Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the variant histone H3.3–H4 heterodimer in complex with its chaperone DAXX

Abstract

Mammalian histone H3.3 is a variant of the canonical H3.1 essential for genome reprogramming in fertilized eggs and maintenance of chromatin structure in neuronal cells. An H3.3-specific histone chaperone, DAXX, directs the deposition of H3.3 onto pericentric and telomeric heterochromatin. H3.3 differs from H3.1 by only five amino acids, yet DAXX can distinguish the two with high precision. By a combination of structural, biochemical and cell-based targeting analyses, we show that Ala87 and Gly90 are the principal determinants of human H3.3 specificity. DAXX uses a shallow hydrophobic pocket to accommodate the small hydrophobic Ala87 of H3.3, whereas a polar binding environment in DAXX prefers Gly90 in H3.3 over the hydrophobic Met90 in H3.1. An H3.3–H4 heterodimer is bound by the histone-binding domain of DAXX, which makes extensive contacts with both H3.3 and H4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of the DAXX HBD–H3.3–H4 complex.
Figure 2: Conformational differences between the DAXX HBD–bound and nucleosomal H3.3–H4 complexes.
Figure 3: H3.3 residues responsible for DAXX binding specificity.
Figure 4: DAXX residues important for recognition of H3.3.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Talbert, P.B. & Henikoff, S. Histone variants—ancient wrap artists of the epigenome. Nat. Rev. Mol. Cell Biol. 11, 264–275 (2010).

    Article  CAS  Google Scholar 

  2. Banaszynski, L.A., Allis, C.D. & Lewis, P.W. Histone variants in metazoan development. Dev. Cell 19, 662–674 (2010).

    Article  CAS  Google Scholar 

  3. Szenker, E., Ray-Gallet, D. & Almouzni, G. The double face of the histone variant H3.3. Cell Res. 21, 421–434 (2011).

    Article  CAS  Google Scholar 

  4. Campos, E.I. & Reinberg, D. New chaps in the histone chaperone arena. Genes Dev. 24, 1334–1338 (2010).

    Article  CAS  Google Scholar 

  5. Black, B.E. & Cleveland, D.W. Epigenetic centromere propagation and the nature of CENP-a nucleosomes. Cell 144, 471–479 (2011).

    Article  CAS  Google Scholar 

  6. Dunleavy, E.M. et al. HJURP is a cell-cycle–dependent maintenance and deposition factor of CENP-A at centromeres. Cell 137, 485–497 (2009).

    Article  CAS  Google Scholar 

  7. Foltz, D.R. et al. Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP. Cell 137, 472–484 (2009).

    Article  CAS  Google Scholar 

  8. Sanchez-Pulido, L., Pidoux, A.L., Ponting, C.P. & Allshire, R.C. Common ancestry of the CENP-A chaperones Scm3 and HJURP. Cell 137, 1173–1174 (2009).

    Article  Google Scholar 

  9. Ray-Gallet, D. et al. HIRA is critical for a nucleosome assembly pathway independent of DNA synthesis. Mol. Cell 9, 1091–1100 (2002).

    Article  CAS  Google Scholar 

  10. Ahmad, K. & Henikoff, S. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol. Cell 9, 1191–1200 (2002).

    Article  CAS  Google Scholar 

  11. Tagami, H., Ray-Gallet, D., Almouzni, G. & Nakatani, Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116, 51–61 (2004).

    Article  CAS  Google Scholar 

  12. Drané, P., Ouararhni, K., Depaux, A., Shuaib, M. & Hamiche, A. The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev. 24, 1253–1265 (2010).

    Article  Google Scholar 

  13. Goldberg, A.D. et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140, 678–691 (2010).

    Article  CAS  Google Scholar 

  14. Lewis, P.W., Elsaesser, S.J., Noh, K.M., Stadler, S.C. & Allis, C.D. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc. Natl. Acad. Sci. USA 107, 14075–14080 (2010).

    Article  CAS  Google Scholar 

  15. Sawatsubashi, S. et al. A histone chaperone, DEK, transcriptionally coactivates a nuclear receptor. Genes Dev. 24, 159–170 (2010).

    Article  CAS  Google Scholar 

  16. Khuong-Quang, D.A. et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol. 124, 439–447 (2012).

    Article  CAS  Google Scholar 

  17. Wu, G. et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 44, 251–253 (2012).

    Article  CAS  Google Scholar 

  18. Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012).

    Article  CAS  Google Scholar 

  19. English, C.M., Adkins, M.W., Carson, J.J., Churchill, M.E. & Tyler, J.K. Structural basis for the histone chaperone activity of Asf1. Cell 127, 495–508 (2006).

    Article  CAS  Google Scholar 

  20. Natsume, R. et al. Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature 446, 338–341 (2007).

    Article  CAS  Google Scholar 

  21. Hu, H. et al. Structure of a CENP-A-histone H4 heterodimer in complex with chaperone HJURP. Genes Dev. 25, 901–906 (2011).

    Article  CAS  Google Scholar 

  22. Zhou, Z. et al. Structural basis for recognition of centromere histone variant CenH3 by the chaperone Scm3. Nature 472, 234–237 (2011).

    Article  CAS  Google Scholar 

  23. Cho, U.S. & Harrison, S.C. Recognition of the centromere-specific histone Cse4 by the chaperone Scm3. Proc. Natl. Acad. Sci. USA 108, 9367–9371 (2011).

    Article  CAS  Google Scholar 

  24. Tachiwana, H. et al. Structures of human nucleosomes containing major histone H3 variants. Acta Crystallogr. D Biol. Crystallogr. 67, 578–583 (2011).

    Article  CAS  Google Scholar 

  25. Robinett, C.C. et al. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135, 1685–1700 (1996).

    Article  CAS  Google Scholar 

  26. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  27. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  28. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  29. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank SSRF beamline scientists for technical support during data collection. The work was supported by grants from the Chinese Ministry of Science and Technology (2009CB825501 to R.-M.X. and 2011CB966300 to G.L.), the Natural Science Foundation of China (31210103914, 90919029 and 3098801 to R.-M.X. and 31071147 to G.L.) and the Chinese Academy of Sciences Strategic Priority Research Program (XDA01010304 to G.L.). R.-M.X. is a CAS-Novo Nordisk Great Wall Professor.

Author information

Authors and Affiliations

Authors

Contributions

R.-M.X., G.L. and Z.Z. conceived of the project, R.-M.X. and G.L. designed the experiments and Z.Z. contributed reagents. C.-P.L, C.X., M.W., Z.Y., N.Y. and P.C. performed the experiments, and all authors analyzed the data. C.-P.L., G.L. and R.M.X. wrote the paper.

Corresponding authors

Correspondence to Guohong Li or Rui-Ming Xu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 17516 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, CP., Xiong, C., Wang, M. et al. Structure of the variant histone H3.3–H4 heterodimer in complex with its chaperone DAXX. Nat Struct Mol Biol 19, 1287–1292 (2012). https://doi.org/10.1038/nsmb.2439

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2439

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing