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Objective: Mesial temporal lobe epilepsy (mTLE) is associ-
ated with variable dysfunction beyond the temporal lobe. We
used functional anomaly mapping (FAM), a multivariate ma-
chine learning approach to resting state fMRI analysis to mea-
sure subcortical and cortical functional aberrations in patients
with mTLE. We also examined the value of individual FAM in
lateralizing the hemisphere of seizure onset in mTLE patients.
Methods: Patients and controls were selected from an existing
imaging and clinical database. After standard preprocessing of
resting state fMRI, time-series were extracted from 400 cortical
and 32 subcortical regions of interest (ROIs) defined by atlases
derived from functional brain organization. Group-level aber-
rations were measured by contrasting right (RTLE) and left
(LTLE) patient groups to controls in a support vector regres-
sion models, and tested for statistical reliability using permuta-
tion analysis. Individualized functional anomaly maps (FAMs)
were generated by contrasting individual patients to the control
group. Half of patients were used for training a classification
model, and the other half for estimating the accuracy to lat-
eralize mTLE based on individual FAMs. Results: Thirty-two
right and 14 left mTLE patients (33 with evidence of hippocam-
pal sclerosis on MRI) and 94 controls were included. At group
levels, cortical regions affiliated with limbic and somatomotor
networks were prominent in distinguishing RTLE and LTLE
from controls. At individual levels, most TLE patients had high
anomaly in bilateral mesial temporal and medial parietooccip-
ital default mode regions. A linear support vector machine
trained on 50% of patients could accurately lateralize mTLE in
remaining patients (median AUC =1.0 [range 0.97-1.0], median
accuracy = 96.87 % [85.71-100Significance: Functional anomaly
mapping confirms widespread aberrations in function, and ac-
curately lateralizes mTLE from resting state fMRI. Future stud-
ies will evaluate FAM as a non-invasive localization method in
larger datasets, and explore possible correlations with clinical
characteristics and disease course.
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Introduction

The pathophysiology of mesial temporal lobe epilepsy
(mTLE) involves neuronal dysfunction in both mesial tem-

poral structures and distant brain regions through anatomi-
cal and functional pathways.[1-6] The extent of epileptic net-
works may explain individual variability in ictal semiology
and interictal neurocognitive deficits in focal epilepsy.[7-10]
Network alterations and properties may also guide seizure fo-
cus localization, a common challenge in presurgical evalua-
tions for focal epilepsies.[11, 12] Whole brain fluctuations
in neuronal activity can be indirectly measured by resting
state functional MRI (rsfMRI).[13, 14] In the commonly
used functional connectivity (FC) approach, covariance be-
tween pairs of brain regions are calculated to represent net-
work organization. While simple and reproducible, the bi-
variate approach may overlook concurrent changes outside
of each tested pair. Estimating dynamic changes in sig-
nal correlations is another FC limitation that is partially ad-
dressed by using a sliding time window and bivariate con-
nectivity analysis.[15] At a group level, FC can reveal large-
scale local and distant network alterations in TLE,[4, 6, 12,
16-18] but efforts for individual characterization and classi-
fication of epilepsy using FC has led to modest results.[12,
19, 20] Other studies have used univariate analysis methods
of rstMRI analysis such as amplitude of low frequency fluc-
tuation (ALFF), which measures each regional signal fluc-
tuations independently. Group-level changes in ALFF are
also detected in mesial temporal and default mode network,
with different properties in right and left onset.[21, 22] Func-
tional anomaly mapping, unlike previous bivariate and mass-
univariate methods, is a multivariate analysis machine learn-
ing approach to rsfMRI and has the advantage of accounting
for concurrent changes in all regions. The result is a group or
individual functional anomaly map (FAM). The method has
been validated for studying cerebrovascular lesions and their
effects on distant brain function,[23] and showed correlation
with clinical symptoms and cognitive profiles.[24] For gen-
erating an individual FAM, time-varying rsfMRI signal aber-
rations are estimated by contrasting individual patient data
to a group of controls in a support vector regression model
(Figure 1). To date, limitations in measuring individual func-
tional variability and aberrations that correlate with clinical
characteristics has hindered clinical translation and remains
a crucial gap for development of biomarkers and diagnostic
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tools. In this study, we used FAM to map cortical and sub-
cortical rsfMRI anomalies in mTLE at group and individual
levels. We hypothesized that 1) group FAM analysis would
detect distant anomalies in addition to the region around the
seizure onset zone; 2) the pattern of anomaly is different in
left and right mTLE at both group and individual FAM levels;
and 3) this difference in individual anomaly pattern can be
used to lateralize mTLE patients. We tested those hypotheses
by generating group and individual FAMs for patients with
mTLE, and analyzed the results in relation to relevant clini-
cal characteristics.

Methods

Participants. We used a single-center dataset of adult
rsfMRI from Vanderbilt University Medical Center for this
study. The diagnosis and lateralization of mTLE in pa-
tients were determined by the clinical team through interictal
and ictal recording, clinical epilepsy-protocol 3T MRI, fluo-
rodeoxyglucose positron emission tomography (FDG-PET),
and intracranial recording, when indicated. We included pa-
tients with and without pre-surgical MRI evidence of hip-
pocampal sclerosis (HS) based on expert neuroradiologist re-
view. Data from 94 adult healthy controls were used as the
normative group for generating FAM.

MRI acquisition and preprocessing. All participants
were scanned using a 3T Philips Achieva MRI with a 32-
channel head coil. This included a 1-mm isotropic T1-
weighted anatomical and two consecutive runs of T2*-
weighted fMRI scans, with the participant instructed to rest
with eyes closed. Each functional scan lasted 10 min with
the following parameters: voxel size= 3x3x3.5 mm, 34 slices
with a 0.5 mm slice gap, TR = 2000 ms, TE=35 ms. Anatom-
ical and functional image preprocessing was performed us-
ing the fMRIPrep pipeline (version 20.2).[25] Functional im-
ages were co-registered with the anatomical image with nine
degrees of freedom, followed by estimation of head-motion
parameters, and resampling of preprocessed time-series into
standard space (MNI152NLin2009cAsym, 2 mm resolution).
We used xcpEngine (version 1.2.1) with 36-parameter de-
noising design (six motion parameters, white matter, cere-
brospinal fluid, and global signal time-series, their tempo-
ral derivatives and quadratic terms) plus movement spikes
as regressors, to extract time-series of regions determined
by parcellation atlases, and used a band-pass filter of 0.01-
0.08 Hz.[26, 27] Cortical regions of interest (ROIs) were de-
termined by the 400-parcel Schaefer atlas.[28] Subcortical
ROIs were determined by the 32-ROI Melbourne Subcortex
atlas. [29] Both atlases are derived from functional human
brain connectivity, hence providing network context to our
analysis. The Schaefer atlas is derived from normative local
and global FC measures with each parcel falling into one the
seven large-scale functional networks,[28, 30] and the Mel-
bourne Subcortex atlas delineates functional (as opposed to
traditional anatomical) subsegments in TLE-relevant thala-
mus, hippocampus, and amygdala.
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Functional anomaly mapping framework. We developed
a functional anomaly mapping framework based on the meth-
ods described and validated by DeMarco and Turkletaub.[23]
Their method involves voxel-level FAM to show aberrations
in rsfMRI signal of patients with cerebrovascular lesions.
Here, we adapted FAM for ROI-level analysis using sup-
port vector regression (SVR), a support vector machine im-
plementation of multiple linear regression,[31] to fit mod-
els distinguishing patient(s) from controls. For each partic-
ipant, the resting state time-series are scaled and flattened to
a one-dimensional space-time (ROI-time) vector. Data vec-
tors from the control group are stacked, generating a norma-
tive matrix with each row representing a participant and each
column representing space-time values. Similarly, data vec-
tors from a single patient (for generating individual FAM) or
a group of similar patients (for group FAM) are added. An
SVR model is applied to functional data by contrasting pa-
tient(s) with the control group (Figure 1). The model’s so-
lution results in a value for each space-time, representing its
importance in distinguishing the patient(s) from the control
group. For visualization and comparability between individ-
ual patients, the mean of the absolute FAM values for each
ROI over time is scaled (0< FAM <1; with 1 representing
the ROI with the highest importance), and back-projected to
standard atlas space for visualization of FAM values.

Group FAM analysis. To test whether group FAM analysis
detects distant anomalies in addition to the mesial temporal
region, we generated separate models for LTLE and RTLE
group analysis. The cortical and subcortical ROIs were in-
cluded in the same model. We performed random permuta-
tion analyses for inferring the statistical reliability and sig-
nificance for each of the two groups. Group results are tested
relative to what would be obtained under the null hypothesis
of no difference between patients and controls.[32] This is a
non-parametric approach that compares results to a null dis-
tribution produced by randomly shuffling the labels (control
or TLE) and repeating the model 5,000 times. For multiple
comparisons correction, we used a continuous permutation-
based family-wise error rate (cFWER) correction method,
with the critical threshold calculated based on the 95th per-
centile of the 10th most extreme permutation P-value (v =
10) observed across each permuted result map.[33] Regions
with P-values less than the critical threshold determined by
cFWER were reported as significant after correction for mul-
tiple comparisons.

Individual FAM analysis. To identify the patterns of
anomaly in mTLE patients, we defined regions with high
anomaly as the 86 ROIs with highest relative FAM values
within each individual FAM (2% of 432 ROIs). To identify
the common regions showing high anomaly among patients
of each TLE group, we aggregated individual FAMsS to cre-
ate heatmaps for LTLE and RTLE patients and tabulated the
number of patients showing high anomaly in those regions by
group. To examine other factors, we compared the prevalence
of those regions by presence of HS and surgical outcomes,
when available. Classification using individual FAM We ex-
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Fig. 1. Functional anomaly mapping framework. Time-series of resting state functional MRI are extracted for each participant, scaled
between 0 and 1 and flattened as a space-time vector. Stacked time-series from the control group (middle row, each line representing
all ROls for one person) are used as the normative control sample in support vector regression (SVR) models. Time-series of a group
of patients (A) or single patient (B) are contrasted with the control group to generate group (A) or individual (B) analysis. Results for
each ROI are averaged over the time dimension and are back-projected to same brain space for visualization. The mean of the model
weights is scaled between 0 and 1, with 1 representing the ROI with the highest importance in distinguishing a patient group or a single
patient from the control group. Panel (C) illustrates a coronal slice of T1-weighted image of a patient with right hippocampal sclerosis,
with right hippocampal atrophy. Individual FAM of the same patient projected to MNI space is illustrated without threshold (middle
image) and 0.68 (right coronal and sagittal panels). Note the anomaly in several ROls from the sclerotic hippocampus.

Group FAM

Patient group: stacked time-series

SVR model

1005

0751

0.50 4

caled intensitiy

025+

5

O 1

Control group: stacked time-series

SVR model B

y

Scaled intensiti

WV\/‘/\IWW'\/\/\A/V\/M/\W Individual FAM

Individual patient time-series

200 250 3

amined whether individual FAMs predict the hemisphere of
seizure onset (left vs right). Outcomes from surgical treat-
ment of mTLE were labeled as either Engel class I (no dis-
abling seizures 12 months after surgery) or classes II-IV (re-
currence of disabling seizures after 12 months)[34]. To show
if the hemisphere of seizure onset can be inferred by the pat-
tern of individual FAM, we trained a support vector machine
(SVM) as a multivariate classifier on 50% of the individual
patient FAM map data with the following parameters: lin-
ear kernel, C=1.0, with 3-fold cross-validation. We estimated
the model’s performance by resampling and splitting data to
train and test subset 1000 times, and reported the median and
range of accuracy and area under the curve (AUC) of receiver
operating characteristic curve (ROC) on the testing group.
The resampling for training was stratified by their classifi-
cation group (for example left or right) to avoid bias in per-
formance. We reported the regions with the highest impor-
tance in predicting laterality from the trained SVM, and visu-
ally compared the distribution of FAM values for those high-
importance ROIs. Our dataset had an imbalance in Engel
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class I versus Engel class II-IV surgical outcomes, which is
expected in treatment of TLE, however we examined whether
a model similar to lateralization SVM can classify patients to
surgical outcomes groups based on their individual FAM. Fi-
nally, given the high dimensionality of FAM data, to provide
a more interpretable visualization of the distance and rela-
tionships between patients, we applied principal component
analysis (PCA)[35] to the set of individual patient FAMs. We
plotted patients based on their first two principal components,
and the probability of the distribution was demarcated as ker-
nel density estimation. If SVM results a high accuracy in
classification, we expect a visual separation of patients based
on their groups in the low-dimensional space.

Standard Protocol Approvals, Registrations, and Pa-
tient Consents. The Vanderbilt University Institutional Re-
view Board approved the use of human subjects for this study
and written consent was acquired from all subjects prior to
participation. Analysis of anonymized data was approved
by the George Washington University Institutional Review
Board as exempt.
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N (Female:Male)

Mean age at scan date in years (range)

Median age of onset in years

Handedness (Right:Left)

Resective surgery*(Engel outcome at 12-month)

With evidence of HS on MRI(Confirmed HS on pathology)
Without evidence of HS on MRI(Features of HS on pathology)

RTLE LTLE Control
32(17:15) 14 (4:10) 94 (45: 49)
20 (20) 13 (12)

12(4) L(1) _

40.8 (23-62) 369 (18-68) 38.1 (18-71)
20 18.5 _

25:7 12:2 81:13

30 (27) 13 (12)

Table 1. Demographic and clinical characteristics of participants.

Data availability and method reproducibility.
Anonymized data and code will be shared upon request
by qualified investigators. We used MATLAB (R2022a)
for generating FAM results, with SVR performed using the
fitrsvm function (BoxConstraint=1; OutlierFraction=0.05;
Epsilon = 0.1; and ISDA solver). We used Python (version
3.9.7) Scikit-learn and nilearn libraries[35] for subsequent
analysis steps library for visualizations.

Results

Participants. Fourteen LTLE and 32 RTLE patients with
clinically confirmed diagnosis of mTLE and adequate im-
age quality were included. Of those, 13 LTLE and 20 RTLE
patients had MRI evidence of HS, which was confirmed by
post-surgical pathology in all cases but one LTLE patient who
underwent laser ablation. The majority (43/46) of patients
underwent selective amygdalohippocampectomy or standard
anterior temporal resection on diagnosed side of mTLE, and
39 had Engel seizure outcome 12 months after the surgery.
One RTLE patient underwent responsive neurostimulation
placement, with 12-month Engel score of IV, and one LTLE
patient had laser ablation of amygdala and hippocampus,
and achieved 12-month Engel score of I (free of disabling
seizures). One patient deferred intervention. Table 1 summa-
rizes other relevant clinical and demographic characteristics.

Functional anomaly mapping shows distributed aber-
rations in group analysis. Group FAM results showed
distributed spatiotemporal functional alterations beyond the
mesial temporal and the limbic network for both RTLE and
LTLE groups (Figure 2).

From permutation testing of group results for statistical reli-
ability, 46 ROIs (one subcortical and 45 cortical) in RTLE,
and 28 (three subcortical and 25 cortical) in LTLE showed
higher anomaly compared to the control group (ROI-wise un-
corrected p<0.05). Following correction for multiple com-
parisons, 10 cortical regions RTLE and four cortical regions
in LTLE remained significant (cFWER corrected p-value
threshold for V=10 of 0.009 for RTLE, and 0.008 for LTLE).
Table 2 lists the ROIs with significant anomaly for each TLE
group. Despite exhibiting higher FAM values relative to cor-
tical ROIs, subcortical regions were seldom found signifi-
cant using this permutation test. for example, combined hip-
pocampus and amygdala regions had an average FAM of 0.66
in left and 0.71 in right hemisphere, while the average corti-
cal ROIs in limbic network were 0.30 in both hemispheres.
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Individual FAM features. We defined the high anomaly re-
gions as each individual’s 20% highest FAM values. By
counting their presence within the same patient group, bilat-
eral mesial temporal ROIs were frequently the most anoma-
lous regions in both LTLE and RTLE patients. In addition,
most TLE patients had high anomaly in bilateral medial pari-
etooccipital regions, most associated with visual network and
posterior cingulate/precuneus anatomical regions. Figure 3
shows those regions in LTLE, RTLE, and RTLE when lim-
ited to those with HS or Engel score II-IV.

Lateralization from individual FAM patterns. The linear
SVM model trained on 50% of individual FAM results pre-
dicted laterality of the other untrained 50% of data with
high accuracy, with median AUC of 1.0 (inter-quartile range
0.99-1.0 across 1000 reiterations) and median accuracy of
96.87% (inter-quartile range 92.86-100%). The anomaly
in the right posterior hippocampus, left temporal cortex
(LH_Limbic_TempPole_5 [-40,-21,-27]), and a number of
default mode network members, including medial parieto-
occipital regions of posterior cingulate cortex and precuneus
played higher importance relative to other regions in this clas-
sification, based on their higher absolute SVM classification
coefficients. Figure 4B illustrates the FAM values for se-
lected ROIs with the highest importance. The range of indi-
vidual FAM in subcortical regions did not clearly character-
ize the two groups or HS status. Subcortical regions showed
higher anomaly, but their FAM ranges for RTLE and LTLE
highly overlapped. In contrast, cortical regions showed bet-
ter differentiation in range of FAM values between LTLE
and RTLE patients. Visualization of the first two principal
component of individual FAMs (accounting for 71% of the
variance in our data) showed low overlap between the RTLE
and LTLE patients and their distribution probability in the
low dimensional space, irrespective of the MRI lesion sta-
tus. The SVM model to classify Engel outcomes in 41 avail-
able patients (Engel class I vs. Engel class II-IV) resulted
a high variance in accuracy when testing over 1000 reiter-
ations, achieving a performance no greater than chance. A
similar SVM model trained to classify patients based on their
HS status did not achieve greater than chance performance in
our imbalanced data (see Table 1).

Discussion

In this study, we mapped the extent of functional anoma-
lies in contrast to a normative sample at the group level.
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RTLE ROI Name Atlas index Centroid coordinate Scaled FAM p-value#
1 RH_SomMot_9 239 41,-13,18 1.00 0.0002
2 LH_Vis_30 30 -12,-81, 36 0.96 0.0016
3 LH_Vis_26 26 -12,-71,20 0.92 0.005
4 RH_SomMot_18 248 52,-6,37 0.86 0.0046
5 RH_SomMot_29 259 34,-27,61 0.84 0.0044
6 LH_Default_PFC_2 167 -36, 37, -13 0.83 0.0008
7 RH_SomMot_19 249 54,-17,40 0.79 0.001
8 RH_Limbic_TempPole_5 329 29,12, -30 0.77 0.0008
9 RH_SomMot_31 261 29, -11, 65 0.75 0.0028
10 RH_Limbic_TempPole_3 327 37,17, -38 0.70 0.0014
LTLE

1 RH_Vis_14 214 51,-41, 13 0.99 0.0060
2 RH_SalVentAttn_TempOccPar_2 295 -36, 32, 38 0.94 0.0046
3 LH_Limbic_TempPole_5 123 -40, -21, -27 0.87 0.0000
4 LH_SomMot_32 63 35,23,-18 0.84 0.0018

Table 2. Regions of group anomaly by comparing TLE-HS groups to controls. Cortical regions with the largest measured anomaly
based on group functional anomaly maps (FAM value) for right and left temporal epilepsy (RTLE and LTLE) in contrast to controls,
after accounting for multiple comparisons. Region of interest (ROI) names, atlas index, and Montreal Neurological Institute centroid
coordinates (R, A, S) are according to the updated atlases.[28] Each name represents hemisphere (LH: left, RH: right), network name
based on Yeo 7-network affiliation of the ROI,[30] and component name. P-values are calculated based on the distribution of 5,000
permutations, with a threshold determined based on continuous family-wise error correction[33] (# p-value < 0.009 for RTLE and p <
0.008 for LTLE). None of the subcortical regions with p<0.05 met the correction threshold.

We detected robust spatiotemporal aberrations in regions dis-
tant from the ipsilateral mesial temporal structures, partic-
ularly in limbic and somatosensory networks. Our classifi-
cation model resulted in near 100% accuracy in lateralizing
mTLE patients based on individual FAM, derived from rest-
ing state scans. This lateralization accuracy also applied to
those mTLE patients without evidence of HS on their clinical
MRIs. Consistent with known structural changes in mTLE
pathology, we measured high degrees of anomaly in mesial
temporal (hippocampus and amygdala) subregions using in-
dividual FAMs. However, individualized mesial temporal
anomalies were less lateralizing compared to medial parieto-
occipital regions. While showing high accuracy for lateral-
ization, we did not find an association between FAM patterns
and surgical outcomes in our dataset.

Functional aberrations beyond the seizure onset zone
are revealed by FAM. Using both the group and individ-
ual FAM approaches, we identified a number of anomalous
temporal and extra-temporal cortical regions in addition to
the expected anomaly in mesial temporal regions. These re-
sults align with prior structural and functional studies sup-
porting a network pathophysiology in mTLE: while ipsilat-
eral mesial temporal structures are the presumed epilepto-
genic focus and the surgical target for treatment, electro-
physiological and imaging data show compelling evidence
of seizure generation and propagation onetworks.[6, 16, 36-
38] For instance, interictal FDG-PET hypometabolism in
temporal and extratemporal cortices ipsilateral to affected
side is common, and informative in clinical lateralization
of mTLE.[39] Large multicenter studies show cortical atro-
phy observed in bilateral temporal, medial parieto-occipital,
sensorimotor, and perisylvian/opercular regions.[10, 40-42]
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Based on an observed increase in ipsilateral-contralateral hip-
pocampal FC with longer disease duration, Morgan et al.
suggested that contralateral hippocampus play a significant
role in generating seizures after several years of epilepsy.[43]
Our previous study using rsfMRI and a machine learning ap-
proach revealed common bilateral and wide-ranging FC met-
ric changes in focal epilepsy, including in a subset analysis
in TLE.[12] We found a higher proportion of altered within-
network connections in DMN (i.e. DMN-DMN connections)
and somatosensory networks compared to other within- and
between-network connections. Using FAM in this study, we
found the highest spatiotemporal anomaly in multiple ROIs
from somatosensory network, and bilateral medial parieto-
occipital regions with ROIs affiliated with default mode, vi-
sual, and frontoparietal control networks, and anatomically
related to precuneus and posterior cingulate regions in group
FAMs and cumulative individual FAMs. (figures 2 and 4).
Overall, the results from our spatiotemporal analysis ap-
proach converge with results from different prior methods of
comparing TLE patients to controls, which support our hy-
pothesis that FAM detects physiologically meaningful differ-
ences between patients and controls.

Accurate lateralization of the seizure onset hemi-
sphere using individual FAM. Our classification model
showed very high accuracies in determining the laterality
of temporal lobe of seizure onset. Although developed on
a single-center dataset, we used a stratified splitting of the
training and testing patients, and reported accuracy on partic-
ipants unseen by the model across 1000 repetitions. While
plotting in the reduced dimensions of the first two princi-
pal components illustrates the separation of individual FAMs
based on their laterality, our use of a linear SVM model pro-
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vides the opportunity to look at individual ROIs with highest
importance in accurate classification (Figure 4). Remarkably,
presence of HS does not appear to significantly contribute to
lateralization accuracy. Lateralization is a crucial juncture
in the path to surgery with the aim to cure epilepsy, and a
common indication for invasive EEG recording. Although
the presence of unilateral HS on clinical MRI improves the
chance of seizure-freedom, around 20-30% of mTLE patients
show seizure recurrence after selective amygdalohippocam-
pectomy or anterior temporal lobectomy.[44] Discrepancies
in outcome may in part point to a limitation in characterizing
those with recent onset of disease or certain mTLE subtypes
using anatomical MRI, both significant factors in planning
treatment and predicting clinical outcomes. Overall, validat-
ing our non-invasive method of lateralization from rsfMRI
data will complement clinical evaluation for mTLE patients
with and without HS alike, and may lead to less need for
invasive recording and better outcomes. Both group FAM

Fig. 2. Group level anomalies in mesial temporal lobe
epilepsy. In group functional anomaly mapping (FAM), temporal
lobe epilepsy patients are contrasted with controls and tested for
significance using permutation testing. Cortical regions (A and
B) with significant group-level anomaly after accounting for multi-
ple comparisons are illustrated (critical p-value of 0.008 for LTLE
and 0.009 for RTLE). Subcortical regions had higher FAM values
(C and D), however did not survive correction for multiple com-
parisons (shown here uncorrected p-value<0.05). Color bars are
adjusted for showing different range of the scaled FAM values.
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and the combined individual FAM heatmap results highlight
functional differences in RTLE and LTLE, when contrasted
to the same control group, adding to evidence from previ-
ous structural and functional imaging studies that left- and
right-onset focal epilepsies are not mere mirror images.[11,
12, 45] One possible explanation for right-left differences
may relate to adaptive and compensatory changes in asym-
metric networks such as language or even somatosensory net-
works.[46, 47] Functional connectivity studies support the
hypothesis that presence of seizure focus in left hemisphere
is associated with reorganization in language[48] and senso-
rimotor[49] networks as a developmental and age-related as-
pect of epilepsy. Overall, our findings highlight the impor-

Fig. 3. Individual anomaly heatmaps. Cumulative individual
FAM heatmaps of the regions with highest anomaly (highest 20%
FAM values), color map is scaled to represent proportion of pa-
tients with high anomaly in those regions: A and B) left (LTLE,
N=14) and right (RTLE, N=32); C) RTLE limited to those with
hippocampal sclerosis on MRI (RTLE-HS, N=20); D) RTLE sub-
group with Engel score II-IV (recurrence of seizure) within 12
months from surgery (N= 10)..

Presentin N
15

Gholipour etal. | Functional anomaly mapping for epilepsy


https://doi.org/10.1101/2023.02.05.23285034

medRxiv preprint doi: https://doi.org/10.1101/2023.02.05.23285034; this version posted February 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

tance of avoiding mixing left- and right-hemispheric onset
epilepsies in group analyses.

Functional anomalies to complement structural
changes. Structural changes, connectivity alterations, and
functional changes in mTLE are related, but not completely
“coupled.”’[50, 51] Our results showed high FAM in sub-
cortical, particularly mesial temporal regions, but a lower
importance in lateralization model compared to many distant
cortical regions in the DMN and somatosensory networks.
Importantly, the lateralization models appear to perform sim-
ilarly in patients with HS and without HS, a strong structural
lateralizing finding. Our results suggest that rsfMRI analysis
may provide an added value to current presurgical evaluation
methods. Prior studies have studied rsfMRI in mTLE. One
group reported an AUC of up to 0.87 with a regression
model using connections between mesial temporal structures
and DMN regions, and reported inferior parietal lobules
and precuneus showing decreased connectivity in RTLE
compared to LTLE patients.[19] Another study found a
decrease in the functional thalamocortical connectivity in
multiple posterior and ventromedial thalamic segments in
both hemispheres.[18] Morgan et al. identified FC of the
ventral lateral nucleus of the right thalamus to the bilateral
hippocampi to distinguish left from right TLE patients.[52]
Using ALFF, a direct measure of rsfMRI signal power,
Sainberg et al. found a relative increase in bilateral anterior
hippocampi, more prominent on the ipsilateral hemisphere
for both LTLE and RTLE, which may correlate with disease
severity and progression in mTLE. They also reported
a lower ALFF in DMN regions in RTLE, but not LTLE
patients.[21] Hwang et al. reported using ALFF for later-
alization of TLE, reaching Leave-one-out cross-validation
accuracies of 83% in training with specific frequency
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bands.[22] A recent study used a three-dimensional convo-
lutional neural network trained on synthetically altered data
for lateralization of mTLE, and reported a 90.6% accuracy
in 32 patients. Most useful regions in classification based
on a gradient-weighted class activation map included default
mode, medial temporal, and dorsal attention networks.[53]
In comparison, our method in this study uses a different
machine learning approach to develop FAM, and a simple
supervised classifier to achieved near 100% lateralization
accuracy. Although we did not use traditional FC metrics and
focused on measuring spatiotemporal alterations, this FAM
approach maintains a connectivity context through extracting
timeseries from functional cortical[28] and subcortical[29]
ROIs. Based on our previous study using FC[12] and current
results using FAM, it appears that cortical regions such
as the heteromodal medial parieto-occipital as well as the
unimodal somatomotor regions contribute to more accurate
lateralization compared to subcortical structures, particularly

Fig. 4. Group level anomalies in mesial temporal lobe
epilepsy. A) Distribution of individual functional anomaly maps
(FAMs) for eight selected regions of interest (ROIs) from the
432 ROls, ranging from 0 to 1 (highest anomaly). Each verti-
cal line represents a patient within the left (blue) or right (orange)
mesial temporal lobe epilepsy groups (LTLE and RTLE). Black
dots represent patients with hippocampal sclerosis (HS) in con-
trast to gray non-HS patients. lllustrated regions were selected as
they demonstrated the highest importance in the SVM classifier
trained to predict laterality. B) Low-dimensional representation
of individual FAM for LTLE and RTLE patients. Principal compo-
nents (PC) 1 and 2, the histograms in the axes of the figure, rep-
resented 71% of the 432-ROI FAM variability. Kernel density es-
timation lines surrounding datapoints on scatter plot illustrate the
underlying probability density function of patients in each group,
and their area of overlap.
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the ipsilateral mesial temporal and limbic cortices. We may
attribute this observation to the bilateral network dysfunction
in mTLE and also high resting state variability in the healthy
population. Bilateral amygdala and hippocampi are highly
connected, and electrophysiological evidence suggests rapid
spreading of epileptic activity to the contralateral side.[54,
55] While FAM may measure the degree of contralateral
interictal dysfunction, compensatory engagement of the
healthier temporal lobe[20] may contribute to measured
aberrations as well. Larger and multimodal evaluation of
hippocampal connections and functional anomalies may help
test the above hypothesis.

Technical advantages of FAM.In generating individual
maps compared to a normative sample, FAM may provide
different and unique information about individual patients
compared to other methods. There are technical factors that
make our FAM method suitable for clinical studies. First,
we used an ROI- level FAM method, which in comparison to
the original voxel-based method provides several computa-
tional advantages and makes transition to a clinical imaging
tool more feasible. Instead of tens of thousands of time-series
in voxel-based analysis, we used only 432 time-series in our
models. Second, we used functionally-defined subcortical
and cortical ROIs for averaging fMRI signal and contrasting
patients’ to healthy individuals’ time-series. This physiolog-
ically meaningful “lumping” of data is also likely to improve
signal to noise ratio, and add network-level context to the
studied spatiotemporal properties. Our subcortical atlas pro-
vides additional granularity to analyses of functionally het-
erogenous regions relevant to mTLE. In particular, we uti-
lize two segments for each hippocampus and amygdala, and
four segments for each thalamus. Last, our method allows
for future studies to choose custom segmentation schemes
designed to test specific hypotheses. Our remarkable accu-
racy for lateralization in this dataset can be tested in focal
non-TLE as well, as there is evidence for shared functional
anomalies across all focal epilepsies. Although our dataset
was not powered for detecting an association of FAM signal
with surgical outcomes in this study, future studies with mul-
timodal imaging data, pathology, and detailed clinical charac-
teristics data may identify an association between individual-
ize FAM and other clinical characteristics beyond laterality in
mTLE. Larger datasets and prospective studies are required
for validation of our findings before they can be considered
as clinical tools.

Limitations

In addition to the retrospective nature of the current analy-
sis, there are other limitations. Our sample size is relatively
small for most classification models. Some of the anoma-
lies detected in TLE might be attributed to unmatched fac-
tors in controls including medication effects and comorbidi-
ties, however it is unlikely that are lateralizing. The validity
of comparing FAM from different centers needs additional
studies. In summary, we demonstrated spatiotemporal aber-
rations in TLE using a new ROI-based FAM method, and

8 | medRyiv

achieved a high accuracy lateralizing mTLE using individual
FAM results. Future studies should use validation datasets,
correlate FAM patterns with clinical course and symptoms,
and treatment outcomes.
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