Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conditional cell ablation by tight control of caspase-3 dimerization in transgenic mice

Abstract

Studying the effects of the loss of a specific cell type is a powerful approach in biology. Here we present a method based on the controlled activation of the apoptotic machinery. We expressed a modified caspase-3-containing chemical inducer of dimerization (CID)-binding sites in the livers of transgenic mice. In the absence of CID, no liver injury was detectable, underlining the absence of leakage in our system. In contrast, injection of the CID produced activation of the chimeric caspase-3, which led to a dose-dependent pure hepatocyte ablation with subsequent regeneration. This method is effective in both growing and nongrowing cells, and is therefore applicable to a wide range of cells and tissues. Moreover, because apoptosis has been described in numerous pathological circumstances, this system is useful for generating mouse models of human disorders as well as for studying the recovery or regeneration of tissues after cell loss.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Construction, mechanism of caspase-3 activation, and analysis of transgenic animals.
Figure 2: Representative liver sections of transgenic animals.
Figure 3: Kinetics of caspase-3 activation and hepatocyte cytolysis in transgenic animals.
Figure 4: Kinetics of liver damage and regeneration in transgenic animals.
Figure 5: Dose dependence and CID re-injection.
Figure 6: Cytochrome c release in the liver of CID-injected mice.

Similar content being viewed by others

References

  1. Galle, P.R. et al. Involvement of the CD95 (APO-1/Fas) receptor and ligand in liver damage. J. Exp. Med. 182, 1223–1230 (1995).

    Article  CAS  Google Scholar 

  2. Nanji, A.A. Apoptosis and alcoholic liver disease. Semin. Liver. Dis. 18, 187–190 (1998).

    Article  CAS  Google Scholar 

  3. Fox, C.K., Furtwaengler, A., Nepomuceno, R.R., Martinez, O.M. & Krams, S.M. Apoptotic pathways in primary biliary cirrhosis and autoimmune hepatitis. Liver 21, 272–279 (2001).

    Article  CAS  Google Scholar 

  4. Strand, S. et al. Hepatic failure and liver cell damage in acute Wilson's disease involve CD95 (APO-1/Fas) mediated apoptosis. Nat. Med. 4, 588–593 (1998).

    Article  CAS  Google Scholar 

  5. Rudiger, H.A. & Clavien, P.A. Tumor necrosis factor-α, but not Fas, mediates hepatocellular apoptosis in the murine ischemic liver. Gastroenterology 122, 202–210 (2002).

    Article  CAS  Google Scholar 

  6. Patel, T., Roberts, L.R., Jones, B.A. & Gores, G.J. Dysregulation of apoptosis as a mechanism of liver disease: an overview. Semin. Liver. Dis. 18, 105–114 (1998).

    Article  CAS  Google Scholar 

  7. Lee, W.M. Acute liver failure. N. Engl. J. Med. 329, 1862–1872 (1993).

    Article  CAS  Google Scholar 

  8. Fingerote, R.J. & Bain, V.G. Fulminant hepatic failure. Am. J. Gastroenterol. 88, 1000–1010 (1993).

    CAS  PubMed  Google Scholar 

  9. Caraceni, P. & Van Thiel, D.H. Acute liver failure. Lancet 345, 163–169 (1995).

    Article  CAS  Google Scholar 

  10. Fausto, N. Liver regeneration. J. Hepatol. 32, 19–31 (2000).

    Article  CAS  Google Scholar 

  11. Kosai, K., Matsumoto, K., Funakoshi, H. & Nakamura, T. Hepatocyte growth factor prevents endotoxin-induced lethal hepatic failure in mice. Hepatology 30, 151–159 (1999).

    Article  CAS  Google Scholar 

  12. Hecht, N. et al. Hyper-IL-6 gene therapy reverses fulminant hepatic failure. Mol. Ther. 3, 683–687 (2001).

    Article  CAS  Google Scholar 

  13. Kobayashi, N. et al. Prevention of acute liver failure in rats with reversibly immortalized human hepatocytes. Science 287, 1258–1262 (2000).

    Article  CAS  Google Scholar 

  14. Newsome, P.N., Plevris, J.N., Nelson, L.J. & Hayes, P.C. Animal models of fulminant hepatic failure: a critical evaluation. Liver Transpl. 6, 21–31 (2000).

    CAS  PubMed  Google Scholar 

  15. Palmiter, R.D. et al. Cell lineage ablation in transgenic mice by cell-specific expression of a toxin gene. Cell 50, 435–443 (1987).

    Article  CAS  Google Scholar 

  16. Behringer, R.R., Mathews, L.S., Palmiter, R.D. & Brinster, R.L. Dwarf mice produced by genetic ablation of growth hormone-expressing cells. Genes Dev. 2, 453–461 (1988).

    Article  CAS  Google Scholar 

  17. Braun, K.M., Degen, J.L. & Sandgren, E.P. Hepatocyte transplantation in a model of toxin-induced liver disease: variable therapeutic effect during replacement of damaged parenchyma by donor cells. Nat. Med. 6, 320–326 (2000).

    Article  CAS  Google Scholar 

  18. Matthews, T. & Boehme, R. Antiviral activity and mechanism of action of ganciclovir. Rev. Infect. Dis. 10, S490–S494 (1988).

    Article  CAS  Google Scholar 

  19. Culver, K.W. et al. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256, 1550–1552 (1992).

    Article  CAS  Google Scholar 

  20. Saito, M. et al. Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat. Biotechnol. 19, 746–750 (2001).

    Article  CAS  Google Scholar 

  21. Kobayashi, K. et al. Immunotoxin-mediated conditional disruption of specific neurons in transgenic mice. Proc. Natl. Acad. Sci. USA 92, 1132–1136 (1995).

    Article  CAS  Google Scholar 

  22. Collier, R.J. in ADP-Ribosylating Toxins and G Proteins: Insights into Signal Transduction (eds. Moss, J. & Vaughan, M.) 3–19 (American Society for Microbiology, Washington, DC, 1990).

    Google Scholar 

  23. Fan, L., Freeman, K.W., Khan, T., Pham, E. & Spencer, D.M. Improved artificial death switches based on caspases and FADD. Hum. Gene Ther. 10, 2273–2285 (1999).

    Article  CAS  Google Scholar 

  24. Yan, C., Costa, R.H., Darnell, J.E. Jr., Chen, J.D. & Van Dyke, T.A. Distinct positive and negative elements control the limited hepatocyte and choroid plexus expression of transthyretin in transgenic mice. EMBO J. 9, 869–878 (1990).

    Article  CAS  Google Scholar 

  25. Clackson, T. et al. Redesigning an FKBP–ligand interface to generate chemical dimerizers with novel specificity. Proc. Natl. Acad. Sci. USA 95, 10437–10442 (1998).

    Article  CAS  Google Scholar 

  26. Krajewska, M. et al. Immunohistochemical analysis of in vivo patterns of expression of CPP32 (Caspase-3), a cell death protease. Cancer Res. 57, 1605–1613 (1997).

    CAS  PubMed  Google Scholar 

  27. Cheng, E.H. et al. Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278, 1966–1968 (1997).

    Article  CAS  Google Scholar 

  28. Woo, M. et al. In vivo evidence that caspase-3 is required for Fas-mediated apoptosis of hepatocytes. J. Immunol. 163, 4909–4916 (1999).

    CAS  PubMed  Google Scholar 

  29. Slee, E.A., Keogh, S.A. & Martin, S.J. Cleavage of BID during cytotoxic drug and UV radiation-induced apoptosis occurs downstream of the point of Bcl-2 action and is catalysed by caspase-3: a potential feedback loop for amplification of apoptosis-associated mitochondrial cytochrome c release. Cell Death Differ. 7, 556–565 (2000).

    Article  CAS  Google Scholar 

  30. Jones, R.A. et al. Fas-mediated apoptosis in mouse hepatocytes involves the processing and activation of caspases. Hepatology 27, 1632–1642 (1998).

    Article  CAS  Google Scholar 

  31. Zheng, T.S. et al. Caspase-3 controls both cytoplasmic and nuclear events associated with Fas-mediated apoptosis in vivo. Proc. Natl. Acad. Sci. USA 95, 13618–13623 (1998).

    Article  CAS  Google Scholar 

  32. Janin, A. et al. CD95 engagement induces disseminated endothelial cell apoptosis in vivo: immunopathologic implications. Blood 99, 2940–2947 (2002).

    Article  CAS  Google Scholar 

  33. Lee, P. et al. Conditional lineage ablation to model human diseases. Proc. Natl. Acad. Sci. USA 95, 11371–11376 (1998).

    Article  CAS  Google Scholar 

  34. Xie, X. et al. Adenovirus-mediated tissue-targeted expression of a caspase-9-based artificial death switch for the treatment of prostate cancer. Cancer Res. 61, 6795–6804 (2001).

    CAS  PubMed  Google Scholar 

  35. Mercer, D.F. et al. Hepatitis C virus replication in mice with chimeric human livers. Nat. Med. 7, 927–933 (2001).

    Article  CAS  Google Scholar 

  36. Yoon, J.W. & Jun, H.-S. Cellular and molecular pathogenic mechanisms of insulin-dependent diabetes mellitus. Ann. NY Acad. Sci. 928, 200–211 (2001).

    Article  CAS  Google Scholar 

  37. Narula, J. et al. Apoptosis in heart failure: release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc. Natl. Acad. Sci. USA 96, 8144–8149 (1999).

    Article  CAS  Google Scholar 

  38. Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J. & Rutter, W.J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294–5299 (1979).

    Article  CAS  Google Scholar 

  39. Gross, A. et al. Caspase-cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem. 274, 1156–1163 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Terry Van Dyke for the TTR vector and ARIAD Pharmaceuticals for providing us with AP20187 (http://www.ariad.com/regulationkits). We also thank Eva Mezey for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Gilgenkrantz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallet, V., Mitchell, C., Guidotti, JE. et al. Conditional cell ablation by tight control of caspase-3 dimerization in transgenic mice. Nat Biotechnol 20, 1234–1239 (2002). https://doi.org/10.1038/nbt762

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt762

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing