Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Blood–brain barrier injury and neuroinflammation induced by SARS-CoV-2 in a lung–brain microphysiological system

An Author Correction to this article was published on 31 October 2023

This article has been updated

Abstract

In some patients, COVID-19 can trigger neurological symptoms with unclear pathogenesis. Here we describe a microphysiological system integrating alveolus and blood–brain barrier (BBB) tissue chips that recapitulates neuropathogenesis associated with infection by SARS-CoV-2. Direct exposure of the BBB chip to SARS-CoV-2 caused mild changes to the BBB, and infusion of medium from the infected alveolus chip led to more severe injuries on the BBB chip, including endothelial dysfunction, pericyte detachment and neuroinflammation. Transcriptomic analyses indicated downregulated expression of the actin cytoskeleton in brain endothelium and upregulated expression of inflammatory genes in glial cells. We also observed early cerebral microvascular damage following lung infection with a low viral load in the brains of transgenic mice expressing human angiotensin-converting enzyme 2. Our findings suggest that systemic inflammation is probably contributing to neuropathogenesis following SARS-CoV-2 infection, and that direct viral neural invasion might not be a prerequisite for this neuropathogenesis. Lung–brain microphysiological systems should aid the further understanding of the systemic effects and neurological complications of viral infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An integrated lung–brain MPS to understand the neuropathogenesis of viral infection.
Fig. 2: Direct exposure of SARS-CoV-2 on the individual BBB chip.
Fig. 3: Indirect impact of SARS-CoV-2 on the BBB after lung infection on the lung–brain MPS.
Fig. 4: Transcriptional analysis of brain endothelial cells and glial cells on the lung–brain MPS.
Fig. 5: Cerebral microvascular injury in SARS-CoV-2-infected mouse models.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw RNA-seq data are available from the Sequence Read Archive via the accession number PRJNA764053. All data generated or analysed during the study are available from the corresponding authors on reasonable request. Source data are provided with this paper.

Change history

References

  1. Burks, S. M., Rosas-Hernandez, H., Alejandro Ramirez-Lee, M., Cuevas, E. & Talpos, J. C. Can SARS-CoV-2 infect the central nervous system via the olfactory bulb or the blood–brain barrier? Brain Behav. Immun. 95, 7–14 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mao, L. et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 77, 683–690 (2020).

    Article  PubMed  Google Scholar 

  3. Varatharaj, A. et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry 7, 875–882 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Moriguchi, T. et al. A first case of meningitis/encephalitis associated with SARS-coronavirus-2. Int. J. Infect. Dis. 94, 55–58 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bhalerao, A. et al. In vitro modeling of the neurovascular unit: advances in the field. Fluids Barriers CNS 17, 22 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Oddo, A. et al. Advances in microfluidic blood–brain barrier (BBB) models. Trends Biotechnol. 37, 1295–1314 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Michael, B. D. et al. Astrocyte- and neuron-derived CXCL1 drives neutrophil transmigration and blood–brain barrier permeability in viral encephalitis. Cell Rep. 32, 108150 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. He, Q. et al. Herpes simplex virus 1-induced blood–brain barrier damage involves apoptosis associated with GM130-mediated Golgi stress. Front Mol. Neurosci. 13, 2 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cle, M. et al. Zika virus infection promotes local inflammation, cell adhesion molecule upregulation, and leukocyte recruitment at the blood–brain barrier. mBio 11, e01183-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Thakur, K.T. et al. COVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital. Brain 144, 2696–2708 (2021).

  11. Matschke, J. et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 19, 919–929 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reichard, R. R. et al. Neuropathology of COVID-19: a spectrum of vascular and acute disseminated encephalomyelitis (ADEM)-like pathology. Acta Neuropathol. 140, 1–6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Douaud, G. et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 604, 697–707 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Krasemann, S. et al. The blood–brain barrier is dysregulated in COVID-19 and serves as a CNS entry route for SARS-CoV-2. Stem Cell Rep. 17, 307–320 (2022).

    Article  CAS  Google Scholar 

  15. Jiao, L. et al. The olfactory route is a potential way for SARS-CoV-2 to invade the central nervous system of rhesus monkeys. Signal Transduct. Target Ther. 6, 169 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Song, E. et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J. Exp. Med. 218, e20202135 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, L. et al. SARS-CoV-2 crosses the blood–brain barrier accompanied with basement membrane disruption without tight junctions alteration. Signal Transduct. Target Ther. 6, 337 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yinda, C. K. et al. K18-hACE2 mice develop respiratory disease resembling severe COVID-19. PLoS Pathog. 17, e1009195 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jiang, R. D. et al. Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell 182, 50–58.e58 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, B. Z. et al. SARS-CoV-2 infects human neural progenitor cells and brain organoids. Cell Res. 30, 928–931 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Ramani, A. et al. SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J. 39, e106230 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bullen, C. K. et al. Infectability of human BrainSphere neurons suggests neurotropism of SARS-CoV-2. ALTEX 37, 665–671 (2020).

    PubMed  Google Scholar 

  23. McMahon, C. L., Staples, H., Gazi, M., Carrion, R. & Hsieh, J. SARS-CoV-2 targets glial cells in human cortical organoids. Stem Cell Rep. 16, 1156–1164 (2021).

    Article  CAS  Google Scholar 

  24. Pellegrini, L. et al. SARS-CoV-2 infects the brain choroid plexus and disrupts the blood–CSF barrier in human brain organoids. Cell Stem Cell 27, 951–961.e955 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jacob, F. et al. Human pluripotent stem cell-derived neural cells and brain organoids reveal SARS-CoV-2 neurotropism predominates in choroid plexus epithelium. Cell Stem Cell 27, 937–950.e939 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Abaci, H. E. & Shuler, M. L. Human-on-a-chip design strategies and principles for physiologically based pharmacokinetics/pharmacodynamics modeling. Integr. Biol. 7, 383–391 (2015).

    Article  Google Scholar 

  28. Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vatine, G. D. et al. Human iPSC-derived blood–brain barrier chips enable disease modeling and personalized medicine applications. Cell Stem Cell 24, 995–1005.e1006 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Ahn, S. I. et al. Microengineered human blood–brain barrier platform for understanding nanoparticle transport mechanisms. Nat. Commun. 11, 175 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bhise, N. S. et al. A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication 8, 014101 (2016).

    Article  PubMed  Google Scholar 

  32. Knowlton, S. & Tasoglu, S. A bioprinted liver-on-a-chip for drug screening applications. Trends Biotechnol. 34, 681–682 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Agarwal, A., Goss, J. A., Cho, A., McCain, M. L. & Parker, K. K. Microfluidic heart on a chip for higher throughput pharmacological studies. Lab Chip 13, 3599–3608 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ugolini, G. S., Visone, R., Cruz-Moreira, D., Mainardi, A. & Rasponi, M. Generation of functional cardiac microtissues in a beating heart-on-a-chip. Methods Cell. Biol. 146, 69–84 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Brown, J. A. et al. Metabolic consequences of inflammatory disruption of the blood–brain barrier in an organ-on-chip model of the human neurovascular unit. J. Neuroinflammation 13, 306 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Brown, J. A. et al. Metabolic consequences of interleukin-6 challenge in developing neurons and astroglia. J. Neuroinflammation 11, 183 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Maoz, B. M. et al. A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nat. Biotechnol. 36, 865–874 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ronaldson-Bouchard, K. et al. A multi-organ chip with matured tissue niches linked by vascular flow. Nat. Biomed. Eng. 6, 351–371 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ortega-Prieto, A. M. et al. 3D microfluidic liver cultures as a physiological preclinical tool for hepatitis B virus infection. Nat. Commun. 9, 682 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, J. et al. A virus-induced kidney disease model based on organ-on-a-chip: pathogenesis exploration of virus-related renal dysfunctions. Biomaterials 219, 119367 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Johnson, B. N. et al. 3D printed nervous system on a chip. Lab Chip 16, 1393–1400 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Junaid, A. et al. Ebola hemorrhagic shock syndrome-on-a-chip. iScience 23, 100765 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Bai, H. et al. Mechanical control of innate immune responses against viral infection revealed in a human lung alveolus chip. Nat. Commun. 13, 1928 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Si, L. et al. A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nat. Biomed. Eng. 5, 815–829 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Deinhardt-Emmer, S. et al. SARS-CoV-2 causes severe epithelial inflammation and barrier dysfunction. J. Virol. 95, e00110-21 (2021).

  46. Guo, Y. et al. SARS-CoV-2 induced intestinal responses with a biomimetic human gut-on-chip. Sci. Bull. 66, 783–793 (2021).

    Article  CAS  Google Scholar 

  47. Thacker, V. V. et al. Rapid endotheliitis and vascular damage characterize SARS-CoV-2 infection in a human lung-on-chip model. EMBO Rep. 22, e52744 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, M. et al. Biomimetic human disease model of SARS-CoV-2 induced lung injury and immune responses on organ chip system. Adv. Sci. 8, 2002928 (2020).

    Article  Google Scholar 

  49. Buzhdygan, T. P. et al. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood–brain barrier. Neurobiol. Dis. 146, 105131 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sungnak, W. et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 26, 681–687 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zou, X. et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front. Med. 14, 185–192 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ballabh, P., Braun, A. & Nedergaard, M. The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol. Dis. 16, 1–13 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Obermeier, B., Daneman, R. & Ransohoff, R. M. Development, maintenance and disruption of the blood–brain barrier. Nat. Med. 19, 1584–1596 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Abbott, N. J., Ronnback, L. & Hansson, E. Astrocyte-endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci. 7, 41–53 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Bwire, G. M., Majigo, M. V., Njiro, B. J. & Mawazo, A. Detection profile of SARS-CoV-2 using RT-PCR in different types of clinical specimens: a systematic review and meta-analysis. J. Med. Virol. 93, 719–725 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, W. et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 323, 1843–1844 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Yu, F. et al. Quantitative detection and viral load analysis of SARS-CoV-2 in infected patients. Clin. Infect. Dis. 71, 793–798 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Leng, L. et al. Pathological features of COVID-19-associated lung injury: a preliminary proteomics report based on clinical samples. Signal Transduct. Target Ther. 5, 240 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Walter, L. et al. Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J. Neurosci. 23, 1398–1405 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu, Y. J. et al. Late endosomes promote microglia migration via cytosolic translocation of immature protease cathD. Sci. Adv. 6, eaba5783 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lan, X., Han, X., Li, Q., Yang, Q. W. & Wang, J. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat. Rev. Neurol. 13, 420–433 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Orihuela, R., McPherson, C. A. & Harry, G. J. Microglial M1/M2 polarization and metabolic states. Br. J. Pharmacol. 173, 649–665 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, X. & Khalil, R. A. Matrix metalloproteinases, vascular remodeling, and vascular disease. Adv. Pharm. 81, 241–330 (2018).

    Article  CAS  Google Scholar 

  64. Raffetto, J. D. & Khalil, R. A. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem. Pharmacol. 75, 346–359 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Bocci, M. et al. Infection of brain pericytes underlying neuropathology of COVID-19 patients. Int. J. Mol. Sci. 22, 11622 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cardot-Leccia, N., Hubiche, T., Dellamonica, J., Burel-Vandenbos, F. & Passeron, T. Pericyte alteration sheds light on micro-vasculopathy in COVID-19 infection. Intensive Care Med. 46, 1777–1778 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sun, J. et al. Transplantation of hPSC-derived pericyte-like cells promotes functional recovery in ischemic stroke mice. Nat. Commun. 11, 5196 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Perrin, P. et al. Cytokine release syndrome-associated encephalopathy in patients with COVID-19. Eur. J. Neurol. 28, 248–258 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Yang, A. C. et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature 595, 565–571 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ghersi-Egea, J. F. et al. Molecular anatomy and functions of the choroidal blood–cerebrospinal fluid barrier in health and disease. Acta Neuropathol. 135, 337–361 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Lun, M. P., Monuki, E. S. & Lehtinen, M. K. Development and functions of the choroid plexus-cerebrospinal fluid system. Nat. Rev. Neurosci. 16, 445–457 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kumari, P. et al. Neuroinvasion and encephalitis following intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice. Viruses 13, 132 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Iadecola, C., Anrather, J. & Kamel, H. Effects of COVID-19 on the nervous system. Cell 183, 16–27.e11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen, L. W. et al. Influenza-associated neurological complications during 2014-2017 in Taiwan. Brain Dev. 40, 799–806 (2018).

    Article  PubMed  Google Scholar 

  75. Radzisauskiene, D., Vitkauskaite, M., Zvinyte, K. & Mameniskiene, R. Neurological complications of pandemic A(H1N1)2009pdm, postpandemic A(H1N1)v, and seasonal influenza A. Brain Behav. 11, e01916 (2021).

    Article  PubMed  Google Scholar 

  76. Dusedau, H. P. et al. Influenza A virus (H1N1) infection induces microglial activation and temporal dysbalance in glutamatergic synaptic transmission. mBio 12, e0177621 (2021).

    Article  PubMed  Google Scholar 

  77. Shukla, P., Mandalla, A., Elrick, M. J. & Venkatesan, A. Clinical manifestations and pathogenesis of acute necrotizing encephalopathy: the interface between systemic infection and neurologic injury. Front. Neurol. 12, 628811 (2021).

    Article  PubMed  Google Scholar 

  78. Barbosa-Silva, M. C. et al. Infectious disease-associated encephalopathies. Crit. Care 25, 236 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Jeanneret, V., Winkel, D., Risman, A., Shi, H. & Gombolay, G. Post-infectious rhombencephalitis after coronavirus-19 infection: a case report and literature review. J. Neuroimmunol. 357, 577623 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hara, M. et al. COVID-19 post-infectious encephalitis presenting with delirium as an initial manifestation. J. Investig. Med. High Impact Case Rep. 9, 23247096211029787 (2021).

    PubMed  PubMed Central  Google Scholar 

  81. Picollet-D’hahan, N., Zuchowska, A., Lemeunier, I. & Le Gac, S. Multiorgan-on-a-chip: a systemic approach to model and decipher inter-organ communication. Trends Biotechnol. 39, 788–810 (2021).

    Article  PubMed  Google Scholar 

  82. Lyu, Z. et al. A neurovascular-unit-on-a-chip for the evaluation of the restorative potential of stem cell therapies for ischaemic stroke. Nat. Biomed. Eng. 5, 847–863 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen, S. & Schoen, J. Air-liquid interface cell culture: from airway epithelium to the female reproductive tract. Reprod. Domest. Anim. 54, 38–45 (2019).

    Article  PubMed  Google Scholar 

  84. Jiang, D., Schaefer, N. & Chu, H. W. Air-liquid interface culture of human and mouse airway epithelial cells. Methods Mol. Biol. 1809, 91–109 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Topol, E. J. COVID-19 can affect the heart. Science 370, 408–409 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Lee, I. C., Huo, T. I. & Huang, Y. H. Gastrointestinal and liver manifestations in patients with COVID-19. J. Chin. Med Assoc. 83, 521–523 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Ertuglu, L. A., Kanbay, A., Afsar, B., Elsurer Afsar, R. & Kanbay, M. COVID-19 and acute kidney injury. Tuberk. Toraks 68, 407–418 (2020).

    Article  PubMed  Google Scholar 

  88. Wang, P., Wu, Y., Chen, W., Zhang, M. & Qin, J. Malignant melanoma-derived exosomes induce endothelial damage and glial activation on a human BBB chip model. Biosensors 12, 89 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  PubMed  Google Scholar 

  90. Rowland, R. & Brandariz-Nunez, A. Analysis of the role of N-linked glycosylation in cell surface expression, function, and binding properties of SARS-CoV-2 receptor ACE2. Microbiol. Spectr. 9, e0119921 (2021).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. P. Xiang (Sun Yat-Sen University) and W. Li (Sun Yat-Sen University) for kindly providing the hPSC-PCs. We thank X. Cheng (Shanghai Institute of Biochemistry and Cell Biology, CAS) for kindly providing the lentivirus–GFP vector. We thank J. Han (Kunming Institute of Zoology, CAS) for helping with blood drawing. This research was supported by the National Key R&D Program of China (number 2022YFA1104700), Strategic Priority Research Program of the CAS (number XDB29050301), National Nature Science Foundation of China (numbers 32101163 and 31971373) and Yunnan Key Research and Development Program (number 202003AD150009).

Author information

Authors and Affiliations

Authors

Contributions

J.Q. and P.W. conceived the study. P.W. and L.J. performed the experiments and analysed results. L.J., Z.D., C.W. and Z.L. performed the SARS-CoV-2 infection in the BSL-3 laboratory. M.Z., Y. Wu, W.C., Yaqiong Guo and Y. Wang performed chip fabrication. Yingqi Guo prepared the electron microscopy samples. P.W., J.Q., L.P.L. and R.L. wrote and revised the paper.

Corresponding authors

Correspondence to Ren Lai, Luke P. Lee or Jianhua Qin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Jacquelyn A. Brown, Seung-Woo Cho, John Wikswo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 SARS-CoV-2 infection caused severe alveolar injury and inflammatory responses on the alveolus chip.

a, Confocal micrographs of alveolar epithelial cells immunostained for E-cadherin (green) and SFTPC (red) on Day 4 following SARS-CoV-2 infection (n = 3). b, Confocal micrographs of pulmonary microvascular endothelial cells immunostained for VE-cadherin (green) on Day 4 following SARS-CoV-2 infection (n = 3). c, Confocal micrographs of alveolar epithelial cells and pulmonary microvascular endothelial cells immunostained for Ki67 (red) on Day 4 following SARS-CoV-2 infection (n = 4). d, Quantification of Ki67+ cells on the mock- and SARS-CoV-2-infected chips based on c. Data are presented as the mean ± SEM and were analyzed using an unpaired Student’s t-test (***: P < 0.001). e, Multiplex cytokine assays showing 13 cytokine concentrations in culture supernatants from the upper epithelial channel (-U) and lower vascular channel (-L) of mock-, or SARS-CoV-2-infected alveolus chips on Day 4 post-infection (n = 3). Data are presented as the mean ± SEM and were analyzed using an unpaired Student’s t-test (***: P < 0.001).

Extended Data Fig. 2 Characterizing immune responses of glial cells and immune cells on the lung–brain MPS.

a, Confocal micrographs of brain endothelial cells immunostained for VE-cadherin and ZO-1 without astrocytes (Δ astrocytes) or without microglia (Δ microglia) following conditioned medium treatment on Day 4 (n = 4). b, Quantification of endothelial cell density based on a. Data are presented as the mean ± SEM and were analyzed using a one-way ANOVA with the Bonferroni post hoc test. c, Confocal micrographs of microglia immunostained for CD206 and F4/80 following conditioned medium treatment on Day 4 (n = 3). d, Quantification of CD206 and F4/80 fluorescence intensity for control and SARS-CoV-2 groups based on c. Data are presented as the mean ± SEM and were analyzed using an unpaired Student’s t-test (***: P < 0.001). e, Fluorescent micrographs of PBMCs (pre-stained with Cell Tracker Red dye) attached to the endothelium following conditioned medium treatment on Day 4 (n = 4). f, Quantification of the density of attached PBMCs based on e. Data are presented as the mean ± SEM and were analyzed using an unpaired Student’s t-test.

Extended Data Fig. 3 SARS-CoV-2 caused injuries of brain pericytes on the lung–brain MPS indirectly.

a, Cell morphology and expression of pericyte markers (NG2, CD13 and PDGFRβ) of hPSC-PCs were revealed by bright-field imaging and immunostaining imaging, respectively (n = 3). b, Schematic description of the BBB chip by co-culturing brain endothelial cells, astrocytes, pericytes and microglia. c, A side view of confocal immunofluorescent image showing BBB interface, which was formed by co-culture of human endothelial cells (ZO-1 staining, red), astrocytes (GFAP staining, red) and hPSC-PCs (labeled by GFP, green) under fluid flow conditions for 3 days. The white dotted line indicates the porous membrane. d, Confocal micrographs showing the co-culture of human astrocytes (GFAP staining, red) and hPSC-PCs (labeled by GFP) on the BBB chip (n = 3). e, Confocal micrographs of hPSC-PCs (labeled by GFP) immunostained for viral Spike (red) following conditioned medium treatment (n = 4). f, Quantification of the ratio of hPSC-PCs (green) coverage based on e. Data are presented as the mean ± SEM and were analyzed using an unpaired Student’s t-test. g, Quantification of the hPSC-PCs density based on e. Data are presented as the mean ± SEM and were analyzed using an unpaired Student’s t-test.

Supplementary information

Supplementary Information

Supplementary figures and tables.

Reporting Summary

Source data

Source Data Fig. 2

Unprocessed western blots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Jin, L., Zhang, M. et al. Blood–brain barrier injury and neuroinflammation induced by SARS-CoV-2 in a lung–brain microphysiological system. Nat. Biomed. Eng (2023). https://doi.org/10.1038/s41551-023-01054-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-023-01054-w

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research