Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Minimal Residual Disease in CLL

Comparative analysis of minimal residual disease detection using four-color flow cytometry, consensus IgH-PCR, and quantitative IgH PCR in CLL after allogeneic and autologous stem cell transplantation

Abstract

The clinically most suitable method for minimal residual disease (MRD) detection in chronic lymphocytic leukemia is still controversial. We prospectively compared MRD assessment in 158 blood samples of 74 patients with CLL after stem cell transplantation (SCT) using four-color flow cytometry (MRD flow) in parallel with consensus IgH-PCR and ASO IgH real-time PCR (ASO IgH RQ-PCR). In 25 out of 106 samples (23.6%) with a polyclonal consensus IgH-PCR pattern, MRD flow still detected CLL cells, proving higher sensitivity of flow cytometry over PCR-genescanning with consensus IgH-primers. Of 92 samples, 14 (15.2%) analyzed in parallel by MRD flow and by ASO IgH RQ-PCR were negative by our flow cytometric assay but positive by PCR, thus demonstrating superior sensitivity of RQ-PCR with ASO primers. Quantitative MRD levels measured by both methods correlated well (r=0.93). MRD detection by flow and ASO IgH RQ-PCR were equally suitable to monitor MRD kinetics after allogeneic SCT, but the PCR method detected impending relapses after autologous SCT earlier. An analysis of factors that influence sensitivity and specificity of flow cytometry for MRD detection allowed to devise further improvements of this technique.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Döhner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1910–1916.

    Article  PubMed  Google Scholar 

  2. Wiestner A, Rosenwald A, Barry TS, Wright G, Davis RE, Henrickson SE et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 2003; 101: 4944–4951.

    Article  CAS  PubMed  Google Scholar 

  3. Kröber A, Seiler T, Benner A, Bullinger L, Bruckle E, Lichter P et al. V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood 2002; 100: 1410–1416.

    PubMed  Google Scholar 

  4. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999; 94: 1840–1847.

    CAS  PubMed  Google Scholar 

  5. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK . Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999; 94: 1848–1854.

    CAS  PubMed  Google Scholar 

  6. Oscier DG, Gardiner AC, Mould SJ, Glide S, Davis ZA, Ibbotson RE et al. Multivariate analysis of prognostic factors in CLL: clinical stage, IGVH gene mutational status, and loss or mutation of the p53 gene are independent prognostic factors. Blood 2002; 100: 1177–1184.

    CAS  PubMed  Google Scholar 

  7. Keating MJ, O'Brien S, Lerner S, Koller C, Beran M, Robertson LE et al. Long-term follow-up of patients with chronic lymphocytic leukemia (CLL) receiving fludarabine regimens as initial therapy. Blood 1998; 92: 1165–1171.

    CAS  PubMed  Google Scholar 

  8. Lundin J, Kimby E, Björklund M, Broliden PA, Celsing F, Hjalmar V et al. Phase II trial of subcutaneous anti-cd52 monoclonal antibody alemtuzumab (Campath-1H) as first-line treatment for patients with B-cell chronic lymphocytic leukemia (B-CLL). Blood 2002; 100: 768–773.

    Article  CAS  PubMed  Google Scholar 

  9. O'Brien SM, Kantarjian H, Thomas DA, Giles FJ, Freireich EJ, Cortes J et al. Rituximab dose-escalation trial in chronic lymphocytic leukemia. J Clin Oncol 2001; 19: 2165–2170.

    Article  CAS  PubMed  Google Scholar 

  10. O'Brien SM, Kantarjian HM, Thomas DA, Cortes J, Giles FJ, Wierda WG et al. Alemtuzumab as treatment for residual disease after chemotherapy in patients with chronic lymphocytic leukemia. Cancer 2003; 98: 2657–2663.

    Article  CAS  PubMed  Google Scholar 

  11. Dreger P, Stilgenbauer S, Benner A, Ritgen M, Kröber A, Kneba M et al. The prognostic impact of autologous stem cell transplantation in patients with chronic lymphocytic leukemia: a risk-matched analysis based on the VH gene mutational status. Blood 2004; 103: 2850–2858.

    Article  CAS  PubMed  Google Scholar 

  12. Dreger P, von Neuhoff N, Kuse R, Sonnen R, Glass B, Uharek L et al. Early stem cell transplantation for chronic lymphocytic leukaemia: a chance for cure? Br J Cancer 1998; 77: 2291–2297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dreger P, Brand R, Hansz J, Milligan D, Corradini P, Finke J et al. Treatment-related mortality and graft-versus-leukemia activity after allogeneic stem cell transplantation for chronic lymphocytic leukemia using intensity-reduced conditioning. Leukemia 2003; 17: 841–848.

    Article  CAS  PubMed  Google Scholar 

  14. Mattsson J, Uzunel M, Remberger M, Ljungman P, Kimby E, Ringden O et al. Minimal residual disease is common after allogeneic stem cell transplantation in patients with B cell chronic lymphocytic leukemia and may be controlled by graft-versus-host disease. Leukemia 2000; 14: 247–254.

    Article  CAS  PubMed  Google Scholar 

  15. Schetelig J, Thiede C, Bornhäuser M, Schwerdtfeger R, Kiehl M, Beyer J et al. Evidence of a graft-versus-leukemia effect in chronic lymphocytic leukemia after reduced-intensity conditioning and allogeneic stem-cell transplantation: the Cooperative German Transplant Study Group. J Clin Oncol 2003; 21: 2747–2753.

    Article  CAS  PubMed  Google Scholar 

  16. Ritgen M, Lange A, Stilgenbauer S, Döhner H, Bretscher C, Bosse H et al. Unmutated immunoglobulin variable heavy-chain gene status remains an adverse prognostic factor after autologous stem cell transplantation for chronic lymphocytic leukemia. Blood 2003; 101: 2049–2053.

    Article  CAS  PubMed  Google Scholar 

  17. Provan D, Bartlett Pandite L, Zwicky C, Neuberg D, Maddocks A, Corradini P et al. Eradication of polymerase chain reaction-detectable chronic lymphocytic leukemia cells is associated with improved outcome after bone marrow transplantation. Blood 1996; 88: 2228–2235.

    CAS  PubMed  Google Scholar 

  18. Esteve J, Villamor N, Colomer D, Cervantes F, Campo E, Carreras E et al. Stem cell transplantation for chronic lymphocytic leukemia: different outcome after autologous and allogeneic transplantation and correlation with minimal residual disease status. Leukemia 2001; 15: 445–451.

    Article  CAS  PubMed  Google Scholar 

  19. Noy A, Verma R, Glenn M, Maslak P, Rahman Z-U, Keenan J-R et al. Clonotypic polymerase chain reaction confirms minimal residual disease in CLL nodular PR: results from a sequential treatment CLL protocol. Blood 2001; 97: 1929–1936.

    Article  CAS  PubMed  Google Scholar 

  20. Magnac C, Sutton L, Cazin B, Laurent C, Binet J-L, Merle Beral H et al. Detection of minimal residual disease in B chronic lymphocytic leukemia (CLL). Hematol Cell Ther 1999; 41: 13–18.

    Article  CAS  PubMed  Google Scholar 

  21. Pfitzner T, Engert A, Wittor H, Schinkothe T, Oberhauser F, Schulz H et al. A real-time PCR assay for the quantification of residual malignant cells in B cell chronic lymphatic leukemia. Leukemia 2000; 14: 754–766.

    Article  CAS  PubMed  Google Scholar 

  22. Brüggemann M, Droese J, Bolz I, Luth P, Pott C, von Neuhoff N et al. Improved assessment of minimal residual disease in B cell malignancies using fluorogenic consensus probes for real-time quantitative PCR. Leukemia 2000; 14: 1419–1425.

    Article  PubMed  Google Scholar 

  23. van der Velden V, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, van Dongen JJ . Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 2003; 17: 1013–1034.

    Article  CAS  PubMed  Google Scholar 

  24. van Dongen JJ, Langerak AW, Brüggemann M, Evans PA, Hummel M, Lavender FL et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003; 17: 2257–2317.

    Article  CAS  PubMed  Google Scholar 

  25. Esteve J, Villamor N, Colomer D, Montserrat E . Different clinical value of minimal residual disease after autologous and allogeneic stem cell transplantation for chronic lymphocytic leukemia. Blood 2002; 99: 1873.

    Article  PubMed  Google Scholar 

  26. Linke B, Bolz I, Fayyazi A, von Hofen M, Pott C, Bertram J et al. Automated high resolution PCR fragment analysis for identification of clonally rearranged immunoglobulin heavy chain genes. Leukemia 1997; 11: 1055–1062.

    Article  CAS  PubMed  Google Scholar 

  27. Aubin J, Davi F, Nguyen-Salomon F, Leboeuf D, Debert C, Taher M et al. Description of a novel FR1 IgH PCR strategy and its comparison with three other strategies for the detection of clonality in B cell malignancies. Leukemia 1995; 9: 471–479.

    CAS  PubMed  Google Scholar 

  28. Owen RG, Johnson RJ, Rawstron AC, Evans PA, Jack A, Smith GM et al. Assessment of IgH PCR strategies in multiple myeloma. J Clin Pathol 1996; 49: 672–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rawstron AC, Kennedy B, Evans PA, Davies FE, Richards SJ, Haynes AP et al. Quantitation of minimal residual disease levels in chronic lymphocytic leukemia using a sensitive flow cytometric assay improves the prediction of outcome and can be used to optimize therapy. Blood 2001; 98: 29–35.

    Article  CAS  PubMed  Google Scholar 

  30. Garcia Vela J-A, Delgado I, Garcia Alonso L, Monteserin M-C, Benito L, Ona F et al. Detection of minimal residual disease in B-cell chronic lymphocytic leukaemia by flow cytometry. Br J Haematol 1997; 99: 464–465.

    Article  CAS  PubMed  Google Scholar 

  31. Cabezudo E, Matutes E, Ramrattan M, Morilla R, Catovsky D . Analysis of residual disease in chronic lymphocytic leukemia by flow cytometry. Leukemia 1997; 11: 1909–1914.

    Article  CAS  PubMed  Google Scholar 

  32. Sanchez ML, Almeida J, Vidriales B, Lopez-Berges MC, Moro MJ, Corrales A et al. Incidence of phenotypic aberrations in a series of 467 patients with B chronic lymphoproliferative disorders: basis for the design of specific four colour stainings to be used for minimal residual disease investigation. Leukemia 2002; 16: 1460–1469.

    Article  CAS  PubMed  Google Scholar 

  33. Ritgen M, Stilgenbauer S, von Neuhoff N, Humpe A, Brüggemann M, Pott C et al. Graft versus leukemia effect may overcome therapeutic resistance of chronic lymphocytic leukemia with unmutated variable immunoglobulin heavy chain status: implications of minimal residual disease measurement with quantitative PCR. Blood, 2004 Jun 17; 10.1182/blood-2003-12-4321 (Epub ahead of print).

  34. Neale GA, Coustan-Smith E, Pan Q, Chen X, Gruhn B, Stow P et al. Tandem application of flow cytometry and polymerase chain reaction for comprehensive detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia 1999; 13: 1221–1226.

    Article  CAS  PubMed  Google Scholar 

  35. Malec M, Bjorklund E, Soderhall S, Mazur J, Sjogren AM, Pisa P et al. Flow cytometry and allele-specific oligonucleotide PCR are equally effective in detection of minimal residual disease in ALL. Leukemia 2001; 15: 716–727.

    Article  CAS  PubMed  Google Scholar 

  36. Borowitz MJ, Pullen DJ, Shuster JJ, Viswanatha D, Montgomery K, Willman CL et al. Minimal residual disease detection in childhood precursor-B-cell acute lymphoblastic leukemia: relation to other risk factors. A Children's Oncology Group study. Leukemia 2003; 17: 1566–1572.

    Article  CAS  PubMed  Google Scholar 

  37. Campana D, Coustan-Smith E . Detection of minimal residual disease in acute leukemia by flow cytometry. Cytometry 1999; 38: 139–152.

    Article  CAS  PubMed  Google Scholar 

  38. Gross HJ, Verwer B, Houck D, Recktenwald D . Detection of rare cells at a frequency of one per million by flow cytometry. Cytometry 1993; 14: 519–526.

    Article  CAS  PubMed  Google Scholar 

  39. Stelzer GT, Marti G, Hurley A . U.S.-Canadian consensus recommendations on the immunophenotypic analysis of hematological neoplasia by flow cytometry: standardization and validation of laboratory procedures. Cytometry 1997; 30: 214–230.

    Article  CAS  PubMed  Google Scholar 

  40. Carter PH, Resto-Ruiz S, Washington GC, Ethridge S, Palini A, Vogt R et al. Flow cytometric analysis of whole blood lysis, three anticoagulants, and five cell preparations. Cytometry 1992; 13: 68–74.

    Article  CAS  PubMed  Google Scholar 

  41. Macey MG, McCarthy DA, Milne T, Cavenagh JD, Newland AC . Comparative study of five commercial reagents for preparing normal and leukaemic lymphocytes for immunophenotypic analysis by flow cytometry. Cytometry 1999; 38: 153–160.

    Article  CAS  PubMed  Google Scholar 

  42. van Lochem EG, Wiegers YM, van den Beemd R, Hahlen K, van Dongen JJ, Hooijkaas H . Regeneration pattern of precursor-B-cells in bone marrow of acute lymphoblastic leukemia patients depends on the type of preceding chemotherapy. Leukemia 2000; 14: 688–695.

    Article  CAS  PubMed  Google Scholar 

  43. Lai R, Weiss LM, Chang KL, Arber DA . Frequency of CD43 expression in non-Hodgkin lymphoma. A survey of 742 cases and further characterization of rare CD43+ follicular lymphomas. Am J Clin Pathol 1999; 111: 488–494.

    Article  CAS  PubMed  Google Scholar 

  44. Jung G, Eisenmann JC, Thiebault S, Henon P . Cell surface CD43 determination improves diagnostic precision in late B-cell diseases. Br J Haematol 2003; 120: 496–499.

    Article  PubMed  Google Scholar 

  45. Deneys V, Michaux L, Leveugle P, Mazzon A-M, Gillis E, Ferrant A et al. Atypical lymphocytic leukemia and mantle cell lymphoma immunologically very close: flow cytometric distinction by the use of CD20 and CD54 expression. Leukemia 2001; 15: 1458–1465.

    Article  CAS  PubMed  Google Scholar 

  46. Bomberger C, Singh-Jairam M, Rodey G, Guerriero A, Yeager AM, Fleming WH et al. Lymphoid reconstitution after autologous PBSC transplantation with FACS-sorted CD34+ hematopoietic progenitors. Blood 1998; 91: 2588–2600.

    CAS  PubMed  Google Scholar 

  47. Garcia Vela J, Delgado I, Benito L, Monteserin M, Garcia Alonso L, Somolinos N et al. CD79b expression in B cell chronic lymphocytic leukemia: its implication for minimal residual disease detection. Leukemia 1999; 13: 1501–1505.

    Article  CAS  PubMed  Google Scholar 

  48. Gratama JW, Orfao A, Barnett D, Brando B, Huber A, Janossy G et al. Flow cytometric enumeration of CD34+ hematopoietic stem and progenitor cells. Cytometry 1998; 34: 128–142.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the German CLL Study Group (DCLLSG; chairman Professor Michael Hallek) and the contributing centers taking care of patients being enrolled in this study.

We also thank Elke Harbst, Karin Brune, Christa Waubke, Daniela Krüss, Alexandra Lange, and Christian Bretscher for excellent technical assistance. This study was supported by ‘Deutsche José Carreras Leukämie-Stiftung e.V.’ (LR02/18, R16) and by ‘Fresenius Stiftung’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Böttcher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böttcher, S., Ritgen, M., Pott, C. et al. Comparative analysis of minimal residual disease detection using four-color flow cytometry, consensus IgH-PCR, and quantitative IgH PCR in CLL after allogeneic and autologous stem cell transplantation. Leukemia 18, 1637–1645 (2004). https://doi.org/10.1038/sj.leu.2403478

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403478

Keywords

This article is cited by

Search

Quick links