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H'! SOLUTIONS OF A CLASS OF FOURTH ORDER
NONLINEAR EQUATIONS FOR IMAGE PROCESSING

JOHN B. GREER AND ANDREA L. BERTOZZI

ABSTRACT. Recently fourth order equations of the form uy = —V-((G(Jru))VAu)
have been proposed for noise reduction and simplification of two dimensional
images. The operator G is a nonlinear functional involving the gradient or
Hessian of its argument, with decay in the far field. The operator J, is a stan-
dard mollifier. Using ODE methods on Sobolev spaces, we prove existence and
uniqueness of solutions of this problem for H' initial data.

1. Introduction. Image restoration and smoothing is important in problems rang-
ing from medical diagnostic tests to defense applications such as target recognition.
The review article [11] provides a historical description of the use of PDEs in im-
age processing. Consider a gray-scale image, represented through pixels on a grid,
by a scalar function u. The image is evolved according to a particular differential
equation

ou

5 = Nut,y,0) (1)

where IV is in general a nonlinear partial differential operator. The time variable is
artificial in that it measures the degree of processing (e.g. smoothing or inpainting)
of the image as opposed to a real time. The true problem in image processing is
discrete in space, with data represented on a Cartesian grid of pixels. Thus, the
PDE plays the role of a continuum approximation of the true discrete problem. This
is in contrast to a numerical approximation of a continuum model from physics,
where the discrete approximation is necessary in order to solve the problem on
a computer with a finite memory and number of operations. Despite the role
reversal, much intuition can be derived from physical models and this has led to
some novel new PDEs proposed for performing specialized tasks on images. Many
image processing problems involve some sort of energy minimization, and thus the
PDE is related to a variational problem. The methods that we consider here are
not derived from a variational setting and thus we consider dynamic methods for
studying regularity properties of these equations.

Before the development of nonlinear PDE-based methods, the problem of noise
reduction in images was treated through linear filtering, in which the image intensity
function is convolved with a Gaussian. The method of linear filtering was introduced
by Marr and Hildreth [26], and then further developed by Witkin [36], Koenderink
[23], and Canny [10]. It is equivalent to solving the heat equation with initial data
given by the noisy image intensity function. Although this technique quickly damps
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out any noise in the image, it also badly blurs edges, often leaving objects in the
image unrecognizable. We consider the problem of reducing overall noise while
preserving or sharpening edges. A related problem is to detect edges while ignoring
fine scale scatter.

A well-known method, involving nonlinear diffusion, was proposed by Perona
and Malik [28]. They define an edge indicator, g to be a smooth non-increasing
function satisfying the following:

e g(0)=1

* g(s)>0

o lim, , %g(s) = 0 for each integer n > 0.

An example typically used in applications is

1
9(s) = —,
1+ (%)
where K is a subjective parameter. The Perona-Malik equation replaces the diffu-
sion coefficient in the heat equation with this edge indicator:

u =V - (g(IVu|)Vu) (2)
(0, z) = up(x).

A related method for image denoising was introduced by Rudin and Osher [27,
29, 30] using g(Vu) = 1/|Vu|, which arises from a variational formulation of the
problem using TV norms [2, 3, 4, 5].

Equation (2) is a continuum approximation of a discrete algorithm, also proposed
by Perona and Malik [18, 28]. Although this method is effective, the continuum
equation (2) is ill-posed. Specifically in regions of high gradients, backward diffusion
is introduced in the direction of the gradient. This can be seen by computing the
linearization of (2) about a constant gradient solution ¢- #. In practice, the ill-
posedness results in a mild instability in the discrete problem. Regions of high
gradients develop a “staircase” instability that involves dynamic coarsening of the
steps as time evolves [18, 22]. To make the equation well posed, a simple adjustment
with practical applications, is to include a short range mollifier in the nonlinear
diffusion [12]. The new, well-posed equation is given by

ur — V- [g(|VI,ul)Vu] =0 (3)
u(z,0) = ug(x),

where .J, is a mollifier, as described in Section 2. Existence and uniqueness of
solutions to this modified Perona-Malik equation has been proved for initial data
up € L2 (Q) [12].

In terms of the image processing, J, causes g to measure edges of u with a small
amount of linear filtering. This was originally recommended by Perona and Malik to
prevent their algorithm from making edges where they are unwanted, such as in the
noise. This small amount of linear filtering allows g to measure edges of v in a more
“global” sense, so that it is not easily affected by local discretization. In practice,
o is often made to depend on time, with o larger in earlier iterations, when noise is
most prevalent [35]. While use of the mollifier may seem to be counterproductive,
since the original intention was to avoid the blurring caused by linear filtering, the
results can be quite impressive, and are in fact a great improvement over linear
filtering.
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Although use of the Perona-Malik equation effectively reduces noise while main-
taining edges, the resulting images have large jumps in intensity, which make them
appear “blocky” [35]. To make the images more pleasing to the eye, it would be
useful to reduce this effect. One way of doing so is to use a higher-order version of
the Perona-Malik equation, examples of which are given in [33], [34], and [37].

In separate recent studies, Tumblin and Turk [33] and Wei [34] propose equations
of the form

ut + V- [g(m)VAu] =0, (4)
where g is defined as above, and m is some measurement of u. In [34], m is merely

the Euclidean norm of the gradient of w. In [33], m is a measure of the curvature
of u, rather than its gradient; in two dimensions they take

2 2 2 2 2 2
(B () ()
2 Oy O3 0x101T>
You and Kaveh [37] introduce a different form of fourth-order diffusion,

ug + Afg(m)Au] = 0, (5)
where m = |Aul. (5) is derived from a variational formulation, and it would be
interesting to compare this problem with the second-order method introduced by
Rudin and Osher. Unlike the equations considered in [33] and [34], (5) is self-
adjoint. (5) was derived in a variational setting, and the natural ‘energy’ for that
problem is the L? energy [ |ul?, while it is preferable to consider the H' energy
with (4).

Both [33] and [37] discover that computations with their methods result in piece-
wise linear solutions as t — oo. While the second-order Perona-Malik equation
produces image intensity functions with sharp jumps in intensity, the fourth-order
methods result in image intensity functions with jumps in gradient. This is far less
obvious to the human eye, and has the potential to give cleaner images.

Fourth order equations of the type described above are very new and no analyt-
ical results have been derived for these problems. This paper proves existence and
uniqueness of H' solutions of the higher-order version of the Perona-Malik equation
discussed in [34] and [33]:

ug + V- [g(|ID* Jyu|)VAU] =0 (6)
u(z,0) = up(x).

Our technique uses the Picard Theorem on a Banach space combined with energy
methods. We consider approximate equations

uf + J.V - [g(|ID* Touf|) JVAu] =0 (7)
ue(mv 0) = UO(Z’),

where J, is again a mollifier. After proving existence of solutions u¢ to the ap-
proximating equations, we find a subsequence converging to a solution of (6). This
constructive method is used in [32] for nonlinear second order parabolic equations
and in [25] for both the Euler and Navier-Stokes equations for incompressible flu-
ids. In this and other problems, the argument hinges on a basic energy estimate
that is independent of the regularization parameter € in the above. For Euler and
Navier-Stokes, the energy is the physical kinetic energy of the fluid. For the problem
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considered here, it is the H' energy [ |Vu|?. The general method is not restricted
to parabolic equations as the Euler example of [25] shows.

For simplicity in this paper, we consider solutions on the N-dimensional torus,
TN. This is reasonable for problems in image processing, where computations are
often performed on a square with Neumann boundary conditions. Mathematically,
the periodic case is a generalization of the Neumann case, in the sense that the
Neumann problem is a projection onto a subspace satisfying reflection symmetry
of the full periodic problem on a larger cube.

Section 2 introduces notation and basic properties of mollifiers. In Section 3 we
prove the existence of solutions to the regularized equations (7) with ug € H™(TY),
m > 1. Then in Section 4, we assume ug is in H'(T?) and prove the existence of a
solution u to a weak form of (6). We show that this solution is unique in Section 5,
and in Section 6 we prove that it is actually a strong solution of (6) that is infinitely
differentiable away from ¢ = 0.

2. Notation and Properties of Mollifiers. We shall use the following notation:

TV is the N-dimensional torus.
| u [|o is the L?>-norm of u on TN :

o= (o)

e For a multi-index a = (v, ,an), a; € ZT U{o},
aal aaN
D~ - ..~ .
F(@) = g e @)

We define |a| = ZZI\LI a;.
o || u |l for m > 0 is the H™-norm of v on TV :

=

lullm=| D 11Dl

jal<m
® || u ||oo is the L>®-norm of u on TN :

|| v |loo= ess sup |u(z)|.
zeTN

e Given a Banach space X, with norm || - ||x, C ([0,T]; X) is the space of
continuous functions mapping [0, 7] into X. we give this space the norm

Il v lleqo,r:x)= sup || u(t) ||x -
0<t<T

Similarly, C* ((0,7); X) is the space of functions in C ([0,7]; X) with deriva-
tives in C' ((0,7); X).

e L°(0,T; X) is the space of functions such that u(t) € X for a.e. ¢t € (0,T)
with finite norm

I wllLeo,rix)= ess sup [ u(t) ||lx -
t€(0,T)

e [2(0,T;X) is the space of functions such that u(t) € X for a.e. t € (0,7T)
with finite norm

T
Il w llz20,75)= </0 1 u(®) 1% dt)

=
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Given f defined on TV, its Fourier coefficients are

foy = [ ree =i

for each k € ZN (see, for example, [31] or [16]). We define the mollification, J f, of
functions f € LP(TN), 1 < p < oo, by

Jef(il?) — Z f(k)6762|k|2+27rik.z. (8)
kezZN
Je is analogous to mollifiers defined through a convolution operator for functions
on R" [1, 19, 25] . In Lemma 1, we list those properties of mollifiers on T that
will be used throughout the paper. These properties use the equivalence of the
H™-norm of f as defined above with the norm

1 f llm= ( Yo kPt |k|2)m> :

kezN
which is a direct result of the Plancherel identity [16].

Lemma 1. Let J. be the mollifier defined in (8). Then J.f is a C* function with
the following properties:

1. For all f € C" (TN) , with 1> 5, Jef — f uniformly and

[Jeflpee < [ flpee - (9)
2. For all f,g € L*(TV),
| ngiz=| fugd. (10)
T~ TN
3. Mollifiers commute with distribution derivatives,
DYJ.f =J.D*f VN|a|<m, fe H™. (11)

4. For all f € H*(TN), J.f converges to f in H*(T"N), and the rate of conver-
gence in the H* ' -norm is linear in e€:

lim || Jof = flls = 0, (12)
e—0
N Jef =Fllscr < €l flls (13)
5. For all f € H¥(TN), vy € Z+* U {0}, m € {0,1,...,~7}, and € > 0,

IN

C
| Tef s+~ peall BAP (14)

¢
¥ Y
[ D7 flpe < Tom 1 F Al (15)
3. Existence and Uniqueness of Solutions to the Approximating Equa-
tions. We first prove the following theorem.

Theorem 1. Let ug € H™ for some integer m > 1. For every ¢ > 0, there exists a
solution u® € C1((0,00), H™) to the regularized equation (7), with u®(z,0) = ug(z).

Our proof uses the Picard Theorem on a Banach Space, and the continuation
property of autonomous ODEs on a Banach space. We state the important theorems
here. See [21] for more information.
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Theorem (Picard Theorem on a Banach Space). Let O C B be an open subset of
a Banach space B, and let F' : O — B be a locally Lipschitz continuous mapping.
Then for any Xo € O, there exists a time T such that the ODE

dX
E:F(X)’ X|t:0:X0€O> (16)

has a unique (local) solution X € C* ((=T,T);0).

Theorem (Continuation on a Banach Space.). Let O C B be an open subset of
a Banach space B, and let F : O — B be a locally Lipschitz continuous operator.
Then the unique solution X € C* ([0,T);0) to the autonomous ODE

dX
E:F(X)’ X|t:0:X0€O> (17)

either exists globally in time, or T < co and X (t) leaves the open set O ast — T.

Let g¢ = g(|D*J,u¢|), and F.(u$) = J.V - (g5 J.VAuS). To use the Picard The-
orem, we need to show that F. is locally Lipschitz continuous. The smoothness
requirements on g will allow us to prove two lemmas toward that end.

Lemma 2. For uy,us contained in a bounded set in H', and for every multi-index
«, there exist constants Cy and Cy, both depending on k, o, N and a, such that

I D*(g(ID* Jousl) = g(ID* Joua)) lloo < C [l ur = uz [J1, (18)
and

I D (g(ID* Jousl) = g(ID* Joual)) lloo < Co [l ur —u2 [lo - (19)
Proof
Suppose we are considering the set O = {w:| u ||y < M} . First let |a| = 0.

C
k
| D" Jou || < m”uulﬁ pr vl

showing that |DkJ[,u| is bounded for u in O. Since g is Lipschitz continuous, there

exists a C’ such that
"

I 9(1D* Jous|) =g (| D* Joua]) [loo < C" || DFJp(ur—u2) |0 <

—~ - ||U1—Uu .
<y lwmwedh

Similarly,

I 9(ID* Joual) — g(|1D* Jpuz) [loo < |y = w2 o -

gtk
For |a| > 0, we use the chain rule and the fact that g is smooth (and therefore g(™)
is locally Lipschitz for each positive integer m) to give a proof as above. [

Remark: Although the proof of this lemma uses C’ and C" to denote new con-
stants, for simplicity we refrain from doing so in the remainder of this paper. Instead
C is used to denote a general constant. When C' depends on a parameter that we
feel is important to mention (e.g. € or o), we write C' as C(dependencies) (e.g.

C(e, 0)).
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Lemma 3. For each multi-index o there exists a constant C (depending on k, N,
a and o) such that on a bounded set {u:|ully < M},

I D*(g(ID* Jousl) = g(ID* Joua)) [lo < C [l us —uz |ls - (20)

Proof
First let |a| = 0. As shown in the proof of Lemma 2, g is Lipschitz on bounded sets
in H', so

1 91D Jyur]) = g(1D* T usl) flo= ( [ 1a(1D* o] —g<|D'“Jau2|>|2) ’

< (/ C? | J, D* (uy — u2)|2> = C || J,D*(uy — us) o

C
< Ol Jo(ur —u2) Ik £ = llur —u2 |1
ag

The chain rule and the smoothness of g give similar results for |a| > 0. O

Proof of Theorem 1
Now we show that F% is locally Lipschitz continuous in H™ for each m > 1.

| Fe(ui) = Fe(us) [lm=
| JeV - [(95 (JeVAuy = JVAUS)) + (91 — 95) JV Aus] |m
< V- (gi(J VAU = u3))) [Im + ([ IV - (97 — 95) T VAUS) [Im

= A+B.

Using the mollifier inequalities and above lemmas, we have

c
A < ; || giJEVA(’UE - u;) ||m

c

< S0t loll D719 AwE ~5) o + 1 D7 ol SV A~ u5) o)
c 1 1

< Elst e 5 0= 05 411075 o~ s = 1

C € m € € €

< U I 1 D78 o I —

€2

< Clem,o) [luy (o]l uf —us flm -

Also using Sobolev inequalities and the above lemmas give

C
A LR VAN

C

< oAD" IV A (ol ug —u [l + 11 D™ (91 — 92) lloll JeVAU3 flo}
C(o) 1 1

< o Vo Mua il ud — g te | us 1l g —uj |l

C(oa)
= Fimes Il ud lull wi = us -

The final result is that
| Fe(ui) = Fe(us) [l < C (14§ |l 6,0, Nym) [ uf — s [Im, (21)
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proving that F; is locally Lipschitz continuous on any open set
OM ={ue€ H™| || u ||m< M,m > 1}.
The Picard Theorem tells us that equation (7) has a unique solution
u € C1([0,T), H™)

for some T > 0.
Now we check how long solutions to (7) can be continued. To do this, we first
show that

sup [l uf(t) | < Cluo |l - (22)
0<t<T

Take the L2-inner product of equation (7) with Au¢ and integrate by parts in the
term with the time derivative to obtain

%% || Vus ||2 —/JEV- [g(|D¥ Jouf])J.V Au] Auf = 0.
Integrating by parts and using properties of mollifiers we have
d1 P kg e 2
3 IV I3+ [ gD I 12 Aup =0, (23)
So
d1

G5 IV == [ oDt TV Al < o,

since g(s) > 0. We now have the L?-bound

I V(@) flo < || Vo [lo (24)
for solutions of (7). Since [u¢ is a conserved quantity, (24) implies

[u(@®) Il < Clluoll- (25)
Remark: By integrating equation (23) over time, we get another useful result:

1 € T J €
3 (V@ 1= Va0 1)+ [ [ aD* T T A = 0,
SO

T
1
| [ op* e Dlavsu? < 51 Vua I (26)
0

We will now find a bound on || u ||, . Letting u§ = 0 in (21), we have

d € € €
g N llm < €Ut s, 6,00Nym) [l - (27)

(25) and (27) give

d € €
7 N llm < C(luo [l €0, N n) [ 0 [l -

Gronwall’s inequality implies

[ uf(,T) I < AT, (28)
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where A is a constant depending on || ug || . Invoking the continuation property
of autonomous ODEs on a Banach space, we can extend the solution of (7) to any
time interval [0, T). The theorem follows. [

Remark: The proof of Lemma 2 showed that for bounded sets of w in H!,
|D¥ J,u(t)| is bounded. Given (25), there exists some v > 0 such that
g(|D*J,ul) > v > 0. (29)

This is important for later estimates.

4. Weak solution with initial data in H'. We call u a weak solution of equation
(6) if it satisfies

o~ % (t)v — /TN g(|D* J,u(t))VAu(t)Vo = 0 (30)
U(.’IJ, 0) = U,O(;I;) (31)

for any v € H' a.e. in [0,T]. It is easy to check that (30) is equivalent to (6)
for smooth enough u. Here we have fixed a time interval [0, 7], but this choice is
arbitrary, due to the existence of solutions to the approximating equations for all
t>0.

We prove the following theorem.

Theorem 2. If ug € H', then equation (30) has a solution

we L?(0,T;H*)nC ([0,T); H-") nL>([0, T}, H") (32)
satisfying (31).

The proof requires passing to a limit in € in the approximating equations (7). To
prepare for this, in Subsection 4.1 we establish bounds on solutions of (7) that are
independent of €. We prove Theorem 2 in Subsection 4.2.

4.1. A Bound on || u¢ ||, that is independent of e. In order to prove the
existence of solutions of equation (6), we pass to a limit in € in the approximat-
ing equations (7). To do this, we must find bounds on solutions of (7) that are
independent of €. From (25) and (26), we have

| w(®) [t < Cu |l uo |[|x,
for ¢t > 0, and

T
/0 Tt [2dt < Colluo |-

We use these bounds to estimate || u¢(¢) ||3 and fOT || Jeu<(t) ||2 dt, then repeat this
process to get bounds on even higher Sobolev norms.

Lemma 4. Let u be a solution of (7) for any € > 0. For all integers m > 1 and
0<t<T, for any T > 0, if ugp € H™, we have bounds of the form

[ u(@) [lm < C(N, 0,k v, T, || o [Im) (33)

and
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T
/0 | Jeut (#) [Fpa dt < C(N,0,k,v,T, || uo [lm)- (34)

Remark: Our proof of Theorem 2 uses (33) and (34) in the case m = 1. We prove
that solutions of the type given by Theorem 2 are infinitely differentiable in space
time with the use of (33) and (34) for each positive integer m.

Proof of Lemma 4
Since equations (33) and (34) hold for m = 1, assume they hold for m — 1. We show
that bounds of a similar type are true for m. Rewrite (7) as

ou,
ot

= —Jg(|D* Jou ) AATu — IV (g(|J- D ul)) - JV Au

= _JELO'JEUG - JeBea

where L, = g(|D*¥J,u‘|)AA, and B, = V (g(|J,D*uc|)) - J-VAu. Take the
a—derivative (for some multi-index «a) of the above equation, and then take the
L2-inner product of each term with D*Auf to get

d
o || D*Vus(t) ||2= 2 (D*J.L,Juf, D*Auf) + 2 (D* B, J.D* Auf) (35)

= 2(A+ B).

A = (9(|J-D*uf|)D*AATus, D*AJ.uf)
+ > (D" (9(|J, D uf])) DPAAT s, D* AJuf) (36)
haa"
= A + As.
Let v = D*J.uf. Then the Leibniz rule gives

A = Z (8i (g(|Jnguf|)8i8]2v) ,(9?1}) — (8i (g(|JnguE|)) 8i8]2v,8]2v)

4,

= Z - (g(|Jngu6|)3i3?’U,3i8?’U) — (8i (g(|J0DkuE|)) 8i8?v,8]2v)
4,

< —vlvli - Z (0 (g(|JnguE|)) 8;07v,07v)

i,J

with v given by (29).
The smoothness properties of g, along with the chain rule, mollifier inequalities,
and estimate (22) give

| Dg(|D* Joul) = < C (n, 0.k, N, || uo [|1) (37)

for each multi-index p. We will now use this bound to estimate A, and the remaining
term of A;. Since |3] < |a| — 1 in each term of A,,

| DPAAJ.u¢ [|o<|| D Jouf ||3
for each 3, giving
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A < v || DT |} +C (o.k, | uo ) | D*Jeu [lal] D Tt [l

+C | > I D*g(|JeD*ul) llso | I D Jeus [I5]] D* Jeus ||z
0<|u| < |af

< —v || D*Jus |3 +C (o,k, N, || ug [l1) || D*Jeus [ls]| D*Jeus |2 (38)
Next consider B, = Vg(|D¥J,u|) - VAJcuc. Using estimates of
| D2g(|D* Joul|) ||~ as above, we have

I D*Be llo < Ci (0, k, [ ug [l1) [| D* Jeu® [|s,
SO
(D*Be, D*JAu) < Ci(o,a,k, [l uo [l) || D Jeu |ls]] D* Jeus |2 (39)

Using our bounds (38) and (39) on A and B, we have an upper bound for
4| D*VJeu ||3 . Summing over all multi-indices o with || < m — 1, we have

d €
V) [ <
=20 || Jeu® |I3q +C (o,m k. [ uo [11) | Jeu [lmoll Jeu® s (40)
Using the inequality

1
<va+|— )b 41
ab < va +<4V>b (41)

with a =|| Jou® ||mr2, We see

d
7 V(@) 1 < vl Jeu s +C (0,mu kv, [ uo 1) [ Jeu (5,41,

and therefore

d € €
= VU @) ey < Cloymy kv, N, [l uo 1) 1| Jew(8) [l (42)
Integrating in time, and using the inductive hypothesis (34), we have
[ u@) [lm < Clo,m, kv, N, || uo ||lm,T) (43)
for all 0 <t < T. Returning to inequality (40) and using
1 1 1 1
) = B2 22— D)2 < Zp? L2
a(b — a) b 50 2(a b)° < 2b 59

we have

d € € 1 €
IV @) Gy +v [ T e < 50 (0m by, N Lo (1) 1] Teu® [ -

Once again integrating in time and using the hypothesis (34), we see

T
/0 | Jeus [osn < C(a,m kv, N, |l uo [lm) + Co || uo [I7, (44)
By induction, bounds of the form (33) and (34) hold for all m > 1. O
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4.2. Proof of Theorem 2. Theorem 1 showed that there exists a smooth solution
u¢ to

uf + J.V - [g(|ID* Touf|) JVAu] =0 (45)

u®(z,0) = Jeuo(z),

for all € > 0. Lemma 4 gives us the following bounds, all of which are uniform in € :

Cl (Uak)Ta || Uo ||H1) (46)
Il wo Il - (47)

Also from the approximating equations (45), for all v € H! we have

| Jeu ||p20,1m2) <
| w [|poo(o,msmty <

d €
/ ;t (tw = / g(|D¥ J,uf|) J.V AuV J v
T~ TN
| Jeu @) llsll v ],

IN

so by (46),

duf
I 7 20, -1 < Ca (0, k, T, || wo [|m1) - (48)

The uniform bounds (46) and (48) imply the existence of a subsequence {u¢}
such that

Jeu® = win L? (0,T; H?) (49)
du® du
-~ —in L?(0,T;H "
o i (0,T; ), (50)
where — is used to denote weak convergence. Also by (46),
03 J.ue
———°— is bounded in L? (0,T; L?
Fri0, 07 is bounded in L? (0,T; L?),

and passing to subsequences again we have

83 J.uf N 8%y
al‘ial‘jal’k 6ml8m36xk
We now use the Lions-Aubin Lemma. We give a short statement of a form of the

Lemma which we need, but the more general version with proof can be found in
[24].

in L? (0,T; L%) . (51)

Lemma 5 (Lions-Aubin Lemma). Let Ey, E, and E; be reflexive Banach spaces
such that Ey C E C Ey. Suppose that the imbedding Fy — E is compact and the
imbedding E — E; is continuous. If {uy} is a bounded sequence in L? (0,T; Ep)
and {dstk} is a bounded sequence in L?(0,T; E;), then there exists a subsequence
of {ur} which converges strongly both in L? (0,T; E) and in C ([0,T); E1) .

Using the Lions-Aubin Lemma with the bounds (47)and (48), a subsequence can

be chosen so that

u — u strongly in L? (O,T; Lz) and C ([O,T]; Hil) . (52)
This along with the convergence properties of mollifiers show that
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u(0) = up in H*.
Let v € C ([0,T]; H') . Integrate (30) over (0,T) for each uc :

/OT /TN 85; - /OT /TN g(ID* Ju )VAJu ()V Jo(t) =0.  (53)

We show that the limit of this equation is

/T /TN % / / (ID* J,u|)VAu(t) Vo(t) = (54)

as € — 0. To do this, we subtract (54) from (53) and show

gg%/OT L. (G o-50)u0

/OT /TN g(|D* J,uf )V AT uf (H)V Jo(t) — g(|D* J,u|)VAu(t) Vo(t)
= 0.

Consider the second integral.

g(|D* J,uf|) VAT (1) VJv(t) — g(|D* J,ul)VAu(t) Vo(t)

TN
< / / (9(|D* Jouf|) — g(|1D* Jyu))) 007 Joud; Jev
i,j=1 ™
+ / / g(|Dngu|) (8i8]2-J€u6 — 8i8]2-u) 0;J.v
o Jr~
+ g(|Dngu|)8i8]2-u (0;J.v — Q)
TN

N
= Z Aij + Bij + CZ]

ij=1

Using Lemma 2,

T
45 2 C) [ w0 -u) o [ |0:035000:00
0 TN
T
< C(U,v)/ I we(t) — u(t) lloll 8:05 Jeu llo
0
< Cloy) || Jeus (L2 0,mm9) | v — w l|L2(0,1322)

which tends to 0 by (46) and the strong convergence of u¢ to u in L? (0, T; L2) .
Since g is bounded above by a constant, each B;; —+ 0 by the weak convergence

of 9;03Jeuc in L? (0,T; L?) . Also since azigiﬁ € L*(0,T;L*), C;; — 0 by the
strong convergence of 8;J.v to d;v in L2.
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Finally, from (48) we have
r ou® / r / Ou
t)v — — ()v
/O/TNat() 0 TNat()

5. Uniqueness of Weak Solutions.

ase— 0. 0O

Theorem 3. Let ug € H'. The solution u of (30) satisfying (32) is unique.

Proof

Let w1 and us be two solutions of (30) with u;(z,0) = ua(z,0) = up. Assuming they
satisfy (32), ui,us € L%(0,T; H3). So for almost every ¢t € (0,7], A(u; —u2) € H!
and

/TN %A(ul —Ug) — /TN g(|DkJJu1|)VAU,1VA(U1 —u2) =0 (55)
/TN %A(ul —Ug) — /TN g(|DkJ0uQ|)VAU,QVA(U1 —u2) =0 (56)
u1(2,0) = uy(,0) = uo(x). (57)

Subtracting (55) from (56), and using energy estimates such as those done in Sub-
section 4.1, we have

| =

1V (1 —uz) 1§ +v || VA1 — u2) [5<
1 9(1D* Jous]) = g(ID* Joua]) llsoll VAus [Joll VA(ur — uz) |,

DN | =
U

t

where v is given by (29). Using Lemma 2 and (41) as in Section 3, we arrive at

C (k,o)
4y
Integrating on some time interval (0,¢), t < T gives us

d
= V(w1 — ) [Jg< 1V (ur = ua2) I3l VAu2 I3 - (58)

C(k,o)

I Vi —u)(®) < =5

t
[l uz |22 0,7:09) /0 IV (ur —u2)(s) [[g ds. (59)

Using the integral form of Gronwall’s inequality, we have

|| Vui(t) — Vua(t) o= 0 for all ¢ € [0,T7].

Since the mean [u is a conserved quantity, the above result is sufficient to prove
uniqueness.

6. Regularity of Solutions.

Theorem 4. Let ug € H'. The solution u of (30) that satisfies (32) is actually a
strong solution of (6). Furthermore, u € C* ((0,00) x TV) .
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Proof

Our proof is a standard bootstrapping argument. Since solutions u of (30) are
in L2(0,T; H?), we can pick a ty € (0,T) arbitrarily close to 0, with u(ty) € H®.
Consider the new initial value problem,

iy + V- [g(|ID* J,a|) VAE] =0 (60)
ﬂ(m,to) = ’110(37) = u(to) € H?.

We define a weak solution as in (30). By our uniqueness results, @(t) = u(t) for
t > to. Dropping the tilde, we consider approximating equations like (45):

uf + J.V - [g(|ID* Touf|) JVAu] =0 (61)
u(z,to) = Jeug(x).

From the estimates (33) and (34) given in Lemma 4, we see

| Jeus |20,m5m5) < Ci(0,k, T, || wo || ars) (62)
| v [|Leorsmsy < Cal(ok, T, || uo ||lms) - (63)
(64)

Our earlier estimate (48) still holds as well. Proceeding as in the proof of Theorem
2, we find a subsequence {u¢} such that

Jou® = win L* (0,T; H?) (65)
du® du | _
o g m L?(0,T;H ) (66)
u® — u strongly in L* (0,T; H') and C ([0,T}; H ') (67)
u(tg) — up € H . (68)

It can then be shown, as in the proof of Theorem 2, that u solves the weak form
of (60), and
u€ L? (to, T; H*) N C ([to, T); H") N L>([to, T, H?). (69)
Furthermore, since the solution of (30) was in H? for all ¢ € (0,T] except on a set
of measure 0, tp > 0 could be chosen arbitrarily small and we have
we L?(0,T;H°)nC ([0, T]; H~') N L™®((0,T], H?). (70)

Now we pick a new time tq > 0 such that u(tg) € H® and repeat the above to show

uwe L?(0,T;H)nC ([0,T); H ') nL>((0,T], H?).

This argument can be continued to show that «(t) is in as high a Sobolev space as
we would like for ¢ > 0. It follows that u is actually a strong solution of (6). Since

u = —V - [g(|Dngu|)VAu] ,

ug is in H™ for all m. Taking time derivatives of (6), we see that u has smooth
time derivatives of all orders. We therefore have u € C* ((0,00) x TV). O
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7. Remarks. The family of equations considered here all have the basic H! energy
J |Vu]? with an a priori bound independent of the mollifying parameter o. Thus, on
mathematical grounds, it makes sense to consider H' initial data for this problem.
The computations in [33] and [34] suggest that the method performs well on prob-
lems in which the image or signal has jumps in the gradient. These computations
are performed with ¢ = 0. Tumblin and Turk describe jumps in gradient that ap-
pear in their numerical solutions, however the solutions remain continuous [33]. An
interesting open problem is well-posedness of these nonlinear diffusion equations for
H' data, which can include discontinuities and singularities in the gradient. For
images with jump discontinuities in the image intensity function, as is often the
case near sharp edges, the H' constraint is more severe. We can think of sharp
edges as two dimensional objects in which the discontinuity is one-dimensional in
nature. Thus the H' constraint requires that sharp edges be represented by singu-
larities that are at worst square-root cusps (i.e. C'/? functions in the direction of
the gradient). In practice, this smoothing could be done over a very small number
of pixels, and it would be interesting to know more about the performance and
regularity properties of these equations for initial data that is L? or only slightly
smoothed from L?2.

We also briefly mention that higher-order nonlinear partial differential equations
have been proposed for “image inpainting” [8, 13, 15, 14, 17]. Image inpainting is the
process of restoring regions of missing information in photographs (e.g. holes and
scratches) by using the information surrounding these regions. In [8] the authors
propose inpainting with the equation

u = Viu - VAu + vV - [g(|DF Joul)Vu], (71)

with small » > 0. If one replaces the second-order diffusion with fourth-order diffu-
sion of the type discussed in this paper, the H'-norm of the image intensity function
dissipates. It would be interesting to compare the effects of inpainting with these
two types of diffusion and also for the closely related method of Navier-Stokes based
inpainting [7].

A final comment is that there has been a burst of activity during the last decade
in analysis of fourth order nonlinear parabolic equations arising in thin films [9)].
These problems have nonlinear diffusion that is typically degenerate and depends on
the solution itself, where u represents the thickness of the film. Several recent papers
[6, 20, 38] address numerical schemes for weak solutions, where the solution vanishes
on a set of positive measure. It would be interesting to explore the connection
between ideas from this field and the image processing problem.
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