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Abstract

Pulmonary inflammation drives critical illness in Covid-19,1;2 creating a clinically homogeneous ex-
treme phenotype, which we have previously shown to be highly efficient for discovery of genetic as-
sociations.3;4 Despite the advanced stage of illness, we have found that immunomodulatory therapies
have strong beneficial effects in this group.1;5 Further genetic discoveries may identify additional ther-
apeutic targets to modulate severe disease.6 In this new data release from the GenOMICC (Genetics
Of Mortality in Critical Care) study we include new microarray genotyping data from additional
critically-ill cases in the UK and Brazil, together with cohorts of severe Covid-19 from the ISARIC4C7

and SCOURGE8 studies, and meta-analysis with previously-reported data. We find an additional
14 new genetic associations. Many are in potentially druggable targets, in inflammatory signalling
(JAK1, PDE4A), monocyte-macrophage differentiation (CSF2), immunometabolism (SLC2A5, AK5),
and host factors required for viral entry and replication (TMPRSS2, RAB2A). As with our previ-
ous work, these results provide tractable therapeutic targets for modulation of harmful host-mediated
inflammation in Covid-19.

Introduction

Critical illness in Covid-19 is a relatively narrow clinical phenotype characterised by hypoxaemic respi-
ratory failure9 in which lung injury is, at least in part, caused by host-mediated inflammation.1;2 The
international GenOMICC (Genetics of Mortality in Critical Care) consortium has shown that critical
illness is a highly efficient phenotype for discovery of genetic variants associated with Covid-19,3;4 con-
tributing the largest signal to recent meta-analyses10 despite only including a relatively small number
of patients. This is consistent with our previous predictions for other respiratory viral illnesses.11;12

New discoveries in the first GenOMICC study (implicating OAS1, TYK2, IFNAR2, and DPP9),3

completed only 5 months after the first patient presented to a participating intensive care unit, led to
new understanding of the host:pathogen interaction,3;13;14 and, in part, led to the discovery of a new
effective treatment for severe Covid-19.15

Here, we provide an updated analysis of the international GenOMICC study comprising a combination
of microarray genotype data from 11,325 critically ill cases in the UK (9,279 cases) and Brazil (2,186),
combined with other studies recruiting hospitalised patients with a strong focus on severe and critical
disease: ISARIC4C (655 cases) and SCOURGE consortium (5,934 cases)(Table 1). We put these
new results in context by completing a meta-analysis of the new GenOMICC GWAS results with
previously-published data.

Results

The design of the GenOMICC study has been previously described.3;4 Briefly, patients with confirmed
Covid-19 requiring continuous cardiorespiratory monitoring or organ support (a generalisable defini-
tion for admission to a critical care area) were recruited in 2020-21. Using participants recruited and
genotyped in GenOMICC and ISARIC4C since the first reported GenOMICC GWAS,3 we performed
ancestry-specific GWAS largely following the methods we previously described3;4 (see Material and
Methods, and Supplementary Material). Using the results of these GWAS, previously reported re-
sults obtained using GenOMICC participants with whole genome sequencing data4, and data from
GenOMICC Brazil, we performed trans-ancestry and -platform meta analyses, within the GenOMICC
study, for a critically ill Covid-19 phenotype and a hospitalised Covid-19 phenotype (see Material and
Methods). Results of these GenOMICC-only meta analyses are illustrated in the lower parts of Figure
1 and Supplementary Figure 3 for the critically ill and hospitalised phenotypes respectively.

2

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 7, 2022. ; https://doi.org/10.1101/2022.03.07.22271833doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.07.22271833


0

5

10

15

20
100
200
300

SLC2A5
JAK1
AK5

EFNA4

TRIM46

THBS3

HCN3

BCL11A
SLC6A20

LZTFL1

LZTFL1

CEP97
PLSCR1

ANAPC4
IRF1

CCHCR1

MICB
HLA-DQA1

FOXP4

HIP1
ZKSCAN1

RAB2A
IFNA10

AQP3

ABO

SFTPD

MUC5B

ELF5

OAS1
FBRSL1

ATP11A

SLC22A31
PSMD3 KANSL1

TAC4

DPP9
TYK2

PDE4A

FUT2
NR1H2

IFNAR2

IFNAR2

IL10RB
ATP5PO
TMPRSS2

ACE2

All Critical Cohorts

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X
0

5

10

15

20
100
200
300 GenOMICC only

lo
g 1

0(
P)

Genomic Position

Figure 1: Miami plot showing meta-analysis results obtained using all critical phenotype cohorts (top)
and using GenOMICC data only (bottom). Independent lead variants in the all critical cohorts analysis
are annotated with nearby or plausible genes, with new associations from the present study in bold.

.

In order to put these new findings in the context of existing knowledge, we performed comprehensive
meta analyses, drawing on further GWAS results for the two phenotypes of interest, including data
kindly shared by the SCOURGE consortium and published data from the the Covid-19 Human Genetics
Initiative (HGIv6, 2021). Characteristics of contributing studies to the meta analyses are summarised
in Table 1 and Supplementary Table 1 for the critically ill and hospitalised phenotypes, with further
details on each study provided in the Supplementary Material. Since leave-one-out analyses from the
HGIv6 release were not available, we used a mathematical subtraction approach, as in our previous
work,4,to remove the GenOMICC signals from HGIv6, yielding an independent data set. This was
essential because previous GenOMICC data contribute 20 to 50% of each genetic association signal
in the HGI analyses. The results of these All Critical Cohorts and All Hospitalised Cohorts meta
analyses are illustrated in Figure 1 and Supplementary Figure 3. Independent lead variants for the
critically ill phenotype are summarised in Table 2 with more details provided in Supplementary Table
2, while Supplementary Table 4 contains details of lead variants from the analysis of the hospitalised
phenotype.
Since no replication cohorts are available for these meta-analysis, we use heterogeneity across studies to
assess the reliability of individual findings (see Supplementary Table 2 and 4). Due to the unusually ex-
treme phenotype in the GenOMICC study, there is heterogeneity detected for the strongest associations
from our previous work when compared to studies with more permissive inclusion criteria. Importantly,
significant heterogeneity is not detected for the new findings we report here(Supplementary Table 2).

Study Dataset Ancestry Case definition Control definition Median age(IQR) Female(perc) N cases Ncontrols
GenOMICC Whole-genome Sequence EUR Critical care General population and mild cases 60(11.87) 32.17% 5989 42981
GenOMICC Whole-genome Sequence EAS Critical care General population and mild cases 54(11.27) 40.87% 274 366
GenOMICC Whole-genome Sequence SAS Critical care General population and mild cases 57(13.22) 25.63% 788 3793
GenOMICC Whole-genome Sequence AFR Critical care General population and mild cases 57(13.06) 35% 440 1350
GenOMICC Genotype EUR Critical care General population 58(13.49) 32.4% 1347 6735
GenOMICC Genotype SAS Critical care General population 58.5(16.10) 28.5% 200 1000
GenOMICC Genotype AFR Critical care General population 55(16.65) 44.5% 101 505
ISARIC4C Genotype EUR ICU/CPAP/NIV General population 59(12.75) 30% 140 700
HGIv6 Genotype ALL Critical (A2) General population NA NA 8779 1001875

SCOURGE Genotype EUR SCOURGE severe 3 -4 General population 69.13(12.93)* 27.5% 3502 5455
23 and me Genotype EUR Respiratory Support General population 53(17.5)** 50.7% ** 495 680440

Table 1: Description of cohorts included in the critical meta-analysis with median age and percentage
of females for the cases. NA: information not available for this cohort. * mean was provided rather
than the median. ** data was available for the hospitalisation cohort but not for the critically-ill
patients.

In order to infer the effect of genetically-determined variation in gene expression on disease susceptibil-
ity, we performed a TWAS for the critical ill phenotype using gene expression data (GTExv821) for two
disease-relevant tissues, lung and whole blood. We found significant associations with P < 1 × 10−6
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between critical Covid-19 and predicted expression in lung (25), blood (18) and all-tissue meta-analysis
(90; Supplementary file TWAS.xlsx)

Discussion

In this latest analysis of the GenOMICC study of critical Covid-19, building on the foundations of
previously published data from our group and others, we report a total of 45 genetic associations with
severe Covid-19, of which 14 have not been reported previously (Table 2). After conditional analysis
we find two extra secondary signals in known loci (see details in Materials and methods). In this brief
report we provide a superficial description of selected findings. Our results are provided in full in
Supplementary Tables 2 & 4.
We find a strong association in a key intracellular signalling kinase, JAK1, which is stimulated by
numerous cytokines including Type I interferons and IL-6. Along with TYK2, which we previously
reported to be associated with severe Covid-19,3 JAK1 is the target for JAK inhibitors, which have
recently been shown to be effective therapeutics in Covid-19.15 Although the direction of effect is not
clear from our genetic data for either gene, the therapeutic signal is consistent across multiple trials,
providing proof-of-concept for target identification using genetics in critical illness.
We report a new lead variant within CSF2, the gene encoding granulocyte-macrophage colony stim-
ulating factor (GM-CSF), a key cytokine in production and differentiation of myeloid cells including
monocytes, macrophages and neutrophils. We previously reported that circulating levels of GM-CSF
are associated with severe disease,22 supporting a role for therapeutic targeting in severe Covid. In
addition, we show that low expression of PDE4A is associated with critical Covid-19. This phospho-
diesterase regulates production of multiple inflammatory cytokines by myeloid cells and is targeted by
several existing drugs for treatment of a range of inflammatory diseases.23;24

Multiple genes implicated in viral entry are associated with severe disease. In addition to ACE2,19 we
see for the first time a genome-wide significant association in TMPRSS2, a key host protease which
facilitates viral entry, which we have previously studied as a candidate gene.25 This effect may be
lineage-specific.26 A strong GWAS association is seen in RAB2A (Table 2), with TWAS evidence
more expression of this gene is associated with worse disease (Table 3). This gene is highly ranked in
our previous MAIC27 meta-analysis of host genes implicated in SARS-CoV-2 interaction using in vitro
and clinical data,28 and is consistent with CRISPR screen evidence showing that RAB2A is required
for viral replication.29

TWAS provides a broad assessment of the effect on illness severity of genotype-predicted expression
of specific transcripts in relevant tissues. TWAS results suggest a range of strongly-plausible genes,
with direction of effect for gene expression effects in lung, whole blood and cross-tissue metaTWAS
(Table 3, Supplemental file twas.xlsx). These include intriguing opposing effect estimates for predicted
expression of various chemokine receptors (CCR1, CCR2, CCR9 vs CCR3 and CCR5) interferon-
α subtypes (IFNA10 vs IFNA8) and intercellular adhesion molecules (ICAM1 vs ICAM3, ICAM5).
Caution is needed in interpretation of these expression effects since the molecular mechanism underlying
association is not known.
Although our focus on critical illness enhances discovery power, it has the disadvantage of combining
genetic signals for multiple stages in disease progression including viral exposure, infection and repli-
cation, and development of inflammatory lung disease. From these data alone we cannot identify when
in disease progression, or where in the body, the causal effect happens.
Because we performed a meta-analysis of multiple studies which may have slightly different definitions
of the phenotype, effect sizes differ between studies. This, together with ancestry-specific effects,3 may
explain heterogeneity in strong GWAS signals, such as the LZTFL1 signal in table 2. Different studies
also have sets of variants which are not completely overlapping, causing P-values between variants in
high LD to be more different than expected. Although most of the studies contain individuals from
multiple ancestries, a large majority of the individuals are from European ancestry. In future work,
there is a scientific and moral imperative to include the full diversity of human populations.
Together, these results deepen our understanding of disease pathogenesis and highlights new biological
mechanisms of disease, some of which have the potential for therapeutic targeting.
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Chr Pos(b38) rsid OR ORCI P Pcond Gene Citation
1 9067157 rs2478868 0.92 0.9-0.95 1.5e-09 SLC2A5 GenOMICC new
1 64948270 rs12046291 1.1 1.07-1.13 5.1e-11 JAK1 GenOMICC new
1 77501822 rs71658797 1.1 1.08-1.18 9.8e-09 AK5 GenOMICC new
1 155066988 rs114301457 2.4 1.81-3.18 1.5e-09 EFNA4 GenOMICC16

1 155175305 rs7528026 1.4 1.25-1.45 1.3e-15 TRIM46 GenOMICC16

1 155197995 rs41264915 1.2 1.16-1.26 1.9e-21 THBS3 HGI17

1 155278322 rs11264349 0.94 0.92-0.97 7.3e-05 4.82E-13 HCN3 GenOMICC new
2 60480453 rs1123573 1.1 1.09-1.15 1e-14 BCL11A GenOMICC16

3 45796521 rs2271616 1.2 1.14-1.23 1.1e-16 SLC6A20 HGI17

3 45818159 rs17713054‡ 2.1 1.97-2.15 7.6e-243 LZTFL1 SCGG18

3 45873093 rs35482426 0.53 0.5-0.57 6.1e-91 LZTFL1 SCGG18

3 101737122 rs11706986 1.1 1.05-1.11 1.1e-08 CEP97 GenOMICC new
3 146517122 rs343320 1.2 1.11-1.23 1.8e-09 PLSCR1 GenOMICC16

4 25446871 rs7664615 1.1 1.07-1.14 1.5e-08 ANAPC4 GenOMICC new
4 167824478 rs1073165 1.1 1.05-1.1 1.7e-08 . GenOMICC new
5 132441275 rs10066378 0.89 0.86-0.92 1.3e-10 IRF1 GenOMICC16

6 31153455 rs111837807 0.83 0.8-0.87 3.2e-17 CCHCR1 GenOMICC3

6 31513129 rs2516401 0.92 0.9-0.95 2.2e-09 MICB GenOMICC new
6 32702531 rs2856717 1.1 1.06-1.11 2.2e-09 HLA-DQA1 GenOMICC16

6 41522644 rs41435745 1.4 1.31-1.51 1.5e-20 FOXP4 HGI17

7 75623396 rs1179620 0.92 0.9-0.95 2.3e-09 HIP1 GenOMICC new
7 100032719 rs2897075 1.1 1.05-1.11 1.1e-09 ZKSCAN1 GenOMICC new
8 60532539 rs13276831 1.1 1.05-1.1 2e-08 RAB2A GenOMICC new
9 21206606 rs28368148 0.59 0.49-0.7 5.3e-09 IFNA10 GenOMICC3

9 33425186 rs60840586 1.1 1.07-1.14 9.7e-09 AQP3 SCOURGE8

9 133271182 rs879055593 1.1 1.1-1.16 1e-16 ABO SCGG18

10 79946568 rs721917 0.93 0.91-0.95 5.1e-09 SFTPD HGI19

11 1219991 rs35705950 0.85 0.82-0.89 5.5e-14 MUC5B HGI19

11 34482745 rs61882275 0.89 0.86-0.91 6.8e-21 ELF5 GenOMICC16

12 112919637 rs2660 1.1 1.07-1.13 3.9e-13 OAS1 GenOMICC3

12 132481571 rs11614702 1.1 1.08-1.14 1.5e-16 FBRSL1 GenOMICC16

13 112881427 rs12585036 1.1 1.11-1.18 4e-19 ATP11A GenOMICC16

16 89196249 rs117169628 1.2 1.12-1.2 7.2e-16 SLC22A31 GenOMICC16

17 40003082 rs12941811 0.92 0.9-0.95 4.5e-10 PSMD3 GenOMICC new
17 46085231 rs8080583 0.88 0.86-0.91 8e-17 KANSL1 20

17 49863303 rs77534576 1.4 1.25-1.45 1.5e-15 TAC4 20

19 4717660 rs12610495 0.8 0.77-0.82 9.1e-51 DPP9 GenOMICC3

19 10352442 rs34536443 1.5 1.39-1.61 2.2e-28 TYK2 GenOMICC3

19 10414696 rs142770866 1.2 1.19-1.3 7.6e-20 PDE4A GenOMICC new
19 48702888 rs516316 0.91 0.89-0.93 3.7e-13 FUT2 GenOMICC16

19 50374423 rs35463555 1.1 1.07-1.13 4.2e-13 NR1H2 HGI19

21 33229937 rs188401375 0.74 0.66-0.84 3e-05 3.58E-09 IFNAR2 GenOMICC3

21 33237639 rs9636867 82 0.80-0.84 8.7e-49 IFNAR2 GenOMICC3

21 33287378 rs8178521 1.1 1.1-1.17 6.2e-15 IL10RB GenOMICC16

21 33949755 rs75912728 1.2 1.13-1.22 3.6e-15 ATP5PO GenOMICC16

21 41479527 rs915823 1.1 1.07-1.14 1.7e-09 TMPRSS2 GenOMICC new
23 15523993 rs35697037 1 1.03-1.06 6.8e-09 ACE2 HGI19

Table 2: Genome-wide significant associations with critical covid. Chr: chromosome, Pos(b38): posi-
tion on human genome build 38, OR: odds ratio, ORCI : confidence interval, Gene: nearest or most
plausible nearby gene, Citation: first demonstration of association. ‡ indicates significant heterogene-
ity across studies. Pcond: P-value in conditional analysis in variants with P> 5 × 10−8 Details about
conditional analysis are in Supplementary Table 3
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Gene Zlung Zblood Zmeta ZSD nmeta Pmeta

CCR9 31 13 11 7 2.2e-224
SLC6A20 5.7 9.2 6.2 33 6.9e-224
IL10RB 8.4 -3.1 7.1 3.9 46 4e-33
CCR2 1.6 0.51 5.9 7.7 35 1.3e-42

TRIM46 5.8 5.1 18 4.7e-22
CDC37 5.1 0.92 27 3.5e-08
MUC1 5.7 7 5 2.7 42 8.2e-24
RAB2A 5 3.9 4.6 0.88 45 1.3e-06
TCF19 5.6 4.6 4.4 2.7 49 1.1e-10
FYCO1 8.9 3.7 4.2 4.1 47 2e-41
GSDMA 5.9 0.56 3.8 2.2 38 3.3e-06
ELF5 5.8 3.7 1.7 9 2.5e-08
ABO 5.1 -1.7 3.7 1.9 48 1.6e-07

CCHCR1 4.3 4.3 3.5 2.1 49 2.9e-12
ATP5O 6.4 2.4 3.3 1.6 47 3.8e-11

RP11-387H17.6 4.3 2.7 2.8 5 8.5e-06
CAT 4.1 3.1 2.7 2.2 49 5.5e-13
TYK2 5.8 7.8 2.7 3.7 46 8.7e-17
HLA-C 4.6 5.9 2.7 2.5 48 2.2e-14
ADAM15 -6.4 3 2.5 2.1 46 8.9e-16
GSTCD -4.7 2.8 2.3 2.4 47 7.6e-06
MED24 -1.4 4.9 2.2 3.4 46 8.9e-08
HIP1 4.1 -5.8 0.94 1.7 42 1.8e-07
OAS3 0.97 4.5 0.75 4.1 37 9.7e-09
ZNF778 4.2 0.24 0.74 2.1 49 1.7e-06
FUT2 6.6 0.36 5.2 28 2e-10
FOXP4 8.7 0.12 2 28 8e-16

ARHGAP27 -6.6 3.6 0.098 5.2 44 7.8e-10
EFNA1 -2.5 -6.6 0.042 2.6 48 2.2e-07
ACSL6 3.1 4.6 -0.41 3.6 44 1.4e-07
RAVER1 -3.8 5.7 -0.56 2 45 7.2e-10
XCR1 -2.7 5.7 -0.7 6.1 23 1.6e-122
JAK1 -5.3 0.82 -1.7 3.3 47 6.9e-06
CEP97 -5.3 0.86 -1.7 2.8 17 8.8e-06

MAMSTR -1.7 5.5 -1.8 3.5 45 9.5e-09
NXPE3 -3.5 -4.3 -2.2 2 47 4.2e-06

PSORS1C2 -4.3 -2.4 1.7 39 4.6e-10
IFNAR1 -4.1 -3.6 -2.5 2.2 49 1.5e-06
OAS1 -4.7 -3.3 -2.9 1.8 41 2.7e-09
NTN5 -4.3 3.7 -3.4 3.1 47 9.8e-09
CCR5 -15 2.1 -3.7 3.5 46 9.3e-47
DPP9 -1.2 -5.5 -3.9 3.8 46 4.3e-41
CSF3 -5.6 -4 2 38 7e-07

LINC01301 -5 -4.2 1.2 38 4.4e-06
IFNAR2 -5.4 -4.1 -4.4 7 48 6.7e-52
RASIP1 -5.2 -5.2 -4.6 2 32 3.7e-08
WNT3 -7.6 -7 -4.7 2.3 47 1.2e-10
NAPSA -0.56 -6.8 -6.1 1.9 39 1.2e-10
CXCR6 -21 -8.1 9.6 38 4.4e-134
CCR3 -6.2 -1.8 -9 6 6 2e-65

Table 3: Selected TWAS results for lung, whole blood and metaTWAS with Z > 5 in any analysis and
Pmeta < 1×10−5 (See Supplementary File twas.xlsx for full results). Gene: Gene symbol, Zlung: TWAS
Z-score in lung, Zblood: TWAS Z-score in blood, Zmeta: metaTWAS mean Z-score, ZSD: metaTWAS
Z-score standard deviation, nmeta: number of SNPs included in metaTWAS, Pmeta: metaTWAS P-
value.
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Materials and methods

Ethical approval

All participants, or their representatives where appropriate, gave informed consent. Details of ethical
review can be found in Table 4.

Study/cohort Ethical review committee Reference Number Decision
GenOMICC Scotland Scotland A Research Ethics Committee 15/SS/0110 approved
GenOMICC England/Wales/Northern Ireland Coventry and Warwickshire Research Ethics Committtee 19/WM/0247 approved
GenOMICC Brazil (BraCovid) National Research Ethics Committee (CONEP) and Ethics Committee for the Analysis of Research Projects at HC FMUSP (CAPPesq) 5025/20/054 approved
ISARIC4C England/Wales/Northern Ireland South Central Oxford C Research Ethics Committee 13/SC/0149 approved
ISARIC4C Scotland Scotland A Research Ethics Committee 20/SS/0028 approved
Covid-19 HGI Multiple ethics committees see ref17 approved
SCOURGE Galician Ethical Committee 2020/197 approved
23andme Ethical and Independent Review Services http://www.eandireview.com N/A approved

Table 4: Ethical review details for primary cohorts.

Hospitalisation meta-analysis

The hospitalised phenotype includes patients who were hospitalised with a laboratory-confirmed SARS-
Cov2 infection. In this analysis we included GenOMICC, GenOMICC Brazil, ISARIC4C, HGIv6 B2
phenotype with subtraction of GenOMICC data, SCOURGE hospitalised vs population and mild
cases, and 23andme broad respiratory phenotype. Summary description of each analysis can be found
in Supplementary material and a table with the included studies can be found in Supplementary Table
1.

Critical illness meta-analysis

The critically ill Covid-19 group included patients who were hospitalized owing to symptoms associated
with laboratory-confirmed SARS-CoV-2 infection and who required respiratory support or whose cause
of death was associated with Covid-19 In the critical analysis we included GenOMICC, critically-ill
patients from ISARIC4C, HGIv6 phenothype A2 with subraction of GenOMICC data, SCOURGE
severity grades 3 and 4 vs population controls, and 23andme respiratory support phenotype. Summary
description of each analysis can be found in Supplementary material and a table with the included
studies can be found in table 1.

Meta-analysis

All meta-analysis across studies were performed using an inverse-variance weighting method and con-
trol for population stratification in the METAL software30. Variants were filtered out if they were not
present in one of the three biggest studies: GenOMICC European ancestry, HGIv6, or SCOURGE.
Allele frequency was calculated as the average frequency across studies with the METAL option AV-
ERAGEFREQ. Heterogeneity was calculated using a Cochran’s Q-test implemented in METAL. For
variants in the same position with different REF and ALT alleles across studies, the GenoMICC vari-
ant in European population was selected and the rest were removed. Finally, variants with switched
ALT and REF alleles between HGIv6 and GenOMICC were also removed based on differences in allele
frequency of the alternative allele. Variants were annotated to the closest genes using dbsnp version
b151 GRCh38p7 and biomaRt R package version 2.46.3.31.

LD clumping

We used plink 1.9 to clump variants that were genome-wide significant for each analysis with P1 =
5 × 10−8, P2 = 0.01, clump distance 1500Kb and r2 = 0.1. As a reference population for clumping
we used individuals from European ancestry with whole genome sequence available in the GenOMICC
study and whole genomes from 100K Genomics England project4.

Conditional analysis

We performed a step-wise conditional analysis to find independent signals. In the hospitalised analysis
we performed an European-specific meta-analysis to find conditionally independent signals. For the
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critical illness meta-analysis European-specific data is not available, but European ancestry is largely
predominant (87.2% of critically-ill cases) and we performed the conditional analysis using the meta-
analysis results of the whole cohort . To perform the conditional analysis we used GCTA 1.9.3 –cojo-slct
function32. The parameters for the function were pval = 5× 10−8, a distance of 10,000 kb and a co-
linear threshold of 0.933, and the reference population for the conditional analysis were individuals
from European ancestry with whole genome sequence available in the GenOMICC study and whole
genomes from 100K Genomics England project4.

Transcriptome-wide Association Studies

We performed TWAS in the MetaXcan framework and the GTExv8 eQTL and sQTL MASHR-M
models available for download in http://predictdb.org/. We first calculated individual TWAS
for whole blood and lung with the S-PrediXcan function34;35. Then we performed a metaTWAS
including data from all tissues to increase statistical power using s-MultiXcan36. We applied Bonferroni
correction to the results in order to choose significant genes and introns for each analysis.
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