Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of aldehyde dehydrogenase 2 in cardiovascular disease

Abstract

Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme involved in the detoxification of alcohol-derived acetaldehyde and endogenous aldehydes. The inactivating ALDH2 rs671 polymorphism, present in up to 8% of the global population and in up to 50% of the East Asian population, is associated with increased risk of cardiovascular conditions such as coronary artery disease, alcohol-induced cardiac dysfunction, pulmonary arterial hypertension, heart failure and drug-induced cardiotoxicity. Although numerous studies have attributed an accumulation of aldehydes (secondary to alcohol consumption, ischaemia or elevated oxidative stress) to an increased risk of cardiovascular disease (CVD), this accumulation alone does not explain the emerging protective role of ALDH2 rs671 against ageing-related cardiac dysfunction and the development of aortic aneurysm or dissection. ALDH2 can also modulate risk factors associated with atherosclerosis, such as cholesterol biosynthesis and HDL biogenesis in hepatocytes and foam cell formation and efferocytosis in macrophages, via non-enzymatic pathways. In this Review, we summarize the basic biology and the clinical relevance of the enzymatic and non-enzymatic, tissue-specific roles of ALDH2 in CVD, and discuss the future directions in the research and development of therapeutic strategies targeting ALDH2. A thorough understanding of the complex roles of ALDH2 in CVD will improve the diagnosis, management and prognosis of patients with CVD who harbour the ALDH2 rs671 polymorphism.

Key points

  • Aldehyde dehydrogenase 2 (ALDH2) detoxifies alcohol-derived acetaldehyde and lipid peroxidation-generated aldehydes, and its inactivating rs671 polymorphism is present in up to 50% of the East Asian population.

  • The ALDH2 rs671 polymorphism has been clinically and experimentally associated with an increased risk of cardiovascular disorders, including coronary artery disease, alcohol-induced cardiac dysfunction, pulmonary artery hypertension, heart failure and drug-induced cardiotoxicity.

  • Carriers of the ALDH2 rs671 polymorphism are at lower risk of ageing-related cardiac dysfunction and aortic aneurysm or dissection compared with those without it, illustrating opposing roles of different ALDH2 genotypes in the pathogenesis and progression of cardiovascular disease.

  • ALDH2 can also modulate risk factors associated with atherosclerosis, such as cholesterol biosynthesis and HDL biogenesis in hepatocytes and foam cell formation and efferocytosis in macrophages, via non-enzymatic pathways.

  • Given the ubiquitous nature of ALDH2, further mechanistic insight into cellular and organ-level functions is needed to design safe and effective interventions to activate or inhibit ALDH2 to prevent or treat cardiovascular disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of research on ALDH2 in cardiovascular disease.
Fig. 2: Overview of the cardiovascular effects associated with the ALDH2*2 allele.
Fig. 3: Overview of the non-enzymatic and enzymatic roles of ALDH2 in coronary artery disease.
Fig. 4: Role of ALDH2 in myocardial ischaemia and related heart failure.
Fig. 5: Role of ALDH2 in pulmonary arterial hypertension and aortic aneurysm or dissection.

Similar content being viewed by others

References

  1. Chen, X. et al. Ferroptosis and cardiovascular disease: role of free radical-induced lipid peroxidation. Free Radic. Res. 55, 405–415 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Xiao, M., Zhong, H., Xia, L., Tao, Y. & Yin, H. Pathophysiology of mitochondrial lipid oxidation: role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria. Free Radic. Biol. Med. 111, 316–327 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Matsumoto, A. Fundamental properties of aldehyde dehydrogenase 2 (ALDH2) and the importance of the ALDH2 polymorphism [Japanese]. Nihon Eiseigaku Zasshi 71, 55–68 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Takeuchi, F. et al. Genome-wide association study of coronary artery disease in the Japanese. Eur. J. Hum. Genet. 20, 333–340 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. US National Library of Medicine. National Center for Biotechnology Information https://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?locusId=217 (2023).

  6. Crabb, D. W., Edenberg, H. J., Bosron, W. F. & Li, T. K. Genotypes for aldehyde dehydrogenase deficiency and alcohol sensitivity. The inactive ALDH2(2) allele is dominant. J. Clin. Invest. 83, 314–316 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zambelli, V. O. et al. Aldehyde dehydrogenase-2 regulates nociception in rodent models of acute inflammatory pain. Sci. Transl. Med. 6, 251ra118 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen, C. H., Sun, L. & Mochly-Rosen, D. Mitochondrial aldehyde dehydrogenase and cardiac diseases. Cardiovasc. Res. 88, 51–57 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou, J. & Weiner, H. Basis for half-of-the-site reactivity and the dominance of the K487 oriental subunit over the E487 subunit in heterotetrameric human liver mitochondrial aldehyde dehydrogenase. Biochemistry 39, 12019–12024 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Chen, C. H., Ferreira, J. C., Gross, E. R. & Mochly-Rosen, D. Targeting aldehyde dehydrogenase 2: new therapeutic opportunities. Physiol. Rev. 94, 1–34 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen, C. H., Ferreira, J. C. B. & Mochly-Rosen, D. ALDH2 and cardiovascular disease. Adv. Exp. Med. Biol. 1193, 53–67 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, C. H., Kraemer, B. R. & Mochly-Rosen, D. ALDH2 variance in disease and populations. Dis. Model. Mech. 15, dmm049601 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhong, S. et al. Acetaldehyde dehydrogenase 2 interactions with LDLR and AMPK regulate foam cell formation. J. Clin. Invest. 129, 252–267 (2019).

    Article  PubMed  Google Scholar 

  14. Zhong, S. et al. Acetaldehyde dehydrogenase 2 regulates HMG-CoA reductase stability and cholesterol synthesis in the liver. Redox Biol. 41, 101919 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, L. et al. Aldehyde dehydrogenase 2 and PARP1 interaction modulates hepatic HDL biogenesis by LXRalpha-mediated ABCA1 expression. JCI Insight 7, e155869 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang, J. et al. Macrophage ALDH2 (aldehyde dehydrogenase 2) stabilizing Rac2 is required for efferocytosis internalization and reduction of atherosclerosis development. Arterioscler. Thromb. Vasc. Biol. 42, 700–716 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, Y. et al. Mitochondrial aldehyde dehydrogenase 2 accentuates aging-induced cardiac remodeling and contractile dysfunction: role of AMPK, Sirt1, and mitochondrial function. Free Radic. Biol. Med. 71, 208–220 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, Y. et al. Complex inhibition of autophagy by mitochondrial aldehyde dehydrogenase shortens lifespan and exacerbates cardiac aging. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 1919–1932 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Yang, K. et al. Prevention of aortic dissection and aneurysm via an ALDH2-mediated switch in vascular smooth muscle cell phenotype. Eur. Heart J. 41, 2442–2453 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Jaiswal, S. & Libby, P. Clonal haematopoiesis: connecting ageing and inflammation in cardiovascular disease. Nat. Rev. Cardiol. 17, 137–144 (2020).

    Article  PubMed  Google Scholar 

  21. Liberale, L. et al. Inflammation, aging, and cardiovascular disease: JACC review topic of the week. J. Am. Coll. Cardiol. 79, 837–847 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bose, C. et al. Sulforaphane prevents age-associated cardiac and muscular dysfunction through Nrf2 signaling. Aging Cell 19, e13261 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu, S. & Zou, M. H. AMPK, mitochondrial function, and cardiovascular disease. Int. J. Mol. Sci. 21, 4987 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yin, H., Xu, L. & Porter, N. A. Free radical lipid peroxidation: mechanisms and analysis. Chem. Rev. 111, 5944–5972 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Ochoa, C. D., Wu, R. F. & Terada, L. S. ROS signaling and ER stress in cardiovascular disease. Mol. Asp. Med. 63, 18–29 (2018).

    Article  CAS  Google Scholar 

  26. Jackson, B. et al. Update on the aldehyde dehydrogenase gene (ALDH) superfamily. Hum. Genomics 5, 283–303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Klyosov, A. A. Kinetics and specificity of human liver aldehyde dehydrogenases toward aliphatic, aromatic, and fused polycyclic aldehydes. Biochemistry 35, 4457–4467 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Larson, H. N., Weiner, H. & Hurley, T. D. Disruption of the coenzyme binding site and dimer interface revealed in the crystal structure of mitochondrial aldehyde dehydrogenase “Asian” variant. J. Biol. Chem. 280, 30550–30556 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Ge, W., Guo, R. & Ren, J. AMP-dependent kinase and autophagic flux are involved in aldehyde dehydrogenase-2-induced protection against cardiac toxicity of ethanol. Free Radic. Biol. Med. 51, 1736–1748 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, H. & Fu, L. The role of ALDH2 in tumorigenesis and tumor progression: targeting ALDH2 as a potential cancer treatment. Acta Pharm. Sin. B 11, 1400–1411 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Edenberg, H. J. The genetics of alcohol metabolism: role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol. Res. Health 30, 5–13 (2007).

    PubMed  PubMed Central  Google Scholar 

  32. Marchitti, S. A., Brocker, C., Stagos, D. & Vasiliou, V. Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin. Drug Metab. Toxicol. 4, 697–720 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Takagi, S. et al. Aldehyde dehydrogenase 2 gene is a risk factor for myocardial infarction in Japanese men. Hypertens. Res. 25, 677–681 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Guo, Y. J. et al. The ALDH2 Glu504Lys polymorphism is associated with coronary artery disease in Han Chinese: relation with endothelial ADMA levels. Atherosclerosis 211, 545–550 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Xu, F. et al. Role of aldehyde dehydrogenase 2 Glu504lys polymorphism in acute coronary syndrome. J. Cell Mol. Med. 15, 1955–1962 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Han, H. et al. Association of genetic polymorphisms in ADH and ALDH2 with risk of coronary artery disease and myocardial infarction: a meta-analysis. Gene 526, 134–141 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, Q. et al. ALDH2 rs671 polymorphism and coronary heart disease risk among Asian populations: a meta-analysis and meta-regression. DNA Cell Biol. 32, 393–399 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Jo, S. A. et al. A Glu487Lys polymorphism in the gene for mitochondrial aldehyde dehydrogenase 2 is associated with myocardial infarction in elderly Korean men. Clin. Chim. Acta 382, 43–47 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Mizuno, Y. et al. Variant aldehyde dehydrogenase 2 (ALDH2*2) is a risk factor for coronary spasm and ST-segment elevation myocardial infarction. J. Am. Heart Assoc. 5, e003247 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mizuno, Y. et al. East Asian variant of aldehyde dehydrogenase 2 is associated with coronary spastic angina: possible roles of reactive aldehydes and implications of alcohol flushing syndrome. Circulation 131, 1665–1673 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Mizuno, Y. et al. East Asians variant mitochondrial aldehyde dehydrogenase 2 genotype exacerbates nitrate tolerance in patients with coronary spastic angina. Circ. J. 84, 479–486 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Lu, X. et al. Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease. Nat. Genet. 44, 890–894 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ma, X. X., Zheng, S. Z., Shu, Y., Wang, Y. & Chen, X. P. Association between carotid intima-media thickness and aldehyde dehydrogenase 2 Glu504Lys polymorphism in Chinese Han with essential hypertension. Chin. Med. J. 129, 1413–1418 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bjorkegren, J. L. M. & Lusis, A. J. Atherosclerosis: recent developments. Cell 185, 1630–1645 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Libby, P. The changing landscape of atherosclerosis. Nature 592, 524–533 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, Y. & Ren, J. ALDH2 in alcoholic heart diseases: molecular mechanism and clinical implications. Pharmacol. Ther. 132, 86–95 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lu, X. et al. Exome chip meta-analysis identifies novel loci and East Asian-specific coding variants that contribute to lipid levels and coronary artery disease. Nat. Genet. 49, 1722–1730 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nakamura, Y. et al. Genetic variation in aldehyde dehydrogenase 2 and the effect of alcohol consumption on cholesterol levels. Atherosclerosis 164, 171–177 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Tabara, Y. et al. Mendelian randomization analysis in three Japanese populations supports a causal role of alcohol consumption in lowering low-density lipid cholesterol levels and particle numbers. Atherosclerosis 254, 242–248 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Koelwyn, G. J., Corr, E. M., Erbay, E. & Moore, K. J. Regulation of macrophage immunometabolism in atherosclerosis. Nat. Immunol. 19, 526–537 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Doran, A. C., Yurdagul, A. Jr & Tabas, I. Efferocytosis in health and disease. Nat. Rev. Immunol. 20, 254–267 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Xu, Y. et al. Aldehyde dehydrogenase 2 inhibited oxidized LDL-induced NLRP3 inflammasome priming and activation via attenuating oxidative stress. Biochem. Biophys. Res. Commun. 529, 998–1004 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Wei, S. et al. ALDH2 deficiency inhibits Ox-LDL induced foam cell formation via suppressing CD36 expression. Biochem. Biophys. Res. Commun. 512, 41–48 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Yang, M. Y. et al. Activation of aldehyde dehydrogenase 2 slows down the progression of atherosclerosis via attenuation of ER stress and apoptosis in smooth muscle cells. Acta Pharmacol. Sin. 39, 48–58 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Xue, L. et al. Appropriate dose of ethanol exerts anti-senescence and anti-atherosclerosis protective effects by activating ALDH2. Biochem. Biophys. Res. Commun. 512, 319–325 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Bai, Y. et al. Inhibition of the miR-193b-3p protects against oxidized low-density lipoprotein-induced HUVECs injury by upregulating ALDH2. Cell Biol. Int. 46, 192–202 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Ma, H., Guo, R., Yu, L., Zhang, Y. & Ren, J. Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: role of autophagy paradox and toxic aldehyde. Eur. Heart J. 32, 1025–1038 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Sun, A. et al. Mitochondrial aldehyde dehydrogenase 2 plays protective roles in heart failure after myocardial infarction via suppression of the cytosolic JNK/p53 pathway in mice. J. Am. Heart Assoc. 3, e000779 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chen, C. H. et al. Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science 321, 1493–1495 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ji, W. et al. Aldehyde dehydrogenase 2 has cardioprotective effects on myocardial ischaemia/reperfusion injury via suppressing mitophagy. Front. Pharmacol. 7, 101 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhai, X. et al. 4-Hydroxy-2-nonenal promotes cardiomyocyte necroptosis via stabilizing receptor-interacting serine/threonine-protein kinase 1. Front. Cell Dev. Biol. 9, 721795 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fan, F. et al. MicroRNA-34a promotes cardiomyocyte apoptosis post myocardial infarction through down-regulating aldehyde dehydrogenase 2. Curr. Pharm. Des. 19, 4865–4873 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Li, S.-P., Liu, B., Song, B., Wang, C.-X. & Zhou, Y.-C. miR-28 promotes cardiac ischemia by targeting mitochondrial aldehyde dehydrogenase 2 (ALDH2) in mus musculus cardiac myocytes. Eur. Rev. Med. Pharmacol. Sci. 19, 752–758 (2015).

    PubMed  Google Scholar 

  64. Liu, X. et al. Mitochondrial aldehyde dehydrogenase 2 regulates revascularization in chronic ischemia: potential impact on the development of coronary collateral circulation. Arterioscler. Thromb. Vasc. Biol. 35, 2196–2206 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Cleland, J. G., Khand, A. & Clark, A. The heart failure epidemic: exactly how big is it? Eur. Heart J. 22, 623–626 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Go, A. S. et al. Heart disease and stroke statistics — 2014 update: a report from the American Heart Association. Circulation 129, e28–e292 (2014).

    PubMed  Google Scholar 

  67. Xia, C. L. et al. ALDH2 rs671 polymorphism and the risk of heart failure with preserved ejection fraction (HFpEF) in patients with cardiovascular diseases. J. Hum. Hypertens. 34, 16–23 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Gomes, K. M. et al. Aldehyde dehydrogenase 2 activation in heart failure restores mitochondrial function and improves ventricular function and remodelling. Cardiovasc. Res. 103, 498–508 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hua, Y. et al. Alda-1, an aldehyde dehydrogenase-2 agonist, improves long-term survival in rats with chronic heart failure following myocardial infarction. Mol. Med. Rep. 18, 3159–3166 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ge, W. & Ren, J. mTOR-STAT3-notch signalling contributes to ALDH2-induced protection against cardiac contractile dysfunction and autophagy under alcoholism. J. Cell Mol. Med. 16, 616–626 (2012).

    Article  PubMed  Google Scholar 

  71. Liu, B. et al. ALDH2 protects against alcoholic cardiomyopathy through a mechanism involving the p38 MAPK/CREB pathway and local renin-angiotensin system inhibition in cardiomyocytes. Int. J. Cardiol. 257, 150–159 (2018).

    Article  PubMed  Google Scholar 

  72. van der Poll, T., van de Veerdonk, F. L., Scicluna, B. P. & Netea, M. G. The immunopathology of sepsis and potential therapeutic targets. Nat. Rev. Immunol. 17, 407–420 (2017).

    Article  PubMed  Google Scholar 

  73. Pang, J. et al. The role of ALDH2 in sepsis and the to-be-discovered mechanisms. Adv. Exp. Med. Biol. 1193, 175–194 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Pang, J. et al. Mitochondrial ALDH2 protects against lipopolysaccharide-induced myocardial contractile dysfunction by suppression of ER stress and autophagy. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 1627–1641 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Hu, Y. et al. Mitochondrial aldehyde dehydrogenase activity protects against lipopolysaccharide-induced cardiac dysfunction in rats. Mol. Med. Rep. 11, 1509–1515 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Ritchie, R. H. & Abel, E. D. Basic mechanisms of diabetic heart disease. Circ. Res. 126, 1501–1525 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li, G. Y. et al. Meta-analysis on the association of ALDH2 polymorphisms and type 2 diabetic mellitus, diabetic retinopathy. Int. J. Env. Res. Public Health 14, 165 (2017).

    Article  Google Scholar 

  78. Wang, J. et al. Inhibition of aldehyde dehydrogenase 2 by oxidative stress is associated with cardiac dysfunction in diabetic rats. Mol. Med. 17, 172–179 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Cao, R. et al. ALDH2 overexpression alleviates high glucose-induced cardiotoxicity by inhibiting NLRP3 inflammasome activation. J. Diabetes Res. 2019, 4857921 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lee, H. L. et al. A Novel ALDH2 activator AD-9308 improves diastolic and systolic myocardial functions in streptozotocin-induced diabetic mice. Antioxidants 10, 450 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pan, G. et al. Aldehyde dehydrogenase 2 activator augments the beneficial effects of empagliflozin in mice with diabetes-associated HFpEF. Int. J. Mol. Sci. 23, 10439 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Roy, B., Pan, G., Giri, S., Thandavarayan, R. A. & Palaniyandi, S. S. Aldehyde dehydrogenase 2 augments adiponectin signaling in coronary angiogenesis in HFpEF associated with diabetes. FASEB J. 36, e22440 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Wang, C. et al. Mitochondrial aldehyde dehydrogenase 2 deficiency aggravates energy metabolism disturbance and diastolic dysfunction in diabetic mice. J. Mol. Med. 94, 1229–1240 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Zhang, P. et al. Inhibition of aldehyde dehydrogenase 2 activity enhances antimycin-induced rat cardiomyocytes apoptosis through activation of MAPK signaling pathway. Biomed. Pharmacother. 65, 590–593 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Ge, W., Yuan, M., Ceylan, A. F., Wang, X. & Ren, J. Mitochondrial aldehyde dehydrogenase protects against doxorubicin cardiotoxicity through a transient receptor potential channel vanilloid 1-mediated mechanism. Biochim. Biophys. Acta 1862, 622–634 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Liu, W. et al. Aldehyde dehydrogenase 2 activation ameliorates cyclophosphamide-induced acute cardiotoxicity via detoxification of toxic aldehydes and suppression of cardiac cell death. J. Mol. Cell Cardiol. 121, 134–144 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Chen, Z., Zhang, J. & Stamler, J. S. Identification of the enzymatic mechanism of nitroglycerin bioactivation. Proc. Natl Acad. Sci. USA 99, 8306–8311 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li, Y. et al. Mitochondrial aldehyde dehydrogenase-2 (ALDH2) Glu504Lys polymorphism contributes to the variation in efficacy of sublingual nitroglycerin. J. Clin. Invest. 116, 506–511 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sakata, S. et al. Differential effects of organic nitrates on arterial diameter among healthy Japanese participants with different mitochondrial aldehyde dehydrogenase 2 genotypes: randomised crossover trial. BMJ Open 1, e000133 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Munzel, T., Daiber, A. & Gori, T. More answers to the still unresolved question of nitrate tolerance. Eur. Heart J. 34, 2666–2673 (2013).

    Article  PubMed  Google Scholar 

  91. Sydow, K. et al. Central role of mitochondrial aldehyde dehydrogenase and reactive oxygen species in nitroglycerin tolerance and cross-tolerance. J. Clin. Invest. 113, 482–489 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Beretta, M. et al. Vascular bioactivation of nitroglycerin is catalyzed by cytosolic aldehyde dehydrogenase-2. Circ. Res. 110, 385–393 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Staerk, L., Sherer, J. A., Ko, D., Benjamin, E. J. & Helm, R. H. Atrial fibrillation: epidemiology, pathophysiology, and clinical outcomes. Circ. Res. 120, 1501–1517 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jeong, E. M. et al. Metabolic stress, reactive oxygen species, and arrhythmia. J. Mol. Cell Cardiol. 52, 454–463 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Jin, J., Chen, J. & Wang, Y. Aldehyde dehydrogenase 2 and arrhythmogenesis. Heart Rhythm. 19, 1541–1547 (2022).

    Article  PubMed  Google Scholar 

  96. Nakano, Y. et al. Genetic variations of aldehyde dehydrogenase 2 and alcohol dehydrogenase 1B are associated with the etiology of atrial fibrillation in Japanese. J. Biomed. Sci. 23, 89 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Hsu, L. A. et al. Aldehyde dehydrogenase 2 ameliorates chronic alcohol consumption-induced atrial fibrillation through detoxification of 4-HNE. Int. J. Mol. Sci. 21, 6678 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hu, Y. F. et al. ALDH2 deficiency induces atrial fibrillation through dysregulated cardiac sodium channel and mitochondrial bioenergetics: a multi-omics analysis. Biochim. Biophys. Acta Mol. Basis Dis. 1867, 166088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Koda, K. et al. Aldehyde dehydrogenase activation prevents reperfusion arrhythmias by inhibiting local renin release from cardiac mast cells. Circulation 122, 771–781 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Marino, A., Sakamoto, T., Robador, P. A., Tomita, K. & Levi, R. S1P receptor 1-mediated anti-renin-angiotensin system cardioprotection: pivotal role of mast cell aldehyde dehydrogenase type 2. J. Pharmacol. Exp. Ther. 362, 230–242 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Morley, R. L., Sharma, A., Horsch, A. D. & Hinchliffe, R. J. Peripheral artery disease. BMJ 360, j5842 (2018).

    Article  PubMed  Google Scholar 

  102. Perin, E. C. et al. A randomized, controlled study of autologous therapy with bone marrow-derived aldehyde dehydrogenase bright cells in patients with critical limb ischemia. Catheter. Cardiovasc. Interv. 78, 1060–1067 (2011).

    Article  PubMed  Google Scholar 

  103. Perin, E. C. et al. Evaluation of cell therapy on exercise performance and limb perfusion in peripheral artery disease: the CCTRN PACE trial (patients with intermittent claudication injected with ALDH bright cells). Circulation 135, 1417–1428 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Sun, X. et al. Mitochondrial aldehyde dehydrogenase-2 deficiency compromises therapeutic effect of ALDH bright cell on peripheral ischemia. Redox Biol. 13, 196–206 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sherman, S. E. et al. High aldehyde dehydrogenase activity identifies a subset of human mesenchymal stromal cells with vascular regenerative potential. Stem Cell 35, 1542–1553 (2017).

    Article  CAS  Google Scholar 

  106. Wang, Z. et al. Status of hypertension in China: results from the china hypertension survey, 2012–2015. Circulation 137, 2344–2356 (2018).

    Article  PubMed  Google Scholar 

  107. Takagi, S. et al. The aldehyde dehydrogenase 2 gene is a risk factor for hypertension in Japanese but does not alter the sensitivity to pressor effects of alcohol: the Suita study. Hypertens. Res. 24, 365–370 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Hui, P. et al. Common single nucleotide polymorphisms in Japanese patients with essential hypertension: aldehyde dehydrogenase 2 gene as a risk factor independent of alcohol consumption. Hypertens. Res. 30, 585–592 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Hasi, T., Hao, L., Yang, L. & Su, X. L. Acetaldehyde dehydrogenase 2 SNP rs671 and susceptibility to essential hypertension in Mongolians: a case control study. Genet. Mol. Res. 10, 537–543 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Wang, Y. et al. Association of a functional single-nucleotide polymorphism in the ALDH2 gene with essential hypertension depends on drinking behavior in a Chinese Han population. J. Hum. Hypertens. 27, 181–186 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Takashima, K. et al. STING in tumor and host cells cooperatively work for NK cell-mediated tumor growth retardation. Biochem. Biophys. Res. Commun. 478, 1764–1771 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Ma, C. et al. Associations between aldehyde dehydrogenase 2 (ALDH2) rs671 genetic polymorphisms, lifestyles and hypertension risk in Chinese Han people. Sci. Rep. 7, 11136 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Wu, Y. et al. Positive association between ALDH2 rs671 polymorphism and essential hypertension: a case-control study and meta-analysis. PLoS One 12, e0177023 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Han, S. et al. Acetaldehyde dehydrogenase 2 rs671 polymorphism affects hypertension susceptibility and lipid profiles in a Chinese population. DNA Cell Biol. 38, 962–968 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Wu, H., Huang, Q., Yu, Z. & Zhong, Z. Association of ALDH2 rs671 and MTHFR rs1801133 polymorphisms with hypertension among Hakka people in Southern China. BMC Cardiovasc. Disord. 22, 128 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Amamoto, K. et al. Epidemiologic study of the association of low-Km mitochondrial acetaldehyde dehydrogenase genotypes with blood pressure level and the prevalence of hypertension in a general population. Hypertens. Res. 25, 857–864 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Zhang, W. S. et al. Effect of alcohol and aldehyde dehydrogenase gene polymorphisms on alcohol-associated hypertension: the Guangzhou Biobank Cohort Study. Hypertens. Res. 36, 741–746 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kato, N. et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat. Genet. 43, 531–538 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lu, X. et al. Genome-wide association study in Chinese identifies novel loci for blood pressure and hypertension. Hum. Mol. Genet. 24, 865–874 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Chen, L., Smith, G. D., Harbord, R. M. & Lewis, S. J. Alcohol intake and blood pressure: a systematic review implementing a Mendelian randomization approach. PLoS Med. 5, e52 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Zhao, P. P. et al. Relationship between alcohol use, blood pressure and hypertension: an association study and a Mendelian randomisation study. J. Epidemiol. Community Health 73, 796–801 (2019).

    Article  PubMed  Google Scholar 

  122. Galie, N. et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur. Respir. J. 46, 903–975 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Zhang, F. et al. Research progress on pulmonary arterial hypertension and the role of the angiotensin converting enzyme 2-angiotensin-(1-7)-mas axis in pulmonary arterial hypertension. Cardiovasc. Drugs Ther. 36, 363–370 (2022).

    Article  CAS  PubMed  Google Scholar 

  124. Buehler, P. W. et al. Free hemoglobin induction of pulmonary vascular disease: evidence for an inflammatory mechanism. Am. J. Physiol. Lung Cell Mol. Physiol. 303, L312–L326 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xu, T. et al. Aldehyde dehydrogenase 2 protects against oxidative stress associated with pulmonary arterial hypertension. Redox Biol. 11, 286–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Zhao, Y. et al. ALDH2 (aldehyde dehydrogenase 2) protects against hypoxia-induced pulmonary hypertension. Arterioscler. Thromb. Vasc. Biol. 39, 2303–2319 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Nishida, K. & Otsu, K. Autophagy during cardiac remodeling. J. Mol. Cell Cardiol. 95, 11–18 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Chang, S. et al. Aldehyde dehydrogenase 2 (ALDH2) elicits protection against pulmonary hypertension via inhibition of ERK1/2-mediated autophagy. Oxid. Med. Cell Longev. 2022, 2555476 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Cui, H. et al. Untargeted metabolomics identifies succinate as a biomarker and therapeutic target in aortic aneurysm and dissection. Eur. Heart J. 42, 4373–4385 (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Moehle, C. W. et al. Bone marrow-derived MCP1 required for experimental aortic aneurysm formation and smooth muscle phenotypic modulation. J. Thorac. Cardiovasc. Surg. 142, 1567–1574 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhao, G. et al. Unspliced XBP1 confers VSMC homeostasis and prevents aortic aneurysm formation via FoxO4 interaction. Circ. Res. 121, 1331–1345 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. Yang, L. et al. Lactate promotes synthetic phenotype in vascular smooth muscle cells. Circ. Res. 121, 1251–1262 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tsai, S. H. et al. Aldehyde dehydrogenase 2 protects against abdominal aortic aneurysm formation by reducing reactive oxygen species, vascular inflammation, and apoptosis of vascular smooth muscle cells. FASEB J. 34, 9498–9511 (2020).

    Article  CAS  PubMed  Google Scholar 

  134. Bartoli-Leonard, F., Saddic, L. & Aikawa, E. Double-edged sword of ALDH2 mutations: one polymorphism can both benefit and harm the cardiovascular system. Eur. Heart J. 41, 2453–2455 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kilarski, L. L. et al. Meta-analysis in more than 17,900 cases of ischemic stroke reveals a novel association at 12q24.12. Neurology 83, 678–685 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  136. NINDS Stroke Genetics Network (SiGN) & International Stroke Genetics, Consortium (ISGC). Loci associated with ischaemic stroke and its subtypes (SiGN): a genome-wide association study. Lancet Neurol. 15, 174–184 (2016).

    Article  PubMed  Google Scholar 

  137. Xu, Y. L. et al. Aldehyde dehydrogenase 2 rs671G>A polymorphism and ischemic stroke risk in Chinese population: a meta-analysis. Neuropsychiatr. Dis. Treat. 15, 1015–1029 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lin, C. H. et al. Association of ADH1B polymorphism and alcohol consumption with increased risk of intracerebral hemorrhagic stroke. J. Transl. Med. 19, 227 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Guo, J. M. et al. ALDH2 protects against stroke by clearing 4-HNE. Cell Res. 23, 915–930 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sun, A. & Ren, J. ALDH2, a novel protector against stroke? Cell Res. 23, 874–875 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Xia, P. et al. ALDH 2 conferred neuroprotection on cerebral ischemic injury by alleviating mitochondria-related apoptosis through JNK/caspase-3 signing pathway. Int. J. Biol. Sci. 16, 1303–1323 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Koppaka, V. et al. Aldehyde dehydrogenase inhibitors: a comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Pharmacol. Rev. 64, 520–539 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gong, D. et al. Aldehyde dehydrogenase-2 activation during cardioplegic arrest enhances the cardioprotection against myocardial ischemia-reperfusion injury. Cardiovasc. Toxicol. 12, 350–358 (2012).

    Article  PubMed  Google Scholar 

  144. Sun, A. et al. Aldehyde dehydrogenase 2 ameliorates doxorubicin-induced myocardial dysfunction through detoxification of 4-HNE and suppression of autophagy. J. Mol. Cell Cardiol. 71, 92–104 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Gomes, K. M. et al. Aldehydic load and aldehyde dehydrogenase 2 profile during the progression of post-myocardial infarction cardiomyopathy: benefits of Alda-1. Int. J. Cardiol. 179, 129–138 (2015).

    Article  PubMed  Google Scholar 

  146. Sun, X. et al. Alda-1 treatment promotes the therapeutic effect of mitochondrial transplantation for myocardial ischemia-reperfusion injury. Bioact. Mater. 6, 2058–2069 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Gu, C. et al. Impaired cardiac SIRT1 activity by carbonyl stress contributes to aging-related ischemic intolerance. PLoS One 8, e74050 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Yuan, Q. et al. ALDH2 Activation inhibited cardiac fibroblast-to-myofibroblast transformation via the TGF-β1/Smad signaling pathway. J. Cardiovasc. Pharmacol. 73, 248–256 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Zhao, X. et al. Aldehyde dehydrogenase-2 protects against myocardial infarction-related cardiac fibrosis through modulation of the Wnt/β-catenin signaling pathway. Ther. Clin. Risk Manag. 11, 1371–1381 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sun, L., Ferreira, J. C. & Mochly-Rosen, D. ALDH2 activator inhibits increased myocardial infarction injury by nitroglycerin tolerance. Sci. Transl. Med. 3, 107ra111 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Guo, Y. et al. A novel protective mechanism for mitochondrial aldehyde dehydrogenase (ALDH2) in type i diabetes-induced cardiac dysfunction: role of AMPK-regulated autophagy. Biochim. Biophys. Acta 1852, 319–331 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Fang, T. et al. Alterations in necroptosis during ALDH2-mediated protection against high glucose-induced H9c2 cardiac cell injury. Mol. Med. Rep. 18, 2807–2815 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Hald, J., Jacobsen, E. & Larsen, V. Formation of acetaldehyde in the organism in relation to dosage of antabuse (tetraethylthiuramdisulphide) and to alcohol-concentration in blood. Acta Pharmacol. Toxicol. 5, 179–188 (1949).

    Article  CAS  Google Scholar 

  154. Contractor, H. et al. Aldehyde dehydrogenase-2 inhibition blocks remote preconditioning in experimental and human models. Basic Res. Cardiol. 108, 343 (2013).

    Article  PubMed  Google Scholar 

  155. Penetar, D. M., Maclean, R. R., McNeil, J. F. & Lukas, S. E. Kudzu extract treatment does not increase the intoxicating effects of acute alcohol in human volunteers. Alcohol Clin. Exp. Res. 35, 726–734 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Keung, W. M. & Vallee, B. L. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase. Proc. Natl Acad. Sci. USA 90, 1247–1251 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lowe, E. D., Gao, G. Y., Johnson, L. N. & Keung, W. M. Structure of daidzin, a naturally occurring anti-alcohol-addiction agent, in complex with human mitochondrial aldehyde dehydrogenase. J. Med. Chem. 51, 4482–4487 (2008).

    Article  CAS  PubMed  Google Scholar 

  158. Keung, W. M., Lazo, O., Kunze, L. & Vallee, B. L. Daidzin suppresses ethanol consumption by Syrian golden hamsters without blocking acetaldehyde metabolism. Proc. Natl Acad. Sci. USA 92, 8990–8993 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. He, L. et al. Alpha lipoic acid protects heart against myocardial ischemia-reperfusion injury through a mechanism involving aldehyde dehydrogenase 2 activation. Eur. J. Pharmacol. 678, 32–38 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Li, W. et al. Alpha-lipoic acid protects against pressure overload-induced heart failure via ALDH2-dependent Nrf1-FUNDC1 signaling. Cell Death Dis. 11, 599 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Chen, L. et al. Magnolol, a natural aldehyde dehydrogenase-2 agonist, inhibits the proliferation and collagen synthesis of cardiac fibroblasts. Bioorg. Med. Chem. Lett. 43, 128045 (2021).

    Article  CAS  PubMed  Google Scholar 

  162. Hosoi, T. et al. Flurbiprofen ameliorated obesity by attenuating leptin resistance induced by endoplasmic reticulum stress. EMBO Mol. Med. 6, 335–346 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Tian, W. et al. The discovery of novel small molecule allosteric activators of aldehyde dehydrogenase 2. Eur. J. Med. Chem. 212, 113119 (2021).

    Article  CAS  PubMed  Google Scholar 

  164. Jiang, W. B. et al. Baicalin protects H9c2 cardiomyocytes against hypoxia/reoxygenation-induced apoptosis and oxidative stress through activation of mitochondrial aldehyde dehydrogenase 2. Clin. Exp. Pharmacol. Physiol. 45, 303–311 (2018).

    Article  CAS  PubMed  Google Scholar 

  165. Zhang, W., Yang, L., Li, L. & Feng, W. Dihydromyricetin attenuates neuropathic pain via enhancing the transition from M1 to M2 phenotype polarization by potentially elevating ALDH2 activity in vitro and vivo. Ann. Transl. Med. 8, 1151 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Fitzmaurice, A. G. et al. Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease. Proc. Natl Acad. Sci. USA 110, 636–641 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. Racker, E. Aldehyde dehydrogenase, a diphosphopyridine nucleotide-linked enzyme. J. Biol. Chem. 177, 883–892 (1949).

    Article  CAS  PubMed  Google Scholar 

  168. Graham, W. D. In vitro inhibition of liver aldehyde dehydrogenase by tetraethylthiuram disulphide. J. Pharm. Pharmacol. 3, 160–168 (1951).

    Article  CAS  PubMed  Google Scholar 

  169. Greenfield, N. J. & Pietruszko, R. Two aldehyde dehydrogenases from human liver. Isolation via affinity chromatography and characterization of the isozymes. Biochim. Biophys. Acta 483, 35–45 (1977).

    Article  CAS  PubMed  Google Scholar 

  170. Goedde, H. W., Harada, S. & Agarwal, D. P. Racial differences in alcohol sensitivity: a new hypothesis. Hum. Genet. 51, 331–334 (1979).

    Article  CAS  PubMed  Google Scholar 

  171. Impraim, C., Wang, G. & Yoshida, A. Structural mutation in a major human aldehyde dehydrogenase gene results in loss of enzyme activity. Am. J. Hum. Genet. 34, 837–841 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Okayama, A., Ueshima, H., Yamakawa, M. & Kita, Y. Low-Km aldehyde dehydrogenase deficiency does not influence the elevation of blood pressure by alcohol. J. Hum. Hypertens. 8, 205–208 (1994).

    CAS  PubMed  Google Scholar 

  173. Zhang, H., Gong, D. X., Zhang, Y. J., Li, S. J. & Hu, S. Effect of mitochondrial aldehyde dehydrogenase-2 genotype on cardioprotection in patients with congenital heart disease. Eur. Heart J. 33, 1606–1614 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors were supported by the National Natural Science Foundation of China (81873950, 82072144, 81772036, 81873953, 82002017, 82102290, 32030053 and 32150710522), the State Key Program of the National Natural Science Foundation of China (82030059), the National Key R&D Program of China (2020YFC1512700, 2020YFC1512705 and 2020YFC1512703), the Taishan Young Scholar Program of Shandong Province (tsqn20161065 and tsqn201812129), the Taishan Pandeng Scholar Program of Shandong Province (tspd20181220), the Clinical Research Center of Shandong University (2020SDUCRCB003), the National S&T Fundamental Resources Investigation Project (2018FY100600 and 2018FY100602) and the Interdisciplinary Young Researcher Groups Program of Shandong University (2020QNQT004).

Author information

Authors and Affiliations

Authors

Contributions

J.Z., Y.G., X.Z., Y.C., H.Y. and F.X. wrote the manuscript; J.Z., Y.G., X.Z., J.P., Y.C., H.Y. and F.X contributed substantially to the discussion of its content; and J.Z., Y.G., X.Z., C.P., J.W., S.W., X.Y., C.Z., Y.C., H.Y. and F.X. reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Yuguo Chen, Huiyong Yin or Feng Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Andreas Daiber, Jun Ren and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Guo, Y., Zhao, X. et al. The role of aldehyde dehydrogenase 2 in cardiovascular disease. Nat Rev Cardiol 20, 495–509 (2023). https://doi.org/10.1038/s41569-023-00839-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-023-00839-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing