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ABSTRACT
P4 allows a new level of dynamism for routers beyond Open-
Flow 1.4 by allowing headers and tables to be modified by
software in the field. Without care, P4 can unleash a new
wave of software bugs. Existing tools (e.g., VeriFlow, Net-
Plumber, Hassel, NoD) cannot model changes to forwarding
behaviors without reprogramming tool internals or having
users manually add new forwarding models. Further, a P4
network can introduce a new class of bugs (not tested for by
existing tools) wherein the P4 network creates malformed
packets.

To attack these two problems, we provide an operational
semantics for P4 constructs and use it to compile P4 to Dat-
alog so that the verification model can be automatically up-
dated as the network changes. We demonstrate this vision
by compiling the mTag example in the P4 specification (and
a new sTag security example) on a sample network and by
automatically detecting forwarding bugs. Efficiently verify-
ing (across all table entries and packet headers) that a P4
network only delivers well-formed packets takes a few sec-
onds.

1. INTRODUCTION
While OpenFlow limits customization of routers in

the field to forwarding table entries, P4 [9] is a language
to program a router data plane to express completely
new forwarding behaviors. P4 allows operators to spec-
ify [9] an action language, action primitives, and control
flow for each packet.

A customer who wishes to efficiently enforce a new se-
curity policy can reprogram existing P4 routers to add
and process a new security tag in packets (Section 4
has a detailed example) without being limited by ex-
isting ACLs, and without years of standardization or
private arrangements with router vendors. Other cus-
tomers can implement different headers (e.g., larger or
hierarchical tags) and monitoring features. Innovation
is enabled.

But there is a fly in the ointment – a wasp lurking in
the rose – that is easy to ignore in the headlong rush
towards flexibility. Since P4 allows router forwarding

modifications at run-time, P4 can unleash a new wave of
software bugs. While one may complain the inflexibility
of existing router forwarding software, such software has
at least been field-tested for many years. While SDN
allows programming of table entries, P4 ups the ante by
also allowing table schemas and forwarding behaviors to
be changed.

Network Verification: In this paper, we seek to
catch bugs in P4 networks using static checking as in
Anteater [24], Header Space Analysis (HSA [21], Veri-
Flow [22], and NetPlumber [20]. However, these tools
cannot handle changes to forwarding behaviors without
reprogramming tool internals. For instance, each tool
would need to be reprogrammed to support a new se-
curity tag. Network Optimized Datalog, NoD [23], can
allow users to add new rules corresponding to repro-
grammed routers but these rules must be created man-
ually, an error-prone and time consuming process.

While it is possible to add new header formats for
each new customer as with OpenFlow, this accretes
complexity. Further, some customers may keep internal
header formats private, which then requires customers
to modify verification tools. One could rewrite tools
like Hassel or VeriFlow with a new level of indirection
through an abstract forwarding layer which can then
be instantiated by a customer. However, the P4 spec-
ification already provides such an abstract forwarding
layer. Rather than repeat this task, it seems prudent to
compile from P4 to an existing tool language.

Our approach is to compile P4 specifications to Dat-
alog instead of to VeriFlow or to Hassel. VeriFlow and
Hassel are fairly low level and do not have the expres-
sivity of Datalog (negations, classes, recursion) that are
useful to verify more complex properties [23], and to
compactly model the full range of forwarding behaviors
expressible in P4. For example, suppose a P4 program
chooses to test if two fields F1 and F2 are equal or sat-
isfy some arithmetic relation such as F1 < F2 + 10.
While this can be modeled as sets of wildcard expres-
sions in Header Space Analysis [21], it is unclear how to
compactly represent these sets for large header spaces.

Assume a set of properties (e.g., reachability, no black
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holes) specified in Datalog as listed in [23]. Assume the
customer starts with a standard IP network specified
using P4. Our P4 compiler can compile this P4 de-
scription to a set of Datalog rules and can check for the
specified properties. Next, assume the customer adds
security tags (Section 4) by reprogramming their P4
routers. Our tool then compiles the new P4 specifica-
tion to create a new set of Datalog rules. If the specifi-
cation stays the same, (e.g., can A talk to B, where A
and B are IP addresses that remain the same after the
change), then the verification model can automatically
be updated.

In addition to classical reachability bugs considered
in past work (e.g., black holes, loops), a P4 network
can introduce a whole new class of what we call well-
formedness bugs because of the ability of a P4 router to
add new headers and write fields.

Core
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Switch

Edge

Switch

H1

R
R  P1, Keep Tag
H1  P2, Keep Tag
H2 P3, Remove Tag

H2

P1

P2
P3

Figure 1: Example of a well-formedness bug cre-
ated by not stripping a tag before leaving the
network

Suppose that the routers in Figure 1 internally add
a security tag (Section 4) that is carried internally and
stripped before leaving the network. Suppose a forward-
ing table entry for host H1 at the leftmost edge router
fails to specify (Figure 1) that the security tag is not
stripped (which it should not for router R but should
for host H2). Then host H1 will receive a malformed
packet containing a security tag it does not understand.
In the best case, this packet is dropped by the host; in
the worst case it crashes host software.

Such a bug will not be caught by existing networking
tools (e.g., [21–23]) as they check if a packet reaches a
destination according to specification, but do not check
that if a packet p reaches, then p is well-formed. Un-
like reachability checks that require the operator to en-
ter reachability specifications or beliefs [23], such well-
formedness checks can be automated given a set of P4
programs and routers. We check whether any packets
output by the P4 network at the egress edge can be
parsed at the input edge. Such a bug may be hard
to discover because it may only be caused by a single
forwarding entry that applies to a small subset of the

header space. The contributions of this paper are:
1. Automatic Verification (Section 7): We show how

to automatically verify P4 networks from the P4 code
at routers: as routers are reconfigured in the field, ver-
ification regression test suites stay unchanged gaining
time (for manual update) and fidelity (no divergence
between manual model and router dataplane).

2. Verifying Well-formedness (Section 5.4): Well-
formedness is a new class of bug that differs from exist-
ing bug classes (such as reachability, loops, and slicing)
that is not addressed by existing tools. While PIC [28]
tests for protocol interoperability between peers, we do
verification across all packet headers.

3. Verifying Compilation (Section 8.2): P4 also in-
troduces the possibility of compiler errors. We show
how to verify compilation using Datalog program equiv-
alence.

4. Semantics for P4 (Section 5.2): Our operational
semantics for P4 makes precise subtler aspects of P4.

The paper is organized as follows. We introduce P4
in Section 2, a load balancing Tag example in Section 3
and a security tag example in Section 4. We describe
compilation of P4 to Datalog via an operational seman-
tics in Section 5, and then describe our entire check-
ing system in Section 6. We describe experiments in
Section 7, extensions in Section 8, and related work in
Section 9.

2. INTRODUCTION TO P4
P4 is a language for programming routers first de-

scribed in [9]; the full specification is available at [3]
and an open source implementation and simulator is on
github.com/p4lang.

Figure 2: The P4 Forwarding Model.

P4 uses a simple abstract forwarding model1 as shown
in Figure 2. Processing is divided between ingress and
egress with an opaque block for queues/buffers in be-
tween. A packet arrives on a port, is parsed and passed
1There has been a recent move to change this model to allow
vendor-specific components which we discuss in the conclu-
sion
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to the ingress match+action tables. Ingress processing
determines the set of egress packets to be sent to the
egress pipeline where they may be processed further. A
P4 program has the following components:
Header Types and Instances The layout of each
packet header is given as a declaration. Metadata is
represented in the same way as packet headers.
Parser The parser logic is expressed as a state machine
which can examine each byte of an incoming packet.
Actions The actions that transform the packet and
switch state are given as functions based on a set of
primitive actions.
Tables Table declarations indicate the fields in pack-
ets that are matched and the possible actions executed
when a table is applied to a packet. For example, a for-
warding table might examine the L3 destination address
of a packet and have “set-output-port” as an available
action.
Control Flow Finally, the P4 program defines a func-
tion giving the order and conditions under which tables
are be applied to a packet.

Table 1 explains P4 keywords used in this paper.

P4 Keyword Usage
metadata Declares a container for metadata by

header type.
standard_
metadata

P4 defined metadata; ingress port,
egress port, etc.

extract In the parser, copies and formats packet
data to a header instance.

select Chooses the next parser state by select-
ing from a list of cases.

action Define an action that can be executed
by a table. It is a composition of prim-
itive actions.

modify_field A primitive action that changes a field
in a header instance.

add_header A primitive action which sets a specific
header instance as valid.

remove_header A primitive action which sets a specific
header as invalid.

drop A primitive action which marks the
packet to be dropped. If done in the
ingress pipeline, the packet will con-
tinue to the TM.

table Start the declaration of a table.
reads Lists the packet headers to be matched

by a table.
actions Lists the action functions that may be

run by the table.
control Defines a control function to give the

order of application of tables to a
packet during processing.

apply Used in a control function to apply the
named table to a packet. The action
used by the table can affect further con-
trol flow.

Table 1: Selected P4 Keywords

3. THE mTag EXAMPLE
The mtag example from the original P4 paper [9] is

a simple source-routing program that provides efficient
load balancing (compared with ECMP or MPLS today)
with simple hardware for core and POD routers.

Figure 3: A Sample mTag Topology.

The topology of a network that might deploy mtag

is shown in Figure 3 consists of top-of-rack (TOR)
switches which insert the tag, a layer of aggrega-
tion switches called POD switches and a layer of core
switches. In our examples, we use 8 racks in a POD,
each POD has two POD switches and the core has 8
switches.

The mtag header includes four 1-byte routing fields
and an Ethertype. The first byte describes the first
POD (up-1) and the second byte (up-2) describes the in-
coming port on the core router; the third byte describes
the outgoing port on the core router, and the last byte
describes the outgoing port on the downstream POD
router.

The routing fields are interpreted as port numbers by
the POD and core switches. Thus the core and POD
routers need no lookup tables. Note that the first TOR
can easily implement load balancing by inserting differ-
ent MTAGs for different flows. Details are in [9].

4. THE STAG EXAMPLE
We provide a simple, self-contained example of a P4

program that allows detailed analysis of our verification
methods and showcases the ability of P4 to add useful
new network functionality.

Figure 4: A Sample sTag Deployment.

Our stag example, as shown in Figure 4 is based on
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an edge/core topology similar to mtag. We assume a
forwarding database in the core whose details we ignore
(in our experiments we ran stag on top of mtag ).

We wish to enforce a flexible security model. Ideally,
a security policy could be specified for every source/des-
tination pair of hosts in the network, possibly even at
the protocol (TCP Port) granularity.

Unfortunately, the policy requirements for such a
model would grow with the square of the number of
hosts in the entire network, requiring a prohibitive num-
ber of ACLs using today’s technology.

In many deployments, are divided into groups and
policy applied according to the groups to which the
source and destination belong. We call these groups
“colors” . We assume the security policy may be ex-
pressed in terms of the source and destination colors
of the packet. This is conceptually similar to Cisco’s
TrustSec and Security Group Tagging [4,5]. Most cloud
data center providers have similar abstractions. These
are referred to as Security Groups by both OpenStack
[2] and Amazon Web Services [1].

While Cisco has implemented source groups in hard-
ware in some routers, it may be useful for other P4
routers to add a basic version of source group function-
ality. Note that while it is easy to add security tags in
software at end hosts, many enterprises prefer to have
the edge router add tags to guard against laptops enter-
ing the organization whose host software is not under
the control of the enterprise.

For simplicity, we map ports to colors (though we
could use hosts). An stag holds the color of the source
port and is placed on the packet at the ingress of an
edge switch. The tag is maintained but ignored as the
packet traverses the core.

At the egress edge, a destination port is identified
and the egress edge switch looks up its color. A secu-
rity table then applies a policy based on examining the
source color (from the stag field) and the destination
color (from the local lookup).

If the packet is permitted to pass, the stag is
stripped. The security table exposes an interface al-
lowing run-time programming of specific policy to de-
termine exactly which groups are allowed to communi-
cate.

4.1 sTag in P4
We present the stag protocol as a self-contained P4

example. It will be used to illustrate our compiler and
analysis.

Even a simple protocol such as this is challenging to
deploy in practice. Our experience in defining stag ex-
amples quickly revealed how important such tools are to
verifying configurations and obtaining confidence that
the intent of the programmer was fulfilled.

Below we annotate much of the P4 code for the stag

example.
Headers: Figure 5 shows the headers used by the

stag protocol. Recall that the source color of the packet
needs to be communicated from the ingress switch to
the egress switch. This is done by the addition of an
stag header which simply has one field for the source
color.

The comparison of source and destination colors is
done at the egress edge switch. A metadata header,
local_md holds the source and destination colors simul-
taneously to decouple that process from packet tagging.
Note that we use “md” for metadata throughout the ex-
ample.

In order to differentiate local ports (which are as-
signed a color) and ports connected to the core, a
parser_value_set called host_ports is used. This is
just a set of numbers that can be managed at run time.
It holds the port numbers of the local ports. This set
can be examined by the parser to determine whether an
stag should be expected on the packet.

Parser: The parser is shown in Figure 6. It always
starts with an Ethernet header. It then checks whether
the ingress port is a host (local) port by examining the
value set host_ports as explained in the previous para-
graph. If the port is not a host port, then an stag is
parsed. Thereafter, parsing resumes as normal, in this
case with the parsing of an IPv4 header.

The instruction return ingress indicates that pars-
ing of the packet is complete and the ingress control flow
should be executed.

Tables and Actions: The tables and actions for
stag are shown in Figures 7 and 8 respectively. The first
table, resolve_source_color, is used to determine the
source port color by examining the ingress port. Recall
that P4 only defines the format of the tables and a run-
time interface will populate entries that specify exactly
what color is associated to each port.

The forward table examines the IPv4 destination ad-
dress and determines whether the destination is local or
remote, calling the appropriate action (see below).

Finally, on an egress edge switch, a color check is per-
formed by the color_check table. This has the option
of dropping the packet (and implicitly may allow the
packet to pass untouched).

The interesting actions are those called by the for-

ward table. Packets transiting from the core to a lo-
cal port will have set_local_dest called which will
strip the existing stag from the packet. Packets from
a local port that must be sent to the core will have
set_remote_dest called which will add an stag to the
packet. Recall that in this case the source color was set
by the resolve_source_color table, so we just need
to copy that value from metadata to the stag field.

Finally, to support the simple switching requirements
of the core, the action core_pass_through is provided.
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header_type ethernet_t {
fields {

dst_addr : 48;
src_addr : 48;
ethertype : 16;

}
}
header_type stag_t {

// The stag holds the original source port color
fields {

source_color : 8;
}

}
header_type ipv4_t {

fields {
version : 4;
src_addr : 32;
dst_addr : 32;

}
}
header_type local_md_t {

fields {
src_port_color : 8; // Mapped at ingress or from stag
dst_port_color : 8; // Mapped at egress

}
}

// Header instances declared based on types
header ethernet_t ethernet;
header stag_t stag;
header ipv4_t ipv4;
metadata local_md_t local_md;
parser_value_set host_ports;

Figure 5: Headers

parser start { // Always start with an Ethernet header
return ethernet;

}
parser ethernet {

extract(ethernet);
return select(std_md.ingress_port) {

// Is ingress port a local host port?
// If so, no stag is present
host_ports : post_ethernet;

// Otherwise, packet has an stag
default : stag;

}
}
parser stag {

extract(stag); // Get the stag from the packet
// Save source port color in md
set_metadata(local_md.src_port_color,

stag.source_color);
return post_ethernet;

}
parser post_ethernet { // After optional stag

return select(ethernet.ethertype) {
0x800: ipv4;
default: ingress;

}
}
parser ipv4 {

extract(ipv4);
return ingress;

}

Figure 6: Parser

This leaves the stag untouched.
Control Flow: The control flow for the stag ex-

ample is shown in Figure 9. If the stag header is
not present, the packet arrived on a host port. In
this case, the source color is found by applying the
get_source_color table. In all cases, then, the for-

ward table is applied to derive the egress port. At the
same time, the switch can determine if the packet is
destined for a local port. If so, it can apply the secu-
rity policy by applying the color_check table to the
packet.

5. COMPILING P4 TO DATALOG
Figure 10 shows an overview of our system that com-

piles a P4 specification of a set of routers and a topology
and converts it into a system of Datalog rules that define
the network, and to which the user can pose queries.

First, the user specifies parameters to a Topology gen-
erator that generates a network topology (currently a
fat tree as in Figure 3 with parameters such as as num-
ber of TORs, core routers etc.). Each router has a
unique router.addr and each interface has a unique
port.addr. The topology is specified by using an
Egress table that map each output interface at a router
to the input interface and router that it is connected to
via that output interface.

Second, the user specifies parameters to a Table Gen-
erator that generates a set of forwarding tables (not
necessarily IP forwarding but all the tables specified by
the P4 program) at each router called Table Data in
Figure 10. The generator also fills in the table entries;
in P4 terminology this generator both generates and
populates the tables.

Next, the user supplies the P4 program at each router
to a compiler that replaces each router by a set of
Datalog rules. Finally, the user specifies queries us-
ing a Query Generator that translates human readable
queries (i.e., can IP address A reach B) to queries for
the Datalog engine.

When the programs, tables and topology information
are converted into Datalog, they result in a predicate
reach that describes the set of reachable configurations
in a network as described in Section 5.1. To compile P4
programs into Datalog we rely on a big-step structural
operational semantics (or Natural Semantics [19] intro-
duced as a variant of small step semantics [29]) of P4,
described next in Section 5.2. This is adequate at the
level of P4, which supports parallelism, but not fine-
grained concurrency as in NetCore [30]. Our compiler
handles all aspects covered by Table 1 which is ade-
quate for reachability queries. It omits handling cur-
rent and proposed features of P4 for computing check-
sums, Quality of Service, monitoring and broadcasting.
Section 5.3 shows that the SOS rules translate fairly
directly to Datalog rules. Section 5.5 describes an in-
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// Map port number to color
table resolve_source_color {

reads {
std_md.ingress_port : exact;

}
actions {

set_source_color;
}

}
// Map packet dest addr to exit port
// Add/remove stag if necessary
table forward {

reads {
ipv4.dst_addr : ternary;

}
actions {

set_local_dest; // Used by edge only, to local
set_remote_dest; // Used by edge only, to core
core_pass_through; // Used by core only

}
}
// Apply security policy based on src/dst port colors
table color_check {

reads {
local_md.dst_port_color : exact;
local_md.src_port_color : exact;

}
actions {

drop;
}

}

Figure 7: Tables

action set_source_color(color) {
modify_field(local_md.src_port_color, color);

}
// Set the egress port and remove stag, forwarding local
action set_local_dest(egr_port, color) {

modify_field(std_md.egress_spec, egr_port);
modify_field(local_md.dst_port_color, color);
remove_header(stag);

}
// Set the egress port and add stag, forwarding to core
action set_remote_dest(egr_port) {

modify_field(std_md.egress_spec, egr_port);
add_header(stag);
modify_field(stag.source_color,

local_md.src_port_color);
}
// The core (non-edge) switches do not need to modify the
// stag; just set the egress port
action core_pass_through(egr_port) {

modify_field(standard_metadata.egress_spec, egr_port);
}

Figure 8: Actions

control ingress {
if (not valid(stag)) {

// Packet from local port, map its color
apply(get_source_color);

}
// Where does the packet go? Local or core?
apply(forward) {

// Here, forward table used "local"...
set_local_dest {

// ... so apply the security policy
apply(color_check);

}
}

}

Figure 9: Control Flow

lining optimization that substantially reduces memory
overhead during analysis.

Figure 10: P4 analysis framework

5.1 Reachable States
The main ingredient for our Datalog queries is a pred-

icate reach that captures the set of reachable states.
Recall that a state is a combination of a packet header
and an interface address, together with other meta-
data.

Intuitively, to find out which packets can reach which
interfaces, we have to pass packets through the router
processing state machines of all the routers in the topol-
ogy. Thus, to define reach, we need to define the
state transformations performed by routers which we
call router_processing.

The router_processing predicate has three main
stages. The first stage ensures that meta-data fields
are reset using the predicate reset_local_data. The
second stage, start(S, S′), corresponds to the transi-
tion relation corresponding to the P4 program config-
ured on the router, where S, S′ are the states before and
after the P4 program processes a packet. The last stage
applies the egress table that models the links that con-
nect routers. Using the egress mapping, the packet is
sent to the next router Next and interface Port. In
Datalog:
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reach(S’) :-
reach(S),
router_processing(S, S’).

router_processing(S, S’) :-
reset_local_data(S, S0),
start(S0, S1),
egress(S1.local.addr, S1.std_md.egress_spec, Next, Port),
S’ = { S1 with std_md.ingress_port = Port, local.addr = Next }.

reset_local_data(S, S’) :-
S’ = { S with local_md = 0, std_md = 0, parsed = 0 }.

We read a Datalog rule like

reach(S’) :- reach(S), router_processing(S, S’)

as follows: if the two predicates on the right of the :-

hold, then the predicate on the left holds as well.

5.2 An Operational Semantics of P4
P4 looks simple, but there are a number of subtleties

that need to be carefully specified that took us several
weeks of discussion with the writers of the P4 spec. Ex-
amples include:
Control Flow: In the stag example in Figure 9 when
we invoke apply on the forward table, the next action
to be performed is specified by the matching entry in
the IP4v4 forwarding table. In other words, control
passes to the next action and not back to the caller,
often referred to as “continuation semantics”.
Parameter Passing: The stag program shows that
the color parameter in Figure 8 comes sometimes from
a passed parameter and sometimes from meta-data. At
other times, it comes from table matches.
Update Semantics: Section 8.2.1 of the P4 specifi-
cation [9] specifies that fields are updated in parallel
within a table and serially between tables.
Drop Semantics: When a packet is dropped using
the drop keyword, should the remainder of the P4 pro-
gram be invoked (which can update counters and other
state)?

For all these reasons, it is worthwhile to specify P4
semantics precisely. The primary payoff in our case is
that once this is done, the translation to Datalog is
fairly straightforward and we use the Datalog engine
for calculating the meaning of a set of scenarios.

We choose to use a standard, “big-step” operational
semantics for P4 statements. The semantics defines a
relation, by induction on the syntax tree of P4 pro-

grams. The relation is of the form S, E stmt−−−→ S′ where
the pre-state S and the post-state S′ summarize the
states before and after execution of the program state-
ment stmt in the environment E that provides values for
local variables. The operational semantics rules define
by induction predicates of the form stmt(E , S, S′).

Rules, are as usual written as inferences where a hor-
izontal line separates premises (above) from the con-
clusion (below). As we will later observe, each such
definition corresponds to a Datalog rule.

The operational semantics manipulate a state vari-
able S with 4 components:
1. Header fields of a packet processed by a router.
2. Internal meta-data, such as standard_metadata val-
ues and other auxiliary meta-data that is defined in the
P4 program. This includes local_metadata used in our
stag example.
3. Compiler generated meta-data corresponding to
state that is maintained implicitly by the P4 runtime.
For example, for each header the runtime maintains a
valid field to indicate if the header is in the packet, and
a field parsed to track if it is parsed.
4. An address field that is the unique identifier of the
router or end-host receiving and processing the packet.

States are treated as records. Records are updated
using the syntax {S with fld = val}, meaning that the
resulting record is the same as S, except the value for
the field fld is set to val , regardless of the value of S.fld .

In addition, the semantics of a P4 statement depends
on the environment variable E . If one thinks of the
packet headers and metadata as state, other variables
such as passed parameters are part of the ”environ-
ment”.

The rules for most of the P4 statements either rewrite
S by updating a field or they invoke a control state in
the parser, table, or action component. Let us first
describe selected semantic rules for actions. The effect
of actions is a combination of field updates, adding and
removing headers, and calling other actions recursively.

S, E remove header(hdr)−−−−−−−−−−−−→ {S with valid .hdr = false}

S, E add header(hdr)−−−−−−−−−−→ {S with valid .hdr = true}

The rule for modify_field is more complicated and
is motivated by the two statements that modify the
color field in Figure 8. The first sets the field using a
passed parameter (from the environment) and the last
statement sets color based on a field in the metadata.
Which one should be used? To answer this question,
the semantics assumes a function eval that evaluates
the expression representing the modified field environ-
ment under the joint environment ES. It behaves as a
stack: to find the value of a field fld , first examine E if
it defines a value, then examine S. This corresponds to
standard programming intuition where one first checks
passed parameters and then elsewhere (at the headers
or metadata).
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eval(ES, exp) = val

S, E modify field(fld,exp)−−−−−−−−−−−−−→ {S with fld = val}

action act(params){stmt} ∈ Prog
eval(ES, exps) = vals

S, [params 7→ vals]E stmt−−−→ S′

S, E act(exps)−−−−−−→ S′

Actions that only modify fields are combined in par-
allel, other actions are combined sequentially (P4 spec-
ification [9], page 46) . We can capture both styles of
semantics below.

Parallel composition is the more intricate semantics;
we freeze the current state S and add a copy of S into
the environment E to ensure the old state is used when
evaluating the expressions passed in as the second ar-
guments to modify_field and not the updated state.

S, E stmt1−−−→ S1 S1, E
stmt2−−−→ S′

sequential ;
S, E stmt1;stmt2−−−−−−−−→ S′

S, ES stmt1−−−→ S1 . . . Sk−1, ES
stmtk−−−−→ Sk

parallel ;
S, E stmt1;...;stmtk−−−−−−−−−→ Sk

We now turn to probably the most interesting seman-
tics, that of tables invoked from control blocks. For
example, consider the forward table invocation in Fig-
ure 9. To understand its meaning, we must first examine
the table declaration in Figure 7 which specifies that
this table is indexed by the IP v4 header and may spec-
ify an action to set_local_dest and (in some cases) a
set of arguments from the match.

However, when we invoke forward in Figure 9, it
also checks whether the result of the match specifies
set_local_dest (has the packet reached the remote
edge?) in which case it applies the security check ap-

ply(color_check).
In general, when the control program calls ap-

ply(table), it uses the table declaration to find the list of
fields read and actions to be executed. It examines the
fields mentioned in reads for a matching entry. These
fields are mapped (via the table lookup) to values that
determine which action to take, as well as any additional
arguments passed to actions.

We use vals to refer to these additional values, and
assume that can be computed by calling a function
add_entry_table _action , which maps reads to argu-
ments that get supplied to the named action.

As we have seen, the P4 program may specify that the
continuation of a table action is another action. Indeed,
Figure 9, specifies that if the forward table uses the
set_local_dest action, then the tables associated with

color checking are applied.
We encode this by passing the optional continuation

statement to the rules that process actions and complet-
ing the action with the statement. Thus, the table rule
applies the action act followed by the control statement
stmt.

When reading the semantics, keep in mind the ex-
ample of the forward table invocation in Figure 9 with
set_local_dest as act and apply(color_check) as
stmt. Starting at the top, we first read the table dec-
laration to determine the fields read and the actions,
then we find the extra arguments, if any, supplied by
the match of the fields read. Then we apply the action
act using the arguments supplied; then, and only then,
do we execute the stmt.

The behavior of table application is a no-op when
there are no keys that match any of the reads fields. P4
contains a custom continuation for no matches called
miss whose semantics are very similar except that there
are no arguments to gather and no act to execute.

table table {reads actions} ∈ Prog
act ∈ actions

vals = add entry table act(S.reads)

S, E act(vals)−−−−−−→ S′

S′, E stmt−−−→ S′′
apply

S, E apply(table){act {stmt}}−−−−−−−−−−−−−−−−→ S′′

For simplicity in this description we have omitted sev-
eral details of the full semantics, such as programs where
a table application can have multiple continuations, as
well as the priorities that P4 specifies for entries. We
also omit the mostly straight-forward rules for giving
semantics for the parser phase.

5.3 From SOS to Datalog
It is straight-forward to extract Datalog definitions

from operational semantics rules. For each program
statement and declaration in a P4 program, the corre-
sponding SOS rule from the previous section is directly
converted to a Datalog definition of a predicate named
by a unique identifier for the statement.

For example, the SOS rules for tables indicate
how to compile tables, such as get_source_color to
Datalog rules. We use the shorthand gsc_scc to
identify the table entries associated with the action
set_source_color in the table get_source_color.

There are two components to the transition relation:
upon successful lookup in the gsc_scc table entries,
apply the set_source_color action with the supplied
color. On a miss, the table is a no-op, encoded using
the last two rules.

get_source_color(S, S’) :-
add_entry_gsc_ssc(

S.local.addr, S.std_md.ingress_port, Color),
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set_source_color(Color, S, S’).

has_entry_gsc_scc(Addr, Port) :-
add_entry_gsc_scc(Addr, Port, Color).

get_source_color(S, S) :-
!has_entry_gsc_scc(

S.local.addr, S.std_md.ingress_port),
set_source_color(Color, S, S).

Not all P4 constructs are relevant when it comes to
analyzing forwarding behavior. For example, P4 con-
tains support for features such as metering and comput-
ing checksums of headers. We ignore these operations
in our Datalog compiler.

5.4 Verifying well-formedness
We define well-formedness of a P4 program as the

verification of protocol interoperability at the level of
packet acceptance. That is, we verify whether the pack-
ets produced by an implementation of a protocol are al-
ways accepted by a different implementation and vice-
versa. In addition to checking packet acceptance, we
can also verify that the header fields sent in a packet
always have the same value when decoded by the re-
ceiver’s grammar. In summary, well-formedness ensures
that the process of serializing and deserializing packets
is consistent across multiple implementations say from
different vendors.

Multiple tools have been developed in the past (e.g.,
PIC [28]) to test different implementations of a given
protocol. We focus on verification, rather than testing.

Our approach is as follows: Given an edge in a de-
ployment between two routers R1 and R2, let p1(S,S’)
and p2(S,S’) be the two relations between input packet
states S and output packet states S’. These are ex-
tracted from compiling the respective P4 programs at
R1 and R2 and their configurations into Datalog rela-
tions and rules. We then create the relation in2 and
query as follows:

in2(S) :- p2(S,S’).
?- p1(S,S’), !in2(S’).

The query encodes the set of packet states S that that
are accepted and transformed by p1 into S’ only to be
rejected by p2.

Well-formedness errors arise because P4 allows user-
defined packet formats; packet formats were thus far
fixed by vendors. Moreover, the order in which the pro-
tocol headers are stacked is also user-defined.

Note that many bugs in this class can also be found
using standard pairwise reachability, since if two imple-
mentations do not interoperate properly, then chances
are some packets will be lost. However, as shown in
Section 7.3, verifying well-formedness is much cheaper
than checking all-pairs reachability. Second, a sepa-
rate interoperability check makes it easier to localize the
cause of the error. Third, this class of bugs does not re-
quire a user to write a specification, while to achieve full
grammar coverage, the user would have to run multi-
ple reachability verification tasks and write appropriate

specifications. Fourth, as shown in Figure 1, it is possi-
ble to violate well-formedness without violating reach-
ability.

5.5 Optimizations
Compiling P4 programs into binary relations is very

convenient because we can define the semantics in a
compositional way. For the runtime backend, however,
this takes a large amount of memory (in the worst-case
a cross-product of states when packets are rewritten)
that slows down the execution.

Our compiler therefore contains an inlining phase
that propagates the reachability relation over auxiliary
binary relations. The result is a Datalog program that
only uses unary auxiliary relations over states.

For example, set_source_color:

set_source_color(S, S’, Color) :-
S’ = { S with local_md.src_port_color = Color }.

is inlined into the definition of get_source_color:

get_source_color_post(S’) :-
get_source_color_pre(S),
add_entry_gsc_ssc(

S.std_md.ingress_port, Color),
S’ = { S with local_md.src_port_color = Color }.

where get_source_color_pre summarizes the states
entering the get_source_color table (found in a single
place in the ingress control flow). The inlining trans-
formation operates purely on Datalog and does not de-
pend on P4. It is a special case of the fold/unfold trans-
formation [11].

6. IMPLEMENTATION
We implemented the P4 to Datalog compiler in

OCaml, in about 2,900 lines of code (excluding the
parser for P4). We chose OCaml because its rich data-
types simplified the development of the compilers.

The topology generator (which generates topologies
of the kind shown in Figure 3) has an additional 200
lines in OCaml. This module generates the egress ta-
bles (i.e., the wiring between router ports), as well as
all necessary tables for each router (e.g., TOR local for-
warding by the IP destination, mTag load balancing
tables, etc).

The test generator module has about 100 lines, plus
an additional 200 lines of tests for each program (mTag
and sTag). Tests were written in a mini DSL we de-
signed for this specific purpose. This language is based
on first order logic, with built-in predicates for network-
related properties.

The compiler works as follows. First, it converts the
P4 program (as an AST) to a set of logic formulas (as
described in Section 5). Then the compiler performs
multiple transformations on the formulas to reduce their
size and to make them more amenable for verification.
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The set of transformations include SSA construction
(to simplify subsequent transformations), equality prop-
agation (to remove useless variables), constant propaga-
tion (to reduce size of formulas), rule inlining (to reduce
number of rules and to enable further transformations),
and a final rewrite into DNF (since our Datalog solver
requires clauses to be in this form).

7. EVALUATION
We ran multiple experiments on both mTag and sTag

programs with the sample topology shown in Figure 3.
In summary, there were 8 core routers, 16 PODs, and
64 TORs, totaling 88 routers overall. Each TOR was
connected to 62 hosts, each with 2 IP distinct addresses,
totaling 3968 hosts and 7936 distinct IP address in the
data center. In this topology, the number of hops be-
tween two hosts is always four, with the exception of
hosts located in the same TOR, which are routed with
just one hop.

For the experimental evaluation, we used Z3 4.5
(64 bits) coupled with its NoD (network optimized Dat-
alog) engine [14,17,23], and OCaml 4.01. Tests were run
on a computer with an Intel Xeon 2.53 GHz CPU and
running Windows 10.

7.1 mTag
The compilation time for mTag was 1.8 seconds, in-

cluding Datalog generation for the program, topology,
tables, and test generation. The following running times
given for each test only include the solving time (i.e.,
running time of Z3), since compilation time is amortized
across all tests.

The first simple test we did was checking for black
holes, i.e., checking that each host can reach all other
hosts within the data center. This query took 3.2 sec-
onds for a pair of hosts located in different TORs, with
a peak memory usage of 63 MB. Repeating the exper-
iment but with hosts within the same TOR reduced
the running time to 1.7 seconds, and peak memory to
47 MB (reductions of 47% and 25%, respectively).

The second experiment checked for symmetric reach-
ability, i.e., if host A can reach host B, then B should
also be able reach A. This is a belief that should hold in
networks [23]. This test, more complex than the first,
took 3.7 seconds for a single pair of hosts, with a peak
memory usage of 64 MB.

The third experiment introduced a bug in a TOR in
the table that contains values for the mTag fields for an
outgoing packet given its IP destination address. The
down2 field was set in a way that the packet would
loop between a core router and a POD. This bug broke
symmetric reachability for one pair of hosts. Our tool
found the problem in 1.7 seconds (half the time it takes
with a successful query) and reported the path taken
by the packet until the loop.

The bottom line is that queries are comparable in
cost to that in Network Optimized Datalog [23]. Query
times are slower than say Hassel [21] but provide
more functionality: automated verification and well-
formedness checks.

7.2 sTag
We ran two similar experiments for the sTag program.

For these experiments, we took the mTag program and
added the sTag header. Therefore, no changes were
required in the aggregation layer just on the TORs in
order to add/remove sTag headers and enforce color pol-
icy. The sTag program took 11.6 seconds to compile.

The first experiment was detecting black holes. For
both reachable and unreachable hosts, the query took
31 seconds, with a peak memory usage of 317 MB. For
symmetric reachability, the running time was 34 sec-
onds, with similar memory usage.

For the second experiment, we checked for color con-
sistency, i.e., if hosts A and B have the same color,
then they should reach the same set of hosts. Checking
this property for a pair of hosts that satisfy the prop-
erty took 10 minutes, with a peak memory usage of
516 MB. We then introduced a bug in one of the hosts
such that it would sometimes tag packets with the in-
correct color and checked for consistency again. The
solver took approximately the same time to find all the
inconsistencies.

7.3 Well-formedness
We ran a third set of experiments to verify well-

formedness as described in Section 5.4.
In the first experiment, we verified our sTag pro-

gram against itself, and the solver took 2.2 seconds
to verify the consistency. Then, we introduced a bug
in the TOR’s program to make it send packets to the
POD with incorrectly ordered mTag and sTag headers
in some cases. The solver took 0.7 seconds to find the
bug.

An interesting outcome of this experiment was that
we caught a problem in our code. A TOR always adds
an mTag header when forwarding a packet to a POD.
Hence, if a packet already had an mTag header, it would
be forwarded with two such headers. This packet is then
be dropped by the receiver TOR since our grammar
only allows one mTag header per packet (only IPv4 is
allowed after the mTag header).

The property verified in this experiment is compara-
ble to one required to catch the bug depicted in Fig. 1.
To catch that bug, for every edge from a router R to
a host, we would check for interoperability between the
edge router R and a dummy router that only contains
the P4 program at an edge router needed to parse pack-
ets sent from a host. Verifying every edge beween inter-
nal routers (and between routers and hosts) at a cost of
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a few seconds for each test seems like a cheap piece of
insurance when a new protocol is added.

7.4 Experience
During the development of our tool, we inadver-

tently introduced multiple bugs including in the topol-
ogy generator, the configuration tables generator, and
the newly developed sTag program. Our limited expe-
rience shows that the flexibility of P4 makes it easy to
introduce subtle bugs on the network that, e.g., create
loops or disable or perturb otherwise valid paths.

For example, one of the bugs we introduced was the
one described in mTag’s experiment 3. The convention
we were using was that the first 8 ports of PODs were
connected to the core routers, and the remaining 8 were
connected to TORs. However, the program that creates
the tables for the TORs that, given a destination IP, re-
turns the mTag up1/up2/down1/down2 fields, did not
take into account the port numbering scheme correctly.
The end result was that the down2 fields were all in-
correct, and would make the PODs forward the packets
back to the core routers, and thus creating a loop and
breaking connectivity for all hosts. It is easy to imag-
ine similar operational bugs caused by incorrect switch
wiring.

A second bug we had was on the same TOR table.
We had a convention that each TOR was assigned a /24
IP range. However, some of these IP addresses were
not assigned to any host. The correct behavior for a
TOR receiving a packet to a non-existing host was to
drop the packet. In practice, TORs were not dropping
these packets, but instead creating a loop (adding mTag
fields, sending them across the network, and receiving
them back again). If this bug happened in a real deploy-
ment, it could be used for a DoS attack against the data
center operator. The cause of the problem was that the
tables created for the TORs included mTag entries for
the assigned IP range of the TOR. So, if the IP desti-
nation did not match any of the hosts connected to the
TOR, it would fall back to adding an mTag header.

A third bug was in the topology generator. This pro-
gram generates a table that states how router ports are
connected to each other. The program had a bug that
affected connectivity between TORs and PODs. The
deployment equivalent would be a misconnection of ca-
bles between routers.

8. EXTENSIONS
Our compilation steps thus far allow us to check prop-

erties of P4 programs over a fixed number of packet
headers, a fixed topology and a fixed configuration. Our
methodology is not intrinsically limited to this setting.
For example, it is possible to encode stateful [26, 27]
middleboxes, as implemented using P4’s send_to_cpu

flag, by introducing additional state bits. It is also pos-

sible to reason about non-fixed, parametric topologies
as in Vericon [8] using Datalog. We do not have space to
describe these extensions; instead two extensions that
have less in common with prior work.

8.1 Dynamic Headers
An MPLS network may stack multiple vlan headers

on top of another, but packet processing need only con-
sider a single vlan header. We can model the packet
state by adding multiple versions of a header type. For
example, we may have three vlan headers:

e t h e r n e t t e the rne t ;
v l an t vlan ;
v l an t vlan2 ;
v l an t vlan3 ;
i pv4 t ipv4 ;

The compiler to Datalog then produces three sets of
rules depending on whether the current vlan header on
the top of the stack refers to vlan, vlan2 or vlan3.

8.2 Verifying P4 compilation
A more novel use of our tool is to verify P4 opti-

mizations as equivalence between P4 programs. This is
useful with the microcosm within routers, that consists
of many pipeline stages [10] becoming as complicated
as the macrocosm between routers. It can catch mis-
takes in tools for compiling P4 programs that break a
large P4 table into seprate tables per hardware pipeline
stage [18].

An appealing feature of P4 is that it allows speci-
fying tables at different granularities of abstraction, so
each hardware pipeline stage and its tables [18] can be
modelled as separate P4 programs, while the complete
router is specified by a single P4 program with say a
forwarding table as in the IPv4 forward table in Fig-
ure 7.

As a simple example, assume that the P4 compiler
decomposes the forwarding table into two tables: an
exact match table in SRAM for 32-bit matches and an
LPM table for other prefixes. Call these tables for-

ward_exact and forward_lpm.
Recall that in the unoptimized P4 program (Figure 9)

, after ingress control applies the original forward ta-
ble, if it determines the destination packet to be for a
local destination, it applies a security policy by first de-
termining an exact color match; in case this match fails,
it checks that source and destination colors are equal.

The decomposition of the forward table requires
rewriting the ingress control using the new two tables.
Whether performed manually or using a compiler, opti-
mizations are a fertile ground for introducing bugs. Be-
low we provide an optimized ingress control pipeline
which places the color checks in an erroneous location.
The correct location is indicated by a comment.

control i n g r e s s o p t {
i f (not valid ( s tag ) ) {
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apply ( g e t s o u r c e c o l o r ) ;
}
apply ( fo rward exact ) {
miss {

apply ( forward lpm ) {
// buggy l o ca t i on
i f (not valid ( s tag ) ) {

apply ( c o l o r c h e c k ) ;
}}

// ∗ cor r ec t l o c a t i on ∗
}}}

We prototyped this check by representing the original
P4 program and the bogus and corrected optimized P4
programs as logical formulas; we encoded the assump-
tions for the tables as side conditions. We then used Z3
to check equivalence. Z3 produced a counter-example
for the erroneous location, and confirmed that the cor-
rected version was equivalent. Note that our Datalog
programs are over fixed finite domains so we do not
need to solve an undecidable query containment prob-
lem [13].

9. RELATED WORK
Anteater [24], Hassel [21], VeriFlow [22], Net-

Plumber [20], Network Optimized Datalog [23] and
VERMONT [6] do data plane verification do not sup-
port automatic verification from P4 though they could
be used as backends. Dobrescu [15] breaks new ground
by verifying the actual code of a Click router (and not
a model) but only for 1-hop properties not path prop-
erties and only for software routers.

Data plane verifiers differ in their expressive power.
Hassel acts as a library: new network formats and
queries are encoded by programming on top of the li-
brary. Other systems handle incrementality and pro-
vide a language abstraction based on regular expres-
sions [20], fixed-point logic [6], or Datalog [23]. Datalog,
the most expressive, allowed modeling P4 programs in
this paper.

Several tools do symbolic testing of SDN controller
programs that are less relevant to our work, notable
among them being NICE [12]. Flowlog [26] does use
a Datalog variant for both synthesis and verification of
controllers but would still require a compiler from P4 to
Flowlog. Related to our checks for protocol interoper-
ability [28] proposes joint symbolic execution using SMT
solving. Engines based on symbolic exeuction check fea-
sibility of one control path at a time; in contrast, for
large header spaces, NoD allows to check interoperabil-
ity exhaustively and provide all counter-examples.

NetKAT takes an algebraic/automata-theoretic ap-
proach proposing Kleene Algebras with tests as a foun-
dation for modeling routers [7]. More recently, a rea-
soning tool was developed for NetKAT [16] and applied
to the Stanford Campus Network. The tool relies on
translating propagation over header spaces as a pre-

processing step, which can be done in a single pass [31]
for the case of forwarding tables that don’t perform
packet rewriting. Concurrent NetCore [30] is a language
for packet programming. It is inspired by typed func-
tional programming. It uses fine-grained operational,
denotational and linguistic models to establish proper-
ties of the language and a compiler into the RMT model.
Margrave [25] provides a modeling language based on
Alloy and SAT solving for analyzing network configura-
tions.

10. CONCLUSION
P4 lowers the barrier for network programming, but

elevates the need for CAD tools for checking. Prior work
requires ad-hoc modifications to deal with changing for-
warding behaviors. By giving an operational semantics
(useful in its own right), our compiler translates (al-
most) arbitrary P4 programs to Datalog. We showed
how this technology can catch bugs when adding load
balancing (MTag) or security (stag).

In creating synthetic bugs to evaluate our tool, we
programmed a large number of actual bugs, strength-
ening our conviction that verification tools are essential
for this mlieu. P4 also allows a new class of bugs by
allowing the delivery of malformed packets. Our tool
can verify syntactic interoperability between pairs of
routers. In general, compilation to Datalog allows a
simple framework to add new checks whether for inter-
operability or to verify compiler optimizations. While
we currently verify a fixed set of populated tables in
a fixed network, a Datalog as backend allows us to do
symbolic reasoning across sets of networks and tables
that satisfy some properties.

A recent movement proposes splitting a router
P4 specification into vendor-independent and vendor-
dependent portions, where vendors can add proprietary
features such as monitoring. This paper’s methodology
can still be used if vendors supply an abstract P4 pro-
gram for the complete router (which is needed anyway
for behavioral simulation of P4 networks).

While regression testing is standard practice today,
exhaustive and automatic verification of interoperabil-
ity and reachability invariants will, we believe, become
standard practice for future SDN networks.
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