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Abstract

Sets with atoms serve as an alternative to ZFC founda-
tions for mathematics, where some infinite, though highly sym-
metric sets, behave in a finitistic way. Therefore, one can
try to carry over analysis of the classical algorithms from finite
structures to symmetric infinite structures. Recent results show
that this is indeed possible and leads to many practical appli-
cations: automata over infinite alphabets [Bojanczyk et al., 2012],
model checking [Klin and Lelyk, 2017], constraint satisfaction solv-
ing [Ochremiak, 2016], [Klin et al., 2015], programming languages
[Klin and Szynwelski, 2016], [Kopczynski and Torunczyk, 2017] and
[Cheney and Urban, 2008], to name a few. In this paper we shall take
another route to finite analysis of infinite sets, which extends and sheds
more light on sets with atoms. As an application of our theory we give
a characterisation of languages recognized by automata definable in
fragments of first order logic.

1 Introduction

In the late ’70s Stephen Schanuel working on the theory of combina-
torial functions studied the topos of pullback preserving functors from
the category of finite sets and injections to the category of sets, which
is nowadays known as the Shanuel topos. Shortly afterwards, when
the theory of classifying toposes emerged, it has been discovered that
the Schanuel topos is the classifying topos for the first order theory of
infinite decidable objects1 [Wraith, 1978].

The Schanuel topos was then rediscovered by James Gabbay and
Andrew Pitts [Gabbay and Pitts, 1999] as an elegant formalism for

1Classically, this is just the theory of pure sets. See Example 2.6.
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Figure 1: Correspondence between classifying toposes, nominal sets and set
theories with atoms.

reasoning about name bindings in formal languages. This idea was fur-
ther pursued [Pitts, 2013] and the Schanuel topos earned a new name
— the topos of nominal sets — starting a completely new life in theo-
retical computer science. A decade later, the connection between nom-
inal sets and the theory of classifying toposes was forgoten and some of
the classical results were discovered again in [Bojanczyk et al., 2011],
[Bojanczyk et al., 2013] and again in [Bojanczyk, 2019]. Nonetheless,
many well-known classical results are still unknown.

This paper presents nominal sets, and their older cousins: sets with
atoms, as a part of a bigger picture (see Figure 1, which will be ex-
plained throughout the paper) — the theory of classifying toposes for
the positive existential fragment of intuitionistic first order logic. Ac-
cording to this picture, generalised nominal sets are precisely the clas-
sifying toposes for ω-categorical structures, whereas set theories with
atoms are precisely the filtered colimits of some canonical diagrams of
generalised nominal sets. We shall focus on the aspects of computabil-
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ity in positive existential logic — which algorithms can be effectively
executed, when the domains of the variables are interpreted as “po-
tentially infinite” definable sets. This goes beyond theories of oligo-
morphic structures (Example 1.1 and Example 1.2). Our framework is
suitable for ω-categorical structures, which are not oligomorphic (Ex-
ample 1.3), structures build from ω-categorical structures by adding
infinitely many constants (Example 1.4), classical non-complete theo-
ries (Example 1.5), intuitionistic propositional theories (Example 1.6
and Example 1.7), and many more.

Example 1.1 (Pure sets). Let N = {0, 1, 2, . . . } be a countably infi-
nite set over empty signature Ξ. Then the first order theory of N is
ω-categorical, i.e. there is exactly one countable model of the theory
up to an isomorphism. This theory is called the theory of “pure sets”.

Example 1.2 (Rational numbers with ordering). Let Q = 〈Q,≤〉
be the structure whose universe is interpreted as the set of rational
numbers Q with a single binary relation ≤ ⊆ Q×Q interpreted as the
natural ordering of rational numbers. Then the first order theory of Q
is ω-categorical.

Example 1.3 (Multi-sorted ω-categorical theory). Let S be a struc-
ture consisting of countably many countable sorts identified with nat-
ural numbers N and such that the i-th sort interprets constants
{0, 1, · · · , i−1}. Then the theory Th(S) is ω-categorical. However, the
group of automorphisms Aut(S) of S in not oligomorphic — since the
automorphisms act independently on each sort, the group has infinitely
many orbits.

Example 1.4 (Pure sets with constants). Let N tN be the structure
from Example 1.1 over an extended signature consisting of all con-
stants n ∈ N . Then the first order theory of N t N has countably
many non-isomorphic countable models.

Example 1.5 (Dense linear order). Let T be the first order theory of
dense linear orders, i.e.: it is a theory, over signature consisting of a
single binary predicate <, with the following axioms (written as first
order sequents):

a < a ` ⊥
a < b ∧ b < c ` a < c

` a < b ∨ b < a ∨ a = b

a < c ` ∃b a < b ∧ b < c

This theory is not complete, as it does not specify whether a given
linear order has the smallest and the largest element, and if so, whether
or not they coincide.
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Example 1.6 (Propositional theory with one variable). By propo-
sitional theory with one variable we shall mean the empty positive
existential theory over zero-sorted signature Ξ1 with a single nullary
relation p ⊆ |Ξ1|0 = 1. A model of this theory in any topos is an inter-
nal truth value (i.e. subobject of the terminal object). For example, in
Set there are exactly two models: one in which p is false, and another
in which p is true.

Example 1.7 (Seemingly impossible theory). By seemingly impossi-
ble theory we shall mean the positive existential theory over zero-sorted
signature ΞN with countably many nullary relations {−n}n∈N with fol-
lowing axioms: −(n+ 1) ` −n.

In [Bojanczyk et al., 2014] a concept of a while-program with se-
mantics in definable sets with atoms A has been defined. The
authors examine conditions on A that ensure that certain while-
programs terminate. As an illustrative example, consider the reacha-
bility problem on directed graphs. A while-program for this prob-
lem is presented as Algorithm 1. This algorithm can be actually
implemented in a natural way in a programming language that sup-
ports computaton on sets with atoms, for instance: LOIS or Nλ2

(see [Kopczynski and Torunczyk, ] and [Klin and Szynwelski, ], also
[Klin and Szynwelski, 2016], [Kopczynski and Torunczyk, 2017] and
[Cheney and Urban, 2008] for more details). We will see in Section 2.1
that by transfer principle (Theorem 2.2), the program can be actually
executed in the category Cont(Aut(A tA0 )) of continuous actions
of the topological group of automorphisms of structure A t A0 for
some finite A0 ⊂ A. Moreover, the conditions the authors examine
imply that A is oligomorphic and Cont(Aut(A tA0 )) is the classi-
fying topos for the theory of A t A0 . Therefore, (see Section 2.4)
their framework restricts to sets definable in the first order theory of
oligomorphic structure A t A0 . We will see that Algorithm 1 can be
effectively executed on sets definable in theories from all our Exam-
ples 1.1, 1.2, 1.3, 1.4, 1.5, 1.6 and 1.7.

In parallel with Algorithm 1, we shall study the languages that
can be recognised by a generalisation of finite memory machines in
the sense of Kaminski and Francez [Kaminski and Francez, 1994]. An
example of such a machine is presented on Figure 2. The machine has a
single register R and can test for equality and inequality only. It starts
in state “SET PASSW”, where it awaits for the user to provide a pass-
word x. This password is then stored in register R, and the machine

2A working implementation of Nλ, a functional programming language capable of
processing infinite structures with atoms, is available through the web-site: https://

www.mimuw.edu.pl/~szynwelski/nlambda/.
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Algorithm 1 Reachability algorithm

procedure REACHABLE(E, a, b)
R′ ← ∅
R← {b}
while R′ 6= R do

if a ∈ R then return >
R′ ← R
for 〈x, y〉 ∈ E do

if y ∈ R′ then
R← R ∪ {x}

return ⊥

enters state “START”. Inside the top rectangle the machine can per-
form actions that do not require authentication, whereas the actions
that require authentication are presented inside the bottom rectan-
gle. The bottom rectangle can be entered by state “GRANT AUTH”,
which can be accessed from one of three authentication states. In or-
der to authorise, the machine moves to state “AUTH TRY 1”, where
it gets input x from the user. If the input is the same as the value pre-
viously stored in register R, then the machine enters state “GRANT
AUTH”. Otherwise, it moves to state “AUTH TRY 2” and repeats
the procedure. Upon second unsuccessful authorisation, the machine
moves to state “AUTH TRY 3”. But if the user provides a wrong
password when the machine is in state “AUTH TRY 3”, the regis-
ter R is erased (replaced with a value that is outside of the user’s
alphabet) — preventing the machine to reach any of the states from
the bottom rectangle. Inside the bottom rectangle any action that
requires authentication can be performed. For example, the user may
request the change of the password.

The authors of [Bojanczyk et al., 2013] found that finite mem-
ory machines correspond to automata definable in the theory of
pure sets from Example 1.1. A suitable generalisation of this con-
cept to positive existential theories is presented in Section 3. We
prove there a version of Myhill-Nerode theorem for languages of
subcompact/definable deterministic automata (Theorem 3.4, Corol-
lary 3.5 and Theorem 3.6), and a characterisation theorem for de-
finable non-deterministic automata by definable relational monoids
(Corollary 3.8). Notice that one has to be careful when studying lan-
guages recognised by automata definable in a logical theory, because
a language recognized by a definable automata is almost never defin-
able. This problem can be overtaken by describing a language L as
a collection of languages (L∗k)k∈N , where L∗k is definable and con-
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Figure 2: A register machine that models access control to the dashed part
of the system.

sists of these words of L whose length is at most k. Nonetheless, the
full justification of such a definition is difficult without the theory of
classifying toposes, and the explicit calculations are messy. There-
fore, we review some basic facts about classifying toposes in Subsec-
tion 2.4 and perform all of the necessary computations in Section 3
inside the classifying topos of the theory, where the concept of a lan-
guage can live naturally. For more information about automata in
categories we refer to [Adamek and Trnková, 1990], [Adámek, 1974],
[Eilenberg and Wright, 1967] and [Eilenberg, 1974].

Section 2 is devoted to explaining Figure 1. Subsection 2.1 explains
the left side of part 1 on the picture: how Zermelo-Frankel set theory
with atoms can be constructed from toposes of continuous actions of
topological groups. We state here a meta-theorem (Theorem 2.2 to-
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gether with Theorem 2.4) allowing us to delegate computations from
ZFA to toposes of continuous actions of topological groups. The right
side of 1 on the picture together with 2 is explained in Subsec-
tion 2.2. We investigate there possible extensions to definability in
sets with atoms and prove Theorem 2.6 indicating why such attempts
might be futile in general. The right square of 3 is explained in
Subsection 2.3, where we study definability in positive existential the-
ories. Finally, the outer square of 3 is roughly explained in Subsec-
tion 2.4; for more information about Grothendieck toposes we refer
the reader to [MacLane and Moerdijk, 2012], [Johnstone, 2003] and
[Borceux, 1994].

The authors would like to thank Alex Kruckman for his help in
formalizing the proof of Theorem 2.6.

2 The roadmap

In this section we shall explain Figure 1 in detail and discuss how
the computations with atoms can be carried over to more general
framework of classifying toposes for positive existential theories.

2.1 Set with atoms

Let A be an algebraic structure (both operations and relations are al-
lowed) with universum A. We shall think of elements of A as “atoms”.
A von Neumann-like hierarchy Vα(A) of sets with atoms A can be de-
fined by transfinite induction [Mostowski, 1939], [Halbeisen, 2017]:

• V0(A) = A

• Vα+1(A) = P(Vα(A)) ∪ Vα(A)

• Vλ(A) =
⋃
α<λ Vα(A) if λ is a limit ordinal

Then the cumulative hierarchy of sets with atoms A is just V (A) =⋃
α : Ord Vα(A). Observe, that the universe V (A) carries a natural ac-

tion (•) : Aut(A)×V (A)→ V (A) of the automorphism group Aut(A)
of structure A — it is just applied pointwise to the atoms of a set. If
X ∈ V (A) is a set with atoms then by its set-wise stabiliser we shall
mean the set: Aut(A)X = {π ∈ Aut(A) : π•X = X}; and by its point-
wise stabiliser the set: Aut(A)(X) = {π ∈ Aut(A) : ∀x∈Xπ • x = x}.
Moreover, for every X, these sets inherit a group structure from
Aut(A).

There is an important sub-hierarchy of the cumulative hierarchy
of sets with atoms A, which consists of “symmetric sets” only. To
define this hierarchy, we have to equip Aut(A) with the structure of
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a topological group. A set X ∈ V (A) is symmetric if the set-wise
stabilisers of all of its descendants Y is an open set (an open subgroup
of Aut(A)), i.e. for every Y ∈∗ X we have that: Aut(A)Y is open in
Aut(A), where ∈∗ is the reflexive-transitive closure of the membership
relation ∈. A function between symmetric sets is called symmetric if
its graph is a symmetric set. Of a special interest is the topology on
Aut(A) inherited from the product topology on

∏
AA = AA. We shall

call this topology the canonical topology on Aut(A). In this topology,
a subgroup H of Aut(A) is open if there is a finite A0 ⊆ A such
that: Aut(A)(A0) ⊆ H, i.e.: group H contains a pointwise stabiliser
of some finite set of atoms. The sub-hierarchy of V (A) that consists
of symmetric sets according to the canonical topology on Aut(A) will
be denoted by ZFA(A) (it is a model of Zermelo-Fraenkel set theory
with atoms).

Remark 2.1. The above definition of hierarchy of symmetric sets is
equivalent to another one used in model theory, namely, the definition
involving a normal filter of subgroups.

Example 2.1 (The basic Fraenkel-Mostowski model). Let N be the
structure from Example 1.1. We call ZFA(N ) the basic Fraenkel-
Mostowski model of set theory with atoms. Observe that Aut(N ) is
the group of all bijections (permutations) on N . The following are
examples of sets in ZFA(N ):

• all sets without atoms, e.g. ∅, {∅}, {∅, {∅}, . . . }, . . .
• all finite subsets of N , e.g. {0}, {0, 1, 2, 3}, . . .
• all cofinite subsets of N , e.g. {1, 2, 3, . . . }, {4, 5, 6, . . . }, . . .
• N ×N
• {〈a, b〉 ∈ N2 : a 6= b}
• N∗ =

⋃
k∈N N

k

• K(N) = {N0 : N0 ⊆ N,N0 is finite}
• Ps(N) = {N0 : N0 ⊆ N,N0 is symmetric}

Here are examples of sets in V (N ) which are not symmetric:

• {0, 2, 4, 6, . . . }
• {〈n,m〉 ∈ N2 : n ≤ m}
• the set of all functions from N to N

• P(N) = {N0 : N0 ⊆ N}

Example 2.2 (The ordered Fraenkel-Mostowski model). Let Q be the
structure from Example 1.2. We call ZFA(Q) the ordered Fraenkel-
Mostowski model of set theory with atoms. Observe that Aut(Q) is
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the group of all order-preserving bijections on Q. All symmetric sets
from Example 2.1 are symmetric sets in ZFA(Q) when N is replaced
by Q. Here are some further symmetric sets:

• {〈p, q〉 ∈ Q2 : p ≤ q}
• {〈p, q〉 ∈ Q2 : 0 ≤ p ≤ q ≤ 1}

Example 2.3 (The second Fraenkel-Mostowski model). Let S =
〈Z∗,−, (|−|n)n∈N 〉 be the structure of non-zero integer numbers, with
unary “minus” operation (−) : Z∗ → Z∗ and with unary relations
|−|n ⊆ Z∗ defined in the following way: |z|n ⇔ |z| = n. We
call ZFA(Z∗) the second Fraenkel-Mostowski model of set theory with
atoms. Observe that Aut(Z∗) ≈ ZN2 , therefore the following sets are
symmetric in ZFA(Z∗):

• {. . . ,−6,−4,−2, 2, 4, 6, . . . }
• {〈x, y〉 ∈ Z∗ × Z∗ : x = 3y}

Observe that the group Aut(A)(A0) is actually the group of
automorphism of structure A extended with constants A0, i.e.:
Aut(A)(A0) = Aut(A t A0). Then a set X ∈ V (A) is symmetric if
and only if there is a finite A0 ∈ A such that Aut(AtA0) ⊆ Aut(A)X
and the canonical action of topological group Aut(AtA0) on discrete
set X is continuous. A symmetric set is called A0-equivariant (or
equivariant in case A0 = ∅) if Aut(A t A0) ⊆ Aut(A)X . Therefore,
the (non-full) subcategory of ZFA(A) on A0-equivariant sets and A0-
equivariant functions (i.e. functions whose graphs are A0-equivariant)
is equivalent to the category Cont(Aut(A tA0 )) ⊆ SetAut(AtA0 ) of
continuous actions of the topological group Aut(A t A0) on discrete
sets.

Example 2.4 (Equivariant sets). In the basic Fraenkel-Mostowski
model:

• all sets without atoms are equivariant

• all finite subsets N0 ⊆ N are N0-equivariant

• all finite subsets N0 ⊆ N are (N \N0)-equivariant

• N ×N,N (2),K(N),PS(N) are equivariant

In most works on computations in sets with atoms, the authors
focus on equivariant sets and equivariant functions (i.e. the category
Cont(Aut(A))) and claim that the results carry over to ZFA(A). We
shall now give a formal argument why such claims are valid.
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Lemma 2.1 (Presentation of ZFA(A)). Let A be an algebraic struc-
ture. Then there is a functor Θ: K(A) → Log from the poset
K(A) of finite subsets of A seen as a posetal category to the 2-
category Log of elementary toposes and logical functors. This func-
tor maps A0 to Cont(Aut(A tA0 )) and A0 ⊆ A1 to the logical em-
bedding: Cont(Aut(A tA0 )) → Cont(Aut(A tA1 )). Moreover,
ZFA(A) is the colimit of Θ in Log — the canonical embeddings
Cont(Aut(A tA0 )) → ZFA(A) for finite A0 ⊆ A are logical em-
beddings (i.e. preserve elementary topos structure).

Because the forgetful functor from Log to the category of locally
small categories Cat preserves filtered colimits, ZFA(A) is also the
filtered colimit of logical embeddings in Cat. Therefore, every dia-

gram C D // ZFA(A) in ZFA(A) of the shape of C (i.e. a functor

C D // ZFA(A)) for a finitely generated category C factors via some
embedding Cont(Aut(A tA0 ))→ ZFA(A):

Cont(Aut(A tA0 ))

C ZFA(A)D //

'' ?�

OO

Theorem 2.2 (Transfer principle). Every categorical reasoning con-
cerning finitely generated diagrams consisting of elementary topos
operations, such as: finite limits and colimits, exponentials, power
objects, quotients, internal quantifiers, etc. can be studied in
Cont(Aut(A tA0 )) for some finite A0 ⊆ A and then the results can
be transferred back to ZFA(A).

Corollary 2.3. If A is ω-categorical (resp. extremely amenable) then
for every finite A0 ⊆ A, the structure AtA0 is ω-categorical (resp. ex-
tremely amenable) as well. Therefore, every theorem involving elemen-
tary topos construction that holds for every ω-categorical (resp. ex-
tremely amenable) A in Cont(Aut(A)), also holds in ZFA(A).

We can slightly extend the above transfer principle by observing
that not only the forgetful functor Log → Cat preserves filtered col-
imits, but also the forgetful functor Log → Cart to the 2-category of
cartesian categories and cartesian functors does. Therefore, ZFA(A)
is also a filtered colimit of logical embeddings in Cart. As a conse-

quence, every cartesian functor C D // ZFA(A) in ZFA(A) of the
shape of a finitely generated cartesian category C factors via some
embedding Cont(Aut(A tA0 ))→ ZFA(A).
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Theorem 2.4 (Extended transfer principle). Let L be a Lawvere the-
ory with finitely many operations. Then a model of L in ZFA(A) is
a model of L in Cont(Aut(A tA0 )) for some finite A0 ⊆ A. More-
over, if X ∈ ZFA(A) lives in Cont(Aut(A tA0 )) then the free L-
algebra over X exists in ZFA(A) and is the free L-algebra over X in
Cont(Aut(A tA0 )).

Proof. The only non-trivial part is that ZFA(A) has free L-
algebras. For an A0-equivariant set X ∈ ZFA(A) define its
free L-algebra X∗ : L → ZFA(A) as the free L-algebra X∗A0

on
X in Cont(Aut(A tA0 )) postcomposed with the natural embed-
ding Cont(Aut(A tA0 )) → ZFA(A). Because the logical functors
Cont(Aut(A tA0 )) → Cont(Aut(A tA1 )) are (co)continuous, the
definition of X∗ does not depend on a particular choice of Ai ⊆ A0.

Consider any L-algebra M : L → ZFA(A) and a symmetric func-
tion f : X → |M | to the underlying set |M | of M . By the definition
of cofiltered limits in Cart there is some finite A1 such that both X∗

and M factors as L-algebras in Cont(Aut(A tA0 )) and f : X → |M |
is A1-symmetric. Because X∗A1

is free, function fA1 uniquely extends
to a homomorphism f∗A1

: X∗A1
→ MA1 , which after embedding into

ZFA(A) yields a homomorphism f∗ : X∗ →M .
For the uniqueness of f∗ consider another homomorphism

g∗ : X∗ → M whose restriction to generators X is equal to f . Pro-
ceeding like in the above, by the definition of 2-filtered colimits, we
may find some finite A2 such that both f∗ and g∗ factors as homomor-
phisms f∗A2

and g∗A2
in Cont(Aut(A tA2 )). Then gA2 = fA2 implies

that f∗A2
= g∗A2

and so f∗ = g∗.

Remark 2.2. According to Theorem 2.4 every Lawvere theory with
finitely many operations has free algebras. This is no longer true for
Lawvere theories with infinitely many operations. For a counterexam-
ple consider the Lawvere theory consisting of infinitely many constants
(ci)i∈N . By the considerations like in the proof of Theorem 2.4, if the
free algebra over the empty set existed in ZFA(A), it must have been
an equivariant infinite set. There is, however, no symmetric function
from an equivariant set to the set of atoms A with infinitely many
different values, and A may be turned into an algebra by interpreting
(ci)i∈N as different atoms.

Of course, the above can be also generalised to finitely gener-
ated cocartesian categories, finitely generated bicartesian categories,
finitely generated elementary toposes, etc. Extended transfer prin-
ciple allows us to transfer reasoning about concepts like languages
in ZFA(A) to the reasoning in Cont(Aut(A tA0 )) for some finite
A0 ⊆ A.
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Remark 2.3. As a consequence of Lemma 2.1 category ZFA(A)
is an elementary topos with the topos structure inherited from
Cont(Aut(A tA0 )). It is not, however, a Grothendieck topos in gen-
eral: as we shall see in the next subsetion it may lack many infinite
colimits.

2.2 First order structures

We shall say that an A0-equivariant setX ∈ ZFA(A) is of finitary type
if its canonical action has only finitely many orbits, i.e. if the relation
x ≡ y ⇔ ∃π∈Aut(AtA0 ) x = π • y has finitely many equivalence classes.
The reason behind this terminology is that X is of a finitary type if it is
compact when treated as an object of category Cont(Aut(A tA0 )).
Let us recall the formal definition of a compact object in a general
category with filtered colimits.

Definition 2.1 (Compact object). An object X of a category C
is called compact if its co-representation homC(X,−) : C→ Set pre-
serves filtered colimits of monomorphisms.

Example 2.5. Here are some examples of compact objects in toposes:

• a set X in classical Set is compact iff it is finite

• a continuous G-set X in Cont(G) is compact iff it has finitely
many orbits

• a function X : A→ B thought of as an object in Set•→• is com-
pact if its graph is finite — i.e. if A and B are finite sets

• a chain of functions (Xi : Ai → Ai+1)i∈N thought of as an object
in Set•→•→•... is compact if all Ai are finite and the chain is
eventually bijective

Observe that we cannot speak about compact objects in ZFA(A),
because ZFA(A) does not have filtered colimits of monomorphisms.
For a counterexample consider the chain:

{} ⊂ {a1} ⊂ {a1, a2} ⊂ {a1, a2, a3} ⊂ · · ·

where ai ∈ A. This chain cannot have a colimit, since not every
function f with domain A is symmetric, but every restriction of f to a
finite set is symmetric. Therefore, by Theorem 2.2, the notion of a set
of finitary type in ZFA(A) is a reflection of the notion of compacteness
in Cont(Aut(A tA0 )) . Every set of finitary type is isomorphic to
a set that is hereditarily of finitary type, therefore without loss of
generality we can assume that all finitary sets are of this form. We
call a set in ZFA(A) “definable with atoms” if it is hereditarily of
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finitary type. The category of definable sets and functions with atoms
will be denoted by Def(A), and its subcategory of A0-equivariant sets
by DefA0(A).

Theorem 2.5 (Presentation of Def(A)). Category Def(A) is the fil-
tered colimit of categories DefA0(A) and natural embeddings for finite
subsets A0 ⊂ A.

Blass and Scedrov in [Blass and Scedrov, 1983] proved that
Cont(Aut(A)) is a coherent topos if and only if A is ω-categorical.
Moreover, in such a case first order definable subsets3 ofA coincide (up
to isomorphisms) with compact objects in Cont(Aut(A)). The last
statement is a very special case of the characterisation theorem for co-
herent toposes by Alexander Grothendieck and we return to it in Sec-
tion 2.4. We point out, that one direction of this theorem for oligomor-
phic structures was recently rediscovered in [Bojanczyk et al., 2011].

Let us recall that by Ryll-Nardzewski theorem
[Ryll-Nardzewski, 1959], a structure A (in a countable language)
is ω-categorical if and only if for every k, there are only finitely
many non-equivalent formulas with k free variables. By the above
considerations, this can be equivalently expressed by the following
property of Cont(Aut(A)): every compact object has only finitely
many subobjects; or by the property of ZFA(A): every set of
finitary type has only finitely many A0-equivariant subsets (for
every finite A0 ⊆ A). This property allows for effective algorithms
in ZFA(A) on sets of finitary type. This has been observed in
[Bojanczyk et al., 2011]. If one is careful to use only elementary
topos operations in algorithms then, because every algorithm is finite,
it can be executed in Cont(Aut(A tA0 )) and by transfer principle
its outcome transfers to ZFA(A). Notice however, that a power set
of a set of finitary type needs not be of a finitary type. Therefore,
one should further restrict to the operations that are stable under
definability, i.e. one may use: finite limits, finite coproducts and
coequalisers of kernel pairs (i.e. quotient sets), Boolean operations on
definable subsets, images, inverse images and dual images of definable
sets under definable functions.

Let us assume that A is ω-categorical with a decidable theory.
Algorithm 1 can be run on a definable relation E and two elements
a, b ∈ Def(A). Moreover, it always terminates on such inputs. Its run
can be seen as a computation of a partial transitive-reflexive closure
of a relation E . By transfer principle, we can assume that the inputs

3Definability means here: “definable in the theory of A extended with elimination of
imaginaries”. For more details see the next subsection.
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are equivariant. Then there is a formula φ that defines E, and all rela-
tions: id , E,E2, . . . have the same context as φ. Thus there are only
finitely many different Ek and the process terminates after finitely
many steps. We are generally interested in the structures A with the
property that algorithms like Algorithm 1 can be effectively realized.
Unfortunately, if A is not ω-categorical, then such a problem is not
even well-defined, because the correspondence between sets definable
in the theory of A and sets of finitary types fails badly: there is no
longer a correspondence between complete types over A and orbits of
Aut(A); moreover, finite sets of types does not correspond to formulas
(for more details consult [Hodges et al., 1993] Chapter 10). We shall
see later in Section 2.4 that equivariant definable sets Def∅(A) can be
recovered from the classifying topos of the first order theory ofA as the
full subcategory on a special type of compact objects called coherent.
Example 2.5 shows that compact objects in Cont(Aut(A)) can have
only finitely many orbits, therefore there cannot be a one-to-one corre-
spondence between compact (nor coherent) objects in Cont(Aut(A))
and equivariant definable sets Def∅(A) for non-ω-categorical A. In
fact, Blass and Scedrov (see Section 2.4) showed that the classifying
topos for the first order theory of A cannot be even Boolean unless A
is ω-categorical.

Instead of diving into classifying toposes, which for general struc-
tures may be difficult to describe, we may like to reverse our thinking
and treat definable algorithms as formulas themselves: in the sense
of dynamic logic. Then the question about effective realisation of
algorithms turns into the question of decidability of the first order
theory extended with dynamic logic of structure A. Let us focus on
the following well-understood fragment of dynamic logic: µ-calculus
— i.e. extension of first order logic with the least fixed-point operator.
That is, together with the usual first order formulas, we also have
formulas of the form: µX[y].φ(X, y), where X (must occur positively
in φ) is a “predicate” variable of arity equal to the length of sequence
of “parameters” y. The semantics of this formula (in a given alge-
braic structure) is the least set X∗ such that: X∗(y)⇔ φ(X∗, y). For
example, if E is a formula representing a binary relation, then:

µX[y1, y2]. (y1 = y2) ∨ (∃zE(y1, z) ∧X(z, y2))

defines the transitive-reflexive closure of E. The least fixed point is
the union of the following sequence defined by transfinite induction:

• X0(y) = ⊥
• Xα+1(y) = φ(Xα, y)

• Xλ(y) =
∨
α<λ φ(Xα, y) if λ is a limit ordinal
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Because the above sets (called the stages of computation) are
bounded by the context of y, the transfinite sequence must stabi-
lize at some ordinal α, in which case we put X∗ = Xα. In par-
ticular, if A is countable, which is the case of computations in
set with atoms (see [Bojanczyk et al., 2011], [Bojanczyk et al., 2012],
[Bojanczyk et al., 2013]), α is bounded by ω, and the computation
of the least fixed-point can be realized by a standard while-program.
Therefore, the least fixed-points are computable by while-programs iff
all stages of computations stabilize after finitely many steps. This is
the case of an ω-categorical structure A (since then, in any context y
there are only finitely many definable sets). Unfortunately, this is a
general phenomenon in case of decidability.

Theorem 2.6 (µ-elimination in decidable theories). Let A be a first
order structure. If the first order theory extended by the least fixed-
point operator of A is decidable, then every fixed point formula in A
is first order definable.

Proof. Let µX[y].φ(X, y) be a formula such that φ is first order.
Moschovakis’s stage comparison theorem [Moschovakis, 2014] (see also
[Moschovakis, 1974] and [Kreutzer, 2004]) says that the relation y ≤
y′ ⇔ (Xβ(y′) → Xβ(y)) is also definable in µ-calculus. Let us write
y ≡ y′ for y ≤ y′ ∧ y′ ≤ y and y < y′ for y ≤ y′ ∧ y′ 6≤ y.
Then we can define natural numbers up to ≡-equivalence in the
usual way: i.e. zero(x) : ∀y≤xx ≡ y, succ(x, y) : x < y ∧ ∀x<zy ≤ z,
addition relation as the least fixed point µA[x, y, z].(zero(y) ∧ x ≡
z) ∨ ∃p,ssucc(p, y) ∧ succ(x, s) ∧A(s, p, z), and the multiplication in a
similar fashion. Therefore, if the theory is decidable then there cannot
be any formula µX[y].φ(X, y) such that there is an infinite ascending
chain X0 ⊂ X1 ⊂ X2 ⊂ · · · . But in such a case, X∗ = Xk for some
finite k, thus X∗ is first order definable.

The above theorem says that a decidable theory has to eliminate
least fixed-points operators. As mentioned in the above, a practical
consequence of this fact is that if A is a general countable structure,
then if an algorithm over A can be effectively realized, then its result
must be already present in the first order theory of A. We claim
that it is the consequence of Theorem 2.6 that is crucial for effective
realisation of the algorithms, rather than a much stronger property of
ω-categoricity. This claim leads us to the following definition.

Definition 2.2 (Locally ω-categorical theory). Let T be a (not nec-
essarily complete) first order theory. Then we say that T is locally
ω-categorical if every finite set of formulas in T closed under logical
connectives of first order logic yields a finite set of formulas up to
equivalence in T .
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Of course, ω-categorical theories are locally ω-categorical. Theo-
ries from Example 1.4 and Example 1.5 are locally ω-categorical, but
not ω-categorical. We have the following theorem.

Theorem 2.7. Let T be a decidable locally ω-categorical theory. Then
T eliminates least fixed-points.

In fact, if T is a decidable locally ω-categorical theory, then every
while-program terminates on T -definable sets. We will elaborate more
on T -definable sets in non-complete theories in the next subsection.

In the reminder we shall consider positive existential theories that
satisfy some weaker versions of the conclusion of Theorem 2.6. The
pay-off for such generality is that we lose correspondence between sets
with atoms and definable sets — the role of Cont(Aut(A)) will be
played by the classifying topos Set(T ) of a positive existential theory
T . Note, however, that because of Theorem 2.2 this lost is not that
severe.

2.3 Positive existential theories

If A is a single-sorted algebraic structure, then there is a one-to-one
correspondence between first order definable subsets of Ak and first
order formulas in the language of A up to equivalence modulo the
theory Th(A) of A. The reason for this is that in a complete theory
(and Th(A) is clearly complete) two formulas are equivalent iff they
have the same interpretation in any model of the theory. Of course,
the same is true if move to multi-sorted structures A, with the obvi-
ous correction that we have to consider definable subsets of

∏
i∈I0 Ai,

where I0 is a finite subset of indices of sorts of A. It is tempting
then to extend the notion of definability from structures A to non
necessarily complete theories T in the following way: we say that the
class of formulas φ up to equivalence modulo T is a T -definable set.
With one caveat: we are not interested in all first order formulas, but
in the formulas from a restricted fragment of intuitionistic first order
logic, called positive existential logic, which we shall formally define
now. Let (Xi)i∈I be a set of variables. Positive existential formulas
in variables (Xi)i∈I over signature Σ with sorts (Ai)i∈I are defined
inductively according to the following rules:

• >,⊥
• R(t1, t2, . . . , tk) for a relation symbol R ⊆ Ai1 × · · · ×Aik in Σ

and terms t1 : Ai1 , . . . , tk : Aik in Σ

• t = q for terms t, q over the same sort in Σ

• φ ∧ ψ, φ ∨ ψ for formulas φ, ψ
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• ∃x∈Xiφ for a formula φ and a variable x ∈ Xi

The reason for this restriction is that it gives us much more flexibility
in deciding which sets are definable, and which are not. Let us also
recall that on the syntactic level one may substitute a classical first
order theory with a positive existential theory having the same defin-
able sets. The idea is to introduce two new relational symbol Pφ and
Nφ for every first order formula φ, then force Pφ to be equivalent to φ
and Nφ to its negation. This process is known under the name “atom-
isation”, or “Morleyisation” (see [Hodges et al., 1993] Chapter 2 or
[Johnstone, 2003] Chapter D1.5). Therefore, one may recover the full
power of classical first order logic in positive existential logic.

Example 2.6 (Infinite decidable objects). The first order theory of
pure sets from Example 1.1 is equivalent to the following positive ex-
istential theory, called the theory of infinite decidable objects. The
theory is over signature with a single sort N and one binary relation
6= ⊆ N ×N and consists of the following axioms:

• a 6= b ∧ a = b ` ⊥
• ` a 6= b ∨ a = b

• ∃x1∃x2 · · · ∃xnx1 6= x2 ∧ · · · ∧ xi 6= xj · · · ∧ xn−1 6= xn

The first two axioms say that relation 6= is complemented by the equal-
ity relation =. The last axiom scheme describes an infinite sequence
of axioms, whose n-th axiom says that there are at least n different
elements.

If φ is a definable set in the context
∏
i∈I0 Ai and ψ is a definable

set in the context
∏
i∈I1 Bi, then a definable function f : φ→ ψ from

φ to ψ is a definable set in the context
∏
i∈I0 Ai ×

∏
i∈I1 Bi satisfying

the following (positive existential) axioms:

f(x, y) ` φ(x) ∧ ψ(y)

φ(x) ` ∃y f(x, y)

f(x, y1) ∧ f(x, y2) ` y1 = y2

Definition 2.3. Let T be a positive existential theory. By Def(T ) we
shall denote the category of T -definable sets and T -definable functions
with natural identities and compositions.

Category Def(T ) is a coherent category, i.e. it has finite limits,
stable existential quantifiers and stable unions of subobjects. More-
over, in case T is a classical first order theory, Def(T ) also has stable
universal quantifiers and is Boolean (i.e. it is Boolean Heyting cate-
gory).
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Unfortunately, Def(T ) may lack finite disjoint coproducts
in general. It has been observed by Makkai and Reyes
[Makkai and Reyes, 2006] that any positive existential theory T can
be extended to a positive existential theory Tt in such a way that T
and Tt have essentially the same models and Tt-definable sets ad-
mit disjoint coproducts. Their construction follows an intuitive idea
of “encoding” disjoint coproducts directly in the language of the the-
ory. Theory Tt is obtained from T by extending the signature of T
with a new sort

∐
i∈λAi for every finite cardinal λ, together with new

functional symbols ιj : Aj →
∐
i∈λAi for every j ∈ λ and introducing

axioms expressing that
∐
i∈λAi are disjoint coproducts with injections

ιj :

ιi(x) = ιi(y) ` x = y

ιi(x) = ιj(y) ` ⊥ for all i 6= j

`
∨
i∈λ
∃x∈Aiιi(x) = z for z :

∐
i∈λ

Ai

It is routine to check that category Def(Tt) has disjoint coproducts.
There is one more important set theoretic construction that may

be missing in Def(T ). Let R be an equivalence relation on a set X.
Then, one may form the quotient set X/R of X by R:

X/R = {〈x, {y : R(x, y)}〉 : x ∈ X}

Moreover, there is also a canonical surjection [−] : X → X/R sending
an element of X to its abstraction class:

[x] = 〈x, {y : R(x, y)}〉

We call X/R together with surjection [−] : X → X/R an effective
quotient. A similar trick to the construction of disjoint coproducts,
also works for effective quotients, and in fact is much older. In 1978
Saharon Shelah working on stability theory introduced the concept of
elimination of imaginaries [Shelah, 1990]. An imaginary element of a
theory T is an equivalence class of elements that satisfy a given equiv-
alence formula. A theory T is said to eliminate imaginaries if every
imaginary element can be treat as a genuine element of T . Saharon
Shelah defined a process of associating with a theory T another theory
T eq in such a way that both T and T eq have the same models, and
T eq eliminates imaginaries. In more details, the language of T eq ex-
tends the language of T for every equivalence relation φ(x, y), where
x, y ∈

∏
iAi by a new sort Aφ together with a new functional symbol

eφ :
∏
iAi → Aφ. The theory T eq consists of the axioms of T , plus
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additional axioms expressing that eφ is a surjective function onto the
set of equivalence classes of φ:

` ∃xeφ(x) = y

φ(x, y) ` eφ(x) = eφ(y)

eφ(x) = eφ(y) ` φ(x, y)

Again, it is routine to check that category Def(T eq) has effective
quotients. Moreover, (−)eq preserves (−)t construction, therefore
Def(T+) for T+ = Tteq has disjoint coproducts and effective quo-
tients. The process of constructing Def(T+) from Def(T ) is known
in category theory under the name pretopos completion. Furthermore,
T+ is the maximal tight extension of T , therefore we cannot further
extend T+ without changing the notion of a model.

If models of a first order theory T satisfy the following properties:
(a) every sort of every model is non-empty, (b) there is at least one
sort that has at least two elements in every model; then the category of
T eq-definable objects Def(T eq) automatically has disjoint coproducts.
In particular, observe that all non-trivial ω-categorical theories are
essentially of this type.

Example 2.7 (Definablility in an ω-categorical theory). If T is a
classical ω-categorical theory with an infinite model A, then Def(T+)
is equivalent to Def∅(A). The reason for this equivalence is that sets
in Def∅(A) can be nested, i.e. one may form sets like:

{{a, b} : a, b ∈ A}
{〈a, {b ∈ A : φ(a, b)}〉 : a ∈ A ∧ ψ(a)}

If we allow for nested-set definitions, then we may forget about supply-
ing Tt with imaginary elements. This is because, the set of quotients
of an equivalence relation φ(x, y) on X may be represented as:

{〈x, {y ∈ X : φ(x, y)}〉 : x ∈ X}

Conversely, if φ(x, y) is any formula, then one may form an equiva-
lence formula:

φ̂(x, x′) = ∀yφ(x, y)↔ φ(x′, y)

and represent {y : φ(x, y)} by an imaginary element of φ̂(x, x′) of T+.
Then by induction over structure of nested-sets one can show that
every nested-definable set is T+-definable.

The above is also a consequence of the characterisation theorem
for Boolean coherent toposes discussed in the next subsection.
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2.4 Classifying topos

One important connection between Grothendieck toposes and logic is
through the concept of classification. The general statement says that,
for every logical theory T formalized in a positive existential fragment
of infinitary first order logic there is a Grothendieck topos Set(T ),
and a generic modelMT of T inside Set(T ). The term generic means
that every model of the theory in any Grothendieck topos can be
obtained fromMT as an application of the inverse image part of some
geometric morphism into Set(T ). Roughly speaking, a generic model
of a theory is a well-behaved model that contains all of the information
about the theory. The topos Set(T ) is called the classifying topos for
T . Moreover, the above general statement is definitive, because every
Grothendieck topos arises as the classifying topos for some positive
existential fragment of infinitary first-order theory.

In this paper we are interested in theories T defined in positive
existential fragment of finitary first order logic. In such a case, the
classifying topos Set(T ) is called coherent topos and can be obtained
as the topos of sheaves on Def(T ) with the usual coherent topology
(i.e. topology generated by finite jointly regular-epimorphic families
of morphisms; for more information consult [Johnstone, 2003] Chap-
ter D3, especially Section D3.3, or Volume 3 of [Borceux, 1994]) More-
over, the categories of sheaves on Def(T ) and on Def(T+) are equiv-
alent, i.e. Set(T ) ≈ Set(T+).

Example 2.8 (Sierpienski topos). The classifying topos of the propo-
sitional theory from Example 1.6 is the Sierpienski topos Set•→• —
i.e. the topos of sheaves on the Sierpienski space Σ. To see this from
the perspective of the definable sets, observe that there are exactly three
definable sets in this theory: corresponding to the false formula ⊥, to
nullary relation p itself and to the true formula >. Moreover, the
coherent topology on the definable sets is the same as the topology of
the Sierpienski space {0, 1}, whose open sets are ⊥ = ∅, p = {0} and
> = {0, 1}.

Example 2.9 (Impossible topos). The classifying topos of the
seemingly impossible theory of Example 1.7 is the presheaf topos
Set•→•→•.... Like in Example 2.8 this topos can be presented as a
topos of sheaves on a suitable topological space.

Let us recall the definition of a coherent object.

Definition 2.4 (Coherent object). An object A in a category with fil-
tered colimits and kernel pairs is coherent if it is compact and for every
morphisms f : B → A from a compact object B the kernel Ker(f) of
f is compact.
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It is a classical result of Alexander Grothendieck that Def(T+)
can be recovered from the classifying topos Set(T ) as the full subcat-
egory spanned on coherent objects (see Corollary 3.3.8 in Chapter D
of [Johnstone, 2003]).

Example 2.10. Continuing Example 2.5: all compact objects in Set,
Set•→• and Set•→•→•... are coherent. More generally, in a coherent
topos, compact objects coincide with coherent objects iff every sub-
compact object is compact. Therefore, they coincide in Cont(G) iff G
is (equivalent to) a group of automorphism of an ω-categorical struc-
ture. For a counterexample, consider SetG = Cont(G) for a discrete
group G. Coherent objects in SetG are these sets X with finitely many
orbits whose stabilisers {π ∈ G : π • x = x} are finite at every x ∈ X.

During 1974-1975 Walter Roelcke in a course on topology at the
University of Munich introduced and systematically developed the the-
ory of four natural uniform structures (or uniformities) on topological
groups [Roelcke and Dierolf, 1981]. The lower (infinium) uniformity
plays a crucial role in model theory and is nowadays known as Roel-
cke uniformity. Formally, let G be a topological group. The Roelcke
uniformity on G is the uniformity generated by entourages of the form
{〈g, α • g • β〉 : g ∈ G,α, β ∈ U} for some open U ⊆ G containing the
neutral element of G (i.e. the neighbourhood of the identity) such that
{g−1 : g ∈ U} = U .

Remark 2.4. The topology generated by Roelcke uniformity on G co-
incides with the topology of G. Moreover, all group operations become
uniformly continuous with respect to the Roelcke uniformity.

A topological group whose Roelcke uniformity is precompact (its
Cauchy-completion is compact) is called Roelcke precompact. Explic-
itly, we have the following definition. A topological group G is Roelcke
precompact if for every entourage E in its Roelcke uniformity there
exists a finite set G0 ⊆ G such that E[G0] = G.

An important characterisation theorem of Roelcke precompact
groups is given in [Tsankov, 2012] as Theorem 2.4.: a topological sub-
group G ≤ S∞ (i.e. a non-Archimedean group) is Roelcke precom-
pact iff for every continuous action G on a countable, discrete set X
with finitely many orbits, the induced action on Xn has finitely many
orbits for each natural n. This theorem says that Roelcke precom-
pact groups are generalizations of oligomorphic groups, capturing their
most important properties. In fact, Roelcke precompact groups are
multi-sorted metric analogue of oligomorphic groups form the classical
model theory [Yaacov et al., 2006] [Ben Yaacov and Tsankov, 2016].

In the early ’80s Andreas Blass and Andre Scedrov
[Blass and Scedrov, 1983] tuning the representation theorem of
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André Joyal and Myles Tierney [Joyal and Tierney, 1984] (see also
[Butz and Moerdijk, 1998]) to Boolean toposes introduced the notion
of a coherent group. A topological group G is coherent if the topos
of its continuous actions Cont(G) is a coherent topos. From this
definition, they obtained the following characterisation: a topological
group G is coherent if its every open subgroup H ⊆ G has only finitely
many double cosets: HxH = {h • x • k : h ∈ H, k ∈ H} and x ∈ G.
Independently, this property, has been also shown to characterise
Roelcke precompact groups with small open subgroups. Therefore,
Roelcke precompact groups and coherent groups coincide (with small
open subgroups)4.

The abovementioned theorem states that Boolean coherent
Grothendieck toposes are precisely the finite products of categories
of actions of topological groups of automorphisms of multi-sorted
ω-categorical structures [Blass and Scedrov, 1983] (this justifies the
correspondence between nominal sets and classifying toposes from
Figure 1). Moreover, positive existential theories T that are classi-
fied by Boolean Grothendieck toposes are characterised by the fol-
lowing properties: a) in every context there are only finitely many
formulas up to equivalence modulo T , b) every first order formula
is classically equivalent to a coherent formula modulo the theory
[Blass and Scedrov, 1983].

Such theories T have only finitely many completions, all of which
are ω-categorical. In fact, for a complete theory, the first prop-
erty is equivalent to ω-categoricity of the theory by (generalised)
Ryll-Nardzewski theorem. The classifying topos may be constructed
as the product of categories of the form Cont(Aut(Mi)), where
Aut(Mi) is the topological group of automorphism of the unique
countable modelMi corresponding to the i-th completion of theory T
[Blass and Scedrov, 1983]. The theory of dense linear orders from Ex-
ample 1.5 satisfies these properties. Moreover, all theories that satisfy
these properties are locally ω-categorical.

As mentioned in the introduction, we are interested in theories T
such that Algorithm 1 is effective on T -definable sets. One property
of such theories is local ω-categoricity introduced in Section 2.2 for
classical first order theories. We could define a suitable version of local
ω-categoricity for positive existential theories, but for the purpose of
this paper it suffices to require a weaker property. Let us recall that by
Theorem 2.7, every locally ω-categorical theory eliminates least fixed
points. We shall focus on elimination of transitive closures only.

4To the best knowledge of the authors, this coincidence has not been observed before
and the connection between metric model theory and classifying toposes has never been
exploited.
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Definition 2.5 (Elimination of transitive closures). Let T be a posi-
tive existential theory. We say that T eliminates transitive closures if
for every T -definable binary relation R there is a T -definable relation
R+ such that: R+ =

∨
iR

i, where: R1 = R and Ri+1 = R ◦Ri+1.

Observe that the above definition is not first order, and in fact
cannot be axiomatised by first order formulas.

Example 2.11. All working examples of theories in this paper elimi-
nate transitive closures:

• if T is ω-categorical then for every T -definable binary relation
R, there are only finitely many T -definable relations in the same
context; therefore

∨
iR

i may be reduced to a finite disjunction;
this includes Example 1.1, Example 1.2 and Example 1.3

• more generally, if T is locally ω-categorical then since T elimi-
nates least fixed points, it also eliminates transitive closures; this
includes Example 1.4 and Example 1.5

• if T is the propositional theory from Example 1.6 or the seemingly
impossible theory from Example 1.7, then every infinite ascend-
ing chain of T+-definable sets φ0 ⊆ φ1 ⊆ φ2 ⊆ · · · stabilizes,
therefore

∨
iR

i =
∨
i≤k R

i for some finite k

Theorem 2.8. Let T be a decidable positive existential theory that
eliminates transitive closures. Then Algorithm 1 is effective on T -
definable inputs.

3 Automata

For this section we fix a single positive existential theory T that has
disjoint coproducts and eliminates imaginaries. Moreover, if not stated
otherwise, all objects and morphisms live in Set(T ) — the classifying
topos of T . The subobject classifier will be denoted by Ω, and the
characteristic function of a subobject s : A0 → A, by χs : A→ Ω.

3.1 Preliminaries

An object of words in an alphabet Σ is the free monoid 〈Σ∗, concat , ε〉
over Σ generators. It consists of the concatenation morphism
concat : Σ∗ ×Σ∗ → Σ∗ and an empty word ε : 1→ Σ∗. By a language
L over alphabet Σ, we shall mean a subobject of Σ∗, or equivalently
a morphism L : Σ∗ → Ω.

Definition 3.1 (Automaton). A non-deterministic automaton A is a
quadruple A = 〈s0 : I → S, sf : F → S, σ : Σ× S −7−→ S〉, where:
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• s0 : I → S is a monomorphism of initial states

• sf : F → S is a monomorphism of final states

• σ : Σ× S −7−→ S is the transition relation

Automaton A is called deterministic if I is the terminal object 1 and
the transition relation σ is functional.

An automaton A is called a T -automaton if all the data from
its definition are T -definable. Observe that for any object S, we
have the canonical monoidal structure on ΩS×S , given by the inter-
nal composition of binary relations. Therefore, the adjoint transpo-
sition σ† : Σ→ ΩS×S induces a unique homomorphisms of monoids:
σ† : Σ∗ → ΩS×S , and by transposition a relation: σ : Σ∗ × S −7−→ S.

Definition 3.2 (Language of an automaton). Let A = 〈s0 : I →
S, sf : F → S, σ : Σ × S −7−→ S〉 be a non-deterministic automaton. By
the language L(A) recognized by A we shall mean the subobject of Σ∗

that corresponds to the following relation:

Σ∗
idΣ∗×χ

†
s0−7−→ Σ∗ × S σ−7−→ S

χsf−7−→ 1

In case automaton A is deterministic, the monoid of relations ΩS×S

can be substituted by the monoid of functions SS with internal com-
position, and L(A) can be constructed as the pullback of sf along
σ† ◦ (idΣ∗ × s0) : Σ∗ → S.

Before moving to more advanced theory, let us prove a simple
theorem.

Theorem 3.1. Let T be a decidable theory that eliminates transitive
closures of binary relations. Then the problem of emptiness for a T -
definable automata is decidable.

Proof. The problem of emptiness of an automaton is equivalent to the
problem of reachability of a final state from one of the initial states.
Therefore it suffices to compute the transitive-reflexive closure φ of its
underlying transition relation by Algorithm 1 and then check if the
formula ∃s∈s0∃f∈sfφ(s, f) is provable in T .

Kaminski and Francez studied, so called, finite memory automata
[Kaminski and Francez, 1994]: i.e. automata augmented with a finite
set of registers, each of which can hold a natural number, and the
automata can test for equality between registers and alphabets. Here
is a suitable generalisation of this definition to a general structure A.

Definition 3.3 (Register automata). An A-automata with k registers
over alphabet Σ is a quadruple 〈S, δ, I, F 〉 such that:
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• S is a finite set of states

• I ⊆ S is a set of initial states, and φI ⊆ Ak is a set of possible
initial configurations of registers

• F ⊆ S is a set of final states, and φF ⊆ Ak is a set of possible
final configurations of registers

• δ ⊆ (Σ×S×Ak)× (S×Ak) is a transition relation such that for
every s, s′ ∈ S the relation δ(s, s′) ⊆ (Σ×Ak)×Ak is A-definable.

We could state an even more general definition suitable for any
theory T , but we refrain from doing this for the following reason:
every register A-automata with states S and k-registers is equivalent
to:

1. A register A-automaton with a single state.

2. An A-automaton (without registers).

Because Def(A) has disjoint coproducts, it can interpret finite cardi-
nals. Moreover, every function between finite cardinals is definable.
Let us assume that the context of S is Am. Therefore, S′ = S×Ak can
be thought of as either the object of states of a definable automaton,
or as the A-automata with k +m registers and a single state 1.

3.2 Myhill-Nerode theorem

Consider the following morphism:

Σ∗ × Σ∗
concat // Σ∗

L // Ω

Its transposition (L ◦ concat)† : Σ∗ → ΩΣ∗ maps a word w to the
predicate: λx.wx ∈ L.

Definition 3.4 (Myhill-Nerode relation). Let L : Σ∗ → Ω be a lan-
guage. By the Myhill-Nerode relation MN (L) of L, we shall mean the
kernel relation of (L ◦ concat)†, and by the the Myhill-Nerode quotient
of L we shall mean the coequaliser of this kernel pair:

MN (L) ⇒ Σ∗
(L◦concat)† // ΩΣ∗

Intuitively, two words w, v ∈ Σ∗ are related by Myhill-Nerode re-
lation MN (L) iff for every x ∈ Σ∗ we have that: wx ∈ L⇔ vx ∈ L.

Lemma 3.2. Let A = 〈s0 : 1 → S, F : K → S, σ : Σ × S → S〉 be
a deterministic automaton. The Myhill-Nerode quotient of L(A) is a
sub-quotient of S.
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Proof. We have the following morphism:

Σ∗ × Σ∗ Σ∗

SS × SS SS

concat
//

◦
//

σ×σ
��

σ

��

Σ∗ × S

SS × S S Ω

idΣ∗×s0
//

id
SS×s0

//
ev
//

σ†

��

σ×idS

��

F
//

which by transposition corresponds to the morphism:

k : Σ∗ → ΩΣ∗

The kernel pair Ker(k) ⇒ Σ∗ of this morphism k, is the Myhill-Nerode
relation of the language L(A). Such an equivalence relation induces a
quotient object Σ∗/k as the coequaliser of the kernel pair:

Ker(k) ⇒ Σ∗
[−]k // Σ∗/k

On the other hand, the morphism σ† ◦ (idΣ∗ × s0) : Σ∗ → S, which
will be denoted by s, has its own kernel pair:

Ker(s)
π1

⇒
π2

Σ∗
s // S

We want to show that Σ∗/k is a quotient of Σ∗/s, or equivalently
that the relation Ker(s) is coarser than Ker(k). We shall prove it on
generalised elements: x, y : X → Σ∗. That is, we want to show that
if s ◦ x = s ◦ y then: k ◦ x = k ◦ y. But, by the triangle equality for
exponent: k ◦ x = k ◦ y iff k† ◦ (x× idΣ∗) = k† ◦ (y× idΣ∗). Moreover,
because ε is the unit for concat , the following diagram commutes:

Σ∗ × Σ∗ Σ∗

X × Σ∗ Xoo
〈idX ,ε〉

concat
//

x×idΣ∗

��

x

��

with the top arrow being mono. Therefore, k† ◦ (x × idΣ∗) = k† ◦
(y × idΣ∗) iff k† ◦ (x × idΣ∗) ◦ 〈idX , ε〉 = k† ◦ (y × idΣ∗) ◦ 〈idX , ε〉
iff F ◦ s ◦ x = F ◦ s ◦ y, what completes the proof of the claim.
Now, because s ◦ πs1 = s ◦ πs2, we have that: k ◦ πs1 = k ◦ πs2 and
by the definition of the kernel of k there is a unique monomorphism
of relations j : Ker(s) → Ker(k), i.e.: j ◦ πk1 = πs1 and j ◦ πk2 = πs2.
Therefore, by the universal property of the coequaliser Σ∗/s, there is
a unique (necessarily epi) morphism: Σ∗/s→ Σ∗/k.
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Lemma 3.3. Let L : Σ∗ → Ω be a language. The Myhill-Nerode quo-
tient of L can be equipped with the structure of a deterministic au-
tomaton that recognizes L.

Theorem 3.4 (Subcompact rational languages). Sub-compact deter-
ministic automata recognize the languages whose Myhill-Nerode quo-
tients are sub-compact.

Proof. If X is a sub-quotient of A via A0, then we may form the
pushout:

A0 X

A P// //

e
// //?�

m

OO

?�

OO

A pushout of an epimorphism e : A0 → X is an epimorphism, thus P is
a quotient of A. But a quotient of a compact object is compact, so P is
compact if A is. Moreover, in a topos a pushout of a monomorphism is
again monomorphism. Therefore, if X is a sub-quotient of a compact
object, then it is actually a quotient of a compact object.

From the above theorem we can instantly get the generalisation of
Myhill-Nerode Theorem for nominal sets.

Corollary 3.5. In a topos of continuous actions of a topological group,
deterministic automata with finitely many orbits recognize exactly the
languages whose Myhill-Nerode relations have finitely many orbits.

Theorem 3.6. Let T be a theory that eliminates transitive closures of
binary relations. Then T -definable deterministic automata recognize
exactly the languages whose Myhill-Nerode quotients are T -definable.

Proof. A definable morphism σ : Σ×S → S induces a binary relation
on S: Rσ(a, b)↔ ∃x∈Σ : σ(x, a) = b. Since T eliminates transitive clo-
sures, the transitive closure R∗σ of Rσ factors as: Rσ∪R2

σ∪ . . .∪Rnσ for
some finite n. Unwinding the definition of Rkσ, this yields: Rkσ(a, b)↔
∃w∈Σkσ(w, a) = b. Therefore, R∗σ(a, b) ↔ ∃w∈Σ∗n σ(w, a) = b,
which means that the image of σ : Σ∗ × S → S factors through
Σ∗n =

⊔
i≤n Σi. This means that Σ∗/s is coherent. On the other

hand, Σ∗/k can be described as the filtered colimit of Σ∗j/k ◦ j, where
j : Σ∗j → Σ∗ is the natural injection of coproducts. Therefore, the epi-
morphism Σ∗/s→ Σ∗/k factors as an epimorphism Σ∗/s→ Σ∗j/k ◦ j
followed by a monomorphism Σ∗j/k ◦ j → Σ∗/k. By the uniqueness of
epi-mono factorisation, Σ∗j/k ◦ j ≈ Σ∗/k, and Σ∗/k is coherent.

Example 3.1. In all of the theories from Examples 1.1, 1.2, 1.3, 1.4,
1.5, 1.6 and 1.7 definable deterministic automata recognize exactly the
languages whose Myhill-Nerode quotients are definable.
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s0start n sf
n

?

m=n

m 6= n ?

Figure 3: A non-deterministic automaton for language {w′′nw′nw : n ∈
Σ ∧ w,w′, w′′ ∈ Σ∗}. If we remove the dashed transition, then we obtain
a deterministic automaton for language {nw′nw : n ∈ Σ ∧ w,w′ ∈ Σ∗}.

Definable non-deterministic automata are generally more expres-
sive than definable deterministic automata. The reason is that, unlike
finite sets, definable sets are not stable under the power-set construc-
tion.

Example 3.2 (Definable deterministic vs. non-deterministic au-
tomata). Consider the following language in Set(N ):

• the alphabet is the set of all atoms, i.e.: Σ = N

• the language consists of all words over alphabet Σ, such that
in each word there is a letter that appears at least twice, i.e.:
L = {w′′nw′nw : n ∈ Σ ∧ w,w′, w′′ ∈ Σ∗}

One may check that the Myhill-Nerode quotient of L has infinitely
many orbits, therefore L cannot be recognised by a deterministic au-
tomaton. On the other hand, the non-deterministic automaton from
Figure 3 recognizes it: the automaton loops in state s0 for a number
of times, non-deterministically moves to the state “n” after seeing a
letter n ∈ Σ, and then loops in that state until another letter n appears
in the word, in which case the automaton moves to the final state sf .

3.3 Recognition by monoids

We say that a language L over alphabet Σ is recognized by a monoid
M if there is a subobject F of M and a homomorphism h : Σ∗ →M
such that: χF ◦ h : Σ∗ → Ω is the characteristic morphism of L. It
is well-known that classical regular languages (i.e. languages recog-
nised by finite automata in Set) are precisely the languages recog-
nised by finite monoids. The correspondence does not carry over to
definable regular languages and definable monoids — in general the
notion of a language recognised by a coherent deterministic automa-
ton is much stronger than the notion of a language recognised by a
coherent monoid.
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Example 3.3 (Definable deterministic automata vs. definable
monoids). Consider the following language in Set(N ):

• the alphabet is the set of all atoms, i.e.: Σ = N

• the language consists of all words over alphabet Σ, such that in
each word the first appears at last twice, i.e.: L = {nw′nw′′ : n ∈
Σ ∧ w,w′ ∈ Σ∗}

One may check that L cannot be recognised by a monoid that has
only finitely many orbits. On the other hand, the deterministic part
(without the dashed transition) of the automaton from Figure 3 clearly
recognizes it: the automaton moves to the state n after seeing a letter
n ∈ Σ, and then loops in that state until another letter n appears in
the word, in which case the automaton moves to the final state sf .

Therefore, to hope for such a correspondence, we need a more
general notion of a monoid, or a more restrictive notion of an au-
tomaton. Languages recognized by finitary monoids in ZFA(N )
are the subject of the thesis of Rafal Stefanski [Stefanski, 2018],
[Bojanczyk and Stefanski, 2019]. The author developed a model of
restricted deterministic automata whose languages are recognizable
by finitary monoids. In this paper, we shall take another path and
generalise the concept of a monoid. If Set(T ) is the topos under con-
sideration, then by Rel(T ) we shall denote the category of binary
relations in Set(T ). Category Rel(T ) equipped with the cartesian
product × and the terminal object 1 from Set(T ) forms a monoidal
category. By a promonoid in Set(T ) we shall mean a monoid ob-
ject in Rel(T ). Explicitly, a promonoid M consists of an object M
together with the multiplication relation µ : M ×M −7−→ M and the
unital monomorphism η : M0 →M subject to the usual monoid laws.
The category of promonoids and their homomorphisms will be denoted
by ProMon(T ). Because Rel(T ) has small coproducts inherited from
Set(T ), for every Σ there is a free promonoid Σ∗, which coincides with
the free monoid in Set(T ).

We should also observe that every promonoid has a representation
as a monoid, i.e.: every promonoidM gives rise to the power monoid
P(M) by convolution: the unit 1 → ΩM is just the characteristic
map of η, and the multiplication ΩM ×ΩM → ΩM is given as the free
cocontinous extension of M ×M → ΩM on each coordinate.

To our surprise, the concept of recognisability by promonoids has
not been studied before. Therefore, the next theorem and the follow-
ing Corollary 3.8 has been unknown even in case of the usual nominal
sets.

Theorem 3.7 (Characterisation of non-deterministic regular lan-
guages). Let K be a class of objects closed under binary products. The
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languages recognized by non-deterministic K-automata coincide with
the languages recognized by K-promonoids.

Proof. Let us observe that for every object M the object ΩM×M car-
ries a canonical monoidal structure of binary relations under compo-
sition. Because the composition is cocontinuous in both variables,
ΩM×M is freely generated by its restriction to the singletons, i.e. by a
promonoid RM = 〈M ×M, ◦,=〉, which we shall call the promonoid
of binary relations on M . Every promonoid M = 〈M,µ, η〉 has a re-
lational representation as a submonoid of the promonoid of RM given
by the transposition of its multiplication µ, i.e. µ† : M −7−→M ×M is a
homomorphism in the category of promonoids5.

We claim that if a language L is recognised by a promonoidM then
it is recognized by promonoid RM. Let F : M −7−→ 1 be a characteristic
function of a subobject of M . Then η†×F : M×M −7−→ 1 is a character-
istic function of a subobject of M×M . Moreover, µ†◦(η†×F ) = F by
the definition of the transposition and neutrality of η under µ. There-
fore, if there is a relational homomorphism h : Σ∗ −7−→ M such that:
L = F ◦ h, then L is recognised by homomorphism µ† ◦ h : Σ∗ −7−→ RM
with subobject η† × F .

Now, if we define a non-deterministic automaton A as:

• its object of states is M

• its transition relation is µ ◦ (h× idM ) : Σ×M −7−→M

• its initial states are η

• its final states are F

then, L(A) is given by:

Σ∗
idΣ∗×η−7−→ Σ∗ ×M h×idM−7−→ M ×M µ−7−→M

F−7−→ 1

because µ† ◦ h is a homomorphism as has been shown in the above.
But F ◦ µ ◦ (h × idM ) ◦ (idΣ∗ × η) = F ◦ µ ◦ (h × η) = F ◦ h what
completes this part of the proof.

In the other direction, let us assume that L is recognized by an
automaton A = 〈s0 : I → S, sf : F → S, σ : Σ × S −7−→ S〉. Then L is
given as the left path on the following diagram:

Σ∗ × S S

Σ∗ S × S

1

σ†
//

σ
//

idΣ∗×χ
†
s0 ��

χs0×idS

��

idS×χsf

//

5One may treat this fact as the generalisation of the Cayley representation for a monoid
M as a submonoid of the endo-monoid MM under functional composition.
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The square commutes by the definition of relational composition.
Therefore, if we equip RS with χs0 × χsf , then σ† : Σ∗ −7−→ RS will
recognize L.

Because T -definable objects are closed under binary products, from
Theorem 3.7 we can get the following characterisation of definable
non-deterministic languages.

Corollary 3.8. A language can be recognised by a T -definable
promonoid if and only if it can be recognised by a T -definable non-
deterministic automaton.

4 Conclusions and further work

This paper makes the following contributions. First of all, we show
that mathematics can be transferred back and forth between sets with
atoms and categories of continuous actions of topological groups (The-
orem 2.2 and Theorem 2.4). Because the topos of continuous actions
is much better behaved than the topos of sets with atoms, this allows
for a simplification of the mathematical reasoning. For our second
contribution, we showed the limits of the classical approach to com-
putability in sets with atoms. It may be inferred from the analysis
in [Bojanczyk et al., 2011] that effectiveness of the naive algorithms
to the reachability-like problems defined in a decidable complete first
order theory is equivalent to ω-categoricity of the theory. Our Theo-
rem 2.6 shows that ω-categoricity of the theory is actually equivalent
to the existence of any effective algorithm for reachability-like prob-
lems. This leads to our third contribution. We showed how to push
forward the concept of algorithms and automata beyond complete first
order theories. This requires replacing toposes of continuous actions of
topological groups by general classifying toposes for positive existen-
tial theories. We have coined a new property of a theory: “elimination
of transitive closures” and showed that in some aspects it behaves like
ω-categoricity for complete first order theories. This includes Theo-
rem 2.8 for the reachability problem, Theorem 3.1 for the emptiness
problem of an automaton, and Nihil-Nerode like Theorem 3.6, which
is central for studying behaviours of deterministic automata. For our
forth contribution, we established a general correspondence between
languages of non-deterministic automata and relational monoids in
Theorem 3.7. This correspondence has not been known before even
for very restricted cases (like nominal sets). The meta-contribution
of this paper is in showing that many concepts incarnate in differ-
ent areas of mathematics and by linking these incarnations together
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we can simplify our thoughts and proofs. For example, the connec-
tion between coherent groups (defined by Blass and Scedrov in ’80s
to characterise coherent toposes of continuous actions of topological
gorups) and Roelcke precompact groups (defined by Roelcke in ’70s
to characterise topological dynamics) has not been observed before.
Similarly, many of the theorems from [Bojanczyk, 2019] with advanced
proofs are easy consequences of the facts from the theory of classify-
ing toposes and the connection established in this paper (compare the
proof of Theorem 5.1 in [Bojanczyk, 2019] with our Theorem 2.8).

For further work we shall study other concepts and algorithms
definable in positive existential theories, e.g.: constraint satisfac-
tion problems with definable sets of constraints, definable push-
down automata, definable Turing machines, etc. Our recent paper
[Przybylek, 2020] shows that carrying over some of these results to
non-Boolean classifying toposes is a challenging task.
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