INTEL" VTUNE"™ AMPLIFIER

Kevin O’Leary — Intel Developer Products Division



Intel” VTune™ Amplifier

Tune Applications for Scalable Multicore Performance

Agenda
= |ntroduction
= Data Collection -
Rich set of performance data

= Data Analysis -
Find answers fast

= Flexible workflow -
— Useri/f and command line
— Compare results
— Remote collection

» Performance Analysis
Details
= Summary

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

) Threading Hotspots by CPU Utilization ~ @
Analysis € (& Log y Bottom-up Caller/Callee  Top-down Tree Platform

| CPU Time &
Function/ Call Stack Senal CPU Time Effective Time by Utilization ¥

Sidle ®Poor 0Ok @ideal @ Over
grid_intersect

- sphere_intersect

» GdiplusStartup

» CreateWindowExA
RegGetValueW
func@0x1003d2b0

» grid_bounds_intersect Os 0.126s @I 0Os 0s
GdipDrawimagePointRect! 0s 0.056s || 0s 0s

» » »
Spin Time Overhead Time

D: & -
WinMainCRTStartup (TID: 1
OMP Worker Thread #1 (TID.
OMP Master Thread #0 (TID:
OMP Worker Thread #2 (TID.
OMP Worker Thread #3 (TID
func@0x10068430 (TID: 115
Thread (TID: 15524)
func@0x10068430 (TID: 203
Thread (TID: 22124)
func@0x100579b0 (TID: 226

Thread

Grouping:| Function / Call Stack ~ || K| ]| %

~

|{| cPu Time

N

Viewing « 10f18 » selected stack(s)

31.9% (0.723s of 2.268s)

3_tachyon_omp.exelgrid_intersect - grid.cpp

3_tachyon_omp.exelintersect_object

s+0x18 - intersect....

3_tachyon_omp.exelshader+0x324 - shade.cpp:132
3_tachyon_omp.exeltrace+0x2e - trace_rest.cpp:71
3_tachyon_omp.exelrender_one_pixel+0x8a - tachyon_...
3_tachyon_omp.exelthread_traceSompSparallel@141+..
libiomp5md.dlll[OpenMP dispatcher]+0x79 - kmp_runtim...
libiompSmd.dil!__kmp_fork_call+0xf6a - kmp_runtime.cp...
libiomp5md.dill[OpenMP fork]+0x5b - kmp_csupport.cpp...
3_tachvon_omn exelihread trace+0x15h - tachvon _om

Scale Markers:
™ Region Instance
[J = OpenMP Barrier-
to-Barmier Segment

i [Tivead
ERunning
[Waits
#CPU Time
#aSpin and Overhead
[] ®CPU Sample
[J * Transitions

[7] CPU Utilization
#aCPU Time




Faster, Scalable Code, Faster

Intel” VTune™ Amplifier Performance Profiler

Accurate Data - Low Overhead
= CPU, GPU, FPU, threading, bandwidth... | seseime

Analysis Configuration ~ Collection Log  Summary ~ Bottom-up  Caller/Callee  Top-down Tree  Platform N
- - Grouping:| Function / Call Stack || K || £| % |§| CPU Time
CPU Time « ~ [ Viewing « 10f18 » selected stack(s)
M e a n I n gf u l A n a lys I S Function/ Call Stack Sernal CPU Time Effective Time by Utilization ¥ » Sk Time » | Overaad Time 3] 31.9% (0.723s of 2 268s)

Oide @Poor 00k @ideal @ Over 3_tachyon_omp.exelgrid_inte

- grid.cpp A

H H L | orig_intersect | 0s| 2.268s | 0s | [ 3_tachyon_omp.exelintersect_objects+0x18 - intersect....
u T h re ad I n g’ O p e n M P re g I O n effl C I e n Cy sphere_intersect Os 0s Os 3_tachyon_omp.exelshader+0x324 - shade.cpp:132
» GdiplusStartup 0s 1.203s Os Os 3_tachyon_omp.exeltrace+0x2e - trace_rest.cpp:71

. > CreateWindowExA Os 0s 0s 3_tachyon_omp.exelrender_one_pixel+0x8a - tachyon_...

- M e m O ry acce S S Sto rage d eVI Ce b RegGetvalueW 0s 0 0s 0s 3_tachyon_omp.exelthread_traceSompSparallel@141+...

1 » func@0x1003d2b0 0s 0.360s (NI 0s 0Os libiomp5md.dill[OpenMP dispatcher]+0x79 - kmp_runtim..

» grid_bounds_intersect 0s 0.126s Bl 0s Os libiomp5md.dill__kmp_fork_call+0xf6a - kmp_runtime.cp..

GdipDrawimagePointRect! 0Os 0.056s || 0s 0s v libiompsmd.dilljOpeniP fork]+0x5b - kmp_csupport.cpp..

E as : > \3. tachvon_omn exelihread, irace+0x15h - tachvan_om ¥/
y O: 4 - 0s 1s 2 3s 4s 55 6s 7s Scale Markers:

ot o 1 [ RN | || MNRARNR | 2 o

=OpenMP Barrier-
OMP Worker Thread #1 (TID. [0 =OpenMP Barrier.
OMP Master Thread #0 (TID:

= Data displayed on the source code
m Easy set_up’ no Specia[ Compi[es o e s 10 G0

func@0x10068430 (TID: 115. MCPU Time

I ad (1) et I =2y e e

Thread

to-Bamier Segment
] [Thread
ERunning

[J ®CPU Sample
func@0x10068430 (TID: 203.

[ .+ Transitions
Thread (TID: 22124) [ CPU Utilization

“Last week, Intel® VTune™ Amplifier

func@0x100579b0 (TID: 226, [ ‘ [ maCPU Time
helped us find almost 3X _
performance improvement. This Clglre. Cates
week it helped us improve the Principal Developer

performance another 3X." SAS Institute Inc.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Setting up a profile is easy

@ Local Host

WHAT

6 Launch Application

Specity and configure your analysis target: an application or a script toe
execule, Press F for more ditails,

Application:
flocaldiskflemptmatriclinugmatris. goc B | @

Application parameters:

#  Use application directory as working diteclory
Waorking directory

flocaldiskimarusarftemp matrisilinue

Advanced *

NTELVTONE NPLITERZITS

k Find your analysis direction

Microarchitecture
Want to see how
efficiently your code is
using the underlying

Hotspots
Want to find out where
your app spends time

and optimize your

algorithms? hardware?
Basic Hotspots General
Exploration

Advanced @

Hotspots Memory Access

o

Memory
Consumption

Parallelism

Want to assess the compute efficiency of
your multi-threaded app?

@ @

Concurrency Locks and Waits

@

HPC
Performance
Characterization

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

@ Memory Access o) (B

Measure a set of metrics to identify memory access related issues (for
example, specific for NUMA architectures). This analysis type is based

CPU sampling interval, ms

1

« Analyze dynamic memory objects

Minimal dynamic memory object size to track, in bytes
1024

v Evaluate max DRAM bandwidth

Analyze OpenMP regions

¥ Details

Collect /O APl data
No -

Stack size, in bytes

Intel Confidential — NDA Use Only




Full Visual Studio* Integration

4] tachyon Advisor - Microsoft Visual Studio
File Edit View Project Buld Debug Team Tools Test Analyze Window Help
- -2 W - & | Release - Win32 - P Local Windows Debugger- | 77 ; B -/ @ - @-(©-;

Il & Quick Launch (Ctrl+Q P o & x
signin A

Solution Explorer New Amplifier Result & X

@B-0-5 8B &
Solution ‘tachyon_Advisor” (6 projects)
% 1 sachyon seria @ Local Host o Hotspots =) (@

% 2_tachyon_annotated
% 3_tachyon_cilk (Intel C+ + 18.0)

* 3_tachyon_omp (Intel C++ 18.0)
% 3_tachyon_tob _ Identify the most time consuming functions and drill down to see time spent on each line of source code. Focus.

volwo ooy

% tachyon.common

®

@ Launch Application privleges
® User-Mode Sampling Overhead

Specify and configure your analysis target: an application or a script to execute.

pecity 'gure y ¥ 9 PP! P Hardware Event-Based Sampling @

« Inherit settings from Visual Studio* project:

C:\Users\jmarusar\Desktop\CustomersiMicrosoft Office - October 2018\tachyon_Advisor\Release\3_tachy v Show additional performance insights

? Details
C:\Users\marusar\Desktop\Customers\Microsoft Office - October 2018\tachyon_Advisortachyon\projects’
Advanced *
b | B | >

Output ~ 0 x
Show output from:  Intel VTune Amplifier 2019 messages - =

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Two Great Ways to Collect Data

Intel” VTune™ Amplifier

Uses OS interrupts Uses the on chip Performance Monitoring Unit (PMU)
Collects from a single process tree Collect system wide or from a single process tree.

~10ms default resolution ~1ms default resolution (finer granularity - finds small functions)
Either an Intel” or a compatible processor | Requires a genuine Intel” processor for collection

Call stacks show calling sequence Optionally collect call stacks

Works in a VM only when supported by the VM

Works in virtual environments (.., vSphere*, KVM)

- Easy to install on Windows
- Linux requires root (or use default perf driver)

No driver required Requires a driver

No special recompiles - C, C++, C#, Fortran, Java, Assembly

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.



Example: Hotspots Analysis

Summary View

B Collection Log

Elapsed Time : 5.554s

CPU Usage Histogram

This histogram displays a percentage ofthe wall ime the specific number of CPUs were

CPU Time 10.504s running simultaneously. Spin and Overhead time adds to the Idle CPU usage value.
Instructions Retired: 21,698.000.000
CPIRate 12578
. 287 o c
CPU Freguency Ratio 1.041 E -2
Total Thread Count: 9 E E
Paused Time 0s 158 @ §
= o
w o
@
=
Top Hotspots 157
This section lists the most active functions in your application. Optimizing these hotspot
functions typically results in improving overall application perfformance. 05e
Function Module CPU Time
grid _intersect 3_tachyon_omp.exe 5539s D
sphere intersect 3_tachyon_omp.exe 3247s
func@0x1002e59d libiomp5md.dll 0.148s .E_H m
shader 3_tachyon_omp.exe 0.117s
KeDelayExecutionThread ntoskml.exe 0.091s Simultaneously Utilized Lagical CPUs

“MA s applied to non-summable metrics.

Collection and Platform Info
This section provides information about this collection, including result set size and collection
platform data.

Average Bandwidth
Package Total, GB/sec Read, GBfsec Write, GBfsec
package 0 5715 3.504 2212

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Example: Threading Analysis

Bottom-up View

{&) Threading Hotspots by CPU Utiization ~ INTELVTUNE AMPLIFIER 2019
Analysis Configuration  Collection Log Summary Bottom-up Caller/Callee  Top-down Tree Platform IM

Grouping:| Function / Call Stack v || O] % ||| CPUTIme v|

CPU Time « ~ | Viewing « 10f18 » selected stack(s)
I Wait Time by Utilization

Function / Call Stack Serial GPU Time Effective Time by Utilization ¥ SpinTime | OverheadTime | Wide @Poor § Ok @ldeal B0 31.9% (0.723s of 2.268s)
| Oide @Poor SOk @ideal @Over | 3_tachyon_omp.exelgrid_intersect - grid.cpp -
» grid_intersect 0s 2.268s NN D Os 0s 3_tachyon_omp.exelintersect_objects+0x18 - intersect.cpp:108
sphere_intersect 0s 1.854s D D 0s 0s 3_tachyon_omp.exelshader+0x324 - shade.cpp:132
GdiplusStartup 0s 1.203: (NGNS 0Os Os 3_tachyon_omp.exeltrace+0x2e - trace_rest.cpp:71
CreateWindowExA 0s 0516 (D 0s Os 3_tachyon_omp.exelrender_one_pixel+0x8a - tachyon_omp.cpp:90
RegGetvalueW 0s 0.438s (N Os 0s 3_tachyon_omp.exelthread_traceSompSparallel@141+0x175 - tachyon_om...
func@0x1003d2b0 0s 0.360s (D Os Os libiompSmd.dill[OpenMP dispatcher]+0x79 - kmp_runtime.cpp:7137
grid_bounds_intersect 0s 0.126s Bl 0s 0s libiomp5md.dill__kmp_fork_call+0xféa - kmp_runtime.cpp:1031
GdipDrawimagePointRect| 0s 0.058s || Os Os liiempSmd diN[OpenP fork]+0x5b - kmp_csupport.cpp:341
pos2grid 0s 0.045s | 0s 0s ¥ | 3_tachyon_omp.exelthread_trace+0x15b - tachyon_omp.cpp:141
< > D bmabiiam amam mumliens s sk | OC D brmas  esa * a4 A =
D d == Scale Markers: e

B WinMainCRTStartup (TID: 1... —_Region Instance

8 - O =0OpenMP Barrier-

=| OMP Worker Thread #1 (TID.. to-Barier Segment
OMP Master Thread #0 (TID = [Thread -
OMP Worker Thread #2 (TID [Running
OMP Worker Thread #3 (TID [CWaits

#aCPU Time
#aSpin and Overhead
(] ®CPU Sample

func@0x10068430 (TID: 115...
Thread (TID: 15524)

func@0x10068430 (TID: 203 | v ] 1+ Transitions
CPU Utilization CPU Utilization
< > ] Pl Tima v

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Example: Memory Access Analysis

Bottom-up View

Over-Time DRAM
Bandwidth

Over-Time QPI/UPI
Bandwidth

Grid Breakdown by
Function
(configurable)

& Memory Access Memory Usage viewpoint (change) ©

INTELVTUNE AMPLIFIER 2018

13

Optimization Notice

© [ Collection Log @ Analysis Target /& Analysis Type & S y & Bottom-up | = Platform
D: <+ 0s 1s 2s 3s 4s 5s 6s + DRAM Bandwidth, GB/sec
E » package_0 40.000 " u Total, GBisec
% 40,6001 A ¥ - Read, GB/sec
= » package_l ’ o~ Write, GB/sec
=]
z + UPI Bandwidth, GB/sec
uﬁj » u Total, GBisec
g « -~ Incoming Data, GB/sec
= ¥ ~ Incoming Non-Data, ..
i « -~ Outgoing Data, GB/sec
9 8.728 going ]
g > package_1 | l i i o | i L — ¥ ~ Qutgoing Non-Data, ...
0] 8.728
ki 5
g| > Package 0 A L A ad L . i ¥ CPU Time
3 au CPU Time
-
€ package_1 5600.0%
= | I
03- package_0 5600.0%
(@]
Grouping: Function / Call Stack v Q ‘ |
Function / Call Stack CPU Time ¥ Memory Bound Loads Stores [ LLC Miss Count [ Average Latency (cycles) | I\r_
» multiplyl. omp_fn.0 24.920s D 44.2%  17,555,926,662  8,765,362,953 45,902,754 57 matrix.g
» func@0x18c60 0.045s 40.0 1,800,054 0 0 0 libgomp
p clear_page c_e 0.026s 0.0 0 0 0 0 vmlinux
» cOpy_page_rep 0.016s 89.0 0 0 0 0 vmlinux
» kiime_get 0.006s 85.0 900,027 1.800,054 0 7 vmlinux
p pci_confl_read 0.006s 0.0 0 900,027 450,027 0 vmlinux
0.006s 0 0 0 0 vmlinux

p apic_timer_interrupt

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.



Find Answers Fast
Intel” VTune™ Amplifier
Adjust Data Grouping

Function - Call Stack
Meodule - Function - Call Stack

Scurce File - Function - Call Stack
Thread - Function - Call Stack
... (Partial list shown)

Double Click Function
to View Source

Click > for Call Stack

Filter by Timeline Selection
(or by Grid Selection)

Zoom In And Filter On Selection
Filter In by Selection D}

Rermowe All Filters

Filter by Process
& Other Controls

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

] Threading Hotspots by CPU Utiization ~ @

INTELVTUNE AMPLIFIER 2013

Analysis Config Coll Log y Bottom-up | Caller/Callee  Top-down Tree Platform
Grouping:| Function / Call Stack || 0 CPU Time
CPU Time A~ Viewing « 10f18 » selected stack(s)

Function / Call Stack Serial CPU Time Effective Time by Utilization ¥ 31.9% (0.723s of 2.268s)
. Spin Time
Bide @Poor BOk @ideal 8 Over 3_tachyon_omp.exelgri - grid....
grid_intersect 0s 2.268s (D GENED 0 - 3_tachyon_omp.exelint cts+O0x.
intersect_objects 0s 2.101s (D D 0 3_tachyon_omp.exe! 0x324 - sha...
grid_intersect «— il 0s 0.167s B8 0 | 3_tachyon_omp.exeltrace+0x2e - trace_T...
sphere_intersect 0s 1.854s (NS GEED 0.974s ' 3_tachyon_omp.exelre +0...
GdiplusStartup PEREE ] 0, | 3_tachyon_omp.exe! $p...
<iomeiim "~ >ll< T ‘ > | libiomp5Smd.dill[Oy r]+0x7....
O: g = o & 25 3s 4s 5s Scale Markers:
TP U S EADP I Rl B
E OMP Worker Th 1 (TID. ] ] [J =“OpenMP Barrier-
= Worker Thread #1 ( ! to-Barrier Segment
PANRIRNEL ..
OMP Worker Thread #3 (TID \ Uil (L L & OWaits
P I £ [ maCPU Time
. [7] maSpin and Overhead
< > [7] ®CPU Sample
FILTER 100.0% o | | Any Process | Thread | Amg #ad - | | Any Module - | I | User functions + ~ || Show iniine fu Functions on

Tuning Opportunities Shown in Pink.
Hover for Tips




See Profile Data On Source / Asm

Double Click from Grid or Timeline

View Source / Asm or both CPU Time Right click for instruction reference manual

G
1] Summary | | #

(0[] IL

% Caller/Callee| | #% Top n Tree sks anrames | BT RS IS

Assembly grouping: [Address

y Lo

4

Sler:;e . Source CPU Time: Total ... 1 Address & SEiunre... AsselilBly CPU Time: Total ... 1 =
D ldle @ Poor 00k L Dldle @Poor DOk _
. . . 0.017s| 0x418b6d 580 crp dword pti  ap-0x130], Ox| 0120s| =
Qu ICk Asm naV|gat|0n u 0:418b74 580 jz Oxd418bed <| ok 58> 0379s[ f
0x418b76 Block 54:
Select sou rce to h Ig h I Ig ht Asm - e 0x418b76 581 mov edx, dword ptr [ebp-0x130 0.0905| %
ik 0d18b7c 581 mov eax, dword ptr [edx+0xd] 0.020s| —|
cur = g->»cellsa([voxindex]: i 5 0x418b7f 581 mov eck, dword ptr [eax] 3.8535_ -
580 while {cur !'= NULL) { 04995y 0418831 581 mov edx, dword ptr [ebp+0xc] 2,500< [ -
if (ry-»mbox[cur-»obij-»id] ! 0x418b84 581 mov eax, dword ptr [edx+0x10] 0.0305| E
582 ry->mbox [cur->obj-»id] = | 0547s0 0418687 581 mov edx, dword ptr [ebp+0xc] E
583 cur->obj->methods->interse 1‘?695- _ 0x418b8a 581 mov eax, dword ptr [eaxtecx*d 0.04Us| l II
584 1 =| 0x418b8d 581 crp eax, dword ptr [edu+0uc] 1.262< [0 E
585 Cur = cur->next; 05685' = | 0x418b90 581 jz Ox418bdé <Block 57> =
586 1 0.070s | |:|! (%418b92 Block 55: =
587 CUrvox.z += sStep.z; 0‘0?05| g Ox418b92 582 mov ecx, dword ptr [€ nx190) 0.3315.
588 if (ry->maxdist < tmax.z || cu 0‘1(](]5| ‘|>l]x418h98 582 mov edx, dword ptr [el 4] G.llﬁsl
Selected 1 row(s): 77955 | Highlighted 9 re. 's): 77955 -
< v [« [ b L L 8| « [ »

Scroll Bar "Heat Map” is an overview of hot spots Click jump to scroll Asm

Optimization Notice /j
Copyright © 2018, Intel Corporation. All rights reserved. ‘ |ntel

*Other names and brands may be claimed as the property of others.



Timeline Visualizes Thread Behavior

Intel” VTune™ Amplifier
v Transitions ik CPU Time

Locks & Waits Basic Hotspots Advanced Hotspots
L B LIy L ia L LR p L ate ke iey L L — T T T T T T T T T T
k= 29,868 29.87s 29.88s 29.89s 29.9: + |Ruler Area 29.94s 29,965 29.98 30.05s 30.1s 30.1¢
—r T : T ; ¥ armraran i % Frame frrers rmarren e G meTTn e T e n
WWinMainCRTStartu. . Thread 1 R —
rhread (0x13649) B Running e P S
B [Thread (ox1360) ) waits — } i
= [Thread (0x1374) o User Task _ _
[Thread (0x137c) Transition = THNNT YN I —
Trvead (ox1354) [9] Thread Concurrency R | mn s e i W
Mk Concurrency
Thread C mes ove mniia—— M e, e ek
read Concrrency [ st AL 8 « SISO | & smmnal | 1 .. ¢ Time
P / > | > [ »
/ - \ = User Task
V=¥ Frame Q{B.'.I'ransmon User Task
. Frame Transition Start: 20.958s Duration: 0.018s
H OVversS: |Start 29858 Duration: 0.017s wiWinMainCRTStartup (0x12d4) to Thread (0x138¢) (29.899s to 29.599s) Task Type: Smoke:FrameWork:execute():Other
Frame: 72 Sync Object: TEB Scheduler Task End Call Stack: Framework:Execute
Frame Domain: Smoke::Framework::execute()| | Object Creation File: taskmanagertbb.cpp
Frame Type: Good Object Creation Line: 318 CPU Time
Frame Rate: 59.8242179 94.233472%

Optional: Use API to mark frames and user tasks ®®Frame = User Task

Optional: Add a mark during collection [2 MekTimeine ]

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Tune OpenMP for Efficiency and Scalability

Fast Answers: Is My OpenMP Scalable? How Much Faster Could It Be?

OpenMP Analysis. Collection Time: 14.450

1) » Serial Time (outside any parallel region): 4.020s (27.7%)

Serial Time of your application is high. It directly impacts application Elapsed Time and scalability. Explore options for parallelization, algorithm or
microarchitecture tuning of the serial part of the application.

@ Parallel Region Time: 10.469s (72.3%)
9
Estimated Ideal Time: 7.115s (49.1%)
2) > Potential Gain: 3.354s (23.1%)

The time wasted on Load imbalance or parallel work arrangement is significant and negatively impacts the application performance and
scalability. Explore OpenMP regions with the highest metric values. Make sure the workload of the regions is enough and the loop schedule is..

Top OpenMP Regions by Potential Gain

This section lists OpenMP regions with the highest potential for performance improvement. The Potential Gain metric shows the elapsed time that
could be saved if the region was optimized to have no load imbalance assuming no runtime overhead.

OpenMP Region Potential Gain ~ (¥) Elapsed Time
4 » conj_grad_%$omp $parallel: 24 @/home/vtune/work/apps/NPB/MFB3.3.1/NPB3.3-OMP/CG/cg.f:514:695 3.294s5 22.7% 10.208s
MAIN__$omp$parallel: 24 @/home/vtune/work/apps/NPB/NPB3.3.1/NPB3.3-OMP/CG/cq.f:185:231 0.059s 0.4% 0.260s

The summary view shown above gives fast answers to four important OpenMP tuning questions:
1) Is the serial time of my application significant enough to prevent scaling?

) How much performance can be gained by tuning OpenMP?

) Which OpenMP regions / loops / barriers will benefit most from tuning?

) What are the inefficiencies with each region? (click the link to see details)

A WN

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Command Line Interface

Automate analysis

amplxe-cl is the command line:
—Windows: C:\Program Files (x86)\IntelSWTools\VTune
Amplifier\bin[32]64]\amplxe-cl.exe
—Linux: /opt/intel/vtune amplifier/bin[32|64]/amplxe-cl

& Configure Analysis mml!mmmm?
Heux amplxe-cl —-help Command Line @ Local Host = | @) Threading
Use Ul to setup =
1) Configure analysis in Ul o

2) Press “Command Line..."” button
3) Copy & paste command

oo lm

Great for regression analysis — send results file to developer
Command line results can also be opened in the Ul

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.



Compare Results Quickly - Sort By Difference

Intel” VTune™ Amplifier

Quickly identify cause of regressions.

= Run a command line analysis daily

= |dentify the function responsible so you know who to alert
Compare 2 optimizations — What improved?

Compare 2 systems — What didn't speed up as much?

Grouping: [Funcﬁnn [ Call Stack

Function / Call Stack CPU Time:Differencew
E FireObject::checkCollision SystemProceduralFire.DLL
FireQObject::ProcessFireCollisionsRange) 4.644s SysternProceduralFire.DLL 5.643s (] 0.999s ]
dllStopPlugin 3.765s RenderSystem_Direct3D9.0LL 9.184s [ (]

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.



Optimize Memory Access
Memory Access Analysis - Intel® VTune™ Amplifier 2017

INTEL VTUNE AMPLIFIER XE 2017

Tune data structures for performance

= Attribute cache misses to data structures
(not just the code causing the miss) | =

= Support for custom memory allocators e e — T Y
Optimize NUMA latency & scalability |

» True & false sharing optimization
» Auto detect max system bandwidth

CPU Time H
v ik CPUTime |

b siream.c.98 (381 MB ) 2,000,060
» Medium 2416385 @ 0
» Low 905295 8 2,000,060
» MCDRAM Flat, GB/sec 2408035 (D 6.000.180

Any Module v . Show inline fun v I Functions only .,I

s Easier tuning of inter-socket bandwidth Bandwidih Domain / Bandwidth Utiliz.. CPUTime ¥ | L2MissCount
_ _ v DRAM. GB/sec 840.503s NEEEEED 6,000,180
Easier InStall, Latest processors v High 508.635s M 4.000.120
. . . . b stream.c:100 (381 MB ) 2,000,060
»= No special drivers required on Linux* b stream c:93 (331 MB) 2,000,060
‘™ . » Medium 241638 D 0
» |ntel® Xeon Phi™ processor MCDRAM (high |, .. %0525 8 2000.060
bandwidth memory) analysis » MCDRAM Flat, GB/sec 840.803s (INEE_ED 6,000,180

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. ‘ |ntel . 16

*Other names and brands may be claimed as the property of others.



Memory Object Identification

Microarchitecture Analysis

General Exploration v Analyze dynamic memory objects

Minimal dynamic memory object size to track, in bytes

TSX Exploration
1024 .
TSX Hotspots Sort by LLC Miss
View allocated Count
objects
Grouping: Memory Object / Function / Call Stack v &|IQ | Lo ‘
Memory Obiect / Function / Call Stack [ cruTime Memory Bound * Stores ¥ | LLC Miss Count * | Average Latency (cycles) | Module | Function
» memTest.out!main ( 2 MB ) |236,276,88... | 20,334,310,011 | 83,705,022/
» memTest.cpp:10 (4 KB ) 0 108,903,267 0 0
» memTest.cpp:20 (4 KB ) 0 66,601,998 0 0
(> memTestepp:ll (4KB) ...V 64801944 O D :
b memlestepp:2l (AKB) 88800 D |
» memTest.cpp:25 (4 KB) 0 53,101,593 0 0
» memTest.cpp:18 (4 KB ) 0 53,101,593 0 0
FILTER 0.0% ® | Any Process v Thread Any Thread v Module Any Module s Show inline functions v = Functions only w

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Memory Object Identification

i Memory Access Memory Usage viewpoint (change) ©
1 [Jcollection Log @ Analysis Target A Analysis Type & Summary & Bottom-up ‘L Platform [ memTest.. & memTes -

Source Assembly Q, | Assembly grouping: Address Assembly VieW alSO
. S available
& int main() {
] omp_set _num_threads(16) ; 0
L B Double-click to see
10 int * ab@= new int[SZ]; . . .
int ® alm new int[SZ]; a_llocatlon site in source
12 int * a2= new int[5Z]; view
13 int * a3= new int[5Z];
14 int * ad= new int[5£];
15 int * a5= new int[SZ];
16 int * ab= new int[5Z];
17 int * a7= new int[S5Z];

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Storage Device Analysis (HDD, SATA or NVMe SSD)
Intel® VTune™ Amplifier

Disk Input and Output Histogram
Operation Type: |write w

Are You |/O Bound or CPU Bound?

= Explore imbalance between I/O operations .|}
(async & sync) and compute threshotds for
= Storage accesses mapped to ) I “ I /O Queue Depth
the source code : R —— W;:*LOIV/VgaVSV‘;it
= See when CPU is waiting for I/O P s :
= Measure bus bandwidth to storage = T =P
& |Thread (TID: 0) . ik CPUTime
Latency analysis — A T

1/0 Queue Depth
Mk 1/0 Queue Depth

= Tune storage accesses with
latency histogram ; T Do

major fault

Page |/0 Queus

Faults

. . . . . ogfdﬂ‘ﬁda [1®Fa
= Distribution of I/O over multiple devices =8 S — L (A,
g‘g Bl /dev/sda W Cpﬁaltfo it
=" Uk Active

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.



A Quick Question for the Audience

Ym & ' Pl ¥

) apsernce - MO Visual Studo
Be 92 Yew DBoedt Gud Detug Tean Joor  Tep BeStape  Agsyde  Window  Help e B
e - S - I . * | Release = oS4 = P Locs Waadown Debugper = % o ‘. si o 3% R &

e C caneiinto & cent -l B @) -

8 1otet Viune Armpitier

%0 A0 Welcome Congure Analysis » = (=) B spnerace
B rooom
& connaure INTELVTUNE AMPLIFER 2019
@ Local Host o Hotspots e [
oWn 10 see lime spent on ead

= Mentity the most Bme consurmeng fu
k:—"_ .4 e o o $he creabesat " - —
MZason eforts o je for the greatest perfor ce o Sohdtion apserace’ {1 project

mpact. Lexorore &l

O Launch Application i b o1 Extermut Depesdences

LI

RE- o3 COP
p.

h e

e
meitage
My Ampliier Rowalts - spnervice

N OF 3 SCIipt 1o exeose. o UserMoce Samping

»

¥

»
Specity and configure your anadysis 1aeget: an appik > o
Hardware Evert-Based Sarping » =t
» Viare Armpiiter Resdty
»

« Inherit settings tom Visual St

vt

D) spnervcegarts

8 Whervce VCab

' Show adatonal performancs insights

* Details

Solutson Exp.

Advanced * ~
o .

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




TANGENT ON A COUPLE OTHER TOOLS



(intel®

INTEL" ADVISOR 2019

VEUTURIZATIUN OPTIMIZATION AND THREAD PROTOTYPING

Vectorization Advisor
* Threading Advi
* Flow Graph Analyzer



Get Faster Code Faster! Intel® Advisor

Thread Prototyping

Have you:

» Threaded an app, but seen little benefit?
» Hit a “scalability barrier"?

= Delayed release due to sync. errors?

Data Driven Threading Design:

» Quickly prototype multiple options

» Project scaling on larger systems

» Find synchronization errors before implementing threading
= Design without disrupting development

Add Parallelism with Less Effort,
Less Risk and More Impact

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Scalability of Maximum Site Gain
128

fidi—
32u
16

1o =
ks ﬁl H
R

LB D) 3315 LUNLUIXER A

e

L o S LY. Ty oy
R L =

Target CPU Count

“Intel® Advisor has allowed us to quickly
prototype ideas for parallelism, saving

developer time and effort”

Simon Hammond
Senior Technical Staff
Sandia National Laboratories

http://intel.ly/advisor-xe



http://intel.ly/advisor-xe

Get Faster Code Faster! Intel® Advisor
Vectorization Optimization

Have you: Data Driven Vectorization:

= Recompiled for AVX2 with little gain = What vectorization will pay off most?

= Wondered where to vectorize? = What's blocking vectorization? Why?

* Recoded intrinsics for new arch.? = Are my loops vector friendly?

= Struggled with compiler reports? = Will reorganizing data increase performance?

= |s it safe to just use pragma simd?

(@] Elapsed time: 125,725
FILTER:| AllModules ~ || AllSources +|[ Loops And Functions +|[ All Threads ~

"Intel® Advisor's Vectorization Advisor

) Summary | @ Survey & Roofine. %) Refinement Reports - permitted me to focus my work where it
[ Function Call Sites and Loops | @& | ¥ i::: Self Timew | Total Time | Type \\:’:‘c{c'::mn? really matte red . Whe n yo u have on ly a
3]0 in main at roo a rized (B... . . .

e T e Mostietm] s Mectend o limited amount of time to spend on
i : M T741s T41s calar novector dire.... g g g 9. 0O g
= | D TR R [ T optimization, it is invaluable."
247] (] 6.967s @ 6.9675) Vectorized (Bo...
138] a 69405@ | 69495)  Scalar @ novector dire... ) ) )
260] g 3.285s0 3.285s) Vectorized (B Gll [es CI Va rl O
199] 245451 2.454s| Vectorized (B . .
= | 0 22t | ool v o Senior Software Architect
5O [loop in main at roofline.cpp:256] g € 10ppo.. 004251 33270 Scalar :inner loop w... IriSh Cen tre for High-End Computing
ain at roofline.cpp:304] 0.040s | 18.43450 Scalar loop w

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.



What is a Roofline Chart?

A Roofline Chart plots application performance against hardware limitations.

Performance (GFLOPS) k |§| « % & | [« Use Single-Threaded Roofs © =

* Where are the bottlenecks?

Vector FMA Peak |j:9ingle—_thcaadéc]}-u42 ]_G,GFY_O_FTE'

= ?E’ Vector Add Pegk fsingle-thrgadad). 72.89 GFLOPS

42.16

 How much performance is
being left on the table?

. [ ] -
*  Which bottlenecks can be e el © _
addressed, and which should e e @
® ange e oo
be addressed? 08 et
«  What's the most likely cause? - et nensty (LOPBy)

Roofline first proposed by University of California at Berkeley:
Roofline: An Insightful Visual Performance Model for Multicore Architectures, 2009

. ?
Wh at are th en eXt Ste pS - Cache-aware variant proposed by University of Lisbon:
Cache-Aware Roofline Model: Upgrading the Loft, 2013

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.


https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf
http://www.inesc-id.pt/ficheiros/publicacoes/9068.pdf

INTEL" INSPECTOR 2019

MEMORY & THREAD DEBUGGER



Debug Memory & Threading with Intel® Inspector

Find & Debug Memory Leaks, Corruption, Data Races, Deadlocks

e INTELINSPEGTOR20 Correctness Tools Increase ROl by 12%-21%
AL e B s et d e malar ] & s a " Errorsfound earlier are less expensive to fix
Da (& [Type |Sources Modules State * = Races & deadlocks not easily reproduced
+P1 (%] Data race find_and_fix_threading_errors.cpp find_and_fix_threading_errors.exe Re New . . .
Bp2 ® Data race winvideo.h find_and_ﬁx_threadin_enors.exe * Confirmed | Memory errors are hard to flnd Wlthout a tool
Y | 10f10 B ?
e e e el Debugger Integration Speeds Diagnosis
2 _ fi i rmeeang o] @ Breakpoint set just before the problem
e g ik, : = Examine variables and threads with the debugger

Write winvideo.h:270 next_frame find_and_fix_threading_errors.exe g_updates
|EEEEEEEEEEE) What's New in 2019 Release

i \l Find Persistent Memory Errors

» Missing / redundant cache flushes

» Missing store fences

» Qut-of-order persistent memory stores
Learn More: bit.ly/intel-inspector = PMDK transaction redo logging errors

1Cost Factors — SqEre Project Analysis - CERT: U.S. Computer Emergency Readiness Team, and Carnegie Mellon CyLab NIST: National Institute of Standards & Technology: Square Project Results

Optimization Notice
Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.



Debug Memory & Threading Errors

Intel” Inspector 2 Locate Memory Problems INTELINSPECTOR 2019

9 D Target & Analysis Type [ Collection Log “ @ Summary '3

Find and eliminate errors

= Memory leaks, invalid access...
» Races & deadlocks

= C,C++ and Fortran (or a mix)

Sources State Modules| ~

Type Object Size

Mismatched allocation/deallocat... gdivideo.cpp R New find_a...

Memory leak gdiplusgraphics.h 507904 Re New find_a...
#=HPe @ Memory leak mlock.c 32 R New tbb_de ...
EHPS @ Invalid memory access dynamic_link.c... + Fixed find_a...
EP. & Memory not deallocated api.cpp; util.cpp ... 10376 R New find_a...

Y | 10f7 B |Al

Descripti...| Source Funct...| Module

Simple, Reliable, Accurate e e
= No special recompiles i .~ oo i e
Use any bUild, any Compiler1 Clicking an error instantly displays source
Analyzes dynamically generated or linked code code snippets and the call stack
Inspects 3" party libraries without source

Productive user interface + debugger integration | Fits your existing process
Command line for automated regression analysis

Object ...| Off... | Variable
block allocated at find ...

unsigned

[
[

for (unsigned int i=0;i<=(mboxsize||tbb debug.dll'l

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.



DIVING DEEPER INTO ANALYSIS



Introduction to Performance Tuning

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

_ Think performance wise
> (app/sys level)

A4
- Choose performance.

=> - yping effective solutions
I
I T
i Y Apply performance
i __ Implementation optimization and check
:' > P - results
i - Add performance
P=> regressions to test stage
i
i v
i Collect and analyze
' - - performance related
. issues from users

v




System-Level Profiling — High-level Overviews

c c c |
i General Exploration General Exploration viewpoint (change) @ (e e e 0.5 1s 1.5s 25 25s 3s 355 4,55 55 5.55
looooooooolloooonoonoloooonooooloooon g oo 0 ooool oo oo
4 Collection Log @ Analysis Target A Analysis Type | [# Summary | &% Bottom-up & core_ 1
(~) Elapsed Time : 6.306s cpu_2
Clockticks: 30,869,300,000 cpu_3
Instructions Retired: 25.745.000,000 0
CPI Rate - 1199 & & core.
MU Reliability - 0.972 cpu_ﬂ
¥} Front-End Bound *: 7.2%  of Pipeline Slots 1
) Bad Speculation 6.0% R of Pipeline Slots E cpu_
Branch Mispredict =: 5.9% R of Pipeline Slots -
Machine Clears ~: 0.1%  of Pipeline Slots
(© Back-End Bound “: 64.1% Mk ——
3 I - o,
> Memory Eloun_d : 33.3:’0 3 @ CPU Usage Histogram
&) Core Bound = 30.8% K This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead
Diwvider =: 0.0% time adds to the Idle CPU usage value.
(¥ Port Utilization 295% K
(3 Retiring - 22 7% Te |
- = L
Total Thread Count: 9 1500ms - E g
Paused Time =: Os 3 21
5 B
1000ms - EI
|
|
500ms -
oms -

Simultaneously Utilized Logical CPUs

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




System-Level Profiling — Process/Module Breakdowns

EHotspots viewpoint (change) @ I
q Collection Log €2 Analysis Target % Analysis Type [ Summary @& Bottom-up = ¢ Caller/Callee &% Top-down Tree fl Platform pr
Grouping:| Process / Module / Function / Thread / Call Stack

Process / Module / Function / Thread / Call Stack CPUTime ¥ =!| Instructions Retired | CPlRate CPU Freguency Ratio Module

w chrome.exe 3.443s 15.4% 1.441 0.963
» chrome_child.dll 3.022; N 14.6% 1.301 0.944
p ntdlldll 02425 0 0.6% 3171 1.103
p ntoskrnl exe 0179s 1 0.2% 7143 1.064
» EXCEL.EXE 2.750s (N 14.3% 1.312 1.022
» Explorer. EXE 2,595 D 10.3% 1.677 0.998
» Syncplicity.exe 1.140s D 4.1% 1.923 1.039
w OUTLOOK.EXE 0.891s 0 1.6% 3.723 0.918
» mso.dll 0.141s | 0.2% 4719 0.812
w ntoskrnl exe 0.080s | 0.2% 2884 1.181
» ExEnterPriorityRegionAndAcquireResourceExclusive || 0.004s 0.0% 0.400  ntoskrnl.exe ExEnterPriorityRegionAndAcquireResourcet
» ExAllocatePoolWithTag 0.004s 0.0% 1.000 1.000 | ntoskrnl.exe ExAllocatePoolWithTag
- » KeSetEvent 0.004s 0.0% 0.200 | ntoskml.exe KeSetEvent
» ObReferenceObjectByHandleWithTag 0.004s 0.0% 0.800  ntoskrnl.exe ObReferenceObjectByHandleWithTag
<

COQKCoCe |05 05 15 2 2% 3 35 A A% % Sk & 65 T 7% B 85 % 0% 10 105 s TS s 15 T 135 s 14,
Thread (TID: 9844)
Thread (TID: 15272)
Thread (TID: 16316)

hvead (110: 975¢) | |

Thread (TID: 19836)
Thread (TID: 16588)

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




System-Level Profiling — Disk I/O Analysis

Disk Input and Output Histogram

Are You |/O Bound or CPU Bound? Operation Type: |wiils v
* Explore imbalance between I/O opera
(async & sync) and compute
« Storage accesses mapped to JI. I “ I
the source code
See when CPU is waiting for I/O QOQHQ-Qe Siohme ' ibi: m

filecopy (TID: 126153)

Thread w
-~ - Running

* Measure bus bandwidth to storage Bl s T 12 910 conen e
] ) rea 3 v [v] sk CPU Time
 Latency analysis | $ g oo A CIar
* Tune storage accesses with e
latency histogram T o
. . . . . ngdevfsda ¥ Fast
« Distribution of I/O over multiple devices fs‘*. e TN
g% A /dev/sda W cpﬁalt;OW it
> amplxe-cl -collect disk-io -d 10 = i Actve.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.



System-Level Profiling - HPC Characterizaton

CPU Utilization *: 60.9%

- Ay CPU UL : 14,611 Qut of 24 logical CPU:
Three Metric Classes —— T oo
Parallel Region Time 119865 (99.9%)

° ( Pl | l |t| llzatlon Estimated Ideal Time 82055 (68.4%)
OpenMP Potential Gain 3.781s (31.5%)
The time wasted on load imbalance or parallel work arrangement is significant and negatively impacts the application perfarmance and scalability. Explore

) Logl Cal CO re 0/0 u Sage OpenMP regions with the highest metric values. Make sure the workload of the regions is enough and the loop schedule is optimal.

Top OpenMP Regions by Potential Gain

* Includes parallelism and o
OpenMP information OpenP Memory Bound -: 91.8%

:—?ﬁ% Cache Bound = e
e Memo ry Bound ] DRAM Latency Baund - © FPU Utilization : 1.3%
. B Kk d hl L of M5 DRAM Bandwidth Bound v G e @ anzen o
rea OWn eaC eve o MAN...54 This metric represents a fraction of © Ffl;:;:::ezd;mnstr 5 gnx
H N main memary (DRAM). This metric d ) % of 128-bit RN
the memory hierarchy ot vaingdota oy n N raen® o

- . % of Scalar FP Instr. 6.9%
. FP Arith/Mem Rd Instr. Ratio = 0.264 %

* FPU Utilization NUMA: f Remote Aceses

A significant amount of DRAM loads Top 5 hotspot loops (functions) by FPU usage

H H This section provides information for the most time consuming loops/functions with floating point operations
* Float t GFLOPS and
Oa. In Oln an same core, or at least the same pack

©

Function CPU Time ' FPU Utilization = Vector Instruction Set ~ Loop Type

d .t Loop at line 575 in conj_grad_$omp3$parallel@517 126.149s lex Kk SSE2(128) & Body

e n S I y [Loop at line 678 in conj_grad_%omp$ parallel@517] 5.004s 1.7% SSE2(128) Body

[Loop at line 575 in conj_grad_%omp$parallel@517] 2.678s 2.1% [Unknown]  Remainder

Loop at line 573 in conj-grad_$omp3$parallel@517 0.995s 4.0% S5E2(128) Body

[Loop at line 661 in conj_grad_$omp$parallel@517] 0.952s 13%  SSE(128); SSE2(128) Body

> amplxe-cl -collect hpc-performance -d 10 (omers) 2457 A oa

*N/A & applied to non-summable metrics.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




System-Level Profiling — Memory Bandwidth

B A B B HPC Performance Characterization Copy

-/ Algorithm Analysis Analyze important aspects of your application performance, including CPU utilization with additional details cn OpenMP
A Basic Hotspot efficiency analysis, memory usage, and FPU utilization with vecterization information
asic motspats For vectorization optim zation data, such as trip counts, data dependencies, and memory access patterns, try Intel Advisor.

A Advanced Hotspots It identifies the loops that will benefit the most from refined vectorization and gives tips for improvements.

A Concurrency The HPC Performance Characterization analysis type is best used for analyzing intensive compute applications. Learn more
A Locks and Waits (F1)
~/l=Z Compute-Intensive Application Analys CPU szmpling interval, ms: 1

P.¥ HPC Performance Characterization
~/lZ Microarchitecture Analysis

B General Exploration ~ Analyze memory bandwidth

B Memory Access

-B TSX Exploration

—knob collect-memory-bandwidth=true

™ Evaluate max DRAM bandwidth

T T T ]
Qe Q-Ce 9850ms 9900ms 9950ms 10000ms 10050ms 101010124.28ms|50ms 10200ms 10250ms 10300m

; 40.0]

‘s ® 26.7

é B package_0 i

= 40.0]

s |Epackage_1 26.7

= 13.3

x

(=]

: 16.5]

+ |@ package_0 11.0]

§ 5.5

€ 16.5]

2 |Epackage_1 1%-2_

= .

a

" package_1 3600%

E package_0 RIS

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Application Performance Tuning Process

g =

\

5

M

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.



Find Hotspots

Qo
2
Q-

& Basic Hotspots Hotspots by CPU Usage viewpoint (change) @ ""EI_ "m"[ MPUFIER 2']13
9 (D Analysis Target 4 Analysis Type Collection Log ~ [#] Summary @& Bottom-up & Caller/Callee @& Top-down Tree i<l Platform 3
Grouping: | Function / Call Stack fw .@EI CPU Time v
Function / Call Stack CPUTime ¥ = Module Function (Full) Source File Start Address ~ | Viewing - 10f19 . selected stack(s)
» grid_intersect 1_tachyon_serial.exe grid_intersect 33.5% (2.033s of 6.063s)
p sphere_intersect 2.943s 1_tachyon_serial.exe sphere_intersect sphere.cpp | 0x408a70 1_tachyon_serial_exelgrid_intersect -... A
p MsgWaitForMultipleObjects 0.450s user32.dll MsgWaitForMultipleObjects 0x6baddbcl 1_tachyon_serial exelintersect_obje. .
p grid_bounds_intersect 0.411s 1_tachyon_serial exe grid_bounds_intersect grid_cpp 0x40cf20 1_tachyon_serial_exelshader+0x346 ..
» GdipDrawlmagePuointRect! 0.172s gdiplus.dil GdipDrawlmagePuointRect| 0x1003a2b0 1_tachyon_serial exeltrace+0x2e - tr
p SwitchToThread 0.121s KemelBase.dll SwitchToThread 010021460 = 1_tachyon_serial.exelrender_one_pi...
p shader 0.092s 1_tachyon_serial.exe shader(struct ray *) shade_cpp 0x406e60 4 1_tachyon_serial.exelparallel_thread..
p tri_intersect 0.070s 1_tachyon_serial exe tri_intersect triangle.cpp | Ox408d60 1_tachyon_serial exelthread_trace+..
» posZgrid Os | 1_tachyon_serial.exe pos2grid grid.cpp 0x40d1b0 1_tachyon_serial_exeltrace_shm+0x._.
b CreateWindowExA user32.dil CreateWindowExA 0x6ba91ch0 1_tachyon_serial exeltrace _region+0..
» libm_sse?_sqrt_precise msver20.dil libm_sse2_sqrt_precise 0x10042608 1_tachyon_serial exelrenderscene+0...
» Raypnt 1_tachyon_serial.exe Raypnt(struct ray * double) vectorcpp | 0x4034d0 1_tachyon_serial.exelr_renderscene...
P libm_sse2_pow_precise 0.050s msver120.dIl libm_sse2_pow_precise 0:1003d6f3 || 1_tachyon_senal.exeltachyon_ndeo....
1_tachyon_serial_exelthread_videot+...
QracQe | 0 T M E 2% B 3% 4 4% 35X e 0% T T G 8k % 9% % W% Ve % Jx @) @ v
hvead video (1D 171. I A\ B A | S LA | SR A A S L S——. 5 Running
WinMain R tartvp (.| | ik CPU Time
Mud Spin and Ov...
[]® CPU Sample
CPU Usage
Uk CPU Time
lud Spin and Ov...

> amplxe-cl —-collect hotspots

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

./myapp.out

\




o o

IS .
o0
° Drill ‘to Sou rce Or assembly il Basic Hotspots Hotspots by CPU Usage viewpoint (change) @

4 (D Analysis Target  f& Analysis Type [Z] CollectionLog [fl Summary % Bottom-up & Caller/Callee &% Top-down Tree {22 Platform grid.cpp

° Hottest areas easy to ID Assemtly || | 0| (]| [$1] [ ]| Assembly grouping: |address

— *
CPU Time: Total = cpU

. _ :
* Is this the expected behavior | o | | e

i 1 O /dle @ Poor 00k @ Ideal @ Over Time | Self
» Pay special attention to loops |= —

Find Hotspots

563 voxindex += step.x;
564 tmax.x += tdelta.x;
and memory accesses 565 curpos = n¥p;
366 n¥p.x += pdeltaX.x;
567 n¥p.v += pdeltaX.y:
368 n¥p.z += pdeltaX.z;
569 1
® Learn hOW your Code behaves 570 else if (tmax.z < tmax.y) { 04%l 0.0% 0.0% 0,040z gridicpp
. . 571 cur = g->cells[voxindex]: 2.9% ([ 0.0% 0.0% 0.321s grid.cpp
° Wh t d d th p l 572 while {cur != NULL) {
a I e CO m I er 3 if {(ry->mbox[cur->ocbj-»id] '= ry-»serj 4% .0% 2.497s| grid.cpp
574 ry->mbox [cur->obj->id] = ry-»serial; 7.396_ 0.0% 0.0% 0.817s grid.cpp
ge n e rate 575 cur->obj->methods->interaect (cur->ok 7.9% (I 0.0% 0.0% 0.406s grid.cpp
576 }
° Wh t th p 577 cur = cur-snext; 5.3 [ 0.0% 0.0% 0.699s| grid.cpp
at are tne expensive i .
579 CUIVOX.Z += Step.z; Q;‘-::I 0.0% 0.0% 0.038s
State m e nts 580 if (ry->maxdist < tmax.z || curvox.z == [ L::|
581 break;
582 voxindex += step.z*g->x3ize*g->ysize;
583 tmax.z += tdelta.z; e | 0.0% 0.0% 0,060 gridepp
584 curpos = nip;
385 nip.x += pdeltaZ.x;
586 nZp.y += pdeltaZ.y;
Sele... 2.4% 0.0% 0.0% 2497
< 2>

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Determine Efficiency

{= General Exploration Hotspots viewpoint (change) @

< €5 Analysis Target & Analysis Type Collection Log & Suramary ¢& Bottorn-up &% Caller/Callee &% Top

Grouping:éFunction ! Call Stack

Function / Call Stack

b sphere_intersect

p grid_bounds_intersect
» shader

P tri_intersect

» posZgrid

» Raypnt

CPUTime ¥ &
Effective Time by Utilization = R 2 ] @
§idle @Poor 00Ok @ideal @ Over Spin Time Querhead Time

3.685s |IEED L Os 0s
0.434s 0| 0s 0s
0.101s ||| 0s Os
0.098s ||| 0s 0s
0.094s || 0s 0s
0.073s || 0s 0s

o o

3 A
o0
izl General Exploration General Exploration viewpoint (change) &

N Analysis Target A Analysis Type Collection Log  [{! Summary &% Bottom-up
Grouping: | Function / Call Stack

Function / Call Stack CFl Rate Retiring =l Fro
p grid_intersect :

p sphere_intersect 1.049 23.9%
p grid_bounds_intersect 1.714 16.5%
p shader 1.414 16.3%
» posZgrid 1.213 50.9%
p tri_intersect 1.105 23.8%
» Raypnt 1.308 39.2%
p func@0x140150ef0 9.714 80.9%
p libm_sse2_sqgrt_precise 2241 0.0%

Look for Parallelism, Cycles-per-Instruction (CPI), and Retiring %

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.



o O
3 \
0

Coarse- Graln Locks

Address Parallelism Issues

y ,
e e e ) 6s 6.55 7s 7.55 85 855 [] Thread

R

 Use Concurrency Analysis to ensure you're ||~ - s

. . | - l Beal =
using all your threads as often as possible. o T D S

1 Mk Concurren .
OMP Worker Thread #3
01 d74)

« Common concurrency problems can often Thread Imbalance

Th

. . . . O O—C» 145 15s 165 1Js 185 185 T
be diagnosed in the timeline. o e o
OMP Worker Thread #1 ] il CPU Time
| (0:d624) Transitions
,E OMP Worker Thread #2 CPU Usage
. . . . (el T —— i CPU Time
OMP Worker Thread #3
* Switch to the Locks And Waits viewpoint or o ) O st oy

run a Locks and Waits analysis to High Lock Contention

. t . t t t i QPO [¥] Thread
Investigate contention. | o1
) o]
OMP Worker Thread #1 | \' B 11T 1 l! MS’U Tt'"‘E
- ransitions
[t H H (N |||”HHH |||| ml
= [OMP Worker Thread #2 i [ €PU Usage
01550 ] ik CPU Time
OMP Worker Thread 23 || |II | THE Thread Concurrency
e lik Concurency

Optimization Notice /j
Copyright © 2018, Intel Corporation. All rights reserved. ‘ |ntel

*Other names and brands may be claimed as the property of others.



Address Hardware Issues

FRONT END BACKEND
EXECUTION UNIT RETIREMEN

m----------------------------‘ //
MI----------------------------
ml----------------------------‘

Fetch & Decode
Instructions, Predict Re-order and Commit Results to
Branches Execute Instructions Memory

The X86 Processor Pipeline (simplified)

Copyr ght@ 2018 Intel Corporation. All rights reserved.
*Other and brands mayb llmed s the p operty of others.




Pipeline Slot Categorization wop

allocated

* Pipeline slots can be sorted into one
of four categories on a given cycle by
what happens to the uop in that slot. Lop ever o

* Retiring  Back End Bound retired? stalled?
* Bad Speculation * Front End Bound

* Each category has an expected range - Bad Back-End | Front-End
of values in a well tuned application. Speculation Eoune EELNG

App. Type: Client/Desktop Server/Database/ High Performance
Category Distributed Computing

Retiring

Bad Speculation
Front End Bound
Back End Bound

Optimization Notice

Copyright © 2018, Intel Corporatio
*Other names and brands may be ¢




The uop Pipeline
Categorizing the hotspots

* Modern CPUs “pipeline” instructions. This pipeline can be generally divided
into two sections.

* The Front End fetches instructions, decodes them into uops, and allocates them to...

* The Back End, which is responsible for executing the uops. Once successfully completed,
a uop is considered “retired”.

« A Pipeline Slot is an abstract representation of the hardware resources
needed to process a uop.

* The front end can only allocate so many uops per cycle, and the same is true
of the back end and retiring them. This determines the number of Pipeline
Slots. As a general rule, this number is four.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.



Pipeline Slot Categorization
Retiring

This is the good category! You want as many of your slots in this category as
possible. However, even here there may be room for optimization.

FRONT END BACK END
EXECUTION UNIT RETIREMEN '

m--------------------- /

i ettt e et/

Fetch & Decode
Instructions, Predict Re-order and Commit Results to

Branches Execute Instructions Memory

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Pipeline Slot Categorization
Bad Speculation

This occurs when a uop is removed from the back end without retiring;
effectively, it's cancelled, most often because a branch was mispredicted.

FRONT END BACK END
EXECUTION UNIT RETIREMENT

m---------- 4----------.

m---------- 4----------.

Fetch & Decode
Instructions, Predict Re-order and Commit Results to
Branches Execute Instructions Memory

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Pipeline Slot Categorization
Back End Bound

This is when the back end can't accept uops, even if the front end can send
them, because it already contains uops waiting on data or long execution.

FRONT END BACK END
EXECUTION UNIT RETIREMENT

Fetch & Decode
Instructions, Predict Re-order and Commit Results to
Branches Execute Instructions Memory

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Pipeline Slot Categorization
Front End Bound

This is when the front end can't deliver uops even though the back end can take
them, usually due to delays in fetching code or decoding instructions.

FRONT END BACK END
EXECUTION UNIT RETIREMENT

4---------------------.
-
m---------------------.

N
4---------------------.
-

Fetch & Decode
Instructions, Predict Re-order and Commit Results to
Branches Execute Instructions Memory

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




ldentifying and Diagnosing Inefficiency
Mlcroarchltecture AnGlySIS > amplxe-cl -collect uarch-exploration -- ./myapp.out

* Microarchitecture Exploration (previously General Exploration) is a hardware events analysis.

It is preconfigured to sample the appropriate events on your architecture and calculates the
proper metrics from them.

« Potential tuning opportunities are highlighted in pink.

* To checkthe efficiency of a hotspot, look at the Retiring metric. If it's less than the expected
number for your application type, it's probably inefficient.
* Hotspots with high retiring values may still have room for improvement.
App Type Expected

: B Collection Log| | & Analysis Target Analysis Type| | ® Summary | ERElsjieliBlle] +% Event Count| BE Platform
clhizmiy) Grouping:| Function / Call Stack | R |
rouping:| Function / Call Stac v
Desktop Ping 2
Function / Call Stack Instructions Retired | CPI Rate | Front-End Bound » | Bad Speculation® | Back-End Bound » | Retiring » | [
Server/ » initialize_2D_buffer 85219,200,000 0266 0.5% 0.0% 0.0%  100.0%
D.atapase/ p grid_intersect 10,963,200,000 0.706 4.6% 15.1% 46.4% 33.9%
Distributed » sphere_intersect 10,946,400,000  0.601 2.1% 16% 47 5% 48.8%
HPC » grid_bounds_intersect 480,000,000 1.105 13.0% 22% 52.3% 32.5%
b tri_intersect 216,000,000 0.789 0.0% 20.2% 39.3% 40.5%

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Categorizing and Correcting Inefficiencies
Microarchitecture Exploration Analysis

* Intel® VTune™ Amplifier has hierarchical expanding metrics categorized by the

four slot types.
* You can expand your way down, following the hotspot, to identify the root cause

of the inefficiency.
* Sub-metrics highlight pink on their own merits, just like top level metrics.

* Hovering over a
metric produces
a helpful, detailed Grouping:| Function / Call Stack

tooltip (not shown). N Back-End Bound
W Memory Bound

* There are tooltips on | Fynction / Call Stack
Summary tabs too:

hover over any @ icon.

» grid_intersect

Optimization Notice ’ "
(intel . 49

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.



Categorizing and Correcting Inefficiencies
Retiring: Microarchitecture Exploration Analysis, Intel® Advisor

* High Retiring percentage is generally good, but may be inefficient if you're
doing work that doesn’t need to be done at all, or could be done faster.

» Retiring can be split based on whether the uops being retired came from the
microcode sequencer or not.

* Yes? Try reworking code to avoid microcode assists. —_fm -
. . FP Arithmetic » Other Assists
* No? Make sure the code is well vectorized. 00% | 1000% | 00%

24 6% 75.4% 0.0%
19.0% 81.0% 0.0%

0.0% 100.0% 0.0%

16.7% 83.3% 0.0%

. . . . . . 20.0% 80.0% 0.0%

Use Vectorization Advisor to fine-tune your vectorization. fo el 900% ] 00%

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.



HPC Characterization: FPU Utilization
FPU Utilization ~) FPU Utilization “: 0.3% [

% of FPU load (1 00% - FPU is fUlly loaded, threshold 500/0) Vector Capacity Usage 25,00 R

FP Instruction Mix

H H FP Arith/Mem Rd Instr. Ratio : 0.928
Calculatlgn based on PMU evept.s represe.ntlng sc.alar and o> Arh/Mem Wr ntr. Rt ®. 1,954
packed single and double precision SIMD instructions Top Loops/Functions with FPU Usage by CPU Time

>) Collection and Platform Info

Metrics in FPU utilization section

% of Scalar FP Instr. 5.9%
FP Arith/Mem Rd Instr. Ratio —; 0.264 & A signiicant fraction of floating point arith metic vectar =
FLOPs broken down by scalar and packed FP ArithiMem Wr Instr. Ratio®: 6,269 atfuctions emcuted b partal vector ond,
possibie reazon & compllation with legacy instruction
Top 5 hotspot loops (functions) by FPU usage set. Chack the compher optinns. Another possible

reazon & compRer code generation specics, Use Intel

This section provides information For the most time consuming loops/functions wi Advisar to keamn Mo

Instruction Mix

Function CPU Time FPU Utilization Vecter Instructioll Set ~ Loep Type
. [Loop at line 575 in conj_grad_SompSparallel@S17]  126.149s 1.6% R SSE2(128) M Body
Top 5 lOOpS/fUnCtlons by FPU Usage [Loop at line 678 in conj_grad_ $omp 5 parallel@517] 5.004s L7% S3EZ(128) Body
[Loop at line 575 in conj_grad_$ omp 5 parallel@S17] 2.678: 2.1% [Unknown]  Remainder

: H H H L ooy line 573 in conj_grad_Somp5s llel@517] 0.995 4.0% SSEZ(128) Bod
= Detected with static binary analysis ece at ine 573 iy eeaviosiad-Somp tparollel @R1T) : { Y
[Loop at line 661 in conjgrad..$omp&parallel@S17 0.9525 1.3%  SSE(128); $SE2(128) Body

Vectorized vs. Non-vectorized, ISA, and characterization
detected by static analysis and Intel Compiler diagnostics

*M/A & applied to nonsummable metrics

HARDWARE IS BECOMING MORE VECTORIZED, S0 SHOULD YOU!

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Categorizing and Correcting Inefficiencies
Bad Speculation: Microarchitecture Exploration Analysis

* Bad Speculation is caused by either Machine Clears or Branch Mispredicts.

« Machine Clears can be caused by self-modifying code, etc. Bad Specalation

«

- Branch mispredicts are more common. These occur when the paths | Branch Mispredict | Machine Clears

taken by i f, switch, for,do-while,and other conditional branches o

15.1%

are incorrectly predicted and the uops have to be thrown out. 0.0%

2.2%

« Use Intel® VTune™ Amplifier's Source Viewer to identify 0.0%

problematic branches.

* Avoid unnecessary branching:

0.0%
0.0%
1.6%
0.0%
20.2%

Assembly ‘ | ) 4 ‘ =} ‘Assembly grouping: |Address

. . . S'
* Remove branches entirely if possible T source Bad
pec...
* Move branches outside of loops if 580 while (cur != NULL) |
. 581 1f (ry—>mbox[cur->cbj->id] != ry->serial) { 4.3%
pOSSIble. 582 ry—*mbox [cur—»cbj-»1id] = ry-rserial; 1.3%

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Categorizing and Correcting Inefficiencies
Front End: Microarchitecture Exploration Analysis

Front-End Bound «
Front-End Latency « Front-End Bandwidth «
ICache Misses | [TLB Overhead | Branch Resteers | DSB Switches | Length ... | MS Switches | Front-End Bandwidih MITE | Front-End Bandwidth DSB Front-End Bandwidth LSD
0.0% 0.0% 0.2% 0.6% 0.0% 0.0% 0.6% 6.5% 0.0%
0.0% 0.1% 1.8% 1.2% 0.0% 0.0% 1.2% 10.1% 1.8%

* Front End Bound pipeline slots are common in JIT or interpreted code.
* Front End Bound can be bandwidth or latency:

« Bandwidth issues are caused by inefficient instruction decoding, or restrictions in caching decoded
instructions, etc.

« Latency is caused by instruction cache misses, delays in instruction fetching after branch
mispredicts, switching to the microcode sequencer too often, etc.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.



Categorizing and Correcting Inefficiencies
Back End: Microarchitecture Exploration Analysis, Memory Bandwidth

Back-End Bound «
Memory Bound « Core Bound «
» L3 Bound “ DRAM Bound “ Store Bound “ »
L1 Bound L2 Bound . Memory Lat.. « . ) Divider Port Utilization
Contested Acc.. | Data Sharing | L3 Latency | SQ Full | Memory Band... LLC Miss Store Latency | False Shari.. | Split Sto.. | DTLB Store ..
3.2% 0.0% 0.0% 0.0%| 0.0% 0.2% 0.0% 3.3% 0.0% 0.0% 0.2% 0.0% 26.6%
11.3% 4.8% 0.0% 0.0% 100.0% 00% 9.5% 0.0% 1.1% 0.0% 02% 02% 4 8% 17.2%

* Back End bound is the most common bottleneck type for most applications.

* |t can be split into Core Bound and Memory Bound

« Core Bound includes issues like not using execution units effectively and
performing too many divides.

« Memory Bound involves cache misses, inefficient memory accesses, etc.
« Store Bound is when load-store dependencies are slowing things down.

* The other sub-categories involve cachingissues and the like. Memory Access Analysis
may provide additional information for resolving this performance bottleneck.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. ‘ |nte‘ . 54

*Other names and brands may be claimed as the property of others.



Rebuild and Compare Results

Compare.. & > [

{2 Choose Results to Compare

primes.cpp r001hs r000hs primes_omp.cpp
Result 1: | r003ah.amplxe
Result 2: | rOMah.amplxe

These results can be compared. Click the Compare button to continue.

INTELVTUNE AMPLIFIER XE

w Browse... { Compare }
-

4 [ Summary ¢ Bottom-up &% Caller/Callee &8 Top-down Tree

Elapsed Time : 7.420s - 5.541s = 1.879s
24,654 400,000 - 22,868,400,000 = 1,786,000,000
1.326 - 1.363 = -0.037
1.040-1.042 =-0.003
Mot changed, 4
Mot changed, Os
12.603s - 11.987s = 0.616s

Instructions Retired:
CPI Rate

CPU Freqguency Ratio
Total Thread Count:
Paused Time

CPU Time

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

CPU Usage Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running

25s]

2s

Elapsed Time

Target Utilization

1.554

15

0.5s

0s -

0 1 2 3 4

Simultaneously Utilized Logical CPUs




Example: Poor NUMA Utilization

& Memory Access Memory Usage viewpoint (change) @
4 [ Collection Log © Analysis Target /& Analysis Type & Summary @3 Bottom-up 1 Platform
v) Elapsed Time : 32.626s
CPU Time ~: 508.508s high and local
Memory Bound ~: 73.3% K of Pipeline Slots caches are not the
L1 Bound 8.4% M of Clockticks
L2 Bound ~: 0.0% of Clockticks
L3 Bound ~: 71.4% R of Clockticks
DRAM Bound ~: 8.0% of Clockticks
DRAM Bandwidth Bound ~: 0.0%  of Elapsed Time
Memory Latency:
Remote / Local DRAM Ratio ~: 0.000
Local DRAM ~: 1.2% of Clockticks Focus on “Remote”
Remote DRAM ~: 0.0% of Clockticks .
Remote Cache w of Clockticks AEIES
Loads: 163,640,209,059
Stores: 34,303,629,078
LLC Miss Count : 331,669,899
Average Latency (cycles) ~: 12
Total Thread Count: 17
Paused Time ~: Os

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Example: Poor NUMA Utilization

& Memory Access Memory Usage viewpoint (change) @
© [ Collection Log © Analysis Target /A Analysis Type &
O+ 0s 5s

y @ Bottom-up | < Platform
10s
1

15s 20s 25s 30s

o 11.261

(o)

8 ' paCkage_O oo .“

8 5761

2 Unit0 i

[~

g J

8 - 5.761

o

5 11.261°

v package_1 5.630

Unitl >t
Unit0 »ret

WELVTOE APLFER 2

b
== .

+ DRAM Bandwidth, GB/...
v e Total, GB/sec
« ~ Read, GB/sec
¥ ~ Write, GB/sec

v UPI Bandwidth, GB/sec
 u Total, GBi/sec
« ~ Incoming Data, GB..
o ~ Incoming Non-Dat...
« ~ Outgoing Data, GB...
o ~ Outgoing Non-Data..

« CPU Time
m CPU Time

Look for areas of
high QPI/UPI
bandwidth

QPI/UPI BANDWIDTH IS COMMUNICATION BETWEEN THE SOCKETS. THIS MAY INDICATE SOME SORT OF NUMA ISSUE.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

i@ . 57

*Other names and brands may be claimed as the property of others.



EXAMPLE: POOR NUMA UTILIZATION

Common causes of poor NUMA utilization
= Allocation vs. first touch memory location

= False sharing of cache lines

— Use padding when necessary
= Arbitrary array accesses

= Poor thread affinity

WHERE IS YOUR MEMORY ALLOCATED AND WHERE ARE YOUR THREADS RUNNING?

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.



Tuning Guides Available Online

* http://intel.com/vtune-tuning-guides

Intel® VTune™ Amplifier Tuning Guides

Our tuning guides explain how to identify common software performance issues using VTune Amplifier
and give suggestions for optimization.

Apollo Lake Intel Atom® Processor E3900 Series, and Intel® Pentium® Download
and Celeron® Processor N- and J-Series PDF
Skylake-X Intel® Xeon Processor Scalable Family 1st Gen Download
New PDF
Download
Qld PDF
Knights Landing Intel® Xeon Phi™ Processor Download
POF
Broadwell-E* Intel® Xeon Processor E5 v4 Family Download
(Server) PDF
Skylake 6th Generation Intel® Core™ Processor Family Download
POF
Broadwell 5th Generation Intel® Core™ Processor Family Download
PDF
Haswell-E* (Server) | Intel® Xeon® Processor E5 v3 Family Download
PDF
Ivy Bridge-E* Intel® Xeon® Processor ES/E7 v2 Family Download
(Server) PDF
Haswell 4th Generation Intel® Core™ Processor Family Download
POF
Sandy Bridge- Intel® Xeon® Processor E5 Family Download
EP/EX/EN (Server) PDF
Ivy Bridge 3rd Generation Intel® Core™ Processor Families Download
POF
Sandy Bridge 2nd Generation Intel® Core™ Processor Families Download
PDF
Many Integrated Intel® Xeon Phi™ coprocessor Read the
Core Architecture Article

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.



http://intel.com/vtune-tuning-guides

Example 1 — Matrix Multiply

s &= b8 o

(v) Elapsed Time '
Clockticks 71.522.000.000
Instructions Retired: 77.472,000,000 k4 Locators
CPl Rate 0.923
MUX Reliability 0.984 =2 Back-End Bound
e ;;Zn;—EndlBo.und : ;(;i 0 = - Memory Bound e
(2} Bad Speculation : = N Source Clo. "'| CPIRate o
) Back-End Bound 59.5% % o Li- Re.. l: S' Cor. |R. | Fie
~) Memory Bound 43.6% R o ’ ’ L. L2 L3 D S. Bo
») L1 Bound ~: 0.0% & o B. Bou..| Bound B. B.
L2 Bound ~: 0.0% o
(3) L3 Bound *: 33.8% % o
DRAM Bound 5.5% o
! Store Bound 0.0% o
*) Core Bound 25.9% & o
(») Retiring : 27.4% o
Total Thread Count: 4 179 #pragma omp parallel for
Paused Time " 0s 180 for(i=0; i<msize; i++) {
181 for(j=0; j=msize; j++) { 26, .. mu...
182 for(k=0; k<msize; k++) { 42,. 46,. 0,907 2.9% 0.0% 15.0% 16... mu...
! c[11[j] = cli][i] + alil[K] * bIKI[il; F 0.936] 0.1

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.




Example 1 — Matrix Multiply

# General Exploration General Exploration viewpoint (change) ¢

B
() Elapsed Time “; 1.684s [
Clockticks: 18,512.000,000
S. Ins... CPI Instructions Retired: 60,394,000,000
iy Source CL Fr - e
Li. Re..| Rate CPl Rate —: 0.307
MUX Reliability —: 0.887
%) Front-End Bound 6.3% of Pipeline Slots
(>} Bad Speculation 0.3%  of Pipeline Slots
(%) Back-End Bound = 26.9% & of Pipeline Slots
») Memory Bound 15.4% of Pipeline Slots
(v} Core Bound ™" 11.5% of Pipeline Slots
Divider —: 0.0% of Clockticks
(=) Port Utilization = 6.7% of Clockticks
207 #pragma omp parallel for collapse (2) Cycles of O Ports Utilized 0.0%  of Clockticks
) ) ) ) Cycles of 1 Port Utilized 3.1% of Clockticks
208 for(i=0; i<msize; i++) { —_—
Cycles of 2 Ports Utilized ~: 3.6% of Clockticks
209 for(k=0; k<msize; k++) { ) Cycles of 3+ Ports Utilized ”: 79.3%  of Clockticks
210  #pragma ivdep Vector Capacity Usage (FPU) ~: 25.0% K
for(j=0; j<msize; j++) { 64,. 24. 0.267 (3) Retiring 66.6%  of Pipeline Slots
c[11[j] = c[il[j] + ali]1[k] * bIkI[j]; |18, [60..| 0.303]6.3%[05 Lotal Thread Count: !
Paused Time Os

Optimization Notice
Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.



Example 1 — Matrix Multiply

M B e b B WO

Elapsed Time
Clockticks:

Instructions Retired:

CP| Rate

MUX Reliability

Front-End Bound

Bad Speculation

Back-End Bound

Memery Bound

L1 Bound
L2 Bound
L3 Bound

Store Bound
Core Bound
Retiring
Total Thread Count:

Paused Time

DRAM Bound

N

= rooSge

71,522,000,000
77,472, 000l

3.0%

69.5% &
0.0% K
0.0%

33.8%K
5.5%
0.0%

25.0% K~

27.4%
4

Os

raoGge

™ General Exploration General Exploration viewpoint (change) !

B Summary JECEESGINETT

of Pipeline Slots
of Pipeline Slots
bf Pipeline Slots
of Pipeline Slots
of Clockticks
of Clockticks
of Clockticks
of Clockticks
of Clockticks

of Pipeline Slots
of Pipeline Slots

# General Exploration General Exploration viewpoint (change) ¢

Elapsed Time

Clockticks:
Instructions Retired:
CPI Rate
MUX Reliability
Front-End Bound
Bad Speculation
Back-End Bound
Memory Bound
Core Bound
Divider
Port Utilization
Cycles of 0 Ports Utilized
Cycles of 1 Port Utilized
Cycles of 2 Ports Utilized
Cycles of 3+ Ports Utilized
Vector Capacity Usage (FFL)

ollection Log

Eetiring
Total Thread Count:
Paused Time

& Summary

18,512.000.000

60,324 0 |I||I

6.3% of Pipeline Slots
of Pipeline Slots
Pipeline Slots

of Pipeline Slots

11.5%  of Pipeline Slots
0.0% of Clockticks
6.7% of Clockticks
0.0% of Clockticks
3.1% of Clockticks
3.6% of Clockticks

79.3%  of Clockticks

25.0%

66.6¥  of Pipeline Slots

1
Os

ttom-up

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.




Example 2 — Calculating Prime Numbers

41 =int _tmain(int argc, _TCHAR* argv[])
a2l | { () CPU Usage Histogram [=
43 DWORD msBegin _ timeGetTime()' This histogram displays a percentage of the wall time the specific number of CPUs
- ¥
44 i |
255 2 5
45 | #pragma omp parallel for : E =
46 for(int p = 3; p <= limit; p += 2) { 2513 =
47 if (IsPrime(p)) Tick(); o al
1.554 @l
48 + I
49 DWORD msDuration = timeGetTime() - msBegin; 15 :
50 '
. ) 0.55 I
51 printf("M5: %d\n", msDuration); I
52 printf("primes = %d\n", primes); 0s
0 1 2 3 4
53 return primes != correctCount;
s y -E_M M
55 N Simultaneously Utilized Logical CPUs
[ l=lel JeTlel : O.Iﬁsl 1:5 1.|55I 2s I?_.Iﬁsl ISISSI Y 6:5 Y Iﬁ.lﬁsl Y T-':s s : Thread v
OMP Worker Thread ... = Running
OMP Worker Thread ... Wk CPU Time
OMP Worker Thread ... ik Spin and Ov...
= OMP Master Thread ... [] ¥ Hardware Even...
g [¥] CPU Time
= V] duk CPU Time
[/] luk Spin and Ov...

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.




Example 2 — Calculating Prime Numbers

PR e N .
41 Hint _tmain(int argc, TCHAR* argv[]) ©) CPU Usage Histogram
42 { This histogram displays a percentage of the wall time the specific number of CPUs
43 DWORD msBegin = timeGetTime();
A4 25 4 g |
45 | #pragma omp parallel for schedule (dynamic, 10e@) = E:
46 for(int p = 3; p <= limit; p += 2) { 15s—§ g:
47 if (IsPrime(p)) Tick(); o §'|
a8 } 15 1 |
19 DWORD msDuration = timeGetTime() - msBegin; I
5@ 0.55 - :
51 printf("M5: %d\n", msDuration);
52 printf("primes = %d\n", primes); 0s- } 1 5 1 H
53 return primes != correctCount;
52 |y -E_m m
55 - Simultaneously Utilized Logical CPUs
I
Qe QE =i | 5.5s Thread v
OMP Worker Thread ... @ Running
OMP Master Thread #... duk CPU Time
_ [OMP Worker Thread ... [+/] duk Spin and Ov...
@ OMP Worker Thread ... []* Hardware Even...
= [¥] CPU Time

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.



Summary: Top Down Tunlng Method

o QO 286s 287 288 2.8'9; " 28.  281s 282. < |[F]Thread
= Make system-level optimizations | .
_ [owe wworcer thecaa = | || LN NN l B 11 ||||“ g 1ol
. : T . 5| ©asam) IRA I |m|mm|||| i |5
= Make algorithmic optimizations B Tl
OMP Worker Thread 23 | | it Liin i nilllHNIN 1T [¥] Thread Concurrency
* Use Threading Advisor to add threading bl sk Concurrency
* Use Concurrency Analysis and Locks & Waits Analysis to tune threading
. . . . . CPU Time ¥
= Make microarchitectural optimizations Function  Call Stack Effectve Time by Utization >
Qidle @Poor [ Ok @ldeal @ Over
* Find your hotspots » inilialize_2D_buffer 04235 G
w grid_intersect 3.200s (D
* Use Hotspots Analysis or Advanced Hotspots Analysis b intersect_objects 3.060s D
. Lo » grid_intersect 0.141s |
» For each hotspot, determine efficiency. v sphere_intersect 24245
* Use General Exploration Analysis to identify inefficient hotspots.
. . . . . . . . .. s Bad Speculation @
If inefficient: Categorize the bottleneck, identify the cause, and optimize it! |- el e
* Hierarchical metrics in General Exploration Analysis focus your attention 0.0% 0.0%
where it's needed most and allow you to easily identify the issue. 15.1% 0.0%
0.0% 16%
* Memory Access Analysis can help with Back End Bound code. 2.2% 0.0%

« Vectorization Advisor can help improve the efficiency of Retiring code.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.



Intel” VTune™ Amplifier

Faster, Scalable Code Faster

Get the Data You Need

» Hotspot (Statistical call tree), Call counts (Statistical)

* Thread Profiling — Concurrency and Lock & Waits Analysis
» Cache miss, Bandwidth analysis..."

= GPU Offload and OpenCL™ Kernel Tracing

Find Answers Fast

» View Results on the Source / Assembly

= OpenMP Scalability Analysis, Graphical Frame Analysis

= Filter Out Extraneous Data — Organize Data with Viewpoints
* Visualize Thread & Task Activity on the Timeline

Easy to Use

» No Special Compiles - C, C++, C#, Fortran, Java, ASM
* Visual Studio* Integration or Stand Alone

= Local & Remote Data Collection, Command Line

» Analyze Windows* & Linux* data on OS X*?

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Quickly Find Tuning Opportunities

CPU Timew ¥ (@] A
Function / Call Stack Effective Time by Utilization Spin | Overhead
Didie @ Poor @Ok @ Ideal @Over | Me| Time
@ FireObject::checkCollision 07 0s 0s
@ FireObject::ProcessFireCollisionsRange - 0s 0s
EINEWsitForSingleObject 0s 3.406s 0s
Eistd ream < char,struct std:char_traits| 3.339s [ NG 0s 0s
@ Og rchivezopen 3.259: [ 0s 0s
[CBaseD t 2335 I 0.671s s
Selected 1 row(s): 1.1515 0.728s 0s| v

See Results On The Source Code
Lo J Lo ||| [+ ] [8)[a) smertvornprs: e ]

Source CPU Time: Total by Utilization
TS & Source
Didie @Poor 0Ok Mldeal @ Over
81 for (int i = 0; i < mem array_i max; i++) 0300=]
82 {
83 for {int j = 0; j < mem array j_max; j++) 49265 [
84 {
85 mem _array [J*mem array j mex+i] = *fill val| 7.207s M

Tune OpenMP Scalability

() OpenMP Region CPU Usage Histogram
255
w

£

F s

-

2

2135
1s
0.5s

0s







Legal Disclaimer & Optimization Notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of
Intel Corporation in the U.S. and other countries.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. Intel Confidential — NDA Use Only
*Other names and brands may be claimed as the property of others.



https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

