Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cathepsin B S-nitrosylation promotes ADAR1-mediated editing of its own mRNA transcript via an ADD1/MATR3 regulatory axis

Abstract

Genetic information is generally transferred from RNA to protein according to the classic “Central Dogma”. Here, we made a striking discovery that post-translational modification of a protein specifically regulates the editing of its own mRNA. We show that S-nitrosylation of cathepsin B (CTSB) exclusively alters the adenosine-to-inosine (A-to-I) editing of its own mRNA. Mechanistically, CTSB S-nitrosylation promotes the dephosphorylation and nuclear translocation of ADD1, leading to the recruitment of MATR3 and ADAR1 to CTSB mRNA. ADAR1-mediated A-to-I RNA editing enables the binding of HuR to CTSB mRNA, resulting in increased CTSB mRNA stability and subsequently higher steady-state levels of CTSB protein. Together, we uncovered a unique feedforward mechanism of protein expression regulation mediated by the ADD1/MATR3/ADAR1 regulatory axis. Our study demonstrates a novel reverse flow of information from the post-translational modification of a protein back to the post-transcriptional regulation of its own mRNA precursor. We coined this process as “Protein-directed EDiting of its Own mRNA by ADAR1 (PEDORA)” and suggest that this constitutes an additional layer of protein expression control. “PEDORA” could represent a currently hidden mechanism in eukaryotic gene expression regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: S-nitrosylation of CTSB at a phylogenetically conserved cysteine.
Fig. 2: S-nitrosylation of CTSB increases the steady-state levels of its own protein via mRNA stabilization.
Fig. 3: S-nitrosylation of CTSB controls its own RNA editing to promote CTSB mRNA stability via recruiting HuR.
Fig. 4: Matrin-3 binds to CTSB mRNA and recruits ADAR1 for CTSB mRNA editing.
Fig. 5: S-nitrosylation of CTSB promotes nuclear translocation of ADD1 to recruit MATR3/ADAR1.
Fig. 6: S-nitrosylation of CTSB and CTSB mRNA editing may be critically involved in vascular diseases.
Fig. 7: Schematic diagram showing the proposed mechanistic model of “PEDORA”.

Similar content being viewed by others

References

  1. Stamler, J. S. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78, 931–936 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Stamler, J. S., Singel, D. J. & Loscalzo, J. Biochemistry of nitric oxide and its redox-activated forms. Science 258, 1898–1902 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Zhao, Y., Vanhoutte, P. M. & Leung, S. W. Vascular nitric oxide: beyond eNOS. J. Pharmacol. Sci. 129, 83–94 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Hess, D. T. et al. Protein S-nitrosylation: purview and parameters. Nat. Rev. Mol. Cell Biol. 6, 150–166 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Lima, B., Forrester, M. T., Hess, D. T. & Stamler, J. S. S-nitrosylation in cardiovascular signaling. Circ. Res. 106, 633–646 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stomberski, C. T., Hess, D. T. & Stamler, J. S. Protein S-nitrosylation: determinants of specificity and enzymatic regulation of S-Nitrosothiol-based signaling. Antioxid. Redox Signal. 30, 1331–1351 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Foster, M. W., Hess, D. T. & Stamler, J. S. Protein S-nitrosylation in health and disease: a current perspective. Trends Mol. Med. 15, 391–404 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shin, M. K. et al. Reducing acetylated tau is neuroprotective in brain injury. Cell 184, 2715–2732.e23 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou, H. L. et al. Metabolic reprogramming by the S-nitroso-CoA reductase system protects against kidney injury. Nature 565, 96–100 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Mort, J. S. & Buttle, D. J. Cathepsin B. Int. J. Biochem. Cell Biol. 29, 715–720 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Stamler, J. S. et al. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc. Natl. Acad. Sci. USA 89, 444–448 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moon, H. Y. et al. Running-induced systemic cathepsin B secretion is associated with memory function. Cell Metab. 24, 332–340 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vasiljeva, O. et al. Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res. 66, 5242–5250 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Matsunaga, Y., Saibara, T., Kido, H. & Katunuma, N. Participation of cathepsin B in processing of antigen presentation to MHC class II. FEBS Lett. 324, 325–330 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Chapman, H. A., Riese, R. J. & Shi, G. P. Emerging roles for cysteine proteases in human biology. Annu. Rev. Physiol. 59, 63–88 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Man, S. M. & Kanneganti, T. D. Regulation of lysosomal dynamics and autophagy by CTSB/cathepsin B. Autophagy 12, 2504–2505 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hamalisto, S. et al. Spatially and temporally defined lysosomal leakage facilitates mitotic chromosome segregation. Nat. Commun. 11, 229 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Olson, O. C. & Joyce, J. A. Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat. Rev. Cancer 15, 712–729 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Werneburg, N. W., Guicciardi, M. E., Bronk, S. F. & Gores, G. J. Tumor necrosis factor-alpha-associated lysosomal permeabilization is cathepsin B dependent. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G947–G956 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, C. L. et al. Cysteine protease cathepsins in cardiovascular disease: from basic research to clinical trials. Nat. Rev. Cardiol. 15, 351–370 (2018).

    Article  PubMed  Google Scholar 

  21. Bruchard, M. et al. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat. Med. 19, 57–64 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. McComb, S. et al. Cathepsins limit macrophage necroptosis through cleavage of Rip1 kinase. J. Immunol. 192, 5671–5678 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Nagakannan, P., Islam, M. I., Conrad, M. & Eftekharpour, E. Cathepsin B is an executioner of ferroptosis. Biochim. Biophys. Acta Mol. Cell Res. 1868, 118928 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Li, D. et al. RNA editing restricts hyperactive ciliary kinases. Science 373, 984–991 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Hayashida, K. et al. Improvement in outcomes after cardiac arrest and resuscitation by inhibition of S-nitrosoglutathione reductase. Circulation 139, 815–827 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mehta, P. K. & Griendling, K. K. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am. J. Physiol. Cell Physiol. 292, C82–C97 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Pan, L. et al. S-nitrosylation of Plastin-3 exacerbates thoracic aortic dissection formation via endothelial barrier dysfunction. Arterioscler. Thromb. Vasc. Biol. 40, 175–188 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Huang, B. & Chen, C. Detection of protein S-nitrosation using irreversible biotinylation procedures (IBP). Free Radic. Biol. Med. 49, 447–456 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Musil, D. et al. The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J. 10, 2321–2330 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qian, Q. et al. S-nitrosoglutathione reductase dysfunction contributes to obesity-associated hepatic insulin resistance via regulating autophagy. Diabetes 67, 193–207 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, Y. et al. Contribution of cathepsin B-dependent Nlrp3 inflammasome activation to nicotine-induced endothelial barrier dysfunction. Eur. J. Pharmacol. 865, 172795 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Farah, C., Michel, L. Y. M. & Balligand, J. L. Nitric oxide signalling in cardiovascular health and disease. Nat. Rev. Cardiol. 15, 292–316 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Ghosh, S. M. et al. Enhanced vasodilator activity of nitrite in hypertension: critical role for erythrocytic xanthine oxidoreductase and translational potential. Hypertension 61, 1091–1102 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Stellos, K. et al. Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation. Nat. Med. 22, 1140–1150 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Chu, C. et al. Systematic discovery of Xist RNA binding proteins. Cell 161, 404–416 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Quinones-Valdez, G. et al. Regulation of RNA editing by RNA-binding proteins in human cells. Commun. Biol. 2, 19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ramesh, N. et al. RNA-recognition motif in Matrin-3 mediates neurodegeneration through interaction with hnRNPM. Acta Neuropathol. Commun. 8, 138 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hadziselimovic, N. et al. Forgetting is regulated via Musashi-mediated translational control of the Arp2/3 complex. Cell 156, 1153–1166 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Liu, C. M., Hsu, W. H., Lin, W. Y. & Chen, H. C. Adducin family proteins possess different nuclear export potentials. J. Biomed. Sci. 24, 30 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen, C. L., Lin, Y. P., Lai, Y. C. & Chen, H. C. alpha-Adducin translocates to the nucleus upon loss of cell-cell adhesions. Traffic 12, 1327–1340 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Ohama, T. The multiple functions of protein phosphatase 6. Biochim. Biophys. Acta Mol. Cell Res. 1866, 74–82 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Freund, E. C. et al. Unbiased identification of trans regulators of ADAR and A-to-I RNA editing. Cell Rep. 31, 107656 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ma, C. P. et al. ADAR1 promotes robust hypoxia signaling via distinct regulation of multiple HIF-1alpha-inhibiting factors. EMBO Rep. 20, e47107 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hao, X. et al. ADAR1 downregulation by autophagy drives senescence independently of RNA editing by enhancing p16(INK4a) levels. Nat. Cell Biol. 24, 1202–1210 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu, K., Zhong, G. & Zhuang, X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339, 452–456 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Chan, P. C. et al. Adducin-1 is essential for mitotic spindle assembly through its interaction with myosin-X. J. Cell Biol. 204, 19–28 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zheng, K. et al. miR-135a-5p mediates memory and synaptic impairments via the Rock2/Adducin1 signaling pathway in a mouse model of Alzheimer’s disease. Nat. Commun. 12, 1903 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gallardo, G. et al. An alpha2-Na/K ATPase/alpha-adducin complex in astrocytes triggers non-cell autonomous neurodegeneration. Nat. Neurosci. 17, 1710–1719 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bayoumy, N. M. K., El-Shabrawi, M. M., Leheta, O. F. & Omar, H. H. alpha-Adducin gene promoter DNA methylation and the risk of essential hypertension. Clin. Exp. Hypertens. 39, 764–768 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Lambert, S. A. et al. The human transcription factors. Cell 172, 650–665 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Gerstberger, S., Hafner, M. & Tuschl, T. A census of human RNA-binding proteins. Nat. Rev. Genet. 15, 829–845 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Keegan, L., Khan, A., Vukic, D. & O’Connell, M. ADAR RNA editing below the backbone. RNA 23, 1317–1328 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gallo, A. et al. ADAR RNA editing in human disease; more to it than meets the I. Hum. Genet. 136, 1265–1278 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Roth, S. H., Levanon, E. Y. & Eisenberg, E. Genome-wide quantification of ADAR adenosine-to-inosine RNA editing activity. Nat. Methods 16, 1131–1138 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Sapiro, A. L. et al. Zinc finger RNA-binding protein Zn72D regulates ADAR-mediated RNA editing in neurons. Cell Rep. 31, 107654 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Malik, A. M. & Barmada, S. J. Matrin 3 in neuromuscular disease: physiology and pathophysiology. JCI Insight 6, e143948 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cha, H. J. et al. Inner nuclear protein Matrin-3 coordinates cell differentiation by stabilizing chromatin architecture. Nat. Commun. 12, 6241 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ray, D. et al. A compendium of RNA-binding motifs for decoding gene regulation. Nature 499, 172–177 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mijanovic, O. et al. Cathepsin B: a sellsword of cancer progression. Cancer Lett. 449, 207–214 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li, Y. Y., Fang, J. & Ao, G. Z. Cathepsin B and L inhibitors: a patent review (2010 - present). Expert Opin. Ther. Pat. 27, 643–656 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Keskin, H., Meers, C. & Storici, F. Transcript RNA supports precise repair of its own DNA gene. RNA Biol. 13, 157–165 (2016).

    Article  PubMed  Google Scholar 

  62. Wood, C. & Harrington, W. Jr. AIDS and associated malignancies. Cell Res. 15, 947–952 (2005).

    Article  PubMed  Google Scholar 

  63. Sun, L. et al. Predicting dynamic cellular protein-RNA interactions by deep learning using in vivo RNA structures. Cell Res. 31, 495–516 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Varadi, K. et al. Novel random peptide libraries displayed on AAV serotype 9 for selection of endothelial cell-directed gene transfer vectors. Gene Ther. 19, 800–809 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Wang, L. et al. Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature 540, 579–582 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Knuckles, P. et al. Drosha regulates neurogenesis by controlling neurogenin 2 expression independent of microRNAs. Nat. Neurosci. 15, 962–969 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Nakayama, M. et al. Multiple pathways of TWEAK-induced cell death. J. Immunol. 168, 734–743 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (82121001, 82030013, 91639204, 82241211, 81820108002, 82270421, 81970428, 31771334, 91649125, 81900262, 82100414, 81800385, 82270484), the National Key R&D Program of China (2019YFA0802704), and Jiangsu Provincial Natural Science Foundation (BK20190656).

Author information

Authors and Affiliations

Authors

Contributions

Y.J. and H.C. designed the research. Z.L., S.Z., X.L., and Y.H. designed the experiments. Z.L., S.Z., X.L., Z.M., J.C., Y.C., Z.S., and J.Z. performed the experiments. Z.L., S.Z., Z.M., A.G., and F.C. analyzed the data. Z.L., S.Z., X.L., and Z.M. wrote the manuscript. D.W., S.C., L.W., T.Y., and K.S. provided the clinical samples. All authors discussed and commented on the manuscript.

Corresponding authors

Correspondence to Yi Han, Liping Xie, Hongshan Chen or Yong Ji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Zhao, S., Li, X. et al. Cathepsin B S-nitrosylation promotes ADAR1-mediated editing of its own mRNA transcript via an ADD1/MATR3 regulatory axis. Cell Res 33, 546–561 (2023). https://doi.org/10.1038/s41422-023-00812-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41422-023-00812-4

This article is cited by

Search

Quick links