. These tables are only intended to provide guidance and in no way substitute proven industrial design practices or temperature rise tests.

## For When the Temperature Inside a Switchboard is Known

### **Standard Fault Series**

| Standard Fault                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Series              |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |              |                                                          | Fault Series |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|----------------------------------------------------------|--------------|
| Based                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ambient             | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AR650S       | AR663S       |                                                          | AR663H       |
| Standards<br>JIS C 8201-2-1<br>Ann.1 Ann. 2<br>IEC60947-2<br>EN 60947-2<br>AS3947.2<br>NEMA, SG-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Temperature<br>(°C) | Connecting<br>bar sizes                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 x 50 x 6.3 | 2 x 80 x 6.3 | -                                                        | 2 x 80 x 6.3 |
| Based<br>Standards<br>JIS C 8201-2-1<br>Ann.1 Ann. 2<br>IEC60947-2<br>EN 60947-2<br>AS3947.2<br>NEMA, SG-3<br>ANSI C37.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | `                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5000         | 6300         |                                                          | 6300         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5000         | 6300         |                                                          | 6300         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4950         | 6000         |                                                          | 6000         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 55                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4710         | 5680         |                                                          | 5680         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60                  | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | 5370         | A<br>2<br>6<br>6<br>6<br>5<br>5<br>5<br>5<br>5<br>5<br>4 | 5370         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (                   | Ambient<br>Temperature<br>oTypeAR650SAR663SConnecting<br>bar sizes $2 \times 50 \times 6.3$ $2 \times 80 \times 6.3$ 40 (Standard Ambient<br>Temperature) $5000$ $6300$ 45 $5000$ $6300$ 50 $4950$ $6000$ 50 $4710$ $5680$ 50 $4450$ $5370$ 40 (Standard Ambient<br>Temperature) $4700$ $5680$ 50 $4450$ $5370$ 50 $4480$ $5370$ 40 (Standard Ambient<br>Temperature) $4700$ $5680$ 45 $4450$ $5370$ 45 $4480$ $5050$ 45 $4180$ $5050$ 55 $4710$ $5050$ | 5680         |              |                                                          |              |
| Standards         Temperature<br>(°C)         Temperature<br>bar sizes         Z x 50 x 6.3         Z x 80 x 6.3           JIS C 8201-2-1<br>Ann.1 Ann. 2<br>IEC60947-2<br>EN 60947-2<br>AS3947.2         40 (Standard Ambient<br>Temperature)         5000         6300           45         500         6000         50         6000           55         4710         5680         600           60         4450         5370           NEMA, SG-3<br>ANSI C37.13         40 (Standard Ambient<br>Temperature)         4700         5680           45         4450         5370         4180         5050           55         3900         4710         5680         4180         5050 |                     | 5370                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |              |                                                          |              |
| '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4180         | 5050         |                                                          | 5050         |
| Ann. 1 Ann. 2<br>IEC60947-2<br>EN 60947-2<br>AS3947.2<br>NEMA, SG-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3900         | 4710         | -                                                        | 4710         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6310         | 4350         | -                                                        | 4350         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |              |                                                          |              |

### Notes Standard Fault Series

The values are applicable for Draw-out type.

 The values of AR650S and AR663S are for vertical terminals on both line and load side. Notes High Fault Series

The values are for vertical terminals on both line and load side.

ACBs

Above figures are subject to the design of the enclosure and rating of busbar.



## TemPower 2 Busbar Connection Sizing

The temperatures shown represent the  $^\circ\text{C}$  ambient temperature inside a switchboard where the ACB is installed.

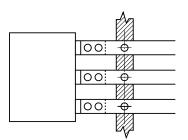
- Busbars are to be of high conducting copper
- The maximum permissible busbar temperature is 100°C
- Spacers must be used where multiple busbars are connected For example, 6.3 mm spacers for 6.3 mm busbars and 10 mm spacers for 10 mm busbars

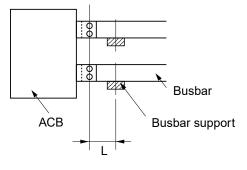
Example of a typical selection situation:

- Draw out ACB
- Vertical connections
- 50°C ambient temperature
- Service current to be 5000A

### Vertical Connections for a Draw Out ACB

### Solution:


Refer to the table for horizontal connections. By looking at the  $50^{\circ}$ C column and 5000A row, the ACB required would need to be an AR650S 5000A ACB, with 4 x 200 mm by 10 mm busbars connected.


| Max.<br>Service | 40°C   |            |              | 50°C   |            |              | 60°C   |            |           |
|-----------------|--------|------------|--------------|--------|------------|--------------|--------|------------|-----------|
| Amps            | ACB    | 3.6 mm Bar | 10 mm Bar    | ACB    | 6.3 mm Bar | 10 mm Bar    | ACB    | 6.3 mm Bar | 10 mm Bar |
| 5000            | AR650S | -          | 3 - 200 X 10 | AR650S | -          | 4 - 200 X 10 | AR650S | -          | -         |
| 6300            | AR663S | -          | 4 - 200 X 10 | AR663S | -          | -            | AR663S | -          | -         |



## Technical Data – Busbar Connection Supports

The busbars to the ACB should be firmly supported near the ACB terminal. Fault current flow through the busbars can develop significant electromagnetic force between the busbars, and the support must be strong enough to withstand such forces. The ACB terminals should not be relied upon as a busbar support, as in addition to potential electrical forces, the weight may also cause damage to the ACB terminals and mouldings.





Vertical terminals



| Short Circuit Current (kA) |          | 30  | 50  | 65  | 80  | 100 | 120 |
|----------------------------|----------|-----|-----|-----|-----|-----|-----|
| Distance L<br>(mm)         | AR6 type | 350 | 300 | 250 | 150 | 150 | 100 |



# Technical Data – Dielectric Strength, Internal Resistance, Power Consumption

## **Dielectric Strength**

| Circuit          |                                                                |                     | Withstand Voltage<br>(at 50 / 60Hz)           |                       | Rated Impulse<br>Withstand Voltage<br>U <sub>imp</sub> |
|------------------|----------------------------------------------------------------|---------------------|-----------------------------------------------|-----------------------|--------------------------------------------------------|
| Main Circuit     |                                                                |                     | Between terminals,<br>terminal group to earth | AC 3500V for 1 minute | 12kV                                                   |
|                  | Auxiliary switches                                             | For general service | terminal group to earth                       | AC 2500V for 1 minute | 6kV                                                    |
|                  | Auxiliary switches                                             | For microload       | terminal group to earth                       | AC 2000V for 1 minute | 4kV                                                    |
| Control Circuits | Position switches                                              |                     | terminal group to earth                       | AC 2000V for 1 minute | 4kV                                                    |
|                  | Trip Unit                                                      |                     | terminal group to earth                       | AC 2000V for 1 minute | 4kV                                                    |
|                  | Power supply for undervoltage<br>/ reverse power trip function |                     | terminal group to earth                       | AC 2500V for 1 minute | 6kV                                                    |
| Other Accessorie | es                                                             |                     | terminal group to earth                       | AC 2000V for 1 minute | 4kV                                                    |

Notes

The values shown above are those measured on phase connections and cannot be applied to control terminals on the ACB.

# Internal Resistance and Power Loss

|                                                    | Standard | Series |
|----------------------------------------------------|----------|--------|
| Туре                                               | AR650S   | AR663S |
| Rated Current (A)                                  | 5000     | 6300   |
| DC Internal Resistance Per Pole (m $\Omega$ )      | 0.012    | 0.010  |
| DC Power Consumption for 3 poles (W) <sup>1)</sup> | 900      | 1190   |
| AC Power Consumption for 3 poles (W)               | 1620     | 1910   |

Notes

 Above figures are based on the calculation of 3 x I2R. For more information please contact NHP.



# **Trip Units**

TemPower 2 offers trip units with time/ current characteristics to comply with three different standards and super fine level setting adjustment:

- L Type IEC 60947-2 (low voltage circuit breakers) and R Type IEC 60 255-3 (electrical relays)
- S Type Lloyds Register of Shipping (for marine generator protection).



AGR-11B Basic Trip Unit with adjustment dials TemPro AGR11



AGR-21C Standard trip unit with LCD Ammeter display TemPro PLUS



AGR-31C Advaned Trip Unit with LCD "Analyser" TemPro PREMIER



## AR ACB – TemPro PLUS and TemPro PREMIER Metering Trip Units

Featuring a wide range of standard features and specialised options, the Terasaki TemPro / AGR Plus and Premier overcurrent release range is suitable for commercial, industrial and marine applications. These metering Trip Unit types are divided into two performance ranges; the TemPro PLUS and TemPro PREMIER.

## TemPro PLUS (Type AGR-21C)

Featuring a backlit liquid crystal display (LCD) for easy visual identification and a soft rubber key activated scrolling menu system the TemPro PLUS can display<sup>1)</sup>:

- Phase currents I1, I2, I3 (accuracy + 2.5%)
- Fault current value
- Tripping delay time
- The maximum phase current
- Cause of fault (LTD, STD, INST, GF<sup>2</sup>)

Providing adjustable LSI and GF<sup>3)</sup> protection featuring MODBUS communications plus a built-in current meter as standard, the TemPro PLUS is perfect for basic and mid range applications.

## TemPro PREMIER (Type AGR-31C)

The TemPro PREMIER is an advanced Trip Unit that offers the same LCD appearance and protective functions as the TemPro PLUS. In addition to the current meter measurements listed above the TemPro PREMIER has an inbuilt energy analyser which indicates:

- Phase currents I1, I2, I3 (accuracy + 1.5%)
- Line voltages (V) V12, V23, V31<sup>4)</sup>
- Phase voltage (V) V1N, V2N, V3N (accuracy + 1.0%)
- Active power (kW) (accuracy + 2.5%)
- Demanded active power (kW)
- Electric energy (kWh) (accuracy + 3.0%)
- Power factor (cos ø) (accuracy + 2.5%)
- Frequency (Hz) (accuracy + 0.5Hz)
- Fault current value
- Tripping delay time
- The maximum phase current
- Cause of fault (LTD, STD, INST, GF<sup>2)</sup>)

Furthermore, the TemPro PREMIER is available with a range of optional features that make it ideal for use in specialised applications.

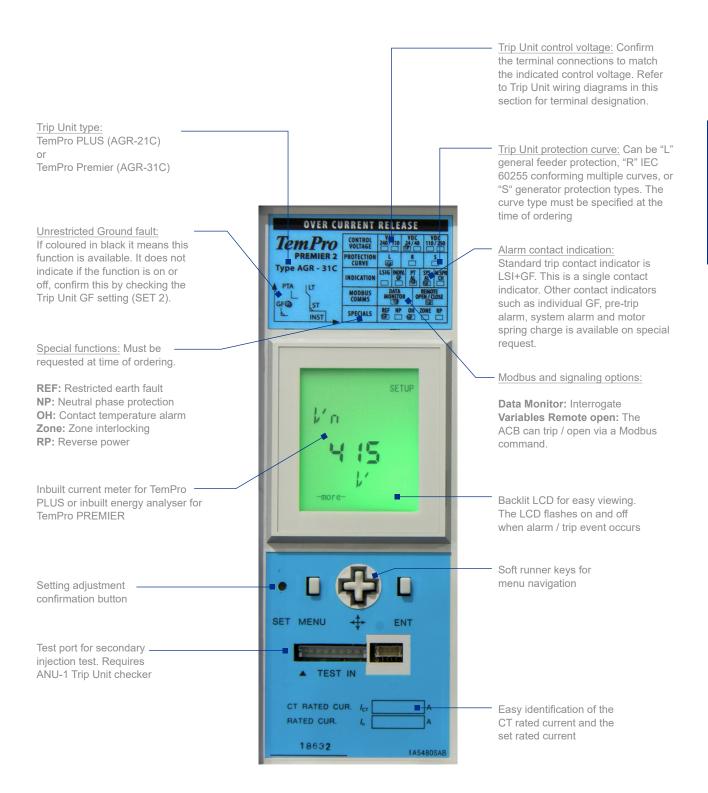
### **Field test facility**

AGR-21C / /31C Trip Units are equipped with a field test function to verify the long time delay, short time delay, instantaneous and ground fault trip features without the need for tripping of the ACB.

## AGR-21C

Standard Trip Unit with Ammeter display TemPro PLUS




## AGR-31C

Advaned Trip Unit with LCD "Analyser" TemPro PREMIER



### Notes

- Trip variables can be viewed after an event via the LCD providing control power is constantly available.
- LTD-Long time delay trip, STD-Short time delay trip, INST-Instantaneous trip, GF-Unrestricted ground fault (not available for 'S' curve model Trip Unit).
- This function provides ground fault protection to TN-C or TN-S power distribution systems on the load side.
- 4) Line voltage and phase voltage cannot be displayed at the same time.



ACBs



## The power of selectivity. Be selective with your protection release

### Protection

### **Application Protection Curves**

### L curve

Standard protection curve, is designed for general feeder applications and will achieve most selectivity and protection requirements.

### R curve

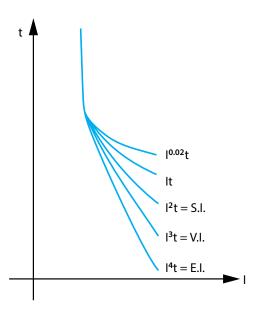
The high selectivity curve Trip Unit includes 3 curve characteristics to IEC60255 (S.I., V.I., E.I.) and is used when selectivity can not be achieved with other system protective devices (ie. fuses or other relays).

S.I. (standard inverse) V.I. (very inverse) E.I (extremely inverse)

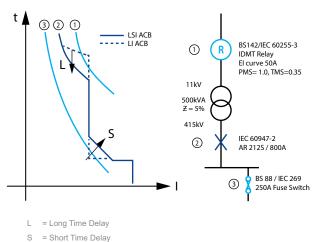
### S curve

Generator protection specifically designed for generator and marine applications.

## Selectivity


Terasaki are so serious about selectivity that all TemPro overcurrent release units have adjustable 'LSI' characteristics as standard. This provides an adjustable time delay on overload (L) and also the I<sup>2</sup>t ramp characteristic (S).

As shown, these are essential to provide selectivity when grading with other protective devices such as downstream MCCBs, fuses and upstream relays.


The standard 'LSI' curve provides more than five million combinations of unique time current characteristics. Zone selective interlocking is also available to provide zero time delay selectivity.

TemPower 2 is the only ACB that offers trip units with timecurrent characteristics to comply with three different standards and super fine level setting adjustment:

- L Type IEC 60947-2 (low voltage circuit breakers) and R Type IEC 60 255-3 (electrical relays)
- S Type Lloyds Register of Shipping (for marine generator protection).



**Above:** R curve Trip Unit with 5 curve options including S.I., V.I. and E.I. for Selectivity applications



5 = Short Time De

I = Instantaneous



## AR Air Circuit Breaker – Trip Unit release specification

## TemPro application protection curves

The TemPro PLUS and TemPro PREMIER Trip Unit range is available in three model variations:

- Standard protection curve, or 'L' type designed for general feeder applications and will achieve most selectivity and protection requirements.
- High selectivity curve or 'R' type offers 3 curve characteristics to IEC60255 and is used when selectivity cannot be achieved with other system protective devices (i.e. fuses or other relays).
- Generator protection curve or 'S' type. Specifically designed for generator and marine applications.

It is recommended that all general feeder circuits be protected by the 'L' type unless the results of a selectivity study indicate that an 'R' type is required to discriminate with another system protective device. The application curve type must be specified at the time of order.

TemPro AGR11 includes adjustable LSI - Long Time Delay, Short Time Delay, INSTANTANEOUS as standard.

TemPro PLUS and TemPro PREMIER have adjustable LSIG - Long Time Delay, Short Time Delay, Instantaneous and GF as standard.

This provides an adjustable time delay on overload and also the I<sup>2</sup>t ramp characteristic which is essential to provide selectivity when grading with other protective devices such as downstream fuses and upstream relays. The standard 'LSI' curve PLUS and PREMIER versions provide more than five million combinations of unique time current characteristics.

## Main Features at a Glance

| Trip Unit<br>Type | Catalogue<br>No.    | Application<br>Protection | LCD<br>Monitoring | Basic<br>Protection <sup>2)</sup> |    | Single Contact<br>and Indicator | Modbus<br>(Only Data | RPT <sup>4)</sup> | Control<br>Power <sup>3)</sup> |
|-------------------|---------------------|---------------------------|-------------------|-----------------------------------|----|---------------------------------|----------------------|-------------------|--------------------------------|
|                   | Curve <sup>1)</sup> |                           |                   | LTD<br>STD<br>INST                | GF | LTD, STD,<br>INST, GF           | Monitoring)          |                   |                                |
| TemPro<br>AGR11   | AGR-11B-AL          | L                         | ×                 | V                                 | ×  | <b>v</b> *                      | ×                    | ×                 | Required                       |
|                   | AGR-21C-L-PG        | L                         | Current (A)       | ~                                 | v  | v                               | V                    | ×                 | Required                       |
| TemPro<br>PLUS    | AGR-21C-R-PG        | R                         | Current (A)       | ~                                 | ~  | v                               | V                    | ×                 | Required                       |
|                   | AGR-21C-S-PS        | S                         | Current (A)       | ~                                 | ×  | v                               | v                    | ×                 | Required                       |
|                   | AGR-31C-L-PG        | L                         | Amps + Energy     | v                                 | V  | v                               | v                    | x                 | Required                       |
| TemPro<br>PREMIER | AGR-31C-R-PG        | R                         | Amps + Energy     | ~                                 | ~  | v                               | v                    | ×                 | Required                       |
|                   | AGR-31C-S-PS        | S                         | Amps + Energy     | V                                 | ~  | ~                               | V                    | Option            | Required                       |

1) L / R / S refers to the application protection curve - specify at time of ordering.

2) LTD-Long Time Delay trip, STD-Short Time Delay trip, INST-Instantaneous trip, GF-Unrestricted Ground Fault, (load side GF)

3) Trip variables can be viewed after an event via the LCD providing control power is constantly available. The Trip Unit does not require control power to operate as a protective device, however it is recommended, as control power is essential for many of the specialised Trip Unit features and for the Trip Unit display itself, for setting purposes.

4) RPT- Reverse power trip. AGR-31CS-PS becomes AGR-31CS-PR with RPT.

\* contact NHP

Notes



# Specifications: AR ACBs with AGR21C and AGR31C Trip Units

| AGR-21C – L and AGR31 C – L | L characteristic for general feeder (general power distribution and transformer protection) |
|-----------------------------|---------------------------------------------------------------------------------------------|
| AGR-21C – R and AGR31 C – R | R characteristic for general feeder (3 characteristics conforming to IEC60255)              |
| AGR-21C – S and AGR31 C – S | S characteristic for generator protection                                                   |

| Application         |                                                     | Setting / Opt | For Gener | al Feeder – | Power Dist | ribution | Generator Protection |          |
|---------------------|-----------------------------------------------------|---------------|-----------|-------------|------------|----------|----------------------|----------|
| Trip Unit charact   | eristic curve                                       |               |           | L           | I          | २        | 4                    | 6        |
| Trip Unit OCR ty    | pe designation                                      |               | AGR21C-L  | AGR31C-L    | AGR21C-R   | AGR31C-R | AGR 21C-S            | AGR31C-S |
| Trip Unit suffix of | type designation                                    |               | PG        | PG          | PG         | PG       | PS                   | PS       |
|                     | Long time delay trip                                | LT            | ~         | ~           | ~          | ~        | ~                    | ~        |
|                     | Short time delay trip                               | ST            | ~         | ~           | ~          | V        | ~                    | V        |
|                     | Instantaneous trip 1<br>(standard fault setting)    | INST1 / MCR   | V         | V           | V          | V        | V                    | V        |
|                     | Instantaneous trip 2 (low,<br>maintenance mode etc) | INST2 / MCR   | V         | V           | V          | V        | V                    | V        |
|                     | Ground fault trip                                   | GF 3)         | V         | V           | ~          | V        | -                    | V        |
| Protective          | Selectivity (Discrimination) curves to IEC 60255-3  |               | _         | _           | V          | V        | _                    | _        |
| Functions           | Reverse power trip                                  | RPT           | -         |             | -          |          |                      |          |
|                     | N-phase protection                                  | NP            |           |             |            |          | -                    | _        |
|                     | Negative-phase sequence protection                  | NS            |           |             |            |          | -                    | -        |
|                     | Line side ground fault protection                   | REF           |           |             |            |          | -                    | -        |
|                     | 3C Over temperature monitoring and alarm            | ОН            | _         |             | _          |          | _                    |          |
|                     | Zone interlocking                                   | Z             |           |             | -          |          |                      |          |
|                     | Under/Over Frequency Protection                     | UFOF          | -         |             | -          |          | -                    |          |
|                     | Pre-trip alarm                                      | PTA           | V         | V           | ~          | ~        | ~                    | ~        |
| Alarm               | Pre-trip alarm 2                                    | PTA2          | -         | -           | -          | _        |                      |          |
| Function            | Undervoltage alarm                                  | UV            | -         |             | -          |          | -                    |          |
|                     | Over Voltage Alarm                                  | OV            | -         |             | -          |          | _                    |          |
|                     | COLD / HOT (thermal memory) (LT)                    |               | ~         | ~           | -          | -        | _                    | -        |
|                     | I2t ON / OFF (ST)                                   |               | ~         | ~           | ~          | ~        | ~                    | ~        |
| Protection          | INST / MCR (Instantaneous trip)                     |               | ~         | ~           | ~          | ~        | ~                    | ~        |
| Characteristic      | 10.02t or 1t or 12T or 13t or 14t (LT)              |               | -         | -           | ~          | ~        | -                    | -        |
|                     | I2t ON / OFF (FG)                                   |               | ~         | ~           | ~          | ~        | -                    | -        |
|                     | Polarity NOR / REV (RPT)                            |               | -         | ~           | -          | ~        | -                    | ~        |
| Operation           | LCD indication display                              |               | ~         | ~           | ~          | V        | ~                    | V        |
| Indication          | Trip output contact (single relay contact output)   |               | V         | V           | 4          | V        | V                    | V        |

**Symbol Key** *✓* = Standard feature / or enabled as standard

= Optional non standard special

– = Not applicable



| Application                                                                             |                                                                                                                                                         | Setting / Opt | For Gene | eral Feeder | stribution       | Generator Protection |           |          |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|-------------|------------------|----------------------|-----------|----------|
| Trip Unit charact                                                                       | eristic curve                                                                                                                                           |               | L        |             | F                | र                    |           | S        |
| Trip Unit OCR ty                                                                        | pe designation                                                                                                                                          |               | AGR21C-L | AGR31C-L    | AGR21C-R         | AGR31C-R             | AGR 21C-S | AGR31C-S |
| Trip Unit suffix of                                                                     | f type designation                                                                                                                                      |               | PG       | PG          | PG               | PG                   | PS        | PS       |
|                                                                                         | Integral LCD display                                                                                                                                    |               | ~        | V           | ~                | V                    | ~         | v        |
|                                                                                         | Backlit display                                                                                                                                         |               | ~        | ~           | ~                | V                    | ~         | v        |
|                                                                                         | Present current (switchable between<br>respective phase current<br>phase max. and current)                                                              |               | ~        | V           | V                | V                    | V         | V        |
|                                                                                         | Maximum phase current                                                                                                                                   |               | ~        | ~           | ~                | ~                    | ~         | v        |
|                                                                                         | Demand power                                                                                                                                            |               | _        | V           | -                | V                    | -         | 4        |
| Measurement<br>and Event<br>Indication                                                  | Line voltage<br>Electrical Power<br>Reactive Power<br>Electrical energy, active<br>and reactive<br>Power factor<br>Demand electrical power<br>Frequency |               | _        | v           | _                | V                    | _         | V        |
|                                                                                         | Harmonic current                                                                                                                                        | Н             | -        | V           | _                | v                    | -         | 4        |
|                                                                                         | 3C Over temperature monitoring and alarm                                                                                                                | ОН            | -        |             | _                |                      | -         |          |
|                                                                                         | Trip event log (last trip event)                                                                                                                        |               | v        | V           | v                | 4                    | v         | v        |
|                                                                                         | Alarm event log (last alarm event)                                                                                                                      |               | v        | ~           | v                | ~                    | ~         | v        |
| Miscellaneous                                                                           |                                                                                                                                                         |               |          |             |                  |                      |           |          |
| Communication Function (Modbus RTU RS-485 standard)                                     |                                                                                                                                                         |               | v        | V           | V                | ~                    | ~         | v        |
| Communication gateway options (Accessory module: Profibus, DeviceNet, Ethernet, Modbus) |                                                                                                                                                         | ofibus,       |          |             |                  |                      |           |          |
| External panel / o                                                                      | door mount indication display (T2ED)                                                                                                                    |               |          |             |                  |                      |           |          |
| Control power su                                                                        | upply                                                                                                                                                   |               |          | Spec        | ify voltage at t | the time of ord      | dering    |          |

Symbol Key 🗸 = Standard feature / or enabled as standard 🛛 🗖 = Optional non standard special — = Not applicable



TemPro Trip Units can be 'optioned up' with specialised application functions to suit customer requirements. Please indicate which special application functions are required at the time of order as all are factory installed.

| Standard feature                                                                                                                                                                                                                                                                                                                                              | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Appli | cation | curv |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|------|--|--|
|                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L     | R      | S    |  |  |
| LTD trip                                                                                                                                                                                                                                                                                                                                                      | Adjustable overload protection area trip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V     | ~      | V    |  |  |
| STD trip                                                                                                                                                                                                                                                                                                                                                      | Adjustable short circuit protection area trip (with intentional delay)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V     | ~      | V    |  |  |
| INST trip                                                                                                                                                                                                                                                                                                                                                     | Adjustable short circuit protection area trip (with NO intentional delay)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ~     | ~      | V    |  |  |
| GF trip <sup>1)</sup>                                                                                                                                                                                                                                                                                                                                         | Adjustable unrestricted earth fault protection (GF) (requires external $4^{th}$ CT for 3 pole model) See GF info on page 10 "Custom ACB Ordering"                                                                                                                                                                                                                                                                                                                                                                                                                                           | V     | V      | x    |  |  |
| Single alarm contact indicator                                                                                                                                                                                                                                                                                                                                | As standard the single contact alarm indicator is available that indicates when the LTD trip, STD trip, INST/MCR trip or the GF trip function is activated.                                                                                                                                                                                                                                                                                                                                                                                                                                 | V     | V      | V    |  |  |
| Modbus I/F <sup>1)</sup>                                                                                                                                                                                                                                                                                                                                      | MODBUS communication interface allows monitoring of available data variables. ACB control is non-standard, refer to communications page.                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V     | ~      | V    |  |  |
| Backlit LCD<br>with current meter<br>(TemPro PLUS only)                                                                                                                                                                                                                                                                                                       | Displays phase currents $\rm I_1, I_2, I_3$ and $\rm I_{GF},$ fault current values, tripping time delay, the maximum phase current and cause of fault (LTD, STD, INST, GF)                                                                                                                                                                                                                                                                                                                                                                                                                  | ~     | 4      | V    |  |  |
| Backlit LCDDisplays phase currents I1, I2, I3 and IGF, fault current values, tripping time<br>delay, the maximum phase current and cause of fault (LTD, STD, INST, GF),<br>Line voltages (V) V12, V23, V31, Phase voltage (V) V1N, V2N, V3N, Active<br>power (kW), Demanded active power (kW), Electric energy (kWh), Power factor<br>(cos Ø), Frequency (Hz) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |      |  |  |
| System alarm <sup>1)</sup>                                                                                                                                                                                                                                                                                                                                    | Activates if an internal fault exists within the Trip Unit. System alarm can be monitored remotely via the MODBUS communications interface.                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ~     | ~      | V    |  |  |
| <b>PTA</b><br>Pre-Trip Alarm <sup>1)</sup>                                                                                                                                                                                                                                                                                                                    | Activates if the monitored load current reaches the user set indication threshold. Useful for load shedding applications. This alarm is available via the MODBUS interface only. No Trip Unit display indication when switched OFF.                                                                                                                                                                                                                                                                                                                                                         | 4     | V      | V    |  |  |
| <b>NP</b><br>Neutral phase protection<br>4 pole ACBs only                                                                                                                                                                                                                                                                                                     | In 3-phase, 4-wire systems that contain harmonic distortion, the 3rd harmonic may cause large currents to flow through the neutral conductor. The N-phase protection function (NP) is available on 4 pole ACBs and prevents the neutral conductor from sustaining damage or burnout due to these large currents.<br>The NP trip pickup current can be set between 40 % and 100 % of the Trip Unit rated primary current for L and R-characteristics. This protection function is not available for special 'generator protection' 'S' type Trip Units, and is available on an INDENT basis. | V     | V      | ×    |  |  |
| <b>REF</b><br>Restricted Earth Fault <sup>1)</sup>                                                                                                                                                                                                                                                                                                            | Restricted earth fault protection (GF) (requires external 5th CT for 4P ACB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V     | ~      | ×    |  |  |
| <b>Z</b><br>Zone Interlocking<br>(not AGR11 / AGR21C-S)                                                                                                                                                                                                                                                                                                       | The Zone-Selective interlock (ZSI) feature allows tripping of an ACB nearest<br>to a fault point in the shortest operating time, irrespective of the short time<br>delay trip time setting, which minimizes thermal and mechanical damage to the<br>overall power distribution system. ZSI ACBs cannot be fitted with a UVT.                                                                                                                                                                                                                                                                | ~     | ~      | ~    |  |  |
| <b>NS</b><br>Phase rotation protection                                                                                                                                                                                                                                                                                                                        | This function detects the negative-phase current occurring due to reverse phase or phase loss and prevents burnout of a motor or damage to equipment.                                                                                                                                                                                                                                                                                                                                                                                                                                       | V     | ~      | ×    |  |  |



| Standard feature                                                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                            | Appl | icatior | n curve |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|---------|
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                        | L    | R       | S       |
|                                                                   | Continuous monitoring of the contact temperature provides valuable input for preventative and predictive maintenance programs.                                                                                                                                                                                                                                                                                                         |      |         |         |
|                                                                   | This optional function uses thermistors to monitor the temperature of the ACBs main contacts, and surrounding area. An Trip Unit alarm indicates when the temperature exceeds a set point which is usually set at 155°C, though this point can be set by NHP for lower temperatures if needed. The temperature set point cannot be changed by the user.                                                                                |      |         |         |
| OH<br>Contact over heat protection<br>(TemPro PREMIER only)       | When the preset temperature is reached, the AGR31 Trip Unit will indicate on its display that the "OH" alarm has been activated. A volt free contact output is also available to signal an outside device. The same OH alarm can be sent by Modbus communications.                                                                                                                                                                     | ~    | ~       | ~       |
|                                                                   | It should be noted that the OH feature is just one component within the "3C" temperature monitoring system. 3C can also include separate temperature devices that will monitor different parts of a switchboard, external to an AC B. The 3C temperature monitors can indicate varying temperatures and display this data via comms.                                                                                                   |      |         |         |
| UV                                                                | This function monitors the phase voltages across 3 phases, and gives an alarm on the LCD display. The alarm is activated when the main circuit voltage drops below the setting voltage (selectable from 40%, 60% or 80% of the rated main circuit voltage [Vn]), and is deactivated when the main circuit voltage rises to the recovery setting voltage (selectable from 80%, 85%, 90% or 95% of the rated main circuit voltage [Vn]). |      |         |         |
| Undervoltage alarm function<br>(TemPro PREMIER only)              | Note 1: A relay alarm output is also available on request.                                                                                                                                                                                                                                                                                                                                                                             | V    | ~       | ×       |
|                                                                   | <u>Note 2:</u> The UV alarm can be sent by Modbus for external signalling, to enable control via an external device.                                                                                                                                                                                                                                                                                                                   |      |         |         |
|                                                                   | Note 3: The undervoltage alarm function is disabled unless the main circuit voltage has once risen to the recovery setting voltage or higher                                                                                                                                                                                                                                                                                           |      |         |         |
| <b>RP</b><br>Reverse power trip function<br>(TemPro PREMIER only) | The RPT function protects 3-phase generators running in parallel against reverse power. The RPT pickup current can be set in seven levels: 4% thru 10% of the generator rated power.                                                                                                                                                                                                                                                   | ~    | V       | v       |
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |         |         |

Note: All special application functions are available on an indent basis. For further information on special application functions contact NHP.



# Trip Unit Loss of control power – Low ICT phase current 415 - 690 VAC Phase and DC voltage

# Loss of Trip Unit control power (sustained loss)

If the control power is not supplied or is lost, each function operates as follows:

| Function                               | <b>Operation</b> (if power is lost or not supplied) <sup>1)</sup>                                                                                         |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| LT, ST, INST, RPT                      | Operates normally                                                                                                                                         |
|                                        | Operates normally                                                                                                                                         |
| GF                                     | However, when the CT rated<br>primary current (I <sub>CT</sub> ) is less than<br>800A and the GF pick-up current is<br>set to 10%, GF becomes inoperative |
| MCR                                    | Operates as INST                                                                                                                                          |
| PTA                                    | 1-channel PTA is inoperative.<br>(has a 40ms operation)                                                                                                   |
| Alarm contact output<br>from Trip Unit | Inoperative                                                                                                                                               |
| LCD/<br>COMMUNICATIONS                 | No display when no other power<br>source is available. Cannot program<br>ACB. Communications are disabled                                                 |
| Field test facility and MODBUS         | Inoperative                                                                                                                                               |

 A loss of power won't immediately cause the ACB to trip. The various functions will behave as outlined in the table above.

#### 1 cycle loss of 50 Hz power to Trip Unit (momentary loss)

If there is an interruption to the supply power to the Trip Unit of 1 cycle of 50Hz or less, the Trip Unit's basic operation will be unaffected.

However, if the ACB Trip Unit's communications feature is being used communicate with external devices, there may be a momentary interruption, but this can be common in many systems. If during the one cycle of 50Hz signal loss, some important data is being transmitted, then that data may be not be communicated, though after that normal signals will recommence. Depending on the user application / system and what is being communicated, this short interruption may not be an issue.

#### Low I<sub>CT</sub> Phase Currents

The ACB trip unit will function normally and the display will read correctly when ICT is above approximately 10% of the value of ICT.

ICT is defined as being the ampere rating of the current CTs that each ACB is fitted with. For example, a 2000 A ACB, rated for 2000A use, will be fitted with 2000A CTs. The minimum operating current for the ACB must be approximately 200A (~ 10%) to ensure the ACBs Trip Unit functions correctly. If the ICT drops below ~ 10%, the display may not read amps, volts and other data correctly. Functions such as comms, GF etc may also not function correctly.

The value of 10% is approximate, that is because depending on the Trip Unit function, some require slightly less than 10%, some more than 10%.

If an ACB Trip Unit is failing to read correctly, one of the first things to verify is that the ICT is adequate to ensure correct ACB operation.

#### 415 V AC and 690 V AC Systems

TemPro Plus (AGR21) and Premier (AGR31) ACBs can be used for 400 - 450V AC, or 460 - 700V AC 3 phase or 3 phase + neutral systems.

#### ACBs with TemPro Plus (AGR21) Trip Units

The Trip Unit auxiliary control voltage options are: 24V - 250V DC or 100V - 250VAC, which is wired by the user. Phase voltages ranging from 415V to 690VAC are sensed by the Trip Unit directly from the power CTs and Rogowski coils that are mounted within the ACB body on each phase. ACBs fitted with AGR21 Trip Units will function as standard with 415V - 690V AC mains voltages. No user wiring is required.

#### ACBs with TemPro Premier (AGR31) Trip Units

The Trip Unit auxiliary control voltage options are: 24V - 250V DC or 100V - 250V AC, which is wired by the user.

As AGR31 Trip Units have energy monitoring, they must be supplied with a 3P or 3P+N reference voltage. The Trip Units have phase voltage connection terminals numbered; 13, 23, 04, 14, at the top of each ACB carriage. These terminals then feed the voltages to a 3 phase (+N) internal resistor card, which lowers the voltages from 415V to 120V, or 690V to 120V, and then internally feeds this voltage to the Trip Unit.

Each specific voltage range of 400 to 450V AC or 460 to 700V AC has a unique resistor card, and the Trip Unit also needs specific voltage programming.

ACBs with AGR31 Trip Units must be initially set up by NHP, and the mains voltage must be specified to NHP at the time or ordering.

#### Higher AC voltages and DC voltages

Contact NHP for AR ACBs for 1000V AC and any DC voltage use up to 800VDC.



# Specifications: AR ACBs with AGR21C and AGR31C Over Current Releases

| Protective / Alarm Function |                   | Trip Unit Characteristic Curve | AGR "C" Series AGR21 C and AGR31 C            |
|-----------------------------|-------------------|--------------------------------|-----------------------------------------------|
|                             | 1                 | L, R                           | (80% to 100%) x / <sub>n</sub> in 1% step     |
|                             | I <sub>R</sub>    | S                              | (80% to 115%) x / <sub>n</sub> in 1% steps    |
| Long Time Delay Trip (LTD)  |                   | L                              | (0.5 to 30.0) sec in 0.01 sec steps           |
|                             | t <sub>R</sub>    | R                              | (1.0 to 10.0) sec in 0.01 sec steps           |
|                             |                   | S                              | (15.0 to 60.0) sec in 0.01 sec steps          |
|                             | 1                 | L, R                           | (100% to 1000%) x / <sub>n</sub> in 1% steps  |
|                             | I <sub>sd</sub>   | S                              | (200% to 500%) x / <sub>n</sub> in 1% steps   |
| Short Time Delay Trip (STD) | 4                 | L, R                           | (0.05 to 0.8) sec in 0.01 sec steps           |
|                             | $t_{ m sd}$       | S                              | (0.1 to 0.8) sec in 0.01 sec steps            |
| notontonoque Trin (INICT)   | Inst1             | L, R, S                        | (200% to 1600%) x / <sub>n</sub> in 1% steps  |
| nstantaneous Trip (INST)    | Inst <sup>2</sup> | L, R, S                        | (200% to 1600%) x / <sub>n</sub> in 1% steps  |
|                             | 1                 | L, R                           | (75% to 100%) x / <sub>n</sub> in 1% steps    |
|                             | I <sub>P1</sub>   | S                              | (75% to 105%) x / <sub>n</sub> in 1% steps    |
| Pre-Trip Alarm (PTA)        | 4                 | L, R                           | (5.0 to 200.0) sec in 0.10 sec steps          |
|                             | t <sub>P1</sub>   | S                              | (10.0 to 30.0) sec in 0.10 sec steps          |
|                             | 1                 | L, R                           | (10% to 100%) x / <sub>CT</sub> in 1% steps   |
| Pround Foult Trin (OF)      | I <sub>R</sub>    | S                              | (10% to 100%) x $\mathit{I_{CT}}$ in 1% steps |
| Ground Fault Trip (GF)      | 4                 | L, R                           | (0.1 to 2.0) sec in 0.1 sec steps             |
|                             | t <sub>R</sub>    | S                              | (0.1 to 2.0) sec in 0.1 sec steps             |
|                             | D                 | L, R                           | (4.0% to 10.0%) x P <sub>n</sub> in 1% steps  |
|                             | $P_{R}$           | S                              | (4.0% to 10.0%) x P <sub>n</sub> in 1% steps  |
| Reverse Power Trip (RPT)    | 4                 | L, R                           | (2.5 to 20.0) sec in 0.1 sec steps            |
|                             | t <sub>RP</sub>   | S                              | (2.5 to 20.0) sec in 0.1 sec steps            |
| Quer Veltage Alarm (QV/)    | V <sub>OV</sub>   | L, R, S                        | (105% to 150%) x V <sub>n</sub> by 1% step    |
| Over Voltage Alarm (OV)     | t <sub>ov</sub>   | L, R, S                        | (0.1 to 5.0) sec in 0.10 sec steps            |
|                             | F <sub>uf</sub>   | L, R, S                        | (80% to 105%) x F <sub>n</sub> in 1% steps    |
| Jnder and Over Frequency    | t <sub>uf</sub>   | L, R, S                        | (0.1 to 10.0) sec in 0.10 sec steps           |
| Protection (UFOF)           | F <sub>of</sub>   | L, R, S                        | (95% to 140%) x F <sub>n</sub> in 1% steps    |
|                             | t <sub>of</sub>   | L, R, S                        | (0.1 to 10.0) sec in 0.10 sec steps           |

# Specifications: AGR-11B

| Protective / Alarm Function |                    | Trip Unit Characteristic Curve | AGR "C" Series AGR21 C and AGR31 C           |
|-----------------------------|--------------------|--------------------------------|----------------------------------------------|
|                             | 1                  | L, R                           | (80% to 100%) x / <sub>n</sub> in 1% step    |
|                             | I <sub>R</sub>     | S                              | (80% to 115%) x / <sub>n</sub> in 1% steps   |
| Long Time Delay Trip (LTD)  |                    | L                              | (0.5 to 30.0) sec in 0.01 sec steps          |
|                             | t <sub>R</sub>     | R                              | (1.0 to 10.0) sec in 0.01 sec steps          |
|                             |                    | S                              | (15.0 to 60.0) sec in 0.01 sec steps         |
|                             |                    | L, R                           | (100% to 1000%) x / <sub>n</sub> in 1% steps |
|                             | /sd                | S                              | (200% to 500%) x / <sub>n</sub> in 1% steps  |
| Short Time Delay Trip (STD) | 4                  | L, R                           | (0.05 to 0.8) sec in 0.01 sec steps          |
|                             | t <sub>sd</sub>    | S                              | (0.1 to 0.8) sec in 0.01 sec steps           |
| Instantaneous Trin (INICT)  | Inst1              | L, R, S                        | (200% to 1600%) x / <sub>n</sub> in 1% steps |
| Instantaneous Trip (INST)   | I <sub>nst</sub> 2 | L, R, S                        | (200% to 1600%) x / <sub>n</sub> in 1% steps |

77



# Loss of Trip Unit control power (sustained loss)

**1. Indication via a single contact within the Trip Unit** (TemPro AGR11, TemPro Plus AGR21, TemPro Premier AGR31)

When the LT, ST, INST or GF trip function is activated, an output is generated via a N/O contact.2)

#### 2. Indication of cause of trip (TemPro Plus AGR21, TemPro Premier AGR31)

When the LT trip, ST trip, INST/MCR trip, GF trip, RPT, NS, REF, UV, OV, PTA, PTA2, OH, NS, REF, RPT, OF or UF functions are activated, the Trip Unit display will indicate each individual operation. Cause of trip can also be communicated from the ACB via Modbus communications. Control power is required.

#### **3. System Alarm** (TemPro Plus AGR21, TemPro Premier AGR31)

The Trip Unit also has a self-diagnostic "system alarm" feature that monitors the internal tripping circuits. If detecting any fault in the circuits, the system turns on the system alarm indicator. Control power is needed.

- System Alarm will indicate on the Trip Unit display, if other indication alarms fail.
- If the MHT fails to activate, when the Trip Unit gives a trip signal (System Alarm 1)
- If an Trip Unit trip signal fails to trip the ACB for other reasons (System Alarm 2)
- If the Trip Unit does not initiate a trip operation when it should etc (System Alarm 2)
- System alarm can be communicated via MODbus communications, via memory map command address number 40102 / 101.

| Trip Unit Protective<br>Characteristic  | AGR210               | CL/R              |                  | AGR21                | CS                |                  | AGR310               | CL/R              |                  | AGR310               | S                 |                  |
|-----------------------------------------|----------------------|-------------------|------------------|----------------------|-------------------|------------------|----------------------|-------------------|------------------|----------------------|-------------------|------------------|
| Function                                | Trip Unit<br>display | Contact<br>Output | Modbus<br>output |
| LT, NP, ST                              | •                    | •                 | V                | •                    | •                 | ~                | •                    | •                 | V                | •                    | •                 | ~                |
| INST / MCR                              | •                    | •                 | V                | •                    | •                 | V                | •                    | •                 | V                | •                    | •                 | $\checkmark$     |
| GF Ground Fault                         | •                    | •                 | V                | -                    | -                 | -                | •                    | •                 | V                | •                    | •                 | ~                |
| OH Contact Temperature Alarm            | -                    | -                 | -                | -                    | -                 | -                | •                    | •                 | ~                | •                    | •                 | ~                |
| NS Reverse Phase Protection             | •                    | •                 | V                | -                    | -                 | -                | •                    | •                 | V                | -                    | -                 | -                |
| REF Line side GF                        | -                    | -                 | -                | -                    | -                 | -                | •                    | •                 | V                | -                    | -                 | -                |
| RPT Reverse Power Trip                  | -                    | -                 | -                | -                    | -                 | -                | •                    | •                 | V                | •                    | •                 | ~                |
| PTA Pre Trip Alarm                      | ×                    | -                 | V                | x                    | -                 | V                | x                    | •                 | V                | x                    | -                 | V                |
| System Alarm                            | •                    | -                 | V                | •                    | -                 | ~                | •                    | -                 | V                | •                    | -                 | ~                |
| UV Under Voltage Alarm                  | •                    | -                 | v                | -                    | -                 | -                | •                    | -                 | V                | •                    | -                 | ~                |
| OV Over Voltage Alarm                   | -                    | -                 | -                | -                    | -                 | -                | •                    | -                 | V                | •                    | -                 | ~                |
| OF / UF Over /<br>Under frequency Alarm | -                    | -                 | -                | -                    | -                 | -                | •                    | -                 | v                | •                    | -                 | V                |
| Operation Indication Key                | ● = Self H           | lolding Cir       | cuit             | X = Au               | to Reset          | <b>▲</b> = S     | tatus Indi           | ication           | - = No           | t Available          | e 🖌               | = Standar        |

#### AGR21C and AGR31C special functions

# Contact Ratings for Operation Indication (by a single trip contact, item 1 above)

|             |     | ourient (A)    |                |  |  |  |  |  |
|-------------|-----|----------------|----------------|--|--|--|--|--|
|             |     | Single contact | contact        |  |  |  |  |  |
| Voltage (V) |     | Resistive load | Inductive load |  |  |  |  |  |
| AC          | 250 | 0.5            | 0.2            |  |  |  |  |  |
|             | 250 | 0.27           | 0.04           |  |  |  |  |  |
| DC          | 125 | 0.5            | 0.2            |  |  |  |  |  |
|             | 30  | 2              | 0.7            |  |  |  |  |  |

Current (A)



# L Curve Trip Unit Setting: TemPro PLUS (AGR-11B-AL)

| Setting Item  | Symbol                                    | Setting Range             |                                                                                       |     |     |      |      |      |      |      |      |      |      |      |
|---------------|-------------------------------------------|---------------------------|---------------------------------------------------------------------------------------|-----|-----|------|------|------|------|------|------|------|------|------|
|               | 1                                         | CT rated primar           | CT rated primary current can be set to [I <sub>CT</sub> ] x 0.5 or 0.63 or 0.8 or 1.0 |     |     |      |      |      |      |      |      |      |      |      |
|               | 'n                                        | CT size (A)               | 200                                                                                   | 400 | 800 | 1000 | 1250 | 1600 | 2000 | 2500 | 3200 | 4000 | 5000 | 6300 |
| Rated Current |                                           | [I <sub>CT</sub> ] x 1.0  | 200                                                                                   | 400 | 800 | 1000 | 1250 | 1600 | 2000 | 2500 | 3200 | 4000 | 5000 | 6300 |
| Rated Gurrent | Rated<br>current<br>[I <sub>N</sub> ] (A) | [I <sub>CT</sub> ] x 0.8  | 160                                                                                   | 320 | 630 | 800  | 1000 | 1250 | 1600 | 2000 | 2500 | 3200 | 4000 | 5040 |
|               |                                           | [I <sub>CT</sub> ] x 0.63 | 125                                                                                   | 250 | 500 | 630  | 800  | 1000 | 1250 | 1600 | 2000 | 2500 | 3150 | 3969 |
|               |                                           | [I <sub>CT</sub> ] x 0.5  | 100                                                                                   | 200 | 400 | 500  | 625  | 800  | 1000 | 1250 | 1600 | 2000 | 2500 | 3150 |

| Trip Unit Function       |                                     | Symbol                           | Min      | Max       | Setting increments                     | Setting Tolerances and other data            |  |  |
|--------------------------|-------------------------------------|----------------------------------|----------|-----------|----------------------------------------|----------------------------------------------|--|--|
|                          | Pick-up current x [I <sub>n</sub> ] | I <sub>R</sub>                   | 0.80     | 1.0       | 0.8 - 0.85 - 0.9 - 0.95 - 1.0          | Non tripping below [I <sub>R</sub> ] x 1.05  |  |  |
| LT<br>Long Times         | Time-delay (s)                      | t <sub>R</sub>                   | 0.50     | 30.0      | 0.5 -1.25 -2.5 -5 -10 -15 -20 -25 -30  | Tripping above [I <sub>R</sub> ] x 1.2       |  |  |
| Long Time<br>Delay Trip  | COLD/HOT                            | -                                | COLD /   | НОТ       |                                        | t <sub>R</sub> setting at 600 % of IR        |  |  |
| 5                        | Mode selection                      | -                                | TRIP / N | ION       |                                        | t <sub>R</sub> tolerance: ± 15 %, 0 - 150 ms |  |  |
|                          | Pick-up current x [I <sub>n</sub> ] |                                  | 1.0      | 10.0      | 1 - 1.5 - 2 - 2.5 - 3 - 4 - 6 - 8 - 10 | L telerence L 45 0/                          |  |  |
| ST                       | Time-delay (s)                      | / <sub>sd</sub>                  | 0.05     | 0.80      | 0.05 - 0.1 - 0.2 - 0.4 - 0.6 - 0.8     | l <sub>sd</sub> tolerance: ± 15 %            |  |  |
| Short Time<br>Delay Trip | RAMP I <sup>2</sup> t               | t <sub>sd</sub>                  | OFF / O  | N         |                                        |                                              |  |  |
|                          | Mode selection                      | l <sup>2</sup> t t <sub>sd</sub> | TRIP / N | ION (if O | FF INST cannot be OFF)                 |                                              |  |  |
| INST                     | Pick-up current x [I <sub>n</sub> ] |                                  | 2.0      | 16.0      | 2 - 4 - 6 - 8 - 10 - 12 - 14 -16       |                                              |  |  |
| Instantaneous Trip       | INST                                | / <sub>i</sub>                   | INST     |           |                                        | l <sub>i</sub> tolerance: ± 20 %             |  |  |
| INST / MCR               | Mode selection                      | -                                | TRIP / N | ION (if O | FF STD cannot be OFF)                  |                                              |  |  |



# L Curve Trip Unit Setting: TemPro PLUS (AGR-21C-L)

| Setting Item                  | Symbol                         | Setting Range                                                  |                                                                                                       |                                   |           |          |                        |           |          |          |         |        |        |      |
|-------------------------------|--------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------|-----------|----------|------------------------|-----------|----------|----------|---------|--------|--------|------|
|                               |                                |                                                                | CT rated primary current [/ <sub>CT</sub> ] × (0.5 - 0.63 - 0.8 - 1.0) (A)                            |                                   |           |          |                        |           |          |          |         |        |        |      |
|                               |                                |                                                                | Applied [/                                                                                            | <sub>ст</sub> ] (А)               | 200       | 400      | 800                    | 1000      | 1250     | 1600     | 2000    | 2500   | 3200   | 4000 |
| Defe d Oursent                |                                | ,                                                              |                                                                                                       | [ <i>I</i> <sub>CT</sub> ] x 0.5  | 100       | 200      | 400                    | 500       | 630      | 800      | 1000    | 1250   | 1600   | 2000 |
| Rated Current                 |                                | <sup>/</sup> n                                                 | Rated                                                                                                 | [ <i>I</i> <sub>CT</sub> ] x 0.63 | 125       | 250      | 500                    | 630       | 800      | 1000     | 1250    | 1600   | 2000   | 2500 |
|                               |                                |                                                                | Current<br>[ <i>I</i> <sub>n</sub> ] (A)                                                              | [ <i>I</i> <sub>CT</sub> ] x 0.8  | 160       | 320      | 630                    | 800       | 1000     | 1250     | 1600    | 2000   | 2500   | 3200 |
|                               |                                |                                                                |                                                                                                       | [ <i>I</i> <sub>CT</sub> ] x 1.0  | 200       | 400      | 800                    | 1000      | 1250     | 1600     | 2000    | 2500   | 3200   | 4000 |
|                               | Mode Select                    |                                                                | Trip / OF                                                                                             | F                                 |           |          |                        |           |          |          |         |        |        |      |
| <b>LT</b><br>Long Time Delay  | Pickup Current<br>(continuous) | $I_{\rm R}$ [ $I_{\rm n}$ ] × (80% to 100%) (A) in steps of 1% |                                                                                                       |                                   |           |          |                        |           |          |          |         |        |        |      |
| Trip                          | Trip Timing                    | t <sub>R</sub>                                                 | (0.5 to 30.0) (sec) at 600% of [/_R], in steps of 0.01 sec, Tolerance: $\pm$ 15%, +0.15s – 0s         |                                   |           |          |                        |           |          |          |         |        |        |      |
|                               | -                              | COLD / HOT                                                     |                                                                                                       |                                   |           |          |                        |           |          |          |         |        |        |      |
|                               | Mode Select                    |                                                                | Trip / OF                                                                                             | F                                 |           |          |                        |           |          |          |         |        |        |      |
| <b>ST</b><br>Short Time Delay | Pickup Current                 | I <sub>sd</sub>                                                | $[I_n] \times (100\% \text{ to } 1000\%) \text{ (A), in steps of } 1\%, \text{ Tolerance: } \pm 15\%$ |                                   |           |          |                        |           |          |          |         |        |        |      |
| Trip                          | Trip Timing                    | t <sub>sd</sub>                                                | Relaying                                                                                              | time                              |           | (0.05    | to 0.8)                | (sec) in  | steps o  | f 0.01 s | ec.     |        |        |      |
|                               | I <sup>2</sup> t Mode          | l²t t <sub>sd</sub>                                            | OFF / ON                                                                                              | 1                                 |           |          |                        |           |          |          |         |        |        |      |
| INST                          | Mode Select                    |                                                                | Trip / OF                                                                                             | F                                 |           |          |                        |           |          |          |         |        |        |      |
| Instantaneous Trip            | Pickup Current                 | /i                                                             | [ <i>I</i> <sub>n</sub> ] × (20                                                                       | 0% to 1600%                       | %) (A),   | in steps | of 1%,                 | Toleran   | ce: ± 20 | )%       |         |        |        |      |
| INST / MCR                    | INST1 or INST2 / MCR           | -                                                              | INST1 or                                                                                              | INST2 / MC                        | R         |          |                        |           |          |          |         |        |        |      |
|                               | Pickup Current                 | I <sub>g</sub>                                                 | [/ <sub>CT</sub> ] × (10                                                                              | 0% to 100%)                       | ) (A), in | steps o  | of 1%, T               | oleranc   | e: ± 20% | 6        |         |        |        |      |
| GF                            | Trip Timing                    | tg                                                             | Relaying                                                                                              | time (ms)                         |           | (0.1 to  | o 2.0) (s              | sec) in s | teps of  | 0.1 sec  |         |        |        |      |
| Ground Fault Trip             | I <sup>2</sup> t Mode          | l²t tg                                                         | OFF / ON                                                                                              | 1                                 |           |          |                        |           |          |          |         |        |        |      |
|                               | Mode                           | -                                                              | TRIP / AL                                                                                             | / OFF                             |           |          |                        |           |          |          |         |        |        |      |
|                               | Current Setting                | I <sub>P1</sub>                                                | [ <i>I</i> <sub>n</sub> ] × (75                                                                       | % to 100%)                        | (A), in : | steps of | f 1%, To               | lerance   | :±7.5%   | ,<br>D   |         |        |        |      |
| <b>PTA</b><br>Pre-Trip Alarm  | Time Setting                   | t <sub>P1</sub>                                                | (5.0 to 20                                                                                            | 00.0) (sec) at                    | not les   | s than   | [/ <sub>P1</sub> ], in | steps o   | f 0.1 se | c, Toler | ance: ± | 15%, + | 0.1s-0 | s    |
|                               | Mode                           | -                                                              | AL / OFF                                                                                              |                                   |           |          |                        |           |          |          |         |        |        |      |

#### **Options on Request**

|                                  | Pickup Current<br>(continuous) | I <sub>N</sub>  | $[I_{CT}] \times (40\% \text{ to } 100\%)$ in steps of 1% • Non tripping at not more than $[I_N] \times 1.05$ , Tripping at more than $[I_N] \times 1.2$ |
|----------------------------------|--------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| NP<br>N-phase Protection<br>Trip |                                | t <sub>R</sub>  | Depends on the long time delay trip pickup timing. Activated at 600% of $[/_N]$                                                                          |
|                                  | COLD / HOT                     | -               | Depends on the long time delay trip mode (COLD / HOT)                                                                                                    |
| NS                               | Current Setting                | I <sub>NS</sub> | [/ <sub>n</sub> ] × (20% to 100%) (A), in steps of 1%, Tolerance: ± 10%                                                                                  |
| Negative-Phase<br>Sequence       | Time Setting                   | t <sub>NS</sub> | (0.4 to 4.0) (sec) at 150% of [ $I_{\rm NS}$ ], in steps of 0.1 sec, Tolerance: ± 20%, +0.15 s – 0s                                                      |
| Protection                       | Mode                           | -               | TRIP / AL / OFF                                                                                                                                          |
| z                                | Current Setting                | -               | Interlock with short time delay trip pickup current                                                                                                      |
| Zone Interlock                   | Time Setting                   | -               | 50 ms. or less                                                                                                                                           |

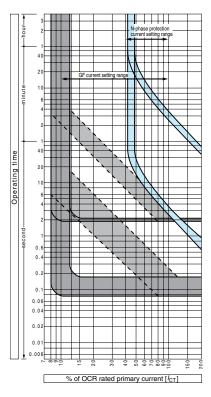


# L Curve Trip Unit Setting: TemPro PREMIER (AGR-31C-L)

| Setting Item                      |                                | Symbol              | Setting                                                                                       | Range                                                                              |           |                                  |                        |           |           |          |          |          |         |      |  |
|-----------------------------------|--------------------------------|---------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------|----------------------------------|------------------------|-----------|-----------|----------|----------|----------|---------|------|--|
|                                   |                                |                     | CT rated                                                                                      | CT rated primary current [ <i>I</i> <sub>CT</sub> ] × (0.5 - 0.63 - 0.8 - 1.0) (A) |           |                                  |                        |           |           |          |          |          |         |      |  |
|                                   |                                |                     | Applied [/                                                                                    | <sub>CT</sub> ] (A)                                                                | 200       | 400                              | 800                    | 1000      | 1250      | 1600     | 2000     | 2500     | 3200    | 4000 |  |
| Rated Current                     |                                |                     |                                                                                               | [ <i>I</i> <sub>CT</sub> ] x 0.5                                                   | 100       | 200                              | 400                    | 500       | 630       | 800      | 1000     | 1250     | 1600    | 2000 |  |
| Rated Current                     |                                | /n                  | Rated                                                                                         | [ <i>I</i> <sub>CT</sub> ] x 0.63                                                  | 125       | 250                              | 500                    | 630       | 800       | 1000     | 1250     | 1600     | 2000    | 2500 |  |
|                                   |                                |                     | Current<br>[ <i>I</i> <sub>n</sub> ] (A)                                                      | [ <i>I</i> <sub>CT</sub> ] x 0.8                                                   | 160       | 320                              | 630                    | 800       | 1000      | 1250     | 1600     | 2000     | 2500    | 3200 |  |
|                                   |                                |                     |                                                                                               | [ <i>I</i> <sub>CT</sub> ] x 1.0                                                   | 200       | 400                              | 800                    | 1000      | 1250      | 1600     | 2000     | 2500     | 3200    | 4000 |  |
|                                   | Mode Select                    |                     | Trip / OF                                                                                     | F                                                                                  |           |                                  |                        |           |           |          |          |          |         |      |  |
| <b>LT</b><br>Long Time            | Pickup Current<br>(continuous) | I <sub>R</sub>      | [ <i>I</i> <sub>n</sub> ] × (80                                                               | [/ <sub>n</sub> ] × (80% to 100%) (A) in steps of 1%                               |           |                                  |                        |           |           |          |          |          |         |      |  |
| Delay Trip                        | Trip Timing                    | t <sub>R</sub>      | (0.5 to 30                                                                                    | .0) (sec) at                                                                       | 600% c    | of [ <i>I</i> <sub>R</sub> ], in | n steps                | of 0.01 : | sec, Tole | erance:  | ± 15%,   | +0.15s   | - 0s    |      |  |
|                                   | COLD/HOT                       | -                   | COLD / H                                                                                      | COLD / HOT                                                                         |           |                                  |                        |           |           |          |          |          |         |      |  |
|                                   | Mode Select                    |                     | Trip / OFF                                                                                    |                                                                                    |           |                                  |                        |           |           |          |          |          |         |      |  |
| ST                                | Pickup Current                 | I <sub>sd</sub>     | [ <i>I</i> <sub>n</sub> ] × (10                                                               | [/ <sub>n</sub> ] × (100% to 1000%) (A), in steps of 1%, Tolerance: ± 15%          |           |                                  |                        |           |           |          |          |          |         |      |  |
| Short Time<br>Delay Trip          | Trip Timing                    | t <sub>sd</sub>     | Relaying                                                                                      | time                                                                               |           | (0.05                            | to 0.8)                | (sec) in  | steps o   | f 0.01 s | ec.      |          |         |      |  |
|                                   | I <sup>2</sup> t Mode          | l²t t <sub>sd</sub> | OFF / ON                                                                                      |                                                                                    |           |                                  |                        |           |           |          |          |          |         |      |  |
| INST                              | Mode Select                    |                     | Trip / OFF                                                                                    |                                                                                    |           |                                  |                        |           |           |          |          |          |         |      |  |
| Instantaneous Trip Pickup Current |                                | /i                  | [ <i>I</i> <sub>n</sub> ] × (20                                                               | 0% to 16009                                                                        | %) (A),   | in steps                         | s of 1%,               | Tolerar   | ice: ± 20 | )%       |          |          |         |      |  |
| INST / MCR                        | INST1 or INST2 / MCR           | -                   | INST1 or                                                                                      | INST2 / MC                                                                         | R         |                                  |                        |           |           |          |          |          |         |      |  |
|                                   | Pickup Current                 | I <sub>g</sub>      | $[I_{CT}] \times (10\% \text{ to } 100\%) \text{ (A), in steps of 1\%, Tolerance: } \pm 20\%$ |                                                                                    |           |                                  |                        |           |           |          |          |          |         |      |  |
| GF                                | trip timing                    | tg                  | Relaying time (ms) (0.1 to 2.0) (sec) in steps of 0.1 sec.                                    |                                                                                    |           |                                  |                        |           |           |          |          |          |         |      |  |
| Ground Fault Trip                 | I <sup>2</sup> t Mode          | l²t tg              | OFF / ON                                                                                      |                                                                                    |           |                                  |                        |           |           |          |          |          |         |      |  |
|                                   | Mode                           | -                   | TRIP / AL                                                                                     | / OFF                                                                              |           |                                  |                        |           |           |          |          |          |         |      |  |
|                                   | Current Setting                | I <sub>P1</sub>     | [ <i>I</i> <sub>n</sub> ] × (75                                                               | % to 100%)                                                                         | (A), in : | steps o                          | f 1%, To               | olerance  | :±7.5%    | ,<br>D   |          |          |         |      |  |
| <b>PTA</b><br>Pre-Trip Alarm      | Time Setting                   | t <sub>P1</sub>     | (5.0 to 20                                                                                    | 0.0) (sec) at                                                                      | t not les | ss than                          | [/ <sub>P1</sub> ], in | steps o   | of 0.1 se | c, Toler | ance: ±  | 15%, +   | 0.1s-0  | )s   |  |
|                                   | Mode                           | -                   | AL / OFF                                                                                      |                                                                                    |           |                                  |                        |           |           |          |          |          |         |      |  |
|                                   | Voltage Setting                | -                   | $[V_{n}] \times (40)$                                                                         | )% to 80%)                                                                         | (V), in s | steps of                         | 1%, To                 | lerance   | ± 5%      |          |          |          |         |      |  |
| UV                                | Time Setting                   | -                   | (0.1 to 36                                                                                    | ) (sec) at vo                                                                      | ltage s   | etting o                         | r less, i              | n steps   | of 0.1 se | ec, Tole | rance: : | ± 15%, ∙ | +0.1s – | 0s   |  |
| Undervoltage<br>Alarm             | Recovery Voltage<br>Setting    | -                   | [ <i>V</i> <sub>n</sub> ] × (80                                                               | )% to 95%) (                                                                       | (V), in s | steps of                         | 1%, To                 | lerance   | :±5%      |          |          |          |         |      |  |
|                                   | Mode                           | -                   | AL / OFF                                                                                      |                                                                                    |           |                                  |                        |           |           |          |          |          |         |      |  |
| OV<br>Over Veltage                | Mode                           | -                   | $[V_{n}] \times (10)$                                                                         | )5% to 150%                                                                        | 6) (V), i | n steps                          | of 1%,                 | Toleran   | ce: ± 5%  | 6        |          |          |         |      |  |
| Over Voltage<br>Alarm             | Time Setting                   | -                   | (0.1 to 5.0                                                                                   | 0) (sec) at vo                                                                     | oltage s  | setting o                        | or less,               | in steps  | of 0.1 s  | ec, Tole | erance:  | ± 15%,   | +0.1s - | 0s   |  |
|                                   | Voltage Setting                | F <sub>uf</sub>     | [ <i>F</i> <sub>n</sub> ] × (19                                                               | % to 99%) (\                                                                       | /), in st | eps of 1                         | 1%                     |           |           |          |          |          |         |      |  |
| UFOF                              | Time Setting                   | t <sub>uf</sub>     | (0.1 to 10                                                                                    | ) (sec) in ste                                                                     | eps of (  | ).1 sec.                         |                        |           |           |          |          |          |         |      |  |
| Under / Over<br>Frequency         | Voltage Setting                | F <sub>of</sub>     | $[F_{n}] \times (10)$                                                                         | 10% to 199%                                                                        | b) (V), i | n steps                          | of 1%                  |           |           |          |          |          |         |      |  |
| Protection                        | Time Setting                   | t <sub>of</sub>     | (0.1 to 10                                                                                    | ) (sec) in ste                                                                     | eps of (  | ).1 sec.                         |                        |           |           |          |          |          |         |      |  |
|                                   | Mode                           | -                   | TRIP / AL                                                                                     | / OFF                                                                              |           |                                  |                        |           |           |          |          |          |         |      |  |



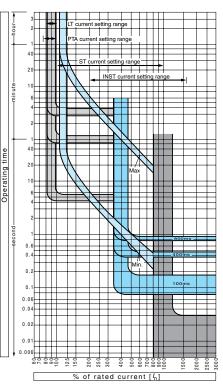
| Setting Item                   |                                | Symbol            | Setting Range                                                                                                                                                                                  |
|--------------------------------|--------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Options on Req                 | uest                           |                   | ·                                                                                                                                                                                              |
| NP                             | Pickup Current<br>(continuous) | I <sub>N</sub>    | $[l_{CT}] \times (40\% \text{ to } 100\%)$ in steps of 1% • Non tripping at not more than $[l_N] \times 1.05$ , Tripping at more than $[l_N] \times 1.05$ and not more than $[l_N] \times 1.2$ |
| N-Phase<br>Protection Trip     | Trip Timing                    | t <sub>R</sub>    | Depends on the long time delay trip pickup timing. Activated at 600% of [IN].                                                                                                                  |
|                                | COLD / HOT                     | -                 | Depends on the long time delay trip mode (COLD / HOT)                                                                                                                                          |
| NS Current Setting             |                                | I <sub>NS</sub>   | $[I_n] \times (20\% \text{ to } 100\%) \text{ (A), in steps of } 1\%, \text{ Tolerance: } \pm 10\%$                                                                                            |
| Negative-phase<br>Sequence     | Time Setting                   | t <sub>NS</sub>   | (0.4 to 4.0) (sec) at 150% of [ $I_{\rm NS}$ ], in steps of 0.1 sec, Tolerance: ± 20%, +0.15 s – 0s                                                                                            |
| protection                     | Mode                           | -                 | TRIP / AL / OFF                                                                                                                                                                                |
| <b>REF</b><br>Line Side Ground | Ourseast Castline              | I <sub>REF</sub>  | $[I_{CT}] \times (10 \% \text{ to } 100\%) (A)$ , in steps of 1%, Tolerance: ± 20%                                                                                                             |
|                                | Current Setting                | I <sub>REFB</sub> | [ <i>I</i> <sub>CT</sub> ] × (10 % to 100%) (A), in steps of 1%, Tolerance: ± 20%                                                                                                              |
| Fault Protection               | Time Setting                   | -                 | Instantaneous                                                                                                                                                                                  |
|                                | Mode                           | -                 | TRIP / AL / OFF                                                                                                                                                                                |
| ОН                             | Temperature Setting            | -                 | 155°C                                                                                                                                                                                          |
| Contact Overheat               | Time Setting                   | -                 | Instantaneous                                                                                                                                                                                  |
| Monitoring                     | Mode                           | -                 | TRIP / AL / OFF                                                                                                                                                                                |
| Z                              | Current Setting                | -                 | Interlock with short time delay trip pickup current                                                                                                                                            |
| Zone Interlock                 | Time Setting                   | -                 | 50 ms. or less                                                                                                                                                                                 |
|                                | Power Setting                  | P <sub>R</sub>    | $[P_n] \times (4\% \text{ to } 100\%) \text{ (kW)}, \text{ ) in steps of } 1\%, \text{ Tolerance } +0\% -20\%$                                                                                 |
| RPT<br>Bowerse Bower           | Time Setting                   | -                 | (2.5 to 20.0) (sec) at 100% of $[P_{\rm R}],$ in steps of 0.01 sec, Tolerance: ± 20%, +0.15s – 0s                                                                                              |
| Reverse Power<br>Trip          | Polarity                       | -                 | NOR / REV                                                                                                                                                                                      |
|                                | Mode                           | -                 | TRIP / AL / OFF                                                                                                                                                                                |




# L Curve Trip Unit Setting: TemPro AGR11, TemPro PLUS (AGR-21C-L), TemPro PREMIER (AGR-31C-L)

# Ampere sensing coils available for AGR-21C-L and AGR-31C-L

| Туре    | CT Amps            | Rated of           | Rated current [In] (A) |                    |                    |  |  |  |  |  |
|---------|--------------------|--------------------|------------------------|--------------------|--------------------|--|--|--|--|--|
|         | [I <sub>CT</sub> ] | [I <sub>CT</sub> ] | [I <sub>CT</sub> ]     | [I <sub>CT</sub> ] | [I <sub>ст</sub> ] |  |  |  |  |  |
|         | (A)                | x 0.5              | x 0.63                 | x 0.8              | x 1.0              |  |  |  |  |  |
|         | 200                | 100                | 125                    | 160                | 200                |  |  |  |  |  |
| AR208S  | 400                | 200                | 250                    | 320                | 400                |  |  |  |  |  |
|         | 800                | 400                | 500                    | 630                | 800                |  |  |  |  |  |
|         | 400                | 200                | 250                    | 320                | 400                |  |  |  |  |  |
| 101100  | 800                | 400                | 500                    | 630                | 800                |  |  |  |  |  |
| AR212S  | 1000               | 500                | 630                    | 800                | 1000               |  |  |  |  |  |
|         | 1250               | 630                | 800                    | 1000               | 1250               |  |  |  |  |  |
|         | 400                | 200                | 250                    | 320                | 400                |  |  |  |  |  |
|         | 800                | 400                | 500                    | 630                | 800                |  |  |  |  |  |
| AR216S  | 1000               | 500                | 630                    | 800                | 1000               |  |  |  |  |  |
|         | 1250               | 630                | 800                    | 1000               | 1250               |  |  |  |  |  |
|         | 1600               | 800                | 1000                   | 1250               | 1600               |  |  |  |  |  |
|         | 400                | 200                | 200                    | 250                | 400                |  |  |  |  |  |
|         | 800                | 400                | 400                    | 500                | 800                |  |  |  |  |  |
| DOOOC   | 1000               | 500                | 500                    | 630                | 1000               |  |  |  |  |  |
| AR220S  | 1250               | 630                | 630                    | 800                | 1250               |  |  |  |  |  |
|         | 1600               | 800                | 800                    | 1000               | 1600               |  |  |  |  |  |
|         | 2000               | 1000               | 1250                   | 1600               | 2000               |  |  |  |  |  |
| AR325S  | 2500               | 1250               | 1600                   | 2000               | 2500               |  |  |  |  |  |
| AR332S  | 3200               | 1600               | 2000                   | 2500               | 3200               |  |  |  |  |  |
| AR440SB | 4000               | 2000               | 2500                   | 3200               | 4000               |  |  |  |  |  |
| AR440S  | 4000               | 2000               | 2500                   | 3200               | 4000               |  |  |  |  |  |
| AR650S  | 5000               | 2500               | 3200                   | 4000               | 5000               |  |  |  |  |  |
| AR663S  | 6300               | 3200               | 4000                   | 5000               | 6300               |  |  |  |  |  |
|         | 200                | 100                | 125                    | 160                | 200                |  |  |  |  |  |
|         | 400                | 200                | 250                    | 320                | 400                |  |  |  |  |  |
| AR212H  | 800                | 400                | 500                    | 630                | 800                |  |  |  |  |  |
|         | 1000               | 500                | 630                    | 800                | 1000               |  |  |  |  |  |
|         | 1250               | 630                | 800                    | 1000               | 1250               |  |  |  |  |  |
| AR216H  | 1600               | 800                | 1000                   | 1250               | 1600               |  |  |  |  |  |
| AR220H  | 2000               | 1000               | 1250                   | 1600               | 2000               |  |  |  |  |  |
|         | 200                | 100                | 125                    | 160                | 200                |  |  |  |  |  |
|         | 400                | 200                | 250                    | 320                | 400                |  |  |  |  |  |
| AR316H  | 800                | 400                | 500                    | 630                | 800                |  |  |  |  |  |
|         | 1250               | 630                | 800                    | 1000               | 1250               |  |  |  |  |  |
|         | 1600               | 800                | 1000                   | 1250               | 1600               |  |  |  |  |  |
| AR320H  | 2000               | 1000               | 1250                   | 1600               | 2000               |  |  |  |  |  |
| AR325H  | 2500               | 1250               | 1600                   | 2000               | 2500               |  |  |  |  |  |
| AR332H  | 3200               | 1600               | 2000                   | 2500               | 3200               |  |  |  |  |  |
|         | 800                | 400                | 500                    | 630                | 800                |  |  |  |  |  |
| AR420H  | 2000               | 1000               | 1250                   | 1600               | 2000               |  |  |  |  |  |
| AR440H  | 4000               | 2000               | 2500                   | 3200               | 4000               |  |  |  |  |  |
| Decolu  | 5000               | 2500               | 3200                   | 4000               | 5000               |  |  |  |  |  |
| AR663H  | 6300               | 6300               | 4000                   | 5000               | 6300               |  |  |  |  |  |


# Protection characteristics L characteristic Trip Units



The ST trip characteristic shown in the curve applies when the ramp characteristic select switch is in the OFF position.

Note: Total breaking time for AR6 is 0.05 sec.

Note:  $I_n$  value is not a straight calculation. Refer to tables above for possible  $I_n$  values.



# R Curve Trip Unit Setting: TemPro PLUS (AGR-21C-R)

| Setting Item                  |                                | Symbol              | Setting Range                                                                                 |                                                                                             |           |          |                        |           |           |           |         |        |          |      |
|-------------------------------|--------------------------------|---------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------|----------|------------------------|-----------|-----------|-----------|---------|--------|----------|------|
|                               |                                |                     | CT rated primary current [/ <sub>CT</sub> ] × (0.5 - 0.63 - 0.8 - 1.0) (A)                    |                                                                                             |           |          |                        |           |           |           |         |        |          |      |
|                               |                                |                     | Applied [/ <sub>CT</sub> ] (A) 200 400 800 1000 1250 1600 2000 2500 3200 400                  |                                                                                             |           |          |                        |           |           |           | 4000    |        |          |      |
| Rated Current                 |                                | ,                   |                                                                                               | [/ <sub>CT</sub> ] x 0.5                                                                    | 100       | 200      | 400                    | 500       | 630       | 800       | 1000    | 1250   | 1600     | 2000 |
| Kaleu Gurrent                 |                                | 'n                  | Rated<br>Current                                                                              | [/ <sub>CT</sub> ] x 0.63                                                                   | 125       | 250      | 500                    | 630       | 800       | 1000      | 1250    | 1600   | 2000     | 2500 |
|                               |                                |                     | [ <i>I</i> <sub>n</sub> ] (A)                                                                 | [/ <sub>CT</sub> ] x 0.8                                                                    | 160       | 320      | 630                    | 800       | 1000      | 1250      | 1600    | 2000   | 2500     | 3200 |
|                               |                                |                     |                                                                                               | [/ <sub>CT</sub> ] x 1.0                                                                    | 200       | 400      | 800                    | 1000      | 1250      | 1600      | 2000    | 2500   | 3200     | 4000 |
|                               | Mode Select                    |                     | Trip / OFF                                                                                    |                                                                                             |           |          |                        |           |           |           |         |        |          |      |
| <b>LT</b><br>Long Time Delay  | Pickup Current<br>(continuous) | I <sub>R</sub>      | $[l_{\rm n}]$ × (80% to 100%) (A) in steps of 1%, Tolerance ± 5%                              |                                                                                             |           |          |                        |           |           |           |         |        |          |      |
| Trip                          | Trip Timing                    | t <sub>R</sub>      | (1.0 to 10.0) (sec) at 300% of [/_R], in steps of 0.01 sec, Tolerance: $\pm$ 20%, +0.15s – 0s |                                                                                             |           |          |                        |           |           |           |         |        |          |      |
|                               | Protection Type                | -                   | SIT:   0.02                                                                                   | SIT: I 0.02 t, VIT: It, EIT: I <sup>2</sup> t, 3IT: I <sup>3</sup> t, 4IT: I <sup>4</sup> t |           |          |                        |           |           |           |         |        |          |      |
|                               | Mode Select                    |                     | Trip / OF                                                                                     | F                                                                                           |           |          |                        |           |           |           |         |        |          |      |
| <b>ST</b><br>Short Time Delay | Pickup Current                 | I <sub>sd</sub>     | $[l_n]$ × (100% to 1000%) (A), in steps of 1%, Tolerance: ± 15% Short time delay trip (ST)    |                                                                                             |           |          |                        |           |           |           |         |        |          |      |
| Trip                          | Trip Timing                    | t <sub>sd</sub>     | Relaying time (0.05 to 0.8) (sec) in steps of 0.01 sec.                                       |                                                                                             |           |          |                        |           |           |           |         |        |          |      |
|                               | I <sup>2</sup> t Mode          | l²t t <sub>sd</sub> | OFF / ON                                                                                      | 1                                                                                           |           |          |                        |           |           |           |         |        |          |      |
| INST                          | Mode Select                    |                     | Trip / OF                                                                                     | F                                                                                           |           |          |                        |           |           |           |         |        |          |      |
| Instantaneous Trip            | Pickup Current                 | /i                  | [/ <sub>n</sub> ] × (20                                                                       | 0% to 1600%                                                                                 | %) (A), i | n steps  | of 1%,                 | Toleran   | ce: ± 20  | )%        |         |        |          |      |
| INST / MCR                    | INST1 or INST2 / MCR           | -                   | INST1 or                                                                                      | INST2 / MC                                                                                  | R         |          |                        |           |           |           |         |        |          |      |
|                               | Pickup Current                 | I <sub>g</sub>      | [/ <sub>CT</sub> ] × (10                                                                      | 0% to 100%)                                                                                 | ) (A), in | steps o  | of 1%, T               | olerance  | e: ± 20%  | 6         |         |        |          |      |
| GF                            | Trip Timing                    | tg                  | Relaying                                                                                      | time (ms)                                                                                   |           | (0.1 t   | o 2.0) (s              | sec) in s | teps of   | 0.01 se   | C.      |        |          |      |
| Ground Fault Trip             | I <sup>2</sup> t Mode          | l²t tg              | OFF / ON                                                                                      | 1                                                                                           |           |          |                        |           |           |           |         |        |          |      |
|                               | Mode                           | -                   | Trip / OF                                                                                     | F                                                                                           |           |          |                        |           |           |           |         |        |          |      |
|                               | Current Setting                | I <sub>P1</sub>     | [/ <sub>n</sub> ] × (75                                                                       | % to 100%)                                                                                  | (A), in s | steps of | 1%, To                 | lerance   | :±7.5%    | )         |         |        |          |      |
| <b>PTA</b><br>Pre-Trip Alarm  | Time Setting                   | t <sub>P1</sub>     | (5.0 to 20                                                                                    | 0.0) (sec) at                                                                               | t not les | ss than  | [/ <sub>P1</sub> ], in | steps o   | f 0.1 seo | c, Tolera | ance: ± | 15%, + | 0.1s — 0 | S    |
|                               | Mode                           | -                   | AL / OFF                                                                                      |                                                                                             |           |          |                        |           |           |           |         |        |          |      |

#### **Options on Request**

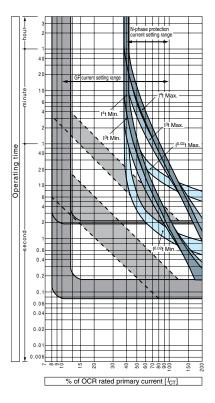
| <b>NP</b><br>N-Phase Protection    | Pickup Current<br>(continuous) | / <sub>N</sub>  | $[I_{CT}] \times (40\% \text{ to } 100\%) \text{ in steps of } 1\%$                                 |
|------------------------------------|--------------------------------|-----------------|-----------------------------------------------------------------------------------------------------|
| Trip                               | Trip Timing                    | t <sub>R</sub>  | Depends on the long time delay trip pickup timing. Activated at 300% of $[{\rm I}_{\rm N}]$         |
| NS Current Setting I <sub>NS</sub> |                                | INS             | $[I_n] \times (20\% \text{ to } 100\%) \text{ (A), in steps of } 1\%, \text{ Tolerance: } \pm 10\%$ |
| Negative-Phase<br>Sequence         | Time Setting                   | t <sub>NS</sub> | (0.4 to 4.0) (sec) at 150% of [/_{NS}], in steps of 0.1 sec, Tolerance: $\pm$ 20%, +0.15 s $-$ 0s   |
| Protection                         | Mode                           | -               | TRIP / AL / OFF                                                                                     |
| z                                  | Current Setting                | -               | Interlock with short time delay trip pickup current                                                 |
| Zone Interlock                     | Time Setting                   | -               | 50 ms or less                                                                                       |

# R Curve Trip Unit Setting: TemPro PREMIER (AGR-31C-R)

| Setting Item                 |                                | Symbol                           | Setting R                                                                                            | Range                                                                |                      |                                  |                        |           |          |           |          |          |         |      |
|------------------------------|--------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------|----------------------------------|------------------------|-----------|----------|-----------|----------|----------|---------|------|
|                              |                                |                                  | CT rated pr                                                                                          | imary curr                                                           | ent [/ <sub>CT</sub> | ] × (0.5                         | - 0.63 -               | 0.8 - 1   | .0) (A)  |           |          |          |         |      |
|                              |                                |                                  | Applied [I <sub>C1</sub>                                                                             | [] (A)                                                               | 200                  | 400                              | 800                    | 1000      | 1250     | 1600      | 2000     | 2500     | 3200    | 4000 |
| Rated Current                |                                | I <sub>n</sub>                   |                                                                                                      | [ <i>I</i> <sub>CT</sub> ] x 0.5                                     | 100                  | 200                              | 400                    | 500       | 630      | 800       | 1000     | 1250     | 1600    | 2000 |
|                              |                                | 'n                               | Rated<br>Current                                                                                     | [ <i>I</i> <sub>CT</sub> ] x 0.63                                    | 125                  | 250                              | 500                    | 630       | 800      | 1000      | 1250     | 1600     | 2000    | 2500 |
|                              |                                |                                  | L'nj (' ')                                                                                           | [/ <sub>CT</sub> ] x 0.8                                             | 160                  | 320                              | 630                    | 800       | 1000     | 1250      | 1600     | 2000     | 2500    | 3200 |
|                              | Mode Select                    |                                  | Trip / OFF                                                                                           | [ <i>I</i> <sub>CT</sub> ] x 1.0                                     | 200                  | 400                              | 800                    | 1000      | 1250     | 1600      | 2000     | 2500     | 3200    | 4000 |
| <b>LT</b><br>Long Time Delay | Pickup Current<br>(continuous) | I <sub>R</sub>                   | $[I_n] \times (80\% \text{ to } 100\%) (A) \text{ in steps of } 1\%, \text{ Tolerance } \pm 5\%$     |                                                                      |                      |                                  |                        |           |          |           |          |          |         |      |
| Trip                         | Trip Timing                    | t <sub>R</sub>                   | (1.0 to 10.0                                                                                         | )) (sec) at 3                                                        | 300% c               | of [ <i>I</i> <sub>R</sub> ], ir | n steps                | of 0.01 : | sec, Tol | erance:   | ± 20%,   | +0.15s   | - 0s    |      |
|                              | Protection Type                | -                                | SIT: 1 <sup>0.02</sup> t, \                                                                          | /IT: It, EIT:                                                        | <sup>2</sup> t, 3 ⊺  | : I <sup>3</sup> t, 411          | Г: I <sup>4</sup> t    |           |          |           |          |          |         |      |
|                              | Mode Select                    |                                  | Trip / OFF                                                                                           |                                                                      |                      |                                  |                        |           |          |           |          |          |         |      |
| ST                           | / <sub>sd</sub>                | [ <i>I</i> <sub>n</sub> ] × (100 | % to 1000%                                                                                           | %) (A),                                                              | in steps             | of 1%,                           | Toleran                | ce: ± 15  | 5% Sh    | ort time  | delay t  | rip (ST) |         |      |
| Short Time Delay<br>Trip     | Trip Timing                    | t <sub>sd</sub>                  | Relaying ti                                                                                          | me                                                                   |                      | (0.05                            | to 0.8)                | (sec) in  | steps o  | f 0.01 s  | ec.      |          |         |      |
|                              | I <sup>2</sup> t Mode          | l²t t <sub>sd</sub>              | OFF / ON                                                                                             |                                                                      |                      |                                  |                        |           |          |           |          |          |         |      |
| INST                         | Mode Select                    |                                  | Trip / OFF                                                                                           |                                                                      |                      |                                  |                        |           |          |           |          |          |         |      |
| Instantaneous Trip           | Pickup Current                 | li                               | [ <i>I</i> <sub>n</sub> ] × (200°                                                                    | $I_{\rm n}]$ × (200% to 1600%) (A), in steps of 1%, Tolerance: ± 20% |                      |                                  |                        |           |          |           |          |          |         |      |
| INST / MCR                   | INST1 or INST2 / MCR           | -                                | INST1 or II                                                                                          | NST2 / MC                                                            | R                    |                                  |                        |           |          |           |          |          |         |      |
|                              | Pickup Current                 | I <sub>g</sub>                   | [/ <sub>CT</sub> ] × (10%                                                                            | % to 100%                                                            | ) (A), in            | steps o                          | of 1%, T               | oleranc   | e: ± 20% | 6         |          |          |         |      |
| GF                           | Trip Timing                    | tg                               | Relaying time (ms) (0.1 to 2.0) (sec) in steps of 0.1 sec.                                           |                                                                      |                      |                                  |                        |           |          |           |          |          |         |      |
| Ground Fault Trip            | I <sup>2</sup> t Mode          | l²t tg                           | OFF / ON                                                                                             |                                                                      |                      |                                  |                        |           |          |           |          |          |         |      |
|                              | Mode                           | -                                | Trip / OFF                                                                                           |                                                                      |                      |                                  |                        |           |          |           |          |          |         |      |
| DTA                          | Current Setting                | I <sub>P1</sub>                  | [/ <sub>n</sub> ] × (75%                                                                             | to 100%)                                                             | (A), in s            | steps of                         | 1%, To                 | lerance   | :±7.5%   | )         |          |          |         |      |
| <b>PTA</b><br>Pre-Trip Alarm | Time Setting                   | t <sub>P1</sub>                  | (5.0 to 200                                                                                          | .0) (sec) at                                                         | t not les            | ss than                          | [/ <sub>P1</sub> ], in | steps of  | f 0.1 se | c, Tolera | ance: ±  | 15%, +   | 0.1s-0  | )s   |
|                              | Mode                           | -                                | AL / OFF                                                                                             |                                                                      |                      |                                  |                        |           |          |           |          |          |         |      |
|                              | Voltage Setting                | -                                | [ <i>V</i> <sub>n</sub> ] × (40%                                                                     | % to 80%) (                                                          | (V), in s            | steps of                         | 1%, To                 | lerance:  | ± 5%     |           |          |          |         |      |
| UV                           | Time Setting                   | -                                | (0.1 to 36)                                                                                          | (sec) at vo                                                          | ltage s              | etting o                         | r less, ii             | n steps   | of 0.1 s | ec, Tole  | rance: : | ± 15%, ∙ | +0.1s – | 0s   |
| Undervoltage<br>Alarm        | Recovery Voltage<br>Setting    | -                                | [ <i>V</i> <sub>n</sub> ] × (80%                                                                     | % to 95%) (                                                          | (V), in s            | steps of                         | 1%, To                 | lerance:  | ± 5%     |           |          |          |         |      |
|                              | Mode                           | -                                | AL / OFF                                                                                             |                                                                      |                      |                                  |                        |           |          |           |          |          |         |      |
| OV                           | Voltage Setting                | -                                | $[V_n] \times (105)$                                                                                 | % to 150%                                                            | ‰) (V), i            | n steps                          | of 1%,                 | Toleran   | ce: ± 5% | 6         |          |          |         |      |
| Over voltage Alarm           | Time Setting                   | -                                | (0.1 to 5.0) (sec) at voltage setting or less, in steps of 0.1 sec, Tolerance: $\pm$ 15%, +0.1s – 0s |                                                                      |                      |                                  |                        |           |          |           |          |          |         |      |
|                              | Voltage Setting                | F <sub>uf</sub>                  | [ <i>F</i> <sub>n</sub> ] × (1%                                                                      | to 99%) (V                                                           | /), in st            | eps of 1                         | %                      |           |          |           |          |          |         |      |
| UFOF                         | Time Setting                   | t <sub>uf</sub>                  | (0.1 to 10)                                                                                          | (sec) in ste                                                         | eps of (             | ).1 sec.                         |                        |           |          |           |          |          |         |      |
| Under / Over<br>Frequency    | Voltage Setting                | F <sub>of</sub>                  | $[F_{n}] \times (100)$                                                                               | % to 199%                                                            | b) (V), i            | n steps                          | of 1%                  |           |          |           |          |          |         |      |
| Protection                   | Time Setting                   | tof                              | (0.1 to 10)                                                                                          | (sec) in ste                                                         | eps of (             | ).1 sec.                         |                        |           |          |           |          |          |         |      |
|                              | Mode                           | -                                | TRIP / AL /                                                                                          | OFF                                                                  |                      |                                  |                        |           |          |           |          |          |         |      |
|                              |                                |                                  |                                                                                                      |                                                                      |                      |                                  |                        |           |          |           |          |          |         |      |



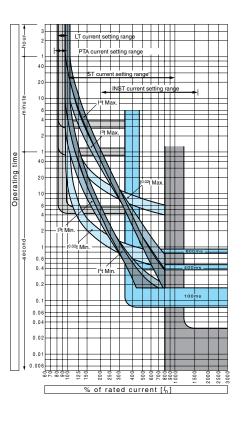
| Setting Item Symbol        |                                |                   | Setting Range                                                                                        |  |  |  |  |  |  |
|----------------------------|--------------------------------|-------------------|------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Options on Requ            | iest                           |                   | ·                                                                                                    |  |  |  |  |  |  |
| NP<br>N-Phase Protection   | Pickup Current<br>(continuous) | I <sub>N</sub>    | $[I_{\rm CT}] \times (40\% \text{ to } 100\%) \text{ in steps of } 1\%$                              |  |  |  |  |  |  |
| Trip                       | Trip Timing                    | t <sub>R</sub>    | Depends on the long time delay trip pickup timing. Activated at 300% of $[I_{\rm N}]$ .              |  |  |  |  |  |  |
| NS Current Setting         |                                | I <sub>NS</sub>   | [/ <sub>n</sub> ] × (20% to 100%) (A), in steps of 1%, Tolerance: ± 10%                              |  |  |  |  |  |  |
| Negative-Phase<br>Sequence | Time Setting                   | t <sub>NS</sub>   | (0.4 to 4.0) (sec) at 150% of [ $I_{\rm NS}$ ], in steps of 0.1 sec, Tolerance: ± 20%, +0.15 s – 0 s |  |  |  |  |  |  |
| Protection Mode ·          |                                | -                 | TRIP / AL / OFF                                                                                      |  |  |  |  |  |  |
|                            | Ourseast a attilia a           | I <sub>REF</sub>  | [/ <sub>CT</sub> ] × (10 % to 100%) (A), in steps of 1%, Tolerance: ± 20%                            |  |  |  |  |  |  |
| KEF<br>Line Side Ground    | Current setting                | I <sub>REFB</sub> | [/ <sub>CT</sub> ] × (10 % to 150%) (A), in steps of 1%, Tolerance: ± 20%                            |  |  |  |  |  |  |
|                            | Time Setting                   | -                 | Instantaneous                                                                                        |  |  |  |  |  |  |
|                            | Mode                           | -                 | TRIP / AL / OFF                                                                                      |  |  |  |  |  |  |
| ОН                         | Temperature Setting            | -                 | 155°C                                                                                                |  |  |  |  |  |  |
| Contact Overheat           | Time Setting                   | -                 | Instantaneous                                                                                        |  |  |  |  |  |  |
| Monitoring                 | Mode                           | -                 | TRIP / AL / OFF                                                                                      |  |  |  |  |  |  |
| z                          | Current Setting                | -                 | Interlock with short time delay trip pickup current                                                  |  |  |  |  |  |  |
| Zone Interlock             | Time Setting                   | -                 | 50 ms. or less                                                                                       |  |  |  |  |  |  |
|                            | Power Setting                  | P <sub>R</sub>    | [Pn] × (4% to 100%) (kW), in steps of 1%, Tolerance +0% -20%                                         |  |  |  |  |  |  |
| RPT                        | Time Setting                   | -                 | (2.5 to 20.0) (sec) at 100% of [PR], in steps of 0.01 sec, Tolerance: ±20%, +0.15s – 0s              |  |  |  |  |  |  |
| Reverse Power              | Polarity                       | -                 | NOR / REV                                                                                            |  |  |  |  |  |  |
|                            | Mode                           | -                 | TRIP / AL / OFF                                                                                      |  |  |  |  |  |  |




