Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Induction of p53, p21 and apoptosis by silencing the NF90/NF45 complex in human papilloma virus-transformed cervical carcinoma cells

Abstract

The heterodimeric nuclear factor (NF) 90/NF45 complex (NF90/NF45) binds nucleic acids and is a multifunctional regulator of gene expression. Here we report that depletion of NF90/NF45 restores the expression of the p53 and p21 proteins in cervical carcinoma cells infected with high-risk human papillomaviruses (HPVs). Knockdown of either NF90 or NF45 by RNA interference led to greatly elevated levels of p53 and p21 proteins in HPV-derived HeLa and SiHa cells but not in other cancerous or normal cell lines. In HeLa cells, p21 messenger-RNA (mRNA) increased concomitantly but the level of p53 mRNA was unaffected. RNA interference directed against p53 prevented the induction of both proteins. These results indicated that the upregulation of p21 is due to p53-dependent transcription, whereas p53 is regulated post-transcriptionally. Proteasome-mediated turnover of p53 is accelerated by the HPV E6 and cellular E6AP proteins. We therefore examined the hypothesis that this pathway is regulated by NF90/NF45. Indeed, depletion of NF90 attenuated the expression of E6 RNA and inhibited transcription from the HPV early promoter, revealing a new role for NF90/NF45 in HPV gene expression. The transcription inhibition was largely independent of the reduction of P-TEFb (positive transcription elongation factor b) levels caused by NF90 depletion. Consistent with p53 derepression, NF90/NF45-depleted HeLa cells displayed elevated poly ADP-ribose polymerase (PARP) cleavage and susceptibility to camptothecin-induced apoptosis. We conclude that high-risk strains of HPV utilize the cellular NF90/NF45 complex for viral E6 expression in infected cervical carcinoma cell lines. Interference with NF90/NF45 function could assist in controlling cervical carcinoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Molchadsky A, Rivlin N, Brosh R, Rotter V, Sarig R . p53 is balancing development, differentiation and de-differentiation to assure cancer prevention. Carcinogenesis 2010; 31: 1501–1508.

    Article  CAS  PubMed  Google Scholar 

  2. Zheltukhin AO, Chumakov PM . Constitutive and induced functions of the p53 gene. Biochemistry (Mosc) 2010; 75: 1692–1721.

    Article  CAS  Google Scholar 

  3. Lane D, Levine A . p53 Research: the past thirty years and the next thirty years. Cold Spring Harb Perspect Biol 2010; 2: a000893.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gartel AL . p21(WAF1/CIP1) and cancer: a shifting paradigm? Biofactors 2009; 35: 161–164.

    Article  CAS  PubMed  Google Scholar 

  5. Gartel AL, Tyner AL . Transcriptional regulation of the p21((WAF1/CIP1)) gene. Exp Cell Res 1999; 246: 280–289.

    Article  CAS  PubMed  Google Scholar 

  6. Vogelstein B, Lane D, Levine AJ . Surfing the p53 network. Nature 2000; 408: 307–310.

    Article  CAS  PubMed  Google Scholar 

  7. Zilfou JT, Lowe SW . Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol 2009; 1: a001883.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Dey A, Verma CS, Lane DP . Updates on p53: modulation of p53 degradation as a therapeutic approach. Br J Cancer 2008; 98: 4–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Suzuki K, Matsubara H . Recent advances in p53 research and cancer treatment. J Biomed Biotechnol 2011; 2011: 978312.

    PubMed  PubMed Central  Google Scholar 

  10. Manfredi JJ . The Mdm2-p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Genes Dev 2010; 24: 1580–1589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Austin D, Baer A, Lundberg L, Shafagati N, Schoonmaker A, Narayanan A et al. p53 activation following Rift Valley Fever virus infection contributes to cell death and viral production. PLoS One 2012; 7: e36327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Munoz-Fontela C, Pazos M, Delgado I, Murk W, Mungamuri SK, Lee SW et al. p53 serves as a host antiviral factor that enhances innate and adaptive immune responses to influenza A virus. J Immunol 2011; 187: 6428–6436.

    Article  CAS  PubMed  Google Scholar 

  13. Tommasino M, Accardi R, Caldeira S, Dong W, Malanchi I, Smet A et al. The role of TP53 in cervical carcinogenesis. Hum Mutat 2003; 21: 307–312.

    Article  CAS  PubMed  Google Scholar 

  14. Chow LT, Broker TR, Steinberg BM . The natural history of human papillomavirus infections of the mucosal epithelia. APMIS 2010; 118: 422–449.

    Article  CAS  PubMed  Google Scholar 

  15. Narisawa-Saito M, Kiyono T . Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins. Cancer Sci 2007; 98: 1505–1511.

    Article  CAS  PubMed  Google Scholar 

  16. Thomas M, Narayan N, Pim D, Tomaic V, Massimi P, Nagasaka K et al. Human papillomaviruses, cervical cancer and cell polarity. Oncogene 2008; 27: 7018–7030.

    Article  CAS  PubMed  Google Scholar 

  17. Howie HL, Katzenellenbogen RA, Galloway DA . Papillomavirus E6 proteins. Virology 2009; 384: 324–334.

    Article  CAS  PubMed  Google Scholar 

  18. Guan D, Altan-Bonnet N, Parrott AM, Arrigo CJ, Li Q, Khaleduzzaman M et al. Nuclear factor 45 (NF45) is a regulatory subunit of complexes with NF90/110 involved in mitotic control. Mol Cell Biol 2008; 28: 4629–4641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shamanna RA, Hoque M, Lewis-Antes A, Azzam EI, Lagunoff D, Pe’ery T et al. The NF90/NF45 complex participates in DNA break repair via nonhomologous end joining. Mol Cell Biol 2011; 31: 4832–4843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Karmakar S, Mahajan MC, Schulz V, Boyapaty G, Weissman SM . A multiprotein complex necessary for both transcription and DNA replication at the beta-globin locus. EMBO J 2010; 29: 3260–3271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reichman TW, Muniz LC, Mathews MB . The RNA binding protein nuclear factor 90 functions as both a positive and negative regulator of gene expression in mammalian cells. Mol Cell Biol 2002; 22: 343–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kiesler P, Haynes PA, Shi L, Kao PN, Wysocki VH, Vercelli D . NF45 and NF90 regulate HS4-dependent interleukin-13 transcription in T cells. J Biol Chem 2010; 285: 8256–8267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kuwano Y, Pullmann R, Marasa BS, Abdelmohsen K, Lee EK, Yang X et al. NF90 selectively represses the translation of target mRNAs bearing an AU-rich signature motif. Nucleic Acids Res 2010; 38: 225–238.

    Article  CAS  PubMed  Google Scholar 

  24. Hoque M, Shamanna RA, Guan D, Pe’ery T, Mathews MB . HIV-1 replication and latency are regulated by translational control of cyclin T1. J Mol Biol 2011; 410: 917–932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gwizdek C, Ossareh-Nazari B, Brownawell AM, Evers S, Macara IG, Dargemont C . Minihelix-containing RNAs mediate exportin-5-dependent nuclear export of the double-stranded RNA-binding protein ILF3. J Biol Chem 2004; 279: 884–891.

    Article  CAS  PubMed  Google Scholar 

  26. Urcuqui-Inchima S, Castano ME, Hernandez-Verdun D, St-Laurent G, Kumar A . Nuclear Factor 90, a cellular dsRNA binding protein inhibits the HIV Rev-export function. Retrovirology 2006; 3: 83.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sakamoto S, Aoki K, Higuchi T, Todaka H, Morisawa K, Tamaki N et al. The NF90-NF45 complex functions as a negative regulator in the microRNA processing pathway. Mol Cell Biol 2009; 29: 3754–3769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gomila RC, Martin GW, Gehrke L . NF90 binds the dengue virus RNA 3′ terminus and is a positive regulator of dengue virus replication. PLoS One 2011; 6: e16687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Isken O, Grassmann CW, Sarisky RT, Kann M, Zhang S, Grosse F et al. Members of the NF90/NFAR protein group are involved in the life cycle of a positive-strand RNA virus. EMBO J 2003; 22: 5655–5665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Isken O, Grassmann CW, Yu H, Behrens SE . Complex signals in the genomic 3′ nontranslated region of bovine viral diarrhea virus coordinate translation and replication of the viral RNA. RNA 2004; 10: 1637–1652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Merrill MK, Gromeier M . The double-stranded RNA binding protein 76:NF45 heterodimer inhibits translation initiation at the rhinovirus type 2 internal ribosome entry site. J Virol 2006; 80: 6936–6942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stricker R, Behrens SE, Mundt E . Nuclear factor NF45 interacts with viral proteins of infectious bursal disease virus and inhibits viral replication. J Virol 2010; 84: 10592–10605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang P, Song W, Mok BW, Zhao P, Qin K, Lai A et al. Nuclear factor 90 negatively regulates influenza virus replication by interacting with viral nucleoprotein. J Virol 2009; 83: 7850–7861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shabman RS, Leung DW, Johnson J, Glennon N, Gulcicek EE, Stone KL et al. DRBP76 associates with Ebola virus VP35 and suppresses viral polymerase function. J Infect Dis 2011; 204 (Suppl 3): S911–S918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Reichman TW, Mathews MB . The NF90 Family of Double-stranded RNA Binding Proteins: Regulators of Viral and Cellular Function. In: Bradshaw R, Dennis E (eds). vol. 3. Cell Signaling Handbook. Academic Press, 2003, p 335–342.

    Chapter  Google Scholar 

  36. Barber GN . The NFAR′s (nuclear factors associated with dsRNA): evolutionarily conserved members of the dsRNA binding protein family. RNA Biol 2009; 6: 35–39.

    Article  CAS  PubMed  Google Scholar 

  37. Parrott AM, Walsh MR, Reichman TW, Mathews MB . RNA binding and phosphorylation determine the intracellular distribution of nuclear factors 90 and 110. J Mol Biol 2005; 348: 281–293.

    Article  CAS  PubMed  Google Scholar 

  38. Pei Y, Zhu P, Dang Y, Wu J, Yang X, Wan B et al. Nuclear export of NF90 to stabilize IL-2 mRNA is mediated by AKT-dependent phosphorylation at Ser647 in response to CD28 costimulation. J Immunol 2008; 180: 222–229.

    Article  CAS  PubMed  Google Scholar 

  39. Harashima A, Guettouche T, Barber GN . Phosphorylation of the NFAR proteins by the dsRNA-dependent protein kinase PKR constitutes a novel mechanism of translational regulation and cellular defense. Genes Dev 2010; 24: 2640–2653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhu P, Jiang W, Cao L, Yu W, Pei Y, Yang X et al. IL-2 mRNA stabilization upon PMA stimulation is dependent on NF90-Ser647 phosphorylation by protein kinase CbetaI. J Immunol 2010; 185: 5140–5149.

    Article  CAS  PubMed  Google Scholar 

  41. Graber TE, Baird SD, Kao PN, Mathews MB, Holcik M . NF45 functions as an IRES trans-acting factor that is required for translation of cIAP1 during the unfolded protein response. Cell Death Differ 2010; 17: 719–729.

    Article  CAS  PubMed  Google Scholar 

  42. Pfeifer I, Elsby R, Fernandez M, Faria PA, Nussenzveig DR, Lossos IS et al. NFAR-1 and -2 modulate translation and are required for efficient host defense. Proc Natl Acad Sci USA 2008; 105: 4173–4178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shi L, Zhao G, Qiu D, Godfrey WR, Vogel H, Rando TA et al. NF90 regulates cell cycle exit and terminal myogenic differentiation by direct binding to the 3′-untranslated region of MyoD and p21WAF1/CIP1 mRNAs. J Biol Chem 2005; 280: 18981–18989.

    Article  CAS  PubMed  Google Scholar 

  44. Vumbaca F, Phoenix KN, Rodriguez-Pinto D, Han DK, Claffey KP . Double-stranded RNA-binding protein regulates vascular endothelial growth factor mRNA stability, translation, and breast cancer angiogenesis. Mol Cell Biol 2008; 28: 772–783.

    Article  CAS  PubMed  Google Scholar 

  45. Shim J, Lim H, RYates J, Karin M . Nuclear export of NF90 is required for interleukin-2 mRNA stabilization. Mol Cell 2002; 10: 1331–1344.

    Article  CAS  PubMed  Google Scholar 

  46. Kuwano Y, Kim HH, Abdelmohsen K, Pullmann R, Martindale JL, Yang X et al. MKP-1 mRNA stabilization and translational control by RNA-binding proteins HuR and NF90. Mol Cell Biol 2008; 28: 4562–4575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shi L, Godfrey WR, Lin J, Zhao G, Kao PN . NF90 regulates inducible IL-2 gene expression in T cells. J Exp Med 2007; 204: 971–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Corso C, Pisapia L, Citro A, Cicatiello V, Barba P, Cigliano L et al. EBP1 and DRBP76/NF90 binding proteins are included in the major histocompatibility complex class II RNA operon. Nucleic Acids Res 2011; 39: 7263–7275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE et al. p53 status and the efficacy of cancer therapy in vivo. Science 1994; 266: 807–810.

    Article  CAS  PubMed  Google Scholar 

  50. Li F, Ackermann EJ, Bennett CF, Rothermel AL, Plescia J, Tognin S et al. Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nat Cell Biol 1999; 1: 461–466.

    Article  CAS  PubMed  Google Scholar 

  51. Eldridge AG, Loktev AV, Hansen DV, Verschuren EW, Reimann JD, Jackson PK . The evi5 oncogene regulates cyclin accumulation by stabilizing the anaphase-promoting complex inhibitor emi1. Cell 2006; 124: 367–380.

    Article  CAS  PubMed  Google Scholar 

  52. Chesnokov IN, Chesnokova ON, Botchan M . A cytokinetic function of Drosophila ORC6 protein resides in a domain distinct from its replication activity. Proc Natl Acad Sci USA. 2003; 100: 9150–9155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nair JS, Ho AL, Tse AN, Coward J, Cheema H, Ambrosini G et al. Aurora B kinase regulates the postmitotic endoreduplication checkpoint via phosphorylation of the retinoblastoma protein at serine 780. Mol Biol Cell 2009; 20: 2218–2228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM . The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 1990; 63: 1129–1136.

    Article  CAS  PubMed  Google Scholar 

  55. Huibregtse JM, Scheffner M, Howley PM . A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J 1991; 10: 4129–4135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tran H, Schilling M, Wirbelauer C, Hess D, Nagamine Y . Facilitation of mRNA deadenylation and decay by the exosome-bound, DExH protein RHAU. Mol Cell 2004; 13: 101–111.

    Article  CAS  PubMed  Google Scholar 

  57. Nie Y, Ding L, Kao PN, Braun R, Yang JH . ADAR1 interacts with NF90 through double-stranded RNA and regulates NF90-mediated gene expression independently of RNA editing. Mol Cell Biol 2005; 25: 6956–6963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yan J, Li Q, Lievens S, Tavernier J, You J . Abrogation of the Brd4-positive transcription elongation factor B complex by papillomavirus E2 protein contributes to viral oncogene repression. J Virol 2010; 84: 76–87.

    Article  CAS  PubMed  Google Scholar 

  59. Scheffner M, Munger K, Byrne JC, Howley PM . The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proc Natl Acad Sci USA. 1991; 88: 5523–5527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kreis NN, Sanhaji M, Kramer A, Sommer K, Rodel F, Strebhardt K et al. Restoration of the tumor suppressor p53 by downregulating cyclin B1 in human papillomavirus 16/18-infected cancer cells. Oncogene 2010; 29: 5591–5603.

    Article  CAS  PubMed  Google Scholar 

  61. Tan S, Hougardy BM, Meersma GJ, Schaap B, de Vries EG, van der Zee AG et al. Human papilloma virus 16 e6 RNA interference enhances Cisplatin and death receptor-mediated apoptosis in human cervical carcinoma cells. Mol Pharmacol 2012; 81: 701–709.

    Article  CAS  PubMed  Google Scholar 

  62. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C . A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 1995; 184: 39–51.

    Article  CAS  PubMed  Google Scholar 

  63. Corthésy B, Kao PN . Purification by DNA affinity chromatography of two polypeptides that contact the NF-AT DNA binding site in the interleukin 2 promoter. J Biol Chem 1994; 269: 20682–20690.

    Article  PubMed  Google Scholar 

  64. Ranpura SA, Deshmukh US, Reddi PP . NF45 and NF90 in Murine Seminiferous Epithelium: Potential Role in SP-10 Gene Transcription. J Androl 2008; 29: 186–197.

    Article  CAS  PubMed  Google Scholar 

  65. Sakamoto S, Morisawa K, Ota K, Nie J, Taniguchi T . A binding protein to the DNase I hypersensitive site II in HLA-DR alpha gene was identified as NF90. Biochemistry 1999; 38: 3355–3361.

    Article  CAS  PubMed  Google Scholar 

  66. Shi L, Qiu D, Zhao G, Corthesy B, Lees-Miller S, Reeves WH et al. Dynamic binding of Ku80, Ku70 and NF90 to the IL-2 promoter in vivo in activated T-cells. Nucleic Acids Res 2007; 35: 2302–2310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rezai-Zadeh N, Zhang X, Namour F, Fejer G, Wen YD, Yao YL et al. Targeted recruitment of a histone H4-specific methyltransferase by the transcription factor YY1. Genes Dev 2003; 17: 1019–1029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bose SK, Sengupta TK, Bandyopadhyay S, Spicer EK . Identification of Ebp1 as a component of cytoplasmic bcl-2 mRNP (messenger ribonucleoprotein particle) complexes. Biochem J 2006; 396: 99–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 2004; 432: 235–240.

    Article  CAS  PubMed  Google Scholar 

  70. Marshall NF, Peng J, Xie Z, Price DH . Control of RNA polymerase II elongation potential by a novel carboxl-terminal domain kinase. J Biol Chem 1996; 271: 27176–27183.

    Article  CAS  PubMed  Google Scholar 

  71. Zhu Y, Pe’ery T, Peng J, Ramanathan Y, Marshall N, Marshall T et al. Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev 1997; 11: 2622–2632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lace MJ, Isacson C, Anson JR, Lorincz AT, Wilczynski SP, Haugen TH et al. Upstream regulatory region alterations found in human papillomavirus type 16 (HPV-16) isolates from cervical carcinomas increase transcription, ori function, and HPV immortalization capacity in culture. J Virol 2009; 83: 7457–7466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bauknecht T, Jundt F, Herr I, Oehler T, Delius H, Shi Y et al. A switch region determines the cell type-specific positive or negative action of YY1 on the activity of the human papillomavirus type 18 promoter. J Virol 1995; 69: 1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bednarek PH, Lee BJ, Gandhi S, Lee E, Phillips B . Novel binding sites for regulatory factors in the human papillomavirus type 18 enhancer and promoter identified by in vivo footprinting. J Virol 1998; 72: 708–716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pajunk HS, May C, Pfister H, Fuchs PG . Regulatory interactions of transcription factor YY1 with control sequences of the E6 promoter of human papillomavirus type 8. J Gen Virol 1997; 78 (Pt 12): 3287–3295.

    Article  CAS  PubMed  Google Scholar 

  76. Lopez-Saavedra A, Gonzalez-Maya L, Ponce-de-Leon S, Garcia-Carranca A, Mohar A, Lizano M . Functional implication of sequence variation in the long control region and E2 gene among human papillomavirus type 18 variants. Arch Virol 2009; 154: 747–754.

    Article  CAS  PubMed  Google Scholar 

  77. Tang J, Kao PN, Herschman HR . Protein-arginine methyltransferase I, the predominant protein-arginine methyltransferase in cells, interacts with and is regulated by interleukin enhancer-binding factor 3. J Biol Chem 2000; 275: 19866–19876.

    Article  CAS  PubMed  Google Scholar 

  78. Cazanove O, Batut J, Scarlett G, Mumford K, Elgar S, Thresh S et al. Methylation of Xilf3 by Xprmt1b alters its DNA, but not RNA, binding activity. Biochemistry 2008; 47: 8350–8357.

    Article  CAS  PubMed  Google Scholar 

  79. Chen T, Brownawell AM, Macara IG . Nucleocytoplasmic shuttling of JAZ, a new cargo protein for exportin-5. Mol Cell Biol 2004; 24: 6608–6619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shiohama A, Sasaki T, Noda S, Minoshima S, Shimizu N . Nucleolar localization of DGCR8 and identification of eleven DGCR8-associated proteins. Exp Cell Res 2007; 313: 4196–4207.

    Article  CAS  PubMed  Google Scholar 

  81. Ulke-Lemee A, Trinkle-Mulcahy L, Chaulk S, Bernstein NK, Morrice N, Glover M et al. The nuclear PP1 interacting protein ZAP3 (ZAP) is a putative nucleoside kinase that complexes with SAM68, CIA, NF110/45, and HNRNP-G. Biochim Biophys Acta 2007; 1774: 1339–1350.

    Article  CAS  PubMed  Google Scholar 

  82. Halevy O, Novitch BG, Spicer DB, Skapek SX, Rhee J, Hannon GJ et al. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 1995; 267: 1018–1021.

    Article  CAS  PubMed  Google Scholar 

  83. Macleod KF, Sherry N, Hannon G, Beach D, Tokino T, Kinzler K et al. p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev 1995; 9: 935–944.

    Article  CAS  PubMed  Google Scholar 

  84. Collavin L, Lunardi A, Del Sal G . p53-family proteins and their regulators: hubs and spokes in tumor suppression. Cell Death Differ 2010; 17: 901–911.

    Article  CAS  PubMed  Google Scholar 

  85. Lane DP, Crawford LV . T antigen is bound to a host protein in SV40-transformed cells. Nature 1979; 278: 261–263.

    Article  CAS  PubMed  Google Scholar 

  86. Lan KH, Sheu ML, Hwang SJ, Yen SH, Chen SY, Wu JC et al. HCV NS5A interacts with p53 and inhibits p53-mediated apoptosis. Oncogene 2002; 21: 4801–4811.

    Article  CAS  PubMed  Google Scholar 

  87. Wang XW, Gibson MK, Vermeulen W, Yeh H, Forrester K, Sturzbecher HW et al. Abrogation of p53-induced apoptosis by the hepatitis B virus X gene. Cancer Res 1995; 55: 6012–6016.

    CAS  PubMed  Google Scholar 

  88. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM . The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 1993; 75: 495–505.

    Article  CAS  PubMed  Google Scholar 

  89. Chang JT, Kuo TF, Chen YJ, Chiu CC, Lu YC, Li HF et al. Highly potent and specific siRNAs against E6 or E7 genes of HPV16- or HPV18-infected cervical cancers. Cancer Gene Ther 2010; 17: 827–836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T . p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 1993; 362: 847–849.

    Article  CAS  PubMed  Google Scholar 

  91. McCurrach ME, Connor TM, Knudson CM, Korsmeyer SJ, Lowe SW . bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc Natl Acad Sci U S A. 1997; 94: 2345–2349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Brantley-Finley C, Lyle CS, Du L, Goodwin ME, Hall T, Szwedo D et al. The JNK, ERK and p53 pathways play distinct roles in apoptosis mediated by the antitumor agents vinblastine, doxorubicin, and etoposide. Biochem Pharmacol 2003; 66: 459–469.

    Article  CAS  PubMed  Google Scholar 

  93. Lee CH, Lim H, Moon S, Shin C, Kim S, Kim BJ et al. Novel anticancer agent, benzyldihydroxyoctenone, isolated from Streptomyces sp. causes G1 cell cycle arrest and induces apoptosis of HeLa cells. Cancer Sci 2007; 98: 795–802.

    Article  CAS  PubMed  Google Scholar 

  94. Saha B, Adhikary A, Ray P, Saha S, Chakraborty S, Mohanty S et al. Restoration of tumor suppressor p53 by differentially regulating pro- and anti-p53 networks in HPV-18-infected cervical cancer cells. Oncogene 2012; 31: 173–186.

    Article  CAS  PubMed  Google Scholar 

  95. Smith NL, Miskimins WK . Phosphorylation at serine 482 affects stability of NF90 and its functional role in mitosis. Cell Prolif 2011; 44: 147–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Krasnoselskaya-Riz I, Spruill A, Chen YW, Schuster D, Teslovich T, Baker C et al. Nuclear factor 90 mediates activation of the cellular antiviral expression cascade. AIDS Res Hum Retroviruses 2002; 18: 591–604.

    Article  CAS  PubMed  Google Scholar 

  97. Patel RC, Vestal DJ, Xu Z, Bandyopadhyay S, Guo W, Erme SM et al. DRBP76, a double-stranded RNA-binding nuclear protein, is phosphorylated by the interferon-induced protein kinase, PKR. J Biol Chem 1999; 274: 20432–20437.

    Article  CAS  PubMed  Google Scholar 

  98. Parker LM, Fierro-Monti I, Mathews MB . Nuclear factor 90 is a substrate and regulator of the eukaryotic initiation factor 2 kinase double-stranded RNA-activated protein kinase. J Biol Chem 2001; 276: 32522–32530.

    Article  CAS  PubMed  Google Scholar 

  99. Agbottah ET, Traviss C, McArdle J, Karki S, Laurent GC, Kumar A . Nuclear Factor 90(NF90) targeted to TAR RNA inhibits transcriptional activation of HIV-1. Retrovirology 2007; 4: 41.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Isken O, Baroth M, Grassmann CW, Weinlich S, Ostareck DH, Ostareck-Lederer A et al. Nuclear factors are involved in hepatitis C virus RNA replication. RNA 2007; 13: 1675–1692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Merrill MK, Dobrikova EY, Gromeier M . Cell-type-specific repression of internal ribosome entry site activity by double-stranded RNA-binding protein 76. J Virol 2006; 80: 3147–3156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shin HJ, Kim SS, Cho YH, Lee SG, Rho HM . Host cell proteins binding to the encapsidation signal epsilon in hepatitis B virus RNA. Arch Virol 2002; 147: 471–491.

    Article  CAS  PubMed  Google Scholar 

  103. Liao H-J, Kobayashi R, Mathews MB . Novel functions of adenovirus-associated RNAs: purification and characterization of RNA binding proteins. Proc Natl Acad Sci USA 1998; 95.

  104. Goodwin EC, Naeger LK, Breiding DE, Androphy EJ, DiMaio D . Transactivation-competent bovine papillomavirus E2 protein is specifically required for efficient repression of human papillomavirus oncogene expression and for acute growth inhibition of cervical carcinoma cell lines. J Virol 1998; 72: 3925–3934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang X, Meyers C, Wang HK, Chow LT, Zheng ZM . Construction of a full transcription map of human papillomavirus type 18 during productive viral infection. J Virol 2011; 85: 8080–8092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Edward Goodwin for pGL3-HPV18URR-Firefly luciferase plasmid and Dr Betsy Barnes for HCT 116 cell lines. We are indebted to Dr Raymond Birge and Dr Edouard Azzam for discussions and helpful suggestions. The early stages of this work were supported by NIH Grant R01 AI034552 to MBM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M B Mathews.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shamanna, R., Hoque, M., Pe'ery, T. et al. Induction of p53, p21 and apoptosis by silencing the NF90/NF45 complex in human papilloma virus-transformed cervical carcinoma cells. Oncogene 32, 5176–5185 (2013). https://doi.org/10.1038/onc.2012.533

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.533

Keywords

This article is cited by

Search

Quick links