Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evidence and therapeutic implications of biomechanically regulated immunosurveillance in cancer and other diseases

Abstract

Disease progression is usually accompanied by changes in the biochemical composition of cells and tissues and their biophysical properties. For instance, hallmarks of cancer include the stiffening of tissues caused by extracellular matrix remodelling and the softening of individual cancer cells. In this context, accumulating evidence has shown that immune cells sense and respond to mechanical signals from the environment. However, the mechanisms regulating these mechanical aspects of immune surveillance remain partially understood. The growing appreciation for the ‘mechano-immunology’ field has urged researchers to investigate how immune cells sense and respond to mechanical cues in various disease settings, paving the way for the development of novel engineering strategies that aim at mechanically modulating and potentiating immune cells for enhanced immunotherapies. Recent pioneer developments in this direction have laid the foundations for leveraging ‘mechanical immunoengineering’ strategies to treat various diseases. This Review first outlines the mechanical changes occurring during pathological progression in several diseases, including cancer, fibrosis and infection. We next highlight the mechanosensitive nature of immune cells and how mechanical forces govern the immune responses in different diseases. Finally, we discuss how targeting the biomechanical features of the disease milieu and immune cells is a promising strategy for manipulating therapeutic outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different disease settings share common mechanical cues.
Fig. 2: Spatiotemporal windows for optimal mechanical antitumour activity of immune cells.
Fig. 3: Improving therapies through mechanical immunoengineering of tumours and immune cells.

Similar content being viewed by others

References

  1. Klotter, V. et al. Assessment of pathologic increase in liver stiffness enables earlier diagnosis of CFLD: results from a prospective longitudinal cohort study. PLoS ONE 12, e0178784 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Medrano, L. M. et al. Elevated liver stiffness is linked to increased biomarkers of inflammation and immune activation in HIV/hepatitis C virus-coinfected patients. AIDS 32, 1095–1105 (2018).

    Article  PubMed  Google Scholar 

  3. Tomlin, H. & Piccinini, A. M. A complex interplay between the extracellular matrix and the innate immune response to microbial pathogens. Immunology 155, 186–201 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Martinez-Vidal, L. et al. Causal contributors to tissue stiffness and clinical relevance in urology. Commun. Biol. 4, 1011 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mohammadi, H. & Sahai, E. Mechanisms and impact of altered tumour mechanics. Nat. Cell Biol. 20, 766–774 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Du, H. et al. Tuning immunity through tissue mechanotransduction. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-022-00761-w (2022).

  7. Zhu, C., Chen, W., Lou, J., Rittase, W. & Li, K. Mechanosensing through immunoreceptors. Nat. Immunol. 20, 1269–1278 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Judokusumo, E., Tabdanov, E., Kumari, S., Dustin, M. L. & Kam, L. C. Mechanosensing in T lymphocyte activation. Biophys. J. 102, L5–L7 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. O’Connor, R. S. et al. Substrate rigidity regulates human T cell activation and proliferation. J. Immunol. 189, 1330–1339 (2012).

    Article  PubMed  Google Scholar 

  10. Saitakis, M. et al. Different TCR-induced T lymphocyte responses are potentiated by stiffness with variable sensitivity. eLife 6, e23190 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Blumenthal, D., Chandra, V., Avery, L. & Burkhardt, J. K. Mouse T cell priming is enhanced by maturation-dependent stiffening of the dendritic cell cortex. eLife 9, e55995 (2020). Important work that sheds light on the mechanical aspect of dendritic cell-mediated activation of T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Basu, R. et al. Cytotoxic T cells use mechanical force to potentiate target cell killing. Cell 165, 100–110 (2016). Seminal study that highlights the critical role of mechanical forces in cytotoxic activity of T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, Y. et al. Cell softness prevents cytolytic T-cell killing of tumor-repopulating cells. Cancer Res. 81, 476–488 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Tello-Lafoz, M. et al. Cytotoxic lymphocytes target characteristic biophysical vulnerabilities in cancer. Immunity 54, 1037–1054.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lei, K. et al. Cancer-cell stiffening via cholesterol depletion enhances adoptive T-cell immunotherapy. Nat. Biomed. Eng. 5, 1411–1425 (2021). Influential studies (refs. 14,15) that show that stiffening tumour cells through genetic manipulation targeting MRTF or by depleting cholesterol of the cell membrane results in higher vulnerabiliy to T-cell-mediated killing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Provenzano, P. P. et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4, 38 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goetz, J. G. et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146, 148–163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Massagué, J. TGFβ in cancer. Cell 134, 215–230 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Insua‐Rodríguez, J. et al. Stress signaling in breast cancer cells induces matrix components that promote chemoresistant metastasis. EMBO Mol. Med. 10, e9003 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. He, X. et al. Extracellular matrix physical properties govern the diffusion of nanoparticles in tumor microenvironment. Proc. Natl Acad. Sci. USA 120, e2209260120 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Salmon, H. et al. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J. Clin. Invest. 122, 899–910 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Salnikov, A. V. et al. Lowering of tumor interstitial fluid pressure specifically augments efficacy of chemotherapy. FASEB J. 17, 1756–1758 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Guck, J. et al. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 88, 3689–3698 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Plodinec, M. et al. The nanomechanical signature of breast cancer. Nat. Nanotechnol. 7, 757–765 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Chen, Y., McAndrews, K. M. & Kalluri, R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat. Rev. Clin. Oncol. 18, 792–804 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gensbittel, V. et al. Mechanical adaptability of tumor cells in metastasis. Dev. Cell 56, 164–179 (2021). This review presents the hypothesis that tumour cells adjust their mechanical properties throughout their metastatic journey.