#### R Curve Trip Unit Setting: TemPro PLUS (AGR-21C-R), TemPro PREMIER (AGR-31C-R)

# Ampere sensing coils available for AGR-21C-R and AGR-31C-R

| Туре    | CT Amps            | Rated              | current [I <sub>n</sub> ] | (A)                |                    |  |
|---------|--------------------|--------------------|---------------------------|--------------------|--------------------|--|
|         | [I <sub>CT</sub> ] | [I <sub>CT</sub> ] | [I <sub>CT</sub> ]        | [I <sub>CT</sub> ] | [I <sub>CT</sub> ] |  |
|         | (A)                | x 0.5              | x 0.63                    | x 0.8              | x 1.0              |  |
|         | 200                | 100                | 125                       | 160                | 200                |  |
| AR208S  | 400                | 200                | 250                       | 320                | 400                |  |
|         | 800                | 400                | 500                       | 630                | 800                |  |
|         | 400                | 200                | 250                       | 320                | 400                |  |
|         | 800                | 400                | 500                       | 630                | 800                |  |
| AR212S  | 1000               | 500                | 630                       | 800                | 1000               |  |
|         | 1250               | 630                | 800                       | 1000               | 1250               |  |
|         | 400                | 200                | 250                       | 320                | 400                |  |
|         | 800                | 400                | 500                       | 630                | 800                |  |
| AR216S  | 1000               | 500                | 630                       | 800                | 1000               |  |
|         | 1250               | 630                | 800                       | 1000               | 1250               |  |
|         | 1600               | 800                | 1000                      | 1250               | 1600               |  |
|         | 400                | 200                | 200                       | 250                | 400                |  |
|         | 800                | 400                | 400                       | 500                | 800                |  |
|         | 1000               | 500                | 500                       | 630                | 1000               |  |
| AR220S  | 1250               | 630                | 630                       | 800                | 1250               |  |
|         | 1600               | 800                | 800                       | 1000               | 1600               |  |
|         | 2000               | 1000               | 1250                      | 1600               | 2000               |  |
| AR325S  | 2500               | 1250               | 1600                      | 2000               | 2500               |  |
| AR332S  | 3200               | 1600               | 2000                      | 2500               | 3200               |  |
| AR440SB | 4000               | 2000               | 2500                      | 3200               | 4000               |  |
| AR44036 | 4000               | 2000               | 2500                      | 3200               | 4000               |  |
| AR650S  | 5000               | 2500               | 3200                      | 4000               | 5000               |  |
| AR663S  |                    |                    | 4000                      | 5000               |                    |  |
| 40033   | 6300               | 3200               |                           |                    | 6300               |  |
|         | 200                | 100                | 125                       | 160                | 200                |  |
| DOIOLI  | 400                | 200                | 250                       | 320                | 400                |  |
| AR212H  | 800                | 400                | 500                       | 630                | 800                |  |
|         | 1000               | 500                | 630                       | 800                | 1000               |  |
| DOACH   | 1250               | 630                | 800                       | 1000               | 1250               |  |
| AR216H  | 1600               | 800                | 1000                      | 1250               | 1600               |  |
| AR220H  | 2000               | 1000               | 1250                      | 1600               | 2000               |  |
|         | 200                | 100                | 125                       | 160                | 200                |  |
|         | 400                | 200                | 250                       | 320                | 400                |  |
| AR316H  | 800                | 400                | 500                       | 630                | 800                |  |
|         | 1250               | 630                | 800                       | 1000               | 1250               |  |
|         | 1600               | 800                | 1000                      | 1250               | 1600               |  |
| AR320H  | 2000               | 1000               | 1250                      | 1600               | 2000               |  |
| AR325H  | 2500               | 1250               | 1600                      | 2000               | 2500               |  |
| AR332H  | 3200               | 1600               | 2000                      | 2500               | 3200               |  |
| AR420H  | 800                | 400                | 500                       | 630                | 800                |  |
|         | 2000               | 1000               | 1250                      | 1600               | 2000               |  |
| AR440H  | 4000               | 2000               | 2500                      | 3200               | 4000               |  |
| DeepLi  | 5000               | 2500               | 3200                      | 4000               | 5000               |  |
| AR663H  | 6300               | 6300               | 4000                      | 5000               | 6300               |  |


# Protection characteristics R characteristic Trip Units



The ST trip characteristic shown in the curve applies when the ramp characteristic select switch is in the OFF position.

Note: Total breaking time for AR6 is 0.05 sec.

Note: I<sub>n</sub> value is not a straight calculation. Refer to tables above for possible I<sub>n</sub> values.



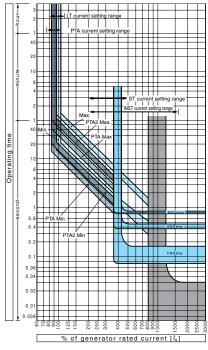


# S Curve Trip Unit Setting: TemPro PLUS (AGR-21C-S)

| Trip Unit Function                    |                                     | Symbol          | Min      | Max       | Setting increments     | Setting Tolerances and other data                    |  |  |
|---------------------------------------|-------------------------------------|-----------------|----------|-----------|------------------------|------------------------------------------------------|--|--|
| LT                                    | Pick-up current x [I <sub>n</sub> ] | I <sub>R</sub>  | 0.80     | 1.15      | 0.01                   | t <sub>R</sub> operates at 120 % of I <sub>R</sub>   |  |  |
| Long Time                             | Time-delay (s)                      | t <sub>R</sub>  | 15       | 60        | 0.01                   | I <sub>R</sub> tolerance: ± 5 %                      |  |  |
| Delay Trip                            | Mode selection                      | -               | TRIP / C | DFF       |                        | t <sub>R</sub> tolerance: ± 15 %, 0 - 150 ms         |  |  |
|                                       | Pick-up current x [I <sub>n</sub> ] | I <sub>sd</sub> | 2.0      | 5.0       | 0.01                   |                                                      |  |  |
| <b>ST</b><br>Short Time<br>Delay Trip | Time-delay (s)                      | t <sub>sd</sub> | 0.1      | 0.8       | 0.01                   |                                                      |  |  |
|                                       | RAMP I <sup>2</sup> t               | -               | OFF / O  | N         |                        | I <sub>sd</sub> tolerance: ± 10 %                    |  |  |
| Delay IIIp                            | Mode selection                      | -               | TRIP / C | DFF (if O | FF INST cannot be OFF) |                                                      |  |  |
| INST                                  | Pick-up current x [I <sub>n</sub> ] | li              | 2.0      | 16.0      | 0.01                   |                                                      |  |  |
| Instantaneous Trip                    | INST/MCR                            | -               | INST/M   | CR        |                        | l <sub>i</sub> tolerance: ± 20 %                     |  |  |
| INST / MCR                            | Mode selection                      | -               | TRIP / C | DFF (if O | FF STD cannot be OFF)  |                                                      |  |  |
| DTA                                   | Pick-up current x [In]              | I <sub>P1</sub> | 0.75     | 1.05      | 0.01                   | t <sub>P1</sub> operates at 120 % of I <sub>P1</sub> |  |  |
| PTA                                   | Time-delay (s)                      | t <sub>P1</sub> | 10.0     | 30.0      | 0.10                   | $I_{P1}$ tolerance: ± 5 %                            |  |  |
| Pre Trip Alarm                        | Mode selection                      | -               | ALARM    | / OFF     |                        | t <sub>P1</sub> tolerance: ± 15 %, 0 - 100 m         |  |  |

# S Curve Trip Unit Setting: TemPro PREMIER (AGR-31C-S)

| Trip Unit Function                |                                      | Symbol          | Min                  | Max         | Setting increments                                 | Setting Tolerances and other data                        |  |  |  |  |
|-----------------------------------|--------------------------------------|-----------------|----------------------|-------------|----------------------------------------------------|----------------------------------------------------------|--|--|--|--|
| LT                                | Pick-up current x [I <sub>n</sub> ]  | I <sub>R</sub>  | 0.80                 | 1.15        | 0.01                                               | t <sub>R</sub> operates at 120 % of I <sub>R</sub>       |  |  |  |  |
| Long Time                         | Time-delay (s)                       | t <sub>R</sub>  | 15                   | 60          | 0.01                                               | I <sub>R</sub> tolerance: ± 5 %                          |  |  |  |  |
| Delay Trip                        | Mode selection                       | -               | TRIP /               | OFF         |                                                    | t <sub>R</sub> tolerance: ± 15 %, 0 - 150 ms             |  |  |  |  |
|                                   | Pick-up current x [I <sub>n</sub> ]  | I <sub>sd</sub> | 2.0                  | 5.0         | 0.01                                               |                                                          |  |  |  |  |
| ST<br>Oh a set Time a             | Time-delay (s)                       | t <sub>sd</sub> | 0.1                  | 0.8         | 0.01                                               | L telerence: 1 10 %                                      |  |  |  |  |
| Short Time<br>Delay Trip          | RAMP I <sup>2</sup> t                | -               | OFF / C              | DN          |                                                    | I <sub>sd</sub> tolerance: ± 10 %                        |  |  |  |  |
| Boldy Inp                         | Mode selection                       | -               | TRIP /               | OFF (if O   | FF INST cannot be OFF)                             |                                                          |  |  |  |  |
| INST                              | Pick-up current x [In]               | li              | 2.0                  | 16.0        | 0.01                                               |                                                          |  |  |  |  |
| Instantaneous Trip                | INST/MCR                             | -               | INST/IV              | ICR         |                                                    | l <sub>i</sub> tolerance: ± 20 %                         |  |  |  |  |
| INST / MCR                        | Mode selection                       | -               | TRIP /               | OFF (if O   | FF STD cannot be OFF)                              |                                                          |  |  |  |  |
|                                   | Pick-up current x [I <sub>CT</sub> ] | lg              | 0.10                 | 1.0         | 0.01                                               |                                                          |  |  |  |  |
| GF                                | Time-delay (s)                       | t <sub>G</sub>  | 0.10                 | 2.0         | 0.01                                               | L telerence: L 20.9/                                     |  |  |  |  |
| Ground fault trip                 | RAMP I <sup>2</sup> t                | -               | OFF/OI               | N           |                                                    | l <sub>g</sub> tolerance: ± 20 %                         |  |  |  |  |
|                                   | Mode selection                       | -               | TRIP / /             | ALARM /     | OFF                                                |                                                          |  |  |  |  |
| PTA                               | Pick-up current x [I <sub>n</sub> ]  | I <sub>P1</sub> | 0.75                 | 1.05        | 0.01                                               | t <sub>P1</sub> operates at 120 % of I <sub>P1</sub>     |  |  |  |  |
| Pre Trip Alarm                    | Time-delay (s)                       | t <sub>P1</sub> | 10.0                 | 30.0        | 0.10                                               | I <sub>P1</sub> tolerance: ± 5 %                         |  |  |  |  |
| Fie mp Alaim                      | Mode selection                       | -               | ALARM                | 1/OFF       |                                                    | t <sub>P1</sub> tolerance: ± 15 %, 0 - 100 ms            |  |  |  |  |
| UV                                | Recovery Level x [V <sub>n</sub> ]   | VUVP            | 0.80                 | 0.95        | 0.01                                               |                                                          |  |  |  |  |
|                                   | Alarm Level x [V <sub>n</sub> ]      | VUVD            | 0.40                 | 0.80        | 0.01                                               | Recovery Voltage tolerance ± 5 %                         |  |  |  |  |
| Under Voltage Alarm               | Time-delay (s)                       | tUVD            | 0.10                 | 36.0        | 0.10                                               | t <sub>UVD</sub> tolerance: ± 15 %, 0 - 100 ms           |  |  |  |  |
|                                   | Mode selection                       | -               | ALARN                | 1/OFF       |                                                    |                                                          |  |  |  |  |
| OV                                | Alarm Level x [V <sub>n</sub> ]      | V <sub>OV</sub> | 1.05                 | 1.50        | 0.01                                               | V <sub>OV</sub> tolerance: ± 5 %                         |  |  |  |  |
| Over Voltage Alarm                | Time-delay (s)                       | t <sub>ov</sub> | 0.10                 | 5.0         | 0.10                                               | t <sub>OV</sub> tolerance: ± 15 %, 0 -100 ms             |  |  |  |  |
|                                   | Pick-up Level x [F <sub>N</sub> ]    | F <sub>UF</sub> | 0.80                 | 1.05        | 0.01                                               |                                                          |  |  |  |  |
| UFOF                              | Time-delay (s)                       | t <sub>UF</sub> | 0.10                 | 10.0        | 0.10                                               | F <sub>N</sub> is the ACB set frequency which            |  |  |  |  |
| Under Frequency<br>Over Frequency | Pick-up Level x [F <sub>N</sub> ]    | F <sub>OF</sub> | 0.95                 | 1.40        | 0.01                                               | is 50 Hz in A-NZ.<br>Voltage pick up level is defined as |  |  |  |  |
| Protection                        | Time-delay (s)                       | t <sub>OF</sub> | 0.10                 | 10.0        | 0.10                                               | $([F_N] \times [F_{UF}])$ or $([F_N] \times [F_{OF}])$   |  |  |  |  |
|                                   | Mode                                 | -               | TRIP / /             | ALARM /     | OFF                                                |                                                          |  |  |  |  |
| OPTIONS on request                |                                      |                 |                      |             |                                                    |                                                          |  |  |  |  |
|                                   | Pick-up current x [In]               | I <sub>P2</sub> | 0.75                 | 1.05        | 0.01                                               | t <sub>P2</sub> operates at 120 % of I <sub>P2</sub>     |  |  |  |  |
| PTA2                              | Time-delay (s)                       | t <sub>P2</sub> | 1.5 x t <sub>P</sub> | 1 at 1209   | % of I <sub>P2</sub> , and t <sub>P1</sub> setting | $I_{P2}$ tolerance: ± 5 %                                |  |  |  |  |
|                                   | Mode selection                       | -               | ALARM                | 1/OFF       |                                                    | t <sub>P2</sub> tolerance: ± 15 %, 0 - 100 ms            |  |  |  |  |
|                                   | Temperature setting                  | -               | 155 °C               |             |                                                    |                                                          |  |  |  |  |
| ОН                                | Time setting                         | -               | Instantaneous        |             |                                                    |                                                          |  |  |  |  |
|                                   | Mode                                 | -               | TRIP / /             | ALARM /     | OFF                                                |                                                          |  |  |  |  |
| ~                                 | Current setting                      | -               | Same a               | as short ti | me delay trip pickup current                       |                                                          |  |  |  |  |
| Z                                 | Time setting                         | -               | 50 ms o              | or less     |                                                    | -                                                        |  |  |  |  |
| RP                                | Power setting (kW)                   | P <sub>R</sub>  | 4.0                  | 100         | 0.01                                               | P <sub>R</sub> Tolerance: 0 % to -20 %                   |  |  |  |  |



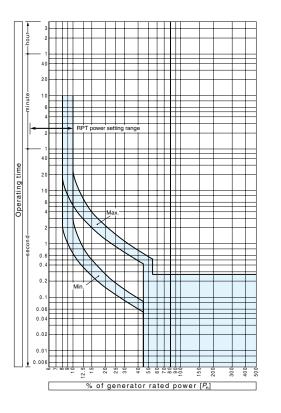

### S Curve Trip Unit Setting: TemPro PLUS (AGR-21C-S), TemPro PREMIER (AGR-31C-S)

# Ampere sensing coils available for AGR-21C-S and AGR-31C-S

| Туре    | Trip Unit rated primary current | Applicable range of generator rated current |
|---------|---------------------------------|---------------------------------------------|
|         | [I <sub>CT</sub> ] (A)          | [I <sub>n</sub> ] (A)                       |
|         | 200                             | 100 ≤ [I <sub>n</sub> ] ≤ 200               |
| AR208S  | 400                             | $200 \le [l_n] \le 400$                     |
|         | 800                             | $400 \le [I_n] \le 800$                     |
|         | 400                             | $200 \le [I_n] \le 400$                     |
| AR212S  | 800                             | $400 \le [l_n] \le 800$                     |
|         | 1250                            | $630 \le [I_n] \le 1250$                    |
|         | 400                             | $200 \le [I_n] \le 400$                     |
| 100100  | 800                             | $400 \le [I_n] \le 800$                     |
| AR216S  | 1250                            | $630 \le [I_n] \le 1250$                    |
|         | 1600                            | $800 \le [I_n] \le 1600$                    |
|         | 400                             | $200 \le [l_n] \le 400$                     |
|         | 800                             | $400 \le [l_n] \le 800$                     |
| AR220S  | 1250                            | $630 \le [I_n] \le 1250$                    |
|         | 1600                            | $800 \le [I_n] \le 1600$                    |
|         | 2000                            | $1000 \le [I_n] \le 2000$                   |
| AR325S  | 2500                            | 1250 ≤ [I <sub>n</sub> ] ≤ 2500             |
| AR332S  | 3200                            | $1600 \le [I_n] \le 3200$                   |
| AR440SB | 4000                            | $2000 \le [I_n] \le 4000$                   |
| AR440S  | 4000                            | $2000 \le [I_n] \le 4000$                   |
| AR650S  | 2000                            | $1000 \le [I_n] \le 2000$                   |
| AR663S  | 6300                            | $3200 \le [I_n] \le 6300$                   |
|         | 200                             | $100 \le [l_n] \le 200$                     |
| AR212H  | 400                             | $200 \le [l_n] \le 400$                     |
| ARZIZH  | 800                             | $400 \le [l_n] \le 800$                     |
|         | 1250                            | $630 \le [l_n] \le 1250$                    |
| AR216H  | 1600                            | $800 \le [I_n] \le 1600$                    |
| AR220H  | 2000                            | $1000 \le [I_n] \le 2000$                   |
|         | 200                             | $100 \le [l_n] \le 200$                     |
|         | 400                             | $200 \le [l_n] \le 400$                     |
| AR316H  | 800                             | $400 \le [l_n] \le 800$                     |
|         | 1250                            | $630 \le [I_n] \le 1250$                    |
|         | 1600                            | $800 \le [I_n] \le 1600$                    |
| AR320H  | 2000                            | 1000 ≤ [I <sub>n</sub> ] ≤ 2000             |
| AR325H  | 2500                            | 1250 ≤ [I <sub>n</sub> ] ≤ 2500             |
| AR332H  | 3200                            | 1600 ≤ [I <sub>n</sub> ] ≤ 3200             |
|         |                                 |                                             |

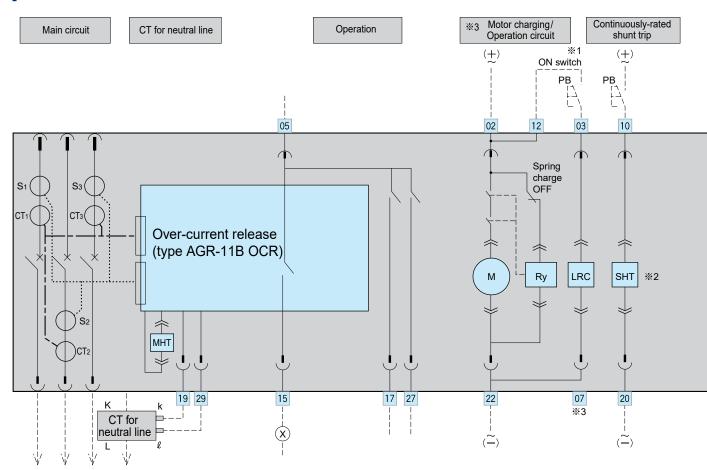
# Protection characteristics S characteristic Trip Units




The ST trip characteristic shown in the curve applies when the ramp characteristic select switch

is in the OFF position. Note: Total breaking time

for AR6 is 0.05 sec.


I<sub>n</sub> values.

Note: I<sub>n</sub> value is not a straight calculation. Refer to tables above for possible





# Connection – AGR11B



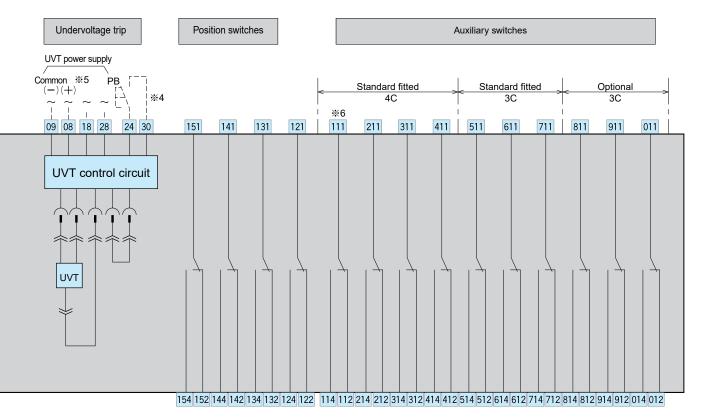
#### **Terminal Description**

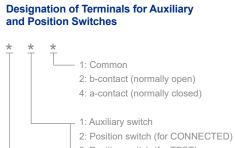
| 02 22    | Control power supply AC 100 - 240 V, DC 100 - 250 V,<br>DC 24 V, DC 48 V |
|----------|--------------------------------------------------------------------------|
| 12       | Operation switch, common                                                 |
| 03       | ON switchv                                                               |
| 05       | Operation indication terminal, common                                    |
| 15       | Trip Unit indication or single-contact trip indication (40ms signal)     |
| 17       | Trip indication (not ready indication)                                   |
| 27       | Spring charge indicator                                                  |
| 10 20    | Continuously-rated shunt trip                                            |
| 19       | Separate CT for neutral line (k)                                         |
| 29       | Separate CT for neutral line (l)                                         |
| 08 18 28 | UVT power supply                                                         |
| 09       | UVT power supply common                                                  |

#### Symbols for Accessories

| CT1 - CT3 | Power CTs                                        |
|-----------|--------------------------------------------------|
| S1 - S3   | Current sensors                                  |
| M         | Charging motor                                   |
| LRC       | Latch release coil                               |
| MHT       | Magnetic Hold Trigger                            |
| -(        | Isolating terminal connector (for draw-out type) |
|           | Manual connector                                 |
|           | User wiring                                      |
| ⊗         | Relay or indicator lamp                          |
|           |                                                  |

- Do not series connect a normally open auxiliary contact switch to ON switch contact, otherwise, ACB pumping may occur.
   Refer previous pages the circuit diagram of the continuously-rated shunt trip device with a capacitor trip device.
   For motor split circuit, terminals [02] [22] and [03], [07] are used for charging and closing operation respectively. (Please specify when ordering)
   Refer to previous pages on UTY ming (short pulse only)
   Only one of terminals [08], [18], [28] must be used as this is a single phase UVT.
   Do not use these terminals for other circuits when both instantaneously rated shunt trip and UVT are fitted. These terminals are used by Terasaki as the anti burnout SW for the instantaneously rated shunt trip.


Note: In case of a UVT and a Shunt fitted together or Double opening or closing coil, use an aux. switch to prevent burnout. Contact NHP for wiring or pre-ordering of an ACB.

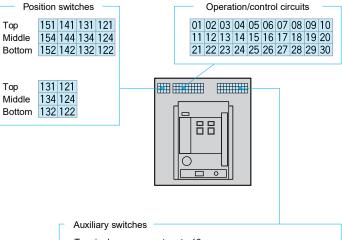

#### **UVT Power Supply**

| Term. No. | AC 100 V<br>Unit | AC 200 V<br>Unit | AC 400 V<br>Unit | AC 450 V<br>Unit |
|-----------|------------------|------------------|------------------|------------------|
| 08 — 09   | 100 V            | 200 V            | 380 V            | 450 V            |
| 08 — 09   | 110 V            | 220 V            | 415 V            | 480 V            |
| 08 — 09   | 120 V            | 240 V            | 440 V            | 400 V            |
| Term. No. | DC 24 V<br>Unit  | DC 48 V<br>Unit  | DC 100 V<br>Unit | DC 110 V<br>Unit |
| 08 — 09   | 24 V             | 48 V             | 100 V            | 110 V            |

UVT NOTE: The UVT is either 100 - 120 V AC, 200 - 240 V AC or 400 - 480 V AC, not all three!

ACBs

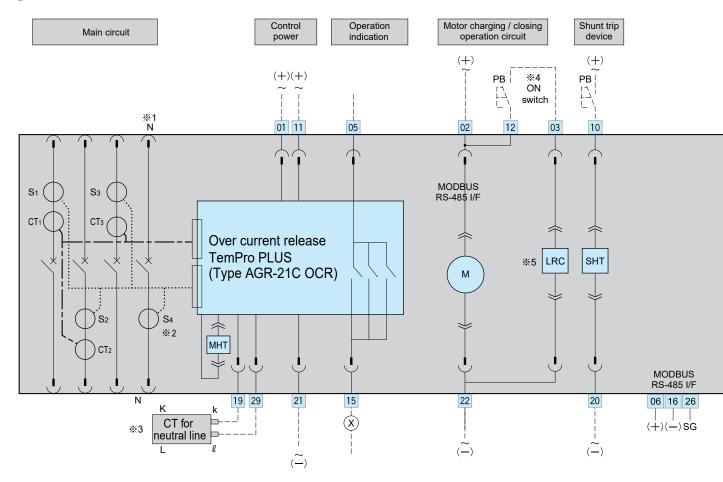







- 4: Position switch (for ISOLATED)
- 5: Position switch (for INSERT)

1 - 0: Switch numbers A, B, C: Auxiliary switches for microload


| CONNECTED resition | 121 -124 ON   |
|--------------------|---------------|
| CONNECTED position | 121 - 122 OFF |
| TEST position      | 131 - 134 ON  |
| TEST position      | 131 - 132 OFF |
| ISOLATED position  | 141 - 144 ON  |
| ISOLATED position  | 141 - 142 OFF |
| INCEPT position    | 151 - 154 ON  |
| INSERT position    | 151 - 152 OFF |



NHE



# Connection – AGR21C



#### **Terminal Description**

| 01 21    | Control power supply AC 200 - 240 V, DC 200 - 250 V, DC 48 V                 |
|----------|------------------------------------------------------------------------------|
| 01 11    | Control power supply AC 100 - 120 V                                          |
| 11 21    | Control power supply AC 100 - 125 V, DC 24 V                                 |
| 02 22    | Motor / LRC power supply AC 100 - 240 V, DC 100 - 250 V,<br>DC 24 V, DC 48 V |
| 10 20    | Continuously-rated shunt trip                                                |
| 08 18 28 | Single phase UVT power supply only. No. 3 phase connection!                  |
| 03       | ON switch                                                                    |
| 05       | Operation indication terminal, common                                        |
| 15       | LT, ST, INST, GF trip indication                                             |
| 06 16 26 | MODB US RS-485 (+TX, -RX, SG)                                                |
| 19       | Separate CT for neutral line (k)                                             |
| 29       | Separate CT for neutral line (l)                                             |
| 09       | UVT power supply common                                                      |
| 24       | Used with terminal 30 for remote ACB opening ※6                              |

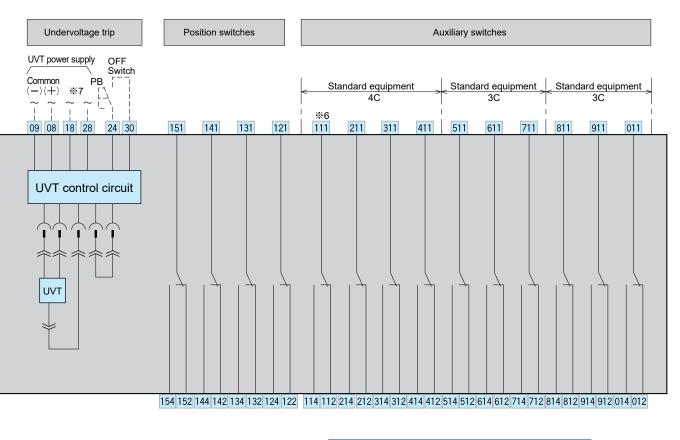
#### Main Circuit Input Voltage (Required)

| 13 | 'R' Line Voltage (RED PHASE)   |
|----|--------------------------------|
| 23 | 'S' Line Voltage (WHITE PHASE) |
| 04 | 'T' Line Voltage (BLUE PHASE)  |
| 14 | 'N' - Neutral                  |

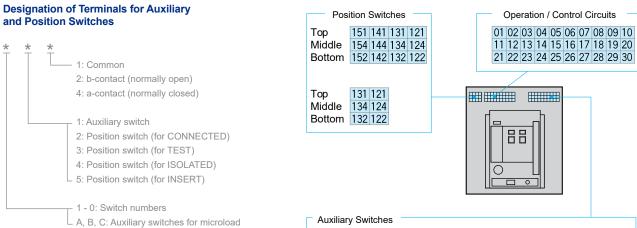
#### Symbols for Accessories

| CT1 - CT3 | Power CTs                                        |
|-----------|--------------------------------------------------|
| S1 - S3   | Current sensors                                  |
| M         | Charging motor                                   |
| LRC       | Latch release coil                               |
| MHT       | Magnetic Hold Trigger                            |
| -(=       | Isolating terminal connector (for draw-out type) |
|           | Manual connector                                 |
|           | User wiring                                      |
|           | Relay or indicator lamp                          |
|           |                                                  |

\*\* 1.


- For 4 pole ACBs. For 4 pole ACBs equiped with N-phase protection and / or Ground Fault trip functions. Used for 3-pole ACB's with Ground Fault trip function to be installed in a 3-phase, 4-wire circuit. N-phase CT is polarity sensitive. Refer ACB user manual for external CT orientation installation 2: 3:
- information. Do not connect an ON switch in series with a Normally Open auxiliary contact, as this may × 4:
- % 4: Do not connect an ON switch in series with a Normally Open auxiliary contact, as this may cause ACB pumping to occur.
   5: When the LRC and motor voltages are different (a SPLIT VOLTAGE), please specify this at time of of ordering. In this case, terminals 102 and 102 are used for the motor and terminals 103 and 107 will be used for the LRC.
   % 6: When using a UVT for remote ACB opening, refer to ACB user manual section "3.0 Tripping options" for details rated shunt trip.
   % 7: Only one of terminals 108, 118, 128 must be used as this is a single phase UVT.

Note: In case of a UVT and a Shunt fitted together or Double opening or closing coil, use an aux. switch to prevent burnout. Contact NHP for wiring or pre-ordering of an ACB.


#### **UVT Power Supply**

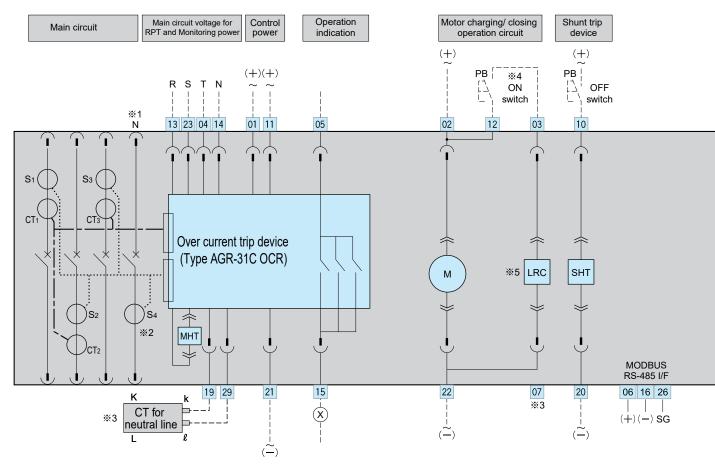
|           | abbil            |                  |                  |  |
|-----------|------------------|------------------|------------------|--|
| Term. No. | AC 100 V<br>Unit | AC 200 V<br>Unit | AC 400 V<br>Unit |  |
| 08 — 09   | 100 V            | 200 V            | 380 V            |  |
| 08 — 09   | 110 V            | 220 V            | 415 V            |  |
| 08 — 09   | 120 V            | 240 V            | 440 V            |  |
|           |                  |                  |                  |  |
| Term. No. | DC 24 V          | DC 48 V          | DC 100 V         |  |
|           | Unit             | Unit             | Unit             |  |
| 08 — 09   | 24 V             | 48 V             | 100 V            |  |

UVT NOTE: The UVT is either AC 100 V, AC 200 V or AC 400 V, not all three!



All external pushbuttons and connections made to the above terminals are to be made and supplied by the user




| CONNECTED position | 121 -124 ON   |
|--------------------|---------------|
| CONNECTED position | 121 - 122 OFF |
| TEST position      | 131 - 134 ON  |
| TEST position      | 131 - 132 OFF |
|                    | 141 - 144 ON  |
| ISOLATED position  | 141 - 142 OFF |
|                    | 151 - 154 ON  |
| INSERT position    | 151 - 152 OFF |



(4C + 3C + 3C terminal connections) 111 211 311 411 511 611 711 811 911 011 114 214 314 414 514 614 714 814 914 014 112 212 312 412 512 612 712 812 912 012 NHE



# Connection – AGR31C



#### **Terminal Description**

| 01 21    | Control power supply AC 200 - 240 V, DC 200 - 250 V, DC 48 V                 |
|----------|------------------------------------------------------------------------------|
| 01 11    | Control power supply AC 100 - 120 V                                          |
| 11 21    | Control power supply DC 100 - 125 V, DC 24 V                                 |
| 02 22    | Motor / LRC power supply AC 100 - 240 V, DC 100 - 250 V,<br>DC 24 V, DC 48 V |
| 10 20    | Shunt trip                                                                   |
| 08 18 28 | Single phase UVT power supply, NO 3 phase connection                         |
| 03       | ON switch (MUST HAVE LRC INSTALLED TO WORK)                                  |
| 05       | Operation indication terminal, common                                        |
| 15       | LT, ST, INST, GF trip indication (AND RPT on 'S' type Trip Unit)             |
| 06 16 26 | MODB US RS-485 (+TX -RX,SG)                                                  |
| 19       | Separate CT for neutral line (k)                                             |
| 29       | Separate CT for neutral line (ℓ)                                             |
| 09       | UVT power supply common                                                      |
| 24       | Used with terminal 30 for remote ACB opening $\%6$                           |

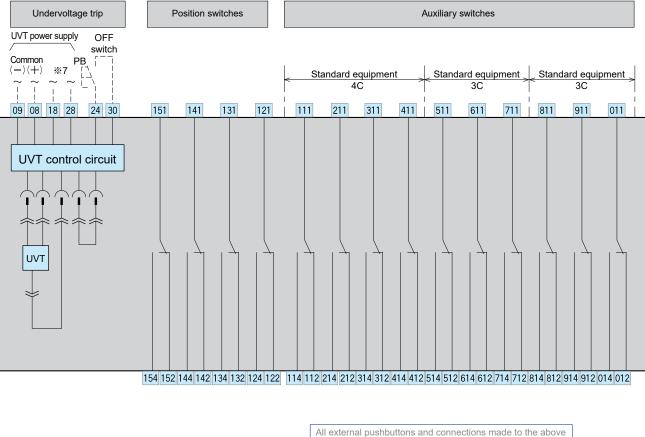
#### Main Circuit Input Voltage (Required)

| 13 | 'R' Line Voltage (RED PHASE)   |
|----|--------------------------------|
| 23 | 'S' Line Voltage (WHITE PHASE) |
| 04 | 'T' Line Voltage (BLUE PHASE)  |
| 14 | 'N' - Neutral                  |

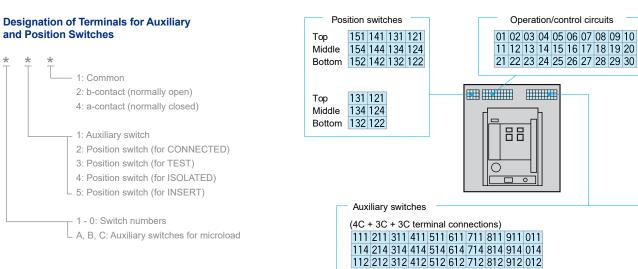
#### Symbols for Accessories

| CT1 - CT3 | Power CTs                                        |
|-----------|--------------------------------------------------|
| S1 - S3   | Current sensors                                  |
| N         | Charging motor                                   |
| LRC       | Latch release coil                               |
| VIHT      | Magnetic Hold Trigger                            |
| -(=       | Isolating terminal connector (for draw-out type) |
|           | Manual connector                                 |
|           | User wiring                                      |
|           | Relay or indicator lamp                          |
|           |                                                  |

\*\*\*\* 1.


- For 4 pole ACBs. For 4 pole ACBs equiped with N-phase protection and / or Ground Fault trip functions. Used for 3-pole ACB's with Ground Fault trip function to be installed in a 3-phase, 4-wire circuit. N-phase CT is polarity sensitive. Refer ACB user manual for external CT orientation installation 2: 3: information.
- Do not connect an ON switch in series with a Normally Open auxiliary contact, as this may × 4:
- Do not connect an ON switch in series with a Normally Open auxiliary contact, as this may cause ACB pumping to occur. When the LRC and motor voltages are different (a SPLIT VOLTAGE), please specify this at time of of ordering. In this case, terminals [02] and [22] are used for the motor and terminals [03] and [37] will be used for the LRC. When using a UVT for remote ACB opening, refer to ACB user manual section "3.0 Tripping certicare" for details. ☆ 5:
- \* 6: options" for details
- 7: Only one of terminals 08, 18, 28 must be used as this is a single phase UVT.

Note: In case of a UVT and a Shunt fitted together or Double opening or closing coil, use an aux. switch to prevent burnout. Contact NHP for wiring or pre-ordering of an ACB.


#### **UVT Power Supply**

| Term. No. | AC 100 V<br>Unit | AC 200 V<br>Unit | AC 400 V<br>Unit |  |
|-----------|------------------|------------------|------------------|--|
| 08 — 09   | 100 V            | 200 V            | 380 V            |  |
| 18 — 09   | 110 V            | 220 V            | 415 V            |  |
| 28 — 09   | 120 V            | 240 V            | 440 V            |  |
| Term. No. | DC 24 V<br>Unit  | DC 48 V<br>Unit  | DC 100 V<br>Unit |  |
| 08 — 09   | 24 V             | 48 V             | 100 V            |  |

UVT NOTE: The UVT is either AC 100 V, AC 200 V or AC 400 V, not all three!







| CONNECTED position | 121 -124 ON   |
|--------------------|---------------|
|                    | 121 - 122 OFF |
| TEST position      | 131 - 134 ON  |
|                    | 131 - 132 OFF |
| ISOLATED position  | 141 - 144 ON  |
|                    | 141 - 142 OFF |
| INSERT position    | 151 - 154 ON  |
|                    | 151 - 152 OFF |

NHE



# **Customer Fit Accessories**



# Fixing Bolts for ACB

Holds the breaker firmly inside the carriage.



# Lifting Lugs

AR ACB Body Lifting Plates





| Item Description        | Catalogue No.    |
|-------------------------|------------------|
| Size 2/3/4 800 - 4000AF | AR234ACBLIFTLUGS |
| Size 6 5000 - 6300AF    | AR6ACBLIFTLUGS   |

# Padlock Main Safety Shutters

Allows shutters to be padlocked



| Item Description         | Catalogue No.    |
|--------------------------|------------------|
| Suits 3/4P AR2, AR3 ACBs | AR23SHUTPADLOCK  |
| Suits 3/4P AR4 ACBs      | AR4SHUTPADLOCK   |
| Suits 3P AR6 ACBs        | AR6SHUTPADLOCK3P |
| Suits 3P AR6 ACBs        | AR6SHUTPADLOCK4P |

# Interpole Barrier

For 4P version, use part numbers ending in 4P



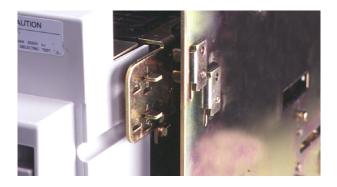
| Item Description | Catalogue No.   |
|------------------|-----------------|
| Suits 3P AR2 ACB | AR2INTPOLEBAR3P |
| Suits 3P AR3 ACB | AR3INTPOLEBAR3P |
| Suits 3P AR4 ACB | AR4INTPOLEBAR3P |
| Suits 3P AR6 ACB | AR6INTPOLEBAR3P |

# Rear Insulation Barrier

Rear insulation plates which add an additional barrier over the ACB rear



| Item Description | Catalogue No. |
|------------------|---------------|
| Suits 3P AR2 ACB | AR23CBI2      |
| Suits 4P AR2 ACB | AR24CBI2      |
| Suits 3P AR3 ACB | AR33CBI2      |
| Suits 4P AR3 ACB | AR34CBI2      |


# Spare Handles for Drawout ACBs



| Item Description                                                                                                   | Catalogue No.   |
|--------------------------------------------------------------------------------------------------------------------|-----------------|
| External Racking Handle                                                                                            | AREXTERNLHANDLE |
| Internal Racking Handle that stores<br>within the ACB, storage sheath sold<br>seperately and NHP Service fit only. | ARINTERNLHANDLE |

# Incorrect Insertion Device

Prevents ACB and carriage mix up. Order body kit and carriage kit.



| Item Description         | n Catalogue No. |  |
|--------------------------|-----------------|--|
| Suits AR2, AR3, AR4 ACBs | AR234MALINDEV   |  |
| Suits AR6 ACBs           | AR6MALINDEV     |  |

98

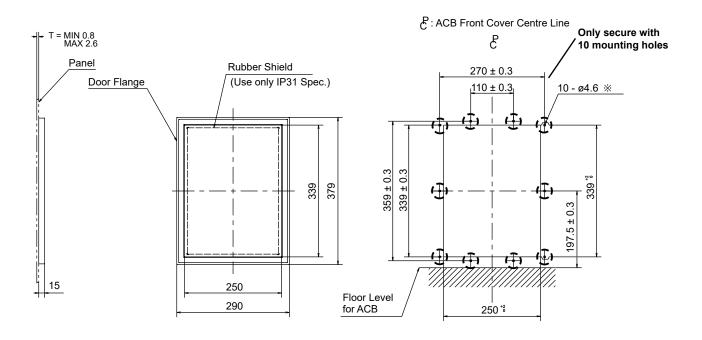


Circuit Breakers > ACBs > Customer Fit Accessories <

## IP 41 Door Flange

A door flange can be used as a decoration panel that covers the cutout on the switchboard panel, and provides IP 41 protection with the gasket fitted. Only drill the 10 holes indicated below to achieve IP 41.




**Item Description** 

ARDOORFLANGEIP41

AR ACB Door Flange IP41

ACBs

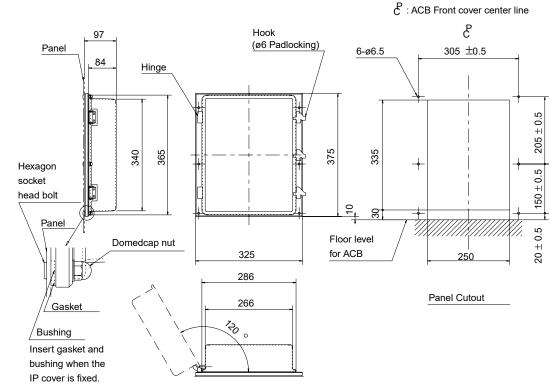
#### **Dimensions**





### IP 55 Door Cover

An IP cover provides an IP 55 grade of protection as defined in IEC 60529, even if the breaker body is in the ISOLATED position, the IP cover can still be fitted on the ACB.




Item Description

Catalogue No.

AR ACB IP55 Lockable Escutcheon Door Cover

ARDOORCOVERIP55



#### Dimensions

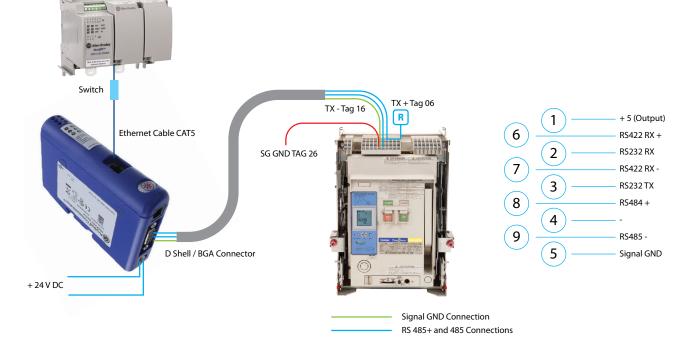
NHP

101

### Communications Gateways -Anybus

NHP Anybus modules can connect non-networked devices to any major fieldbus or industrial Ethernet. The module performs an intelligent conversion between the serial protocols (Modbus RTU) of Terasaki Air Circuit Breakers to Ethernet / TCP. All data between the fieldbus and the serial network is stored in an internal memory buffer inside the Anybus module. The data exchanged between the PLC on the fieldbus / Ethernet and the ACB is then made using the input and output areas of the internal memory within the Anybus module.

#### Features


- ✓ Gateways are available with Profibus, DeviceNet, Ethernet or Modbus TCP communications
- ✓ Anybus gateways are pre-configured with the AR Air Circuit Breakers Trip Unit memory map.
- ✓ The gateway allows the Modbus registers in the Trip Unit to be read from and written to via an Ethernet / IP class 1 connection (implicit data transfer).
- The gateway allows the ACB to be opened/closed via communications by mapping to the open and close Modbus registers in the Trip Unit. This is only possible if the nonstandard on / off via communications option has been installed in the ACB at the time of ordering.

0000000000

#### Module Layout



| Туре                                    | Catalogue<br>No. |
|-----------------------------------------|------------------|
| AR ACB Profibus communications module   | AR PROFI MOD     |
| AR ACB DeviceNet communications module  | AR DEVNT MOD     |
| AR ACB Ethernet communications module   | AR ETHIP MOD     |
| AR ACB Modbus TCP communications module | AR METH MOD      |





## T2ED Circuit Breaker External Display

A door flange can be used as a decoration panel that covers the cutout on the switchboard panel, and provides IP 41 protection with the gasket fitted.



#### Features

**Item Description** 

and AR ACBs)

External Switchboard Door

Digital Display (Suits both TemBreak Pro B Type MCCBs

- ✓ For TemBreak PRO B\_SE MCCBs rated 16A to 1000A or any TemPower AR ACB
- ✓ Works as a master / slave meter
- ✓ The T2ED display is the master, the MCCB / ACB, the slave
- ✓ A single meter is used with each MCCB / ACB
- ✔ Up to 31 meters can be daisy chain connected

#### Outline Dimensions and IP Rating

| Outline Dimensions | H 96 × W 96 × D 50 mm |
|--------------------|-----------------------|
| IP Rating          | IP65 Panel mounted    |

#### **Control Supply Details**

Backlight

| Operating Voltage Range      | 18V to 31.2 V DC |
|------------------------------|------------------|
| Ampere Consumption at 24V DC | 50mA             |

#### **Communication Specifications**

|                |                            | COM 0                                | COM 2                                       |
|----------------|----------------------------|--------------------------------------|---------------------------------------------|
|                | Communications<br>Standard | RS485 (Master)                       | RS485 (Slave)                               |
| Catalogue No.  | Communications<br>Mode     | 2 wire, half duplex                  |                                             |
| T2ED00D02NNA   | Data Format                | Modbus - RTU                         |                                             |
|                | Тороlоду                   | Multi-drop bus                       |                                             |
|                | Transmission Address       | 1 (Fixed)                            | 1 – 127 (Selectable)                        |
|                | Transmission Rate<br>(bps) | 19200 (Fixed)                        | 4800 / 9600 / 19200 /<br>38400 (Selectable) |
|                | Parity                     | EVEN (Fixed)                         | EVEN / ODD / NONE<br>(Selectable)           |
|                | Transmission<br>Distance   | 1.2 km max (at 19.2 kbps)<br>1 to 31 |                                             |
|                | Maximum No. of<br>Nodes    |                                      |                                             |
|                | LCD Display                |                                      |                                             |
| Number of Dots |                            | 160 × 160 pixels                     |                                             |
|                | Active Area                | 55.985 × 55.985 mm                   |                                             |
|                | Dot Size                   | 0.335 × 0.335 mm                     |                                             |
|                | Dot Pitch                  | 0.35 × 0.35 mm                       |                                             |
|                | Type of LCD                | FSTN                                 |                                             |
|                |                            |                                      |                                             |

White



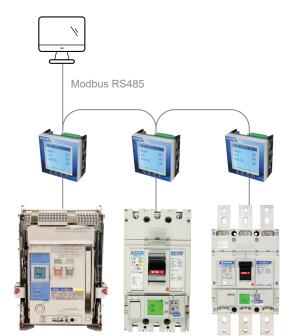
#### External Meter and Building Management System Communications Options

#### **Monitoring Application 1**

- One T2ED display required for each MCCB or ACB
- Modbus RS485 standard between each MCCB/ACB and T2ED display
- T2ED external displays can be daisy chain connected
- Refer following pages for T2ED wiring
- For TemBreak PRO B\_SE MCCBs rated 16 A to 1000 A or any TemPower AR ACB









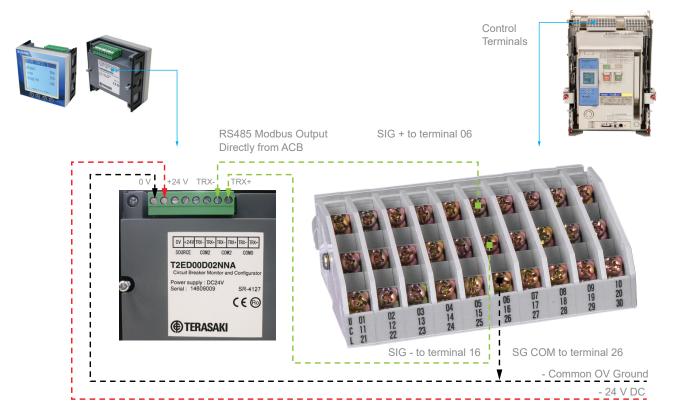



#### Monitoring, and Remote Control (Applications 1 and 2)

- Each MCCB or ACB has Modbus RS485 output as standard
- Communications can be daisy chain connected
- T2ED external display option
- Applications include building / energy management systems
- Connection to peripheral devices such as touch screens, PLCs, PCs etc.

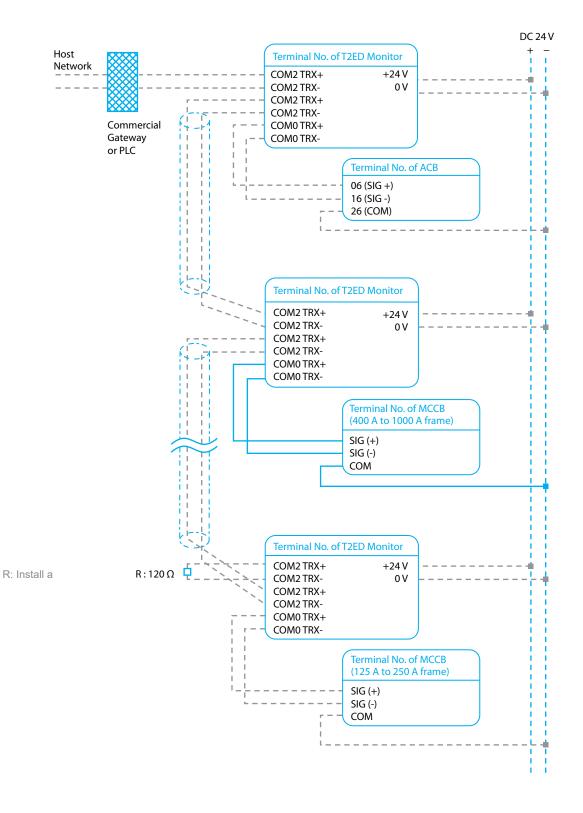


# NHP


#### **T2ED Installation Examples**

104

Host Network / Commercial Gateway




ACB Connection Diagram - Single T2ED External Display Meter Connection to TemPower 2, AR ACB

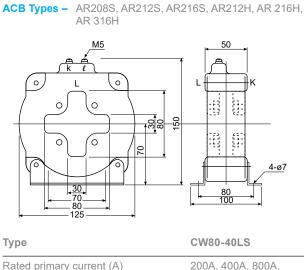




#### **T2ED User Connection**

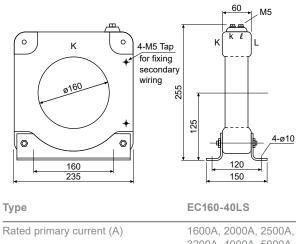





# Ground Fault 4<sup>th</sup> Neutral CT

The external ground fault  $4^{th}$  CT is required to be fitted to a switchboard neutral bar when the ground fault protection function used.

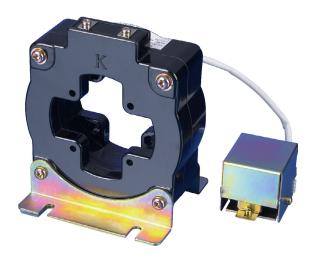
The 4<sup>th</sup> CT is wired to the transducer terminals K and L on the ACB carriage. The transducer reduces the output of the CT to signal size that it sent to the ACB Trip Unit.


The CTs are Class 1.0 type with a 5A secondary.

#### Dimensions



Rated secondary current is 5A


ACB Types – AR220S, AR325S, AR332A, AR440S, AR650S, AR663S, AR220H, AR320H, AR325H, AR332H, AR440H, AR650H, AR663H




1600A, 2000A, 2500A, 3200A, 4000A, 5000A, 6300A

1250A, 1600A

Rated secondary current is 5A





### Ground Fault 4<sup>th</sup> Neutral CT

| Rated Primary<br>Curent | Suits<br>ACB Type | 4 <sup>th</sup> CT<br>Catalogue No. |
|-------------------------|-------------------|-------------------------------------|
| 1250A                   | ARB2123STD        | XCW0840LS13                         |
| 1600A                   | ARB2163STD        | XCW0840LS16                         |
| 2000A                   | ARB2203STD        | XEC1640LS20                         |
| 2500A                   | ARB3253STD        | XEC1640LS25                         |
| 3200A                   | ARB3323STD        | XEC1640LS32                         |
| 4000A                   | ARB4403STD        | XEC1640LS40                         |
| 5000A                   | AR650S            | XEC1640LS50                         |
| 6300A                   | AR663S            | XEC1640LS63                         |



# Factory Fit Accessories



The TEMPOWER 2 AR ACB has two methods of remote tripping of the main contacts:

- Shunt trip coil
- Undervoltage Trip (UVT) Device

## Shunt Trip Coil

The shunt trip coil is available in three varieties:

- Single Shunt Short time rated (STR) and should be wired in series with a N/C auxiliary contact.
- Single Shunt Which is continuously rated (CR)
- Double Shunt Which is short time rated and should be wired in series with a N/C auxiliary contact.

### Under Voltage Coil

Single phase under voltage or voltage loss detection

Shunt trips and Under Voltage Trips are available in different voltages and are factory fit accessories / NHP service site visit. Below is a basic list of shunt coils, for voltages not shown on this list please contact your NHP representative.

# Remote Tripping Devices







X



V

| Rated Voltage | Single Shunt Coil (CR) | Double Shunt Coil | Single coil short time rated shunt trip | Under Voltage Trip |
|---------------|------------------------|-------------------|-----------------------------------------|--------------------|
| AC 110V       | V                      | ×                 | V                                       | V                  |
| AC 220V       | V                      | ×                 | V                                       | V                  |
| AC 240V       | V                      | v                 | V                                       | V                  |
| AC 415V       | ×                      | ×                 | X                                       | V                  |
| DC 24V        | V                      | V                 | V                                       | V                  |
| DC 48V        | V                      | ×                 | V                                       | V                  |
| DC 100V       | V                      | ×                 | ×                                       | V                  |

1

Continuously rated shunt trip and undervoltage trip can not be fitted to the same ACB. However, the STR shunt trip can be used together with an undervoltage trip.

V

DC 110V

NHE

109

### Shunt Trip – AVR-1C Single Coil Type

Single coil shunt trip coils are designed to remotely trip the ACB, are continuously rated.

The coils are available in different voltages and are factory fit accessories or via NHP site-service.



#### Shunt Trips and UVTs Installed in the Same ACB

An AVR-1C shunt trip and undervoltage trip cannot be fitted at the same time into an ACB. For applications where a shunt and UVT are both required, a N/O pushbutton or relay contact should be wired between control terminals 24 and 30 to remotely open the ACB main contacts. This is the recommended method of remotely opening the ACB because it uses the UVT's fail safe coil to 'trip' the main contacts. Alternatively a single shunt (STR) can be fitted together with the UVT coil.

Refer following pages for further details on this.

| Rated Voltages Stocked<br>By NHP | Single Shunt Coil (CR)<br>Continuously Rated |
|----------------------------------|----------------------------------------------|
| 110V AC                          | V                                            |
| 240V AC                          | V                                            |
| 24V DC                           | V                                            |
| 48V DC                           | V                                            |
| 110V DC                          | <b>v</b>                                     |

| Sh | unt | Trip |   | Contin<br>voltag | · · · · · · | rated | , sh | owing all | availa | able |  |
|----|-----|------|---|------------------|-------------|-------|------|-----------|--------|------|--|
| _  |     |      | - |                  |             | _     | _    |           |        |      |  |

| Rated<br>Voltage<br>(V) <sup>2</sup> | Operational<br>Voltage Range<br>(V) <sup>3</sup> | Maximum<br>Excitation<br>Current (A) | - 1- 5            |
|--------------------------------------|--------------------------------------------------|--------------------------------------|-------------------|
| 100V AC                              | 70 – 110V AC                                     | 0.29                                 |                   |
| 110V AC                              | 77 – 121V AC                                     | 0.25                                 | _                 |
| 120V AC                              | 84 – 132V AC                                     | 0.22                                 | _                 |
| 200V AC                              | 140 – 220V AC                                    | 0.15                                 | _                 |
| 220V AC                              | 154 – 242V AC                                    | 0.13                                 | _                 |
| 240V AC                              | 168 – 264V AC                                    | 0.11                                 | _                 |
| 24V DC                               | 16.8 – 26.4V DC                                  | 1.04                                 | -                 |
| 30VDC                                | 21 – 33V DC                                      | 0.85                                 | - 50 <sup>1</sup> |
| 48V DC                               | 33.6 - 52.8V DC                                  | 0.51                                 | _                 |
| 100V DC                              | 70 – 110V DC                                     | 0.25                                 | _                 |
| 110V DC                              | 77 – 121V DC                                     | 0.22                                 | _                 |
| 125V DC                              | 87.5 – 137.5V DC                                 | 0.21                                 | _                 |
| 200V DC                              | 140 – 220V DC                                    | 0.13                                 | _                 |
| 220V DC                              | 154 – 242VDC                                     | 0.12                                 | _                 |
|                                      |                                                  |                                      |                   |

- 1) For AR6 the opening time is 60 msec.
- 2) For voltages not shown on this list please contact your NHP representative.
- 3) Operational voltage can be different to Trip Unit auxiliary control voltage.



#### Shunt Trip – AVR - 1CD Double Coil Type

Double (2) coil Shunt trips are available to add increased redundancy to an ACB's shunt tripping capability. If one coil fails, the other can function.

Double shunts are short time rated and need to be series wired with a N/C aux contact.

Shunt coils are available in a range of different voltages, and are factory fit accessories or via NHP site-service. Below is list of voltages available. For voltages not shown contact your NHP representative. 240V AC and 24V DC are standard available voltages.

#### **Other Information:**

- Double shunt coils can be installed in ACBs that are Non-Auto, and those using TemPro PLUS and TemPro Premier AGR31 Trip Units
- Double shunts require a special wiring loom to be fitted during manufacture
- Double coil shunt trips and undervoltage trips or latch release coils cannot be fitted to the same ACB
- A special shunt trip controller that trips the ACBs MHT (Magnetic Holding Trigger) can be installed along with an undervoltage trip. See "ACBs with a shunt and UVT" on the following pages
- The double shunt operational voltage can be different to Trip Unit auxiliary control voltage



| Available Voltages<br>Types | Double Shunt Coil<br>(AVR-1CD) |
|-----------------------------|--------------------------------|
| 240V AC                     | NHP Factory Fit / Site-service |
| 24V DC                      | NHP Factory Fit / Site-service |



#### Under Voltage Trip – Type AUR-1C

#### Under Voltage Trip (UVT) Accessory – For Remote Tripping an ACB

The Under Voltage Trip accessory (UVT) monitors a single phase and trips the ACB when the control voltage drops below its opening voltage threshold. When the control voltage is restored to the pick-up voltage, the ACB can be closed. The pick-up voltage is fixed to 85 % of the rated voltage. The UVT device is available in an instantaneous (standard type) or a 500 ms time delay version. \**Note: AGR31 Trip Units have 3 phase UV alarms – refer to note A below.* 

The UVT consists of a standard 24 V DC coil which acts as a tripping mechanism inside the ACB, and an undervoltage trip control device for different control voltages, which is mounted on at the top of the ACB carriage. The trip control device is available in two types: AUR-ICS and AUR-ICD. Type AUR-ICS provides an instantaneous trip (below 200ms) to the ACB when the control voltage drops below the opening voltage. Type AUR-ICD provides a delayed trip to the ACB when the control voltage remains below the opening voltage for at least 500ms. A time-delay trip of 1 to 3 seconds is available as a special specification.

An option with an ACB UVT, is to use it as a shunt trip. To shunt trip the ACB, a N/O pushbutton or relay contact can be wired between control terminals 24 and 30 to remotely open the ACB main contacts. This is the recommended method of remotely opening the ACB in this instance because it uses the UVT's fail safe coil to 'trip' the main contacts.



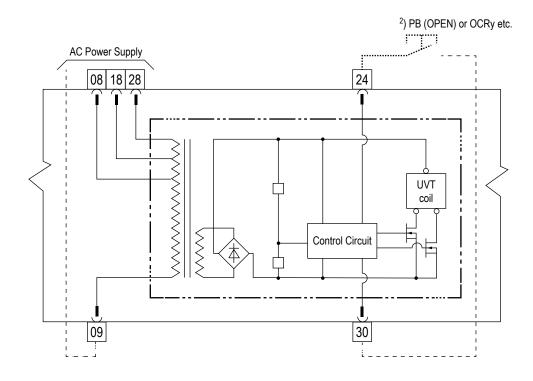
#### Note A

AGR31 TemPro Premier Trip Units have a 3 phase Under Voltage Alarm feature. A UV alarm signal can be sent by Modbus communications to signal an external device. Further UV alarm details are in Trip Unit specifications on previous pages.

| Type of UVT                    | Rated Voltage         | Operational                              | Pick-Up | <b>Coil Excitation</b> | Power Const | umption (VA) |
|--------------------------------|-----------------------|------------------------------------------|---------|------------------------|-------------|--------------|
| Control Device                 | 50 / 60Hz             | Iz Voltage (V) <sup>2)</sup> Voltage (V) |         | Current (A)            | Normal      | Reset        |
|                                | 100V AC               | 35 – 70                                  | 85      |                        |             |              |
|                                | 110V AC               | 38.5 – 77                                | 93.5    |                        |             |              |
|                                | 120V AC               | 42 - 84                                  | 102     |                        |             |              |
|                                | 200V AC               | 70 – 140                                 | 170     |                        |             |              |
| AUR-1CS                        | 220V AC               | 77 – 154                                 | 187     |                        |             |              |
| (Instantaneous)                | 240V AC               | 84 - 168                                 | 204     |                        | 0           | 40           |
| <b>AUR-1CD</b><br>(Time Delay) | 380V AC               | 133 – 266                                | 323     | 0.1                    | 8           | 10           |
| (Time Delay)                   | 415V AC               | 133 – 266                                | 352     |                        |             |              |
|                                | 440V AC               | 154 – 308                                | 374     |                        |             |              |
|                                | 24V DC <sup>1)</sup>  | 8.4 - 16.8                               | 20.4    |                        |             |              |
|                                | 48V DC <sup>1)</sup>  | 16.8 - 33.6                              | 40.8    |                        |             |              |
|                                | 100V DC <sup>1)</sup> | 35 - 70                                  | 85      |                        |             |              |

1) Special configuration, please contact NHP for these voltages.

2) Operational voltage can be different to trip unit auxiliary contol voltage.

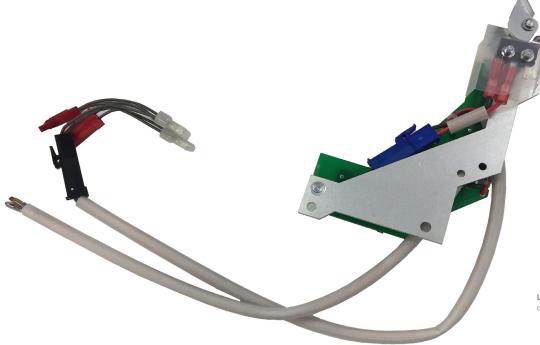



#### Under Voltage Trip Control Circuit (For AC Voltages) Monitoring a Single Phase<sup>1)</sup>

It takes a maximum of 1.5 seconds for the UVT coil to be respond after the rated voltage is applied to the undervoltage trip device. Therefore, for the closing command, the closing signal should be applied for over 1.5 seconds after the rated voltage is applied.

If a separate shunt trip facility is required, which does not use UVT trip terminals 24 and 30 as described above, a special shunt controller can be used to shunt the ACB's MHT (Magnetic Holding Trigger). Refer to ACBs with a shunt and UVT for more information.

Wiring Diagram




- 1) For DC voltage UVTs use terminal 09 as the (–) terminal and 08 as the (+) terminal.
- Tripping signal is 48 V DC / 5mA. Apply tripping signal for at least 80 ms. Push button and wiring to be supplied by user.



#### Single Coil -Short Time Rated (STR) Shunt Trip

The single coil short time rated shunt can be used to provide an alternative means of shunt tripping the ACB, where a standard AVR-1C shunt trip coil may or may not also be installed. Applications for this method can be where a user wants additional redundancy, or where they need to have a second independent shunt trip circuit. It should be noted that where a standard AVR- 1C shunt is also installed, a UVT cannot be installed.



Left – Internal Shunt Trip controller type

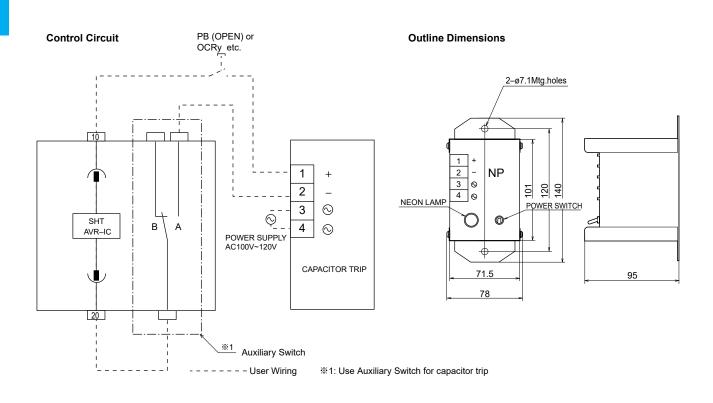
#### **Applications**

- When an ACB has a UVT (Under Voltage Trip) fitted, and a shunt trip is also required
- When a second independent shunt circuit is required, where a standard shunt coil is already installed

#### **Function and Operation**

- The design is short time rated, but since the internal circuit includes a N/C cut off switch it cannot be continuously energised even if a trip signal is maintained
- Auxiliary Voltage: The STR shunt tip coil is wired independently of the ACB Trip Unit, and this allows the control voltage of the shunt trip to be different to the Trip Unit auxiliary control voltage
- After the energisation the STR shunt coil, the trip / opening operation time for AR2 - 4 ACBs is approximately 50 ms, and 60ms for AR6
- The total arcing clearance time can vary between 50 and 70ms

| Available Voltages<br>Types | STR Shunt Trip |
|-----------------------------|----------------|
| 110V AC                     | V              |
| 220V AC                     | ×              |
| 240V AC                     | V              |
| 24V DC                      | V              |
| 48V DC                      | V              |
| 100V DC                     | ×              |
| 110V DC                     | ×              |




### **Tripping Options**

#### **Capacitor Trip Device**

In conjunction with a continuously-rated 48 V DC shunt trip device, the capacitor trip device can be used to trip the ACB within a limited period of 30 sec. if a large voltage drop occurs due to an AC power failure or short-circuit. When the continuously-rated shunt trip is used with a capacitor trip device, "a" contact of auxiliary switch of ACB should be inserted in series, otherwise internal damage may occur.

| Туре                             | AQR-1                      |
|----------------------------------|----------------------------|
| Rated Voltage                    | AC 100-120V                |
| Operational Voltage              | Rated Voltage x 70 to 110% |
| Rated frequecy                   | 50 / 60Hz                  |
| Rated Voltage of Shunt Trip Used | DC 48V                     |
| Power Consumption                | 100VA                      |



Notes

Use Auxiliary Switch for capacitor trip.
 User wiring

It is not possible to test the capacitor trip device when the test jumper is used.



#### Carriage Mounted Shunt Trip Device



Left – ACB carriage side mounted shunt trip

#### **Features**

- Continuously rated
- ✓ No series N/C contact required
- ✓ 50 ms trip time (standard shunts 50 ms)
- ✓ Voltages available:
  - AC: 100, 110 120, 200, 220, 240
  - **DC:** 24, 48, 110, 125, 200, 220, 250
- ✓ Wiring: the side mount shunt trips have 2 screw terminals: 49 and 50
- ✓ When this type of shunt is used, a mechanical interlock cannot be used
- The shunt operational voltage can be different to Trip Unit auxiliary control voltage

#### **How It Works**

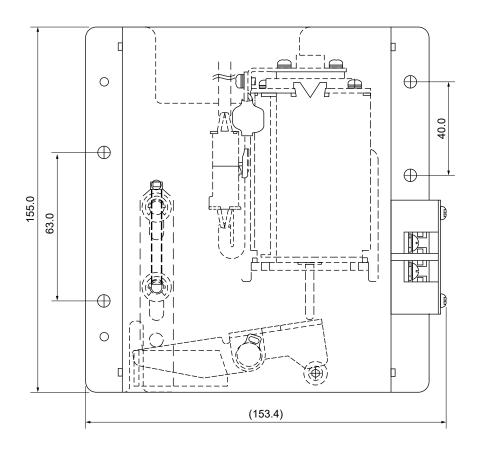
This is a special shunt trip assembly that is mounted to the left side of an ACB carriage using a modified continuously rated shunt trip coil, which activates the ACB's mechanical interlock trip lever to trip the ACB.

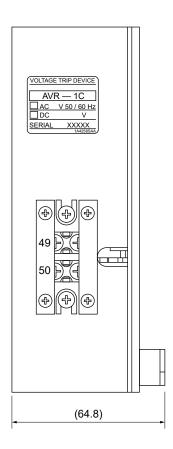
#### **Two Continuously Rated Shunt Trips**

The carriage mount shunt trip is mainly used in addition to a standard continuously rated Internal shunt, where a second completely separate continuously rated shunt trip coil is required.

#### Alternative to a Double Shunt Coil

The carriage mount shunt trip when used with an internal continuously rated shunt trip, is also an alternative to the internally mounted Dual Shunt trip coil which has 2 short time rated coils within the same coil bobbin assembly, which are short time rated and require a N/C anti-burnout contact for each coil.


#### **Design Considerations**


The side mount shunt is enclosed in a metal housing along with interlocking system components. The additional width to the ACB is approximately 50 mm on the left side of the ACB carriage.



#### Dimensions

ACBs







### **Auxiliary Switches**

The auxiliary switches operate during the ACB ON/OFF operation. Connections to the switches are made via screw terminals as standard, with a spade connection types and indent option. The auxiliary switches for draw-out type ACBs operate in the CONNECTED and TEST positions. Auxiliary switches for ACBs operate in the CONNECTED position only. Auxiliary switches have change-over contacts, with a Common – N/O / N/C arrangement, and are available for general service and for micro-loads.<sup>3)</sup>



| Туре     | Normal Contacts<br>for General Service | Gold Tipped<br>Contacts for<br>Micro-Loads <sup>2)</sup> |
|----------|----------------------------------------|----------------------------------------------------------|
| 11601CAB | 7C                                     | -                                                        |
| 21603CAB | 10C                                    | -                                                        |
| 31607CAB | 7C                                     | 3C                                                       |

### Auxiliary Switch Ratings

| Category      | For General Servi     | ce                                                     | For Micro Loads <sup>2)</sup> |                                                         |                     |  |
|---------------|-----------------------|--------------------------------------------------------|-------------------------------|---------------------------------------------------------|---------------------|--|
| Voltage       | Resistive Load<br>(A) | Inductive Load (A)<br>AC: cos ø^ 0.3<br>DC: L/R % 0.01 | Resistive Load<br>(A)         | Inductive Load (A)<br>AC: cos ø^ 0.6<br>DC: L/R % 0.007 | Min Applicable Load |  |
| 100 – 250V AC | 5                     | 5                                                      | 0.1                           | 0.1                                                     |                     |  |
| 251 – 500V AC | 5                     | 5                                                      | -                             | -                                                       |                     |  |
| 30V DC        | 1                     | 1                                                      | 0.1                           | 0.1                                                     | DC 5 V 1mA          |  |
| 125 – 250V DC | 1                     | 1                                                      | -                             | -                                                       |                     |  |

- From approx. 2007 the standard auxiliary switch contact types were changed from 4C to 7C. (Form C: Change-over, single gap, three terminals).
- 2) Suited for electronic circuits.
- As the auxiliary contacts are changeover (C/O) types with a Common and N/O and N/C contacts, do not supply different voltages to the N/O and N/C contacts.

118



### Capacitor Trip Device



#### **Item Description**

NHP Service, Special order

Used along with a shunt trip to trip an ACB during a power loss NHP Service fit

### **Door Interlock**



**Item Description** 

NHP Service, Special order

Prevents enclosure door being opened unless ACB is isolated

eing NHP Service fit ted

### Spring Charge Indicator (Simple)



#### **Item Description**

NHP Service, Special order

NHP Service fit

Spring charge status allowing ACB closure

### Cycle Counter



Item Description

NHP Service, Special order

A 5 digit counter showing the ACB's ON-OFF cycles

NHP Service fit

### **Earthing Device**

#### Refer NHP for details

| Item Description                                           | NHP Service, Special order |
|------------------------------------------------------------|----------------------------|
| Converts the ACB from normal service to an earthing device | NHP Service fit            |

### Storage Draw Out Handle



Item Description

NHP Service, Special order

Draw-out handle that is stored NHP Service fit inside the ACB body



### Mechanical Interlock -2 or 3 Way Horizontal

## Cable Interlocking - Horizontal, Vertical Or Diagonal Types and Operations

There are four variations of the mechanical interlock. They are type A, type B, type C and type D. The table below describes how the ACBs operate in relation to each other depending on the type of interlock that has been supplied. Cable quantities are also indicated. Carriage mounting hardware is type specific. For example the hardware supplied for a 'type C' interlock is only suitable for use in a two way system. The hardware supplied for a 'type B' interlock is only suitable for that particular type, it can not be used for a 'type A' system. Contact NHP for further info.

|  | Item | Des | crip | tion |  |
|--|------|-----|------|------|--|
|--|------|-----|------|------|--|

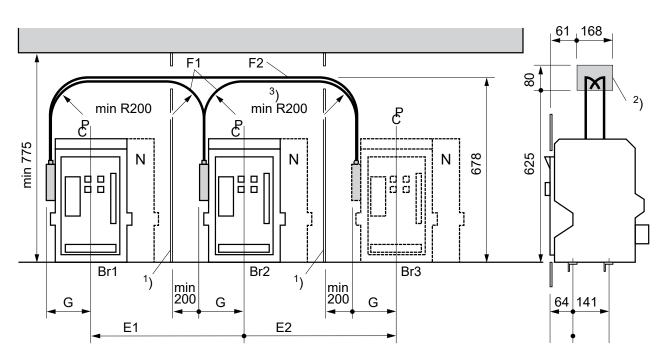
NHP Service, Special order

2 and 3 way horizontal cable Body mech. NHP fit, carriage parts and cable user fit

| Туре                   | Operation |       |       | Remark                                                                                          |  |
|------------------------|-----------|-------|-------|-------------------------------------------------------------------------------------------------|--|
|                        | ACB 1     | ACB 2 | ACB 3 | -                                                                                               |  |
| ACB 1A CB 2            | ON        | OFF   | _     |                                                                                                 |  |
|                        | OFF       | ON    | _     | <ul> <li>Type C</li> <li>Cable Qty = 2</li> <li>One of two breakers can be turned on</li> </ul> |  |
|                        | OFF       | OFF   | _     | One of two breakers can be turned on                                                            |  |
|                        | ON        | ON    | OFF   |                                                                                                 |  |
| $\frown$               | ON        | OFF   | ON    | -                                                                                               |  |
| ACB 1A CB 2 ACB 3      | OFF       | ON    | ON    | Туре В                                                                                          |  |
|                        | ON        | OFF   | OFF   | Cable Qty = 6                                                                                   |  |
|                        | OFF       | ON    | OFF   | One or two of three breakers can be turned on                                                   |  |
|                        | OFF       | OFF   | ON    | -                                                                                               |  |
|                        | OFF       | OFF   | OFF   |                                                                                                 |  |
| $\frown \frown \frown$ | ON        | OFF   | OFF   |                                                                                                 |  |
| ACB 1A CB 2 ACB 3      | OFF       | ON    | OFF   | Туре D                                                                                          |  |
|                        | OFF       | OFF   | ON    | <ul> <li>Cable Qty = 6</li> <li>One of three breakers can be turned on</li> </ul>               |  |
|                        | OFF       | OFF   | OFF   | -                                                                                               |  |
| $\overline{}$          | ON        | OFF   | ON    |                                                                                                 |  |
| ACB 1A CB 2 ACB 3      | ON        | OFF   | OFF   | Туре А                                                                                          |  |
|                        | OFF       | ON    | OFF   | Cable Qty = 4                                                                                   |  |
|                        | OFF       | OFF   | ON    | Br2 is interlocked with both Br1 and Br3                                                        |  |
|                        | OFF       | OFF   | OFF   | -                                                                                               |  |

ACBs




- Interlock is enabled in the CONNECTED position. When the ACB body is in the TEST, ISOLATED or DRAW-OUT position, interlock is disabled.
- If all of two or three breakers receive a closing (on) signal, they all will turn off. This case, however, involves momentary continuity between the main circuit and the auxiliary switch 'A' contact in all the breakers.
- The body of a draw-out type breaker, as long as it is off (open), can be drawn out or inserted, irrespective of the state of other breakers. (Do not draw out or insert a breaker body during cable installation, adjustment or operation check).

#### Cable Specification and Installation

The interlock cable supplied is available in a 2.5 M or a 4.0 M length. These cables have a multi-strand flexible inner core that can be cut to length. The cable length must be specified at the time of order.

#### Cable Installation Recommendation

When fitting interlock cables the below dimensions and clearances are recommended for a successful installation.



G = AR2, AR4: 200.5 (mm) AR3: 253 (mm) AR6: 477 (mm) Unit in: mm

- 1) Partition (not supplied)
- 2) Space for interlock cables
- 3) This is the recommended bend radius



### Spring Charged Operation: Manual Racking, Motor Charging, LRC Operation

### Manual Charging Type

For this type of ACB, the closing springs are charged by means of the spring charging handle. ON/OFF operation of the ACB is performed by means of ON/OFF buttons on the ACB.

#### Charging the closing springs

Pumping the spring charging handle by hand charges the closing springs.

#### **Closing the ACB**

Pressing the ON button on the ACB closes the ACB.

#### **Opening the ACB**

Pressing the OFF button on the ACB opens the ACB. The ACB cannot be closed as long as the OFF button is pressed.

#### Motor Charging Type

For this type of ACB, the closing springs are charged by means of a motor. ON/OFF operation of the ACB can be performed remotely. A manual charging mechanism is also fitted to facilitate inspection or maintenance work.

#### Charging the closing springs

A motor is used to charge the closing springs. When the closing springs are released to close the ACB, they are automatically charged again by the motor for the next ON operation.

#### Closing the ACB (ON operation)

Turning on "remote" ON switch enables the ACB to be remotely closed by activating the internal Latch Release Coil (LRC).

- The ACB includes an Anti-pumping mechanism. Even if the ON switch is kept on, ACB closing operation is performed only once via the LRC. To close (switch ON) the ACB again, remove the ON signal, to reset the anti-pumping mechanism and then reapply the ON signal.
- If ON and OFF signals are simultaneously given to the ACB, the ON signal will be ignored, for safety reasons.
- The LRC which switches the ACB ON, is continuously rated, though it is advisable that it not be continually energised. Ideally the coil should be de-energised after closing an ACB, as this will prolong the service life of this critical coil.

#### **Opening the ACB**

For opening the ACB remotely, specify the Shunt Trip device.





ACBs



# Motor Data, Spring Charged Operation, LRC Closing Data

| Item Description                                                | NHP Service,<br>Special order |
|-----------------------------------------------------------------|-------------------------------|
| Motor used to remotely charge / close the ACB (specify voltage) | NHP Service fit               |

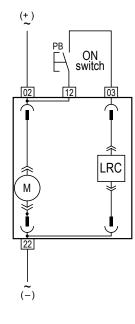


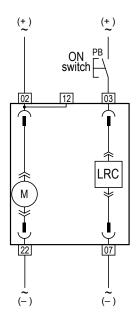
### **Operation Power Supply**

| Rated                       | Applicable Voltag               | Applicable Voltage Range             |                                       | Operation Power Supply Ratings       |                                                            |  |
|-----------------------------|---------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|------------------------------------------------------------|--|
| Voltage<br>(V) <sup>2</sup> | CHARGE / ON<br>Operation<br>(V) | OFF<br>Operation                     | Motor Inrush<br>Current (Peak)<br>(A) | Motor Steady<br>State Current<br>(A) | LRC <sup>1)</sup> Closing<br>Command Current<br>(Peak) (A) |  |
| 100V AC                     | 85 – 110                        |                                      | 7                                     | 1.1                                  | 0.29                                                       |  |
| 110V AC                     | 94 – 121                        |                                      | 7                                     | 1.1                                  | 0.25                                                       |  |
| 120V AC                     | 102 – 132                       |                                      | 7                                     | 1.1                                  | 0.22                                                       |  |
| 200V AC                     | 170 – 220                       |                                      | 4                                     | 0.7                                  | 0.15                                                       |  |
| 220V AC                     | 187 – 242                       |                                      | 4                                     | 0.7                                  | 0.13                                                       |  |
| 240V AC                     | 204 - 264                       |                                      | 4                                     | 0.7                                  | 0.11                                                       |  |
| 24V DC                      | 18 – 26                         | Refer shunt trip<br>ratings page for | 14                                    | 4                                    | 1.04                                                       |  |
| 30V DC                      | 21 - 33                         | OFF operation data                   | 12                                    | 2.5                                  | 0.85                                                       |  |
| 48V DC                      | 36 - 53                         |                                      | 10                                    | 1.6                                  | 0.51                                                       |  |
| 100V DC                     | 75 – 110                        |                                      | 6                                     | 0.8                                  | 0.25                                                       |  |
| 110V DC                     | 82 – 121                        |                                      | 6                                     | 0.8                                  | 0.22                                                       |  |
| 125V DC                     | 93 – 138                        |                                      | 6                                     | 0.8                                  | 0.21                                                       |  |
| 200V DC                     | 150 - 220                       |                                      | 4                                     | 0.5                                  | 0.13                                                       |  |
| 220V DC                     | 165 – 242                       |                                      | 4                                     | 0.5                                  | 0.12                                                       |  |

#### Notes

1) The above LRC closing command current is the current draw by the Latch


Release Coil.2) Refer NHP for 415V AC motor options.


### Split Voltage Specification

The motor control circuit can be manufactured for two methods of operation. The standard motor control circuit configuration requires that the motor and LRC (closing coil) voltage be common due to the shared wiring to terminal 22.

When the motor and LRC are required to be different voltages (e.g. 240V AC motor, 24V DC LRC) the ACB must be manufactured as a 'split voltage' configuration. This must be specified at time of order. When configured for a split voltage, the LRC is energised via terminals 03 and 07.

Standard Motor + LRC Charging / Closing Operation Split Voltage Motor + LRC Charging / Closing Operation





### Spring Charge Indicator

An indication switch can be used to indicate that the closing springs have been fully charged. See ordering form last page.

#### **Normal Contacts for General Service**

| Voltage |     | Switch Contact Ratings |                |  |
|---------|-----|------------------------|----------------|--|
| (V)     |     | Resistive Load         | Inductive Load |  |
| AC      | 250 | 3                      | 3              |  |
|         | 250 | 0.1                    | 0.1            |  |
| DC      | 125 | 0.5                    | 0.5            |  |
|         | 30  | 3                      | 2              |  |

#### **Gold Contacts for Microload**

| Voltage |     | Switch Contact | Switch Contact Ratings |  |  |
|---------|-----|----------------|------------------------|--|--|
| (V)     |     | Resistive Load | Inductive Load         |  |  |
| AC      | 250 | 0.1            | 0.1                    |  |  |
| DC      | 30  | 0.1            | 0.1                    |  |  |

123



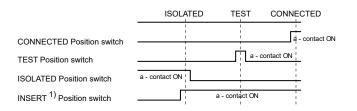
### **Position Switches**

A position switch operates to give an indication of the ACB body position within the carriage: CONNECTED, TEST, ISOLATED, or INSERT <sup>1)</sup>.

- There are two contact arrangements: 2c and 4c
- Connections to the switches are made via screw type terminals
- The following table lists the possible configurations of the position switches. Contact NHP for any other configuration requirement



| Number      | Contact Arrangement  |          |      |      |  |
|-------------|----------------------|----------|------|------|--|
| of Contacts | INSERT <sup>1)</sup> | ISOLATED | TEST | CONN |  |
|             | 0                    | 1        | 1    | 0    |  |
|             | 0                    | 1        | 0    | 1    |  |
| 20          | 0                    | 0        | 1    | 1    |  |
| 2c          | 0                    | 2        | 0    | 0    |  |
|             | 0                    | 0        | 2    | 0    |  |
|             | 0                    | 0        | 0    | 2    |  |
|             | 1                    | 1        | 1    | 1    |  |
|             | 1                    | 2        | 1    | 0    |  |
|             | 1                    | 2        | 0    | 1    |  |
|             | 0                    | 2        | 1    | 1    |  |
|             | 1                    | 1        | 2    | 0    |  |
|             | 1                    | 0        | 2    | 1    |  |
|             | 0                    | 1        | 2    | 1    |  |
|             | 1                    | 1        | 0    | 2    |  |
|             | 1                    | 0        | 1    | 2    |  |
|             | 0                    | 1        | 1    | 2    |  |
| 4c          | 0                    | 2        | 2    | 0    |  |
|             | 0                    | 2        | 0    | 2    |  |
|             | 0                    | 0        | 2    | 2    |  |
|             | 1                    | 0        | 3    | 0    |  |
|             | 0                    | 1        | 3    | 0    |  |
|             | 0                    | 0        | 3    | 1    |  |
|             | 1                    | 0        | 0    | 3    |  |
|             | 0                    | 1        | 0    | 3    |  |
|             | 0                    | 0        | 1    | 3    |  |
|             | 0                    | 0        | 4    | 0    |  |
|             | 0                    | 0        | 0    | 4    |  |


Notes

1) The INSERT Position contact is unavailable if a Pre-trip alarm or spring charge contact is INSTALLED with a UVT



| Voltage       | Resistive Load<br>(A) | Inductive Load (A)<br>(COS Ø = 0.6,<br>L/R = 0.07) |
|---------------|-----------------------|----------------------------------------------------|
| AC 100 - 250V | 11                    | 6                                                  |
| DC 250V       | 0.3                   | 0.3                                                |
| DC 125V       | 0.6                   | 0.6                                                |
| DC 30V        | 6                     | 5                                                  |
| DC 8V         | 10                    | 6                                                  |

### Position Switch Operation Sequence



INSERT <sup>1)</sup> position means the breaker body is in any position between ISOLATED and CONNECTED.



### Trapped Key Interlock

The key lock is available in the lock-in OFF type that locks the ACB in the open (OFF) position. When the ACB is fitted with a key lock, an operator cannot operate the ACB unless using a matched key. The ACB's OFF button also self-retracts, preventing the ACB ON button from closing the ACB to ON.

#### **Key Interlock**

The key interlock is a system of interlocking between 2 or 3 ACBs, each fitted with a key lock of lock-in OFF type. Key exchange boxes can be used for additional numbers or types of key codes.

- A key must be inserted to release the lock before the ACB can be closed
- Rotating the key clockwise locks OFF the ACB. Anti-clockwise rotation releases the lockout
- The ACB must be opened and locked in the OFF position before the key can be removed

By utilising the lock-in OFF type key lock feature, and then a limited number of keys by default provides an effective and reliable interlock system. Using the same keys also allows interlocking between an ACB and other devices (such as a switchboard door). ACBs can be supplied, using our range of stocked NHP / Allen-Bradley ProSafe trapped key interlocks. Other brands such as Fortress CL, Castell or Ronis locks can also be supplied on request.

#### Trapped Key Interlock Specification

Coding

#### Applies to Rockwell / AB ProSafe, Fortress CL or Castell

| Mounting          | Left hand mount                                     |  |
|-------------------|-----------------------------------------------------|--|
| Construction      | Stainless Steel                                     |  |
| Movement          | 90° clockwise rotation                              |  |
| Rear Spindle Size | 9.5 mm square x 22 mm                               |  |
| Coding            | Specified at the time of<br>ordering                |  |
| Applies to Ronis  |                                                     |  |
| Туре              | SRO-1104                                            |  |
| Description       | Basic cam lock                                      |  |
| Movement          | Right rotation to trap key (clockwise 90° movement) |  |
| Codina            | Specified at the time of                            |  |

ordering

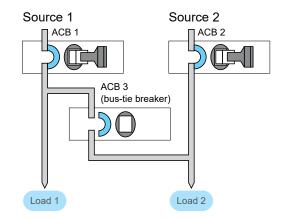


Figure 1 Key in OFF, ACB OFF button retracted

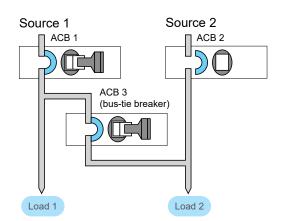


Figure 3 Allen-Bradley ProSafe trapped key lock fitted with the ACB cover removed

Figure 2 Trapped key lock with ACB cover fitted


127

#### ORDERING a Trapped Key Interlock Mechanism Built Into an ACB


Since 2012, standard stocked AR ACBs have been supplied with trapped key interlock mounting hardware installed as standard. This allows a user to purchase a trapped key and fit it. The ACB's front plastic cover also includes a mounting hole with a knock-out for the trapped key lock.

When ordering customer specified "custom built" ACBs it should be noted that these do not include trapped key lock mounting hardware as standard, though this can be specified at the time of ordering. Existing ACBs that do not have the mounting hardware installed will need NHP service for on-site fitting.

#### ACB 3 Cannot Be Closed



#### ACB 2 Cannot Be Closed



#### ACB 1 Cannot Be Closed

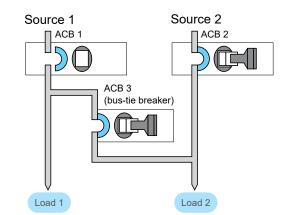



Figure 4 Interlock for prevention of parallel feeding from two sources



### Padlocking On Off Pushbutton

An ON-OFF button cover prevents inadvertent or unauthorised operation of the ACB ON or OFF button. It can be locked with up to three padlocks with ø 6 mm hasp. Padlocks are not supplied. Button covers are supplied fitted to ACBs as standard.

The padlock facility for the ACB's pushbuttons, is intended to prevent unauthorised operation of the buttons. The buttons are not padlockable in the OFF only. The cover only prevents access to the buttons when padlocked. The ACB can still be switched ON from a remote location via electrical control.



### Padlocking Off

ACBS

This option fits in the same position as where a trapped key is fitted. This optional feature permits the ACB to be padlocked in the OFF position. A maximum of three padlocks with a Ø 6 mm hasp can be fitted. Padlocking is possible only when the ACB's ON-OFF indicator shows OFF. When the ACB is padlocked in the OFF position, both the ACB's manual and electrical closing operations become inoperative, though charging of the closing spring by manually operating the charging lever or by the motor is still possible.

The OFF padlock is installed in the same position on the front of the breakers that is occupied by a ProSafe, Fortress or Castell lock, and does not replace the "position padlock" which is standard on TemPower 2 ACBs.

This is an accessory fitted to the same hole space that a trapped key fits. It is a lever that pulls out, and allows a padlock to be installed. It prevents the ACB from being switched ON.

To operate the OFF padlock facility, the RED OFF pushbutton must be first depressed, which then allows the metal padlock lever on the OFF Padlock facility, to be drawn out. Once a padlock is installed, the RED OFF pushbutton remains in the depressed position. The ACB cannot be switched ON. The ACB also cannot be switched ON electrically, as the LRC is electrically isolated.



#### Description

NHP Service, Special Order

Allows the ACB to be padlocked in the OFF position

NHP Service fit

# NHP

129

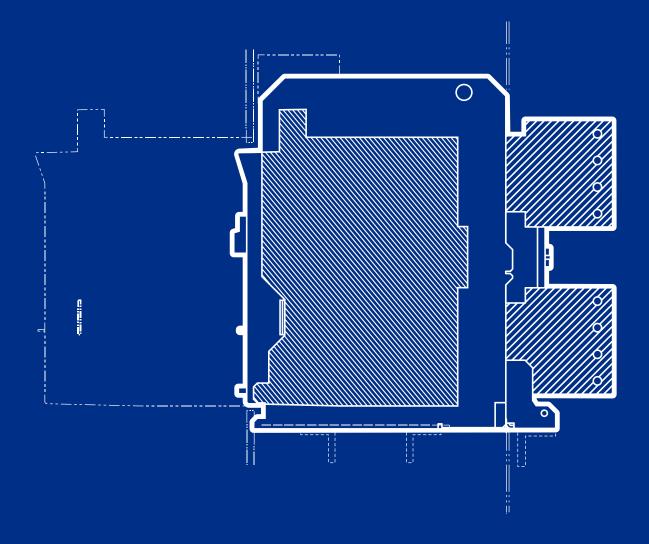
### **Padlocking Position**

This padlocks the body relative to the carriage position. Rack the ACB out to the test or isolated position, and use the padlock position lock towards the bottom of the ACB to lock it in TEST or ISOLATED – or CONNECTED.

The ACB's position padlock lever prevents the breaker body from being accidentally drawn out. When the position padlock lever is in the pulled-out position, it can lock the breaker body in any one of the CONNECTED, TEST, or ISOLATED positions the user chooses. Up to three padlocks with a ø 6 mm hasp can be installed.



### Retrofit Kits


When replacing an old obsolete air circuit breaker it is almost always necessary to modify the existing busbar alignment, mounting position and door cut-out. Retrofit kits and installation kits provide a cost effective third party solution that allows you to install a completely new Terasaki AR Air Circuit Breaker into many of the popular older brands cubical with minor re-work and down time.

| Item Description | Catalogue No. |
|------------------|---------------|
| Retrofit Kit     | Contact NHP   |









### AUSTRALIA

nhp.com.au SALES 1300 NHP NHP sales@nhp.com.au

#### **NEW ZEALAND**

nhpnz.co.nz SALES 0800 NHP NHP sales@nhp-nz.com

### NHP Electrical Engineering Products

A.B.N. 84 004 304 812 NPLCAU19 V.2022-09-04 © Copyright NHP 2022