
hlPF-

Reference Manual 



PF-i/88 
Reference Manual . 



Table of Contents 

Chapter 1 How to Use Interrupt Service Subroutines 
Chapter 2 MPF·I / 88 System Reset 
Chapter 3 I/ O Programming 
Chapter 4 MPF·I / 88 Circuit Description 
Chapter 5 Description of I/ O Device Drivers 

5 .1 Cassette O utpu t Device Driver 5-1 
5. 2 Cassette Input Device Driver 5- 9 

5 .3 RS-232-C In terface Driver 5 - 13 
5.4 LCD Driver 5-24 

5.5 Audio Inte rface Driver 5- 55 
5.6 Keyboard Driver 5- 58 

Appendix A Introduction to 8088 Assembly Language 
Instruction Set - with Examples 

1. Data Transf e r Instructions A-l 
2. Arithmetic Instructio ns A- 9 

3. logical Instructions A- l S 

4. String.Manipulatio n Instruction s A- 28 
5. Transfer -af-Contro l Inst ructi ons "'-34 

6 . Processor-Co ntrol Instructio ns A- 46 

Appendix B Schematic Diagrams 
Appendix C Date Sheet of LCD 
Appendix D References 

1 



Preface 

The MPF - I/88 is designed as a teaching aid for you to practisi ng 
8088 assembly language pr og ramming. with the MPF- I /88 , you can 
wr ite 8088 ass embly language p r ogram s and test the p r og r ams. You 
can even develop your o wn microcomputer system based o n the MPF-
1/88 . 

The MPF- I/88 can be used by a 'pr og rammer , who is alr eady famil i ar 
with basic computer concepts and assembly lang uage programming 
yet intene s to learn programming a 16 - bi t mi c r opr ocesso r s uch as 
8088 . However , thi s learning kit can also be used by a beginner , · 
who has no computer backgr ound and has never used a mic r ocomputer 
before, to lea rn some bas ic computer concepts and assembly 
la ngua ge prog r amm ing . 

As you read th is manual, it i s as sumed that you h ave f inished 
reading MPF - I/88 User ' s Manual a nd has run the sample program 
p resented in that manual . 

The MPF - I/88 Refer ence Manual p r ov id es the information you need 
to understa nd t h e internal o per a ti ons in more detail , a nd thus , 
t o use the system more flexib l y . 

Chap ter 1 descr i bes how to use 
suppo r ted by the monitor program 

the in te rrupt 
of the system . 

ser vice rout ines 

Ch ap t er 2 gives a closer look of the operat i ons perf o rmed d uri ng 
a cold o r warm sys tem reset. 

Ch apte r 3 introduces i nput/output p r ogrammi ng conc ep t s . 

Chapter 4 gives a c irc ui t description of the MPF- I /88 . 

Chapter 5 descr ibe s how i/o device drivers f or t he MPF - I /88 were 
desig ned a nd the ir func ti ons . This chapter guides y ou to r ead the 
the MPF -I /88 Monitor Program Source Listing and teaches you s ome 
p r og ram tracing techniques. You need to r e f e r to t h e Mo ni to r 
Pr og ram Source L i sting and some exampl e programs while read ing 
this chapter. 

Chapte r 5 also int r oduces to you some of t h e fr equen tly used 
Ma c ro Assembler directives sup ported by MS - DOS Macro Assemb l er of 
Microsoft , whi ch wa s use d for the development of the MPF - I/88 
moni t o r program. 

2 



Appendix A is des i gned for those who are not familiar with the 
8088 assembly language instruction set. Explanation is provided 
for each individual instruction. Some simple but useful examples 
are given so that you may get a quick lesson of the instruction 
set and how each instructi on is used. For the beginners who is 
not familiar with the 8088 instruction set, it would be better to 
begin with Appendix. A. Although that appendix is valuable , you 
should not re ly totally on Appendix A as a comprehens ive hard
ware /software tutorial. You need to refer to other d oc umentations 
in order t o get a thorough understanding of the 8088 
mic roprocessor. 

Appendix 0 provides a l ist of 
referenced as you learn to program 

3 

the books which should 
the 8088 ' microprocessor. 

be 



0: a .!! 

, 

I!~ j.J iJ 

How to Use Interrupt 
Subroutines 



A set of usefu l inter rupt subrout i nes are bui lt in the MPF- I /88 
mon i tor program . Each of these subr ou tines performs a pre - d e fined 
functi o n such as retu rn ing control to the monitor program , 
i nputti ng a c haracter fr om the c u rrent c'onsole , generating a 
beep sou nd , or outputting a character t o the cons ole , e t c . You 
c an refer to a n i ndividual ch~p te r in the MPF- I /88 User ' s Guide 
for a deta iled des l":ription of t he funct i ons performed by t hese 
use ful subroutines . . 

sometimes you may wish to per.f:I)( ,n d spec i fic subr ou tine f unct i on 
wi thin your prog r am . In this case , the r e i s no need to wr ite all 
the instructi o ns com prising the i nterr upt service sub rou t ine . You 
can simply use an INT i n s t ruc tion in your program to invoke th e 
desired subroutine . 

To use the ~ n te r r upt se r v i ce s ubr out ines, yo u must first read the 
chapter on useful su b routin es in the MPF- I/88 User ' s Gu i de. Some 
subrouti nes call s f or the us er t o suppl y a va1ue (it i s sometimes 
re fer r ed t o as i nput parameter) to ' the appropriate r e g i ste r or 
regi s ters , while othe rs r equi re no i nput paraluete r s . Afte r the 
selected sub r ou tine is exec uted , some suqr ou ti nes will return a 
value to the appr opr iate reg i ste r (s) . The c ontents of some 
registers wil l be affec ted afte r the e xecutio n of some in ter rupt 
su brout ine. Al l o f such i nformat i on i s descr i bed in detail in 
t hat chapter. 

If the i n t e rrupt serv ice subroutine you i n tend to use r equi r es 
that i npu t parameters be loaded i nto the appropri ate regi ster (s) , 
t hen you have to load the reg is t e r ( s) to be used by t he inte rr up t 
sevice subro u tine acco rding ly p r ior t o using the INT instr uc ti on 
to i nvo ke t he s ervice subrout i n e . Wh e n the execution of an 
inter rupt s erv ice subroutine a ffects the conte nt s of r eg i ster {s) , 
you should save the value of the r egis t e r s whose va l ue is to be 
af f ected by t he e xecution o f the inte rru pt ser v i ce subro ut i ne 
before using the IN T ins truct ion. 

1 - 1 



:I 

~~~ ::l 

, 

II 

--

... 
~~ 

MPF·I/88 System 
Reset 



The following is a brief description of the tasks performed 
during system reset. The MPF-I/88 performs a cold reset (cold 
start) when power is turned on. A warm start is performed when 
the RESET key is pressed. 

Duri ng a cold start, t~e system performs the following tasks: 

1. Display the sign-on message "MPF-I/88", and the version number 
of thp monitor program. 

2. Perform a RAM test. 
3 . Perfo rm a ROM checksum test. 

COLD START 

Whe n power is first applied to the system, the CPU wil l beg in 
executing the monitor program starting from physical address 
FFFF9H. This 20-bit actual address is calculated by adding the 
segment address FFFFH and the effective address 0H in the 
fol lo wing way. 

FFFFX 
+ 00130 

---> Code segment address 
---> Effective address 

FFFF0 ---> Actual address 

Note that the segment address is first shifted left four bits for 
ca lculating the actual address. While the segment address is 
left-shifted, zeroes are shifted into the four least significant 
bits to form a 20-bit segment address. 

Since only 16 bytes of memory are available between memory loca
tions FFFFi3H and FFFFFH ( not enough for a large program), a jump
to-FC003H instruction is executed as t he first instruction of the 
monitor program. Then the monitor program will determine whethe r 
a cold start or a warm start is to be performed. 

RAM Test 

In case a cold start is t o be performed, the RAM test wi l l be 
performed first. The RAM test routine will write the two word 
patterns "5555" and "AAAA" into each memory word and read back 
the contents. If the contents of the memory word read match what 
was written into that memory word, the RAM check routine will 
continue to check the next wo rd. If a mismatch is found, then the 
RAM may contain bad storage cells and the routine will display an 
error message, 

2-1 



Note that the 
If the system 
memory space, 
checked. 

RAM test routine checks contiguous memory space. 
RAM is not configured to reside in contiguous 

then only the low order memory range will be 

ROM Checksum Test 

For the ROM checksum test, the contents of memory words are added 
together to form a checksum whi ch is stored in a memory word. I f 
the value of the l ow order byte of the memory word is zero, then 
we ~ssume the ROM is tested O.K. Other wi se , an error message will 
be displayed. 

The ROM checksum routine works in a much more complica t ed manner 
than the RAM test routine. The complexity of the software design 
of the ROM checksum routine is due to cons idera tions aiming at 
making the system flexible for future system expansion. Before 
describing the programming log ic of the ROM checksum routine, we 
wi ll describe the possible ROM mappings. 

The standard MPF-I/88 is built with one 27128 with a 16 K memory 
space. Th~ memory space in such a configuration is illustrated 
as fo l lo ws. ROM0 is the one with memo ry address starting from 
C~00H through FFFFH. The segment address assigned to ROM0 is 
F000H. 

ROM~ 
FFFF 

E000 
DFFF 

C000 

••• 
Although 
checksum 
can also 

8K 

8K 

ROM Memory Map • •• 
one 27128 is used a s ROM 
routine treats the system 

be inserted as ROMs on the 

chip on the system, the ROM 
in such a way that two 2764s 
system board. 

A flowchart is illustrated as follows for 
routine. 

t he ROM checksum 

2-2 



Yes 

Display 
e rr or 

message 

2 7 64 
o r 27128 

F 900 : C000 '" MT0? >---------, 

Check 
'i.e!'; ROMi 

Check ROM 

Error 

Check 

Error ? 

No 
Display er r or 

message 

No 

2- 3 

ROM2 exist? 
F000 : 8000: MT0 ? 

Yes 

Yes 
Er ror? 

No 

Check Expansion 
Ca r d 



The ROM checksum routine starts by checking if t he ROM chips on 
the system board "are 2764 ROM ch i ps or 27128 ROM chips . A three
byte ROM i dentif i e r is stored in t he first three bytes of each 
ROM . The first two bytes are stored with the two characters 
MT -- which r epresents Multi tech .. When the ROM checksum routine 
detects the two charac ters , it dete rmines that the ROM is stored 
with the codes designed by Multitech . The th ird byte of a 
Multitech 's ROM is always filled with an ASC II characters in the 
range from 0 through 6 . The ROM che cksum rou t ine decodes t he 
three- byte ROM idenfif ier as follows : 

MT0 ~ ROM2 (in which MPF - I/8S 
ass embler are s tored . ) 
TVB - TV interface ROM 

line assembler and dis-

MTl 
MT2 = 
MT3 
MT4 = 

Auto-run ROM such as a BASIC interpreter . 
Printer 
ROM for 

interface ROM 
EPROM p r ogrammer board 

The ROM 
checking 
C000H are 
Otherwise , 
ROM . 

checksum routine d i st inguish es a 276 4 and 27128 by 
if the co nten ts of the first three b yt es starting from 
MTkl . If i t is , then 27128 i s used as the monito"r ROM. 

the routine assumes that 27645 are used as t he moni t or 

I f a 27128 is detected, the routine wi ll proceed to pe r fo r m the 
actual ROM testi ng procedure . If an error is detected, i t will 
display the error message. Otherwise , it wi ll proceed to perform 
the expan sion card test . 

If a 2764 i s detected , the routine wil l proceed to perform th e 
actual ROM testing procedure by c hecking ROMI f ir st . If an e rror 
is detected , it wi ll display t he error message and proceed to 
detect whether ROM2 exists . It determines whether ROM2 is 
inserted by checking whether t he contents of the fir st t hree 
bytes starti ng from S~kl0H are MT0 . If it is , ROM 2 exists . Other
wis e , it wi ll proceed to perform t he expansion card test . If an 
er r or is detected duri ng ROM2 testing , it will display the error 
message and then pr oceed to perform the expansion card test . 

If a n er r or is detected during a RAM or ROM test , you 
suggested t o r eplace the defective RAM or ROM ch i p wi th a 
o ne . If you don ' t kno w h ow t o replace the l es , consult 
local distr i butor for servi ce . 

Expansion Card Tes t 

o r e 
good 
your 

Expans i on cards are assigned the segment address E0~0H. The 
expansion c ard test routine tests memo r y in 4K by tes increments. 
The first three bytes of the ROM module on an e xpan sion ca rd are 
stor ed with ROM i dentifier as mentioned before. 

when an expansion 
for that ca r d will 
t i o n r o utine i s 

card is detected , the initializat i on routine 
be executed . 'The address of the init i aliza
sto r ed starting from the fo ur t h byte on the 

2- 4 



expansion card . However , if an auto-run ROM is detected on the 
expansion card, ' the code stored in that auto-run ROM will be 
executed immediately . Thus, no initia lizat i on r outine is exe
cuted when an auto- run ROM is detected. 

Sinc e the initialization r outine starts with a CALL FAR instruc
tion, you must use a ' RET FAR ins truction s tarting from the fourth 
byte o n the expansion, card to skip the initializat i on routine if 
you intend to desi g n your own applications with an initialization 
ro u t ine. However , when designing your own applications, be ca r e
ful not to change the contents of the system stack . 

If auto-run ROMs are inserted on both the system board and the 
expansion ca r d , the one on the expansion ca rd is executed s ince 
i,t i s assigned wi th higher priority than the auto-run ROM on the 
system board. 

A cold reset cycle is completed when the cKpansion card test is 
finished . 

WARM START 

Dur ing a warm start , t he system performs the fol l owi ng ta sks : 

1. Create system vector table. 
2 . Create interrupt vecto r table. 
3. Initialize printer po r t . 
4. Ini tialize keyboard . 
5. Initialize RS-232 port - Baud rate 9600, two stop bit , 

parity check , seven-bit word length . 
6. Generate a beep sound . 
7 . Check if an AUTO - RUN ROM is inserted in the empty 

reserved for an AUTO - RUN ROM or on an expansion c~rd . 

AUTO - RUN ROM is present , th~ program contained in that 
RUN ROM executes automatically . 

even 

socket 
If an 

AUTO-

To return the con tro l t o t he mo n itor program , you can use the 
interrupt instruction INT 7. 

2-5 



I/O Programming 



l'his c hapter is a brief introduction to input/output programming 
on t he MPF-I /88 . . The in formatio n provided here allows you to 
gain some ideas on I/O device programming . The chapter on useful 
monitor subroutines gives you some information on using built - in 
service routines to perform a variety of I/O tasks , but c urious 
users and those developing special appli cations may be interested 
in writing their own. routines to pe rf orm I/O directly. 

If yo u do not i ntend to program the the I /O devices directly , 
th i s chapter can be skipped without harm. But as you get mo r e 
and more familiar with the hardware and software of 8088 , you may 
wan t to refer to th i s chapter . 

If you are in terested in I/O prog ramming, you should not rely 
t otally on th i s chapter to get fam i liar with I /O programming 
concep t s . The monitor p r ogram source li sti ng and the i nfo r mat i o n 
presented in the Software Reference M.anual are a lso very valuable 
sources of information . 

There is a wide variety of I/O devices on the MPF - I/88 . Some of 
the I/O devices such as the screen and the pri nter can be used 
for output only . Others such as the keyboard are capable of 
inputting data. Othe rs , such as the tape interfaces or serial 
interface , can both inpu t and output data. 

For a n I/O device to be functional , 
tions must be met : 

the three following condi-

1 ) An interface circuit must be available . An interface circuit 
is a communication line via which the I/O device can talk to 
the system . 

2) An I/O device driver must be ava i lable . A device driver is a 
program whi ch drives the I/O device so that the I /O device can 
interact with the system . 

3) The I/O device must be installed or loaded into system memory . 

If you intend to design your own I/O devices i n the futu r e , you 
may need to wr i te you r own dev ice dr i ver s . You may al so inc 1 ude 
a device driver in your own application program for a speci fi c 
application . The best way to learn I/O programmi n g is to trace 
the e xisting device driver programs instr uction by instruct ion. 
For the MPF-I/88 system , the device drivers are all included in 
the Monitor Program Sou r ce Listi ng . 

3- 1 



3.1 1/ 0 PORTS 

3. 1. 1 Memory-Mappe~ I/O 

There ar e tw o commo n ways to des i g n I/O support c ircuitry o n 
micr ocompu ters . Doe is that I/O devices may be memory-mapped . 
I /O devices may be accessed th r ough memory locations . In a 
computer s ystem, an I/O d ev ice is sa i d to be memory-mapped i f it 
is acc essed through memory locations . 

3.1.2 li D-Mapped I/ O 

A more common practice in compu te r d es ign is to use I /O ports f o r 
data transfer between the system a nd e xternal devices . Each I/O 
devi ce configured in a system is assi gne d with a specifi c I /O 
port a dd ress . The MPF - I /8a uses t his l a tte r met h od . When data is 
to be transferred to a device , the OUT instruct ion is used. When 
data is to be t r ansferred from a dev ice to the system , the IN 
instruction is used . 

3.2 1/ 0 Port Addresses 

The I/O por t addresses ass igned to I/O dev ice s atta c hed to the 
MPF-I /88 are li sted as f ollows: 

LCD : 

Command 
Da ta 

Printer : 

Read 
lA2H 
lA3H 

wri te 
lA0H 
lA1H 

Prin t e r o utput data port: Port lE 0H 
Printer s trobe (STB ) : Bit 7 of port 189H 
BUSY (printer) : Bit 6 o f port l C0H . 

Keyboard : 

Keyboa rd a rray output: Bit 3 through Bit'" of port 180 H and bit 0 
thro ugh bi t 7 of p o rt 160». 

Keyboard a rray intpu t : Bit 0 through 4 of port lC0H . 
Control k e y : Bit 5 of port lC0H . 

TAPE - OUT (beep ) : Bit 6 of po rt 180H . 

TAPE-I N: Bit 7 port lC0 H. 

3-2 



3.3 The Printer Driver 

The printer driver is a routine which is designed to send data 
from the system to ·the printer. Data to be output to the printer 
is first sent to the printer port lE0H through AL register. The 
system will then test if the printer is busy by checking bit 6 of 
port IC0H. If the printer is not busy, data will then be sent to 
printer buffer . When a low (zero) is sensed on the STROBE line 
(bit 7 of 180H), data is sent from the printer buffer to the 
printer. 

When the printer routine is called , the system will first save 
the system status by pushing the contents of all registers onto 
the stack and then alter the contents of the Data Segment 
register so as to point to system data . After a data transfer 
has been completed between the system and the printer, the 
STROBE line will again be pulled high and the printer driver will 
return the result of a data transfer via the AH register . If a 
data transfer is performed successfully , then a zero will be 
returned to the AH register. If a data transfer is not performed 
successfully , then a one will be returned to the AH register. 

3.4 Programming the Display 

The LCD is programmed through four I/O ports - lA0H , lAlH , lA2H , 
and lA3H. When a command is to be written to the LCD , port lA0H 
is used . When a command read is to be performed , port lA2H is 
used. Data is output to the LCD via port lAlH, and input to the 
LCD via port lA3H . 

To program the LCD , you must refer to the data sheet of the LCD 
display , which is in an appendix , and the display driver, which 
is included in the MPF-I/88 Monitor Program Source List ing . The 
programming techniques for LCD is also explained in a chapter of 
the MPF- I/88 Reference Manual . 

3.5 Keyboard 

The keyboard matrix consists of 12 column lines and five row 
lines . The system scans the keyboard every 15 milliseconds . 
During a keyboard scan one of the 12 column lines connecting to 
the bit 0 through bit 3 of port 180H and 8 bits of I/O port 160H 
and is pulled low, while the other 11 column lines are high. When 
a key is pressed, a low pulse is sensed on one of the row lines 
and a code is sent to the system. Please refer to the keyboard 
matrix chart and a chapter of the MPF-I/88 Software Reference 
Manual . 

3.5. 1 The Control Key 

Bit 5 of o~ tput port lC0H is used by the Control key . When the 
Control key on the keyboard is pressed , this pin is active. 

3-3 



3.6 Audio Interface 

When data is to be transferr e d from th e system to tape , it is 
sent t hr ough b it 6 of o utput po rt 18eH us ing the OUT i n s tr uct i on . 
Output to the buzze r is a lso sent through this bi t. 

When 
b it 7 

da ta is t o be 
of input port 

3.6 .1 Tape Format 

read fr om tape 
lC0H us i ng the 

to 
IN 

system, it is 
instruction . 

se n t th rough 

Each ti me 
tape in a 

the system 
fi x e d tape 

writes data 
fo rma t . The 

t o tape , 
tape fo rmat 

d a t a is recorded onto 
is def ined be low : 

1) Leader t o ne : 256 co nsecutive bytes of 00 . 

2) Sync bit : 1 

3} Sync by t e : 016H 

4) Data : 256 bytes of data are stored as a block (data r eco rd). 

5) e Re bytes : Each 
Redu ndancy Check ) 

data block 
by t es . 

is fol l o wed b y tw o 

6) Ta ile r: The ta ile r cons i sts.of f our bytes . 

CRC (Cyclic 

The leader ton e is des i gned to act as a sig nal , enab l i ng the 
system o r t ape r ecorde r to detec t incoming da t a when data is to 
be transfer r e d. 

Th e sync (sho rt f o r synchronizat i o n ) bi t is someti mes refe rred 
The system outpu ts thi s 
case t he tape r ecorder) 

to as a fr am i ng b it o r star t- s t op bit . 
b it to te l l an exte rnal device ( i n t h is 
t hat a data transmi ssion is to occur . 

The sync byte is us ed as a data tr~n smiss ion protocol ; i. e ., when 
data i s read f r om ta pe to system , i f a co rr ect sync byte is read , 
the n da ta ca n be trans mitted to the sys t em . If the co r rect sync 
by te is not f ound , the inter fa ce dri ve r wi ll sea r ch fo r t he 
leader aga in. 

Data is sto r ed on tape a s a seri e s of 256 bytes of data r ecords. 
Each 256- byte data reco r d is f ol l owed by two eRe bytes . The eRe 
bytes ar e used f or c heck i ng er r o rs dur ing data transmission. The 
eRe bytes are wr itten onto tape after each data record when data 
i s stored onto tape . When dat a is r ead from tape to sy s t e m, th e 
sys tem wi ll generate t wo eRe bytes acco rding to the precedi ng 
data r eco r d read. Then the two eRe byte s so ge nerated wi l l be 
compare d with the eRe by t~s . If the conten ts of eRe by t es match, 
th is sig nals that a data record i s tr~nsmit t ed cor r ec t ly . 
Otherwi se , an err o r occurred d u r ing the data transmiss i on . 

3-4 



The t a iler ma r ks the end of a f i le . 

The MPF-I /88 t ape format is il l ustrated as follows : 

MPF" 1/ 88 TAPE F'OAMAT 

r,I ._I. d •• 
ISl byt •• 

"'" 

WI U M£OueE IWIn 
• by' •• ' 'IL ;~ __ 

5y~e "Y"e I by'" .1100 __ 

~i~ -:G:- 4 m~~~ '~~.;~r~ f' ~!:_~~~:: ' 
::~~m... - FF " 

I by . .. , 111. I.""th 

Sync Sync 
bit byte 
" '" "&1 6 11 

Pot. 
15' by'" 

,~ , 
". 

... !, 
• I 

,,<OJ 

The cassette interface d river also allows cassette tape on wh ich 
data i s s t ored i n IBM PC cassette t a pe f o r ma t t o be loaded i nt o 
system memo r y . The IBM tape fo r mat i s i l lustrated as f ollows : 

IBM PC TAPE FORMAT 

" 
Tai 11 ril .. lead • • Sync Sync D3,. co, Ua t a '" Da ta '" 256-bytu bit byte 

'" bytu 
, 156 byte. , 156 by .... , • I 

""I'" "0" fl611 ". byt" Y'''1 Byt"j 

" 
1) Leader: 256 consec utive bytes of FF " 

2) Sync bi t: 0' 

3) Sync byte : 016H 

4 ) Fi l ename : The f i lename is s t ored in eight bytes . 

5 ) F i lename de~imiter: One byte of fi l e name delim i ter - 0'0' is 
stored immediately foll o wing a f i lename . 

6) Starting address : Fou r by t es a r e used for s t o ring the s t a rting 
address of fi l e. The sta r ting addres s consis t s of two bytes 
for the segment address and t wo bytes for the offset addres s. 

5) File length The length o f a file is storeq i n two bytes . 

The data r eco r d on an I BM fo r matted tape i s also for me d by 256 
bytes , which is followed by two CRC bytes . 

3- 5 



MPF-1/88 Circuit 
Description 



This c hapter wil l give you a brief c ircuit desc ription of the 
MPF-I/88. After read ing this chapter , you will have some i deas o n 
how the hardware components fun ction in the system. For the 
read ers who are not interested in the hardware aspec ts of the 
system , t his chapter can be sk ipped . However , for the readers 
who are interested in the hardware and intend to expand the 
system for their own ' special applicat ions, this chapte r should be 
read thoroughly while tra cing the schemati cs. 

We will cover the functional components of the system in the 
f ollowi ng order : 

1 . The CPU and its support circuitry, including 
1) System tim ing circuit , 
2) Sys t em wait logic , 
3) System reset circu it , 
4) Interrupt log i c , 
5) Bus buffer , 
6) Memory and I/O dev i ce decoders . 

2. System memory , 

3 . Input/Output interface logic . 

THE CPU AND I TS SUP PORT ING LOG I CS 

1) System Timing Circu i t 

The sys tem timing ci rcu it consists of a 14 . 318 MHz c rystal 
osci l lato r and the 74LSe4 at boa rd location U4 . A frequency of 
14 . 318 MHz is generated at pin 2 of U4 . This sig nal is divided 
by three to obtain a frequency of 4 . 77 MHz at pin 3 after going 
throu gh the div i de - by- three ci rcui .t at u10 . The cloc k frequency 
of 4.77 MHz is supplied to pin 19 of U3 (the CPU) as system 
c lock and the 62- pin expansion slot (EXT- BUS) . 

2) wait Logi c 

The wait state logic is necessary to pull the READY input (pin 
22) of 8088 low ~hile the system is performing an I/O read or 
write. The wait state logic consists of the ICs on US, U6 , U9, 
U13 , and u14. When the system (CPU) is going to pe rform an I/O 

4 - 1 



read or wri te , the outputs of 8088 ' s ~ (p in 32) and ~ (pin 29) 
will be ANDed at the AND gate at U6 , whose output wil l then be 
sent t o pin 1 of the dual 2 t o 4 line decode r at u14 . Since t he 
8088 ' s IO/M output (pin 28) is sent to pin 2 of U14 , pin 4, 5 , 6 , 
7 of u14 will generate one of such signa ls as MEMR , lOR , MEMW , 
l OW depending on the states of the two inputs of pin 1 a nd p i n 2. 
The signal l ines of MEMR , l OR , MEMW , lOW are connected to the 
p ins B12 , B14, Bll , and B13 of EXT-BUS through the octal bus 
dr i ve r 7 4LS244 at U13. 

lOR and lOW , after goi ng through EXT - BUS , wi ll again be ANDed at 
U6 and output from pin 3 of u6 to pin 13 of U5 (a quad 2 i nput OR 
ga te) . The output of the OR gate will be suppli ed to the READY 
input of 8088 (pin 22) through a dual D type flip flop 74LS74 at 
U9 in order to generate a wait cycle . (Note that the input to pin 
11 of U9 i s supplied by pin 2 of u10 so that t he negative por ti on 
of a system cloc k cycle can be used for system synchron izat i o n. ) 
In case a l onger period of wait s t ate is needed by a per i phera l 
device , a low pulse can be sent t hr ough line A10 I/O CHANNEL 
READY of the EXT -8 US t o pi n 13 of U9 to insert extra wait sta t es . 

3) sys tem Reset Circu it 

The RE SET signal is first sent to the system reset c i rcuit at pin 
I of U8 (74LS14 - a he x inve rter Schmi tt Trigger) from the 
keyboard . After the RESET signal is squared up by the Schmitt 
Trigger , it is supplied through pin 3 (of the Schmitt Trigger ) to 
pin 21 of t he CPU to i nitialize a system r eset cyc l e. The RESET 
signal is also present t o line B2 of t he EXT- 8US . Pi n 4 of the 
Schm i tt Trigger is connected t o p in 1 of U21 and U22 (octa l 0 
type fl i p flop with clea r) to clea r the contents of the fl i p 
flop . 

4) Interrupt Logic 

An i n t errupt request generated by a peripheral device is first 
sent t o the CPU th r o ugh line 88 of EXT - 8US to p i n 13 of U8 . I t 
i s t he n sent to I NTR (pin 18 of 8088) through p i n 11 of U4 ( a hex 
inverte r ) . After the INTR sig nal i s accep t ed by the 8088 , i t 
wil l generate a n in terr upt acknowledge ( I NTA) , a l ow active 
pulse . The low pulse is sent to the interrupting device through 
line 85 of the EXT-BUS . 

Users can apply a shorting plug (close jumper) at JP2 i n order to 
route in terrupt requests from IRQ2, IRQ3 , IRQ4 , and IRQ7 to the 
8088 . We will desc ribe how to route i n t e rr upt requests to the 
8088 later . Note the close jumper is provided in a standa rd MPF-
1/88. package . It is illuatrated as f ollows: 

4 - 2 



• 
Diagram of a Close Jumper 

If you have a n adap t er card such as the IBM Parallel Printer 
Adapter (which uses IRQ7 to in ter rupt the 8088) , you ca n p lug 
thi s adapter ca r d into the opt i onal expansion uni t (or a 62-pin H 
connector which you can solder to the position reserved fo r i t on 
the main PC board) and app ly the shorting plug t o r oute I RQ7 to 
BeSS . Note that the shorting plug is applied to the desi r ed pai r 
of pi ns as i l l ustrated i n t h e following c hart. 

", 
(I R02 1 1 0 0 
(IRQJ) 2 0 0 

(IRQ4) J 0 0 

( IRQ7 ) 4 @]]] 

'fa C PU INTR 

The hard ware design of MPF-I /88 al l ows the a25~ programmable 
Interrupt Controller t o be u sed to handle interrupt p rocessing . 
I f you in tend to use an 8259 to handle interrupt processing with 
the system , the sho rting plug i s applied t o JP2 in a differen t 
way . 

4- 3 



Take for example that an adapter card using -IRQ2 to interrup t the 
8088 is to be used toge t her with the 8259 interrupt controller. 
You can plug this adapter card into the optional expansio n unit 
(or an on- boa rd 62- pin H connector insta lled on the main PC 
boa r d by yourself). And then plug the 8259 card into the expan
sion un i t. 

Afte r you have config ur ed the system this way , the close jumper 
c.an be applied to JP2 as follows. Note that when a n 8259 is used 
in the system, the close jumper should only be applied to any tw o 
of the four pins on the ri ght column , and 8259 pin 17 (INT) is 
connected to pin 88 (INTR) of the expa nsion unit . 

JP2 

(IRQ2)1 o 0 

1 TO 

(IRQ3) 2 o 0 
CPU INTR 

(IRQ4) 3 o~ (IRQ7)4 o 0 

4-4 



5) Bus Buffer 

The bus buffer consists of ul (74LS373 - octa l tra nsparent 
latch), U2 (74LS244 - octal tri - state bus driver) , Ull (74LS373) , 
U12 (74LS245 - octal tri - state bus transceiver) , and U13 
(74L5244) . The 74LS373 at Ul is used as a latch for the high 
order address/status lines A16/S3 , A17/S4, A18/S5 , A19/56, DT/R, 
550 , and IO/M. The 74LS244 at U2 serves as a bus dri ve r for the 
eight address lines 'A8 through A15 . Th e 74LS373 at Ull acts as a 
latch f or the eight multiplexed address/data lines AD0 through 
AD7. Because the system uses multiplexed bus con figuration , pin 
25 of 8088 (ALE - Address Latch Enable) is connected to the clock 
inputs (pin 11) of the two latches at board location ul and Ull 
t h rough pi n 13 of the bus driver at u13 . With the ALE line 
connecting to the two address latches at Ul and Ul l, valid ad
dress can be latched at the first T state of a bus cycle as soon 
as the ALE signa l i s pulled high . P i n 3 , 8 , and 18 of u1 are 
connec ted to IO/M, DT/R , and SS0; since t h ey ~ re combined to 
r eflect the state of system bus c yc les . They also determi ne the 
state of the red LED , which is illuminated when t he system is in 
a HALT s ta te . 

6 ) Memory and I /O Device Decoders 

a . The ROM/RAM Decoder 

The 74LS139 (dual 2 to 4 line decoder) at U14 , 74LS138 (3 
t o 8 line decoder) at U7 , and the 74LS138s a t U16 and U1 5 
are used as memory and I/O device decoders. The line 
decoder at ~ is the RAM/ROM decoder. Pins 13 and 14 of 
the l ine decoder , together wi th pi n 6 o f U6 , dete rmi ne 
whether ROM o r RAM is t o be selected . 

b. The ROM Decoder 

The ROM decode r i s located at U7. Pins 3 and 6 (address 
lines A16 and A17) , pins 1 and 2 (A14 and AI 5) , and p i n 5 
of the ROM decode r dete rm i ne the states of the thr ee out 
p u ts Y5 , Y6 , a nd Y7 (pins 7 , 9 , and 10) of U7 , wh ich in 
turn govern which ROM chip is selected . Either two 8K x 8 
or 16K x 8 ROM chips can be used as system ROM. The 
standard MPF-I/88 is built with one 16K x 8 ROM ch i ps . 
Thus , the standard MPF - I/88 has a total memory capacity of 
16K . 

If A16 = 1, A15 = 0 and A14 = 1 , then Y5 i s p~lled low. 
When Y5 i s pulled low, the ROM chip i nstalled at u20 is 
enabled . The star t ing add r ess o f this ROM c hi p is F4000 . 

If A16 = 
When Y6 
enab led . 

1 , A15 = 1 and A14 = 
is pulled lo w, the 

The sta r ting address 

4- 5 

0 , then Y6 is pulled low . 
ROM chip ins t alled at U19 
of this ROM ch i p is F8000 . 

is 



If A16 = 1 , AlS = 1 a nd A14 = 1, then Y7 is pulled low . 
When Y7 "is pulled low, the ROM c hip installed at U18 is 
enabled . The start ing address o~ this ROM c hip is FC~~0 . 

c . The RAM Decoder 

The RAM decoder is located at U16 . The state of pin 4 of 
U16 is determine d by A16 and A1 7 . The s"tate of pin 5 of "U16 
i s determined by Al3 and A14 . The outputs of Ul6 , Y0 , YI, 
and Y2 - are determi ned by pins 4 , 5 , 2 (AI2) , 1 (A ll ) , and 
3 (A15) . Either 2K x 8 o r 8K x S RAM can be us ed as sys t em 
RAM. If 2K RAM is used , the RAM decoding is shown as 
follows : 

I f zero i s present o n Al5 , 
i s se l ected . In thi s case , 
selected is 00000 . 

A14 , AU , A12 , and All , then Y0 
the s tarting add ress of the RAM 

If zero is presen t on A15 , Al4 , Al3 , and Al2 but with All = 
I , then YI is selected. I n thi s case , the starting address 
of the RAM selected i s 00800. 

If Al5 = 0, A14 = 0, A13 = 0, A12 = 1 and All = 0 , then Y2 
is selected . In this case , the starting address of the RAM 
selected is 01000 . 

If 8K RAM i s used , the RAM decodi ng , i s shown as follows : 

If Al5 = 0 , 
this case , 
~0909. 

AI' 
the 

0 , and Al3 E 0 , the n Y0 is 
sta rting address of the RAM 

selected. 
selected 

In 
is 

If A15 = 0 , A14 = 0 , A13 = 1 , t hen YI i s selected . In t his 
case , the starting address of the RAM selected is 02000 . 

If A15 = . , A14 = I, and AU = . , then Y2 is sel ec t ed . In 
this case , t he starti ng address of the RAM se l ected i s 
04900 . 

If 8K RAM is used , JP3 and JP' should be re-routed as 
follows : 

JP' JP3 
2K x 8 Closed Ope n 
8K x 8 o en Closed 

d . The I/O Decoder 

The 1/0 dec oder is located at U15 . Pins .......!.L 2 , 3 (AS 
thr ough A7) , 4, 6 (AS , A9), and 5 (lOR or lOW) o f the I/O 
d ecoder are used to determ i ne the I/O d eCOding. Devices 
a ccessed through U15 are: 1) the display (I/O port address 
lA9), 2) t h e keyboard ( I /O addresses 160 , 180 , and l C9 ) , 3) 

' -6 



the printer (I/O add.ress lE0), and 4) the audio 
(I/O addres?es 180 and le0). When an I/O port is 
the corresponding output of the decoder (Y3 , Y4 , 
Y7) is activated. 

SYSTEM MEMORY 

interface 
selected, 

Y5, Y6 , 

The system ROM chips a r e located at U18 , U19 , and U20 , while the 
RAM chips are located at U23 , U24 , and U2S . Either 8K or 16K 
ROMs can be installed at locations U18, U19 , and U20 . Either 2K 
or 8K RAMs can be i nstalled at locations U23 , U24, and U25 . 
Jumper wires should be applied to 07 or U16 in order to select 
the type of RAM chip used . 

INPUT/OUTPUT INTERFACE LOGIC 

The outputs of U15 (Y3 through Y7) determine exactly which I/O 
port is accessed . U21 and 022 are used as the la tches for 
keyboard output data , while u26 is used as the driver ~or 
keyboard and tape input data . u27 a nd U8 are used for processing 
input signalS from the Tape. Tape output signals are sent 
out from the output of U21 (pi n 5). This pin also determines the 
state of the buzzer and the green LED. 

Pin 3 of u28 (555) generates a 15 ms clock as the source signal 
for NMI. Pin 4 of U9 is programmable . It can be strapped low 
to disable an NMI request from pin 4 of u9 when it i s desired 
that an NM I from this pin not to be generated. 

U17 is used as a la t ch for pr in ter output data. 

The 7805 is a voltage regulator that conve.rts +9V input to +5V 
output . The +5V voltage needs to be supplied to the system for 
proper operation . A switching power supply must be used to supply 
the needed power when expansion card is to be installed to the 
system. 

U21 p i n 9 
for disable NM I 

rt<J~ 
100K -+10•11, 

- 4 

3 2 PR 
D 

555 U9 

r CK 

AO 

4-7 

Q 
6 

NMI 



Description of 1/0 
Device Drivers 



5.1 Cassette Output Device Driver 

without a device dr i ver f or writing data to tape , you have n o way 
to store data onto tape even if the hardware ci rcui t supports an 
audio output iote"tface . 

Before discussing the tape write device driver , we will descr i be 
the relationship between the tape write device driver and the 
command interprete r, which will affect t h e way t he device driver 
executes . 

COMMAND INTERPRET ER 

The MPF - I/88 monitor pr ogram contains a comma nd interpreter, 
whi ch prepares a user - entered monito r command in such a way that 
it becomes easier for the monitor t o pr ocess the entered command . 

A mon i to r command is always entered with the comma nd cha racte r . 
For example , if a tape write is to be performed , then the command 
character is W. Sometime s a co mm and is entered with add resses and 
user - specified informatio n. For ex ampL e , if you intend to wr ite 
info rmation t o tape , the command line may appear as follows : 

>w 1 ~ 0:00 80 / ' TEST 

Once this command line is entered , the command interpreter will 
count the number of addresses contai ned in the command line and 
store t h i s n umber into CH . It will also coun t the number of 
bytes entered as user - specified info r mation and load the number 
into CL . In the above. example , the number of bytes is four since 
each of the characte r i n a filename takes o ne byte . 

Each time a monitor comma nd i s entered, the command i nterpreter 
will be called . When being called , the command interpreter will 
process the command line entered in the manner descr i bed above 
and then pass the necessary informa ti on of the command interpre
tation process and control to the individual monitor command f or 
further processing . 

SOME BAS IC MACRO ASSEMBLE R DIRECT I VES 

Before goi ng any furthe r to expla in the tape write device driver , 
it is necessary to pause for a while to study t h e Macro Assembler 
directives since the monitor program was assembled using Micro
soft's Macro Assembler . In orde r to trace the monitor prog ram 
thoroughly, you must be familiar with t h e use of the Macro 
Assembler. 

Th e PROC Assembl er Direct i ve 

The tape 
Assembler 

output drive r W CMD begi ns with 
directive PROC (short for procedure) 

5-1 

the MS - DOS 
The PROC 

Macro 
d irec-



tive is used to make the program more readable to users. Du ring 
program assemb:).y time , it tells the assembler· t hat a whole PROC 
bloc k is to follow . In other words, a block of assembly p r og ram 
instructions wil l follo w the PROC assembler directive. A PROC is 
executed f r om a CALL or JM P instruction . For mo r e details of the 
MS - DOS assembler direct i ves , you can refe r to Microsoft's Mac r o 
Assembler Manual. If you do n' t have that manua l , cons u l t your 
MPF- I/88 dis tri butor for i n f orma ti o n on how to purchase that 
manual. 

The W CMD procedure contains the following important procedures : 

FILE WRITE 
TAPE WRITE 
WRITE 1 BYTE 
WR I TE-I-BIT 

Write MPF- I/88 tape format to tape . 
Write IBM PC tape format to tape . 
Write one byte to tape . 
Write one bit to tape . 

The functio ns o f these procedures wi ll be explained later. Af t er 
reading the descript i ons of these procedures , yo u are s uggested 
to trace these procedu r es instr uc ti on by inst r uction. Tracing a 
prog r am is the best way t o learn programm ing. 

Now you are suggested to find the W CMD procedure in the MPF-I /88 
Monitor Program Source Listing . To get to kn ow ho w to read the 
mo n itor source program , you need to refer t o the Microsoft ' s MS 
DOS Operating System Macro Assembler Manual and Microsoft's 
CrOSS - Refere nce Utility f or MS - DOS Operat ing System. If you do 
not know how to get these two manuals , please consult you r MPF-
1/88 distributor . Bu t even if you do not ha ve th e two manuals at 
hand, we wi l l still teach you how to read the mon i tor source 
program . 

~o find the W CMD procedure , you need to use the cross reference 
sect i on of the monitor sour ce program list ing . The first page of 
the monitor source prog r am listing comes under the heading 

The Microsoft MACRO Assembler , Version 1 . 25 Page 1- 1 

That message says t hat the monito r source program was assembled 
using r-lic r osoft ' s MACRO Assembler , Vers ion 1.25. Si nce the re are 
seve r al d i ffe r en t versions for the Mac r o Assembler , it is 
impo rta nt to note the version number in order to distinguish 
among different versions . Page number is printed t oge ther with 
the heading o n each page for easy reference . What comes on the 
next l in e following the heading i s the date it t ells when the 
monitor source program was assembled . A general p r act i ce is that 
a monitor program will have to be assembled for many times be f ore 
it is finally released . From the program l isting of the MPF- I/88 
monitor program , you will kn o w that the current r elease of the 
monitor program is ba sed on the source program which was 
assembled o n Jan . 17 , 1985 . Sometimes it is poss i ble fo r a 
compa ny to upgrade the softwar e without pr i o r notice ._ 

5- 2 



SYMBOL TABLE 

Thumbing through the Inonitor source program listing, you will 
discover that there are 78 rages which a re p r inted under the same 
heading . Then you wi ll come across the part designated as the 
symbol table for the sour ce program you have just gone though . 
The symbol table lists all the symbols used in the program and 
gives such information as type, val ue , and attribute r elated to a 
symbol . please refer to Mi crosof t ' s Macro Assemble r Manual for 
details . The symbol table c omes under the heading: 

The Microsoft MACRO Assembler , Version 1 . 25 Page symbols-l 

You will fi nd that the"re are a total of 14 pages of symbol table . 

CROSS REFERE NCE 

Then comes the cross refe r ence sectio n which is printed under the 
headi ng : 

Symbol Cro ss Refe rence (i is def initi o n) Cref- l 

You will find that there are a total of 
refe r ence. 

14 pages of cross 

The most eff i cient way t o find a routine in the source prog r am 
such as W CMD is to use the c ross r eference . The e n tri es in the 
cross reterence sectio n are listed alphabet i cal ly . To find the 
location of the procedure W CMD , you should go th r oug h the 
entries until you found W CMD . On page 14 (C r ef - l4) yo u can 
locate the ent ry of W CMD . It is listed as follows : 

W CMD . .. •.•.•.•.••. • . • 2940# 2991 4083 

The three numbers fol lowing the procedure name W CMD are the line 
numbers aff ixed to each program line in the monitor source 
prog ram listing by the Macro Assembler . Note that each line of 
the monitor sour ce program listing is prefixed with a line 
number . The three numbers are where you can f i nd the name W CMD . 
The l ine number with a i s i gn is where the name W CMD is defIned . 
To find o ut how W CMD works , you should r efer to- line 294~ whi ch 
is located on pa ge 1-54 . 

The ASS UME Assembler Di r ec ti ve 

Following the CLI instructi on is the assembler directive ASSUME . 
This directive tells the Macro Assembler where (in whi ch seg ment) 
symbols ca n be referenced . In the tape ou tput driver program , 
symbols can be referenced through CS and OS r egiste r s . The code 
segment is po in ted to by CS register and the data segmen t is 

5- 3 



pointed to by the OS register . 

LABEL 

To output a bit from the system , you must first load the DX 
regi ster with the I/O port address (l80H) , which is specif ied by 
the label TAPE 10 OU T. A label is a name which is conver ted to 
an add r ess when the program is assembled by the assembler . A 
label i s usually the dest ination for a JMP , CALL , o r LOOP 
instruction . 

For more detailed def ini tion for LABEL and t he use of t he LABEL 
dir ective , please refer t o Microsoft ' s Macro Assembl er Manual . 

The W_ CMD procedure contains the follo wing labels : 

W CMD I 
W- CMD-2 

FI LE LEADER 
WRITE BLOCK 
WRITE-CRC BYTE 
WRITE TAIL ER 

When a program is too complex to trace, you are suggested to 
trace the labels first a nd then yo u will be ab l e to know the 
program logic , based on your understanding of labels and 
procedures . 

Now we are going to i nt r oduce to you some basics on the write- to 
tape dev i ce driver . 

Bit 6 of the o utput por t TAPE 10 OUT is the bi t from which data 
i s written o ut 

When information is to be outpu t from the system , bit 6 o f the 
port specified by TAPE 10 OUT is used to send out t he b it string . 

Disable Interrupt 

The DISABLE INT rout ine 
interrupt so that a tape 
by another event . 

OUTPUT A BI T 1 

c l ears the i n ter ru p t 
wr i te oper ation wi l l no t 

flag and NMI 
be inte r rupted 

When informati on is 
sisti ng of zeroes 
TAPE_ 10_OUT port. 

writ t en to tape , actually a bit string 
and ones are outpu t ser i ally f r om bit 

con-
6 of 

wh e n a one i s to be output, bit 6 of port l80H actually ou tputs a 
o ne ms (millisecond) pulse with a high 500 n s (nanosecond) half 
cycle and a low 500 ns half cycle . 

5-4 



OUTPUT A BIT 0 

When a zer o is to be output, bit 6 of port 180H act ually outputs 
a 0 . 5 ms (milli second) pulse with a high 250 ns (nanosecond) half 
c ycle and a low 250 ns half cycle . 

FUNCT IONAL DESCRIPTION OF TAPE OUTPUT DRIVER 

The f ollowing 
driver W CMD . 

is a functional descript i on of t he tape ou tpu t 

Afte r the command i nformation as p r ocessed by the comma nd inte r
preter is submit t ed to the individua l command, the i ndividual 
c ommand will ex amine if the comma nd is e ntered according to t he 
command syntax . I f it is entered acco rding to the command 
syntax , a CALL or JMP instruction will be executed to perform the 
des i r ed fun c t ions . I f not , the comma nd will set the Ca rry flag 
and a RET i nst ruc tion wi l l return prog r am cont r o l to the comma nd 
i nte rpreter , whi c h wil l then display the e r ror cod e te l l i ng the 
use r t hat the command en t e r ed i s not executable because of com
ma nd syntax e rror . No te that when an e rr or is d e t ected by the 
indiv i dual command , it -,Jil l always set the Ca rry flag to let the 
comma nd interpr e t e r know th at an error has occ ur red •. 

For the W CMD r o utine , it wi ll f ir st check if th e entered comma"nd 
foll ows the defined sy nta x of the comma nd . If not , an error 
message will be shown . The W CMD routine assu mes that a memo r y 
range wi ll be output to tape , - thus t he start ing address of the 
memo r y range should always be smalle r than the e nd ing address . 
I f the sta rt ing and ending addresses are entered other wise , then 
a range i ncorrect er r o r wi ll be displayed . 

FI LE_NAME_FILLER -- Fil ler Bytes 

Afte r W CM D has perfo rmed the command synta x and the me mory range 
chec ks, -it wil l chec k whether the le ngth of fil e name is less than 
e i ght characters . The l e ngth of a file name should never be 
greater than eight bytes (charac ters) . I f it i s greater than 
e i ght characte r s , t hen e rro r message wi ll be displayed by t he 
command inte rpr eter. If the f i lename length is less than e i ght 
c haracters , the W CHD r o u tine wi ll cont in ue by cal ling t he 
FILE NAME FI LLER. 

An a - byte memory s pace is r ese r ved fo r the c haracte rs whi ch make 
up the filename . If less than eight characters are used , FILE 
NAME FILLER wi ll fill the unu sed memor y space with the ASCII code 
fo r - the space c haracter l20 H) and e xecute a RET to the main 
prog ram t o execute W CMD 2 . W CI'-1D 2 will place the e nd of file 
name code (0A0H) t o the position immediately f o l lowing the memory 
space conta in ing t he f il ename . The r emaini ng instruct i ons of 
W CMD_2 a r e deSig ned to p ~epare a set of po i nters a nd counte r 
s uch as t he ES , 51 , and CX . The ES and SI are loaded wit h the 

5-5 



segment 
tively , 

and offset 
while eX "is 

add resses of the starting address, 
load ed with the value of fi l e leng th. 

FILE_ WR ITE -- writ i ng MPF- I/88 Tape Format t o Tape 

respec-

After loading tne pointers and c o un t er with appropr ia t e values , 
t h e tape output driver will write the MPF - I /88 tape format to 
tape . MPF- I/88 tape fo rma t is described below : 

MPF 1/88 TAPE FORMAT 

r" '_l.'d .. I·,"~ I · Y" ~ 
.. ~ £ ~>H.C£ OAtl ~o,,! • br" " ,,, ... _ 

':::7~.;~;·~:~ Fih_ lude< Sync Sync ~." <~j 0 0 " <~ol ,,. oyt.. bit br" '" hy '" , " . byt •• b~; ••• t, ' I 'r i ",. r·UH
' 

• br"" "''';''''1 256 bytu bi t byte 

!b
Y
'" , """1 .dd.. . .. I 'FF " 

" '" " &H H , 
u •. :oH •• , , 

I I I ' by ... : "10 !,no<h 
I , 

The MPF- I/88 tape fo rmat starts with a f i le leader. The fil e 
leader i s 256 consecutive bytes of zeroes . The file leader is 
designed to let the system know th a t a file is about to start 
when data i s to be read back to the system . Af ter wri ti ng the 
lead er t o tape, the tape output drive r wi ll wr i te a. sync b it 1 
and a sync byte l6H , wh i c h i s fo l lo wed by the fi lename , starting 
address of the memory range to be output , a nd file length , to 
tape . 

Wri ting a 0 . 2 Second Delay to Tape 

Since t he tape input device dr i ver is designed to be able to read 
information stored i n IBM Personal Computer t ape f orma t, the MPF-
1/88 tape output d ri ver wi ll also write the IBM PC t ape format to 
tape wi th the TAPE WRITE procedu re . Bu t before wr i ting the IBM PC 
tape format to tape , a 0 . 2 second delay is output to tape to 
separate the MPF- I/88 and IBM PC tape fo rmat. 

TAPE WR I TE -- Wr i t i ng Data Block to Tape 

After 
wi 11 

writing the 0 . 2 second delay, 
wri te data bl oc k to tape . 

th e t ape output device driver 

WRI TE BLOCK 

Th is block 
also called 
operation . 
WRITE 1 BIT 

of i nstructio n s (sometime s a bloc k of i nstruc t ions is 
a program module) performs the act ual data output 

It c a lls WRITE BYT~ , and WR I TE 1 BYTE i n turn calls 
i n order to output data to tape . 

WR I TE FI LLE R BYTE 

5- 6 



Data is wr itte n to tape i n units of 256 by t es . In other words, 
256 bytes form a data record . If the· data to be recorded un t o 
tape i s less than 256 bytes , the unused bytes a r e filled with 
filler bytes , which is meaningless to the system when they are 
read back from tape. Since one data record is insufficient f o r 
r ecord i ng the tape fo r mat , t he unused area o f the seco nd da t a 
reco r d i s filled wi th filler bytes. 

WR ITE 1 BIT a nd WR ITE 1 BYTE 

Data is written to tape one bit at a time . The data bit to be 
output i s first placed in the Carry flag and then output to bit 6 
of po rt TAPE 10 OUT . One byte of data is output by using the 
LOOP WRIT E ALL BIT instruction. 

WRI TE CRC BYTE 

When WRITE 1 BYTE is executed , the subrout ine eRC GEN (eRC byte 
gene r ator)-is called . CRC GEN i s called to generate the values 
to be placed i n the two eRc bytes. After 256 bytes have been 
outpu t to tape , WRITE eRC BYTE will write two CRC bytes to tape . 

WRITE TAILER 

After the whole memory range is output t o tape , 
will be output to tape by WRITE TAILER . The file 
of f our by t es of 1 . 

A CLOSER LOOK OF WRITE I BIT 

a file tailer 
tai ler cons i sts 

Although we assume that at this time you have cultiva ted the 
habit of tr acing the instructions of a program i n 
order to follow the logic flo w of a prog ram, we still feel you 
may be interest ed in some of the programming techniques applied 
to wr ite the tape output driver . We will tra ce the WRITE 1 BIT 
procedu re io more detail below . 

DI SPLA Y 250 

Afte r pUSHing CX and AX onto the system stack {This is for saving 
the values of CX and AX) for future use , since the values of 
these two registers will be altered i n the WRI'rJ:: 1 BI T proce
dure) , the value of the variabl e DISPLAY 250 (39 = ~7~) is l oaded 
into ex . This value a nd TUNING I (17 =- llH) make sure that when 
a ze r o is output , the pulse wave for a zero wil l consis t of a 
high 250 os half cycle and a low 250 ns half cycle ~s illustrated 
below : 



1 2$00\1 
r------, 

----+-~~----------, , , , 
Lll"'-J 

PULSE WA~E FOR A BIT ~ 

Note that 0C0H is loaded into AL in the first instruction of 
w BIT 0 . This value represents a bit pat tern of l 100~000 . This 
bTt pattern is then output to port TAPE 10 OUT which is add r essed 
by OX . Note b i ts 7 and 6 are both one at this time . Bit 6 is 
used to access the TAPE 10 OUT port. Bit 7 actually has nothing 
to do with tape output- drIve r. However , if bit 7 is set to 0 , 
then you won ' t be able to activate the pr i nter when you intend to 
access the printer later. This is because that bit 7 of port 180H 
is used for printer strobe . 

AL is ANDed with the value 0BFH in order t o set b it 6 of 
TAPE 10 OUT to zero . After bit 6 is set to zero as a result of 
the AND operation , the bit pattern 10111111 is ou tput to 
TAPE 10 OUT using the OUT instructi on . This begins the low 250 
ns half-cycl e of a zero pulse wave . 

The Carry Flag 

The instruction JNC W BIT 0 A in the WRITE 1 BIT procedure i s 
used to determine if a bi t "0 is to be outpu t-to tape . If it i s , 
program execution wi l l f l ow to W BIT 0 as we have just mentioned . 
If the carry f lag is set , then-a bTt 1 is to be outpu t to tape 
and W BIT 1 will be executed. Note that when a bit 1 is to be 
output t o tape , the time delay for the LOOP operation will be 
lengthened by adding DISPLAY 250 to TUNING 2 (61 : 3DH) . This is 
because a bit 1 takes a high 500 ns half cycle and a low 5~0 ns 
half cycle t o represent. The pulse wave for a bit 1 is illus
trated as follows : 

The values for DISPLAY 250, 
by summing up the execution 
a WRITE 1 BI T operat i on . 
calcu late these values as an 

TUNING 1 , a nd TUNING 2 are cacula ted 
time of each instruction involved in 
You can try to figure out ho w to 
exercise . 

5-8 



5.2 Cassette Input Device Driver 

l'iithout a device driver for reading data from tape, you have no 
way to access data which is stored on tape even i f the 
information was pre v iously stored on tape with a tape output 
(write-to- tape) device driver such as the one we have mentioned 
in the previous chapter. 

If y o u have already traced the instructions in the 
experiment, t h en the read-from-tape device driver to be 
wil l be easy for yo u to understand. 

previous 
discussed 

Instead of discussing the instcuctions one by one, we will study 
the device dri ver modularly. In other words, the mo nitor command 
R (or the R CMD procedure) is discussed according to the 
functions of each procedure used in the tape input device driver . 

The device driver allows you to read 
tape. However , i f you intend to 
format to the memory of MPF - I/88, 
enough amount of RAM f o r the program 

MPF- I/88 or IBM PC 
load a tape of IBM 
you must make sure 
to be loaded . 

formatted 
PC tape 

there is 

You are suggested t o read the chapter on I/O programming of this 
manual in order to get some basic I/O programming concepts before 
reading the follow i ng paragraphs any further. You are a l so 
suggested to trace the instructions of the procedures carefully 
as listed in MPF-I/88 Monitor Program So urce Listing in order to 
learn the art of 8G88 assembly language programming. Tracing a 
program can be one of the best ways to learn programming. 

After reading the chapter on I/O pr o gramming and open up 
MPF- I/88 Monitor Program Source Listing, you are ready to 
fu r ther. 

your 
read 

The device driver 
procedures: 

(procedure R_ CMDl contains the following 

FILE READ 
TAPE READ 
READ BLOCK 
READ- I BYTE 
READ-I- BIT 
READ HALF BIT 

A smart way to l earn programming is to trace a program modularly . 
You are suggested to try to figure out the function of each 
procedure and then the function of l abe l s contained in the R CMD 
procedure . 

If a procedure is too complex to trace , examine the functions of 
labels related to the procedure first and then you will have some 
ideas of how the procedur e works to complete a specific task . 
This is the kind of decipline that good programmers need. 

5- 9 



LABEL 

A label is a name that ser ves as the target o f LOOP , JUMP , and 
CALL instructions . In other words , a l abel is used as t he 
opera nd f or LOOP , JU MP, a nd CALL in struc tions. A label is 
assigned an add r ess by the assembler . A label is entered by the 
p r ogram i n the source p r ogram . After the source program has been 
assembled , labels are converted to addresses by the assembler . 
please refer to Microsoft's Macro Assemble r Manual for more 
details abo ut label . 

FUNCTIONAL DESCRIPTION OF THE TAPE-READ DEVICE DRIVER 

The following is a f uncti onal description of the t ape- r ead device 
driver. 

Check If a Command Line Is Entered Co rrectly 

To r ead data f r om tape , the tape i n put devi ce dri ve r first c heck s 
if the command line was entered without synta x error and whethe r 
a l egal filen am e was en t ered . 

As you may recall , the comma nd interpreter will submit some data 
to the R command (the read- from- tape devi ce d ri ver) . Th,~ C,l se is 
similar to the w command . In case a command l ine is ente red as 
follows : 

>R <addr> /< f ilename> 

The command interpreter wi ll 
entered in CH and the number 
file name i n CL. 

store the number 
of cha r acters whi ch 

of add resses 
make up the 

Two eMP instructions are used to c heck if the command line 
entered wi thou t synta x error and whether a legal filename 
entered . If an error is detected , the command inte rpre ter 
di spl ay the co rr esponding e rr o r code of that error . 

If the command line is entered correc tly , the device driver 
execute the FILE READ pr ocedure to fetch t he MPF-I/88 
leader , includ ing t he sync b it, sync byte , etc . 

s ince data is wr itten to tape in a p r e - de f ined tape forma t 
mentioned in the previous experiment and Chapter a , I/O 
gramming, of the MPF-I /88 Use r's Manual , data is read back 
the sys tem acco rding to the same tape format . Thus , after 
1/88 fi le leader has been r ead f r om tape , the device drive r 
execute procedu r e TAPE_READ to fetch the IBM PC tape leader . 

was 
was 

wi ll 

wi ll 
file 

as 
Pro
into 
MPF
will 

After the IBM PC f i le leader has been fetched , 
wi ll execute t he p r ocedure READ BLOCK to fetch 
reco rd and the accompanying e RC bytes . 

the device driver 
t he 256 - byte data 

5-10 



~fter all the data records and the accompanying CRC bytes hdve 
been read back to ' system memory, the device driver will exe'::Jt'~ 

procedure READ TAILER to fetch the four tailer bytes to complete 
the R CMD procedure . 

Unlike the W CMD Which writes to tape one bit at a time using 
procedure WRITE 1 BIT, the most critical procedure contained in 
the R CMD procedure is RE~D HALF BIT . 

A CLOSER LOOK OF READ HALF BIT 

The instruction IN AL, DX is used to read data f rom bi t 7 of input 
port TAPE 10 IN (l~0H) to system . As you may remember , a bit @ 

is the equlvalent of a pulse whose pulse width is 500 ns (con 
sisting of a low 2513 ns half cycle and a high 250 os half cycle) 
while a bit 1 is a pulse with a pulse width of 0.5 ros (consis ting 
of a low 51313 ns half cycle and a high 5~13 os half cycle). A low 
is sensed from bit 7 of the tape input port lC0H (usifHJ IN AL , DX) 
is when nothing is sent from tape . Once a high is sensed , it 
means either a bit 0 or a bit 1 is read from tape. 

Detecting a High from Bit 7 of t he Tape Input Por t 

The instruction XOR AL,'l'APE_STATUS does the job. 

TAPE STATUS is 
variable name 
direc tive. 

a memory locat ion which is assigned 
TAPE STATUS by the DB (Define Byte) 

with th2 
aSSlO'lnl)le( 

The DB assembler directive tells the assember to reserve a memory 
space (which is lde ntlf1ed by the v,HJable name TAPE STATUS) for 
a value, which may be altered during program execut ion. 

TAPE STATUS , as its name impli es , is used to signal the tape 
status . If a high is sensed from b it 7 of the tape input port, 
the contents o f this variable are set to 1. If a low is sensed , 
the value of th is variable is set to 13 . 

Upon system initialization, the value of TAPE STATUS is cleared 
to 13. If AL contains a zero, then the zero flag is set and the 
instruction JS READ NEXT STATUS will cause READ NEXT STATUS to be 
executed again in order to detect a low- to - high-transition of bit 
7 of tape inpu t port . If a non-zero value is stored in AL, then 
it mea ns that a low- to-high transition occurs at bit 7 of the 
tape input port. After this low-to-high transition is detected , 
the value of TAPE STATUS is a l tered . 

when a low-to-high transition is detected at bit 7 of the tape 
input port , it means that ei'ther a zero or a one has been read by 
the system. 

5-11 



But how does the s ystem distingui s h be tween a bit 9 and a bit l? 

The i nstruct i on OR eX,ex does this job . ex contains the va lue 
specified by 2 x DELAY 375 . This val ue is ORed with itself i n 
o rder to detect i f a ze r o is contained in ex . I f ex contains a 
ze r o , it mea ns the c oun ter ex has coun ted to zero when 
TAPE STATUS i s cha nged . I f th i s i s t he case , a one waS read from 
tape-to sys t em. I f the S i g n flag i s not set , i t means a non- zero 
resu lt is in ex (th i s ind i cates t hat a l o w-to- h i g h trans i tion 
occ urred before t he va l ue in ex wa s decremented t o zero) , In th is 
case , a bit 0 i s read from tape to system . 

It is the co unter value stored in ex t hat determines if a bi t ~ 
o r bit 1 was read from tape . This value is deri ved f r om summi ng 
up the execution time of the r e lated instructions. 

By storing a n appropri ate value in ex , 
bit 0 or a bit 1 is r ead from tape in a 

5-12 

you can detect 
half cycle . 

whether a 



5.3 RS-232-C Interface Driver 

When transmitting data , it can be tra"nsmitted serially (one bit 
at a time) or i n . parallel (eight bit a time) . Data is usually 
transferred to a near-by printer in para l lel. But data is trans
mitted to a remote work station or a c omputer network via a 
serial communications link such as a telephone line. 

When two devices are installed next to each other , then it is 
much faster to transmit data i n parall e l than serially. However, 
serial data transmi ssion is of t en used for data communications. 
Th i s is because when data is to be transmitted to a remote place, 
using serial communi cations line is much more economical than 
using parallel data communicatio ns lines. 

The major drawback of serial communications is that it 
longer period of time to transmit the same amount of 
compared with para l lel communications . 

THE ErA RS232-C I NTERFAC E 

takes 
data 

a 
as 

Most popular microcomputers support serial communications ""i. t h 
buil t-in o r op t ional serial communications ports . Curre nt l y t here 
are several common serial communications interfaces being used. 
The most popu l ar ser ia l communications interface is RS232 - C as 
set forth in the Electronics Industries Association standard . 

CONTROL SIGNALS 

Start Bit 

In a seria l communications l ink , data is sent out one bit at a 
tilne to ,] ether with control information. When the system is 
sending out data , it must have a way to tell the receiving device 
that when the data will be transmitted. In reality, the system 
will transmit a start bit when data is to be transmitted. A 
sta r t b i t is usually a logical 0 on the transmission line . In 
this case , the transmission line is said to be in the spacing 
state . 

Stop Bit 

When a data transm i ssion has been completed , the system must te l l 
the receiving device that the transmission has completed . This 
is done by sending stop bit(s) to the receiver. There can be 1 , 
1 . 5 , or 2 bits depending o n the exact data tra nsmission environ 
ment . After stop bit has been received , the receiving device 
does no t look fo rward to rece i ve data from the tra nsmission line 
unless another sta r t bit is received. A stop bit is no r mally a 
logical high on the transmission l i ne. When the transmiss i on 
line is logica l high , it is said to be in a marking state . 

5- 13 



pa rity Bit 

When t he data communicati o ns line is ve r y l ong , you ca n add a 
parity bi t for each cha racter t o be t r ansmit ted . pa r ity bit is 
added to e nsure the accu rac y i n data- tran sm issi o n . The parity bit 
may be a 0 or a 1 . If even parity check is selected , then the 
number of 1 bits which mak e up the data bits and parity bit must 
be even . If odd pa rity c heck is selected , then the numbe r of I 
bits which make up the data bit s a nd parity bit must be odd. 

Data Bits 

The data bit s ar e tra nsmitted to the r ece iving dev ice fo llowing 
the start b i t. The re can be 5 , 6 , 7 or 8 data bits. The number 
o f data bits must be consi stent in the same dat a transmission . 
But the number of data b its may not be f ixed i n each data t rans 
mi ss i on . Da t a b it s a r e tr a ns mit ted least s i gnificant b i t first . 
By not f ix ing the numbe r o f da ta bits , the transmission can be 
speeded up . 

The Baud Rate 

The data transmissi on speed i s meas ured i n b its pe r second (bps) . 
It i s referred to as the baud rate . If a device . i s said t o 
operate at 9600 baud , it actually transmi t o r recei ve b it string 
at 9600 b its pe r seco nd . 

THE 8250 AS YNCHRONOUS COMM UNICATIONS ELEMENT 

The job of convert ing da ta i oto a bi t st ring together wi th con
tro l i n formation would be qui te ti me consum ing and difficult for 
human bei ngs . Thus , a special - purpo se microprocessor i s desi gned 
to handle serial data communi catio ns - the 8250 . 

The 8250 can be programmed easily to h and le ser i al data comm uni 
c a tions . The 8250 mus t be i nit i al ized be f ore being use d . That i s 
to say you have t o tell the 8250 (by us ing the OUT inst r uc tion) 
t he des ir ed baud r ate , the number of da t a bits and stop b its , and 
the type of parity check . such infor ma t ion i s generally k nown as 
ser i al communi catio ns protocol . 

please refer 
the 8250 async 

t o the data sheet pr ovided 
communications element for 

5-14 

by t he manufa ctu rer 
mo re details . 

o f 



The fo llowi ng is a description of a rout ine for doing RS23 Z-C 
ser i al communi cat.ions . It i s a subroutine contain ed in MPF-I /88 
monitor program . You can use that routine in you r own program in 
orde r to perform RSZ32 - C serial communicat i ons . Or , you can 
desig n you r own RS232 - C ser i al communications r outine after you 
have become fami liar with RS232 - C ser i al communication s 
pr ogramm i ng . You can use the i nst ruc t ion INT 13H to use t hat 
r out ine. Bu t before in voki ny that routine by entering the INT 13H 
instruc t ion, yo u s ho uld load appropriate values ( usually r eferred 
to as input parameter s) into the proper 8~88 registers . The input 
parameters are then passed to the appropriate r egisters i n the 
8250 . 

The RS232-C routi ne , also called RS232 - C device driver , performs 
the f ol l owin~ four funct i ons : 

1) I nit ial i zes t he 8250 . 
2) Transmit s data - o ne character at a t i me . 
3) Receives data - one character at a time . 
4) Read the status of the 8250 . 

The RS232 - C device d r iver can be divided into four modules o r 
blocks . Each module performs a specif ic functi on as descr ibed 
above . The initializat i on function is ide ntified by the lable 
FUN 0 in the program l isting . The c haracter transmiss i on functio n 
is identified by the label FUN 1 , while the character receive 
function by FUN 2 . The status read fun~tion i s i dentiHed by the 
label FUN 3 . -

The device drive r starts with saving the current state of DX, BX , 
and DS register s by pushing their co n tents o n to the stac k. The 
fourth instruction CALL CDS sets t he co n tents of data segmen t to 
zero . By setting the value of DS to zero , the data stored in the 
fi rst ZK system memory for system use (0 : 0 to 0 : 7FF) can then be 
accessed by the RS23 2- C device d r iver . The sixt11 in»tr:uct io n 
loads zero i nto the co unter TIM~ COUNT . Since the cou nte r is 
located In memory location 0 : 510 , the devlce drlver won ' t be a ble 
to access the counter unless OS points to ze r o . 

Si nce t he AX register wil l be used fo r passing inpu t parame ters 
to the asynchronous communicat ions elemen t 8250 , the con t en ts are 
loaded into :he BX regis t er for tempora r y storage i n the fifth 
instr uct ion, which i s located i n t he of fset address FCE0H i n t he 
code segment . 

The seventh and eighth instructions - CMP AH , 3 and JA R20 - are 
des i gne d to determine i f a legal fu nction call is mndp. . If the 
value stor ed in AH is greater than 3, tha n a j ump instruction is 
executed to r eturn the control to the call ing p r ogram . 

If the zero flag is set , i t mea ns t hat the value of AH is 3 . 
When AH = 3 . the module (functi on) for r eturning 8250 status wil l 
be executed. 

The 10th and 11th instructions test if ij is stored in AH . , ·f it 

5- 15 



is, t h e sign sta t us il'> set to 1 and a jump ins tr uction will c au se 
the fu nction F\1N0 to be execu ted. 

The 12th and 13th instructions test if 1 is s tored in 'H. If it 
is , the sign status is set to 1 and a jump i nstruction wi 11 cause 
the fl l l)ctiol1 FUNl to be executed . 

If the above jump inst ru ctio ns are not exec uted, then it is 
obvious 2 i s stored in AH . If this i s the case , FUN 2 i s 
executed. As you may stil l remember, FUN 2 is r esponsible for 
rece i ving data from a RS232 - C device . Let' s examine how this is 
done by the RS232 - C dev ice drive r. 

I NPU T A CHARACTER FROM AN RS232-C DEV IC E 

When data i s to be input from a n RS232 - C dev ice , a message should 
be output to the transmission device tel l ing the transmis sion 
device that the system i s ready to receive data. The message 
should be sent to the ,nodem con trol r egister of the transmitting 
8250 . 

To send information to a register inside 82513 , you must k,.10· .... the 
address of that r egister. Two sets of I /O port addresses can b~ 
assigned t o the regi s t e c !'; i l1side 8250 . The f ir st set o f I /O port 
addr esses that can be assigned to 8250 registe r s r ang es from 3F8H 
thr ough 3FEH , whi le the second set of I/O po rt addresses whi ch 
can be assigned to 8250 reg iters starts from 2F8H t hro ugh 2FEH. 
The I / O port addresses assigned to 8 250 registers are listed a~ 
follows : 

I/O Port Inpu t 0 
Address Output Regis ter 

3F8H Output Transmitter holdi ng regi ster 
3F8H Inpu t Receiver data regi ste r 
3F8H Outpu t Baud rate d i visor (LSB) 
3 F9 H Output Baud rate d i viso r (MS B) 
3F9H Output In terrupt- enable reg iste r 
3F AH Input Interr upt-ident ification r eg ister 
3FBH Output Line- c ontrol register 
JFCH Ou tput Modem- control registe r 
1J:OH Input L ine - status r e gi ste r 
3FEH Input Modem- status regi ster 

As you c an see from the above table , the I/O port add res s for the 
modem cont r ol r eg i ster is 3FCH . S ince the OX is loaded with t h e 
lowest port address assigned to 8250 reg i sters, t he f i rst 
instruct ion in the FU N 2 module adds 4 to OX (which con tains 
3F8H) in order to access the modem cont r ol register . 

Actual l y two signals are sent to t he modem control registe r 
data terminal ready (DTR) and r equest t o send (RTS) . The two 
signals are sent to the modem control register b y o utputing the 
value 3 thr ough AL register. 

5-1 6 



After sendiny the two signals to the transmitting device, bit 0 
and bit 1 of the ·modem control register are set to 1 . This is 
illustrated as follows: 

~ctiY" 
Act iYe 

Oat,,-Termin31-Heady Modem Control Signal 

Request_to_Send Modem conttol Signa l 

*** Modem Control Register. *** 

Before receiving information from the transmitting device, YOu 
must also make sure that the transmitting device is ready to send 
information. This can be done by reading the modem status 
register, which i~ assigned port address 3FEH. The modem status 
register contains eight bits with each bit signaling a specific 
status. The modem status register is illustrated as follows: 

1'16 I ~ I _I ' I , I , . ISt"tus ,,.is ts 
'-,-'-T'-'-'T'L ' ,-l,L,-l-,L',-J , if bi t • 1 

I I 0.,1 t~ Cle, .. 

I 
Deit" Dt,,°taS C!:~t Ready 

I)elt.o Ring Indicator 
Delta Data Cattie t Detect 

Cleat to Send 
Data Set Ready 

*** Modem Status Register ** * 

To make sure if the transmitting device is ready, we check 
whether bits 4 and 5 are set to 1 . If they are set , i.e ., data 
set ready and clear to send, the device driver wil l check the 
next condition - if bit 0 of the line status register is set . If 
it is set , then a character can be input from the transmitting 
device . If bit 0 of the line status register is not set, the 
device driver will keep testing bit 0 of the line status register 
until it is set to 1. The line status register is shown as 
follows: 

I ' I • I ' I • I ' I ' I ' I ' I""" ...... " ." 

J I • .!.,o. , 'U 
DY~~tUn Error 

parlty Ertot 
ftaming I:UO[ 

{l tC"~ De t ect 

Ready 

Tt~ns mi tte r Holdlng ~eg lstcr Empty 
Transm itter ShiH Re'Jiste. Dnpty 

T,me Out Ifor Ttansmit and Ree","e C"l ls ) 

*** Line Status Register *** 

5 -17 



If bits 4 and 5 are not set , the RS232 - C device driver wi ll call 
the CHK TIME ·subroutine . The counter TIME COUNT is decremented 
by CHK TIME subroutine. If the counter is-not decremented to 
zero , the device driver will loop back to check bits 4 and 5 of 
modem status reg i st<~:: . If b its .4 and 5 are set, the device 
driver will check bit 0 of l ine status register , if that bit is 
set , then a character will be transmitted from the transmit t ing 
device to the system . 

I f the counte r TIME COUNT is decremented to ze r o , it is assumed 
that no data wi ll be sent to the rece i v ing device and a jump 
instruction will cause CHK TIME 1 to be executed . This subrou
t i ne will set the Carry flag and-then e xe cute a RET instruction . 
After t h e RET inst r uction has been e xecuted, the TIMEOUT subrou 
t i ne wi ll be excuted . The TIMEOUT s ubroutine will ma ke a nother 
jump to IN STATUS before retur ning the control to the calling 
program. 

READ THE STATUS OF 8250 

FUN 3 is 
function 
register, 
register. 

used to examine 
call , AH wi 11 

a nd AL will 

the status of 8250 . After making this 
contain the contents o f line status 

cont"lin the co n tents of modem status 

The f ir st few instructions load zero into CH , and the n add 4 to 
OX so that OX will po int to the line status register . Note that 
the instruction MOV CH, 0 is used to clear the contents of CH to 
0 . This instruction , toget h e r with OR AL , CH and MOV AH , AL, 
sets bit 7 of the line status register to zero. When bi t 7 of 
the line status register is zero , t i me-out Wl) !1' t occur. The 
conte n ts of li ne status r egis ter are first i nput to AL . Aft er 
the line s.tatuses are ORed with the con tents of CH (zero) , the 
resu lt s ar e moved to AH. At this time , AH contains the line 
statuses. 

The conte nts of CH is t hen ORed with themselves . This 
instructi on is here in orde r to set the zero flag for future use 
by the JNZ RTS instruction. If the zero flag is set, th e o rigi 
nal contents of AL, wh ich was moved to BL in the fifth instruc
tio n of the RS 232 - C device dr iver, are loaded from BL t o AL . 
Then program control will be returned t o the ca ll ing program . If 
the zero flag is oat set by the OR in s truction, DX will be 
increme n ted to point to the modem status register . The IN AL , DX 
i nstruct i on is the n used t o re t ur n modem statuses to AL. 

5-18 



INITIALIZE THE 8250 

To init i alize 8253 , you have to loa d AH with zer o , AL with t he 
des ired parameters , and DX with port address 3F8H . 

An AND instruct i on is placed in the begin ning of FUN 3 t o isolate 
the t hr ee most sig n ificant b i ts. In o the r wo r ds , this 
i nstruc t ion i g no r es t he s t ate of b i t 0 through bit 4 contained i n 
AL. Then e L, which is used as a counter here , is loaded wi th 
five . The con tents of AL are t he n sh i fted ri g ht f i ve times . 
After the shift operation , the contents of AL are loaded into CL. 

We will pause here fo r a whil e 
protocol is loaded in to 8250. 
follo wing registers in 8250: 

to study how seria l commun ications 
The initializati on will affect the 

1) Baud rate divisor (LSB) - Port address 3F8H 
2) Baud rate divisor (MSB) - Port address 3F9H 
3) Li ne con t r ol register - Po r t address 3FBH 
4) Interr upt enabl e register - Port add ress 3F9H 

Init i alizing t h e Baud Rate Divisor Registers 

After the ini tialization , each of the ba ud r ate divisor regis ter s 
is loaded with a speci fic value . The va lue is called baud r ate 
divisor value. For example , if a baud rate of 110 is desired , 
04H is loaded into baud r ate divisor reg ister (MSB) and 17H is 
loaded i nto baud rate diviso r register ( LSB). If a baud rate of 
150 is d es ir e d, 03H is loaded int o baud rate divisor register 
(MSB) and 00H i s loaded i nto baud rate divisor register (LSB) . 
The relationship of the des i r ed baud rates and the i r co rres
ponding baud r ate divisor val ues are listed as follows : 

*** Table of Baud Rate Divisor Values *** 

Value fo r Baud-Ra te- Di visor Reg i sters 

-------------------- -------------------
Desired Baud Rate MSB LSB 

50 09H 00H 
75 06H 00H 

110 04H 17 H 
134 . 5 03H 59 H 
1 50 03H 00H 
300 01H S0H 
60. 00H C0H 

1200 00H 60H 
1800 00H 40H 
2000 00H 3AH 
2400 00H 30 H 
3600 00H 20H 
4800 00H ISH 
7200 00H 10H 
9600 00H 0CH 

5-1 9 



Initializing the Line Control Reg ister 

The function call FUN 0 will also load information on the type of 
parity, stop bit, and character length to the line control 
register. The function of each bit in the line control register 
is briefly described in the following diagram . 

,., 
1 _ 1 ,', " ",,,",<:n> et"" ,TO' '" ' T> 

., It· r ,,"'n t .• ",,~GTH " . ' . 0 •• "'~S 

."'T> 
. _'0 . ,.," "It G" ."AH L> 
I _.'A.' " k rT , . >:~, ' .">:, , 

.'.IT, Up[ 
,-""" j_>:v '" 

STI<:. eAOlTl 

O.n' SA hL" " j_,. Hit '_I ,~~ "It ' _ • • ~""~ ~' "'T' "IT 'CW,"S I 
IF bI T ' _ I ' "0 "IT ' -I. TM," pHln ULT " ,,, .. , • 
,r RU , _0. THr." NO ,>,.'TY "'T 

$<T ."'U 

"O"'''CW 
l _ T"~ SI.""L OUTPUT ~AT" " ro.cW 10 A 'Hel"" COHUlT!o~ 

(~O<:'C'L It . [CUOl .. " 0' "HOT "en TH< "'~1 ""H<S 1'0 n ' '''MIT 

I/O A""""""" 
• • NOOMAL V' CU l 
' oro ' DoH" ",uO_.'H_ol""O' OCG""'5 

*** Diagram of Line Control Register ••• 
The line control register is initialized in our functiop call 
with the OUT OX , AL instruction. Before this instruction is 
executed , the contents of AL is anded with a bit mask IFH in 
order to zero out the first three most significant bits . 

Initializing the Interrupt Enabl e Register 

After the line control regis ter is i n itialized , the fu nction call 
wi ll initialize (disable) the interrupt enable register . Handling 
serial communications with interrupt would be very complex . 
Since the use of interrupts is not necessary for serial communi 
cations, t he interrupt enable reg~ster is usually disabled. 

We will continue explaining the funct i on call FUN0 . Af t er shifing 
AL and loading the conte n ts of AL to CL, the routine wi l l 
determi ne if CL contains 0 using the OR CL , CL instruction . If it 
is , a jump to BAUD OUT will be executed . Note that be f ore the OR 
instruc ti on , AX is loaded with the baud rate divisor value 04l7H 
= 1047 (in decimal) . The ba ud rate diviso r value is then loaded 
into cx in preparat i on for use by two MOV instructions which wi ll 
move the value to the baud r ate divisor registers . 

5-20 



To access the bau d rate di v isor r egisters , bit 7 of the l ine 
con tro l r eg ister shou.ld be set to 1 . To achieve this go al , we 
use t he i nstruction ~Oo OX , 3 to make OX points to the li ne con
t t o l r egister . Then the MOV AL , 80 in s truc-tion a nd OUT OX , AL i s 
used to set b it 7 o f the line con trol reg iste r. 

To load the baud rate ,di visor value t o the baud rate divisor 
t eg isters, we POP DX so that DX points to the baud ra te div isor 
regi ster (LSB ) . No w the LS B value is l oaded t o AL and OUT t o OX . 
Then ox is incremented and t he MOV and OU T i nstructions are used 
again to load the MSB ba ud r a te val ue to t he MSB ba ud rate 
d iv isor reg i ster . 

Now the baud ra t e d iviso r regis ters have been set p r operly. The 
fo l low ing fi ve ins tructi ons a re used to ini t i a lize the li ne 
cont rol r eg i ster so thi'it 8250 will know the nu mber of s t op b its, 
the parity type, a nd character l ength . ~s y ou may r emember, BL 
is actua l ly stored wi th th e o riginal value of AL -- the input 
parameter. We wi ll mov e this value t o AL and use a bit mask I FH 
t o elim inate t he first three most signifi can t b its -- those bits 
used to spec ify the ba ud r ate . The AND opera t ion pe r fo rm s t h i s 
job. After t he AND oper at i on , ~L o nl y con tain s s uch info rmati o n 
as the numbe r o f stop bits, the parity type , dod c ha racter 
leng th . After incrementing ox so that OX points to the line 
control reg is ter , an OUT instr uction is used to load the line 
cont r ol r eg ister with approp r iate serial commun icat i ons protocol . 

Now we a r e go i ng t o d i sable t he interrupt e na ble regis t er , wh i c h 
can be d i sabled by setting i t s value t o zero . We fi rst decrement 
ox so that the value of OX po i nts t o t he i nterru pt enable r e 
gis ter . Then we use the XOR instruction to ze r o out AL . By 
using the OUT DX, AL in s t ruct i on , zero are s en t to t h e interrupt 
enable r eg i ster . 

Now 
wi 11 

that the 8250 
be executed to 

has been i n itia lized , the IN STATUS 
return se rial communi c ations statuses 

5- 21 

r ou tine 
t o AX . 



OUTPUT A CHARACTER -- FUNCTION 1 

When you 
cations 
values . 

intend t o ou tput a character thro ugh the serial communi 
line, you mu'st load AH , AL , and DX with appropriate 
This is listed as follows: 

1) AH 
2) AL 
3) DX 

1 
The character to be transmitted . 
Port addr ess . 

Function 1 wil l return the contents of line 
if a cha r acter is transmitted successfully . 
not transmitted successfully , then bit 7 of 

status register in AH 
I f the characte r is 

AH is set to 1. 

FUN I will first output the status of the transmitting device 
to modem control reg ister . I f bits 0 and I of the modem control 
register are set , it means that the transmitting device is ready 
to send out information . 

Then 
bi ts 
that 

it will read the status of mode m status reg i ster . If both 
4 (c lea r to send) and 5 (data set ready) are set , it means 

the receiving device is r eady to receive in fo rmation . 

Even after you have ensured that both the transmitting and re 
ceiving devices are ready, character still will not be trans 
mitted unless bit 5 (transmitter holding register empty) of line 
status register is set. If it is set, then a character will be 
output to the receiving device, and program cont r ol wi l l be 
returned to the calling program with t he contents of line s tat us 
reg i ster stored in AH. 

Things may not 
happen if bits 4 
What if bit 5 of 

be going that smoothly sometimes . What will 
and 5 of the modem status register are not set? 
line status registe r is not set as expected? 

I f bits 4 and 5 of the modem status register are not set 

A time counter (TIME_COUNT) is designed to solve this problem. As 
you may remember , a zero was load ed i n to the counter when the 
RS232 - C device driver was first invoked . Once FUN 1 finds out 
that bits 4 and 5 are not set , it will call the CHK TIME 
subroutine . The CHK TIME subroutine will decr ement the time 
counter TI ME COUNT by one from FFFFH and check if the counter has 
counted to zero . If the co unter has not counted to zero , FUN 1 
wil l go back and check bits 4 and 5 again . If these two bits are 
set , FUN 1 will check bit 5 of the line status reg i ster. 
Otherw ise~ it will call CHK_TIME again. 

If bits 4 and 5 are not set when TIME COUNT has counted to zero, 
FUN 1 will jump to CHK TIME 1 , set the carry flag , and then 
execute TIMEOUT and jumpt to IN STATUS so as to load the contents 
of l ine status register to AH and return program control to 
caller . 

5- 22 



The counter is designed for r etu r ning program control to the 
calling program if .bits 4 and 5 of the modem sta tu s register are 
not set. 

If b i t 5 of line s tatu s register is not set 

If bit 5 of line status register is not set , FUN 1 will also call 
CHK_ TIME , decreme n t the time counte r TIME OUT , and check if t he 
contents of time co unter is decremented to zero . If the coun te r 
has not coun t ed to zero, FUN 1 wi ll go back a nd check bits 4 and 
5 again . If these t wo b it s are set , FUN 1 will chec k bit 5 of t he 
line status register . Ot herwi se , it wiTl cal l CHK_ TIME aga in. 

If b it s 4 and 5 are not set when TIME COUNT has co unted to zero, 
FUN 1 will jUlnp to CHK TIME 1 , set the carry flag , and then 
execu t e TIMEOUT and jumpt to tN_STATUS so as to load t he con tents 
of line status register to AH a nd return progralTI co ntrol to 
calling prog r am . 

5- 23 



5.4 LCD Driver 

The MPF-I/88 supports a 2~ - column by 2-1ioe physical LCD display . 
Therefore, 20 by 2 , or 40 characters can be displayed on the LCD 
at one time. 

Each character can be one of the characters supported by the MPF-
1/88. It takes a byte to represent a single character. 

A memory space of 480 bytes in the system RAM is used as a 
display buffer so that MPF-I/88 supports a logical display screen 
of 20 columns by 24 rows. You can scroll the logical screen 
freely to view the desired portion of the logical display. Refer 
to MPF-I/88 User's Manual for how to scroll the display. In other 
words, with tha buffer you are faciliated to see totally 24 rows 
of memory contents by pressing the ALT_A or the ALT_Z key . 

There a re 40 display positions on the physical LCD with each one 
has a physical address corresponding to it. However , each display 
position of the LCD is not addressable by the 8088 . 

The leftmost position of the first row is assigned with the 
address 80H , the rightmost of the first row is 93H , the leftmost 
of the second row is C0H , and the rightmost of the second row is 
D3H . We can view the 40 display positions on the LCD screen as 
memory locations separately ranging from 80H to 93H and f r om C0H 
to D3H . 

The 8088 CPU can not directly access the 4~ display positions on 
the LCD screen . Instead, it 
through four I/O ports in order 
desired positions on the LCD . 
lA~H , lAlH , lA2H, and lA3H . 

accesses the 40 display positions 
to display and read characters on 
The four I/O port addresses are: 

Port lA0H is used exclusively for receiving the write command 
from the CPU and transfering i t to the LCD driver; port lAlH is 
used for receiving data to be output the LCD and transfering it 
to the LCD d river. If you intend to know more about the functions 
of the LCD , please refer to the data sheet suppli ed by the LCD 
manufacturer. 

Port lA2 is used for recei v in g the read command from the CPU and 
tranfering it to the LCD driver; port lA3 is used for receiving 
data to be input from the LCD and transfering it to the CPU . 

Each LCD read or write operation involve many actions . For 
example, if you want to display a character on a certain display 
position , f irst you have to tell the CPU the display position you 
require; next , have the CPU check if the LCD is busy performing 
some operations; third, issue a display comma nd through the CPU 
to the Command Write I/O port; and finally transfer the data you 
want to display on the screen to the Da ta Write I/O port . Th is 
holds true for reading data from the LCD screen . 

5-2 4 



The LCD dev i ce driver is identified by the p r ocedure name 
OUT LCD i n MPF- .J /88 Moni tor Program Source Li sting. Yo u can 
r efer to the procedure OUT LCD in o r der to know how the LCD is 
driven . In order to find the OUT LCD procedure , you must first 
r efer t o the cross r eference section of t he moni tor sou r ce 
program to find the entry with OUT LCD and then use the line 
number to locate the' OUT LCD procedure. 

In o rder t o let yo u tra ce the OU T LCD procedure easier , a n 
exampl e program which 1S Sllghtly dIffe r ent from the OUT LCD 
procedure i s provided as follows. Now let uS look at our example 
program on LCD. 

We will e xplain some of the frequently USed assembler directives 
using exam ples in the example p r ogram . 

5- 25 



The Microsoft HI\CRO Assarble~ , version 1.25 ,.,. ,-, 
12- 21-84 

, "" 69, 132 , Q999 STACK ''''''''' PARA STACK ' STACK' , 0000 0100 ( 00 256 DllP (29H) 

• " S 
6 
7 IJlU S,,'" "'" , , .... "'''' 

,,,,.,,, PARA PUBLIC 'DATA ' 

" II "" ""'" U 
B "'" OW """" "" "'''' H 'IA' DATA I'OI!'IW "" QlAIH 

" 1l1A2 OW""'"' "" 1l1AZH 

" ."" DATii_PORTR "" IllA3H 
n 

" """""= " " 0080 "-, "" " 0007 ,w. "" " " .. LINEJ"EED .~ 

27 · IIUD """,. "'" " • a00C """"'" "" ~ 25 • 111108 BIoCKSPJlCE "" , 
~ " .. ," RIGHTMtROW 44H+ALT ;ALT-O 
~ " ''''03 """....,.. 5JH+ALT ;ALT-S 

" ''''' "'''''' 4lH+ALT ;ALT-A 

" .. '" "",."" SAlHALT ;ALT-Z 

" " CONSTAN'I'S lIND VM IJ\BLES 

" " .... " """'" 00 " " eea l eaL6 "'" OW " 7S 01111 3 " AOORE:SSA 00 .. 
" 0e04 " AOORE:SSa 00 .. 
77 01111 5 " R DATA 00 7 

" .. " " rom 00 .'" 
" aIlll' aeeo """"" OW 11110lE 

" ... , "" ""'" OW .mw 
u .... n 

"" ruR 
00 .. 

" .. '" " ox. VALUE '" .. 
" ... " n ox.)m 00 .. .. ., me I.CO SOFFER '" 

,,,,,,,,, '" """"" a1 24 KlWS) .. ., 
"" '" .,.,. 00 " WP(O) .. " " " 51 01122 H[ .,.., 

'" " OOP(0) 

" .. 
57 

" " H" '" -, '0 OUPHH 



TI>e H Ie-eoIOOCt P1IICIV A...,...cl .. e , v .. e . lon 1.2S .~. c_, 
12_21_84 

" .. 
" " " .. " l<t ""'" 

,. 
" ooP(9) 

" .. 
61 
62 
61 00S! at """ " 001>(0) 
64 '" 65 

" " "" at ""'" '" " ooP(0) 

" " " " ;V " .. at ,. " 001>(9) 

" " " " 009A 1< t """ " 001>(0) 

" " " " " .,,' at ""'" OOP(O) 
~ " " , 

" " " ~ 

" .. ," l<t ... , " 001>(0) 

" " as 
S6 

" "'" at ""'" 00 " 001'(0) .. " " " 91 ... ,' a, "'"u ,. " ooP(O) 

" " " " 9S "" 1< ""''' 00 " OOP(0) 
96 " " " 99 9112 '" ""'13 '" 001'(9) 

'" " 10' 
10' 
'83 \1126 '" 00"'1< 00 '" OOP (0) 
lO. " lOS 

10' 
10' 013A '" ""''' 00 " OOP(0) 
10. " '" 110 



The Microsoft MllCRO ASserrt>ler , versio[l 1.25 ''''. ,-, 
12- 21- 84 

m 014E " I """ 00 " OOP(0) 

U2 " m 
u. 
as 0162 " I ""'" 00 " OOP(0) 
U, " m 
m 

'" 0176 " I """ 00 " OOP(0) 

"" " m 
m 
m 018A " I ""'" 00 " OOP(Il) 

". " m 

'" m 019E " I """ " OOP(O) 

'" " '" n' 
m 01B2 " I ""m 00 " OOP(~) 

U2 " m 
n. 

~ m ~lC6 " I """ 00 " OOP(~ ) , 
n' " N 

~ m 
n, 

'" "00 " I """ 00 " OOP(~) 

'" " '" '" U3 ,,~ 00" "''' , .. 
'" , .. ;* •••••••••••••••••••• ••••• •••••••••••• **.* •••••••••••• *. 
W . U)J START • 

'" 
; •..•...•••.•..•......................................... 

'" IN f'IJ'I' RECUIRIMENr: 

'" m ~ - CONTAINS THE ASCII CO:lt: OF A QlAPN:'l'ER TO BE OOTf'IJ'I' 

'" '" '" ~ : MEANS TME CURSOR SHALL NOT BE PLACED ON 'niE SCRE EN . 
m QI 0 0 : MEANS TIlE CURSOR SHAIL BE PLACED ON THE SCREEN. 

". CL - II : CAUSE THE SCREEN NOT TO BE ABLE ro SCROlL. 
m CL 0 II : PERFORM ruE REVEllSE OF ' '0. • II" 

'" m ; - ---------------- --------------------------------- -
'" IIl1l1e GOO' SEX>MENT PARA """''' ' "",,, ' ,,, 0000 == "'" '" ; FlklC1'ION- > CDNTRAL lCD 

'" "'''''' CS :CCOE,DS:DATA 

'" 0000 " 0346 , CML PUSIt R ; ruSH ML THE REGISTERS 

'" '" 0~03 ffi , "'" BX,DATA 

". 1111116 " 00 "'" oo .~ 

". 



'ft>e .. I""''''*'tt .w:RO _lee , V. r ,. lon 1. 2~ - , .. 
12_21_84 

166 IIns A3 1I~~7 R ~ """'" .~ I>.RF""'-':':' • All 
167 1I1I{l8 89 liE ~1I11 9 R ~ """'.n """" • 0< 
160 "" E8 1132!' R CML "" _ OO<OIT CURSOR Cti OR c.T 

( 16' 
..... ..... ........... , .................... 

17<1 ;O::mRIL COO£ 1'tST 
111 ................... .. , . . . . . . . . . . . . . . . . . . . . 
112 ~012 IT, ;FORMFEm 
173 "" XOC OW AL,FORMFEill , ? 
17. IIn4 7S 116 "" """"' ... 
m '''' E8 111188 R em. .. "'. ;ACTIVE 
176 '919 EB 62 99 "'" RIM ;010 
m III1IC lDl'EST : ;T£ST WI~ POSITICti 
178 IInc 83 3E 0091 Rl' OW 9JW,22 ;FIRST RCW • 22 
179 111121 74 06 " '''''' '" 1111 23 £6 11 3114 R CML """" ; TEST UP OR O()IN 

191 "" EB 55 99 ..., "Gif 
182 "" BELL I: ;BELL 
183 111129 X 07 OW AL ,BELL , , 
18< "" 75 liS "" "" ; .. 
185 11020 CD OC '''' "" ;ACTiVE 
18' .'" ~ 4C 911 "'" '''''' "'" 18, "" BXSP: ;BilCKSPICt: 
18. .." X " OW AL . BilCKSPAa: , , 
'" "" 7S 116 '" tE ; .. 

~ '" .m E8 0083 R CML .,,'" ;ACTIVE , 191 1I~ 39 ~ 42 90 JHP RIGHT ,0]( 

'" 192 mc tE, ;LINEFtm 
~ 193 OOX X o> OW AL,UNEFEm , , ,,, 11113E ,,,, 

"" '" ; .. 
' 85 .... E8 111102 R CML tE "'. ;ACTIVE 
196 994) E8 38 911 "" RIGHT , 0< 
191 91146 "', ; RETURN 
199 0046 X 90 OW AL,RE1\JRN , , 
19' 111148 " " "" '" ... ". 1104,\ E8 IH36 R CML '" "" ;ACTIVE 
,9l .. " EB 2E 96 "" "''''' ,0< 

'" .85. ,," , ;UFCOOE 
"J "50 JC C' "" AL,UPOJDE , , , .. 9~S2 ~II 1111 011 ~0 '" 00 ; . . 
'85 '85' ED 9272 R CML "' "" ' 06 111159 EB 22 90 "'" "''''' '07 'OSC 00, <><>«00< 

'" .. SC Xo> ""' "-.- , 
'" 1111 5E " " '" AA 
?to 006~ E8 1129B R CA", ""'" un 211 11063 fB 18 911 "" ",Gif '" 212 '''' '" "''''' 2lJ 0066 XO< "" AL,RI~ , 
' 14 ... , 7S 116 ,~ lA 
215 006'\ E8 I114B R CML 

AA "" "'"'' '16 " 60 Ell 0E 90 "" " M 0' 
217 1111711 lA, C"""""" 
'18 1111 70 X DJ "" AL , LEFTARRQi' , 
'l9 .. " " " "" DISPLAY DISPLAY 
'29 .. ,. E8 11176 R OUL lA _"'" ""'" 



The Micro&oft MACRO Assembler , veuion 1.25 '''' H 
12-21- 84 

m lla77 I-:B \I~ 9~ ~ RIGrr ,0< 

'" 00'/\ DISPLAY: ;DISPLAY 

m '''' F.8 (,117/\ R = DISP_SOB ;ACTIVE 

'" "70 RIQfI': ; ....... 
m IlI17D III (,Ill'" R .." IIX,AR£.V.l( ;RES1ORE AX 

'" 008" 8a (,IE 011119 , .." ex,""'" ; R£S'T'DR.E ex 
m 111184 " 11359 R 0= roo> , ; POP 

"" 0987 '" "" , . . . . . . . . . . . . 
m 0088 ,",_ceo "'" , . . . . . . . . . . . . 
'" ;----- -----------
m FORHF£ID StJIlIO.1l'W£ 

m 
m "" "'-"'" """ "AA ;FUtcTloo .,"''''' 
'" 0088 '''' .." AL,3SH ;RESET CODE: 

m " .. F.8 (,Il.D9 R 0= '"' "'" ;1WICE 

'" 0"80 E8 "100 , ""'- "",-"" ;FI.tCi'loo SET 'tWICE 

m "" "'''' .." AL.9DH ;SET ON DISPlAY IIW SLINK 

'" 0092 £8 (,1100 , "'~ "'" "" ; ACTIVE 

no 0095 .. " "" ~," ; SET CURSOR HOVE Dl REl:TIVE (RIGlT) 

'" 0097 £8 IHDll , 0= "'" "'" ; ACTIVE 

m "" "''' "" AL.I ;a.EAR DISPlAY , CURSOR 'IQ HCME 

'" "90 E8 01011 R <= "''',. ;ACTIVE 

'" (,I"9F C6 Il6 1l1l06 '" .." o:xNr.8GH ; I NI TIAL 

". 001.4 C7 (;16 IIl1l1t II 0016 .." R'lW. 22 ;INITIALIZE RIJf\' TO 29 

V' '" "'" C6 06 Illlllll n. .." '1'-'£NT"i,10 ;-r.."ENTY EQUALS ']Q 2iI , 
'" "" Ell 1l31£ , CAlL =rAIl ;cr.£.\R tL'D TABU: 

W '" "" CJ "" ., , . . . . . . . . . . . . . . . . . . 
'" 0983 IT_SUB D'" , . . . . . . . . . . . . . . . . . . 
'" ; --------------------------------------". B1ICKSI'h:E SUBROUTINE 
m ; ----------------------------------
2S2 II11a3 BS_SU8 "'" """ ;Ft.N::TIOO-~ BACK SPh:E 

m "OJ All llIW6 , .." AL, CXlUN'T ;CURSOR IN ADDRESS 9 (R(W 1) 

". 0086 .,,' 0", AL,8GH , , 
'" '''' ,. 17 " SUaRlGIIT "" '" .... "'CO "" AL, OCIlH , """"" IN AlDRESS 21 (ROW 2) 

'" "'"' , .. , n "'" ....... 
'58 "" EB 0le4 R "'~ Me"" ;ACTIVE 

m 'OC1 ffi liE 90 ~ SUeRIGlT "'" '" .oe. ell 94 eKSPB: "" 1'IL , 94f! ;CURSOR ro """ " '" '" "" Ell 0100 II 0= '"' '''' ;ACTIVE 

'" '"C, E8 11184 R OOL BACKsP ;BACK SPh:E 

'" ''''' C6 116 11096 "J O<H COlM.93H ;00 IOoIl ax.21l 

". (,I(,IOl SUl'fuQfT: ,0< 
265 "" CJ "" ; ................• • 

'" '''' '" "'" "'" . . . . . . . . . . . . . . . . . . . 
'" '" '" LHIEFEID SlJBRQVTINE 

'" 271 ; ----------------------------------------
m 0002 IE_sua '"" ''''' LINE FEW 

'" 11902 A0 00\16 , .." I'IL.COUNT CURSOR IN ~(l) DR ROW(l) 

'" (,11105 '" ~ ~, AL,OC"" """ , ,,, -, ~ " 'c c .... ~ ~- I N """'OJ 



'"'" H;'Ccoeoft HACIIO ..... _l • • • woo. lon l.25 - .~ 
12~21-1l4 

'" "'" E8 9lF9 R = """"'" I SCROlL TA8l.E 
Tn "OC CO 06 909) R 89 t£_I¥lW2: ~ ADORESSA,80H :0JRS()fl. IN r.:lW(2) 
278 "" CO 96 9004 R CO ~ ADDR£SSB, 9C9H ,1012 o:t.l 

n' .,,' A9 0994 R NEX_OATA: ~ AI..,AIDRESSB . . . . . . . . . . . . . . . . . . . . . . . ". .,,' "D4 OW AI..,OO4H ;1012 o:t.2Q 

'" .... " " " ru< """ ,o.EAR ROW 2 
2" "'" E8 9lDO R OOL "",-"" ;ACTIVE 
283 "" EB 91F) R CML IN DATA ; INPI1I' DATA ". IJIIF) A2 0095 R ~ R DATA, AI.. IR MTA<-AL 

"S .. " AIJ 1J011) R ~ M.,AIDRESSA ;00 LCD AOORESS 
2", .'" E8 1IlD0 R o.u. "" '''" ,ACTIVE 

'" .. '" A0 9~0S R ~ IIL ,1i MTA ;AL • R OATA ". ''''' £8 nED R "'" em VAL ;ACTIVE-
209 91112 FE 06 000) R me .o.roREsSA ;foVJVE CURSOR POSITICtl 

'" 0106 Fl: ~6 011114 " He AOORESSB ; . .. .•......... •.••• • 
m 010A .. '" '" NEX DATA ;NEXT DATA 
"2 ",we e6 06 1111114 "" eLR 10'/2 : "'" ilDDRt:sSD, OC0H ;RtW2 LCD LOCATION 
293 0111 A0 0004 R a.(::SPA ' ~ iIL ,AlDRESSB ; ... •. ... . ... . . . . . ". 11114 le" C'" iIL , 004H ;IN) RCW 2 7 

"S 0116 74 0E " ooT roSITION , .... .. ..... 
296 0118 ES OlDlI R OAU. OIJl'-FUN ;I\CTIVE 
297 OllB B0 29 ~ iIL ,2~H ;5H()4 .... 

'" 'UD ell 01ED R eML w,,~ ;ACTlVE 

'" 0121! FE 06 0094 " me AOORESSB ;NEX'I' LOCATICfl 

'" 30' 9124 .... "" CLR_SPA ;CU'.AR SPACE , 
30' 9126 OOT _POSITION , ;OOT POSITICfl 

W 
~ '" 9126 All 111106 " ~ ~,"""" ,a:tWARE CURSOR POSITlOO 

303 9129 "CO "'" AL,9CIIH ;00 IW)W2 0)(.1 1 
3" "" "''' ,~ '" ""'" ; . . . . . . . . . . . . . . 
3" Ol2D G4 40 >ro .·.r.;;-40H ;aJRSOR ON IOU 

'" 0l2F A2 9996 R ~ =,~ . . . . . . . . . . . . . . . 
'" 9132 £8 9100 R NO_OW«;, <AU. OOT_F~ ;ACTIVE 
3" liDS C3 "" ; ... ...... .......... ........... 
3'" '13' " -"" ~, ; .............................. 
310 
311 
312 RE1tI~ .5UIlROUTINE 
313 
319 
lIS 91)6 RT_SUB "'" '''''' :NaION -) RE'lURN aJRSOR 
316 11136 80 3£ 00\16 R CIJ "" (l)UIn', IJCeH ;CCf'U>AR£ RCW 7 
m II13B "''' .oG< '" .,., , . . . . . . . . . . . . . 
'" "3D B0 80 "" iIL-;ellH ;RE'ruRN RCW 1 "'" , 
319 111)F IS 113 90 "" '" .," , . . . . . . . . . . . . . . . . . . . 
329 9142 "" RT ROW2 : .eN AL-;9C9H ;9C9H IS J¥;W2 CX:U LOCATICf'l 
321 &144 A2 &e~6 R RT~)OW1 : .eN """,~ ; . . . . . . . . . . . . . . . . . . . . . . . . . . 
m 11147 E8 9100 R ""~ ctn'JU!I ;ACTlVE 
323 014A C3 "" ; . . . . . . . . . . . . . . . . . . . . . . . . . . 
". IIUB RT_SIJB "'" ; .... ......... ............. 
m ,------------~--------------------------

'" 321 RIQfTI\RlIOW SUBROUT WE 

'" 329 ,---~~-~---~----------------------
330 1114B "'-""" ''''' ,~ ;FUNC'l'ICfl __ ) I'DVF. CURSOR ~ RIGlT 



~ , 
w 
~ 

The Mic~osoft MllCRO I\ssaItlle~ , version 1.25 '''' 1-7 

m 
332 
m 

'" 33S 
336 
337 
330 
339 

"" 3<l 
"2 
3<3 
3" 
m 
346 

'" ". ", 
'" m 
352 
353 
35< 
355 
350 
m 
358 

'" 36. 
m 
362 
363 
3M 
365 
366 
361 
36. ", 
370 
m 
372 
373 

'" 375 
376, 
371 
376 
379 

"" m 
382 

'"' 3" '", 

014B " 3£ 11006 R D3 
01~0 " "' 6JS2 80 3£ 11906 "3 
0157 7S 98 
0159 BII ell 
0lSB .0.2 0006 R 
015E EB 117 90 
0161 
0161 BIl 14 
11163 IT" 0006 , 
11167 
>1161 £8 9109 R 
111M moo " 11160 
916D C6 116 1l1l1l6 R C0 
0172 E8 0002 R 
1l11~ 

11175 " 111176 

0176 
0176 £8 limn R 
0179 C3 
917 ... 

1117/\. 
017/\. Ell 0UD R 
I117D FE 06 ~1l1l6 , 
11181 1\.11 0'1106 , 
0'184 "'" \1186 "" 11188 30" 
1I18/\. 75 liE 
"8C Bli ell 
1118E " 1l1l~6 , 
11191 eo IlIDIi R 
11194 m 04 911 
11197 
9197 E8 019B , 
9191\. 
11191\. OJ 
1119B 

12-21-84 

me 

" "'" '" "" ><N 

"'" RA ern: 

"" '''' RA _10'12: 
CML 
~, 

NEX ROW: 
><N 
CML 

RA_IlE!' : 

"" RA_SIJB "''' 

o:xJNT ,IID3H 
NEX ROW 
1XllMr, 93H 
AA em 
AL-;OCllfl 
CllUNT,AL 
AA"'" 

AL,14H 

="' 
""",. RAJiET 

COUNT , 0Cell 
LF_ SUB 

;CURSOR 00 ~'2 COL2~ 7 

;CURSOR 00 RCMl COL29 7 

;~ CIJIlSOR RCW2 COLI 
I .................•.•. 

; RIGHT CONTINUE 
;LCD WRIGHT FlJtCTlcr. 

;ON RCW2 ro RIGm' 
,ACTIVE 

"'" ;NEXT ROW 
;RCW2 
;LINE FEI:D 
; RETURN 

i-----------~~=-::=~NE -----------------1 
,--------------------------------
!II SllB PRo: NEAR ;FUtCTION --) TO LEF'l' 

- C/U.L as SUB ; D:;tIIMENT BACK SPACE 
RET - ; ••••••••••••••••••••••••••••• 

; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
DISPUW OiI\AACTER TO LCD 

; ------------------------- --- -------
DISP_SUB ,= '''' ;FlRCTION -, DISPLI\.Y 

CAll. =,~ ;I\.Cl'JVE 

'''' ='" ; . . . . . . . . . . . 
"" ~,= ; ..........•.• 

"'" AL ,IID4!l ; IF ctlRSOR CNER ROW<2> 

" DISPSCROlL ; SCROlL 

"" AL,1I94!l ,IF CURSDR ewEll ROW<1> 

'" DlSPRI QlT , •.................... 
><N AL,0CIlH ;SET CURSOR ON RQ\o:2 alLI 
><N =,~ ; ..... . ...... ••••. ...... 
CAll. 

OOT "" 
; ACTIVE ,,., DISPRIGHT "" DISPSCROLL : ;DISPLI\.Y "''''''' CML ocoou. ;ACTIVE 

DISPRIGifI' : "" "" ; ....... ......•.•............. 
DISP_SUB ~, ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
;--------------------------------

IF CL~1l mm 00 SCROLL 
OOT s !l 'mm SCROLL 



'"'"' f'l1c~OAOft f'lIICI<O _lor • Ve~.lon 1.2"> ,.,. ,-. 
12- 21-84 

'86 1- --------------------------------- --------
'" 1Il9B """'- ' OX ''''' ; FtN:TION - ) ., ..... = 
'" 1Il9B 8" F9 Ill) "" a. •• ;0. . If ? 

'" 1f19£ 75 .. "" """""- . . . . . . . . . . 
". . WI " 0' "'" AL , IlD3H ;OONOT SOOL 
J9l <lA2 ... 2 ~n6 R "'" """" . '" ; .. ... . . . . . . . 
'92 ' lAS 1::8 0lD1l R """ .,,,"" ; 1IC'l'1VE 

'" ' ''' IB 09 911 "" ""'" "" "'" ". ' lAS >SO<XL' , •.. •• .... ..... .. ,,, 
'Wl C6 96 1JlI1I6 "" "'" """". "'" ;0. IV/' ~ iii , S _ F'U>I:; 

'96 , ... E8 0002 R CAU. "-"'" ;LINE FEID 

'" 'lB' SCRR I GtI"t : ; SCROlL RIGIT 

'" 'lB' C3 ~ , . . . . . . . . . . . . . . . . . . . . 
'" ' lB< .,><xL "'" , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
'" ;1 ----------
401 .. BllCKSPAC£ IQ/TINE 

'" .. SUBROUTI NE .. , I ; ... 1;------
<OS alB. "M"" ''''' ''''' ; F\l!'CI' I ON - ) !l.o.CK SPlICE 

'" .... "" "'" AL , 10H ; CUROR SHI Ff \..EFt 

'" , ... E8 lilOlJ R CAU. "'''''' ; ACTIVE ... 'lB' .o.l 1i101l7 R "'" M,iREAAX ;GET CtiARl'CJ'ER VIlUJE 

'" "'" XOJ "'" 111. , tEF'l' ARJI()oI ;COHPARE UTl'AAOW CllD£ ? 
~ ". 'lB' 74 I!'" " FINISH "'" , 

III 'le' B0 20 em AL,20H ; 20H - • . 
w m ' le2 £8 I!lID R """ "'''''' ; 1oC'i'IVE w m 'le' ''' . "'" AL,r0H ; LCD aJRSOR ro LfFI' ... ."" E8 IiIlDIiI R CAU. OlIrJtti ;ACt'IVE 

m '"'' FI NISH: , ....... ...... .. ... 
m "eA 80 2£ 99116 R iiI .,. """".1 ; . . . . . . . . . . . . . . . . . . 
m "" C3 ~ ; REIURN • ••••••• • •••••••••••••• 

no ."" ""'" "''' ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
U9 

'" aJI' rotC'i'Hti 
421 
m . lD' ""-"" "'" "'" ;rotCrlGl - ) 00 [.(]) FUNC'l'ICti 
423 " 00 " """ m , .. . . . . . . . . . . . . . . . 
." ' lDl SA "lAlI "'" """" OX,OI:l_ ;O£l_POR'lW · lAllH 
m .w. <X.lTA: ; .•.. ..........• 

'" ."" " """ '" ; PUSH RD::IST 
m "IDS " '"'" '" , . . . . . . . . . . . . . 
'" .106 a.o. lillA 2 "'" OX ,010_ I'OR'I1l: lOt) P()R'JR '" W" 

'" ' 109 '" Wl'.IT: '" ",.m ;OX ';" I'ORT 

'" .,,'" " " " " ." ; SET (SF)-l 
m ' lOC " .. " "'" ; LCD &lISY ? 
m '"" " "'" " ; . . . . . . . . . . . 
m ''''' " "" OX , . . . . . . . . . . . . 
n . " .. 81 r ... " lA3 "'" OX,o,o.TA_ PORTR ; o,o.1'A_POR'IR '" lA3" 

'" 111£4 "" " R£I\I) OIITA , .. .. .... . . . . . . . . . 
'" "" EO 1m OX, IIL ; 1IC'l'1VE 
m U £7 m 02 90 "" FI NE ; OK 

'" "" READ OATA : ; Rf'..>.D [»'TA 
m "" '" '" M..I>< ; ACTIV£ ... "'" FINE: ...... ... 



~ , 
w 
~ 

The Microsoft MllCRO I\sSa'ri:Iler , Version 1. 2S Page 1-9 

'" .., 
W , .. 
'" '" .. , .. , 
'" m 

'" m 
m 

'" m 

'" m 

'" '59 

'" 461 

'" 463 

'" '" '66 

'" '69 

'" '" m 
m 
m 

'" m 

'" m 

'" m 

'" 491 

'" 4B3 
404 
'6; 
'86 

'" '" 49' 

'" 491 
m 
m 

'" 495 

"ID 
elID " "" SA IHAI 
91Fl "" 91F3 

01F3 
m3 " 01F4 ~ 0lA3 
01F7 ,"00 
01F9 

"" m, " 3E 0001 

'''' " " 0200 50 
92aL " 0202 " 0293 5' 
0204 " 
9295 '" 

, 
0208 BE C9 
920A SF 9~~E R 
0290 BE 9922 R 
0210 B9 91ee 
0213 '" 9214 "i " 0216 " 9217 " 0218 " 0219 59 
02lA 5' 
021£ E8 921F R 
92IE 
021E C3 
021F 

921F 
~~lF 56 

", 

12-21-84 

...... ... .. ... .. ... ... ..... .. .. ........................... 
;-------------------------------------

CUT VALUE 

"'"'''' ;--------- ._-----------
; FUOCTION -> CUT OIAIW:TER [CD 

; . . . . . . . . . . . . . . . 
COT VIIL •.•.......•••••••............•• 
;--------------------------------

IN DATA 

READ DATA 

''''' "" DX,DI>TA I'ORTR ",." -

;EUCTION - > READ DATA 

, ........................ ..... . 
;--- --- ------------

;--------
sc""""'" 

SCRIG/T: 

SC""""'" 

SCROLL TABLE UP WE LOW 

SC""""'" 
,roc "'" "" RlW,22 

"" SCRIGHT 
ro," AA 
rom '" ro," m 
ro", " ro," " """" ES,DATA 
><N AX,DI>TA 

"" ",AA 

"'" Dl,C£FSET ""'., 
"'" 51 ,OFFSET R();"{ll 

"'" 0:.469 

"" "" .,'"'' 
"" " "" " ro, m 
ro, '" ro' AA 

"""- LCD TABLE 

"" .,," ;-------------
Jo(N LCD RCW(9) ro TABLE 10<0(21) 
LCD TABLE 

;FtllCI'ION --, SC",OL TABLE 
;OOW -22 , 
; row (22) " START ADDRESS 
; PUSH 
..... 
; .... 
; .... 
; .... 
;" -)DATA ''''''''' AA- """ ''''''''' " ">DATA ''''''''' ."., """"" ES: (01) <- DS [Sl ) 

""" '" ''"''' 29*23 
(DF) .. 0 

;POP REXiISTER 
; .....••..... 
; . . . . . . . . . . . . 
; •........••• 
; . . . . . . . . . . . . 
; "''' "" RlW TO TABLE 
; OK 
; ................... ~ ......... 
; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

;----------------------------
,E"UtCl'ION - ) r'O.'E LCD ro TABLE 

" ; ....... . 



'" , 
W 

'" 

Tt><> Microsoft MI\CRO ASSEr..l>ler , version 1.25 pag e 1_11' 

'" m 

'" '" 50' 
5" 
50> 
503 SO, 
505 
SO, 
SO, 
590 

'" '" sa 
512 
m 
5H 
515 
516 
m 
51' 
519 
520 
521 

'" m 
524 
525 
52' 

'" 52' 
52' 

'" 531 
532 
533 

'" 535 
536 

'" m 
5" so, 
5H 

'" 5" SO, 
5<5 SO, 
SO, 
SO, 
'" 550 

~229 BE 11m2 R 
9123 C6 96 900C R 80 
0228 C6 06 0000 R 94 
0220 ES 0232 R 
0239 
0230 5E 
0231 C3 
0232 

0232 
0232 59 
~233 56 
~234 

0234 A0 0\lOC R 
0237 3A ~6 9000 R 
023B 74 01: 
0230 EB 0100 R 
0249 £8 \llF3 R 
11243 88 e4 
0245 I:E 06 090C R 
9249 46 
024A Dl E8 
924C 
924C 5E 
0240 58 
914E C3 
9241: 

e241: 
0241: 56 
9150 BE 01C6 R 
0253 C6 06 eeoc R 80 
e258 C6 06 0000 R 94 
9250 E8 0232 R 
0260 BE elOA R 
e263 C6 06 0eoc R ce 
9168 C6 e6 emm R 04 
e260 E8 e232 R 
9270 5E 
0271 C3 
9272 

11272 
9272 51 
0273 B9 0000 
e276 E8 0321: R 

12_21_84 

SRIGHT: 

LCD TABI:.E 

SI,OFFSET RCW21 
COL VALUE,seH 
COL- ENJ ,094H 
O,)pYROW 

TABI:.E ADDRESS RCM21 
START ADDRESS 
INPUT LCD ADDRESS 
O,)PY ONE ROW 

" 
,-------------------------------------

O,)PY ONE ROW ro TABLE 

,----_._---------------------
(XlPYROW 

CRIGlT : 

(XlP'fROW 

IIL,COL VALUE 
AL,COl.- END 
CRIGHT

=~ 
IN DATA 
(SII ,AL 
ax. VALUE ,,-
=roo 

;INPUl' -> S1 
OJL VALUE 
ax.::::mJ 

; ADDRESS [CO 

; LCD END AlDRESS 
;OK 
; I N OATI\. ro TABLE 
;I\.CI'IVE 
;MOVE OtARI\.Cl'ER TO TABLE 

; . . . . . . . . . . . . . 
;GET NEXT VALUE 

"" ; POP !W3ISTE:R 

; ........ ... ..... ...... ...... . 
; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

,-------------------------------------
cnpy LCD '1WO ROW TO TABLE ROW(22, 23) 

""run ,----------------------------
COPYU)) eo"~, 

""" "'" "'" "'" au. 

"'" "'" "'" CAu. 

"'" '"' COPYl.ill DIDP 

-'--

SI,Of'FSET 10'/22 
(l)L VALUE, 80H 
CQL-END,94H 
O')PYROW 
SI,OFFSET RCW23 
(l)L VALUE,oceH 
CQL-END,®4H 
o')PYROW 

" 

;FUt-CrION --> (XlPY LCD ro TABLE 

; RCm2 I\OORESS 
;cnpy LCO tOoI(e) 
,COL mJ 
;COPY RNl 
;COPY RCw.! 
,<XlPY LCD tOoI(1) 
;COL END 
; ."CTIV£ 

; ............................•• 

;----------------------------
;FUNCTION - > 1D UP 

;CX· II 
;OFF CUi<SOR 



~ , 
w 
~ 

n.e Microsoft MACRO IISsaMler , Version 1. 25 ,,,. 1- 11 

m B279 " 3£ BBBI R BII 
ss, e27£ 74 19 
m 02811 83 JE IIGGl , " ss. e28S """ m e287 8A 0E 0006 • 55' 1l28B 88 GE GIlIlB • 
OS> 01281" £8 eUF R 

55' 0292 

55' B292 FF liE e00l • SO, 11296 £8 9209 • 
SO> 11299 
SO> 0299 " '" 112911 C, 
SO, 029B 
50S 
50' 
SO, 
SO. ", B2 9B ". e29B 50 
m "" " sn 11290 " 3£ 0 1111 1 • " m "'" " 1< 

". "'" IT" 1111111 • m "A' 83 3£ llee l , " '" "AD 75 116 
m 'W £8 e2BB R ". 02B2 fE e4 90 

'" ''''S sao 1l2BS £8 e209 • 
S« ."" sa, 02B8 59 
sa, "'" sa 
sa. "'" " sas "00 sa, 

'" ssa 
sa, 
SO, "00 
'" "00 sa 
SO> "oc Sl 

'" ''''' " ~6 ~1l01 R 0016 
sa. "'" .. 0209 R 
S"' 32'''':6 all m::: 00119 , SO, "'" £8 llnF R 

'" ''''' All llllllB • SOB 1120e A2 0006 , 
S99 "'" " '"" • '" "'" 59 ,n "'" sa 

'" 11208 " '" "'" '" ,as 

12-21- 84 

ow 

" ow 

'" ." 
." 
CML 

~P'l: 
,,< 
CML 

U1UGH'r: ro, 
"'" on'" OW, 

~,' 
URIGIT 
R!.M , 22 

""""W cr.,,,,",, 
K£EP CUR,CL 
copvtm 

~ 

<M.CD 

0< 

; RCW " 0? 
;CAN NOT UP 
; TI\BL£ BUTI'OO ? 
; NOT IN CORROC'T POSITION 
;CL .. CURSOR POS ITION 
; . . . . . . . . . . 
;00 COP'l 
; NO COPY 
; R(l;' - 1 
;UP LCD 
;OK 

; ............. .... ........... . 
; ................... ... .. ... . . 

; --------------- ---------------------------

;----------------- -----------------------------

t><lMAL : 

ORIGHT , 

,----

,eoc 

"". M. 

"" " n" 
ow 

"" CML 

"" 

"~ 

'" '" R:JW,22 
ORIQrI' 
ROW 
R!.M,22 

"""'" "'''''' ORIGm 

RF.sET LCD roSITION 

"" "" 

; FUNCTION - ) ca-.'N I£D 

;~ ~ 22? 
; IN BIJ'MDN 

; IF RE'ruFN CORRtX:T POSITlOO 
; . . . . . . . . . . . . . . . 
;RE'ftl~ (DRRfCJ' POSITI ON 
;OK 
;oow\L 
;tx:~ .. 'N LCD 
;OK 

; ......... ... ... .. .. .. ..... .. . 
; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

; ---------------------------------------------------
RES LCD PROC NfAR ;~ION -> RE'ItI~ LCD POSITION 

PUSH AX ; .................. . 
PUSH ex ; ................ •.. 
w:N R!.M , 22 ; R!.M ~ 22 
CALL ffiVLCD ;CO~Y TABLE ROW(22 ,23) 'ro LCD 
w:N CX , I\REIICX ;ON CURSOR 
CALL CUR OOOf'F ; CURSOR W OR OFF 
J<YJV IIL,KEEP CUR ;St.1' CURSOR 
w:N ~~.~ ; •••••• •••• 
CALL 0l1l' FUN ; IICTlVE 
rop cx ; ............ .. 
rop AX ; ............ .. 

; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

; -----------------------------------------
~LCDUPOR~ 



'It>e Hi c~o...,tt MACRo ..... _l .. r , .... r .. lon 1.25 .~. 1 _ 12 
12_21_ B. 

'" "''''''' '93 ,--- --------------------------
'" """ "'''"''' eeoc '''''' ;FUlCI'I ON - ) MJVE LOl UP OR IXWN 

'" 112D9 " "''' M , ............. 

'" ",ffi " "'''" a< , . . . . . . . . . 
6U "'''' " "''' " ; ......• •.... 
612 "'"' '" " "" AL,1l81lH ;CURSOR ON OCWI Cct.l 
613 1l2DE A2 110116 , "" (IJUNT ,AL ;SET (IJUNT 

'" 92E1 E8 IIl.DIl R OOL OUT FUN ; SET CURSOR IN START 
m 112E4 BE 909E R "" SI,o.'FSI::r ""'" ; ROWIlIl AOORESS 

'" 02£7 Al 110111 R "'V M,"", ; ~1l1l+RCM"21l 

on """ SA .0£ 0111111 , "" cr. , '!WENT'!' ; .... ... ..• •• • 

"" '"'' f6 E1 '"'' a. ; GET I\OORES5 

'" 1l2FII 93 '" ~ 5I ,AX ; . . . . . . . . . . . . . 
'" "'" " 111128 "" CX, 411 ; 411 TIMES 

'" 1l2f5 """"'" , ;MOVE QlARACTER 

'" "" " "''' a< , ...... 
m """ eo "" ; (DF) all 

'" ,m '" """ ; [51] >, M. 
,<5 1l2F8 '"'' "'" cr.,11 ;OFF SCROLL 

'" 02,'A E8 U7A R CAW. DISP SUD ;DISPLAY A CHARACTER 

'" "'''' " "" 0< , . . . . . . . . . 
'" "'~ E2 F5 CO" "''''''''' , . . . . . . . . . . . . . . 
,<9 031111 " roe " " ........ 

~ '" 9391 " "'" a< , 
'" 11392 '" ro, '" w '" 93113 " = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

~ 

'" 11 3114 ""'"'" .m, ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
,3< ----------------- -------------
63S TEST UP ['()Io,'N <XlNOITION 

'" TEST UD 
6J7 ,---------------------------------
'" 0304 TFsr IJD ,= ""'" ;FUlCI'IW --) TEST ~ CONDI TION 

'" 113114 " "''' '" '" 0395 XOJ ow AL,lJPCODE ; UPCl')()E ? 

'" 11307 7S 116 '" """"" ; IF C()I,1COOE alOE 

'" IIJIl9 E8 11272 R o.u "' "" ;ACTIVE 

'" 930C EII 9E 911 '"' WDRIGiiT ;OX , .. 1l31lP OIPlX)oiN : ;CCMPARE D<l'i~ 

'" 0311F XC> "" AI., IX)V,1COOE ; [)()I.,"lOXlE , 
'" IlJll 75 06 JNE = ill ..... 
'<7 0313 E8 1129B R c= oowN LCO 

'" 0316 rn 114 'ill "" '!UDRIGHT ; OK 

'" 0319 RES_tID: ; RESET ,,, 0319 '" 0200 R o.u. RES LCD ;ACTIVE 

'" 1131C 'lUDRIGHT : ; RIGHT 
m 1131C '" ro' '" , .... 
653 11310 " = ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,5< 03lE ''''' "' "''' ; .................... ....... .. 
655 , ------------------------------------------------
65' CLEAR LOl TAllL£ 

'" ""''''' 65' ;------ --------
'" 031E A."''''' ''''' '''''' ; FInCl'IW -) CLEI\.R TABLE 

'" 1131£ 56 "'''" " ; PUSH REriISTER 



~ , 
W 
~ 

ThE> Microsoft MACRO Assam1er , Version 1.25 '''' 1-13 

'" '" '" '" '" '" '" "" '" '" m 
m 

'" '" 60S 
676 

'" "" '" '" '"" '" '"3 

'" '" '" ,eo 
'"" '"' '" ,n 
'" '" '" '" '" '" '" ", 
'"' '" '" '" ". 785 

'" 707 

'" '" no 
7H 
m 
m 
no 
ns 

,m 
0320 
9323 
11326 ",. 
"" "" me 
032' 
a32£ 
932f 

Y32F 
032F 
9330 
033L 
9334 
11336 on, on, .". 033£ 
\I33E 
11340 
0343 
9343 
0344 
9345 
9346 

0346 
&346 
034B 
OJ'" 
9340 
934£ 
934f' 

"" (1351 
0352 
9353 
035a 
0359 

\1359 

" BE 0119E , 
89 11lB8 

"' .. " .. 
E2 FA 
59 

" " 

" " so ro 00 
75 0B 

.,," 
1::8 111011 It 
IB iIti 90 

.. '" E8 0LDQ , 
59 
sa 

" 

2E, SF \J6 \l36C R 
50 
53 

" " 57 

" " .. 
21:: : 1'1' 36 036C R 
e3 

1359 2E' 8F 116 1J36C II 

12-21-84 

"' .. ox 

"'" Sl,OFFSET .,... 
"'" CX,.44\1 

TABU> , 

"'" .=~ [SI) ,201 
He " """ ,~U> 

ro, ox 

"" " "" """ ;: ,,:,::::::::::::::,,",:::::::::: :::::::: : .' aJRSOA 00 OR Cl"F .' ;: ::",:,, :::::::::: ,',,::::::: : :::,:, "'" , 
'''''' ,~, .,,' '" "'''' OX 
a .. <>< .' 
'" CUR_ON 

"'" ".000 
em. "" "" "'" """'" 
"'" 1IL,0oo 
CN.O. "" "" C1JRRE'I' : 

"" c. 
"" '" "" """ ; ; ::,:,',::::: ,:,::,:: :::::::::: ::::::::::: : : .. 

;; 
;; 

;;:::::::::::::::::::::::::::::::::::::::::: : 

'''''' "'" ro' CS : IP_HEl'I 

"'''' '" "' .. '" "'''' OX 

"' .. '" """ " "' .. " """ " "''' " "''' CS :IP_ ME}\ 

"" .," 
""'" '''' roo CS:IP_MEM 

""'" ""'"'" """ """ ;ASCII ODE 29H a SPN:E 
;51 + 1 

, """ ; pop Rro1ST~R 

; ......................... ............ .. . 
; .•••••.............•.................... 

; INP\1I' ex - • CURSOR OFF 
-;0 aJRSOR ON , 

; OlM0 I S 00 aJRSOR 
, ..... .. ..•....... 
;aJRSOR OFF 
;ClIRSOR OFF 
;ACTIVE: 
;Rl:."!\1~ 

;CURSOR ~ 
;CURSOR ON 
; J\CTIVE 
; RIQt'!' 
;POP RroISTER 
; . . . . . . . . . . . . 
; RE'IURN 

"'" 

; PUSH /I.LL REGIS1'ER 

;pop AIL RroISTER 



'I'hIo M1c:co.oft MACAO 1I.SSart>1"c • v.ouion 1.2S - 1_14 
12- 21- 9 • 

m 035E " . " " m 035F IF ." '" 718 "" " "" " no 9361 " ." " no 0362 " "" OX 
m 0363 " "" ex 

'" 9364 " ro, ~ 

m "'is " ro, '" m "366 2E: FE' 36 036C R "'''' cs: JP _ I'!El1 
ns 936B Cl "" '" ,,6< ro" """ '" ". 036< 0000 I P_Ma-I ~ , 
'" '" 936E "''< "'"' m "'" OOT_t.CD 



The Microsoft MACRO Assamler , versi on 1.25 '''. S jIIftlo 1 s-1 
12- 21_64 

Se;Jnents arXl qIOUpa : 

Naill '" Size al l9n camine chas 

"''' . 1136E ,~ PUBLIC '",..' 
DATA . "" ''''' """'C 'DATA ' 
sri'Cll . ~1~~ ,,~ '"''''' 'S'I'PCK' 

S~ls : 

Name "". value Attr 

""""'" CO,.,. "" "''' """"" L BYrE " .. "''' ,." . ,..- 1I~811 

""'" . ",'" "" "''' """" . " '''' ~~~9 """ """"-'. ,- '''''' "''' BACKS!> • """ 0lB4 "''' Lel1'J th - IlIlIC 
BACKSP/lCJ.:. """'" lIella 
BD'.r. • """", 1111117 
""-l. , """ '''' """ II!(Sp • "'" "" """ "'"'. "'" 000' <ro' 

~ '''''' , "'" "" COO< ",",'" - lIl1lF 
I """ .. ""'" 1131£ <ro' """'" -lIIII I 
~ 

'" ""'-"'" [, NEAR HOC "'" CLR SP .... L Nt:AP. . 9111 <ro' 
OIO- PORTR. ,,-, 'lA2 
Ol[)-POfmoI. ",,',," 01AII 
01;:fu.N, "'" 11311F <ro' 
en. DID •• L BYrE ellllD """ en.- V.vJJE. L BYTE OOOC "''' COPr !.CD. , eo' )C 1124F <ro' """'" ..g1l23 

"""""'. , eo,)C 11232 "'" ...,'" "'lD cam. L srrE "" "''' CRIQfi' • """ ,,,c <ro, 

"""" . , "" 11343 <ro, 
CI.O ,.., . """ ~ 336 <ro' 
CUR-ON • " "" 113 3E """ CUR-~. """ 1132F "''' Leng th - 111117 
~TA PORTR """"', 0lA3 
DATA:: POR'IW """", ,lA, 
00 . . . . I, ><D.R ,,,c COO, 
DISP[AY. . """ 11117" "'" DISPRIOft' , ""'" 1119" """ DISPSC~.r. """ 9197 COO< 
DISP SUB """ 1117" """ """'" ><\Ion 

"""""" """'" """ """ "" ,,00: 029B COO, ""'''' -tl1l211 
OR IOO "'" '2B8 mo, 
IT . """ 9912 COO, 
ty sus """ "" COO< Length - 0028 
FINE , """ "rn <ro' 
FINISH L NF.AP: IIlC'A ~ 



The Mic~osoft MACRo AS~le~ , vc~~ion 1 . ZS e~" SjllIDol .... 2 
12-21-a~ 

FORMFEED "-, "'OC 
IN DATA . """ ~1r3 COO, Length .~~Q6 
IP "1"11 • ".o", "'" "''' JNZ. L ~ IlQ52 COO, 
KEEP_CUR "'" Q~OB DATA 
'-' . , ,~ (lQ7Q "''' ""'''' . """ Qt76 "''' Length ·Q~04 
uii TN:lLr:-. """ Q21F COO, Length .(lQLJ 
LEnARR<M. ,-, IlIlD) 
ce. , ~ "" COO, 
LF R<M2 . ,,~ 000C m" LP-SUB • N PRCC ~QD2 COO, Length ·1l1l64 
LINEFEED '",.," 1111110'. - . '. ,~, 112F5 "''' "''''''' . , 

''"' "'" COO, Length "002B 
NEll: DATA , ,~ (l(lE6 "''' NEX-R<M. """ 016[) COO, 
ooW.. . "'" 1l2B5 COO, 
=~. I. NEAR 0292 COO, 

'" ""'" ,~ 11132 COO, 
o-Ji'A • , 

'''' Oli" am 
"'" roo . "OX Il IDIl """ -"' .. 99 10 
oor-LCO. """ Ollllll COO, ~'" "' .. (l(l88 
oor-rosiTION ,~ 11126 "''' ~ our-VA' .. , 

''"' ,,'" COO, LeTlJ th ~ll(m6 , POP-R. "OX 9)59 ru" Length ...,Ill) 
~ 

PUSH R "OX (1)46 COO, LeTlJth " 9013 ~ 
AA • ,,~ ~066 CDm: 
AA~ ,,~ 9161 COO, 
AA-= ,,~ 0175 mo, 
RA- R(:W2. ,. ,~ 11167 em' 
RA-SlJR • , 'OX IlHB COO, Length .. 1l(l21l 
ROO DATA. ,. '''''' "" """ ~gs U:o. N PRee 1l2BB mo, Length "'I"IE 
Rgs-W 

""" 113 19 COO, 
RE'riiRN • N~[ IlIlIlD 
RIOlT. "'" 0070 COO, 
RIGHTARROW ,-, "'" ~. ""'" 0001 DATA 
~~ . L BITE mIllE t».'rA Len<Jth -lIQU ",.n. "'" ee22 """ Length ~~e14 
.,.". L BITE 11936 """ Length -lIIll4 

""'S. , ,= 1l1l4A """ LeTlJth - 1l1l14 """ .. , ,IT, ~e5£ DATA Len<Jth -01314 

""'5. , BYTE 1lIl72 """ Length - 1l1l14 "",.. , ,IT, 0~B6 "''' Length .o01l14 ... ,. , ,,~ 1l09A "''' Length -(l014 

"""'. , ,IT' OeAf: "''' Length 000014 

""". , ,,~ ,." "''' LeTlJth - 111114 
R<M10 . ,. B'iT1:: ,,'" """ Length 000014 .,.,CU. L BYTE 1l0FJI DATA Length -1l1l14 
RO.Y12 . L BYr~: ~~FE "''' Length -lle14 
RO.YD. L BYTE 0112 DATA Length ~1l~14 

ROW14 . f. 'lYTE 0126 "''' Length n\l1l14 
~lS. L BY'l'E ODA DATA LeT>]th -13014 



The /'IicrOSQft /'IACRO AS$E!I'Ibler , Version 1.25 '''. sy<rb:>1s-) 
12-21-84 

.,.". "'" 914£ '''". l.eO:)t/l -0914 

.,.n. L BrTE 1162 '''''' Length 04914 ""',. """ 1176 "''''' 
l.eO:)t/l "9914 

.,." . L BrTE "'" "'~ Length aef14 
""',. ""'" 119£ "'T' Len:Jth - 1914 

""" . L BYTE 11B2 "''' Length -"1914 

""". """ "'" "'T' Len:Jth - 9914 ""',. L BYTE ''''' "'T' Length -"1914 

'" . . ,~ 9U6 au '" .,.,. , "" 1144 (ro' 
RT- R0W2. , "'" 1142 "'" RT- SUB • """ 9136 (ro' ......,,,, ~915 
R DATA . """ 9995 ""T' 
sCRlGn'. , "" 921£ (ro' = . """ U9B an Lert,lth -9919 

""""''' """ 91F9 (ro' LeNgth ~9926 
SCRRIG>fl' ".'" .un an 
"'" COO . , "'" 9234 (ro' 
SRIGH'!' • '''''' 9230 COO, 
SIJBRIGH'l' "'" 9901 COO, 
TABU' •. "'''' 0326 COO, 
TEST 00 . """ 9394 COO, LeNgth ~9lA 
TUORIGn' "'" 0)lC an 

~ ""'" """ .". """ , """,., "'" ""e coo, 
~ "(ro' """"', ."" N .", "" """ 0272 an LeNgth - 9929 

URlG!T , """ "" COO, 

'" . . CO'''' 9059 an WMT . CO,'''' "'" COO, 

Warni n:) Severe 
Error s Error s , , 



S)'Ibol C~o .... Ref .. ~~ ( I is deflr>it ion) cref_l 

ADORES5A JOt m '" '" AOORESSB '"~ m 279 m '" m ,,, 
/I.J.T •• • 28' " " '" " """" . '" '" m '" """" . <0, '" ", '" ASCOOLL . '"' 3941 

B.'CKSP • ", '" 41'15 ' H' 
DACKSP/ICE. ". '" ,ru. . m m 
BELLl. m 1821 
BKSP • '"' 1871 
BKSPIl. m 26111 
BS_SIJB '" 252 ' '" 3;' 

CLRTAB • '" 659. m 

'ill "'" m '" 292 ' 
CLR-SPA. 293, ,"a 
Of)-PQRTR. ". "" 01D - roR'IW. m '" Q1F'OCwN . • ,,, 6441 
OXlE ••• 1581 >;, '" ns 
COL EHl •• '" '" m m ;" 
o:x..-W.LUE . m '" m '" m m 
cofiU». 53~' '" '" COPYROW. '" 508' m S3S 'J9 

~ coom. '" '" '" '" m '"' '"' n6 m m m DO '" m , 
~ '" '" m m )OS U6 sss ss, m 
w 

CRIGHT '" 5211 
,~ 68' 689 ' 
CUR OFF. 682 ' 
CUR-ON • '" 686. 
CUR-OOOFF. '" ss, SS, 677 ' 6S3 

DATA ••• " 
, U3 '" '" m '" DATA PORTR '"~ '" '" DATA-roR'IW u. '" DO .-•• • 2~7 ' 

DI SPLIl.~ . • m 222 ' 
DISPRIGlT. m m 378. 
DISPSCROLL '" 376. 
DISP SUB 223 J64t '" '" """""', m 28' '" ""'" "" '" 5691 sa, '" DRIOO m '" 5811 

IT •• 172' 
IT "m m 233 1 '" FINE • m 440t 
FINISH '" 415' ro_= '" m 

IN DATA. 28' 456' '" '" I(:z".,., '" no m '" n81 

JNZ ••• 2041 



Synt:ol Cross Reference (. is definition) Cref- 2 

KEE P_CUR '" 55' 50' 

LA ••• '" 217' 
LA SUB • '" 355' 'SO 
r..d) TABLE. '" 4941 SOl 
LEl'T.o.Rl!CM. '" as '" LF ••• '" 192' 
LF RDW2. 2771 
[F-SIJB • '" 272' 76' '" '96 
LI!iEFEll m '" """"'" . 6211 '" """'" . 50' SO, '" 608' m 

~~~ 2791 m 
~EX-ROW. m 3441 
NCt-iiiL. • '" 5791 

"""",. ;;, ~..,a. 

'" ""'" '"' 3"7' 

curA •• 4251 ." '" OOTJf..tl. m '" '" '" i~2 '" '" '" '" '" m m '" on 
'" '" 422 . .., 515 599 ,1< .. , '" 

"" "". 1591 '" m 
~ cur- roSITION '" 3~11 
I W(VAL. "" "" 365 m 449' m ~ 

~ 
roP R. '" 71H no 
PUSH_ R '" 7 ~ Q I m 

"' .. '" 212 1 

"' en< D' 3'38' 
"'-~ 3<3 3471 
RA- ROW2 . m 34U 
RA- SUB • m 3301 3<' 
ROO DATA. m B8, 
RES fr:D . m 5901 '" 650 
RES-LU .. , 6491 
RE'IURN . '" '" RIGHT •• '" '" 186 '" '" '" '" m '" m 224 ' 
RIGHTARROW '"~ m 
""'. . 3<. 176 '" '" m 553 559 m '" m m '" """'. m '" m '" """. m 477 

"""'. 5" "'",. 591 

""". '31 
""'5 . m """,. m 
""''' . 15J 

"""'. m 
""'9 . m 
~10 . '" RO<lll. '" I'(Wl~ . ", 



S}"'t>oI CtOS!! Refet ence (' is defin ition) Ctef_l 

R()oI13. '" 1'()Ii/14 . 103, 
1Uo115 . lInl 
R!:)I;'16 . llU 
Rao/17. 1151 
R:lH18 . 119, 

"""'. m. 
"""'. 127. 

""". 131f '" .,,"'. B5i m 
Rao/2J . 1391 S36 " .. '" 197' 
RT ReMl. . " m 1211 
RT- R0W2 . m nel 
RT-stm • '" 31St m 
RJi.~TA • 371 , .. '" 
SCRlG>rr. '" 487t 

~ """"- . 377 )87, m I 
~ 5CR)U." '" 465' .. , 
~ SCRRIGHT 393 397' 

SCR_COO. 511' ". 
SRIGHT • 50111 
ST-'i':'< •• " 

, 7 
SUBRIGHT 755 759 26" 

TIIBLP •• 664, 667 
TI::ST ttl . ". 638, ,5< 
'T1.DR i GIft' '" , .. 6511 

"'''''' m m '" 
""'" '" 177f 

""''' '" '" ... 
""'" 'OS 547, S" '" URiGHT 557 "" 00 . '" 2i2. 

Wl'IIT • "" m 



The Assembler directive -- SEGMENT 

In t he beginning of this program, a n assembler d irective SEGMENT 
instructs the Macro Assembler to reserve a memory spa t: ~ ,)r: 256 
bytes as the stack segment so that data can be saved in the stack 
segment before a CALL or JUMP instruction . You should refer to 
the Macro Assembler Manual for more details of the assembler 
directive SEGMENT. 

~ach time you use a SEGMENT direct ive to allocate a memory space 
to a segmen~, you ha ve to use the dir ec ti ve ENDS t o tell the 
assembler that it is the end of a segment . 

The Data segme~. t 

After the stack segment is set aside , ano ther SEGMENT statement 
i s used to define the data segment for the . program. Data and 
variables to be processed in an 8088 assembly language p r ogram 
should be defined in the data segment . 

The Assembler directive -- EQU 

The EQU (EQUATE) di r ective ass i gns a val ue of an expression to a 
name. Fo r example, the EQU statement 

CMD PORTW EQU 0lA0H 

assigns the hexadecimal 
source program, an H is 
value is in hexadecimal. 

value IA0H to the name CMO PORTW . In a 
affixed to a value to designate that the 

The EQU .directive sometimes takes the form o f 
As you can see from the example program , the 
directives assign the I/O port addresses t o the 

an equal sig n 
first four EQU 

fo ur LCD ports. 

Values are as signed to control codes with the EQU direc tives. 

The Assembler directi ve -- DEFINE 

The DEFINE assembler directive assigns a pre-defined val ue to a 
by t e o r multiple of bytes accordi ng to the second l etter of the 
directive. The DEFINE directives are represented by different 
mnemonics such as DB (DEFINE BYTE) , OW (DEFINE WORD), DO (DEFINE 
DOUBLEWORD), DQ (DEFINE QUADWORD) , and DT (DEFINE TENBi'TES). You 
should refer t o the Macro Assemble r Manual for more details of 
that assembler directive . 1 

Constants and variables are defined using the DEFINE directi.ves . 
The LCD buffer are init i alized to zeros with the DB directives . 

5-46 



The Code Segement 

The code segement fo l lo ws th e ENDS directive for the data seg 
ment. Before the- SEGMENT assemble!;" directive , there is a comment 
field whi ch d e fin es the contents of some registe rs which should 
be set before e nte ring the LCD routi ne . Here , we wi ll explain t h e 
commen t fi eld i n d l::' t"lll: 

1 ) AL - holds the ASC II c haracter (parameter) t o be outpu t to 
the LCD . 

2 ) CH~~ - indicates that you do not expect the cu rsor to 
appear on the LCD . 

3) CH(>0 - means the rever se of CH~0; i . e . , 
cu r so r to appear on the d i splay . 

you expect the 

4) CL~~ - indi cates that you expect t he sy,.:;te .. o Ill'lt to sc r ol l 
up the screen . 

5) CL(>0 - means t hat you expect the system to sc r oll up the 
screen . 

The exampl e program consists of 
main program named OUT LCD . The 
described as follows : 

23 subroutines , 
function of each 

including 
subrout ine 

the 
i s 

Name 

1. OUT LCD 

2. FF SUB 

3 . i3S SUB 

4 . LF SUB 

5 . RT SUB 

6 . RA SUB 

7 . LA SUB 

8 . DISP SUB 

9 . SCROLL 

10 . BACKSP 

1 1. OUT FUN 

Functions 

The main program checking f or t h e i npu t data 
type. 

A subr ou ti ne pro(:e !;s ing the f o rm feed code . 

, s ubroutine processing backspace ini t ialization. 

A subroutine processing the line feed code . 

A subroutine processing the carriage return code . 

A s ub ro u tine p r ocess i ng the ri g ht - a r row code. 

A subroutin f'! process i ng the l eft- ar r o w code. 

A subroutine pr ocess ing the cursor position ing 
after displaying a characte r . 

A subrout i ne 
LCD when the 

fo' 
end 

screen is reached . 

decision- making on scrolling 
of the second r o w of the LCD 

A subr outi ne p r ocess ing the backspace code . 

A subroutine communicati ng with the LCD I/O 
ports. 

5- 47 



Name 

12 . OUT VAL 

13 . I N DATA 

14 . SCROLLE R 

Functions 

A subrouti ne for writ ing charac te~s t o I /O 
ports . 

A sub routine 
ports . 

for reading cha racters from I/O 

A s ubro u tine for scrol li ng the contents o f t he 
b u ffer o ne li ne up . 

15. LCD TABLE A subr ou tine for making some -preparations for 
copyi ng the images of the fi rst r owan the LC D 
to the 21st row of the buffe r in memo ry. 

16 . COPYROW 

17 . COPY LCD 

18 . UP LCD 

19 . DOWN LCD 

213. RES LCD 

21. MOVLCD 

22 . TES T UP 

23. CLRTAB 

A sub r out i ne performi ng the copy i ng operati on. 

A sub routine for ma king some p repa r at i ons for 
copyi ng the two r ows of images o n t he LCD t o t he 
22nd a nd 3rd ro ws of the buffer i n memory 
respec tively. 

A subrout ine 
the uppe r pa r t 

f o r scrolling 
of the sc r een 

the 
c an 

screen so 
be viewed . 

tild t 

A s ubrou tine fo r scrol ling the sc r een so that 
the 'lower part of the screen can be v i ewed . 

A subroutin e for restoring the o ri g inal images 
back to the LCD screen from the 22nd' and 23rd 
rows of the buffe r . 

A subr out i ne fo r mov i ng a line o f c h ar-'lcte r s in 
buf fe r to the LCD scree n. 

A subroutine testing if the input pa r amete r is 
ALT A or ALT Z. 

A subrou tine clear ing up all t he co n tents o f the 
buffer t o blanks . 

5- 48 



We c a n no w l ook a t 
SEG MENT directive 
i nst r uc t ion code . 

the Lcn p r ogram . Af t e r t he commen t 
is used t o set aside a memo r y space 

field , a 
f or t he 

t he 
the 

The f irst t h ing the p r ogram will do i s t o push 
all r egis t e r s on t o the s t ac k. Th i s i s done by 
CALL PUS H R. The · p r ocedure PUSH R i s listed i n 
prog r am as-the las t procedu~e . 

c ontent s of 
instruct i on 

the example 

Why must we push the conten ts of al l register s onto the stac k? 
Because we wan t to give t he p r ogram f l exibi li ty so tha t i t can be 
used wi t h or ca l led by othe r prog r ams . We assume t hat this 
prog ram can be c a l l ed b y ano t her prog r am . 

One t h ing you have to keep in mi nd i s that i f your p r og r am i s 
associ ated wi th (or called by) anothe r program , you have to s a ve 
onto t he s tack t he c ur re n t status (the resu lt s t he cal ling 
prog ram j ust produced before call i ng ano ther pr ogram) of all 
reg i ster s before call ing another p r og r am . The n as t he ca l led 
prog r am fi ni shes execu t ion, the POP inst r uc t ion is e xecu t e d to 
res t ore the sys t em s t atus back t o t heir original state . Thi s 
prac ti ce ensures tha t whe n the called p r og r am f in ishes execution , 
prog ram con t r o l wi l l r eturn to t he calling prog r am wi thout des -
troyi ng t he statu s befo r e ca l ling . . 

An a lterna t ive to ensu r e t ha t system status wi l1. he ke?t i n t ac t 
is to push the cu rrent status onto t he stac k as s oon as a called 
prog ram i s e xec u ted . Th i s is wha t the e xample p rog ram does to 
sa ve t he system status . You can adopt this p r og r amm i ng technique 
i n yo u r own p r og r a,n . . 

In o rder 
program 
the o s 
DS , BX. 

t o acces s the 
init i alizes the 
(Data Segment) 

memo r y i n t he data segment (OS) , the 
OS registe r t o point to the beg inning of 
by t he i nst r uct i on MOV BX , DATA and MOV 

Since t he i nput pa r ame t e r s a r e impo r ta n t for subsequent opera 
tions , we use two wo r d variables , namely AREAAX and ARP.ACX , to 
save them i n adva nce . The i nstruction CA LL CUR ONOFF de t e rmines 
whe ther to turn off the cursor based on the cont ents o f the CH 
regi s te r i nput from t he calling r out ine . 

Initialize the LCD 

Before sending a c haracter to t he LCD , you have to in i t i a li ze t he 
LCD by send i ng a set of values to t he LCD . I n ou r example 
prog r am , the FF SU B proced ur e can be used to i n it iali z e t he LCD . 
The FF SUB procedure outputs the following set of LCD init i al i za
t ion val ues -- 38H , 0DH , 6 , and 1 . The comments for the FF SUB 
procedure explain b r iefly the function of these values . The LCD 
data sheet provi des mo r e info r mation on why the LCD i n i t i a liz a 
tion values s hould be sent to the LCD . 

The easiest way t o ini t ialize the LCD is using the El)l1.(N, l '\'J 
instruct i ons: 

5- 49 



MOV 
CALL 

AL, 0CH 
OUT· LC D (OUT LCD here i s our e xample program . ) 

After i n itializing the LCD, then you can send a character to the 
LCD to display. For example , if you intend to display the 
character A, you can use the fol l owing instructions: 

MOV AL , eCH ; I nitialize the LCD . 
CALL OUT LCD i (OUT LCD here is o ur example program . ) 
MOV AL , 4lH ; r,oad - the AL r e gister with the ASCII code of 

the character A. 
CAL L OUT LCD ; (OUT LCD here is our e xample program. ) 

Gene r ally speaking the form feed code demands for the action of 
printer . But in our program , this code (0CH) is to cause the 
system to reset the LCD and clear up the LCD screen. To the 
hardware of the LCD , resetting the LCD screen requires four 
actions - function set , display and cursor on/off set, mode set 
(cursor movement direction) , and disp l ay c l earance . 

The value 3HH in the f irst MOV instruction aims at 
func t i on 0 f. the LCD . The pr aced ure OUT FUN is ca lIed 
FF SUB rountine in order to achieve the purpose 
setting . 

setting the 
t wice in the 
of function 

Each time you want to output a character onto the LCD screen , you 
have to cal l the OUT FUN routine which performs the actual output 
process . The procedure OUT FUN is responsible for communicating 
with the I/O ports of the LCD. 

The va l ue 0DH is to set the LCD screen to be able to display 
images and to set the cursor to be able to blink after the system 
has been po~ered up . 

The value 6 i s 
right. Last, 
set the cursor 

to set the cursor to operate or scan from left to 
the value 1 is used to cleat up the r,cn screen and 
to the upper left- hand cornor of the LCD screen . 

Now , the number of pos i tion where the curso r stays is 80H , repre
sent i ng the first co l umn of the first row . Therefore , we move the 
value 80H i n to the variable COUNT which is used throughout all 
the associated LCD routines to i ndicate the current position of 
the cursor. 

The subseque nt instructions up to th e end of the OUT LCD routine 
check for the control characters to determine which routine 
should be executed . I t should be easy f o r yo u to trace and under 
stand these intructions. 

Another important job FF SUB per f orms is t o move the constant 22 
into tAe variable ROW. The varIable ROW used in our program 
contains the current row number o f th(~ bcd: fe r in memroy whose 
contents are being shown on the LCD screen. 

5 -50 



The Display Buffer 

The buffer contains a total of 24 rows of lines (ranging from row 
o to row 23), and each line contains 20 columns. Thus , we get 480 
bytes of memory, or 24*20 bytes . The display buffer can be 
visua l ized as follows : 

" Lin" ~ 

2~ Characters 

f·UT - A 

!ALT_Z 

The variable ROW is used as a point~r , which contains (always 
points to) the current row number of the display buffer whose 
contel1ts are being shown on the LC D. The value of ROW is 
initialized to 22 after the FF SUB routine is executed . 

When you call the OUT LCD proce dure to output a cha r acter or 
characters to the LCD , the characters are stored beg i nning from 
row 22 of the display buffer (which corresponds to row 1 of the 
LCD) . After both of the two rows of the LCD (which correspond to 
row 22 and row 23 of the display buffer) have been filled with 
characters , any further incoming characters to the LCD are dis
played on the second row of the LCD , but the characters 
originally displayed on the first row of the LCD was shifted one 
line up into row 21 of the display buffer and the second row was 
shifted o n e line up into row 22 of the display buffer. 

Each t i me the user enters the codes ALT A or ALT Z, the program 
wi 11 increment or decrement the var iable ROW by one . In other 
words, the value of ROW will not change unless the codes ALT A or 
ALT Z are sent to the LCD. 

which 
the 

The variable TWENTY represents the symbol of the value 20 
will be used in the associated routine (MOVLCD) to calcalate 
starting address of a certain row of line i n buffer reguired 
output to the screen. 

UDTEST 
ALT Z 
routine 
LCD OUT 
22 . 

will be executed only when the control codes ALT A 
are entered . Note that the CALL 'l'E ST UD instruction 

UDTEST will not be executed at the fIrst calling of 
routine , because the contents of ROh' was initialized 

5- 51 

to 

or 
in 

the 
to 



As you can see, the routines FF :, UDTEST :, and BELL1 : through LA: 
all comes under the comment field " CONTROL CODE TEST". These 
routines test if a cOr)ttol code is en"tered. If the con tents in 
the AL register does not match any of the control codes (such as 
bell , backspace , linefeed, return, and others supported by MPF-
1/88) , the program will fall through to the instruction labelled 
DISPLAY to output it onto the LCD screen . 

Let us go on looking at the next routine called BS SUB. The 
backspace control code is used to cause the cursor to move back 
ward by one space on the same line. Two cons iderations in this 
routine should be taken into account . One is that when the cursor 
stays at the leftmost position of the first row, the backspace 
operation to the cursor must not occur . The other is that when 
the cursor stays at leftmost position of the second row, the 
cursor should skip to the rightmost position of the first row 
after the program recognizes the backspace code . 

Now look at the LF SUB routine. The l inefeed control code that 
our program recognizes is used to cause the cursor on the LCD 
screen to advance by one line. If the cursor stays on the second 
line of the LCD screen , what we have to do is to move the current 
contents of the second line to the first line instead of causing 
the cursor to advance by one line. The routine labelled NEX DATA 
performs the data movement operation. After making the cursor 
advance one line , we should clear the line (second line) which 
the cursor currently stays to blanks . Then the p r ogram ",ill 
prompt the cursor at the position corresponding to the one where 
it stayed befo r e . 

Let us go 
used to 
line. 

on with the RT SUB routine. The carriage return code is 
cause the cursor to st~y ~t the beginning of the next 

The RA SUB routine advances the cursor. by one space . The value 14 
in the move instruction labelled RA CTN is required by the hard
ware to advance the cursor to the right by one space. I f the 
cursor stays at the rightmost position of the first line, the 
program will call the LF SUB routine to move the cursor to the 
first column of the second-row . 

Next, look at the LA SUB routine. This routine performs the same 
operation as the BS SUB routine. However , when BS SUB detects the 
backspace control code , it will cleat the position preceding the 
current cursor position while moving the cursor . When the program 
encounters the leftarrow control code, it simply move the cursor 
backward by one spdce . 

The DISP SUB routine is used to output the character stored in 
the AL register. If the curso~ reaches the end of the second row, 
the program wi II <lei:er,nine if the screen should scroll up based 
on the parameter in the CL register. Thus, the program calls the 
SCROLL routine to perform this job when the value in the AL 
register is equal to 0D4H . 

5- 5£ 



It is considered not di ff i cult for you to tra ce the SCROLL 
routine . Therefor~ , l e t us skip it over to t he BACKSP routine . I n 
this r o u t in e , we use a value 10H in the first move instruction 
wh ich is r equ ir ed by ha r dware to move the cursor backward by o ne 
space . Then , t h e p r ogram wil l c heck which of these tw o contr o l 
codes -- backspace and leftarrow , invokes this BACKSP routine . 
Acco rd ing to the log i cal judgement result , the program determines 
if it should perform a c l ean- up ope rat i on . Th e r e is another l0H 
val ue i n the thi r d move instruction of this routine; Its function 
is the same as the f ir s t move instruction . Because each time the 
program ou t puts a characte r on t o the sc reen , the LCD hardwar e 
will automatically a dvance the cursor b y one space . Thus, we have 
to rewrite the MOV AL , 10H instruction afte r perform i ng the clean
up instruction MOV AL , 20H which i s used to clear up the pos i tion 
where t he cursor stayed last time •• 

Now , le t us go to the OUT FUN r o uti ne. This r outi ne functions to 
inter fa ce with t he fou r 170 ports a nd plays the ac t ually ou tpu t 
role in o ur p r og r am . This routine ca n be accessed from t wo 
entries - OUT FUN and OUTA . Norma l ly , t h is program i s accessed 
from the entr y OUT FUN to output a character to the I /O pOtts . I t 
can be also invoked by the IN DAT A routine to read in a cha racter 
from I /O ports and invoked by the OUT VAL r o u t ine to output a 
cha r acte r t() the I/O ports . The routine labell ed WAIT is used to 
test if the LCD drive r i s busy at the t ime when we want to output 
or i npu t a character to or from the LCD screen . If t h e LCD d r i ver 
is busy , i t returns a value in the AL r egis ter with the sign b it 
set to 1. 

The SCROLLER r outine is invoked when t h e sc reen is f il led up with 
charac t ers and the cu rso r can no t move down any more lines ; i.e ., 
once t h e cursor is on the bottom l ine (second) , the screen should 
scrol l up instead of moving the cursor down . 

Befo re we replace the contents of the first li ne of the LC D 
sc r een with the conte nts of the second line , we have to move up 
the contents of the buf fer in memory (f r om r o w 21 to row 1) by 
one row in order to move the contents of the first line o f the 
~CD screen to row 21 of the buffe r in memory . The SCROLLER , 
~CD TAB LE a nd COPYROW routilles perfo rm wha t we just stated . 

The e n t i re scrolli ng operati o n is accomplished wi th a s t r ing 
operati on, using the MOVSB instruct i on. 

The original contents of row 0 are always spoiled each time this 
routine is performed. Note that the use of the special assemb l er 
opera t or , OFFSET , in the MOV DI , OFFSET ROW00 instruction . It 
provides us with the of fset address of the variable Row00 . 

The CQPYLCD routine is i nvoked to move the contents of both the 
LCD screen lines to the row 22 and 23 of the display buf fer i n 
order t o respo nd to the ALT_A or ALT Z control code. 

The UP LCD routine 
the pr ogram uses 

is invoked by the ALT A code . In t h is routine , 
the variable KEEP CUR to r ecord the cu rsor 

5- 53 



position the first ti me it receives the ALT A control 
o rd er to restore the curso r to its origianl position 
user enters any command or character except the ALT A 
control codes. 

code in 
once the 

and ALT Z 

The ODi'i'N LCD routine does the reverse of the UP LCD routine. 
However , the DOWN LCD routine performs a decision- making process 
which is not performed by the UP LCD routine . The decision- making 
process examines whether the ROW variable contains the value 22. 
I f the ROW contains the va.lue of 22 , this means that the 
displaying of the LCD screen has already reached the buttom of 
the buffer in memory and no more down- scrolling can be performed . 

The RES LCD rou tine is used to move the orignal contents shown on 
the LCD sr.~8~n from rows 22 and 23 of the buffer in memory back 
to the LCD scr een and also restore the cursor to its o rigian l 
position based on the contents of the KEEP CUR variable . 

Let us keep going with the MOVLCD routine . This routine first 
calculates the starting address of the li nes in the b IJF.f.(~r to be 
output onto the LCD screen based on the value that the variable 
ROW contains , and then moves to the LC D screen two lines of 
contents (4~ characters) in the b uff er from the starting address 
it calculated . 

The TEST UD routine is used to determine which one of the ALT A 
and ALT Z codes is entered after one of them has been just 
entered once . , If the code ent e r ed is not o f: 0[)8 o f them , the 
program wi)l call the RES LCD routine to r estore the original 
images shown on the LCD screen . 

Finally, let us see the CLRTAB routine . As its name implies , this 
routine is used to clear all the contents o f the lines from row \l 
to row 21 in the buf fe r to blanks. 

Please take note that the above example program is assembled 
using Microsoft ' s Macro Assembler . S ince the MPF-I/88 does not 
support Microsoft ' s Macro Assembler , the example program can not 
be en~ered and run on the MPF - I/88 . However , you can adapt the 
example program to a form whi ch can be ru n o n the MPF- I/88. If 
you intend to do this, you have t o change the lab les and nama..s 
into absolute addresses . Also , you are suggested to trace t ·he 
OUT LC8 procedure contained in MPF-l/88 Monotor Program Source 
Listing , and compare that one with the example program . 

5-54 



5.5 Audio Interface Driver 

The MPF-I/88 supports an audio interface circuit fo r buzzer 
output. Please ~efer to Sheet 2 of schematic diagram for the 
buzzer circuit . Bit 6 of port 180H is used t o control the buzzer 
circuit . A sound is generated by applyihg a sequence of ones and 
zeros to t his circuit . 

You can v isua li ze the buzzer as the paper cone of a speaker. To 
generate a sound, the paper cone must be attracted and r eleased 
at high frequency by the audio interface circuit . To attract the 
paper cone , we apply a nominal vo ltage one (bit 1) to the audio 
inte rface circuit . To releae the paper cone, we apply a nominal 
voltage zero (bit 0) to the audio i nterface circuit. 

A nomina l voltage one can be applied to the sound- generating 
circuit by using the OUT instruction to output a bit 1 to bit 6 
of por t l80H . A nominal voltage zero (bit 0 ) can be applied to 
the audio interface circuit by output ting a bi-t 0 to bit 6 of 
port l80H. 

You can locate th e procedures BEEP and SOUND at lines 1552 and 
1574 in the MPF-I/88 Monitor Program Source Listi ng . The subrou 
tine which actually generate sound is labelled SOUNDl :. As you 
can see from the comment f ie ld for the procedure SOUND , the BX 
can be loaded with a value that cont rols the frequency of the 
sound to be generated , while the ex r egiste r can be loaded with 
the value which controls the pitch of the sound to be generated. 

As demonstrated i n the MPF-I/88 Monitor Program Source Listing , 
you can use the SOUND procedure by including the INT l8H instruc
tion in your own program. Before using the INT l8H statement, y ou 
can use the ex register to set the f req uency of the sound we 
desire and the EX register to set the duration of the sound. 

At the start of the BEEP subroutine, we 
200H and 20H to the BX and ex registe rs, 
change them as you wish . 

move two initial va l ues 
respecti vely . You can 

At this point , please refer to the chapter on I/O Programming of 
this manual for I/O port addresses where the function of bi t 6 of 
the I/O port 0180H is clearly described . Thereafter , you can 
understand why we set the constant label SPEAKER 10 to 0l80H and 
BEEP BIT to 40H (=01000000) . 

At the beginning of the program execution , we disable all the 
funct ional bits of port 0180H so that the " program execution might 
not be interrupted by outside devices , and at end of the execu 
tion we re-enah le them. This point is very important to ke ep in 
mind when you write a progr am like this . 

You can input a sound table using the DEFINE 
An example program is provided as f ol lows. 
example program and run it on your MPF-I/88 . 

5-55 

assembler directive. 
You can type in the 



This p r og r am when e xecuted , will produce the basic music notes 
con tin uously . To stop the program , press the RESET key . The 
prog r am wi l l rema in i n t he RAM after the RESET key was pressed. 

Address 
0080 : 0000 

Mnemo n ics 
CALL 

0080 : 0003 JMP 
0080 : 0005 MOV 
0080 : 013138 CLO 
01380 : 01309 LOOSB 

~HI8 0: 003A CMP 

038 0: 000C JNE 

0080 : 00 3 E LOOSW 

3080 : 330F MOV 
01380 : 13011 LOOSW 
13080 : 01312 MOV 
13080 : 131314 I NT 
1313813 : 13016 JMP 
01380 : 0018 RET 

0080 : 02013 OB 
0080 : 0201 OW 
0080 : 0205 OB 
01380:0206 OW 
3083 : 020A DB 
0080 : 020B OW 
01:l80 : 020F OB 
13080 : 0210 OW 
0 080 : 021 4 OB 
0080 : 0215 OW 
01380 : 0219 OB 
0080 : 021A OW 
0 383 : 021E DB 
0080 : (~21F OW 
0080 : 0223 OB 
13080:0224 OW 
0080:13228 DB 
131380 : 0229 OW 
0080 : 0220 OB 
0080 : 022E OW 
0080 : 0232 DB 
3080 : ~233 DW 
13138 13: 0237 DB 
0080 : 0238 OW 
0383:0 23C DB 
01380 : 0230 OW 
01380 : 0241 DB 
0080 : 0242 OW 

Oper ands 
5 

o 
SI, 200 

AL , l 

18 

CX , AX 

BX , AX 
18 
9 

1 
105 , 813 
1 
IB3,80 
1 
196 , 80 
1 
184 , 80 
1 
16B , 80 
1 
155 , 80 
1 
148 , '80 
1 
136,80 
1 
114 , 80 
1 
F8 , 83 
1 
E6 , 80 
1 
B8 , 80 
1 
A2 , 80 
1 
9A , 80 

Commen ts 
; Invoke r outine addressed by 
memory l ocation 5 , 

; Move address 2130 to SI 

; Move a byte of data addressed 
by the SI register i nto t he AL 
register. 

; Check if the end of the prede
fined data i s encountered. 

i lf data e nds , jump to the 
i n struction con tained in 
memory location 18H. 

; Move a wo r d of data addressed 
by t h e SI register i n to AX . 

i Move freque ncy into cx . 

; Move music pitch into EX . 

5- 56 



0080 : 0246 DB 
0989: 024 7 OW 
9089:024B DB 
0080: 024C OW 
0080 : 0250 DB 

1 
88 , 80 
1 
78 , 80 

• 

5- 57 



5.6 Keyboard Driver 
A keyboa r d is an i nte r face between the system and t he outside 
wor ld. Physically , t he keyboard of t he MPF- I/88 cons i sts o f 59 
keys , including the space bar . 

10 understand the keyboard d r iver program , you need to refe r to 
the sch emat i c diagram for t he k eyboard , which shows t h e keyboa r d 
c i rcu i t . You will find t hat i t resemb l es a mat r i x, consisting of 
12 c olumns by fi ve rows (12 x 5) . Each node ( intersec tio n) of 
the column and r ow lines is assig ned with one or two cha r acter s . 

Each character s upporte d by MPF-I /88 is assiqned with a 
code (scan c ode) . The pos i t ion code is a nu mbe r be tween 
with each uniquely i de n tif ing a specif i c key (the r e 
cha r a t ers s uppo r ted by t he MPF- I /88 the keyboa r d) . 

pos it ion 
1 a nd 71 

a r e 71 

The keyboa r d d r i ver p r ogram detec t s any c hange in the sta te of 
the keys by scanning (reading) t he keyboa rd ma t r i x eve r y 15 ms . 

Each time you e n ter a key from the keyboa rd , the keyboa rd pr o 
gram kno ws which key you are entering by e xamin ing the the pos i 
tion code (w hich is a l so genera t ed by t he keyboard p r og r am . ) 
Tab l es 5- 1 and 5- 2 illustra t e a ll of the 71 pos i tion codes wi t h 
each corre s ponding ASCII code and characte r on the keybo ard . 

5- 58 



PTA TAB: -
fl , 
101 lSI 
8lH 6" ----- ------

0 M 
III 16) 
<FM " --- -- ------

5 , 
12] 11) 
"M 52M ----- ------
- -> 1 
131 18] 
"M 31M ----- ------

6 I 
141 19) 
)6" "M 

SH IFT: 

fl -
101 lSI 
8JH 'I Ell ----- ------

0 m 
III 16) 
6FH 60M ----- -- ----• , 
12] 11) 
25M 72)1 

----- -- ----,-- ! 
131 18] 
09)1 "M ----- ------- I 
14J 19) 
SEM 6!t1l 

Vie ... o f Tabl e: 

Table 5- 1 Keyboa rd Position Code To ASCII Code 
(Without holding down the SHifT key) 

I 
, . I I RET BKS P 

(Ul) (15 ) (2C ) (25) (30 ) (35) (4C) 
5DM m 3DM 5BM "M 0DM "M ------ ------- ------ ----- ------- ------ -----
P , - , . , , 

(11) (16 ) ( 21) (26 ) (31 ) (36 ) (41) 
SOM 31m 2DIl 39u 'EM 4CM 30M ------ ------ - ----- ----- ------- ------ -----, E 0 S , F C 

(12 ) (17 ) (22 ) (27 ) (32 ) (37) (42) 
34M 45M "M 53M 5811 "M 43M ------ ------ ----- ----- ------- ------ -----
A 2 , 3 w ESC Q 

(13) (1B) (23) (28 ) (33) ( 38 ) (43 ) 
4lM 32M "M 33M "M 10M "M ------ ------ ----- ~----- ------- ----- -----
G " M 7 J 8 , 

(14 ) (l9) (24 ) (29) (34 ) (39) (44 ) 
"M 4EH " M "M 4AIl "M 59M 

Table 5-2 Keyboard posit i on Code TO ASCII Code 
(With holding down the SHifT key) 

) " , I ? RET 9KSP 
(10 ) (15) (29 ) (25) (30 ) (35 ) (49) 
7DM "M "M 10M )FM 8 0M "M ------ ------ ------ ------ ------- ----- ------
p , - , > 1 > 

(11) (16 ) (21) (26 ) (31) (36) (41) 

"" 3 AIl 5FH ?BM lEM 6CM "M ------ ------ ---- -- ------ ------- ----- ------, e d , , f c 
(1 2 ) (17 ) (22 ) (27 ) (32 ) (37 ) ( 4 2 ) 
"M 65M "M 13M 7811 "M 63M ------ ------ ------ ------ ------ ----- ------
• • , I • "C q 

(13 ) OB) (23 ) (28) (33) (38 ) (43) 
61M "M 7AIl 23M 7711 IBM "M 

------ ------ ------ ------ ------ ------ ------
9 " h • j • y 

04 ) (19 ) (24 ) (29) (34 ) (39 ) (4 4) 
6711 6EIl "M 2611 "M "M " M 

Inp u t key 

Pos ition code 

ASC II code 

F2 CAP 
( 4 5 ) (5C) 
"M 20M 

------ ------
K , 

(46 ) (51 ) 
<OM 2CM 

------ ------
T v 

(47 ) (52) 
54M 56M 

------ ------
\ SPACE 

(48 ) (53) 
SCM 20M 

------ ------
U • (4 9) (5 4) 
55 M "M 

F2 CAPS 
(45) (50) 
"M 20M 

------ ------
k , 

( 46 ) (51 ) 
6BM 3CM 

- ----- ------, 
" (47) (52) 

-7 411 "M ------ ------
\ SPACE 

(48) (53) 
7CM 20M 

------ ------
V h 

(49) (54 ) 
15M " M 

The keyboard p r og ram of MPF- I /88 is automatically ~ n voked ever y 
15 mil liseconds by t he CPU. The MPF-I /88 invokes the keyboard 
pr ogram i n such a man ner that every 15 mi lliseconds the timer 

5-59 



chip 555 sends out a signal to interrupt the 
through t h e" NMI pin of the 8088 . Upon receipt of 
signal , the 8088 initiates the follow ing events: 

8088 
the 

processor 
inter rupt 

1) First, the 8088 saves t he machine status by pushing the con
tents of the Flags registe r onto t he sta~k. 

2) Nex t, the 8088 c lea r s the in terr upt ena b le and trap 
t he Flags r eg ister to p r event subsequent rnaskable and 
step interrupts . 

bits in 
"single-

3) Then, the 8088 establishes the 
l inkage by pushing the current CS 
onto the s t ack . 

interrupt routine return 
and IP r egis ter con tents 

4) Finally , the 8~88 loads the CS and IP registers with the 
starting address of the keyboard program from the I nterrupt 
vector Table, a nd t h en accesses it. 

It is the respon s i b ility of the keyboard p r ogram t o detect the 
keyboard interru p t and respond t o it by returning a position code 
if a key is pressed . 

On the MPF- I /8 8 , the pas i t i on code is gener a ted by read i ng in a 
binary value which represents the key just being entered from the 
I/O port lC0H . The position code itself may be interpreted in any 
manne r desir ed. That is to say , the mea ning of each key can be 
pre - defined by software . 

si nce the keyboa r d interrupt occur s asynchronously with respect 
to o ther program ru nning in the compu t e r, the s t riking o f a key 
can occur at any time, and it is completely independent of when 
another program may wish to read keyboa rd. Our keyboard program 
is t herefore required to save or buffer any keyboard input that 
it receives . To accomplish this , we use a " first-in, first - out" 
buffe r, most often refe rr ed to as a "key queue" . 

A position code generate"d by the keyboard pr ogram is co nverted 
into a proper ASCII character code a nd then placed o n to the key 
que ue. When a nother prog r am wishes to get keyboard input , i t Just 
takes t h e characters off the queue in the order i n which they 
were r eceived . 

The size of 
that ca n be 
keystrokes 
operation. 

the queue determines "the maximum number of c haract~rs 
buffered at any time . This represents the number of 
you can type befor e causing the system to perform any 

Now we ar e going t o e xplain how a keyboa rd scanning operation is 
performed . When reading the following paragraphs , please refer to 
the schemat i c d i agram . 

5-60 



As with what we have stated before, there are 12 columns and five 
rows which result in a matrix on the keyboard c i rcuit. Columns 
KC- 0 to KC - 7 are physically assigned to I/O port 0160H ; and 
columns KC - B to KC - ll are assigned to I/O port 01B0H . Next , let 
us see the row l ines . Rows KR - 0 to KR - 5 are assigned to I/O port 
01C0H. Ports 0160H and 01B0H are keyboard array outputs to the 
keyboard program; in reverse , they are inputs to the keyboard. 
Port 01C0H is a keyboard array output to the keyboard. 

To find out if a key among all the keyboard keys is pressed, what 
we have to do is to start scanning from KC - ll through KC - 0 . A 
complete scanning operation from KC- ll , KC- 10, KC-9 through KC - 0 
is called a "scan- out " in our keyboard program. 

In addi t ion to column KC - ll , each column of the keyboard matrix 
is scanned for five times . This is because during the scanning 
of each column , we have to scan five keys (from row KR- 0 to row 
KR- 4 with the exception of column KC - ll.J i . e. , each column needs 
five scanning operations. At this point, you mig h t ask how the 
keyboard program knows which column is required to scan at a 
certain time during scanning . Now, let us have a futher discus 
sion about it; that is, indeed, only a programming technique . 

Before the keyboard program starts scanning the keyboard, it 
will set column KC - ll to zero (low voltage) and the rest of 
columns to one (high voltage) by outputting to both the I/O ports 
0181:lH and 0l60 H the value 0F7FFH (=1111011111111111) . In other 
words , the column which the program wishes to scan is pre- set to 
zero and the rest of columns to one , for the number of columns 
that the keyboard program can sca n at a moment is only one column 
of five keys . 

After scanning a column, the hardware (keyboard) will send out to 
port 01C0H a byte of value of which only one of the least sign i
ficant five bits contains a zer o va l ue •. Thus, the keyboard pro
gram can read that value into the AL register through the OX 
register which always connects to 1/0 ports. At this time , you 
can determine which key is pressed by shifting left the least 
significant five bits one by one to the Carry f l ag that we use as 
a "check- count " in our program . In our keyboard program, we also 
use a counter (namely , the 01 register) to ·record the position of 
the key being pressed . 

Through the value stored in the 0 1 register , we can determine the 
position code of the key just being pressed which had been de 
fined at the time when we des i gned the keyboard program. Then , 
we can also find the ASCII code of that key through a corres
ponding look-up ASCII code table defined in our program. 

Our keyboard ~rogram is quite complicated and many factors should 
be taken into consideration, for it should normally handle many 
features , such as uppercase/lowercase characters , " ALT ", " SHIFT " 
and " Shift- Lock " keys, and special control - key combinations . 
Thus , many tests and determinations are reqiured to make during 
the program execution . 

5- 61 



There is also an important top ic that should be stated here . That 
is the subject . on the keybounce : 

The key tops of the keyboard are usually dep r essed by hand . In 
general , the speed of the computer response to each of them is 
much faster than that of the human beings. No matter whether a 
key is pressed on the keyboard or not, the keyboard program must 
always scan the keyboard repeatedly . It/hen being depressed or 
released, a key bounces for a short time. Fig. 5- 1 is a time 
response diagram of typical key - depressing and ·key - releasing 
operat i on . Thus, a key - depressi on might be identified as two or 
more key - depressions if the keyboard scanning rate is too fast. 
To avoid this problem, the period of scanning we use in the 
program is longer than the bouncing time . 

depressing rel c as i Il l{ 
bouncing bounci n l=:" 
~ ~r--------i 

ck~e~Y-r-,~e~l~. __ JJ Ilrlw IT ____ '_,,'-d~,,-.-H----'W,L-----k-'r·;-<~,l. key u e p. 
TIME ...... 

To Tn + l ~ Tn +2 

I 
Tn+3 Tn +1 Tn+5 

Fig 5-1 

In Fig. 5- 1 , at the instant indicated by the upward ar=ow the key 
is examined. At Tn+2 , the keyboa rd program fou nd that the key was 
depressed and indentified the position code . At Tn+3 , the key was 
also found depresseed. Since the key was found depressed in tt.,,: 
previous scannings , the keyboard pr ogram will determine that th i s 
is not a new key - depression (i.e . the key has not been released 
during this time interva l) . Only if the key is found rel e ased at 
Tn+4 or Tn+5 , a new key - depression will be really recognized at 
Tn+6 . 

A program for getting data from ~ keyboard designed by this rule 
wi ll be immune from error, no matter how l o ng the duration of the 
key-depression is and. whatever is found at this per iod between 
Tn+l and Tn+4 (0 or 1 ). 

In ou r keyboard program, we use also a variable as a repeat- count 
to test if a key is always depressed after the keyboard has been 
scanned out for 30 times . If yes, the same character will be 
shown on the screen . After that , if the program fi nds the same 
key still being d·epressed, it will output the same character onto 
the screen every 4 scan- out operations. 

The MPF - I/88 keyboard interface program begins with the procedure 
KEY NMI. You can locate it by referring to the cross reference 
section of the MPF - I/88 Monitor Program Source Listing . In order 
to l et you understand keyboard in terface programming more easily , 
an example program with a more detailed comment is provided as 
follows . 

5- 62 



1 , ~000 , 
• , 
6 11180 , 11166 

• Bice , 
19 
11 

" 11111111 " [ 

13 " 19 
19 
16 

" 01111A "' [ 
16 " " " 21 

" 01115 " [ 
n " " ~ " , 
" m 

w " " 001F 0900 

" " 111121 .WIlII 

" " 0023 " H 0924 IHHHI 
H 0026 110110 

" 01128 " " " '" " 111129 " 40 11021'. " 91 

" " !H12s " .. 1l02C " " "920 " 96 002£ 

" .. 0000 
99 Il!lllll 

" Sl B000 " 52 90111 H " " IHH!3 " 99 
95 

DATh 

I/O PORTS 

OPO PORTI 
OPO-PORT2 
I~D PORT 

VARIABLES 

NEW_ NO_FLG " 
OLD_NO FLG " 
CAPS COUNTER " REP COUNTER "' REP-COUNTERl o. 
L.>.ST '" 'CO " - -

CTRL P COUNTER " '" KE'(:::COUNTER " -

SPECIAL " PTR FLG " CAPS 6OC' " -
DATA ENDS 

CODE SEGMENT PAM 

'" '"' "OC '" 

01a~fl 
9160H 
IIIC'Hl 

• 
• , 
• , 
• 

• , 
, , , 

oup (0) 

DUP(0 ) 

DUP (II) 

PUBLIC ' CODI:: ' 

ASSUME CS : CODE,DS : DATA,ES : DATA 
PUSH "' '"' AX,AX 
PUSH " 

; ALLOCIITE HI BYTES Of ME MORY 

;FOR THE KEY QUEUE BUFFER. 
;ALLOCATE 11 BYT ES OF MEMO!!Y ~'OR 

; THI:: iNPU 'fS JUST BEING KEYED I N. 
; ALLOCAT E 10 BYTES OF MEMORY FOR 

; THE INPUTS KEYE D. IN AT TH E: L;'ST 
;SCAN -O UT OPE: RAT IO N. 
;THE NUMBER OF I N~UTS J UST BE ING 
; KEYED IN. 
; THE NUMBER Of INPUTS K~YE[) IN 
; AT THE LAST SCANpOUT OP ERA'rION . 
;CAPS LOCK COUNTER 
;FIRST REPEAT COUNTER 
;REPEAT AGAIN COUNTER 
;11. FLAG TO IDENTl n IF ANY CH ,\RACTE R 
; HAD BEEN TYPED IN AT THE I ..... ST 
; SCANNNG OPE~ATION, IF YES, A VA LU f. 
;OF " FF" IS MOVED INTO THIS VAlUABLE , 
;C'fRL-P COUNTER 
;11. COUNTER fOR TH E RECORD OF HO W 
, MANY TiMES OF SCAN-OUT OPERATION 
;11. CHARACTER HAS BEEN NOT DE: TECTED. 
;CTRL,S HIFT ,ALT FLAG 
;PRINTER FLAG 

_.; CAPS LOCK FLAG 

; EQ UIVAl. ENT OF "MOV AX,0" 

The ~bove three instructions are used to store onto the sta ck the addres s 



The Microso ft MACRO Assembler, version l.25 page 1-2 

" 57 

" " " " 62 
63 .. 
" " 67 
68 

" " H 
n 
13 

" 7S 

" 77 

" " " ., 
" " .. 
" " " " " " 91 

92 

" ,. 
" 96 
97 

" " 10' 
m 
162 
163 

'" m 
166 
1O7 
laS 

'" 

{lII1I6 
{I{III9 
III1I1C 
~0~F 
8012 
(l0l S 

111117 

911lA 
9111C 
IISlO 
111110 

a020 
11022 
\HI24 
91i124 
"021 
90n 
iliI2B 
il02C 
111120 

1i11I2E 
9112 £ 
811)1 
11"934 

""35 
'lIIH 
99lA 
1J9)B 
911)£ 

'HllF 

111144 
1i11I 46 
un 

8£ DB 

" , 
A) 0110A 
SS 8924 R 
A3 ~HHIS " , at: oe 

BA 91S9 

BII FF 

" 
E8 112£5 R 

CO 09 
EB F9 

E8 11220 R " , 
" " " " 

B8 F7FF 
SA 1I 161i1 

" 86 £0 
BA IiIIBiI 

" BA SlCil 

'" 
C6 e6 1102B R illI 

AS 211 
75 IS 
8 •• E •• 28 R g4 

TINE. 

12-18- 84 

of a instruction ne~t to the one that the MS-~OS is executing when we Btart 
to run OU t keyboard prog r am . with the address stoted i n the STAC R segment. 
t he system c an return back to the MS- OOS prompt once the program ends with 
Its last inst r uction "IRET". 

AGAIN: 

NMI IN: 

MOV 

"OV 
MOV 
"OV 
"0' 
"OV 
"OV 

OS,AX 

AX,SEG NM I IN 
OS: IIIAHI , AX 
AX , O~'FSET NMI IN 
as: [81 ,AX -
AX, DATA 
OS ,AX 

MOV A~,IIFFH 
OUT OX .... L 

CA~~ 

I" 
JHP AGUN 

C ... [,L 
"OV 
PUSH 
PUSH 

'0' '0' 

PUSH R 
"'X , OiTA 

" " " " 

, SET A VECTOR FOR THE NMI IN ROUTI NE 
;IN THE VECTOR TAa~E WHICH STA RTS FROM 
,BECINNI'NC (II) OF THE DATA SEGME NT (OS) . 

;THE GET KE~ ROUXINE WI~L USE 
;THE OS REG ISTER, SO THE as IS SET HERE 
; IN ... OVANCE. 

;EN"'B~E THE NMI OF THE 81188 BY 
; SETTING THE FIFTH BIT (B tT 4) OF 
;1 /0 PORT 18eH TO ONE . 

;FETCH A CHARACTER FROM THE KE~ QUEUE 
;BUFFER. 
iTO FLACE IT ON TH E SCREEN. 

;PUSH ALL REGISTERS ONTO THE ST",CK. 

;THE KEYBOARD SCANNING OPER ... ·fION ST ... RTS HERE , THREE OUTPUT PORTS ... RE USED IN THE ·SCAN- ROU 

~THEY ARE: OUTPUT PORTS 9189H AND il16 eH, INTPUT PORT elCIIH 

SCAN: 
MOV 
" OV 
OUT 
XCHG 
"OV 
OUT 
MOV 

'" 
" OV 

TEST 

'"' o. 

AX , IIF7FPH 
OX,OPO PORT2 
DX,A~ -
AH,"~ 
OX,OPO PORTl 
OX,"L -
OX,IPO_PORT 
AL,OX 

SFECIAL,II 

... ~ , 29H 
CHK SHIFT 
SPI'lCII.I..4 

lOUT AM TO PORT 1I1aeH; AL TO PORT 1I 1UH 
;OX POINTS TO PORT '161H 

;EXCHANGE AH AND A~ 
lOX POINTS AT pORT 111811H 

, OBTAIN AN INPUT VALUE PROM PORT I1CIH AND 
; PASS IT ONTO THE ... L REGISTER. ! 
; CLEAR SPECI ... L WHICH WILL 
;BE USED TO S ... VE THE F~AG 
; OF CTRL, SHIFT AND A~T 
;TEST IF CTR~ KEY IS PRESSED. 

,CTRI. KEY PRI'lSSEO. SAV,", SP",CJ A~ WITH TNa VA 



Th@ M ic~ o~o(t MAC~O ASSembl gr , Vgr g ion 1. 25 P"9'" ,-, 
12-18_ 84 

LUE 4H 
H' 
H1 111140 CHK_SHIFT' 
112 111140 " " "" AL,l ,CHECK I F SH I FT KEY PRESS ED? 
11> 1104F " " " CHK ALT1 
H' 01151 " " 0928 , " 0' SPECIAL,1 ;SET SPECIAL'S BIT FOR SHIFT, ALT , ,"0 CTRL 

KEYS 
H5 "056 " " " ,"P KCO L ;SPECIAL - I , MEANING TH~'l' THE SHIFT '" H6 ;HAS BEEN PRESSED. 
H7 
110 9115 9 CHK_ALT1: ;SPECIAL-2 , MEANING THAT ALT PRESSEP 
119 00 59 " " '" AL , l ;SPEC I AL-4, MEAN I N<i THAT CTRL PIlE:S~~O 

'" ""SB " " Je . eoe 
121 0"50 " " "02B , " " SPECIAL,2 

'" "062 KCO L: 
123 ""62 .. FBFF HOV AX ,8FBFF" ;P REPARE THE AX WI TH THE VALUE FBFFH FOR 

'" ,OUTPUT PORT . 
125 "~65 " IIII~" <ov 01 ,11 ; O~ REPRESE NT S THE POSIT I ON CODE COUNTER . 
126 0868 KCOL1 : 
127 9068 " ~1611 <OV DX,OPD_PORT2 

'" 111168 " '" OX,AL ;OUTPUT THE AL ONTO PORT 111611H 
129 "06C 50 PUSH A< 
139 11960 86 " XCHG AH,AL 
lJl 0UF " 111811 MOV DX , OPD_ PORTl ; OUTPUT THE AH ONTO PORT 91811H 

~ '" 111172 " '" DX,AL , 
lJ) 11013 " Oleo MOV oX , I Po_ PORT m 

~ 13< ~1I76 oc " AL,OX 
1J5 "077 " " MOV CL, S ,CL IDENTIFIES THE ROW NUMBER OF KEYBOARD 
136 ,MATRIX TO-aE SCANNED . 
137 

"" 111179 DO " KROW: '" AL , l ;SHIFT THE AL Ol{E BIT TO THE RIGHT 
139 9"7B 13 " ,"e SHORT KEY_ON ;NO CARRY MEANS THAT A KEY JUST ENTERED 
1<. ;HAS BEEN DETECTED . 
1U 

'" 1197 0 FIND NEXT KEY: 

'" 097 0 " Iiie " ; INCREASE THE POSITION COUNTER 8Y ONE . 

'" III:I7E " " " S"' CL , l ; DECREASE THE ROW NUMBER BY ONE IN 

'" ,ORDER TO SC~N THE NEXT ROW . 

'" 11981 75 " '" SHORT KRDW i IS THE SC~NNINa OF ALL OF THE 5 ROWS 

'" ;FINISHED? 
149 09 83 58 pop " 149 ~0 8 ~ 01 " '" ~X . l 
150 11086 72 " Je SHORT KCOLl ;IS THE SCANNING OF ALL TH E COLUMNS 
151 ;FINISHED? 
157 01188 " 91B4 , J MP SCAN_OUT 
153 \J1I88 KEY ON: 
154 1I\J88 " 11220 R CALL PUSH R 
155 8118E " FF 32 eMP 0 1 , 59 ;I S CAPS LOCI( KEY PRES SED? 
156 \J\J9 1 75 18 '" KE Y ON 1 ,GO ON SE~RCHING FOR THE NEXT CODE 
157 01193 .. " 11023 , .. eMP CAPS_COUNTER.O ;IS IT THE FIRST TIME FOR THE ~CA PS LOC K" 

'" ;KEY TO ENTER ? 
159 ~1I98 " 05 " CAL CAPS 
160 0\J9A " e2 4~ , CAL L POP-R 
161 11090 " " JMP FIND_NEXT_KEY 

'" 



~ , 
'" '" 

~h. Mic r osof t ~CRO Asse~bler , version 1.25 P",ge 1-4 
12- 18 - 84 

'" ". 
lOS 
l66 
167 
l6B 

'" no 
m 
m 
173 n. 
m 
l76 
177 
178 
179 
LBO 
lSl 
182 
l83 
la. 
m 
l86 
l87 

l" '" 19O 
19l 
192 
19> 
". 
lOS 
196 
191 
198 
199 

'" 2Bl 

'" '" , .. 
'" 20' 
m 
20S 

'" H' 
2U 

'" 213 
'l< 

'l' H' 
m 

0~9F 
009F 

IIIIA9 
IIIIAS 

IlIIBII 

(,IIIB2 

II1lB7 
II~B9 

IlIlBC 

III1SF 
IIOel 
\lIlC 1 

II1lC4 
II11C7 
110C9 
00C9 
0QCC 
00CF 
1l~04 

111106 
111106 
1I110S 
IIIIOA 

1I110F 
UtI 
911£4 
II11E6 
IlllE6 

IlIlEA 
IIl1tC 
IlIlFIl 
IlllF3 

FE 06 11112) R 

ES IllSr II 
£8 0240 R 
EB 02 

F6 116 1102B R III 

74 17 

F6 116 ~02B R U 

74 118 
BB 112FC R 

2E: SA III 

EB 15 

BS 1l3)J R 

2E: 8A 01 
EB 21': 

BB 92rc R 
2E: 8A 01 
r6 116 002B R 11 4 
7421 

3C 511 
75 IB 
811 JE 111129 R 1111 

74 115 
E8 11249 R 
EO 97 

FE 116 1l1l29 R 

BII FF 
30 06 1I1l2C R 
E8 112 4 11 R 
EB 88 

CAL CAPS: 
- It<C 

CAL L 
CALL 
". 

KI:Y DN 1 : 
TEST 

J1. 

TEST 

CAPS 
POP R 
Fl t<ll_t<EKT_ KEY 

SPECIAL, l 

rlOSH I FT 

SPEC I AL ,41i 

JZ t<OCTRL 

l C ... USE· THE CAPS LOCK NOT TO BE ABLE 
,TO REPEAT . 

;TEST I F SHIFT KEY IS PRESSED BY 
;BY USING LOGIC ~AND· WITHOUT 
; DESTORYING THE CONTENTS OF SPECIAL . 

; ZERO FLAG SET TO II ME ANS THAT SPECIAL 
;OOESt<'T CONTAIN THE VALUE OF 1. . 

;SHIFT KEY PR~SSED, CIiECK AGA I N IF 
;CTRL KEY IS PRESSED 

;BOTIi OF SHIFT AN D CTRL KEY ARE PRESS EO 

; (OPERATOR "On'SET " PROVIDES US WITH THE OfFSET ADDRESS OF TH E VARIABLE PTA_ TAB. ) 

'"' "lOCTRL: 

AL,CS: [8X+OI) 

SHORT CIIECK_CTRL_P 

BX , OfFS&T SH I FT 

MOV AL,CS : [BXtD I ) 
JMP SIIORT CHK_ALT 

NOSHIFT: 

"" "0' 
TEST 

" 
CHEC K CTRL P : 

CMi> 
JNt: 

e"' 

" CALL 

'"' CTRL_ P_ l : 

'" 
"0' 
'0' CALL 

'"' 

BX,OFFSET PTA TAB 
AL,CS: (BX+DIT 
SPP.CIIIL ,4,1i 
CHK_ALT 

AL , 'P ' 
AND 9FH 
CTRL_P_COU~TER , 9 

CTRL P 1 
POP R-
flND NEKT_ KEY 

AL,0Pfli 
PTR FLG,AL 
POP-R 
FIND_NEXT_ KEY 

;MOVE TIiE CORRESPONDIt<C ASCII CODE 
l OF THE ·PTA_TAB · TABLE INTO THE AL. 

;NO CTRL KEY , SFIFT KEY ONLY 
;MOVE THE CORRESPONDING ASCI I CODE 
;OF THE ~SHIFT· TABLE it<TO THE AL. 

;NO SIiIFT KEY PRESSED, CHECK CTRL KEY 

;t<0 SIiIFT KEY TAKE ASCII It<TO AL 
;T£ST CTRL KEY 

;IS IT THE FIRST TIME fOR THE 
;~CTRL_P· CODE TO ENTER? 

; CAUSE THE CTRL P NOT TO 8£ ABLE 
;TO REPE ... T TWICE . 

;SET CT RL P FLAG 

AFTER COt<FIRMING TIiAT A ~CRTLH KEY liAS BEEN PRESSED , PERFORM TIiE LOGICAL • ... ND· 
I NSTRUCTION TO OBTAI N TItE ASCII CODE OF A CERTA IN CO NTROL CItARACT£R. 



m 
219 
no 
m 
'" 223 

'" 225 
226 
227 

'" '" no 
m 

'" 2lJ 

'" '" 236 

'" 238 

'" '" HI ,., 
'" ,.. 
'" 24. 
m 
'" '" '" m 
m 
m 

'" '" ". 
'" '" '" '" '" m 

'" , .. 
'" '" '" '" '" '" m 

'" 

UPS 
9llFS 24 9F 

1I1lF7 
\HIF? 
iHIFC 
gll rE 
illl"'l 
918:2 

OU4 
91114 

. aug 
~ua 
nu 
"l12 
~1l4 

U16 
9118 
all ... 

IlllC 

IHIP 
11111' 
6121 
0123 
GUS 
9127 

\l129 
9129 

11120 

\Jl32 

9134 

8137 
8139 
un 
uu 
6144 
"146 
1l14B 

1114£ 

F6 ~6 ~02 B II 02 
74 96 
JC all 
76 liZ 
1114 B" 

811 JE 111120 II 99 
74 H: 
F6 96 11028 R 91 
75 gO 
3C 4 1 
72 13 

lC 5.0, 
77 SF 
114 2 11 

ED ilia 99 

lC 61 
12 96 
lC 1.0, 
77 02 
2C 211 

FE 06 \IIlIF R 

89 3£ 002 1 R 911 

74 54 

£8 02S3 R 

75 4F 
811 JE 0928 II FF 
7434 
3A 116 Bil l S R 
75 98 
C6 116 11028 R FF 
EB liB 90 

AND 9FH : 

'" 
CHK-'ILT : 

TEST 

" c"' 
m 

'" 

AL , 9FM 

SPEC lAt.. 2H 
CHK CAPS 
AL ,1"II H 
CHK CAPS 
AL , IIIH 

lCHECK IF TH~ "ALT" IS PRESSED. 

;THE ALT ASCII CODE. 81111 

;ALT PRESSW ; 

; THE CORR ESPONDING ASC I I CODE FOR THI:: FUNCTION"L (CONTROL) CHARACTt;R I S THE SUM 
;OF 80" PLUS THE ASCII CODE OF THE CHARACTEH JUST BEING ENTERED. 

" TEST 

'" 
CH' 

" '" 

CAPS LOC K,II 
CHK OLD NO 
SP>ECUL -;-1 
SHIFT CAPS LOCK 
AL,4lK -
CHK_ OLD_NO 

AL , SAM 
CHK 0[.0 NO 
AL,2011 -

JMP CHK_OLD_NO 

SHIPT CAPS LOCK: 
CMP AL , 61H 
JIJ CHK OLD NO 
CMP AL ,1AH -
JA CH K OLD NO 
SUB AL,!IIlH -

cm 

'" eM' 

BYTE PTR NEW_NO_FLG 

BYTE PTR OLD_NO_FLG,O 

COMP 

PILL IN NEW BUF AND 0 
LAST-KEY FLC,OPFH -
FILL -1 -
AL,BYTE PTR [DLD_KEY_BUF l 
FI LL ill' NEW BUF 
LAST-KEY FLG , 0FPH 
FILL:0 -

; CHEC K CAPS LOCK FLG 

;CHECK H' 'rHE "SHIFT" KEY IS PRESSED. 

; CA~S LOCK ENTERED ONLY, NO SHifT 
; CHECK IF ANY OF THE CAPITAL LETT ERS 
; (A _ Z) IS PRESSED. 

;TD GENERATE THE ASCII CODE OF A 
; LOWERCASE LETTER . 

;CHECK IF ANY OF THE LOWERCASE LETTERS 
; is PRESSED . 

;TO OBTA IN THE ASCII CODE OF 
;A CAPITAL LETTER , 

;TO RECORD HOW MANY NEW KEYS HAS BEEN 
;ENTERED WI THiN A SCAN- OUT OPERATION . 
;CHECK IF ANY KE Y H.o. U o\~;I';N ENTERED AT 
;THE LAST SCAN-OUT OPERATION. 
i' F YES, NO ~ORE CHECKS ARE REQUIRED, 
,JUST MOVE THE ASCII CODE OF TEE KEY 
;JUST NOW ENTERED INTO "HEW KEli' BUF~ 
;AND MI<EY o~. - -
;THERE IS- A KEY PRESSED BEPORE, 
; CHECK IF IT IS A NEW KEY. 
; SAME AS OLD KEY ;1 
;CHECK IF THE LAST KEY HAS BEEK PRESSED . 

;NEW KEY SAME AS OLD KEli',CHECK 
; I S IT LAST KE'i ? 
; PFH MEANS THAT THERt: I S A KEY PRESSED 
;AT THE LAST SCANNING, AND VICE VERSA . 



The Mi crosoft MACRO Assemble r , Version 1. 25 Page H 
12-18- 84 

273 914 E " " e9 2 S , " CMf' LIIST '" _FLG,IIFFH ; CHECK " '"' 
,,. 

'" '" BEEN PRESSED . 

'" 9153 H " " FILL:1 
m 9155 FILL " no Ql55 " " 9119A , '" DI,NEW_ '" eo' ;LAST '" '" PRESSED BEFORE -
277 11159 "' ",' MOV BX , DI 

'" 1115B " 11266 , CALL '"' ." m lll5E " " " 
-BUF OR 0 FULL 

'" ~161l " 9278 , CALL MV OAT:>: -
m 9163 " " 11928 , " '" LII5T '" FLG,IIFFH ; IS IT THE LAST KEY ? 

'" 0168 • " '" m CHK OLD NO , 
m 916A '" , , -
'" 1116A " ce, 
m 916B " " 11112 4 , '" REP COUNTER ;YES, " " '" LAST KEY . INCREASE 

'" ;THE REP COUNTER BY ONE. 

'" ~16F " " " '" 1 ; REP_COUNTER OIlERFLOWS 7--m 9171 " " " '" '"' OW '0 1 - -
'" 9174 FILL 1 , 

'" 0174 "' " 11911B , '" DI , NEW_KEY BUF+I ;LAST '" PRESSED BEFORE 

'" 9178 S. " ,OV BX , Dl - ; PLACE THE OLD '" " '" '" POSITION 

'" 917A " >1266 , CALL '"' so, ; OF '" '" - '" - BUF. 

'" 11170 " " " BUF-OR Q FULL 

'" 917F " 11278 , CALL MV_OA.T:>: -
295 

'" 9182 CHK OLD '0 " ~ m 11182 " 112411 , -CALL '" 
, ;IT " NOT THE LAST KEY, GO ON SEARCHING 

I 29B 11185 " ~~7D , '"' FIND NEXT '" : FOR THE NEXT KEY. 
~ m - -
00 

'" 9188 t'iLL " 
,,. BC' AND Q: - - -m 11188 " B6 01128 , " ,ov LAST_KEY _ FLG, 0FFH 

m 11180 ",' 1109A , 'OV DI , OFFSET NEW KEY 'C' -
'" 111911 '" " ,ov ax,DI 

'" 11192 " 9266 , CALL CHK BUF ;CHECK " NEW_KEY . " " FULL • 
3115 \J19S " " " aUF- OR Q FULL -

'" 11197 " 9278 , CALL Mil OAT:>: - ;NEW_KEy_aUF '" FULL YET, MOVE '" ASCII 

'" ; CODE OF '" KEY JUST ENTERED INTO " , 
'" 919A " 0999 , ,OV DI ,OFFSET KEY_ Q ; MOllE THE AL TO THE '" -" '"' 11190 BB "' 

,ov aX,DI 

"" 1119F 68 0266 , CALL CHK_ BUF ; CHECK " '" KEY_Q " FULL . 
HI ~lA2 " " ,c .c, 0' Q FULL 

'" 91A4 " ~278 
, CALL Mil_OAT:>: - ;KEY , '" FULL YET , MOllE '"' ASCII CODE 

H3 ;OF THE '" J UST ENTERED INTO ", 
3" 1I1A7 " 1124 ~ , CALL '0' R 
315 ~lAA " 1I~70 R '"' FIND NEXT_ '" 316 
317 B1 AD BUF OR Q FULL , 
318 ~lAD " 1124 11 , - CALL '0' R ;BUFFER OR QUEllE " FULL, REJECT " -
'" >llBI! 58 '0' " ; ACCEPT '" KEYS FROM THE KEYBOARD. 

no >llal " " " '" '" '" -m 
m 31B4 SCAN OUT, 
m 01B4 c, " lIe28 , " <0' LAST _ KEY_FLG,II 

'" @lB9 " " alilF R " '" BYTE '" NEW_NO_FLG , II ;CHECK " '" '" ENTERED. 
m alBE " " " CAL NO '" ; I F NOT, JUMP " ROUTINE m NO_KEY. 

'" 1I1ca co " \J~2A , " 'OV NO_KEY:COUNTER,lt 
m (Hes " ,e ~\ln " " C"' ow _0 _." L G ,II -



'" elCA H 27 

'" \llce " 0901'. , 
J30 '<llCf " 06 IIBl5 , , 
m 
m 
m 

'" 11103 14 24 

'" ,. 
'" fl10S " " 9lllF , 
H7 9L09 " " g921 , 
'" 9100 7J " '" Slor " " \I\I\HI , 
H' IllE) " " Hl CIlES " 9266 , 3<, ilLES 72 " 3<' 0lE II " 11278 , 
'" altO 

'" >HED " 116 01124 R 11909 

H' HFJ 

'" el F] " 02CS R 

H' Uf6 " 311 9B 
~ '" , 

'" IHr 9 

'" m flyj " " 111124 R 1£ 
~ JS2 gIn 72 " J5J 11299 7< U 

". 9202 " " 01126 , 
m 11296 " " \11126 , .. 
'" 1l2es 72 " m 02110 e' " " 9 26 , 9"00 
m 
JS9 0213 

'" 0213 " 99011 , 
"1 9216 " " '" m IIHB " 11266 , 
'" SHB 7J " '" fino " 99 90 

'" '" 11228 

'" 0229 " 9276 , 
'" 0223 " e' 
m 
m 9225 
m 0225 EB 0285 R 
m 
,7< 0228 
m 02 28 " m 11229 " 0249 R 
m 1122C e, 
no il22D 

'" 

Pall- >-> 
12-18-84 

" SCANl 

'" ... r. ,a~TE '" [NEW_KEY BUF] 

e", I\L , B~TE '" [OLD 

SCANII : 

SCMH : 

MO' 
CM' 
m 

'" '0' 
CALL ,e 
CALL 

aX,NEW NO FLG 
BX , OLO- NO- FLG 
SCANS - -
OI ,KEY Q 
aX,01 -
CHK Bur 
Bur-OR Q FULL 
MV i5"'T~ -

CALL TRANSF ER 
JMP REN_NMI 

CHK REP COUNTER: 
-eMP REP COUNTER,3" 

JB sCAih 
J E fiR ST RE P 
INC REP COU NTERl 
eMP REP-COONT ERl ,. 
.IS SCIINl. 
MOV REP_COUNT ER1 , \! 

FIRST REP : 
'0' 01 ,OFFSET '" -' '0' ax,O! 

C ... LL CHK_B UF 
m m MV 0 ... '1'''' 

'" .. , - NMI -
CIIL_MV _DIITII: 

CALL MV 0 .... '1' ... 

'"' SCANl 

e>c - NO_KEY : 
C"'LL .o-m 

'" NMI , 

'" CALL '0' • -IRET 

'" '" ENDP -

- KE'i_BllFJ 

, CHECK I~ THE L"'ST KEY IN THE NEW_KEYSUF IS 

, THE SAME AS TilE ONE IN THE OLD_ KEY_B UF . TH 

lLIIST KEY IS ALWAYS PLIICED AT THE FIRST 
,POSITION OF THE CORRESPONDI NG BUFFER . 

,LIIST KEY SliME liS BEFORE, J UMP TO ROUTINE 
:CHK_REP_COUNTER TO CHEC K FOR THE DELAY TIM 

;I S REP COU NTER LARGE R THAN ) 9 1 
;R EP_COUNTER < 39 

, INCRE"'S E SECOND REPEATEED COUNTER 
; SECOND REPEATED COUNTER> 4 

,REP COU NTER LARGER THAN ) 11 
,THEN MOVE THE KEY NEEUEO TO REPEAT 
,INTO KEY_Q . 

,CHECK IF KEY_Q IS FULL, 

,NO KEY ENTERED , c r.~:~H ~r.r. BUFFERS "' ND 
; COU NTERS TO ZEROS. 

,:: :::: ::: ::::: :::::::::::::::: ::::::::::: ::::::: 



~ 

I 
~ 
~ 

The Microsoft MACRO Assembler , Version 1.25 page 1- 8 

'"' '" '" '" '" m 

'"' '"' '"' '" m 
m 
on 
J93 

'" 395 

'" m 
m 
399 

'" m 

'" '" '" <OS 

'" '" '" '" "" m 

'" '" '" m 
416 
m 

'" <l9 

'" on 
on 
m 
424 
m 

'" '" '" no 

'" m 
m 

'" ". 

0220 
02 10 
0232 
9233 
il2)4 
9235 
0236 
0237 
eBB 
9239 
11231\ 
023F 
0240 

9 240 
112411 
0HS 
0 24 6 
0247 
0248 
11 249 
11 24/\ 
024B 
024C 
11 240 
0252 
1l25) 

~253 

~253 

>12 54 
025 5 
>12 59 
025C 
025E 
~25F 

e2sr 
0 25F 
026 1 
9265 
~ ~66 

2E : 

" 53 

" " " 56 

" " 2E: 
C3 

2E: 

" " " " " " " " lE: 
C3 

" " 

" " ~2E'.>. 

" 36 G2FA 

" " 02FA 

" 36 IllFIl 

SB eE 0e2l R 
SF 001 5 R 
F 2/ AE 
C3 

Be FF 
Je e6 0020 R 
C3 

, 

, 

, 

, 

12 -1 8 - 84 

REGIST ER PUSHING & POPPING ROUTI N ~ 

; ,; : :::: ::;::::::::: :::::: :: ::::: :: : :::::: :: ::: 

PUSH , FROe NEAR ; PUSH '" REGISTt;R -
'" CS : IP_ M" 
PUSH " PUSH " PUSH " PUSH " PUSH " PUSH " PUSH " PUSH " PUSH CS : II' "M 
'" PUSH , ENOl' -

'" 
, 

'""" NEAR ; 1'01' '" REGISTER 

'" CS: IP ,eM 
eo, " '" " '" " '" " '" " '" " '" " '" " PUSH CS : I P '" RET 

'" 
, ENDP -; ::::::::: :::::::::: ::::: ::::: ::: ::::: ::::: : ::::: 

; : .. . . COMPARE '"' oeo '" '" WITH '"' .. .. '" JUST TYPED T, AND STORED " .. 
;: '"' " REG I STER. .. 
; : .. 
; :: " : " :: :: : : : : : : : : : : : : : " : : : : : : " : : : : : : " : : : : : : 

COMP '""" NEAR 
PUSH " ,0. " '0' CX, OLD NO FLG 

'0' 01 , OFFSET OLD_KEY 
REP N'Z SCASB 

'" COMP ENDP 

CAPS PROC NEAR 
MO' AL ,9FFH 
.0, CAPS LOCK,AL -
'" CAl'S ENDP 

'" -

; 
; Z-1 AL IS ALREADY FOUND 
; Z<>l AL IS A NEW KEY 

; THE SYSTEM DEFAULT DIRECTION FLAG IS 
; SET TO ZERO, SO THE Dr R~G1STER WILL 
; gE INCREMENTED BY ONE EACH TIME . 

;INVERSE CAPS LOCK FLAG . 



m 

'" '" '" '" .. , 
Hi .., .., ... 
.. s ... 
.., ... ... 
m 

m 
m 
m 
m 
m 
m 
m 
<SO 
m ... 
m .., .., ... 
46S ... .., 
j6S , 

'" no 
m 
m 
m .,. 
no 
m 
m .,. 
m ... 
'" .., 
m 

~266 
0266 
0267 
0268 
0269 
926C 
126! 

12711 
11272 
1213 
82H 

1275 
9275 

" " " 89 IIBIIA 
Be 00 
r2/ AE 

£3 '3 
P8 

" C3 

58 

8276 r9 
112 77 C) 
!il278 

111278 
8278 
Ins 
1U70 
827£ 
11281i1 

11282 
11282 
9284 

828 5 

CONTAINING ZER 

86 65 FF 
88 2S ., 
3B FD 
77 F6 

88 91 
C3 

un: . 

HE 01 

X'!' TO 

c. 

o VALU E 

i'tHE Ot PotMTS AT TNt; OP'FSI!:1'.OF A CORRESPONDI.NC BUFFER. 
ICHECK IF 11 BUFFER OR· QUEUE IS FULL . 

'CHK_BUF paoc NEAR 
PUSH OS 
POP BS 
PUSH AX 
HOV -eX ,IIAH 
M.OV AL,I! 
REPN! SCAS8 

JCXZ 
CLC 

"" ... 
'TC 

'" CHK_BUF ENOl' , 

lex-u. AL .. g 
;REP~ATEOLY COMPARE THE AL WITH A SUFFER 
,rOR l' TIMES OR .UNTIL zp-l. ONE BYTt PER -T 

,AP11R SCANNING IS SUCCESSFULLY 'INISHED, T 

;WILL ALWAYS POI NT AT THE BITE OF MEMORY MB 

ITHE ONE CONTAINING ZERO VALUE, •• 9., , 
• 1 

, 
?1 

2 3 

11 

A BUFFER 

.-- D> 
, 5 ••• 

I. • 1"" 

lIP 11 BUFFER IS PULL, JUM' TO ROUT INE 
ICAL_ BEp. 

n~UPPER OR QOEUE IS PULL, SET THE CARRY PLA 

ITHE DI AL WAYS POINTS AT THE BYTE 01' MEMORY NEXT TO THE ONE 

, 
MV DATA ·PROC 
MV: · XCHG 

00' 
OEO 

"''' ,. 

MO' 
"T 

NEAR 
101-1) ,AH 
IDI J ,AH 
01 
OI ,BX 

"' 
[BX ) ,AL 

.. · -E:G 
· -EEl 

· -ffi · -

IIXCHANGE THE BYTE OF MEMORY OO NTAINING 
lilRO VALUE WITH THE UNCERTAIN CONTENTS 
,01' THE AH REGISTER POR THE NElT 
'INSTRUCTION US8. THE AH IS USID AS A 

ITEMPARARY BUPPER FOR DATA TRANSPERMATION. 
ITH£ BX POI NTS AT THE OFPSET (START) 01' 
IA CORRESPONDING BUFFER. 
ITHE AL CONTAINS AN ASCII CODE TO BE SAVED . 
;APTER SEVERAL DATA TRANSPERHATI ON, HOVE 
:THE AL'. CONTENTS INTO THE FIRST BYTE OF 
IA CORRESPONDING BUFFER. 



The Mic rosoft MACRO Assembler , version 1 . 25 Page 1-19 
12 - 21 - 84 

... 
m 

'"' m 

'" '" ... 
m 

'" '" .,. 
'" ". m 

'" '" '" 591 
m 
SOl 
50< 
50S 

SO< 

'" SO. 
'" m 
511 
m 
513 
51< 
m 
51. 
m 
518 
SlO 
m 
S>l 

'" m 
". 
m 
526 
S27 
S28 
S29 

'" 531 
m 

'" 5H 
S3S 
536 

'" 

9285 
9285 
9289 
928E 

9299 
9292 
9295 
9298 
9298 
9298 
9290 
9291? 
92AIl 
(112A1 
1l2A3 
(112A9 
92AE 
9283 
9289 
928F 
92C4 

1iI1C4 
1iI1C5 

liJ2C S 
1l2C5 
1l2C9 
1l2CC 
02CF 
1l2CF 
(11201 

0203 
9205 
(11206 
(11207 

9209 
O2Oe 
a20P 
92E4 
a2E5 

FE 96 9~2>, R 
89 ] E 902A R II ] 

7234 

B9 Illl 
B9 "99A 
BF 999A R 
BE 9915 R 

88 65 
88 94 

" " E2 P8 
C7 a6 9924 R 99a0 
C6 116 9~23 R 9a 
C6 06 111129 R a9 
C7 96 901F R 9"00 
C7 a6 9021 R a906 
C6 06 01128 R 9a 

e3 

8B 9E 91llF R 
BF 999A R 
BE 9915 R 

B4 09 
86 25 

8824 

" " 1>2 F6 

A(II (IIlllF R 
A2 9021 R 
C6 96 91l1F R 0(11 
e3 

NO_ KEY PROC 
,"e 
e", 

" 
,'10V 

M" 
M" 
MOV 

MOV 
MOV 
MOV 
MOV 
MOV 
MOV 

NO_KEY 1 : 

NEAR 
NO KEY COUNTER 
NO- KEY-COUNTER,] 
NO::::KEY::::1 

AL,(II 
CX, HI 
OI . OFFSET NEW KEY BUP 
51,OFFSET OLO::::KEY-BUF 

[OI I .... L 
151 I , AL 

" 01 
NO 1 
REP COUNTER,0 
CAPS COUNTER , a 
CTRL- P COUNTER , Il 
NEW NO-PLG.0 
OLO-NO-FLG ,0 
SPECIl1L,0 

IF NO KEY FLG)-3, CLEAR NEW KEY 8UF 
AND OLD KEY BUP TO ZERO . OTHERWISE, 
JUMP TO-ROUTIN E NO_KEY 1. 

lCLEAR ALL THE COUNTERS USED . 

INO_KEY_COUNTER (J, BUFF~RS AND COUNTERS WI 

;BE LEFT AS WHAT THEY ARE NOW , 

CO PY ALL THE ASCII CODES STORE D IN THE NEW KEY BUF INTO THE OLD KEY_BUF, AND 
AFTER THAT , CLEAR THE NEW_KEY BUF TO ZEROS-:- -

TRANSFER PROC NE1IR 

'1'1: 

MOV 
MOV 
MOV 

MOV 
XCHG 

MOV 
MOV 
MOV 

'" 

CX ,NEW NO FLG 
OI , OfFSET- NEW KEY BUF 
51 ,OFFSET OLO::::K EY_BUF 

AH, (II 
MeI,BY'!'E PTR [OI] 

[SII , AH 

" 01 
T1 

AL, BYTE P1'R NEW NO FLG 
BYTE FTR OLD NO-FLG,AL 
BYTE PTR NEW::::NO::::FLG,9 

TRANSFER ENDP 
; : " : : " : : : : :: : : : :: : :: : : : :: : : :: : : : : : : : : : :: : :: : : 
; : 
l: 

" 

GET AN lISCI I CODE FROM THE KEY QUEUE 
IF Q!H:Ul' tS EMPTY, ROUTINE WI LL LOOP 
UNT I LL '" KEY IS KEYEO IN 

;EXCHANGE THE AH WITH A CERTAIN ,BYTE OF 
ITHE NEW KEY BUF . AFTER THlIT, CLEAR 11 
;BYTE OF- THE-NEW KEY BUF . 
IMOVE TO OLD KEY::::BUF-

;ITERATE ROUT I NE '1'1 FOR THE NUMBER OF TIMES 
;STORED IN THE CX REGISTER. 
;MOVE NEW_NO_FLG TO OLD NO_ FLG 

;CLEAR NEW_NO_FLG 



The Microsoft MACRO Assembler . version 1. 25 Page 1-11 
12 - 21 - 84 

S38 ;:::::: ::: : :: :::: ::::: ::::: ::::: : : : : : ::: ::::::::: 

'" SO. 112ES G" '" "00 NEAR 
sn 112ES WAI1_ m ON: 
542 112ES " PUSH OS 

'" 112£6 " '0' " S44 112E7 " 1111911 • MO' 01 ,OFFSET '" _0 
S<5 112 Ell. " " MO' II.L,II 

'" ~2EC " 91111 11. MO' CX ,IIAH 

'" 0'2EF F2/ " REPNE SCASB ;CHECK IF QUEUE " EMPTY. ". 02Fl " " " ,Me CX , OJ SO, 9 2f 4 H " " SHORT WII.IT KEY 0' 
m 92F6 " " " XCHG [OI-2J , AL ;LOAO A ASCII CODE INTO AL 
SSl 1121"9 " RF.T 
m 112l'A G" '" ENOP 
SS3 , -
". 112l'A ~O~O " MeM 0' ; 11. WORD MEMORY TO TE MPRARILY STORE THE OFFS 

" SSS ; ADDRESS OF AN INSTRUC TION WHICH \oo'A S l\UTOMA 

SS6 ;TICALLY ONTO '"' STACK BY T", " CALL " 

en SS7 ;INSTRUCTION. , SS8 
~ '" 02FC 81 " " " PTA_ TAB O' 81H , 'OS' , 9H ;DEFIN E 'Le TUE ASCI I CODES 0' UPPERCASE 
W ". 0300 " " ' 0 52 31 " " '6'MRllJ PUG' ,27H, ' ; E2N ' ; CHARACTERS 0' '"' KEYBOARD . 

S61 SO " " 41 47 " "2 " <5 " " '" e3111 '0 20 .. " .. " OB ' · - DZ H [9S 37/ . XWJ ' ;EACH CODE CORRESPON DS TO , POSITION CODE • 
S .. " " " 37 " " S6S " 57 " S66 IIHF '0 " " " " .. o' eDH, ' LF' , IBH, '8' ,II8H e.g. , 81H TO , . ' 0' ro 2. 
m 0325 " " " " " .. OB 'IICOY ' ,8 2K, 'KT\U -S - TO , ,AND SO ON. ". " " " " '" 032 F " " " " OB -.' .-m 
S7l 
m 8333 "' " 2S " SHIFT OB 83H, '0\' ,9H J DEFIN E ALL THE ASCII CODES 0' LOWERC ASE 
m 11)37 S& " 60 " " " OB ' - -m r!i JpSaq",e@ ' ;CHARACTERS ON THE KEYBO ARD . 
SH 70 " " " " 22 
S7S " 55 " S76 ~ 346 " " " 54 " " OB 'M _dzh{ (sH?> KWj' 
S77 7B 28 " " " " '" " " 77 " '" 11356 '0 6C 66 OS OB IIOH, ' If ' , l bh 

'" 1135A " " " " " " OB .. ' ,1I8h,')cqy ' ,84H 
S8l .. 
'" 9361 'B " 7C " " 3C 0' 'kt l u ,. ,. 
SO, 76 " " SO. 036.0. CODE ENOS 

'" '"0 m ~, -



The Mic~osoft MACRO AsSemble [ , Ve~sion 1. 25 

segments and groups : 

CODE 
DATA 

Symbols: 

IIGA.tN •••• 
>'ND 9FH.. • 
BUF- OR Q FULL . 
CAL-BEP . - •• 

CAL-MV DATA. 
CAL NO KEY 
CAPS •• 
CAPS COU NTER 
CAPS LOCK . 
CHOCK CTRL P 
CHK ALT . 
CHK-ALTl 
CHK-SUF . 
CHK- CAPS 
CHK- OLO NO 
CHK-OLO-'IO 1 
CHK-REP-COUNTER . 
CHK-SHIFT. 
COMP •• 
CTRLP1 ••• 
CTRL -P -COUNTER 
FILL-9- •• 
FILL 1 ••• 

N a m e 

N a m e 

FILL=IN NEW BUF . 
FILL IN-NEW-SUF AND O. 
FIND- NEXT KEY. - -
FIRST REP:-
GET KEY . 
I NC-l. 
IPO-PORT 
IP_MEM 
KCOL 
KCOLl . 
KEY ON 
KEY:ON_1 
KEY NMt . 
KEY-O. 
KROW 
LAST KEY FLG 
MV.- •• 
MV DATA • • • 
NEW KEY BUF. 
NJ;;W:t>lO_FLG 

Size 

036A 
902E 

Type 

L NEAR 
L NEAR 
L NEAR 
T. "'l>'R 
L NEAR 
L NEAR 
L NEAR 
N PROC 
t. IlYTI:: 
I.. BYTE 
I.. NEAR 
L "EAR 
I.. NEAR 
N PROC 
I.. NEAR 
T. NEAR 
I.. NEAR 
I. "EAR 
L NEAR
N PROC 
L NEAR 
I.. BYTE 
I.. NEAR 
L NEAR 
I.. NEAR 
L NEAR 
L NEAR 
L NEAR 
N PROC 
I.. NEAR 
Number 
I.. WORD 
I.. NEAR 
L NEAR 
I.. NEAR 
I.. NEAR 
F PROC 
I.. SYTE 
I.. NEAR 
I.. BYTE 
I.. NEAR 

align 

PARA 
PARA 

Value 

0010 
00FS 
III AD 
0275 
909F 
9229 
9225 
025F 
IHI23 
(921) 
0006 
09F? 
0059 
9266 
9104 
9129 
9182 
01F9 
9040 
0253 
90£6 
0029 
0155 
0174 
914E 
0188 
0070 
9213 
02E5 
916A 
91C!!" 
921'11 
9962 
0068 
908B 
091\B 
0000 
9000 
9079 
0928 
0278 

N PROC 0278 
L BYTE 000A 
L WORD ''''IF 

Pllge Symbols-1 
1 2- 21-84 

comb ine class 

PUBLIC 'CODE' 
PUBLIC ' DATA ' 

Att~ 

CODE 
CODE 
CODE 
CODE 
CODE 
CODE 
CODE 
coo,: 
DATA 
"I!.U, 
CODE 
CODE 
COD E 
CODE 
CODE 
CODE 
COIH: 
CODE 
CODE 
CODE 
CODE 
OA 'rA 
CODE 
CODE 
CODE 
CODE 
CODE 
CODE 
CODE 
CODE 

CODE 
CODE 
CODE 
cour
CODE 
CODE 
DATA 
CODE 
DATA 
CODE 
CODE 
DATA 
O" T" 

Length " 001 2 

Length "olns 

Length - ~220 
Length _0 09A 

Leng t h -9000 
L .. ngth _~00B 



Th~ Microaoft MACRO A .... blet , V""_,, i o n 1. 2S page Sy",bol. - 2 
12_21_84 

'" " e NEAR ""'24 CODE 
NOCTRt. e NEAR IiIIICl CODE 
NOSH I FT . e (>lEAR IIIIC9 CODE 

' 0 , · e NEAR 929B COO ~ 

'0- '" · , "OC 1120S CODE Le n'ilth · 90)411 
>iO-KEY , e NE ... R 92C4 COD E 
' 0- KE Y- COUNTell e BYTE 1192 ... O ... T ... 

OLD KEY BUF . e f1YTE gnS OAT ... Len 'il t h .. \lOIIA -0," NO FLG e WORD 111121 D ... TA -01'1) ~ORT 1 . Number 11180 -0" PORN. Number 0169 -
POP_ ,. · , PROC 9240 CODE Le ngth - 0013 

'" TAB. L B1TE 112FC CODE -
'" FL G . e BYTE 01il2C flA 'r/\ 

PUSH , , , "OC 0220 CODE Leng th · . 011 13 

'" NI1t. e NEAR 0218 CODE 

~ ~u;P-COUNTER . e WORD 0024 O ... TA , ~ep-COU NTERl e WORD 11 1126 DATA 

" SCAN · e NEA R 002E COCE 
~ SCANII . · e NEAR II lED CODE 

SCAN I. e NEAR 1I1F3 CODE 
SCAN OUT e NEAR lila' COOP. 
SHIFT. e BYTE 11333 CODE 
SHI FT CAPS LOCK . e NEAR 911F CODE -SPEC I AL . e BYTE 11 9 2B DATA 
STORE_ Q. e NEAR 11 282 CODE T, , · , e NE ... R 112CF CODE 
TRANSFER , " OC 02CS CODE Length -0 920 

WAIT KEY_ ON , e NEAR 92ES CODE -
Warn ing Seve r e 
Er r ors Err Or $ , , 



Syni:>ol Cross Refetence " i, definition) Cref-l 

AGAIN . 7" " A/'I) _9FH . m 21B, 

BUF_OR_QJUU.. '" '" 30S m 317' m 

CAL BEl'. . · m 462' 
CAeCAl'S '" 163. 
CAL- MY DAT ... . 3" 367' 
CIII..->n-Kr.~ 37S 37U 
CAPS . - · . · <0' 4291 m 
CAPS OJUNTER m IS7 '" SO, 
CAPS-LOCI(. · <Sf m m 
am:::1( erR[. P 1" 199' 
Cil( ALT. 1" m 22U 
Cil( IU.TI lB 118t 
CiK- SUF. "" '" 30' 310 3<1 '" 438. '" CiK-CAPS m '" 2311 
Ci!(-OW 00 m 737 '" '" '" '" 252' 
QIlCOW-OO 1 '" '" 296' 
CiK-ru::I'-ojJNTER. 33' 35~' 
OiIC-slii~r . 1" 111' 
ClXJi. · '"' '" " 58' 
roo> • · m 42111 '" Cl'RL P 1 • '" 2117 ' 
erRL = 1'= COONTER '" '" ". SOl 

~ 
OATA • " 

, " so so " as , 
~ riLL 0 76' 275' 
~ FILL-1 76S '" "" rILL-IN NEW BUr. '" 2721 

FILL-W-NEW-BUF AND Q. 7S7 763 300' 
Fl tD-NEXT KEY. - - 142' m "168 '" m ". m 
FIRST REP-:- 353 359' 

GET_KEY. " 5401 S57 

IN: 1. • 283. '" IPD-roR'l' " 101 133 
II' Mlli 386 39S , .. '" 5541 

=. llS ". 122' 
KOlL1. 126, ISO 

"" '" no 153. 
KEY-ON 1 156 170. 
KEY-t-l·if. '" 378 sas 
KEY=Q. 171 '" 339 '" sa, 
''''' . 138. 1<, 
LAST_KEYJLG 351 '" ". m '" '" 3D 

'" . · 47U m 
!<lV_DATA. '" '" 396 m 303 36. 470 ' '" 
NEloI KEY '3')1;' . 171 77' m '" '" '" m 
NEW-OO FLG '" 7S3 37' 33' SO, '" '" '" t~'H:HoI- " " ." 



Syrfbol cross Reference (I is definition) Cref- 2 

""' .. . 180 1881 
~KJPI'. l7S 19,. 
!() 1 ° o. 493' .,. 
NO-KEY • m 4841 "" t«)-I(F;Y 1 '" "" t«): KEY::: OX/NTER ... ", '85 .S< 
OW KEY BUF. nt 26' '" '" ." '" aD-NO FLG ". m 327 m 423 so, ". ol'D-p;iral. " 73 99 13l 
OI'D:::PORT2 . 7t " m 

POP R •• '" 167 ,os m '" ,u '" '" 399' m 
P'l'A- TIIB . 181 19< ~~9' 

~ 1''1~CFLG . ... m , PUSitj . .. 15. 38~1 '" ~ 

~ 

:;-~w. '" ". '6S 374t 
331 '" m m '" REP::: OXJNTERl H. '54 '" '" "'" . '" """'. '38 344' """. m 346' m ", 36' 

""" "'" 152 3221 
SHIFT •• 189 S721 
SHIPI' CAPS LOCK. >J' us, 
SPECIAL. - m 104 109 n. m Hi m 196 m '" SO< 
S'roRE_O. 478' 

Tl ° 0 ° 517, m 
TRANSFER '" 5131 m 

WAIT_KEY_OO. 54" ", 



At the start of the example program, the DEFINE assembler direc
tives are used ·to define the variables used in t he program. Here, 
we are going first to explain some of the critical ones in more 
detail: 

1). OPD PORT1: 

2). OPD PORT2: 

3). IPD PORT: 

A name used by 
'1/0 port 180 H, 
program. 

A name used by 
I/O port 160H, 
program. 

A name used by 
I/O port lC0H, 
program. 

the Assembler to represe nt 
which is a n output port to 

the Assembler to represent 
which is an output port to 

the Assembler to represent 
which is an input port to 

the 
the 

the 
the 

the 
t he 

A buffer (an area of memory), 
key queue for storing keyboard 
10 bytes of memory. 

referred to as 
inputs. It has 

5). NEW KEY BUF : 

6). NEW NO FLG : 

A buffer whose function is' somewhat similar to 
key queue. It stores one up to 1 1 latest. key
board inputs after a complete scan-out. Then , 
data i n this buffer wi ll be always transfer red 
to KEY Q and OLD KEY BUF, respectively, after a 
complete scan- out . Thus, the program can deter
mine the key j ust being entered is a new key or 
a repeated key by making a comparison" with the 
values in both variables NEW KEY BUF and 
OLD KEY BUF. 

A word variab l e stori ng the nu mber of latest 
keybo ard inputs. Its contents will be trans
ferred to the variable OLD NO FLG after each 
scan-out. 

7). OLD KEY BUF : 

8). OLD NO FLG: 

A l0 -byte 
that were 
operation. 

buffer 
keyed 

storing 
in at 

the 
the 

keyboard inputs 
last scan-out 

A word variable storing the number of last 
keyboard i npu ts . 

9). CAPS COUNTER: 

A byte variable whose contents will be auto-

5-78 



matically i nc r emen ted by one if one ho lds down 
the CAP LOCK key con tinuos ly. when it equals t o 
one , the program wil l enable the CAP LOCK key; 
otherwise, disable that key . 

10) . REP COUNTER : 

A word variable used to determine if a key same 
as the last key should be repeated. If one 
ho ld s down a key con tinuosly , the program wil l 
recognize its subsequent keys as repeated keys 
after scanning it for 30 times ; the program 
will pe r form 30 times of scan- out operat i o ns to 
accept the first repeated key. 

11 ) . REP COUNTER1: 

A word variable used t o determine if a key same 
as the last key should be repeated. If on e 
sti ll holds down a same key after the program 
has displayed its corresponding character twice 
o n the screen, t he program will keep going to 
recognize its subsequent keys as repeated keys 
every 4 ti mes of scan - o u t . 

12 ) . LAST KEY FLG: 

A byte variable used as an internal flag to set 
the last key o ne entered from the keyboa rd 
after the program completes a scan-out oper a 
tion. I f it con tains the value of FFH , then the 
program wil l kn o w that the key one j ust e ntered 
is the same as the last key of l ast scan- out . 

13) . CT RL P COUNTER : 

A byte variable whose contents wil l be automa 
tically inc r emented by one if one holds down 
both t h e keys CTRL and P co nti nuosly . The code 
CTRL P is used to . e nable the p rinter d ri ver . 
When th i s variable ' s conten t equals to one , 
the program will accept this code; other wise, 
it won 't accept. 

14). NO KEY COUNTER: 

A byte va ria ble which is initial ized t o 0 . How 
does the p r ogram assume that there is no more 
key en tered from the keyboard after a scan- out 
opera tion? What the program does for this pur
pose is to perform three sca n- out operations 
success i vely. After completing each scan- out , 
the va riabl e is incremented by one . I f no key 
is definitely s ig h ted afte r perfo r mi ng three 
sca n-out operation s , the program assumes , based 

5-79 



15). SPECIAL : 

16). PTR FLG: 

1 7). CAPS LOCK: 

on the fact that 
been incremented 
more key ente red . 

the value 
to three , 

of the variable 
that the r e is 

has 
no 

A byte variab l e which has three basic usages. 
The prog r am uses i ts first b it (bit 0) to 
determine if the SHIFT key is rp r essed , its 
second bit (bit 1) t o determine if the ALT key 
is pressed , and i ts third bit (bi t 2) to deter 
mine if the CTR L key is pressed. 

A byte variable used as a flag to determine if 
the printer dr ive shall be enabled or not . I t 
is the only variable used in the keyboard pro
g r am whose contents will be needed by some 
external rout i nes associated with the printe r 
driver. Its contents are either FFH or 0H . 
Thus , to our program , it is an output . 

A byte variab l e used as a n in terna l 
dete r mine if the CAP LOCK key shall be 
or no t. If it co ntaIns the value FFH, 
CAP_ LOCK key will work . 

flag to 
enabl~d 

then the 

Now, please take a look at the end of the example program. You 
can see two variables , named PTA TAB and SHIFT r espec tively . As 
with all the keyboards designed by other manufacturers , every key 
on the keyboard of the MPF- I/B8 has its own corresponding ASCII 
code . We define the ASCI I code of each key in the keyboard p r O
gram by two Define- Byte look - up tables wh ose names are stated 
above . 

The first one , PTA TAB , (Position code to ASCII code Table) 
de f ines the ASCI I codes of the lowercase keys. The second , SHIFT, 
(position code of the uppercase ke y to ASCII code Table) de fin es 
the ASC I I codes of the uppercase keys. 

Those c haracters in both t ables PTA TAB and SHIFT with two apos
trophys tells the assembler to gene rate s tandard ASCII codes. 
Others , such as 8lH , 9H , 27H , etc ., are our o wn codes which 
indicate special keys . Refer to Ta bl es 5-1 and 5- 2 Conversi on 
Tables for each key ' s position code and its corr espond ing ASCII 
code . 

Before analyzing the program , l et 
and the function of each r out ine . 
consi s t s of t en major r ou tines , 
KEY NMI . They are : 

us firs t examine its struc ture 
The keyboa rd program t otally 
inc l ud ing t he main prog r am 

Name 

1. KEY NMI The mai n 
Part one 
keyboard 
addressed 

Functio ns 

program which is composed of two parts. 
stores the starting address of the core 

program into two memory loca t i ons 
by 08 and 0A, which are part o f the 

5- 80 



2 . PUSH R 

3 . POP R 

4 . COMP 

5. CAPS 

6 . CHK BUF 

7 . MV DATA 

8·. NO KEY 

9. TRANSFER 

10 . GET KEY 

interr upt service routine address table , and 
ini tia lizes the keyboard hardware interface by 
sending out a value of . 0FFH to the I /O port 
0180H. 

Part two is an infin ite loop labelled AGAIN that 
reads in keyboard input and displays it on the 
LCD screen . The other components of the program 
is our major keyboard program starting with 
statements labelled NMI IN. 

A subroutine for pushing the status of all 
registers onto the stack. 

A subroutine for restori ng all register from the 
stack. 

A subroutine which determines if the key just 
entered is a ne w depre ssed one . 

A subroutine for initializing the variable 
CAPS LOCK to the value FFH as stated before. 

A subroutine for checking if any buffer used in 
the program is full of valid data any time it is 
needed to test. 

A subroutine for moving data in the AL 
(a key just ente red) into one of both 
NEW KEY BUF and KEY _O, depending 
situation . 

register 
buffers 

on the 

A decis ion- making subroutine for determining 
if there is no more key entered from the key
board after a complete scan- out and initializing 
to zero all the variables used as counters in 
the program if the program recognizes that there 
is no key entered after performing two complete 
scan-out operations. 

A subroutine for 
buffer NEW KEY BUF 
and then clearing 
zeros. 

moving current data in the 
into the buffer OLD KEY BUF 
the bu ff er NEW KEY- BUF- to 

A subroutine for moving the "first-in" data in 
the buffer KEY 0 into the AL reg ister in order 
to display it on the screen . 

5- 81 



We can now look at the main pr og r am KEY NMI. The program first 
ha s to set the start ing address of our own ke yboard prog ram 
(sta rti ng with the instruc ti on l abelled NMI IN ) into proper 
entries addressed by 08H and 0AH of the interrupt- serv i ce- ~uti ne 
vector t ab l e . 

Remembe r that t he p r og r am wi l l be i nvoked e very 15 mil liseconds. 
Once the vecto r t able is mOdified, the program e nables the f i fth 
b it (bit 4) of t h e I /O por t 0180H t o allow exter nal inte rr upt 
sources to interrupt pin NMI o f t he 8088 by ou fputing the value 
0FFH thr ough the OX register. 

The s econd par t routine l abelled AGAI N is a finit e l oop tha t 
ca lls the routine GET KEY to obtain c haracters input f r om the 
keyboard. Each cha racter so rece ived i s echoed on the sc reen by 
the i nstruction INT 9 . Please refer to the chapter on useful 
s ub r outines o f the MPF- I/88 Use r's Man u a l fo r the usage of INT 9. 

If we st r ike a key whi l e this loop i s run ning , an NMI i nte rr upt 
will occu r . This wi l l ca use ou r keyboard pr ogram sta rti ng with 
the i nst r ucti on labelled NMI IN to be activated. 

Let ' s go down to t he routine labelled NMI IN. One t h ing you have 
to keep in mind is that i f y o u program is associated with (or 
ca lled by) someone ' s p r og ram, you have to save onto the s tdc k the 
c urrent sta tu s of all registers in t he CP~ that the calli ng 
prog ram just produced before execu"ting your own program; then at 
the end o f prog r am , r e store t hem back to their or i gina l respec
t i ve register. Thus , you will not dest r oy t hem dur i ng the co ur se 
of the prog r am ' s execution . Based on " t he r ule of p r og r ammi ng , 
State men ts labelled NMI IN start with the i nstruct i on CA LL PUSH R 
per f o r ming what we stated just now - p ush all t he r eg i s t e rs onto 
the stack . 

Rout ines f r om SCA N th r ough CHK AL TI are used to check if the 
th ree ke ys of co lumn KC-I l (CTRL , SHIFT, and ALT keys ) are 
en tered . If t he key entered is of CTRL key , then bit 3 o f the 
va riabl e SPEC IAL wil l be set to I fo r future use somewhe re else 
in the program . This is true for the SHIFT and ALT keys . 

Sta t ements , start ing fr om t he i nstruction labelled" KCOL and 
e nding with the las t i n s tr uc t ion JMP SCA N OUT of t he r ou t ine 
l abel l ed F IND NEXT KEY , beg i n t o sca n t he keyboard matrix f r om 
column KC- 10 by sendi ng the value 0FFH to I/O port 0160H and the 
val ue 0FBH to I/O port 0180H , respectively . 

Afte r s canning up each culumn, t he equ ivalent binary number of 
0FBFFH wi ll be s hifted one digit to the right in order to scan 
the next column . Thi s is done by the ins tr uction SAR AX , 1 con
ta ined in the routi ne ~IND NEXT KEY . 

If the program r ecog ni zes that t here is a key e n tered from the 
key board , cont rol o f execution wi ll turn t o the inst r uction 
l abelled KEY ON (key down ) . Remember t hat t he 01 r eg i ster i s used 
as a count for the pos iti on code of a key i n o ur prog r a~ . I t wi ll 

5- 82 



be automat i cally 
(KC- 10 x KC- 0 ) has 

inc r emented by o ne after a key of 
been s canned out . 

the matrix 

Routines from KEY DN through CTRL P I " first check i f the ke y 
entered is the CAP LOCK ke y ( a key t o se t the uppercase 
character) who se posit ion code in our prog ram is 50. How can we 
obtain the ASCII code of a key? Because each key has its own 
position cod e stored i n the 0 1 register , we use it as a d i splace
men t (namely , offset) between t he beg inn ing of table PTA TAB and 
the ASCII character d e si r ed . And t hen we again fi nd o u t t he 
s t a r ting address of table PTA TAB by the instruc t ion MOV 
8x , offset PTA TAB. Fina l ly , by adding t he BX a nd 01, we get the 
cor r esponding-ASCI I code of a ke y and sto re i t in the AL register 
again . 

Let us no w loo k at the routine AND 9FH. Thi s " AND " instruct i on is 
used to obtai n the ASC II code of a- c ertai n control c haracter . For 
instance , the he x value of cha r acte r A i s 41H. And per fo r mi ng 
this AND logic operation wil l r esu l t in ~he ASCII code (01H) of 
the co ntrol character CTRL A. 

The default image o f chara c t e rs shown on the LCD screen of t he 
MPF- I /88 is in uppe r case (capital l etter) . I f one e nte r s any 
alpha be ti c c haracter wi th t he CAP LOCK key , t he pr og ram wil l 
accept i t as lowe r case c haracters . Tr y to t r ace the rout i nes 
CHK CAPS and SH I FT CAPS LOCK , you will unde r stand t he mea n i ng o f 
those s tatements. - -

The statements start ing from the instruc ti o n labell ed CHK OLD NO 
seem t o be a lit t le di~fi c ul t to t r ace , f o r the r e a re some 
f actor s we have to take in to account. Fo r ex ample , one might 
st ri ke more tha n o ne key (up t o ten keys) at a time without 
r eleasing them. Wha t t he pr og ram should ha ve to d o i s to accept 
them and d isplay them o n the screen, then r epeat displaying t he 
cha rac t e r on the screen wh ich was depressed last. This i s 
accompl ished by routi nes labelled CHK OLD NO, FILL IN NEW BUF, 
FILL_0, FILL_I, and CHK OLD NO 1. - - - - -

Assuming tha t a val i d key has been str UCk , we now ha ve i ts ASCI I 
code in the AL r egis ter. we must place this by t e on to the key 
q ue ue so that it i s available t o t he GET KEY routine . One more 
thing we have to do i s to place this byte- i nto bu ffer NEW KEY BUF 
as we ll for ne xt scan ning compar ison. Thi s is accomplished by-the 
r out ine l abel led FILL_IN_NEW_FUF_AN D_Q. 

Now , le t us loo k at r ou tines from SCAN OU T t hrough REN NMI . Each 
t i me the prog r am completes a sca nning operation fr om KC= ll t o KC-
0 , con t r ol of t he pregram executi o n wil l be tr a nfered t o he re t o 
initi a lize some counters and inte rnal flags . F ina l l y, the prog r am 

"r eturns con trol of the execution to the CPU to e nd up itse l f by 
executing t he instruction IRET whi c h is l ocated at the e nd of the 
REN NMI routine . 

Recall that the I nst r ucti on Po inter (IP) i s used t o t ell t he CPU 
t he add r ess o f the next ins t ruct i on to be executed. When you use 

5-83 



the CALL in s tr uct i on , the CPU wi l l save t he I P on t he top of the 
stac k f or j umping back , a nd then control of t he p r og r am execution 
will be tr ansfe rr ed to t h e s ub r outine desired . Le t us no w loo k at 
the PUSH R ro utine a nd see it s f irs t instruct i on POP CS : IP MEM . 
Th is instruc t ion i s used to pop off the stack in to me mory some
where in the Code Segment t he I P which the CPU just p us hed onto 
the s t a c k . 

At th is po i n t , you mig ht ask why we put t hi s in str uc t i on here . 
Thi s is because the PUSH R r ou tine is used to push the cu rr en t 
s t a t us o f r egi ste r s r e q uTred on t o the stac k. If we do n' t wri te 
t h i s ins t r uc ti on i n th i s r outi ne , the I P wi ll be fo r ced do wn to 
the bo ttom of the staCk ; th us , once t h i s PU SH R r ou t ine i s com
pl eted , the RET ins tr uct i on c a n not c a use con trol of t he p r og r am 
to go back t o t he add ress t hat t he CA LL inst ruction saved 
e a rli e r, f o r the address s t o r ed on the t op o f t he stack is no t of 
t he o rigi anl c onte nts o f the I P . The re fore , i n orde r t o en s u r e 
tha t t he I P is always o n the t op o f t he s t ac k , we f i r s t pop it 
o ff the s tack , a nd the n push i t again on t o t he t op o f t he s tack 
afte r pus hing all the r egister we requir ed . 

The rest 
dif f i cu lt 
you can 
l ang uage . 

o f the p r og r am we do 
f o r you to trace . Try 
expe r i e nce man y skil l s 

no t expl ain a re considered not 
to t race a l l the p rog r am , t hen 
in p r ogramming i n 80 88 assemb l y 

5- 8 4 



Introduction to 
8088 Assembly 
Language 



1. Data Transfer Instructions 

Data trans fer instructions are used t o move data fr om a speci fi ed 
point to) d oother . The dat a that is transfe r red may h,,,) i.n 'Jroups 
of 8 bits or 16 bits . 

Mos t data t r i111 ,:d',~r. instructions have two operands, such "'IS MOV . 
The first ope r and i s call ed the destination ope r and , i n which the 
r esu l t of t he ope r ation i s stored . The second opera nd is t he 
sour ce operand , wh i ch sto r es t he data be f ore t ransfe r. Some of 
data transfer in s tru c t io ns onl y have on e opera nd , su ch as POP and 
PUSH . The only ope rand can be a sou r ce o per a nd o r a dest ination 
operand . 

Data tran:,f.~r instruct i ons that we wil l i nt r oduce t o you 
below inc l udes: MOV (move ) , PUS H , POP , XCHG (excha nge) , IN , OUT 
(i npu t /ou tput po rts) , and XLATB ( trans la t e) . Each i nstr uc ti o n is 
described in parts as fo l lows : !).'!,.;cription , Fl a g r eg i s t e r bits 
aff ect.::! il, SY'ltax, and Exam ple. 

A-1 



1. Data Transfer Instructions 

Data transfer instructions are used to move data from a spec ified 
ooint to drl<")ther. The data that is trans ferred ffi.:l.y i),:! in qroups 
of 8 bits or 16 bits . 

Most data trlt<l..;r , ~ r. instructions have two operand s , such.;ls MOV . 
The first operand is ca lled t h e destination operand , in which the 
result of the operation i s stored . The second ope rand is the 
source oper and , which sto r es t he data before transfer . Some o f 
data transfe r instructions only have one opera nd , su ch as POP and 
PUSH . The only operand can be a source operand o r a destina t ion 
operand . 

Data tran,~E~r.: in struc tion s that we wi ll introduce to you 
be l ow incl udes : MOV (move) I PUSH , POP, XCHG ( e xchange ) , IN , OUT 
(input/outpu t por ts ) , and XLATB (t r anslate) . Each i nstr:uction is 
descr:ibed in parts as fo l lows : j)~se r.ip t i on , Flag r:egiste r bits 
afEe(:'t<~d, SY'l tax , and Example . 

A- 1 



Mav 

Description : MOV = move 

Move a byte or a word 
0Lk~ r:and. The source 
immediate value. The 
regis ter. 

f rom the source operand to the destination 
operand can be memory , register or an 
destination operand can be memory or 

Flag registers affected : none. 

Syntax: 

Example 

MOV reg,mem/reg 

MOV mem/reg , reg 

MOV mem/reg , numb 

" 
Mav DX,3 
Mav AX , 0 
Mav AX ,DX 

;move 3 to DX 
;initialize AX to 0 
;move the content of OX to AX 

A-2 



PUSH 

Desc r iption: PUSH ~ push 

Decrease SP 
the s ource 
point s t o. 

(th e S tac k Pointer) by 2 , and then store a 
operand to the cu rrent t o p of the stack 

word f r om 
t hat SP 

Fl ag registe rs a f fe c ted : no ne . 

Synta x : 

PUSH 

Exampl e " 
PUSH 

Example 2 , 

PUSH 

reg /me m 

BX 

[ 123 [ 

; sto r e the contents o f BX to t h e stack 

; store the conte nts 
; i n the DS t hat is 
;1 23H to the stack 

A- 3 

of the memory locat i on 
addr essed by the value 



POP 

Description: POP: pop 

Remove the 
destination 
the new top 

word at the 
operand , and 

of the stack . 

top of. stack that 
then increase the 

SP points to 
SP by 2 to poi nt 

the 
to 

Flag reg isters affected : none . 

Syntax: 

POP 

Example " 
POP 

MOV 

Exa,npte 2, 

POP 

reg/mem16 

ox 

AX,DX 

[ 12 3 ) 

;store the word at the top of stack to 
;DX 
; store conten ts 

iPOP off t he stack to the me.nory 
; in the OS which i s addres sed by 
; 123H 

A- 4 

l ocat i on 
the value 



XCHG 

Descr ip tion: XCHG zexchange 

Swap the contents of t he source and the destination opera nds . 

flag registers affec ted: none. 

syn tax: 

XCHG mem/reg ,reg 

Example 1 : 

MOV 
MOV 
XCHG 

AX , 3 
BX , 5 
AX ,H X 

;move 
;move 
;mo ve 
;move 

3 to AX 
5 to BX 

the contents of AX to 
the contents o f BX to AX 

A-5 

ax and 



IN 

Desc rip tion : IN ~ in ~ut por t 

Tra nsf er a byte or a word from an 
number can be an immedi ate constant 

input po rt to AL . 
or ca n be sto r ed in 

The 
the 

port 
DX . 

Flag r egister bits affected : no ne 

Syntax : 

IN AL/AX , port 

Example 1 : 

MOV AX,0 
MOV OX ,lA3 

IN AL , DX 

INT 7 

; Ini t i ali ~~ ~x to ~ . 

;Move the I /O p or t address lA3 into t he OX 
;registe r . The content of curren t cu rso r 
i f}O:">ition ca n be read from the I/O port 
; lA3. 
; Read the con tent of cursor position fr om 
; I/O port. 
; Return control to the monitor program . 

After the program ha s been executed , the AX reg i ste r will con tai n 
0020 and the DX registe r wi ll contain 01A3 . 

A- 6 



OUT 

Description : oUT'" output port 

This inst ructi on 
output por t. The 
placed in the ox . 

Qu tP'lt,:; -. \)y;>~ 
port number may 

0< 
be 

a word f rom AL or AX to an 
an immediljt:~ vCllue or may be 

Flag r eg i ster bit affected: none 

Syntax : 

OUT port,AL/AX 

t:xi-\mple 1 : 

;1,)"" !\L , 41 
MOV DX , lAl 

OUT DX , AL 
INT 7 

; Move ASC I I code 41 H ( ' Po ') to AL . 
iMo ve I/O port address lAl into the DX 
;register so that the con tent s of OX point 
; to the output paLt , which is used by the 
; LCD . 
; Write data con tained in the AL onto LC D. 
; Retur n con trol to the ,nOll i to r pr og ram. 

The cha racter 
the program . 

' A' will be displayed on the LCD afte r execu ting 

. -7 



XLAT 

Desccipt i on : XL AT ; tra ns la t e 

This i nstruction is used to trans late char ac ters from one code to 
a nother, such as, ASC II to EBCD IC or vice versa . I t replaces a 
byte in the AL with a byte from a 256- byte, user-coded 
translation tab le . BX is usually dS $umed as the beg i nning of the 
t r anslation table . AL i s r egarded as the of f set . The in s truc ti on 
p lus BX a nd AL and then move the conte nt of t he result address to 
AL. 

Flag registe r bits affected : none 

Syntax: 

XLAT 

Example 1 : 

MOV Ar. , '11:
MOV BX , 40 
MOV BYTE ( 4F) , 11 
XLAT ; c hange. the co ntent of AL f r om F t o 11 
INT 7 

Afte r the 
o rigi nally 

exe cution , the AL wi l l be loaded wi th llH 
stored o n the memo r y locat i on 4F. 

A-a 

which 



2. Arithmetic Instructions 

In this section, we will d~~cribe the arithmetic instructions as 
follows : ADD (addition) , INC (increment) , SUB (subtract), DEC 
(dec r ement) , NEG (negate), eMP (compare), MUL (multiply), and DIV 
(divide) • 

The arithmetic instructions provide the followiny fO,ll:: basic 
operations : addition , subtraction , multiplication and division . 
You can use these instruction s to manipulate the following types 
of numbers: unsigned binary, signed binary, unsigned packed 
decimal , and unsigned unpacked decimal . 

The contents of the f l ag register can be Is or 05 . Like a ll 
registers , it is a 16 - bit register. Nine of the 16 bits are used 
independen tly as flags and are used to reflect- different k inds of 
results from arithmetic operations. Seven bits are unused on the 
8~88 . Some of the more important flag bits are described below. A 
flag is set if it is 1. It is clear if it is ~ . 

CF (carry flag) is set if there is a carry 
singificaot bit or borrow into the most 
Otherwise , it is clear ed. 

out of the 
significant 

most 
bit . 

PF (parity flag) i s set if the result of an arithmetic 
has an even number of I - bits. Other wise, it is cleared . 
the. parity flag only tests byte length data . 

operation 
Note that 

AF (auxiliary flag) is set if there is a carry out of bit 3 to 
bit 4 , or a borrow from bit 4 to bit 3. Otherwise, it i s cleared . 
You can use this flag in both 8- bit or l6- bit arithmetic 
operation s. 

ZF (zero 
Otherwise , 

flag) 
it is 

is set if 
cleared . 

the result of the operation equals 0 . 

SF (sign flag) is set if the result of the operat i on is less th8n 
0. It is cleared if the resu l t is larger than or equal ' to 0. 

OF (overflow flag) is set if the result of the operation is 
larger than its destination operand . 

A- 9 



ADD 

Description : ADD = addition 

Add the source operand to the destination operand and place the 
sum in the destination operand. The sum may be a byte or a word . 

Flag register bits affected : AF , CF , OF , PF , SF , ZF . 

synt~x : 

Example 

Example 

ADD reg , mem/reg 

ADD mem/reg , reg 

ADD mem/reg , numb 

1 : 

MaV 
Mav 
ADD 

2 : 

Mav 
ADD 

AX , 7 
CX,2 
eX , AX 

eL , S 
CL,2 

; add contents of AX to ex and return th8 
; result t() ex 

iA.dd immediate value 2H to CL and 
ireturn the result to CL 

A- 10 



INC 

Desc ripti on : INC = increment 

Add one to the destinat i on operand , which may be a byte o r a 
wo r d . 

Flag r egister b it s affected: AF , OF , PF , SF , ZF . 

syn tax: 

I NC reg/mem 

Example " 
ADDRESS MN E:-tONICti 

0080:0000 MOV 
13080:0003 MOV 

0080 : 0008 MOV 
IHl8 0: 0008 MOV 

0080 : 000 E MOV 

0080 : (HH0 INC 

IHl80 : tHHl INC 

13080 : 0015 LOOP 

0080 : 0017 INT 

OP~;I{A NDS 

eX , A 
BYTE[100] , 0 1 

DI , HH 
AL, [ 100] 

[DI],AL 

0 1 

BYTE [HI0] 

08 

7 

COMMENTS 

i ffiove value 10 into ex 
iffiove value 01 into the 
; memory l ocation 

i ffiove the conte nts of the 
; memory loca t ion addressed 
; by 100 into AL 
; ffiove the contents i n the 
;AL into the memo ry 
; loca tion addressed by the 
; con t e n ts in or 
; add one to 01 and r etur n 
; t he r esult to 0 1 
; add one t o the 
; locati on addressed 
;i f ex is n o t equal 
; jump t o the 
i1ocati on addressed 
i value 0B 

memory 
by' l 00 
to 0 , 
memory 
b y the 

i transfer control to the 
imonitor program 

After exec uti on , the memory locat i ons ra ngi ng fr om 100 t o 10A 
wil l be as follows : 

, .0 08 
101 01 
10 2 .2 
103 03 
10' 0 ' 
10 5 05 
106 06 
lin 07 
108 08 
109 09 
10A 0A 

A-ll 



SUB 

Desc ripti on : SUB = s u b tract 

subt ract 
p lace the 
of eitile l:" 

the so ur ce oper and fr om the destination ope rand, and 
difference into the dest inati on operand . The conte n ts 
opera nd may be signed o r unsi g ned numbers . 

Flag reg i s ter bi ts affec ted : AF , CF , OF , PF , SF , ZF . 

synta x: 

Example 

SUB reg , mem/reg 

SUB mern/ret] I r eg 

SU B mem/reg ,numb 

" 
MOV 
MOV 
SUB 

INT 

ex,9 
Bx,3 
CX , BX 

7 

isub t ract ex 
;di fference t o 

from 
ex 

Afte r exec uti on , the ex wi ll con t a in 0 6 . 

Example 2 : 

MOV AL , 10 
SUB AL,A 

INT 7 

; subtract Hl 
;dif fe rence t o 

fr om 
AL 

After ex ec uti o n, the AL wil l cont~in 06 . 

A- 12 

ex a nd r etu rn t he 

a nd r etu rn the 



DEC 

Descriptia~ : nEC = decrement 

Subtract one from the d ~ st in~ tion operand . The operand must be dn 
unsigned binary number , which can be a byte '1( ,1 "/,wd. 

Flag register bits affected : AF , OF , PF , SF , ZF. 

Syntax : 

DEC reg/mem 

Exaill pl e 1: 

DEC AX 

Example 2: 

DEC BYTE[123 J 

; subtract one from AX and return l;18 
;resul t to AX 

;subtract one from the co n tents of 
; memory location 123 

A-13 



NEG 

Descriptioll : ~EG = negate 

Produce two's complement of t he destination operand , 
reverse the sign of the number . 

Flag register bits affected: AF, CF, OF, PF, SF; ZF . 

syntax: 

NEG 

Example 1 : 

MOV 
MOV 
NEG 

reg/mem 

AX,0 
AL , 01 
AX 

;move value 1 into AL 
;chaoge AX to FFFF 

that is, 

NEG AL ; change AL to its original value 01 
INT 7 

After execution, the AX will contain FF01 . 

A- 14 



eMP 

Desc ri pt i o n: CMP = ..... compare 

Compare two operands by subtracting the source fr om the 
dest ination . Both operands are unchdl1geJ s inc e the dif ference is 
not placed in the operand . CMP can be foll o wed by any c o nditional 
jump i nstruction . If the desti"nation is greater than the source 
jump is taken. 

Flag register bits affecte d : AF . CF , OF, PF, SF , ZF . 

Syntax: 

CM P reg,mem/reg 

CMP mem/reg ,reg 

CMP mem/reg , numb 

Example 1: 

CM P BX ,ex ; compa r e BX with ex 

Example 2: 

CMP BL,02 j compare 8L wi th 02H 

Example 3 : 

CMP WORD[7F2J,16 ; s ub tract value 16H from memory 
; locat io.n addressed by 7F2 (low byte) 
ii:ll,d 7F3 (hi gh byte ) , and use the 
;result to set t he flags. The result 
j oE this ope r at i on is rl l)t st'Hed back 
;in to the specified locat i ons . 

suppose memory l ocat ion 7F2 con tains 01H and 7F3 contains FFH, 
the con tents of thess two memory locations are not changed after 
execution. 

,11.-15 



MUL 

Desc ript i o n : MUL : mu l t i ply 

Mult i pl y sou r ce o per-and by AX o r At . If the sou r ce operand is a 
word , iTI ll ltiply it by AX and return the product i n DX and A. X . If 
t he source ope r and is a by t e , multiply it hi J\L and r e tur n the 
produc t in AH a nd AL . The operand i s u nsig ned bina r y numbe rs . 

Flag r egister b it s affected: CF , OF . 

Syntax : 

HUL mem/ r eg 

Example 1 : 

MOV AX , 3 
MOV CX , 2 
MUL ex 
INT 7 

AF , PF , SF , ZF unde fin ed . 

; mult i ply AX by the co n tents of ex 

AX will con t~in 06 H a fte r execution and DX contains 00 . 

A- 16 



DIV 

Description: DIV = divide 

Divide the di v idend by the source operand . If the source operand 
is a byte, it divides the dividend in AH and AL and then retu rns 
the remainder in AH and the quot i ent in AL . If the source ope rand 
is a wo r d , it divides the di vidend in DX and AX and then returns 
the remainder i n DX an the quotient in AX . 

Flag register b i ts RFEected: 
undefined. 

Syntax: 

DIV mem/reg 

Exampl e " 

AF , CF , OF, PF , 

DIV eL i CL divides what in AH and AL 

Example 2, 

Mav 
MaV 
Mav 
DIV 

INT 

DX , 23 
AX , 4 
CX , 3E8 
ex 

7 

i Divi de 00230004H by 3E8H 
; (d ivide DX:AX by ex) 

SF, ZF are 

After execution , the AX will contain 08E5H and the DX will 
con t ain 02FCH . 

A-17 



3. Logical Instructions 

The logical instruct i ons i nclude NOT , 
SHR , RCL , ROL , RCR, and ROR . 

AND , OR , XOR, TEST , SHL . 

Unl i ke the arithmetic instruct i ons which always regards thl~ i r 
operands as n umbe rs, the log i ca l inst ructions rega r ds t he i r 
o pe r ands as strings o f bits. In addition , the l og i ca l 
inst ruc ti ons Cdn o perate on a byte or a wo r d operand . 

The f lags are not affected by the logical NOT. However , AND , OR , 
XOR and T~ST affects the status of the flag r egister ~8 follo ws : 

CF : cleared . 
OF : cleared . 
AF : undef ined. 
PF : set for even number of I-bits , cle'lt: Eor odd numbe r of 1-

b i ts . 
SF: depends on the status of the h i g h- hit o f t he operand . 
ZF: depends on the nu me r ic va l ue of the oper a nd . 

A-IS 



NOT 

De scription : 

Fo r m the one ' s compl ement 
des t ination may be a byte or 

of the 
a wo r d . 

destination operand . 

Flag r egister bits affect~d : none . 

Syntax: 

NOT reg/mem 

Example 1 : 

Suppose memory loca t ion 1~0H conta i ns 80H , 
con ten t s wi ll be c hanged t o 7FH . 

A-19 

afte r execution , 

The 

its 



AND 

De scr i ption : 

Perfo rm the log ica l "and " bit. by b i t. 
and the ties tination operand~' . The 
des t ina ti o n. 

e AND 13 '" 13 
o AND 1 '" 0 
1 AND 13 '" 13 
1 AND 1 '" 1 

i>~tween 

result 
t he 
is 

Flag register bits af f ec ted: CF , OF , PF , SF , ZF. 

AF u ndef ined . 

Syntax: 

AND reg,roem/reg 

AND mem/reg ,reg 

AND mem/reg , numb 

Example 1 : 

AND Cx , 0FF 

Example 2 : 

AND AX , aX 

1\ - 20 

source 
sto r ed 

operand 
in t h e 



OR 

Descr i pt i on : OR z inclusive OR 

Pe r fo r m l og ical " inclusive o r " 
the source operand and the destination 
sto r ed i n the dest in~t i on operand . 

o OR 0 '" 0' 
0' OR 1 '" 1 
1 OR 0' '"' 1 
1 OR 1 '" 1 

bi t by 
opera nd . 

Flag r egister bits affected : CF , OF , PF , SF , ZF. 

AF undefinea . 

Syntax: 

OR reg,me m/reg 

OR mem/reg , reg 

OR mem/ r eg , numb 

Example " 
OR AX , BX 

Example 2 , 

OR CL , 41 

A- 21 

b it 
Th e 

between 
resul t i s 



XOR 

Description: XOR g exclusive OR 

Perform the logical "exclusive or" bit by bit between the source 
operand and the destination ope rand. The result is stored in the 
destination operand. 

1:'1 XOR 1:1 = 13 
13 XOR 1 1 
1 XQR 0 1 
1 XOR 1 0 

Flag register bit affected: CF , OF , PF , SF , ZF . 

AF undefined. 

Syntax: 

XOR reg,mem/reg 

XOR mem/reg,reg 

XOR mem/reg , numb 

E:xamp le 1 : 

Xl)~ '-::1. I sr. 

Example 2 : 

XOR AX,01 

A-22 



TEST 

Description : 

Perform the 
destinatio n 
destinat i on 
However , it 
not zero) , 
result. 

logical "and" of the source ope r and and the 
operand . The result is not returned to the 

operand, which leaves both ope rands unchanged . 
affects f lags . when Tf.ST is followed by JNZ (jump if 
t he jump will be taken if there a r e "1" hi ts of the 

Flag r egis ter bits affec ted: CF , OF , PF, SF , ZF . 

AF undefined . 

Syn tax: 

TEST reg,mem/reg 

TEST mem/reg,reg 

TEST mem/reg , numb 

Example 1 , 

TEST BL , 34 

Example 2 , 

TEST AX , 0FF4 

11. - 23 



Description: RCL rotate through carry left 

ROL ~ rotate left 

Rotate the bi ts in the operand . ROL moves the bi ts 
out of the MSB (most significant bit) of the- operand and then 
shift them back to the LSD (least significant bit) of the 
operand. RCL moves a bit out of the MSH of the operand into the 
CF . And then shift the CF b it into the empty LSB of the operand . 
The number of rotation is determined by the count register. If 
count 1, source operand is 1 ; if count> 1 , the number of 
rotation is stored in the CL . 

Flag register bits affected : CF, OF . 

syntax : 

ROL mem/reg , l 

ROL mem/reg , CL 

ReL mem/reg , l 

ReL mem/reg , CL 

Example " 
ROL AX, 1 
ROL BYTE[100] , 1 

Example 2 , 

ROL AX,Cr. 
ROL BYTE[lIJ~] ,Cr, 

Example 3 , 

ReL Bx,l 
ReL WORD [l0IJ] , 1 

Example 4, 

ReL BX,C L 
ReL WOR D[l0 0] , CL 

A- 2 4 



RCR , ROR 

Description : RCR ; rotate through carry right 

ROR ; rota t e r i ght 

ROR moves the b it s ou t of the LSB o f the operand and then" shi f t 
them back to the MSB o f the opera nd . ReR moves a bi t o ut o f the 
LSB of the operand into t he CF ~'lqd then ~hiEt the CE' bit " into the 
empty MSB of the operand . 

Flag register bits affec ted : CP , Op. 

syntax : 

ROR mem/reg ,l 

ROR mem/l:eg , CL 

RCR mem/reg,l 

ReR mem/reg , CL 

Exampl e " 
ROR AX , l 

Examp l e 2, 

ROR AX , CL 
ROR BYTE[l26] , CL 

Example 3 , 

ReR BX , l 

Example 4 , 

RCR BYTE ( l27] , CL 

A- 25 



SHL 

Desc r ip ti o n: SH L = shif t logical left 

This instruction sh i ft the b its in the dest in a t io n operand to the 
left. Empty bit posi tions are fill ed with zeroes . Th e nurnbe c ,)f 
b it s to be shi~ted i.~ determined by t he count register . I f CO. I'lt; 
= 1 , the so urce opera nd is 1 ; if co un t> 1 , the numbe r of shift 
is stored in the CL . 

F lag register b it s affected: CF , OF , PF , SF , ZF . 

AF undefi ned . 

Syntax ! 

SHL mem/ r eg ,l 

SHL mem/reg re L 

Example " 
SHL aX , 1 

Exam ple 2, 

SHL BYTE[1 261 , eL 

A- 26 



SAR, SHR 

Descriptio n: SAR shift arithmetic right 

SHR = s hi ft logic right 

SAR shifts the bits in the des ti nation operand to the right. The 
number of shift is determined by the count register. Empty bit 
positions are filled wi th the number that equals to the o riginal 
high-order bit (sign bit) in order that s i gn of the original 
operand is retained. SHR shifts the bits in the destination 
operand to the right . The number of shift is determined by the 
count register. Empty bit positions are f i l led with zero es . 

Flag register b its affected: CF , OF , PF, SF, ZF . 

AF undefined. 

Syntax : 

SAR mem/reg , l 

SAR mem/reg,CL 

SHL mem/reg,l 

SHL mem/ reg,CL 

Example 1 : 

SAR 51 , 1 

Example 2: 

SAR 51,CL 

Example 3 : 

SHR BYTE[l23 ] ,1 

Example 4 : 

SHR BYTE [ 123] , CL 

1>.-27 



4. String-Manipulat ion Instructions 

The 8@88 assembly language 
provide powerful control over 
that are sto r ed in memory . 

string- manipulation instruction s 
strings (bytes or words ) of data 

Th ere are five basi c string ins t ructions - MOVS , CMPS , seAS , LODS 
and STOS . These instructions are appended with a B o r a W (8 for 
a byte, W for a Word, as the case may be) to the mnemonic , so as 
to indicate whether a byte o r a word is to be processed . 

The opera nd s for these instructions are implied . The source 
operand is addressed by the 51 (Source Index) r egister , while the 
destination operand is addressed by the DI (Destination Index) 
register . So, when cod ing these string- manipulation instructions , 
there is no need t o speci fy t he opera nds. 

The sou rce str ing is always assumed to be in the data segment 
while the destination string is in the extra segment . The source 
and des ti nation pointe r s are updated a u tomatica l ly to point to 
the next element in the string and th i s ma kes it possible f o r the 
processo r t o hand le long data strings simply by just repenting 
the basic string opera t ion a numb e r of times . This pr oce~ ~ of 
repeating the operation can be done by prefixing the basic stri ng 
operation with a repeat code such as REP , REPZ , REPN~ , etc . 

When a basic st ring instruction is prefixed with a repea t code, 
the processor will repeat the operation of this i nstruction a 
number of times equal to the v~lue of the ex register , at the 
same time subt r acti ng one from the ex regis ter each time the 
instruction is executed . 

For detai led d,~~cription of these 
instructions, turn to t he following pages. 

A-28 

string - manipulation 



MOV5 

Description: MOVS = Move string byte or word 

MOV5 instruction moves or transfers a byte or word from the 
source string to the destination string addressed by the Source 
Index (51) and Destination Index (01) respectively. The source 
and destination operands can either be registers or memories. 

When used together with the prefix REP , 
memory block transfer. 

Flag register bits affected: none 

Syntax: 

1. MOVS-B 

2. MOVSW 

Example 

MOV CX,20 ;Set counter to 20 

MOV5 performs memory-to-

REP MOVSW ; Repeat move string word 20 times 

A-29 



CMPS 

Description : CMPS ~ Compa r e string byte o r word 

Compares the va l ue o f the source st ring (addressed by SI) wi th 
the destination string (addresse,J by 01) . When this instruct ion 
is executed , a subt r action is performed between the source string 
a nd the dest ination string without actually affect ing the 
con t ents of eith er strings . This in s tr uc ti o n is used to determine 
whether the source o r the destinati on str ing i s bigger . But , the 
statuses of the flag regist e rs are affected after this opera tion. 

The CMPS instruction can be pr e fix ed with JG ,JN Z , JZ , REPE , REPZ , 
REPNE or REPNZ . 

Flag r egis t er bi ts affected : AF , CF , OF , PF , SF , ZP. 

syntax : 

1. CMPSB 

2 . CHPSW 

Examp l es : 

MOV CX , 10 
REP CMPSW 

MOV CX , S 
REPNZ CMP SB 

; set counter to 10 
; Repeat until CX = 0 

; Set Co unter to 5 
; Repeat compare operatio n if CX not = 0 
i and ZF not:: 1 

A-30 



SCAS 

Desc r- ip t ion : ~C"'S = Scan string byte or- wor.d 

Updates the con tents o f the flag r .a'.Jist~ r.s hy sub tract ing th~ 
con t ents of the destina t ion oper-and (addr-e ssed by 0 1 ) f rom t he 
conten ts o f the accumu l ator (AL if str i ng is a byte or AX if 
string i s a wo rd) r eg i ster . This ope ration does not actually 
alte r the contents of the destination operand o r the accumulator 
itsel f, but merely scans over the i r- conte n ts . The 01 is 
au t omatically updated af t er the exec utio n of t h i s i nstruct i on . 

Th e SCAS i nstruction ca n be prefi xed wi t h REP~ , 
REPhE . 

REPNE , 

Fl ag Reg i ster b its affected : AF , CF , OF , PF , SF , ZF 

Syntax : 

1 . SCAS8 

2 . SCASW 

Examples : 

MOV CX , 12 
SC~SB 

MOV CX , 22 
REP NZ SCASW 

; Set value o f coun ter. 
i Scan string of OUTPUTl . 

; Set value of cou n ter . 
; Repeat scann ing ope r. ation if 
; cx not = 0 and ZF not : 1 . 

A- 3 l 

REPZ OR 



LODS 

Description: LODS = Load string byte or word 

LODS inst r uction tranfers the conten ts of the s ource string 
ope rand (addressed by 51) to the accumulato r (AL or AX register 
depending on whether a by t e or wo rd is being moved) , at the same 
time updates S I to point to t h e next e l ement in the string . When 
p r efixed with REP , this in s tr uct i o n ~ill cause the accumulator to 
be over wr itten afte r e ach repetition . 

Flag register b i ts affected: n\)ne 

syn tax: 

1 . LODSB 

2. LODSW 

Examples : 

MOV CX , ll 
LODSW 

MOV 
REP 
INT 

ex , 10 
LODSB 
7 

; Set value o f cou nter 
;perf:o"Cm word loading operation 

; Set val ue of counter 
;Repeat Load ing operation~ if ex = 0 
; Else , stop execution. 

1\- 32 



STOS 

Descripti on : STOS Store string by t e o r word 

Stores t he con ten ts o f the register AX (8 bits , for a by t e ) or AL 
(16 b it s , for a word) i n t o the memory location addre ssed by the 
DI (Destination Index) register and th en increments the DI t o 
point to the next location in the st ring. The STOS instruction 
can be pref.ix ed with REP . 

Flag regis te r bits affected: none 

Syntax : 

1. STOSB 

2 . STOSW 

Example 1 : 

Mav CX ,18 
REP STOSW 

Exampl e 2 : 

Add ress Moemon l(:s 
1313813 :03 40 · MaV 

0380 : 0344 STOSB 
31383 :13 045 DW 

; Set value of counter 
: Repea t store oper ation until ex = 0. 

Operands Comment 
CX,WORO{45J ; Set value of co un ter equal 

12 

A- 33 

; t o co ntents of memory 
ilocation addr essed by 45H. 
; per form store ope ration 



5. Transfer-of-Control Instructions 

The t r ansfer - a t- con t rol i n s t ruct i o ns a ll ow the user t o transfer 
c on trol f r om one pO int t o a nothe r in t he prog r am. These 
in str~(;tions allow us to alter the s equence of a n othe rw ise 
s tra i g h t -l ine p r ogram . The t r ansfer can eithe r be in ter segment 
( f rom one segment to a not he r ) or int r asegme n t (wi thin one 
segmen t) . 

The tr a ns fer - a E-co ntrol instruct i ons 
conditional j ump inst r uctions { i. e .• 
cond i tiona l loop i nstructions (I. e ., 
I RET. 

A- 34 

i nclude Cl>r. LL , RET , JMP , t he 
J Z, JNZ , etc . ) , LOOP , the 

r .. OOPE , LOOPNE , e t c . ) , INT and 



CALL 

Description : CA LL Call a proced u r .e 

The CALL instruction is used to perform a subroutine before 
r eturning to thl;"' ltl':\ln program that calls the subroutine . When a 
CALL instruct i o n is e n countered , the processo r adjusts the IP to 
point to the next i nstruction to be exec uted fo l lowing t he CALL , 
t he n saves it o n the stack (to al l ow t he RET ins t ruc tion in the 
subroutine t o r et ll r.n con trol t o the main program) , perf o rms the 
subr ou tine and finally returns t o the main prog ram t o co ntinue 
executing the rest of the i nstructions . 

Fl a g regis ter b its affected: none 

Syntax: 

l. 

2 . 

3 . 

4. 

Example 

Address 
9989:9990 
9080 : 9993 

9989:9096 
9080 : 9907 
0989 : 9999 

0980:0098 
1J080 :000C 
008r:J:990F 
0089: 9913 
9980:9917 
1J989:0919 
9989 :991 A 

CALL proced ure 

CA LL dw o rd ptr laddrJ 

CALL r eg : of f 

CALL r eg 

Mnp.fllo nics Operands Comment 
MOV 
CALL 

POP 
MOV 
JMP 

PUSH 
MOV 
INC 
ADD 
MOV 
RE'r 
CMP 

AX , WORD(102] 
9B i Call the routine add r essed by 

iva l ue 9B. 
AX 
CX , DX 
01A 

AX 
AX , \vORD [FE] 
WORD [ 100] 
AX , WORD[100 J 
DX , AX 

AX , CX 

iJ umpS t o t h e instruct i on 
;addressed by v alue I ll.. 

A- 35 



RET 

Description : RET Retur n f rom' Pr oced ur e 

RET returns control from a procedu re or subrou tine bac k to t he 
instruc tion f o llo wi ng CA LL in t he main program . The word at the 
t op of the stack" i s popped b y t he RET inst r uc tion, the n s t o red in 
the ins t ruc tion pointer. The SP (stack pointer) is t hen 
incremented by two. If there is an optional pop v alue , this va lue 
is added to the SP . The IP the n con tain s the address of the next 
instruct ion following the origina l CALL instruction in the 
prog ram . 

Flag regis t er b it s a ffected : no ne 

Syntax: 
RET 

RET po !?- va l ue 

RETF pop- word 

Example : 

Address 
9QSU:\HHI0 

'''''S0: 000 3 
""89: 00 0 5 
998B:IHH18 
(d889: ".11<1 9 

IHI80:"0"C 

"98 1i1 : IHHIE 

""S9:000f 
0980:0"11 
IH1 8 0:BB1 2 
03 80 : 901 4 
00811:90 16 
0080:901 8 

Mnemonic s 
CALL 

JM' 
MOV 
CLO 
LOOSB 

'" 
LODSW 

"OV 
LODSW 
MOV 
,"T 
J M' 
"T 

I"JBIl: 92"" DB 
IH18 1J :0 201 DW 
0980:92115 DB 
09 80 :029 6 OW 
110811: 0201'\ DB 
00 80:020B ow 

Ope rands 
5 

, 
51.29 9 

AL,I 

lB 

eX , AX 

aX ,AX 

" 9 

1 
105 , 8" 
1 
18 3 , 80 
1 
19 6,813 

comments 
; Invoke routine addressed b y memory 
;loc ation S 

,Move add ~ess 200 to 5 1 

;Move a byte of data add ressed by the SI 
;reg i ster into the Al (ag ister 
; Chec k if the end o f the predefined data 
; i s encounte red 
;If data ends, jump to the instruct i on 
; contai ned in memory locat i on lSH . 
;Move a ~o l:d of data add r essed by I:he 
; 5 1 regis ter int,) AX 
;Move frequency into ex 

;M ove music pitch into a x 

A- 36 



'''11111: 0 21W DB 
0 0 8 11: 02111 DW 18~ , 8" 

;HI 8i1 : I121 ~ DD 1 
~"8~:02 1 5 ,W 161l , Hil 
011811: 11219 'B 1 
0 0 811 : 9211'. , W 1')'),80 
0080:021E DB 1 
IIIIS0:0 21 F ,W 1 4 1l , 8 <1 
011 80 :02 23 DD 1 
9 0811: 0224 DW 136 , 8 0 
91180: 0228 DB 1 
008i1:0 2 29 DW 114 , B;.! 
008<1:02 21) Df) 1 
011811: 022E BW FS . B9 
0080:9232 DB 1 
01180:0233 DW £6 , Be 
1111811:0237 DO 1 
0 0 8 0: 0 238 DW B8.80 
01180: 023C DB 1 
01180:02 3n OW A2, 8 0 
0080:0241 DB 1 
9089: 0 24 2 DW 9A , S0 
0080:0246 DB 1 
0080:0247 DW 88 , 8 11 
0"~\J:"241:l :13 1 
0 1180: 0He ow 78 I 8i1 
01180:92')9 DB , 
This p(ogt a m when E! xecllt ed , wi ll pc od llce th e basi c music note s 
continuously . 

A- 37 



JHP 

Description : JMP Jump 

The JMP is an unconditional j um p instr uction used within a 
program to transfer control to the target location. The JMP 
instruction can either h.e a direct or indirec t jump . A jump i s 
direct when the tar ge t address is the address co ntained in the IP 
(Instruction Pointer), whereas in an indirect jump , the target 
address is contained in a register or mem o ry address specified in 
the operand of the JMP instruction. 

The JMP inst ruct i on can access 65 , 635 bytes of memory by jumping 
forward (up to 32 , 767 bytes) or backward (up to 32 , 768 bytes). By 
using the JMP instruction, the user can create a loop for 
instructions. t hat are repeated a nu mbe r of times , thereby saving 
time spent in coding the program and the memory space used to 
store the program . 

Flag regi ste r bits affected: none 

Syntax : 

Example " 
Address 
""86: liHHHI 
1317189: 9993 
6089:9096 
9989:9909 
908":999B 
""8":11I10E 

9989:909F 
9089 : ""1" 
"98": 6"13 

Example 2: 

Address 
9986: 'HJ01J 
",,89:9093 
0680:0096 
068":9099 

9"81i1:0"9B 

1. JMP off (near jump) 

2 . JMP reg : off (far jump) 

Mnemoni cs 
MOV 
MOV 
MOV 
AOO 
AOO 
OCT 

,"e 
MOV 
JMe 

Mnemoni cs 
HOV 
MOV 
MOV 
ADO 

JMe 

Ope r a nd s 
DX ,lA l 
AX, " 
ex," 
AX,ex 
AX,3" 
OX ,AX 

ex 
AX , 0 

" 

Operands 
OX ,16 
AX,9 
ex , s 
AX,ex 

DX 

comments 
;Move 1/0 port lAl '0 OX 
;se t initial value " AX 
;Set initial value of ex 
;Add ex '0 AX 
;obtain ASCI I codes f r om 30M 
;output • charllc t er 00 the 
;screen 

;Jump to th, instruction 
;addressed by location , 

Comments 
;Hove target address to Ox 
;Clear accumulator 
;Set initial va l ue of ex 
; Add co ntents of CX to 
;accumu lator 
; Get target address f rom ox 

A-38 



Conditi o nal J ump 

Th e conditional jump i nstructions are 
regarding the program flow if certain 
determi n e whether certain condit i ons 
mi croprocesso r tests the contents 
r egisters . 

used for decision making 
condi tions are met . To 
are met or not, the 

of some spec i fic flag 

Below i s a list of t h e 8~88 conditional j umps : 

Cond i t i onal Condition : JUMP is performed 
Jump instr u ctions JUMP if if : 
------------------- --------------------- -------------------
JA Above CF o r ZF = 0 
J NBE Not below or equal CF or ZF = " JNB Not below CF = " JAE Above or equal CF = 0 
JB Below CF = 1 
JNAE Not above 0r equal CF = 1 
JC Carry CF = 1 
JBE Below or e(jUd 1 CF or ZF = 1 
JNA Not above CF or ZF = 1 
JE Equ al ZF = 1 
JZ Zero ZF = 1 
JNLE Not less or equal ZF = 0 
JG Greater ZF = 0 
JLE Less or Equal ZF = 1 
JNG Not greater ZF = 1 
JNe Not less SF XOR OF = 0 
JGE Greater o r equal SF XOR OF = 0 
JL Lo wer than SF XOR OF = 1 
JNGE Note > 00r = SF XOR OF = 1 
J NC Not carry CF = 0 
JNE Not equal ZF = 0 
JNt.: Not zero ZF = 0 
JNO Not overflow OF = " JNP Not parity PF = 0 
JPO parity odd PF = 0 
JNS positive SF = 0 
JO overflow OF = 1 
JP Pari ty PF = 1 
JPE Pari ty even PF = 1 
JS Sign SF = 1 

Flag register bits affected : CF , ZF,SF , PF,OF 

A- 39 



Syntax : 

J(condition) 

Example " 
... dd t ess Mnemo nics 
IH1811 : 11111111 KOV 
91189:IHHlJ KOV 
0080 : 110116 'DD 
1111 89:090 8 ADD 
09 89 : 00013 I" 

11989 :01100 INC 
911811:011I1 E CK' 
0989: "1112 JNE 

0981)':13014 I" 

Operands 
CX,II 
"'X,0 
"'X,CX 
"'X , 30 

" 
CX 
CX, 89 
l 

7 

comment 
;Set initial value of CX 
;Clear accumulator 
, ... dd CX to ... x 
;Obtain ... SCII codes from 311 H to 80H 
; Output a character t o the LCD 
; success ively 
;I nCreaSe CX by 1 
: Check. i f CX reaches 128 (decimal) 
;Jump to the instruction addressed by 
; the value 3. 
,RetUl:n t o the moni tor 

... fter the execution of this p r ogram, cha ra c t ers COt r espond ing to 
the ASCII codes 30H t o 80H will be displayed on the LCD screen. 

Exampl e 2: 

... ddress 
13080:00013 
00811:900 3 
13980:0006 

1)'0811: I)'IHJ8 
1)'989:0901\ 
9980:000C 
""89:099E 
'HIS0:0019 
9989:IUH2 
IHl80:IHH4 
9989:91116 
99S9:9018 
01!8!i!:90l1.. 
11089 : 091C 
IH180 :0 91E 

Mnemonics 
KOV 
CMe 

" 
I" 
HOV 
INT 
DEC 
INT 
KOV 
INT 
KOV 
INT 
HOV 
INT 
INT 

Operands 
aX ,lll 
ax,f' 
A 

1 
1\1..,31 , 

. 11.1. , 
1\1..,31:: , 
AL, 4 6 , 
AL ,29 , 
7 

Comments 
; Set ex to 10H (decimal 1 6) 
; Check if ex is greater than F 
ilf ex is greate r than F, jump to the 
; insttuction addressed by the value of 1\ 
; If ex is less than F, return to monitor 

; Output s c haracter " 1" to the Lcn 

; outputs cha r ac ter " ,," to t he LCD 

; Outputs character ">~ to the I,cD 

; Outputs c haracte r "F" t o the LCD 

;Output s a blank. to the Len 
; Return to the monitor 

After executing this program, a mes s age "lll)F" ", ill be sho"'n on 
the screen. The purpose of this program is to produco the result 
of the instruction J .... 

1>. -4 0 



LOOP 

unconditional Lo OP 

Description : 

LOO P is an uncond itional i nstruc t ion t hat tr ~ nsfer s cont r o l to 
t he instructi o n ind i c ated by the labe l o~)erand , no matter what 
the cond iti on of t he Flag r eqister . Ho we ve r, t he number of times 
the LOOP instruction is ex ecu t e d depe nds on t he con t ents o f the 
ex r egister whi c h serve s as a counte r for the LOOP . Each time the 
LOOP instruction is e xecuted, the CX r egister is decr e mented by 1 
and t ested if it i s zer o . When ex = 0, the processor stops 
exec uting t he LOOP inst r uction and goes o n t o process the ne xt 
instr uct i on . 

The LOO P instr uc t ion some t imes uses a j um p i nstruc ti o n c a lled 
JeXZ (Jump if ex register i s Ze r o ) to make its decisi on 00 when 
to start loopio<) a nd when t o get o ut of the loop. By placing the 
JCXZ inst ructio n afte r the instruct ion tha t loads the ex regi ster 
and before t he inst ruction that s tarts the program loop , th e 
processo r t e sts the content o f the ex reyi ste r first . I f , 
initia l ly it i s zero , the LOOP instructi on is bypa ssed , program 
execut i on j umps t o the ne xt instruction following LOOP . Whe reas, 
i n the absence of the JCXZ instruct i on , upon encounte r ing a LOOP 
instruct i on , the firs t thing the pr ocessor does is to s uhtract 
the value of CX by 1 . At thi s po int , if the initia l value o f ex 
is ze r o , subtracting 1 from ex will g i ve a difference of 0FFl:'FFH, 
since 0FFFFFH i s no w the value of t he ex registe r, t he program 
wil l have to loop thi s number o f t imes befo r e it ca n ex i t f r om 
t he loop. To have a bet t e r i dea on what thi s i s al l a bo u t, refer 
to Example 2 below . 

Flag reg ister bits affec ted: none 

syntax : 

LOO P address 

Example " 
Address Mnemonics Operands 
9980:0999 " OV IIX.9 
9989 : 909 3 "OV ex . [ 1021 

0980:909 7 C"' CX ,9 
90 89 : 990,6, " l5 
e0 8~;990C ADD AX. (1 09) 

00B0:IH1l0 LOOP C 

Comments 
; Set AX to zero 
;Move the contents of memo r y l ocation 
;11:l2toCX 
; Chec k if ex equals" 
;I f ex"' 1'1. jump to m(>m"ry -.iidrcss 15 
; ~:1 fie add the content s nf memory 
; locat i on UHl t o /IX 
; Perfn~m the i nstructin n ~dd r~ss ed by the 
; v<llue o f C " nu mber o ~ ti mes equ a l to 

A- 41 



~(j8~;~1!12 

9989 , 991S 
9 080:01 9 9 

0 Il S I!:0192 

IH!89;1I1 94 

EX<lmpl e 2; 

,\ddr es s 
IH' 8 <! ; "HHHI 
09 80 :9903 
9080:9997 
01l8~:0009 

0980:0'1'0D 
0989 : 099F 
01HIII:0012 
90~0:0100 

0080:0102 
09811 ; 91114 

MO' 
INT 
OW 

OW 

OW 

Mnemonic" 
I'l l)\} 

MO' 
JCXZ 
' DO 
I.OO P 
MO' 
I" 
OW 
Ow 
OW 

[1Il4 ) ,AX , 
I 

, 
, 

(Jpl' r<l nds 
" X, <l 
CX, D0:.!:) 

" AX,t100 ) , 
t 104] , AX , 
l , , 

;the contents o f ~x 
; Sto re t he result into memor y address 104 
; Re tu r n to t he mon i tor 
; Ini t ialize l dea ti on 190 (low byte) to 1 
; and Ull (high b yte) to 0 . 

; I ni ti ali ze l oca ti o n 102 (low byte ) to A 
,and 103 (hig h byte) to 0 
; Clear memory locations 134 and \IIS whi c h 
; wi II be" used t o st o te th e resu 1 t of the 
; o pe rati on in add iti on 

Comment . .;. 

;Jump if CX a 0 

;Repeat Addition 

A- 42 



Cond iti o nal LOOp 

Description : 

The conditio'Bl loop instructions are executed when certain 
conditions a r e met . These conditions are reflected by the 
status of Zero ~lag . Keep in mind that the n umber of times a loop 
is execu ted depends on the value of the CX register (this holds 
true for both conditional alld uncond i tional LOOP) , while the Zero 
Flag only determine whether a loop is to be performed or not. 

The conditional loop i nstructions are as fo l lows : 

LOOPE LOOp while equal 
LOOPZ - Loop while zero 
LOOPNE - LOOp wh i le not equal 
LOOPNZ - Loop while not zero 

If ZF ~ land cx register not equal to zero , both LOOPE and LOOPZ 
will cause t h e program to loop. In the same manner , i r: 7.? = ;;J and 
cx register oat equal to z e r o , both LOOPNE and LOOPNZ will cause 
the program to loop . 

Flag register bits 

Syntax : 

1. LOOPE 

2. LOOPZ 

3 . LOOPNE 

4. LOO PNZ 

Example 1: 

Address Mnemonics 
0080 : IHH10 ADD 
0(l80:~HHI2 CI''1P 

QQ80:0006 LOOPE 
9\Hl9:0Q\J8 MOV 

Example 2 

Address 
IH180:0000 
Q0a0:0002 
0080 : 001B 
0080 : 0005 

Mnemonics 

'" cec 
LOOPZ 
"T 

affected: ZF 

address 

address 

address 

address 

Operands 
AX,CX 
AX, [l(lBj 

, 
[10Bj,AX 

Operands 
AX ,CX 
C> , 
7 

Comments 

;Check if AX equals to t he con t~ n t s of 
; memory l ocation 10B 
; If equal, repeat addition 
; Save contents of AX in l llR 

Comments 

A- ·43 



I NT 

Descr i ption: INT = Software Interrupt 

The INT instruction is used to in itiate a softwa r e interrupt, 
thereby ca using a temporary b r ea k in t he normal executi o n of a 
program . Interrupt vecto r s corresponding to I/O routines were set 
up in t h e low memory addresses during init ializat ion . The 
interrupt vector contains the address of an inter rupt service 
r out ine. 

When an I NT instruction i s executed , the processor stops whatever 
it is doing at the moment to service the interrupt , then r et u rns 
to what it was doing befo r e being intenupted . Howeve r , keep i n 
mind that before servicing the interrupt , the processor pushes 
the co nte nts of the current CS (Code Segme nt) register into the 
stack and the high wo rd of the d oubleword i nter rupt pointer is 
in turn pushed i n t o the CS . Then, the current con tents of t he I P 
is pushed into the stack and the contents of the low word o f the 
interr upt pointer i s pushed into t h e IP. 

Thete is a total of 256 in t errupt-signal soutces . In o rder to 
identify the i n terr upt- signa l sources , a i nte rrupt pointer shou l d 
be specif ied i n t he operand field of the I NT instruct i on . 

F lag r egister bits affected : IF , TF 

Syn t ax : 

tNT interrupt pointe r 

example 1 : 

.)du[ <! ss Mnemonics Ope[ilnds 
~08~:~~0~ MOV CX , 20 
~~8~:Q~IlJ HI::?NZ MOVSB 
"" fH!: 'HH! 5 I NT 1:1 

Comment .. 
Set value <:If r:<><.Intc r 
Repeat move operat i on if ex not 
Else INT H 

1'. -4 4 

, 



IRET 

Description : IRET = Re turn from Interrupt 

After serv i cing an interrup t routine, the processo r returns to 
t he program at t he po i nt where it was inter rupted , thr ough the 
IRET instruct i on , whi ch is the fi nal i nstruction in any i n te rr upt 
rou tine . When an IRET instruction is executed , the I P value , CS 
value a nd the flag values are popped fIC')ln t he stack , " .:: stored in 
their respec t ive registe rs . Prog r am ~xecution then cont inues from 
the point o f interrupt i on . 

Flag register bits affected : all 

Syntax: 

I RE'r 

A- 4 5 



6. Processor-Control Instructions 

The processor- control instructions allow the user to set or clear 
the ca r ry , d i rection dod interrupt flags , invert the cu r rent 
state of the catl:l f.1<'I'd and even stop instruct i on executions , 

The processor - co n t r ol i nstructions consist of the f ollowing : CLe, 
CLD , eLI , CMC , S TC , STD and STI. 

A- 46 



CLC 

Desc ript ion : Clear Ca r ry Flag 

The CLC instruction aff ec ts only the ca rr y flay . When a CLC 
i nstruction i s executed, the carry flag is zeroed out r ega rdless 
of the s t ate of t he carry flag prior to t he execution or: th i~ 

instruc tion . 

• 
Flag r egis ter b its affected: CF 

Syntax: 

CLC 

CLD 

Descr ipt ion : CLD = Clear Di r ection Flag 

The 
out 
the 

CLD instruction onl y affects t he Direction Flag . CLD zeroes 
the OF , thereby causing the string i nstruc t ion s to i nc r ement 
Sl and/or D1 index r egiste r s automat i cally . 

Flag r egister bits affec t ed: OF 

syntax : 

CLD 

A- 47 



CLI 

Descript i o n: eLI = Clear I n terrupt- Enable Flag 

The eLI instruction zeroes out the IF (Interrupt- Enable Flag) . 
when t h e IF is cle,red , maskable interrllpts a re disabled , tha t 
,-:''It)i:H1S an ex t ernal interrupt request t il.i'; -ipl.l~drs on the I NTR line 
,·1i11 be i gnored . However , a non - maskable ot: a softY/aLe inte rr u p t 
i s still hono r ed . 

• 
PlAU regis ter bits affected: I F 

Syntax : 

CLI 

CMC 

Description : CMe = Com p lement Ca rry Flag 

The CMe inst ruc ti on allows us to in Vel:t the cur rent s t ate o f U.S 
C>l.Y.l: y flag . If the car l: Y flag equals 0 , exec u t ing the CMe 
ins t ruct i on wil l set i t to 1 . The CMe inst r uction o nly a ffect s 
the ca rry flag . 

Flag r eg is ter b i ts affected : CF 

syntax : 

CMC 

A-48 



STC 

Description : STC = Set Ca rr y 

The STC instruct i on sets the carry 
sta t e of the ca rr y flag pri o r 
instructi on . Only the ca r ry flag is 

Flag register bits affected : CF 

Syntax : 

STC 

STD 

flag to 1 , regardless 
to the execut i on of 
affected . • 

Descr iption: STO = Set Di rection Flag 

o f the 
this 

The STO inst r uc ti o n sets the OF (Direction Flag) to 1 regardless 
of the state of t he Direction Flag prio r to the execu tion o f this 
i ns tructi on . STO onl y af fects the OF • 

• 

Flag register bits affected : DF 

Syntax : 

STD 

A- 49 



STI 

Descri ption: STI = Se t Interr upt - Enable Flag 

ST I sets the IF to 1, thereby lett ing the processor 
mask able interrupt requests on t he I NTR line 
inst ructi on following .STI has been executed . 

Fl~g r egister b its affected : IF 

syn tax: 

5'r I 

A-50 

acknowledge 
after t he 



Schematic 
Diagrams 



62 PIN ExPANSION .US 
R-SIDE SI.NAL 

A" ? 
A2. • A2, 6 
A27 4 
A2. • .2. 2 

••• • ... • 

A,S lS 
•• ? .4 

••• .. ... 12 
A2. II 
A2 • • e 
A22 • A2. • 

A2 ? 
.3 • 
A4 • 
•• 4 

•• • A? 2 

•• • .... 

a-SIDE SJ8MAL 

•• u~ 
2. 

-12u !.LJ 

+12u ~ 
••• 

Fi 3 • 

- - -:rOiM - ~:!'---. ~ 
0 .. 

AEM --iiE'iiw_ '1 2 

+ALE_ 28 
.- -IOU 18 

CLOCK 2. 
+08C S8 



5 srs 
I(C-0 

[ 

KC-l 
KC-2 

" , 5 KC-3 
kC-.04 
KC-5 
KC-6 
KC-7 

DC r P6--

l ~; -,S~D3 
D2 
DI 
De 

~~ ~~~, ===="====~ 
;~ ri"2.-----
60 15 
7Q 16 
80 19 

D7 9 
D6 ? 
D5 S 
D-4 .:
D3 -19 
D2 16 
Dt 144 
De 12 

I 
19 

+6~1 +Su 

r~'6 RI~ LM311 IH.,4BX2 1 RI. 

7 Yu2 --.---+--~. -.~~ 11<-).7K " ?ps +

6V 

3 8 " 

~1" 1 2, __ -+ __ -1. 1 C3S 

~
e 22UF 

RA~ .. ?M RI? JACt( Q EA. 

'8K leeK • ( AUDIO 

f--~r=~~~=t==~;,;,~~~~====~~'~?;K==========~~======= INPUT ) 
74HC2". ?"LS '" +BUSV 

2

"1 2AI U8 I..... su KR-6 

• ;l',!,5,t, ~T 
2'12 2A2i+.j::===r---t~<..... 5 . 
.. ~ ;~"3 I-;-;i-------__ -.J 

2 •• '~~; ~~' ~ ,., 'A2 .. "k '" 'A. 6 'R-3 
iA. 8 KR-2 

SV KR-l 
RIa KR-0 
27 lH4148 

BUZZER 

OUTPUT ) 

338 

+S V 

.21 

U.k 

R22 

HMI 

841622 . 

N , 
In 



ROM-OE 
1 6 28 I 7 b 8 1 27 ~ 28 1 27 

22 1f£ UCC vpp peN 221f£ ucc upp peN 22~ vce UPP PGn 
Ala 2S 2S 
AI 2 2 13 2 la 2~ 13 

All 2a 12 2a 12 2a 1 2 

AlB 21 11 21 II 21 11 

A9 2 18 24 18 2 18 

A8 26 9 26 9 25 9 
A'> a 8 a 8 a 8 27128 
AS 4 7 27128 .. 7 77128 7 

AS 0- SA' U28 ___ -iA; U19 SA. Uta ,- -
H -iAS --- --i A6 

Aa 7 .. 7 .. 7 .. --
A2 8 3 8 3 8 3 

AI 9 2 9 2 9 2 

A8 18 I 18 I 18 I 

D7 19 8 19 8 19 8 

D6 18 7 18 7 18 7 

D6 17 6 11 6 17 D6 

D 16 6 16 6 16 D5 

Da 16 4 16 4 16 4 

.2 13 • 13 3 13 a 
DI 12 2 12 2 12 2 
D8 II I II I II I 

• u • U 8 U 
2. • 28 

I 

7-4LS 139 ?-4LS32 
ISS n VI ~12~-I--____ -+'-\ 

7A~I~8::::::~~jll<M:jIJ4q~ vrEh[ 2 us 

~~H±li8::::::= .. =.-±:-~~=='=3:5·~U~1~ .. ;~:~~:~ ~pL=-~=0 :j'[j74Ls a2 AI? ... 
AI£. S US 6 

UI6 
-MEMU 

JP.o 
-MEM. 

-lOW 
- 10. 

, t6U 

-MEMt.I 
27 292& 27 2926 

21 18 
24 9 -
26 8 -
a 7 -
4 6 -

f-_~,"5 -
ot;. H-4 -
? .. ~ 3 -~ 

S 2 6116 
----'-

6116 
9 I --
U 8 / - / 

6264 ...-- 6264 
19 7 == 18 6 U2S UZ4 

17 6 -
I' 4 -
16 a == 13 2 -12 1 WE 
II • I 1-

J!ll!l All 
2 22 28 2a 2229 23 

RAf1-1 

RAM - ' 

RAM-

f-
f-
f-
f-
f-
f-
~ ----
IL: 
-------
f-

,,,.I

l 
5U RA2 10KX 

6116 
/ 

6264 
un 

22 28 12al ~ 

~ 
AEH 

L~ -€; U8 18K 

~ :; "6 II 
JP6 

I ~ 
l' ~~~~:' -f~~~ F' ~ ~~~1 ~~. ~'~-~1!61·~~,a 2 • V4 II P-1S8 3 

1 A i}l;" 18 p-1Ae 5 
'" 9 '-IC8 3 
V'1 7 . ' -I E8 6 
~ 

74Lses 

2 U6 10R/ .., 1 

8411122 

tlULTlnctI 

TI n.1E: MEMORY .. DECODER 

;~~OI1~~Y I1PF-I/88 rHEET2 t;>F6 

RAI.n NO NO 0 PC. NO 0 :j 
e,. _ 82482 0 OD P.8"'

o

s I e-
DSN K A"PD 

rt'I 
t 

en 



ICc-e 
KC-l 

KC-2 

KC-3 

KC-S 
KC-S 

KC-1 

KC-9 

I(C-10 

KC-It 

KR-el 

KR- l 1 

KR-2 

KR-3 

KR-'" 

KR-S 

GND 

--------- --- ---------------

--- ----., 
/~L ' 

841822 

t1ULTITECH 



+01 ________________ __ 

-'5 
KEYBOARD 11 0 

- 1 
'::' 2 
'::' a 
::;: 4 

5 

• '::' 7 
::;: • 9 
'::' 10 
::;: 11 
::;: 12 
'::' 13 
::;: ,. 
'::: 

IS ,. 
::;: 17 
'::' I. 
::;: IS 

2. 

~ 

KC-e 
KC-l 
KC-le 
KC-l1 
KC-9 
KC-3 
KC-9 
KC-2 
KC-? 
KC-S 
KC-S 
KC-44 
KR-44 
KR - 3 
KR5 
KR-2 
KR-l 
GND 
RESERVED 
KR-e 

--

-. 

LCD DISPLAY PO'-lER 

.. .- . ---:c~'---~ 

JACk 9V-IHt¥;. 
+ (, i44 

.,-. ",33:UF' 1 
:~_V ____________ ~ ______ _ "K.iT f H f "i '" 

S 3U/25 l1 44 UF I 5U 
L-+-________ +5U 

. 
•• ••• > 

-HOLD 
D7 1 

D. 2 

D6 a 

• D. 
S D3 
6 D2 
7 Dl 
8 D. 
9 +1 ;'0 eH RDV 
I. OEH 

A19 11 

A18 12 

A17 la 
AI. ~. 

15 A16 
16 01. 

01. l? 
18· .,2 
19 All 

AI. 2. 
21 A9 

A22 
~------ A2a 
~~ ---A;2 04 

A25 .~.-.- ------ ~26 .AA 
A27 .. , '-: 
H ":- '~ 

~ 2·~ 

.~ . ----.::---. A.30 

~~; ~-

., 
82 
Ba .4 
B6 
86 
87 
B8 
B9 

Bl. 
Bll 
112 
81' .,4 
"5 
B16 .,7 
81. 
Bl9 
.2. 
821 
B22 
B2a 
'2. 
i25 
. 2 S 
. 2 7 
£"28 
B;eS 
B30 .. , 
B32 

~--------.. 

GND 
RESET DRU 
+SV 
IQR2 
-IHTA 
DRQ2 
-t2U 
+JHTR 
+f2V 
GHD 
-I1EI1W 
-rtEI1R 
-lOW 
-lOR 
-DACK3 
DRQ3 
-DACKl 
DRQt 
-DACK8 
CLOCK 
IRQ? 
JRQ6 
IRQ5 
IRQ4 
IRQ3 
-DACK2 

~----
ALE 

1-... :~~C --

GH. 
• . GND 

N(I!~ • IS 64 PIN CARD EDGE ONLY 

-ST8 

+.e 
+D! ·.2 ·.a .... 
+'5 

-'S -'7 
-RESET 
P-IE8 

Jl 

SU I TCH I H8 POUER COHNECTO' 

I r r r fry] 
G +12V 6 -12U +5V +5V 

+50 

RAI 
leK PR INTER-OUT 

4 
7 
8 
13 

'" 17 -- - --¥-
1 
11 

~ 
J3 

1 ~ 2 2D 2Q ~ 
3 .. 3D 3Q 
S 0 0 

.4D 4Q 9 0 12 ? .;; 0 5. 5Q 
16 9 J, 0 Ie SD SQ 

11 12 7D 70 IS 0 
'" 19 13 0 eD 80 

" lQ 2 16 .;; ~ 0-= 
~ 

81182=2 ______________ \ 

tlULTlTECH 

TITL.E : LCD .;.. p~l .. nER _ . 
UNIT OF.:···-··--- --· s""H"E'ETS OF5 

SS EhBL V rtPF-I/ 88 
DRA~H~G NO . 

13S8 02405 

N . C 

I 

'7 

BUS ... • 

If'I 
I 

III 



Date Sheet of LCD 



1. Outline .•• . •.•• . .• ... .• . . .• •••• • . . •• . •... • . . • •• • . • • .••..••. . .. . .. . ... 

2 . Features . .. ..••••.••••••. . .. . ...... . .•••.•. .•.••. • • ••••• • •.•..•••... . 

3 . Logi cal Struc ture and Function . ..• .. ••••••. · . . .. •.• ••. • •••.• . .. . ... . . . 

3 . 1 Symbol Diagram • . . ••.•• . •. •.... . . . . ....•.. •.• • • • • • .• ••• • •••.•••• .. . 

3 . 2 Pin Assignment and Dimention Outline ... . .. .. . . .. . .. .... ... . .... . 

3.3 Terminal Funct ion . • .. . ...... . .... .•••••. .. • . •..•.• • ' . • •• • • • • ••••. . • 

3.4 Block Diagram . • • .•.••. . •.••. • • • . • ..•..•.. • . ••••••.•••• . .• •..•..... 

3.5 Function of Each Bl ock .•.•.••• • .• . . •. .•.. • . . • ••••.•.••••••• . • .•... 

3 . 6 Interfac i ng to MPU •..........• . . • . •••.••.•.• • •. • ..• . . •.• • ......... 

1 

2 

3 

3 , 
6 

7 

8 

20 
3 . 7 Reset Function ••. . •• .•... •• .. • . .•. . • ..•.••• • •• . • • . • . • . • •• . • ••• •.. . 21 

4. Instruction .. ... .. ... •• . • . .• • •• • • •• • . •• . • • . .. . . .••••••• • •• • •.•• . . . .. . 24 

4.1 Outline .. •••••• . .. . . ... . . ... . • • •• . ••. • •• •• • •• ••• .• •• • • • • • . • • . • .. .. 24 

Description of Detai l s . •• . .••• . • •• • • • • •• . . • • •• • ••••• ••• •• •• • • •.... 26 4 . 2 

5. El ectrical Characteris tics. • . • • . • . • • • • . • • . • • • • • • • • • • • • . • • • • • • • • • • . . .. 31 

5.1 Absolute Maximum Ratings .. . . .. . ....•..• •••• • •• • . . •• . • .. • . • • • • . .... 31 

5.2 Elec trical Cha racteristics .... ....... . ..... ........ . .. . .. . . . ... .. . 32 

5.3 Timing Charac t eri s t ics . . . .......... . ... . , ..•.••••..•............... 36 

5 . 4 Power Supply Conditions Using Internal Reset Ci r cuit . . . . ... 39 



1. Outline 

The LCD-II (type HD44780) is a dot matrix liquid crystal display 

controller & driver LSI for displaying alphanumerics, kana characters and 

symbols. It memoriz;es character codes (8 bits/character) sent from 

microcomputers or microprocessors (MPU) into display data RAM (DD RAM. 

80 bytes-640 bits, 80 character siz;e), converts them to either 5 x 7 or 

5 x 10 dot mAtrix character patterns, which are then sent to the internal 

liquid crystal display driver. Since the HD44780 has an internal l6-common 

Signal driver and 40-segment signal driver, one HD44780 can display up to 

16 characters (1 character being 5 x 7 dots, 1/16 duty). If a driver LSI 

HD44100H is externally connected to the HD44780, up to 80 characters can 

be displayed. 

The Hn44780 is internally equipped with character generator ROM (CG 

ROM) that will generate 2 character fonts; 1 font containing 160 5 x 7 

dot characters and the other containing 32 5 x 7 do t characters. It is 

further equipped with character generator RAM (CG RAM, 64 bytes-5l2 bits) 

in 8 character siz;e if the character Iont is 5 x 7 do t, or 4 character 

size if 5 x 10 dots. CG RAM can be programmed for each application. 

A fea t ure offering great convenience in actual use. The user can specify 

sny pattern for character-generator ROM. For details, see "The LCD-II 

(HD44780) Breadboard User's Manual " 

To designate character display position, write an instruction into 

the instruction register frOM the MPU via data bus and then write a 

character code into the data r egister via data bUB. Since the HD44780 

has a function for automatically shifting the position into which 

characters are written after character codes by writing only the character 

code, character displays at serial positions from the next operation are 

possible. Since the HD44780 a l so has the function shift t he entire 

display, you can display input from either left or righ t. 

Since both the display data RAM and character generator RAM can be 

read from the MPU, whatever part not used for display can be used for the 

general data RAM. 

The HD44780 is an 80-pin plastic f lat package CMOS LS I. It can 

transfer data in 4-bit-2-operation or 8-bit-l - operation, allowing ei ther 

a 4 or 8 bit interface t o the HPU. When co~bined with a CMOS HPU, the 

user can develop portable battery drive equipment utilizing the liquid 

crystal display's low power consumption . 

HITACHI 



2. Features 

'5 x 7 and 5 x 10 dot matri x l iqui d crysta l display controller driver 

.Capable of interfacing to 4- bi t or 8-bit MPU . 

. Display data RAM . .. . RO x S bits (SO characters, max.) 

. Character generator ROM . . . . 

Character font 5 x 7 dots : 160 characters 

Character font 5 x 10 dots! 32 characters 

.Character gener ator RAM . ... 

Programmab l e; 8 types of 5 x 7 dot character font, or 

4 t ypes of 5 x 10 dot character font 

.Both display data and character generator RAMs can be read from the MPU. 

· Internal l iquid crystal display dr iver ... . 16 common signal drivers 

40 segment signal drivers 

· Duty factor selecti on (selected by program) . . .. 

1/8 duty: 1 l ine of 5 x 7 dots + cursor 

1/11 duty: 1 l i ne of 5 x 10 dots + cursor 

1/ 16 duty : 2 l ines of 5 x 7 dots + cursor 

. Maximum number of displ ay charac te r s 

No. of Duty xtensioI1 HD447S6 HD44l00H No.of Display Character Display Line Facte 

118 ot 
1 pt. 1 I - line r ovided ---- 8 characters x 

display 1/11 
provided I pc . 9 pcs.(8 characters/pc. 1 80 characters x 
ot 

1 pc. 2-line 1/16 rovided ---- 8 characters x 2 

di splay 4 pes. (8 characters duty 
provided 1 p o x 2 lines/pc) 40 character s x 2 

• Wi de r ange of i ns truc t ion f unction s 

Display clear, Cur sor home , Display ON/OFF , Cursor ON/OFF , 

Display character bl i nk , Cursor shift, Display shift 

· Inter nal automatic reset circuit a t power ON. (Internal reset circuit) 

line 

line 

l ines 

l ines 

· Internal oscillation cir cuit (with external resistor or ceramic filter ) 

(External c l ock operation possible ) 

· QlOS pr ocess 

· Logic powe r supp l y: A singl e+5V (exc lud ing power for liquid crys t a l display dr ive) 

• Operat i on temperature range: _20 _~+75°C 

(Device for -40 .... +SSoC available upon r equest) 

· SD-pin plaatic flat package (FP- 80) 

2 HITACH I 



3. Logical Structure and Function 

3. 1 Symbol Diagram 

COM, .. 
Power Supply [ '" -COMu 1 Connee ced co 

For Logic GND Liquid Crystal 
SEQ, " Display Terminal 

[ QSC L 
Clock Terminal s OSC: 

-SEQu 
Connected to 

C LIo CLz • ] External Dri ver LSI 
r RS M. D 

HD44100 

l 
IvW 

" MPU Connecting E 

" • 1 P~er Supp l y fo r Terminals DOo -DOl 

• " Liquid Crys tal 
DB. -~Bl '. Display Drive 

V, 

HITACHI 3 



3.2 Pin Ass ignment and Dimension Outline 

(1) Pin Assignment 

4 HITACHI 

0'0'.',;.'.',;,;.'",.-",,-,,.,.,.-., ..... .. ~ .. .. .... '" '" .. '" 
0:1'" Q '" '" '" 



(2) Package Dimension Outline 

1 pin 

Lead section 

(80 Pin Plastic Flat Package) 

II 

Lead sect i on 

(Unit ::nm) 

• • 

HITACHI 5 



3. 3 Te rminal Function 

" Table 3 .1 Functiona l Des c r tpt10n of Terminals 

Si gna l No .o f nput/ onnected 
name line Outpu '0 Function 

RS 1 Input MPU Si gna l to select r egisters 
"0" : Instruction registe r (for write) 

Busy flag; address counter (for read) 
"1" : Data register ( f or read and wri t e) 

R/w 1 Input >!PU Signal to se l ect read ( R) a nd write (W) 
" 0" : io,'rite 
" 1" : Read 

E 1 Input MFU Operation s t art signal for da ta r ead I wr ite 

DB, , Inputl MPU Higher orde r 4 l ines da t a bus with b i dir ec t iona l 
~ Output tri- sta te . Used for data tr·a ns fe r between the MPU and 
DB, t he HD4 4780. DB7 can b~ used as a BUSY flag. 

DBO , Inputl MPU Lower order 4 l ines da ta bus with b i direct i onal 
~ Ou.tpu tri-s ta te. Used for data t r a nsfer between t he MPU and 
DB) the HD44 780. These fo ur are not used during 4-bit 

ope ration . 

eLl 1 Outpu HD44 100H Clock '0 latch serial data D s ent '0 the d r iver LS I 
HD4 4100 . 

CL, 1 Ou tpu HD44100H Cl ock '0 shift se r ial data D. 

M 1 OutPIl HD44100H 
Swit ch signa l t o convert liquid crystal dri ve waveform 
t o AC 

D 1 Outpu HD44100H Character patte r n da t a co rresponding '0 each common 
signa l i s se r ial l y sen t , 

"0": Non sel ection 
"1" : S(!lection 

COMI 16 Out pu Liquid Common signals that are no t used a<e char ged to 1'101'1-- crystal se le ction waveforms . That i s , COH9"'COM16 are in 1'1 0 1'1-

COM16 display s e l e ction \<"aveform at 1/8 du t y factor , and COM 1 t" COM 16 
a<e i n non-selection waveform at 1/11 duty facto r. 

SEGI _ ' 0 Outpu Li2u! d Segmen t signal 
SEC &H5 ~¢ 

Vl''''',vs 5 OW~~plY ,u 1 Powe r supply foe liq uid c r ystal display drive 

Vcc · GND , "'i!fl~p ly Vcc ; +sv. GND ; OV 

aSCI ' , Terminals connec t ed to r esistor or ceramic fi l te r for 

OSC2 
int erna l clock oscill a t ion . 
For external clock opera tion. t he clock i s 
i npu t to OSCI. 

6 H ITACH I 



% 

~ 
() 
% -
" 

v" 
GND 

OSC 

OSC, 

as 
R/W 

E 

DD . -DB, 

Dno-on. 

[

V, 
Power Supply 
for Liquid v, 
Crystal V. 
Display Dr ive V, -

V, 

,-

~ -0 

~ , 
~ , 
~ 
ro , 

, 
-~ 

'--

rJ Add"" ;)1 Timing Generation 

~ ~ 

Counter(AC) Circuit , 
~~ ~ ,j o , " , 
~ " " , t " , 
~, " " " , 

~~ 
0' " , ro , , 

~ ~ " n n n , " o " f-
~ n 

f-".----
~ ~~ ~ 0 

~O ro 0 Display Data , , 
~ , , , ~ 
~ RAM ~, 

" 
0 

~ ~" 0' 
'--- (DO RAN) f.- ro ~ 

, , ~~ ~~ 
~, , < ~, 

80><8 bits (J; ,.." ro~ 

~ 

nn " ~ , , 
0' ro " • 
" t..2-. ~ ~o • "" o • " f-!.-.. ~ " • 0' 

~, . ~ 

" • , ~ 

" • n~ ,-- r-,;;-ro 1-'.,.. 

f--
, , , .' " "~ 0 ~ 

;; Characte Characte r , ~, , 
~ o ~ ro 

~ Generato Generator " "~ 
, 

'-"- n " 
., 

0" 
RAM ROH r-

, 
~ 

, 
~ ~ 

eCG RAM) (CG Rm!) n < ~, 
~, "~ , , , 

l§ 512 bits 7200 b its '" n • , ~ 

Flag 

~ 
~, , ~ '---

I ; 
Par alle:/serial Data 

:40- bit S.lift Registe~ Conversion Circuit 
(Parallel Data~ Serial Data) 

" 

., 

C L, 
C L, 

M 

COM , -COM Ie 

SEG,-SEG. o 

D 

~ 

~ 

~ 

b 
n 
~ 

o 
~, 

• ~ , 
! 

a 
~ 
~ -~ o 
~ , 
" ro , 
~, 

o , 



3 . 5 Function of Each Block 

(1) Register 

The H0447 80 has t wo 8-bit registers , an instruction register (IR) and a data 

reP:ister (DR). 

The IR stores instruction codes s uch as disp l ay c l ear and cursor shift , and 

address infor mation for display data RAM (DO RAM) and character gener ator RAM 

(CG RAM). The IR can be written from t he MPU bu t no t read by the MPU. 

The DR temporarily stores data to be wri tten in t o the DO RAM or t he CG RAM 

and data to be read out f rom DO RAM or CG RAM. Data writ ten into the DR from 

the MPU is sutomatical 1j wr itten into the DO RAM or t he CG RAM by internal 

operation. The DR 1s also used for data storage when reading data from 

the DO RAM or the CG RAM . When address informa tion i s written into the lR , 

data i s re~d into the DR f r om t he DO RAM or the CC RAM by internal operation. 

Data ttansfer to the MPU is then compl eted by the MPU reading DR. After 

the MPU r eads the DR, data i n the DO RAM or CC RAM at the next address is 

sent t o t he DR for the next read from the MPU. Register selector (RS ) s i gna l s 

make the i r selection from these two registers . 
Table 3 2 Register selec tion 

RS RiO Opera t ion 

0 0 IR write as internal operation (Dis play clear, etc . ) 

U 1 Rea d busy flag (OB7) and address counter (DBO- OB6) 

1 0 DR write as in te rnal operation ( DR to DO or CG RAM) 

1 1 DR read as in t ernal operation (DO o r CC RAM '0 DR) 

(2) Busy fl~g (BF) 

When the busy flag is "1" , the HD44780 is in the internal opera tion mode, and 

the nex t instruction will not be accepted. As Table 3.2 shows , the busy f la g 

is output to DB7 when RS~O and R/W- I. The next instruct ion mUSt be written 

after ensuring that the busy fla g is "0" . 

(3) Address counter (AC) 

The a dd r ess counte r (AC) assigns addresses to DO and CG RAMs. When an instruct iO! 

for a ddresS is wri tten in I R, the address informat ion is sent from IR to AC. 

Selection of either DO or CG RAM is also determined concurrently by the 

instruc tion . 

After wri ting into (or reading f rom) DO or CG RAM display data , ,\C is 

automatically incremented by +1 (or dccremented by -1). AC contcnts are output 

to DBO --- OB6 when RS=O and R/W= l , as shown in Table 3.2 . 

(4 ) Display data RAM (DO RAM) 

The display data RAM (~O RAM) stores disp l ay data rep r esented in 8-b i t character 

codes. I ts capacity is 80x8 bits , or 80 cha rac t ers . The displ ay data 

RAM ( DO RAM) t hat is not used for dis play ca n be used a s a gene ral dat a RAM. 

Relationsbe tween DO RAM addresses and positions on the liquid crys tal disp lay 

8 HITACHI 



are shown below, 

The DO RAM address (ADD) is set in the Address Counter (AC) and is represented 

in hexadecimal. 

Upper Order LQW'er Order 
-- Bits Bits 

AC IAC 'lw IAC'IAC+c'IAC'IAC'1 
IL 

Hexadecimal 

(Example) DD RAM address "4E" 

1 I, 1 ,I 1 1 I, 1 
\ 4,---11 E { 

' I-line Display (N~O) Display 

~~~~::) lr-,C'-"I-'"'-'-Ir,~' '-'I-,"·-.'I-"~·.-rl-.. -.-.. -.. -.. -.. -.. -.. -.. -.-.. -.. -.. -.. -.. -.. -.. -.. -.. -.. --.. '1-'"'"CE'I-:C"F'--,t :~:::n 
(a) When the display c~aracters are less than 80, the display begins at the head 

position, For example, 8 characters using I HD44780 are displayed as : 

(digit) 2 3 4, !l 

i-line 1 '" 1 ' ·1 " , 1 ' ·1 ' ·1 " , 1 ' ·1 
Display 

8 - Position 

I DO RAM 
"' -Address 

When the display shift operation is performed, the DD RAM address moves as: 

D~::::;) " I ' , 1 " 1 " '1, I" 1 ' , 1 " ·1 

<b ) 16-character display using an HD44780 and an H044 l00H is as shown below: 

1 2 a 4 5 !l ? 8 Q 10 11 1 2 13 14 15 16 _ Display 
(dig it) Position 

i-line tl+++'I"'I"tTI"I++++"Ej-DD RAM 
HD44780 Display HD44100H Display Address 

When the display shift operation is performed, the DO RAM address moves as: 

(Le::,:~::)' I "I"I"' I"I " I"'I"I"I" 'I"++cl"D I 'EloF l ,I 

HITACHI 9 



(c) The r e l ation between display position and DD RAM address when the number of 

display di gits is increased through the use of one HD44780 and two or more 

HD44l00H ' s can be considered an extension of (b). 

Since the increase can be 8 di~its for each additional HD44l00H, up to 80 

digits can be displayed by e x ternally connecting 9 HD44 l00H's. 

I di git z 3 -10 ~ !! 1 8 9 10 II lZ 13 1-10 15 16 17 IR 19 20 73 H 75 n 77 18 7Q 80 _ Display 
position 

-DO RAM 

address 
\ II II "04410011 
"L- HD44780 ~ LHD44 100H(l)~ l (2)-n5) 

Display Display Display 
./LHD44l00H(9)J (Hexadecimal) 

Display 

' 2-line Displ ay (N=l) 
(digit) , • • , .. ., __ Display 

Posi tion 
I -line , , , , , , , • , • .......... ......... .... .. ...................... , • , , 00 RAM 

Address 

2-line • , • , • , • , .. ............................... ...... ...... ... . • • • , 

(a) When the number of display characters is les s than 40 x 2 lines , 

(digit) 

I - line 

2- line 

(Left Shift 

Display ) 

(Ri ght Shif 

Display) 

, 

the 2 lines from the head are displayed. Note that the first line end 

address and the second l i ne start address are not consecutive. For example 

when an HD44780 is used, 8 characters 
, • • , • • 

" " " " .. " " " .. . , . , ., .. ., .. ., 

)< 2 lines are 
Display 
Position 

DO RAM 
Address 

displayed as 

When display shift is performed the DD RAM address moves as : , 

" " " .. " " " '" .. ., .. .. ., .. ., .. 
" " " " " .. " " 
" .. .. .. .. .. ., .. 

10 HITACHI 



(b) 16 characters x 2 lines are displayed when. an H044780 and an HD44100H are used: 

(digit) 1 
, , • 

I-line " .. " " " 
2-line " .. " .. .. 

IL ___ H044780 
Disp l ay 

• • ; 1 0 II IZ 1 3 14- I ~ Ie 

" " " " "' " 
, 0 DC 

.. .. " .. .. .. • S . e 

_ _ ~I\~ __ H044 100H 
Display 

OV " " 
.0 .. • F 

_-----'I 

-
Display 
Position 

DD RAM 
Address 

When display shif t is pe rformed , t he DO RAM addr ess moves as fo llows: 
(Left Shift 

Displ ay) 

(Right Shift 

Display) 

, , 
.. 
" 
" 

, , 
" .. .. 

" 
, , 

" .. 

" " "' " .. .. .. " 
" " " " .. .. .. .. 

"' " OA OS " e '0 ' E OF " .. .. .. . s . e .0 oE oF " , 

" " " " " DB ,e ' 0 " .. ., .. .. .. • S <C on . E 

(c ) The relation between displ ay position a nd DO RAM add re ss when the number of 

display d igi ts i s inc r eased by using one H044780 and two o r mor e H044100H ' s , 

can be cons i der ed an ext e nsion of (b ) . 

Since the increase can be 8 ditits x 2 lines fo r each additional H044100H, up to 

40 digits x 2 lines can be displayed by connectin~ 4 H044780 ' s exte rnal lv . 

1 digit 2 3 4- ~ e 7 8 9 1011 12 13 I. 15 18 \1 18 1$ 30 

I - l ine 00 01 03 oa 04- 0~1 06 J01 08 00 M OO JIC CO OE OF 10 II I! 18 - - - - -120 !l 2~ ~3 24 n[ ~ Z'"i 

2-l ine '041 42 4-3 .. '~I .el41 48 ~ H 48 1~ t04o':: 4or ~O M ~ ~3 ---- - 16 0 6\ G2 63 6t- e ~ l66 61 

\ 1\ '\H044100" '-..HD4478O ----1 L HD44100H(1)-.J (2 ) {3) 
Dis play Display Display 

--.l'--HD44100H( 4») 
Di splay 

-- Display 
pos ition 

--DD RM4 
add r ess 

{Hexadecimal} 

HITACHI 11 



(5) Char acter Generator ROM (CG ROM) 

The charac ter genera t or ROM generates 5 x 7 do t or 5 x 10 dot char ac t e r patterns 

from 8-bit character codes. It can generate 160 types of 5 x 7 dot charac ter 

patterns and 32 types of 5 x 10 do t characte'r patterns . Table 3 . 3 and 3 . 4 

show the re lation between character codes and character patterns in the 

Hitachi standard HD447 80AOO . User defined char ac t e r pat terns are also 

available by mask- pr ogramming ROM. For details , see "The LCD-U (HD44780) 

Breadboard User' s Manual" . 

(6) Charac t e r Generator RAM (CG RAM) 

The character generRtor RAM is the RAM with which the user can rewrite 

character patte rns by program. With 5 x 7 dots, 8 types of charac t er 

patterns can be written and with 5 x 10 dot s 4 types can be wri tten. Wr i te 

the character codes in the lef t co l umns of Tab l es 3 . 3 and 3 . 4 t o display 

character patterns s t ored in CG RAM. 

Table 3.5 shows the relatior. between CG RAM addresses and data and display 

patterns . 

As Table 3.5 s hows , an area that is not used for di sp lay can be used as a 

general data RAM. 

12 HITACHI 



Table 3.3 Cor r espondence between Charac t e r Codes and Character Pattern 
(Hitachi s t andard HD44780AOO) 

'-l!..ighe r 
owe~t 0000001000 11 0100 0101 01100111 1010 l Oti 1100 110 1 111 0 11 11 

xx~xOOOO 

xxxxOOO I 

xxxxOOIO 

xxx ><OO l l 

x><xxOIOO 

xx ><xO I OI 

xxxxOllO 

x><x><O I I I 

xxxx lOOO 

xxxxlOO I 

xxx ><I OI O 

xxxxlO I I 

X><xx Il OO 

XX><xllO I 

xxxx l l lO 

xXXXl ll 1 

CG 
RAM 
(I I 

'" 
131 

iSI 

171 

181 

:1) 

,,, 

131 

'" 
,01 

'61 

'71 

18' 

• 

. . ..... 
'i'i' 

.... . . 
.:i:· 
.. . ' .. ' .: 
/ .... 
'.' : '.' 

., 
• 

" '. 
) 

, 
"i" 

., 
..... 

.. • 
..... 

... 
: .: 
Z.· : ..... 
.. . 
!. 

. 
.. ::: 

.. 
I:.!. 

. .... 

.... : 

· ,.' 
=:::: 
: : 

.. 
00 

00 
00 

00 
00 

00 . ' 
. . 

". 

e .... 

. > 
.. · · .' 

· :.:3 
... · . : ... : · , 

· : .... ~ 
· . · . L·: 
.... · · i::: . 

.... · . · . .... 
: 

.. :.! 
z···. 
i·:·' 
: '. 

I ... 
.... : 
.. . 
! 

· . · . 
i..J 
: . Zoo: 

: : , , 
'. ' , · .... :.· .. i. 

1 
, .' I.' 
I ". 

· · 5 .... 

· .... 
Pi · . 

... · . · . i : 

.' ': 

..... 

.:.:. 
"I" 

.. · . 

· · . 
... . .... · . .... 

i·" : .... 
... · : .. ' 

• .... : 
: .. : 
... · . I:::' 
. · . · 'r 

.... 
: ... ! 

L 
Z·'. 

! .'. 
' }'" · . · . · . 
· .. .. . · . · . 
... · . z .. ,: 

.... : .... 

.. . . .. 
"': 

.::: . 
. ... 
i ... 

:. ' .' 
, , 

.:.:' 
, , 
"'1 

'::1' 
00 • 

. .: 
, 
i 

. . ":: . 

. . '::'. 

... . . . 
.. 
: 

". 

I: 

::::i .. ' 
.... : 
, :' 

.':" 

"Ii· .. 

.... 

.-! 

, . , 

..' .. . i 

.. ... 
: .i 

..... 
I .... 

":r .' : 

."1' , 

.... I 

.. J 

::} 
... :: .'. 
T:= 
• 

=. : ..' 

.... 
,'. : ,. 
::: .. , 

: : . .: 

..... 
: 

I-, . 

.I 

... ... • 
. 

:: .. : 
, 

:.: 
.:". 
':'" ... 
• 1, .. . . , . 
..: 

".!. 
.. .. : .... : .... : 
.... : .' 
. 
.! 

. , 
'I ! t··· 
i .... 
! 

r"'1 
: i 
I .... 

1"' : . . 
" 

.,' 
":" '. 
II: 

.. ... 11· • 
I I ••• 

'.' 

.". : : : . .. 
. ... 

.:::: 
... · . .... i· .. · 
... · '::.' 

• .. .. · . 
Z .. :' 

:" ': .... : ... : 
.J" 

. , 
I 

:.: 

.... : · . .... : 
: 

i:::i . .... 

.... : ... 

, 
Z .. ': 

..... 
':. 
: .... 

'iT .' :. 
, N 

':.:' · . 
· . 
= ... ! ... . .. .. 
"i" 
..... 
.i": 
.. ... .. . . .... · . · . 
_00 

Z:::: 

HITACHI 13 



Table 3 .~ Corre sponde nce between Char acter Cod es and Cha r acte 
(Hit ach i s t andard HD~47 80AOO) 

!~ Lowe ~ b it 0000 "''' 001l "'''' 010 1 OliO Dil l 1010 lOll U'" H OI 1110 
~bil 

AX-\! ¢ • p 
,,"""0000 '" 

, , - , , • 

" """000 1 
,. I , A Q • , • 7 • A • 

" " ""0 010 '" 
, , B R b , r < " , p 

" " XXO OI I '" # • c s , • J ? , • • 

X""XO I OO '" $ • 0 T d , · • , • " 

)(}(X"O I OI 
. , " • , U • " · • , > • 

)()(XXOl )O '" • • f V , • • • ~ , p 

XX"XOIl I 
., • , G W • • , + • , • 

xXX" I OOO Ul. e • H X • • • , • 'J r 

" " " XI OOI ", ) • I Y ; , • ~ , 
" 

, 

""X" I OIO '" * J Z ; • · , " v ; 

XX"XIO II '" + , K e k e • ~ e 0 • 

" xxxi I OO '" , < L T , I • ;.- 7 ? ¢ 

XX)()(IIOI 
., - - M ) m ) · > ~ , £ 

'" > N ~ • - · • • . -
xx" x I I I O • . , / , 0 • - • , 7 • 
" X"X II l l - • 

14 HITACHI 

111 1 

, 

, 

• 

-
D 

.. 

" 

I 

• 

-

• 

, 

T 

li 

f'l 

+ 

• 



Table 3 .5 Relation be tween CG RAM Addresses and Character Codes (DO RAM) 

and Character Pat t e rns (CG RAM Data) 

(a) For 5x7 dot characte r patterns 
Characte r Codes CG R#f Character Patterns 

(~O RAM Data) Address (CG RAM Data) , • , • • , I 0 , • • , I 0 , • , • • , I 0 
r Highe r Order Bits Higher Order Bits ~Higher. Order Bits 
Lower Order Bita~ Lower Order Biu Lower Or de r Bits~ 

0 

0 

0 

0 
0 0 0 0 * 0 0 0 0 0 0 

I 

I 

I 

I 

0 
I 0 , 
I 0 , 
, " 

0 0 0 0 * 0 0 I 0 0 I , 
I I 

I I , , I , 
I I 

- , 0 - --
I 0 , 

p-
o 0 0 0 * I I I I I I I 

I I 
I 
I I 
I I , , I 

0 0 * * 0 I 

I 0 

I I 

0 0 

0 I 

I 0 

I I * * 
0 0 * * 0 I 

I 0 

I I 

0 0 

0 I 

I I 0 

I I * * 
0 0 * * 0 I 

0 0 

0 I 

I 0 

I I * * 

* p 1 l ~i 0 

" 0 0 0 1 

:. 0 0 0 J 

: 1 1 11 0 

:l~ I 1 0 0 1 0 

*~ : : : ! 
* ~ 0 0 0 ' I ' 

I ~f'-~ l O~ 
I 1 1 .. 1 1 

~Jl 0 0 
Il ~r · l·f::t 

Jthi~ 1 00 1 00 

* : 0000 0 ., , , 
---::; I 

l 
I 
I 
I 
I *, 

Character 
Pattern 
Example ( 1 ) 

Curso r 
..... Posi tion 

Character 
Pa ttern 
Example (2) 

* No effect 

(Note) 1 : Character code bi t s 0"' 2 co rrespond to CG RAM address bits 3"'5 

(3 bits:8 types) . 

2 : CG RAM address bits o'\. 2 de signa t e charac t er pattern line posit ion. 

The 8th line is the cursor position and display is performed in l ogical 

OR by the cursor . 
Mainta in the 8 th line da t a , corr esponding to the cu rsor di s play posi tion, 

. l Whon ,h. 8,h line data is "1", i n the "0" s t a t e fo r cur sor dlSp ay . "-

bi t 1 lights up· regardless of curso r ex i stence. 

3: Charac t er pattern row positions co rrespond to CG RAM data bits 0 4 , 

as shown in the figure (b it 4 being at the l eft end) . Since CG RAM 

dat a bi ts 5 '\. 7 are not used for disp lay, they can be used fo r the general 

data RAM. 

HITACHI 15 



4: As shown 1n Table 3.3 and 3 . 4, CG RAM characte r patterns are selected 

..men characte r code bits I., '\, 7 are al l "0". However, since character 

code bit 3 is a ine ffective bit, the "R" d i sp lay in the character 

pattern example, i s selected by cha rac t,er code "00" (hexadecimal) or 

"08" (hexadecimal). 

5 : "1" for CG RAM data corresponds to selection for displ ay and "0" f or 

non-selection. 

(b) For 5xIO dot character patterns 

Charac ter Codes 
(DO RAM Data) 

, 0 ~ • 8 t I 0 
~Higher Order Bits 
Lower Order B1ts~ 

16 HITACHI 

ex RAM 
Address 

~ • 3 Z I IJ 

Higher Order Bits 
Lower Order Bit) 

, , , , 
" , 
" , 

, , , 
, , , , , , 

. 0 0 1 I , , 
: 0 I 

0010101 , 
I 0 I I 0 

I 0 I ] ] , 
II 0 0 0 , 
I I 0 0 I 

I ] 0 I 0 -- - .-- - ----
• I 0 I I , 
" , , , , 
" , 

, , , , 
, 

I I I 1 I 

100 0 0 , 
• 0 0 0 I 

'-
I 1 : 1 0 0 ] 

___ !.~_O_ !. _ IJ_ 

I 1 0 I I , 
I 1 I 0 0 

I ] ] 0 1 , 
I ] ] I 0 

: I I I I 

Character Patterns 
(CG RAH Data) 

l
'ft~ ~ 3211J 

. Higher Order Bits 
Lower Order Bits~ 

* * * * * * * * *1 
I : 

*_]_ !L ____ __ _ 
* * *f* * * * * , , , , , 
* * * ~ * * * * * 

Cha r acte r 
Pattern 
Example 

Cursor 
-Posi tion 

* No Effec t 



(Note) 1 : Character code bits 1 , 2 correspond to CG RA..'1 address bits 4 , 5 

(2 bits:4 types). 

2 : CG RAM address bits 0 --3 designate character pattern line position . 

The 11th line is the cursor position and display Is performed in 

logical OR with cursor . 

Maintain the 11th l ine data corresponding to the cursor display position 

in the "0" state for cursor display . When the 11th line data is " 1", 

bit 1 lights up regardless of cursor existence . Since the 12th"~ 16th 

l i nes are not used for display , t hey can be used for the general data 

'M. 
3 : Character pattern row positions are the same as 5 x 7 dot character 

pattern positions . 

4 : CG RAM character patterns are selected when character code bits 4rv 7 

are a l l "0" . However , sint:e character code bit 0 an d 3 are ineffective 

bits , "p" display i n the character pattern example is selec t ed by e 

character code "00", " 0 1", "08" and "09" (hexadecimal) . 

5 : "1" fo r CG RAM data corresponds to s election for display and "0" for 

non- selection . 

HITACHI 17 



(7) Timing Generation Circuit 

The tiIDing generation circuit genera tes timing signal s to operate internal 

circuits s uch as DD RAM, CG ROM and CG RAM. RAM read tiLning needed 

for di splay and internal operation timing by MPU access a r e separately 

generated so they do not in ter fere with each other. Th~rcfore, when 

writing da t a to the DD RAH , for examp l e , there wil l be no undes i rable 

inf l uence, such as f licker i ng , in areas othe r than the display area . 

This c ircuit also gene rat es t i ming signals t o operate the ex t ernally 

connected driver LS I HD44 100H . 

(8 ) Liquid Crystal Display Driver Circuit 

The liquid crystal disp l ay drive r c ircuit cons i sts of 16 common singal 

dri\'ers and 40 segmen t signal drivers , When character font and number 

of lines are se lec ted by a program, t he r equired common signa l dr i ve r s 

aut omatically out put d r ive wave forms, the other common signal driver s 

continue t o output non-select i on waveforms , 

The segmen t s i gna l driver has essentially the same configura t i on as the 

driver LSI HD44 100H (see Fig. 6 , 12) . Character patt e rn data i s sent 

seria lly through a 40- bit shift register and lat ched when all needed 

data has ar rived . The l atched da t a controls the driver for gene rating 

dr ive wav~form outputs . 

The serial data is sent t o the HD44 100H , external ly connected i n cascade, 

used fo r display di git number extens i on , 

Send of seria l data a l ways starts at the disp l ay data cha r acter pattern 

corres'pond ing to the last address of the di splay data RAM (DO RAM) . 

Since seria l data is latched when the display da ta character pattern, 

corresponding to the starting address , ent e rs the interna l s hif t register, 

the H044780 drives the head di s pl ay , The rest displays , corresponding 

to latter addresses, a re added with each additional Ho44 1DOH . 

18 HITACHI 



(9) Cursor I Blink Control Circuit 

In a 

This is the circuit that generates the cursor or blink . The cursor or the 

blink appear in the digit residing at the display data RAM (DD RAM) address 

set in the address counter (AC). 

When the address counter is (08) 16, a cursor position is 

AC6 AC5 AC-l< A<":3 AC~ ... C 1 ACO 

AC I ' I 0 I ' I ' I " I " I " I 

1 digit , , • " " • " u Display position 

i DD RAM 
address 
{Hexadecimal} 

l-line display ,", cursor position 

1 digit 2 • " • • 10 11 Display position 

( 

1st line no " " " "' "' "" " \.! " OA DD RA."J 
address 
(Hexadec ima 1) 

I 
2nd line 

l '" " " '" .. " .. " " " <A 

l 
the cursor posi tion 

I n a 2-line disp lay 

(Note) The cursor or blink appears when the addres s counter {AC} selects 

the character generator RAM (CG RAM) . But the cursor and blink are 

meaningless. 

The cursor or blink is displayed in the meaningless position when 

AC is the CG RAM address. 

HITACHI 19 



3.6 Interfacing to MPU 

In t he HD44780 , data can be sent in either 4- bit 2- operation or 8-bit 1-

operation so it can interface to both 4 and 8 bit HPU's. 

(1) When interface data is 4-bits l ong , data ~s transferred using only 4 

buses: OB4"'OB7. OBO"'OB3 are not used. Data transfer between the 

HD44780 and the MPU comple tes when 4-bit data is transferred twice. 

(2) 

Data of the higher order 4 bits (contents of DB4 "'OB7 when interface data 

i~ 8 bits long) is t ransf erred first. then the lower order 4 bits (content 

of OBO"'DB3 when interface data is 8 bits l ong) is transferred. 

Check the busy flag after 4- bit data has been transferred twi ce (one inst

r uction) . A 4-bit 2-operation will then transfer the busy flag and 

address counter data . 

RS _______________________________ 1 

R/W ------------ 1 
E 

DB ~ JR' 1M SF AO' R' R' 

DB, I"' IRt Go AG' R3 DR 

DB, , .. , "' AG' AO ' .. .. 
DB. , .. 'RO AG. AG. •• ORo 

Instruction (IR) Busy Flag (BF) and Data register (OR) 

\~rite Address Counter (AC) Read 

Read 

Fig. 3.1 4- bit Data Transfer Example 

When interface data is 8 bit s long. data is transferred using the 8 data buses 

of OBO",OB7. 

20 HITACHI 



3.7 Reset Function 

3 . 7.1 Ini t ia lizing by Inte rnal Reset Circui t 

The HD44780 automat ica l ly initializes (resets ) when power is turned on 

using the internal reset cir cuit . The fol l.owing inst ructions are executed 

in initiali zation . The busy f l ag (BF) is ke pt i n busy sta t e until initia l i 

zation ends . (BY-I) The busy state is 10 ms after Vee rises to 4.SV. 

(I) ~isplay clear 

(2) Function se r ...... .. •..•..•..•..... DL- I 

N - 0 

F - 0 

(3) Disp lay ON/OFF contro l .... • .. • ..... 0 -0 

C -0 

B -0 

8 bit long interface data 

l-line displ ay 

5 x 7 do t char acte r f on t 

Display OFf 

Cursor OFF 

Blink OFF 

(4) Entry mode set ...... • • . .. • . .• • . .. .. 1/ 0 - 1 : +1 (i ncrement) 

S -0 : No shif t 

(Note) When conditions in "5 . 4 Power Supply Condi tions Using Internal Reset 

Circuit " ar e not me t. the i nternal rese t ci rcui t with not operate 

normally a nd i nitial ization wi l l no t be pe rfonned. I n this case 

initialize by MPU ac cording to "3.7 . 2 Initializing by Instruction" . 

3 . 7. 2 Initializ i ng by Inst ruc ti on 

If t he power s upply condi tions for cor rectly ope r ating the in ternal rese t 

circuit are not met , ini tializa tion by instruction is required . 

Use the fol lowing procedure f or i nitialization . 

HITACHI 21 



(1) When int.erface is 8 bits long 

(powor ON ) 
I 

Wait. mar than 15 QlS 

after Vee rises to 4. 5V. 

RS ikYlBr m, rn. ffiolHa I~ 1lJ. TEo 

" " " " , , • • * * 

Wait more than 4.1 m, " 

RS %,,1.& Illo m. m. WI r& rn. rllo , , , , , , * • • • 

Wait for more than lOO~s . 

RS '3(ym. IlI.Il!e 00. 00t ~ In Il\. , , , , , , • • • • 

RS 'Xvll!, ~ 00. 00. 00. DIH6 IDo , , , , , , 1'1 '" • • , , , , , , , , , , 
, , , , , , , , , , 
, , , , , , , , \1\ s 

Initialization ends . 

22 HITACHI 

( 
SF cannot. be checked before th is instruction. 

Function set (Interface is 8 bits long . ) 

[
ISF cannot be 

Function set 

(
IBF cannot be 

Function set 

checked before this instruc tion. 1 

(Inte rface i s a bits long . ) 

checked before this instruction . 1 

(Interface 1s a bits long . ) 

BF can be checked aft.er the following inst.ruc
ti ons . When BF is not. checked, the waiting time 
between instructions is l onger t.han the execution 
instruc tion time. (See Table 4-1) 

Function Set (Interface is 8 bits long . Specify 
the number of display lines and cha rac ter font . ) 
The numbe r of display l ines and charac ter fon t 
cannot be changed afte rwards . 

Disp l ay OFF 

Display ON 

;Entry Mode Set 



(2) When interface is 4 bits long 

( Power ON ) 

I 
Wai t wa r than 15 ms 
af t er Vee rises to 4.5V. 

I 
RS %,m., m. rn, UJ. 
, 0 , 0 , 1 

, 
Wait mor e than 4.1 ms. 

R S !k'v rn. DI\ Dt\ DI:I, 

0 0 0 0 1 1 

Wait for mor e than 100\.1s. 

RS l3<vm. Il\o 00, 00. 

0 0 0 0 , 1 

R S lJw OO.r:n, D[I" 00. 

0 0 0 0 1 0 

0 0 0 0 , 0 

0 0 N F • • 
0 0 0 0 0 0 

, 0 1 0 0 0 

0 , 0 0 0 0 , 0 0 0 0 1 

0 0 , , 0 0 

0 0 , , !1J s 

1 
I nitialization e nds. 

F cannot be c hecked be fo r e this instruction . 

Function set (In t erface is 8 bits long . ) 

F cannot be checked befor e t his ins t ruction . 

Func t ion set ( I nterface is 8 bits long.) 

BF canno t be checked be f or e this instruc t ion . 

Function set (Interface is 8 bi t s l ength. ) 

BF can be checked af t er the f ol l owing i nstruc 
tions . When BF is no t che cked , the waiting t i me 
between inst ructions is longer t han the execut ion 
i nstruction time . (See Tab l e 4 1) 

Function Set (Set i nte r f ace t o be 4 bits long .) 
I nterface is 8 bi t s l eng th. 

Func tion Set (Inte r face is 4 bits long . Speci f y t he 
number of display l ines and cha r acter font.) 
The number of display lines and characte r fon t canno t 
be changed af t ervards. 

Display OFF 

Di splay ON 

Entry Mode Set 

HrTACHI 23 



4. Instruction 

4 .1 Outline 

Only two HD44780 registers, the Instruction Register (IR) and the Data 

Regis t er (DR) can be di rect ly controlled by_ the MPU. Prior to internal 

oper ation s t art, control infor ma ti on is temporari ly s tored in these 

registers, to a l low interface f rom HD44780 internal operation t o various 

types of MPUs which operate in differen t speeds o r t o allow inter face to 

peripheral control Ies. HD44780 internal operation is dete rmined by 

signals sent from the MPU. These signa l s i nclude register selec tion 

signals (RS), read/write signals (R/W) and data bus signals (DBO~DB7), 

and are cal led ins tructions, here . Tabl e 4.1 shows the instruct.ions 

and their execution time. Detail s are explained in subsequent. sec tions . 

Instructions are of I, types. those that, 

(I) Des i gna t e H044780 f unctions such as d i s play format, da t a length, etc. 

(2) Give int.ernal RAM add resses. 

(3) Perform data transfer with interna l RAM 

(4) Others 

In no~ma l us e , category (3) instructions are used most frequently . 

However, automatic incrementing by +1 (or decrementing by -1 ) of HD44780 

internal RAM addresses after each data WTite lessens the MPU program 

load. The display shift is espe cially able to perform concurrently 

with displ ay data write. enabling t he user t o develop systems in minimum 

time with maximum progr aming efficiency. For an exp lanation of the shift 

function in its relation to display, see Item 6 . 6. 

When an instruction is executing during i nternal operation, no instruction 

other than the busy flag/addres s read instruct ion wi l l be executed . 

Because the busy flag is set to " 1" while an instruction is being executed, 

check t o make sure it is on "1" before sending an instruction from the MPU. 

(Note) Make s ure the HD4 4780 is not in the busy state (BF-O) before sending 

24 HITACHI 

the instruction from the HPU to the HD41,780. I f the ins truction 

1s sent vit.hout checking the busy f lag , the time between f irst and 

ne.xt instructions is much longer than t he instruc"tion time . See 

Table 4-1 for a list of each instruction execution time. 



Table 4.1 Instructions 

Code 
nstructionf-R-jRr-,/-ior-1B'lor-1B6",pC1BCS"ip- 1B-'-B-'-B-C-B---B--0 

Clear o 
Display 

o o o o o o o o 

Return 
Home 

Entry 
Mode Se' 

Display 
ON/OFF 
Control 

Cursor or 
Display 
Shift 

Func tion 
Sec 

Se' CG RAM 
Address 

Set DD RAH 
Address 

Read 
Busy Flag 
(. Address 

Write Data_ 
to CG or 
DO RAM 

Read Data 
from CG or 
DO RAM 

o o o o o o o o 1 

0 0 0 0 0 0 0 1 1/;) 

0 0 0 0 0 0 1 0 

0 0 0 0 0 1 !;tc WL 

0 0 0 0 1 L N F 

0 0 0 1 ACG 

U 0 1 ADD 

0 1 BF AC 

1 0 \."rite Data 

1 1 Read Data 

lID l : Increment 
I/D=O :Dec remen t 

C 

• 

• 

S =l:Accompanies display 
shift . 

S/C=l :Display shift 
S/c=O :Cursor move 
R/L=l : Shift to the right. 
R/L=O : Shifts to the left. 
DL=l : 8 bits. DL=O: 4 bits 
N=l ; 2 lines. N"O : 1 line 
F=l : s xIO dots , F=0 : Sx7 dots 
BF=l : lnternally operating 
BF=O : Can accept instruction 

* No Effect 

1 

S 

B 

• 

• 

Description 

Cle.Jrs entire display and sets 
DD RAM address U in 

address counter . 

Se ts DD RA'1 add res s 0 
in address counter . Al so 
returns display being 
shi f ted to original 
position. DD RAM contents 
remain unchanged . 

Sets cursor move direction 
and specifies shift of 
display. These operations 
are performed during data 
wri t e and read . 

Execution Tirne(max) 
(when fcp or 
rose is 250KHz) 

1.64ms 

1 .64ms 

40~s 

Sets ON/OFF of entire dispaly (D) . 
cursor ON/OFF (C) . and blink of 
cursor position character (B). 40~s 

J>loves cursor and shifts 
display without changing 
DD RAM contents . 

Sets interface data length (DL 
number of display lines (L) . 
and character font (F) . 

Sets CG RAM address . CG 
RAM data is sent and 
r eceived after this setting . 

Sets OD RAM address . UO 
RAM data is sent and 
received after this setting . 

Reads Busy flag (BF) indica tin 
internal operation is being 
performed and reads address 
counter contents. 

Writes data into DD RAM or 
CG RAM. 

Reads data from DD RAM or 
CG RAM. 

DO RAM :Display data RAM 
CG RAM:Character generator RA} 
Acr. :CG RAM address 
ADD ;DD RAM address . 

Corresponds to cursor 
address. 

AC; Address counter used for 
bo th DO and CG RAM 
address . 

40~s 

40~s 

40~s 

40~s 

40\.ls 

40).ls 

xecution time 
hanges when 
requency 
hanges. 
(Example) 
When fcp or 
fosc is 270KHz: 

250 
OVs x 270 -37vs 

HITACHI 25 



4.2 Description of Details 

(1) Clear Display 

Cod, r';(,S 1~~I~D:f=;::, I =;=, I ':::;=1 '::;=1 ,:;:=:I :';:;1°"1 
"'rites space code "20" (hexadecimal) (character pattern for character 

code "20" must be blank pattern) into all DO RAM addresses . Sets DD 

RAJ! address 0 in adaress counter . Returns display to its original 

status if it was shifted . In other words, the display disappears and 

the cur sor or blink go to the left edge of the display (the first 

line if 2 lines are displayed) . Set r/Dal ( I ncrement Mode) of Entry 

Mode . S of Entry Mode doesn't change . 

(2) Retur n Home RS R,/WDBI_ - DBo 

Code *Oon ' t care 

Sets the OD RAM address 0 in address counter. Returns display to its 

original status if it was shifted . DO RAM contents do not change. 

The cursor or blink go to the left edge of the display (the first 

line if 2 lines are displayed). 

(3) Entry Mode Set 
RS R/W" OB r _ - OBo 

Cod, I ' I ' I ' I ' I ' I ' I ,I I MOl S I 
I/O! Increments (1/O~l) or decrements (1/D=O) the DD RAM address by 1 

when a character code is written into or read from the DO RAM. 

The cursor or blink moves to the right when incremented by 1 and 

to the left when decremented by 1. The same applies to writing and 

reading of CG RAM . 

S Shifts the entire display either to the right or to the left 

when S is 1; to the left when 1/0=1 and to the right when 1/0=0 . 

Thus it looks as if the cursor stands still and the display moves. 

The display does not shift when reading from the DO RAM nor when 

writing into or reading out from the CG RAM does it shift when 

S"O. 

(4) Display ON/OFF Control 
RS fVW DB, _ - DB o 

Cod, I ' I ' I ' I ' I " I ' I ' I D I C I • I 
D: The display is ON when 0=1 and OFF when 0- 0. When of f due to 

0=0, display data remains in the DD RAM . It can be displayed 

immediately by setting 0-1 . 

C: The cursor displays when C=l and does not display when C=O . Even 

26 HITACHI 

if the cur sor disappears, the function of 110, etc. does not change 

during display data write . The cursor is displayed using 5 dots 



(5) 

in the 8th line when the 5 x 7 dot character font is selected and 

5 dots in the 11th line when the 5 x 10 dot char acter font is 

selected. 

B; The character indicated by the cur sor. blinks when a-I. The blink 

is displayed by switching be t ween all blank dots and display 

characters at 409.6~s interval when fcp or fosc~250kH~. The cursor 

and the blink can be set to display simultaneously. 

(The blink frequency changes according to the reciprocal 
250 

fosc. 409.6 x 270 ~379.2ms when fcp- 270kHz . ) 

of fcp or 

Ii -, I I 
= -Cu r sor ___ 

5)( 7 dot character 
fon t 

5 X 10 dot character AlternatiRg disp lay 
font 

(b) Blink Display Example 
Cursor or 

.(a) Curso r Display Example 
Displav Shift 

RS R,.A\' DaT - DB, 
Code *Don ' t care 

Shifts cursor position or display to the right or left without writing 

or r eading display data. This function ia used to cor r ect or search 

for the diaplay. In a 2-line display, the cursor moves to the 2nd 

line when it passes the 40th digit of the 1st line. Notice that the 

1st and 2nd line di sp lays will shift at the same time. When the 

displayed data is s hifted repeatedly each line only moves horizontally. 

The 2nd line display does not shift into the 1st line position. 

sIc R/L 

0 0 Shifts ,h, cursor position '0 ,h, left . (AC is decremented by one. ) 

0 1 Shifts ,h, cursor position '0 ,h, right. (Ae is incremented by one. ) 

1 0 Shifta ", entire display to the left. Th, cursor f01lolols ,h, 
display ahift. 

1 1 Shifts the entire display to the right . The cursor follows the 

display shift . 

Address counter (Ae) contents do not change if the only action performed 

is shift display . 

HITACHI 27 



(6) Function Set 

(7) 

N 

0 

0 

1 

RS 'VIV DB, _ DE, 

Code, 0 I 0 I 0 I 0 1 DLI N f' I *1 * * (Do n't C a r e) 

data l ength. Da ta is !'en t 0' received in 
L-~~~~~~~~~. 

DL Sets interface a b1, l eng ths 

(DB~DBO) when DL=l and in 4 bit lengths (DB~DB4) when DL-O. 

When the 4 bit length is selected, data must be sent or received twice . 

N Sets number of disp lay lines. 

F Sets charac ter font. 

F 

0 

1 

• 

(Note) 

No. of 

Perform the func tion at the head of the program be fore 
executing all instructions (except "Busy fiag/address 
read"). From t hi s point, the function set instruction 
cannot be executed un l ess t he inter face data length is 
changed. 

Display Lines Character Font Duty Factor Remarks 

1 5><7 dots 1/8 

1 5x lO dots 1111 

2 5><7 dots 1{l6 Cannot display 2 lines with 
5>< 10 dot characte r fon t . 

lit' (Don ' t Care) 

Se, CO RAM Address 
RS 1VW DE, 0" 

'Code I 0 I 0 I 0 

~Highe-rOrder Lower Order-
lIits Bits 

Sets the CG RAM address into the address counter in binary AAAAAA. 

Data is then written or read from the MPU for the CG RAM. 

(8) Set DD RAM Address 
RS IVW DB, 

Code 
A 

_ 0" 
Lowel; Order 

Bl.ts .... 
Sets the DD RAM address in to the address taunte r in binary AAAAAAA. 

Data is t hen written or read f r om the MPU for the DD RAM. 

However, when N=O (I -line displ ay), AAAAAAA is " OO""-"4F" (hexadecimal) . 

28 HITACHI 

When N-l (2-line display) , AAAAAAA is "00""-"27" (hexadecimal) for 

the firs t line, and "40""-"67" (hexadecimal) for the second line. 



(9) Read Busy 

Code 

Flag and Address 
II:) Jl.,/\Y DlJ1 -

• Higher Order 
Bi ts 

Lower Order _ • 
Bits 

Reads the busy flag (BF) that i ndicates the system is now internal ly 

operating by a previously received instruction . BF~l indicates that 

internal operation is in progress . The next instruction will not be 

accepted unti l BF i s set to "0". Check the BF status before the 

next write operation. 

At the same time , the value of the address counter expressed in binary 

AAAAAA is read out. The address counter is used by both CG and DD RAM 

addresses, and its value i s determined by the previous instruction . 

Address contents arc the same as in Items (7) and (8) . 

(10) Write Data to CG or DD RAM 

Code 

Writes binary 8 bit data DDDDDDDD to the CG or the DD RAM . 

Whether the CG or DD RAM i s to be wr i tten into is determined by the 

previ ous specification of CG RAM or DD RAM address setting . After 

write , the address i s automat i cally incremented or decremented by 1 

according to entry mode . The entry mode also determines display shift. 

(11) Read Data frolu CG or DO RAM 
RS • ________ D130 

Code 
~Higher Order Lower Order 

Bits Bits 

Reads binary 8 bit data DDDDOODO from the CG or DO RAM. 

The previous ~esignation determines whether the CG or DD RAM is to be 

read. Before entering the read instruct i on, you must execute either 

the CG RAM or DO RAM address set i nstruction . If you don'tl the first 

read data will be invalidated . Imen serially executing the "read" 

instruction, the next address data is normally read from the second 

read . The "address set" instruction need not be executed just before 

the "read" instruction when shifting the cursor by cursor shift 

instruction (when reading out DO RAM) . The cursor shift instruction 

operation is the same as that of the DD RAM's address set instruction . 

HITACHI 29 



After a read , the entry mode automatically increases or decreases the 

address by 1. However, display shift is not executed no matter what 

"the entry mode is. 

(Note) The address counter (AC) is automatically incremented or 

decremented by 1 after "write" instructions to either CG RAM 

30 HITACHI 

or DD RAM . RAM data selected by the AC cannot then be read out 

even if "read" instructions are executed. The conditions for 

correct data read out are: execute either the address set 

instruction or cursor shift instruction (onl y with DD RA~) , 

just before reading out execute the "read" instruction from 

the second time the "read" instruction is serial. 



5. Electrica l Characteristics 

5.1 Ab solute Maximum Ratings 

Item Symbol . Limit Unit Note 

Power Supply Voltage (1) Vrr -0. 3 to +7.0 V 

Power Supply Voltage (2) VI <0 V, VCC- 13.5 t o VCC+O.3 V 3 

Input Voltage VT 0.3 to Vr.r.+O.3 V 

Operat ing Temperature Topr 20 <0 +7S ·c 
StoraJ1:e Temoerature Tat<> -SO <0 +125 ·c 

Note 1 : If LSI' s are used above absolute maximum ratings, they may be 

permanently destroyed . Using t hem within elec trical charac teristic 

limits i s strongly recommended for normal ope ration. Use beyond 

these conditions vi I I cause malfunct ion and poor re l iability. 

Note 2: All voltage values are referenced to GND- OV. 

Note 3: Applies to VI to V5 . Must maintain VCC:il;Vl ~V2 ~V3:i1;V4;!;VS . 

(high'- -law) 

HITACHI 31 



5 ,2 Electrical Characteristics 

VCC-SV±lO '-; , Ta=-20 to +7SoC 

The conditions of . Vb Vs vo l tages are fo r pro per 

operat i on of the LSI and not forthe LCD ou t put 

level . The LCD dr ive voltage cond ition fo r t he 

LCD output level is specified in "LCD voltage 

VLCO"· 

Item Symbol 
Test Limit 

Un! Not 
condi tion min " 0 ~x 

Inpu t " High~ Vo l t age (I) VlHl 2. 2 Vec V (2 
Input 'LOw" Voltage tl) VILt 0. 3 - 0. 6 V (2 
Output ''Hi gh'' Voltage (l)(TTL) VOIiI 10H-0. 20SmA 2. 4 V (3 
Output "Low " Voltage OJ (TTL) VOLl 10L-l . 2mA 0. 4 V (3 
Ou t put "High" Vol t age ~2 HCHOS VOH2 - lOH"'O . 04mA 0 . 9VCC - V (4 
Out put " Low" Vo l tage ( 2) _ (~HOS VOL2 10L -0. 04mA - - a. I VC V (4 
Driver Voltage Descending (COM VCOM Id--O . OSmA - 2:9 V (1 0 
Driver Voltage Desce nd ing (SEG VSEG Id - O. OSmA - 3. 8 V (10 
Input Leakage Curren t IlL Vin-O to VCC - - 1 ,A (5 
Pull up HOS Curr e nt -Ip VCC-SV 50 125 250 '"' Power Suppl y Current ~l ) Cerami c f Ute 

ICCl osc illation - 0. ,)5 0.8 rnA (6 
VCc"'sv, fos c " 
250kHz 

Power Supply Curren t (2) Rf oscilla t io 

l CC2 Ext ernal cloc - 0.35 0. 6 rnA (6 
operation 

VCC"5V, fosc- (11 

f cp -Z70kll z 

E~t.!:.r.!!l..!. .£l~!' Qp.!:.r~t.!.D2. __ _ --- -- ---- -- - -- - -- r .--- -
Exte rnal Clock Frequency 'to 125 250 350 k.Hz (7 

External Cl ock l)., t M 45 50 5 % 

External Cl ock. Rise Time tr c o - 0. 2 " (7 
Ext ernal Clock. Fall Time t fcp - - 0.2 " (7 
I npu t '1ii 8h" Vo ltage {Z} VIH2 VCC-I. VCC V 12 
Input "Low' Voltage ,2, VI L2 0. 3 1.0 V \l2 

t-~!lt~r~..!. £l~!' 2..p~r~tl.o!!.iRf. £.sr,!;1~t!y.~- - - - - -1- - -1 - ) 1- - - fl<{zl-::: 
Cl ock Oscilla tion Frequency fosc Rf - 91kll t2% 190 270 350 kHz (8 

t-: !!.t ~r.!!l..!. .£l~!' Qp~ ~t '!P!!. .i~r ~f.c _ f .!.l~er_ £.s~i..!.l~t .!.o 2.) - -- -- - -- - -6' Clock. Oscillation Frequency fosc Ce rami c ftlte 245 250 255 kH. 

LCD Voltage VLCDI V V I /Sbia 4. 6 11 V (13 

vLCDZ CC- -[ 1/4bia 3. 0 11 V (1 3 

32 HITACHI 



Note 1: The following are I/O terminal configurations ecxept for 

l iquid crystal display output. 

Input Terminal . 

Applicable Terminals: E 

(No pull up MaS) 

Output Terminal 

NMOS 

Applicable Termina l s: 

(With pull up MOS) 

v" 

(Pull Up MOS) 

Applicable Terminals: CLl , CL2 , M, D 

I/O Terminal 

Applicable Terminals : DBO to DB7 

, (Pull UP) 
cc MOS 

H PIDS 

v" 

PMOS 

NMOS 

(Input Circuit) 

PMOS 

RS, 

V" 

Rlw 

PMOS 

NMOS 

E n~ bl e 

NMOS 

Note 2: Input terminals and I/O terminals 

Excludes OSCI terminals . 

Note 3 : 1/0 terminals . 

Note 4 : Output terminals . 

(Output Circuit) 
(Tristate) 

Da! a 

HITACHI 33 



Note 5: Current f l owing 

excl uded . 

through pull -up MOS ' s and ou tput drive MaS's is 

Note 6;· Input/Output current is excl uded . When input is at t he intermediate 

level with CMOS , excessive current flows t hrough the input c ircui t 

t o the power s uppl y. To avoid t his , input level must be fixed at 

high or low. 

Note 7: External clock operation. 

O.7Vc~ 

0.5 V Cc 

O.8V cc 

[0"" "'0'[ ~ 
Open ~ 

Th T I 

-
-= 
- I- - I-

t ... t ... 

It- Th 
X 100 % Dll t y = 

Th + T l 

f 

Note 8: Inter nal oscill ato r opera t ion us i ng oscillation r esistor Rf. 

ct'c' 

" OSc, 
Rf :IH kn± 2 % 

Since oscilla t ion frequency varies depending on aSCI and ose2 

terminal capacity , wiring length for these terminals shoul d be 

minimized. 

Note 9: Internal oscillator operation using a ceramic filter. 

is used . 
c, 

L 
OSC, cer amic filter: CBS2S0A (Murata) 

" 
Rf' 1M" tIO% 

0 

CI : 680 pFiI O% 
os c, 

680pF±10% C2: 

Rd: 3 .3kn±5% 

Ceramic f11 ter 

34 HITACHI 



Note 10: Applies to both V
eOM 

and V
SEG 

voltage drops . 

VeOM: From power supply terminal Vee. Vl. V4 . 

si:gnal terminal (eOMl to eOM16) 

V5 to each common 

VSEG: From power supply terminal vee. V2. V3 , V5 to each segment 

signal terminal (SEGl to SEG40) 

Note 11: Relation between operation frequency and curr ent consumption 

is shown in this diagrom. (Vee ~ 5V) 

, .. 
1. 8 

Ice. 
LO 

(rnA ) 

" 
>.0 

/" 
./ 

,. 
, .. V -- '" 
, .. V ------. --
" /---------::.- --, 

, " '" '" '" 
fose or r ep (kHz) 

Note l 12 : Applied to asel terminal. 

Note 13: The condition for eOM pin voltage drop (VeOH) and SEG p~n voltage 

drop (VSEG)' 

HITACHI 35 



5.3 Timing Characteristics 

Write Operation 

as 

E 

DBo-OS. 

) Villi Villi I< Vn. VHI ... ~ 

\ ( .I 
VILI ~ VH' 

pw .. ~ 
'" 

V, "' VI N' 
V,~, VIL' 

~ f--
h i" Il-'-

V[1I 1 \ Valid Data Kv.., 
Y'Lj VILI 

t . ... 

Fig.5- 1 Bue Write Operation Sequence 

(Writing data from MPU to HD44780) 

Read Operation 

as > YIIII V till K VILt VILI 

'" ~ 

V ' M\ I\V rlll 
pw .. 

~ 
V,III - ~IHI 

V'L' VIL, '" 
E 

." I- tDn ~ 

VOII, Valid Data :K VOH

' , VGLI/ VOL, 

t • • u 

Fig. 5-2 Bus Read Oper at i on Sequence 

(Read i ng out data from HD44780 to MPU) 

36 HITACHI 

.! 
V n l 

.I 
v , ., 



Interface Signal with Driver LSI HD44100H 

CL , 
o II Vee ",IIVu 

/ 
. ~ "~ 
t,,1U 

CL, O ll 'b: l 0.11 Vee 
O.I Vcc 0.1 Ycc 0.1 Vee 

t c.o .~, 

D I) 0.' O.IIV cc K " 0.1 V cc 

~ • 
M / 

0.1 Vee 

- ~ 

Fig. 5.3 Sending Data to Driver LSI HD44100 H 

HITACHI 37 



(
vee .. 5.0V + 10%, GND 

5.3.1 Bus Timing Characteristics Ta " -20 to-+ 756 C 

Write 6peration (Writing data from HPU to HD44780) 

It~ Symbol Tes t Condi tions 

Enable Cycle Time tcycE Fig . 5.1 

Enable Pulse Width I :'Hlgh" 
level 

!'WEH Fig . 5.1 

Enable Rise/Fall Time- tEl'. rEf Fig. 5.1 

Address Set-up Time I~Si R/w 
'AS Fi g . 5.1 

Address Hold Time 'All Fig. 5. 1 

Data Set-up Time tDSW Fi g . 5.1 

Data Hold Time . 'H Fig. 5 .1 

Read Operation (Reading data from H044780 t o HPU ) 

Item Symbol Test Conditions 

Enable Cycle Time [cycE Fig . 5.2 

Enable Pulse Width 1'H1 gh" 
level PWEH Fig. 5.2 

Enable Rise/Fall Time tEl'. t.Ef Fi g . 5.2 

Address Set-up Time IRS , R/w 
tAS Fig. 5 . 2 - E 

Address ReId Time. 'Alf Fig. 5.2 

Data Delay Time tDDR Fig. 5 .2 

Data HoJ.d Time tDRR Fig. 5. 2 

38 HITACHI 

Limit 
Unit min max 

1000 - ns 

450 - n, 

- 25 ns 

140 - n' 

10 - n, 

195 - ns 

10 - ns 

Limit 
Un" min m~ 

1000 - n, 

450 - n, 

- 25 n, 

140 - n, 

10 - n, 

- 320 ns 

20 - n, 



5.3 . 2 Inte rface Signal with HD44100H Timing Charac t eristics 

Item 

ClOCK Pulse Width 
"H igh " 
level 

Clock Pulse Width 
"High" 
l eve l 

Clock Se t-up Time 

::lata Set-up Time 

Data Hold Time 

M Delay Time 

(
Vee .. S.OV:!:. 10% , GND - OV) 

Ta - - 20 to +75 °C 

Symbol Test Conditions 
Limit 

min 

'CWlI Fig. 5.3 BOO 

'= Fig. 5 . 3 BOO 

tesu Fig . 5.3 500 

'su Fig. 5.3 300 

'D. Fig. 5.3 300 

'D" Fig . 5.3 -1000 

5 .4 Power Supply Conditions Using Internal Reset Ci r cui t 

Item Symbol Test Condit i ons 
Limit 

.in 

Power Suppl y Rise Time tree - 0.1 

Power Supply OFF Time 'OFF 
- 1 

~x 

-

-

-

-

-

1000 

~ 

10 

-

Since the internal reset cir cuit ",111 not operate normal ly unless the 

preceding condi tions are met, initialize by instruction. 

(Refer t o 3 . 7.2 "101 [ 1311:do& by Inst.ruction") 

",.5 V 

0.: V 0.' V 

10"* 

O.ims ~ I,cc ;:;:; 1 0 ms lo~ r ;;: lm5 

Unit 

no 

os 

no 

os 

.., 

ns 

UnH 

os 

n, 

(Note) tOFF s tipula t es the time of power OFF fo r power s upply instantaneous 

dip or ~hen po~er supply repeats ON and OFF. 

HITACHI 39 



References 



8086/8088 l6 -B it Microprocessor Primer; 
Christopher L. Morgan & Mitc hell Waite; 
Intel Corporation 

8086 /8087/8088 Macro Assembly La nguage Reference Man ual ; 
I nte l Corporat i on 

8088 Assembl e r La nguage pr ogramm ing : The IBM PC : 
Dav id C. Willen & Jeff r ey I. Krantz; Compute r Appli ca t ion s 
unlimi ted ; Howard W. Sams & Company 

THE 8086 BOOK includes the 8088; 
Russell Rector - George Alexy : 
OSBORNE/McGraw-Hill 

MS-DOS Ope rating sys tem Macro Assembler Manua l; 
Microsoft Co r porat i on 

Assembly La nguage pr og ramming fo r t he IBM Per sonal Computer: 
Dav i d J. Bradley : 
prentice-Hall, I nc . 

0 -1 



multitech 
INDUSTRIAL CORP 
Of'O<[/ 'Of",,,. c" ..... vo N RO~O. UC ~. T"'~E' 
, ... ~, TA'WAN • •. 0.C 

TH. ,02]'''''_' ' 3) 
n ux. ,, ' .1 Mulnt: • • • ,OII~_4'" 

. .. ClDR YI 

1 , .. "uSTRV E. AO"", '" 
M .... eMu ,,, "NCO_. ,,SE" ' OI DVUA ,o.l "' •• 
H5' .. CHU . . .. 'WA N )00. "" C. 


	Front page
	Table of Contents
	Preface
	Chapter 1 - How to Use Interrupt Subroutines
	Chapter 2 - MPF-I/88 System Reset
	Chapter 3 - I/O Programming
	Chapter 4 - MPF-I/88 Circuit Description
	Chapter 5 - Description of 1/0 Device Drivers
	Appendix A - Introduction to 8088 Assembly Language
	Appendix B - Schematic Diagrams
	Appendix C - Date Sheet of LCD
	Appendix D - References

