Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Accessing three-dimensional molecular diversity through benzylic C–H cross-coupling

Abstract

Pharmaceutical discovery efforts rely on robust synthetic methods that rapidly access diverse molecules. Cross-coupling reactions are the most widely used reactions, but these methods typically form bonds with C(sp2)-hybridized atoms and lead to a prevalence of ‘flat’ molecules with suboptimal physicochemical and topological properties. Benzylic C(sp3)–H cross-coupling offers an appealing strategy to address this limitation, as emerging methods exhibit synthetic versatility that rivals conventional cross-coupling to access drug-like products. Here we use a virtual library of benzylic ethers and ureas derived from benzylic C–H cross-coupling to test the widely held view that coupling at C(sp3)-hybridized centres affords products with improved three-dimensionality. The results show that the conformational rigidity of the benzylic scaffold strongly influences the product dimensionality. These concepts are validated through an informatics-guided synthesis and high-throughput experimentation to prepare three-dimensional products that are broadly distributed across drug-like chemical space.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Benzylic C–H cross-coupling reactions provide access to 3D chemical space.
Fig. 2: Enumeration of benzylic ethers and ureas derived from P01P20 scaffolds and topological comparison of P01P20 coupling products and CIC.
Fig. 3: Analysis of functionalization products and structural derivatives of A11 highlighting the improved three-dimensionality accessed through C(sp3) coupling.
Fig. 4: PCA showing that benzylic cross-coupling products derived from P01P20 scaffolds exhibit physicochemical features aligned with CIC.
Fig. 5: Benzylic C–H cross-coupling products exhibit drug-like physicochemical properties while showing improved three-dimensionality relative to CIC.
Fig. 6: Benzylic C–H cross-coupling is amenable to HTE methods to access diverse medicinally relevant molecules.

Similar content being viewed by others

Data availability

The authors declare that all of the data supporting the findings of this study are available within the paper and its supplementary information file. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2164953. Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All raw data that support the findings of this study have been deposited at the figshare repository and may be obtained free of charge via https://doi.org/10.6084/m9.figshare.22213894.v2.

Code availability

Enumeration sequences and molecular property calculations described in this work are available for use as components in Pipeline Pilot. See Section 10 of Supplementary Information for the Python code used for PBF calculations and Section 11 for the R code used for PCA.

References

  1. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    CAS  PubMed  Google Scholar 

  2. Dolle, R. E. in Chemical Library Design (ed. Zhou, J. Z.) 3–25 (Humana Press, 2011).

  3. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997).

    CAS  Google Scholar 

  4. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    CAS  PubMed  Google Scholar 

  5. Sauer, W. H. B. & Schwarz, M. K. Molecular shape diversity of combinatorial libraries: a prerequisite for broad bioactivity. J. Chem. Inf. Comput. Sci. 43, 987–1003 (2003).

    CAS  PubMed  Google Scholar 

  6. Boström, J., Brown, D. G., Young, R. J. & Keserü, G. M. Expanding the medicinal chemistry synthetic toolbox. Nat. Rev. Drug Discov. 17, 709–727 (2018).

    PubMed  Google Scholar 

  7. Brown, D. G. & Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone?: miniperspective. J. Med. Chem. 59, 4443–4458 (2016).

    CAS  PubMed  Google Scholar 

  8. Brogden, R. N., Heel, H. C., Speight, T. M. & Avery, G. S. Fluriprofen: a review of its pharmacological properties and therapeutic use in rheumatic diseases. Drug. 18, 417–438 (1979).

    CAS  Google Scholar 

  9. Agoston, G. E. et al. Novel N-substituted 3α-[bis(4’-fluorophenyl)methoxy]tropane analogues: selective ligands for the dopamine transporter. J. Med. Chem. 40, 4329–4339 (1997).

    CAS  PubMed  Google Scholar 

  10. Quasdorf, K. W., Riener, M., Petrova, K. V. & Garg, N. K. Suzuki−Miyaura coupling of aryl carbamates, carbonates, and sulfamates. J. Am. Chem. Soc. 131, 17748–17749 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachal, P. & Krska, S. W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016).

    CAS  PubMed  Google Scholar 

  12. Zhang, Z., Chen, P. & Liu, G. Copper-catalyzed radical relay in C(sp3)–H functionalization. Chem. Soc. Rev. 51, 1640–1658 (2022).

    CAS  PubMed  Google Scholar 

  13. Golden, D. L., Suh, S.-E. & Stahl, S. S. Radical advances in C(sp3)–H functionalization: foundations in for C–H cross coupling. Nat. Chem. Rev. 6, 405–427 (2022).

    CAS  Google Scholar 

  14. Taylor, R. D., MacCoss, M. & Lawson, A. D. G. Rings in drugs: miniperspective. J. Med. Chem. 57, 5845–5859 (2014).

    CAS  PubMed  Google Scholar 

  15. Zhang, W., Chen, P. & Liu, G. Copper-catalyzed arylation of benzylic C–H bonds with alkylarenes as the limiting reagents. J. Am. Chem. Soc. 139, 7709–7712 (2017).

    CAS  PubMed  Google Scholar 

  16. Zhang, W., Wu, L., Chen, P. & Liu, G. Enantioselective arylation of benzylic C−H bonds by copper‐catalyzed radical relay. Angew. Chem. Int. Ed. 58, 6425–6429 (2019).

    CAS  Google Scholar 

  17. Hu, H. et al. Copper-catalysed benzylic C–H coupling with alcohols via radical relay enabled by redox buffering. Nat. Catal. 3, 358–367 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, S.-J., Golden, D. L., Krska, S. W. & Stahl, S. S. Copper-catalyzed cross-coupling of benzylic C–H bonds and azoles with controlled N-site selectivity. J. Am. Chem. Soc. 2021, 14438–14444 (2021).

    Google Scholar 

  19. Buss, J. A., Vasilopoulos, A., Golden, D. L. & Stahl, S. S. Copper-catalyzed functionalization of benzylic C–H bonds with N-fluorobenzenesulfonimide: switch from C–N to C–F bond formation promoted by a redox buffer and Brønsted base. Org. Lett. 22, 5749–5752 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Vasilopoulos, A., Golden, D. L., Buss, J. A. & Stahl, S. S. Copper-catalyzed C–H fluorination/functionalization sequence enabling benzylic C–H cross coupling with diverse nucleophiles. Org. Lett. 22, 5753–5757 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, Y. et al. A photoredox-catalyzed approach for formal hydride abstraction to enable Csp3–H functionalization with nucleophilic partners (F, C, O, N, and Br/Cl). Chem Catal. 2, 292–308 (2022).

    CAS  Google Scholar 

  22. Lopez, M. A., Buss, J. A. & Stahl, S. S. Cu-catalyzed site-selective benzylic chlorination enabling net C−H coupling with oxidatively sensitive nucleophiles. Org. Lett. 24, 597–601 (2022).

    CAS  PubMed  Google Scholar 

  23. Suh, S.-E., Nkulu, L. E., Lin, S., Krska, S. & Stahl, S. S. Benzylic C–H isocyanation/amine coupling sequence enabling high-throughput synthesis of pharmaceutically relevant ureas. Chem. Sci. 12, 10380–10387 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Guillemard, L., Kaplaneris, N., Ackermann, L. & Johansson, M. J. Late-stage C–H functionalization offers new opportunities in drug discovery. Nat. Rev. Chem. 5, 522–545 (2021).

    CAS  PubMed  Google Scholar 

  25. Sambiagio, C., Marsden, S. P., Blacker, A. J. & McGowan, P. C. Copper catalysed Ullmann type chemistry: from mechanistic aspects to modern development. Chem. Soc. Rev. 43, 3525–3550 (2014).

    CAS  PubMed  Google Scholar 

  26. Dorel, R., Grugel, C. P. & Haydl, A. M. The Buchwald–Hartwig amination after 25 years. Angew. Chem. Int. Ed. 58, 17118–17129 (2019).

    CAS  Google Scholar 

  27. Dunetz, J. R., Magano, J. & Weisenburger, G. A. Large-scale applications of amide coupling reagents for the synthesis of pharmaceuticals. Org. Process Res. Dev. 20, 140–177 (2016).

    CAS  Google Scholar 

  28. Prosser, K. E., Stokes, R. W. & Cohen, S. M. Evaluation of 3-dimensionality in approved and experimental drug space. ACS Med. Chem. Lett. 11, 1292–1298 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu, G. et al. Overview of recent strategic advances in medicinal chemistry. J. Med. Chem. 62, 9375–9414 (2019).

    CAS  PubMed  Google Scholar 

  30. Medina-Franco, J., Martinez-Mayorga, K., Giulianotti, M., Houghten, R. & Pinilla, C. Visualization of the chemical space in drug discovery. Curr. Comput. Aided Drug Des. 4, 322–333 (2008).

    CAS  Google Scholar 

  31. Kutchukian, P. S. et al. Chemistry informer libraries: a chemoinformatics enabled approach to evaluate and advance synthetic methods. Chem. Sci. 7, 2604–2613 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Greshock, T. J. et al. Synthesis of complex druglike molecules by the use of highly functionalized bench-stable organozinc reagents. Angew. Chem. Int. Ed. 55, 13714–13718 (2016).

    CAS  Google Scholar 

  33. Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S. & Hopkins, A. L. Quantifying the chemical beauty of drugs. Nat. Chem. 4, 90–98 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Firth, N. C., Brown, N. & Blagg, J. Plane of best fit: a novel method to characterize the three-dimensionality of molecules. J. Chem. Inf. Model. 52, 2516–2525 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen, F., Huang, G. & Huang, H. Sugar ligand-mediated drug delivery. Future Med. Chem. 12, 161–171 (2020).

    CAS  PubMed  Google Scholar 

  36. Heidel, K. M. & Dowd, C. S. Phosphonate prodrugs: an overview and recent advances. Future Med. Chem. 11, 1625–1643 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tice, C. M. et al. Spirocyclic ureas: orally bioavailable 11β-HSD1 inhibitors identified by computer-aided drug design. Bioorg. Med. Chem. Lett. 20, 881–886 (2010).

    CAS  PubMed  Google Scholar 

  38. Tichenor, M. S. et al. Heteroaryl urea inhibitors of fatty acid amide hydrolase: structure–mutagenicity relationships for arylamine metabolites. Bioorg. Med. Chem. Lett. 22, 7357–7362 (2012).

    CAS  PubMed  Google Scholar 

  39. Vardanyan, R. in Piperidine-Based Drug Discovery 103–125 (Elsevier, 2017).

  40. Wallace, H. M., Fraser, A. V. & Hughes, A. A perspective of polyamine metabolism. Biochem. J 376, 1–14 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Krska, S. W., DiRocco, D. A., Dreher, S. D. & Shevlin, M. The evolution of chemical high-throughput experimentation to address challenging problems in pharmaceutical synthesis. Acc.Chem. Res. 50, 2976–2985 (2017).

    CAS  PubMed  Google Scholar 

  42. Dombrowski, A. W., Aguirre, A. L., Shrestha, A., Sarris, K. A. & Wang, Y. The chosen few: parallel library reaction methodologies for drug discovery. J. Org. Chem. 87, 1880–1897 (2022).

    CAS  PubMed  Google Scholar 

  43. MacroModel Release 2019-3 (Schrödinger, LLC, 2019).

  44. Roos, K. et al. OPLS3e: extending force field coverage for drug-like small molecules. J. Chem. Theory Comput. 15, 1863–1874 (2019).

    CAS  PubMed  Google Scholar 

  45. Wenderski, T. A., Stratton, C. F., Bauer, R. A., Kopp, F. & Tan, D. S. in Chemical Biology: Methods and Protocols (eds Hempel, J. E. et al.) 225–242 (Humana Press, 2015).

  46. Tukey, J. W. Exploratory Data Analysis (Addison-Wesley Publishing Co., 1977).

Download references

Acknowledgements

We thank S.-E. Suh for helpful discussions about applications of the benzylic C–H isocyanation–urea synthesis, T. G. Greshock for suggestions on the PCA and HTE, I. A. Guzei and K. M. Sanders for assistance with X-ray crystallographic characterization of A16-1, B. A. Parvizian for LC–MS support and A. Bleskacek for assistance with melting point and optical rotation measurements. This work was supported by the National Institutes of Health (NIH) (R35 GM134929, to S.S.S.) and Merck & Co., Inc., Kenilworth, NJ, USA (travel funds to S.-J.C.). Spectroscopic instrumentation was supported by a gift from P. J. Bender, the NSF (CHE-1048642) and the NIH (S10 OD020022).

Author information

Authors and Affiliations

Authors

Contributions

This project was conceived by S.S.S., in collaboration with S.W.K. and S.-J.C. S.-J.C. performed the informatics studies and experiment work and led the data interpretation and analysis. M.K. and J.W. supported purification of selected products in high-throughput synthesis. C.Q.H. performed conformational analysis and provided guidance and insights into library enumeration, PCA and PMI analysis. S.-J.C. and S.L. selected the alcohol and amine building blocks for library enumeration. All work was done in consultation with S.W.K. and S.S.S. All authors contributed to preparation of the paper.

Corresponding author

Correspondence to Shannon S. Stahl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks György Keserű, Peng Zhan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

General experimental considerations, enumeration workflows, PCA plots information (Section 6), characterization of compounds (Section 12), Supplementary Figs. 1–6 and Tables 1–11.

Supplementary Data 1

Crystallographic data for A16-1, CCDC 2164953.

Supplementary Data 2

Sample structure input for PBF procedure demonstration.

Supplementary Data 3

Sample data output for PBF procedure demonstration.

Supplementary Data 4

Sample data input for PCA procedure demonstration.

Supplementary Data 5

Sample data output for PCA procedure demonstration.

Supplementary Data 6

Procedure operations instructions for PCA and PBF calculations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, SJ., He, C.Q., Kong, M. et al. Accessing three-dimensional molecular diversity through benzylic C–H cross-coupling. Nat. Synth 2, 998–1008 (2023). https://doi.org/10.1038/s44160-023-00332-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00332-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing