Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of phospholipase PLAAT3 causes a mixed lipodystrophic and neurological syndrome due to impaired PPARγ signaling

Abstract

Phospholipase A/acyltransferase 3 (PLAAT3) is a phospholipid-modifying enzyme predominantly expressed in neural and white adipose tissue (WAT). It is a potential drug target for metabolic syndrome, as Plaat3 deficiency in mice protects against diet-induced obesity. We identified seven patients from four unrelated consanguineous families, with homozygous loss-of-function variants in PLAAT3, who presented with a lipodystrophy syndrome with loss of fat varying from partial to generalized and associated with metabolic complications, as well as variable neurological features including demyelinating neuropathy and intellectual disability. Multi-omics analysis of mouse Plaat3−/− and patient-derived WAT showed enrichment of arachidonic acid-containing membrane phospholipids and a strong decrease in the signaling of peroxisome proliferator-activated receptor gamma (PPARγ), the master regulator of adipocyte differentiation. Accordingly, CRISPR–Cas9-mediated PLAAT3 inactivation in human adipose stem cells induced insulin resistance, altered adipocyte differentiation with decreased lipid droplet formation and reduced the expression of adipogenic and mature adipocyte markers, including PPARγ. These findings establish PLAAT3 deficiency as a hereditary lipodystrophy syndrome with neurological manifestations, caused by a PPARγ-dependent defect in WAT differentiation and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Family pedigree structures, genetic findings and schematic display of the PLAAT3 null variants in families 1, 2, 3 and 4.
Fig. 2: DEXA scan and clinical pictures of PLAAT3-deficient patients.
Fig. 3: Histopathology, lipidomics, proteomics and differentially expressed gene analysis in Plaat3−/− and Plaat3+/− mouse WAT.
Fig. 4: Histopathology, lipidomics and differentially expressed gene analysis of patient and control WAT biopsies.
Fig. 5: PLAAT3 deficiency suppresses white adipocyte differentiation of ASCs.

Similar content being viewed by others

Data availability

All relevant data generated and analyzed in this study are included in the article. Mouse RNA-seq data have been deposited in the Gene Expression Omnibus at NCBI (GSE233433). The mouse mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD038815. The human and mouse lipidomics data are available as Supplementary Data 1–3 (Plaat3 mouse lipidomics.html; Plaat3 mouse mediator lipidomics.html; PLAAT3 human lipidomics.html). For reasons of privacy, clinical patient sequencing data are not publicly available. Source data are provided with this paper.

Code availability

All multi-omics-related software used in this study are published and cited either in the main text or Methods. No custom code was used for data processing or analysis of the transcriptomics, proteomics or lipidomics datasets. Data analysis approaches using published software packages are described in the Methods and Supplementary Notes. For patients‘ privacy reasons, the Seqplorer codes for variant calling and filtering won’t be publicly available.

References

  1. Pang, X. Y. et al. Structure/function relationships of adipose phospholipase A2 containing a Cys–His–His catalytic triad. J. Biol. Chem. 287, 35260–35274 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Duncan, R. E., Sarkadi-Nagy, E., Jaworski, K., Ahmadian, M. & Sul, H. S. Identification and functional characterization of adipose-specific phospholipase A2 (AdPLA). J. Biol. Chem. 283, 25428–25436 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Uyama, T., Jin, X. H., Tsuboi, K., Tonai, T. & Ueda, N. Characterization of the human tumor suppressors TIG3 and HRASLS2 as phospholipid-metabolizing enzymes. Biochim. Biophys. Acta 1791, 1114–1124 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Uyama, T. et al. The tumor suppressor gene H-Rev107 functions as a novel Ca2+-independent cytosolic phospholipase A1/2 of the thiol hydrolase type. J. Lipid Res. 50, 685–693 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jaworski, K. et al. AdPLA ablation increases lipolysis and prevents obesity induced by high-fat feeding or leptin deficiency. Nat. Med. 15, 159–168 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hussain, I. & Garg, A. Lipodystrophy syndromes. Endocrinol. Metab. Clin. North Am. 45, 783–797 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jéru, I. Genetics of lipodystrophy syndromes. Presse Med. 50, 104074 (2021).

    Article  PubMed  Google Scholar 

  8. Brown, R. J. et al. The diagnosis and management of lipodystrophy syndromes: a multi-society practice guideline. J. Clin. Endocrinol. Metab. 101, 4500–4511 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Letourneau, L. R. & Greeley, S. A. W. Congenital forms of diabetes: the β-cell and beyond. Curr. Opin. Genet. Dev. 50, 25–34 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sollier, C. et al. Lipodystrophic syndromes: from diagnosis to treatment. Ann. Endocrinol. (Paris) 81, 51–60 (2020).

    Article  PubMed  Google Scholar 

  11. Plagnol, V. et al. A robust model for read count data in exome sequencing experiments and implications for copy number variant calling. Bioinformatics 28, 2747–2754 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Raman, L., Dheedene, A., De Smet, M., Van Dorpe, J. & Menten, B. WisecondorX: improved copy number detection for routine shallow whole-genome sequencing. Nucleic Acids Res. 47, 1605–1614 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Sobreira, N., Schiettecatte, F., Valle, D. & Hamosh, A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum. Mutat. 36, 928–930 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hummasti, S., Hong, C., Bensinger, S. J. & Tontonoz, P. HRASLS3 is a PPARγ-selective target gene that promotes adipocyte differentiation. J. Lipid Res. 49, 2535–2544 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, Z. et al. LncPLAAT3-AS regulates PLAAT3-mediated adipocyte differentiation and lipogenesis in pigs through miR-503-5p. Genes (Basel) 14, 161 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Michaud, A. et al. Expression of genes related to prostaglandin synthesis or signaling in human subcutaneous and omental adipose tissue: depot differences and modulation by adipogenesis. Mediators Inflamm. 2014, 451620 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Morishita, H. et al. Organelle degradation in the lens by PLAAT phospholipases. Nature 592, 634–638 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Wishart, D. S. et al. HMDB 5.0: the human metabolome database for 2022. Nucleic Acids Res. 50, D622–d31 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Qin, Q. et al. Lisa: inferring transcriptional regulators through integrative modeling of public chromatin accessibility and ChIP–seq data. Genome Biol. 21, 32 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cataldi, S., Costa, V., Ciccodicola, A. & Aprile, M. PPARγ and diabetes: beyond the genome and towards personalized medicine. Curr. Diab. Rep. 21, 18 (2021).

    Article  PubMed  Google Scholar 

  21. Lefterova, M. I., Haakonsson, A. K., Lazar, M. A. & Mandrup, S. PPARγ and the global map of adipogenesis and beyond. Trends Endocrinol. Metab. 25, 293–302 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, K., Chen, X., Zhang, P. & Liu, G. Perilipin2 is an earlier marker than perilipin1 for identifying adipocyte regeneration in fat grafts. Aesthet. Surg. J. 41, Np646–NP652 (2021).

    Article  PubMed  Google Scholar 

  23. Olzmann, J. A. & Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 20, 137–155 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaushik, S. & Cuervo, A. M. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat. Cell Biol. 17, 759–770 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ge, K. et al. Alternative mechanisms by which mediator subunit MED1/TRAP220 regulates peroxisome proliferator-activated receptor γ-stimulated adipogenesis and target gene expression. Mol. Cell. Biol. 28, 1081–1091 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Gorwood, J. et al. SIV infection and the HIV proteins tat and nef induce senescence in adipose tissue and human adipose stem cells, resulting in adipocyte dysfunction. Cells 9, 854 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ahmadian, M. et al. PPARγ signaling and metabolism: the good, the bad and the future. Nat. Med. 19, 557–566 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Mory, P. B. et al. Atypical generalized lipoatrophy and severe insulin resistance due to a heterozygous LMNA p.T10I mutation. Arq. Bras. Endocrinol. Metabol. 52, 1252–1256 (2008).

    Article  PubMed  Google Scholar 

  29. Gautheron, J. et al. Loss of thymidine phosphorylase activity disrupts adipocyte differentiation and induces insulin-resistant lipoatrophic diabetes. BMC Med. 20, 95 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Payne, F. et al. Mutations disrupting the Kennedy phosphatidylcholine pathway in humans with congenital lipodystrophy and fatty liver disease. Proc. Natl Acad. Sci. USA 111, 8901–8906 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mann, J. P. & Savage, D. B. What lipodystrophies teach us about the metabolic syndrome. J. Clin. Invest. 129, 4009–4021 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Barroso, I. et al. Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402, 880–883 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Capel, E. et al. MFN2-associated lipomatosis: clinical spectrum and impact on adipose tissue. J. Clin. Lipidol. 12, 1420–1435 (2018).

    Article  PubMed  Google Scholar 

  34. Sollier, C. et al. LIPE-related lipodystrophic syndrome: clinical features and disease modeling using adipose stem cells. Eur. J. Endocrinol. 184, 155–168 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Gautheron, J. et al. EPHX1 mutations cause a lipoatrophic diabetes syndrome due to impaired epoxide hydrolysis and increased cellular senescence. eLife 10, e68445 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hernandez-Quiles, M., Broekema, M. F. & Kalkhoven, E. PPARγ in metabolism, immunity, and cancer: unified and diverse mechanisms of action. Front. Endocrinol. (Lausanne) 12, 624112 (2021).

    Article  PubMed  Google Scholar 

  37. Kim, Y. G., Lou, A. C. & Saghatelian, A. A metabolomics strategy for detecting protein-metabolite interactions to identify natural nuclear receptor ligands. Mol. Biosyst. 7, 1046–1049 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Civelek, E. & Ozen, G. The biological actions of prostanoids in adipose tissue in physiological and pathophysiological conditions. Prostaglandins Leukot. Essent. Fatty Acids 186, 102508 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Hajnal, A., Klemenz, R. & Schäfer, R. Subtraction cloning of H-rev107, a gene specifically expressed in H-ras resistant fibroblasts. Oncogene 9, 479–490 (1994).

    CAS  PubMed  Google Scholar 

  40. Rochford, J. J. Mouse models of lipodystrophy and their significance in understanding fat regulation. Curr. Top. Dev. Biol. 109, 53–96 (2014).

    Article  PubMed  Google Scholar 

  41. Le Lay, S., Magré, J. & Prieur, X. Not enough fat: mouse models of inherited lipodystrophy. Front. Endocrinol. (Lausanne) 13, 785819 (2022).

    Article  PubMed  Google Scholar 

  42. King, E. A., Davis, J. W. & Degner, J. F. Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLoS Genet. 15, e1008489 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Slifer, S. H. PLINK: key functions for data analysis. Curr. Protoc. Hum. Genet. 97, e59 (2018).

    Article  PubMed  Google Scholar 

  45. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28, i333–i339 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Layer, R. M., Chiang, C., Quinlan, A. R. & Hall, I. M. LUMPY: a probabilistic framework for structural variant discovery. Genome Biol. 15, R84 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chen, X. et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 32, 1220–1222 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  51. DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Cingolani, P. et al. Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift. Front. Genet. 3, 35 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Maia, T. M. et al. Simple peptide quantification approach for MS-based proteomics quality control. ACS Omega 5, 6754–6762 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chiva, C. et al. QCloud: a cloud-based quality control system for mass spectrometry-based proteomics laboratories. PLoS ONE 13, e0189209 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhang, X. et al. Proteome-wide identification of ubiquitin interactions using UbIA-MS. Nat. Protoc. 13, 530–550 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the patients and families who participated in this study and the GenomEast facility (IGBMC) for exome sequencing in patient 4. We thank M. Baetens for in-depth CNV-seq analysis. We also thank L. Müller and P. Pellet for their technical help in genetic analyses in families 3 and 4. J.G. is funded by the Fondation pour la Recherche Médicale (FRM; ARF20170938613 and EQU202003010517), the Société Francophone du Diabète (SFD; R19114DD), the Mairie de Paris (Emergences—R18139DD) and the Agence Nationale de la Recherche (ANR-21-CE18-0002-01). B.D. is supported by an Odysseus type 1 Grant of the Research Foundation Flanders (G0H8318N) and a starting grant from Ghent University Special Research Fund (01N10319). N.M. is supported by the Exploratory Research for Advanced Technology (ERATO) research funding program of the Japan Science and Technology Agency (JPMJER1702) and a Grant-in-Aid for Specially Promoted Research from the Japan Society for the Promotion of Science (22H04919). The Program for Undiagnosed Diseases (UD-PrOZA) is supported by the Spearhead Research Policy Program and the Fund for Innovation from the Ghent University Hospital. The Neuromendeliome Study (to C.D., Strasbourg, France) was financially supported by Agence de la Biomédecine (France). C.V. and M.A. are supported by institutional funding from Inserm, Sorbonne Université, Assistance-Publique Hôpitaux de Paris, by the Fondation pour la Recherche Médicale (grant EQU201903007868), and by the Association Française des Lipodystrophies (AFLIP), through a donation to Association Robert-Debré pour la Recherche Médicale (ARDRM). D.H. would like to thank S. van Sprang and the whole team at the Academia Belgica, Center for History, Arts and Sciences in Rome, Italy (https://www.academiabelgica.it), for supporting the writing of this manuscript. The authors of this study are members of the European Reference Network for Rare Neurological Diseases (ERN-RND to D.H. and B.D.), the Solve-RD Consortium (N.S., D.H., B.P. and B.D) and the European Reference Network on Rare Endocrine Conditions (Endo-ERN, Project ID 739527 to C.V.). For more information about the ERNs and the EU health strategy, visit http://ec.europa.eu/health/ern. For more information about Solve-RD, visit https://solve-rd.eu.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

N.S., D.H., J.G., S.E.C., C.D., I.J. and B.D. wrote the manuscript. N.S., J.G., I.J. and B.D. designed the study and performed the main analyses. N.S., S.E.C., D.H., M.V., S.N., M.T., C.V., N.V.D., F.R.C., J.A.U., J.C., W.T., B.D. and S.C. were involved in phenotyping and clinical follow-up of the patients. N.S., E.B., T.R., G.D., E.D., B.F., F.A., S.K., P.H., C.D., B.P., I.J. and B.D. were involved in genotyping of the patients. S.D. and F.I. performed the proteomics analysis. J.G. designed the CRISPR–Cas9-mediated PLAAT3 KO cellular model. M.A. provided technical support for the cell experiments. N.S. and B.D. collected adipose tissue biopsy specimens. F.O. and N.M. provided WAT from Plaat3−/− and Plaat3+/− mice. J.V.D. and C.V.H. performed histological analyses of human and mouse WAT. N.S., D.H., J.G., I.J. and B.D. edited the manuscript.

Corresponding author

Correspondence to Bart Dermaut.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Robert Semple, David Savage and Rebecca Brown for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes, Supplementary Figs. 1–4 and Supplementary Tables 1–8.

Reporting Summary

Supplementary Data 1

Lipidomics report of Plaat3−/− and Plaat3+/− mice.

Supplementary Data 2

Mediator lipidomics report of Plaat3−/− and Plaat3+/− mice.

Supplementary Data 3

Lipidomics report of PLAAT3 patients and normal controls.

Source data

Source Data Fig. 5

Unprocessed western blots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuermans, N., El Chehadeh, S., Hemelsoet, D. et al. Loss of phospholipase PLAAT3 causes a mixed lipodystrophic and neurological syndrome due to impaired PPARγ signaling. Nat Genet 55, 1929–1940 (2023). https://doi.org/10.1038/s41588-023-01535-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-023-01535-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing