Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Computational immunogenomic approaches to predict response to cancer immunotherapies

Abstract

Cancer immunogenomics is an emerging field that bridges genomics and immunology. The establishment of large-scale genomic collaborative efforts along with the development of new single-cell transcriptomic techniques and multi-omics approaches have enabled characterization of the mutational and transcriptional profiles of many cancer types and helped to identify clinically actionable alterations as well as predictive and prognostic biomarkers. Researchers have developed computational approaches and machine learning algorithms to accurately obtain clinically useful information from genomic and transcriptomic sequencing data from bulk tissue or single cells and explore tumours and their microenvironment. The rapid growth in sequencing and computational approaches has resulted in the unmet need to understand their true potential and limitations in enabling improvements in the management of patients with cancer who are receiving immunotherapies. In this Review, we describe the computational approaches currently available to analyse bulk tissue and single-cell sequencing data from cancer, stromal and immune cells, as well as how best to select the most appropriate tool to address various clinical questions and, ultimately, improve patient outcomes.

Key points

  • Researchers are developing various immunogenomic tools to predict response to treatment in patients with cancer who are receiving immune-checkpoint inhibitors (ICIs), based on cancer-intrinsic and cancer-extrinsic features that can be identified with sequencing, including tumour mutational burden, neoantigens and the presence of immune cells.

  • Computational tools for HLA genotyping from whole-genome sequencing, whole-exome sequencing and RNA sequencing have been well established; long-read sequencing is a promising technology that is expected to improve the performance of HLA genotyping.

  • Several approaches have been developed to identify immunogenic neoantigens, with a major focus on somatic single-nucleotide variants; however, the identification of neoantigens from non-canonical sources is crucial for a comprehensive understanding of neoantigen load.

  • Deconvolution tools provide estimates of the immune cell proportions in the tumour microenvironment but have limitations in identifying low-abundance cell types and subsets; therefore, the use of these tools requires careful consideration of the underlying technical and biological factors.

  • Multi-omic machine learning models trained on molecular and clinical features from large cohorts of tumour samples could improve the prediction of patient responses to immunotherapy and reveal key predictive features.

  • Functionally verified approaches that integrate genomic intratumour heterogeneity, HLA genotypes and neoantigen trafficking, and expression and immunogenicity, among other features, could improve prediction of response to ICIs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Computational approaches to interrogate cancer-intrinsic and cancer-extrinsic immune phenotypes in bulk tissue samples.
Fig. 2: Computational approaches to identify cancer neoantigens from various sources.
Fig. 3: Computational analysis of bulk tissue and single-cell RNA sequencing data to study the tumour microenvironment and associated features.
Fig. 4: Multi-omic machine learning to predict responses to immune-checkpoint inhibitors.

Similar content being viewed by others

References

  1. Sun, C. et al. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature 508, 118–122 (2014).

    CAS  PubMed  Google Scholar 

  2. Buchbinder, E. I. & Desai, A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol. 39, 98–106 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. McDermott, D., Haanen, J., Chen, T. T., Lorigan, P. & O’Day, S. Efficacy and safety of ipilimumab in metastatic melanoma patients surviving more than 2 years following treatment in a phase III trial (MDX010-20). Ann. Oncol. 24, 2694–2698 (2013).

    CAS  PubMed  Google Scholar 

  4. Eggermont, A. M. M. et al. Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. N. Engl. J. Med. 375, 1845–1855 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hammers, H. J. et al. Safety and efficacy of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma: the CheckMate 016 study. J. Clin. Oncol. 35, 3851–3858 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Overman, M. J. et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 18, 1182–1191 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Brahmer, J. et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 373, 123–135 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ansell, S. M. et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med. 372, 311–319 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Sharma, P. et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 18, 312–322 (2017).

    CAS  PubMed  Google Scholar 

  11. El-Khoueiry, A. B. et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 389, 2492–2502 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen, R. et al. Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J. Clin. Oncol. 35, 2125–2132 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Diaz, L. et al. 386P—efficacy of pembrolizumab in phase 2 KEYNOTE-164 and KEYNOTE-158 studies of microsatellite instability high cancers. Ann. Oncol. 28, v128–v129 (2017).

    Google Scholar 

  14. Chung, H. C. et al. Efficacy and safety of pembrolizumab in previously treated advanced cervical cancer: results from the phase II KEYNOTE-158 study. J. Clin. Oncol. 37, 1470–1478 (2019).

    CAS  PubMed  Google Scholar 

  15. Zhu, A. X. et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 19, 940–952 (2018).

    PubMed  Google Scholar 

  16. Nghiem, P. et al. Durable tumor regression and overall survival in patients with advanced Merkel cell carcinoma receiving pembrolizumab as first-line therapy. J. Clin. Oncol. 37, 693–702 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Alley, E. W. et al. Clinical safety and activity of pembrolizumab in patients with malignant pleural mesothelioma (KEYNOTE-028): preliminary results from a non-randomised, open-label, phase 1b trial. Lancet Oncol. 18, 623–630 (2017).

    CAS  PubMed  Google Scholar 

  18. Patel, S. P. & Kurzrock, R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol. Cancer Ther. 14, 847 (2015).

    CAS  PubMed  Google Scholar 

  19. Duffy, M. J. & Crown, J. Biomarkers for predicting response to immunotherapy with immune checkpoint inhibitors in cancer patients. Clin. Chem. 65, 1228–1238 (2019).

    CAS  PubMed  Google Scholar 

  20. Fundytus, A., Booth, C. M. & Tannock, I. F. How low can you go? PD-L1 expression as a biomarker in trials of cancer immunotherapy. Ann. Oncol. 32, 833–836 (2021).

    CAS  PubMed  Google Scholar 

  21. Hellmann, M. D. et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med. 378, 2093–2104 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Marabelle, A. et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 21, 1353–1365 (2020).

    CAS  PubMed  Google Scholar 

  23. FDA. FDA Approves Pembrolizumab for Adults and Children with TMB-H Solid Tumors, https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-pembrolizumab-adults-and-children-tmb-h-solid-tumors (2020).

  24. Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165, 35–44 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ayers, M. et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Investig. 127, 2930–2940 (2017).

    PubMed  PubMed Central  Google Scholar 

  26. Cristescu, R. et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362, eaar3593 (2018).

    PubMed  PubMed Central  Google Scholar 

  27. Van Allen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207 (2015).

    PubMed  PubMed Central  Google Scholar 

  28. Liu, D. et al. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat. Med. 25, 1916–1927 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rizvi, N. A. et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Anagnostou, V. et al. Multimodal genomic features predict outcome of immune checkpoint blockade in non-small-cell lung cancer. Nat. Cancer 1, 99–111 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim, S. T. et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat. Med. 24, 1449–1458 (2018).

    CAS  PubMed  Google Scholar 

  33. Aran, D., Sirota, M. & Butte, A. J. Systematic pan-cancer analysis of tumour purity. Nat. Commun. 6, 8971 (2015).

    CAS  PubMed  Google Scholar 

  34. Carter, S. L. et al. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30, 413–421 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Raine, K. M. et al. ascatNgs: identifying somatically acquired copy-number alterations from whole-genome sequencing data. Curr. Protoc. Bioinformatics 56, 15.19.11–15.19.17 (2016).

    Google Scholar 

  36. Song, S. et al. qpure: a tool to estimate tumor cellularity from genome-wide single-nucleotide polymorphism profiles. PLoS ONE 7, e45835 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoshihara, K. et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 4, 2612 (2013).

    PubMed  Google Scholar 

  38. Revkov, E., Kulshrestha, T., Sung, K. W. & Skanderup, A. J. PUREE: accurate pan-cancer tumor purity estimation from gene expression data. Commun. Biol. 6, 394 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Dentro, S. C. et al. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell 184, 2239–2254.e39 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Frankell, A. M. et al. The evolution of lung cancer and impact of subclonal selection in TRACERx. Nature 616, 525–533 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jamal-Hanjani, M. et al. Tracking the evolution of non-small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017).

    CAS  PubMed  Google Scholar 

  42. Roth, A. et al. PyClone: statistical inference of clonal population structure in cancer. Nat. Methods 11, 396–398 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Miller, C. A. et al. SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLoS Comput. Biol. 10, e1003665 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zaccaria, S. & Raphael, B. J. Accurate quantification of copy-number aberrations and whole-genome duplications in multi-sample tumor sequencing data. Nat. Commun. 11, 4301 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Xiao, Y. et al. FastClone is a probabilistic tool for deconvoluting tumor heterogeneity in bulk-sequencing samples. Nat. Commun. 11, 4469 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Salcedo, A. et al. Crowd-sourced benchmarking of single-sample tumour subclonal reconstruction. Preprint at https://doi.org/10.1101/2022.06.14.495937 (2022).

  48. Tanner, G., Westhead, D. R., Droop, A. & Stead, L. F. Benchmarking pipelines for subclonal deconvolution of bulk tumour sequencing data. Nat. Commun. 12, 6396 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Martinez-Ruiz, C. et al. Genomic-transcriptomic evolution in lung cancer and metastasis. Nature 616, 543–552 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sha, D. et al. Tumor mutational burden as a predictive biomarker in solid tumors. Cancer Discov. 10, 1808–1825 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).

    PubMed  PubMed Central  Google Scholar 

  54. Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377, 2500–2501 (2017).

    PubMed  PubMed Central  Google Scholar 

  55. Newell, F. et al. Comparative genomics provides etiologic and biological insight into melanoma subtypes. Cancer Discov. 12, 2856–2879 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Riaz, N. et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171, 934–949.e16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Newell, F. et al. Multiomic profiling of checkpoint inhibitor-treated melanoma: identifying predictors of response and resistance, and markers of biological discordance. Cancer Cell 40, 88–102.e107 (2022).

    CAS  PubMed  Google Scholar 

  58. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Strickler, J. H., Hanks, B. A. & Khasraw, M. Tumor mutational burden as a predictor of immunotherapy response: is more always better? Clin. Cancer Res. 27, 1236–1241 (2021).

    CAS  PubMed  Google Scholar 

  60. Kassahn, K. S. et al. Somatic point mutation calling in low cellularity tumors. PLoS ONE 8, e74380 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Xiao, W. et al. Toward best practice in cancer mutation detection with whole-genome and whole-exome sequencing. Nat. Biotechnol. 39, 1141–1150 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Akdemir, K. C. et al. Somatic mutation distributions in cancer genomes vary with three-dimensional chromatin structure. Nat. Genet. 52, 1178–1188 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Alioto, T. S. et al. A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing. Nat. Commun. 6, 10001 (2015).

    CAS  PubMed  Google Scholar 

  64. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Caron, N. R. et al. Indigenous genomic databases: pragmatic considerations and cultural contexts. Front. Public Health 8, 111 (2020).

    PubMed  PubMed Central  Google Scholar 

  66. Carbone, D. P. et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N. Engl. J. Med. 376, 2415–2426 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ricciuti, B. et al. Association of high tumor mutation burden in non-small cell lung cancers with increased immune infiltration and improved clinical outcomes of PD-L1 blockade across PD-L1 expression levels. JAMA Oncol. 8, 1160–1168 (2022).

    PubMed  PubMed Central  Google Scholar 

  68. Aggarwal, C. et al. Assessment of tumor mutational burden and outcomes in patients with diverse advanced cancers treated with immunotherapy. JAMA Netw. Open 6, e2311181 (2023).

    PubMed  PubMed Central  Google Scholar 

  69. Buchhalter, I. et al. Size matters: dissecting key parameters for panel-based tumor mutational burden analysis. Int. J. Cancer 144, 848–858 (2019).

    CAS  PubMed  Google Scholar 

  70. Ramarao-Milne, P. et al. Comparison of actionable events detected in cancer genomes by whole-genome sequencing, in silico whole-exome and mutation panels. ESMO Open 7, 100540 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Merino, D. M. et al. Establishing guidelines to harmonize tumor mutational burden (TMB): in silico assessment of variation in TMB quantification across diagnostic platforms: phase I of the Friends of Cancer Research TMB Harmonization Project. J. Immunother. Cancer 8, e000147 (2020).

    PubMed  PubMed Central  Google Scholar 

  72. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69 (2015).

    CAS  PubMed  Google Scholar 

  73. Goodman, A. M. et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol. Cancer Ther. 16, 2598 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Chan, T. A. et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann. Oncol. 30, 44–56 (2019).

    CAS  PubMed  Google Scholar 

  75. Yamamoto, T. N., Kishton, R. J. & Restifo, N. P. Developing neoantigen-targeted T cell-based treatments for solid tumors. Nat. Med. 25, 1488–1499 (2019).

    CAS  PubMed  Google Scholar 

  76. Lee, C.-H., Yelensky, R., Jooss, K. & Chan, T. A. Update on tumor neoantigens and their utility: why it is good to be different. Trends Immunol. 39, 536–548 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Chandran, S. S. et al. Immunogenicity and therapeutic targeting of a public neoantigen derived from mutated PIK3CA. Nat. Med. 28, 946–957 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Luksza, M. et al. Neoantigen quality predicts immunoediting in survivors of pancreatic cancer. Nature 606, 389–395 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, Q. L. et al. Association of HLA diversity with the risk of 25 cancers in the UK Biobank. EBioMedicine 92, 104588 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Chowell, D. et al. Evolutionary divergence of HLA class I genotype impacts efficacy of cancer immunotherapy. Nat. Med. 25, 1715–1720 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Chowell, D. et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 359, 582 (2018).

    CAS  PubMed  Google Scholar 

  82. Jamal-Hanjani, M. et al. Tracking the evolution of non-small-cell lung cancer. New Engl. J. Med. 376, 2109–2121 (2017).

  83. McGranahan, N. et al. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 171, 1259–1271.e11 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Bauer, D. C. & Thorne, N. P. et al. Evaluation of computational programs to predict HLA genotypes from genomic sequencing data. Brief. Bioinform. 19, 179–187 (2016).

    PubMed Central  Google Scholar 

  85. Yi, J., Chen, L., Xiao, Y., Zhao, Z. & Su, X. Investigations of sequencing data and sample type on HLA class Ia typing with different computational tools. Brief. Bioinform. 22, bbaa143 (2021).

    PubMed  Google Scholar 

  86. Kiyotani, K., Mai, T. H. & Nakamura, Y. Comparison of exome-based HLA class I genotyping tools: identification of platform-specific genotyping errors. J. Hum. Genet. 62, 397–405 (2017).

    CAS  PubMed  Google Scholar 

  87. Lang, K. et al. Full-length HLA class I genotyping with the MinION nanopore sequencer. Methods Mol. Biol. 1802, 155–162 (2018).

    CAS  PubMed  Google Scholar 

  88. Nielsen, M., Lundegaard, C., Lund, O. & Keşmir, C. The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 57, 33–41 (2005).

    CAS  PubMed  Google Scholar 

  89. Larsen, M. V. et al. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics 8, 424 (2007).

    PubMed  PubMed Central  Google Scholar 

  90. Andreatta, M. & Nielsen, M. Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics 32, 511–517 (2016).

    CAS  PubMed  Google Scholar 

  91. Reynisson, B., Alvarez, B., Paul, S., Peters, B. & Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 48, W449–W454 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. O’Donnell, T. J., Rubinsteyn, A. & Laserson, U. MHCflurry 2.0: improved pan-allele prediction of MHC class I-presented peptides by incorporating antigen processing. Cell Syst. 11, 42–48 e47 (2020).

    PubMed  Google Scholar 

  93. Vita, R. et al. The immune epitope database (IEDB): 2018 update. Nucleic Acids Res. 47, D339–D343 (2018).

    PubMed Central  Google Scholar 

  94. Vizcaíno, J. A. et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, 11033 (2016).

    PubMed  PubMed Central  Google Scholar 

  95. Shao, W. et al. The SysteMHC atlas project. Nucleic Acids Res. 46, D1237–D1247 (2018).

    CAS  PubMed  Google Scholar 

  96. Frahm, N. et al. Extensive HLA class I allele promiscuity among viral CTL epitopes. Eur. J. Immunol. 37, 2419–2433 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Gfeller, D. & Bassani-Sternberg, M. Predicting antigen presentation—what could we learn from a million peptides? Front. Immunol. 9, 1716 (2018).

    PubMed  PubMed Central  Google Scholar 

  98. Singh-Jasuja, H., Emmerich, N. P. & Rammensee, H. G. The Tubingen approach: identification, selection, and validation of tumor-associated HLA peptides for cancer therapy. Cancer Immunol. Immunother. 53, 187–195 (2004).

    CAS  PubMed  Google Scholar 

  99. Yadav, M. et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515, 572–576 (2014).

    CAS  PubMed  Google Scholar 

  100. Xia, H. et al. Computational prediction of MHC anchor locations guides neoantigen identification and prioritization. Sci. Immunol. 8, eabg2200 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Łuksza, M. et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature 551, 517–520 (2017).

    PubMed  PubMed Central  Google Scholar 

  102. Balachandran, V. P. et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551, 512–516 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. No authors listed. The problem with neoantigen prediction. Nat. Biotechnol. 35, 97 (2017).

    Google Scholar 

  104. Jensen, K. K. et al. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology 154, 394–406 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhang, G. L. et al. MULTIPRED2: a computational system for large-scale identification of peptides predicted to bind to HLA supertypes and alleles. J. Immunol. Methods 374, 53–61 (2011).

    CAS  PubMed  Google Scholar 

  106. Guan, P., Hattotuwagama, C. K., Doytchinova, I. A. & Flower, D. R. MHCPred 2.0: an updated quantitative T-cell epitope prediction server. Appl. Bioinformatics 5, 55–61 (2006).

    CAS  PubMed  Google Scholar 

  107. Chen, B. et al. Predicting HLA class II antigen presentation through integrated deep learning. Nat. Biotechnol. 37, 1332–1343 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang, D. et al. A deep proteome and transcriptome abundance atlas of 29 healthy human tissues. Mol. Syst. Biol. 15, e8503 (2019).

    PubMed  PubMed Central  Google Scholar 

  109. Kalaora, S. et al. Combined analysis of antigen presentation and T-cell recognition reveals restricted immune responses in melanoma. Cancer Discov. 8, 1366–1375 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Wells, D. K. et al. Key parameters of tumor epitope immunogenicity revealed through a consortium approach improve neoantigen prediction. Cell 183, 818 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Nowak, A. K. et al. Durvalumab with first-line chemotherapy in previously untreated malignant pleural mesothelioma (DREAM): a multicentre, single-arm, phase 2 trial with a safety run-in. Lancet Oncol. 21, 1213–1223 (2020).

    CAS  PubMed  Google Scholar 

  112. Zhao, J. et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat. Med. 25, 462 (2019).

    PubMed  PubMed Central  Google Scholar 

  113. Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

    Google Scholar 

  115. Bueno, R. et al. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat. Genet. 48, 407–416 (2016).

    CAS  PubMed  Google Scholar 

  116. Creaney, J. et al. Comprehensive genomic and tumour immune profiling reveals potential therapeutic targets in malignant pleural mesothelioma. Genome Med. 14, 58 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Hmeljak, J. et al. Integrative molecular characterization of malignant pleural mesothelioma. Cancer Discov. 8, 1548–1565 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Turajlic, S. et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 18, 1009–1021 (2017).

    CAS  PubMed  Google Scholar 

  119. Mansfield, A. S. et al. Neoantigenic potential of complex chromosomal rearrangements in mesothelioma. J. Thorac. Oncol. 14, 276–287 (2019).

    CAS  PubMed  Google Scholar 

  120. Yang, W. et al. Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat. Med. 25, 767–775 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Kahles, A. et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell 34, 211–224.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Park, J. & Chung, Y. J. Identification of neoantigens derived from alternative splicing and RNA modification. Genomics Inform. 17, e23 (2019).

    PubMed  PubMed Central  Google Scholar 

  123. Shen, L., Zhang, J., Lee, H., Batista, M. T. & Johnston, S. A. RNA transcription and splicing errors as a source of cancer frameshift neoantigens for vaccines. Sci. Rep. 9, 14184 (2019).

    PubMed  PubMed Central  Google Scholar 

  124. Smart, A. C. et al. Intron retention is a source of neoepitopes in cancer. Nat. Biotechnol. 36, 1056–1058 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhang, M. et al. RNA editing derived epitopes function as cancer antigens to elicit immune responses. Nat. Commun. 9, 3919 (2018).

    PubMed  PubMed Central  Google Scholar 

  126. Barczak, W. et al. Long non-coding RNA-derived peptides are immunogenic and drive a potent anti-tumour response. Nat. Commun. 14, 1078 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Smith, C. C. et al. Alternative tumour-specific antigens. Nat. Rev. Cancer 19, 465–478 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Chai, S. et al. NeoSplice: a bioinformatics method for prediction of splice variant neoantigens. Bioinform. Adv. 2, vbac032 (2022).

    PubMed  PubMed Central  Google Scholar 

  129. Pan, Y. et al. IRIS: discovery of cancer immunotherapy targets arising from pre-mRNA alternative splicing. Proc. Natl Acad. Sci. USA 120, e2221116120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhang, Z. et al. ASNEO: identification of personalized alternative splicing based neoantigens with RNA-seq. Aging 12, 14633–14648 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Attig, J. et al. LTR retroelement expansion of the human cancer transcriptome and immunopeptidome revealed by de novo transcript assembly. Genome Res. 29, 1578–1590 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Burbage, M. et al. Epigenetically controlled tumor antigens derived from splice junctions between exons and transposable elements. Sci. Immunol. 8, eabm6360 (2023).

    CAS  PubMed  Google Scholar 

  133. Merlotti, A. et al. Noncanonical splicing junctions between exons and transposable elements represent a source of immunogenic recurrent neo-antigens in patients with lung cancer. Sci. Immunol. 8, eabm6359 (2023).

    CAS  PubMed  Google Scholar 

  134. Shah, N. M. et al. Pan-cancer analysis identifies tumor-specific antigens derived from transposable elements. Nat. Genet. 55, 631–639 (2023).

    CAS  PubMed  Google Scholar 

  135. Shi, Y., Jing, B. & Xi, R. Comprehensive analysis of neoantigens derived from structural variation across whole genomes from 2528 tumors. Genome Biol. 24, 169 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Vensko, S. P. et al. LENS: landscape of effective neoantigens software. Bioinformatics 39, btad322 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Hu, Z., Ott, P. A. & Wu, C. J. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat. Rev. Immunol. 18, 168–182 (2018).

    CAS  PubMed  Google Scholar 

  138. Lang, F., Schrors, B., Lower, M., Tureci, O. & Sahin, U. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat. Rev. Drug Discov. 21, 261–282 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Xie, N. et al. Neoantigens: promising targets for cancer therapy. Signal Transduct. Target Ther. 8, 9 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).

    CAS  PubMed  Google Scholar 

  142. Hilf, N. et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565, 240–245 (2019).

    CAS  PubMed  Google Scholar 

  143. Keskin, D. B. et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565, 234–239 (2019).

    CAS  PubMed  Google Scholar 

  144. Leidner, R. et al. Neoantigen T-cell receptor gene therapy in pancreatic cancer. N. Engl. J. Med. 386, 2112–2119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Rojas, L. A. et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618, 144–150 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Khattak, A. et al. Distant metastasis-free survival results from the randomized, phase 2 mRNA-4157-P201/KEYNOTE-942 trial. J. Clin. Oncol. 41, LBA9503 (2023).

    Google Scholar 

  147. Rowley, J. D. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243, 290–293 (1973).

    CAS  PubMed  Google Scholar 

  148. Tognon, C. et al. Expression of the ETV6–NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2, 367–376 (2002).

    CAS  PubMed  Google Scholar 

  149. Seshagiri, S. et al. Recurrent R-spondin fusions in colon cancer. Nature 488, 660–664 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

    PubMed Central  Google Scholar 

  151. Xiao, X., Garbutt, C. C., Hornicek, F., Guo, Z. & Duan, Z. Advances in chromosomal translocations and fusion genes in sarcomas and potential therapeutic applications. Cancer Treat. Rev. 63, 61–70 (2018).

    CAS  PubMed  Google Scholar 

  152. Rooper, L. M. et al. DEK-AFF2 carcinoma of the sinonasal region and skull base: detailed clinicopathologic characterization of a distinctive entity. Am. J. Surg. Pathol. 45, 1682–1693 (2021).

    PubMed  Google Scholar 

  153. Mackall, C. L. et al. A pilot study of consolidative immunotherapy in patients with high-risk pediatric sarcomas. Clin. Cancer Res. 14, 4850–4858 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Poorebrahim, M. et al. TCR-like CARs and TCR-CARs targeting neoepitopes: an emerging potential. Cancer Gene Ther. 28, 581–589 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Foy, S. P. et al. Non-viral precision T cell receptor replacement for personalized cell therapy. Nature 615, 687–696 (2023).

    CAS  PubMed  Google Scholar 

  156. Anderson, N. M. & Simon, M. C. The tumor microenvironment. Curr. Biol. 30, R921–R925 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Grisaru-Tal, S., Rothenberg, M. E. & Munitz, A. Eosinophil–lymphocyte interactions in the tumor microenvironment and cancer immunotherapy. Nat. Immunol. 23, 1309–1316 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Mensurado, S., Blanco-Dominguez, R. & Silva-Santos, B. The emerging roles of gammadelta T cells in cancer immunotherapy. Nat. Rev. Clin. Oncol. 20, 178–191 (2023).

    CAS  PubMed  Google Scholar 

  159. Pittet, M. J., Michielin, O. & Migliorini, D. Clinical relevance of tumour-associated macrophages. Nat. Rev. Clin. Oncol. 19, 402–421 (2022).

    PubMed  Google Scholar 

  160. Whiteside, T. L. The tumor microenvironment and its role in promoting tumor growth. Oncogene 27, 5904 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Mihm, M. C., Clemente, C. G. & Cascinelli, N. Tumor infiltrating lymphocytes in lymph node melanoma metastases: a histopathologic prognostic indicator and an expression of local immune response. Lab. Invest. 74, 43–47 (1996).

    PubMed  Google Scholar 

  162. Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow? Lancet 357, 539–545 (2001).

    CAS  PubMed  Google Scholar 

  163. Kim, R., Emi, M. & Tanabe, K. Cancer immunoediting from immune surveillance to immune escape. Immunology 121, 1–14 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. TextXHarjunpää, H., Llort Asens, M., Guenther, C. & Fagerholm, S. C. Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front. Immunol. 10, 1078 (2019).

    Google Scholar 

  165. Limagne, E. et al. MEK inhibition overcomes chemoimmunotherapy resistance by inducing CXCL10 in cancer cells. Cancer Cell 40, 136–152.e12 (2022).

    CAS  PubMed  Google Scholar 

  166. Litchfield, K. et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 184, 596–614.e14 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Nagarsheth, N., Wicha, M. S. & Zou, W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat. Rev. Immunol. 17, 559–572 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Valkenburg, K. C., de Groot, A. E. & Pienta, K. J. Targeting the tumour stroma to improve cancer therapy. Nat. Rev. Clin. Oncol. 15, 366–381 (2018).

    PubMed  PubMed Central  Google Scholar 

  169. Waldmann, T. A. Cytokines in cancer immunotherapy. Cold Spring Harb. Perspect. Biol. 10, a028472 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Maleki Vareki, S. High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint inhibitors. J. Immunother. Cancer 6, 157 (2018).

    PubMed  PubMed Central  Google Scholar 

  171. Avila Cobos, F., Alquicira-Hernandez, J., Powell, J. E., Mestdagh, P. & De Preter, K. Benchmarking of cell type deconvolution pipelines for transcriptomics data. Nat. Commun. 11, 5650 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Tran, K. A. et al. Performance of tumour microenvironment deconvolution methods in breast cancer using single-cell simulated bulk mixtures. Nat. Commun. 14, 5758 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Li, T. et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 77, e108 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Mabbott, N. A., Baillie, J. K., Brown, H., Freeman, T. C. & Hume, D. A. An expression atlas of human primary cells: inference of gene function from coexpression networks. BMC Genomics 14, 632 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Nirmal, A. J. et al. Immune cell gene signatures for profiling the microenvironment of solid tumors. Cancer Immunol. Res. 6, 1388–1400 (2018).

    CAS  PubMed  Google Scholar 

  176. Racle, J. & Gfeller, D. EPIC: a tool to estimate the proportions of different cell types from bulk gene expression data. Methods Mol. Biol. 2120, 233–248 (2020).

    CAS  PubMed  Google Scholar 

  177. Aran, D., Hu, Z. & Butte, A. J. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18, 220 (2017).

    PubMed  PubMed Central  Google Scholar 

  178. Becht, E. et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 17, 218 (2016).

    PubMed  PubMed Central  Google Scholar 

  179. Jimenez-Sanchez, A., Cast, O. & Miller, M. L. Comprehensive benchmarking and integration of tumor microenvironment cell estimation methods. Cancer Res. 79, 6238–6246 (2019).

    CAS  PubMed  Google Scholar 

  180. Finotello, F. et al. Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med. 11, 34 (2019).

    PubMed  PubMed Central  Google Scholar 

  181. Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830.e14 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Petitprez, F. et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 577, 556–560 (2020).

    CAS  PubMed  Google Scholar 

  183. M, M. N. et al. Multi-omic features of oesophageal adenocarcinoma in patients treated with preoperative neoadjuvant therapy. Nat. Commun. 14, 3155 (2023).

    Google Scholar 

  184. Chakravarthy, A. et al. Pan-cancer deconvolution of tumour composition using DNA methylation. Nat. Commun. 9, 3220 (2018).

    PubMed  PubMed Central  Google Scholar 

  185. Houseman, E. A. et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13, 86 (2012).

    PubMed  PubMed Central  Google Scholar 

  186. Demerath, E. W. et al. Epigenome-wide association study (EWAS) of BMI, BMI change and waist circumference in African American adults identifies multiple replicated loci. Hum. Mol. Genet. 24, 4464–4479 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Rakyan, V. K., Down, T. A., Balding, D. J. & Beck, S. Epigenome-wide association studies for common human diseases. Nat. Rev. Genet. 12, 529–541 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Koestler, D. C. et al. Improving cell mixture deconvolution by identifying optimal DNA methylation libraries (IDOL). BMC Bioinformatics 17, 120 (2016).

    PubMed  PubMed Central  Google Scholar 

  189. Salas, L. A. et al. Enhanced cell deconvolution of peripheral blood using DNA methylation for high-resolution immune profiling. Nat. Commun. 13, 761 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Teschendorff, A. E., Breeze, C. E., Zheng, S. C. & Beck, S. A comparison of reference-based algorithms for correcting cell-type heterogeneity in epigenome-wide association studies. BMC Bioinforma. 18, 105 (2017).

    Google Scholar 

  191. Encode Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Google Scholar 

  192. Elizabeth Larose, C. et al. Copy number-aware deconvolution of tumor-normal DNA methylation profiles. Preprint at bioRxiv, https://doi.org/10.1101/2020.11.03.366252 (2020).

  193. Flusberg, B. A. et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods 7, 461–465 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Simpson, J. T. et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat. Methods 14, 407–410 (2017).

    CAS  PubMed  Google Scholar 

  195. Sturm, G. et al. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology. Bioinformatics 35, i436–i445 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37, 773–782 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Wang, X., Park, J., Susztak, K., Zhang, N. R. & Li, M. Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nat. Commun. 10, 380 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Jew, B. et al. Accurate estimation of cell composition in bulk expression through robust integration of single-cell information. Nat. Commun. 11, 1971 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Chu, T., Wang, Z., Pe’er, D. & Danko, C. G. Cell type and gene expression deconvolution with BayesPrism enables Bayesian integrative analysis across bulk and single-cell RNA sequencing in oncology. Nat. Cancer 3, 505–517 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Carroll, T. M. et al. Tumor monocyte content predicts immunochemotherapy outcomes in esophageal adenocarcinoma. Cancer Cell 41, 1222–1241.e27 (2023).

    CAS  PubMed  Google Scholar 

  201. Menden, K. et al. Deep learning-based cell composition analysis from tissue expression profiles. Sci. Adv. 6, eaba2619 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Clarke, Z. A. et al. Tutorial: guidelines for annotating single-cell transcriptomic maps using automated and manual methods. Nat. Protoc. 16, 2749–2764 (2021).

    CAS  PubMed  Google Scholar 

  203. Heumos, L. et al. Best practices for single-cell analysis across modalities. Nat. Rev. Genet. 24, 550–572 (2023).

    CAS  PubMed  Google Scholar 

  204. Ahlmann-Eltze, C. & Huber, W. Comparison of transformations for single-cell RNA-seq data. Nat. Methods 20, 665–672 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Chen, W. et al. A multicenter study benchmarking single-cell RNA sequencing technologies using reference samples. Nat. Biotechnol. 39, 1103–1114 (2021).

    CAS  PubMed  Google Scholar 

  206. Mallory, X. F., Edrisi, M., Navin, N. & Nakhleh, L. Assessing the performance of methods for copy number aberration detection from single-cell DNA sequencing data. PLoS Comput. Biol. 16, e1008012 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Nguyen, H. C. T., Baik, B., Yoon, S., Park, T. & Nam, D. Benchmarking integration of single-cell differential expression. Nat. Commun. 14, 1570 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Zafar, H., Wang, Y., Nakhleh, L., Navin, N. & Chen, K. Monovar: single-nucleotide variant detection in single cells. Nat. Methods 13, 505–507 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Morita, K. et al. Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat. Commun. 11, 5327 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Bohrson, C. L. et al. Linked-read analysis identifies mutations in single-cell DNA-sequencing data. Nat. Genet. 51, 749–754 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Dong, X. et al. Accurate identification of single-nucleotide variants in whole-genome-amplified single cells. Nat. Methods 14, 491–493 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Huang, Z. et al. Single-cell analysis of somatic mutations in human bronchial epithelial cells in relation to aging and smoking. Nat. Genet. 54, 492–498 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Wu, C. Y. et al. Integrative single-cell analysis of allele-specific copy number alterations and chromatin accessibility in cancer. Nat. Biotechnol. 39, 1259–1269 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Broad Institute. inferCNV of the Trinity CTAT Project, https://github.com/broadinstitute/inferCNV (2020).

  215. Muller, S., Cho, A., Liu, S. J., Lim, D. A. & Diaz, A. CONICS integrates scRNA-seq with DNA sequencing to map gene expression to tumor sub-clones. Bioinformatics 34, 3217–3219 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Dominguez, C. X. et al. Single-cell RNA sequencing reveals stromal evolution into LRRC15+ myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discov. 10, 232–253 (2020).

    CAS  PubMed  Google Scholar 

  217. Joanito, I. et al. Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer. Nat. Genet. 54, 963–975 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Kumar, M., Bowers, R. R. & Delaney, J. R. Single-cell analysis of copy-number alterations in serous ovarian cancer reveals substantial heterogeneity in both low- and high-grade tumors. Cell Cycle 19, 3154–3166 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Kumar, V. et al. Single-cell atlas of lineage states, tumor microenvironment, and subtype-specific expression programs in gastric cancer. Cancer Discov. 12, 670–691 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Wu, F. et al. Single-cell profiling of tumor heterogeneity and the microenvironment in advanced non-small cell lung cancer. Nat. Commun. 12, 2540 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Liu, Y. et al. Tumour heterogeneity and intercellular networks of nasopharyngeal carcinoma at single cell resolution. Nat. Commun. 12, 741 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Demeulemeester, J. et al. Tracing the origin of disseminated tumor cells in breast cancer using single-cell sequencing. Genome Biol. 17, 250 (2016).

    PubMed  PubMed Central  Google Scholar 

  224. Gawad, C., Koh, W. & Quake, S. R. Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics. Proc. Natl Acad. Sci. USA 111, 17947–17952 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Kester, L. et al. Integration of multiple lineage measurements from the same cell reconstructs parallel tumor evolution. Cell Genom. 2, 100096 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Malikic, S., Jahn, K., Kuipers, J., Sahinalp, S. C. & Beerenwinkel, N. Integrative inference of subclonal tumour evolution from single-cell and bulk sequencing data. Nat. Commun. 10, 2750 (2019).

    PubMed  PubMed Central  Google Scholar 

  228. Satas, G., Zaccaria, S., Mon, G. & Raphael, B. J. SCARLET: single-cell tumor phylogeny inference with copy-number constrained mutation losses. Cell Syst. 10, 323–332.e8 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293–1308.e36 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Kieffer, Y. et al. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov. 10, 1330–1351 (2020).

    CAS  PubMed  Google Scholar 

  231. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Schelker, M. et al. Estimation of immune cell content in tumour tissue using single-cell RNA-seq data. Nat. Commun. 8, 2032 (2017).

    PubMed  PubMed Central  Google Scholar 

  233. Wu, T. D. et al. Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature 579, 274–278 (2020).

    CAS  PubMed  Google Scholar 

  234. Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Zheng, L. et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science 374, abe6474 (2021).

    PubMed  Google Scholar 

  241. Alquicira-Hernandez, J., Sathe, A., Ji, H. P., Nguyen, Q. & Powell, J. E. scPred: accurate supervised method for cell-type classification from single-cell RNA-seq data. Genome Biol. 20, 264 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Zhang, A. W. et al. Probabilistic cell-type assignment of single-cell RNA-seq for tumor microenvironment profiling. Nat. Methods 16, 1007–1015 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Miao, Z. et al. Putative cell type discovery from single-cell gene expression data. Nat. Methods 17, 621–628 (2020).

    CAS  PubMed  Google Scholar 

  244. Brbic, M. et al. MARS: discovering novel cell types across heterogeneous single-cell experiments. Nat. Methods 17, 1200–1206 (2020).

    CAS  PubMed  Google Scholar 

  245. Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Qiu, X. et al. Single-cell mRNA quantification and differential analysis with Census. Nat. Methods 14, 309–315 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 37, 547–554 (2019).

    CAS  PubMed  Google Scholar 

  249. Wolf, F. A. et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 20, 59 (2019).

    PubMed  PubMed Central  Google Scholar 

  250. Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018).

    PubMed  PubMed Central  Google Scholar 

  251. Cannoodt, R. et al. SCORPIUS improves trajectory inference and identifies novel modules in dendritic cell development. Preprint at bioRxiv, https://doi.org/10.1101/079509 (2016).

  252. Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).

    CAS  PubMed  Google Scholar 

  254. Giladi, A. et al. Dissecting cellular crosstalk by sequencing physically interacting cells. Nat. Biotechnol. 38, 629–637 (2020).

    CAS  PubMed  Google Scholar 

  255. Chandran, S. S. & Klebanoff, C. A. T cell receptor-based cancer immunotherapy: emerging efficacy and pathways of resistance. Immunol. Rev. 290, 127–147 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Pai, J. A. & Satpathy, A. T. High-throughput and single-cell T cell receptor sequencing technologies. Nat. Methods 18, 881–892 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Jin, X. et al. Identification of shared characteristics in tumor-infiltrating T cells across 15 cancers. Mol. Ther. Nucleic Acids 32, 189–202 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Song, L. et al. Comprehensive characterizations of immune receptor repertoire in tumors and cancer immunotherapy studies. Cancer Immunol. Res. 10, 788–799 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Oliveira, G. & Wu, C. J. Dynamics and specificities of T cells in cancer immunotherapy. Nat. Rev. Cancer 23, 295–316 (2023).

    CAS  PubMed  Google Scholar 

  260. Pai, J. A. et al. Lineage tracing reveals clonal progenitors and long-term persistence of tumor-specific T cells during immune checkpoint blockade. Cancer Cell 41, 776–790.e77 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Bolotin, D. A. et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods 12, 380–381 (2015).

    CAS  PubMed  Google Scholar 

  262. Marcou, Q., Mora, T. & Walczak, A. M. High-throughput immune repertoire analysis with IGoR. Nat. Commun. 9, 561 (2018).

    PubMed  PubMed Central  Google Scholar 

  263. Song, L. et al. TRUST4: immune repertoire reconstruction from bulk and single-cell RNA-seq data. Nat. Methods 18, 627–630 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Kugel, C. H. III et al. Age correlates with response to anti-PD1, reflecting age-related differences in intratumoral effector and regulatory T-cell populations. Clin. Cancer Res. 24, 5347–5356 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Jang, S. R. et al. Association between sex and immune checkpoint inhibitor outcomes for patients with melanoma. JAMA Netw. Open 4, e2136823 (2021).

    PubMed  PubMed Central  Google Scholar 

  266. Olateju, O. A. et al. Investigation of racial differences in survival from non-small cell lung cancer with immunotherapy use: a Texas study. Front. Oncol. 12, 1092355 (2022).

    PubMed  Google Scholar 

  267. Davoli, T., Uno, H., Wooten, E. C. & Elledge, S. J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355, eaaf8399 (2017).

    PubMed  PubMed Central  Google Scholar 

  268. Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162–174 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Arihara, F. et al. Increase in CD14+HLA-DR−/low myeloid-derived suppressor cells in hepatocellular carcinoma patients and its impact on prognosis. Cancer Immunol. Immunother. 62, 1421–1430 (2013).

    CAS  PubMed  Google Scholar 

  270. Yang, G. et al. Accumulation of myeloid-derived suppressor cells (MDSCs) induced by low levels of IL-6 correlates with poor prognosis in bladder cancer. Oncotarget 8, 38378–38388 (2017).

    PubMed  PubMed Central  Google Scholar 

  271. Facciabene, A., Motz, G. T. & Coukos, G. T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res. 72, 2162–2171 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Saito, T. et al. Two FOXP3+CD4+ T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat. Med. 22, 679–684 (2016).

    CAS  PubMed  Google Scholar 

  273. Petersen, R. P. et al. Tumor infiltrating Foxp3+ regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer 107, 2866–2872 (2006).

    PubMed  Google Scholar 

  274. Shimizu, K. et al. Tumor-infiltrating Foxp3+ regulatory T cells are correlated with cyclooxygenase-2 expression and are associated with recurrence in resected non-small cell lung cancer. J. Thorac. Oncol. 5, 585–590 (2010).

    PubMed  Google Scholar 

  275. Pathria, P., Louis, T. L. & Varner, J. A. Targeting tumor-associated macrophages in cancer. Trends Immunol. 40, 310–327 (2019).

    CAS  PubMed  Google Scholar 

  276. Tiainen, S. et al. High numbers of macrophages, especially M2-like (CD163-positive), correlate with hyaluronan accumulation and poor outcome in breast cancer. Histopathology 66, 873–883 (2015).

    PubMed  Google Scholar 

  277. Zhang, H. et al. Infiltration of diametrically polarized macrophages predicts overall survival of patients with gastric cancer after surgical resection. Gastric Cancer 18, 740–750 (2015).

    CAS  PubMed  Google Scholar 

  278. Lozano, A. X. et al. T cell characteristics associated with toxicity to immune checkpoint blockade in patients with melanoma. Nat. Med. 28, 353–362 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  279. Valpione, S. et al. The T cell receptor repertoire of tumor infiltrating T cells is predictive and prognostic for cancer survival. Nat. Commun. 12, 4098 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  280. NCI. Cancer Immunotherapy Clinical Trials, https://www.cancer.gov/about-cancer/treatment/clinical-trials/intervention/pembrolizumab (2022).

  281. Richard, C. et al. Exome analysis reveals genomic markers associated with better efficacy of nivolumab in lung cancer patients. Clin. Cancer Res. 25, 957–966 (2019).

    CAS  PubMed  Google Scholar 

  282. Bareche, Y. et al. Leveraging big data of immune checkpoint blockade response identifies novel potential targets. Ann. Oncol. 33, 1304–1317 (2022).

    CAS  PubMed  Google Scholar 

  283. Khan, M. A. W., Ologun, G., Arora, R., McQuade, J. L. & Wargo, J. A. Gut microbiome modulates response to cancer immunotherapy. Dig. Dis. Sci. 65, 885–896 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  284. Lecuelle, J. et al. MER4 endogenous retrovirus correlated with better efficacy of anti-PD1/PD-L1 therapy in non-small cell lung cancer. J. Immunother. Cancer 10, e004241 (2022).

    PubMed  PubMed Central  Google Scholar 

  285. Johannet, P. et al. Using machine learning algorithms to predict immunotherapy response in patients with advanced melanoma. Clin. Cancer Res. 27, 131–140 (2021).

    CAS  PubMed  Google Scholar 

  286. Gohil, S. H., Iorgulescu, J. B., Braun, D. A., Keskin, D. B. & Livak, K. J. Applying high-dimensional single-cell technologies to the analysis of cancer immunotherapy. Nat. Rev. Clin. Oncol. 18, 244–256 (2021).

    PubMed  Google Scholar 

  287. Gonzalez-Silva, L., Quevedo, L. & Varela, I. Tumor functional heterogeneity unraveled by scRNA-seq technologies. Trends Cancer 7, 265 (2021).

    PubMed  Google Scholar 

  288. Grimes, S. M. Single-cell multi-gene identification of somatic mutations and gene rearrangements in cancer. NAR Cancer 5, zcad034 (2023).

    PubMed  PubMed Central  Google Scholar 

  289. Singh, M. et al. High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes. Nat. Commun. 10, 3120 (2019).

    PubMed  PubMed Central  Google Scholar 

  290. Patel, S. P. et al. Neoadjuvant-adjuvant or adjuvant-only pembrolizumab in advanced melanoma. N. Engl. J. Med. 388, 813–823 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  291. Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, D36–D42 (2013).

    CAS  PubMed  Google Scholar 

  292. Sidhom, J.-W. et al. ImmunoMap: a bioinformatics tool for T-cell repertoire analysis. Cancer Immunol. Res. 6, 151–162 (2018).

    CAS  PubMed  Google Scholar 

  293. Shugay, M. et al. VDJtools: unifying post-analysis of T cell receptor repertoires. PLoS Comput. Biol. 11, e1004503 (2015).

    PubMed  PubMed Central  Google Scholar 

  294. Canzar, S., Neu, K. E., Tang, Q., Wilson, P. C. & Khan, A. A. BASIC: BCR assembly from single cells. Bioinformatics 33, 425–427 (2017).

    CAS  PubMed  Google Scholar 

  295. Lindeman, I. et al. BraCeR: B-cell-receptor reconstruction and clonality inference from single-cell RNA-seq. Nat. Methods 15, 563–565 (2018).

    CAS  PubMed  Google Scholar 

  296. Mandric, I. et al. Profiling immunoglobulin repertoires across multiple human tissues using RNA sequencing. Nat. Commun. 11, 3126 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  297. Carter, J. A., Gilbo, P. & Atwal, G. S. IMPRES does not reproducibly predict response to immune checkpoint blockade therapy in metastatic melanoma. Nat. Med. 25, 1833–1835 (2019).

    CAS  PubMed  Google Scholar 

  298. Auslander, N., Lee, J. S. & Ruppin, E. Reply to: ‘IMPRES does not reproducibly predict response to immune checkpoint blockade therapy in metastatic melanoma’. Nat. Med. 25, 1836–1838 (2019).

    CAS  PubMed  Google Scholar 

  299. Thompson, J. C. et al. Gene signatures of tumor inflammation and epithelial-to-mesenchymal transition (EMT) predict responses to immune checkpoint blockade in lung cancer with high accuracy. Lung Cancer 139, 1–8 (2020).

    PubMed  Google Scholar 

  300. Raghav, K. et al. Efficacy, safety, and biomarker analysis of combined PD-L1 (atezolizumab) and VEGF (bevacizumab) blockade in advanced malignant peritoneal mesothelioma. Cancer Discov. 11, 2738–2747 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  301. Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015).

    CAS  PubMed  Google Scholar 

  302. Sharma, P. et al. Nivolumab plus ipilimumab for metastatic castration-resistant prostate cancer: preliminary analysis of patients in the CheckMate 650 trial. Cancer Cell 38, 489–499.e3 (2020).

    CAS  PubMed  Google Scholar 

  303. Ott, P. A. et al. T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. J. Clin. Oncol. 37, 318–327 (2019).

    PubMed  Google Scholar 

  304. Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  305. Powles, T. et al. Clinical efficacy and biomarker analysis of neoadjuvant atezolizumab in operable urothelial carcinoma in the ABACUS trial. Nat. Med. 25, 1706–1714 (2019).

    CAS  PubMed  Google Scholar 

  306. Charoentong, P. et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 18, 248–262 (2017).

    CAS  PubMed  Google Scholar 

  307. Rosenthal, R. et al. Neoantigen-directed immune escape in lung cancer evolution. Nature 567, 479–485 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  308. Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24, 1550–1558 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  309. Campbell, K. M. et al. Prior anti-CTLA-4 therapy impacts molecular characteristics associated with anti-PD-1 response in advanced melanoma. Cancer Cell 41, 791–806.e4 (2023).

    CAS  PubMed  Google Scholar 

  310. Prat, A. et al. Immune-related gene expression profiling after PD-1 blockade in non-small cell lung carcinoma, head and neck squamous cell carcinoma, and melanoma. Cancer Res. 77, 3540–3550 (2017).

    CAS  PubMed  Google Scholar 

  311. Bentham, R. et al. Using DNA sequencing data to quantify T cell fraction and therapy response. Nature 597, 555–560 (2021).

    CAS  PubMed  Google Scholar 

  312. Lu, T. et al. Netie: inferring the evolution of neoantigen-T cell interactions in tumors. Nat. Methods 19, 1480–1489 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

N.W. is supported by the Australian National Health and Medical Research Council Research Fellowship. The authors thank K. Tran, R. L. Johnston and M. W. L. Teng (all at QIMR Berghofer Medical Research Institute) for intellectual input and helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

V.A. and N.W. wrote the manuscript. All authors researched data for the manuscript, made substantial contributions to discussion of the content and edited and/or reviewed the manuscript before submission.

Corresponding authors

Correspondence to Venkateswar Addala or Nicola Waddell.

Ethics declarations

Competing interests

J.V.P. and N.W. are co-founders of genomiQa. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks L. Penter and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

10x genomics: https://10xgenomics.github.io/enclone/

Immunarch: https://immunarch.com/

NetChop 3.1: https://services.healthtech.dtu.dk/services/NetChop-3.1/

NetMHC 4.0: https://services.healthtech.dtu.dk/services/NetMHC-4.0/

scRNA-tools: https://www.scrna-tools.org/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Addala, V., Newell, F., Pearson, J.V. et al. Computational immunogenomic approaches to predict response to cancer immunotherapies. Nat Rev Clin Oncol 21, 28–46 (2024). https://doi.org/10.1038/s41571-023-00830-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-023-00830-6

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer