Next Issue
Volume 12, November-1
Previous Issue
Volume 12, October-1
 
 

Cells, Volume 12, Issue 20 (October-2 2023) – 88 articles

Cover Story (view full-size image): The glycosylation of lipids results in the formation of glycosphingolipids (GSLs), which have been linked to cardiovascular disease. Diabetes leads to elevated GSL levels due to hyperglycemia and inflammation in adipose tissues. In this study, we isolated adiposomes (extracellular vesicles derived from adipose tissues) from obese diabetic patients and lean, healthy controls. We determined the GSL content of these adiposomes and their effects on the structure and function of endothelial cells. These adiposomes fused with endothelial cells in caveola-rich regions, resulting in a loss of integrity. We measured the upstream signaling pathways that lead to this effect and the downstream signaling pathways that become impacted by the loss of endothelial surface caveolae, such as nitric oxide production, a shear stress response, and albumin uptake. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
14 pages, 1356 KiB  
Review
Tumor Angiocrine Signaling: Novel Targeting Opportunity in Cancer
by Victor Oginga Oria and Janine Terra Erler
Cells 2023, 12(20), 2510; https://doi.org/10.3390/cells12202510 - 23 Oct 2023
Viewed by 1113
Abstract
The vascular endothelium supplies nutrients and oxygen to different body organs and supports the progression of diseases such as cancer through angiogenesis. Pathological angiogenesis remains a challenge as most patients develop resistance to the approved anti-angiogenic therapies. Therefore, a better understanding of endothelium [...] Read more.
The vascular endothelium supplies nutrients and oxygen to different body organs and supports the progression of diseases such as cancer through angiogenesis. Pathological angiogenesis remains a challenge as most patients develop resistance to the approved anti-angiogenic therapies. Therefore, a better understanding of endothelium signaling will support the development of more effective treatments. Over the past two decades, the emerging consensus suggests that the role of endothelial cells in tumor development has gone beyond angiogenesis. Instead, endothelial cells are now considered active participants in the tumor microenvironment, secreting angiocrine factors such as cytokines, growth factors, and chemokines, which instruct their proximate microenvironments. The function of angiocrine signaling is being uncovered in different fields, such as tissue homeostasis, early development, organogenesis, organ regeneration post-injury, and tumorigenesis. In this review, we elucidate the intricate role of angiocrine signaling in cancer progression, including distant metastasis, tumor dormancy, pre-metastatic niche formation, immune evasion, and therapy resistance. Full article
(This article belongs to the Special Issue Breakthroughs in Cell Signaling in Health and Disease)
Show Figures

Figure 1

17 pages, 8705 KiB  
Article
SLC38A5 Modulates Ferroptosis to Overcome Gemcitabine Resistance in Pancreatic Cancer
by Myeong Jin Kim, Hyung Sun Kim, Hyeon Woong Kang, Da Eun Lee, Woosol Chris Hong, Ju Hyun Kim, Minsoo Kim, Jae-Ho Cheong, Hyo Jung Kim and Joon Seong Park
Cells 2023, 12(20), 2509; https://doi.org/10.3390/cells12202509 - 23 Oct 2023
Cited by 3 | Viewed by 1775
Abstract
Pancreatic cancer is characterized by a poor prognosis, with its five-year survival rate lower than that of any other cancer type. Gemcitabine, a standard treatment for pancreatic cancer, often has poor outcomes for patients as a result of chemoresistance. Therefore, novel therapeutic targets [...] Read more.
Pancreatic cancer is characterized by a poor prognosis, with its five-year survival rate lower than that of any other cancer type. Gemcitabine, a standard treatment for pancreatic cancer, often has poor outcomes for patients as a result of chemoresistance. Therefore, novel therapeutic targets must be identified to overcome gemcitabine resistance. Here, we found that SLC38A5, a glutamine transporter, is more highly overexpressed in gemcitabine-resistant patients than in gemcitabine-sensitive patients. Furthermore, the deletion of SLC38A5 decreased the proliferation and migration of gemcitabine-resistant PDAC cells. We also found that the inhibition of SLC38A5 triggered the ferroptosis signaling pathway via RNA sequencing. Also, silencing SLC38A5 induced mitochondrial dysfunction and reduced glutamine uptake and glutathione (GSH) levels, and downregulated the expressions of GSH-related genes NRF2 and GPX4. The blockade of glutamine uptake negatively modulated the mTOR-SREBP1-SCD1 signaling pathway. Therefore, suppression of SLC38A5 triggers ferroptosis via two pathways that regulate lipid ROS levels. Similarly, we observed that knockdown of SLC38A5 restored gemcitabine sensitivity by hindering tumor growth and metastasis in the orthotopic mouse model. Altogether, our results demonstrate that SLC38A5 could be a novel target to overcome gemcitabine resistance in PDAC therapy. Full article
(This article belongs to the Section Cell and Gene Therapy)
Show Figures

Graphical abstract

18 pages, 8542 KiB  
Article
Suspension-Induced Stem Cell Transition: A Non-Transgenic Method to Generate Adult Stem Cells from Mouse and Human Somatic Cells
by Behzad Yeganeh, Azadeh Yeganeh, Kyle Malone, Shawn T. Beug and Robert P. Jankov
Cells 2023, 12(20), 2508; https://doi.org/10.3390/cells12202508 - 23 Oct 2023
Viewed by 1630
Abstract
Adult stem cells (ASCs) can be cultured with difficulty from most tissues, often requiring chemical or transgenic modification to achieve adequate quantities. We show here that mouse primary fibroblasts, grown in suspension, change from the elongated and flattened morphology observed under standard adherent [...] Read more.
Adult stem cells (ASCs) can be cultured with difficulty from most tissues, often requiring chemical or transgenic modification to achieve adequate quantities. We show here that mouse primary fibroblasts, grown in suspension, change from the elongated and flattened morphology observed under standard adherent culture conditions of generating rounded cells with large nuclei and scant cytoplasm and expressing the mesenchymal stem cell (MSC) marker (Sca1; Ly6A) within 24 h. Based on this initial observation, we describe here a suspension culture method that, irrespective of the lineage used, mouse fibroblast or primary human somatic cells (fibroblasts, hepatocytes and keratinocytes), is capable of generating a high yield of cells in spheroid form which display the expression of ASC surface markers, circumventing the anoikis which often occurs at this stage. Moreover, mouse fibroblast-derived spheroids can be differentiated into adipogenic and osteogenic lineages. An analysis of single-cell RNA sequence data in mouse fibroblasts identified eight distinct cell clusters with one in particular comprising approximately 10% of the cells showing high levels of proliferative capacity expressing high levels of genes related to MSCs and self-renewal as well as the extracellular matrix (ECM). We believe the rapid, high-yield generation of proliferative, multi-potent ASC-like cells via the process we term suspension-induced stem cell transition (SIST) could have significant implications for regenerative medicine. Full article
(This article belongs to the Section Stem Cells)
Show Figures

Figure 1

15 pages, 3366 KiB  
Article
Diallyl Trisulfide Causes Male Infertility with Oligoasthenoteratospermia in Sitotroga cerealella through the Ubiquitin–Proteasome Pathway
by Sakhawat Shah, Karam Khamis Elgizawy, Meng-Ya Wu, Hucheng Yao, Wen-Han Yan, Yu Li, Xiao-Ping Wang, Gang Wu and Feng-Lian Yang
Cells 2023, 12(20), 2507; https://doi.org/10.3390/cells12202507 - 23 Oct 2023
Viewed by 911
Abstract
Essential oils extracted from plant sources along with their biologically active components may have negative effects on insects. Diallyl trisulfide (DAT) is an active component of garlic essential oil, and it exhibits multi-targeted activity against many organisms. Previously we reported that DAT induces [...] Read more.
Essential oils extracted from plant sources along with their biologically active components may have negative effects on insects. Diallyl trisulfide (DAT) is an active component of garlic essential oil, and it exhibits multi-targeted activity against many organisms. Previously we reported that DAT induces male infertility and leads to apyrene and eupyrene sperm dysfunction in Sitotroga cerealella. In this study, we conducted an analysis of testis-specific RNA-Seq data and identified 449 downregulated genes and 60 upregulated genes in the DAT group compared to the control group. The downregulated genes were significantly enriched in the ubiquitin–proteasome pathway. Furthermore, DAT caused a significant reduction in mRNA expression of proteasome regulatory subunit particles required for ATP-dependent degradation of ubiquitinated proteins as well as decreased the expression profile of proteasome core particles, including β1, β2, and β5. Sperm physiological analysis showed that DAT decreased the chymotrypsin-like activity of the 20S proteasome and formed aggresomes in spermatozoa. Overall, our findings suggest that DAT impairs the testis proteasome, ultimately causing male infertility characterized by oligoasthenoteratospermia due to disruption in sperm proteasome assembly in S. cerealella. Full article
Show Figures

Graphical abstract

21 pages, 6335 KiB  
Article
Mutant p53 Gain-of-Function Induces Migration and Invasion through Overexpression of miR-182-5p in Cancer Cells
by Tzitzijanik Madrigal, Daniel Ortega-Bernal, Luis A. Herrera, Claudia Haydée González-De la Rosa, Guadalupe Domínguez-Gómez, Elena Aréchaga-Ocampo and José Díaz-Chávez
Cells 2023, 12(20), 2506; https://doi.org/10.3390/cells12202506 - 23 Oct 2023
Viewed by 1207
Abstract
The master-key TP53 gene is a tumor suppressor that is mutated in more than 50% of human cancers. Some p53 mutants lose their tumor suppressor activity and acquire new oncogenic functions, known as a gain of function (GOF). Recent studies have shown that [...] Read more.
The master-key TP53 gene is a tumor suppressor that is mutated in more than 50% of human cancers. Some p53 mutants lose their tumor suppressor activity and acquire new oncogenic functions, known as a gain of function (GOF). Recent studies have shown that p53 mutants can exert oncogenic effects through specific miRNAs. We identified the differentially expressed miRNA profiles of the three most frequent p53 mutants (p53R273C, p53R248Q, and p53R175H) after their transfection into the Saos-2 cell line (null p53) as compared with p53WT transfected cells. The associations between these miRNAs and the signaling pathways in which they might participate were identified with miRPath Software V3.0. QRT-PCR was employed to validate the miRNA profiles. We observed that p53 mutants have an overall negative effect on miRNA expression. In the global expression profile of the human miRNome regulated by the p53R273C mutant, 72 miRNAs were underexpressed and 35 overexpressed; in the p53R175H miRNAs profile, our results showed the downregulation of 93 and upregulation of 10 miRNAs; and in the miRNAs expression profile regulated by the p53R248Q mutant, we found 167 decreased and 6 increased miRNAs compared with p53WT. However, we found overexpression of some miRNAs, like miR-182-5p, in association with processes such as cell migration and invasion. In addition, we explored whether the induction of cell migration and invasion by the p53R48Q mutant was dependent on miR-182-5p because we found overexpression of miR-182-5p, which is associated with processes such as cell migration and invasion. Inhibition of mutant p53R248Q and miR-182-5p increased FOXF2-MTSS1 levels and decreased cell migration and invasion. In summary, our results suggest that p53 mutants increase the expression of miR-182-5p, and this miRNA is necessary for the p53R248Q mutant to induce cell migration and invasion in a cancer cell model. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Cancer Invasion and Metastasis)
Show Figures

Graphical abstract

0 pages, 708 KiB  
Review
Utility of the Zebrafish Model for Studying Neuronal and Behavioral Disturbances Induced by Embryonic Exposure to Alcohol, Nicotine, and Cannabis
by Adam D. Collier, Abdul R. Abdulai and Sarah F. Leibowitz
Cells 2023, 12(20), 2505; https://doi.org/10.3390/cells12202505 - 23 Oct 2023
Cited by 1 | Viewed by 1407
Abstract
It is estimated that 5% of pregnant women consume drugs of abuse during pregnancy. Clinical research suggests that intake of drugs during pregnancy, such as alcohol, nicotine and cannabis, disturbs the development of neuronal systems in the offspring, in association with behavioral disturbances [...] Read more.
It is estimated that 5% of pregnant women consume drugs of abuse during pregnancy. Clinical research suggests that intake of drugs during pregnancy, such as alcohol, nicotine and cannabis, disturbs the development of neuronal systems in the offspring, in association with behavioral disturbances early in life and an increased risk of developing drug use disorders. After briefly summarizing evidence in rodents, this review focuses on the zebrafish model and its inherent advantages for studying the effects of embryonic exposure to drugs of abuse on behavioral and neuronal development, with an emphasis on neuropeptides known to promote drug-related behaviors. In addition to stimulating the expression and density of peptide neurons, as in rodents, zebrafish studies demonstrate that embryonic drug exposure has marked effects on the migration, morphology, projections, anatomical location, and peptide co-expression of these neurons. We also describe studies using advanced methodologies that can be applied in vivo in zebrafish: first, to demonstrate a causal relationship between the drug-induced neuronal and behavioral disturbances and second, to discover underlying molecular mechanisms that mediate these effects. The zebrafish model has great potential for providing important information regarding the development of novel and efficacious therapies for ameliorating the effects of early drug exposure. Full article
(This article belongs to the Special Issue Modeling Developmental Processes and Disorders in Zebrafish)
Show Figures

Figure 1

15 pages, 2305 KiB  
Article
L-Type Amino Acid Transporter 1 (LAT1) Promotes PMA-Induced Cell Migration through mTORC2 Activation at the Lysosome
by Kun Tae, Sun-Jick Kim, Sang-Woo Cho, Hoyeon Lee, Hyo-Sun Cha and Cheol-Yong Choi
Cells 2023, 12(20), 2504; https://doi.org/10.3390/cells12202504 - 23 Oct 2023
Viewed by 1246
Abstract
The mTOR signaling pathway integrates signaling inputs from nutrients, including glucose and amino acids, which are precisely regulated by transporters depending on nutrient levels. The L-type amino acid transporter 1 (LAT1) affects the activity of mTORC1 through upstream regulators that sense intracellular amino [...] Read more.
The mTOR signaling pathway integrates signaling inputs from nutrients, including glucose and amino acids, which are precisely regulated by transporters depending on nutrient levels. The L-type amino acid transporter 1 (LAT1) affects the activity of mTORC1 through upstream regulators that sense intracellular amino acid levels. While mTORC1 activation by LAT1 has been thoroughly investigated in cultured cells, the effects of LAT1 expression on the activity of mTORC2 has scarcely been studied. Here, we provide evidence that LAT1 recruits and activates mTORC2 on the lysosome for PMA-induced cell migration. LAT1 is translocated to the lysosomes in cells treated with PMA in a dose- and time-dependent manner. Lysosomal LAT1 interacted with mTORC2 through a direct interaction with Rictor, leading to the lysosomal localization of mTORC2. Furthermore, the depletion of LAT1 reduced PMA-induced cell migration in a wound-healing assay. Consistent with these results, the LAT1 N3KR mutant, which is defective in PMA-induced endocytosis and lysosomal localization, did not induce mTORC2 recruitment to the lysosome, with the activation of mTORC2 determined via Akt phosphorylation or the LAT1-mediated promotion of cell migration. Taken together, lysosomal LAT1 recruits and activates the mTORC2 complex and downstream Akt for PMA-mediated cell migration. These results provide insights into the development of therapeutic drugs targeting the LAT1 amino acid transporter to block metastasis, as well as disease progression in various types of cancer. Full article
Show Figures

Graphical abstract

17 pages, 3205 KiB  
Article
Influence of the Anesthetic Technique on Circulating Extracellular Vesicles in Bladder Cancer Patients Undergoing Radical Cystectomy: A Prospective, Randomized Trial
by Luisa Gluth, Crista Ochsenfarth, Phuong Nam Viet Pham, Jan M. Wischermann, Thomas Komanek, Florian Roghmann and Ulrich H. Frey
Cells 2023, 12(20), 2503; https://doi.org/10.3390/cells12202503 - 23 Oct 2023
Viewed by 1266
Abstract
Anesthetics have been shown to alter tumor progression and seem to influence surgical cancer outcome. Circulating extracellular vesicles as mediators of intercellular communication are involved in cancer progression and may be influenced by anesthetics. In this prospective, randomized study, effects of anesthetics on [...] Read more.
Anesthetics have been shown to alter tumor progression and seem to influence surgical cancer outcome. Circulating extracellular vesicles as mediators of intercellular communication are involved in cancer progression and may be influenced by anesthetics. In this prospective, randomized study, effects of anesthetics on extracellular vesicles and associated micro-RNAs in bladder cancer patients undergoing radical cystectomy were tested. Extracellular vesicles from 51 patients at four perioperative time points receiving Propofol or Sevoflurane were extracted with polymer-based methods and quantified with a nanoparticle-tracking analysis. Vesicle-associated micro-RNAs were analyzed with a real-time polymerase chain reaction using array cards and single assays for tumor-associated miR-21-5p, miR-15a-5p, miR-17-5p and miR-451a. Plasma extracellular vesicle concentration (suture: fold change (fc) in Propofol at 4.1 ± 3.9 vs. Sevoflurane at 0.8 ± 0.5; p = 0.003) and associated miRNAs increased significantly (+30% post induction, +9% 30 Min surgery) in the Propofol group. Tumor-associated miRNAs increased during surgery in both groups (fc in miR-21-5p: 24.3 ± 10.2, p = 0.029; fc in miR-15a-5p: 9.7 ± 3.8, p = 0.027; fc in miR-17-5p: 5.4 ± 1.7, p = 0.014), whereas antitumor miR-451a increased in the Propofol group only (fc: 2.5 ± 0.6 vs. 1.0 ± 0.2; p = 0.022). Anesthetics influence extracellular vesicles and associated micro-RNAs of bladder cancer patients during surgery. Increased expression of antitumor micro-RNA may be an explanatory approach for decreased tumor cell viability after Propofol. Full article
Show Figures

Figure 1

12 pages, 2721 KiB  
Article
Expression of Toll-like Receptors in Stem Cells of the Apical Papilla and Its Implication for Regenerative Endodontics
by Koyo Takimoto, Matthias Widbiller and Anibal Diogenes
Cells 2023, 12(20), 2502; https://doi.org/10.3390/cells12202502 - 21 Oct 2023
Viewed by 1038
Abstract
Regenerative therapies to replace cells and tissues damaged due to trauma and dental infections require temporal and spatial controlled recruitment and the differentiation of progenitor/stem cells. However, increasing evidence shows microbial antigens can interfere with this process. Toll-like receptors (TLRs) are crucial in [...] Read more.
Regenerative therapies to replace cells and tissues damaged due to trauma and dental infections require temporal and spatial controlled recruitment and the differentiation of progenitor/stem cells. However, increasing evidence shows microbial antigens can interfere with this process. Toll-like receptors (TLRs) are crucial in recognizing pathogen-associated molecular patterns. Stem cells of the apical papilla (SCAP) are required for normal dental development and are intimately involved in the reparative and regenerative capacity of developing teeth. We hypothesized that TLRs are expressed in SCAP and that the activation of TLR2/TLR4 or TLR3 by different ligands results in differential cellular fate, impacting their differentiation into a mineralizing phenotype. We found that most TLRs are expressed as detected by PCR except TLR7 and TLR8; exposure to heat-killed E. coli results in upregulating TLR2 and TLR4 and reducing mineralization capacity. In addition, bacterial exposure resulted in the upregulation of 11 genes, of which 9 were chemokines whose proteins were also upregulated and released, promoting in vitro macrophage migration. On the other hand, TLR3 activation resulted in increased proliferation and a dramatic inhibition of osteogenic and odontoblastic differentiation, which was reversed by inhibition or the knockdown of TLR3 expression. The profound effects of TLR activation resulting in different cell fates that are ligand and receptor-specific warrants further evaluation and represents an important therapeutic target to make regenerative approaches more predictable following dental infections. Full article
(This article belongs to the Special Issue The Application of Mesenchymal Stem Cells in Tissue Regeneration)
Show Figures

Figure 1

22 pages, 3250 KiB  
Article
Differential Transcriptomic Signatures of Small Airway Cell Cultures Derived from IPF and COVID-19-Induced Exacerbation of Interstitial Lung Disease
by Katie Uhl, Shreya Paithankar, Dmitry Leshchiner, Tara E. Jager, Mohamed Abdelgied, Bhavna Dixit, Raya Marashdeh, Dewen Luo-Li, Kaylie Tripp, Angela M. Peraino, Maximiliano Tamae Kakazu, Cameron Lawson, Dave W. Chesla, Ningzhi Luo-Li, Edward T. Murphy, Jeremy Prokop, Bin Chen, Reda E. Girgis and Xiaopeng Li
Cells 2023, 12(20), 2501; https://doi.org/10.3390/cells12202501 - 21 Oct 2023
Viewed by 1838
Abstract
Idiopathic pulmonary fibrosis (IPF) is a pathological condition wherein lung injury precipitates the deposition of scar tissue, ultimately leading to a decline in pulmonary function. Existing research indicates a notable exacerbation in the clinical prognosis of IPF patients following infection with COVID-19. This [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a pathological condition wherein lung injury precipitates the deposition of scar tissue, ultimately leading to a decline in pulmonary function. Existing research indicates a notable exacerbation in the clinical prognosis of IPF patients following infection with COVID-19. This investigation employed bulk RNA-sequencing methodologies to describe the transcriptomic profiles of small airway cell cultures derived from IPF and post-COVID fibrosis patients. Differential gene expression analysis unveiled heightened activation of pathways associated with microtubule assembly and interferon signaling in IPF cell cultures. Conversely, post-COVID fibrosis cell cultures exhibited distinctive characteristics, including the upregulation of pathways linked to extracellular matrix remodeling, immune system response, and TGF-β1 signaling. Notably, BMP signaling levels were elevated in cell cultures derived from IPF patients compared to non-IPF control and post-COVID fibrosis samples. These findings underscore the molecular distinctions between IPF and post-COVID fibrosis, particularly in the context of signaling pathways associated with each condition. A better understanding of the underlying molecular mechanisms holds the promise of identifying potential therapeutic targets for future interventions in these diseases. Full article
Show Figures

Figure 1

16 pages, 2034 KiB  
Article
Oocyte-Specific Deletion of Slc6a9 Encoding the GLYT1 Glycine Transporter Eliminates Glycine Transport in Mouse Preimplantation Embryos and Their Ability to Counter Hypertonic Stress
by Allison K. Tscherner, Taylor McClatchie, Gracia Kaboba, Detlev Boison and Jay M. Baltz
Cells 2023, 12(20), 2500; https://doi.org/10.3390/cells12202500 - 21 Oct 2023
Cited by 1 | Viewed by 883
Abstract
Early preimplantation mouse embryos are sensitive to increased osmolarity, which can block their development. To overcome this, they accumulate organic osmolytes to maintain cell volume. The main organic osmolyte used by early mouse embryos is glycine. Glycine is transported during the mature egg [...] Read more.
Early preimplantation mouse embryos are sensitive to increased osmolarity, which can block their development. To overcome this, they accumulate organic osmolytes to maintain cell volume. The main organic osmolyte used by early mouse embryos is glycine. Glycine is transported during the mature egg and 1-cell to 4-cell embryo stages by a transporter identified as GLYT1, encoded by the Slc6a9 gene. Here, we have produced an oocyte-specific knockout of Slc6a9 by crossing mice that have a segment of the gene flanked by LoxP elements with transgenic mice expressing iCre driven by the oocyte-specific Gdf9 promoter. Slc6a9 null oocytes failed to develop glycine transport activity during meiotic maturation. However, females with these oocytes were fertile. When enclosed in their cumulus-oocyte complex, Slc6a9 null oocytes could accumulate glycine via GLYT1 transport in their coupled cumulus cells, which may support female fertility in vivo. In vitro, embryos derived from Slc6a9 null oocytes displayed a clear phenotype. While glycine rescued complete preimplantation development of wild type embryos from increased osmolarity, embryos derived from null oocytes failed to develop past the 2-cell stage even with glycine. Thus, Slc6a9 is required for glycine transport and protection against increased osmolarity in mouse eggs and early embryos. Full article
Show Figures

Figure 1

20 pages, 1688 KiB  
Review
Improving Efficiency of Direct Pro-Neural Reprogramming: Much-Needed Aid for Neuroregeneration in Spinal Cord Injury
by Daria A. Chudakova, Ekaterina M. Samoilova, Vladimir P. Chekhonin and Vladimir P. Baklaushev
Cells 2023, 12(20), 2499; https://doi.org/10.3390/cells12202499 - 20 Oct 2023
Viewed by 1422
Abstract
Spinal cord injury (SCI) is a medical condition affecting ~2.5–4 million people worldwide. The conventional therapy for SCI fails to restore the lost spinal cord functions; thus, novel therapies are needed. Recent breakthroughs in stem cell biology and cell reprogramming revolutionized the field. [...] Read more.
Spinal cord injury (SCI) is a medical condition affecting ~2.5–4 million people worldwide. The conventional therapy for SCI fails to restore the lost spinal cord functions; thus, novel therapies are needed. Recent breakthroughs in stem cell biology and cell reprogramming revolutionized the field. Of them, the use of neural progenitor cells (NPCs) directly reprogrammed from non-neuronal somatic cells without transitioning through a pluripotent state is a particularly attractive strategy. This allows to “scale up” NPCs in vitro and, via their transplantation to the lesion area, partially compensate for the limited regenerative plasticity of the adult spinal cord in humans. As recently demonstrated in non-human primates, implanted NPCs contribute to the functional improvement of the spinal cord after injury, and works in other animal models of SCI also confirm their therapeutic value. However, direct reprogramming still remains a challenge in many aspects; one of them is low efficiency, which prevents it from finding its place in clinics yet. In this review, we describe new insights that recent works brought to the field, such as novel targets (mitochondria, nucleoli, G-quadruplexes, and others), tools, and approaches (mechanotransduction and electrical stimulation) for direct pro-neural reprogramming, including potential ones yet to be tested. Full article
Show Figures

Figure 1

16 pages, 2943 KiB  
Article
Progesterone Receptor Membrane Component 1 (PGRMC1) Modulates Tumour Progression, the Immune Microenvironment and the Response to Therapy in Glioblastoma
by Claudia Alexandra Dumitru, Hannah Schröder, Frederik Till Alexander Schäfer, Jan Friedrich Aust, Nina Kreße, Carl Ludwig Raven Siebert, Klaus-Peter Stein, Aiden Haghikia, Ludwig Wilkens, Christian Mawrin and Ibrahim Erol Sandalcioglu
Cells 2023, 12(20), 2498; https://doi.org/10.3390/cells12202498 - 20 Oct 2023
Cited by 1 | Viewed by 1296
Abstract
Progesterone Receptor Membrane Component 1 (PGRMC1) is a tumour-promoting factor in several types of cancer but its role in brain tumours is poorly characterized thus far. Our study aimed to determine the effect of PGRMC1 on glioblastoma (GBM) pathophysiology using two independent cohorts [...] Read more.
Progesterone Receptor Membrane Component 1 (PGRMC1) is a tumour-promoting factor in several types of cancer but its role in brain tumours is poorly characterized thus far. Our study aimed to determine the effect of PGRMC1 on glioblastoma (GBM) pathophysiology using two independent cohorts of IDH wild-type GBM patients and stable knockdown GBM models. We found that high levels of PGRMC1 significantly predicted poor overall survival in both cohorts of GBM patients. PGRMC1 promoted the proliferation, anchorage-independent growth, and invasion of GBM cells. We identified Integrin beta-1 (ITGB1) and TCF 1/7 as potential members of the PGRMC1 pathway in vitro. The levels of ITGB1 and PGRMC1 also correlated in neoplastic tissues from GBM patients. High expression of PGRMC1 rendered GBM cells less susceptible to the standard GBM chemotherapeutic agent temozolomide but more susceptible to the ferroptosis inducer erastin. Finally, PGRMC1 enhanced Interleukin-8 production in GBM cells and promoted the recruitment of neutrophils. The expression of PGRMC1 significantly correlated with the numbers of tumour-infiltrating neutrophils also in tissues from GBM patients. In conclusion, PGRMC1 enhances tumour-related inflammation and promotes the progression of GBM. However, PGRMC1 might be a promising target for novel therapeutic strategies using ferroptosis inducers in this type of cancer. Full article
(This article belongs to the Special Issue Novel Therapeutic Strategies for the Treatment of Brain Tumors)
Show Figures

Graphical abstract

26 pages, 5503 KiB  
Article
The Protective Pathways Activated in Kidneys of αMUPA Transgenic Mice Following Ischemia\Reperfusion-Induced Acute Kidney Injury
by Heba Abd Alkhaleq, Tony Karram, Ahmad Fokra, Shadi Hamoud, Aviva Kabala and Zaid Abassi
Cells 2023, 12(20), 2497; https://doi.org/10.3390/cells12202497 - 20 Oct 2023
Cited by 1 | Viewed by 1037
Abstract
Despite the high prevalence of acute kidney injury (AKI), the therapeutic approaches for AKI are disappointing. This deficiency stems from the poor understanding of the pathogenesis of AKI. Recent studies demonstrate that αMUPA, alpha murine urokinase-type plasminogen activator (uPA) transgenic mice, display a [...] Read more.
Despite the high prevalence of acute kidney injury (AKI), the therapeutic approaches for AKI are disappointing. This deficiency stems from the poor understanding of the pathogenesis of AKI. Recent studies demonstrate that αMUPA, alpha murine urokinase-type plasminogen activator (uPA) transgenic mice, display a cardioprotective pathway following myocardial ischemia. We hypothesize that these mice also possess protective renal pathways. Male and female αMUPA mice and their wild type were subjected to 30 min of bilateral ischemic AKI. Blood samples and kidneys were harvested 48 h following AKI for biomarkers of kidney function, renal injury, inflammatory response, and intracellular pathways sensing or responding to AKI. αMUPA mice, especially females, exhibited attenuated renal damage in response to AKI, as was evident from lower SCr and BUN, normal renal histology, and attenuated expression of NGAL and KIM-1. Notably, αMUPA females did not show a significant change in renal inflammatory and fibrotic markers following AKI as compared with wild-type (WT) mice and αMUPA males. Moreover, αMUPA female mice exhibited the lowest levels of renal apoptotic and autophagy markers during normal conditions and following AKI. αMUPA mice, especially the females, showed remarkable expression of PGC1α and eNOS following AKI. Furthermore, MUPA mice showed a significant elevation in renal leptin expression before and following AKI. Pretreatment of αMUPA with leptin-neutralizing antibodies prior to AKI abolished their resistance to AKI. Collectively, the kidneys of αMUPA mice, especially those of females, are less susceptible to ischemic I/R injury compared to WT mice, and this is due to nephroprotective actions mediated by the upregulation of leptin, eNOS, ACE2, and PGC1α along with impaired inflammatory, fibrotic, and autophagy processes. Full article
(This article belongs to the Special Issue Acute Kidney Injury: From Molecular Mechanisms to Diseases)
Show Figures

Figure 1

22 pages, 9527 KiB  
Article
Mitophagy in Astrocytes Is Required for the Health of Optic Nerve
by Meysam Yazdankhah, Sayan Ghosh, Haitao Liu, Stacey Hose, J. Samuel Zigler, Jr. and Debasish Sinha
Cells 2023, 12(20), 2496; https://doi.org/10.3390/cells12202496 - 20 Oct 2023
Cited by 1 | Viewed by 1098
Abstract
Mitochondrial dysfunction in astrocytes has been implicated in the development of various neurological disorders. Mitophagy, mitochondrial autophagy, is required for proper mitochondrial function by preventing the accumulation of damaged mitochondria. The importance of mitophagy, specifically in the astrocytes of the optic nerve (ON), [...] Read more.
Mitochondrial dysfunction in astrocytes has been implicated in the development of various neurological disorders. Mitophagy, mitochondrial autophagy, is required for proper mitochondrial function by preventing the accumulation of damaged mitochondria. The importance of mitophagy, specifically in the astrocytes of the optic nerve (ON), has been little studied. We introduce an animal model in which two separate mutations act synergistically to produce severe ON degeneration. The first mutation is in Cryba1, which encodes βA3/A1-crystallin, a lens protein also expressed in astrocytes, where it regulates lysosomal pH. The second mutation is in Bckdk, which encodes branched-chain ketoacid dehydrogenase kinase, which is ubiquitously expressed in the mitochondrial matrix and involved in the catabolism of the branched-chain amino acids. BCKDK is essential for mitochondrial function and the amelioration of oxidative stress. Neither of the mutations in isolation has a significant effect on the ON, but animals homozygous for both mutations (DM) exhibit very serious ON degeneration. ON astrocytes from these double-mutant (DM) animals have lysosomal defects, including impaired mitophagy, and dysfunctional mitochondria. Urolithin A can rescue the mitophagy impairment in DM astrocytes and reduce ON degeneration. These data demonstrate that efficient mitophagy in astrocytes is required for ON health and functional integrity. Full article
(This article belongs to the Special Issue Retinal Cell Biology in Health and Disease)
Show Figures

Figure 1

16 pages, 2743 KiB  
Article
Exosc9 Initiates SUMO-Dependent lncRNA TERRA Degradation to Impact Telomeric Integrity in Endocrine Therapy Insensitive Hormone Receptor-Positive Breast Cancer
by Maram Quttina, Kacie D. Waiters, Ashfia Fatima Khan, Samaneh Karami, Anthony S. Peidl, Mariam Funmi Babajide, Justus Pennington, Fatima A. Merchant and Tasneem Bawa-Khalfe
Cells 2023, 12(20), 2495; https://doi.org/10.3390/cells12202495 - 20 Oct 2023
Viewed by 1596
Abstract
Long, noncoding RNAs (lncRNAs) are indispensable for normal cell physiology and, consequently, are tightly regulated in human cells. Yet, unlike mRNA, substantially less is known about the mechanisms for lncRNA degradation. It is important to delineate the regulatory control of lncRNA degradation, particularly [...] Read more.
Long, noncoding RNAs (lncRNAs) are indispensable for normal cell physiology and, consequently, are tightly regulated in human cells. Yet, unlike mRNA, substantially less is known about the mechanisms for lncRNA degradation. It is important to delineate the regulatory control of lncRNA degradation, particularly for lncRNA telomeric repeat-containing RNA (TERRA), as the TERRA-telomere R-loops dictate cell cycle progression and genomic stability. We now report that the exosome complex component Exosc9 degrades lncRNA TERRA in human mammary epithelial cells. Heterochromatin protein 1 alpha (HP1α) recruits Exosc9 to the telomeres; specifically, the SUMO-modified form of HP1α supports interaction with Exosc9 and, as previously reported, lncRNA TERRA. The telomeric enrichment of Exosc9 is cell cycle-dependent and consistent with the loss of telomeric TERRA in the S/G2 phase. Elevated Exosc9 is frequently observed and drives the growth of endocrine therapy-resistant (ET-R) HR+ breast cancer (BCa) cells. Specifically, the knockdown of Exosc9 inversely impacts telomeric R-loops and the integrity of the chromosome ends of ET-R cells. Consistently, Exosc9 levels dictate DNA damage and the sensitivity of ET-R BCa cells to PARP inhibitors. In this regard, Exosc9 may serve as a promising biomarker for predicting the response to PARP inhibitors as a targeted monotherapy for ET-R HR+ BCa. Full article
(This article belongs to the Special Issue LncRNAs: Biofunctions, Cellular Targets, and Applications)
Show Figures

Figure 1

25 pages, 2004 KiB  
Review
Clinical Approaches for Mitochondrial Diseases
by Seongho Hong, Sanghun Kim, Kyoungmi Kim and Hyunji Lee
Cells 2023, 12(20), 2494; https://doi.org/10.3390/cells12202494 - 20 Oct 2023
Cited by 1 | Viewed by 3010
Abstract
Mitochondria are subcontractors dedicated to energy production within cells. In human mitochondria, almost all mitochondrial proteins originate from the nucleus, except for 13 subunit proteins that make up the crucial system required to perform ‘oxidative phosphorylation (OX PHOS)’, which are expressed by the [...] Read more.
Mitochondria are subcontractors dedicated to energy production within cells. In human mitochondria, almost all mitochondrial proteins originate from the nucleus, except for 13 subunit proteins that make up the crucial system required to perform ‘oxidative phosphorylation (OX PHOS)’, which are expressed by the mitochondria’s self-contained DNA. Mitochondrial DNA (mtDNA) also encodes 2 rRNA and 22 tRNA species. Mitochondrial DNA replicates almost autonomously, independent of the nucleus, and its heredity follows a non-Mendelian pattern, exclusively passing from mother to children. Numerous studies have identified mtDNA mutation-related genetic diseases. The consequences of various types of mtDNA mutations, including insertions, deletions, and single base-pair mutations, are studied to reveal their relationship to mitochondrial diseases. Most mitochondrial diseases exhibit fatal symptoms, leading to ongoing therapeutic research with diverse approaches such as stimulating the defective OXPHOS system, mitochondrial replacement, and allotropic expression of defective enzymes. This review provides detailed information on two topics: (1) mitochondrial diseases caused by mtDNA mutations, and (2) the mechanisms of current treatments for mitochondrial diseases and clinical trials. Full article
Show Figures

Graphical abstract

20 pages, 8275 KiB  
Article
AKT Mediates Adiponectin-Dependent Regulation of VSMC Phenotype
by Abigail E. Cullen, Ann M. Centner, Riley Deitado, Ahmed Ismaeel, Panagiotis Koutakis, Judy Muller-Delp and Gloria Salazar
Cells 2023, 12(20), 2493; https://doi.org/10.3390/cells12202493 - 20 Oct 2023
Cited by 1 | Viewed by 1205
Abstract
Adiponectin (adipoq), the most abundant hormone in circulation, has many beneficial effects on the cardiovascular system, in part by preserving the contractile phenotype of vascular smooth muscle cells (VSMCs). However, the lack of adiponectin or its receptor and treatment with recombinant adiponectin have [...] Read more.
Adiponectin (adipoq), the most abundant hormone in circulation, has many beneficial effects on the cardiovascular system, in part by preserving the contractile phenotype of vascular smooth muscle cells (VSMCs). However, the lack of adiponectin or its receptor and treatment with recombinant adiponectin have shown contradictory effects on plaque in mice. RNA sequence of Adipoq+/+ and adipoq−/− VSMCs from male aortas identified a critical role for adiponectin in AKT signaling, the extracellular matrix (ECM), and TGF-β signaling. Upregulation of AKT activity mediated proliferation and migration of adipoq−/− cells. Activation of AMPK with metformin or AdipoRon reduced AKT-dependent proliferation and migration of adipoq−/− cells but did not improve the expression of contractile genes. Adiponectin deficiency impaired oxidative phosphorylation (OXPHOS), increased expression of glycolytic enzymes, and elevated mitochondrial reactive oxygen species (ROS) (superoxide, and hydrogen peroxide). Anti-atherogenic mechanisms targeted the ECM in adipoq−/− cells, downregulating MMP2 and 9 and upregulating decorin (DCN) and elastin (ELN). In vivo, the main sex differences in protein expression in aortas involved a more robust upregulation of MMP3 in females than males. Females also showed a reduction in DCN, which was not affected in males. Our study uncovered the AKT/MAPK/TGF-β network as a central regulator of VSMC phenotype. Full article
(This article belongs to the Special Issue Role of Vascular Smooth Muscle Cells in Cardiovascular Disease)
Show Figures

Graphical abstract

18 pages, 2538 KiB  
Article
N-Terminal Processing and Modification of Ciliary Dyneins
by Miho Sakato-Antoku, Jeremy L. Balsbaugh and Stephen M. King
Cells 2023, 12(20), 2492; https://doi.org/10.3390/cells12202492 - 20 Oct 2023
Viewed by 1074
Abstract
Axonemal dyneins are highly complex microtubule motors that power ciliary motility. These multi-subunit enzymes are assembled at dedicated sites within the cytoplasm. At least nineteen cytosolic factors are specifically needed to generate dynein holoenzymes and/or for their trafficking to the growing cilium. Many [...] Read more.
Axonemal dyneins are highly complex microtubule motors that power ciliary motility. These multi-subunit enzymes are assembled at dedicated sites within the cytoplasm. At least nineteen cytosolic factors are specifically needed to generate dynein holoenzymes and/or for their trafficking to the growing cilium. Many proteins are subject to N-terminal processing and acetylation, which can generate degrons subject to the AcN-end rule, alter N-terminal electrostatics, generate new binding interfaces, and affect subunit stoichiometry through targeted degradation. Here, we have used mass spectrometry of cilia samples and electrophoretically purified dynein heavy chains from Chlamydomonas to define their N-terminal processing; we also detail the N-terminal acetylase complexes present in this organism. We identify four classes of dynein heavy chain based on their processing pathways by two distinct acetylases, one of which is dependent on methionine aminopeptidase activity. In addition, we find that one component of both the outer dynein arm intermediate/light chain subcomplex and the docking complex is processed to yield an unmodified Pro residue, which may provide a setpoint to direct the cytosolic stoichiometry of other dynein complex subunits that contain N-terminal degrons. Thus, we identify and describe an additional level of processing and complexity in the pathways leading to axonemal dynein formation in cytoplasm. Full article
(This article belongs to the Special Issue Structure and Roles of Dynein in Cellular Processes)
Show Figures

Figure 1

15 pages, 1818 KiB  
Article
Isolation and Characterization of Cow-, Buffalo-, Sheep- and Goat-Milk-Derived Extracellular Vesicles
by Monisha Samuel, Rahul Sanwlani, Mohashin Pathan, Sushma Anand, Ella L. Johnston, Ching-Seng Ang, Maria Kaparakis-Liaskos and Suresh Mathivanan
Cells 2023, 12(20), 2491; https://doi.org/10.3390/cells12202491 - 20 Oct 2023
Cited by 2 | Viewed by 1386
Abstract
Milk is a complex biological fluid that has high-quality proteins including growth factors and also contains extracellular vesicles (EVs). EVs are a lipid bilayer containing vesicles that contain proteins, metabolites and nucleic acids. Several studies have proposed that EVs in cow milk can [...] Read more.
Milk is a complex biological fluid that has high-quality proteins including growth factors and also contains extracellular vesicles (EVs). EVs are a lipid bilayer containing vesicles that contain proteins, metabolites and nucleic acids. Several studies have proposed that EVs in cow milk can survive the gut and can illicit cross-species communication in the consuming host organism. In this study, we isolated and characterized extracellular vesicles from the raw milk of the four species of the Bovidae family, namely cow, sheep, goat and buffalo, that contribute 99% of the total milk consumed globally. A comparative proteomic analysis of these vesicles was performed to pinpoint their potential functional role in health and disease. Vesicles sourced from buffalo and cow milk were particularly enriched with proteins implicated in modulating the immune system. Furthermore, functional studies were performed to determine the anti-cancer effects of these vesicles. The data obtained revealed that buffalo-milk-derived EVs induced significantly higher cell death in colon cancer cells. Overall, the results from this study highlight the potent immunoregulatory and anti-cancer nature of EVs derived from the milk of Bovidae family members. Full article
(This article belongs to the Special Issue Extracellular Vesicles in Health and Disease 2023)
Show Figures

Graphical abstract

11 pages, 1802 KiB  
Article
Autoantibodies Which Bind to and Activate Keratinocytes in Systemic Sclerosis
by Carine Moezinia, Valerie Wong, James Watson, Lydia Nagib, Sandra Lopez Garces, Siyu Zhang, Bahja Ahmed Abdi, Florence Newton, David Abraham and Richard Stratton
Cells 2023, 12(20), 2490; https://doi.org/10.3390/cells12202490 - 20 Oct 2023
Viewed by 1189
Abstract
Systemic sclerosis (SSc) is a multisystem connective tissue disease characterised by pathological processes involving autoimmunity, vasculopathy and resultant extensive skin and organ fibrosis. Recent studies have demonstrated activation and aberrant wound healing responses in the epithelial layer of the skin in this disease, [...] Read more.
Systemic sclerosis (SSc) is a multisystem connective tissue disease characterised by pathological processes involving autoimmunity, vasculopathy and resultant extensive skin and organ fibrosis. Recent studies have demonstrated activation and aberrant wound healing responses in the epithelial layer of the skin in this disease, implicating the epithelial keratinocytes as a source of pro-fibrotic and inflammatory mediators. In this paper, we investigated the role of Immunoglobulin G (IgG) autoantibodies directed against epithelial cells, as potential initiators and propagators of pathological keratocyte activation and the ensuing SSc fibrotic cascade. A keratinocyte cell-based ELISA is used to evaluate the binding of SSc IgG. SSc skin biopsies were stained by immunofluorescence for the presence of IgG in the keratinocyte layer. Moreover, IgG purified from SSc sera was evaluated for the potential to activate keratinocytes in tissue culture and to induce TLR2 and 3 signalling in reporter cell lines. We demonstrate enhanced binding of SSc IgG to keratinocytes and the activation of these cells leading to the release of IL-1α, representing a potential initiating pathway in this disease. Full article
(This article belongs to the Special Issue The Role of Epithelial Cells in Scleroderma)
Show Figures

Figure 1

22 pages, 444 KiB  
Review
Cell Cultures as a Versatile Tool in the Research and Treatment of Autoimmune Connective Tissue Diseases
by Adam Ejma-Multański, Anna Wajda and Agnieszka Paradowska-Gorycka
Cells 2023, 12(20), 2489; https://doi.org/10.3390/cells12202489 - 19 Oct 2023
Viewed by 1457
Abstract
Cell cultures are an important part of the research and treatment of autoimmune connective tissue diseases. By culturing the various cell types involved in ACTDs, researchers are able to broaden the knowledge about these diseases that, in the near future, may lead to [...] Read more.
Cell cultures are an important part of the research and treatment of autoimmune connective tissue diseases. By culturing the various cell types involved in ACTDs, researchers are able to broaden the knowledge about these diseases that, in the near future, may lead to finding cures. Fibroblast cultures and chondrocyte cultures allow scientists to study the behavior, physiology and intracellular interactions of these cells. This helps in understanding the underlying mechanisms of ACTDs, including inflammation, immune dysregulation and tissue damage. Through the analysis of gene expression patterns, surface proteins and cytokine profiles in peripheral blood mononuclear cell cultures and endothelial cell cultures researchers can identify potential biomarkers that can help in diagnosing, monitoring disease activity and predicting patient’s response to treatment. Moreover, cell culturing of mesenchymal stem cells and skin modelling in ACTD research and treatment help to evaluate the effects of potential drugs or therapeutics on specific cell types relevant to the disease. Culturing cells in 3D allows us to assess safety, efficacy and the mechanisms of action, thereby aiding in the screening of potential drug candidates and the development of novel therapies. Nowadays, personalized medicine is increasingly mentioned as a future way of dealing with complex diseases such as ACTD. By culturing cells from individual patients and studying patient-specific cells, researchers can gain insights into the unique characteristics of the patient’s disease, identify personalized treatment targets, and develop tailored therapeutic strategies for better outcomes. Cell culturing can help in the evaluation of the effects of these therapies on patient-specific cell populations, as well as in predicting overall treatment response. By analyzing changes in response or behavior of patient-derived cells to a treatment, researchers can assess the response effectiveness to specific therapies, thus enabling more informed treatment decisions. This literature review was created as a form of guidance for researchers and clinicians, and it was written with the use of the NCBI database. Full article
(This article belongs to the Section Cell Methods)
34 pages, 15353 KiB  
Article
Inducing Angiogenesis in the Nucleus Pulposus
by Sheela R. Damle, Agata K. Krzyzanowska, Maximilian K. Korsun, Kyle W. Morse, Susannah Gilbert, Han Jo Kim, Oheneba Boachie-Adjei, Bernard A. Rawlins, Marjolein C. H. van der Meulen, Matthew B. Greenblatt, Chisa Hidaka and Matthew E. Cunningham
Cells 2023, 12(20), 2488; https://doi.org/10.3390/cells12202488 - 19 Oct 2023
Viewed by 1118
Abstract
Bone morphogenetic protein (BMP) gene delivery to Lewis rat lumbar intervertebral discs (IVDs) drives bone formation anterior and external to the IVD, suggesting the IVD is inhospitable to osteogenesis. This study was designed to determine if IVD destruction with a proteoglycanase, and/or generating [...] Read more.
Bone morphogenetic protein (BMP) gene delivery to Lewis rat lumbar intervertebral discs (IVDs) drives bone formation anterior and external to the IVD, suggesting the IVD is inhospitable to osteogenesis. This study was designed to determine if IVD destruction with a proteoglycanase, and/or generating an IVD blood supply by gene delivery of an angiogenic growth factor, could render the IVD permissive to intra-discal BMP-driven osteogenesis and fusion. Surgical intra-discal delivery of naïve or gene-programmed cells (BMP2/BMP7 co-expressing or VEGF165 expressing) +/- purified chondroitinase-ABC (chABC) in all permutations was performed between lumbar 4/5 and L5/6 vertebrae, and radiographic, histology, and biomechanics endpoints were collected. Follow-up anti-sFlt Western blotting was performed. BMP and VEGF/BMP treatments had the highest stiffness, bone production and fusion. Bone was induced anterior to the IVD, and was not intra-discal from any treatment. chABC impaired BMP-driven osteogenesis, decreased histological staining for IVD proteoglycans, and made the IVD permissive to angiogenesis. A soluble fragment of VEGF Receptor-1 (sFlt) was liberated from the IVD matrix by incubation with chABC, suggesting dysregulation of the sFlt matrix attachment is a possible mechanism for the chABC-mediated IVD angiogenesis we observed. Based on these results, the IVD can be manipulated to foster vascular invasion, and by extension, possibly osteogenesis. Full article
Show Figures

Figure 1

14 pages, 3625 KiB  
Article
Proteome Analysis of Thyroid Hormone Transporter Mct8/Oatp1c1-Deficient Mice Reveals Novel Dysregulated Target Molecules Involved in Locomotor Function
by Devon Siemes, Pieter Vancamp, Boyka Markova, Philippa Spangenberg, Olga Shevchuk, Bente Siebels, Hartmut Schlüter, Steffen Mayerl, Heike Heuer and Daniel Robert Engel
Cells 2023, 12(20), 2487; https://doi.org/10.3390/cells12202487 - 19 Oct 2023
Cited by 2 | Viewed by 1353
Abstract
Thyroid hormone (TH) transporter MCT8 deficiency causes severe locomotor disabilities likely due to insufficient TH transport across brain barriers and, consequently, compromised neural TH action. As an established animal model for this disease, Mct8/Oatp1c1 double knockout (DKO) mice exhibit strong central TH deprivation, [...] Read more.
Thyroid hormone (TH) transporter MCT8 deficiency causes severe locomotor disabilities likely due to insufficient TH transport across brain barriers and, consequently, compromised neural TH action. As an established animal model for this disease, Mct8/Oatp1c1 double knockout (DKO) mice exhibit strong central TH deprivation, locomotor impairments and similar histo-morphological features as seen in MCT8 patients. The pathways that cause these neuro-motor symptoms are poorly understood. In this paper, we performed proteome analysis of brain sections comprising cortical and striatal areas of 21-day-old WT and DKO mice. We detected over 2900 proteins by liquid chromatography mass spectrometry, 67 of which were significantly different between the genotypes. The comparison of the proteomic and published RNA-sequencing data showed a significant overlap between alterations in both datasets. In line with previous observations, DKO animals exhibited decreased myelin-associated protein expression and altered protein levels of well-established neuronal TH-regulated targets. As one intriguing new candidate, we unraveled and confirmed the reduced protein and mRNA expression of Pde10a, a striatal enzyme critically involved in dopamine receptor signaling, in DKO mice. As altered PDE10A activities are linked to dystonia, reduced basal ganglia PDE10A expression may represent a key pathogenic pathway underlying human MCT8 deficiency. Full article
Show Figures

Figure 1

23 pages, 2354 KiB  
Review
Dissecting the Role of Autophagy-Related Proteins in Cancer Metabolism and Plasticity
by Liliana Torres-López and Oxana Dobrovinskaya
Cells 2023, 12(20), 2486; https://doi.org/10.3390/cells12202486 - 19 Oct 2023
Viewed by 1615
Abstract
Modulation of autophagy as an anticancer strategy has been widely studied and evaluated in several cell models. However, little attention has been paid to the metabolic changes that occur in a cancer cell when autophagy is inhibited or induced. In this review, we [...] Read more.
Modulation of autophagy as an anticancer strategy has been widely studied and evaluated in several cell models. However, little attention has been paid to the metabolic changes that occur in a cancer cell when autophagy is inhibited or induced. In this review, we describe how the expression and regulation of various autophagy-related (ATGs) genes and proteins are associated with cancer progression and cancer plasticity. We present a comprehensive review of how deregulation of ATGs affects cancer cell metabolism, where inhibition of autophagy is mainly reflected in the enhancement of the Warburg effect. The importance of metabolic changes, which largely depend on the cancer type and form part of a cancer cell’s escape strategy after autophagy modulation, is emphasized. Consequently, pharmacological strategies based on a dual inhibition of metabolic and autophagy pathways emerged and are reviewed critically here. Full article
(This article belongs to the Special Issue Autophagy and Human Cancers)
Show Figures

Graphical abstract

10 pages, 979 KiB  
Perspective
The Impact of the Nervous System on Arteries and the Heart: The Neuroimmune Cardiovascular Circuit Hypothesis
by Sarajo K. Mohanta, Ting Sun, Shu Lu, Zhihua Wang, Xi Zhang, Changjun Yin, Christian Weber and Andreas J. R. Habenicht
Cells 2023, 12(20), 2485; https://doi.org/10.3390/cells12202485 - 19 Oct 2023
Cited by 1 | Viewed by 1466
Abstract
Three systemic biological systems, i.e., the nervous, the immune, and the cardiovascular systems, form a mutually responsive and forward-acting tissue network to regulate acute and chronic cardiovascular function in health and disease. Two sub-circuits within the cardiovascular system have been described, the artery [...] Read more.
Three systemic biological systems, i.e., the nervous, the immune, and the cardiovascular systems, form a mutually responsive and forward-acting tissue network to regulate acute and chronic cardiovascular function in health and disease. Two sub-circuits within the cardiovascular system have been described, the artery brain circuit (ABC) and the heart brain circuit (HBC), forming a large cardiovascular brain circuit (CBC). Likewise, the nervous system consists of the peripheral nervous system and the central nervous system with their functional distinct sensory and effector arms. Moreover, the immune system with its constituents, i.e., the innate and the adaptive immune systems, interact with the CBC and the nervous system at multiple levels. As understanding the structure and inner workings of the CBC gains momentum, it becomes evident that further research into the CBC may lead to unprecedented classes of therapies to treat cardiovascular diseases as multiple new biologically active molecules are being discovered that likely affect cardiovascular disease progression. Here, we weigh the merits of integrating these recent observations in cardiovascular neurobiology into previous views of cardiovascular disease pathogeneses. These considerations lead us to propose the Neuroimmune Cardiovascular Circuit Hypothesis. Full article
Show Figures

Figure 1

16 pages, 3950 KiB  
Article
Astrocytes Undergo Metabolic Reprogramming in the Multiple Sclerosis Animal Model
by Sofia Pereira das Neves, João Carlos Sousa, Ricardo Magalhães, Fuying Gao, Giovanni Coppola, Sebatien Mériaux, Fawzi Boumezbeur, Nuno Sousa, João José Cerqueira and Fernanda Marques
Cells 2023, 12(20), 2484; https://doi.org/10.3390/cells12202484 - 19 Oct 2023
Viewed by 1095
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system that presents a largely unknown etiopathology. The presence of reactive astrocytes in MS lesions has been described for a long time; however, the role that these cells play in the [...] Read more.
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system that presents a largely unknown etiopathology. The presence of reactive astrocytes in MS lesions has been described for a long time; however, the role that these cells play in the pathophysiology of MS is still not fully understood. Recently, we used an MS animal model to perform high-throughput sequencing of astrocytes’ transcriptome during disease progression. Our data show that astrocytes isolated from the cerebellum (a brain region typically affected in MS) showed a strong alteration in the genes that encode for proteins related to several metabolic pathways. Specifically, we found a significant increase in glycogen degradation, glycolytic, and TCA cycle enzymes. Together with these alterations, we detected an upregulation of genes that characterize “astrocyte reactivity”. Additionally, at each disease time point we also reconstructed the morphology of cerebellum astrocytes in non-induced controls and in EAE animals, near lesion regions and in the normal-appearing white mater (NAWM). We found that near lesions, astrocytes presented increased length and complexity compared to control astrocytes, while no significant alterations were observed in the NAWM. How these metabolic alterations are linked with disease progression is yet to be uncovered. Herein, we bring to the literature the hypothesis of performing metabolic reprogramming as a novel therapeutic approach in MS. Full article
(This article belongs to the Special Issue Astrocyte Reprogramming and Brain Homeostasis)
Show Figures

Figure 1

20 pages, 3862 KiB  
Article
Integrated Meta-Omics Analysis Unveils the Pathways Modulating Tumorigenesis and Proliferation in High-Grade Meningioma
by Deeptarup Biswas, Ankit Halder, Abhilash Barpanda, Susmita Ghosh, Aparna Chauhan, Lipika Bhat, Sridhar Epari, Prakash Shetty, Aliasgar Moiyadi, Graham Roy Ball and Sanjeeva Srivastava
Cells 2023, 12(20), 2483; https://doi.org/10.3390/cells12202483 - 18 Oct 2023
Viewed by 1621
Abstract
Meningioma, a primary brain tumor, is commonly encountered and accounts for 39% of overall CNS tumors. Despite significant progress in clinical research, conventional surgical and clinical interventions remain the primary treatment options for meningioma. Several proteomics and transcriptomics studies have identified potential markers [...] Read more.
Meningioma, a primary brain tumor, is commonly encountered and accounts for 39% of overall CNS tumors. Despite significant progress in clinical research, conventional surgical and clinical interventions remain the primary treatment options for meningioma. Several proteomics and transcriptomics studies have identified potential markers and altered biological pathways; however, comprehensive exploration and data integration can help to achieve an in-depth understanding of the altered pathobiology. This study applied integrated meta-analysis strategies to proteomic and transcriptomic datasets comprising 48 tissue samples, identifying around 1832 common genes/proteins to explore the underlying mechanism in high-grade meningioma tumorigenesis. The in silico pathway analysis indicated the roles of extracellular matrix organization (EMO) and integrin binding cascades in regulating the apoptosis, angiogenesis, and proliferation responsible for the pathobiology. Subsequently, the expression of pathway components was validated in an independent cohort of 32 fresh frozen tissue samples using multiple reaction monitoring (MRM), confirming their expression in high-grade meningioma. Furthermore, proteome-level changes in EMO and integrin cell surface interactions were investigated in a high-grade meningioma (IOMM-Lee) cell line by inhibiting integrin-linked kinase (ILK). Inhibition of ILK by administrating Cpd22 demonstrated an anti-proliferative effect, inducing apoptosis and downregulating proteins associated with proliferation and metastasis, which provides mechanistic insight into the disease pathophysiology. Full article
(This article belongs to the Special Issue New Advances in Proteomics in Cancer)
Show Figures

Graphical abstract

19 pages, 4622 KiB  
Article
The Lymphatic Endothelial Cell Secretome Inhibits Osteoblast Differentiation and Bone Formation
by Ernesto Solorzano, Andrew L. Alejo, Hope C. Ball, Gabrielle T. Robinson, Andrea L. Solorzano, Rama Safadi, Jacob Douglas, Michael Kelly and Fayez F. Safadi
Cells 2023, 12(20), 2482; https://doi.org/10.3390/cells12202482 - 18 Oct 2023
Viewed by 1139
Abstract
Complex lymphatic anomalies (CLAs) are a set of rare diseases with unique osteopathic profiles. Recent efforts have identified how lymphatic-specific somatic activating mutations can induce abnormal lymphatic formations that are capable of invading bone and inducing bone resorption. The abnormal bone resorption in [...] Read more.
Complex lymphatic anomalies (CLAs) are a set of rare diseases with unique osteopathic profiles. Recent efforts have identified how lymphatic-specific somatic activating mutations can induce abnormal lymphatic formations that are capable of invading bone and inducing bone resorption. The abnormal bone resorption in CLA patients has been linked to overactive osteoclasts in areas with lymphatic invasions. Despite these findings, the mechanism associated with progressive bone loss in CLAs remains to be elucidated. In order to determine the role of osteoblasts in CLAs, we sought to assess osteoblast differentiation and bone formation when exposed to the lymphatic endothelial cell secretome. When treated with lymphatic endothelial cell conditioned medium (L-CM), osteoblasts exhibited a significant decrease in proliferation, differentiation, and function. Additionally, L-CM treatment also inhibited bone formation through a neonatal calvaria explant culture. These findings are the first to reveal how osteoblasts may be actively suppressed during bone lymphatic invasion in CLAs. Full article
Show Figures

Figure 1

15 pages, 3085 KiB  
Article
SMYD3 Modulates the HGF/MET Signaling Pathway in Gastric Cancer
by Katia De Marco, Martina Lepore Signorile, Elisabetta Di Nicola, Paola Sanese, Candida Fasano, Giovanna Forte, Vittoria Disciglio, Antonino Pantaleo, Greta Varchi, Alberto Del Rio, Valentina Grossi and Cristiano Simone
Cells 2023, 12(20), 2481; https://doi.org/10.3390/cells12202481 - 18 Oct 2023
Viewed by 1018
Abstract
Gastric cancer (GC) is the third most deadly cancer worldwide. Considerable efforts have been made to find targetable drivers in order to improve patient outcomes. MET is one of the most important factors involved in GC initiation and progression as it plays a [...] Read more.
Gastric cancer (GC) is the third most deadly cancer worldwide. Considerable efforts have been made to find targetable drivers in order to improve patient outcomes. MET is one of the most important factors involved in GC initiation and progression as it plays a major role in GC invasiveness and is related to cancer stemness. Unfortunately, treatment strategies targeting MET are still limited, with a proportion of patients responding to therapy but later developing resistance. Here, we showed that MET is a molecular partner of the SMYD3 methyltransferase in GC cells. Moreover, we found that SMYD3 pharmacological inhibition affects the HGF/MET downstream signaling pathway. Extensive cellular analyses in GC models indicated that EM127, a novel active site-selective covalent SMYD3 inhibitor, can be used as part of a synergistic approach with MET inhibitors in order to enhance the targeting of the HGF/MET pathway. Importantly, our data were confirmed in a 3D GC cell culture system, which was used as a surrogate to evaluate stemness characteristics. Our findings identify SMYD3 as a promising therapeutic target to impair the HGF/MET pathway for the treatment of GC. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop