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Abstract—Known, but unpatched vulnerabilities represent one
of the most concerning threats for businesses today. The average
time-to-patch of zero-day vulnerabilities remains around 100
days in recent years. The lack of means to mitigate an unpatched
vulnerability may force businesses to temporarily shut down
their services, which can lead to significant financial loss. Existing
solutions for filtering system calls unused by a container can
effectively reduce the general attack surface, but cannot prevent
a specific vulnerability that shares the same system calls with
the container. On the other hand, existing provenance analysis
solutions can help identify a sequence of system calls behind
the vulnerability, although they do not provide a direct solution
for filtering such a sequence. To bridge such a research gap, we
propose Phoenix, a solution for preventing exploits of unpatched
vulnerabilities by accurately and efficiently filtering sequences of
system calls identified through provenance analysis. To achieve
this, Phoenix cleverly combines the efficiency of Seccomp filters
with the accuracy of Ptrace-based deep argument inspection, and
it provides the novel capability of filtering system call sequences
through a dynamic Seccomp design. Our implementation
and experiments show that Phoenix can effectively mitigate
real-world vulnerabilities which evade existing solutions, while
introducing negligible delay (less than 4%) and less overhead
(e.g., 98% less CPU consumption than existing solution).

I. INTRODUCTION

Unpatched vulnerabilities remain an important security
threat to today’s businesses. According to recent studies, the
average time between the discovery of a vulnerability and the
release of its patch sits at around 100 days in recent years [65],
and an additional 422 days on average would pass before the
vendors eventually patch their vulnerable images [44]. Such
delays and their impact are evident in high-profile security in-
cidents, e.g., failure to patch CVE-2017-5638 led to a massive
Equifax data breach more than 72 days after its disclosure [16],
[80], and delay in patching the Log4Shell [45] vulnerabilities
reportedly led to a worldwide crisis (e.g., it forced the Cana-
dian government to shut down nearly 4,000 services [31]).
Those incidents also demonstrate a dilemma faced by the
businesses, i.e., either to keep the vulnerable services running,
which would expose the data and underlying infrastructure
to irrecoverable damages (e.g., data breach in the case of
Equifax), or to temporarily shut down the services till the
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vulnerability is patched, which could mean significant social
or financial impact (e.g., service disruption in the case of the
Canadian government). This can get worse as more businesses
move to container-based cloud services [9], since container im-
ages are known to be buggy with vulnerabilities [76], and the
weaker isolation of containers may not only render container-
based services an appealing target but also allow adversaries to
escape a compromised container to cause more severe damages
to the underlying cloud infrastructure [3], [53], [56].

One promising approach to address this is system call-
level filtering. For instance, Seccomp-based approaches can
block a set of system calls that are not normally used by the
application, which can be determined through either a static
(e.g., Chestnut [7], Sysfilter [11], Confine [24], and C2C [26]),
dynamic (e.g., DockerSlim [12]), or temporal (e.g., Ghavamnia
et al. [25] and SPEAKER [40]) analysis. Although blocking
unused system calls can effectively reduce the general attack
surface of a container, it cannot tackle a specific vulnerability
that shares similar system calls with the container, as we will
demonstrate through experiments in Section V-A. On the other
hand, there exist many attack detection (e.g., Falco [17]) and
analysis (e.g., CLARION [8]) techniques, and particularly the
provenance graph-based attack investigation solutions (e.g.,
ATLAS [1], DepImpact [20], Unicorn [29], NoDoze [30], and
ProvDetector [81]) can help a security analyst to capture the
malicious behavior of exploiting an unpatched vulnerability,
e.g., in terms of a sequence of system calls. However, such
solutions do not provide a direct solution for blocking the
identified sequence of system calls, which raises some novel
challenges, as demonstrated in our motivating example.

Motivating Example. Figure 1 highlights the limitations
of existing system call filtering mechanisms (e.g., Seccomp
and Ptrace) and provides a hint of our solution. We assume
the following context, i.e., using provenance analysis, a
crowdsourcing campaign among affected users has indicated
that we can survive an unpatched vulnerability by blocking a
sequence of two system calls, open→pipe(*arg1).
Seccomp. The left side shows two variations of applying
Seccomp filters [78] (illustrated as a border officer inspecting
travelers’ passports). First, only blocking system calls unused
by the container (e.g., [11], [24]) could allow the targeted
open and pipe system calls to pass if those are also used
by the container. Hence, the container stays insecure to the
vulnerability. Second, Seccomp filters are inaccurate in the
sense that they do not inspect the arguments in depth (e.g.,
pipe(*arg2) is a false positive, as we target *arg1),
and they do not keep track of the order (e.g., they cannot
distinguish between open→pipe and pipe→open).
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Fig. 1: A motivating example showing the limitations of existing solutions (left and middle) and our key ideas (right)

Therefore, blocking targeted system calls using Seccomp may
lead to false positives that cause the container to malfunction.
Ptrace. In the middle, we show the limitation of using
Ptrace [64] (illustrated as a border officer interviewing
a traveler), which is a process tracer for monitoring and
controlling sequences of system calls. Although Ptrace can
accurately block the targeted sequence by inspecting each and
every system call and its arguments, doing so could result in
prohibitive delay to the container, especially considering the
sheer amount of system calls (e.g., an Nginx web server may
issue more than 1,800 system calls per second [71]).
Our Ideas. The right side shows our key ideas. Intuitively,
we leverage Seccomp for a fast pre-screening, and only
trigger Ptrace for an in-depth inspection when there is
a match (illustrated as a traveler being interviewed only
when his/her passport matches a given list). Therefore, most
system calls (e.g., open and read in the figure) will be
immediately allowed by Seccomp, which ensures efficiency.
A matching system call (e.g., pipe) is further inspected by
Ptrace, and either allowed if its argument mismatches (e.g.,
pipe(*arg2)), which ensures accuracy, or intercepted if
its argument matches (e.g., pipe(*arg1)), which ensures
security. Finally, we dynamically change our Seccomp filter
upon an interception. For instance, once pipe(*arg1) is
intercepted, we replace the Seccomp filter to look for the next
system call in the target sequence (i.e., open), which provides
the new capability of intercepting sequences of system calls.

To apply those ideas, we propose Phoenix, a solution for
protecting containers against unpatched vulnerabilities. Specif-
ically, Phoenix collects and analyzes provenance data from the
victim container to identify the sequence of system calls behind
the unpatched vulnerability. It then restarts the container in
a hardened state1 in which the identified sequence of system
calls will be efficiently and accurately blocked, as described
above. Such an approach has two potential benefits. First, as
Phoenix does not require any analysis or understanding of

1Hence the name of Phoenix, which in mythology rises from ashes stronger.

the source code bugs causing the vulnerability, any affected
user might have a chance to identify the required sequence
of system calls. This makes it possible to crowdsource such
“temporary patches”, which could significantly reduce the
waiting time compared to relying on a single vendor for the
official patch. Second, since Phoenix works at a low (system
call) level, it can potentially provide a “Swiss army knife” for
users to survive many different attacks using a single solution.
In summary, our main contributions are as follows:

• We propose a runtime protection mechanism through inte-
grating Seccomp with Ptrace, and changing the Seccomp
filters on the fly. This enables the stateful interception of
a target system call sequence while benefiting from both
the efficiency of Seccomp and the accuracy of Ptrace.

• This new capability allows us to bridge the gap between
provenance analysis and runtime protection. Specifically,
Phoenix collects and analyzes provenance data from a
victim container to derive a sequence of system calls as
the root cause of an incident. At runtime, Phoenix then
hardens the vulnerable container against similar incidents
by blocking that sequence.

• We implement and evaluate Phoenix based on real-world
attacks and datasets. Our results show Phoenix can ef-
fectively mitigate vulnerabilities that are not consistently
prevented by existing solutions, while introducing negli-
gible delay (e.g., less than 4% on average) and overhead
(e.g., 98% less CPU than Ptrace) to the container.

II. PRELIMINARIES

This section provides background and our threat model.

A. Background

Containerization. Containerization offers operating system
(OS)-level virtualization for running various software
applications in isolated user spaces, namely, containers.
Containers offer several unique benefits including their
transient nature (i.e., fast and easy to restart) and observability
(i.e., allowing to monitor system calls using Seccomp for
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Fig. 2: Overview of Phoenix methodology

individual containers). However, those benefits may come at
a cost, i.e., containerization offers relatively weaker isolation
than full-fledged virtual machines, which enables kernel
exploits to break the container isolation and compromise the
host (e.g., CVE-2022-0847, CVE-2022-0185, and CVE-2022-
0492). In this work, we leverage the transient nature and
observability to restart and monitor containers, while hardening
them against vulnerability exploitation (as detailed in Sec. III).

System Calls and Seccomp Filters. Like any user-space appli-
cation, containers interact with kernel functionalities through
system calls. Even though applications usually do not need all
available system calls to function, these are available to the
applications by default. Therefore, an attacker could exploit
a vulnerable application and employ normally unused system
calls to perform malicious operations (e.g., privilege escala-
tion in the container and escaping the container isolation).
To prevent such misuse of system calls, Seccomp (SECure
COMPuting) [66] is a security mechanism of the Linux kernel
for restricting the access of user-space programs to certain
system calls. Particularly, Seccomp-BPF filters [78] (simply
called Seccomp filters in this work) can be configured to
perform an action (e.g., allow, deny, or send a signal [50]) upon
matching system calls. Such behavior is defined using Berkeley
Packet Filter (BPF) programs running in the kernel. Although
Seccomp filters provide a popular protection mechanism for
containers due to their negligible overhead [67], their limita-
tions lie in (i) their stateless nature (i.e., Seccomp filters cannot
“remember” previously seen system calls); and (ii) their in-
ability to perform deep argument inspection (i.e., de-reference
system call arguments that are pointers or structures). In this
work, we address those limitations through integrating Sec-
comp with Ptrace, and dynamically changing Seccomp filters.

Provenance Analysis. Recent works (e.g., [4], [5], [20], [29],
[30], [41], [54], [55], [81]) apply data provenance techniques
to investigate the root cause of security incidents. In this work,
we leverage provenance graphs to identify sequences of system
calls used for exploiting unpatched vulnerabilities. Typically
depicted as directed acyclic graphs (DAG), provenance graphs
represent the flow of information between different subjects
(e.g., processes) and objects (e.g., files, network sockets, and
pipes) of a system during its execution, rather than their
temporal dependencies. Therefore, working with provenance
data provides richer context and often makes it easier to

figure out what events are causally related, even though
their temporal relationship is not clear [29]. Such causal
relationships between events in an operating system can
enable a root cause analysis to trace sequences of system calls
that are issued while exploiting vulnerabilities. In our work,
we leverage such a capability while providing a solution for
blocking the identified sequences at runtime.

B. Threat Model
Like many other container security solutions (e.g., [21],

[27], [47]), our in-scope threats include attacks that can be re-
flected in the sequences of system calls and/or their arguments.
Unlike some existing solutions (e.g., [7], [11], [12], [24]–[26],
[40]), we additionally consider vulnerabilities that use similar
(or a subset of) system calls required by the normal behavior
of the container. We focus on unpatched vulnerabilities that
can be detected (e.g., using rule-based solutions, such as
Falco, Nagios, and Snort, or using learning-based approaches,
such as [29], [81]). We assume the integrity of Phoenix
and that of the underlying infrastructure and its audit logs.
Conversely, unknown or undetected zero-day attacks, attacks
that do not involve system calls issued by the container to the
host OS (note vulnerabilities lying in the userland may involve
such system calls, either purposefully like ret2syscall
and sigreturn-ROP, or as a side-effect of control flow
manipulation attacks), and attacks that can tamper with
Phoenix or the infrastructure are out-of-scope for this work.

III. METHODOLOGY

This section first provides an overview of Phoenix and
then details each step of its methodology.

Overview. As shown in Fig. 2, Phoenix works in two
major steps, namely, malicious sequence identification and
dynamic runtime protection. First, the users affected by an
unpatched vulnerability come together through crowdsourcing
to identify the system call sequence behind the vulnerability.
To facilitate this, Phoenix builds a provenance graph from
system audit logs collected from a victim container and then
assists users to perform root cause analysis to extract the
sequence of system calls leading to the incident reported by a
detection mechanism such as Falco (detailed in Section III-B).
Second, the malicious sequence of system calls is shared
with all the affected users to protect their containers. For this
purpose, Phoenix first abstracts the sequence and builds a
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corresponding sequence state machine. It then continuously
monitors incoming system calls through Seccomp pre-filtering
and Ptrace deep argument inspection, and enforces user-
specified security actions to block any matching sequence (as
detailed in Section III-A). As the dynamic runtime protection
step is slightly more complex, this step will be detailed first.

A. Dynamic Runtime Protection
Figure 3 details our methodology for the dynamic runtime

protection step. First, upon receiving as input a malicious
sequence of system calls, Phoenix abstracts incident-specific
parameters of system calls to construct a generic version of
the sequence. Second, it builds a state machine to facilitate
matching against that sequence. Third, at runtime, Phoenix
first restarts the container, then monitors the incoming
sequence of system calls and their parameters with Seccomp
and Ptrace. Fourth, when a sequence is matched, Phoenix
enforces user-specified security actions accordingly to protect
the container. We detail those sub-steps in the following.

Fig. 3: Detailed view of the dynamic runtime protection step

1) Sequence Abstraction: During sequence abstraction,
Phoenix builds a more generic version of the malicious se-
quence of system calls, since some parameters of those system
calls may correspond to the specific context of one particular
incident (e.g., calling process ID, arguments, and return code
may all vary from one incident to another). Our idea here is
to abstract such contextual parameters of system calls inside
the sequence, such that Phoenix can subsequently match the
sequence with other incidents exploiting the same vulnerability
(which would have different values for such parameters). To
facilitate the sequence abstraction, we divide system call pa-
rameters into three categories: (i) the parameters which should
be precisely matched (e.g., flags and well-known connection
ports). These parameters are kept as-is in the sequence; (ii) the
parameters which should be matched but with their exact
values ignored (e.g., IP addresses, file descriptors number, and
process ID). These parameters are identified throughout the
entire sequence and replaced with variables; and (iii) the pa-
rameters which should not be matched (e.g., certain strings and
filenames). These parameters are removed from the sequence.
The following illustrates this sub-step through an example.

Example 1. Figure 4 shows an example of sequence
abstraction. The left table shows the system calls and their
original parameters, while the right table shows the results
of sequence abstraction. Abstracted parameters include file
descriptor 4, which is substituted with variable X as it is
contextual and represents the same file descriptor in both the

open and splice system calls. Similarly, file descriptor 6
is abstracted as Z in both pipe and splice, and the PIDs
of processes (12 and 13) are abstracted as variables A and B,
respectively. Ignored parameters include filenames passwd
and su, as well as the return values of system calls pipe,
splice, and execve, which are removed (greyed cells in
the figure). Finally, the flag RDONLY used by the open system
call is an exact parameter that is left to be exactly matched.

Fig. 4: Example of sequence abstraction step following an
exploit of CVE-2022-0847

2) Building Sequence State Machine: To keep track of the
attack progress in terms of intercepted system calls, we build
a finite state machine (FSM) with an initial state, plus one
state for each system call in the given malicious sequence.
The FSM transitions from one state to the next if and only
if the intercepted system call and its parameters satisfy the
conditions of transition between those states (the conditions of
transition are a little complex and will be explained shortly).
Upon reaching a state, the FSM outputs the security action to
be enforced. Such an FSM serves three purposes as follows:
(i) keep track of the system calls intercepted so far (using one
state per system call in the sequence); (ii) match system calls
(intercepted by Seccomp) and their parameters (inspected
by Ptrace) with the malicious sequence; and (iii) enforce
user-specified security actions on matching system calls as
the attack progresses, based on the output of the FSM.

The conditions of transition between states are used
to determine whether each intercepted system call and its
parameters match with the next state. Specifically, to ensure
both accuracy (i.e., sequences are matched with minimal
false positives) and generality (i.e., different instances of
the same attack will all be matched), the conditions of
transition are determined based on the parameter types (as
previously described in the sequence abstraction sub-step)
as follows. (i) Exactly matched parameters: Typically, these
are representative and prerequisite parameters of the attack.
Therefore, such parameters are always part of the conditions
of transition and need to be exactly matched in order to avoid
false positives (e.g., the application may open a file for reading
only, whereas the attack would open it for writing). (ii) Ab-
stracted parameters: Those parameters are shared by multiple
system calls inside the sequence, while their exact values are
not prerequisites to the attack. Therefore, once abstracted as
variables (as described in the sequence abstraction sub-step),
such parameters are part of the conditions of transition if they
have been defined in a prior state (otherwise, they are defined
in the current state). This can ensure different instances of the
same attack will be matched (e.g., an attack may reach HTTP
port 8080, while the same attack has been previously observed
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on port 80). (iii) Ignored parameters: Those are typically
incidental parameters that are not prerequisites to the attack.
Therefore, such parameters are not considered in the conditions
of transition and do not need to be matched. Ignoring those
parameters can avoid false negatives when a malicious system
call changes its target or tries to escape detection (e.g., an
attack opens /etc/shadow instead of /etc/passwd).

Example 2. Figure 5 depicts an example of building sequence
state machine for a sequence of three system calls involving
exact parameters, ignored parameters (in grey cells), and
abstracted parameters (in bold letters). Specifically, for the
first system call open, its second argument RDONLY is an
exact parameter, as it is a prerequisite of the attack. On the
other hand, its PID and return code are abstracted parameters,
as these are dependent on the execution environment, but will
be re-used later in the sequence. Also, as these are observed
for the first time, they are defined in this state. Therefore,
the conditions of transition from the initial state to the first
state open are composed of the system call open and its
second argument RDONLY. For the second system call pipe,
it has three abstracted parameters, PID, first argument Y,
and second argument Z. Because PID A was defined in the
previous state open, it now becomes part of the conditions
of transition (i.e., the attack must emanate from the same
process, e.g., if another process with a PID other than A were
to issue a pipe call now, it would be rightfully ignored as
it is out of the context of the sequence). Conversely, the two
arguments Y and Z are not part of the conditions of transition,
as they will only be defined in this state (pipe). Similar
logic applies to the last state of the FSM and is omitted.

Fig. 5: Example of building a sequence state machine with
three states (plus the initial state). System call parameters are
simplified for the sake of understanding.

3) Sequence State Monitoring: During sequence state mon-
itoring, Phoenix employs the previously built FSM to monitor
the system calls used by the hardened container, matches them
to the current state of the FSM, fires transitions accordingly,
and enforces security actions as needed. First, Phoenix initial-
izes the Seccomp filter to monitor for the first system call in
the malicious sequence. Second, upon a matching, it triggers
Ptrace to inspect the arguments of the system call. Third, it
applies the FSM to verify whether the system call and its ar-
guments match the current conditions of transition. If those do
not match, the system call will simply be allowed; otherwise, a
matching will trigger four actions in the following order: (i) the
current state is updated to the next state of the FSM; (ii) the
Seccomp filter is updated to match the next system call in the
sequence; (iii) new abstracted parameters of the FSM are de-
fined as needed; and (iv) any security action (i.e., allow, block,
warn, etc.) output by the FSM is enforced for the current state.

Algorithm 1 summarizes the sequence state monitoring
sub-step. Lines 3 and 4 initialize the state counter and Seccomp
filter. Lines 6 and 7 leverage Seccomp and Ptrace to perform

the pre-filtering and the deep argument inspection, respectively.
Upon a match between the intercepted system call and the next
FSM state (Line 8), we update the current state, the Seccomp
filter, and the abstract parameters (if needed), and finally
enforce the security action for the current state (Lines 9−12).
This is repeated until reaching the last state (Lines 5 and 12).

Algorithm 1 Phoenix procedure for sequence state monitoring
1: procedure SEQUENCE STATE MONITORING
2: Input FSM with states {s0, s1, ..., sn}, a security action for each si
3: Let i = 0
4: Update Seccomp filter to look for s1
5: while i < n do
6: if Seccomp is triggered then
7: Get interceptedState using Ptrace
8: if interceptedState matches si+1 then
9: i← i+ 1 ▷ Update state

10: Update Seccomp filter to look for si+1

11: Update abstracted parameters as needed
12: Enforce security action for si
13: end if
14: end if
15: end while
16: end procedure

Seccomp Pre-Filtering. During sequence state monitoring,
Seccomp pre-filtering is the first checkpoint reached by all
system calls coming from the container. As mentioned before,
instead of blocking system calls right here (like in most ex-
isting works), we apply Seccomp for lightweight pre-filtering
in order to take advantage of its efficiency while adding the
opportunity for deep argument inspection. This is achieved
through setting Seccomp to take the SECCOMP_RET_TRACE
action [78] upon a matching, which will cause the kernel to
notify Ptrace (instead of blocking the system call like with the
SECCOMP_RET_ERRNO or SECCOMP_RET_KILL actions).
This novel approach is the key for Phoenix to achieve both
accuracy and efficiency (as illustrated in Section I).

Deep Argument Inspection by Ptrace. Upon a matching,
Seccomp pre-filtering will trigger Ptrace to perform deep
argument inspection for retrieving the value of system call
arguments and the calling process ID. As explained in
Section I, matching the arguments in addition to system calls
allows Phoenix to avoid false positives. Even though the deep
argument inspection performed by Ptrace incurs significantly
more overhead (than the prior Seccomp pre-filtering), it is
only performed on the few matching system calls, and hence
its impact on the performance of Phoenix is still negligible,
as will be shown through experiments in Section V-B.

4) Security Action Enforcement: During security action
enforcement, Phoenix enforces user-specified security actions
on the intercepted system calls. First, the user has the
flexibility to pre-define a different security action for each
of the system calls inside the malicious sequence, such as:
(i) Step: the system call is allowed without notice; (ii) Warn:
the system call is allowed, but an additional action is taken
(e.g., alert the user or log to a file); (iii) Block: the system
call is not allowed, but the calling process is not forced to
terminate; (iv) Exit: the system call is not allowed, and the
calling process is forced to terminate; (v) Kill: the system call
is not allowed, and the calling container is shut down. Second,
the user can combine those different actions in a particular
way to achieve a better trade-off between availability and
security (e.g., ‘step’ the first few system calls, ‘warn’ on
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the next ones, and then ‘block’ the truly damaging ones
at the end). Third, the user can also dynamically change
those actions over time, based on his/her confidence in the
malicious sequence, and/or any observed impact on security
or availability (e.g., the user can start very conservatively
with only ‘warn’ and no ‘block’, and then transit to more
aggressive actions once his/her confidence in the sequence
grows, or when he/she observes no impact on availability).

Example 3. Figure 6 depicts an example of both sequence state
monitoring and security action enforcement using a sequence
of two system calls (same as in Example 2), i.e., open ( 1 )
and pipe ( 2 ). First, the Seccomp filter is set to look for
open system calls (1a). In 1b , a container calls open with
first argument file1 and second argument flag RDONLY.
Suppose the FSM’s conditions of transition require to match
RDONLY but not file1. In 1c , the open system call is
matched by our Seccomp filter, which triggers Ptrace for deep
argument inspection (while all other calls would simply be
allowed by Seccomp). The two arguments are inspected in
1d , and the second argument is exactly matched with the
sequence. As now the first system call in the sequence has been
intercepted, a state transition is fired, and a series of actions are
performed in 1e . First, we update the Seccomp filter at runtime
to intercept the next system call (pipe) in 1f . Second, the cur-
rent system call (open) is allowed to enforce the user-specified
action of ‘step’ in 1g . Third, Phoenix updates the current state
to the next state pipe. Finally, it defines the abstracted param-
eters that were observed (i.e., variable A is set to 85, the PID of
the process in the sequence, and X is set to 16, the return code
of the system call) in 1h . The next system calls in the sequence
will be intercepted in a similar fashion (details omitted).

Fig. 6: Example of sequence state monitoring and security
action enforcement upon matching open and pipe

B. Malicious Sequence Identification
The aforementioned dynamic runtime protection step al-

lows Phoenix to block a malicious sequence of system calls
accurately yet efficiently. Identifying such a sequence of sys-
tem calls from security incidents exploiting an unpatched vul-
nerability would allow other affected users to prevent similar
incidents from reoccurring. Although there exist fully auto-
mated approaches (e.g., host-based intrusion detection system
(HIDS) [43], [49]), the lack of human involvement usually

means inaccurate results for practical applications [70]. There-
fore, we adopt a human-in-the-loop approach as follows. First,
Phoenix continuously monitors abnormal behavior in the con-
tainers and constructs a provenance graph using historical data.
Second, upon receiving an alert, users can leverage existing
root cause analysis solutions (e.g., [20], [29], [30]) and their
knowledge to identify the corresponding attack subgraph(s),
and finally Phoenix automatically extracts candidate sequences
of system calls from the subgraph(s) for further validation by
human experts. Those are detailed in the following.

1) Provenance Graph Building: During provenance graph
building, Phoenix generates a provenance graph based on
events collected from the victim container. First, it continu-
ously collects system audit data leveraging CLARION [8] (as
part of its provenance tracking process). Auditing data consists
of system calls and other details including the timestamps
and process identifiers (PID) of the calling process and
corresponding commands, user identifiers and group identifiers
of the user running the process (UID and GID), etc. (a user
may decide to rotate the auditing data as its size increases, i.e.,
to overwrite the oldest data or export it to external persistent
storage). Unlike other approaches, our solution can make use
of pointer arguments since it also performs deep argument
inspection during sequence state monitoring. For this reason,
we thoroughly consider the arguments of the audit data by de-
referencing structures and pointers. We collect the arguments
of the system calls such as defined by the system call interface
of the Linux kernel. Second, upon receiving an alert, Phoenix
leverages system provenance tools such as CLARION [8] and
CamFlow [60], [61] to transform the collected auditing data
into a provenance graph, i.e., a directed graph connecting
system resources (as nodes) through system calls (as
edges). Specifically, those tools parse the system calls, their
arguments, and additional metadata (e.g., namespaces, which
are necessary for working with containers) in the auditing
data in order to establish the relationships between different
resources such as files, processes, and network connections.

Example 4. Figure 7 depicts an example of the provenance
graph building sub-step for an attack on a web application.
A corresponding alert is received at 6:24:12. The collected
auditing data from the victim container is saved. As an example
of de-referencing, the argument sockaddr of the accept
system call points to memory address 0xff52. This address
completely depends on the context of execution of the pro-
gram, and hence should not be used for matching. Therefore,
it is de-referenced and replaced by the corresponding values
of the structure it points to, i.e., the address family AF_INET,
the port number 80, and the IP address 10.0.0.15. Next,
the provenance graph is built with the following relationships
identified between resources: process 12 opens the file
passwd as file descriptor 4; then the same process calls
splice between the file descriptors 4 and 6, a newly created
pipe. These are represented in the provenance graph as process
12

open−−→ passwd
splice−−−→ pipe. The rest of the provenance

graph is built in a similar manner (details omitted).

2) Root Cause Analysis and Sequence Extraction: The
goal of root cause analysis is to analyze the previously
constructed provenance graph to identify the subgraph(s)
encompassing system calls related to the received alert (i.e.,
attack subgraph(s)). First, upon receiving an alert, Phoenix
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Fig. 7: Example of provenance graph building (the structures
have been simplified for simplicity reasons)

automatically maps it to node(s) in the provenance graph
by matching various parameters and metadata present in the
alert, such as timestamp, PID, UID, GID, and alert message
(e.g., as provided by Falco [17]). Second, users can leverage
existing root cause analysis approaches (e.g., weighting
backward dependencies by interest [20], reconstructing
malicious behaviors using supervised learning [1], [54],
[55], or unsupervised learning [29], [81]) and their domain
knowledge to identify the attack subgraph(s).

The goal of sequence extraction is to identify the sequence
of system calls from the attack subgraph(s) to be given as input
to our dynamic runtime protection step. Because provenance
graphs store causal (instead of temporal) dependencies,
Phoenix must trace back the events to their original system
calls to build a chronological sequence of system calls and
their parameters (arguments, calling processes, and return
values). First, Phoenix automatically maps the system calls
present in the attack subgraph to the original system audit
logs. Second, Phoenix extracts the system calls and their
parameters as a sequence in which the system calls are
ordered chronologically. Finally, Phoenix displays such
candidate sequence(s) inside GUI for them to be validated by
an expert in order to identify the final sequence to be used by
Phoenix for dynamic runtime protection. The administrator
may further assign an action plan, i.e., a series of security
actions to be performed upon intercepting each system call in
the sequence (as detailed in Section III-A).

Fig. 8: Example of root cause analysis and sequence
extraction following an exploit of CVE-2022-0847

Example 5. Following Example 4, Fig. 8 shows an example of
root cause analysis and sequence extraction. First, during root
cause analysis, the alert “Super user logged in” is mapped with
the system call execve based on its timestamp, the calling
process PID, and additional metadata provided by Falco ( a ).
Then, the attack subgraph is identified by leveraging root cause
analysis solutions [20] ( b ). Second, during sequence extrac-
tion, in c , Phoenix identifies all system calls present in the
attack subgraph before the alert (i.e., execve, open, pipe,
and splice) and retrieves them in the original system audit
logs. Then, in d , those system calls and their parameters are
chronologically ordered to reconstruct the malicious sequence
of system calls, i.e., open→pipe→splice→execve.

IV. IMPLEMENTATION

This section details the implementation of Phoenix. We
implement Phoenix in C and C++ for Linux kernel v5.10 in
approximately 2,000 lines of code (excluding the sources of
other existing projects that are leveraged in Phoenix). Phoenix
can also function on other kernel versions that implement a
recent version of Seccomp-BPF (≥v4.14). It is important to
note that Phoenix requires no modification to the applications,
the container runtime, or the Linux kernel (instead, a kernel
module is needed).

A. Implementation of Dynamic Runtime Protection
The dynamic runtime protection module is divided between

user-space components (sequence preprocessor, sequence
state monitor and Ptrace) and kernel-space components
(Seccomp filter and kernel module), as illustrated in Fig. 9).
In the following, we detail each of these components.

Fig. 9: Implementation of dynamic runtime protection

Sequence Preprocessor. Our sequence preprocessor is to
abstract the malicious sequence of system calls identified
during malicious sequence identification, and construct an
FSM based on the abstracted sequence. This module is
written in C++ and takes the malicious sequence of system
calls in JSON format as input. We use the JSON library for
Modern C++ [46] to parse the input malicious sequence and
we develop our own implementation of the FSM.

Sequence State Monitor and Ptrace. This component runs
as a privileged process in the host OS to monitor system
call sequences for all processes in a container. Specifically,
the sequence state monitor first collects information from
the container runtime interface (CRI) (e.g., using docker
inspect or crictl inspect)2. It then attaches Ptrace
to all the processes in a container with PTRACE_ATTACH
and traces child processes using the following options:
PTRACE_EVENT_FORK, PTRACE_EVENT_CLONE, and
PTRACE_EVENT_VFORK. Additionally, it monitors Seccomp
signals using the PTRACE_EVENT_SECCOMP flag. At
runtime, this component waits for a trap signal from any of
its tracees.

A challenge upon the receipt of a signal is to differentiate
between the signal from a forked process and from a
process getting interrupted by Seccomp. To address the
challenge, we compare the status of the stopped process
(obtained with wait(-1, &status)) with conditions
of the Ptrace event, i.e., (status » 8 == (SIGTRAP

2We implement our solution for Docker and Containerd, however it can
work on other CRI (e.g., CRI-O) using the crictl CLI.
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| (PTRACE_EVENT_FORK « 8))) and (status »
8 == (SIGTRAP | (PTRACE_EVENT_SECCOMP «
8))), respectively [64]. When the first condition is satisfied,
we use PTRACE_GETEVENTMSG to retrieve the PID of the
new child process, and attach to it. Otherwise, we inspect and
retrieve arguments in depth using the PTRACE_PEEKUSER
and PTRACE_PEEKDATA functions on the corresponding
registers. Additionally, to inspect arguments with pre-defined,
and per-architecture rules, our solution leverages Strace [73].

After Seccomp and Ptrace intercept a system call and its
arguments matching with the FSM state, we perform the fol-
lowing actions. (i) The FSM transition to the next state is im-
plemented by updating a variable in the FSM. (ii) The update
of Seccomp filter for intercepting the next system call is imple-
mented using the libseccomp library (seccomp_init,
seccomp_rule_add, seccomp_load functions), and
updated using our kernel module, as detailed later. (iii) The
abstracted parameters of the FSM (if any) are updated with the
new values just observed. A challenge here is that sometimes
the return code is also a parameter to be observed. To address
this, we repeat that action after the system call has been
allowed by sending PTRACE_SYSCALL and waiting for the
calling process to pause on the system call exit. After the
system call exits, the return code can then be read from the
rax register. (iv) Finally, enforcing user-specified security
actions (step, warn, block, and kill) is implemented using
Ptrace (this step is left to the end to ensure consistency and
avoid race conditions). Specifically, the step or warn actions
(both allow the system call) are implemented by resuming
the calling container process with PTRACE_CONT. The block
action is implemented by replacing the system call with the
exit system call (using PTRACE_SETREGS), and the kill
action is implemented by sending the SIGKILL signal. Those
actions are input through a GUI and stored in the sequence file.

A challenge here is to monitor processes created from
outside of the container. For instance, processes created
using docker exec or kubectl exec commands are
essentially created by the container shim process and thus
are not children of an existing container process, but rather
its siblings. To ensure Phoenix can monitor and trace such
processes as well, we implement a shim tracer to observe the
container’s shim process and wait for clone or fork events.
Upon such events, our shim tracer interrupts the newly created
process, detaches from it, and sends a SIGSTOP signal to the
main Phoenix process to transmit the PID of the new process
using a message queue. Therefore, Phoenix can now handle
the SIGSTOP to resume and trace this new process as usual.

Seccomp Filters. Seccomp filters are installed by default on
Docker and containerd (can otherwise be enabled, also for Ku-
bernetes [38]). To implement Seccomp pre-filtering in Phoenix,
we set them to monitor (instead of blocking) a system call with
the SECCOMP_RET_TRACE action [78]. To implement the
dynamic update of Seccomp filters, the new filter is compiled
in the user space and sent to the kernel module with an
ioctl directive (detailed later). Upon intercepting the system
call, the Seccomp filter sends a PTRACE_EVENT_SECCOMP
signal that triggers Ptrace for deep argument inspection.

Kernel Module. A key implementation challenge is for
Phoenix to update Seccomp filters at runtime. Seccomp filters
are applied to the processes of a container at its startup, and

cannot be trivially modified during the container runtime.
Even though the prctl and seccomp system calls can be
used to update the Seccomp filter of a process, there exist
two major limitations: (i) these can only be called from
inside the container, which means we would have to change
the container’s behavior; and (ii) these can only update the
filters by making them more restrictive, which cannot support
our need to remove old rules and add new ones. Therefore,
we need to update Seccomp filters directly in kernel space.
As our monitor runs in user space, we implement a kernel
module to update the Seccomp filter through two functions
that are called successively by the monitor:

• get_seccomp(process_pid): This function
retrieves the address of the current Seccomp filter to
later modify its content. To do so, it retrieves the
task_struct (i.e., a kernel structure containing all
the information about a process, including its current
Seccomp filters represented as a bpf_prog structure) as-
sociated with the process identified by its process_id.

• update_seccomp(*seccomp_filter): This
function compiles the Seccomp filter received from
the monitor (via a pointer to seccomp_filter
in user space) into a BPF program using the
bpf_prog_create_from_user function. The
kernel module additionally checks that the given
Seccomp filter is correct for the current architecture with
seccomp_check_filter, and retrieves the new BPF
program address as a pointer. Then, it replaces the BPF
program at the current process (previously obtained by
the get_seccomp function) with the new BPF program
by updating the pointer to the bpf_prog structure to
point to the new BPF program address.

Our kernel module is written in C (around 400 source lines
of code) and is loaded in the Linux kernel at runtime. The
kernel module functions are invoked by Phoenix from the
user space using ioctl directives.

B. Implementation of Malicious Sequence Identification
We implement the malicious sequence identification

module as a framework integrating existing tools for
provenance data collection, attack detection, provenance
graph construction, and root cause analysis. First, to detect
the impact of vulnerability exploitation in containers, we
deploy a popular monitoring solution, Falco [17], with both
the default rules and custom rules developed for detecting
particular exploits (e.g., DirtyPipe [18]). Later, to implement
the correlation of Falco alerts with a point of interest in
the provenance graph, we extract metadata in the alert [19],
particularly the timestamp (evt.time) and the system call
(syscall.type). We also extract the PID and parent PID
(PPID) of the process generating the alert to narrow down
the candidate points of interest in the provenance graph. As
containers run in different namespaces, they often share the
same virtual (i.e., from the point of their PID namespace)
process ID. Therefore, using the virtual PID of processes
would lead to one-to-many mappings. Instead, we attach both
the real PID and PPID of the container generating the event
(proc.pid and proc.ppid, respectively) to the alert.

Second, to collect and track system provenance data, we
leverage CLARION [8] (a namespace-aware and container-
aware extension of SPADE [23]). To enable namespace-aware
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and container-aware provenance data tracking, we rely on
the Auditd Linux auditing daemon [28] and the custom
kernel module from CLARION. We successfully compiled
the custom kernel module on Linux kernel versions >5.7,
even though vendors do not officially support it (the
required kallsyms_lookup_name function is not
exported anymore [10] in such versions). To overcome this
issue, we plant a Kprobe into the kernel and retrieve the
kallsyms_lookup_name function’s symbol. Finally, we
enable CLARION’s fileIO, localEndpoints, IPC, and
namespace options to capture fine-grained details regarding
file paths, local network ports and addresses, and container
namespace contexts, respectively. We enable all options that
give us in-depth information about arguments, as these can be
leveraged by Phoenix during dynamic runtime protection. We
store the provenance data captures using a Neo4j database.
Our solution can also potentially be integrated with other
existing provenance tracking tools, such as CamFlow [60].

Finally, for root cause analysis, users can leverage existing
provenance-based detection tools including DepImpact [20],
ATLAS [1], ProvDetector [81], Unicorn [29] as needed. To
help users identify the malicious sequence from subgraphs, we
developed a GUI tool using the graph library Neovis.js to
facilitate manual exploration and analysis through zooming,
panning, filtering (nodes and edges), time-slicing, etc. Once
the sequence is identified, its extraction is performed in JSON
format with a custom JavaScript code.

V. EVALUATION

This section evaluates Phoenix in terms of both security and
performance by answering the following research questions:

• RQ1: How well does our solution prevent the exploit of
real-world vulnerabilities in real-life applications? How
does it compare to existing solutions in this regard?

• RQ2: What is the overhead introduced by Phoenix on
the performance of the containers? How does it compare
to the overhead induced by existing solutions?

• RQ3: How feasible is the sequence identification
approach? How does it compare to existing solutions?

• RQ4: What are the additional benefits (in terms of
accuracy) and overhead of deep argument inspection?

Experimental Setup and Dataset. We run Phoenix on a Ku-
bernetes cluster composed of one master node and two worker
nodes, each equipped with 4 vCPUs and 8GB of RAM. The
nodes are VMs running Ubuntu 20.04 on Linux kernel v5.10
(except while testing vulnerabilities that require a particular
kernel version). For our security evaluations, we borrow
two existing datasets of container system calls, namely, the
Container Breakout dataset (CB-DS) [15] and the DongTing
dataset [14]. We conduct the response time experiments over
a local network to minimize the impact of network delay on
the measurement of the application’s response time.

A. Security
1) Comparison of effectiveness for blocking CVEs: To

answer RQ1, we perform a case study using real-world CVEs
with a CVSS (severity) score ranging from 2.1 to 7.8 (out
of 10) on popular applications, as listed in Table I. In this
experiment, we compare our solution to other state-of-the-art
solutions, including Confine [24], Sysfilter [11], and Docker’s

Application
Severity 1 2 3 4 5 6 7 8 9 10

C
V

E

2017-18344 2.1 --p csp csp csp csp csp csp csp -sp csp
2017-5123 4.6 --p --p csp --p c-p --p --p c-p -sp c-p
2019-5489 5.5 --p csp csp csp c-p csp c-p -sp --p csp
2022-1015 6.6 --p csp csp csp csp csp csp csp --p csp
2017-17053 6.9 -sp csp csp csp csp csp csp csp --p csp
2022-0492* 6.9 -sp -sp csp csp -sp -sp csp csp -sp -sp
2022-2602 7.0 --p csp csp -sp -sp csp csp csp -sp -sp
2017-11176 7.2 --p csp csp csp csp csp csp csp -sp csp
2018-14634 7.2 --p --p --p --p --p --p --p --p -sp --p
2021-3347 7.2 -sp --p csp --p c-p --p csp -sp -sp -sp
2021-4154 7.2 -sp -sp c-p -sp csp -sp -sp csp -sp csp
2022-0847 7.2 --p c-p -sp --p -sp --p -sp -sp -sp -sp
2016-9793 7.8 -sp csp csp csp --p csp csp csp -sp csp
2017-6074 7.8 -sp csp csp -sp --p csp csp -sp -sp -sp
2017-7308 7.8 -sp -sp -sp -sp -sp -sp -sp --p -sp -sp
2022-0995 7.8 -sp csp csp csp c-p csp csp csp -sp csp
2022-2588 7.8 --p csp csp csp csp csp csp csp -sp csp
2022-2639 7.8 --p csp csp csp csp csp csp csp -sp csp
2023-0386 7.8 --p -sp -sp -sp -sp -sp csp --p -sp -sp
2023-32233 7.8 -sp csp csp -sp csp csp csp csp -sp csp

1: CRIU†, 2: Django, 3: Httpd, 4: Nginx, 5: Postgres, 6: Python, 7: Redis, 8: Tomcat,
9: Wine†, 10: Wordpress.
c: blocked by Confine [24], s: blocked by Sysfilter [11], p: blocked by Phoenix, -: not
blocked.
∗blocked by default Seccomp filter [67], †Confine not tested (not a container).

TABLE I: Comparison of the effectiveness of Confine [24],
Sysfilter [11], and Phoenix for blocking 20 CVEs without
affecting the normal operation of 10 popular applications.

default Seccomp filter [67], in terms of their capability for
consistently preventing the exploitation of the CVEs for all
applications. Thus, for each CVE, we first download a proof-
of-concept (PoC) exploit from public code repositories. Next,
for each combination of the CVE and application, we create
a separate container, with the corresponding exploit code
mounted in the container next to the application. Then, while
the application is running, the exploit code is manually trig-
gered through a terminal opened inside the container (note all
the CVEs are kernel-related and independent of applications).
Additionally, the exploit code is executed under Strace [73] to
record the set of system calls and arguments involved in the ex-
ploit. For each application, we apply existing solutions follow-
ing their documentation and official code base3 to obtain the
list of system calls that can be blocked under that application
(i.e., the ones unused by the application). Finally, we compare
the set of system calls required by the exploit code to the set
of system calls that can be blocked by existing solutions.

Table I summarizes the results of this experiment. It can
be observed that, while Phoenix can consistently block all
the studied CVEs on all the applications, none of the existing
solutions can achieve this. In particular, Docker’s default
Seccomp filter can only block one CVE (2022-0492), while
Confine and Sysfilter show varying degrees of success on
different combinations of CVEs and applications. An extreme
example is CVE-2018-14634 (an integer overflow in the
Linux kernel), which almost completely escapes Confine and
Sysfilter on all the applications (except that Sysfilter works
on one application, Wine). This is due to the fact that those
existing solutions by design do not block system calls that
are needed by an application (as their main purpose is to

3We make best efforts in following the recommendations of the tools’
authors to perform our study though some inaccuracies or usage in a different
context than the authors’ are still possible.
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reduce the general attack surface). In contrast, Phoenix shows
superior effectiveness for blocking specific vulnerabilities due
to its added capabilities of considering the sequence in which
a system call appears and deep argument inspection.

CB Dataset [15] DongTing Dataset [14]
1-call 2-call 3-call 1-call 2-call 3-call

mean
%

max
%

mean
%

max
%

mean
%

max
%

mean
%

max
%

mean
%

max
%

mean
%

max
%

C
V

E

2017-18344 1.64 11.2 0.12 1.37 0.03 1.06 1.44 6.38 0.22 2.68 .057 1.44
2017-5123 1.77 11.2 0.15 1.37 0.09 1.35 1.66 6.38 0.05 1.38 .003 0.05
2019-5489 1.27 11.2 0.11 3.39 0.05 1.35 1.0 6.38 0.07 2.63 .01 0.72
2022-1015 0.29 4.84 0.01 0.1 0.0 0.01 0.97 4.28 0.14 4.28 0.0 .001
2017-17053 1.66 11.2 0.12 1.37 0.06 1.35 1.13 6.38 0.05 1.38 .008 0.15
2022-0492 0.91 11.2 0.10 3.45 0.03 1.35 0.86 6.38 0.05 2.63 .004 0.72
2022-2602 1.11 6.96 0.13 3.32 0.04 1.81 1.12 6.38 0.01 0.06 .001 .004
2017-11176 1.30 16.4 0.07 1.37 0.04 1.35 0.97 6.38 0.08 2.63 .011 0.72
2018-14634 1.71 11.2 0.14 1.37 0.09 1.35 1.44 6.38 0.06 1.38 .006 0.05
2021-3347 1.79 16.4 0.13 4.32 0.04 1.35 1.01 6.38 0.03 1.38 .002 0.05
2021-4154 1.62 16.4 0.05 1.37 0.01 1.35 0.90 6.38 0.05 2.63 .004 0.60
2022-0847 1.80 11.2 0.17 1.37 0.11 1.35 1.64 6.38 0.18 2.63 .004 0.05
2016-9793 1.06 16.3 0.08 3.45 0.03 3.11 0.7 6.38 0.05 2.63 .005 0.57
2017-6074 1.45 6.96 0.01 0.1 0.0 0.00 1.85 6.38 0.04 0.37 .001 0.01
2017-7308 1.16 11.2 0.0 0.0 0.0 0.0 1.18 6.38 0.0 0.01 0.0 0.0
2022-0995 0.81 4.84 0.0 0.0 0.0 0.0 2.62 4.28 0.54 4.28 0.0 0.0
2022-2588 1.0 11.2 0.07 1.37 0.03 1.35 0.86 6.38 0.06 2.63 .01 0.59
2022-2639 0.96 11.2 0.07 3.45 0.01 1.06 1.26 6.38 0.16 4.28 .004 0.04
2023-0386 1.18 11.2 0.05 1.36 0.02 1.06 1.23 6.38 0.06 2.68 .004 0.05
2023-32233 1.28 16.4 0.08 3.29 0.01 1.06 0.96 6.38 0.08 2.68 .007 0.60
Average 1.29 11.4 0.08 1.86 0.03 1.13 1.24 6.17 0.1 2.26 .007 0.32

TABLE II: Comparison of false positive rates between set-
based (1-call) and sequence-based (2-call and 3-call) solutions
for blocking CVEs with system calls needed by the application

The following provides more details for two of those
CVEs (others are omitted due to space limitations) and
explains how Phoenix works in each case.

CVE-2022-0847. Figure 10 details an exploit of this
vulnerability (a.k.a. Dirty Pipe) [52] and the corresponding
provenance graph, as well as the sequence of system
calls identified. The vulnerability lies in the Linux pipe
mechanism, where an unprivileged user can write to a
normally read-only file and escalate privileges. To exploit the
vulnerability, an attacker creates a pipe, and then fills it with
arbitrary data. S/he then opens a read-only file (the target file)
and splices data from the file into the pipe. Finally, by writing
again to the pipe, s/he overwrites cached memory pages and
successfully writes to the read-only file. A simple example
of privilege escalation using this technique is to write to the
/etc/passwd file and add a new privileged user to the system.
The vulnerability can also be exploited to escape a container
isolation (e.g., by overwriting the runc binary on the host [56]).

Existing solutions, such as Confine and Sysfilter, may face
challenges in blocking this CVE. Specifically, with certain
applications (e.g., a high-performance HTTP proxy using web
servers such as Nginx and Tomcat), a container might need to
manipulate pipes and perform zero-copy operations using the
pipe and splice system calls [51]. For instance, applying
Confine on a Tomcat container apparently cannot prevent this
CVE from being exploited due to system calls needed by the
application. Although Sysfilter reportedly blocks the splice
system call, it also blocks the sendfile system call, a
call needed for the normal behavior of Tomcat. In contrast,
Phoenix can prevent CVE-2022-0847 on every application by
accurately blocking the sequence of system calls described in
Fig. 10. An admin may decide the best action plan for prevent-

ing the vulnerability. For example, the corresponding action
chosen for system calls #1 to #5 is step (i.e., observe and
continue in the sequence) because these calls are frequently
seen when manipulating Linux pipes. The read and splice
system calls immediately following will send a warning,
whereas the last write (i.e., the actual exploit of the vulner-
ability) should be blocked to prevent the attack. Alternatively,
the admin may decide to block the sequence or send warnings
earlier, or be more conservative by only sending warnings.

Fig. 10: CVE-2022-0847 with corresponding provenance graph
(left) and system calls sequence identified by Phoenix (right)

CVE-2021-4154. This is a vulnerability in the Linux
kernel’s cgroup mechanism. Using a privilege escalation
technique (e.g., DirtyCred [42]), an attacker can exploit this
vulnerability to escape a container’s isolation, and compromise
the underlying host. The vulnerability lies in a use-after-free
(UAF) bug that can be triggered using the fsopen and
fsconfig system calls on a cgroup filesystem. We use
a proof-of-concept leveraging the DirtyCred technique to
exploit this vulnerability, and Fig. 11 depicts the corresponding
provenance graph and system call sequence identified.

According to our results, Confine blocks CVE-2021-4154
on three applications out of ten, while Sysfilter does not pre-
vent the CVE on the httpd web server. Phoenix prevents the ex-
ploit of CVE-2021-4154 on every application by blocking the
sequence of system calls described in Fig. 11. As the exploit
is performed, Phoenix identifies the first argument of fsopen
as cgroup, to be matched as-is. The file descriptor returned
is later used by the fsconfig system call, and abstracted
as X by our solution. Next, the exploit creates a symlink
later used by open (abstracted as Z), then returns another file
descriptor abstracted as W. After the call to fsconfig with
the first and third abstract arguments X and W, and the flag
SET_FD, the UAF is triggered by closing the file descriptor X.

Fig. 11: CVE-2021-4154 with corresponding provenance graph
(left) and system calls sequence identified by Phoenix (right)

2) General comparison of false positives between Phoenix
and set-based blocking: Our next experiment performs a
more general comparison between a sequence-based system
call blocking solution like Phoenix, and a set-based blocking
solution such as the direct application of Seccomp filters. The
goal is to assess the impact of considering (or ignoring) the
sequence in which a system call appears, on false positives,
while preventing the exploitation of a specific vulnerability. For
this purpose, we perform the experiment using two attack-free
datasets of container system calls, i.e., the Container Breakout
dataset (CB-DS) [15] (more than 3 million normal system
calls extracted from 1,700 traces of an Apache application)

10



and the DongTing dataset [14] (25 million normal system
calls from 6,850 traces of four Linux kernel regression test
suites). We measure the false positive rate of each solution
as the percentage of normal system calls that are blocked as
a side-effect of blocking different CVEs (same as in Table I).

Table II reports the percentage of false positives observed
for the set-based solution (blocking one system call regardless
of the sequence it appears in) and the sequence-based solution
for blocking two and three system calls, respectively. The
results show that ignoring the order between system calls
(set-based solution) may result in significantly more false
positives, i.e., around 1.29% false positives on average, with
certain cases going as high as 16.4% (e.g., CVE-2021-3347
on the CB-DS dataset). The same system calls blocked in
a sequence of length two results in less than 0.1% false
positives, while increasing the sequence size to three reduces
the false positives to less than 0.03% in both cases. Those
results not only show the effectiveness of blocking system
calls based on the sequence in terms of fewer false positives,
but also demonstrate that even a partial sequence can lead to
a significant reduction in false positives.

3) Comparison with existing stateful solutions: In this
experiment, we compare Phoenix with existing solutions that
can also perform stateful inspection of system calls [21], [34],
[57] (these are re-implemented as no working code is publicly
available). Specifically, VtPath [21] and Mutz et al. [57] both
leverage the call stack between pairs of consecutive system
calls (namely, virtual paths) to learn the normal behavior and
detect anomalous calls, while the latter also considers system
calls arguments. PoLPer [34] blocks anomalous system calls
in the setuid family by learning the calling process hierarchy,
call context, and its arguments. For a fair comparison, we
evaluate them both for a purpose similar to Phoenix, i.e.,
blocking a particular vulnerability (blacklisting), and for their
intended usage, i.e., anomaly detection (whitelisting).

Vulnerability
learned

Same
vulnerability
exploit (TP)

Modified
vulnerability
exploit (TP)

Normal
behavior (FP)

So
lu

tio
n

VtPath

2023-32233 100% 15% 0%
2017-6074 100% 17% 0%
2022-0847 100% 63% 0%
2021-4154 100% 64% 0%
2023-0386 100% 94% 0.01%

Mutz et al.

2023-32233 0.57% 0.42% 0%
2017-6074 1.83% 1.22% 0%
2022-0847 7.59% 3.80% 0%
2021-4154 7.89% 7.16% 0%
2023-0386 1.34% 1.29% 0%

PoLPer

2023-32233 100% (2/2) 0% (0/2) 0% (0/2)
2017-6074 0∗% 0∗% 0∗%
2022-0847 0∗% 0∗% 0∗%
2021-4154 0∗% 0∗% 0∗%
2023-0386 100% (3/3) 33% (1/3) 0% (0/3)

Phoenix

2023-32233 100% 100% 0%
2017-6074 100% 100% 0%
2022-0847 100% 100% 0%
2021-4154 100% 100% 0%
2023-0386 100% 100% 0%

∗: exploit does not invoke setuid calls

TABLE III: Comparison of Phoenix with existing stateful
solutions for blocking vulnerabilities (blacklisting)

Blacklisting. In this first experiment, we apply each solution
to learn the exploit of each vulnerability based on the used
characteristics (i.e., the malicious virtual paths for [21] and

[57], the string arguments for [57], and the malicious setuid
calls context, hierarchy, and arguments for [34]). We then
evaluate their effectiveness in capturing the same exploit
executed again, a slightly modified exploit (detailed below) of
the same vulnerability, and the normal behavior, respectively.

First, as Table III shows, while VtPath [21] successfully
detects the same exploit used during training, it cannot ac-
curately detect slightly modified exploit codes. For instance,
directly invoking the system calls instead of using the C library
wrappers can drastically change the virtual path between two
consecutive system calls. As a result, only 15% and 17%
of the exploit code for the first two CVEs can be captured.
Moreover, adding dummy system calls in the exploit code can
also deceive VtPath, as shown by the next three CVEs. Second,
the approach of Mutz et al. [57] shows worse results (even
on the same exploit). Our investigation shows this is due to
their design choice of limiting the learning to 36 system calls
(which is not sufficient to capture the exploits). Third, PoLPer
[34] can only capture two out of five CVEs due to the fact that
it is specifically designed to match system calls from the setuid
family, which are only used by two of those exploits (the num-
ber of successfully matched setuid calls are reported between
parenthesis). Moreover, like the other two works, PoLPer
cannot capture the slightly modified exploit codes. Finally, all
three solutions cause almost zero false positives on the normal
behavior. In contrast, Phoenix shows perfect results in all three
cases since the sequence of system calls and arguments it relies
on is essential for the CVE to function, and hence cannot
be easily manipulated by attackers. In summary, although
those existing works can also perform stateful inspection of
system calls, they are not suitable for blocking unpatched vul-
nerabilities (blacklisting), as they all rely on context-specific
information, which is not essential to a CVE, and hence cannot
detect slight variants of attacks or evasive attack behaviors.

Whitelisting. In this experiment, we apply those existing
solutions for their intended purpose, i.e., learning the normal
behavior of applications to detect anomalies. The experiment
is based on three widely used applications, i.e., Nginx, Tomcat,
and Redis. For each application, we collect several minutes of
normal behavior data (90% for training and 10% for testing) to
measure the FP (second column). Then, we perform anomaly
detection on the same application while executing the exploits
(same as in Table III) to measure the TP (third column).

As Table V shows, all the solutions can successfully detect
the anomalous system calls (setuid calls detected by PoLPer
are reported between parenthesis). However, VtPath [21] and
Mutz et al. [57] both cause false positives on the normal
behavior (training data). VtPath has the highest rate of false
positives on the Tomcat application, where almost 27% of the
data is misinterpreted as an attack (likely due to the multi-
threaded nature of Tomcat). The approach of Mutz et al. has a
lower false positive rate for all the applications (which can be
explained by its use of arguments comparison and the fact that
it monitors a smaller number of system calls). PoLPer achieves
zero false positives for all the applications (which can be
explained by its focus on the eight system calls from the setuid
family, and the fact that our test involves a single application
running inside a container). In summary, those existing works
are more effective for their designed purpose, i.e., anomaly
detection, which is complementary to the objective of Phoenix
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(blacklisting). Our experiences also show that, by collecting
call stack for every single system call, those existing solutions
may generate significant overhead (in fact, the experiment
could not be performed for Flask, MySQL, and Django, as
those applications simply stopped working properly under the
overhead). Moreover, as shown next, our experiments indicate
those solutions incur significantly longer response time per
system call. In contrast, as we will show next, the performance
overhead of Phoenix remains negligible for all applications.

Comparison with Existing Stateful Solutions in terms of
Response Time. We compare the overhead of VtPath [21],
Mutz et al. [57], and PoLPer [34] with that of our solution.
For VtPath [21], the authors assume “the program counter and
call stack can be visited with low runtime overhead when each
system call is made” and thus do not provide a performance
evaluation of the actual implementation (only the algorithm is
evaluated). Mutz et al. [57] implement system call interception
and stack unwinding by modifying a SNARE kernel module.
PoLPer [34] plants a Kprobe [37] at the setuid-family system
call handlers. While this has the advantage of not requiring
any user space implementation, it is not designed for a
container environment since the handler will be invoked
by any setuid-family system calls in the operating system,
most of which will be irrelevant to the targeted container (in
contrast, Phoenix will only be triggered when a particular
system call coming from a particular container is invoked).

We adapt the available data and code of those existing
solutions according to changes in technology as follows (e.g.,
the SNARE kernel module has been progressively replaced
by the Auditd subsystem). For VtPath, we assume the use
of Strace (Ptrace and libunwind) to access the call stack,
as the authors in [21] mention they use the “same user-space
level mechanism to intercept system calls as [68]”, which is
Ptrace. For Mutz et al., we could not find the source code
of the deprecated SNARE kernel module; instead, we utilize
a kernel module that performs stack unwinding of a user
space program at each of the 36 system calls monitored,
similarly to Kunwind [39]. For PoLPer, we develop a kernel
module and plant a Kprobe at each system call handler of the
setuid-family system calls.

We evaluate the overhead of each approach by measuring
the average response time on all system calls over 1,000
calls (note that not all system calls are called with the same
frequency in reality). As Table IV shows, the baseline (i.e.,
no protection) takes around 3,000 ns per system call. In
contrast with the assumption made in [21], using user space
mechanisms such as Strace (with the -k option for stack
unfolding) is very inefficient and incurs prohibitive (over
12,000%) overhead. Using Kunwind and Kprobe is more
efficient, but still represents a 116% and 1,080% overhead,
respectively. Phoenix only incurs negligible overhead (less
than 3%) over the baseline. Finally, for a fairer comparison, we
modify Phoenix to add a stack unwinding mechanism (using
the libunwind library) although Phoenix does not really
require call stack to function. Our results show that this only
adds a 15% extra overhead over the regular version of Phoenix.

B. Performance
To answer RQ2, we deploy Phoenix and existing solutions

with different applications (popular web servers and databases,

Average Response Time per System Call
Baseline 3,113 ns

Strace + stack unwinding (VtPath) 393,361 ns
Kunwind (Mutz et al.) 6,726 ns

Kprobes (PoLPer) 36,748 ns
Seccomp + Ptrace (Phoenix) 3,201 ns
Phoenix + stack unwinding 3,690 ns

TABLE IV: Performance comparison with existing stateful
solutions

namely, Django, Flask, MySQL, Nginx, Redis, and Tomcat)
in our testbed and then measure different performance metrics
(i.e., response time, CPU usage, and memory consumption)
of the applications. We test an idle case (i.e., the security
solutions are not blocking any attack, as no attack is actually
performed), a normal case where we simulate an attack rate of
around 100 attacks per day [2], and a denial-of-service (DoS)
case in which the solutions are assumed to be under DoS by
receiving one attack on every request. Note we consider the
last case only to assess how resilient Phoenix is under stress,
while such a case is extremely unlikely to occur in reality, as
it would mean all system calls were coming from the attacker
and none from legitimate requests. During our experiments,
due to their different designs, Seccomp blocks one single
system call per request, while Ptrace and Phoenix each block
the same sequence of four system calls per request. We
compare the performance of Phoenix (combining Ptrace and
Seccomp), with (i) the baseline application without protection
(No Seccomp); (ii) the direct application of Seccomp which
blocks every system call appearing in the attack sequence
regardless of the actual sequence it appears in (Default
Seccomp); and (iii) a naive implementation of Ptrace to block
attack sequences (Ptrace). We average the results of 10,000
requests over the span of 100 seconds.

1) Overhead on response time: Figure 12 compares the
response time of different applications deployed with Phoenix
and the other solutions. We run different containers and
measure the average user-experienced response time (without
considering the network delay) over repeated queries. In idle
and normal cases (Fig. 12a and Fig. 12b), Phoenix introduces
almost no extra overhead compared to No Seccomp (which
provides no protection) and the Default Seccomp, which gen-
erates significantly more false positives, since its blocking is
based on a set (instead of sequence) of system calls, as shown
in Table II (1-call). On the other hand, the naive Ptrace solution
at least doubles the response time (e.g., 160% increase from
12.7 ms to 33 ms on Django). As shown in Fig. 12c, in the
DoS case, the overhead introduced by Phoenix largely depends
on the application but remains acceptable in most cases.
The overhead ranges from negligible, less than Ptrace (e.g.,
Django), to higher than Ptrace (e.g., MySQL). Particularly, we
observe that database applications, such as MySQL or Redis,
usually experience larger overhead than web servers (especially
Python-based servers, such as Django and Flask). The reason is
that the DoS case assumes one attack for every request (which
is already unrealistic), which is further amplified by high-
performance applications such as MySQL or Redis, as these
typically make use of multithreading and can cause a very high
rate of system calls being issued. Such an extremely high rate
of attacks causes the otherwise negligible overhead of updating
the Seccomp filters to become more dominant than even deep
argument inspection. Therefore, a viable solution here is for
Phoenix to automatically switch to a Ptrace-only mode once
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the rate of attacks exceeds a pre-determined threshold, which
we regard as future work. Additionally, Fig. 12d depicts the
average response time of different solutions over all appli-
cations. On average, Phoenix introduces only 4% additional
delay (when compared to the Default Seccomp) whereas Ptrace
increases it by almost 145%. Therefore, we conclude that using
Phoenix to block sequences of system calls is practical in terms
of the overhead on response time.

2) CPU/Memory consumption: We evaluate the resource
consumption of both the protected application and our solu-
tion. We measure CPU and memory consumption using the
psutil Python library. CPU consumption comprises both
user and system CPU time, and memory usage is measured
as the Unique Set Size (USS, i.e., the amount of memory that
is unique to the process) as recommended in [63]. Table VI
depicts our results. We study the baseline (No Seccomp)
and three security solutions (Default Seccomp, Ptrace, and
Phoenix). For each solution, we evaluate both the footprint of
the solution itself (in the Solution column) and the application
(in the Application column). We observe that none of the
solutions introduces significant CPU or memory consumption
on the protected application. In the idle case and under normal
attack rates, Phoenix CPU consumption remains around 0%,
while Ptrace continuously consumes more than 5% (i.e., as
much as the application itself). This represents a save of 98%
by Phoenix. During the DoS simulation, the CPU consumption
of Phoenix peaks at almost 7%. Note that this happens only
exceptionally (in case of DoS attack), while Ptrace CPU con-
sumption is slightly better but constant regardless of the envi-
ronment. Memory consumption is constant and mostly similar
for Ptrace and our solution (where we test both solutions
for memory leaks to ensure memory consumption does not
increase over time). We conclude that our solution incurs negli-
gible overhead in terms of resource consumption in most cases.

App. Normal
(% FP)

Attack
(% TP)

VtPath
Nginx 7.37 100
Tomcat 26.84 100
Redis 0.91 100

Mutz
et al.

Nginx 0.56 100
Tomcat 0.34 100
Redis 0.11 100

PoLPer
Nginx 0 (8/8) 100 (6/6)
Tomcat 0∗ 100 (6/6)
Redis 0∗ 100 (6/6)

Phoenix
Nginx 0 100
Tomcat 0 100
Redis 0 100

∗: program does not invoke setuid
calls
TABLE V: Comparison
of Phoenix with existing
stateful solutions for anomaly
detection (whitelisting)

App. Solution
CPU
(%)

Mem.
(MB)

CPU
(%)

Mem.
(MB)

No
Seccomp

5.01 58.01 N/A N/A

Default
Seccomp

5.03 58.01 N/A∗N/A∗

Ptrace
(idle) 4.98 57.75 5.18 0.58
(normal) 5.02 57.90 5.18 0.57
(DoS) 5.01 57.82 5.24 0.59

Phoenix
(idle) 4.97 57.73 0.03 0.63
(normal) 5.02 57.82 0.1 0.64
(DoS) 5.01 57.71 6.82 0.66

∗: not collected as Seccomp does not execute
in a separate kernel thread

TABLE VI: Average CPU and
memory consumption of the
application and the solutions
(Seccomp, Ptrace, and Phoenix)

3) Impact of sequence on overhead: To protect containers,
Phoenix takes as input a sequence of system calls of various
lengths (depending on the CVE and on the results of
the investigation). In this experiment, we assess how the
length of such sequences impacts the performance of Phoenix.
Figure 13 shows the average response time when protecting an
application from sequences with sizes varying from two to nine
system calls. The length of the sequence has no visible effect in
the idle case (light grey) as the average response time remains

at 5.3 ms, while a normal attack rate (black) increases the
response time by less than 0.1 ms. Under DoS (dark grey), the
average response time remains stable at 6.8 ms for sequences
of length two, three, and four, then increases slowly to reach
10.4 ms with nine system calls. This increase in response
time is mostly due to Phoenix updating the Seccomp filter for
each system call in the sequence. Therefore, filtering longer
sequences implies more updates per request. We conclude
that the performance overhead of Phoenix remains acceptable
even for relatively long sequence lengths (nine system calls).

C. Evaluation of Malicious Sequence Identification
To answer RQ3, we perform two experiments. First, we

compare the sequences of system calls identified following
the Phoenix approach (as described in Section III-B) with the
results of several existing solutions in the literature. Second, we
perform a user study on the usability of the Phoenix approach.

1) Comparison with existing solutions: We compare
Phoenix with several existing tools, signature-based solutions
involving system calls (note the malicious sequence of system
calls is essentially used by Phoenix as an attack signature,
whereas our experimental results in Section V-A3 already
show anomaly detection is not suitable for this purpose), and
provenance analysis solutions. First, Strace/Auditd/Sysdig [75]
are common tools that can be used to identify system calls
invoked by an exploit, which provides a baseline for com-
parison. Second, Nimos [72] identifies system call sequences
by applying Generalized Sequential Patterns (GSP) mining
to learn n-grams from a database of kernel exploits. Third,
Madani et al. [48] adopt a similar approach to extract malicious
system calls from malware. Finally, CLARION/SPADE [8],
[23] and CamFlow [60] generate provenance graphs that can
be used for identifying system calls, either manually or using
semi-automated tools such as DepImpact [20] and ATLAS [1].

To facilitate the comparison to Phoenix, we adapt the
available data and code of those existing solutions as follows.
For Strace/Auditd/Sysdig (which provide the same result),
we extract the system call sequence generated while running
the exploit code (in contrast, Phoenix does not require to
have/know the exploit code). For Nimos, as it is based
on sequence mining [72], we repeat the original exploit
to generate a large number of exploit traces such that it
can extract the longest frequent pattern (with a support of
0.5). For Madani et al., we remove duplicate consecutive
system calls as recommended by the authors [48]. Finally,
we extract system calls from both the original provenance
graphs generated by CLARION/SPADE, and the subgraphs
after pruning by DepImpact [20] to compare to Phoenix.

Table VII reports the number of system calls produced
by each solution as well as the false positives and false
negatives (i.e., the system calls not relevant to the CVE, and the
relevant ones missing in the result, respectively) to demonstrate
how close those automated solutions can get to the result of
Phoenix. First, for all the five CVEs, Strace/Auditd/Sysdig
produce a large number of system calls (ranging from 80 to
more than 18,000), since they consider all system calls invoked
by the exploit code as relevant to the attack (which explains
why these solutions cause no false negative). However, this
causes a high false positive rate, as most of the system calls
are not representatives of the attack (e.g., memory allocation,
library loading, and process cloning). Therefore, even by
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Fig. 12: Overhead of different solutions in terms of response time on various container applications

assuming the exploit code is available, those tools still do not
provide a viable solution for human analysts to identify the
malicious system calls. Second, while both Nimos and Madani
et al. produce a small number of system calls, they also cause
a relatively large number of false negatives, e.g., Madani et al.
misses 7 out of the 8 relevant system calls for CVE-2022-0847.
This can be explained by the fact that they focus on identifying
the most frequent pattern of system calls in the exploit code,
which is not necessarily relevant to the attack. As none of the
exploit codes in this experiment involves a repetitive pattern of
invoking system calls, those solutions become inaccurate. Also,
unlike Strace/Auditd/Sysdig, the small output size of those
solutions leaves little room for analysts to refine their results.

2017-6074 2021-4154 2022-0847 2023-0386 2023-32233
Size FP FN Size FP FN Size FP FN Size FP FN Size FP FN

S/A/S 329 323 0 457 453 0 80 72 0 >18k>18k 0 >7k >7k 0
Nimos 4 4 6 3 2 3 4 1 5 4 4 8 4 3 5
Madani 3 0 0 3 3 4 3 2 7 3 1 5 4 3 5
CLARION 310 304 0 >1k >1k 0 777 769 0 >29k>29k 0 >4k >4k 0
DepImpact 25 16 0 N/A 44 33 0 149 117 0 N/A

Phoenix 6 0 0 4 0 0 8 0 0 8 0 0 8 0 0

TABLE VII: Comparison of system calls identified using
Phoenix and existing solutions (S/A/S: Strace/Auditd/Sysdig)

Third, CLARION reports an even larger output size than
Strace/Auditd/Sysdig due to the fact that it performs system-
wide provenance data collection (at the kernel level), whereas
Strace/Auditd/Sysdig only collect system calls related to the
(exploit) process. Consequently, although CLARION’s output
contains no false negatives, it contains a large number of false
positives corresponding to background activities unrelated
to the exploit code. On the other hand, as CLARION (and
other provenance graph-based tools) does not require the
exploit code, it is more practical than Strace/Auditd/Sysdig
in a real-world environment where the exploit code is not
available. Finally, DepImpact produces the closest results to
those of Phoenix, i.e., smaller output sizes, fewer FPs, and no
FN, which provides a good basis for analysts to further refine
the results. Nonetheless, we were able to run DepImpact
on only 3 out of the 5 CVEs (for the other two CVEs, a
Java error beyond our control was returned). In summary,
those results clearly support the semi-automated approach
of Phoenix, which combines the strength of automated tools
(e.g., CLARION for graph generation and DepImpact for
graph pruning) and the knowledge of human experts.

2) User study: To assess the usability of the Phoenix
approach for identifying malicious sequences of system calls,
we conduct a user study4 in which participants unfamiliar
with the chosen vulnerabilities are asked to identify candidate

4The Office of Research Ethics of our university has identified this study
as for quality assurance purpose and hence exempted it from ethics approval.

sequences of relevant system calls (as subgraphs) following
the Phoenix approach. All participants have a general
background in security but limited knowledge/experience in
provenance analysis and Linux kernel security (similar to real-
world administrators). Each participant is given the original
provenance graph (displayed in Neo4j [58]) with the alert
highlighted, the access to our GUI tool and DepImpact [20],
and an explanation of the Phoenix approach and the task. The
first two columns (for each CVE) of Table VIII report the time
taken by each participant (T1) and the size of the identified
subgraph (number of nodes plus edges), respectively. Also, to
measure the quality of those subgraphs, the last two columns
(for each CVE) report the time taken by an expert (another
participant who has more expertise and prior knowledge about
the chosen vulnerabilities) to extract the correct sequence from
the subgraph, and the ratio of extracted system calls (when
the correct sequence is not fully present in the subgraph).
The results indicate that most participants take less than
30 minutes (only one instance of >30 minutes) to identify
reasonably small subgraphs (ranging between 62 to 634
nodes/edges) for all four CVEs. Those subgraphs represent
good results as the expert only takes a few minutes (<6
minutes) to extract the correct sequence in most cases. Some
vulnerabilities seem slightly more challenging for certain
participants (evidenced by the lower ratios), which clearly
motivates (and can be easily addressed by) crowdsourcing.

2021-4154 2022-0847 2023-0386 2023-32233
T1 Size T2 TP T1 Size T2 TP T1 Size T2 TP T1 Size T2 TP

#1 22′ 249 2′ 13/13 9′ 62 1′ 12/12 21′ 233 4′ 10/12 23′ 128 3′ 17/17
#2 24′ 154 2′ 11/13 34′ 218 3′ 11/12 8′ 203 4′ 10/12 10′ 232 3′ 15/17
#3 25′ 250 4′ 13/13 18′ 63 1′ 9/12 12′ 495 6′ 4/12 11′ 182 2′ 17/17
#4 15′ 187 4′ 12/13 25′ 413 5′ 5/12 14′ 376 3′ 2/12 17′ 92 2′ 11/17
#5 11′ 169 3′ 12/13 12′ 498 6′ 9/12 18′ 162 2′ 10/12 5′ 62 1′ 1/17
#6 14′ 413 7′ 11/13 24′ 245 2′ 8/12 7′ 634 6′ 10/12 9′ 585 5′ 17/17
#7 18′ 278 5′ 13/13 29′ 376 5′ 12/12 30′ 491 6′ 10/12 18′ 258 3′ 17/17

Avg. 18′ 243 4′ 12/13 22′ 268 3′ 9/12 16′ 370 4′ 8/12 13′ 220 3′ 14/17

T1: time taken by a user to identify candidate sequences (subgraph)
T2: time taken by an expert to extract sequence from the user’s result
Original graph sizes: 1.7k, 227k, 123k, 4k

TABLE VIII: Results of a user study on the usability of
Phoenix approach for identifying malicious sequences of
system calls

D. Deep Argument Inspection (DAI)
To answer RQ4, we study the impact of deep argument

inspection (DAI) both in terms of security benefit and
overhead. While our previous experiments show the combined
results of Seccomp and Ptrace, here we study the impact of
DAI itself, as DAI is a unique feature of Phoenix not shared by
other solutions (i.e., default Seccomp, Confine, and Sysfilter).

1) Security: We measure the impact of DAI (in inspecting
up to two arguments of each system call in the sequence) on
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security by evaluating the number of false positives of our
solution on the CB-DS dataset for different vulnerabilities. For
each vulnerability, we measure the false positive rate when
matching system calls and their arguments (using DAI) and
compare it to the false positive rate when matching system
calls only (as presented in Table II). We report the percentage
of reduction between these two experiments (i.e., how many
fewer false positives we obtain due to DAI). We perform this
experiment both when blocking individual system calls (1-
syscall), and when blocking sequences of two and three system
calls. Table IX depicts the corresponding results for eight of the
previously studied CVEs (as described in Table I). On average,
matching each individual system call and its arguments results
in a false positive reduction of 77.4% on average. When block-
ing sequences of two and three system calls, the use of DAI
allows to greatly reduce the false positives by 94% and 97.2%
on average, respectively. Finally, blocking a sequence of three
system calls with DAI completely removes the false positives
for CVE-2017-5123 and CVE-2022-0847. We conclude that
the added DAI feature of Phoenix is critical for reducing false
positives compared to existing Seccomp-based solutions.
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Fig. 13: Impact of
sequence length on
Phoenix performance

CB Dataset
1-syscall 2-syscall 3-syscall

C
V

E

2017-5123 77.3% 99.9% 100%*

2017-17053 74.1% 97.5% 99.3%
2022-0492 72.2% 75.4% 88.4%
2017-11176 76.4% 90.5% 97.0%
2018-14634 77.9% 97.1% 99.1%
2021-3347 79.2% 92.9% 94.6%
2021-4154 84.9% 98.5% 99.4%
2022-0847 77.1% 99.9% 100%*

Average 77.4% 94.0% 97.2%
∗: 0 false positive using DAI

TABLE IX: Reduction of the
false positive rate due to DAI

2) Performance: We study the impact of DAI on the
performance of the protected application. Figure 14 depicts
the response time of applications protected by Phoenix and
the Ptrace solution. While idle or under normal attack rate
(Fig. 14a and Fig. 14b), our solution shows substantially less
overhead than its Ptrace counterpart, and the use of DAI does
not significantly affect its performances. Similar to Fig. 12,
the overhead of Phoenix under DoS attacks (Fig. 14c) depends
on the application, although the use of DAI consistently intro-
duces negligible overhead (e.g., at most 0.32 ms on MySQL).
Fig. 14d shows that on average, our solution introduces 50%
less and 1% more delay than Ptrace in the normal and DoS
cases, respectively. We conclude that the added DAI feature
allows Phoenix to benefit from the security advantage of DAI
(as shown in Table IX) while keeping the response time low.

3) CPU/Memory usage: We measure the CPU and
memory usage incurred by the use of DAI. Specifically, we
measure the CPU and memory usage of both Ptrace and
Phoenix when using DAI. Table X presents our results as
the difference of CPU consumption (in % of CPU time) and
memory consumption (in MB) for both the application and
the solution employed, with and without DAI. Results show
that the use of DAI in both Ptrace and Phoenix incurs little or
no extra consumption in the idle and normal cases, although
Ptrace introduces an extra +0.9% of CPU usage. However,
consistent with previous results, the overhead incurred by

Phoenix’s DAI under DoS attacks (+1.21) is higher than that
of Ptrace (+0.14) but still negligible.

Application Solution
CPU (%) Memory (MB) CPU (%) Memory (MB)

So
lu

tio
n Ptrace

(idle) −0.04 −0.17 +0.12 +0.02
(normal) −0.04 −0.17 +0.12 +0.03
(DoS) +0.05 −0.28 +0.14 +0.02

Phoenix
(idle) −0.06 −0.07 +0.02 −0.04
(normal) −0.07 −0.06 +0.03 −0.03
(DoS) −0.07 +0.21 +1.21 −0.09

TABLE X: Additional CPU and memory consumption of DAI
on the application and the solutions (Ptrace and Phoenix)

VI. DISCUSSIONS

Positioning and Interoperability. Phoenix can work in
tandem with other security solutions in surviving unpatched
vulnerabilities. For instance, it can complement existing works
that block unnecessary system calls [11], [24]–[26], [36], [40]
by further blocking common system calls shared between
vulnerabilities and applications, and it will not interfere with
those as it only updates (instead of replacing) Seccomp filters.
Phoenix also complements attack detection (e.g., Falco [17])
and analysis [1], [8], [20], [29], [30], [81] solutions by turning
their results into security actions to prevent recurring attacks.
Finally, the temporary protection of Phoenix is not meant to
replace, but to help techniques for developing security patches
through gaining more time for the vendors.

Evasive and DoS Attacks. Attackers aware of Phoenix
may attempt to defeat it by evading its protection through
varying the attack behavior (e.g., slowing down the attack or
mixing different attacks) or mimicking normal behavior (e.g.,
with equivalent system calls, modified arguments, or injected
irrelevant system calls). Attackers may also target Phoenix
itself by causing unacceptable performance overhead or
false positives. First, Phoenix already offers some protection
against such attacks, e.g., the existing sequence abstraction
feature can tolerate variation in contextual parameters such as
file names or port numbers, and the deep argument inspection
feature can avoid false positives with similar system calls
but different arguments (Section III-A). Second, although
our discussions focus on a single sequence of system calls,
the fact that Phoenix employs FSM for matching means it
can support more general forms of attack representation such
as regular expressions to defeat mimicry attacks employing
equivalent system calls [79]. Moreover, Phoenix can leverage
provenance techniques specifically designed for long-lasting
APTs [1], [29], [30], [54], [55] to tackle slow attacks, and
deploy multiple agents to monitor mixed or concurrent attacks.
Finally, our experimental results (Section V-B) show Phoenix
is resilient against DoS attacks employing high-rate requests.

However, Phoenix may also be improved in this regard.
First, the FSM model used by Phoenix may be replaced with
other more expressive models and well-known mechanisms
for capturing attack signatures (e.g., colored Petri nets, hidden
Markov models). This can help Phoenix address more general
cases such as multi-threading applications in which the
system calls to be blocked may be partially ordered instead of
appearing in a sequence (total order). Second, our abstraction
mechanism is only designed for variations naturally induced
by OS (e.g., PIDs and filenames), but not designed for
addressing malicious variations induced in evasive attacks. An
interesting direction is to leverage more powerful abstraction
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Fig. 14: Overhead of DAI on various container applications

mechanisms to cover a broader range of cases including
evasive attacks in which the exploits are deliberately modified
to vary the system calls and arguments. Third, crowdsourcing
between all affected users (similarly to the way the Snort
community shares rules) provides another promising solution
to address evasive and evolving attacks since it allows the
affected users to timely exchange information about the latest
variants of an exploit, and consequently update the sequences
of system calls and arguments to capture such variants, until
the official patch is released by the vendor.

Practicality of Sequence Identification. Our experiments
and user study clearly indicate that the Phoenix approach for
identifying malicious sequences of system calls is practical.
Moreover, through crowdsourcing, it only takes one expert
or vendor to succeed in identifying that sequence, which can
then be shared with all the users affected by this vulnerability
to block it with Phoenix (even if they are not yet aware of this
vulnerability). Finally, as explained in Section III-A, potential
inaccuracies in the malicious sequence can be mitigated with
a more conservative action plan (e.g., warning instead of
blocking) to avoid service disruption. Therefore, Phoenix
provides a practical approach that could significantly reduce
the attack window, compared to relying on the vendor to
develop its official security patch.

Scalability. Phoenix is scalable for large-scale applications
due to the following facts. First, the size of its FSM model is
bounded by the number of system calls involved in each CVE
(our observation shows most real-world CVEs involve no
more than 10 system calls). Second, the number of sequences
monitored by Phoenix at the same time (which is equal to
the number of FSM models) is bounded by the number of
unpatched CVEs inside a given system, which is typically
small in practice. Third, Phoenix only looks for one system
call per CVE and per FSM at any given time, and most
system calls will be quickly dismissed by Seccomp.

Beyond Containers. Although our implementa-
tion/experiments focus more on containers (as they have
become both popular among providers and attractive to attack-
ers), our general methodology can potentially apply to any OS
process, and hence an interesting future direction is to explore
its application beyond container environments. Particularly,
Phoenix can function as long as a Seccomp filter can be applied
to the process (which is the case in all Linux kernels no earlier
than v4.14). Our methodology can also be extended to other
operating systems that implement an in-kernel system call
restriction mechanism, such as pledge() in OpenBSD [62].

Vulnerability Coverage. Although we have mostly focused
on kernel-related vulnerabilities in our evaluation, Phoenix

can potentially be applied to any vulnerability that invokes a
sequence of system calls. There is strong evidence that kernel
exploitation usually requires multiple system calls, in the
kernel fuzzing literature (e.g., [22], [59], [74]), kernel exploit
literature (e.g., [13], [82], [83]), and IDS literature (e.g., [32],
[69]), e.g., “even the state-of-the-art kernel exploits would re-
quire multiple system calls to compromise the execution” [13].

VII. RELATED WORK

This section reviews related works on container security,
system call security, and provenance. First, container security
has recently attracted attention due to its widespread adoption.
Existing works [24], [26] block unused system calls in
containerized applications by first analyzing the applications
beforehand to generate an over-approximation of the required
system calls and then blacklisting the rest. Sysfilter [11]
and ChestNut [7] employ a similar approach but to protect
applications in general. SPEAKER [40] and Ghavamnia et
al. [25] reduce the attack surface of containers by considering
different Seccomp profiles during their booting and running
phases. The authors of C2C [26] and [36] alternatively
propose configuration-driven hardening solutions. While those
approaches are effective in reducing the attack surface by re-
stricting unnecessary system calls, none of them is designed to
block vulnerabilities exploiting common system calls required
by the benign applications, which is the main focus of Phoenix.

SFIP [6] captures the transition of applications’ system
calls using digraphs through static analysis, and then ensures
the integrity of such transitions using a modified Linux kernel
(in contrast, Phoenix simply requires a kernel module to be
loaded). Sifter [33] filters system calls for Android kernel
drivers based on eBPF through a whitelisting approach (in
contrast, Phoenix focuses on blacklisting). There also exist
solutions that perform stateful inspection of system calls
based on call stack information [21], [34], [57]. Specifically,
VtPath [21] leverages the so-called virtual paths (call stack
between pairs of consecutive system calls) to learn the normal
behavior and detect anomalous calls, while Mutz et al. [57]
also considers system calls arguments. PoLPer [34] blocks
anomalous system calls in the setuid family by learning the
calling process hierarchy, call context, and its arguments.

SPADE [23] and CamFlow [60] can collect, process, and
store system provenance data, while CLARION [8] extends
such capabilities to containers by adding Linux namespaces
handling and addressing potential fragmentation and ambiguity
issues. Following the idea of backtracking intrusions [35],
numerous works (e.g., [1], [20], [29], [30], [54], [55], [77],
[81]) explore the use of provenance data to investigate and
understand complex attacks. Particularly, HOLMES [55],
POIROT [54], ATLAS [1], Unicorn [29], and NoDoze [30]
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focus on identifying advanced persistent threats (APT) attacks
using provenance graphs. DepImpact [20] analyzes large
provenance graphs to extract a subgraph given an initial point
of interest (e.g., an alert). ProvTalk [77] correlates provenance
data at multiple semantic levels. ProvDetector [81] detects
stealthy malware by measuring a local outlier factor in prove-
nance graphs. As discussed in Section VI, Phoenix is comple-
mentary to those provenance-based approaches as it leverages
them to identify malicious sequences of system calls with a
different objective of preventing unpatched vulnerabilities.

VIII. CONCLUSION

We proposed Phoenix, a novel solution for temporarily
protecting containers against unpatched vulnerabilities while
awaiting for an official patch. Specifically, we developed a
solution for accurately and efficiently blocking a sequence
of system calls by combining Seccomp and Ptrace. We
also designed an approach for identifying such a sequence
from vulnerabilities through provenance analysis. Our
implementation and evaluation using CVEs and real data
showed that Phoenix could effectively mitigate vulnerabilities
under popular applications with negligible delay and overhead.
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