
Performance Profiler
Kevin O’Leary – Intel Developer Products Division

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® VTune™ Amplifier
Tune Applications for Scalable Multicore Performance

Agenda
 Introduction
 Data Collection –

Rich set of performance data

 Data Analysis -
Find answers fast

 Flexible workflow –
– User i/f and command line
– Compare results
– Remote collection

 Performance Analysis
Details

 Summary

2

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Accurate Data - Low Overhead
 CPU, GPU, FPU, threading, bandwidth…

Meaningful Analysis
 Threading, OpenMP region efficiency

 Memory access, storage device

Easy
 Data displayed on the source code

 Easy set-up, no special compiles

Faster, Scalable Code, Faster
Intel® VTune™ Amplifier Performance Profiler

Claire Cates
Principal Developer
SAS Institute Inc.

“Last week, Intel® VTune™ Amplifier
helped us find almost 3X
performance improvement. This
week it helped us improve the
performance another 3X.”

3

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

Setting up a profile is easy

1. What/where to profile

2. Choose Analysis Type 3. Collection options

4. Push Start * Full command-
line also available

Intel Confidential – NDA Use Only

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

Full Visual Studio* Integration

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

Two Great Ways to Collect Data
Intel® VTune™ Amplifier

Software Collector Hardware Collector

Uses OS interrupts Uses the on chip Performance Monitoring Unit (PMU)

Collects from a single process tree Collect system wide or from a single process tree.

~10ms default resolution ~1ms default resolution (finer granularity - finds small functions)

Either an Intel® or a compatible processor Requires a genuine Intel® processor for collection

Call stacks show calling sequence Optionally collect call stacks

Works in virtual environments
Works in a VM only when supported by the VM

(e.g., vSphere*, KVM)

No driver required Requires a driver
- Easy to install on Windows

- Linux requires root (or use default perf driver)

No special recompiles - C, C++, C#, Fortran, Java, Assembly

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Example: Hotspots Analysis
Summary View

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Example: Threading Analysis
Bottom-up View

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

Over-Time DRAM
Bandwidth

Over-Time QPI/UPI
Bandwidth

Grid Breakdown by
Function
(configurable)

Example: Memory Access Analysis
Bottom-up View

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Find Answers Fast
Intel® VTune™ Amplifier

Double Click Function
to View Source

Adjust Data Grouping

… (Partial list shown)

Click > for Call Stack

Filter by Timeline Selection
(or by Grid Selection)

Filter by Process
& Other Controls

Tuning Opportunities Shown in Pink.
Hover for Tips

10

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

See Profile Data On Source / Asm
Double Click from Grid or Timeline

Right click for instruction reference manualView Source / Asm or both CPU Time

Click jump to scroll Asm

Quick Asm navigation:
Select source to highlight Asm

Scroll Bar “Heat Map” is an overview of hot spots

11

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Timeline Visualizes Thread Behavior
Intel® VTune™ Amplifier

Optional: Use API to mark frames and user tasks

Optional: Add a mark during collection

CPU Time

Hovers:

Transitions
Basic Hotspots Advanced HotspotsLocks & Waits

12

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Tune OpenMP for Efficiency and Scalability

The summary view shown above gives fast answers to four important OpenMP tuning questions:

1) Is the serial time of my application significant enough to prevent scaling?

2) How much performance can be gained by tuning OpenMP?

3) Which OpenMP regions / loops / barriers will benefit most from tuning?

4) What are the inefficiencies with each region? (click the link to see details)

Fast Answers: Is My OpenMP Scalable? How Much Faster Could It Be?

1)

2)

4)

3)

13

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

amplxe-cl is the command line:
–Windows: C:\Program Files (x86)\IntelSWTools\VTune
Amplifier\bin[32|64]\amplxe-cl.exe

–Linux: /opt/intel/vtune_amplifier/bin[32|64]/amplxe-cl

Help: amplxe-cl –help

Use UI to setup
1) Configure analysis in UI
2) Press “Command Line…” button
3) Copy & paste command

Command Line Interface
Automate analysis

Great for regression analysis – send results file to developer
Command line results can also be opened in the UI

14

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
15

Compare Results Quickly - Sort By Difference
Intel® VTune™ Amplifier

Quickly identify cause of regressions.

 Run a command line analysis daily

 Identify the function responsible so you know who to alert

Compare 2 optimizations – What improved?

Compare 2 systems – What didn’t speed up as much?

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
16

Optimize Memory Access
Memory Access Analysis - Intel® VTune™ Amplifier 2017

Tune data structures for performance

 Attribute cache misses to data structures
(not just the code causing the miss)

 Support for custom memory allocators

Optimize NUMA latency & scalability
 True & false sharing optimization

 Auto detect max system bandwidth

 Easier tuning of inter-socket bandwidth

Easier install, Latest processors
 No special drivers required on Linux*

 Intel® Xeon Phi™ processor MCDRAM (high
bandwidth memory) analysis

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
17

Memory Object Identification

View allocated
objects

Sort by LLC Miss
Count

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

Memory Object Identification

Double-click to see
allocation site in source
view

Assembly view also
available

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Are You I/O Bound or CPU Bound?

 Explore imbalance between I/O operations
(async & sync) and compute

 Storage accesses mapped to
the source code

 See when CPU is waiting for I/O

 Measure bus bandwidth to storage

Latency analysis

 Tune storage accesses with
latency histogram

 Distribution of I/O over multiple devices

19

Storage Device Analysis (HDD, SATA or NVMe SSD)

Intel® VTune™ Amplifier

Slow task
with I/O Wait

Sliders set
thresholds for

I/O Queue Depth

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
20

A Quick Question for the Audience

21

Vectorization Optimization and Thread Prototyping
• Vectorization Advisor

• Threading Advisor

• Flow Graph Analyzer

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Get Faster Code Faster! Intel® Advisor
Thread Prototyping

Have you:
 Threaded an app, but seen little benefit?

 Hit a “scalability barrier”?

 Delayed release due to sync. errors?

Data Driven Threading Design:
 Quickly prototype multiple options

 Project scaling on larger systems

 Find synchronization errors before implementing threading

 Design without disrupting development

http://intel.ly/advisor-xe

Add Parallelism with Less Effort,
Less Risk and More Impact

“Intel® Advisor has allowed us to quickly
prototype ideas for parallelism, saving
developer time and effort”

Simon Hammond
Senior Technical Staff
Sandia National Laboratories

23

http://intel.ly/advisor-xe

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Get Faster Code Faster! Intel® Advisor
Vectorization Optimization

Have you:
 Recompiled for AVX2 with little gain

 Wondered where to vectorize?

 Recoded intrinsics for new arch.?

 Struggled with compiler reports?

Data Driven Vectorization:
 What vectorization will pay off most?

 What’s blocking vectorization? Why?

 Are my loops vector friendly?

 Will reorganizing data increase performance?

 Is it safe to just use pragma simd?

"Intel® Advisor’s Vectorization Advisor
permitted me to focus my work where it
really mattered. When you have only a
limited amount of time to spend on
optimization, it is invaluable."

Gilles Civario
Senior Software Architect
Irish Centre for High-End Computing

24

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
25

What is a Roofline Chart?

A Roofline Chart plots application performance against hardware limitations.

• Where are the bottlenecks?

• How much performance is
being left on the table?

• Which bottlenecks can be
addressed, and which should
be addressed?

• What’s the most likely cause?

• What are the next steps?
Roofline first proposed by University of California at Berkeley:

Roofline: An Insightful Visual Performance Model for Multicore Architectures, 2009
Cache-aware variant proposed by University of Lisbon:
Cache-Aware Roofline Model: Upgrading the Loft, 2013

https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf
http://www.inesc-id.pt/ficheiros/publicacoes/9068.pdf

Memory & Thread Debugger

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
27

Debug Memory & Threading with Intel® Inspector
Find & Debug Memory Leaks, Corruption, Data Races, Deadlocks

Correctness Tools Increase ROI by 12%-21%1

 Errors found earlier are less expensive to fix

 Races & deadlocks not easily reproduced

 Memory errors are hard to find without a tool

Debugger Integration Speeds Diagnosis

 Breakpoint set just before the problem

 Examine variables and threads with the debugger

What’s New in 2019 Release
Find Persistent Memory Errors

 Missing / redundant cache flushes

 Missing store fences

 Out-of-order persistent memory stores

 PMDK transaction redo logging errors
1Cost Factors – Square Project Analysis - CERT: U.S. Computer Emergency Readiness Team, and Carnegie Mellon CyLab NIST: National Institute of Standards & Technology: Square Project Results

Learn More: bit.ly/intel-inspector

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
28

Debug Memory & Threading Errors
Intel® Inspector

Find and eliminate errors

 Memory leaks, invalid access…

 Races & deadlocks

 C, C++ and Fortran (or a mix)

Simple, Reliable, Accurate

 No special recompiles
Use any build, any compiler1

 Analyzes dynamically generated or linked code

 Inspects 3rd party libraries without source

 Productive user interface + debugger integration

 Command line for automated regression analysis

Fits your existing process

Clicking an error instantly displays source
code snippets and the call stack

1That follows common OS standards.

29

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

System

Application

Processor

H/W tuning:

BIOS (TB, HT)

Memory

Network I/O

Disk I/O

OS tuning:
Page size

Swap file

RAM Disk

Power settings

Network protocols

Better application design:

Parallelization

Fast algorithms / data bases

Programming language and RT libs

Performance libraries

Driver tuning

Tuning for Microarchitecture:

Compiler settings/Vectorization

Memory/Cache usage

CPU pitfalls

Think performance wise
(app/sys level)

Choose performance.
effective solutions

Apply performance
optimization and check
results

Add performance
regressions to test stage

Collect and analyze
performance related
issues from users

Introduction to Performance Tuning

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

System-Level Profiling – High-level Overviews

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

System-Level Profiling – Process/Module Breakdowns

Processes

Modules

Functions

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

System-Level Profiling – Disk I/O Analysis

Are You I/O Bound or CPU Bound?
• Explore imbalance between I/O operations

(async & sync) and compute
• Storage accesses mapped to

the source code
See when CPU is waiting for I/O
• Measure bus bandwidth to storage
• Latency analysis
• Tune storage accesses with

latency histogram
• Distribution of I/O over multiple devices

Slow task
with I/O Wait

> amplxe-cl -collect disk-io –d 10

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

System-Level Profiling – HPC Characterizaton

Three Metric Classes
• CPU Utilization

• Logical core % usage
• Includes parallelism and

OpenMP information

• Memory Bound
• Break down each level of

the memory hierarchy

• FPU Utilization
• Floating point GFLOPS and

density

> amplxe-cl -collect hpc-performance –d 10

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

System-Level Profiling – Memory Bandwidth

–knob collect-memory-bandwidth=true

Find areas of high and low bandwidth
usage. Compare to max system

bandwidth based on Stream
benchmarks.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Application Performance Tuning Process

Find
Hotspots

Determine
Efficiency

Address
Parallelism

Issues

Address
Hardware

Issues

Rebuild
and

Compare
Results

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Functions

Call Stacks

> amplxe-cl –collect hotspots -- ./myapp.out

Find Hotspots

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Find Hotspots

• Drill to source or assembly
• Hottest areas easy to ID
• Is this the expected behavior
• Pay special attention to loops

and memory accesses

• Learn how your code behaves
• What did the compiler

generate
• What are the expensive

statements

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Look for Parallelism, Cycles-per-Instruction (CPI), and Retiring %

Determine Efficiency

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Coarse-Grain Locks

Thread Imbalance

High Lock Contention

Address Parallelism Issues

• Use Concurrency Analysis to ensure you’re
using all your threads as often as possible.

• Common concurrency problems can often
be diagnosed in the timeline.

• Switch to the Locks And Waits viewpoint or
run a Locks and Waits analysis to
investigate contention.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

The X86 Processor Pipeline (simplified)

Address Hardware Issues

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Pipeline slots can be sorted into one
of four categories on a given cycle by
what happens to the uop in that slot.

Pipeline Slot Categorization

Retiring
Bad

Speculation
Back-End

Bound
Front-End

Bound

uop
allocated

?

uop ever
retired?

back end
stalled?

Yes No

Yes YesNo No

App. Type:
Category

Client/Desktop Server/Database/
Distributed

High Performance
Computing

Retiring ▲ 20-50% 10-30% 30-70%

Bad Speculation ▼ 5-10% 5-10% 1-5%

Front End Bound ▼ 5-10% 10-25% 5-10%

Back End Bound ▼ 20-40% 20-60% 20-40%

• Retiring
• Bad Speculation

• Back End Bound
• Front End Bound

• Each category has an expected range
of values in a well tuned application.

42

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

The uop Pipeline
Categorizing the hotspots

• Modern CPUs “pipeline” instructions. This pipeline can be generally divided
into two sections.

• The Front End fetches instructions, decodes them into uops, and allocates them to…

• The Back End, which is responsible for executing the uops. Once successfully completed,
a uop is considered “retired”.

• A Pipeline Slot is an abstract representation of the hardware resources
needed to process a uop.

• The front end can only allocate so many uops per cycle, and the same is true
of the back end and retiring them. This determines the number of Pipeline
Slots. As a general rule, this number is four.

43

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

FRONT END BACK END

Fetch & Decode
Instructions, Predict

Branches
Re-order and

Execute Instructions
Commit Results to

Memory

This is the good category! You want as many of your slots in this category as
possible. However, even here there may be room for optimization.

Pipeline Slot Categorization
Retiring

EXECUTION UNIT RETIREMENT
uop

uop

uop

uop

44

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

FRONT END BACK END

Fetch & Decode
Instructions, Predict

Branches
Re-order and

Execute Instructions
Commit Results to

Memory

This occurs when a uop is removed from the back end without retiring;
effectively, it’s cancelled, most often because a branch was mispredicted.

Pipeline Slot Categorization
Bad Speculation

EXECUTION UNIT RETIREMENT
uop

uop

uop

uop

45

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

FRONT END BACK END

Fetch & Decode
Instructions, Predict

Branches
Re-order and

Execute Instructions
Commit Results to

Memory

This is when the back end can’t accept uops, even if the front end can send
them, because it already contains uops waiting on data or long execution.

Pipeline Slot Categorization
Back End Bound

EXECUTION UNIT RETIREMENT
uop

uop

uop

uop

46

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

FRONT END BACK END

Fetch & Decode
Instructions, Predict

Branches
Re-order and

Execute Instructions
Commit Results to

Memory

This is when the front end can’t deliver uops even though the back end can take
them, usually due to delays in fetching code or decoding instructions.

Pipeline Slot Categorization
Front End Bound

EXECUTION UNIT RETIREMENT

uop

uop

47

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Microarchitecture Exploration (previously General Exploration) is a hardware events analysis.
It is preconfigured to sample the appropriate events on your architecture and calculates the
proper metrics from them.

• Potential tuning opportunities are highlighted in pink.

• To check the efficiency of a hotspot, look at the Retiring metric. If it’s less than the expected
number for your application type, it’s probably inefficient.

• Hotspots with high retiring values may still have room for improvement.

48

Identifying and Diagnosing Inefficiency
Microarchitecture Analysis

App Type Expected

Client/
Desktop

20-50%

Server/
Database/
Distributed

10-30%

HPC 30-70%

> amplxe-cl -collect uarch-exploration -- ./myapp.out

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Intel® VTune™ Amplifier has hierarchical expanding metrics categorized by the
four slot types.

• You can expand your way down, following the hotspot, to identify the root cause
of the inefficiency.

• Sub-metrics highlight pink on their own merits, just like top level metrics.

• Hovering over a
metric produces
a helpful, detailed
tooltip (not shown).

49

Categorizing and Correcting Inefficiencies
Microarchitecture Exploration Analysis

• There are tooltips on
Summary tabs too:
hover over any icon.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• High Retiring percentage is generally good, but may be inefficient if you’re
doing work that doesn’t need to be done at all, or could be done faster.

• Retiring can be split based on whether the uops being retired came from the
microcode sequencer or not.

• Yes? Try reworking code to avoid microcode assists.

• No? Make sure the code is well vectorized.

50

Categorizing and Correcting Inefficiencies
Retiring: Microarchitecture Exploration Analysis, Intel® Advisor

Use Vectorization Advisor to fine-tune your vectorization.

Tip:

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

HPC Characterization: FPU Utilization
FPU utilization

% of FPU load (100% - FPU is fully loaded, threshold 50%)

Calculation based on PMU events representing scalar and
packed single and double precision SIMD instructions

Metrics in FPU utilization section

FLOPs broken down by scalar and packed

Instruction Mix

Top 5 loops/functions by FPU usage

 Detected with static binary analysis

Vectorized vs. Non-vectorized, ISA, and characterization
detected by static analysis and Intel Compiler diagnostics

Hardware is becoming more vectorized, so should you!

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Bad Speculation is caused by either Machine Clears or Branch Mispredicts.

• Machine Clears can be caused by self-modifying code, etc.

• Branch mispredicts are more common. These occur when the paths
taken by if, switch, for, do-while, and other conditional branches
are incorrectly predicted and the uops have to be thrown out.

• Use Intel® VTune™ Amplifier’s Source Viewer to identify
problematic branches.

• Avoid unnecessary branching:

• Remove branches entirely if possible

• Move branches outside of loops if
possible.

52

Categorizing and Correcting Inefficiencies
Bad Speculation: Microarchitecture Exploration Analysis

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Front End Bound pipeline slots are common in JIT or interpreted code.

• Front End Bound can be bandwidth or latency:

• Bandwidth issues are caused by inefficient instruction decoding, or restrictions in caching decoded
instructions, etc.

• Latency is caused by instruction cache misses, delays in instruction fetching after branch
mispredicts, switching to the microcode sequencer too often, etc.

53

Categorizing and Correcting Inefficiencies
Front End: Microarchitecture Exploration Analysis

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Back End bound is the most common bottleneck type for most applications.

• It can be split into Core Bound and Memory Bound

• Core Bound includes issues like not using execution units effectively and
performing too many divides.

• Memory Bound involves cache misses, inefficient memory accesses, etc.

• Store Bound is when load-store dependencies are slowing things down.

• The other sub-categories involve caching issues and the like. Memory Access Analysis
may provide additional information for resolving this performance bottleneck.

54

Categorizing and Correcting Inefficiencies
Back End: Microarchitecture Exploration Analysis, Memory Bandwidth
Analysis

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Rebuild and Compare Results

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Example: Poor NUMA Utilization

56

Focus on “Remote”
metrics

If Memory Bound is
high and local
caches are not the
problem

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Example: Poor NUMA Utilization

57

Look for areas of
high QPI/UPI
bandwidth

QPI/UPI Bandwidth is communication between the sockets. This may indicate some sort of NUMA issue.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
58

Common causes of poor NUMA utilization

 Allocation vs. first touch memory location

 False sharing of cache lines

– Use padding when necessary

 Arbitrary array accesses

 Poor thread affinity

Example: Poor NUMA Utilization

Where is your memory allocated and where are your threads running?

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• http://intel.com/vtune-tuning-guides

59

Tuning Guides Available Online

http://intel.com/vtune-tuning-guides

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Example 1 – Matrix Multiply

Bound by the L3 Cache
while reading arrays

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Example 1 – Matrix Multiply
Interchange loop indices and

collapse loops

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Example 1 – Matrix Multiply

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Example 2 – Calculating Prime Numbers

Load
Imbalance

OpenMP uses
Static Scheduling

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Example 2 – Calculating Prime Numbers

More Balanced
Threads

Switch to
Dynamic

Scheduling

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

 Make system-level optimizations

 Make algorithmic optimizations

• Use Threading Advisor to add threading

• Use Concurrency Analysis and Locks & Waits Analysis to tune threading

 Make microarchitectural optimizations

 Find your hotspots

• Use Hotspots Analysis or Advanced Hotspots Analysis

 For each hotspot, determine efficiency.

• Use General Exploration Analysis to identify inefficient hotspots.

 If inefficient: Categorize the bottleneck, identify the cause, and optimize it!

• Hierarchical metrics in General Exploration Analysis focus your attention
where it’s needed most and allow you to easily identify the issue.

• Memory Access Analysis can help with Back End Bound code.

• Vectorization Advisor can help improve the efficiency of Retiring code.

Summary: Top Down Tuning Method

65

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Get the Data You Need
 Hotspot (Statistical call tree), Call counts (Statistical)

 Thread Profiling – Concurrency and Lock & Waits Analysis

 Cache miss, Bandwidth analysis…1

 GPU Offload and OpenCL™ Kernel Tracing

Find Answers Fast
 View Results on the Source / Assembly

 OpenMP Scalability Analysis, Graphical Frame Analysis

 Filter Out Extraneous Data – Organize Data with Viewpoints

 Visualize Thread & Task Activity on the Timeline

Easy to Use
 No Special Compiles – C, C++, C#, Fortran, Java, ASM

 Visual Studio* Integration or Stand Alone

 Local & Remote Data Collection, Command Line

 Analyze Windows* & Linux* data on OS X*2

Intel® VTune™ Amplifier
Faster, Scalable Code Faster

1 Events vary by processor. 2 No data collection on OS X*

Quickly Find Tuning Opportunities

See Results On The Source Code

Visualize & Filter Data

Tune OpenMP Scalability

66

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

68

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of
Intel Corporation in the U.S. and other countries.

Intel Confidential – NDA Use Only

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

