Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An integrated system with functions of solar desalination, power generation and crop irrigation

Abstract

Solar-driven water evaporation is a sustainable method for obtaining clean water, but the use of high-salinity seawater as a by-product of the desalination process has not been exploited. Here we present an integrated desalination–power generation–cultivation trinity system. All from solar energy, we could obtain fresh water, electric power and crop cultivation media. During the water evaporation, from highly enhanced salinity gradient, reverse electrodialysis allowed for extracting electric power and the drainage could be used to water wheat. The long-running desalination–power generation–cultivation trinity system maintained an evaporation efficiency of ~1.42 kg m−2 h−1, achieving a peak power output of ~0.25 W cm−2. Through an agriculture integration platform, the drainage was found to be suitable for wheat cultivation, thus enabling the seamless combination of solar, oceanic and terrestrial energy sources. This study provides promising solutions and blueprints for alleviating global water/energy scarcity while achieving sustainable development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagram of the DPC trinity system based on Janus evaporator and RED.
Fig. 2: Desalination performance and salinity concentration capacity of Janus evaporator.
Fig. 3: Molecular dynamics of power generation.
Fig. 4: Power production performance and overall effectiveness evaluation under simulated all-weather conditions of this RED-based hybrid system.
Fig. 5: Performance of system drainage for wheat cultivation.
Fig. 6: Potential for regionalized applications.

Similar content being viewed by others

Data availability

All relevant data that support the findings of this study are presented in the article and Supplementary Information. Source data are provided with this paper. The data that support the findings of this study are openly available in Figshare repository with identifier (https://doi.org/10.6084/m9.figshare.23654583).

References

  1. Rode, A. et al. Estimating a social cost of carbon for global energy consumption. Nature 598, 308–314 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2, 232–250 (2021).

    Article  Google Scholar 

  3. Li, L. H. et al. Mitigation of China’s carbon neutrality to global warming. Nat. Commun. 13, 5315 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boretti, A. & Rosa, L. Reassessing the projections of the World Water Development Report. npj Clean Water 2, 15 (2019).

    Article  Google Scholar 

  5. Tong, D. et al. Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target. Nature 572, 373–377 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xiao, X. X. et al. Tackling the challenges of enzymatic (bio)fuel cells. Chem. Rev. 119, 9509–9558 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).

    Article  CAS  Google Scholar 

  9. Li, X. Q. et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl Acad. Sci. USA 113, 13953–13958 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, R. N. et al. Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem. Soc. Rev. 45, 5888–5924 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Im, S. J., Jeong, S. & Jang, A. Forward osmosis (FO)–reverse osmosis (RO) hybrid process incorporated with hollow fiber FO. npj Clean Water 4, 51 (2021).

    Article  CAS  Google Scholar 

  12. Oviroh, P. O., Jen, T.-C., Ren, J. & van Duin, A. Towards the realisation of high permi-selective MoS2 membrane for water desalination. npj Clean Water 6, 14 (2023).

    Article  CAS  Google Scholar 

  13. Mezher, T., Fath, H., Abbas, Z. & Khaled, A. Techno-economic assessment and environmental impacts of desalination technologies. Desalination 266, 263–273 (2011).

    Article  CAS  Google Scholar 

  14. Li, Y. J. et al. 3D-Printed, all-in-one evaporator for high-efficiency solar steam generation under 1 sun illumination. Adv. Mater. 29, 1700981 (2017).

    Article  Google Scholar 

  15. Shi, Y. et al. A 3D photothermal structure toward improved energy efficiency in solar steam generation. Joule 2, 1171–1186 (2018).

    Article  CAS  Google Scholar 

  16. Wu, S. H. et al. Multifunctional solar waterways: plasma-enabled self-cleaning nanoarchitectures for energy-efficient desalination. Adv. Energy Mater. 9, 1901286 (2019).

    Article  Google Scholar 

  17. Tao, P. et al. Solar-driven interfacial evaporation. Nat. Energy 3, 1031–1041 (2018).

    Article  Google Scholar 

  18. Zhu, L. L., Gao, M. M., Peh, C. K. N. & Ho, G. W. Recent progress in solar-driven interfacial water evaporation: advanced designs and applications. Nano Energy 57, 507–518 (2019).

    Article  CAS  Google Scholar 

  19. Chen, Q. M. et al. A durable monolithic polymer foam for efficient solar steam generation. Chem. Sci. 9, 623–628 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Logan, B. E. & Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 488, 313–319 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Yip, N. Y. & Elimelech, M. Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis. Environ. Sci. Technol. 46, 5230–5239 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Varcoe, J. R. et al. Anion-exchange membranes in electrochemical energy systems. Energy Environ. Sci. 7, 3135–3191 (2014).

    Article  CAS  Google Scholar 

  23. Ji, J. Z. et al. Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs. Adv. Funct. Mater. 27, 1603623 (2017).

    Article  Google Scholar 

  24. Siria, A., Bocquet, M.-L. & Bocquet, L. New avenues for the large-scale harvesting of blue energy. Nat. Rev. Chem. 1, 0091 (2017).

    Article  CAS  Google Scholar 

  25. Post, J. W. et al. Salinity-gradient power: evaluation of pressure-retarded osmosis and reverse electrodialysis. J. Membr. Sci. 288, 218–230 (2007).

