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Week 1

What is “algebra?” The meaning of the word has changed over time. Here’s a historical sketch:

In this course we will discuss “modern” (also known as abstract) algebra. But in order to
motivate this, I will first talk about pre-modern algebra. Prior to 1830 algebra was understood
at the study of polynomial equations.

Example. Let a, b, c be any numbers. Find all numbers x such that

ax2 + bx+ c = 0.

I assume that you all learned about quadratic equations in high school. If a = 0 then there is
nothing interesting to do, so let us assume that a 6= 0 and divide both sides by a to get

x2 +
b

a
x+

c

a
= 0
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x2 +
b

a
x = − c

a
.

Now there a famous trick called “completing the square.” If we add the quantity (b/2a)2 to
both sides then it turns out that the left side factors:

x2 +
b

a
x = − c

a

x2 +
b

a
x+

(
b

2a

)2

= − c
a

+

(
b

2a

)2

(
x+

b

2a

)(
x+

b

2a

)
= − c

a
+

b2

4a2(
x+

b

2a

)2

=
b2 − 4ac

4a2
.

Finally, we take “the” square root of both sides and then solve for x:(
x+

b

2a

)2

=
b2 − 4ac

4a2

x+
b

2a
=

√
b2 − 4ac

2a

x = − b

2a
+

√
b2 − 4ac

2a

=
−b+

√
b2 − 4ac

2a
.

Wait, I lied. There is no such thing as “the” square root of a number. Actually every number
(except 0) has two different square roots. So the “quadratic formula”

x =
−b+

√
b2 − 4ac

2a

is not really a formula at all, but more of a “recipe” that tells us how to compute the two
roots of the equation. First, let

√
b2 − 4ac denote one of the two square roots of the number

b2 − 4ac. (I don’t care which one; you can choose your favorite.) Then the other square root
is just the negative: −

√
b2 − 4ac. Thus we obtain (in general) two different solutions to the

quadratic equation:

x =
−b+

√
b2 − 4ac

2a
or x =

−b−
√
b2 − 4ac

2a
.

///

This algorithm was known to ancient civilizations and was slowly put into symbolic form over
time. The advantage of the symbolic form is that it encapsulates many different situations and
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applications. For example: The equation ax2 + bx + c = 0 might represent the intersection
of two shapes in the plane; say, a line and a circle. If the quantity b2 − 4ac (called the
“discriminant”) is negative then its two square roots are imaginary, which means that the line
and the circle don’t intersect.

So far so good, but now we come to a subject that was not known to ancient civilizations.
During the Italian Renaissance of the 1500s, a group of mathematicians discovered similar
(but more complicated) formulas for the cubic and quartic equations.

Example. Let a, b, c, d be any numbers. Find all numbers x such that

ax3 + bx2 + cx+ d = 0.

There is a clever change of variables (never mind the details) that can remove the x2 term.
Also, we might as well assume that the leading coefficient is a = 1, otherwise we can just
divide both sides by a. Thus it is enough to solve the so-called “depressed cubic:”

x2 + px+ q = 0.

Here’s the solution, which is called “Cardano’s formula:”

x =
3

√
−q

2
+

√
q2

4
+
p3

27
+

3

√
−q

2
−
√
q2

4
+
p3

27
.

Again, this is not really a formula, but a “recipe” for finding the solutions. Just like “the”
squre root, there is no such thing as “the” cube root, since every nonzero number actually
has three cube roots. Unfortunately this makes Cardano’s formula difficult to interpret, since
there might be nine ways to choose the cube roots but the cubic equation x3 − px + q = 0
has only three solutions. We’ll discuss a more comprehensive method below.

///

The difficulty of interpreting Cardano’s formula is the historical reason why people finally
accepted the concept of complex numbers. For example, we know that the equation x3 −
15x− 4 = 0 has the real root x = 4, but Cardano’s formula gives

x =
3

√
2 +
√
−121 +

3

√
2−
√
−121.

The only way to get from this expression to x = 4 is to accept the fact that 2 +
√
−1 is a cube

root of 2 +
√
−121 and 2 −

√
−1 is a cube root of 2 −

√
−121. That is, sometimes the only

way to get to a real solution is by going through the imaginary numbers. In modern terms we
write

C = {a+ ib : a, b ∈ R},

where i =
√
−1 is one of the two square roots of −1. (I don’t care which one; you can pick

your favorite.)
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After a burst of activity in the 1500s people got stuck for hundreds of years on the following
question.

Question. Does there exist a formula for the quintic? Given any numbers a, b, c, d, e, f we
consider the equation

ax5 + bx4 + cx3 + dx2 + ex+ f = 0.

Is it possible to write down a recipe for the roots x in terms of the coefficients a, b, c, d, e, f
and the “algebraic” operations +,−,×,÷,√, 3

√, 4
√, 5
√, . . . ?

[Jargon: Is the quintic equation “solvable by radicals?”]

In 1770 Joseph-Louis Lagrange wrote an influential book summarizing the state of knowledge
of this problem. He had very sophisticated methods that led him to believe that the problem
was likely impossible. In 1799 Paolo Ruffini claimed to have a proof of impossibility, but it
was flawed. Then in 1823 the young Norwegian mathematician Niels Henrik Abel (1802-1829)
finally gave an air-tight proof of the following theorem.

The Abel-Ruffini Theorem. Let n ≥ 5. It is impossible in general to write down the
roots of an n-th degree polynomial equation in terms of the coefficients and the algebraic
operations

+,−,×,÷,√, 3
√
, 4
√
, 5
√
, . . . .

In other words, there exist polynomial equations of all degrees ≥ 5 that are not solvable by
radicals.

This was a historic achievement but Abel’s proof was long and complicated. Furthermore,
there are certain special kinds of polynomials that can be solved by radicals.

Example. The quintic equation ax5 + b = 0 is easily solvable. Here’s the recipe:

ax5 + b = 0

ax5 = −b

x5 = − b
a

x =
5

√
− b
a
.

Now one just has to compute the five 5th roots of the number −b/a.

[Remark: How to do this? In general one can use numerical methods (like Newton’s method)
to find one particular fifth root, say α ∈ C where α5 = −b/a. Then the complete list of 5th
roots is

α, ωα, ω2α, ω3α, ω4α,
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where ω = e2πi/5 is called a “primitive 5th root of 1.”]

That was sort of obvious, but there are more complicated examples.

Example. De Moivre’s quintic has the form

x5 + ax3 +
1

5
a2x+ b = 0.

It turns out (you don’t want to see the details) that the roots of this equation r1, r2, r3, r4, r5
are given by the formula

rj = ωju1 + ω−ju2,

where ω is any primitive 5th root of 1 (e.g. ω = e2πi/5) and where u1 and u2 are any two
numbers satisfying {

u51 + u52 = −b,
u51 · u52 = (−a/5)5.

[Exercise: Use the quadratic formula to solve for the numbers u51 and u52.]

Long story short: De Moivre’s quintics are solvable by radicals. So the next order of business
was to clean up the details and understand the distinction between solvable and non-solvable
polynomials. Abel intended to do this.

Abel’s Research Program. Find a method to determine which polynomials are solvable
by radicals, and which are not.

But then he died suddenly (of tuerculosis) at the age of 26. This brings us to the year 1829.
At this time, a young frenchman named Évariste Galois was working in obscurity on similar
problems. Galois had some brilliant and visionary ideas, but he also had a volatile personality
and he died in a dual in 1832 at the age of 20, before he could gain any recognition for these
ideas.

Thus we have reached the year 1832. The two greatest algebraists of the age are dead; one
was famous (Abel) and one was completely unknown (Galois). Galois had left behind some
hastily written manuscripts, but no one had really read or understood them yet.

However, Galois’ work was not lost and it slowly influenced others until by 1930 it had com-
pletely changed the definition of the word “algebra.” The final steps of this transition were
completed at Göttingen in the lectures of Emil Artin and Emmy Noether, which were incor-
porated by Bartel van der Waedern into his famous textbook Moderne Algebra (1930). This
new “modern” style of algebra is the topic of our course.
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Galois completely changed the rules of the game. Instead of “numbers” and “polynomials,”
he decided to focus on “symmetries” and relationships between symmetries. Galois used the
word “group” to refer to a “collection of symmetries.” Let me motivate this by showing you
Lagrange’s (1770) approach to the quadratic and cubic equations.

Lagrange’s Solution of the Quadratic. Instead of writing

ax2 + bx+ c = 0,

we will assume that a 6= 0 and divide both sides by a to get

x2 +
b

a
x+

c

a
= 0.

To clean this up a bit, we will also rename the coefficients as e1 := −b/a and e2 := c/a, so
that

x2 − e1x+ e2 = 0.

Now we are looking for two numbers r1 and r2 (the “roots” of the equation) such that

x2 − e1x+ e2 = (x− r1)(x− r2).

[Remark: We know that these are the roots because (x− r1)(x− r2) = 0 if and only if x = r1
or x = r2.]

Our goal is to solve for the unknown roots r1, r2 in terms of the given coefficients e1, e2. To
begin, we expand the right hand side:

x2 − e1x+ e2 = (x− r1)(x− r2)
x2 − e1x+ e2 = x2 − (r1 + r2)x+ r1r2.

And then we compare coefficients to obtain a system of two equations in two unknowns.{
e1 = r1 + r2,

e2 = r1r2.

In this way, we can think of e1(r1, r2) = r1 + r2 and e2(r1, r2) = r1r2 as “functions” of the
unknown roots r1, r2. Furthermore, let me observe that each of these functions is “symmetric”
under “permuting” the two roots:

e1(r1, r2) = r1 + r2 = r2 + r1 = e1(r2, r1)

e2(r1, r2) = r1r2 = r2r1 = e2(r2, r1).

We would like to “invert” the system of two equations to obtain{
r1 = some function of e1, e2,

r2 = some other function of e1, e2.
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But unfortunately this is impossible. Indeed, since e1 and e2 are each symmetric under
permuting r1 ↔ r2, any function of e1 and e2 must also be symmetric. But the simple
functions f(r1, r2) = r1 and g(r1, r2) = r2 are very much not symmetric. QED

Thus, Lagrange’s problem is to break down the given “symmetric functions” e1(r1, r2) =
r1 + r2 and e2(r1, r2) = r1r2 into the unknown “non-symmetric functions” f(r1, r2) = r1 and
g(r1, r2) = r2.

First, Lagrange made a change of variables. (We now call this a “Lagrange resolvent.”) He
defined two new functions s1(r1, r2) and s2(r1, r2) by{

s1 = r1 + r2,

s2 = r1 − r2.

Note that this (linear) system is easily invertible:{
r1 = (s1 + s2)/2,

r2 = (s1 − s2)/2.

Thus we will be done if we can solve for s1 and s2 in terms of e1 and e2:{
s1 = some function of e1, e2 ?

s2 = some other function of e1, e2 ?

The first one is easy:
s1 = r1 + r2 = e1.

But the second equation is still impossible because any function of e1, e2 is symmetric in r1, r2,
while s2 is still not symmetric:

s2(r1, r2) = r1 − r2 6= r2 − r1 = s2(r2, r1).

[Jargon: We say that s2(r1, r2) = r1−r2 is an “alternating function” of r1, r2 because switching
r1 ↔ r2 multiplies the function by −1.]

So it all comes down to this:

How can we convert the alternating function s2 into a symmetric function?

This is easy; we can just square it:

s2(r1, r2)
2 = (r1 − r2)2 = r21 − 2r1r2 + r22.

Since s22 is now a symmetric function, an old theorem of Isaac Newton guarantees that we can
express it as a polynomial in the “elementary” symmetric functions e1 and e2. (This is secretly
why I used the letter “e” for the coefficients.) There is an algorithm, but trial-and-error works
just as well in such a small case:

e21 = (r1 + r2)
2
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e21 = r21 + 2r1r2 + r22

e21 − 4e2 = (r21 + 2r1r2 + r22)− 4r1r2

e21 − 4e2 = r21 − 2r1r2 + r22

e21 − 4e2 = s22.

Finally, let s2 =
√
e21 − 4e2 be either one of the two square roots. (I don’t care which one;

pick your favorite.) This is precisely where we “break the symmetry.” Then the final answer
is {

r1 = (s1 + s2)/2 = (e1 +
√
e21 − 4e2)/2

r2 = (s1 − s2)/2 = (e1 −
√
e21 − 4e2)/2.

Do you recognize this as the quadratic formula? ///

Continuing with our discussion of Lagrange’s method:

Lagrange’s Solution of the Cubic. Let’s cut to the chase. For any three given coefficients
e1, e2, e3, we want to find three roots r1, r2, r3 such that

x3 − e1x2 + e2x− e3 = (x− r1)(x− r2)(x− r3).

By expanding the right hand side and equating coefficients, this is equivalent to the following
system of three (nonlinear) equations in three unknowns:

e1 = r1 + r2 + r3,

e2 = r1r2 + r1r + r2r3,

e3 = r1r2r3.

Please observe that each of the functions e1, e2, e3 is symmetric under any permutation of the
input r1, r2, r3. For example,

e2(r3, r1, r2) = r3r1 + r3r2 + r1r2 = r1r2 + r1r3 + r2r3 = e2(r1, r2, r3).

[Jargon: These e1, e2, e3 are called the “elementary symmetric functions” of r1, r2, r3.]

Our job is to “break the symmetry” in a controlled way. Step 1 is the “Lagrange resolvent.”
We define three new functions s1, s2, s3 by the linear system

s1 = r1 + r2 + r3,

s2 = r1 + ωr2 + ω2r3

s3 = r1 + ω2r2 + ωr3,
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where ω is any primitive third root of unity, say ω = e2πi/3. This system is easily invertible:
r1 = (s1 + s2 + s3)/3,

r2 = (s1 + ω2s2 + ωs3)/3

r3 = (s1 + ωs2 + ω2s3)/3.

Therefore our new problem is to solve for s1, s2, s3 in terms of e1, e2, e3. The first one is always
easy:

s1 = r1 + r2 + r3 = e1.

But the next two are impossible because s2 and s3 are not symmetric functions.

So here’s the problem:

How can we convert the non-symmetric functions s2 and s3 into symmetric func-
tions of the roots, and hence express them in terms of the elementary symmetric
functions e1, e2, e3?

This is very tricky (indeed, if there were some general algorithm then all polynomials would
be solvable), so I’ll just tell you the answer. After a bit of trial-and-error you will find that
s2s3 is a symmetric function and after a lot of trial-and-error you will find that s32 + s33 is a
symmetric function. Thus by Newton’s theorem each of these can be expressed as a polynomial
in e1, e2, e3. Here are the results:{

s2s3 = e21 − 3e2

s32 + s33 = 2e31 − 9e1e2 + 27e3.

The last step is to “solve” for s2 and s3 individually. To make the notation cleaner let us
define

A := s32 + s33 = 2e31 − 9e1e2 + 27e3 and B := s2s3 = e21 − 3e2.

Then we observe that

(y − s32)(y − s33) = y2 − (s32 + s33)y + s32s
3
3 = y2 −Ay +B3.

One the one hand we know that the roots of this quadratic are y = s32 and y = s33. On the
other hand, we can use the quadratic formula to find that

y =
1

2

(
A±

√
A2 − 4B3

)
.

Thus by “breaking the symmetry” we can write

s32 =
1

2

(
A+

√
A2 − 4B3

)
and s33 =

1

2

(
A−

√
A2 − 4B3

)
And then by “breaking the symmetry” again we can write

s2 =
3

√
1

2

(
A+

√
A2 − 4B3

)
and s3 =

3

√
1

2

(
A−

√
A2 − 4B3

)
.
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Now we’re done. I won’t bother to write the full formulas for r1, r2, r3 in terms of e1, e2, e3
because they are ugly and they don’t fit horizontally on the page. Instead I’ll have you work
out an example on the homework. ///

In general, let e1, e2, . . . , en be any given numbers. Then we want to find n roots r1, r2, . . . , rn
such that

xn − e1xn−1 + e2x
n−1 − · · ·+ (−1)nen = (x− r1)(x− r2) · · · (x− rn).

By expanding and equating coefficients this is equivalent to a system of n nonlinear equations
in n unknowns: 

e1 =
∑

i ri

e2 =
∑

i<j rirj

e3 =
∑

i<j<k rirjrk
...

en = r1r2 · · · rn.

Since the ei are “symmetric functions” and the ri are not, it is impossible to invert this system
without “breaking the symmetry.” As we have seen, Lagrange’s method succeeds if we can
break down the symmetry in a sequence of controlled steps, where each step is just “choosing
an arbitrary k-th root” of some polynomial expression. Ruffini and Abel eventually proved
that this problem is impossible for n ≥ 5.

Week 2

Then Galois changed the rules of the game. Specifically, he decided to ignore the “symmetric
functions” and to focus instead on the “symmetries” in themselves.

Permutations. A permutation is an invertible function from a finite set to itself. Since all
sets of the same size are basically the same we will usually consider the set {1, 2, . . . , n}. Let
Sn denote the set of all permutations

f : {1, 2, . . . , n} → {1, 2, . . . , n}.

For example, here is a typical element of S6:
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It is cumbersome to draw the full diagram every time, so we have two more concise notations.

Word Notation. Given f : {1, 2, . . . , n} → {1, 2, . . . , n} we will prefer to write fi instead of
f(i). Then to specify the function f it is enough to give the list of values f1, f2, . . . , fn. To
save as much space as possible (if n ≤ 9) we will even omit the commas and write

f = f1f2 · · · fn.

For example, the permutation above is

f = 615432.

[Exercise: Use word notation to prove that #Sn = n!.]

Cycle Notation. Word notation is the most concise way to express permutations, but cycle
notation is the most meaningful way. To compute the cycle notation we write down just one
copy of the symbols and then we draw the arrows. Here is our example:
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Note that the symbols break up into “oriented cycles.” To express these cycles concisely we
just put them inside parentheses, like so:

f = (162)(35)(4).

The only drawback of this notation is that it is not unique. For example, we can record a
cycle starting from any point:

(162) = (621) = (216).

And the ordering among the cycles is irrelevant:

f = (162)(35)(4) = (4)(162)(35) = (53)(4)(621).

Another quirk of notation is that we typically omit the “singleton cycles” from the notation.
In our example this means omitting the (4):

f = (162)(35).

We will see that the most important kinds of permutations are the transpositions, which
switch one pair of symbols i ↔ j and send every other symbol to itself. Transpositions are
particularly simple when expressed in cycle notation:

(ij) ∈ Sn.

[Exercise: Show that the set Sn contains n(n− 1)/2 transpositions.]

///

Here is Galois’ big contribution to mathematics.

Galois’ Theorem. Consider a positive integer n ≥ 1 and let Sn be the set of all permutations
of the set {1, 2, . . . , n}. Let id : {1, 2, . . . , n} → {1, 2, . . . , n} be the “identity permutation”
that sends each element to itself. Then the general n-th degree equation is solvable by radicals
if and only if there exists a chain of subsets

Sn = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gk = {id}

in which each pair Gi ⊇ Gi+1 satisfies some technical conditions. ///

In terms of Lagrange’s method, the technical conditions on Gi ⊇ Gi+1 correspond to “breaking
the symmetry” by choosing an arbitrary root of some function. The advantage of Galois’
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reformulation is that it will eventually allow us to give a short proof of unsolvability for n ≥ 5,
without even mentioning “equations” or “roots.”

So what are the technical conditions?

Composition of Permutations. Let X,Y, Z be sets and let f : X → Y and g : Y → Z
be functions. Since the target set of f equals the domain set of g, we may compose them to
obtain a function from X to Z:

The function g ◦ f is called “g composed with f” or “g follows f .” The reason we write g on
the left is because on this side of the Atlantic we always write functions to the left of their
arguments:

(g ◦ f)(x) := g(f(x)) for all x ∈ X.

Now suppose that X = Y = Z = {1, 2, . . . , n} and suppose that each of f and g is invertible. In
other words, suppose that f, g ∈ Sn. Then the composition g ◦f : {1, 2, . . . , n} → {1, 2, . . . , n}
is also invertible.

Proof. Suppose there exist functions f−1, g−1 : {1, 2, . . . , n} → {1, 2, . . . , n} such that

f(f−1(i)) = f−1(f(i)) = i and g(g−1(i)) = g−1(g(i)) = i

for all i ∈ {1, 2, . . . , n}. Then I claim that (g◦f)−1 = f−1◦g−1. Indeed, for all i ∈ {1, 2, . . . , n}
we have

(g ◦ f)
(
(f−1 ◦ g−1)(i)

)
= g(��

��
f(f−1(g−1(i)))) = g(g−1(i)) = i

and
(f−1 ◦ g−1) ((g ◦ f)(i)) = f−1(��

�
g−1(g(f(i)))) = f−1(f(i)) = i.

�

Better Proof. The inverses satisfy f ◦ f−1 = f−1 ◦ f = id and g ◦ g−1 = g−1 ◦ g = id. Then
since functional composition is “associative” we have

(g ◦ f) ◦ (f−1 ◦ g−1) = g ◦ (f ◦ f−1) ◦ g−1 = g ◦ id ◦ g−1 = g ◦ g−1 = id

and
(f−1 ◦ g−1) ◦ (g ◦ f) = f−1 ◦ (g−1 ◦ g) ◦ f = f−1 ◦ id ◦ f = f−1 ◦ f = id.
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�

Example. Consider the permutations f = 3412 and g = 4231 in word notation, or f =
(13)(24) and g = (14)(2)(3) = (14) in cycle notation. Compute f ◦ g and g ◦ f .

Here is a picture showing that g ◦ f = 3124 = (1342):

And here is a picture showing that f ◦ g = 2413 = (1243):

It is important to note that f ◦ g 6= g ◦ f . In other words, the composition of permutations is
not always “commutative.”

[Exercise: But sometimes it is. Check that the transpositions (12) ∈ S4 and (34) ∈ S4
commute with each other. More generally, any two “disjoint” cycles commute.]

///

Thus the set Sn is equipped with the binary operation of composition ◦ : Sn × Sn → Sn,
which is associative but not necessarily commutative. Furthermore, every element f ∈ Sn
has a compositional inverse f−1 ∈ Sn, and there exists a special element id ∈ Sn satisfying
f ◦ id = id ◦ f = f for all f ∈ Sn. Galois used the word “group” to encapsulate these three
properties. Here is the modern formulation.
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Definition of Groups and Subgroups. Let G be a set equipped with an abstract binary
operation ∗ : G×G→ G, which we will write as (a, b) 7→ a ∗ b. We say that the pair (G, ∗) is
a group if the following three1 axioms hold:

(G0) Substitution. For all a, b, c ∈ G we have that

a = b implies a ∗ c = b ∗ c and c ∗ a = c ∗ b.

(G1) The operation ∗ is associative. In other words, we have

a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G.

(G2) There exists a two-sided identity element ε ∈ G satisfying

a ∗ ε = ε ∗ a = a for all a ∈ G.

(G3) For each a ∈ G there exists a two-sided inverse a−1 ∈ G satisfying

a ∗ a−1 = a−1 ∗ a = ε.

Note that we do not require the operation ∗ to be commutative. If it is commutative (i.e., if
a ∗ b = b ∗ a for all a, b ∈ G), then we say that the group is abelian (after Niels Henrik Abel).

Now let H ⊆ G be any subset. We say that H is a subgroup if the following properties hold:

• For all a, b ∈ H we have a ∗ b ∈ H.

• The identity ε is in H.

• For all a ∈ H, the inverse a−1 is in H.

[Exercise: Actually there is a shorter definition. Prove that H ⊆ G is a subgroup if and only
if for all a, b ∈ H we have a ∗ b−1 ∈ H. Now there’s only one property to check instead of
three.] In other words: A subgroup is a subset that is also a group with respect to the same
operation ∗ and identity ε.

///

Remarks:

• On the homework you will show that the identity element ε is unique. In other words,
if there exist two elements ε, ε′ satisfying axiom (G2) then we must have ε = ε′. This is
why we are allowed to talk about “the” identity element of the group.

• You will also show that any two inverses for a ∈ G must be equal, therefore we are
allowed to talk about “the” inverse of the element a ∈ G, and refer to it with the special
notation a−1. On the homework you will generalize this notation to define an for all
n ∈ Z.

1Some authors think that axiom (G0) is unnecessary because it follows from general logical principles. I’m
not so sure about that.
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What led Galois to the definition of “groups?” Recall from Lagrange’s method that certain
functions f : Cn → C are “invariant” or “symmetric” under certain permutations of their
input. Here is the key fact that Galois noticed.

Exercise: Let f : Cn → C be any function with n inputs and 1 output and define
H ⊆ Sn as the subset of permutations of the input that leave f invariant. Then
in fact H is a subgroup of Sn.

And here is Galois’ theorem with the technical conditions filled in.

Galois’ Theorem Again. The general n-th degree equation is solvable by radicals if and
only if there exists a chain of subgroups

Sn = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gk = {id}

safisfying the following condition:

for each pair Gi ⊇ Gi+1 the quotient group Gi/Gi+1 exists and is abelian.

///

We already know what “abelian” means (it means “commutative”) but it will take a while
before we get to “quotient groups.”

Last time I defined abstract groups. Here are some key examples.

Example: The Symmetric Group. For all integers n ≥ 1, the structure (Sn, ◦, id) is a
group. It is called the symmetric group on n letters.

Why “the symmetric group?” This comes from the fact that Galois considered functions
f : Cn → C that were “symmetric” under certain permutations of their input. Today we have
a much broader view of symmetry. Here is a geometric example.

Example: The Icosahedral Group. Consider a regular icosahedron living in R3. By a
“symmetry” of the icosahedron we mean any distance preserving function R3 → R3 that
sends points of the icosahedron to points of the icosahedron. For example, let

f = rotation by 2π/5 around the line through two opposite vertices,

g = rotation by 2π/3 around the line through two opposite triangles.
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It is immediate that the composition of two symmetries is again a symmetry, even though
it might not be obvious how to describe f ◦ g and g ◦ f geometrically. It is also immediate
that f−1 and g−1 are symmetries obtained by rotating in the opposite direction, and it is true
(though harder to show) that any symmetry can be inverted. Finally, we note that the identity
function id : R3 → R3 is a symmetry. Thus if G is the set of all icosahedral symmetries then
we conclude that (G, ◦, id) is a group.

[Remark: We will learn later that this group has 120 elements, and is closely related to the
unsolvability of the quintic.]

Wherever we find an associative binary operation there is probably a group. The prototype
is functional composition, but there are also more basic examples.

Additive Groups. Consider the chain of integers, rational numbers, real numbers and
complex numbers, each of which contains the number zero:

0 ∈ Z ⊆ Q ⊆ R ⊆ C.

Each of these sets is closed under the associate and commutative operation of “addition,” and
therefore we obtain four abelian groups:

Z+ = (Z,+, 0), Q+ = (Q,+, 0) R+ = (R,+, 0), C+ = (C,+, 0).

The set N = {0, 1, 2, . . .} of natural numbers is also closed under addition and contains the
additive identity 0. However, the set N does not contain “additive inverses,” so the structure
(N,+, 0) is not a group. (You can call it a “monoid” or a “semigroup” if you want.)

Additive groups are always abelian.

Multiplicative Groups. Multiplication is also an associative operation, whether of numbers
or matrices. Multiplication of numbers is generally commutative, whereas multiplication of
matrices is generally not.

You may have heard that the structures (Q,+,×, 0, 1), (R,+,×, 0, 1) and (C,+,×, 0, 1) are
called fields, meaning that every non-zero element α has a multiplicative inverse α−1 = 1/α.
If we delete zero then we obtain three (abelian) groups:

Q× = (Q− {0},×, 1), R× = (R− {0},×, 1), C× = (C− {0},×, 1).

It’s harder to squeeze a multiplicative group out of the ring2 (Z,+,×, 0, 1) because most of
its elements do not have multiplicative inverses. For example, the equation 2x = 1 has no
integer solution x ∈ Z. In fact, the only invertible integers are ±1. Thus we obtain a very
small (abelian) group with only two elements:

Z× = ({+1,−1},×,+1).

2Never mind the formal definition right now. I’m sure you can guess the important details.
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On the other extreme, suppose that (R,+,×, 0, 1) is any ring. Then the set of n× n matrices
Matn(R) with entries from R is closed under matrix multiplication, which is an associative
operation. (Reason: Because matrix multiplication is the composition of linear functions in
disguise.) If GLn(R) ⊆ Matn(R) is the subset of all invertible matrices then we obtain the
general linear group

(GLn(R),×, I) ,

where I is the n× n identity matrix:

I =


1 0

1
. . .

0 1

 .

The group GLn(R) is never abelian unless n = 1. In the case n = 1 we use a special notation

R× := GL1(R),

and we call this the group of units of the ring R. You have seen four examples above.

Problem Set 1

1. An Example Cubic. Consider the cubic equation

x3 − 6x− 6 = 0.

(a) Apply Cardano’s formula to find one specfic root of the equation.

(b) Now apply Lagrange’s method to find all three roots. [Hint: Follow the steps in the
course notes. There will be a lot of simplification.]

(a) We let p = −6 and q = −6 so our equation has the form x3 + px+ q = 0. Then Cardano’s
formula says

x =
3

√
−q

2
+

√
q2

4
+
p3

27
+

3

√
−q

2
−
√
q2

4
+
p3

27

=
3

√
3 +
√

9− 8 +
3

√
3−
√

9− 8

= 3
√

3− 1 + 3
√

3 + 1

=
3
√

2 +
3
√

4.

Let’s choose the real cube roots 3
√

2 ≈ 1.26 and 3
√

4 ≈ 1.59, so that

x ≈ 2.85.
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One can check that this is indeed a root.

(b) To use Lagrange’s method we let e1 = 0, e2 = 6 and e3 = −6, so our equation has the
form x3 − e1x2 + e2x − e3 = 0. Then to find all three roots r1, r2, r3 we let ω = e2πi/3 and
make the change of variables

s1 = r1 + r2 + r3

s2 = r1 + ωr2 + ω2r3

s3 = r1 + ω2r2 + ωr3

⇐⇒


r1 = (s1 + s2 + s3)/3

r2 = (s1 + ω2s2 + ωs3)/3

r3 = (s1 + ωs2 + ω2s3)/3

It is immediate that s1 = e1 = 0. Then from the course notes we see that

s2 · s3 = e21 − 3e2 = 0− 3(−6) = 18

and
s32 + s33 = 2e31 − 9e1e2 + 27e3 = 0− 0 + 27(6) = 162.

To solve for s2 and s3 we first consider the quadratic polynomial with roots s32 and s33:

(y − s32)(y − s33) = 0

y2 − (s32 + s33)y + (s2s3)
3 = 0

y2 − 162y + 183 = 0

y2 − 162y + 5832 = 0

Then the quadratic formula tells us that

s32, s
3
3 =

1

2

(
162±

√
1622 − 4 · 183

)
=

1

2
(162± 54)

= 54, 108.

By breaking the symmetry, let us say that s32 = 54 and s33 = 108 so that

s2 =
3
√

54 = 3 · 3
√

2 and s3 =
3
√

108 = 3 · 3
√

4.

Finally, we obtain 
r1 = (s1 + s2 + s3)/3 = 3

√
2 + 3
√

4

r2 = (s1 + ω2s2 + ωs3)/3 = ω2 · 3
√

2 + ω · 3
√

4

r3 = (s1 + ωs2 + ω2s3)/3 = ω · 3
√

2 + ω2 · 3
√

4

Here is a picture of the three roots in the complex plane:

20



2. Working With Permutations. Let S3 be the set of all permutations of the set {1, 2, 3},
i.e., all invertible functions

f : {1, 2, 3} → {1, 2, 3}.

(a) List all 6 elements of the set. [I recommend using cycle notation.]

(b) We can think of (S3, ◦, id) as a group, where ◦ is functional composition and id is the
identity function. Write out the full 6× 6 group table.

(c) Let Sn be the group of permutations of {1, 2, . . . , n}. An element of Sn is called a
transposition if it switches two elements of the set and sends every other element to
itself. We denote the transposition that switches i↔ j by (i, j) ∈ Sn. Prove that every
element of Sn can be expressed as a composition of transpositions.

(d) Let An ⊆ Sn be the subset of permutations that can be expressed as a composition of
an even number of transpositions. Prove that An ⊆ Sn is a subgroup.

(e) List all elements of the subgroup A3 ⊆ S3 and draw its group table.

(a) Here are the six permutations of {1, 2, 3} in word notation and cycle notation:

word notation cycle notation

123 ε
132 (23)
213 (12)
231 (123)
312 (132)
321 (13)
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(b) Here is the group table:

◦ ε (12) (13) (23) (123) (132)

ε ε (12) (13) (23) (123) (132)
(12) (12) ε (132) (123) (23) (13)
(13) (13) (123) ε (132) (12) (23)
(23) (23) (132) (123) ε (13) (12)
(123) (123) (13) (23) (12) (132) ε
(132) (132) (23) (12) (13) ε (123)

(c) By the notation (i1, i2, . . . , ik) ∈ Sn, I mean the permutation that sends sends ij to ij+1

for all 1 ≤ j < k, sends ik to i1, and sends every other element of {1, 2, . . . , n} to itself. We
call this kind of permutation a k-cycle. [Example: Transpositions are 2-cycles.] The cycle
notation tells us that every element of Sn can be expressed as a composition of (commuting)
cycles. Thus we will be done if we can show that every cycle is a composition of transpositions.

Here is the proof:
(i1, i2, . . . , ik) = (i1, i2) ◦ (i2, i3) ◦ · · · ◦ (ik−1, ik).

[Example: The permutation f = 615432 in word notation can be expressed as f = (162)(35) =
(162) ◦ (35) in cycle notation, hence we have f = (16) ◦ (62) ◦ (35).]

(d) Let An ⊆ Sn be the subset consisting of permutations which can be expressed as a
composition of an even number of transpositions. I claim that this is a subgroup. Proof.

• Closure. Suppose that f, g ∈ An. Then by definition we can write

f = s1 ◦ s2 ◦ · · · ◦ sk and g = t1 ◦ t2 ◦ · · · ◦ t`,

for some transpositions si and ti, where k, ` are even numbers. But then

f ◦ g = s1 ◦ s2 ◦ · · · ◦ sk ◦ t1 ◦ t2 ◦ · · · ◦ t`

is a composition of k + ` transpositions, where k + ` is an even number.

• Identity. By convention we will say that the identity ε is a composition of zero trans-
positions. Since zero is an even number this means that ε ∈ An. If you don’t buy that,
let t ∈ Sn be any transposition. Then we have

ε = t ◦ t,

which is in An because 2 is an even number.
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• Inverses. For any transposition t ∈ Sn we have t2 = t ◦ t = ε and hence t−1 = t. More
generally, if f = t1 ◦ t2 ◦ · · · ◦ tk is any composition of transpositions then we have

f−1 = tk ◦ tk−1 ◦ · · · ◦ t2 ◦ t1.

It follows that f ∈ An implies f−1 ∈ An. �

[Jargon: The subgroup An ⊆ Sn is called the alternating subgroup of Sn.]

(e) Note that (123) = (12) ◦ (23) and (132) = (12) ◦ (13) are both in A3. It is a bit harder to
check that the elements (12), (13), (23) are not in A3. Check. Let’s write c = (123) so that
c2 = c−1 = (132). Now assume for contradiction that (12) can be expressed as a composition
of evenly many transpositions:

(12) = (t1 ◦ t2) ◦ · · · ◦ (t2k−1 ◦ t2k).

But from the group table we see that any two transpositions compose to ε, c = (123) or
c−1 = (132). This implies that (12) is a power of c. Contradiction. /// We conclude that

A3 = {ε, (123), (132)}.

Here is the group table:
◦ ε (123) (132)

ε ε (123) (132)
(123) (123) (132) ε
(132) (132) ε (123)

[Exercise: In general we have #An = n!/2. Can you prove this? It’s possible to give a bijective
proof right now but I prefer to wait until we can give a very slick proof.]

3. Working With Axioms. Let G be a set with a binary operation (a, b) 7→ a ∗ b. Consider
the following four possible axioms:

(G1) For all a, b, c ∈ G we have a ∗ (b ∗ c) = (a ∗ b) ∗ c.

(G2) There exists some ε ∈ G such that a ∗ ε = ε ∗ a = a for all a ∈ G.

(G3) For each a ∈ G there exists some b ∈ G such that a ∗ b = b ∗ a = ε.

(G4) For each a ∈ G there exists some c ∈ G such that a ∗ c = ε.

The element ε in (G2) is called a two-sided identity. The element b in (G3) is called a two-sided
inverse for a and the element c in (G3) is called a right inverse for a.

(a) If (G1) and (G2) hold, prove that the two-sided identity element is unique.

(b) If (G1), (G2) and (G3) hold, prove that the two-sided inverse is unique.
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(c) Assuming that (G1) and (G2) hold, prove that that (G3) and (G4) are equivalent. [Hint:
One direction is obvious. The hard part is to prove that the existence of right inverses
implies the existence of two-sided inverses.]

(a) Proof. Assume that (G1) and (G2) hold and suppose that the elements ε, ε′ ∈ G both
satisfy (G2). Then we have

ε = ε ∗ ε′ = ε′.

[Remark: Actually I didn’t need to use (G1).]

(b) Proof. Assume that (G1), (G2) and (G3) hold and suppose that the elements b, b′ ∈ G
both satisfy (G3). Then we have

b = b ∗ id = b ∗ (a ∗ b′) = (b ∗ a) ∗ b′ = id ∗ b′ = b′.

(c) Proof. Assume that (G1) and (G2) hold. Then (G3) clearly implies (G4). On the other
hand, suppose that (G4) holds. Then for all a ∈ G there exists some c ∈ G such that a∗c = ε.
But we can also apply (G4) to this c to obtain some d ∈ G such that c ∗ d = ε. Putting these
together gives

d = id ∗ d = (a ∗ c) ∗ d = a ∗ (c ∗ d) = a ∗ id = a,

so that c ∗ d = c ∗ a = ε and hence c is a two-sided inverse for a. Finally, since a ∈ G was
arbitrary we conclude that (G3) holds.

4. Groups of Matrices. Matrix multiplication is associative because it corresponds to
composition of linear functions. You may recall from linear algebra that a real n × n matrix
A ∈ Matn(R) has a (unique) two-sided inverse precisely when detA 6= 0. Now consider the
following sets of matrices:

GLn(R) = {A ∈ Matn(R) : detA 6= 0},
SLn(R) = {A ∈ Matn(R) : detA = 1},
On(R) = {A ∈ Matn(R) : AAT = I},

SOn(R) = {A ∈ Matn(R) : AAT = I and detA = 1}.

Prove that each one of these sets is a group under matrix multiplication. [Hint: It is helpful
to remember that det(AB) = det(A) det(B), det(AT ) = det(A) and (AB)T = BTAT for all
matrices A,B ∈ Matn(R).]

(a) General Linear Group. Recall that matrix multiplication is associative because it
represents the composition of linear functions, and recall that the n × n identity matrix I
satisfies AI = IA = A for all A ∈ Matn(R).
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• Suppose that A,B ∈ GLn(R) so that det(A), det(B) 6= 0. Then we have det(AB) =
det(A) det(B) 6= 0, which implies that AB ∈ GLn(R).

• Since det(I) = 1 6= 0 we have I ∈ GLn(R).

• If A ∈ GLn(R) then since det(A) 6= 0 we know that the two-sided inverse A−1 exists,
and since det(A−1) = 1/det(A) 6= 0 we see that A−1 ∈ GLn(R).

(b) Special Linear Group. Clearly SLn(R) is a subset of GLn(R). We will show that it is
a subgroup:

• Consider any A,B ∈ SLn(R) so that det(A) = det(B) = 1. Then we have det(AB−1) =
det(A)/ det(B) = 1, which implies that AB−1 ∈ SLn(R).

(c) Orthogonal Group. If AAT = I then we have

det(AAT ) = det(I)

det(A) det(AT ) = 1

det(A)2 = 1,

which implies that det(A) = ±1. In particular, we see that On(R) is a subset of GLn(R). We
will prove that it is a subgroup:

• Consider any A,B ∈ On(R) so that AAT = BBT = I, or in other words we have
A−1 = AT and B−1 = BT . But then we have

(AB−1)(AB−1)T = AB−1(B−1)TAT = A(B−1B)A−1 = AA−1 = I,

which implies that AB−1 ∈ On(R).

(d) Special Orthogonal Group. It is easy to show that the intersection of subgroups is a
subgroup. Since SLn(R) and On(R) are both subgroups of GLn(R), and since

SOn(R) = SLn(R) ∩On(R),

we conclude that SOn(R) is a subgroup of GLn(R).

5. Order of an Element. Let (G, ∗, ε) be a group and let g ∈ G be any element. Then for
all integers n ∈ Z we define the exponential notation

gn :=



n times︷ ︸︸ ︷
g ∗ g ∗ · · · ∗ g if n > 0,

ε if n = 0,

g−1 ∗ g−1 ∗ · · · ∗ g−1︸ ︷︷ ︸
−n times

if n < 0.
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(a) Check that gm ∗ gn = gm+n for all m,n ∈ Z.

(b) Use this to prove that 〈g〉 := {gn : n ∈ Z} is a subgroup of G.

(c) If 〈g〉 is a finite set, prove that there exists some n ≥ 1 such that gn = ε.

(d) If 〈g〉 is finite, and if m ≥ 1 is the smallest number such that gm = ε, prove that

#〈g〉 = m.

This m is called the order of the element g ∈ G. If the set 〈g〉 is infinite we will say that
g has infinite order.

(a) This is a boring case-by-case check, depending on whether m and n are negative, zero or
positive. It’s okay to do it in your head.

(b) Proof. To see that 〈g〉 is closed under ∗, consider any two elements gm, gn ∈ 〈g〉. Then
from part (a) we have gm ∗ gn = gm+n ∈ 〈g〉. To see that 〈g〉 contains the identity, note from
part (a) that ε = g0 ∈ 〈g〉. Finally, to see that 〈g〉 is closed under inversion, consider any
element gn ∈ 〈g〉. Then from part (a) we have gn ∗ g−n = g−n ∗ gn = g0 = ε, and it follows
that (gn)−1 = g−n ∈ 〈g〉 as desired. [Incidentally, since m+ n = n+m for all m,n ∈ Z, part
(a) also implies that the group 〈g〉 is abelian.]

(c) Proof. If 〈g〉 is finite then there must exist integers k < ` such that gk = g`. Now define
n := `− k ≥ 1 and observe that

g` = gk

g` ∗ g−k = gk ∗ g−k

g`−k = g0

gn = ε.

(d) Let m ≥ 1 be the smallest positive integer such that gm = ε. Then I claim that

〈g〉 = {ε, g, g2, g3, . . . , gm−1}.

To see that every element of 〈g〉 has this form, consider the element gn for any integer n ∈ Z.
Now divide n by m to obtain n = qm + r, where the remainder satisfies 0 ≤ r < m, and
observe that

gn = gqm+r = (gm)q ∗ gr = εq ∗ gr = gr.

Finally, to see that the m elements ε, g, . . . , gm−1 are distinct, let us suppose for contradiction
that we have gk = g` for some 0 ≤ k < ` ≤ m− 1. But then as in (c) we have g`−k = ε which
together with 1 ≤ ` − k ≤ m − 1 contradicts the minimality of m. [Essentially, we have just
proved that the remainder of n mod m is unique.]
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6. Matrices of Finite and Infinite Order. Consider the matrices

J =

(
1 1
0 1

)
and Rθ =

(
cos θ − sin θ
sin θ cos θ

)
for any θ ∈ R.

(a) Show that J is invertible and has infinite order.

(b) Show that RθR−θ = I, hence Rθ is invertible.

(c) More generally, show that RαRβ = Rα+β for all angles α, β ∈ R.

(d) Conclude that for each integer n ≥ 1 the matrix R2π/n has order n.

(e) For which angles θ does the matrix Rθ have infinite order?

(a) Proof. To show this, we will prove by induction that(
1 1
0 1

)n
=

(
1 n
0 1

)
for all n ∈ Z.

Indeed, the statement is true when n = 0 and n = 1. And if the statement is true for n then
it’s also true for n+ 1 because(

1 1
0 1

)n+1

=

(
1 1
0 1

)n(
1 1
0 1

)
=

(
1 n
0 1

)(
1 1
0 1

)
=

(
1 n+ 1
0 1

)
.

We have shown that the statement is true for all n ≥ 0. Finally, we observe for all n ≥ 1 that(
1 n
0 1

)(
1 −n
0 1

)
=

(
1 0
0 1

)
,

which implies that (
1 −n
0 1

)
=

(
1 n
0 1

)−1
=

[(
1 1
0 1

)n]−1
=

(
1 1
0 1

)−n
.

(b) First observe that

R−θ =

(
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

)
=

(
cos θ sin θ
− sin θ cos θ

)
.

Then we have

RθR−θ =

(
cos θ − sin θ
sin θ cos θ

)(
cos θ sin θ
− sin θ cos θ

)
=

(
cos2 θ + sin2 θ cos θ sin θ − sin θ cos θ

sin θ cos θ − cos θ sin θ sin2 θ + cos2 θ

)
=

(
1 0
0 1

)
.
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(c) The bad way to prove this is to expand out the product RαRβ and use trig identities. The
good way is to argue that the matrix Rθ represents the (linear) function R2 → R2 that rotates
every vector counterclockwise by angle θ. Then since matrix multiplication is composition of
linear functions we will conclude that

RαRβ = Rα ◦Rβ
= (rotate ccw by α) ◦ (rotate ccw by β)

= (first rotate ccw by β then rotate ccw by α)

= (rotate ccw by α+ β)

= Rα+β.

So here’s the proof that Rθ is a rotation.

Proof. Consider the standard basis vectors e1 = (1, 0) and e2 = (0, 1). Here is a picture
showing that Rθ rotates each of these vectors counterclockwise by angle θ:

Now let fθ : R2 → R2 be the function that rotates every vector by counterclockwise around
the origin by angle θ. We already know that fθ(e1) = Rθe1 and fθ(e2) = Rθe2, and we want
to show that fθ(x) = Rθx for all vectors x ∈ R2. So consider any vector

x = (α, β) = (α, 0) + (0, β) = α(1, 0) + β(0, 1) = αe1 + βe2.

Since the rotation function fθ is linear (i.e., since it preserves parallelograms), we conclude
that

fθ(x) = fθ(αe1 + βe2)
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= αfθ(e1) + βfθ(e2)

= αRθe1 + βRθe2

= Rθ(αe1 + βe2)

= Rθx,

as desired.

(d) It follows from part (c) that (Rθ)
n = Rnθ for any angle θ ∈ R and for any integer n ∈ Z.

Thus we have
(R2π/n)n = R2π = R0 = I.

Furthermore, since Rθ is rotation by θ we see that Rα = Rβ if and only if α − β = 2πk for
some integer k ∈ Z. It follows from this that (R2π/n)k 6= I for all 1 ≤ k ≤ n− 1.

(e) Good question. I guess that Rθ has infinite order if and only if θ = απ for some irrational
number α ∈ R. Otherwise, if θ = aπ/b for some a, b ∈ Z then the order of Rθ is lcm(a, 2b)/a,
where lcm(a, 2b) is the least common multiple of a and 2b.

Week 3

We have seen the definition of abstract groups and we have played with the main examples.
It turns out that the three group axioms lead to an extraordinarily rich theory. The topic of
“cyclic groups” will be our first glimpse of this theory.

Intersection of Subgroups is a Subgroup. Let (G, ∗, ε) be a group and let Hi ⊆ G be
any family of subgroups (possibly infinite or even uncountable). Then the intersection⋂

i

Hi ⊆ G

is also a subgroup.

Proof. Consider any elements a, b in the intersection. By definition this means that we have
a, b ∈ Hi for each index i. But then since Hi is a subgroup we must have a ∗ b−1 ∈ Hi.
Finally, since a ∗ b−1 is contained inside each subgroup Hi, it follows by definition that a ∗ b−1
is contained in the intersection. �

However, the union of subgroups is not necessarily a subgroup. For example, consider the
additive group (R2,+,0) of vectors in n-dimensional Cartesian space and let u,v ∈ R2 be any
two non-zero vectors satisfying u 6= v. Then each of the “lines”

Ru := {αu : α ∈ R} and Rv := {αv : α ∈ R}

is a subgroup of Rn, but the union Ru ∪ Rv is not a subgroup because, for example, it does
not contain the point u + v:
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In linear algebra we fix this problem by defining the “linear span” of the vectors:

Ru ∪ Rv ( Ru + Rv := {αu + βv : α, β ∈ R},

and we call this the “plane” generated by u and v. This is a special case of a very general
construction.

Subgroup Generated by a Subset. Let (G, ∗, ε) be a group and let S ⊆ G be any subset.
Let X = {H : S ⊆ H} be the set of all subgroups of G that contain the set S and consider
the intersection

〈S〉 :=
⋂
H∈X

H.

I claim that this 〈S〉 ⊆ G is the smallest subgroup of G that contains the set S. We call it the
subgroup of G generated by S.

Proof. Since S ⊆ H for all H ∈ X we have by definition that S is contained in the intersection
〈S〉. Furthermore, we know from above that this intersection is a subrgroup of G. Thus 〈S〉 is
a subgroup of G that contains S. To see that this is the smallest such subgroup, let K ⊆ G
be any subgroup that contains S. By definition this means that K ∈ X, and hence

〈S〉 =
⋂
H∈X

H = K ∩
⋂
H∈X
H 6=K

H ⊆ K,

as desired. �

Let’s examine the previous example in light of this definition.
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Example: The Join of Two Subgroups. Let G any group and let H,K ⊆ G be any two
subgroups. We define their join as the smallest subgroup containing the union:

H ∨K := 〈H ∪K〉.

In terms of the group (Rn,+,0), I claim that the plane Ru + Rv coincides with the join of
the two lines Ru and Rv.

Proof. The set inclusions Ru ⊆ Ru ∨ Rv and Rv ⊆ Ru ∨ Rv imply that the points αu and
βv are contained in Ru ∨ Rv for all α, β ∈ R. Then since the group Ru ∨ Rv is closed under
addition we have αu + βv ∈ Ru ∨ Rv and hence

Ru + Rv = {αu + βv : α, β ∈ R} ⊆ Ru ∨ Rv.

Conversely, one can check that the plane Ru + Rv is a subgroup of Rn. Then since the plane
contains the union of the lines it must contain the subgroup generated by this union:

Ru ∨ Rv = 〈Ru ∪ Rv〉 ⊆ Ru + Rv.

�

The key to this proof was the fact that Ru + Rv ⊆ Rn is a subgroup. On the homework you
will show that a similar construction works for all abelian groups, but fails for non-abelian
groups. Now let’s examine the simplest possible case of a subgroup generated by a subset.

Definition of Cyclic Groups. Let g ∈ G be an element in a group (G, ∗, ε) and let S =
{g} ⊆ G be the subset containing just this element. Then we use the following notation for
the group generated by S:

〈g〉 := 〈{g}〉 = 〈S〉.

We call this the cyclic subgroup generated by g. In the special case that G = 〈g〉 for some
element g ∈ G we will say that G is a cyclic group.

Here’s another point of view: On the homework you showed that for any group element g ∈ G
and for any integer n ∈ Z we can define the exponential notation gn ∈ G in such a way that

• g0 = ε,

• g1 = g,

• (gn)−1 = (g−1)n = g−n for all n ∈ Z,

• and, more generally, gm ∗ gn = gm+n for all m,n ∈ Z.

It follows from this that the set of powers {gn : n ∈ Z} is a subgroup of G. I claim that this
group coincides with the cyclic group 〈g〉.

Proof. Since g = g1 we see that the subgroup {gn : n ∈ Z} contains the element g. Thus it
must contain the smallest subgroup that contains g:

〈g〉 ⊆ {gn : n ∈ Z}.
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On the other hand, we will prove by induction that every element gn is contained in 〈g〉.
Indeed, we have g1 = g ∈ 〈g〉 by definition and we have g0 = ε ∈ 〈g〉 since the subgroup 〈g〉
necessarily contains the identity. Furthermore, if gn ∈ 〈g〉 for some n ≥ 1 then since 〈g〉 is
closed under ∗ we must have

gn+1 = gn ∗ g1 ∈ 〈g〉.

Finally, since 〈g〉 is closed under inversion we conclude that

g−n = (gn)−1 ∈ 〈g〉 for all n ≥ 1.

In summary, we conclude that {gn : n ∈ Z} ⊆ 〈g〉 as desired. �

Last time I defined cyclic groups. Now some examples.

Example: Z+ is Cyclic. In an additive group (G,+, 0) we prefer to write the inverse of g ∈ G
as −g and we prefer to write the element gn as n · g, using the analogy that “multiplication is
repeated addition.” To be precise, for each element g ∈ G and each integer n ∈ Z we define

n · g :=



n times︷ ︸︸ ︷
g + g + · · ·+ g if n > 0,

0 if n = 0,

−g − g − · · · − g︸ ︷︷ ︸
−n times

if n < 0.

When the group is Z+ = (Z,+, 0) this notation becomes completely literal:

for all k ∈ Z+ and n ∈ Z we have n · k = nk ∈ Z+.

It follows that the cyclic subgroup of Z+ generated by the element k ∈ Z+ is just the set of
multiples of k. We have a special notation for this:

kZ := 〈k〉 = {n · k : n ∈ Z} = {kn : n ∈ Z}.

Since every integer is a multiple of 1 (or −1) we conclude that the group Z+ is cyclic:

Z+ = 〈1〉 = 〈−1〉.

It will turn out later that Z+ is, in some sense, the only infinite cyclic group.

Example: Roots of Unity. Recall the “absolute value” of complex numbers,

| − | : C→ R≥0,
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which is defined by |a + ib| := a2 + b2. Through some miracle it turns out that the absolute
value respects multiplication. [Exercise: Check this.] It follows from this that the complex
numbers of unit length form a subgroup of the multiplicative group C×:

U(1) = {α ∈ C : |α| = 1} ⊆ C× = {α ∈ C : α 6= 0}.

Since these numbers form a circle in the complex plane, we call U(1) the circle group. Here’s
an interesting question:

Is the circle group a cyclic group?

Strictly speaking the answer is no. Indeed, the cyclic subgroup 〈ω〉 ⊆ U(1) generated by any
element ω ∈ U(1) is countable, but the number of points of the circle is uncountable. Let’s
examine these cyclic subgroups.

Recall that every unit length complex number has the form

cos θ + i sin θ = eiθ for some angle 0 ≤ θ < 2π.

If ω = e2πi/n for some integer n ≥ 1 then we obtain a cyclic group of size n:

〈ω〉 = {1, ω, ω2, . . . , ωn−1} = {1, e2πi/n, e4πi/n, . . . , e2πi(n−1)/n}.

This is is the group of n-th roots of unity. [Exercise: Show that these are indeed all of the
solutions of xn = 1. The hard part is to show that there are no other solutions.] It is
important to note that this group does not have a unique generator. On the homework you
will show (indirectly) that the group of 12-th roots of unity has four possible generators

e2πi/12, e10πi/12, e14πi/12, e22πi/12

which are called the primitive 12-th roots of unity.

If ω = eiαπ for some irrational number α ∈ R then one can show that the element ω has
infinite order. This infinite set of powers 〈ω〉 = {ωn : n ∈ Z} does not coincide with the circle
but it turns out that this set is dense in the circle. In other words, the circle group U(1) is
equal to the topological closure of this subgroup:

〈ω〉 = U(1).

So we might say the following:

The circle group is “almost cyclic.”

///

Example: Symmetries of a Regular Polygon. Consider a regular hexagon. In the
following discussion we will show that this shape has exactly 12 symmetries, consisting of 6
rotation symmetries and 6 reflection symmetries:
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We can think of a symmetry as a function f : R2 → R2 that leaves the hexagon looking the
same. Thus, the symmetries can be combined by composition and they form a group called
the dihedral group of size 12 (“dihedral” because the hexagon has two sides). If we let R denote
any (primitive) rotation and let F denote any reflection then it turns out that the group can
be generated by these two elements:

D12 = 〈R,F 〉.

The dihedral group is not cyclic because neither of the generators can be expressed as a
nontrivial power of the other.

It will take some time to prove these assertions but the proof will be very interesting. Here
are the main steps:

• A “symmetry” of a regular polygon should preserve the distance between any two points
and send the center of the polygon to itself.

• Any function f : R2 → R2 that preserves distance and sends the origin to itself is a
linear function.

• Any linear function f : R2 → R2 has the form f(x) = Ax for some matrix A ∈ Mat2(R).

• If the linear function preserves distance then the matrix satisfies ATA = I.

• Finally, any such matrix represents a rotation or a reflection.

I will prove some of this next week and you will prove the rest on the homework.
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Week 4

What does “symmetry” mean in a geometric context?

Definition of Euclidean Space. Let Rn the set of ordered n-tuples of real numbers, which
we think of as column vectors:

x =


x1
x2
...
xn

 ∈ Rn.

For any two vectors x,y ∈ Rn we define the standard inner product as follows:

〈x,y〉 := xTy =
(
x1 x2 · · · xn

)

y1
y2
...
yn

 := x1y1 + x2y2 + · · ·+ xnyn.

The length of a vector x (i.e., the distance between the points x and 0) is given by the extended
Pythagorean theorem:

‖x‖2 = 〈x,x〉 = x21 + x22 + · · ·+ x2n.

It follows from this that we can compute the distance between any two points:

(distance between x and y)2 = ‖x− y‖2 = 〈x− y,x− y〉.

More surprisingly, we can use the inner product to compute the angle between any two vectors.
To see this note that the vectors x, y and x− y form three sides of a triangle:

By expanding the the expression ‖x− y‖2 = 〈x− y,x− y〉 in terms of algebra we get

〈x− y,x− y〉 = 〈x,x〉+ 〈y,y〉 − 2〈x,y〉
‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2〈x,y〉.
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On the other hand the classical law of cosines tells us that

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2 ‖x‖ ‖y‖ cos θ,

where θ is the angle between vectors x and y. Finally, combining the two equations gives

−2 ‖x‖ ‖y‖ cos θ = −2 〈x,y〉
‖x‖ ‖y‖ cos θ = 〈x,y〉

cos θ =
〈x,y〉
‖x‖ ‖y‖

=
〈x,y〉√

〈x,x〉
√
〈y,y〉

.

This implies that any geometric concept can be expressed in terms of the standard inner
product on Rn. To emphasize this situation we refer to the pair (Rn, 〈−,−〉) as n-dimensional
Euclidean space. ///

Since the geometric structure of space is defined by the inner product 〈−,−〉, any function that
preserves the inner product will preserve all geometric structure. Here is an infinite family of
examples.

Orthogonal Matrices Preserve Geometry. On the previous homework we considered the
“orthogonal group” of n× n orthogonal matrices:

On(R) = {A ∈ Matn(R) : ATA = I}.

Recall that we can think of any n×n matrix A as a function Rn to Rn by multiplying column
vectors on the left:

x 7→ Ax.

If the matrix satisfies ATA = I then for any two vectors x,y ∈ Rn we have

〈Ax, Ay〉 = (Ax)T (Ay) = (xTAT )(Ay) = xT (ATA)y = xT Iy = 〈x,y〉.

It follows that orthogonal matrices preserve all distances and angles. ///

The following surprising theorem shows that the converse is also true.

The Isometry Theorem. Let f : Rn → Rn be any function satisfying two conditions:

• f fixes the origin:
f(0) = 0.

• f preserves distance (i.e., f is an isometry):

for all x,y ∈ Rn we have ‖f(x)− f(y)‖ = ‖x− y‖.
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Then we have f(x) = Ax for some orthogonal matrix A ∈ On(R).

Proof. See the homework. �

Example: Symmetries of a Regular Polygon (Continued). Now let’s return to our
discussion of a regular n-sided polygon in the Euclidean plane R2. By a symmetry of the
polygon I mean any function f : R2 → R2 that

• sends points of the polygon to points of the polygon,

• preserves the distance between any two points, and

• sends the center of the polygon to itself.

For convenience, let’s assume that the polygon is centered at the origin 0 ∈ R2. Then the
previous theorem implies that any symmetry has the form f(x) = Ax where A is a real 2× 2
matrix satisfying ATA = I. What are the possibilities for this matrix? Suppose that

A =

(
a b
c d

)
for some a, b, c, d ∈ R.

Then the equation ATA = I tells us that

(
1 0
0 1

)
=

(
a c
b d

)(
a b
c d

)
=


(
a c

)(a
c

) (
a c

)(b
d

)
(
b d

)(a
c

) (
b d

)(b
d

)
 =

(
a2 + c2 ab+ cd

ab+ cd b2 + d2

)
.

In other words, the two column vectors of A are perpendicular unit vectors. Since (a, c)
is a unit vector we must have

(a, c) = (cos θ, sin θ) for some unique angle 0 ≤ θ < 2π.

And then since (b, d) is a unit vector perpendicular to (a, c), there are only two possibilities.
Namely, we must have (b, d) = (− sin θ, cos θ) or (b, d) = (sin θ,− cos θ). Here is a picture:
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In summary, we have shown that every 2 × 2 orthogonal matrix A ∈ O2(R) has one of the
following two forms:

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
or Fθ =

(
cos θ sin θ
sin θ − cos θ

)
.

We already know that x 7→ Rθx is the function that rotates the plane counterclockwise by
angle θ. The following picture demonstrates that x 7→ Fθx is the function that reflects
perpendicularly across the line that makes an angle of θ/2 with the x-axis:

[Remark: R is for Rotation and F is for reFlection (or Flip).] At this point we know that the
only possible symmetries of our regular n-gon are rotations and reflections. It turns out that
there are n rotation symmetries and n reflection symmetries. The rotation symmetries form
a cyclic group generated by R := R2π/n:

{I,R,R2, . . . , Rn−1} = {R0, R2π/n, R4π/n, . . . , R2π(n−1)/n}.

To determine the reflection symmetries we need to know the exact position of the n-gon. Let’s
assume for convenience that one of the vertices lies on the positive x-axis, so that F0 (i.e.,
reflection across the x-axis) is a symmetry. Then the complete list of reflection symmetries is

{F0, F2π/n, F4π/n, . . . , F2π(n−1)/n}.

Here is the picture when n = 6:
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The complete group of symmetries is called the dihedral group of size 2n:

D2n = {R0, R2π/n, R4π/n, . . . , R2π(n−1)/n, F0, F2π/n, F4π/n, . . . , F2π(n−1)/n}.

On the homework you will find a more efficient way to work with this group. Namely, if we
define R := R2π/n and F := F0 then you will show that the dihedral group is generated by
these two elements as follows:

D2n = 〈R,F 〉 = {RaF b : a ∈ {0, 1, . . . , n− 1} and b ∈ {0, 1}}.

///

You might have noticed that the n-th roots of unity and the rotation symmetries of a regular
n-gon are really just “the same group” in two different disguises. Let’s formalize this idea.

Definition of Group Isomorphism. Let (G, ∗) and (H, •) be abstract groups. We will say
that G and H are isomorphic as groups, and we will write

G ∼= H,

if there exists a function ϕ : G→ H satisfying the following properties:

• the function ϕ : G→ H is invertible with inverse ϕ−1 : H → G,

• for all a, b ∈ G we have ϕ(a ∗ b) = ϕ(a) • ϕ(b),
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• for all a, b ∈ H we have ϕ−1(a • b) = ϕ−1(a) ∗ ϕ−1(b).

Actually, you will show on the homework that the third condition follows automatically from
the first two. When the three conditions are satisfied we say that the pair of functions ϕ,ϕ−1

defines an isomorphism between the groups (G, ∗) and (H, •).

Example: Cyclic Groups. Let (G, ∗, ε) = 〈g〉 be a cyclic group. Recall from the first
homework that if #G < ∞ then there exists a smallest positive integer m such that
gm = ε, and it follows from this that

G = {ε, g, g2, . . . , gm−1}.

In this case I claim that
gk = g` ⇐⇒ k − ` ∈ mZ.

Proof. If k − ` ∈ mZ then by definition we have k = `+mx for some x ∈ Z and hence

gk = g`+mx = g` ∗ gmx = g` ∗ (gm)x = g` ∗ (ε)x = g`.

Conversely, let us suppose that gk = g`, and hence gk−` = ε for some k, ` ∈ Z. By computing
the remainder of k − ` mod m we obtain{

k − ` = qm+ r,

0 ≤ r < m.

If r 6= 0 then we find that

gr = gk−`−qm = gk−` ∗ (gm)−q = ε ∗ (ε)−q = ε,

contradicting the minimality of m. Hence k − ` = qm+ 0 ∈ mZ. ///

And if G is an infinite cyclic group then I claim that

gk = g` ⇐⇒ k = `.

Proof. Clearly k = ` implies gk = g`. Conversely, suppose that we have gk = g` for some
k 6= `. Without loss let us assume that k < `. Then we have

g` = gk

g` ∗ g−k = gk ∗ g−k

g`−k = ε,

for the positive integer `− k. If m is the smallest positive integer such that gm = ε then we
again have #G = m, which contradicts the fact that G is infinite. ///

With these facts in hand I can prove an important theorem about cyclic groups.
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Theorem. Let G = 〈g〉 and H = 〈h〉 be cyclic groups. Then we have

G ∼= H ⇐⇒ #G = #H.

In other words, a cyclic group is determined up to isomorphism by its size.

Proof. Clearly G ∼= H implies #G = #H. Conversely, let us suppose that #G = #H. There
are two cases. (Case 1) If the groups are finite then we have #G = #H = m for some m ≥ 1.
Our goal is to define an isomorphism ϕ : G→ H and there is an obvious candidate:

let ϕ(gk) := hk for all k ∈ Z.

There are four things to check:

• Well-Defined. Since the representation gk is not unique we need to make sure that
gk = g` implies ϕ(gk) = ϕ(g`). Indeed, from the above lemma we have

gk = g` =⇒ k − ` ∈ mZ =⇒ hk = h` =⇒ ϕ(gk) = ϕ(g`).

• Surjective. Every element of H has the form hk for some k ∈ Z and hence has the
form ϕ(gk) for some gk ∈ G.

• Injective. We need to show that ϕ(gk) = ϕ(g`) implies gk = g`. And, indeed,

ϕ(gk) = ϕ(g`) =⇒ hk = h` =⇒ k − ` ∈ mZ =⇒ gk = g`.

• Homomorphism. For all k, ` ∈ Z we have

ϕ(gk ∗ g`) = ϕ(gk+`) = hk+` = hk • h` = ϕ(gk) • ϕ(g`).

(Case 2) If #G = #H = ∞ then the proof is even easier because we don’t need to check
well-definedness. �

It follows from this theorem that every infinite cyclic group is isomorphic to Z+. We will see
later that every cyclic group of size n is isomorphic to the quotient group Z/nZ, but before
then I need to define quotient groups.

So much for cyclic groups. Now let’s talk about the circle group.

Example: Euler’s Isomorphism. This is as good a time as any for me to introduce unitary
matrices. If A ∈ Matn(R) is a real n× n matrix, recall that AT denotes the transpose matrix.
If 〈−,−〉 is the standard inner product on Rn then the transpose matrix is defined by

〈Ax,y〉 = 〈x, ATy〉 for all x,y ∈ Rn.

For vectors x,y ∈ Cn in complex space we prefer to work with the “Hermitian” inner product

〈x,y〉 := x∗y =
∑
i

xiyi,
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where x∗ is the conjugate transpose row vector. More generally if A ∈ Matn(C) is an n × n
complex matrix then we let A∗ denote the conjugate transpose of A. It is defined by the
condition

〈Ax,y〉 = 〈x, A∗y〉 for all x,y ∈ Cn.

Based on this, we define the (special) orthogonal and (special) unitary groups as follows:

O(n) = {A ∈ Matn(R) : ATA = I},
SO(n) = {A ∈ Matn(R) : ATA = I and detA = 1},
U(n) = {A ∈ Matn(C) : A∗A = I},

SU(n) = {A ∈ Matn(C) : A∗A = I and detA = 1},

We have seen above that O(n) and SO(n) can be viewed as groups of symmetries of Euclidean
space. The geometric meaning of U(n) and SU(n) is not so obvious but these groups are
extremely important in physics. In general all four of these groups are distinct but for small
values of n there can be “accidental isomorphisms.”

Theorem (Euler’s Isomorphism). We have U(1) ∼= SO(2).

[Remark: It is an amusing consequence of this theorem that SO(2) is an abelian group, which
is not obvious from the definition.]

Proof. Let (α) ∈ Mat1(C) be a 1× 1 complex matrix. Then the unitary condition says

(α)∗(α) = (1)

(α∗α) = (1)

(|α|2) = (1),

which implies that |α| = 1. Euler showed that all such complex numbers have the form
eiθ = cos θ + i sin θ. In other words, U(1) is the familiar circle group:

U(1) = {eiθ : θ ∈ R}.

On the other hand, we proved above that any 2 × 2 real orthogonal matrix has the form Rθ
(a rotation) or Fθ (a reflection). Since detRθ = 1 and detFθ = −1 for all θ ∈ R we find that

SO(2) =

{
Rθ =

(
cos θ − sin θ
sin θ cos θ

)
: θ ∈ R

}
.

I claim that we can define a group isomorphism f : U(1)→ SO(2) by

ϕ(eiθ) := Rθ for all θ ∈ R.

There are four things to check:
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• Well-Defined. For all η, θ ∈ R we have

eiη = eiθ =⇒ η − θ ∈ 2πZ =⇒ Rη = Rθ =⇒ ϕ(eiη) = ϕ(eiθ).

• Surjective. Every element of SO(2) has the form Rθ for some θ ∈ R and hence has the
form ϕ(eiθ) for some eiθ ∈ U(1).

• Injective. For all η, θ ∈ R we have

ϕ(eiη) = ϕ(eiθ) =⇒ Rη = Rθ =⇒ η − θ ∈ 2πZ =⇒ eiη = eiθ.

• Homomorphism. For all η, θ ∈ R we have

ϕ(eiηeiθ) = ϕ(ei(η+θ)) = Rη+θ = RηRθ = ϕ(eiη)ϕ(eiθ).

The third equality was proved on the previous homework.

�

[Remark: The name “Euler’s Isomorphism” is facetious.]

Note that this isomorphism restricts to an isomorphism between the n-th roots of unity under
multiplication and the rotational symmetries of a regular n-gon under composition.

Problem Set 2

1. Powers of a Cycle. Consider the standard 12-cycle in cycle notation:

c := (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) ∈ S12.

Compute the first twelve powers c, c2, c3 . . . , c12 and express each of them in cycle notation.
Try to guess what the k-th power of an n-cycle looks like.

Solution. We have

c = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

c2 = (1, 3, 5, 7, 9, 11)(2, 4, 6, 8, 10, 12)

c3 = (1, 4, 7, 10)(2, 5, 8, 11)(3, 6, 9, 12)

c4 = (1, 5, 9)(2, 6, 10)(3, 7, 11)(4, 8, 12)

c5 = (1, 6, 11, 4, 9, 2, 7, 12, 5, 10, 3, 8)

c6 = (1, 7)(2, 8)(3, 9)(4, 10)(5, 11)(6, 12)

c7 = (1, 8, 3, 10, 5, 12, 7, 2, 9, 4, 11, 6)

c8 = (1, 9, 5)(2, 10, 6)(3, 11, 7)(4, 12, 8)

c9 = (1, 10, 7, 4)(2, 11, 8, 5)(3, 12, 9, 6)
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c10 = (1, 11, 9, 7, 5, 3)(2, 12, 10, 8, 6, 4)

c11 = (1, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2)

c12 = (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12) = ε.

Now let c be a general n-cycle. I guess that the k-th power ck consists of d cycles each of
length n/d, where d = gcd(n, k) is the greatest common divisor of n and k. I’ll prove this
later but not today.

2. Homomorphism and Isomorphism. Let (G, ∗, δ) and (H, •, ε) be abstract groups and
let ϕ : G → H be a function. We say that ϕ is a (group) homomorphism if it satisfies the
following condition:

for all a, b ∈ G we have ϕ(a ∗ b) = ϕ(a) • ϕ(b).

(a) If ϕ : G→ H is a homomorphism, prove that ϕ(δ) = ε.

(b) If ϕ : G→ H is a homomorphism, prove that ϕ(a−1) = ϕ(a)−1 for all a ∈ G.

(c) Suppose that ϕ : G→ H is homomorphism and that the inverse function exists. Prove
that the function ϕ−1 : H → G is also a homomorphism. It follows that invertible
homomorphisms are the same as isomorphisms.

[Remark: Instead of f I tend to use the letter ϕ for group homomorphisms.]

(a) Proof. Since δ ∗ δ = δ we have

ϕ(δ ∗ δ) = ϕ(δ)

ϕ(δ) • ϕ(δ) = ϕ(δ)

ϕ(δ) • ϕ(δ) • ϕ(δ)−1 = ϕ(δ) • ϕ(δ)−1

ϕ(δ) = ε.

(b) Proof. For all a ∈ G we have

a ∗ a−1 = δ

ϕ(a ∗ a−1) = ϕ(δ)

ϕ(a) • ϕ(a−1) = ε

ϕ(a)−1 • ϕ(a) • ϕ(a−1) = ϕ(a)−1 • ε
ϕ(a−1) = ϕ(a)−1.
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(c) Proof. Assume that ϕ : G→ H is an invertible homomorphism. Then for all a, b ∈ H we
have

ϕ(ϕ−1(a) ∗ ϕ−1(b)) = ϕ(ϕ−1(a)) • ϕ(ϕ−1(b)) = a • b,

and applying ϕ−1 to both sides gives

ϕ−1(a) ∗ ϕ−1(b) = ϕ−1(a • b)

as desired. �

3. Isometries = Orthogonal Matrices. Let x,y ∈ Rn be column vectors and let xT

denote the row vector corresponding to x. We define the standard inner product as follows:

〈x,y〉 := xTy =
∑
i

xiyi.

Recall the the distance between two points x,y ∈ Rn is defined by ‖x− y‖2 = 〈x− y,x− y〉
and recall that the following properties are satisfied:

• We have ‖x‖2 = 〈x,x〉 = 0 if and only if x = 0.

• For all x,y ∈ Rn we have 〈x,y〉 = 〈y,x〉.

• For all x,y, z ∈ Rn and α, β ∈ R we have 〈x, αy + βz〉 = α〈x,y〉+ β〈x, z〉.

The goal of this problem is to show the following: If f : Rn → Rn is any function that preserves
distance and sends the origin to itself then it preserves the inner product. Hence the function
is linear. Hence we have f(x) = Ax for some n× n matrix A, which must satisfy ATA = I.

(a) Assume that the function f : Rn → Rn preserves the distance between any two points
(i.e., ‖f(x) − f(y)‖2 = ‖x − y‖2 for all x,y ∈ Rn) and sends the origin to itself (i.e.,
f(0) = 0). Prove that

〈f(x), f(y)〉 = 〈x,y〉 for all x,y ∈ Rn.

(b) Continuing from part (a), prove that this f is a linear function. [Hint: For all x,y ∈ Rn
and α ∈ R show that

‖f(x + y)− (f(x) + f(y))‖2 = 0 and ‖f(αx)− αf(x)‖2.]

(c) Continuing from (a) and (b), show that f(x) = Ax for some n × n matrix satisfying
ATA = I. [Hint: Let e1, . . . , en ∈ Rn be the standard basis vectors. Then f(ei) is
the i-th column of A. To show that ATA = I use the fact that eTi Bej is equal to the
i, j-entry of an arbitrary matrix B.]
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(a) Proof. Since f(0) = 0 he have for all x ∈ Rn that

〈f(x), f(x)〉 = ‖f(x)‖2

= ‖f(x)− 0‖2

= ‖f(x)− f(0)‖2 = ‖x− 0‖2 = ‖x‖2 = 〈x,x〉.

Then for any vectors x,y ∈ Rn we have

‖f(x)− f(y)‖2 = ‖x− y‖2

〈f(x)− f(y), f(x)− f(y)〉 = 〈x− y,x− y〉
〈f(x), f(x)〉 − 2〈f(x), f(y)〉+ 〈f(y), f(y)〉 = 〈x,x〉 − 2〈x,y〉+ 〈y,y〉

〈x,x〉 − 2〈f(x), f(y)〉+ 〈y,y〉 = 〈x,x〉 − 2〈x,y〉+ 〈y,y〉
−2〈f(x), f(y)〉 = −2〈x,y〉
〈f(x), f(y)〉 = 〈x,y〉.

(b) Proof. Now consider any x,y ∈ Rn. To show that f(x + y) = f(x) + f(y) we will verify
that f(x + y) − f(x) − f(y) has length zero, hence it must be the zero vector. Here is the
verification:

‖f(x + y)− f(x)− f(y)‖2

= 〈f(x + y)− f(x)− f(y), f(x + y)− f(x)− f(y)〉
= 〈f(x + y), f(x + y)〉+ 〈f(x), f(x)〉+ 〈f(y), f(y)〉

− 2〈f(x + y), f(x)〉 − 2〈f(x + y), f(y)〉+ 2〈f(x), f(y)〉
= 〈x + y,x + y〉+��

�〈x,x〉+��
�〈y,y〉 − 2〈�x + y,x〉 − 2〈x +�y,y〉+ 2〈x,y〉

= 〈x + y,x + y〉 − 〈x,x〉 − 〈y,y〉 − 2〈y,x〉 −����2〈x,y〉+���
�2〈x,y〉

= 〈x + y,x + y〉 − 〈x + y,x + y〉
= 0.

Then for any α ∈ R we will verify that f(αx)−αf(x) has length zero, hence f(αx) = αf(x):

‖f(αx)− αf(x)‖2 = 〈f(αx)− αf(x), f(αx)− αf(x)〉
= 〈f(αx), f(αx)〉 − 2〈f(αx), αf(x)〉+ 〈αf(x), αf(x)〉
= 〈αx, αx〉 − 2α〈f(αx), f(x)〉+ α2〈f(x), f(x)〉
= α2〈x,x〉 − 2α〈αx,x〉+ α2〈x,x〉
= α2〈x,x〉 − 2α2〈x,x〉+ α2〈x,x〉
= 0.

(c) Proof. From (b) we know that f : Rn → Rn is a linear function. To show that f is a
matrix, let e1, . . . , en ∈ Rn be the standard basis and let A be the matrix whose i-th column is
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f(ei). If x = x1e1 + · · ·+ xnen ∈ Rn is any vector then by definition of matrix multiplication
we have

Ax = x1f(e1) + · · ·+ xnf(en) = f(x1e1 + · · ·xnen) = f(x).

Finally, to show that ATA = I, recall from part (a) that 〈f(x), f(y)〉 = 〈x,y〉 for all vectors
x,y ∈ Rn. We find that the i, j-entry of the matrix ATA is

eTi (ATA)ej = (Aei)
T (Aej) = 〈Aei, Aej〉 = 〈f(ei), f(ej)〉 = 〈ei, ej〉 =

{
1 if i = j,

0 if i 6= j.

In other words, ATA is the identity matrix. �

[Remark: The hardest part by far was to show that an origin-fixing isometry is linear. That’s
a pretty surprising fact.]

4. Rotation and Reflection. In class I showed that every element of O2(R) has the form

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
or Fθ =

(
cos θ sin θ
sin θ − cos θ

)
.

(a) Verify that Rθ ∈ SO2(R) and that Fθ ∈ O2(R)− SO2(R).

(b) We saw on the previous homework that x 7→ Rθx is a rotation. Use a similar argument
to prove that x 7→ Fθx is a reflection.

(c) For all α, β ∈ R prove that

• RαRβ = Rα+β,

• FαFβ = Rα−β,

• RαFβ = Fβ(Rα)−1 = Fα+β.

(d) Fix a positive integer n and define the matrices R := R2π/n and F := F0. The subgroup
of O2(R) generated by the set {R,F} has 2n elements. Use (c) to find them all.

(a) Since RTθ = R−θ, we already know from the first homework that RTθ Rθ = I. Now we need
to check that det(Rθ) = 1. Indeed, we have

det

(
cos θ − sin θ
sin θ cos θ

)
= cos2 θ − (− sin2 θ) = 1.

Next we need to check that F Tθ Fθ = I and det(Fθ) 6= 1. For the first statement we have(
cos θ sin θ
sin θ − cos θ

)(
cos θ sin θ
sin θ − cos θ

)
=

(
cos2 θ + sin2 θ sin θ cos θ − sin θ cos θ

sin θ cos− sin θ cos θ sin2 θ + cos2 θ

)
=

(
1 0
0 1

)
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and for the second statement we have

det

(
cos θ sin θ
sin θ − cos θ

)
= − cos2 θ − sin2 θ = −1 6= 1.

(b) Since F Tθ = Fθ, we saw in part (a) that FθFθ = I. [Jargon: We say that Fθ is an
involution.] Now we will give a geometric reason for this. For any real number 0 ≤ θ < 2π,
let fθ : R2 → R2 be the function that reflections orthogonally across the line that makes an
angle of θ/2 with the x-axis. I claim that fθ(x) = Fθx for all vectors x ∈ R2.

Proof. Consider the standard basis vectors e1, e2 ∈ R2. We saw in the notes that fθ(e1) = Fθe1
and fθ(e2) = Fθe2. Now consider any vector x = x1e1 + x2e2 ∈ R2. Then since reflection
preserves linear combinations (i.e., it preserves parallelograms) we conclude that

fθ(x) = fθ(x1e1 + x2e2)

= x1f(e1) + x2f(e2)

= x1Fθe1 + x2Fθe2

= Fθ(x1e1 + x2e2)

= Fθx,

as desired. �

(c) Proof. We saw on the first homework that RαRβ = Rα+β. This follows from the fact that

(rotate by β and then rotate by α) = (rotate by α+ β).

One could prove FαFβ = Rα−β by quoting trig identities but I prefer to find a better way.
Since det(Fα) = det(Fβ) = −1 we know that det(FαFβ) = det(Fα) det(Fβ) = 1. Since we
know that all 2 × 2 orthogonal matrices with determinant 1 have the form Rθ we conclude
that FαFβ = Rθ for some θ. To compute the angle of rotation it is enough to apply FαFβ to
one specific vector and see what happens. Let’s choose a vector on the reflecting line for Fβ
so that Fβx = x. Then we have the following picture:

48



Since the angle between the reflecting lines of Fα and Fβ is (α − β)/2, we conclude that the
vector x gets rotated by angle θ = α− β, i.e., twice the angle between the reflecting lines.

Finally, to prove that RαFβ = Fα+β we note that

Fα+βFβ = Rα+β−β

Fα+βFβ = Rα

Fα+β��
�FβFβ = RαFβ

Fα+β = RαFβ,

and to prove that Fβ(Rα)−1 = Fα+β we note that

FβFα+β = Rβ−(α+β)

FβFα+β = R−α

�
��FβFβFα+β = FβR−α

Fα+β = Fβ(Rα)−1.

�

(d) Fix R := R2π/n and F := F0. Then I claim that

〈R,F 〉 = {RaF b : a ∈ {0, 1, . . . n− 1} and b ∈ {0, 1}}.

Proof. Since the subgroup 〈R,F 〉 contains R and F and is closed under composition, we
conclude that {RaF b} ⊆ 〈R,F 〉. Conversely, we will show that {RaF b} is a subgroup of
O2(R) containing R and F , from which it will follow that 〈R,F 〉 ⊆ {RaF b}. Let’s check:
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• Closure. Since FR = R−1F , one can prove by induction that FRc = R−cF for all
integers c ∈ Z. Now consider any two elements RaF b and RcF d. There are two cases:
(Case 1) If b = 0 then we have

(RaF b)(RdF d) = (Ra)(RcF d) = Ra+cF d = RkF d,

where k is the remainder of a+ c mod n. (Case 2) If b = 1 then we have

(RaF b)(RcF d) = Ra(FRc)F d = Ra(R−cF )F d = Ra−cF d+1 = RkF `,

where k is the remainder of a− c mod n and ` is the remainder of d+ 1 mod 2.

• Identity. The identity is R0F 0 = I.

• Inverses. Consider any element RaF b. There are two cases: (Case 1) If b = 0 then
RaF b = Ra has inverse R−a = Rn−aF 0, which has the correct form. (Case 2) If b = 1
then the element RaF b = RaF is equal to its own inverse:

(RaF )(RaF ) = Ra(FRa)F = Ra(R−aF )F = (RaR−a)(FF ) = I.

Finally, let’s prove that these 2n elements are distinct. If RaF b = RcF d then multiplying
on the left by R−c and on the right by F−b gives Rc−a = F d−b. Since Rc−a always has
determinant 1 this implies that F b−d = I, and hence F b = F d. But then we must also have
Rc−a = I and hence Ra = Rc. �

[Remark: It is also true that 〈R,F 〉 = {F aRb : a, b ∈ Z}.]

5. The Fermat-Euler-Lagrange Theorem. Let (G, ∗, ε) be a group and let g ∈ G be any
element. Define the function fg : G→ G by fg(a) := g ∗ a.

(a) Prove that fg : G→ G is a bijection.

(b) If G is a finite abelian group, prove that g#G = ε. [Hint: Suppose that G =
{a1, a2, . . . , an}. Explain why

∏
i ai =

∏
i fg(ai). Rearrange and then cancel.]

[Remark: This theorem is also true for finite non-abelian groups but we don’t have the
technology to prove it yet. The technology we need is called “Lagrange’s Theorem.”]

(a) Fix an element g ∈ G. I claim that the function fg(a) = g ∗ a is a bijection. Proof.

• Injective. Suppose that we have fg(a) = fg(b) for some a, b ∈ G. Then by applying
g−1 on the left we obtain

fg(a) = fg(b)

g ∗ a = g ∗ b
g−1 ∗ g ∗ a = g−1 ∗ g ∗ b

a = b.
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• Surjective. Consider any b ∈ G. Now define a := g−1 ∗ b and check that

fg(a) = g ∗ a = g ∗ g−1 ∗ b = b.

�

(b) Now suppose that G is a finite abelian group with n elements, say

G = {a1, a2, . . . , an}.

For any element g ∈ G I claim that gn = ε. Proof. Let b ∈ G denote the product of all n
elements in some order:

b := a1 ∗ a2 ∗ · · · ∗ an.

Since G is abelian the order of the product doesn’t matter. On the other hand, we know from
part (a) that fg : G→ G is a permutation of the elements of G. It follows that

b = fg(a1) ∗ fg(a2) ∗ · · · ∗ fg(an)

= (g ∗ a1) ∗ (g ∗ a2) ∗ · · · ∗ (g ∗ an)

= (g ∗ g ∗ · · · ∗ g) ∗ (a1 ∗ a2 ∗ · · · ∗ an)

= gn ∗ (a1 ∗ a2 ∗ · · · ∗ an)

= gn ∗ b.

Now multiply both sides by b−1 to obtain gn = ε. �

[Remark: We will see later that this is a generalization of Fermat’s Little Theorem and Euler’s
Totient Theorem.]

6. Join of Two Subgroups. Let G be a group and let H,K ⊆ G be subgroups. Recall that
the subgroup generated by the union H ∪K is called the join:

H ∨K := 〈H ∪K〉 = the intersection of all subgroups that contain H ∪K.

(a) If (G,+, 0) is abelian, we define the sum of H and K as follows:

H +K := {h+ k : h ∈ H, k ∈ K}.

Prove that this is a subgroup.

(b) If (G,+, 0) is abelian, use part (b) to prove that H ∨K = H +K.

(c) If (G, ∗, ε) is non-abelian, show that the following set is not necessarily a subgroup, and
hence it does not coincide with the join:

H ∗K := {h ∗ k : h ∈ H, k ∈ K}.

[Hint: The smallest non-abelian group is S3.]
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(a) Let (G,+, 0) be an abelian group and let H,K ⊆ G be any two subgroups. We will show
that the sum

H +K = {h+ k : h ∈ H, k ∈ K}

is a subgroup of G. Proof.

• Closure. Consider any two elements h1 + k1 and h2 + k2 from the set H + K. Since
H ⊆ G is a subgroup we have h1 + h2 ∈ H and since K ⊆ G is a subgroup we have
k1 + k2 ∈ K. Then since G is abelian we see that the sum is in H +K:

(h1 + k1) + (h2 + k2) = h1 + (k1 + h2) + k2

= h1 + (h2 + k1) + k2

= (h1 + h2) + (k1 + k2) ∈ H +K.

• Identity. Since 0 ∈ H and 0 ∈ K we have 0 = 0 + 0 ∈ H +K.

• Inverses. Consider any element h + k ∈ H + K. I claim that the inverse −(h + k) is
given by (−h) + (−k). To see this we again use the fact that G is abelian:

(h+ k) + (−h) + (−k) = (h− h) + (k − k) = 0 + 0 = 0.

But since H,K are subgroups we know that −h ∈ H and −k ∈ K, which implies that

−(h+ k) = (−h) + (−k) ∈ H +K,

as desired.

�

[Shorter Proof: If h1 + k1 and h2 + k2 are in H +K then

(h1 + k1)− (h2 + k2) = (h1 − h2) + (k1 − k2) ∈ H +K.]

(b) Following from (a), I claim that H +K = H ∨K. Proof. Consider any h ∈ H and k ∈ K.
Since the set H∨K contains H∪K it must contain the elements h and k, and since H∨K ⊆ G
is a subgroup it must contain the sum h + k. Since this is true for all h ∈ H and k ∈ K we
conclude that

H +K ⊆ H ∨K.

Conversely, note that for all h ∈ H we have h = h + 0 ∈ H + K and for all k ∈ K we have
k = 0 + k ∈ H +K. This implies that H +K contains the set H ∪K. But from part (a) we
know that H +K ⊆ G is a subgroup. Finally, since H ∨K ⊆ G is the smallest subgroup that
contains H ∪K we must have

H ∨K ⊆ H +K.

�
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(c) Consider the non-abelian group (S3, ◦, id) and the (cyclic) subgroups

H = {id, (12)} and K = {id, (23)}.

Then by definition we have

H ◦K = {id ◦ id , id ◦ (23) , (12) ◦ id , (12) ◦ (23)}
= {id, (23), (12), (123)}.

This is not a subgroup of S3 because the element (132) = (123)−1 = (23)◦(12) is not contained
in the set.

[Remark: If I had instead chosen G = S4 with subgroups H = {id, (12)} and K = {id, (34)}
then I would have accidentally found that H ◦K is a subgroup. We’ll talk about that later.]

Week 5

This week we will dive into the structure of the infinite cyclic group Z+ = (Z,+, 0). In the
process we will meet the concepts of “poset” (partially-ordered set) set and “lattice.”

Definition of Posets and Lattices. Let P be a set equipped with an abstract relation “≤.”
We say that the pair (P,≤) is a poset if the following three axioms are satisfied:

(P1) The relation ≤ is reflexive: for all a ∈ P we have

a ≤ a.

(P2) The relation ≤ is anti-symmetric: for all a, b ∈ P ,

if a ≤ b and b ≤ a then we have a = b.

(P3) The relation ≤ is transitive: for all a, b, c ∈ P ,

if a ≤ b and b ≤ c then we have a ≤ c.

Moreover, we say that the poset (P,≤) is a lattice if it satisfies the following additional axiom:

(L) Every subset of P has a greatest lower bound and a least upper bound.

In the special case of two elements a, b ∈ P we say that g ∈ P is a greatest lower bound of a, b
if it satisfies the following two properties:

• g ≤ a and g ≤ b (i.e., g is a lower bound of a and b),

• for all c ∈ P , if c ≤ a and c ≤ b then c ≤ g (i.e., every lower bound is less than g).
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[Exercise: Check that this g is unique.] In this case we will write g = a ∧ b and we will call g
the meet of a and b. Dually, we say ` ∈ P is a (the) least upper bound if it satisfies:

• a ≤ ` and b ≤ ` (i.e., ` is an upper bound of a and b),

• for all c ∈ P , if a ≤ c and b ≤ c then ` ≤ c (i.e., every lower bound is greater than `).

We will write ` = a ∨ b and call this the join of a and b. On the other extreme, we will use
the symbols 0 and 1 for the greatest lower bound and the least upper bound of all elements
in P , which satisfy 0 ≤ a and a ≤ 1 for all a ∈ P . Here is how I visualize a lattice:

///

Example: The Lattice of Subsets. Let U be any set and let 2U be the set of all subsets
of U . I claim that 2U is a lattice with the following structure:

partial order ≤ set containment ⊆
meet ∧ intersection ∩
join ∨ union ∪

bottom 0 empty set ∅
top 1 the universe U

Example: The Lattice of Subgroups. Now let (G, ∗, ε) be a group and let L (G) be the
set of all subgroups of G. I claim that L (G) is a lattice with the following structure:
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partial order ≤ set containment ⊆
meet ∧ intersection ∩
join ∨ join ∨

bottom 0 trivial group {ε}
top 1 full group G

In particular, note that the join operation (least upper bound) coincides with the join of
subgroups that we defined earlier:

H ∨K = 〈H ∪K〉 = the intersection of all subgroups that contain H ∪K.

That was good planning on my part.

///

It turns out that the lattice of subgroups of Z+ has a particularly nice structure.

Theorem (Subgroups of Z+). The lattice of subgroups of Z+ under containment is iso-
morphic to the lattice of non-negative integers under “reverse divisibility:”

(L (Z+),⊆) ∼= (N, reverse divisibility).

The proof has three steps.

Step 1. We already know that the cyclic subgroups of Z+ have the form

mZ = {mk : k ∈ Z}

for some m ∈ N. I claim that every subgroup has this form.

Proof. Let H ⊆ Z+ be any subgroup. If H = {0} is the trivial group then we have H = 0Z as
desired. Otherwise, suppose that H 6= {0} and let m be the smallest positive element of H. In
this case I claim that H = mZ. Indeed, since mZ = 〈m〉 is the smallest subgroup containing
m we must have mZ ⊆ H. On the other hand, let n ∈ H be any element of H and divide it
by m to obtain {

n = qm+ r,

0 ≤ r < m.

We will show that r = 0. To see this, first observe that since n and m are in H we also have
r = n− qm ∈ H. But if r 6= 0 then 0 < r < m contradicts the minimality of m. We conclude
that r = 0 and hence n = qm ∈ mZ. Finally, since n ∈ H was arbitrary we conclude that
H ⊆ mZ as desired. �
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Step 2. For all integers a, b ∈ Z recall that we define divisibility as follows:

“a|b” = “a divides b” = “∃k ∈ Z, ak = b.”

Then for all a, b ∈ Z I claim that

aZ ⊆ bZ ⇐⇒ b|a.

Proof. If aZ ⊆ bZ then since a ∈ aZ ⊆ bZ we must have a = bk for some k ∈ Z, hence b|a.
Conversely, suppose that b|a so there exists k ∈ Z with a = bk. Then for any a` ∈ aZ we have

a` = (bk)` = b(k`) ∈ bZ

and it follows that aZ ⊆ bZ as desired. �

Step 3. Now consider the function f : N→ L (Z+) defined by f(m) := mZ. I claim that this
is an isomorphism of posets.

Proof. We saw in Step 1 that this function is surjective. If we can show that the function is
injective (hence invertible) then it follows from Step 2 that the function f and its inverse f−1

both preserve order. So let us assume that aZ = bZ for some non-negative integers a, b ∈ N.
From Step 2 we know that a|b and b|a, hence there exist integers k, ` ∈ Z with ak = b and
b` = a. If either a or b is zero this implies that a = b = 0 as desired. Otherwise, both a and b
are positive and we have

a = b`

a = ak`

a(1− k`) = 0

(1− k`) = 0

1 = k`.

The only solutions are k = ` = ±1 which implies that a = ±b. Finally, since a, b are both
positive we conclude that a = b as desired. �

Remarks:

• Since f preserves order we call it a poset homomorphism. Since f−1 exists and also
preserves order we call the pair (f, f−1) a poset isomorphism.

• Unlike in the case of groups, an invertible poset homomorphism is not necessarily an
isomorphism. [Exercise: Find a small example.]

This completes the proof that L (Z+) is isomorphic to N under reverse divisibility. Here is a
picture of this lattice:
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Notice that 0 is divisible by everything and everything is divisible by 1. The elements just
below 1 are the prime numbers. We know that this poset is a lattice because it is isomorphic
to the lattice L (Z+). What are the meet and join operations?

For any group G recall that the set L (G) of subgroups is a lattice under the containment
partial order. For any subgroups H,K ∈ L (G) the meet H ∧K equals the intersection H ∩K
and the join H ∨K can be defined as the intersection of all subgroups that contain the union.
Moreover, if (G,+, 0) is abelian then the join equals the sum: H ∨K = H +K.

Now let’s consider the case G = (Z,+, 0). We saw above that every subgroup H ⊆ G has the
form H = mZ for a unique non-negative integer m ∈ N. Hence for any two subgroups aZ and
bZ there exist unique non-negative integers m, d ∈ N such that

aZ ∧ bZ = aZ ∩ bZ = mZ,
aZ ∨ bZ = aZ + bZ = dZ.

What are these numbers m and d?

Theorem. We have m = lcm(a, b) and d = gcd(a, b).
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Proof. First we will prove that m = lcm(a, b). Since m ∈ mZ = aZ∩ bZ we must have m ∈ aZ
and m ∈ bZ, which implies that a|m and b|m. In other words, m is a common multiple of a
and b. Now let c be any common multiple of a and b, so that c ∈ aZ and c ∈ bZ. It follows
that c ∈ aZ ∩ bZ = mZ, which implies that m|c. In other words, m is the least common
multiple.

Now we will prove that d = gcd(a, b). Note that a = a1+b0 ∈ aZ+bZ and b = a0+b1 ∈ aZ+bZ.
Since aZ+ bZ = dZ this implies that a ∈ dZ and b ∈ dZ, hence d|a and d|b. In other words, d
is a common divisor of a and b. Now let c be any common divisor, so that a ∈ cZ and b ∈ cZ.
It follows [Exercise: How?] that dZ = aZ + bZ ⊆ cZ, which implies that c|d. In other words,
d is the greatest common divisor. �

Remarks:

• For any a ∈ N we have aZ ∩ 0Z = 0Z and aZ + 0Z = aZ, which implies that

lcm(a, 0) = 0 and gcd(a, 0) = a.

• For any a ∈ N we have aZ ∩ 1Z = aZ and aZ + 1Z = 1Z, which implies that

lcm(a, 1) = a and gcd(a, 1) = 1.

• Since 0Z ∩ 0Z = 0Z and 0Z + 0Z = 0Z, the theorem also says

lcm(0, 0) = 0 and gcd(0, 0) = 0,

but you may object to this. It’s not important.

It follows that the poset (N, reverse divisibility) is a lattice with meet=lcm and join=gcd.
[Equivalently: The poset (N,divisibility) is a lattice with meet=gcd and join=lcm.] To end
this section I want to bring your attention to the following corollary which is very important
in the study of prime numbers.

Important Corollary (Bézout’s Identity). Let a, b ∈ Z be any two integers and let
d = gcd(a, b). Then there exist some (non-unique) integers x, y ∈ Z such that

d = ax+ by.

Proof. From the above theorem we know that dZ = aZ + bZ. Then since d = d1 ∈ dZ we
must have d ∈ aZ + bZ = {ax+ by : x, y ∈ Z}. �
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If 〈g〉 is an infinite cyclic group we have seen that the lattice of subgroups L 〈g〉 is isomorphic
to the lattice of natural numbers N under reverse-divisibility. Specifically, the isomorphism
f : N→ L 〈g〉 is defined by f(m) = 〈gm〉. But what if the cyclic group 〈g〉 is finite?

I’ll just tell you the answer and then we’ll discuss how to prove it.

Fundamental Theorem of Cyclic Groups. For any n ∈ N let Div(n) ⊆ N be the set of
non-negative divisors of n. Thus Div(0) = N and for n ≥ 1 the set Div(n) is finite.

If 〈g〉 is an infinite cyclic group, we have already seen that the function f : Div(0) → L 〈g〉
defined by f(k) := 〈gk〉 defines a poset isomorphism:

(L 〈g〉,⊆) ∼= (Div(0), reverse divisibility).

Now if 〈g〉 is a finite cyclic group of size n ≥ 1 then I claim that the same function f restricted
to Div(n) ⊆ Div(0) defines a poset isomorphism:

(L 〈g〉,⊆) ∼= (Div(n), reverse divisibility).

Finally, if n ≥ 1 then the permutation Div(n) → Div(n) defined by d 7→ n/d switches the
relations of reverse divisibility and divisibility, and hence

(L 〈g〉,⊆) ∼= (Div(n), reverse divisibility) ∼= (Div(n), divisibility).

[Remark: This last isomorphism doesn’t work when n = 0.] ///

For example, here is a picture of the theorem when n = 12:

I could give a quick and dirty proof right now but I prefer to develop a slower and more
abstract proof that illustrates what’s really going on. The fundamental idea is that of a
“Galois connection” between posets.
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Definition of Galois Connections.3 Let (P,≤) and (Q,≤) be posets and consider any
functions f : P → Q and g : Q→ P . The pair f, g is a Galois connection if it satisfies

p ≤ g(q)⇐⇒ f(p) ≤ q for all p ∈ P and q ∈ Q.

///

For example, if f : P → Q is a poset isomorphism then the pair (f, f−1) is a Galois connection.
Indeed, in that case we have f(p) ≤ q ⇒ f−1(f(p)) ≤ f−1(q) ⇒ p ≤ f−1(q) and vice versa.
A general Galois connection f, g need not be an isomorphism, but it always restricts to an
isomorphism between certain subposets P ′ ⊆ P and Q′ ⊆ Q.

Fundamental Theorem of Galois Connections. If f : P � Q : g is a Galois connection
then we have the following properties:

• f : P → Q and g : Q→ P are poset homomorphisms,

• g ◦ f : P → P is increasing and f ◦ g : Q→ Q is decreasing,

• f ◦ g ◦ f = f and g ◦ f ◦ g = g.

If we define the subposets

P ′ = g[Q] := {g(q) : q ∈ Q} and Q′ = f [P ] := {f(p) : p ∈ P},

then it follows from the above properties that f and g restrict to a poset isomorphism:

f : P ′
∼←→ Q′ : g.

Proof. See the homework. �

[Remark: Specific examples of this theorem are often called “correspondence theorems.” We
will see one below.]

Galois connections are best understood with a picture. Since I can’t draw general posets, let
me assume for convenience that (P,≤,∨,∧, 0P , 1P ) and (Q,≤,∨,∧, 0Q, 1Q) are lattices. In
this case I claim that f(0P ) = 0Q and g(1Q) = 1P .

Proof. By definition we have 0P ≤ p for all p ∈ P and 0Q ≤ q for all q ∈ Q. In particular,
setting q = f(0P ) in the second inequality gives 0Q ≤ f(0P ). On the other hand, the definition
of Galois connections says that

0P ≤ g(q)⇐⇒ f(0P ) ≤ q for all q ∈ Q.

3You won’t find this concept in any of the standard algebra textbooks. I think that’s a shame.
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In particular, since 0P ≤ g(0Q) we conclude that f(0P ) ≤ 0Q, and then it follows from
antisymmetry that f(0P ) = 0Q. The proof of g(1Q) = 1P is similar. �

Then here is the picture:

Let me emphasize that the images P ′ and Q′ are isomorphic as posets, but the original P and
Q need not be. And what does all of this have to do with Évariste Galois? I’ll tell you later.
For now, an example.

Example: Image and Preimage. Let (G, ∗, δ) and (H, •, ε) be groups and let ϕ : G→ H
be any function. Then for all subsets S ⊆ G and T ⊆ H we define the image set ϕ[S] ⊆ H
and the preimage set ϕ−1[T ] ⊆ G as follows:

ϕ[S] := {ϕ(g) : g ∈ S} ⊆ H,
ϕ−1[T ] := {g ∈ G : ϕ(g) ∈ T} ⊆ G.

Remarks:

• I use square brackets to distinguish between the function ϕ : G→ H that sends elements
to elements and the function ϕ : 2G → 2H that sends subsets to subsets.
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• The preimage function ϕ−1 : 2H → 2G always exists, but the inverse function ϕ−1 :
H → G need not exist. The inverse function exists if and only if for all h ∈ H the
preimage ϕ−1[{h}] ⊆ G consists one element, which we may then call ϕ−1(h).

If we think of (2G,⊆) and (2H ,⊆) as posets then I claim that the image and preimage functions
are a Galois connection:

ϕ : 2G � 2H : ϕ−1.

Proof. For all subsets S ⊆ G and T ⊆ H we have

S ⊆ ϕ−1[T ]⇐⇒ ∀s ∈ S, s ∈ ϕ−1[T ]

⇐⇒ ∀s ∈ S, ϕ(s) ∈ T
⇐⇒ ϕ[S] ⊆ T.

�

So far these remarks apply to any sets G,H and any function ϕ : G→ H. Now let us assume
that ϕ is a group homomorphism. In this case you will verify on the homework that

• if S ⊆ G is a subgroup then ϕ[S] ⊆ H is a subgroup,

• if T ⊆ H is a subgroup then ϕ−1[T ] ⊆ G is a subgroup,

and hence we obtain a Galois connection ϕ : L (G) � L (H) : ϕ−1 between the lattices of
subgroups. It follows from the Fundamental Theorem of Galois Connections that image and
preimage restrict to an isomorphism between certain posets of subgroups:

ϕ : L (G)′
∼←→ L (H)′ : ϕ−1.

In other words, we obtain an order-preserving bijection between certain kinds of subgroups of
G and certain kinds of subgroups of H.

What kinds of subgroups? Let me spoil the surprise right now: It will turn out that L (G)′

consists of subgroups that contain the kernel “kerϕ,” and L (H)′ consists of subgroups of
H that are contained in the image “imϕ.” Next time I will define the notions “kerϕ” and
“imϕ” and I will prove these assertions.

We have seen that any group homomorphism ϕ : G → H induces the image and preimage
functions ϕ : L (G) � L (H) : ϕ−1 which form an abstract Galois connection. Among the
images and preimages there are two important special cases.
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Definition of the Kernel and Image. Let ϕ : (G, ∗, δ) → (H, •, ε) be a group homomor-
phism. We define the kernel of ϕ as the preimage of the trivial subgroup {ε} ⊆ H:

kerϕ := ϕ−1[{ε}] = {g ∈ G : ϕ(g) = ε}.

And we define the image of ϕ as the image of the full group G:

imϕ := ϕ[G] = {ϕ(g) : g ∈ G}.

From general properties (proved on the homework) we know that kerϕ ⊆ G and imϕ ⊆ H
are subgroups. ///

We now have the ingredients necessary to state and prove an important general theorem.
Afterwards, we will obtain the Fundamental Theorem of Cyclic Groups as an easy corollary.

The Correspondence Theorem for Groups. Let ϕ : (G, ∗, δ) → (H, •, ε) be any group
homomorphism and define the following sets, partially ordered by containment:

L (G, kerϕ) := {subgroups kerϕ ⊆ K ⊆ G}
L (imϕ) := {subgroups L ⊆ imϕ}.

I claim that the image and preimage ϕ : L (G)� L (H) : ϕ−1 restrict to a poset isomorphism:

ϕ : L (G, kerϕ)
∼←→ L (imϕ) : ϕ−1.

///

Proof. Since ϕ : L (G)� L (H) : ϕ−1 is a Galois connection we automatically obtain a poset
isomorphism ϕ : L (G)′ ←→ L (H)′ : ϕ−1 between certain subposets L (G)′ ⊆ L (G) and
L (H)′ = L (H). On the homework you will show that these subposets are

L (G)′ = {K ⊆ G : K = ϕ−1[ϕ[K]]},
L (H)′ = {L ⊆ H : L = ϕ[ϕ−1[L]]}.

Assuming this, I will prove that

L (G)′ = L (G, kerϕ) and L (H)′ = L (imϕ).

There are two steps in the proof.

Step 1. For all subgroups K ⊆ G and L ⊆ H I claim that

ϕ[ϕ−1[L]] = L ∧ imϕ,

ϕ−1[ϕ[K]] = K ∨ kerϕ.
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For the first equality, note that ϕ−1[L] ⊆ G implies ϕ[ϕ−1[L]] ⊆ ϕ[G] = imϕ because ϕ[−]
preserves order, and that ϕ[ϕ−1[L]] ⊆ L because ϕ ◦ ϕ−1[−] is decreasing. Therefore we have
ϕ[ϕ−1[L]] ⊆ L∩imϕ = L∧imϕ. For the converse, consider any element h ∈ L∧imϕ = L∩imϕ.
Since h ∈ imϕ we must have h = ϕ(g) for some g ∈ G and since h ∈ L we must have
g ∈ ϕ−1[L]. Now it follows that h = ϕ(g) ∈ ϕ[ϕ−1[L]] and hence L ∧ imϕ ⊆ ϕ[ϕ−1[L]].

For the second equality, note that {ε} ⊆ ϕ[K] implies kerϕ = ϕ−1[{ε}] ⊆ ϕ−1[ϕ[K]] because
ϕ−1[−] is order-preserving, and that K ⊆ ϕ−1[ϕ[K]] because ϕ−1 ◦ ϕ[−] is increasing. Then
since ϕ−1[ϕ[K]] is a subgroup of G containing K ∪kerϕ we must have K ∨kerϕ ⊆ ϕ−1[ϕ[K]].
For the converse, consider any element g ∈ ϕ−1[ϕ[K]]. By definition this means that ϕ(g) =
ϕ(k) for some k ∈ K. Then by general properties of homomorphisms we have

ϕ(g) = ϕ(k)

ϕ(k)−1 • ϕ(g) = ε

ϕ(k−1 ∗ g) = ε,

and hence k−1∗g ∈ kerϕ. Finally, consider the product set K kerϕ := {k∗` : k ∈ K, ` ∈ kerϕ}.
One can show that this set is a group, and hence that K kerϕ = K ∨ kerϕ. [Remark: Later
we will show the more general fact that KN = K ∨N for any subgroups K,N ⊆ G such that
N ⊆ G is “normal.”] It follows from this that

g = k ∗ (k−1 ∗ g) ∈ K kerϕ = K ∨ kerϕ,

and hence ϕ−1[ϕ[K]] ⊆ K ∨ kerϕ, as desired. �

[Remark: The first three inclusions were purely formal. Only the last inclusion ϕ−1[ϕ[K]] ⊆
K ∨ kerϕ used any non-trivial details about groups.]

Step 2. In Step 1 we proved that

L (G)′ = {K ⊆ G : K = K ∨ kerϕ},
L (H)′ = {L ⊆ H : L = L ∧ imϕ}.

Now it only remains to show that

K = K ∨ kerϕ ⇐⇒ kerϕ ⊆ K,
L = L ∧ imϕ ⇐⇒ L ⊆ imϕ.

This has nothing to do with groups so I will prove it for general lattices. Let (L,≤,∨,∧, 0, 1)
be a lattice and consider any elements a, b ∈ L. Then I claim that

a = a ∨ b ⇐⇒ b ≤ a,
a = a ∧ b ⇐⇒ a ≤ b.
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For the first statement, if a = a ∨ b then by definition we have b ≤ a ∨ b = a. Conversely,
suppose that b ≤ a. Then we have a ≤ a ∨ b by definition and we have a ∨ b ≤ a because a is
an upper bound of a and b. Hence a = a ∨ b.

For the second statement, if a = a ∧ b then by definition we have a = a ∧ b ≤ b. Conversely,
suppose that a ≤ b. Then we have a ∧ b ≤ a by definition and we have a ≤ a ∧ b because a is
a lower bound of a and b. Hence a = a ∧ b. �

This completes the proof of the Correspondence Theorem for Groups. Finally, we obtain a
free proof of the Fundamental Theorem of Cyclic Groups.

Corollary (Fundamental Theorem of Cyclic Groups). Let 〈g〉 be a cyclic group and
consider the group homomorphism ϕ : Z+ → 〈g〉 defined by ϕ(k) := gk. Note that we have
imϕ = 〈g〉 by definition, and since the kernel is a subgroup of Z+ we must have kerϕ = nZ
for some unique n ∈ N. If n = 0 then 〈g〉 is infinite and otherwise we have #〈g〉 = n.

Now we conclude from the Correspondence Theorem that

L 〈g〉 = L (imϕ) ∼= L (Z+, kerϕ) = L (1Z, nZ).

But recall that the subgroups of Z+ between 1Z and nZ have the form dZ where d is a disivor
of n, and that these groups are ordered by “reverse divisibility.” It follows that

L 〈g〉 ∼= L (1Z, nZ) ∼= (Div(n), reverse divisibility),

and the explicit isomorphism Div(n)→ L 〈g〉 is given by the image function ϕ[−]:

d 7→ dZ 7→ ϕ[dZ] = {gdk : k ∈ Z} = 〈gd〉.

�

Week 6

Last week we discussed the abstract properties of the symbol “≤.” This week we’ll discuss the
abstract properties of the symbol “=.”

Definition of Equivalence and Classes. Let S be a set and let ∼ be a relation on S.
Technically: This means that ∼ is a subset of S × S. We will write “a ∼ b” to mean that
“(a, b) ∈ ∼ .” We say that∼ is an equivalence relation if the following three axioms are satisfied:

(E1) The relation ∼ is reflexive: for all a ∈ S we have

a ∼ a.
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(E2) The relation ∼ is symmetric: for all a, b ∈ P ,

if a ∼ b then b ∼ a.

(E3) The relation ∼ is transitive: for all a, b, c ∈ P ,

if a ∼ b and b ∼ c then we have a ∼ c.

[Remark: The symbol “=” always denotes our favorite equivalence relation on a given set.]
For each element a ∈ S we define its equivalence class as follows:

[a]∼ := {b ∈ S : a ∼ b}.

We will use the notation

S/∼ = “ S mod ∼ ” = the set of equivalence classes.

One should check that for all a, b ∈ S the following conditions are equivalent:

• a ∼ b,

• [a]∼ = [b]∼,

• [a]∼ ∩ [b]∼ 6= ∅.

It follows that the equivalence classes are a partition of the set S. In other words, we can
express S as a disjoint union:

S =
∐

X∈S/∼

X.

///

I assume that you are familiar with the following example.

Example: Equivalence Modulo an Integer. Fix an integer n ∈ Z. Then for all integers
a, b ∈ Z we define

a ∼n b ⇐⇒ b− a ∈ nZ ⇐⇒ n|(b− a).

We call this relation “equivalence mod n.” I won’t bother to prove that this is an equivalence
relation because it will follow from a more general proof in the next example.

In the case of equivalence mod n we have a special notation for equivalence classes:

[a]∼n = {b ∈ Z : a ∼n b}
= {b ∈ Z : b− a ∈ nZ}
= {b ∈ Z : b− a = nk for some k ∈ Z}
= {b ∈ Z : b = a+ nk for some k ∈ Z}
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= {a+ nk : k ∈ Z}
=: a+ nZ.

The equivalence class [a]∼n = a+ nZ is called a coset of the subgroup nZ ⊆ Z. If n = 0 then
each coset has a single element:

a+ 0Z = {a+ 0k : k ∈ Z} = {a}.

Thus we see that “equivalent mod 0” is just a fancy way to say “equals:”

a ∼0 b ⇐⇒ a+ 0Z = b+ 0Z ⇐⇒ {a} = {b} ⇐⇒ a = b.

If n 6= 0 then each coset is in one-to-one correspondence with Z:

a+ nZ = {. . . , a− 2n , a− n , a , a+ n , a+ 2n , . . .}.

In this case, the partition of Z into equivalence classes is called “division with remainder.” By
convention we say that a “remainder mod n” must satisfy 0 ≤ r < |n|. Therefore we have the
following disjoint union:

Z =

|n|−1∐
r=0

{integers with remainder r mod n} =

|n|−1∐
r=0

(r + nZ).

And instead of Z/∼n we use the following notation for the set of cosets:

Z/nZ = {nZ , 1 + nZ , 2 + nZ , . . . , (|n| − 1) + nZ}.

///

That was just an example. Here is the general concept.

Definition of Equivalence Modulo a Subgroup. Let (G, ∗, ε) be a group and let H ⊆ G
be any subgroup. Then for all a, b ∈ G we define

a ∼H b ⇐⇒ a−1 ∗ b ∈ H ⇐⇒ b−1 ∗ a ∈ H,
aH∼ b ⇐⇒ a ∗ b−1 ∈ H ⇐⇒ b ∗ a−1 ∈ H.

I claim that each of ∼H and H∼ is an equivalence relation on G. We call these relations left
and right equivalence mod H.

Proof. Let H ⊆ G be a subgroup. We will prove that left equivalence ∼H is an equivalence
relation and leave the proof of right equivalence H∼ to the reader.

(E1) Consider any a ∈ G. Since the subgroup H contains the identity ε we have a−1 ∗ a =
ε ∈ H, and hence a ∼H a.
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(E2) Consider any a, b ∈ G such that a ∼H b. By definition this means that a−1 ∗ b ∈ H.
Then since the subgroup H is closed under inversion we have b−1 ∗ a = (a−1 ∗ b)−1 ∈ H,
and hence b ∼H a.

(E3) Consider any a, b, c ∈ G such that a ∼H b and b ∼H c. By definition this means that
a−1 ∗ b ∈ H and b−1 ∗ c ∈ H. Then since the subgroup H is closed under ∗ we have

a−1 ∗ c = (a−1 ∗ b) ∗ (b−1 ∗ c) ∈ H,

and hence a ∼H c. �

[Remark: Note that the three axioms of equivalence correspond perfectly with the three axioms
of a subgroup. This is excellent motivation for the definition.]

Now let’s examine the equivalence classes. The classes of ∼H are called left cosets:

[a]∼H = {b ∈ G : a ∼H b}
= {b ∈ G : a−1 ∗ b ∈ H}
= {b ∈ G : a−1 ∗ b = h for some h ∈ H}
= {b ∈ G : b = a ∗ h for some h ∈ H}
= {a ∗ h : h ∈ H}
=: aH.

And the classes of H∼ are called right cosets:

[a]
H∼ = {h ∗ a : h ∈ H} =: Ha.

Instead of G/∼H and G/H∼ , we will use the following notations for sets of cosets:

G/H := the set of left cosets of H,

H\G := the set of right cosets of H.

///

Now before we go any further let me explain the meaning of the notation “G/H.” The following
theorem is definitely not due to Lagrange, but he did prove a special case in his 1770 paper
on Lagrange resolvents.

Lagrange’s Theorem. Let (G, ∗, ε) be a group and let H ⊆ G be any subgroup. Then there
is a bijection between any two left (or right) cosets of H. If G is finite it follows that

#(H\G) = #(G/H) = #G/#H,

hence the number of elements of H divides the number of elements of G. [Remark: I take this
as excellent motivation for the fractional notation.] ///
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Proof. For each element a ∈ G note that the surjective function H → aH defined by h 7→ a∗h
is invertible with inverse g 7→ a−1 ∗ g. Similarly, the surjective function H → Ha defined by
h 7→ h ∗ a is invertible with inverse g 7→ g ∗ a−1. We have shown that each left (or right) coset
is in bijection with H, hence any two cosets are in bijection with one another.

Next let us assume that G is finite. Then for all a ∈ G the above bijections prove that

#(aH) = #H = #(Ha).

Finally, since the set G is a disjoint union of left (or right) cosets, each having size #H, we
conclude #G equals the number of left (or right) cosets times #H:

#G = #(G/H) ·#H = #(H\G) ·#H.

�

On the second homework you proved the following theorem for finite abelian groups. Now we
can use Lagrange’s Theorem to prove it for all finite groups.

Corollary (The Fermat-Euler-Lagrange Theorem). Let (G, ∗, ε) be a finite group and
let g ∈ G be any element. Then we have

g#G = ε.

Proof. Suppose that g has order d, so that #〈g〉 = d. Then since 〈g〉 ⊆ G is a subgroup,
Lagrange’s Theorem tells us that #G = dk for some k ∈ Z. Finally, we have

g#G = gdk = (gd)k = εk = ε.

�

I still haven’t told you what this has to do with Fermat and Euler. Be patient.

That was the theory. Now let’s see some examples of cosets.

Example: Parallel Lines. Let G = (R2,+,0) be the additive group of points in the plane,
and for any nonzero vector 0 6= u ∈ R2 let H = Ru := {αu : α ∈ R} be the line through the
origin in the direction of u. Note that H ⊆ G is a subgroup.

Since G is abelian there is no difference between left and right cosets. We will emphasize this
fact by writing the cosets additively. That is, for any vector v ∈ R2 we will write

v +H = H + v = {v + h : h ∈ H}.

The following picture shows that the cosets of H are precisely the lines parallel to H:
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Indeed, for any vectors v,w ∈ R2 we have by definition that

v +H = w +H ⇐⇒ v −w ∈ H ⇐⇒ v −w is parallel to H.

In this case the bijection H → v + H defined by x 7→ v + x is called translation by v, and
one can show that this function is in fact an isometry. [Exercise: Check this.] This explains
why all of the cosets “look the same.” However, note that only one of the cosets (namely, H
itself) is a subgroup of G because only one of the parallel lines contains the origin 0 ∈ R2. In
summary, we have

G/H = R2/Ru = the set of all lines parallel to Ru.

Is it possible to describe this set more efficiently? Sure. Let K = Rv be the line generated
by any vector v 6∈ H. Then each coset w + H intersects K in a unique point so we obtain a
bijection G/H ↔ K defined as follows:

the line w +H ←→ the point of intersection (w +H) ∩K.

Following old Euclidean terminology we will call any such bijection a transversal of the cosets.
Here is a picture:
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Of course the choice of the line K was arbtirary. In linear algebra it is common to let K = H⊥

be the line (more generally, the complementary subspace) that is orthogonal to H. Then we
obtain a bijection

G/H ←→ H⊥.

But note that (H⊥,+, 0) is a group. Does that mean that G/H is a group? ///

Example: Concentric Circles. Let C× = (C − {0},×, 1) be the multiplicative group of
nonzero complex numbers and let U(1) = {eiθ : θ ∈ R} be the circle group. Note that
U(1) ⊆ C× is a subgroup.

This time we will write the cosets multiplicatively, but there is still no difference between left
and right cosets because C× is abelian. The following picture shows that the cosets of U(1)
are precisely the circles centered at 0 ∈ C:
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Indeed, we observe that any two nonzero numbers α, β ∈ C× are in the same coset if and only
if they differ by a rotation:

αU(1) = βU(1) ⇐⇒ α−1β ∈ U(1) ⇐⇒ β = αeiθ for some θ ∈ R.

Note that any infinite ray gives rise to a transversal of the cosets. In particular, let R>0 =
{α ∈ R : α > 0} be the infinite ray of positive real numbers. Then we obtain a bijection
between C×/U(1) and R>0 as follows:

the circle rU(1) = {reiθ : θ ∈ R} ←→ the positive real number r ∈ R>0.

Here is a picture:
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In summary, we have a bijection

C×/U(1)←→ R>0.

But note that (R>0,×, 1) is a group. Does that mean that C×/U(1) is a group? ///

Example: Modular Arithmetic. Let 〈g〉 be a cyclic group of order n ≥ 1 and consider the
group homomorphism ϕ : Z+ → 〈g〉 defined by

ϕ(k) := gk.

By convention the preimage of a single element is called a fiber. Note that the fibers of the
function ϕ have the form

ϕ−1[{gk}] = {` ∈ Z : ϕ(`) = gk}
= {` ∈ Z : g` = gk}
= {` ∈ Z : `− k ∈ Z}
= {` ∈ Z : `− k = nm for some m ∈ Z}
= {` ∈ Z : ` = k + nm for some m ∈ Z}
= {k + nm : m ∈ Z}
= k + nZ.

In other words, we have a bijection between the cosets of the subgroup nZ ⊆ Z and the
elements of the cyclic group 〈g〉:

Z/nZ←→ 〈g〉.
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But we know that 〈g〉 is a group. Does that mean that the set of cosets Z/nZ is also a group?

Sure, why not? We can simply define a group structure on Z/nZ by transfering it from 〈g〉
via the bijection. To be specific, since gk ∗ g` = gk+` for all k, ` ∈ Z we will define the “same
operation” on the fibers:

(k + nZ) ∗ (`+ nZ) := (k + `) + nZ.

But now the symbol “∗” looks silly, so let’s replace it by “+:”

(k + nZ) + (`+ nZ) := (k + `) + nZ.

[Warning: The “+” symbol here is just an analogy. We are really “adding” two infinite sets
of integers to obtain another infinite set of integers. It just happens that everything works
out nicely.] In summary, the set of cosets Z/nZ has a natural group structure which makes it
isomorphic to the cyclic group 〈g〉. ///

Based on these three examples, it is not surprising that we can define a group structure on
the set of cosets G/H whenever G is an abelian group. Here is the official statement.

Quotients of Abelian Groups. Let (G,+, 0) be any abelian group and let H ⊆ G be any
subgroup. Since G is abelian the, left and right cosets of H are equal. That is, for all elements
a ∈ G we have

a+H = {a+ h : h ∈ H} = {h+ a : h ∈ H} = H + a.

Now we want to define “addition of cosets” so that the following equation makes sense:

(a+H) + (b+H) = (a+ b) +H.

What needs to be checked? In the three examples above we knew ahead of time that everything
would work out, but in the abstract setting we need to show that this operation is well-defined.
In other words, we need to show that the definition does not depend on the particular choice
of coset representatives a and b.

Proof. Suppose that a+H = a′ +H and b+H = b′ +H, so that a− a′ ∈ H and b− b′ ∈ H.
Then since H is closed under addition we have

(a+ b)− (a′ + b′) = (a− a′) + (b− b′) ∈ H,

and hence (a + b) + H = (a′ + b′) + H. [Remark: I used the fact that G is abelian when I
switched b− a′ with −a′ + b. This proof doesn’t work for non-abelian groups.] �

Having checked that “addition of cosets” is well-defined, I claim that (G/H,+) is a group.

Proof. The identity element is H = 0 +H since for all a ∈ G we have

(a+H) +H = (a+H) + (0 +H) = (a+ 0) +H = a+H.
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And the inverse of (a+H) is (−a+H) because

(a+H) + (−a+H) = (a− a) +H = 0 +H = H.

Finally, associativity is inherited from G because for all a, b, c ∈ G we have

(a+H) + [(b+H) + (c+H)] = (a+H) + ([b+ c] +H)

= (a+ [b+ c]) +H

= ([a+ b] + c) +H

= ([a+ b] +H) + (c+H)

= [(a+H) + (b+H)] + (c+H).

�

In summary, for every abelian group (G,+, 0) and for every subgroup H ⊆ G we have con-
structed the quotient group (G/H,+, H). Next week we’ll consider the more difficult case
when G is non-abelian.

Problem Set 3

1. Order of a Power. Let G be a group and let g ∈ G be an element of order n.

(a) For all k ∈ Z, prove that 〈gk〉 = 〈gd〉 where d = gcd(n, k). [Hint: nZ + kZ = dZ.]

(b) For any positive divisor d|n show that gd has order n/d.

(c) Combine (a) and (b) to prove that for any k ∈ Z the element gk has order n/ gcd(n, k).

(a) By definition d = gcd(n, k) is a disivor of k. In other words, we have k = d` for some
integer ` ∈ Z. This implies that

gk = gd` = (gd)` ∈ 〈gd〉,

and hence 〈gk〉 ⊆ 〈gd〉. For the other direction, recall that nZ + kZ = dZ. Since d ∈ dZ this
implies that d ∈ nZ + kZ and hence there exist integers x, y ∈ Z such that d = nx + ky.
[Recall: This is called Bézout’s Identity.] Then we have

gd = gnx+ky = (gn)x ∗ (gk)y = εx ∗ (gk)y = (gk)y ∈ 〈gk〉,

which implies that 〈gd〉 ⊆ 〈gk〉.

(b) Let d be a positive divisor of n, so that n = dm for some integer m ≥ 1. It follows that

(gd)m = gmd = gn = ε.
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Our goal is to show that the m elements ε, gd, (gd)2, . . . , (gd)m−1 are distinct. So let us assume
for contradiction that there exist integers 0 ≤ k < ` ≤ m− 1 with (gd)k = (gd)`, and hence

(gd)` = (gd)k

gd` = gdk

gd(`−k) = ε.

But then since 1 ≤ ` − k < m we must have 1 ≤ d ≤ d(` − k) < dm = n, which contradicts
the fact that g has order n.

(c) For any k ∈ Z we showed in part (a) that 〈gk〉 = 〈gd〉, where d = gcd(n, k). Then since d
is a positive divisor of n it follows from part (b) that

#〈gk〉 = #〈gd〉 = n/d = n/ gcd(n, k).

�

[Remark: This proves the conjecture that we made on the previous homework.]

2. Multiplication of Subgroups. Let (G, ∗, ε) be a group and let H,K ⊆ G be any two
subgroups. Consider the Cartesian product of sets

H ×K := {(h, k) : h ∈ H, k ∈ K}

and the “multiplication function” µ : H ×K → G defined by µ(h, k) := h ∗ k.

(a) Prove that µ is injective if and only if H ∩K = {ε}.

(b) We can think of the set H ×K as an abstract group by defining

(h1, k1) ∗ (h2, k2) := (h1 ∗ h2, k1 ∗ k2) for all h1, h2 ∈ H and k1, k2 ∈ K.

In this case we call (H ×K, ∗) the direct product of H and K. Prove that µ is a group
homomorphism if and only if we have h ∗ k = k ∗ h for all h ∈ H and k ∈ K.

(c) The image of µ : H ×K → G is the “internal product set”

HK := {h ∗ k : h ∈ H, k ∈ K} ⊆ G.

Prove that HK ⊆ G is a subgroup if and only if HK = KH.

(a) Assume that µ is injective and let g ∈ H ∩K, hence also g−1 ∈ H ∩K. Now we have

µ(g, g−1) = g ∗ g−1 = ε = ε ∗ ε = µ(ε, ε),

76



and it follows from injectivity that (g, g−1) = (ε, ε), hence g = ε. Conversely, let H ∩K = {ε}
and consider any pairs (h1, k1), (h2, k2) ∈ H ×K such that µ(h1, k1) = µ(h2, k2). Then

µ(h1, k1) = µ(h2, k2)

h1 ∗ k1 = h2 ∗ k2
h−12 ∗ h1 = k2 ∗ k−11 .

Since h−12 ∗ h1 ∈ H and k2 ∗ k−11 ∈ K this implies that h−12 ∗ h1 = k2 ∗ k−11 ∈ H ∩K and hence

h−12 ∗ h1 = k2 ∗ k−11 = ε.

Finally, h−12 ∗ h1 = ε implies h1 = h2 and k2 ∗ k−11 = ε implies k1 = k2. �

(b) Assume that h ∗ k = k ∗ h for all h ∈ H and k ∈ K. Then multiplication defines a
homomoprhism µ : H ×K → G because

µ((h1, k1) ∗ (h2, k2)) = µ(h1 ∗ h2, k1 ∗ k2)
= (h1 ∗ h2) ∗ (k1 ∗ k2)
= (h1 ∗ k1) ∗ (h2 ∗ k2)
= µ(h1, k1) ∗ µ(h2, k2).

Conversely, assume that µ is a homomorphism. Then for all h ∈ H and k ∈ K we have

(h ∗ k) ∗ (h−1 ∗ k−1) = µ(h, k) ∗ µ(h−1, k−1) = µ(h ∗ h−1, k ∗ k−1) = µ(ε, ε) = ε

and it follows that

h ∗ k ∗ h−1 ∗ k−1 = ε

h ∗ k = k ∗ h.

�

(c) Assume that HK = KH and consider any two elements h1k1, h2k2 ∈ HK. Then since
k1k
−1
2 h−12 ∈ KH = HK we observe that k1k

−1
2 h−12 = h3k3 for some h3 ∈ H and k3 ∈ K. It

follows that
(h1k1)(h2k2)

−1 = h1k1k
−1
2 h−12 = h1h3k3 ∈ HK,

and hence HK is a subgroup. Conversely, assume that HK is a subgroup. We will show that
KH ⊆ HK and HK ⊆ KH. For the first inclusion, we will show that kh ∈ HK for all k ∈ K
and h ∈ H. Indeed, since k = εk ∈ HK and h = hε ∈ HK and since HK is a subgroup we
must have kh ∈ HK. For the other inclusion, we will show that hk ∈ KH for all h ∈ H and
k ∈ K. Indeed, since hk ∈ HK and since HK is a subgroup we have

k−1h−1 = (hk)−1 ∈ HK,
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which implies that k−1h−1 = h′k′ for some h′ ∈ H and k′ ∈ K. Now take the inverse of both
sides to get

hk = (k′)−1(h′)−1 ∈ KH,

as desired. �

[Remark: In the third proof I used “juxtaposition” instead of ∗ to save space.]

3. Why Does AB = I Imply BA = I ? Given a field F and a positive integer n we define

M := Matn(F) = the set of n× n matrices with entries in F.

I claim that this set is a vector space of dimension n2 over the field F. Now consider any two
matrices A,B ∈M such that AB = I.

(a) Show that the set BM := {BM : M ∈M} is a vector subspace of M. In other words, for
all matrices X,Y ∈ BM and scalars α, β ∈ F, show that αX + βY ∈ BM.

(b) More generally, for each integer k ≥ 0 define the set BkM := {BkM : M ∈M} and show
that Bk+1M is a vector subspace of BkM.

(c) I claim that a finite-dimensional vector space has no infinite descending chain of sub-
spaces. Use this fact to prove that there exists an integer k ≥ 0 and a matrix C ∈ M
satisfying Bk = Bk+1C.

(d) Let C be as in part (c). Prove that BC = I and hence C = A. It follows that BA = I.

[Remark: Believe it or not, this is the shortest proof I know.]

(a) Consider any X,Y ∈ BM, so that X = BM and Y = BN for some matrices M,N ∈ M.
Then for all scalars α, β ∈ F we have

αX + βY = αBM + βBN = B(αM + βN) ∈ BM.

(b) Let k ≥ 0 and consider any element X ∈ Bk+1M, so that X = Bk+1M for some matrix
M ∈ M. It follows that X = Bk+1M = Bk(BM) = Bk(BM) ∈ BkM and hence Bk+1M ⊆
BkM. Then since we know from (a) that Bk+1M is a vector subspace of M, it automatically
follows that Bk+1M is a vector subspace of BkM.

(c) From part (b) we have an infinite chain of vector subspaces:

M ⊇ BM ⊇ B2M ⊇ B3M ⊇ · · · .

If each of the inclusions were strict then we would obtain a contradiction to the finite dimen-
sionality of M. Therefore we must have BkM = Bk+1M for some k ≥ 0. In particular, since
Bk ∈ BkM = Bk+1M, there must exist some matrix C ∈M such that Bk = Bk+1C.
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(d) Since AB = I one can show by induction that AkBk = I for all k ≥ 0. Now multiply both
sides of the equation Bk = Bk+1C on the left by Ak to obtain

Bk = Bk+1C

AkBk = AkBkBC

I = BC.

In summary, we have shown that any matrix B with a left inverse A must also have a right
inverse C. Finally, we observe that the left inverse and right inverse are equal:

A = AI = A(BC) = (AB)C = IC = C.

�

[Remark: The same proof shows that ab = 1 implies ba = 1 in any “Artinian ring.” The
prototypical examples of Artinian rings are finite rings and finite dimensional algebras (for
example, matrices) over a field.]

4. Conjugation is an Automorphism. Let (G, ∗, ε) be a group and let g ∈ G be any
element. Define the function ϕg : G→ G by ϕg(a) := g ∗ a ∗ g−1.

(a) Prove that ϕg : G→ G is a bijection.

(b) Prove that ϕg : G→ G is a homomorphism, hence it is an automorphism of G.

(c) Application: Consider any two elements a, b ∈ G. Prove that the cyclic groups 〈a ∗ b〉
and 〈b ∗ a〉 are isomorphic, hence the elements a ∗ b and b ∗ a have the same order.

(a) To prove that ϕg is a bijection I will show that it has an inverse. So consider the function
ψg : G→ G defined by ψg(a) := g−1 ∗ a ∗ g. Then for all a ∈ G we have

ψg(φg(a)) = g−1 ∗ (g ∗ a ∗ g−1) ∗ g = (g−1 ∗ g) ∗ a ∗ (g ∗ g−1) = a

and
φg(ψg(a)) = g ∗ (g−1 ∗ a ∗ g) ∗ g−1 = (g ∗ g−1) ∗ a ∗ (g−1 ∗ g) = a,

which by definition means that ψg = ϕ−1g .

(b) To see that ϕg : G→ G is a homomorphism, note that for all a, b ∈ G we have

ϕg(a) ∗ ϕg(b) = (g ∗ a ∗ g−1) ∗ (g ∗ b ∗ g−1)
= g ∗ a ∗ (g−1 ∗ g) ∗ b ∗ g−1

= g ∗ (a ∗ b) ∗ g−1 = ϕg(a ∗ b).

For posterity let me record that this implies ϕg(a
n) = ϕg(a)n for all n ∈ Z. [Proof: Induction.]
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(c) Now let a, b ∈ G and consider the cyclic subgroups 〈a ∗ b〉 and 〈b ∗ a〉. I claim that the
automorphism ϕa : G↔ G : ψa from parts (a) and (b) restricts to an isomorphism

ϕa : 〈b ∗ a〉 ∼←→ 〈a ∗ b〉 : ψa.

To see this, consider any integer n ∈ Z and observe from part (b) that

ϕa((b ∗ a)n) = ϕa(b ∗ a)n = (a ∗ b ∗ a ∗ a−1)n = (a ∗ b)n ∈ 〈a ∗ b〉

and
ψa((a ∗ b)n) = ψa(a ∗ b)n = (a−1 ∗ a ∗ b ∗ a)n = (b ∗ a)n ∈ 〈b ∗ a〉.

It follows that the two elements a ∗ b and b ∗ a have the same order. �

5. Galois Connections. Let (P,≤) and (Q,≤) be posets and let f : P → Q and g : Q→ P
be any functions satisfying

p ≤ g(q)⇐⇒ f(p) ≤ q for all p ∈ P and q ∈ Q.

(a) For all p ∈ P and q ∈ Q prove that

p ≤ g(f(p)) and f(g(q)) ≤ q.

(b) For all p1, p2 ∈ P and q1, q2 ∈ Q prove that

p1 ≤ p2 ⇒ f(p1) ≤ f(p2) and q1 ≤ q2 ⇒ g(q1) ≤ g(q2).

(c) For all p ∈ P and q ∈ Q prove that

f(p) = f(g(f(p)) and g(q) = g(f(g(q))).

(d) Define the “images” P ′ := g[Q] := {g(q) : q ∈ Q} and Q′ := f [P ] := {f(p) : p ∈ P}.
Prove that these are the same as the sets of “closed elements”

P ′ = {p ∈ P : p = g(f(p))} and Q′ = {q ∈ Q : q = f(g(q))}.

(e) Prove that the functions f, g restrict to an isomorphism of posets:

f : P ′ ←→ Q′ : g.

(a) For all p ∈ P we havef(p) ≤ f(p), which by definition of Galois connection implies
p ≤ g(f(p)). The proof for q ∈ Q is similar.

(b) Consider any p1, p2 ∈ P such that p1 ≤ p2. Then from part (a) we have p1 ≤ p2 ≤ g(f(p2))
and transitivity implies p1 ≤ g(f(p2)). Finally, the definition of Galois connection gives
f(p1) ≤ f(p2). The proof for q1 ≤ q2 is similar.
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(c) Consider any p ∈ P . Then from (a) we have p ≤ g(f(p)) and from (b) we have f(p) ≤
f(g(f(p))). Conversely, since g(f(p)) ≤ g(f(p)) the definition of Galois connection gives
f(g(f(p)) ≤ f(p), and hence f(p) = f(g(f(p))). The proof for q ∈ Q is similar.

(d) We will show that f [P ] = {q ∈ Q : q = f(g(q))}. So consider any element q = f(p) ∈ f [P ].
Then applying g and using part (c) gives q = f(p) = f(g(f(p))) = f(g(q)). Conversely,
consider any q ∈ Q such that q = f(g(q)). Then q = f(p) for p = g(q) ∈ P and hence
q ∈ f [P ]. The proof of g[Q] = {p ∈ P : p = g(f(p))} is similar.

(e) We already know from part (a) that each of f, g is a poset homomorphism. Thus we only
need to show that f : P ′ ↔ Q′ : g is a bijection. So consider any p ∈ P ′ = g[Q]. Then by
definition we have f(p) ∈ Q′ = f [P ] and from (d) we have g(f(p)) = p. Similarly we have for
all q ∈ Q′ that g(q) ∈ P ′ and f(g(q)) = q. This completes the proof. �

6. Image and Preimage. Let (G, ∗, δ) and (H, •, ε) be groups and let ϕ : G → H be any
group homomorphism. For every subset S ⊆ G we define the image set

ϕ[S] := {ϕ(g) : g ∈ S} ⊆ H,

and for every subset T ⊆ H we define the preimage set

ϕ−1[T ] := {g ∈ G : ϕ(g) ∈ T} ⊆ G.

(a) Show that the function ϕ−1 : H → G exists if and only if #ϕ−1[{h}] = 1 for all h ∈ H.

(b) If S ⊆ G is a subgroup prove that the image ϕ[S] ⊆ H is a subgroup.

(c) If T ⊆ H is a subgroup prove that the preimage ϕ−1[T ] ⊆ G is a subgroup.

(d) Now you have two functions ϕ : L (G) � L (H) : ϕ−1 between the subgroup lattices.
Prove that this is a Galois connection.

(a) Consider a function ϕ : G→ H. We make two basic observations:

• The function is injective if and only if #ϕ−1[{h}] ≤ 1 for all h ∈ H.

• The function is surjective if and only if #ϕ−1[{h}] ≥ 1 for all h ∈ H.

Therefore the function is bijective if and only if #ϕ−1[{h}] = 1 for all h ∈ H.

(b) Let S ⊆ G be a subgroup and consider any two elements h1, h2 ∈ ϕ[S] ⊆ H. By definition
this means that ϕ(s1) = h1 and ϕ(s2) = h2 for some s1, s2 ∈ S and since S is a subgroup we
must have s1 ∗ s−12 ∈ S. But then

h1 • h−12 = ϕ(s1) • ϕ(s2)
−1 = ϕ(s1 ∗ s−12 ) ∈ ϕ[S],

which implies that ϕ[S] ⊆ H is a subgroup.
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(c) Let T ⊆ H be a subgroup and consider any two elements g1, g2 ∈ ϕ−1[T ]. By definition
this means that ϕ(g1) ∈ T and ϕ(g2) ∈ T . But then since T is a subgroup we have

ϕ(g1 ∗ g−12 ) = ϕ(g1) • ϕ(g2)
−1 ∈ T,

which implies that g1 ∗ g−12 ∈ ϕ−1[T ]. We conclude that ϕ−1[T ] ⊆ G is a subgroup.

(d) I proved this in the notes for the image and preimage of subsets. The same proof applies
to subgroups.

Week 7

Let me recall the last proof we did using more generic language. If (G, ∗, ε) is a group and if
H ⊆ G is any subgroup, then it seems natural to define the following operation on left cosets:

(aH) ∗ (bH) := (a ∗ b)H for all a, b ∈ G.

However, we need to be careful because this definition is stated in terms of non-unique repre-
sentatives of equivalence classes. To make sure there is no logical contradiction we must check
that a1H = a2H and b1H = b2H imply (a1 ∗ b1)H = (a2 ∗ b2)H.

Check. Assume that a1H = a2H and b1H = b2H, which by definition means that a−11 a2 ∈ H
and b−11 b2 ∈ H. In this case we want to show that (a1 ∗ b1)H = (a2 ∗ b2)H, which by definition
means that (a1 ∗ b1)−1 ∗ (a2 ∗ b2) ∈ H. If G is abelian then we have

(a1 ∗ b1)−1 ∗ (a2 ∗ b2) = b−11 ∗
[
(a−11 ∗ a2) ∗ b2

]
= b−11 ∗

[
b2 ∗ (a−11 ∗ a2)

]
= (b−11 ∗ b2) ∗ (a−11 ∗ a2) ∈ H

because H is closed under the operation “∗.” ///

If G is non-abelian then we might have

(a1 ∗ a2)−1 ∗ b2 6= b2 ∗ (a−11 ∗ a2),

which seems to break the proof. But all is not lost. If there exists some h ∈ H such that

(a−11 ∗ a2) ∗ b2 = b2 ∗ h

then the operation “∗” on cosets is still well-defined because

(a1 ∗ b1)−1 ∗ (a2 ∗ b2) = b−11 ∗
[
(a−11 ∗ a2) ∗ b2

]
= b−11 ∗ [b2 ∗ h]

= (b−11 ∗ b2) ∗ h ∈ H.
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///

To paraphrase: The proof still works if

for all h ∈ H and g ∈ G there exists some h′ ∈ H such that h ∗ g = g ∗ h′.

This strange kind of subgroup was defined by Galois all the way back in 1830, who apparently
called them “invariant” subgroups. Today we call them “normal.”

Theorem (Definition of Normal Subgroups). Let (G, ∗, ε) be a group and let H ⊆ G be
any subgroup. Then the following three statements are equivalent:

(N1) Left and right equivalence mod H are the same relation. In other words, the partitions
of G into left and right cosets of H are the same:

G/H = H\G.

(N2) For all g ∈ G the left and right cosets containing g are equal:

gH = Hg.

(N3) For all g ∈ G and h ∈ H we have

g ∗ h ∗ g−1 ∈ H.

In other words, the subgroup H is closed under conjugation by elements of G.

Any subgroup H ⊆ G satisfying one (and hence all) of these conditions is called normal. In
this case we will use the notation

H EG.

///

[Remark: Condition (N3) is the standard textbook definition of “normal,” and it is usually
the easiest condition to check.]

Proof. We will show that (N1)⇒(N2)⇒(N3)⇒(N1).

(N1)⇒(N2): Assume that G/H = H\G and consider any element g ∈ G. Since gH ∈ G/H
we must also have gH ∈ H\G, which means that gH = Ha for some a ∈ G. Then since
g = g ∗ ε ∈ gH we must have g ∈ Ha. In other words, the right cosets Hg and Ha both
contain the element g. Finally, since non-equal cosets are disjoint this implies that Hg = Ha.
We conclude that

gH = Ha = Hg.
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(N2)⇒(N3): Assume that gH = Hg for all g ∈ G. Then for all g ∈ G and h ∈ H, since
g ∗ h ∈ gG we must have g ∗ h ∈ Hg. In other words, there exists some h′ ∈ H such that
g ∗ h = h′ ∗ g and we conclude that

g ∗ h = h′ ∗ g
g ∗ h ∗ g−1 = h′ ∈ H.

(N3)⇒(N1): Assume that for all g ∈ G and h ∈ H we have g ∗ h ∗ g−1 ∈ H. Our goal is to
show that left and right equivalence mod H are the same relation on G. In other words, for
all a, b ∈ G we want to prove that

a−1 ∗ b ∈ H ⇐⇒ b ∗ a−1 ∈ H.

For one direction, assume that a−1 ∗ b = h ∈ H. Then conjugating by a ∈ G gives

b ∗ a−1 = a ∗ (a−1 ∗ b) ∗ a−1 = a ∗ h ∗ a−1 ∈ H.

For the other direction, assume that b ∗ a−1 = h′ ∈ H. Then conjugating by a−1 ∈ G gives

a−1 ∗ b = a−1 ∗ (b ∗ a−1) ∗ (a−1)−1 = a−1 ∗ h′ ∗ (a−1)−1 ∈ H.

�

Important Example: Every subgroup of an abelian group is normal.

Smallest Non-Example: Consider the smallest non-abelian group, which sometimes is called
the symmetric group S3 and at other times is called the dihedral group D6. Today we will
call it D6. Recall that this group has a specific representation

D6 = {I,R,R2, F,RF,R2F},

where R = R2π/3 is rotation counterclockwise by 2π/3 and F = F0 is reflection across the
x-axis. In other words:

R =

(
−1/2 −

√
3/2√

3/2 1/2

)
and F =

(
1 0
0 −1

)
.

One can check directly from the matrices that RF = R2F and FR = R2F . To see this geomet-
rically we should think of R2, R as clockwise and counterclockwise rotation of an equilateral
triangle and we should think of F as flipping the triangle over. Note that flipping the triangle
and then rotating clockwise is the same as first rotating counterclockwise and then flipping
the triangle. More generally, for any angle θ we have

(rotate clockwise by θ) ◦ (flip) = (flip) ◦ (rotate counterclockwise by θ)

(Rθ)
−1F = FRθ.

84



Now consider the cyclic subgroup 〈R〉 = {I,R,R2} ⊆ D6. By Lagrange’s Theorem we have

#(〈R〉\D6) = #(D6/〈R〉) = #D6/#〈R〉 = 2,

which tells us that there are two left cosets and two right cosets. Furthermore, since 〈R〉 itself
is both a left and a right coset, it follows (somewhat accidentally) that

D6/〈R〉 = {{I,R,R2}, {F,RF,R2F}} = 〈R〉\D6.

In other words, 〈R〉ED6 is a normal subgroup. [Exercise: The same counting argument shows
that H EG whenever #G/#H = 2.]

Now for the non-example. Consider the cyclic subgroup 〈F 〉 = {I, F} ⊆ D6. Since #D6/#〈F 〉 =
3 it follows again from Lagrange’s Theorem that there are three left cosets and three right
cosets. With a little thought, the left cosets are

D6/〈F 〉 = {〈F 〉, R〈F 〉, R2〈F 〉}
= {{I, F}, {R,RF}, {R2, R2F}}

and the right cosets are

〈F 〉\D6 = {〈F 〉, 〈F 〉R, 〈F 〉R2}
= {{I, F}, {R,FR}, {R2, FR2}}.

But recall that RF = R2F and FR = R2F . It follows that the partitions into left and right
cosets are not the same:

In other words, the subgroup 〈F 〉 ⊆ D6 is not normal. This is the smallest possible example
of a non-normal subgroup. [Exercise: Work out the details of this example in the language of
the symmetric group S3. Hint: Let R = (123) and F = (12).]
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The definition of normal subgroups above might have seemed a bit arbitrary and hard to
remember. Today I’ll show you that it’s really a natural concept.

Theorem (Definition of Quotient Groups). Let (G, ∗, ε) be a group and let H ⊆ G be
any subgroup. Then the following are equivalent:

(N) H EG is normal,

(N4) H is the kernel of a group homomorphism ϕ : G→ G′.

///

Proof. Let (G′, ∗′, ε′) be any group and let ϕ : G → G′ be any group homomorphism. Recall
that the kernel is defined as the preimage of the trivial subgroup {ε′}:

kerϕ = ϕ−1[{ε′}] = {g ∈ G : ϕ(g) = ε′}.

To show that kerϕ ⊆ G is normal, consider any elements g ∈ G and h ∈ kerϕ. From general
properties of homomorphisms we have

ϕ(g ∗ h ∗ g−1) = ϕ(g) ∗′ ϕ(h) ∗′ ϕ(g)−1

= ϕ(g) ∗′ ε′ ∗′ ϕ(g)−1

= ϕ(g) ∗′ ϕ(g)−1

= ε′

and hence g ∗ h ∗ g−1 ∈ kerϕ. It follows from condition (N3) above that kerEG is a normal
subgroup.

Conversely, suppose that H E G is normal. In this case we want to define a group G′ and a
group homomorphism ϕ : G → G′ such that kerϕ = H. This might be difficult if we were
doing it from scratch, but luckily I set up all the ingredients in the previous lectures. The
idea is to let G′ be the set of left (or right) cosets of H:

G′ = G/H (= H\G).

Since H EG is normal we have seen that the following operation on cosets is well-defined:

(aH) ∗ (bH) := (a ∗ b)H.

[Exercise: Check it again if you don’t remember the proof.] Furthermore, we have seen that
this operation makes G/H into a group with identity element εH = H. To complete the proof
we only need to find a group homomorphism ϕ : G → G/H such that kerϕ = H, and the
choice is completely obvious: for all g ∈ G we define

ϕ(g) := gH.
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This function is a group homomorphism by definition and the kernel is

kerϕ = {g ∈ G : gH = H} = H.

�

Remarks:

• If I were teaching this course for graduate students I would probably take this as the
definition of normal subgroups, and derive the properties (N1), (N2), (N3) as theorems.

• The homomorphism ϕ in the proof is called canonical because there is only one possible
choice. It is important to remember that the quotient group is really a pair (G/H,ϕ),
where G/H is the group and ϕ : G→ G/H is the canonical surjection.

• If ϕ : G→ G′ is any surjective homomorphism then we will see below that ϕ is secretly
the canonical surjection onto the quotient group G/ kerϕ.

Example: “Special” Matrix Groups. Every kind of matrix group has a “special” sub-
group. I claim that these subgroups are normal. For example:

SLn(F)EGLn(F),

SO(n)EO(n),

SU(n)E U(n).

Proof. Let G be a group of square matrices over a field F and recall that the determinant
satisfies det(AB) = det(A) det(B) for all A,B ∈ G. In other words, the determinant is a
group homomorphism from G into the multiplicative group of nonzero elements of F:

det : G→ F× = (F− {0},×, 1).

It follows that the kernel of the determinant is a normal subgroup. By definition we call this
the “special” subgroup:

SG := ker(det) = {A ∈ G : det(A) = 1}EG.

�

On the homework you will use the “same proof” to show that the group of alternating per-
mutations is a normal subgroup of the symmetric group:

An E Sn.
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How should one visualize a group homomorphism? I have two pictures in my mind. We have
already discussed one of them.

The Lattice Picture of a Group Homomorphism. If ϕ : G→ H is a homomorphism of
groups then we have seen that there is an isomorphism (called a “Galois Correspondence”)

ϕ : L (G, kerϕ)
∼←→ L (imϕ) : ϕ−1

between the the lattice L (imϕ) of subgroups of the image and the lattice L (G, kerϕ) of
subgroups of G that contain the kernel:

///

Today I will give you a second picture, related to the “fibers” of the homomorphism.

Definition of Fibers. Let G,H be sets and let ϕ : G→ H be any function. Recall that for
each subset T ⊂ H we define the preimage as follows:

ϕ−1[T ] = {g ∈ G : ϕ(g) ∈ T} ⊆ G.

If the set T = {h} contains just one element h ∈ H then we prefer to call this the fiber over h:

ϕ−1(h) := ϕ−1[{h}] ⊆ G.
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Warning: This notation does not imply that the inverse function exists. In fact the inverse
function exists if and only if each fiber contains a single element:

ϕ−1 : H → G exists ⇐⇒ #ϕ−1(h) = 1 for all h ∈ H.

In this sense the “fiber function” ϕ−1 : H → 2G from elements of H to subsets of G is a
generalization of the concept of “inverse.” ///

For a general function the fibers can be strange but the fibers of a group homomorphism are
particularly nice.

Lemma (Fibers of a Group Homomorphism). Let (G, ∗, δ) and (H, •, ε) be groups and
let ϕ : G→ H be a group homomorphism. Then for all g ∈ G we have

ϕ−1(ϕ(g)) = g(kerϕ).

In other words: The (non-empty) fibers of a group homomorphism are the (left or right)
cosets of the kernel.4 For all h ∈ H − imϕ we have ϕ−1(h) = ∅ by definition. ///

Proof. Fix an element g ∈ G. Then for all elements a ∈ G we have

a ∈ ϕ−1(ϕ(g))⇐⇒ ϕ(a) = ϕ(g)

⇐⇒ ϕ(g)−1 • ϕ(a) = ε

⇐⇒ ϕ(g−1 ∗ a) = ε

⇐⇒ g−1 ∗ a ∈ kerϕ

⇐⇒ a ∈ g(kerϕ).

�

Here is the picture.

The Fiber Picture of a Group Homomorphism. Let ϕ : G→ H be a group homomor-
phism with kernel K = kerϕ. Instead of thinking of the lattice of subgroups, I will think of
G and H as sets of points. For each h = ϕ(g) in the image the fiber is the coset gK, and for
each h not in the image the fiber is empty:

4Recall that kernels are normal subgroups, so there is no difference between left and right cosets.
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///

But the image is a group and the set of cosets of the kernel is also a group (because the kernel
is normal). Thus we obtain the following basic theorem.

Theorem (First Isomorphism Theorem). Let ϕ : G → H be a group homomorphism.
Then the fiber function ϕ−1 : H → 2G restricts to a group isomorphism imϕ ∼= G/ kerϕ:

ϕ−1 : imϕ
∼−→ G/ kerϕ.

Proof. If h ∈ imϕ then we have h = ϕ(g) for some g ∈ G and it follows from the lemma that
ϕ−1(h) = g(kerϕ) is a coset of the kernel. We need to show that this function is injective,
surjective and a homomorphism.

• Injective. For all h1, h2 ∈ imϕ there exist g1, g2 ∈ G such that h1 = ϕ(g1) and
h2 = ϕ(g2). Then we have

ϕ−1(h1) = ϕ−1(h2)⇐⇒ g1(kerϕ) = g2(kerϕ)

⇐⇒ g−11 ∗ g2 ∈ kerϕ

⇐⇒ ϕ(g−11 ∗ g2) = ε

⇐⇒ ϕ(g1) = ϕ(g2)

⇐⇒ h1 = h2.

• Surjective. This is true by definition.
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• Homomorphism. For all ϕ(a), ϕ(b) ∈ imϕ, the lemma says that

ϕ−1(ϕ(a)) ∗ ϕ−1(ϕ(b)) = a(kerϕ) ∗ b(kerϕ)

= (a ∗ b) kerϕ

= ϕ−1(ϕ(a ∗ b))
= ϕ−1(ϕ(a) • ϕ(b)).

�

Now here is a summary of everything we know about group homomorphisms.

Summary. For any group homomorphism ϕ : G→ H we have

(1) an isomorphism of posets ϕ : L (G, kerϕ)
∼−→ L (imϕ),

(2) an isomorphism of groups ϕ−1 : imϕ
∼−→ G/ kerϕ.

Furthermore, the isomorphism of groups (2) induces

(3) an isomorphism of posets L (imϕ)
∼−→ L (G/ kerϕ).

To be specific, we know from (1) that each subgroup of imϕ has the form ϕ[K] for some unique
subgroup kerϕ ⊆ K ⊆ G. The map (3) sends this to the following subgroup of G/ kerϕ:

K/ kerϕ = {k(kerϕ) : k ∈ K} ⊆ G/ kerϕ.

Finally, by composing (1) and (3) we obtain an isomorphism from L (G, kerϕ) to L (G/ kerϕ):

L (G, kerϕ)
∼−→ L (imϕ)

∼−→ L (G/ kerϕ)
K 7→ ϕ[K] 7→ K/ kerϕ.

In other words, every subgroup of G/ kerϕ has the form K/ kerϕ for some unique subgroup
kerϕ ⊆ K ⊆ G, and this correspondence preserves order. ///

Historical Remark: This is the post-1930 “modern” view of group theory. Apparently these
“isomorphism theorems” emerged from the lectures of Emil Artin and Emmy Noether at
Göttingen, which were then immortalized by Bartel van der Waerden in his textbook Moderne
Algebra (1930). There are a couple more decorations we could add to this picture (namely,
the Second and Third Isomorphism Theorems) but I will save those for future homework
problems. For now, just a quick example.

Example: Cyclic Groups. Let G be a group and let g ∈ G be any element. Then we have
a group homomomorphism from the additive integers:

ϕ : Z → G

k 7→ gk.
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The image is (by definition) the cyclic subgroup 〈g〉 ⊆ G and the kernel, being a subgroup of
Z, has the form nZ some unique integer n ≥ 0. Thus we obtain an isomorphism of groups

〈g〉 = imϕ ∼= Z/ kerϕ = Z/nZ,

and two isomorphisms of lattices:

L (Z, nZ)
∼−→ L 〈g〉 ∼−→ L (Z/nZ)

dZ 7→ 〈gd〉 7→ dZ/nZ.

The elements of the leftmost lattice (and hence all three lattices) are in bijection with the set
of divisors Div(n) = {d ≥ 0 : d|n}, which is finite for n ≥ 1 and infinite for n = 0.

Remark: From the isomorphism 〈g〉 ∼= Z/nZ we obtain bijections between the corresponding
subgroups. If n ≥ 1 then it follows for all d ∈ Div(n) that

#(dZ/nZ) = #〈gd〉 = n/d.

What happens if you try to use Lagrange’s Theorem?

I don’t want to end it like that. The First Isomorphism Theorem is so important that we
should examine it from every angle. Today I’ll show you the less sophisticated point of view.
This is the kind of thing that appears on exams.

The Less Sophisticated Point of View. Let ϕ : G → H be a group homomorphism.
It follows from general properties of image and preimage that kerϕ ⊆ G and imϕ ⊆ H are
subgroups, but let’s prove it anyway.

Proof. For all h1, h2 ∈ imϕ there exist g1, g2 ∈ G such that ϕ(g1) = h1 and ϕ(g2) = h2. Thus

h1h
−1
2 = ϕ(g1)ϕ(g2)

−1 = ϕ(g1g
−1
2 ) ∈ imϕ.

For all g1, g2 ∈ kerϕ we have ϕ(g1) = ϕ(g2) = εH . But then

ϕ(g1g
−1
2 ) = ϕ(g1)ϕ(g2)

−1 = εHε
−1
H = εH ,

which implies that g1g
−1
2 ∈ kerϕ. �

Now the homomorphism ϕ : G → H may not be bijective. To be specific, we observe that ϕ
is surjective if and only if imϕ = G and ϕ is injective if and only if kerϕ = {εG}.

Proof. The first statement is obvious. For the second statement, assume that ϕ is injective.
Then for all g ∈ kerϕ we have ϕ(g) = εH = ϕ(εG) and hence g = εG. Conversely, suppose
that kerϕ = {εG}. Then for all g1, g2 ∈ G we have

ϕ(g1) = ϕ(g2) =⇒ ϕ(g1g
−1
2 ) = εH
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=⇒ g1g
−1
2 ∈ kerϕ

=⇒ g1g
−1
2 = εG

=⇒ g1 = g2.

�

Thus we can force ϕ : G→ H to be surjective by restricting the codomain to the image:

ϕ : G→ imϕ.

To make ϕ injective we need to “kill the kernel.” It turns out that the quotient group
construction is the unique way to do this:

ϕ : G/ kerϕ → imϕ
g(kerϕ) 7→ ϕ(g).

Assuming that the quotient group G/ kerϕ exists (i.e., that the operation on cosets is well-
defined) this map is by definition a surjective group homomorphism. Furthermore, the map
is well-defined an injective because

g1(kerϕ) = g2(kerϕ)⇐⇒ g−11 g2 ∈ kerϕ⇐⇒ ϕ(g−11 g2) = εH ⇐⇒ ϕ(g1) = ϕ(g2).

Thus we obtain the First Isomorphism Theorem again:

G/ kerϕ ∼= imϕ.

Week 8

Last week we saw some of the main theorems of “modern” group theory as it existed in the
1930s. The point of this theory is to prove theorems at the greatest possible level of generality
as a way of compactifying our knowledge into a small conceptual space. Of course, there is no
reason to do this unless we have a large stock of interesting examples.

Definition of Automorphism Groups. Let X be any “set with structure.” For example,
X could be a topological space, a manifold, a vector space, a group/ring/field, or any kind of
mathematical structure. By an automorphism of X we mean any invertible function f : X →
X such that f and f−1 both “preserve the structure of X.” (You’ll see what this means in
the examples below.) We denote the set of automorphisms by

Aut(X) = {invertible f : X → X such that f, f−1 preserve the structure of X}.

It follows directly from the definition that (Aut(X), ◦, id) is a group under composition, with
identity given by the identity function id : X → X. ///
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Example: Permutations. Let X be just a set (i.e., with no extra structure). Then the
automorphisms of X are called permutations. In this case we use the notation

Aut( set X ) = Perm(X) = SX .

[The S is for symmetric group, which is another name for this group.] If the set X is finite
with #X = n then we might as well say that X = {1, 2, . . . , n}, in which case we have

SX = S{1,2,...,n} = Sn.

Historical Remark: Prior to 1880s the word “group” was (almost) exclusively applied to
groups of permutations. The first textbook on the subject was Camille Jordan’s Traité des
Substitutions (1870). Here “substitution” means a permutation of the inputs of a multivariable
function. The key fact (going back to Galois) is that the collection of substitutions that leave
a given function invariant is a subgroup of Sn. The notion of an abstract group had been
studied by Arthur Cayley in a series of three papers: On the Theory of Groups, as depending
on the Symbolic Equation θn = 1 (1854 and 1859). However, these papers were ignored until
Cayley republished them in 1878. ///

Example: Matrices. Let V be a vector space over a field F. (See the homework for an
axiomatic definition.) Homomorphisms of vector spaces are called linear functions and the
group of automorphisms of V is called the general linear group of V :

Aut( vector space V ) = GL(V ).

Now suppose that V has dimension n. Given a basis U = {u1, . . . ,un} ⊆ V we can represent
each vector x ∈ V as an n× 1 column by defining

[x]U =

x1...
xn

 ∈ Fn ⇐⇒ x =
∑
i

xiui.

Then for each linear function f : V → V we define the n × n matrix [f ]U ∈ Matn(F) whose
j-th column is [f(uj)]U and it follows from linearity that

[f(x)]U = [f ]U [x]U for all x ∈ V .

In summary, the basis U gives us an identification of the groupGL(V ) of linear automorphisms
with the group of n× n invertible matrices over F:

Aut( vector space V with a fixed basis U ) = GLn(F)

However, there is no canonical choice of basis. If U ⊆ V and V ⊆ V are two bases for the
vector space V and if f : V → V is a linear function then I claim that

C[f ]U C
−1 = [f ]V ,
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where C ∈ Matn(F) is the (unique, invertible) matrix satisfying C[x]U = [x]V for all x ∈ V .

Proof. For all x ∈ V we have

(C[f ]U C
−1)[x]V = C[f ]U (C−1[x]V )

= C[f ]U [x]U

= C([f ]U [x]U )

= C[f(x)]U

= [f(x)]V

= [f ]V [x]V .

Then by substituting x = vj we see that the j-th columns of the matrices C[f ]U C
−1 and [f ]V

are equal for all j. �

In other words, we have shown that conjugate elements of the group GLn(F) represent the
same linear function with respect to with respect to different bases. On the homework you
will show that a similar idea holds for the symmetric group. ///

Example: Orthogonal (and Unitary) Matrices. Let V be an n-dimensional Euclidean
vector space. In other words, let V be an n-dimensional vector space over R, equipped with
a symmetric and positive-definite bilinear form

〈−,−〉 : V × V → R.

The group of automorphisms of this structure is called the orthogonal group of V :

Aut( Euclidean space V ) = O(V ).

If U ⊆ V is an orthonormal basis (consisting of orthogonal unit vectors) then for each au-
tomorphism f : V → V one can show that [f ]U ∈ Matn(R) is an orthogonal matrix. (In
fact you already showed this on the homework.) Such a basis gives us an identification of the
group O(V ) with the group O(n) of n× n orthogonal matrices:

Aut( Euclidean space V with a fixed orthonormal basis U ) = O(n).

However, there is no canonical choice of basis. In this case, conjugate elements of the group
O(n) represent the same linear function with respect to some orthogonal (i.e., distance pre-
serving) change of coordinates.

More generally, if V is an n-dimensional “Hermitian space” over C with positive-definite
“sesquilinear form”5 〈−,−〉 : V × V → C then all of the same remarks apply for the unitary
groups U(V ) and U(n). ///

5A sesquilinear (one-and-a-half times linear) form satisfies 〈αx,y〉 = α〈x,y〉 and 〈x, αy〉 = α〈x,y〉 for all
x,y ∈ V and α ∈ C, where α ∈ C is the complex conjugate of α.
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These examples include all of the interesting kinds of (non-abelian) groups that we have
studied in this course. Indeed, the subject of abstract group theory is meant to synthesize the
study of concrete groups such as

Sn, GLn, O(n), U(n)

into one coherent theory. After studying groups from the abstract point of view, however, we
might want to go back to concrete examples.

The heart’s desire of an abstract group is to “act” on a nice structure.

Definition of Group Actions. Let (G, ∗, ε) be an abstract group and let X be a set with
structure. Let G×X → X be some function written as (g, x) 7→ g(x). Equivalently, for each
group element g ∈ G we let x 7→ g(x) be an arbitrary function from X to itself. We call this
function a group action if the following two axioms are satisfied:

(A1) The group operation acts like composition of functions:

(g ∗ h)(x) = g(h(x)) for all g, h ∈ G and x ∈ X.

(A2) Each element of G acts like an automorphism of X:

for all g ∈ G the function x 7→ g(x) is in Aut(X).

But there is a quicker way to say this. Equivalently, a group action is defined by a group
homomorphism from G into the automorphisms of X:

ϕ : G→ Aut(X).

Proof. Given any function (g, x) 7→ g(x) satisfying (A1) and (A2) we will define ϕg(x) := g(x).
By axiom (A2) the function ϕg is in Aut(X). Then by axiom (A1) we have

ϕg∗h(x) = ϕg(ϕh(x)) = (ϕg ◦ ϕh)(x) for all g, h ∈ G and x ∈ X.

It follows that
ϕg∗h = ϕg ◦ ϕh

and hence the function ϕ : G→ Aut(X) sending g ∈ G to ϕg : X → X is a group homomor-
phism. Conversely, suppose we have a group homomorphism ϕ : G → Aut(X) denoted by
ϕ 7→ ϕg. Now define a function G×X → X by (g, x) 7→ ϕg(x) and observe that this function
satisfies (A1) and (A2). �

I like the homomorphism definition better because it emphasizes that a given group G can act
on a given structure X in different ways, corresponding to different homomorphisms ϕ : G→
Aut(X).

Remarks:
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• The notation ϕg(x) is a simile because it says that the group element g “acts like a
function.” The notation g(x) is a metaphor because it says that the group element g “is
a function.” Of course that is not literally true.

• My definition of group action is slightly nonstandard. Most books only define the action
of groups on sets, not on “sets with structure.” The standard definition says that (1)
ε(x) = x for all x ∈ X, and (2) (g ∗h)(x) = g(h(x)) for all g, h ∈ G and x ∈ X. Exercise:
Prove that this is equivalent to my definition when Aut(X) = Perm(X), i.e., when the
set X has no additional structure.

• Sometimes we use the notation Gy X to indicate that G acts on X. If we want to be
specific about the homomorphism ϕ : G→ Aut(X) then we can write

G
ϕ
y X.

• Jargon: If V is a vector space, then an action ϕ : G → GL(V ) is also called a linear
representation of G, and the vector space V is called a G-module. More generally, the
study of group actions is called representation theory by mathematicians. Physicists just
call it group theory.

You won’t appreciate the definition of group action until you understand some examples.

Example: A Group Acts on Itself in Two Ways. Let (G, ∗, ε) be a group.

• Translation. For all g ∈ G let τg : G→ G be the function defined by

τg(a) := g ∗ a for all a ∈ G.

You proved on a previous homework that this function is invertible with τ−1g = τg−1 .
Here’s the proof again: For all a ∈ G we have

τg(τg−1(a)) = g ∗ (g−1 ∗ a) = (g ∗ g−1) ∗ a = ε ∗ a = a

and
τg−1(τg(a)) = g−1 ∗ (g ∗ a) = (g−1 ∗ g) ∗ a = ε ∗ a = a.

�

Thus we obtain a function τ : G → Perm(G). Moreover, I claim that τ is a group
homomorphism.
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Proof. For all a, g, h ∈ G we have

τg∗h(a) = (g ∗ h) ∗ a = g ∗ (h ∗ a) = (τg ◦ τh)(a),

and hence τg∗h = τg ◦ τh. �

To summarize: we say that G acts on itself (as a set) by translation.

• Conjugation. For all g ∈ G let κg : G→ G be the function defined by

κg(a) := g ∗ a ∗ g−1 for all a ∈ G.

I claim that this function is invertible with κ−1g = κg−1 .

Proof. For all a, g ∈ G we have

κg(κg−1(a)) = g ∗ (g−1 ∗ a ∗ g) ∗ g−1 = ε ∗ a ∗ ε = a

and
κg−1(κg(a)) = g−1 ∗ (g ∗ a ∗ g−1) ∗ g = ε ∗ a ∗ ε = a.

�

Thus we obtain a function κ : G → Perm(G). Moreover, I claim that κ is a group
homomorphism.

Proof. For all a, g, h ∈ G we have

κg∗h(a) = (g ∗ h) ∗ a ∗ (g ∗ h)−1 = g ∗ (h ∗ a ∗ h−1) ∗ g−1 = (κg ◦ κh)(a),

and hence κg∗h = κg ◦ κh. �

But even more is true. I claim that the image of κ is contained in the subgroup Aut(G) ⊆
Perm(G) of automorphisms, i.e., the subgroup of permutations that preserve the group
structure.

Proof. For all g, a, b ∈ G we have

κg(a) ∗ κg(b) = (g ∗ a ∗ g−1) ∗ (g ∗ b ∗ g−1)
= g ∗ a ∗ (g ∗ g−1) ∗ b ∗ g−1

= g ∗ a ∗ ε ∗ b ∗ g−1

= g ∗ (a ∗ b) ∗ g−1

= κg(a ∗ b),

and hence κg ∈ Aut(G). �

Thus we obtain a group homomorphism κ : G → Aut(G), and we say that G acts on
itself (as a group) by conjugation.
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Remarks:

• The action of G on itself by translation does not preserve the group structure of G. In
other words, the image of the homomorphism τ : G→ Perm(G) is not contained in the
subgroup Aut(G) ⊆ Perm(G).

• The actions τ and κ defined here are sometimes called “left translation” and “left conju-
gation,” and the notion of action defined above is sometimes called a “left action.” There
is an associated notion of “right action,” which is defined by an anti-homomorphism

ϕ : G→ Aut(X).

In other words, a right action must satisfy ϕg∗h = ϕh ◦ ϕg for all g, h ∈ G. Exercise:
Define the notions of “right translation” and “right conjugation,” and prove that these
are “right actions.”

Application: Cayley’s Theorem. What happens when we apply the First Isomorphism
Theorem to the translation homomorphism τ : G → Perm(G)? First of all, I claim that τ is
injective.

Proof. It is enough to show that ker τ = {ε}. So consider any g ∈ ker τ . By definition this
means that τg : G→ G is the identity function:

τg(a) = a for all a ∈ G.

In particular, we have ε = τg(ε) = g ∗ ε = g. �

It follows that G is isomorphic to its image, which is a subgroup of Perm(G):

G = G/ ker τ ∼= im τ ⊆ Perm(G).

So what? In the 1850s the word “group” meant a “group of permutations.” When Arthur
Cayley promoted an axiomatic definition of groups in 1854 he had to overcome this bias.
Cayley’s Theorem says that every abstract group G is isomorphic to a group of permutations
of some set (namely, itself). This shows that the concept of abstract group is not more
general than the concept of permutation group. [Remark: The subgroup im τ ⊆ Perm(G) is
certainly not equal to the full group, because

#im τ = #G < (#G)! = #Perm(G).]

Application: Definition of the Center and Inner Automorphisms. If we apply the
First Isomorphism Theorem to the conjugation homomorphism κ : G → Aut(G) then we
obtain

G/ kerκ ∼= imκ ⊆ Aut(G).
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We have a special name for the kernel. We call it the center of G [German: Zentrum]:

Z(G) := kerκ

= {g ∈ G : κg = id}
= {g ∈ G : κg(a) = a for all a ∈ G}
= {g ∈ G : g ∗ a ∗ g−1 = a for all a ∈ G}
= {g ∈ G : g ∗ a = a ∗ g for all a ∈ G}.

This is the set of elements of G that commute with everything. Being a kernel, it is necessarily
a normal subgroup:

Z(G)EG.

And what about the image? An automorphism of a group that arises from conjugation is
called an inner automorphism, and we use the notation

Inn(G) := imκ ⊆ Aut(G).

It follows from the First Isomorphism Theorem that

Inn(G) ∼= G/Z(G).

I have nothing interesting to say about this right now.

Problem Set 4

1. Permutation Matrices. Let Sn be the group of permutations of the set {1, 2, . . . , n},
and for each permutation f ∈ Sn let [f ] ∈ Matn(R) be the matrix whose i, j-entry is 1 if
f(j) = i and 0 if f(j) 6= i.

(a) If e1, . . . , en ∈ Rn is the standard basis, prove that [f ]ej = ef(j) for all j ∈ {1, . . . , n}.

(b) Use (a) to prove that the function f 7→ [f ] is a group homomorphism Sn → O(n).

(c) Let det : O(n) → {±1} be the determinant. Use (b) to prove that ϕ(f) := det[f ] is a
group homomorphism ϕ : Sn → {±1}.

(d) Show that the kernel of ϕ is the alternating subgroup An ⊆ Sn which was defined on
the first homework. [Hint: If t ∈ Sn is a transposition then ϕ(t) = −1.]

(e) Use the First Isomorphism Theorem and Lagrange’s Theorem to conclude that

#An = n! / 2.

(a) By definition, the j-th column of the matrix [f ] has a 1 in the f(j)-th position and 0s
elsewhere. In other words, [f ]ej = ef(j).
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(b) For all f, g ∈ Sn and j ∈ {1, . . . , n} we will show that the j-th column of [f ◦ g] equals the
j-th column of the matrix product [f ][g]. This follows from repeated application of part (a)
and the associativity of matrix multiplication:

[f ◦ g]ej = e(f◦g)(j) = ef(g(j)) = [f ]eg(j) = [f ] ([g]ej) = ([f ][g]) ej .

We have shown that the function f 7→ [f ] is a group homomorphism from Sn to GLn(R),
which implies that [f−1] = [f ]−1 for all f ∈ Sn. It only remains to show that each matrix [f ]
is orthogonal. In other words, we need to show that [f−1] = [f ]T . This follows directly from
the definition:

[f−1]ij =

{
1 if f−1(j) = i

0 if f−1(j) 6= i

}
=

{
1 if j = f(i)

0 if j 6= f(i)

}
= [f ]ji = [f ]Tij .

(c) We assume that the determinant preserves multiplication.6 This implies that for all or-
thogonal matrices A ∈ O(n) we have

1 = det(I) = det(ATA) = det(AT ) det(A) = det(A)2,

and hence det(A) = ±1. In other words, we have a group homomorphism det : O(n)→ {±1},
and by composing this with part (a) we obtain a homomorphism ϕ : Sn → {±1}. [Exercise:
The composition of homomorphisms is a homomorphism.]

(d) We showed on a previous homework that every permutation f ∈ Sn can be expressed
(non-uniquely) as a composition of transpositions:

f = t1 ◦ t2 ◦ · · · ◦ tk.

Since each transposition has ϕ(t) = det[t] = −1, this implies that

ϕ(f) = ϕ(t1)ϕ(t2) · · ·ϕ(tk) = (−1)k.

We conclude that f ∈ kerϕ if and only if f can be expressed as a composition of an even
number of transpositions, i.e., if and only if f ∈ An.

(e) The homomorphism ϕ : Sn → {±1} is surjective with kernel An. It follows from the First
Isomorphism Theorem that

{±1} = imϕ ∼= Sn/ kerϕ = Sn/An.

Finally, we conclude from Lagrange’s Theorem that

#{±1} = #Sn/#An

6Sorry, I’m not going to prove this.
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#An = #Sn/#{±1}
= n!/2.

�

2. Dimension of a Vector Space. Let (F,+,×, 0, 1) be a field (of “scalars”) and let
(V,+,0) be an abelian group (of “vectors”). We say that V is a vector space over F if there
exists a function F× V → V denoted by (a,u) 7→ au that satisfies four axioms:

• For all u ∈ V we have 1u = u.

• For all a, b ∈ F and u ∈ V we have (ab)u = a(bu).

• For all a, b ∈ F and u ∈ V we have (a+ b)u = au + bu.

• For all a ∈ F and u,v ∈ V we have a(u + v) = au + av.

(a) In this case prove that 0u = 0 for all u ∈ V and a0 = 0 for all a ∈ F.

(b) Steinitz Exchange. For all vectors u1, . . . ,um ∈ V we define their span as the set

F(u1, . . . ,um) := {a1u1 + · · ·+ amum : a1, . . . , am ∈ F} ⊆ V

and we say that u1, . . . ,um is a spanning set when F(u1, . . . ,um) = V . We say that
v1, . . . ,vn ∈ V is an independent set if for all b1, . . . , bn ∈ F we have

(b1v1 + · · ·+ bnvn = 0)⇒ (b1 = · · · = bn = 0).

If u1, . . . ,um are spanning and v1, . . . ,vn are independent, prove that n ≤ m. [Hint:
Assume for contradiction that m < n. Since the ui are spanning we have v1 =

∑
i aiui

and since the vj are independent, not all of the coefficients are zero. Without loss
suppose that a1 6= 0 and use this to show that v1,u2, . . . ,um is spanning. Now show by
induction that v1, . . . ,vm is a spanning set and use this to obtain a contradiction.]

(c) An independent spanning set is called a basis of V . If V has a finite spanning set, prove
that V has a finite basis.

(d) Continuing from (b) and (c), prove that any two finite bases have the same size. This
size is called the dimension of the vector space V .

(a) For all u ∈ V we have

0 + 0 = 0

(0 + 0)u = 0u

0u + 0u = 0u

0u + 0u− 0u = 0u− 0u

0u = 0,
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and for all a ∈ F we have

0 + 0 = 0

a(0 + 0) = a0

a0 + a0 = a0

a0 + a0− a0 = a0− a0
a0 = 0.

(b) Steinitz Exchange. Let u1, . . . ,um ∈ V be a spanning set, let v1, . . . ,vn ∈ V be an
independent set, and assume for contradiction that m < n. In this case we will prove by
induction that v1, . . . ,vm ∈ V is a spanning set. Then since m < n this implies that there
exist coefficients bi ∈ F such that

b1v1 + b2v2 + · · ·+ bmvm = vm+1

b1v1 + b2v2 + · · ·+ bmvm − 1vm+1 + 0vm+2 + · · ·+ 0vn = 0.

And since −1 6= 0 this contradicts the fact that the set v1, . . . ,vn is independent. Hence we
conclude that n ≤ m as desired.

Proof. So let u1, . . . ,um be spanning and let v1, . . . ,vn be independent with m < n. We will
show for all k ∈ {0, 1, . . . ,m} that it is possible to relabel the vectors ui so that

v1, . . . ,vk,uk+1, . . . ,um ∈ V is a spanning set.

The statement is true when k = 0. So fix 0 ≤ ` < m and assume for induction that the
statement is true when k = `. Then since v1 . . . ,v`,u`+1, . . . ,um is a spanning set there exist
coefficients ai ∈ F such that

v`+1 = a1v1 + · · ·+ a`v` + a`+1u`+1 + · · ·+ amum,

and since the vi are independent we know that the coefficients a`+1, . . . , am are not all zero.
By relabeling the vectors ui we may assume that a`+1 6= 0. Then since F is a field we have

u`+1 = − a1
a`+1

v1 − · · · −
a`
a`+1

vk +
1

a`+1
v`+1 −

a`+2

a`+1
u`+2 − · · · −

am
a`+1

um,

and it follows that v1, . . . ,vk+1,uk+2, . . . ,um is a spanning set. �

(c) Suppose that u1, . . . ,uk ∈ V is a spanning set. If this set is not independent then there
exists a relation

a1u1 + · · · akuk = 0

in which not all the coefficients are zero. By relabeling the vectors ui we may assume that
ak 6= 0. Then since F is a field we have

uk = −a1
ak

u1 −
a2
ak

u2 − · · · −
ak−1
ak

uk−1,
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and it follows that u1, . . . ,uk−1 is a spanning set. By repeating this process as necessary we
will obtain 1 ≤ ` < k such that u1, . . . ,u` is an independent spanning set, i.e., a basis.

(d) Let u1, . . . ,um and v1, . . . ,vn be two bases for a vector space V . Since the ui are spanning
and the vi are independent, part (b) says that n ≤ m. Moreover, since the ui are independent
and the vi are spanning, part (b) says that m ≤ n. We conclude that m = n. �

[Remark: This is the prototype for the concept of “dimension” in any area of mathematics.
As you see, it is a subtle concept.]

3. Conjugacy Classes. Let G be a group and for all a, b ∈ G define the following relation:

a ∼ b ⇐⇒ a = gbg−1 for some g ∈ G.

(a) Prove that this is an equivalence relation, called conjugacy.

(b) Compute the conjugacy classes for the group of symmetries of an equilateral triangle:

D6 = 〈R,F 〉 = {I,R,R2, F,RF,R2F}.

Observe that conjugate elements “do the same thing” to the triangle.

(c) Explicitly describe the conjugacy classes of the symmetric group Sn. [Hint: Let f, g ∈ Sn.
Show that g sends i to j if and only if fgf−1 sends f(i) to f(j). What does this say
about the cycle structure?]

(a) There are three things to show:

• Reflexive. For all a ∈ G we have a = εaε−1 and hence a ∼ a.

• Symmetric. Assume that a ∼ b so that a = gbg−1 for some g ∈ G. Then we have
b = g−1a(g−1)−1, which implies that b ∼ a.

• Transitive. Assume that a ∼ b and b ∼ c, so that a = gbg−1 and b = hch−1 for some
g, h ∈ G. It follows that

a = g(hch−1)g−1 = (gh)c(gh)−1,

and hence a ∼ c.

�

(b) I’ll compute the conjugacy classes for the general dihedral group

D2n = 〈R,F 〉 = {I,R, . . . , Rn−1, F,RF, . . . , Rn−1F}.

Recall the important fact that RF = FR−1, and more generally that RkF = FR−k for all
k ∈ Z. First let’s compute the conjugacy class of a rotation Rk (including the identity R0 = I).
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Conjugating by another rotation does nothing because the powers of R commute. Conjugating
by a reflection R`F gives

(R`F )Rk(R`F )−1 = R`F (RkF )R−` = R`F (FR−k)R−` = R`R−kR−` = R−k.

It follows that the conjugacy class of Rk is {Rk, R−k}. These two elements “do the same thing.”
Namely, they both “rotate by k/n of a full rotation.” Now we’ll compute the conjugacy class
of a reflection RkF . Conjugating by a rotation R` gives

R`(RkF )R−` = R`RkR`F = Rk+2`F,

and conjugating by a reflection R`F gives

(R`F )(RkF )(R`F )−1 = R`FRkFFR−`

= R`FRkR−`

= R`FRk−`

= R`R`−kF

= R2`−kF.

Thus there are two cases: If n is odd then there is one conjugacy class of reflections:

{F,RF,R2F, . . . , Rn−1F}.

Note that each of these reflections “does the same thing.” Namely, each reflects the polygon
across a line that connects a vertex to the midpoint of the opposite side. If n is even then
there are two conjugacy classes:

{F,R2F, . . . , Rn−2F} and {RF,R3F, . . . , Rn−1F}.

One class reflects the polygon across a line through two opposite vertices, and the other class
reflects across a line through the midpoints of two opposite sides. For example, if n = 3 (which
is odd) then we obtain the following decomposition into conjugacy classes:

D6 = {I} ∪ {R,R2} ∪ {F,RF,R2F}.

Unlike cosets, conjugacy classes need not have the same size.

(c) Consider any two permutations f, g ∈ Sn. Then for all i, j ∈ {1, 2, . . . , n} we have

g(i) = j ⇔ gf−1f(i) = f−1f(j)⇔ fgf−1f(i) = ff−1f(j)⇔ (fgf−1)(f(i)) = f(j).

As a corollary, we see that conjugate permutations have the same “cycle structure,” i.e., they
have the same number of cycles of each size.

Example: Let g = (135)(24). Then for any f ∈ S5 we have fgf−1 = (f(1)f(3)f(5))(f(2)f(4)):

105



4. Multiplication of Subgroups, Part II. Let G be a group and let H,K ⊆ G be any two
subgroups.

(a) If at least one of H or K is normal, prove that HK ⊆ G is a subgroup and hence that
HK equals the join H ∨K. The converse is not true.

(b) Prove that the multiplication function µ : H ×K → G is a group isomorphism if and
only if (1) H and K are both normal, (2) H ∧K = {ε} and (3) H ∨K = G. In this case
we write

G = H ×K

and we say that G is the internal direct product of the subgroups H and K.

(a) Let H,K ⊆ G be subgroups with H E G normal. For all elements h1k2 and h2k2 in the
set HK we want to show that (h1k1)(h2k2)

−1 = h1k1k
−1
2 h−12 is also in HK. Now since H is

normal we know that the left and right H-cosets generated by k1k
−1
2 are equal:

k1k
−1
2 H = Hk1k

−1
2

Then since the element k2k
−1
1 h−12 is in the left coset it must also be in the right coset. In

other words, there exists some element h3 ∈ H such that

k1k
−1
2 h−12 = h3k1k

−1
2 .

We conclude that

(h1k1)(h2k2)
−1 = h1(k1k

−1
2 h−12 ) = h1(h3k1k

−1
2 ) = (h1h3)(k1k

−1
2 ) ∈ HK

as desired. The proof for K EG is similar. �

[Remark: Altenatively, you could apply the result from a previous homework that HK ⊆ G
is a subgroup if and only if HK = KH. When I took abstract algebra as an undergraduate I
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was asked to prove on the first (or second) exam that H EG implies HK ⊆ G is a subgroup,
and I got it wrong!]

If HK is a subgroup then I claim that HK = H ∨ K. Indeed, since HK is a subgroup
containing H ∪ K and since H ∨ K is the smallest subgroup containing H ∪ K we have
H ∨K ⊆ HK. Conversely, for all h ∈ H and k ∈ K we have h, k ∈ H ∨K. Then since H ∨K
is closed under the group operation we have hk ∈ H ∨K and it follows that HK ⊆ H ∨K. �

(b) First note that (3) holds if and only if µ is surjective. Indeed, since imµ = HK we
have that µ is surjective if and only if HK = G, which happens if and only if H ∨K = G.
Furthermore, note that (2) holds if and only if µ is injective. Indeed, you proved this on a
previous homework. If G is abelian then (1) always holds and there is nothing else to do.

So let’s assume that G is non-abelian and assume that µ : H×K → G is a group isomorphism.
As above this implies that (2) and (3) hold. To see that (1) holds, note for all h ∈ H and
k ∈ K that

hk = µ(h, ε)µ(ε, k) = µ [(h, ε)(ε, k)]

= µ [(h, k)]

= µ [(ε, k)(h, ε)]

= µ(ε, k)µ(h, ε)

= kh.

It follows from this that H EG and K EG.

Conversely, suppose that (1), (2) and (3) hold. From (2) and (3) we know that µ : H×K → G
is a bijection. To see that µ is a homomorphism, let h ∈ H and k ∈ K and consider the
commutator element:

(hkh−1)k−1 = hkh−1k−1 = h(khk−1).

Since K EG we have hkh−1 ∈ K and hence (hkh−1)k−1 ∈ K. But since H EG we also have
khk−1 ∈ H and hence h(khk−1) ∈ H. It follows that hkh−1k−1 ∈ H ∩K = {ε} and hence

hkh−1k−1 = ε

hk = kh.

From a result on a previous homework this implies that µ is a homomorphism. �

5. Euler’s Rotation Theorem. Recall the definition of the special orthogonal group:

SO(3) = {A ∈ Mat3(A) : ATA = I and det(A) = 1}.

We have seen that every element of this group is an isometry of R3. Now you will show that
every element of this group is a rotation.
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(a) Recall that there exists a nonzero vector 0 6= u ∈ R3 satisfying Au = λu if and only if
det(A− λI) = 0. Prove that there exists a unit vector u ∈ R3 satisfying Au = u.

(b) For all v perpendicular to u, prove that Av is perpendicular to u.

(c) Prove that there exists a matrix B ∈ SO(3) and a real number θ ∈ R such that

B−1AB =

 1 0 0

0 cos θ − sin θ
0 sin θ cos θ

 .

[Hint: Choose unit vectors v,w ∈ R3 so that u,v,w are mutually perpendicular. These
are the columns of B.] It follows from this that x 7→ Ax is a rotation around the line
Ru ⊆ R3 by angle θ.

(a) For all n×n matrices A ∈ Matn recall that det(−A) = (−1)n det(A) and det(AT ) = det(A).
Thus for all A ∈ SO(3) we have A− I = A−ATA = (I −AT )A and hence

det(A− I) = det(
[
I −AT

]
) det(A)

= det([I −A]T ) · 1
= det(I −A)

= (−1)3 det(A− I).

Since (−1)3 = −1 this implies that det(A − I) = 0. Then since λ = 1 is an eigenvalue we
conclude that there exists a unit vector u ∈ R3 such that Au = u. Our goal is to show that
the function x 7→ Ax is a rotation around the line Ru.

(b) So consider any vector v ∈ R3 that is perpendicular to u, i.e., such that vTu = 0. Since
ATA = I this implies that

(Av)Tu = (Av)T (Au) = vT (ATA)u = vTu = 0,

hence the vector Av is also perndicular to u. In other words, the function x 7→ Ax sends the
plane Ru⊥ to itself. Since this function also preserves distances we know that the function
x 7→ Ax restricted to the plane Ru⊥ is a rotation or a reflection. And since det(A) = 1, it
must be a rotation.

(c) To be specific, let v,w be perpendicular unit vectors in the plane Ru⊥ and let B be the
matrix with columns u,v,w. Since the columns of B are orthonormal we have BTB = I and
by swapping v and w if necessary we can assume that det(B) = 1. Then since A,B ∈ SO(3)
we also have B−1AB ∈ SO(3). Now observe that the first column of B−1AB is equal to e1:

(B−1AB)e1 = B−1Au = B−1u = e1.
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Since the columns of B−1AB ∈ SO(3) are orthonormal this implies that the second and third
columns have zeroes in the first entry. In other words, there exists A′ ∈ Mat2(R) such that

B−1AB =

 1 0 0

0
0

A′

 .

But since B−1AB has orthonormal columns we must have A′ ∈ O(2) and since B−1AB has
determinant 1 we must have A′ ∈ SO(2). Finally, we conclude from Euler’s Isomorphism
(proved in class) that

A′ =

(
cos θ − sin θ
sin θ cos θ

)
for some angle θ.

Here’s a picture:

[Remark: As a corollary of this, if R1 and R2 are rotations of R3—hence are both elements
of SO(3)—then it follows that the composition R1R2 ∈ SO(3) is also a rotation. This fact is
not obvious to the human visual imagination.]

Week 9

The study of finite groups has always been concerned with “factoring” groups into smaller
pieces. This comes directly from Galois Theory, where the goal is to “break down” the
symmetries of a given polynomial equation. After discussing the basics of this theory we will
finally be in a position to prove that the quintic equation is not solvable.7

7Assuming, of course, that Galois’ Theorem from Week 2 is true. You will have to wait until next semester
if you want to see a proof of that.
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Internal Multiplication of Groups. Let (G, ∗, ε) be a group and let H,K ⊆ G be any
subgroups. Then we have a “multiplication function” from the Cartesian product set H ×K
into G:

µ : H ×K → G
(h, k) 7→ h ∗ k.

You have already investigated the properties of this function on the homework. Let me recall
the important points.

• The set-theoretic image of µ is called the product set:

HK := imµ = {h ∗ k : h ∈ H, k ∈ K}.

This set may or may not be a subgroup. Here is the most general thing we can say:

• The subset HK ⊆ G is a subgroup if and only if HK = H ∨K

Proof. One direction is trivial. For the other direction, suppose that HK ⊆ G is a
subgroup. Note that HK contains the union H ∪ K. But H ∨ K is by definition
the smallest subgroup that contains the union H ∪ K, hence we have H ∨ K ⊆ HK.
Conversely, consider any element h ∗ k ∈ HK. Since h and k are in H ∪ K, they are
also in H ∨ K. Then since H ∨ K is a subgroup we have h ∗ k ∈ H ∨ K and hence
HK ⊆ H ∨K. �

Thus the function µ if surjective if and only if HK = H ∨K = G. When is it injective?

• The function µ is injective if and only if H ∩K = H ∧K = {ε}.

Proof. If µ is injective then for all g ∈ H ∩ K we have g ∗ g−1 = ε ∗ ε, and hence
g = ε. Conversely, let H ∩K = {ε} and suppose that h1 ∗ k1 = h2 ∗ k2. Then we have
h−12 ∗ h1 = k2 ∗ k−11 ∈ H ∩K, and it follows that h−12 ∗ h1 = k2 ∗ k−11 = ε, hence h1 = h2
and k1 = k2. �

In summary, we have the following:

• The function µ is bijective if and only if H ∩K = {ε} and H ∨K = G. In this case we
say that the subgroups H and K are complementary.8

So let us assume that H,K ⊆ G are complementary subgroups. Then every element g ∈ G
has a unique factorization of the form g = h ∗ k with h ∈ H and k ∈ K. In other words,
for all h1, h2 ∈ H and k1, k2 ∈ K there exist unique elements h3 ∈ H and k3 ∈ K such that

(h1 ∗ k1) ∗ (h2 ∗ k2) = h3 ∗ k3.

In general there is not much we can say about the elements h3, k3. However, there are three
particularly nice cases:

8Remark: A given subgroup can have many different complements. There is no uniqueness implied. For
example, any two non-equal lines through the origin in (R2,+,0) are complementary.
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• If H EG is a normal subgroup then we have

h3 = h1 ∗ (k1 ∗ h2 ∗ k−11 ) and k3 = k1 ∗ k2.

Proof. For any h1, h2 ∈ H and k1, k2 ∈ K we have

(h1 ∗ k1) ∗ (h2 ∗ k2) = (h1 ∗ (k1 ∗ h2 ∗ k−11 )) ∗ (k1 ∗ k2)

and if H EG then we know that (k1 ∗ h2 ∗ k−11 ) ∈ H. �

In this case we use the notation
G = H oK,

and we say that G is an internal semidirect product of H and K. Mnemonic: The triangle
points to the normal subgroup.

• If K EG is a normal subgroup then we have

h3 = h1 ∗ h2 and k3 = (h−12 ∗ k1 ∗ h2) ∗ k2.

Proof. For any h1, h2 ∈ H and k1, k2 ∈ K we have

(h1 ∗ k1) ∗ (h2 ∗ k2) = (h1 ∗ h2) ∗ ((h−12 ∗ k1 ∗ h2) ∗ k2)

and if K EG then we know that (h−12 ∗ k1 ∗ h2) ∈ K. �

In this case G is still called an internal semidirect product, but now the triangle points to K:

G = H nK.

• If H EG and K EG are both normal then we have

h3 = h1 ∗ h2 and k3 = k1 ∗ k2.

Proof. For any h ∈ H and k ∈ K we have k ∗ h ∗ k−1 ∈ H and h ∗ k ∗ h−1 ∈ K, so that

h ∗ k ∗ h−1 ∗ k−1 ∈ H ∩K.

Since H ∩K = {ε}, this implies that h ∗ k ∗h−1 ∗ k−1 = ε and hence h ∗ k = k ∗h. Then
for all h1, h2 ∈ H and k1, k2 ∈ K we have

(h1 ∗ k1) ∗ (h2 ∗ k2) = (h1 ∗ h2) ∗ (k1 ∗ k2).

�
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In this case the subgroups H and K don’t even see each other and we can really think of G as
two independent groups sitting side by side. Technically: We say that G is an internal direct
product of H and K, and we write

G = H ×K.9

In any of these three cases it can be said that we have “factored” G into two subgroups, at
least one of which is normal.

Next time I’ll give some examples and explain the word “internal.”

Today I’ll give some examples of internal direct and semidirect products. Then I’ll define the
concept of “external” products.

Example: Direct Sum of Abelian Groups. Let G be an abelian group and let H,K ⊆ G
be subgroups. Since every subgroup of an abelian group is normal we have

G = H ×K ⇐⇒
{

HK = G
H ∩K = {ε}

}
.

If the group (G,+, 0) is additive, we prefer to use the notation of internal direct sum:10

G = H ⊕K ⇐⇒
{
H +K = G
H ∩K = {0}

}
.

This says that every element g ∈ G has a unique decomposition of the form g = h+k = k+h,
where h ∈ H and k ∈ K.

Example: Fundamental Theorem of Finite Abelian Groups. It turns out that

every finite abelian group is a direct sum of cyclic subgroups.

Unfortunately, this theorem is difficult to prove. There are two big ideas needed for the proof:

• Chinese Remainder Theorem

• Smith Normal Form

9Clearly the notation G = H ./ K would be better, but this would conflict with standard usage.
10This suggests that maybe “⊗” would be a good notation for direct product of multiplicative groups. Sadly,

that notation is used for a different purpose. Sometimes history saddles us with bad notation, such as the
negatively charged electron.
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You will investigate the Chinese Remainder Theorem on the next homework. The Smith
Normal Form is beyond the scope of this course, but it might show up next semester. This
presents a pedagogical dilemma: State the Fundamental Theorem now or wait until we can
prove it? I choose to state it now.

Example: Basis of a Vector Space. Recall that a vector space consists of a field F acting
(by “scaling”) on an additive group (V,+,0). We say that a subgroup U ⊆ V is a subspace
if it is closed under this scaling. Then the notion of direct sum applies without modification
to subspaces. As an application, I claim that a set of nonzero vectors u1,u2, . . . ,un ∈ V −{0}
is a basis if and only if

V = Fu1 ⊕ Fu2 ⊕ · · · ⊕ Fun.

Proof. We define the direct sum of multiple groups by induction. The join condition is easy:

V = Fu1 + Fu2 + · · ·+ Fun.

This literally says that u1,u2, . . . ,un ∈ V is a spanning set. The meet condition is trickier.
By induction it says that

Fui ∩ (Fu1 + · · ·+ Fui−1 + Fui+1 + · · ·+ Fun) = {0} for all i.

Now suppose that b1u1 + · · ·+ bnun = 0 for some coefficients bi ∈ F. Then for each i we have

biui = −b1u1 − · · · − bi−1ui−1 − bi+1ui+1 − · · · − bnun,

which by the above condition implies that biui = 0 and hence bi = 0. In other words, the set
u1, . . . ,un ∈ V is linearly independent. �

Now we need a non-abelian example.

Example: Dihedral Groups. Consider the dihedral group of size 2n:

D2n = 〈R,F 〉 = {I,R, . . . , Rn−1, F,RF, . . . Rn−1F}.

On a previous homework you showed that every element has the form RaF b for some a, b ∈ Z,
which implies that

D2n = 〈R〉〈F 〉 = 〈F 〉〈R〉 = 〈R〉 ∨ 〈F 〉.

The easiest way to show that 〈R〉 ∩ 〈F 〉 = {I} is to think of the representation where R is
a rotation matrix and F is a reflection matrix, so that det(R) = 1 and det(F ) = −1. Since
det(Ra) = det(R)a = 1 for all a ∈ Z this implies that F is not a power of R. And since F 2 = I
we conclude that no non-trivial power of F is equal to a power of R.

Thus we conclude that the multiplication map is a bijection:

〈R〉 × 〈F 〉 ←→ D2n

(Ra, F b) 7→ RaF b.
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What kind of product is this? If n = 2 then it’s a direct product. However if n ≥ 3 then it’s
not a direct product because the elements of 〈R〉 and 〈F 〉 don’t commute:

FRF−1 = FRF = R−1 6= R.

This implies indirectly that the subgroups 〈R〉 ⊆ D2n and 〈F 〉 ⊆ D2n are not both normal. I
claim that 〈R〉 is normal and 〈F 〉 is not.

Proof. Assume that n ≥ 3. Then since R2 6= I we have

RFR−1 = RRF = R2F 6∈ 〈F 〉,

and hence 〈F 〉 ⊆ D2n is not a normal subgroup. To see that 〈R〉ED2n is normal we need to
show that gRag−1 ∈ 〈R〉 for all a ∈ Z. This is obvious when g is a power of R, so let’s assume
that g = RbF for some b ∈ Z. Then we have

gRag−1 = (RbF )Ra(RbF )−1 = RbFRaFR−b = Rb��FFR
−aR−b = R−a ∈ 〈R〉.

�

It follows that the dihedral group is a semidirect product:

D2n = 〈R〉o 〈F 〉.

More precisely, the rule for multiplying elements is

(RaF b)(RcF d) = [RaF b(Rc)F−b][F bF d] =

{
(RaR−c)(F bF d) b odd,

(RaRc)(F bF d) b even.

The whole structure is determined by the fact F acts on 〈R〉 by inversion:

FRaF−1 = R−a.

The geometric meaning behind this is that flipping the polygon reverses the senses of clockwise
and counterclockwise. ///

More generally, we can define an abstract (“external”) product group whenever one group
acts on another.

External Multiplication of Groups. Let (H, ∗, δ) and (K, •, ε) be abstract groups. Pre-
viously we assumed that H and K are subgroups of some “ambient” group G. Now there is
no G, but we still want to construct a group that could be called the “product” of H and K.
Specifically, we want to define a group operation on the Cartesian product set H ×K. Let’s
call this hypothetical operation �, so that for all h1, h2 ∈ H and k1, k2 ∈ K we have

(h1, k1)� (h2, k2) = (h3, k3)
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for some unique elements h3 and k3. We also want to require that the subsets

H̃ = {(h, ε) : h ∈ H} ⊆ H ×K
K̃ = {(δ, k) : k ∈ K} ⊆ H ×K

are subgroups isomorphic to H and K, respectively. It turns out that it is hopeless to solve
this problem in general. However, there are two constructions that are particularly nice.

• External Direct Product The direct product structure is defined by

(h1, k1)� (h2, k2) = (h1 ∗ h2, k1 • k2).

It is easy to check that G := (H × K,�, (δ, ε)) is an abstract group. Furthermore, I
claim that G is an internal direct product of the subgroups H̃ and K̃.

Proof. Clearly we have H̃ ∩ K̃ = {(δ, ε)} and H̃K̃ = G. The fact that H̃ EG and K̃EG
are both normal follows from the fact that their elements commute:

(h, ε)� (δ, k) = (h, k) = (δ, k)� (h, ε) for all h ∈ H and k ∈ K.

�

The definition of the external direct product is so obvious11 that we just use the Cartesian
product notation:

H ×K = (H ×K,�, (δ, ε)).

• External Semidirect Product. Suppose that the abstract group (K, •, ε) acts on
the abstract group (H, ∗, δ) by automorphisms. In other words, suppose that we have a
group homomorphism

θ : K → Aut(H).

Then we can define the operation

(h1, k1)�θ (h2, k2) = (h1 ∗ θk1(h2), k1 • k2).

It is relatively easy to check that G := (H × K,�θ, (δ, ε)) is an abstract group and I
will leave this as an optional exercise for the reader. The reason we call it semidirect is
because this G is an internal semidirect product of its subgroups H̃ and K̃.

Proof. I’ll skip some details. The main point is that H̃ is closed under conjugation by
elements of K̃. To see this, note that for all (h, ε) ∈ H̃ and (δ, k) ∈ K̃ we have

(δ, k)�θ (h, ε)�θ (δ, k)−1 = (δ, k)�θ (h, ε)�θ (δ, k−1)

= (δ, k)�θ (h ∗ θε(δ), k−1)
= (δ, k)�θ (h ∗ δ, k−1)

11Another reason for this notation is the fact that the direct product is the “categorical product” in the
category of groups. Convention says that categorical products are always denoted by ×.
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= (δ, k)�θ (h, k−1)

= (δ ∗ θk(h), k • k−1)
= (θk(h), ε) ∈ H̃.

�

In summary, given any action θ : K → Aut(H) of one abstract group on another we have
defined an abstract group G out of thin air, which contains isomorphic copies H̃, K̃ ⊆ G,
in which H̃EG is a normal subgroup, and in which the action of K̃ on H̃ by conjugation
coincides with the abstract action of K on H. We call this G the external semidirect
product with respect to θ and we use the notation

H oθ K = (H ×K,�θ, (δ, ε)).

///

Remarks:

• The external semidirect product is sometimes called a “twisted product,” and the homo-
morphism θ is sometimes called a “twist.” The use of the Greek character θ is traditional
in this context.

• If H acts on K via θ : H → Aut(K) then we can define a group H θnK via the operation

(h1, k1) θ�(h2, k2) = (h1 ∗ h2, θ−1h2 (k1) • k2).

All of the properties work out the same except that now K̃ is the normal subgroup.

• Let triv : K → Aut(H) be the “trivial action” that sends each k ∈ K to the identity
function trivk = id : H → H. Then the semidirect product coincides with the direct
product:

H otriv K = H ×K.

• If H and K are abelian groups then the external direct product H ×K is also abelian.
However, a semidirect product HoθK need not be abelian. For example, the non-abelian
dihedral group is a semidirect product of two abelian (cyclic) groups.

• Many authors of undergraduate algebra textbooks choose to omit the semidirect product
on the grounds that it is too abstract. I agree that it’s abstract, but I prefer to keep it
in because it is important for geometry and physics. We will see an interesting example
next time.
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Today we will discuss a very interesting example of a semidirect product. But first, here’s a
more basic example.

Example: Dihedral Groups Again. Consider the cyclic groups Z/2Z and Z/nZ. You will
show on the next homework that every automorphism of the group Z/nZ has the form k 7→ ak
mod n for some a ∈ Z satisfying gcd(a, n) = 1. Now suppose we have a group homomorphism

θ : Z/2Z → Aut(Z/nZ)
0 7→ θ0
1 7→ θ1

By definition this consists of two automorphisms θ0, θ1 ∈ Aut(Z/nZ) with the property that

θa+bmod2 = θamod2 ◦ θbmod 2.

This implies that θ0 = id and θ21 = θ2 = θ0 = id. On the other hand we know that θ1(k) = ak
for some a ∈ Z and since θ21 = id we must have a2 = 1. Thus there are only two possible ways
that Z/2Z can act on Z/nZ by automorphisms:

• The trivial action sends each element of Z/2Z to the identity function Z/nZ→ Z/nZ.

• The nontrivial action θ : Z/2Z → Aut(Z/nZ) sends 0 ∈ Z/2Z to the identity function
and sends 1 ∈ Z/2Z to the “inversion function” k 7→ −k. In this case one can show that
the semidirect product is isomorphic to the dihedral group:

(Z/nZ) oθ (Z/2Z) ∼= D2n.

[Exercise: Show that the function (a, b) 7→ RaF b is the desired group isomorphism.]

Now for the interesting example.

Example: Isometries of Euclidean Space. Recall that n-dimensional Euclidean space
consists of the vector space Rn together with the standard dot product 〈−,−〉 : Rn×Rn → R.
By an isometry of Euclidean space we mean any function f : Rn → Rn that preserves the
distance between points:

‖f(x)− f(y)‖ = ‖x− y‖ for all x,y ∈ Rn.

Clearly the identity is an isometry and the composition of any two isometries is an isometry.
It is less obvious, but it will follow from the analysis below that any isometry is invertible.

Thus we obtain a group

Isom(Rn) = {f : Rn → Rn : f preserves distance}.

This group has two interesting subgroups:

117



• Let Isom0(Rn) ⊆ Isom(Rn) denote the subset of isometries that fix the origin: f(0) = 0.
We saw on a previous homework that this subgroup is isomorphic to the group O(n) of
n× n orthogonal matrices. To be specific, for each f ∈ Isom0(Rn) there exists a unique
matrix A ∈ O(n) such that

f(x) = Ax for all x ∈ Rn.

The hardest part of that proof was to show that any isometry that fixes the origin must
be a linear function.

• Recall that each group acts on itself by translation. In the case of the additive group
(Rn,+,0) we have a group homomorphism

τ : Rn → Aut(Rn)

which sends each vector u ∈ Rn to the translation function τu(x) = x + u = u + x. I
claim that this translation is an isometry.

Proof. For all x,y ∈ Rn we have

‖τu(x)− τu(y)‖ = ‖(x + u)− (y + u)‖ = ‖x− y‖.

�

Thus we have a group homomorphism from (Rn,+,0) into the group of isometries:

τ : Rn → Isom(Rn).

Furthermore, I claim that this homomorphism is injective.

Proof. We will show that the kernel is trivial. So consider any vector u ∈ Rn such that
τu is the identity function. Then in particular we must have u = 0 + u = τu(0) = 0. �

In conclusion, we find that the image of τ is a subgroup of Isom(Rn) which is isomorphic
to the additive group (Rn,+,0). We will call this the translation subgroup and we will
label it by T (Rn):

Rn ∼= im τ =: T (Rn) ⊆ Isom(Rn).

Then we have the following theorem.

Theorem (Isometries of Euclidean Space). The group of isometries is a semidirect
product of translations with the origin-fixing isometries:

Isom(Rn) = T (Rn) o Isom0(Rn).

Proof. There are three things to check: (1) T (Rn) and Isom0(Rn) meet at the identity, (2)
T (Rn) and Isom0(Rn) join to the full group, and (3) T (Rn) is a normal subgroup of Isom(Rn).
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(1) To show that T (Rn) ∩ Isom0(Rn) = {id}, suppose that τu is a translation that fixes the
origin. We saw above that this implies u = 0 and hence τu = τ0 = id.

(2) To show that T (Rn) ◦ Isom0(Rn) = Isom(Rn) consider any isometry f : Rn → Rn and
suppose that f(0) = u. Now define g := τ−u ◦ f and observe that

g(0) = τ−u(f(0)) = τ−u(u) = u− u = 0.

It follows that g ∈ Isom0(Rn) and hence

f = τu ◦ g ∈ T (Rn) ◦ Isom0(Rn).

(3) To show that T (Rn)E Isom(Rn) it is enough12 to show that T (Rn) is closed under conju-
gation by elements of Isom0(Rn). So consider any f ∈ Isom0(Rn). The important fact (which
was tricky to prove) is that f is a linear function. Therefore for any x ∈ Rn we have

(f ◦ τu)(x) = f(x + u) = f(x) + f(u) = τf(u)(f(x)) = (τf(u) ◦ f)(x).

It follows that f ◦ τu = τf(u) ◦ f and hence

f ◦ τu ◦ f−1 = τf(u) ∈ T (Rn).

�

In summary, every element of Isom(Rn) has a unique factorization of the form τu ◦ f where
τu ∈ T (Rn) is a translation and f ∈ Isom0(Rn) is an orthogonal linear function. In this
language the group operation is given by

(τu ◦ f) ◦ (τv ◦ g) = (τu ◦ f ◦ τv ◦ f−1) ◦ (f ◦ g) = (τu ◦ τf(v)) ◦ (f ◦ g).

There is also an external point of view. Let θ : O(n) → Aut(Rn) be the natural action of
the group of orthogonal matrices on the vector space (Rn,+,0). This is defined by matrix
multiplication:

θA(x) := Ax for all A ∈ O(n) and x ∈ Rn.

We can then form the external semidirect product

Rn oθ O(n).

By the above theorem this semidirect product is isomorphic to the group of isometries of
Euclidean space. ///

Finally, here’s a less interesting version of the same construction.

Example: The General Affine Group. Let V be a vector space and let G be the group
of all invertible functions V → V . (These do not need to preserve any structure.) Inside this

12This follows from part (2).
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group there is a subgroup T (V ) ⊆ G of translations and a subgroup GL(V ) ⊆ G of linear
functions. By the same reasoning as above one can show that

f ◦ τu = τf(u) ◦ f for all τu ∈ T (V ) and f ∈ GL(V ).

It follows that the product set T (V ) ◦ GL(V ) ⊆ G is a subgroup, which contains T (V ) as a
normal subgroup. We call this the general affine group of V :

GA(V ) := T (V ) ◦GL(V ) = T (V ) oGL(V ).

This construction is less interesting because it’s not so clear why we should care about this
kind of function (i.e., compositions of linear functions and translations).13

Week 10

For me this is the hardest part of the course, when I need to start thinking about tying up
loose ends. Back in Week 2 I mentioned that the unsolvability of the quintic equation has
something to do with the group of symmetries of the regular icosahedron. Let’s return to that
topic now. Just so we’re all on the same page, here’s a picture:14

Assume that the regular icosahedron is centered at the origin in R3 and let I ⊆ SO(3) be
the subgroup of rotations that leave the icosahedron invariant. We will prove below that this
group has 60 elements and it satisfies the following special property:

{id} ( H E I =⇒ H = I.

13Given a vector space V , there is a technical way to “forget” which point is the origin. After doing this we
call V an “affine vector space.” The group GA(V ) is simply the group of automorphisms of this structure.

14I made this picture using KaleidoTile, by Jeff Weeks.
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This property has a name.

Definition of Simple Groups. We say that a group G is simple if it has no nontrivial normal
subgroups. This implies that G cannot be decomposed as a direct or semidirect product of
smaller groups. ///

Example: Simple Abelian Groups. Since every subgroup of an abelian group is normal,
we see that an abelian group is simple if and only if it has no non-nontrivial subgroups.
I claim that the only such groups are Z/pZ.

Theorem. Every simple abelian group has the form Z/pZ for some prime p ∈ Z.

Proof. Let (G, ∗, ε) be a simple abelian group and consider any element g ∈ G. If g 6= ε
then we have {ε} ( 〈g〉 ⊆ G, which implies that G = 〈g〉 is cyclic. If G were infinite then
we would have G ∼= (Z,+, 0), which is not simple. Therefore we must have G ∼= Z/nZ for
some n ≥ 1. But recall from the Fundamental Theorem of Cyclic Groups that the lattice of
subgroups L (Z/nZ) is isomorphic to the lattice of divisors Div(n). It follows that Z/nZ has
no proper subgroup if and only if n has no proper divisor, i.e., if and only if n is prime. �

[Remark: You will show on the homework that Z/pZ is actually a field.]

In this sense we can think of simple groups as a generalization of prime numbers. It is much
more difficult to find non-abelian simple groups. If you only know about small groups then
you might suspect that there is no such thing. In fact, it turns out that the icosahedral group
I of size 60 is the smallest possible non-abelian simple group.

Building on the analogy with prime numbers, it turns out that every group15 has a “unique
decomposition” into simple factors.

The Jordan-Hölder Theorem and “Solvable” Groups. Let (G, ∗, ε) be a group and
consider a finite chain of subgroups:

G = G0 ) G1 ) G2 ) · · · ) G` = {ε}.

We call this chain a composition series if it satisfies the following two conditions:

• Gi+1 EGi is normal for each i,

• the quotient group Gi/Gi+1 is simple for each i.

We can summarize these conditions by saying that Gi+1EGi is a maximal normal subgroup
for each i. To prove equivalence, one should check that the correspondence between subgroups
of Gi/Gi+1 and subgroups between Gi and Gi+1 preserves normality. Then the quotient group

15Not literally every group, but it’s true for all finite groups and many infinite groups.

121



Gi/Gi+1 has no non-trivial normal subgroup (i.e., is simple) if and only if there is no normal
subgroup strictly between Gi and Gi+1 (i.e., if Gi+1 is maximal normal in Gi).

Under these conditions, the Jordan-Hölder Theorem says that the list of simple groups

G1/G0, G2/G1, · · · Gn−1/G`, G`/{ε} = G`

is unique up to isomorphism and permutations. ///

Unfortunately the proof of this theorem is beyond the scope of the course, however you will
prove a similar theorem for vector spaces on the homework. The unique simple groups Gi+1/Gi
arising from a composition series are called the composition factors of the group G. If G is a
cyclic group and if a prime p divides #G with multiplicity k, then the simple group Z/pZ
is a composition factor of G with multiplicity k. In this sense the Jordan-Hölder Theorem is
a vast generalization of the Fundamental Theorem of Arithmetic.

Example: Composition Factors of Z/12Z. Let 〈g〉 ∼= Z/12Z be a cyclic group of size
12. Since we know the subgroup lattice, it is easy to see that this group has exactly three
different composition series, labeled (a), (b), (c) in the following picture. I have also labeled
each edge in the diagram with the corresponding quotient group. Observe that the sequence
of composition factors is the same for all three composition series:

The big difference between integers and groups is that multiplying integers is easy, while
“multiplying groups” can be arbitrarily complicated. Indeed, suppose that p is prime and let
f(p) be the number of different (non-isomorphic) groups having the composition factors

Z/pZ, Z/pZ · · · Z/pZ (k times).

Graham Higman proved in 1960 that the number of such groups is really big:

f(p) ≥ p2k2(k−6)27.
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On the other hand, there is only one integer with the prime factors p, p, . . . , p (k times). Even
though it is impossible to classify these so-called p-groups, we still say that these groups are
“solvable” in the following technical sense.

Definition of Solvable Groups. Since every simple abelian group is isomorphic to Z/pZ
for some prime p ∈ Z, we have the following equivalence:{

G has abelian
composition factors

}
⇐⇒

{
G has composition factors of the form
Z/pZ for various prime numbers p

}
.

Any group satisfying these conditions is called a solvable group.

And what is so “solvable” about these groups? To explain this, here is another restatement
of Galois’ Theorem.

Galois’ Theorem Again. The general n-th degree polynomial equation is solvable by radi-
cals if and only if the symmetric group Sn has abelian composition factors, i.e., if and only if
the symmetric group Sn is a “solvable group.” ///

At this point I might as well go ahead and prove that Sn is not solvable for all n ≥ 5. If you
believe Galois’ Theorem then this fact implies that the general n-th degree equation is not
solvable by radicals when n ≥ 5. We will prove Galois’ Theorem next semester.

Theorem. The symmetric group Sn is not solvable when n ≥ 5.

Proof. Let n ≥ 5 and assume for contradiction that there exists a chain of subgroups

Sn = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gr = {id}

such that each quotient group Gi/Gi+1 exists and is abelian. Now let C ⊆ Sn = G0 be the
set of all 3-cycles. We will prove by induction that C ⊆ {id} = Gr, which is a contradiction.

So fix 0 ≤ i < r and assume for induction that C ⊆ Gi. If c1, c2 ∈ C are any two 3-cycles,
then since Gi/Gi+1 is abelian we have

(c1c2c
−1
1 c−12 Gi+1) = (c1Gi+1)(c2Gi+1)(c1Gi+1)

−1(c2Gi+1)
−1

= (c1Gi+1)(c1Gi+1)
−1(c2Gi+1)(c2Gi+1)

−1

= (idGi+1)(idGi+1)

= idGi+1

= Gi+1,

which implies that c1c2c
−1
1 c−12 ∈ Gi+1. Thus in order to show that C ⊆ Gi+1 it is enough to

show that every 3-cycle c ∈ C has the form c = c1c2c
−1
1 c−12 for some 3-cycles c1, c2 ∈ C. For
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this we will use the fact that n ≥ 5. To be specific, let c = (ijk). Then for any numbers ` 6= m
not in the set {i, j, k} we have

(ijk) = (jkm)(i`j)(jkm)−1(i`j)−1.

[Exercise: Check this.] �

Remarks:

• It is remarkable that the proof of the unsolvability of polynomial equations looks like
this. Clearly this is the most efficient way to think about the problem.

• With more work, one can show that the alternating subgroup An ⊆ Sn is actually simple
when n ≥ 5. (The proof is a bit hairy so we won’t do it. In general it is difficult to prove
that a non-abelian group is simple.) It follows from this that the composition factors of
Sn are An and Sn/An ∼= Z/2Z. The fact that An is non-abelian is the ultimate reason
why Sn is not solvable.

• Thus there exists an infinite sequence A5, A6, A7, . . . of non-abelian finite simple groups.
We will see later that the group A5 is isomorphic to the icosahedral group, which is why
the icosahedron is related to the quintic equation.

• You will show on a future homework that the group A4 has a normal subgroup of size
4. This is the ultimate reason why the quartic equation is solvable. You already know
that A3 and A2 are solvable. In fact they are abelian.

I claimed last time that the icosahedral group I ⊆ SO(3) has 60 elements and no non-trivial
normal subgroups, but I didn’t prove either of these statements. In order to count the elements
we will use the method of “orbits” and “stabilizers.” I turns out that the same method (applied
to conjugacy classes) will also help us study the normal subgroups.

Definition of Orbits and Stabilizers. Let (G, ∗, ε) be a group, let X be a set with structure
and let ϕ : G→ Aut(X) be a group homomorphism (i.e., an action of G on X). Then for any
point x ∈ X we define the following sets:

Orbϕ(x) := {ϕg(x) : g ∈ G} ⊆ X,
Stabϕ(x) := {g ∈ G : ϕg(x) = x} ⊆ G.

When the specific action ϕ is understood we will just write Orb(x) and Stab(x). We can also
view orbits as the equivalence classes of the following relation:

x ∼ϕ y ⇐⇒ ∃g ∈ G,ϕg(x) = y.
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Let’s verify that this relation is an equivalence.

Proof.

(E1) For all x ∈ X we have ϕε(x) = x and hence x ∼ϕ x.

(E2) Let x, y ∈ X and assume that x ∼ϕ y so that ϕg(x) = y for some g ∈ G. But then we
have ϕg−1(y) = ϕ−1g (y) = x, which implies that y ∼ϕ x because g−1 ∈ G.

(E3) Let x, y, z ∈ X and assume that x ∼ϕ y and y ∼ϕ z. This means that ϕg(x) = y and
ϕh(y) = z for some g, h ∈ G. But then we have

ϕh∗g(x) = ϕh(ϕg(x)) = ϕh(y) = z,

which implies that x ∼ϕ z because h ∗ g ∈ G.

�

It follows that X is a disjoint union of the orbits:

X =
∐
i

Orb(xi) for some arbitrary class representatives xi ∈ X.

///

If the set X has some nice structure (e.g., if it’s a topological space or a manifold) then the
orbits might also have this structure but it depends on the properties of the action ϕ. There
is not much we can say in general. As for the stabilizer, it is always a subgroup of G.

Proof. For all x ∈ X and a, b ∈ Stab(x) we have ϕa(x) = x and ϕb(x) = x, hence ϕ−1b (x) = x.
But then since ϕ is a group homomorphism we have

ϕa∗b−1(x) = (ϕa ◦ ϕ−1b )(x) = ϕa(ϕ
−1
b (x)) = ϕa(x) = x,

and it follows that a ∗ b−1 ∈ Stab(x). �

Unfortunately the subgroup Stab(x) ⊆ G is generally not normal, but we still have a nice
structure theorem for group actions, which is analogous to the First Isomorphism Theorem
for group homomorphisms.

The Orbit-Stabilizer Theorem. Let ϕ : G → Aut(X) be a group action. Then for all
x ∈ X we have a bijection between points of the orbit and left cosets of the stabilizer:

Φ : Orb(x) −→ G/ Stab(x)
ϕg(x) 7→ g Stab(x).

Proof. The function Φ is well-defined and injective because

ϕa(x) = ϕb(x)⇐⇒ ϕ−1b (ϕa(x)) = x
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⇐⇒ x = ϕb−1∗a(x)

⇐⇒ b−1 ∗ a ∈ Stab(x)

⇐⇒ a Stab(x) = bStab(x),

and it is surjective by definition. �

It follows that X can be identified with a disjoint union of sets of cosets:

X =
∐
i

Orb(xi) ←→
∐
i

G/ Stab(xi).

We will see below that this formula is often useful for counting. ///

[Remark: We could also define a bijection between points of the orbit and right cosets of
the stabilizer. The reason I use left cosets is because the map Φ : Orb(x) → G/ Stab(x)
“commutes” with the natural action of G on both sides. In other words, the bijection Φ is
actually an isomorphism of G-sets. But we won’t use this extra structure.]

For example, let’s count the symmetries of an icosahedron.

Example: Counting the Symmetries of a Regular Icosahedron. Let I ⊆ SO(3) be
the group of rotational symmetries of a regular icosahedron centered at the origin in R3. The
Greek prefix icos- indicates that the icosahedron has 20 triangular faces. Consider the set

F = {faces of the icosahedron}.

The group I acts on the set F in the obvious way, and we say that this action is transitive
since for any face f ∈ F we have Orb(f) = F . (Indeed, the adjective “regular” in “regular
icosahedron” indicates that every face/edge/vertex of the polyhedron looks the same up to
symmetry.) Furthermore, the only symmetries that stabilize the triangle f are the three rota-
tional symmetries through the center of the triangle. We conclude from the Orbit-Stabilizer
Theorem and Lagrange’s Theorem that

Orb(f) = F ↔ I/ Stab(f)

#F = #I/# Stab(f)

20 = #I/3

#I = 60.

Similarly, we have transitive actions of I on the set of edges E and the set of vertices V of
the icosahedron. It is easy to see that for each edge e ∈ E the stabilizer Stab(e) is a (cyclic)
group of size 2, and for each vertex v the stabilizer Stab(v) is a cyclic group of size 5. (Look
at the picture above.) Thus we obtain two more equations

#Orb(e) = #I/# Stab(e),
#E = #I/2,

#Orb(v) = #I/# Stab(v),
#V = #I/5.
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It follows from this that the number of edges of the icosahedron is #E = 60/2 = 30 and the
number of vertices is #V = 60/5 = 12. I find this method much easier than counting the
edges and vertices by hand. ///

Today’s lecture will be a bit phillosophical.

What is “group theory”? In retrospect, one could say that Carl Friedrich Gauss was doing
group theory when he invented and studied the group Z/nZ around 1800. However, as you
know by now, the study of finite abelian groups is only a tiny (but important) part of the
subject. The main definitions of the theory were only revealed with Galois’ work on the (non-
abelian) symmetric group Sn and his discovery of “normal subgroups.” From 1830 until 1870
the subject of group theory basically consisted of the study of Sn and finite abelian groups.
The subject still had nothing to do with geometry.

Meanwhile, the discovery of non-Euclidean geometry inspired Sophus Lie and Felix Klein to
study “geometric transformations.” Slowly they realized that the collection of all transforma-
tions of a geometry X forms an abstract group, which today we call the automorphism group
Aut(X). After reading Camille Jordan’s 1870 book on permutations, they decided it would
be worthwhile to develop some “Galois theory” of geometric transformations. This inspired
Klein’s famous Erlangen Program of 1872.

Definition of Transitive Actions. Let G be a group and let X be a set with structure. We
say that an action ϕ : G→ Aut(X) is transitive if it has only one orbit. In other words:

Orbϕ(x) = X for each point x ∈ X.

Then from the Orbit-Stabilizer Theorem we obtain a bijection

X ←→ G/ Stabϕ(x) for each point x ∈ X.

///

Klein’s Erlangen Program concerns the case when X is a non-Euclidean geometry and G
is the corresponding group of transformations, i.e., functions f : X → X that preserve the
geometric structure. An essential feature is that any two points of a geometry should “look
the same,” which means that the action Gy X should be transitive. Klein suggested that one
could classify and study different geometries X by looking at the coset spaces G/H for various
H ⊆ G. Today we use the word homogeneous space instead of the old-fashioned non-Euclidean
geometry. From this point on, the study of geometry was slowly integrated into group theory.
By the 1920s even physicists had reluctantly switched to the new group theoretic language.
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Before giving an example of a “non-Euclidean geometry,” let me recall what we know about
Euclidean geometry.

Example: Euclidean Space. Let X = (Rn, 〈−,−〉) be n-dimensional Euclidean space and
let Isom(Rn) be the group if isometries, i.e., functions f : X → X that preserve distance.
Clearly the action of Isom(Rn) on X is transitive. (Indeed, for any points x,y ∈ X the
translation τy−x ∈ Isom(Rn) sends x to y.) Thus for any point x ∈ X we obtain a bijection

X ←→ Isom(Rn)/Isomx(Rn),

where Isomx(Rn) := {f ∈ Isom(Rn) : f(x) = x} is the stabilizer of x. In particular, we already
know that Isom0(Rn) is isomorphic to the orthogonal group. Hence we obtain a bijection:

Rn ←→ Isom(Rn)/O(n).

But this is not so interesting because it follows from the group isomorphism

Isom(Rn) ∼= (Rn,+,0) oO(n)

which we proved above. ///

Here’s something new.

Example: Real Projective Space. The basic idea of projective geometry is that any two
lines in a plane should meet at a unique point. Lines which were called “parallel” in Euclidean
geometry now intersect at some ideal “point at infinity,” and the collection of all points at
infinity forms the “line at infinity” for this plane. In the modern “analytic” treatment, we
define the set

Pn−1(R) = {lines through the origin in Rn}.

In other words, a “point” in (n−1)-dimensional projective space corresponds to a “line through
the origin” in n-dimensional Euclidean space. In order to get some concrete representation of
this set, we observe that the orthogonal group O(n) acts transitively on Pn−1(R). (Indeed,
given two lines `, `′ ⊆ Rn intersecting at 0, we can send ` to `′ by rotating the plane that
they generate, and this rotation can be realized as an orthogonal matrix.) Furthermore, I
claim that for any line ` ∈ Pn−1(R) the stabilizer is isomorphic to a direct product Stab(`) ∼=
O(1)×O(n− 1), hence we obtain a bijection

Pn−1(R) ←→ O(n)

O(1)×O(n− 1)
.

Actually I will prove something more general than this. For any vector subspace U ⊆ Rn let
U⊥ ⊆ Rn be the orthogonal subspace defined by

U⊥ := {v ∈ Rn : 〈u,v〉 = 0 for all u ∈ U}.
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Then for any orthogonal matrix A ∈ O(n) I claim that

A stabilizes U ⇐⇒ A stabilizes U⊥.

Proof. Suppose that A ∈ O(n) stabilizes U . Then for all u ∈ U and v ∈ U⊥ we have Au ∈ U
and A−1 = AT , hence

〈u, A−1v〉 = 〈u, ATv〉 = uT (ATv) = (Au)Tv = 〈Au,v〉 = 0.

If follows that A−1v ∈ U⊥ for all v ∈ U⊥ and hence A−1U⊥ ⊆ U⊥ is a vector subspace. But
since A−1 : Rn → Rn is injective, it follows from the Rank-Nullity Theorem (proved on the
next homework) that A−1U⊥ and U⊥ have the same dimension, hence A−1U⊥ = U⊥. Finally,
since every element v ∈ U⊥ has the form v = A−1v′ for some v′ ∈ U⊥, we conclude that
Av = v′ ∈ U⊥ as desired. The other direction is similar. �

[Remark: Note that the proof used finite-dimensionality. Indeed, this result is not true for
infinite dimensional vector spaces.]

If U ⊆ Rn is a k-dimensional subspace then we can choose an orthonormal basis u1, . . . ,un ∈ V
such that u1, . . . ,uk is a basis for U and uk+1, . . . ,un is a basis for U⊥. If B ∈ O(n) is the
matrix whose i-th column is ui then for any A ∈ Stab(U) ⊆ O(n) it follows from the result
just proved that

B−1AB =

(
A′ 0

0 A′′

)
for some A′ ∈ O(k) and A′′ ∈ O(n− k).

Finally, the map A 7→ (A′, A′′) defines a group isomorphism Stab(U) ∼= O(k)×O(n− k) and
we obtain a bijection {

k-dimensional
subspaces of Rn

}
←→ O(n)

O(k)×O(n− k)
.

The case k = 1 corresponds to projective space. ///

Remarks:

• It would take us too far afield to discuss what this has to do with “points at infinity.”
One hundred years ago it was common for every undergraduate math major to take a
course in synthetic projective geometry. Sadly, the analytic version the subject is so
technical that it is usually only studied by graduate students.

• The set O(n)/[O(k)×O(n− k)] is called a Grassmann manifold or a Grassman variety.
It is important for the study of vector bundles in physics.
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• I understand that this example was challenging. It will not be on the exam. An easier
version of the same argument shows that:{

subsets of size k from
the set {1, . . . , n}

}
←→ Sn

Sk × Sn−k
.

Note that this is related to the binomial coefficients.

To end the lecture I will discuss some easier (but still philosophical) examples.

Definition of Free and Regular Actions. Let G be a group and let X be a set with
structure. We say that an action ϕ : G→ Aut(X) is free if each stabilizer is trivial:

Stabϕ(x) = {ε} for each point x ∈ X.

In this case, every orbit is in bijection with G:

Orbϕ(x) ←→ G/{ε} = G.

If there is only one orbit (i.e., if the action is also transitive) then we say that the action is
regular.16 In this case, each point x ∈ X defines a bijection between X and G:

X ←→ G
ϕg(x) ←→ g.

///

Example: Dihedral and Cyclic Groups. The dihedral group D2n acts by symmetries on
a regular n-sided polygon. This induces transitive actions of D2n on the n-vertices and the
n-edges of the polygon. But is there some set of objects on which the group acts freely?

Answer: Divide the polygon into n isoceles triangles from the center and then divide each of
these into 2 right triangles. Let X be the resulting set of 2n triangles. Then D2n y X is
a regular action, hence for each arbitrary choice of “basepoint” x ∈ X we obtain a bijection
D2n ↔ X. Here are two choices of basepoint when n = 6:

16I don’t like this word too much. I’ll probably just say free and transitive. The term simply-transitive is
also common. The fanciest way to describe a regular action Gy X is to say that X is a G-torsor.
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Note that the two bijections are quite different. We can obtain a geometric model for the
cyclic group C2n = 〈R〉 ⊆ D2n by shading half of the triangles. For example, the group C6

acts freely and transitively on the six shaded triangles in the following picture:

///

If G y X is a regular action, then after choosing a basepoint x ∈ X we can think of X as
a group isomorphic to G, with identity element x. However, no basepoint is better than any
other. Thus, in some sense, we can think of X as a version of G where we have forgotten
which element is the identity. Sometimes this is useful.

Definition of Affine Space. When René Descartes invented Cartesian coordinates (in 1637)
his intention was to model the real world. However, there is one big problem: The Cartesian
space R3 has an origin but the real world does not. Can we fix this problem?

Answer: Let X be a set and let ϕ : (Rn,+,0)→ Perm(X) be a regular action. Then for any
arbitrary basepoint x ∈ X we obtain a bijection X ↔ Rn identifying x ∈ X with 0 ∈ Rn. The
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pair (X,ϕ) is called affine n-dimensional space. This is a better model for the real world. ///

And here is one last example.

Example: Rotations and Reflections of an Icosahedron. Let I ⊆ SO(3) be the group
of rotational symmetries of a regular icosahedron centered at the origin in R3. Can we find
some set of 60 things on which this group acts regularly?

Answer: Consider the “barycentric subdivision” of the icosahedron. This is defined by dividing
each edge at the midpoint and dividing each triangular face into six right triangles. Then color
all of the triangles with two alternating colors, as in the following picture:

The group I acts freely and transitively on the set of blue triangles. If we choose an arbitrary
triangle to play the role of the identity element then we obtain a bijection

{blue triangles} ←→ I.

And what about the other 60 “empty” triangles?17 Let Î ⊆ O(3) be the group of rotation and
reflection symmetries of the icosahedron, which contains the rotations I ⊆ Î as a subgroup.
Then the group Î acts freely and transitively on the set of all 120 triangles, and it follows that

#Î = 120.

[Remark: Note that I ⊆ Î is analogous to the cyclic subgroup Cn ⊆ D2n of the dihedral group.
More generally, for any shape X ⊆ Rn in Euclidean space we have a group of symmetries
Sym(X) ⊆ O(n) and an “alternating subgroup” Alt(X) = Sym(X) ∩ SO(n).]

17KaleidoTile won’t let me use two colors.
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Problem Set 5

1. Quotient Rings. Let (R,+,×, 0, 1) be a commutative ring. Technically: This means
that (1) (R,+, 0) is an abelian group, (2) (R,×, 1) is a commutative monoid (abelian group
without inverses), and (3) for all a, b, c ∈ R we have a(b+ c) = ab+ ac.

(a) Let I ⊆ R be an additive subgroup and recall that “addition of cosets” is well-defined:

(a+ I) + (b+ I) = (a+ b) + I.

Thus we obtain the quotient group (R/I,+, 0 + I). Now suppose that for all a ∈ R and
b ∈ I we have ab ∈ I. (Jargon: We say that I ⊆ R is an ideal.) In this case prove that
the following “multiplication of cosets” is well-defined:

(a+ I)(b+ I) = (ab) + I.

It follows that (R/I,+,×, 0 + I, 1 + I) is a ring, called the quotient ring. [You do not
need to check all the details.]

(b) Apply part (a) to show that Z/nZ is a ring.

(a) Let I ⊆ R be an ideal and assume that we have a + I = a′ + I and b + I = b′ + I. By
definition this means that a − a′ ∈ I and b − b′ ∈ I, and since I is an ideal this implies that
a(b− b′) ∈ I and (a− a′)b ∈ I. It follows that

ab− a′b′ = ab− ab′ + ab′ − a′b′ = a(b− b′) + (a− a′)b ∈ I,

and hence ab+ I = a′b′ + I.

(b) We will show that nZ ⊆ Z is an ideal. Indeed, for any a ∈ Z and b = nk ∈ nZ we have

ab = a(nk) = n(ak) ∈ nZ.

[Remark: We will say much more about this next semester.]

2. The Fermat-Euler-Lagrange Theorem, Part II. Let (R,+,×, 0, 1) be a ring and let
R× ⊆ R denote the subset of elements that have multiplicative inverses. We call (R×,×, 1)
the group of units.

(a) For all n ∈ Z prove that (Z/nZ)× = {a + nZ : gcd(a, n) = 1}. [Hint: If gcd(a, n) = 1
then we have aZ + nZ = 1Z, hence there exist integers x, y ∈ Z with ax+ ny = 1. This
is sometimes called Bézout’s Identity.]

(b) Euler’s Totient Theorem. Euler’s totient function is defined by φ(n) := #(Z/nZ)×.
For all a ∈ Z with gcd(a, n) = 1 prove that

aφ(n) = 1 mod n.
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(c) Fermat’s Little Theorem. If p ∈ Z is prime and p - a prove that

ap−1 = 1 mod p.

(a) Recall that aZ + nZ = gcd(a, n)Z, and note that the following conditions are equivalent:

(a+ nZ is invertible) ⇐⇒ ∃x ∈ Z, (a+ nZ)(x+ nZ) = 1 + nZ
⇐⇒ ∃x ∈ Z, ax+ nZ = 1 + nZ
⇐⇒ ∃x ∈ Z, 1− ax ∈ nZ
⇐⇒ ∃x ∈ Z, 1 ∈ ax+ nZ
⇐⇒ 1 ∈ aZ + nZ
⇐⇒ 1Z = aZ + nZ
⇐⇒ 1 = gcd(a, n).

(b) Euler’s Totient Theorem. You proved on a previous homework that if (G, ∗, ε) is a
finite abelian group then g#G = ε for all g ∈ G, and I proved in class that the same result
holds for non-abelian groups. Now consider the multiplicative group G = (Z/nZ)× and let
φ(n) := #(Z/nZ)×. From part (a) we know that

(Z/nZ)× = {a+ nZ : gcd(a, n) = 1}.

So consider any a ∈ Z with gcd(a, n) = 1. Then our theorem says that

aφ(n) + nZ = (a+ nZ)φ(n) = 1 + nZ.

In other words, we have aφ(n) = 1 mod n.

(c) Fermat’s Little Theorem. For example, let p be prime. Then since gcd(k, p) = 1 for
all 1 ≤ k ≤ p − 1 we conclude that φ(p) = p − 1. It follows from (b) that for all a ∈ Z with
gcd(a, p) = 1 we have ap−1 = 1 mod p. It only remains to observe that

gcd(a, p) = 1 ⇐⇒ p - a.

3. Chinese Remainder Theorem. In this problem I will use the shorthand notation
[a]n := a+ nZ. Now fix some m,n ∈ Z with gcd(m,n) = 1 and consider the function

ϕ : Z/mnZ → Z/mZ× Z/nZ
[a]mn 7→ ([a]m, [a]n).

(a) Prove that ϕ is well-defined. That is, for all a, a′ ∈ Z prove that

[a]mn = [a′]mn implies [a]m = [a′]m and [a]n = [a′]n.
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(b) For all c ∈ Z prove that m|c and n|c together imply (mn)|c. [Hint: There exist x, y ∈ Z
such that mx+ ny = 1.] Use this conclude that ϕ is injective.

(c) Prove that ϕ is surjective. [Big Hint: Given ([a]m, [b]n) we want to find c ∈ Z such
that [a]m = [c]m and [b]n = [c]n. Try c := any + bmx.]

(d) Prove that ϕ restricts to a bijection

ϕ : (Z/mnZ)× ←→ (Z/mZ)× × (Z/nZ)×.

[Hint: Use the fact that gcd(k, `) = 1 if and only if there exist integers x, y ∈ Z such
that kx+ `y = 1.] It follows that Euler’s totient is multiplicative: φ(mn) = φ(m)φ(n).

(a) Assume that [a]mn = [a′]mn, so that a − a′ ∈ mnZ. Since mnZ ⊆ mZ ∩ nZ this implies
that a− a′ ∈ mZ, hence [a]m = [a′]m, and a− a′ ∈ nZ, hence [a]n = [a′]n.

(b) Let c ∈ Z and assume that m|c and n|c. Say c = mm′ and c = nn′ for some m′, n′ ∈ Z.
Then since gcd(m,n) = 1 we have mx+ ny = 1 for some x, y ∈ Z. It follows that

1 = mx+ ny,

c = cmx+ cny = nn′mx+mm′ny = mn(n′x+m′y),

and hence (mn)|c. To see that ϕ is injective, suppose that we have ([a]m, [a]n) = ([b]m, [b]n)
for some a, b ∈ Z. Since [a]m = [b]m we have m|(a− b) and since [b]m = [b]n we have n|(a− b).
Then since gcd(m,n) = 1, the above result tells us that mn|(a − b) and hence [a]mn = [b]mn
as desired.

(c) It is easy to prove that ϕ is surjective, but it is not so easy to find a formula for the inverse.
To see that ϕ is surjective, note that

• imϕ ⊆ (Z/m× Z/nZ),

• # (Z/mZ× Z/nZ) = #(Z/nZ) ·#(Z/nZ) = mn,

• and #imϕ = #(Z/mnZ) = mn because ϕ is injective.

If follows that imϕ = Z/mZ× Z/nZ.

Now for the tricky part. For any element ([a]m, [b]n) our goal is to find some c ∈ Z such
that ϕ([c]mn) = ([a]m, [b]n). Since gcd(m,n) = 1 we know that there exist some x, y ∈ Z such
that mx+ ny = 1. Now define c := any + bmx and observe that

[c]m = [any +���bmx]m = [any]m = [a(1−mx)]m = [a−���amx]m = [a]m,

[c]n = [���any + bmx]n = [bmx]n = [b(1− ny)]n = [b−��bny]n = [b]n.

If follows that ϕ([c]mn) = ([c]m, [c]n) = ([a]m, [b]n) and hence

ϕ−1([a]m, [b]n) = [c]mn = [any + bmx]mn.
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(d) From Problem 2 we know that [a]n is invertible if and only if gcd(a, n) = 1. Thus we need
to show that

gcd(a,mn) = 1 ⇐⇒ gcd(a,m) = 1 and gcd(a, n) = 1.

But we also know that gcd(a, b) = 1 if and only if there exist some x, y ∈ Z with ax+ by = 1.
So let gcd(a,mn) = 1. Then there exist x, y ∈ Z with ax+mny = 1. But then we have

ax+m(ny) = 1 ⇒ gcd(a,m) = 1

and
ax+ n(my) = 1 ⇒ gcd(a, n) = 1.

Conversely, let gcd(a,m) = gcd(n, y) = 1, so there exist integers x, y, x′, y′ ∈ Z with ax+my =
1 and ax′ + ny′ = 1. But then we have

(ax+my)(ax′ + ny′) = 1

a(axx′ + xny′ +myx′) +mn(yy′) = 1,

and it follows that gcd(a,mn) = 1. We have shown that ϕ restricts to a bijection

ϕ : (Z/mnZ)× ←→ (Z/mZ)× × (Z/nZ)×.

In particular, this tells us that φ(mn) = φ(m)φ(n). �

[Remark: For distinct primes p, q this result says that have φ(pq) = φ(p)φ(q) = (p− 1)(q− 1).
Then Euler’s Totient Theorem says that for any integers a, k ∈ Z with gcd(a, pq) = 1 (i.e.,
with p - a and q - a) we have

a(p−1)(q−1) = 1 mod pq,

a(p−1)(q−1)k = 1 mod pq,

a(p−1)(q−1)k+1 = a mod pq.

In fact, one can show that the third equation is still true even when gcd(a, pq) 6= 1. This
equation is the foundation of the RSA Cryptosystem.]

[Another Remark: The Chinese Remainder Theorem was named by Leonard Dickson in 1929.
The name refers to the fact that this result was known in 3rd century China,18 over 1000
years before it was rediscovered in Europe by Euler (1743) and Gauss (1801). The original
application is to solve a system of simultaneous linear congruences. For example, suppose we
want to find all c ∈ Z such that c = 2 mod 3 and c = 3 mod 5. That is, we want to solve the
following system of two linear congruences: [c]3 = [2]3

[c]5 = [3]5


18To be specific, it was discovered by Sunzi. Some authors have tried to rename the result as Sunzi’s Theorem

but it seems to be too late.
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In the language of Problem 3(c) we have (a, b) = (2, 3) and (m,n) = (3, 5). Since m and
n are coprime we can find some x, y ∈ Z such that mx + ny = 1. By trial and error I
found (x, y) = (−3, 2). (For larger numbers I would use the Euclidean Algorithm.) The
theorem/method then tells us that c = any + bmx = 2 · 5 · 2 + 3 · 3 · (−3) = 20− 27 = −7 is
the unique solution mod mn = 15. In other words: [c]3 = [2]3

[c]5 = [3]5

 ⇐⇒ [c]15 = [−7]15 = [8]15.

This method can be extended to many simultaneous congruences by induction.]

4. Automorphisms of a Cyclic Group. For all integers n ∈ Z prove that

Aut(Z/nZ) ∼= (Z/nZ)×.

[Hint: Show that any automorphism ϕ : Z/nZ → Z/nZ has the form ϕa([k]n) := [ak]n for
some integer a ∈ Z satisfying gcd(a, n) = 1.]

Proof. Let ϕ : Z/nZ → Z/nZ be any automorphism and suppose that ϕ([1]n) = [a]n for
some integer 0 ≤ a < n. Since ϕ is a group homomorphism, I will prove by induction that
ϕ([k]n) = [ak]n for all k ∈ Z. Indeed, the statement is true for k = 0 and k = 1. If it’s true
for some k then it’s also true for k + 1 because

ϕ([k + 1]n) = ϕ([k]n + [1]n) = ϕ([k]n) + ϕ([1]n) = [ak]n + [a]n = [a(k + 1)]n.

And if the statement is true for k then it’s also true for −k because

ϕ([−k]n) = ϕ(−[k]n) = −ϕ([k]n) = −[ak]n = [−ak]n = [a(−k)]n.

We have shown that every group homomorphism ϕ : Z/nZ→ Z/nZ has the form ϕa([k]n) :=
[ak]n for some integer 0 ≤ a < n. It remains to show that ϕa is invertible (i.e., an automor-
phism) precisely when gcd(a, n) = 1. Indeed, if gcd(a, n) = 1 then there exists x ∈ Z with
[ax]n = [1]n and it follows that ϕ−1a = ϕx. Conversely, if gcd(a, n) = 1 then we have seen that
[1]n is not in the image of ϕa, hence ϕ is not surjective.

Now I claim that the function

ϕ : (Z/nZ)× → Aut(Z/nZ)
[a]n 7→ ϕa

is a group isomorphism. Indeed, we showed above that this function is surjective. It is well-
defined because multiplication mod n is well defined, and it is injective because ϕa = ϕb
implies [a]n = ϕa([1]n) = ϕb([1]n) = [b]n. Finally, this function is a group homomorphism
since for all a, b, k ∈ Z we have

ϕab([k]n) = [(ab)k]n = [a(bk)]n = ϕa(ϕb([k]n)) = (ϕa ◦ ϕb)([k]n).
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�

5. Matrix Representation of Isometries. Consider the following set of matrices:

G =

{(
A u

0 · · · 0 1

)
: A ∈ O(n) and u ∈ Rn

}
⊆ Matn+1(R).

(a) Prove that G ⊆ Matn+1(R) is a subgroup. [Hint: Block multiplication.]

(b) Use results from class to prove that G is isomorphic to the group Isom(Rn) of isometries
of n-dimensional Euclidean space.

(a) Clearly the identity is in G. To show that G is closed under multiplication, consider any
A,B ∈ O(n) and u,v ∈ Rn. Then using block multiplication gives(

A u

0 · · · 0 1

)(
B v

0 · · · 0 1

)
=

(
AB Av + u

0 · · · 0 1

)
∈ G.

We can also use this formula to compute the inverse. Indeed, if AB = I and Av + u = 0 then
we must have B = A−1 and v = −A−1u. It follows that(

A u

0 · · · 0 1

)−1
=

(
A−1 −A−1u

0 · · · 0 1

)
∈ G.

(b) In class we saw that Isom(Rn) = T (Rn) o Isom0(Rn) is an internal semidirect product,
where T (Rn) = {τu : u ∈ Rn} is the subgroup of translations and Isom0(Rn) is the subgroup
of isometries that fix 0 ∈ Rn. Furthermore, we know that each element f ∈ Isom0(Rn) has
the form f(x) = Ax for some unique orthogonal matrix A ∈ O(n). Let’s call this function
fA(x) := Ax. In summary, each element of Isom(Rn) has the form τu ◦ fA for some unique
vector u ∈ Rn and matrix A ∈ O(n) and the semidirect product structure is given by

(τu ◦ fA) ◦ (τv ◦ fB) = (τu ◦ τAv) ◦ (fA ◦ fB) = τu+Av ◦ fAB.

Now consider the bijection ϕ : Isom(Rn)→ G defined by

τu ◦ fA 7→

(
A u

0 · · · 0 1

)
.

I claim that this is a group isomorphism. Indeed, for all A,B ∈ O(n) and u,v ∈ Rn we have

ϕ(τu ◦ fA)ϕ(τv ◦ fB) =

(
A u

0 · · · 0 1

)(
B v

0 · · · 0 1

)
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=

(
AB Av + u

0 · · · 0 1

)
= ϕ(τAv+u ◦ fAB)

= ϕ ((τu ◦ fA) ◦ (τv ◦ fB)) .

�

[Remark: An affine function Rn → Rn has the form x 7→ Ax+u for some matrix A ∈ Matn(R)
and some vector u. The same trick can be used to represent affine functions as (n+1)×(n+1)
matrices.]

6. Second and Third Isomorphism Theorems.

(a) Let H,K ⊆ G be subgroups with K EG normal. We already know that HK ⊆ G is a
subgroup. Prove that K E HK is a normal subgroup and the map h 7→ hK defines a
surjective group homomorphism H → (HK)/K with kernel H ∩K. It follows that

H

H ∩K
∼=
HK

K
.

(b) Now consider another normal subgroup N EG such that N ⊆ K. Prove that N EK is
normal and that the map gN 7→ gK defines a surjective group homomorphism G/N →
G/K with kernel K/N . It follows that

G/N

K/N
∼=
G

K
.

(a) Let K EG. Since gkg−1 ∈ K for all k ∈ K and g ∈ G, the same is true for all k ∈ K and
g ∈ HK, hence K EHK. Now consider the function

ϕ : H → HK/K
h 7→ hK.

This is a group homomorphism by definition of coset multiplication. To see that ϕ is surjective,
consider any element hk ∈ HK and note that (hk)K = hK because h−1(hk) = k ∈ K. It
follows that (hk)K = ϕ(h) for some h ∈ H. Finally, we will show that kerϕ = H ∩K. Indeed,
if h ∈ H ∩K then we have ϕ(g) = gK = K. Conversely, if ϕ(h) = K for some h ∈ H then we
must have hK = K and hence h ∈ H ∩K. Now the First Isomorphism Theorem says

H

H ∩K
=

H

kerϕ
∼= imϕ =

HK

K
.

�
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(b) Let N ⊆ K with N E G. For the same reason as above, this implies that N EK, hence
the quotient group K/N is defined. Now consider the function

ϕ : G/N → G/K
gN 7→ gK.

To see that this is well-defined, observe that

g1N = g2N =⇒ g−11 g2 ∈ N =⇒ g−11 g2 ∈ K =⇒ g1K = g2K.

Then ϕ is a surjective group homomorphism by definition. Finally, we will show that kerϕ =
K/N . Indeed, if kN ∈ K/N then we have ϕ(kN) = kK = K. Conversely, if ϕ(gN) = gK = K
then we must have g ∈ K and hence gN ∈ K/N . Now the First Isomorphism Theorem says

G/N

K/N
=
G/N

kerϕ
∼= imϕ =

G

K
.

�

[Remark: There is not much to do here once you know the definition of the maps. If G is
finite then the Third Isomorphism Theorem doesn’t tell us anything new about cardinality,
but the Second Isomorphism Theorem and Lagrange’s Theorem tell us that

#(HK) =
#H ·#K
#(H ∩K)

.

It turns out that this formula is still true even when HK ⊆ G is not a subgroup. You will
prove a generalization of this on the next homework using the Orbit-Stabilizer Theorem.]

7. Dimension of a Vector Space, Part II. Let V be a vector space over a field F.

(a) Let u1, . . . ,un ∈ V be a basis and consider the subspaces Vk := F(u1, . . . ,uk) ⊆ V .
Prove for all 0 ≤ k < n that there is no subspace U satisfying

Vk ( U ( Vk+1.

(b) Conversely, suppose that we have a maximal chain of subspaces

{0} = V0 ( V1 ( · · · ( Vn = V.

Prove by induction that Vk has a basis of size k, hence dim(Vk) = k. Parts (a) and (b)
together show that dimension equals the length of a maximal chain of subspaces

(c) If U ⊆ V is a subspace you may assume that the quotient group V/U is a vector space.
Prove that dim(V/U) = m if and only if there exists a maximal chain of subspaces

U = V0 ( V1 ( · · · ( Vm = V.

[Hint: You may assume that the Correspondence Theorem and the First Isomorphism
Theorem still hold after replacing the word “subgroup” with “subspace.”19]

19For that matter, the Second and Third Isomorphism Theorems also hold.
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(d) Prove that dim(V ) = dim(U) + dim(V/U). [Hint: Combine (a), (b) and (c).]

(e) Rank-Nullity Theorem. For any linear function ϕ : V →W prove that

dim(V ) = dim(kerϕ) + dim(imϕ).

(a) Suppose that we have Vk ( U ⊆ Vk+1 for some subspace U . Choose some vector u ∈ U−Vk.
Since u ∈ Vk+1 there exist scalars a1, . . . , ak+1 ∈ F such that

u = a1u1 + a2u2 + · · ·+ ak+1uk+1.

But since u 6∈ Vk we know that ak+1 6= 0. It follows that

uk+1 = u− a1
ak+1

u1 −
a2
ak+1

u2 − · · · −
ak
ak+1

uk ∈ U,

which implies that Vk+1 ⊆ U and hence U = Vk+1.

(b) For the base case we will show that dim(V1) = 1. To do this, choose any vector u ∈ V1−{0}.
Then since {0} ( Fu ⊆ V1 and since the chain is maximal, we must have Fu = V1 which
implies that u is a basis for V1.

Now assume for induction that u1, . . . ,uk ∈ Vk is a basis and choose an arbitrary vector
uk+1 ∈ Vk+1 − Vk. I claim that u1, . . . ,uk+1 is a basis for Vk+1. To see this that this is a
spanning set, observe that

Vk ( F(u1,u2, . . . ,uk+1) ⊆ Vk+1.

Then since the chain is maximal we must have Vk+1 = F(u1, . . . ,uk+1). To see that the set is
independent, consider any scalars a1, . . . , ak+1 ∈ F such that

a1u1 + a2u2 + · · ·+ ak+1uk+1 = 0.

If ak+1 6= 0 then we obtain uk+1 = −(a1/ak+1)u1 − · · · − (ak/ak+1)uk ∈ Vk, which is a
contradiction. Therefore we must have ak+1 = 0. But then since u1, . . . ,uk is an independent
set we must also have a1 = a2 = · · · = ak = 0. It follows that u1, . . . ,uk+1 ∈ Vk+1 is a basis
and hence that dim(Vk+1) = k + 1.

[Remark: Putting (a) and (b) together tells us that the dimension of a (finite-dimensional)
vector space V equals the length of any maximal chain in the lattice of subspaces L (V ).
In particular, any two maximal chains of subspaces have the same length. This is a specific
example of the Jordan-Hölder Theorem for modules over a ring.]

(c) Let U ⊆ V be any subspace. The Correspondence Theorem for subspaces says that the
map W 7→ W/U is a poset isomorphism from the lattice of subspaces U ⊆ W ⊆ V to the
lattice of subspaces of V/U :

L (V,U)
∼−→ L (V/U)

W 7→ W/U.
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It follows that a maximal chain in the poset L (V/U) has the same length as a maximal chain
in the poset L (V,U).

(d) Suppose that dim(U) = k and dim(V/U) = `. From parts (a), (b), (c) we know that there
exist maximal chains of subspaces

{0} = U0 ( U1 ( · · · ( Uk = U and U = V0 ( V1 ( · · · ( V` = V.

But then
{0} = U0 ( U1 ( · · · ( Uk = V0 ( V1 ( · · · ( V` = V

is also a maximal chain of subspaces and it follows from part (b) that

dim(V ) = k + ` = dim(U) + dim(V/U).

(e) Rank-Nullity Theorem. Let ϕ : V → W be any linear function. Then the First
Isomorphism Theorem gives us an isomorphism of vector spaces

V/ kerϕ ∼= imϕ

and it follows from part (d) that

dim(imϕ) = dim(V/ kerϕ) = dim(V )− dim(kerϕ).

�

[Remark: In elementary linear algebra the subspaces kerϕ ⊆ V and imϕ ⊆ W are called the
nullspace and the range of the linear function ϕ. The dimensions dim(kerϕ) and dim(imϕ)
are called the nullity and the rank of ϕ. Hence the name of the theorem. The elementary
proof (which is quite different from our proof) uses the Reduced Row Echelon Form of the
corresponding dim(W )× dim(V ) matrix [ϕ] to show that

dim(imϕ) = #(pivot columns in RREF of [ϕ])

dim(kerϕ) = #(non-pivot columns in RREF of [ϕ]),

and hence
dim(imϕ) + dim(kerϕ) = #(columns in [ϕ]) = dim(V ).

The most important consequence of this theorem says that if dim(V ) = dim(W ) (i.e., if [ϕ] is
a square matrix) then we have

(ϕ is injective)⇐⇒ kerϕ = {0}
⇐⇒ dim(kerϕ) = 0

⇐⇒ dim(imϕ) = dim(V )

⇐⇒ dim(imϕ) = dim(W )

⇐⇒ imϕ = W

⇐⇒ (ϕ is surjective).

This can be used to show that that AB = I implies BA = I for any square matrices A,B
over a field. Of course, we already had a slightly easier proof of that fact.]
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Week 11

This week we will apply the Orbit-Stabilizer Theorem to a group acting on itself. Recall that
a group G acts on itself in two basic ways:

• Translation. For any g ∈ G we define the function τg : G → G by τg(a) := ga. Then
one can show that the map g 7→ τg defines a group homomorphism

τ : G→ Perm(G).

• Conjugation. For any g ∈ G we define the function κg : G → G by κg(a) := gag−1.
Then one can show that the map g 7→ κg defines a group homomorphism

κ : G→ Aut(G).

First let’s deal with translation.

Orbit-Stabilizer for Translation. We already know that the kernel of τ is trivial, which
implies that G is isomorphic to the group of permutations im τ ⊆ Perm(G). (Jargon: We say
that τ is a faithful action. This is another way to state Caley’s Theorem.) Now I claim that
translation is free and transitive.20

Proof.

• Free. For all a ∈ G we want to show that Stabτ (a) ⊆ G is the trivial group. So consider
any elememnt g ∈ Stabτ (a). By definition we have a = τg(a) = ga, and multiplying by
a−1 on the right gives g = ε. We conclude that Stabτ (a) = {ε} for all a ∈ G.

• Transitive. For all a, b ∈ G we want to show that there exists some group element
g ∈ G with τg(a) = b. Simply take g = ba−1. Then we have

τg(a) = τba−1(a) = (ba−1)a = b.

�

Now that we know the orbits and stabilizers, let’s see what the Orbit-Stabilizer Theorem tells
us. For each a ∈ G we have Orbτ (a) = G and G/Stabτ (a) = G/{ε} = G. Thus we obtain a
bijection from G to itself:

G = Orbτ (a) ←→ G/ Stabτ (a) = G
ga ←→ g.

Note that we can explicitly describe the bijection G = G/ Stabτ (a) → Orbτ (a) = G as
multiplication on the right by a. It’s a bit interesting that multiplication on the right

20We already proved this for the abelian group G = (Rn,+,0). Now we’ll show that it holds in general.
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comes into play (since the action is by left multiplication). Otherwise, there’s not much going
on here. ///

Orbit-Stabilizer for conjugation is much more interesting.

Orbit-Stabilizer for Conjugation: The Class Equation. Recall that the kernel of the
conjugation action is the set of group elements that commute with everything. We call this
the center [Z is for Zentrum] of G:

Z(G) := kerκ = {g ∈ G : κg = id}
= {g ∈ G : κg(a) = a for all a ∈ G}
= {g ∈ G : gag−1 = a for all a ∈ G}
= {g ∈ G : ga = ag for all a ∈ G}.

Being a kernel, we know that the center Z(G) E G is a normal subgroup. Observe that
Z(G) = G if and only if G is abelian. The orbits and stabilizers also have special names:

• Conjugacy Classes. For all a ∈ G we define the conjugacy class [K is for Klasse]:

K(a) := Orbκ(a) = {gag−1 : g ∈ G}.

• Centralizers. For all a ∈ G we define the centralizer [Z is for Zentrum again]:

Z(a) := Stabκ(a) = {g ∈ G : gag−1 = a} = {g ∈ G : ga = ag}.

Thus for each group element a ∈ G the Orbit-Stabilizer Theorem gives us a bijection between
elements of the conjugacy class K(a) and the set G/Z(a) of left cosets of the centralizer:

K(a) ←→ G/Z(a)

gag−1 ←→ gZ(a).

We will combine these facts to obtain a useful formula. First, observe for all a ∈ G that

K(a) = {a} ⇐⇒ Z(a) = G ⇐⇒ a ∈ Z(G).

This suggests that we should collect the singleton conjugacy classes together. If a1, a2, . . . , ak ∈
G is an arbitrary system of conjugacy class representatives, then we obtain a disjoint union:

G =
∐

K(ai) =
∐

K(ai)={ai}

{ai}
⋃ ∐

K(ai)6={ai}

K(ai)

=
∐

ai∈Z(G)

{ai}
⋃ ∐

K(ai)6={ai}

K(ai)

= Z(G)
⋃ ∐

K(ai)6={ai}

K(ai).
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And if G is finite then we apply the Orbit-Stabilizer Theorem to obtain

#G = #Z(G) +
∑

K(ai)6={ai}

#K(ai)

#G = #Z(G) +
∑

Z(ai) 6=G

#G/#Z(ai).

This last formula is called the class equation. It is surprisingly useful. ///

The main application of the “class equation” is to study how the size of a finite group affects
its structure. This general topic is called “Sylow theory.” I have decided not to go very far
in this direction; the next theorem will give you just a taste.

Theorem (Groups of size p2). Let p ∈ Z be prime and let G be a group of size p2. Then:

(1) G is abelian,

(2) G is isomorphic to Z/p2Z or Z/pZ× Z/pZ.

///

To prove this we need two basic lemmas.

Lemma 1. Any group of size p is cyclic.

Proof. Let #G = p be prime and consider any non-identity element ε 6= g ∈ G. By Lagrange’s
Theorem, the cyclic subgroup 〈g〉 ⊆ G has size dividing p. Since p is prime this means that
#〈g〉 = 1 or #〈g〉 = p. But since g 6= ε we know that 〈g〉 6= {ε}, and it follows that #〈g〉 = p.
Finally, since 〈g〉 ⊆ G and #〈g〉 = #G we conclude that G = 〈g〉. �

Lemma 2. If the quotient group G/Z(G) is cyclic then G is abelian.

Proof. Recall that Z(G) E G is a normal subgroup. Assume that the quotient G/Z(G) is a
cyclic group. This means there exists an element g ∈ G such that every left coset of Z(G) has
the form (gZ(G))k = gkZ(G) for some k ∈ Z. Then since the cosets cover G it follows that
every element of G has the form gkz for some k ∈ Z and z ∈ Z(G). Finally, if gk1z1 and gk2z2
are any two elements of G then since z1, z2 commute with everything, and since

gk1gk2 = gk1+k2 = gk2+k1 = gk2gk1 ,
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we conclude that

(gk1z1)(g
k2z2) = gk1gk2z1z2 = gk2gk1z2z1 = (gk2z2)(g

k1z1).

�

Proof of the Theorem. Let p ∈ Z be prime and let G be a group of size p2.

(1) To prove that G is abelian, we consider the class equation:

p2 = #G = #Z(G) +
∑

Z(ai)6=G

#G/#Z(ai)

Let Z(ai) ⊆ G be any centralizer. From Lagrange’s Theorem we know that #Z(ai) divides
#G = p2, which implies that #Z(ai) ∈ {1, p, p2}. But if Z(ai) 6= G then we must have
#Z(ai) ∈ {1, p} and hence #G/#Z(ai) ∈ {p, p2}. Thus p divides the sum∑

Z(ai)6=G

#G/#Z(ai),

which implies that p divides the size of the center:

#Z(G) = p2 −
∑

Z(ai)6=G

#G/#Z(ai) = p2 − (some multiple of p).

Since Z(G) E G is a subgroup, Lagrange tells us that #Z(G) ∈ {1, p, p2} and the previous
formula tells us that #Z(G) ∈ {p, p2}. Thus there are two possible cases:

• If #Z(G) = p2 then we have Z(G) = G which implies that G is abelian as desired.

• If #Z(G) = p then G is not abelian because Z(G) 6= G. I will show that this case is
impossible. Indeed, if #Z(G) = p then we must have #(G/Z(G)) = #G/#Z(G) =
p2/p = p. But then Lemma 1 says that G/Z(G) is cyclic and Lemma 2 says that G is
abelian. Contradiction.

(2) Now we will prove that G ∼= Z/p2Z or G ∼= Z/pZ× Z/pZ. For each non-identity element
g ∈ G−{ε} we know from Lagrange’s Theorem that the order #〈g〉 6= 1 divides #G = p2 and
hence #〈g〉 ∈ {p, p2}. Now there are two cases:

• Suppose that there exists some element g ∈ G − {ε} such that #〈g〉 = p2. Then we
conclude that G = 〈g〉 ∼= Z/p2Z.

• Otherwise we must have #〈g〉 = p for all g ∈ G−{ε}. So choose some arbitrary element
g ∈ G − {ε} and then choose an arbitrary element h ∈ G − 〈g〉. I claim that G is an
internal direct product:

G = 〈g〉 × 〈h〉 ∼= Z/pZ× Z/pZ.
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To see this, first note that 〈g〉 ∩ 〈h〉 ⊆ 〈g〉 is a subgroup. Thus by Lagrange we have

#(〈g〉 ∩ 〈h〉) ∈ {1, p}.

If #(〈g〉 ∩ 〈h〉) = p then we have 〈g〉 ∩ 〈h〉 = 〈g〉 which contradicts the fact that h 6∈ 〈g〉.
Therefore 〈g〉 ∩ 〈h〉 = {ε}. Now consider the multiplication map

µ : 〈g〉 × 〈h〉 → G

(gk, h`) 7→ gkh`.

Since 〈g〉 ∩ 〈h〉 = {ε} we know that µ is injective, hence the image 〈g〉〈h〉 = imµ ⊆ G
has size #(〈g〉 × 〈h〉) = p2, which implies that G = 〈g〉〈h〉. Finally, since G is abelian
we know that each of 〈g〉EG and 〈h〉EG is normal.

�

Remarks:

• The first part of the theorem fails for higher powers of p. For example, not every group
of size 23 is abelian. Proof: D8 is not abelian.

• For abelian groups of size pk, the second part of the theorem still holds. That is, any
abelian group of size pk is a direct product of cyclic groups. The different ways to do
this correspond to the different partitions of the integer k. For example, here are the
non-isomorphic abelian groups of size p4:

– Z/p4Z,

– Z/p3Z× Z/p,

– Z/p2Z× Z/p2Z,

– Z/p2Z× Z/pZ× Z/pZ,

– Z/pZ× Z/pZ× Z/pZ× Z/pZ.

This result is rightly seen as a theorem of advanced linear algebra, which is outside the
scope of this course. The correct proof uses the Smith Normal Form of a matrix over Z.

• You might wonder if there is a formula for counting these abelian p-groups. Let P (k) be
the number of ways to partition the integer k, i.e., the number of non-isomorphic abelian
groups of size pk. Hardy and Ramanujan proved in 1918 that this number satisfies

P (k) ∼ 1

4k
√

3
· exp

(
π

√
2k

3

)
as k →∞.

There is no closed formula.

• It is less difficult to prove that every finite abelian group is a direct product of abelian
p-groups. You will prove this on the next homework, assuming that the famous “Sylow
Theorems” are true.
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I will just state the Sylow Theorems without proof and give a slick application. These are
named for the Norwegian mathematician Ludwig Sylow (1832–1918). One can view these
theorems as a partial converse to Lagrange’s Theorem.

The Sylow Theorems (1872). Let G be a finite group of size #G = pkm where p is prime
and gcd(p,m) = 1. Then:

(1) There exists at least one subgroup H ⊆ G of size #H = pk.

(2) Any two subgroups H1, H2 of size pk are conjugate. In other words, there exists some
g ∈ G such that H2 = gH1g

−1. It follows that a subgroup of size pk is normal if and
only if it is unique.

(3) Let np be the number of subgroups of size pk. Then np|m and np = 1 mod p.

///

You can find a proof in any advanced textbook on group theory. Here’s a cute application.

Application of Sylow. Let p, q, r be distinct primes. Any group is size pqr is not simple.

Proof. Suppose that #G = pqr with p < q < r prime. Let np, nq, nr be the numbers of
subgroups of size p, q, r, respectively. If any of np, nq, nr equals 1 then from Sylow (2) we
obtain a non-trivial normal subgroup. So assume for contradiction that np, nq, nr > 1. Then
from Sylow (3) we have nr = pq, nq ∈ {r, pr} and np ∈ {q, r, qr}, hence nq ≥ r and np ≥ q. By
Lagrange’s Theorem we see that any two subgroups with sizes in {p, q, r} intersect trivially
(i.e., they are equal or they intersect at the identity). By counting the elements of these
subgroups we obtain

pqr = #G ≥ np(p− 1) + nq(q − 1) + nr(r − 1) + 1

≥ q(p− 1) + r(q − 1) + pq(r − 1) + 1

= (��pq − q) + (qr − q) + (pqr −��pq) + 1

= pqr + (qr − q − r + 1)

= pqr + (q − 1)(r − 1),

and hence 0 ≥ (q − 1)(r − 1). This contradicts the fact that (q − 1) > 0 and (r − 1) > 0. �

Here is a picture of the counting method we used:

148



[Remark: Using similar tricks with Sylow theory, one can show that no non-abelian group of
size < 60 is simple. Some people think these tricks make good exam problems but I don’t
agree. I prefer to ask about generalities.]

Week 12

To end this course, I want to complete our discussion of the quintic equation and the icosa-
hedral group. Namely, I will prove that the group I ⊆ SO(3) of rotational symmetries of
a regular icosahedron is a simple group.21 This is related to the solvability of the quintic
equation because of an “accidental isomorphism” with the alternating group A5:

I ∼= A5.

Before discussing the group A5, I will state a general theorem about alternating groups.

If G is a finite group, recall that a composition series consists of a chain of subgroups

G = G0 ) G1 ) · · · ) G` = {ε}

in which each quotient group Gi/Gi+1 exists and is simple (i.e., has no non-trivial normal
subgroup). Recall from the Jordan-Hölder Theorem that the list of simple groups {Gi/Gi+1}i

21In fact, the infinite group SO(3) is also simple, but this is beyond the scope of the course.
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is the same (up to isomorphism and permutation) for any two composition series of G. These
unique simple groups are called the composition factors of G. Recall further that the group G
is called solvable when its composition factors are abelian (i.e., have the form Z/pZ for various
primes p). We have already proved that the symmetric group Sn is not solvable when n ≥ 5.
Now we will be more specific.

Theorem (Composition Factors of Sn). Let n ≥ 5 and consider the symmetric group Sn.
Let An ⊆ Sn be the alternating subgroup. Then we have:

• An E Sn is the only non-trivial normal subgroup of Sn,

• An is simple.

It follows from this that the group Sn has a unique composition series:

Sn ) An ) {id}.

Hence the simple composition factors are Sn/An ∼= Z/2Z and An/{id} ∼= An. ///

Remarks:

• Now we see that the group Sn is not solvable (for n ≥ 5) because the composition factor
An is not abelian. It’s just an accident of nature that all simple groups smaller than A5

are abelian.

• One might even say that the group Sn is “almost simple,” except for the piddly factor
of Z/2Z. After all, #An = n!/2 is much larger than #Z/2Z = 2.

• Similar theorems say that the matrix groups GLn(F), O(n) and U(n) are “almost simple”
(i.e., simple except for a piddly quotient). However these results are quite involved and
are never proved in undergraduate courses.

• Some undergraduate books do give a proof that An is simple (for n ≥ 5), but this proof
is also not very nice. Michael Artin only included the proof in the second edition of his
book. I think it’s fair to omit the proof entirely. In this course we will only discuss the
special case n = 5.

Now we will prove the theorem in the case n = 5. In other words, we will prove that

• A5 is the only non-trivial normal subgroup of S5,

• A5 is simple.
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Both of these proofs will use the following trick.

Trick. Let N EG be a normal subgroup. Then N is a union of conjugacy classes.

Proof. Let κ : G → Aut(G) be the conjugation action consider any element n ∈ N . Then
since N is normal, we have gng−1 ∈ N for all g ∈ G and hence

Orbκ(n) = {gng−1 : g ∈ G} ⊆ N.

It follows that ⋃
n∈N

Orbκ(n) ⊆ N.

On the other hand, we obviously have

N ⊆
⋃
n∈N

Orbκ(n)

because n ∈ Orbκ(n) for all n ∈ N . �

The reason this trick is useful is because sometimes we can compute the sizes of all the
conjugacy classes. Then by using Lagrange’s Theorem we can dramatically narrow the search
for normal subgroups. To see how this works, let’s compute the sizes of the conjugacy classes
in the symmetric group. We might as well do this for general n.

Theorem (Sizes of Conjugacy Classes in Sn). Let κ : Sn → Aut(Sn) be the conjugation
action and consider any permutation f ∈ Sn. Recall that the conjugacy class K(f) := Orbκ(f)
consists of all permutations that have the same “cycle structure” as f (i.e., the same number
of cycles of each length). To be specific, let’s say that the cycle decomposition of f contains
contains mi cycles of length i, for each i ∈ {1, 2, . . . , n}. Then we have

#K(f) =
n!

1m1m1! 2m2m2! · · ·nmnmn!
.

///

Before proving this, let’s test some simple examples. Note that the identity permutation
id ∈ Sn has m1 = n cycles of length 1 and mi = 0 cycles of length i for each i ∈ {2, 3, . . . , n}.
Thus the formula gives

#K(id) =
n!

1nn! 200! · · ·n00!
=
n!

n!
= 1.

This is correct because the identity is only conjugate to itself. Next, let’s count the conjugacy
class of transpotitions (2-cycles), which has m1 = n−2, m2 = 1 and mi = 0 for i ∈ {3, . . . , n}.
If t ∈ Sn is any transposition then the formula gives

#K(t) =
n!

1n−2(n− 2)! 211! 300! · · ·n00!
=

n!

2(n− 2)!
=

n!

2!(n− 2)!
=

(
n

2

)
.
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This is correct because each transposition (ij) ∈ Sn corresponds to a choice of two elements
i 6= j from the set {1, 2, . . . , n}.

Proof of the Theorem. We will use the Orbit-Stabilizer Theorem. Let f ∈ Sn and recall
that the stabilizer under conjugation is called the centralizer:

Z(f) := Stabκ(f) = {g ∈ Sn : gfg−1 = f}.

Now suppose that the permutation f has mi cycles of length i for each i ∈ {1, 2, . . . , n}. By
Orbit-Stabilizer we have #K(f) = #Sn/#Z(f) = n!/#Z(f), thus our goal is to prove that

#Z(f) = 1m1m1! 2m2m2! · · ·nmnmn!.

To see this, suppose that (j1, j2, . . . , ji) is one of the cycles of f . This means that

f(j1) = j2, f(j2) = j3, · · · f(jm−1) = jm and f(jm) = j1.

Then for any g ∈ Sn we see that (g(j1), g(j2), . . . , g(ji)) is a cycle of gfg−1. (You proved this
on a previous homework.) If g ∈ Z(f) (i.e., if gfg−1 = f) then this cycle must equal one of
the cycles of f . If there is only one cycle of length i (i.e., if mi = 1) then we must have

(j1, j2, . . . , ji) = (g(j1), g(j2), . . . , g(ji)).

In this case there are exactly i ways to choose the values g(j1), g(j2), . . . , g(ji) ∈ {j1, j2, . . . , ji}
since we are only allowed to rotate the cycle. If mi > 1 then we can also permute the various
i-cycles. There are mi! ways to do this and then there are i · i · i · · · i = imi ways to rotate each
of the cycles. Hence there are imimi! different ways to choose the values inside the i-cycles of
gfg−1. Since the choices for different values of i are independent, the total number of ways
to choose a permutation g ∈ Z(f) is

#Z(f) =

n∏
i=1

#(ways to fill the i-cycles) =

n∏
i=1

imimi!.

�

The notation in that proof is terrible. Hopefully an example will be more convincing.

Example: Conjugacy Classes and Normal Subgroups of S5. Recall that the conjugacy
classes of S5 consist of permutations with the same number of i-cycles for each i. There are two
equivalent ways to encode this “cycle structure.” First, since the order of the cycles doesn’t
matter we will record the lengths of the cycles in a vector λ = λ1λ2λ3λ4λ5, where

• λ1 ≥ λ2 ≥ λ3 ≥ λ5 ≥ λ5 ≥ 0,

• λ1 + λ2 + λ3 + λ4 + λ5 = 5.
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Thus the set of possible vectors λ is {50000, 41000, 32000, 31100, 22100, 21110, 11111}. Second,
we will write m = m1m2m3m4m5, where mi is the number of cycles of length i. These numbers
must satisfy

• mi ≥ 0 for all i ∈ {1, 2, 3, 4, 5},

• 1m1 + 2m2 + 3m3 + 4m4 + 5m5 = 5.

Thus the set of possible vectors m is {00001, 10010, 01100, 20100, 12000, 31000, 50000}. Now
we have the following table recording the sizes of the conjugacy classes and centralizers in S5:

λ m #Z #K

50000 00001 51 · 1! = 5 120/5 = 24

41000 10010 11 · 1! · 41 · 1! = 4 120/4 = 30

32000 01100 21 · 1! · 31 · 1! = 6 120/6 = 20

31100 20100 12 · 2! · 31 · 1! = 6 120/6 = 20

22100 12000 11 · 1! · 22 · 2! = 8 120/8 = 15

21110 31000 13 · 3! · 21 · 1! = 12 120/12 = 10

11111 50000 15 · 5! = 120 120/120 = 1

Note that λ = 11111 corresponds to the conjugacy class {id} and λ = 21110 corresponds to
the conjugacy class of 2-cycles {(12), (13), . . . , (45)}, which has

(
5
2

)
= 10 elements. For the

rest of the calculation, we can tell that we didn’t make a mistake because the sizes of the
conjugacy classes add up to the size of the group:

24 + 30 + 20 + 20 + 15 + 10 + 1 = 120 = 5! = #S5.

I find this example more convincing than the general proof above. That’s often how it goes
with combinatorics. Now let’s use this information to find all the normal subgroups.

Theorem. The alternating group A5 E S5 is the only non-trivial normal subgroup of S5.

Proof. Recall that a normal subgroup N E S5 is a union of conjugacy classes, which must
include the class {id}. We also know from Lagrange’s Theorem that #N divides #S5. Let
Kλ ⊆ S5 be the conjugacy class with cycle type λ. Then combining all of these restrictions
leaves only three possible normal subgroups:

N = K11111 ∪K22100 ∪K50000,

N ′ = K11111 ∪K22100 ∪K31100 ∪K50000,

N ′′ = K11111 ∪K22100 ∪K32000 ∪K50000.

It is easy to check that N ′ = A5 and that the sets N,N ′′ ⊆ S5 are not subgroups. If follows
that A5 E S5 is the only non-trivial normal subgroup of S5. �

Obviously this proof won’t work for higher values of n. For general n we should first prove
that An is simple, then use that fact to prove that Sn has no other normal subgroups. (See
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the homework.) We will only prove this for n = 5 because I don’t know a nice general proof.22

The conjugacy classes of A5 are a bit tricky to describe so we will use the following strategy:

(1) Prove that the icosahedral group I ⊆ SO(3) is simple.

(2) Then prove that I ∼= A5. This isomorphism is just a lucky accident, resulting from
the fact that 60 is a relatively small number. Felix Klein made a big deal of this lucky
accident in his Lectures on the Icosahedron (1888).

Theorem. The icosahedral group I ⊆ SO(3) is simple.

Proof. We will use the fact that the conjugacy classes have geometric meaning. Recall that two
invertible matrices A,B ∈ GLn(R) are conjugate if and only if they represent the same linear
function after a change of basis. More specifically, two matrices A,B ∈ I are conjugate in I if
and only if they represent the same function after a rotational symmetry of the icosahedron.
Thus we obtain the following table of conjugacy classes:

description of the conjugacy class number of elements

{id} 1
{rotate by ±2π/5 around a vertex} 12
{rotate by ±4π/5 around a vertex} 12
{rotate by π around an edge} 15
{rotate by ±2π/3 around a face} 20

We know that we didn’t make a mistake because

1 + 12 + 12 + 15 + 20 = 60 = #I.

Now let’s look for normal subgroups. Recall that any normal subgroup N EI must be a union
of conjugacy classes, which must include the identity class {id}. Furthermore, we know from
Lagrange that #N divides #I. It is easy to check that there is no non-trivial solution to this
combinatorial problem. �

Theorem. The icosahedral group I ⊆ SO(3) is isomorphic to the alternating group A5 ⊆ S5.

Proof. I will follow the proof from Artin’s book. The proof relies on the strange fact that 5
cubes can be inscribed in a regular icosahedron. To be specific, consider the midpoints of the
20 triangular faces. It turns out that certain collections of 8 midpoints can be joined up into
a cube, and that there are exactly 5 different ways to do this. Here is one of the cubes:

22See the second edition of Artin for a not-nice proof.
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Now any isometry f ∈ I will send cubes to cubes, therefore we obtain a group homomorphism

ϕ : I → Perm({5 cubes}) ∼= S5.

Since kerϕ E I is a normal subgroup and since I is simple, we must have kerϕ = {id} or
kerϕ = I. But the second choice is impossible because clearly some element of I moves the
cubes. Therefore we have kerϕ = {id} and hence ϕ is injective. It follows from the First
Isomorphism Theorem that I is isomorphic to its image:

I ∼= I/ kerϕ ∼= imϕ ⊆ S5.

Now it only remains to show that imϕ = A5. To do this we consider the determinant
homomorphism det : Sn → {±1} and recall that A5 = ker(det). Consider the composition of
these homomorphisms:

det ◦ϕ : I → {±1}.

Again, since ker(det ◦ϕ) E I is a normal subgroup and since I is simple, we must have
ker(det ◦ϕ) = {id} or ker(det ◦ϕ) = I. This time the first choice is impossible because I has
more elements than {±1}. It follows that ker(det ◦ϕ) = I and hence

imϕ ⊆ ker(det) = A5 ⊆ S5.

Finally, since #imϕ = #I = #A5 = 60, we conclude that imϕ = A5 as desired. �

This concludes our study of S5 and the icosahedron. Next semester we will see what this has
to do with the general quintic equation.
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But I don’t want to end it there. Let me just say a few final words about simple groups. Recall
from the Jordan-Hölder Theorem that every finite group G has a unique collection of simple
composition factors. These are something like the “prime factors” of the group. This suggests
a strategy for classifying all finite groups, which is sometimes called Hölder’s Program because
the project was begun by Otto Hölder (1859–1937):

• Classify all finite simple groups.

• Describe all ways of putting them together.

The second problem is far too difficult to have a nice solution. The first problem, on the
other hand, turns out to be solvable. After 100 years of intense work by generations of group
theorists, the full classification of finite simple groups was announced by Daniel Gorenstein in
1983. The details are complicated but the general outline is easy to describe.

Theorem (The Classification of Finite Simple Groups). There exist three infinite
families of finite simple groups:

• Cyclic groups Z/pZ for p prime.

• Alternating groups An for n ≥ 5.

• Groups related toGLn(Z/pZ). This includes finite versions of the orthogonal and unitary
groups, together with a few strange families that we need not mention.23

On top of this, there are exactly 26 so-called “sporadic groups,” which are not related to any
of the infinite families. The largest of these is the Monster group M which has approximately
8× 1053 elements. ///

The amount of work involved in the classification is mind-boggling. The original proof was
spread over tens of thousands of journal pages. Right now some group theorists are working
on a “second generation proof,” which is estimated to fill about 5000 pages. It’s fair to say
that the mathematical community is far from understanding all the details.

As for infinite groups: If we had a few more weeks, I would like to discuss the relationship
between the continuous groups SU(2) and SO(3). This is beautiful topic related to geometry
and physics.24 Of course, we do have another whole semester together, but that semester will
be devoted to a completely different topic (rings, fields and polynomials). See you then.

23Fine, I’ll mention them. There is one more “classical” family Sp(n) coming from the quaternions and then
five “exceptional” families called G2, F4, E6, E7, E8.

24I strongly recommend John Stillwell’s Naive Lie Theory.
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Problem Set 6

1. The Alternating Group A4 is Not Simple. Recall that A4 ⊆ S4 is the subgroup
of permutations of {1, 2, 3, 4} which can be expressed as the product of an even number of
transpositions.

(a) Prove that the following set is a normal subgroup:

V = {id, (12)(34), (13)(24), (14)(23)}EA4.

It follows that A4 is not a simple group.

(b) Furthermore, prove that V ∼= Z/2Z × Z/2Z. The letter V is for Klein’s Viergruppe.
[Once upon a time it was surprising that not every abelian group is cyclic.]

(a) First note that V is a subset of A4 since each element can be expressed by an even number
of transpositions. Next observe that V is a union of two conjugacy classes in S4:

V = {id} ∪ {(12)(34), (13)(24), (14)(23)}
= K1111 ∪K22

= {permutations with four one-cycles} ∪ {permutations with two 2-cycles}.

Therefore if V ⊆ A4 is a subgroup then it will necessarily be normal. So let’s check:

• Identity. We have id ∈ V by definition.

• Inverse. Note that every element f ∈ V has order one or two, hence f−1 = f ∈ V .

• Closed. This is the hardest thing to check and it only works because of a lucky accident
of small numbers:

(12)(34) ◦ (13)(24) = (14)(23),

(12)(34) ◦ (14)(23) = (13)(24),

(13)(24) ◦ (14)(23) = (12)(34).

(b) We know that there are exactly two groups of size p2 for any prime p. Thus to show
that V ∼= Z/2Z × Z/2Z we only need to show that V 6∼= Z/4Z. And this is true because V
contains no element of order 4. Alternatively, one can check directly that V is the internal
direct product of any two distinct non-trivial subgroups, say 〈(12)(34)〉 and 〈(13)(24)〉.

2. Primary Factorization of a Finite Abelian Group. Let G be finite abelian group.

(a) Suppose that there exist subgroupsH,K ⊆ G such that #G = #H·#K and gcd(#H,#K) =
1. In this case, prove that G is an internal direct product:

G = H ×K.
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(b) Now suppose that #G = pe11 · · · penn for distinct primes p1, . . . , pn. The Sylow Theorems
tell us that for each i there exists a unique subgroup Hi ⊆ G of size #H = peii . Use part
(a) and induction to prove that G is the direct product of these subgroups:

G = H1 ×H2 × · · · ×Hn.

This is called the primary factorization of G. It also true that each primary factor Hi

is a product of cyclic subgroups but this is harder to prove.

(c) In the special case that G is cyclic, prove that

G ∼=
Z
pe11 Z

× Z
pe22 Z

× · · · × Z
penn Z

.

This is a non-constructive version of the Chinese Remainder Theorem.

(a) Let G be a finite abelian group and let H,K ⊆ G be subgroups with gcd(#H,#K) = 1
and #H ·#K = #G. Since H ∩K is a subgroup of H and K, Lagrange’s Theorem tells us
that #(H ∩K) is a common divisor of #H and #K, hence #(H ∩K) = ±1. It follows that
#(H ∩K) = 1 and hence H ∩K = {ε}.

This implies that the multiplication map µ : H ∩K → G is injective and hence

#HK = #imµ = #(H ×K) = #H ·#K = #G.

But since HK ⊆ G, this implies that G = HK. Finally, since G is abelian we have H E G
and K EG, which implies that G = H ×K is a direct product.

(b) Now suppose that #G = pe11 p
e2
2 · · · penn for distinct primes p1, p2, . . . , pn. By Sylow there

exists a unique subgroup Hi ⊆ G of size Hi = peii for each i. Now consider the multiplication
map from the external direct product:

µ : H1 ×H2 × · · · ×Hn −→ G

Since G is abelian we know that µ is a group homomorphism. We will use induction on n to
prove that µ is actually a group isomorphism.

The base case n = 2 follows from part (a). Now let n ≥ 2 and assume for induction that the
result holds for n. We will prove that the result still holds for n+1. So let #G = pe11 · · · penn p

en+1

n+1

for some distinct primes p1, . . . , pn, pn+1 and consider the multiplication homomorphism from
the external direct product of Sylow subgroups:

µ : H1 × · · · ×Hn ×Hn+1 −→ G.

To show that µ is bijective, let G′ := H1 · · ·Hn ⊆ G be the image of the first n factors, so we
obtain a surjective group homomorphism:

µ′ : H1 × · · · ×Hn −→ G′ ⊆ G.
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Now the First Isomorphism Theorem and Lagrange tell us that

#G′ = #imµ′ =
#(H1 × · · · ×Hn)

# kerµ′
=
pe11 · · · penn
# kerµ′

= pd11 · · · p
dn
n

for some exponents 0 ≤ di ≤ ei. But since Hi ⊆ G′ is a subgroup for each i ∈ {1, . . . , n},
Lagrange tells us that di = ei and hence #G′ = pe11 · · · penn .

We have shown that H1, . . . ,Hn are the Sylow subgroups of G′, so the induction hypothesis
tells us that µ′ is a bijection. Finally, we conclude that µ is a composition of two bijections,
where the second follows from part (a):

µ : (H1 × · · · ×Hn)×Hn+1
µ′×id−−−→ G′ ×Hn+1 −→ G.

Hence µ is a bijection. �

[Remark: This problem was tricky because I never told you the definition for the internal
direct product of several subgroups H1, . . . ,Hn ⊆ G. There are different ways to define this.
The easiest way is to require that the multiplication map

µ : H1 × · · · ×Hn −→ G

is a group isomorphism.]

(c) This part is much easier. If G is cyclic then we know from the Fundamental Theorem of
Cyclic Groups that every subgroup of G is cyclic. Hence each primary subgroup is cyclic. �

3. Lagrange vs. Rank-Nullity. Let p ∈ Z be prime. You showed on the previous homework
that every nonzero element of the ring Fp := Z/pZ has a multiplicative inverse. In other words,
Fp is a field of size p.

(a) Let V be an n-dimensional vector space over Fp. Prove that #V = pn.

(b) Now let U ⊆ V be a k-dimensional subspace. Show that Lagrange’s Theorem and the
Rank-Nullity Theorem give you the same information about this subspace.

(a) Choose a basis U = {u1, . . . ,un} ⊆ V and consider the function ϕU : Fnp → V defined by

ϕU (a1, a2, . . . , an) := a1u1 + a2u2 + · · ·+ anun.

This function is surjective because U is a spanning set and injective because U is an inde-
pendent set. We conclude that ϕU is a bijection and hence

#V = #Fnp = (#Fp)n = pn.

[Remark: In fact, the function ϕU also preserves addition and scalar multiplication. Hence it
defines an isomorphism of vector spaces V ∼= Fnp .]

159



(b) Now let U ⊆ V be a k-dimensional subspace. We will compute the cardinality of the
quotient space V/U in two ways.

(1) Note that V/U is (in particular) a quotient of abelian groups. Then from part (a) and
Lagrange’s Theorem we have

#(V/U) = #V/#U = pn/pk = pn−k.

(2) We know from the previous homework that dim(V/U) = dim(V ) − dim(U) = n − k.
(This is what I mean by the Rank-Nullity Theorem.) Then from part (a) we have

#(V/U) = pdim(V/U) = pn−k.

Note that we get the same answer.

4. Double Cosets. Let G be a group and let H,K ⊆ G be any subgroups. For each pair
(h, k) ∈ H ×K consider the function ϕ(h,k)(g) := hgk−1.

(a) Prove that this defines a group homomorphism ϕ : H ×K → Perm(G).

(b) For each g ∈ G, prove that the orbit satisfies

Orbϕ(g) = HgK := {hgk : h ∈ H, k ∈ K}.

These orbits are called double cosets. Unlike single cosets, we will see that double cosets
do not all have the same size.

(c) We also have a group action ψ : H → Perm(G/K) defined by ψh(gK) := (hg)K. (Don’t
bother to prove this.) For all g ∈ G prove that HgK is the disjoint union of the cosets
in the ψ-orbit of gK:

HgK =
∐

C ∈Orbψ(gK)

C.

(d) For all g ∈ G prove that Stabψ(gK) = H ∩ gKg−1, where gKg−1 := {gkg−1 : k ∈ K}.

(e) Combine (c) and (d) with Lagrange’s Theorem and Orbit-Stabilizer to conclude that

#HgK =
#H ·#K

#(H ∩ gKg−1)
.

(a) Let H,K ⊆ G be subgroups, and for each pair (h, k) ∈ H × K consider the function
ϕ(h,k) : G→ G defined by ϕ(h,k)(g) := hgk−1. I claim that this defines a group homomorphism

ϕ : H ×K → Perm(G).

There are two things to check:
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• For all (h, k) ∈ H ×K I claim that ϕh,k : G → G is invertible with inverse ϕ(h−1,k−1).
Indeed, for all g ∈ G we have

(ϕ(h,k) ◦ ϕ(h−1,k−1))(g) = h(h−1g(k−1)−1)k−1 = (hh−1)g(kk−1) = g

and
(ϕ(h−1,k−1) ◦ ϕ(h,k))(g) = h−1(hgk−1)(k−1)−1 = (h−1h)g(k−1k) = g.

Hence ϕ(h,k) ∈ Perm(G).

• For all (h1, k1), (h2, k2) ∈ H ×K and g ∈ G we have

(ϕ(h1,k1) ◦ ϕ(h2,k2))(g) = h1(h2gk
−1
2 )k−11 = (h1h2)g(k1k2)

−1 = ϕ(h1h2,k1k2)(g).

It follows that ϕ is a homomorphism from the external direct product H × K to G.
[Remark: This is why we need to apply k−1 on the right instead of k.]

(b) I just want you to observe that Orbϕ(g) = HgK. There’s not really anything to check.
The point is that these double cosets partition the group G.

(c) Assume that ψh(gK) := (hg)K defines a group homomorphism ψ : H → Perm(G/K).
[Remark: We do not assume that K ⊆ G is normal, so G/K is only a set.] Now fix g ∈ G and
consider the orbit Orbψ(gK) ⊆ G/K. By definition this is a set of left cosets of K. I claim
that we have a disjoint union:

HgK =
∐

C∈Orbψ(gK)

C.

There are three things to check:

• Since the left cosets of K partition G, we know that any two non-equal cosets are disjoint.
It follows that ⋃

C∈Orbψ(gK)

C =
∐

C∈Orbψ(gK)

C.

• Any C ∈ Orbψ(gK) has the form C = (hg)K for some h ∈ H. Since (hg)K ⊆ HgK we
conclude that C ⊆ HgK and hence ⋃

C∈Orbψ(gK)

C ⊆ HgK.

• Any element hgk ∈ HgK is contained in the coset C := (hg)K ⊆ Orbψ(gK), hence

HgK ⊆
⋃

C∈Orbψ(gK)

C.
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(d) For any g ∈ G I claim that Stabψ(gK) = H ∩ gKg−1. Indeed, suppose that gkg−1 ∈ H
for some k ∈ K. Then we have

ψgkg−1(gK) = (gkg−1g)K = (gk)K = gK

and hence gkg−1 ∈ Stabψ(gK). Conversely, if h ∈ Stabψ(gK) then we must have

(hg)K = gK =⇒ gthg ∈ K =⇒ h ∈ gKg−1.

(e) Finally, suppose that H and K are finite. Since all left cosets of K have size #K we
conclude from part (c) that

#HgK =
∑

C∈Orbψ(gK)

#C =
∑

C∈Orbψ(gK)

#K = #Orbψ(gK) ·#K.

Then from part (d), Orbit-Stabilizer and Lagrange we have

#HgK = #Orbψ(gK) ·#K =
#H

# Stabψ(gK)
·#K =

#H ·#K
#(H ∩ gKg−1)

.

�

[Remark: In the special case g = ε we obtain the formula

#HK =
#H ·#K
#(H ∩K)

.

We already proved this using the Second Isomorphism Theorem when one of H or K is normal.
But now we have a proof that works for any H and K. That’s nice.]

5. Burnside’s Lemma. Let ϕ : G → Perm(X) be a group action, and let X/G denote the
set of orbits. For each g ∈ G, let Fixϕ(g) denote the set of elements fixed by g:

Fixϕ(g) := {x ∈ X : ϕg(x) = x} ⊆ X.

(a) Count the elements of the set {(g, x) ∈ G×X : ϕg(x) = x} in two ways to prove that∑
g∈G

#Fixϕ(g) =
∑
x∈X

# Stabϕ(x).

(b) Use Orbit-Stabilizer to obtain a formula for the number of orbits:

#(X/G) =
1

#G

∑
g∈G

#Fixϕ(g).
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(c) Application: Consider a “bracelet” (circular string of beads) containing 6 beads. There
are k possible colors for the beads, and we regard two bracelets to be the same if they
are equivalent up to dihedral symmetry. Use the formula in part (b) to compute the
number of different bracelets. [Hint: The dihedral group D12 acts on a set X of size k6.
You want to compute the number of orbits: #(X/D12). To get started I’ll tell you that
#Fix(R) = k and #Fix(R2) = k2.]

(a) Double Counting. Suppose that G and X are both finite. We will count the elements
of the set S = {(g, x) ∈ G×X : ϕg(x) = x} in two different ways:

(1) For each g ∈ G there are #Fixϕ(g) elements x ∈ X such that ϕg(x) = x. Hence

#S =
∑
g∈G

#Fixϕ(g).

(2) For each x ∈ X there are # Stabϕ(x) elements g ∈ X such that ϕg(x) = x. Hence

#S =
∑
x∈X

# Stabϕ(x).

Alternatively: Think of S as a matrix with rows indexed by elements of G and columns indexed
by elements of X. We put 1 in the (g, x) entry of S if ϕg(x) = x and put 0 otherwise. Then
(1) sums the elements of S row-by-row and (2) sums the elements of S column-by-column.

(b) Let X/G = {O1, . . . ,On} be the set of orbits, so that #(X/G) = n. Furthermore, note
that for all x ∈ Oi we have Orbϕ(x) = Oi and hence #Orbϕ(x) = #Oi. Now applying
Orbit-Stabilizer to part (a) gives∑

g∈G
#Fixϕ(g) =

∑
x∈X

# Stabϕ(x)

=
∑
x∈X

(#G/#Orbϕ(x))

= #G ·
∑
x∈X

(1/#Orbϕ(x))

= #G ·
n∑
i=1

∑
x∈Oi

1/#Orbϕ(x)


= #G ·

n∑
i=1

∑
x∈Oi

1/#Oi


= #G ·

n∑
i=1

(1)
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= #G · n
= #G ·#(X/G).

�

(c) Application: Bracelets. Consider the vertices of a fixed hexagon. Suppose we have k
colors and let X be the set of all colorings of the vertices, so that #X = k6. Now consider
the natural action D12 y X of the dihedral group by rotation and reflection. We will use
Burnside’s Lemma to compute the number of orbits.

Since each element g ∈ D12 permutes the vertices of the hexagon we can think of it as an
element of S6. Furthermore, note that a given coloring x ∈ X is fixed by g if and only if the
vertices in each cycle have the same color. In other words, we have #Fix(g) = k#(cycles). Here
is a table showing all the possibilities:

By summing over all 12 group elements, Burnside’s Lemma tells us that

#(bracelets) = #(X/D12)

=
1

#D12

∑
g∈D12

#Fix(g)
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=
1

12

∑
g∈D12

k#(cycles)

=
1

12
(1k6 + 2k + 2k2 + 1k3 + 3k4 + 3k3)

=
1

12
k(k + 1)(k4 − k3 + 4k2 + 2).

For example, when k = 2 we get #(X/D12) = 13 different bracelets. Here they are:

6. Normal Subgroups of Sn. Assuming that An is simple (which is true for n ≥ 5) you
will prove that An is the only non-trivial normal subgroup of Sn.

(a) For n ≥ 3, prove that the center of Sn is trivial: Z(Sn) = {id}. [Hint: For any
id 6= g ∈ Sn, prove that there exists some f ∈ Sn such that fgf−1 6= g.]

(b) Suppose that N E Sn is a normal subgroup not equal to {id} or Sn. Use the fact that
An is simple to prove that N = An or #N = 2. [Hint: Consider N ∩An EAn.]

(c) Continuing from (b), if #N = 2 then we must have N = {id, τ} for some τ ∈ Sn such
that τ 6= id and τ2 = id. Prove that τ ∈ Z(Sn) and get a contradiction.

(a) Let n ≥ 3 and consider any non-identity permutation id 6= g ∈ Sn. We will prove that
there exists a permutation f ∈ Sn such that fgf−1 6= g, and hence g 6∈ Z(Sn). To do this we
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will use the fact that fgf−1 has the same cycle structure as g, where the symbols 1, 2, . . . , n
have been replaced by the permuted symbols f1, f2, . . . , fn, respectively. There are two cases:

• Suppose g has at least two cycles, one of which is not a singleton. Choose any symbols
i, j from these two cycles and define the transposition f = (ij). Then fgf−1 6= g.

• Otherwise, since g 6= id we know that g is an n-cycle. In this case let i := g1 and define
the transposition f = (1i). Then since n ≥ 3 we have fgf−1 6= g.

We conclude that Z(Sn) = {id}.

(b) Suppose that N E Sn is a normal subgroup not equal to {id} or Sn. Assuming that An
is a simple group, we will prove that N = An or #N = 2. To see this, define N ′ := N ∩ An.
Then since N ′ EAn is normal and since An is simple we have two cases:

(1) N ′ = An,

(2) N ′ = {id}.

In case (1) we have N ∩An = An, which implies An ⊆ N . Now consider the subgroup N/An (
Sn/An. Since Sn/An ∼= Z/2Z has no non-trivial subgroups we must have #(N/An) = 1, which
implies that #N = #An and hence N = An. In case (2) we have N ∩ An = {id}, which
implies that

#NAn =
#N ·#An
#(N ∩An)

= #N ·#An.

But since at least one of N and An is normal (in fact, they are both normal) we know that
NAn ⊆ Sn is a subgroup satisfying

An ( NAn ⊆ Sn.

Finally, the same reasoning as in case (1) shows that NAn = Sn, and hence

#NAn = #Sn

#N ·#An = #Sn

#N = 2.

(c) It only remains to show that N ESn and #N = 2 lead to a contradiction. So assume that
N = {id, τ} with τ 6= id. If N E Sn then for any f ∈ Sn we have fτf−1 ∈ N . But then the
fact that τ 6= id implies that fτf−1 6= id, and hence fτf−1 = τ . We conclude that τ ∈ Z(Sn),
which contradicts (a). (Of course, we assume that n ≥ 3.) �

[Remark: We have shown that if An is simple and if n ≥ 3, then An is the only non-trivial
normal subgroup of Sn. It is easy to check that A3 is simple, and you showed above in Problem
1 that A4 is not simple. It turns out to be true that An is simple for all n ≥ 5, but, again, I
don’t want to prove that here. Look up a proof if you want.]

7. Gaussian Binomial Coefficients. Let p be prime and consider the field Fp := Z/pZ.
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(a) For all n ≥ 0 we define the p-factorial:

[n]p! :=
n∏
i=1

pi − 1

p− 1
=

n∏
i=1

(1 + p+ p2 + · · ·+ pi−1) ∈ Z.

Prove that #GLn(Fp) = p(
n
2) · (p−1)n · [n]p!. [Hint: The columns of an invertible matrix

are just an ordered basis for the vector space Fnp . Argue that there are pn − 1 ways to
choose the first basis vector, then pn− p ways to choose the second basis vector, etc., so
that #GLn(Fp) =

∏n−1
i=0 (pn − pi).]

(b) Let X be the set of all k-dimensional subspaces of Fnp . The group GLn(Fp) acts on X
in the obvious way. For any k-dimensional subspace U ∈ X, prove that the stabilizer of
U is isomorphic to the following subgroup of GLn(Fp):{(

A C

0 B

)
: A ∈ GLk(Fp), B ∈ GLn−k(Fp), C ∈ Matk×(n−k)(Fp)

}
.

[Hint: Choose a basis u1,u2, . . . ,un for Fnp such that u1,u2, . . . ,uk is a basis for U .]

(c) Combine parts (a) and (b) with the Orbit-Stabilizer Theorem to prove that

#X =
[n]p!

[k]p! · [n− k]p!
.

This is called a Gaussian binomial coefficient.

(a) The hint pretty much does it. By looking at the columns we have a bijection between
elements of GLn(Fp) and ordered bases for Fnp . From Problem 3(a) there are pn − 1 ways to
choose the first (nonzero) basis vector u1. Then the next basis vector u2 must lie outside the
line Fp(u1). Since the line has size p, there are pn− p ways to choose u2. Then the third basis
vector u3 must lie outside the plane Fp(u1,u2). Since the plane has size p2, there are pn − p2
ways to choose u3. Continuing in this way we have

#GLn(Fp) = (pn − 1)(pn − p)(pn − p2) · · · (pn − pn−1)

= p(
n
2) · (pn − 1)(pn−1 − 1)(pn−2 − 1) · · · (p− 1)

= p(
n
2) · (p− 1)n · (pn − 1)

(p− 1)

(pn−1 − 1)

(p− 1)

(pn−2 − 1)

(p− 1)
· · · (p− 1)

(p− 1)

= p(
n
2) · (p− 1)n · [n]p!.

(b) Now let X be the set of all k-dimensional subspaces of Fnp . For any matrix M ∈ GLn(Fp)
and subspace U ∈ X we define

MU := {Mx : x ∈ U}.

167



It is easy to check that MU ⊆ Fnp is a subspace and if u1, . . . ,uk is a basis for U then
Mu1,Mu2, . . . ,Muk is a basis for MU , hence MU ∈ X. Furthermore, let v1,v2, . . . ,vk be
a basis for some arbitrary subspace V ∈ X and extend the vectors ui and vi to bases for
Fnp . Then the invertible linear function defined by ui 7→ vi is represented by some matrix
M ∈ GLn(Fp), so that MU = V . We conclude that GLn(Fp) acts transitively on the set X.

It only remains to compute the stabilizer. So fix some U ∈ X with basis u1, . . . ,uk and extend
this to a basis u1, . . . ,uk, . . . ,un for Fnp . Let N ∈ GLn(Fp) be the matrix with i-th column
equal to ui. Then for any M ∈ Stab(U) we have Mx ∈ U for all x ∈ U and it follows that

N−1MN =

(
A C

0 B

)
∈ GLn(Fp)

for some matrices A ∈ GLk(Fp), B ∈ GLn−k(Fp), C ∈ Matk×(n−k)(Fp). Conversely, for any
matrices A,B,C of this form one can check that

N

(
A C

0 B

)
N−1 ∈ Stab(U).

Since conjugation by N is an automorphism of GLn(Fp), it follows that Stab(U) is isomorphic
to the group of all such matrices. In particular, we obtain a bijection:

Stab(U) ←→ GLk(Fp)×GLn−k(Fp)×Matk×(n−k)(Fp).

[Remark: In fact, I claim that the stabilizer is a semidirect product:

Stab(U) ∼= (Matk×(n−k)(Fp),+, 0) o [GLk(Fp)×GLn−k(Fp)] .

What is the action?]

(c) Finally, combining parts (a) and (b) with the Orbit-Stabilizer Theorem gives

#X = #Orb(U)

=
#GLn(Fp)
# Stab(U)

=
#GLn(Fp)

#(GLk(Fp)×GLn−k(Fp)×Matk×(n−k)(Fp))

=
#GLn(Fp)

#GLk(Fp) ·#GLn−k(Fp) ·#Matk×(n−k)(Fp))

= ���
���

�
p(
n
2) · (p− 1)n · [n]p!

��
���

��
p(
k
2) · (p− 1)k · [k]p! ·(((((

((((
p(
n−k
2 ) · (p− 1)n−k · [n− k]p! ·���

�
pk(n−k)

=
[n]p!

[k]p! · [n− k]p!
.
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[Remark: If we treat p as a formal variable then one can check that

[n]p!

[k]p! · [n− k]p!
−→ n!

k! (n− k)!
as p −→ 1.

This suggests that a “k-subset of an n-subset” is somehow the same thing as a “k-dimensional
subspace of an n-dimensional vector space over the field Z/1Z.” Unfortunately that makes no
sense because Z/1Z ∼= {0}, so every vector space over Z/1Z has size 1. Strange.]
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