    Article  CAS  PubMed  Google Scholar 

  28. Lv, J. et al. Cell softness regulates tumorigenicity and stemness of cancer cells. EMBO J. 40, e106123 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Matthews, H. K. et al. Oncogenic signaling alters cell shape and mechanics to facilitate cell division under confinement. Dev. Cell 52, 563–573.e3 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Young, K. M. et al. Correlating mechanical and gene expression data on the single cell level to investigate metastatic phenotypes. iScience 26, 106393 (2023).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  31. Rianna, C., Radmacher, M. & Kumar, S. Direct evidence that tumor cells soften when navigating confined spaces. Mol. Biol. Cell 31, 1726–1734 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Regmi, S., Fu, A. & Luo, K. Q. High shear stresses under exercise condition destroy circulating tumor cells in a microfluidic system. Sci. Rep. 7, 39975 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moose, D. L. et al. Cancer cells resist mechanical destruction in circulation via rhoa/actomyosin-dependent mechano-adaptation. Cell Rep. 30, 3864–3874.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen, J. et al. Efficient extravasation of tumor-repopulating cells depends on cell deformability. Sci. Rep. 6, 19304 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saito, D. et al. Stiffness of primordial germ cells is required for their extravasation in avian embryos. iScience 25, 105629 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Er, E. E. et al. Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nat. Cell Biol. 20, 966–978 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wen, Z., Zhang, Y., Lin, Z., Shi, K. & Jiu, Y. Cytoskeleton—a crucial key in host cell for coronavirus infection. J. Mol. Cell. Biol. 12, 968–979 (2021).

    Article  Google Scholar 

  38. Paluck, A. et al. Role of ARP2/3 complex-driven actin polymerization in RSV infection. Pathogens 11, 26 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kubánková, M. et al. Physical phenotype of blood cells is altered in COVID-19. Biophys. J. 120, 2838–2847 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  40. Yang, J., Barrila, J., Roland, K. L., Ott, C. M. & Nickerson, C. A. Physiological fluid shear alters the virulence potential of invasive multidrug-resistant non-typhoidal Salmonella typhimurium D23580. npj Microgravity 2, 16021 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Padron, G. C. et al. Shear rate sensitizes bacterial pathogens to H2O2 stress. Proc. Natl Acad. Sci. USA 120, e2216774120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mikaty, G. et al. Extracellular bacterial pathogen induces host cell surface reorganization to resist shear stress. PLoS Pathog. 5, e1000314 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kuo, C. et al. Rhinovirus infection induces extracellular matrix protein deposition in asthmatic and nonasthmatic airway smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 300, L951–L957 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Nagy, N. et al. Hyaluronan in immune dysregulation and autoimmune diseases. Matrix Biol. 78–79, 292–313 (2019).

    Article  PubMed  Google Scholar 

  45. Fingleton, B. Matrix metalloproteinases as regulators of inflammatory processes. Biochim. Biophys. Acta Mol. Cell Res. 1864, 2036–2042 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Krishnamurty, A. T. & Turley, S. J. Lymph node stromal cells: cartographers of the immune system. Nat. Immunol. 21, 369–380 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Wynn, T. A. Integrating mechanisms of pulmonary fibrosis. J. Exp. Med. 208, 1339–1350 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tschöpe, C. et al. Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nat. Rev. Cardiol. 18, 169–193 (2021).

    Article  PubMed  Google Scholar 

  49. Fabre, T. et al. Identification of a broadly fibrogenic macrophage subset induced by type 3 inflammation. Sci. Immunol. 8, eadd8945 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. de Boer, R. A. et al. Towards better definition, quantification and treatment of fibrosis in heart failure. A scientific roadmap by the Committee of Translational Research of the Heart Failure Association (HFA) of the European Society of Cardiology. Eur. J. Heart Fail. 21, 272–285 (2019).

    Article  PubMed  Google Scholar 

  51. Liu, F. et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J. Cell Biol. 190, 693–706 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Georges, P. C. et al. Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G1147–G1154 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Stock, K. F. et al. ARFI-based tissue elasticity quantification in comparison to histology for the diagnosis of renal transplant fibrosis. Clin. Hemorheol. Microcirc. 46, 139–148 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Gadd, V. L. et al. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology 59, 1393–1405 (2014).

    Article  PubMed  Google Scholar 

  55. Mogilenko, D. A., Shchukina, I. & Artyomov, M. N. Immune ageing at single-cell resolution. Nat. Rev. Immunol. 22, 484–498 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Roman, M. J. et al. Arterial stiffness in chronic inflammatory diseases. Hypertension 46, 194–199 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Klingberg, F., Hinz, B. & White, E. S. The myofibroblast matrix: implications for tissue repair and fibrosis: the myofibroblast matrix. J. Pathol. 229, 298–309 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, F. et al. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 308, L344–L357 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C. & Brown, R. A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3, 349–363 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Munger, J. S. et al. A mechanism for regulating pulmonary inflammation and fibrosis: the integrin αvβ6 binds and activates latent TGF β1. Cell 96, 319–328 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Santos, A. & Lagares, D. Matrix stiffness: the conductor of organ fibrosis. Curr. Rheumatol. Rep. 20, 2 (2018).

    Article  PubMed  Google Scholar 

  62. Morvan, M. G. & Lanier, L. L. NK cells and cancer: you can teach innate cells new tricks. Nat. Rev. Cancer 16, 7–19 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Janeway, C. A. How the immune system works to protect the host from infection: a personal view. Proc. Natl Acad. Sci. USA 98, 7461–7468 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dustin, M. L. T-cell activation through immunological synapses and kinapses. Immunol. Rev. 221, 77–89 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Feng, Y., Zhao, X., White, A. K., Garcia, K. C. & Fordyce, P. M. A bead-based method for high-throughput mapping of the sequence- and force-dependence of T cell activation. Nat. Methods 19, 1295–1305 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Mordechay, L. et al. Mechanical regulation of the cytotoxic activity of natural killer cells. ACS Biomater. Sci. Eng. 7, 122–132 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Lei, K., Kurum, A. & Tang, L. Mechanical immunoengineering of T cells for therapeutic applications. Acc. Chem. Res. 53, 2777–2790 (2020). Comprehensive review on recent advances in mechanical immunoengineering and their potential therapeutic applications.

    Article  CAS  PubMed  Google Scholar 

  68. Seghir, R. & Arscott, S. Extended PDMS stiffness range for flexible systems. Sens. Actuators Phys. 230, 33–39 (2015).

    Article  CAS  Google Scholar 

  69. Guimarães, C. F., Gasperini, L., Marques, A. P. & Reis, R. L. The stiffness of living tissues and its implications for tissue engineering. Nat. Rev. Mater. 5, 351–370 (2020).

    Article  ADS  Google Scholar 

  70. Denisin, A. K. & Pruitt, B. L. Tuning the range of polyacrylamide gel stiffness for mechanobiology applications. ACS Appl. Mater. Interfaces 8, 21893–21902 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Follain, G. et al. Fluids and their mechanics in tumour transit: shaping metastasis. Nat. Rev. Cancer 20, 107–124 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Baratchi, S. et al. Transcatheter aortic valve implantation represents an anti-inflammatory therapy via reduction of shear stress–induced, piezo-1–mediated monocyte activation. Circulation 142, 1092–1105 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Serafini, N. et al. The TRPM4 channel controls monocyte and macrophage, but not neutrophil, function for survival in sepsis. J. Immunol. 189, 3689–3699 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Beningo, K. A. & Wang, Y. Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target. J. Cell Sci. 115, 849–856 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Sosale, N. G. et al. Cell rigidity and shape override CD47’s ‘self’-signaling in phagocytosis by hyperactivating myosin-II. Blood 125, 542–552 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sridharan, R., Cavanagh, B., Cameron, A. R., Kelly, D. J. & O’Brien, F. J. Material stiffness influences the polarization state, function and migration mode of macrophages. Acta Biomater. 89, 47–59 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Hu, Y. et al. Molecular force imaging reveals that integrin-dependent mechanical checkpoint regulates Fcγ-receptor-mediated phagocytosis in macrophages. Nano Lett. 23, 5562–5572 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  79. Atcha, H. et al. Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing. Nat. Commun. 12, 3256 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Geng, J. et al. TLR4 signalling via Piezo1 engages and enhances the macrophage mediated host response during bacterial infection. Nat. Commun. 12, 3519 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Rice, A. J. et al. Matrix stiffness induces epithelial–mesenchymal transition and promotes chemoresistance in pancreatic cancer cells. Oncogenesis 6, e352 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Oliver-De La Cruz, J. et al. Substrate mechanics controls adipogenesis through YAP phosphorylation by dictating cell spreading. Biomaterials 205, 64–80 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Meli, V. S. et al. YAP-mediated mechanotransduction tunes the macrophage inflammatory response. Sci. Adv. 6, eabb8471 (2020).

  85. Steinman, R. M. Decisions about dendritic cells: past, present, and future. Annu. Rev. Immunol. 30, 1–22 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Moreau, H. D. et al. Macropinocytosis overcomes directional bias in dendritic cells due to hydraulic resistance and facilitates space exploration. Dev. Cell 49, 171–188.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Laplaud, V. et al. Pinching the cortex of live cells reveals thickness instabilities caused by myosin II motors. Sci. Adv. 7, eabe3640 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  88. Barbier, L. et al. Myosin II activity is selectively needed for migration in highly confined microenvironments in mature dendritic cells. Front. Immunol. 10, 747 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chabaud, M. et al. Cell migration and antigen capture are antagonistic processes coupled by myosin II in dendritic cells. Nat. Commun. 6, 7526 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  90. Leithner, A. et al. Dendritic cell actin dynamics control contact duration and priming efficiency at the immunological synapse. J. Cell Biol. 220, e202006081 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kang, J.-H. et al. Biomechanical forces enhance directed migration and activation of bone marrow-derived dendritic cells. Sci. Rep. 11, 12106 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. van den Dries, K. et al. Geometry sensing by dendritic cells dictates spatial organization and PGE2-induced dissolution of podosomes. Cell. Mol. Life Sci. 69, 1889–1901 (2012).

    Article  PubMed  Google Scholar 

  93. Chakraborty, M. et al. Mechanical stiffness controls dendritic cell metabolism and function. Cell Rep. 34, 108609 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Mennens, S. F. B. et al. Substrate stiffness influences phenotype and function of human antigen-presenting dendritic cells. Sci. Rep. 7, 17511 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  95. Figdor, C. G., van Kooyk, Y. & Adema, G. J. C-type lectin receptors on dendritic cells and langerhans cells. Nat. Rev. Immunol. 2, 77–84 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Bufi, N. et al. Human primary immune cells exhibit distinct mechanical properties that are modified by inflammation. Biophys. J. 108, 2181–2190 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. Comrie, W. A., Babich, A. & Burkhardt, J. K. F-actin flow drives affinity maturation and spatial organization of LFA-1 at the immunological synapse. J. Cell Biol. 208, 475–491 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang, Y. et al. Dendritic cell Piezo1 directs the differentiation of TH1 and Treg cells in cancer. eLife 11, e79957 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Valignat, M.-P. et al. Lymphocytes can self-steer passively with wind vane uropods. Nat. Commun. 5, 5213 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  100. Roy, N. H., MacKay, J. L., Robertson, T. F., Hammer, D. A. & Burkhardt, J. K. Crk adaptor proteins mediate actin-dependent T cell migration and mechanosensing induced by the integrin LFA-1. Sci. Signal. 11, eaat3178 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hope, J. M. et al. Fluid shear stress enhances T cell activation through Piezo1. BMC Biol. 20, 61 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Husson, J., Chemin, K., Bohineust, A., Hivroz, C. & Henry, N. Force generation upon T cell receptor engagement. PLoS ONE 6, e19680 (2011). An elegant use of a biomembrane force probe technique for measuring forces exerted by T cells upon engagement with antigen-presenting cells.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  103. Liu, B., Chen, W., Evavold, B. D. & Zhu, C. Accumulation of dynamic catch bonds between TCR and agonist peptide–MHC triggers T cell signaling. Cell 157, 357–368 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Thauland, T. J., Hu, K. H., Bruce, M. A. & Butte, M. J. Cytoskeletal adaptivity regulates T cell receptor signaling. Sci. Signal. 10, eaah3737 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Gaertner, F. et al. WASp triggers mechanosensitive actin patches to facilitate immune cell migration in dense tissues. Dev. Cell 57, 47–62.e9 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Majedi, F. S. et al. T-cell activation is modulated by the 3D mechanical microenvironment. Biomaterials 252, 120058 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wang, H. et al. ZAP-70: an essential kinase in T-cell signaling. Cold Spring Harb. Perspect. Biol. 2, a002279 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Bashour, K. T. et al. CD28 and CD3 have complementary roles in T-cell traction forces. Proc. Natl Acad. Sci. USA 111, 2241–2246 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hu, K. H. & Butte, M. J. T cell activation requires force generation. J. Cell Biol. 213, 535–542 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Liu, Y. et al. DNA-based nanoparticle tension sensors reveal that T-cell receptors transmit defined pN forces to their antigens for enhanced fidelity. Proc. Natl Acad. Sci. USA 113, 5610–5615 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tabdanov, E. et al. Micropatterning of TCR and LFA-1 ligands reveals complementary effects on cytoskeleton mechanics in T cells. Integr. Biol. 7, 1272–1284 (2015).

    Article  CAS  Google Scholar 

  112. Govendir, M. A. et al. T cell cytoskeletal forces shape synapse topography for targeted lysis via membrane curvature bias of perforin. Dev. Cell 57, 2237–2247.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Wang, M. S. et al. Mechanically active integrins target lytic secretion at the immune synapse to facilitate cellular cytotoxicity. Nat. Commun. 13, 3222 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  114. Liu, C. S. C. et al. Cutting edge: Piezo1 mechanosensors optimize human T cell activation. J. Immunol. 200, 1255–1260 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Jin, W. et al. T cell activation and immune synapse organization respond to the microscale mechanics of structured surfaces. Proc. Natl Acad. Sci. USA 116, 19835–19840 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kumari, S. et al. Cytoskeletal tension actively sustains the migratory T‐cell synaptic contact. EMBO J. 39, e102783 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Huby, R. D. J., Weiss, A. & Ley, S. C. Nocodazole inhibits signal transduction by the T cell antigen receptor. J. Biol. Chem. 273, 12024–12031 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Le Saux, G. et al. Nanoscale mechanosensing of natural killer cells is revealed by antigen-functionalized nanowires. Adv. Mater. 31, 1805954 (2019).

    Article  Google Scholar 

  119. Bhingardive, V. et al. Nanowire based mechanostimulating platform for tunable activation of natural killer cells. Adv. Funct. Mater. 31, 2103063 (2021).

    Article  CAS  Google Scholar 

  120. Brumbaugh, K. M. et al. Functional role for Syk tyrosine kinase in natural killer cell-mediated natural cytotoxicity. J. Exp. Med. 186, 1965–1974 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Matalon, O. et al. Actin retrograde flow controls natural killer cell response by regulating the conformation state of SHP‐1. EMBO J. 37, e96264 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Garrity, D., Call, M. E., Feng, J. & Wucherpfennig, K. W. The activating NKG2D receptor assembles in the membrane with two signaling dimers into a hexameric structure. Proc. Natl Acad. Sci. USA 102, 7641–7646 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  123. Friedman, D. et al. Natural killer cell immune synapse formation and cytotoxicity are controlled by tension of the target interface. J. Cell Sci. 134, jcs258570 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yanamandra, A. K. et al. PIEZO1-mediated mechanosensing governs NK cell killing efficiency in 3D. Preprint at https://doi.org/10.1101/2023.03.27.534435 (2023).

  125. Wan, Z. et al. B cell activation is regulated by the stiffness properties of the substrate presenting the antigens. J. Immunol. 190, 4661–4675 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Natkanski, E. et al. B cells use mechanical energy to discriminate antigen affinities. Science 340, 1587–1590 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  127. Merino-Cortés, S. V. et al. Diacylglycerol kinase ζ promotes actin cytoskeleton remodeling and mechanical forces at the B cell immune synapse. Sci. Signal. 13, eaaw8214 (2020).

    Article  PubMed  Google Scholar 

  128. Zeng, Y. et al. Substrate stiffness regulates B-cell activation, proliferation, class switch, and T-cell-independent antibody responses in vivo: Cellular immune response. Eur. J. Immunol. 45, 1621–1634 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Nowosad, C. R., Spillane, K. M. & Tolar, P. Germinal center B cells recognize antigen through a specialized immune synapse architecture. Nat. Immunol. 17, 870–877 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jiang, H. & Wang, S. Immune cells use active tugging forces to distinguish affinity and accelerate evolution. Proc. Natl Acad. Sci. USA 120, e2213067120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Stanton, R. J. et al. HCMV pUL135 remodels the actin cytoskeleton to impair immune recognition of infected cells. Cell Host Microbe 16, 201–214 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Pai, R. K., Convery, M., Hamilton, T. A., Boom, W. H. & Harding, C. V. Inhibition of IFN-γ-induced class II transactivator expression by a 19-kDa lipoprotein from Mycobacterium tuberculosis: a potential mechanism for immune evasion. J. Immunol. 171, 175–184 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Samassa, F. et al. Shigella impairs human T lymphocyte responsiveness by hijacking actin cytoskeleton dynamics and T cell receptor vesicular trafficking. Cell. Microbiol. 22, e13166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hanč, P. et al. Structure of the complex of F-actin and DNGR-1, a C-type lectin receptor involved in dendritic cell cross-presentation of dead cell-associated antigens. Immunity 42, 839–849 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Man, S. M. et al. Actin polymerization as a key innate immune effector mechanism to control Salmonella infection. Proc. Natl Acad. Sci. USA 111, 17588–17593 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  136. Jacobson, E. C. et al. Migration through a small pore disrupts inactive chromatin organization in neutrophil-like cells. BMC Biol. 16, 142 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Solis, A. G. et al. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature 573, 69–74 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  138. Robledo-Avila, F. H., Ruiz-Rosado, J., de, D., Brockman, K. L. & Partida-Sánchez, S. The TRPM2 ion channel regulates inflammatory functions of neutrophils during Listeria monocytogenes infection. Front. Immunol. 11, 97 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Meng, K. P., Majedi, F. S., Thauland, T. J. & Butte, M. J. Mechanosensing through YAP controls T cell activation and metabolism. J. Exp. Med. 217, e20200053 (2020). This study sheds light on T cells sensing the mechanical signals of their environment and tuning their response accordingly.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Al-Aghbar, M. A., Jainarayanan, A. K., Dustin, M. L. & Roffler, S. R. The interplay between membrane topology and mechanical forces in regulating T cell receptor activity. Commun. Biol. 5, 40 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wong, V. W. et al. Mechanical force prolongs acute inflammation via T‐cell‐dependent pathways during scar formation. FASEB J. 25, 4498–4510 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    Article  PubMed  Google Scholar 

  143. O’Donnell, J. S., Teng, M. W. L. & Smyth, M. J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol. 16, 151–167 (2019).

    Article  PubMed  Google Scholar 

  144. Dustin, M. L. & Long, E. O. Cytotoxic immunological synapses: NK and CTL synapses. Immunol. Rev. 235, 24–34 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. González-Granado, J. M. et al. Nuclear envelope lamin-A couples actin dynamics with immunological synapse architecture and T cell activation. Sci. Signal. 7, ra37 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  146. González, C. et al. Nanobody-CD16 catch bond reveals NK cell mechanosensitivity. Biophys. J. 116, 1516–1526 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  147. Fan, J. et al. NKG2D discriminates diverse ligands through selectively mechano‐regulated ligand conformational changes. EMBO J. 41, e107739 (2022).

    Article  CAS  PubMed  Google Scholar 

  148. Tsopoulidis, N. et al. T cell receptor–triggered nuclear actin network formation drives CD4+ T cell effector functions. Sci. Immunol. 4, eaav1987 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Tamzalit, F. et al. Interfacial actin protrusions mechanically enhance killing by cytotoxic T cells. Sci. Immunol. 4, eaav5445 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sanchez, E. E. et al. Apoptotic contraction drives target cell release by cytotoxic T cells. Nat. Immunol. https://doi.org/10.1038/s41590-023-01572-4 (2023).

  151. Händel, C. et al. Cell membrane softening in human breast and cervical cancer cells. N. J. Phys. 17, 083008 (2015).

    Article  Google Scholar 

  152. Huang, B., Song, B. & Xu, C. Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities. Nat. Metab. 2, 132–141 (2020).

    Article  PubMed  Google Scholar 

  153. Hanna, R. N. et al. Patrolling monocytes control tumor metastasis to the lung. Science 350, 985–990 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Vyas, M. et al. Natural killer cells suppress cancer metastasis by eliminating circulating cancer cells. Front. Immunol. 13, 1098445 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Hu, B., Xin, Y., Hu, G., Li, K. & Tan, Y. Fluid shear stress enhances natural killer cell’s cytotoxicity toward circulating tumor cells through NKG2D-mediated mechanosensing. APL Bioeng. 7, 036108 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Boussommier-Calleja, A. et al. The effects of monocytes on tumor cell extravasation in a 3D vascularized microfluidic model. Biomaterials 198, 180–193 (2019).

    Article  CAS  PubMed  Google Scholar 

  157. Soderquest, K. et al. Monocytes control natural killer cell differentiation to effector phenotypes. Blood 117, 4511–4518 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Kumar, B. V., Connors, T. J. & Farber, D. L. Human T cell development, localization, and function throughout life. Immunity 48, 202–213 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Surcel, A. et al. Pharmacological activation of myosin II paralogs to correct cell mechanics defects. Proc. Natl Acad. Sci. USA 112, 1428–1433 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  160. Mittelheisser, V. et al. Optimal physicochemical properties of antibody–nanoparticle conjugates for improved tumor targeting. Adv. Mater. 34, 2110305 (2022).

    Article  CAS  Google Scholar 

  161. Guo, P. et al. Nanoparticle elasticity directs tumor uptake. Nat. Commun. 9, 130 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  162. Liang, Q. et al. The softness of tumour-cell-derived microparticles regulates their drug-delivery efficiency. Nat. Biomed. Eng. 3, 729–740 (2019).

    Article  CAS  PubMed  Google Scholar 

  163. Chen, X. et al. Nanoparticle-mediated specific elimination of soft cancer stem cells by targeting low cell stiffness. Acta Biomater. 135, 493–505 (2021).

    Article  CAS  PubMed  Google Scholar 

  164. Perez, J. E. et al. Transient cell stiffening triggered by magnetic nanoparticle exposure. J. Nanobiotechnol. 19, 117 (2021).

    CAS  Google Scholar 

  165. Liu, Y. X. et al. Single-cell mechanics provides an effective means to probe in vivo interactions between alveolar macrophages and silver nanoparticles. J. Phys. Chem. B 119, 15118–15129 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hartmann, N. et al. Prevailing role of contact guidance in intrastromal T-cell trapping in human pancreatic cancer. Clin. Cancer Res. 20, 3422–3433 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  168. Kuczek, D. E. et al. Collagen density regulates the activity of tumor-infiltrating T cells. J. Immunother. Cancer 7, 68 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Sun, X. et al. Tumour DDR1 promotes collagen fibre alignment to instigate immune exclusion. Nature 599, 673–678 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  170. Di Martino, J. S. et al. A tumor-derived type III collagen-rich ECM niche regulates tumor cell dormancy. Nat. Cancer 3, 90–107 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Lampi, M. C. & Reinhart-King, C. A. Targeting extracellular matrix stiffness to attenuate disease: from molecular mechanisms to clinical trials. Sci. Transl. Med. 10, eaao0475 (2018).

    Article  PubMed  Google Scholar 

  172. Diop-Frimpong, B., Chauhan, V. P., Krane, S., Boucher, Y. & Jain, R. K. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc. Natl Acad. Sci. USA 108, 2909–2914 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  173. Liu, J. et al. TGF-β blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma. Proc. Natl Acad. Sci. USA 109, 16618–16623 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  174. Van Cutsem, E. et al. Randomized phase III trial of pegvorhyaluronidase alfa with nab-paclitaxel plus gemcitabine for patients with hyaluronan-high metastatic pancreatic adenocarcinoma. J. Clin. Oncol. 38, 3185–3194 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Provenzano, P. P. et al. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21, 418–429 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zhong, Y. et al. Tumor microenvironment‐activatable nanoenzymes for mechanical remodeling of extracellular matrix and enhanced tumor chemotherapy. Adv. Funct. Mater. 31, 2007544 (2021).

    Article  CAS  Google Scholar 

  177. Caruana, I. et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat. Med. 21, 524–529 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Prescher, J. A., Dube, D. H. & Bertozzi, C. R. Chemical remodelling of cell surfaces in living animals. Nature 430, 873–877 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  179. Meng, D. et al. In situ activated NK cell as bio‐orthogonal targeted live‐cell nanocarrier augmented solid tumor immunotherapy. Adv. Funct. Mater. 32, 2202603 (2022).

    Article  CAS  Google Scholar 

  180. Zhao, Y. et al. Bioorthogonal equipping CAR-T cells with hyaluronidase and checkpoint blocking antibody for enhanced solid tumor immunotherapy. ACS Cent. Sci. 8, 603–614 (2022).

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  181. Saatci, O. et al. Targeting lysyl oxidase (LOX) overcomes chemotherapy resistance in triple negative breast cancer. Nat. Commun. 11, 2416 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  182. Nicolas-Boluda, A. et al. Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment. eLife 10, e58688 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. De Vita, A. et al. Lysyl oxidase engineered lipid nanovesicles for the treatment of triple negative breast cancer. Sci. Rep. 11, 5107 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  184. Kim, H. Y. et al. Detection of lysyl oxidase activity in tumor extracellular matrix using peptide-functionalized gold nanoprobes. Cancers 13, 4523 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kanapathipillai, M. et al. Inhibition of mammary tumor growth using lysyl oxidase-targeting nanoparticles to modify extracellular matrix. Nano Lett. 12, 3213–3217 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  186. Vennin, C. et al. Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Sci. Transl. Med. 9, eaai8504 (2017). A compelling demonstration that altering the mechanical features of the tumour environment holds great potential for improving therapies.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Murphy, K. J. et al. Intravital imaging technology guides FAK-mediated priming in pancreatic cancer precision medicine according to Merlin status. Sci. Adv. 7, eabh0363 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  188. Tran, E. et al. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J. Exp. Med. 210, 1125–1135 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Wang, L.-C. S. et al. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunol. Res. 2, 154–166 (2014).

    Article  CAS  PubMed  Google Scholar 

  190. Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  191. Correia, A. L. et al. Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy. Nature 594, 566–571 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  192. Roberts, E. W. et al. Depletion of stromal cells expressing fibroblast activation protein-α from skeletal muscle and bone marrow results in cachexia and anemia. J. Exp. Med. 210, 1137–1151 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Fujimori, K., Covell, D. G., Fletcher, J. E. & Weinstein, J. N. Modeling analysis of the global and microscopic distribution of immunoglobulin G, F(ab’)2, and Fab in tumors. Cancer Res. 49, 5656–5663 (1989).

    CAS  PubMed  Google Scholar 

  194. Tabdanov, E. D. et al. Engineering T cells to enhance 3D migration through structurally and mechanically complex tumor microenvironments. Nat. Commun. 12, 2815 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  195. Whitlock, B. Enhancing Cytotoxic T Cell Killing by PTEN Depletion (Weill Cornell Medicine, 2018).

  196. Li, R., Ma, C., Cai, H. & Chen, W. The CAR T‐cell mechanoimmunology at a glance. Adv. Sci. 7, 2002628 (2020).

    Article  CAS  Google Scholar 

  197. Chockley, P. J., Ibanez-Vega, J., Krenciute, G., Talbot, L. J. & Gottschalk, S. Synapse-tuned CARs enhance immune cell anti-tumor activity. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01650-2 (2023). This study shows that improving the immunological synapse architecture of CAR-NK cells leads to superior therapeutic efficacy.

  198. Roybal, K. T. et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164, 770–779 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Gordon, W. R. et al. Mechanical allostery: evidence for a force requirement in the proteolytic activation of notch. Dev. Cell 33, 729–736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Sloas, D. C., Tran, J. C., Marzilli, A. M. & Ngo, J. T. Tension-tuned receptors for synthetic mechanotransduction and intercellular force detection. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01638-y (2023).

  201. Mittelheisser, V. et al. Leveraging immunotherapy with nanomedicine. Adv. Ther. 3, 2000134 (2020).

    Article  CAS  Google Scholar 

  202. Perica, K. et al. Magnetic field-induced T cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumor activity. ACS Nano 8, 2252–2260 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Majedi, F. S. et al. Augmentation of T-cell activation by oscillatory forces and engineered antigen-presenting cells. Nano Lett. 19, 6945–6954 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  204. Vis, B. et al. Ultrasmall silica nanoparticles directly ligate the T cell receptor complex. Proc. Natl Acad. Sci. USA 117, 285–291 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  205. Kim, K.-S. et al. Cationic nanoparticle-mediated activation of natural killer cells for effective cancer immunotherapy. ACS Appl. Mater. Interfaces 12, 56731–56740 (2020).

    Article  CAS  PubMed  Google Scholar 

  206. Sim, T. et al. Magneto-activation and magnetic resonance imaging of natural killer cells labeled with magnetic nanocomplexes for the treatment of solid tumors. ACS Nano 15, 12780–12793 (2021).

    Article  CAS  PubMed  Google Scholar 

  207. Liu, Z. et al. Nanoscale optomechanical actuators for controlling mechanotransduction in living cells. Nat. Methods 13, 143–146 (2016).

    Article  ADS  PubMed  Google Scholar 

  208. Farhadi, A., Ho, G. H., Sawyer, D. P., Bourdeau, R. W. & Shapiro, M. G. Ultrasound imaging of gene expression in mammalian cells. Science 365, 1469–1475 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  209. Wang, X., Chen, X. & Yang, Y. Spatiotemporal control of gene expression by a light-switchable transgene system. Nat. Methods 9, 266–269 (2012).

    Article  CAS  PubMed  Google Scholar 

  210. Pan, Y. et al. Mechanogenetics for the remote and noninvasive control of cancer immunotherapy. Proc. Natl Acad. Sci. USA 115, 992–997 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  211. González-Bermúdez, B., Guinea, G. V. & Plaza, G. R. Advances in micropipette aspiration: applications in cell biomechanics, models, and extended studies. Biophys. J. 116, 587–594 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  212. Otto, O. et al. Real-time deformability cytometry: on-the-fly cell mechanical phenotyping. Nat. Methods 12, 199–202 (2015). Introduction of the state-of-the-art and high-throughput RT-DC technology for measuring the mechanical properties of cells.

    Article  CAS  PubMed  Google Scholar 

  213. Gerum, R. et al. Viscoelastic properties of suspended cells measured with shear flow deformation cytometry. eLife 11, e78823 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Sánchez-Iranzo, H., Bevilacqua, C., Diz-Muñoz, A. & Prevedel, R. A 3D Brillouin microscopy dataset of the in-vivo zebrafish eye. Data Brief. 30, 105427 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Conrad, C., Gray, K. M., Stroka, K. M., Rizvi, I. & Scarcelli, G. Mechanical characterization of 3D ovarian cancer nodules using Brillouin confocal microscopy. Cell. Mol. Bioeng. 12, 215–226 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Wu, P.-H. et al. Particle tracking microrheology of cancer cells in living subjects. Mater. Today 39, 98–109 (2020).

    Article  CAS  Google Scholar 

  217. Falchuk, K. & Berliner, R. Hydrostatic pressures in peritubular capillaries and tubules in the rat kidney. Am. J. Physiol. 220, 1422–1426 (1971).

    Article  CAS  PubMed  Google Scholar 

  218. Petrie, R. J. & Koo, H. Direct measurement of intracellular pressure. Curr. Protoc. Cell Biol. 63, (2014).

  219. Harlepp, S., Thalmann, F., Follain, G. & Goetz, J. G. Hemodynamic forces can be accurately measured in vivo with optical tweezers. Mol. Biol. Cell 28, 3252–3260 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Mongera, A. et al. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. Nature 561, 401–405 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  221. Mongera, A. et al. Mechanics of the cellular microenvironment as probed by cells in vivo during zebrafish presomitic mesoderm differentiation. Nat. Mater. 22, 135–143 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  222. Vorselen, D. et al. Microparticle traction force microscopy reveals subcellular force exertion patterns in immune cell–target interactions. Nat. Commun. 11, 20 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  223. Meng, F., Suchyna, T. M. & Sachs, F. A fluorescence energy transfer-based mechanical stress sensor for specific proteins in situ: mechanical stress sensor. FEBS J. 275, 3072–3087 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  225. Conway, D. E. et al. Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr. Biol. 23, 1024–1030 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Pan, X. et al. Assessment of cancer cell migration using a viscosity-sensitive fluorescent probe. Chem. Commun. 58, 4663–4666 (2022).

    Article  CAS  Google Scholar 

  227. Shimolina, L. E. et al. Imaging tumor microscopic viscosity in vivo using molecular rotors. Sci. Rep. 7, 41097 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  228. Sack, I. Magnetic resonance elastography from fundamental soft-tissue mechanics to diagnostic imaging. Nat. Rev. Phys. 5, 25–42 (2022).

    Article  Google Scholar 

  229. Soteriou, D. et al. Rapid single-cell physical phenotyping of mechanically dissociated tissue biopsies. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01015-3 (2023).

Download references

Acknowledgements

L.T. acknowledges the grant support from Swiss National Science Foundation (315230_204202, IZLCZ0_206035, CRSII5_205930), European Research Council under the ERC grant agreement MechanoIMM (805337), Swiss Cancer Research Foundation (KFS-4600-08-2018), Kristian Gerhard Jebsen Foundation, Anna Fuller Fund, Xtalpi Inc., and EPFL. J.G.G. acknowledges support from INSERM, University of Strasbourg and charities (Ligue contre le Cancer, Fondation ARC pour la recherche sur le cancer, Association Ruban Rose), which also support fellowships to V.M. and V.G. This work was also supported by grants from Plan Cancer to J.G.G. We apologize to the authors whose work could not be cited due to size constraints.

Author information

Authors and Affiliations

Authors

Contributions

V.M., V.G., L.B., W.L., L.T. and J.G.G. researched data for the paper. All authors made substantial contributions to the discussion of content, wrote the paper and reviewed and/or edited the paper before submission.

Corresponding authors

Correspondence to Li Tang or Jacky G. Goetz.

Ethics declarations

Competing interests

L.T. is a co-founder, shareholder and advisor for Leman Biotech. The interests of L.T. were reviewed and managed by EPFL. The other authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Claire Hivroz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittelheisser, V., Gensbittel, V., Bonati, L. et al. Evidence and therapeutic implications of biomechanically regulated immunosurveillance in cancer and other diseases. Nat. Nanotechnol. 19, 281–297 (2024). https://doi.org/10.1038/s41565-023-01535-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01535-8

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research