    Article  CAS  Google Scholar 

  26. Ramon, G. Z., Feinberg, B. J. & Hoek, E. M. V. Membrane-based production of salinity-gradient power. Energy Environ. Sci. 4, 4423–4434 (2011).

    Article  CAS  Google Scholar 

  27. Huntington, H. P. et al. Applying the food–energy–water nexus concept at the local scale. Nat. Sustain. 4, 672–679 (2021).

    Article  Google Scholar 

  28. Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Ruan, C. P., Ai, K. L., Li, X. B. & Lu, L. H. A superhydrophobic sponge with excellent absorbency and flame retardancy. Angew. Chem. Int. Ed. 53, 5556–5560 (2014).

    Article  CAS  Google Scholar 

  32. Gao, M. M., Zhu, L. L., Peh, C. K. & Ho, G. W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 12, 841–864 (2019).

    Article  CAS  Google Scholar 

  33. Yu, X. W. et al. Graphene-based smart materials. Nat. Rev. Mater. 2, 17046 (2017).

    Article  CAS  Google Scholar 

  34. Surwade, S. P. et al. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 10, 459–464 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, J. X. et al. Janus evaporators with self-recovering hydrophobicity for salt-rejecting interfacial solar desalination. ACS Nano 14, 17419–17427 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Chen, X. et al. Sustainable off-grid desalination of hypersaline waters using Janus wood evaporators. Energy Environ. Sci. 14, 5347–5357 (2021).

    Article  CAS  Google Scholar 

  37. Burada, P. S., Hanggi, P., Marchesoni, F., Schmid, G. & Talkner, P. Diffusion in confined geometries. ChemPhysChem 10, 45–54 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  PubMed  Google Scholar 

  39. Lin, C.-Y., Combs, C., Su, Y.-S., Yeh, L.-H. & Siwy, Z. S. Rectification of concentration polarization in mesopores leads to high conductance ionic diodes and high performance osmotic power. J. Am. Chem. Soc. 141, 3691–3698 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Siria, A. et al. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494, 455–458 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Yang, P. H. et al. Solar-driven simultaneous steam production and electricity generation from salinity. Energy Environ. Sci. 10, 1923–1927 (2017).

    Article  CAS  Google Scholar 

  42. Kumar, P. et al. Salinity stress tolerance and omics approaches: revisiting the progress and achievements in major cereal crops. Heredity 128, 497–518 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Almansouri, M., Kinet, J. M. & Lutts, S. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 231, 243–254 (2001).

    Article  CAS  Google Scholar 

  44. Zhang, S. W., Gan, Y. T. & Xu, B. L. Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Front. Plant Sci. 7, 1405 (2016).

    PubMed  PubMed Central  Google Scholar 

  45. Jafar, M. Z. et al. Improving the performance of wheat by seed priming under saline conditions. J. Agron. Crop Sci. 198, 38–45 (2012).

    Article  Google Scholar 

  46. Tang, W. J., Yang, K., Qin, J., Li, X. & Niu, X. L. A 16-year dataset (2000–2015) of high-resolution (3 h, 10 km) global surface solar radiation. Earth Syst. Sci. Data 11, 1905–1915 (2019).

    Article  Google Scholar 

  47. Sweerts, B. et al. Estimation of losses in solar energy production from air pollution in China since 1960 using surface radiation data. Nat. Energy 4, 657–663 (2019).

    Article  Google Scholar 

  48. Ozden, T. A countrywide analysis of 27 solar power plants installed at different climates. Sci. Rep. 12, 746 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jacobson, M. Z. Review of solutions to global warming, air pollution, and energy security. Energy Environ. Sci. 2, 148–173 (2009).

    Article  CAS  Google Scholar 

  50. Biswas, K. et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Fan, F. R., Tian, Z. Q. & Wang, Z. L. Flexible triboelectric generator! Nano Energy 1, 328–334 (2012).

    Article  CAS  Google Scholar 

  52. Wang, K. et al. Rational design of Spirulina residue-derived graphene oxide as an efficient metal-free catalyst for sulfathiazole removal. Sep. Purif. Technol. 290, 120862 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (no. 52070057) for financial support. The datasets are provided by National Tibetan Plateau Data Center (http://data.tpdc.ac.cn).

Author information

Authors and Affiliations

Authors

Contributions

M.W., X.W. and Y.W. contributed equally and share the first authorship. M.W., X.W., Y.W. and S.-H.H. conceived the idea and designed the research. M.W., X.W., S.Z. and C.W. performed the experiment, characterization and performance test. R.L., K.W., R.W., H.C. and N.R. provided constructive suggestions for the results and discussion. M.W., Y.W. and R.L. contributed to writing the manuscript. All co-authors discussed the results.

Corresponding author

Correspondence to Shih-Hsin Ho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Yusuf Bicer, Richard Blanchard and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–29, Notes 1–11, Table 1, experimental details and molecular dynamics simulation process and References 1–14.

Reporting Summary

Source data

Source Data Fig. 2-6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Wei, Y., Wang, X. et al. An integrated system with functions of solar desalination, power generation and crop irrigation. Nat Water 1, 716–724 (2023). https://doi.org/10.1038/s44221-023-00118-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-023-00118-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing