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The goal of this paper is to solve the following problem. Consider a population of identical age-less
individuals (singletons) where each individual can go through one of the two possible transforma-
tions - it can die or it can divide into two. Suppose that the past history of the population was
determined by the conditions that the birth (division) rate was constant and equal to 1 and the
death rate was an unknown function of time d(t). Suppose further that we know the ancestral
tree of the present day population i.e. for each pair of singletons we know the time distance from
the present to their ”last common ancestor”. Given this data what is the maximal likelihood
reconstruction of the death rate function?

My interest in this problem originated from multiple recent papers which attempt to use the
variation in the non-recombinant genetic loci to reconstruct histories of populations. While there
are several standard models which the authors use to interpret the experimental data none of these
models is adapted to address the most interesting question - how the population size changed in
time? The singleton model outlined above is clearly the simplest possible one where the time is
continuous and the population size is allowed to vary. While for the actual reconstruction problems
one may need to consider more sophisticated models it seems clear that all the negative results
obtained in the framework of singletons are likely to remain valid in more complex cases. For
example, if one can show that for a given size of the present date population the uncertainty in
the reconstruction of the population size T time units ago is large in the singleton model then it is
likely to be even larger in more complex ones.

The precise mathematical problem which we address looks as follows. The ancestral tree of the
present day population is a finite balanced weighted tree Γ̃1. For a given function d(t) we want to
compute the ’probability’ of obtaining Γ in the environment determined by d(t) and then find the
function which maximizes this value.

We face several technical difficulties here. First of all in order to get a measure on the space of
ancestral trees we have to fix the time point T < 0 when we start to trace the development of
the population and the number N of population members at this time. These data together with
the restriction of d(t) to [−T, 0] defines a (sub-)probability measure on the set of ancestral trees of
depth ≤ T 2.To deal with the case T =∞ which we are interested in we have to find for a given Γ̃
and T > t1(Γ̃) the most likely reconstruction of N at −T and d(t) on [−T, 0] and then to take the
limit for T →∞.

The second problem is that the space H of ancestral trees is continuous and the probability of
getting any particular tree is zero. Therefore, we have to consider sufficiently small neighborhoods
of Γ̃ instead of Γ̃ itself and then show that there exists a well defined limit when the neighborhoods
shrink to one point.

The third problem arises from the fact that our function does not reach its maximal value on the
space of actual functions d(t) and in order to obtain the solution we have to allow for δ-functions.
In fact, our first result (see ??) states that for any initial Γ̃ the maximal likelihood reconstruction
of d(t) is a sum of δ-functions (with coefficients) concentrated at some of the time points which

1Recall that a weighted tree is a tree whose edges are labeled by non-negative numbers. A weighted tree is called
balanced if there is a function on the vertices such that the label on an edge is the difference of the values of this
function on its starting and ending vertices.

2We define the depth t1(Γ̃) of Γ̃ as the time to the oldest coalescence event.
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occur as vertex labels in Γ̃.

We further present an algorithm for the computation of this maximal likelihood d. This algorithm
was implemented and I ran multiple reconstructions with it starting with trees obtained with a
constant death rate function. In all the trials the maximal likelihood reconstruction turns out to
be a series of ’tall’ δ-functions separated by long time intervals. In other words we observe that the
most likely reconstruction of history from the ancestral tree which formed in constant environment
looks like a series of widely spaces catastrophes.

1 Singleton processes

1.1 Singleton histories

[sec1.1]

Definition 1.1.1 [histdef] Let s < t be two real numbers. A singleton history on time interval
[s, t] is a set of data of the form:

Γ = (V ;E ⊂ V × V ; τ : V → [s, t];ψ : τ−1(t)→ N)

where (V,E) is a finite directed graph with the set of vertices V and the set of edges E and τ : V →
[s, t] is a function satisfying the following conditions:

1. given an edge from v to v′ one has τ(v) < τ(v′),

2. if τ(v) = s there is exactly 1 edge starting in v,

3. if τ(v) 6= s there is exactly one edge ending in v and 0 or > 1 edges starting in v.

Intuitively, τ−1(s) is the set of the population members at the initial time s. The graph, which
is necessarily a union of trees in view of the condition (3), is the genealogy of these members. Its
vertices correspond to the transformation events with τ(v) being the time of the corresponding
event. The subset ψ−1(i) of the final population Vt = τ−1(t) consists of members which transform
into i new members at the exact moment t.

It will be convenient for us to envision a singleton history through its ”geometric realization” |Γ|
which is a 1-dimensional CW-compex which is the union of intervals [τ(v1), τ(v2)] for all (v1, v2) ∈ E
glued together at the ending points in the obvious way. This space comes together with a map
|τ | : |Γ| → [s, t] which is defined by the original τ in the obvious way and with a natural-valued
function τ on the set |τ−1|(t). The pictures used below for illustrative purposes are actually pictures
of these geometric realizations.

For u ∈ [s, t] set Vu(Γ) = |τ |−1(u). This is the set of population members at the time infinitesimally
preceding time u. Note that Vs = τ−1(s) and Vt = τ−1(t).
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For any Γ inH[s, t] the image of τΓ is a finite set of points in [s, t] which contains {s} and {t}. We will
write x1(Γ), . . . , xq(Γ) for the points of this set lying in (s, t) ordered such that x1(Γ) < · · · < xq(Γ).
The number q = q(Γ) is an invariant of Γ which will be the basis of most of the inductive arguments
below. In some cases we will write x0(Γ) for s and xq+1(Γ) for t.

For any u ∈ (xi−1, xi] we have a canonical identification Vu(Γ) = Vxi(Γ). We denote these sets by
Vi(Γ) where i = 1, . . . , q + 1. The combinatorics of Γ defines maps

fi : Vi+1(Γ)→ Vi(Γ)

The function ψ on Vq+1 can be interpreted as a map fq+1 : Vq+2 → Vq+1 such that ψ(v) =
#(f−1

q+1(v)). Therefore to each Γ we can assign a sequence of points s < x1 < · · · < xq < t and a
sequence of maps of finite sets

V1 ← V2 ← . . .← Vq+2

and one can easily see that up to an isomorphism Γ is determined by (x1, . . . , xq) and the isomor-
phism class of this sequence of maps. Moreover, such data corresponds to a history Γ if an only if
the maps fi are not isomorphisms for i ≤ q. A more detailed analysis of the structure of the space
of histories based on this description is given in ??. In our constructions it will be more convenient
for us to work with ordered histories which are defined below.

Definition 1.1.2 [ordhist] Let Γ = (V,E, τ, ψ) be a singleton history over [s, t]. On ordering on
Γ is in ordering on Vs = V1 and for each v ∈ V an ordering on the set of edges starting at v.

We denote the set of isomorphism classes of ordered histories over [s, t] by H[s, t]. Note that it
is a (non-commutative) monoid with respect to the obvious operation of disjoint union of ordered
histories. For s = t we set H[s, s] = N and consider it as the set of isomorphism classes of ordered
finite sets.

The ordering on the set of edges starting at vertices lying over xi(Γ) is the same as the ordering on
the fibers of the map Vi+1 → Vi. Therefore, for an ordered history all the sets Vi(Γ) carry a natural
ordering and the maps fi preserve this ordering. Conversely, if we are given orderings on all of the
sets Vi which are preserved by the maps fi we get an ordering on Γ. Therefore, there is a bijection
between H[s, t] and pairs of the form (x, f) where x = (x1, . . . , xq), xi ∈ (s, t), x1 < · · · < xq and

[uuf ]f = (V1
f1← V2

f2← · · ·
fq+1← Vq+2) (1)

where Vi are ordered finite sets, fi are order preserving maps and for i ≤ q the map fi is not an
isomorphism.

Sequences of maps of this form between the standard ordered sets {1, . . . , n} will be called (ordered)
combinatorial types and the ones in which fi is not an isomorphism for i ≤ q will be called non-
degenerate combinatorial types. The number q(π) is called the level of a combinatorial type π. We
will also write

ni(π) = #Vi+1(π)

Let Fq(N) be the set of combinatorial types of level q. This set carries a natural structure of a
non-commutative monoid with respect to the disjoint union of the sequences.
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Denote the disjoint union of combinatorial types π1 and π2 by π1 + π2. For a combinatorial type
π denote by [π] the combinatorial type obtained by extending π to the right by a morphism to the
point. To any natural number there corresponds a combinatorial type [k] which is represented by
the map {1, . . . , k} → pt. It is easy to see that any combinatorial type of level ≥ 0 can be obtained
from types [k] by iterated application of the disjoint union operation and the [−] operation.

Example 1.1.3 The most important histories which we will encounter below are the ones corre-
sponding to the combinatorial types [k], k[1] and [k[1]] (they are of level 0, 0 and 1 respectively.
The corresponding pictures look as follows:

The sets Fq(N) form a simplicial set where the boundary operations are given compositions and
the removal of f1 and the degeneracy operations by the insertion of identities. Denote by | − |[s,t]
the geometric realization functor which uses simplexes

∆q
[s,t] = {x1, . . . , xq ∈ [s, t] |x1 ≤ · · · ≤ xq}

instead of the standard simplexes
∆q = ∆q

[0,1]

One has the following result.

Theorem 1.1.4 [descr] There is a natural bijection

[simplreal]H[s, t] = |F∗(N)|[s,t] (2)

Proof: Let ∆q
s,t be the open simplex

∆q
s,t = {x1, . . . , xq ∈ (s, t) |x1 < · · · < xq}

for q > 0 and ∆0
s,t = ∆0

[s,t] = pt. Then

|F∗(N)|[s,t] = qq≥0 qπ∈Fq(N)nd ∆q
s,t

where Fq(N)nd is the set of non-degenerate simplexes in Fq(N). We assign to a history Γ the point
(x1(Γ), . . . , xq(Γ)) in the simplex corresponding to f(Γ).
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The fact that it is a bijection follows from the comments made above. �

In the following consideration we will write ∆π
s,t for the open simplex in H[s, t] corresponding to a

(non-degenerate) combinatorial type π so that we have

[simplrep]H[s, t] =
∐
q≥0

∐
π∈Fndq (N)

∆π
s,t (3)

We will also use the standard notation

skqH[s, t] = qπ,q(π)≤q∆
π
s,t

for the skeletons of H[s, t] with respect to our triangulation.

Remark 1.1.5 [asfree] The simplicial set |F∗(N)| can also be described as follows. Consider the
category Mon of monoids and the pair of adjoint functors Mon → Sets, Sets → Mon where the
first one is the forgetting functor and the second one the free monoid functor. Their composition
defines a co-triple F on the category of monoids. This co-triple defines for any monoid M a
simplicial monoid F∗(M). One can easily see that F∗(N) is the simplicial monoid described above
it terms of the sequences of order preserving maps.

Remark 1.1.6 [gener] It seems likely that if we take a set A and the simplicial monoid associated
with the forgetting functor and the functor of the free monoid generated by X × A then we will
obtain by the same construction the space of labelled histories which correspond to genealogies of
populations with several distinguished sub-populations.

Given a singleton history Γ over [s, t] and u ∈ [s, t] one can cut Γ at u obtaining two histories
Ru(Γ) ∈ H[u, t] and Lu(Γ) ∈ H[s, u]. If there is a vertex v with τ(v) = u and n edges starting in
it then it appears as one vertex v′ in Lu(Γ) with ψ(v′) = n and as n vertices in Ru(Γ).

If Γ is an ordered history then Lu(Γ) carries an obvious ordering. The right ”half” Ru(Γ) carries
obvious orderings on the sets of edges starting at a given vertex and we give it an ordering on
Vu(Ru(Γ)) using the identification

Vu(Ru(Γ)) = Vi(Γ)

where i is such that u ∈ [xi−1, xi) if u < t and i = q + 2 if u = t.

For s ≤ u ≤ v ≤ t define the restriction maps

[restr]resu,v : H[s, t]→ H[u, v] (4)

as resu,v = Lv ◦Ru. Note that for (u′, v′) ⊂ (u, v) one has

resu′,v′resu,v = resu′,v′

For u = v we will write nu instead of resu,u. It is a map from H[s, t] to N which assigns to a
history the number of its members at time u. Note that in general nu(Γ) 6= #Vu(Γ) since some
vertices may have to be counted with multiplicities, instead the set Vu is equipped with a function
ψΓ,u : Vu → N such that nu(Γ) =

∑
v∈Vu ψΓ,u(v).

We let H[s, t]nm denote the subset of histories Γ such that ns(Γ) = m and nt(Γ) = n.
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Lemma 1.1.7 [bij2] For s ≤ u <≤ t the map

ress,u × resu,t : H[s, u]→ qnH[u, t]n∗H[s, t]∗n

is bijective.

Proof: We may clearly assume that s < u < t. Let us define an inverse cord map to ress,u × resu,t
as follows. Let Γ′ ∈ H[u, t]n∗ and Γ′′ ∈ H[s, t]∗n for some n ∈ N and q = q(Γ′). Then Vq+2(Γ′)
and V1(Γ′′) are ordered finite sets with n elements and there exists a unique order-preserving
bijection between them. Using this bijection to glue the combinatorial types of Γ′ and Γ′′ we
get a combinatorial type and since the event points are known we get a well defined Γ such that
ress,u(Γ) = Γ′ and resu,t(Γ) = Γ′′. One verifies easily that this is indeed a two-sided inverse to
res× res. �

Lemma 1.1.8 [bij1] For any n ≥ 0 the iterated ”addtion” map

H[s, t]1 × · · · ×H[s, t]1 → H[s, t]n

is a bijection.

Proof: Straightforward. � In what follows we will be considering sets H[s, t] as measurable spaces
with respect to the Borel σ-algebra on |F∗(N)|[s,t] or, equivalently, with respect to the sum of the
Borel σ-algebras on simplexes ∆π

s,t. One verifies easily that all the maps considered above are
measurable. A measure on H[s, t] is the same as a collection of measures on the simplexes ∆π

s,t

given for all non-degenerate ordered combinatorial types π.

For s ≤ u ≤ v ≤ t define the σ-algebra Bv
u on H[s, t] as forllows:

1. for u < v set Bv
u = res−1

u,v(B) where B is the Borel σ-algebra on H[u, v],

2. for u = v set Bv
u = n−1

u (BN) where BN is the algebra of all subsets of N.

We have the following result obvious result (for the definition of a path system see [6]).

Proposition 1.1.9 [ispath] The collection of data ((H[s, t],B),Bv
u, nu) defines a path system on

N over T .
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We denote this path system by H[s, t]. Up to an isomorphism in the category of probability kernels,
we have

(H[s, t],Bv
u) = H[u, v]

for all s ≤ u ≤ v ≤ t. We will freely use these identifications below.

1.2 Processes on HD[s, t]

Recall (see [6]) that a process on HD[s, t] is a collection of probability kernels µvu : N → HD[u, v]
given for all u ≤ v such that µvu,n = µvu(n) is supported on HD[u, v]∗n. We set

φvu,µ(n,m) = µvu,n(H[u, v]mn )

When no confusion is possible we will write φvu instead of φvu,µ etc.

Recall (see [6]) that a process is a Markov process if it satisfies condition (M) of loc.cit. In the
context of the path system H[s, t] this condition asserts that for all s ≤ u ≤ v ≤ w ≤ t and all
n ≥ 0 the square

[m2diag]

1
µvu,n−−−−→ HD[u, v]∗n

µwu,n

y yId⊗(µwv,n◦nv)

HD[u,w]∗n
resu,v×resv,w−−−−−−−−−→ HD[u, v]∗n ×HD[v, w]

(5)

commutes. Applying [6, ] and taking into account that µuu = Id we get the following reformulation.

Lemma 1.2.1 [crit1] A process µ∗∗ on HD[s, t] is a Markov process if and only if for any m,n ≥ 0,
any s ≤ u < v < w ≤ t, any measurable U1 in HD[u, v]mn and any measurable U2 in HD[v, w]∗m
one has

[eqcrit1]µwu,n((resu,v × resv,w)−1(U1 × U2)) = µvu,n(U1)µwv,m(U2). (6)

The re-numeration of initial vertices defines an action of the symmetric group Σn on HD[u, v]n,∗
and we have the following obvious result.

Lemma 1.2.2 [th80l1] Let µ be an additive process on HD[s, t]. Then for any s ≤ u < v ≤ t and
any n ≥ 0 the measure µvu,n is invariant under the action of Σn.

For a combinatorial type π = (fq+1, . . . , f1) of level q define its local invariant K(π) as a sequence
(k1, . . . , kq+1) where ki ∈ S∞(N) is the isomorphism class of the map fi. If π is the combinatorial
type of a history Γ then ki(π) is the list of branching multiplicities of points of Γ over xi(Γ).

Theorem 1.2.3 [th8o] Let µ be an additive Markov process on HD[s, t] and π, π′ be two ordered
combinatorial types with the same local invariant K and therefore of the same level q. Then for all
s ≤ u < v ≤ t and n ≥ 0 the co-restrictions of µvu,n to

∆q
u,v = ∆π

u,v = ∆pi′
u,v
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coincide.

Proof: If q = 0 and n0(π) = n0(π′) = n then

π = [k11] + · · ·+ [k1n]

π′ = [k′11] + · · ·+ [k′1n]

where the sequences (k1i) and (k′1i) differ by a permutation on {1, . . . , n}. Then the zero simplexes
∆π
u,v, ∆π′

u,v are transformed into each other by the action of Σn on HD[u, v]n,∗ and our claim follows
from the fact that µvu,n is invariant under this action.

Let q = 1 and
π = [k11[1]] + · · ·+ [k1n[1]]

π′ = [k′11[1]] + · · ·+ [k′1n[1]]

Then π and π′ are again transformed into each other by the action of Σn and the claim of the
theorem holds.

For a general non-degenerate combinatorial type π such that q > 0, u < w1 < w2 < v and a Borel
subset B of ∆q−1

w2,v set

((w1, w2), B, π) = {(x1, . . . , xq) ∈ ∆π
u,v |x1 ∈ (w1, w2), (x2, . . . , xq) ∈ B}

Intersection of two subsets of this form is again of this form and they generate the Borel σ-algebra
of ∆π

u,v.

For π = [π1] + · · ·+ [πn] the types

L(π) = [n0(π1)[1]] + · · ·+ [n0(πn)[1]]

and
R(π) = π1 + · · ·+ πn

are non-degenerate and we have

((w1, w2), B, π) = (resu,w2 × resw2,v)
−1(U1 × U2)

where
U1 = ((w1, w2) ⊂ ∆L(π)

u,w2
)

U2 = (B ⊂ ∆R(π)
w2,v )

and since µ is a Markov process we have

µvu,n((w1, w2), B, π) = µw2
u,n(U1)µvw2,n1

(U2)

for n1 = n0(R(π)). If K(π) = K(π′) then K(R(π)) = K(R(π′)) and K(L(π)) = K(L(π′)) and the
claim of the theorem follows by an obvious inductive argument. �
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Lemma 1.2.4 [genm] If µ∗∗ is a Markov process then for u ≤ v ≤ w in [s, t] one has

[eq001]φwu (n, k) =
∑
m≥0

φvu(n,m)φwv (m, k) (7)

Proof: It follows from the general properties of Markov pre-processes (see [6, ]). � We set

hn(u, v) = µvu,1(∆n[1]
u,v )

Lemma 1.2.5 [ob1] If µ∗∗ is a Markov pre-process then for n ≥ 0 and u ≤ v ≤ w in [s, t] one has

hn(u, v)hn(v, w) = hn(u,w)

Proof: It follows from Lemma 1.2.1 applied to U1 = ∆n[1]
u,v , U2 = ∆n[1]

v,w . � Note that all the maps
which participate in the definition of H[s, t] are homomorphisms of monoids.

Definition 1.2.6 A pre-process µ∗∗ on H[s, t] is called an additive pre-process if µvu,0(∆∅) = 1 for
all u, v and the kernels µvu : N→ H[u, v] are homomorphisms of monoids.

If µ is additive then
hnµ(u, v) = (h1

µ(u, v))n

and
υvu,k = (υvu,1)k.

When no confusion is possible we will write h(u, v) instead of h1(u, v) so that for an additive
pre-process

hn(u, v) = h(u, v)n

In what follows we consider almost exclusively additive (pre-)processes.

Lemma 1.2.7 [ob00] Let µ∗∗ be a Markov pre-process. Then for any n,m ≥ 0 and any u ≤ v < w
in [s, t] the function hn(u, v + ε)φwv+ε(n,m) is monotone decreasing in ε and one has

lim
ε>0,ε→0

hn(u, v + ε)φwv+ε(n,m) = hn(u, v)φwv (n,m)

Proof: Applying Lemma 1.2.1 to U1 = ∆n[1]
u,v+ε and U2 = H[v + ε, w]n,m we get

hn(u, v + ε)φwv+ε(n,m) = µwu,n(res−1
u,v+ε(∆

n[1]
u,v+ε) ∩ n−1

w (m)).

Since for ε′ ≥ ε one has

res−1
u,v+ε′(∆

n[1]
u,v+ε′) ∩ n

−1
w (m) ⊂ res−1

u,v+ε(∆
n[1]
u,v+ε) ∩ n−1

w (m)
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and
∪ε→0(res−1

u,v+ε(∆
n[1]
u,v+ε) ∩ n−1

w (m)) = res−1
u,v(∆

n[1]
u,v ) ∩ n−1

w (m)

our claims follow. �

Recall that a function f on [s, t] is called monotone increasing (resp. decreasing) if for x ≤ y one
has f(x) ≤ f(y) (resp. f(x) ≥ f(y)). A function is called right continuous if for all u ∈ [s, t) one
has

lim
ε>0,ε→0

f(u+ ε) = f(u).

The following two lemmas give some elementary properties of such functions which will be used
below.

Lemma 1.2.8 [rcim] Any right continuous function f on [s, t] is measurable.

Proof: See 4.3.2. �

Lemma 1.2.9 [pirc] Let f be a right continuous on [s, t). If f is monotone increasing then for
any a+ > a such that f−1([a, a+)) 6= ∅ there exists b+ > b such that f−1([a, a+)) = [b, b+). If f is
monotone decreasing then for any a+ > a such that f−1((a, a+]) 6= ∅ there exists b− < b such that
f−1((a, a+]) = [b−, b).

Proof: Consider for example the case of an increasing f . Then if f−1([a, a+)) 6= ∅ we have

f−1([a,∞)) = [b, t)

and
f−1((−∞, a+)) = [s, b+)

which implies the claim of the lemma. �

As a corollary of Lemma 1.2.5 we see in particular that for a Markov pre-process the functions
hn(u, v) are monotone increasing in u and monotone decreasing in v. Since υwv,m ≤ 1 and

[eq01]
∑
m≥0

φu,v(n,m) = υvu,n (8)

we also see that for a Markov pre-process the functions υvu,n are monotone decreasing in v.

Remark 1.2.10 We will see from examples below (??) that there are Markov pre-processes on
H[s, t] such that υvu,n are not monotone in u.

Lemma 1.2.11 [ob01] Let µ∗∗ be a Markov pre-process. Then for any m,n ≥ 0 and any u ≤ v < w
in [s, t] the function φu,v+ε(m,n)hn(v + ε, w) is monotone increasing in ε and one has

lim
ε>0,ε→0

φu,v+ε(m,n)hn(v + ε, w) = φu,v(m,n)hn(v, w)
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Proof: Applying Lemma 1.2.1 to U1 = H[u, v + ε]m,n and U2 = ∆n[1]
v+ε,w we get

φu,v+ε(m,n)hn(v + ε, w) = µwu,m(res−1
v+ε,w(∆n[1]

v+ε,w))

and since
∩ε→0(res−1

v+ε,w(∆n[1]
v+ε,w)) = res−1

v,w(∆n[1]
v,w )

our claim follows. �

Definition 1.2.12 [rcont] A pre-process µ∗∗ is called non-degenerate if υuu,k = 1 for all u, k. It is
called right continuous if for any u ∈ [s, t] and any k, υvu,k is a right continuous function in v from
[s, v] to [0, 1].

If µ is non-degenate then hn(u, u) = 1 for all n and u. Note that any process on H[s, t] is automat-
ically non-degenerate and right continuous.

Remark 1.2.13 For a Markov pre-process one has (υuu,k)
2 = υuu,k and therefore a Markov pre-

process is non-degenerate if and only if υuu,k 6= 0 for all u, k.

Theorem 1.2.14 [th1] Let µ∗∗ be a non-degenerate Markov pre-process on H[s, t]. Then the fol-
lowing conditions are equivalent:

1. for all n ≥ 0 functions υvu,n are right continuous in u and if u < t then there exits w > u such
that υwu,n 6= 0,

2. for all n ≥ 0 functions hn(u, v) are right continuous in u and if u < t then there exits w > u
such that υwu,n 6= 0,

3. for all n ≥ 0 functions φvu(n,m) are right continuous in u and if u < t then there exits w > u
such that υwu,n 6= 0,

4. for all n ≥ 0 functions υvu,n are right continuous in v,

5. for all n ≥ 0 functions hn(u, v) are right continuous in v,

6. for all n ≥ 0 functions φvu(n,m) are right continuous in v.

Proof: Observe first that if for all u < t then there exits v > u such that υwu,n 6= 0 then, since υvu,n
are monotone decreasing in v we have υvu,n 6= 0 for all u ≤ v ≤ w.

Let u and w be as above. Taking the sum over m in Lemma 4.3.1 and setting v = u we get

[feqp] lim
ε>0,ε→0

hn(u, u+ ε)υwu+ε,n = υwu,n (9)

which implies that there exists ε > 0 such that hn(u, u + ε) 6= 0. Without loss of generality we
may assume that u+ ε = w.

12



(1)⇒ (2), (5) When υvu,n is right continuous in u equation (68) implies that

( lim
ε>0,ε→0

hn(u, u+ ε))υwu,n = υwu,n

and since υwu,n 6= 0 we conclude that

lim
ε>0,ε→0

hn(u, u+ ε) = 1

Together with Lemma 1.2.5 we conclude that (2) and (5) hold.

(2)⇒ (5) Immediate from Lemma 1.2.5 since for all u there exists w such that hn(u,w) 6= 0.

(5)⇒ (3) Since hn(u, u) = 1 condition (5) also implies that for any u there exists w > u satisfying
hn(u,w) 6= 0. Since υwu,n ≥ hn(u,w) we conclude that υwn,u 6= 0.

Taking in Lemma 4.3.5 v = u we get

lim
ε>0,ε→0

hn(u, u+ ε)φwu+ε(n,m) = φwu (n,m)

for all w > u and using condition (5) we get that φwu (n,m) is right continuous in u.

(2)⇒ (6) We need to show that

[seqp] lim
ε>0,ε→0

φv+ε
u (m,n) = φvu(m,n) (10)

Let w be such that hn(v, w) 6= 0. Then Lemma 4.3.5 together with the right continuity of hn(−,−)
in the first variable implies (69).

(6)⇒ (4) Immediately follows from the fact that υvu,n =
∑

m φ
v
u(n,m).

(4)⇒ (2) Since functions υvu,n are right continuous in v and υuu,k = 1 there exists w > u such that
υwu,n 6= 0 and as explained above such that hn(u,w) 6= 0. Taking in Lemma 4.3.5 m 6= n and v = u
we get

[eq020] lim
ε→0

φu,u+ε(m,n) = 0 (11)

Therefore we have

[teqp]1 = lim
ε→0

υu+ε
u,n = lim

ε→0

∑
m

φu,u+ε(n,m) = lim
ε→0

φu,u+ε(n, n) (12)

Form Lemma 4.3.5 for m = n and v = u we get for all w > u

lim
ε>0,ε→0

φu,u+ε(n, n)hn(u+ ε, w) = hn(u,w)

which together with (71) implies that hn(u, v) is right continuous in u.

(3)⇒ (1) Immediately follows from the fact that υvu,n =
∑

m φ
v
u(n,m).

Theorem is proved. �
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For a pre-process µ∗∗ define En,µ ⊂ [s, t] by the rule x ∈ En,µ if and only if e = s or for all sufficiently
small ε > 0 one has hn(x − ε, x) = 0. When no confusion is possible we will write En instead of
En,µ.

Lemma 1.2.15 [ob2] Let µ be a non-degenerate right continuous Markov pre-process. Then for
any e ∈ En such that hn(e, t) = 0 there exists a unique e+1 > e in En such that for all x ∈ [e, e+1)]
one has hn(e, x) 6= 0.

Proof: By Theorem 4.3.8 the function hn(e,−) is right continuous and therefore the set of zeros
of hn(e,−) is of the form [e+1, t] for some e+1 in (e, t]. For ε < e+1 − e we have 0 = h(e, e+1 + ε) =
h(e, e+1 − ε)h(e+1 − ε, e+1) and since h(e, e+1 − ε) 6= 0 we conclude that e+1 ∈ En. � Note that if
En 6= ∅ then there exists a unique e ∈ En such that hn(e, t) 6= 0. For this e we set e+1 = t.

Lemma 1.2.16 [ob3] For a a non-degenerate right continuous Markov pre-process µ the sets En
are countable.

Proof: We have
[ecov][s, t) = qe∈En [e, e+1) (13)

and since the sum of an uncountable number of non-zero numbers is infinite we conclude that En
is countable. �

Since for an additive process En = Em for all m,n 6= 0 we will write E = E(µ) for this set in the
additive context.

Define a map
(x1, k1) : H[u, v]∗1 → (u, v]×N

as follows. It sends ∆[n]
u,v to (v, n) and a history Γ of level q ≥ 1 to the pair (x1(Γ), n1(Γ)) where

x1(Γ) is first event point in Γ and n1(Γ) is the branching multiplicity of this point.

For u ≤ v ≤ w we have an embedding

jwu,v : H[v, w]→ H[u,w]

which is determined by the conditions

Rv(jwu,v(Γ)) = Γ

Lv(jwu,v(Γ)) = ∆n[1]
u,v

where n = nv(Γ). Note that for v < w

jwu,v(∆
π
v,w) =

{
(x1, . . . , xq) ∈ ∆π

u,w|x1 > w
}
.

which implies in particular that jwu,v are measurable.
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For a history Γ with q(Γ) > 0 we set

R(Γ) = jvu,x1(Γ)(Rx1(Γ)(Γ))

The combinatorial type of R(Γ) depends only on the combinatorial type of Γ and we write R(π)
for the combinatorial type of R(Γ) for any Γ such that π(Γ) = π. Note q(R(π)) = q(π)− 1.

For u < v, (w1, w2) ⊂ (u, v) and U ⊂ H[w2, v]∗k set

[gener](k, (w1, w2), U) = (resu,w2 × resw2,v)
−1(((w1, w2) ⊂ ∆[k[1]]

u,w2
)× U) (14)

or equivalently

(k, (w1, w2), U) = {Γ ∈ H[u, v]∗1|n1(Γ) = k, x1(Γ) ∈ (w1, w2), resw2,v(Γ) ∈ U}

Lemma 1.2.17 [gens] The collection of subsets of the form (14) is closed under finite intersec-
tions and for any q > 0 the Borel σ-algebra on skqH[u, v]∗1 is generated by subsets of the form
(k, (w1, w2), U) where k 6= 1 and U ⊂ skq−1H[w2, v]∗k.

Proof: We may assume that u < v. Suppose that w′2 ≥ w2 then

(k, (w1, w2), U) ∩ (k, (w′1, w
′
2), U ′) = (k, (max(w1, w

′
1), w2), U ∩ jvw2,w′2

(U ′))

and
(k, (w1, w2), U) ∩ (k′, (w′1, w

′
2), U ′) = ∅

if k 6= k′. This proves the first assertion.

It remains to show that for any combinatorial type π with q(π) = q and n1(π) = k the σ-algebra
generated by the subsets (k, (w1, w2), U) which lie in ∆π

u,v coincides with the Borel σ-algebra. Since

∆π
u,v = {x1, . . . , xq|u < x1 < · · · < xq < v}

its Borel σ algebra is generated by subsets of the form w1 < x1 < w2, (x2, . . . , xq) ∈ U where U is
a Borel measurable subset of

∆R(π)
w2,v = {w2 < x2 < · · · < xq < v} .

Observe now this subset coincides with (k, (w1, w2), U) where U is considered as a subset of ∆R(π)
w2,v .

�

Proposition 1.2.18 [crit2] An additive pre-process µ on H[s, t] is a Markov pre-process if and
only if the following two conditions hold:

1. for any u < v < w and U ⊂ H[v, w]∗1 one has

µwu,1(jwu,v(U)) = h(u, v)µwv,1(U)
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2. for any u < w1 < w2 < v, k 6= 1 and U ∈ H[w2, v]∗k one has

µvu,1(k, (w1, w2), U) = µw2
u,1((w1, w2) ⊂ ∆[k[1]]

u,w2
)µvw2,k(U)

Proof: The ”only if” part is obvious. To prove the ”if” part we need to verify the condition of
Lemma 1.2.1. Using additivity one can easily see that if this condition holds for all U1 ⊂ skqH[v, t]1,∗
then it holds for all n and all U1 ⊂ skqH[v, t]n,∗. Therefore we may proceed by induction on q and
for each q we only need to consider the case n = 1.

Let q = 0. Then we have to consider two cases.

1. Let U1 = ∆[1]
u,v. Then

(resu,v × resv,w)−1(U1 × U2) = jwu,v(U2)

and the condition of Lemma 1.2.1 follows immediately our condition (1).

2. Let U1 = ∆[n]
u,v where n 6= 1. Then

(resu,v × resv,w)−1(U1 × U2) =
{

Γ ∈ sk>0H[u,w]∗1|x1(Γ) = v, n1(Γ) = n,R(Γ) ∈ jwu,v(U2)
}

We may assume without loss of generality that there exists v < v′ < w such that U2 =
jwv,v′(U

′
2). Then

(resu,v × resv,w)−1(U1 × U2) = ∩(w1,w2)∈I(n, (w1, w2), U ′2)

where I is the set of pairs w1 < w2 such that U < w1 < v < w2 < v′ and w1, w2 ∈ Q. By our
second condition and σ-additivity of µ we conclude that

µvu,1(resu,v × resv,w)−1(U1 × U2) = lim
I
µvu,1((n, (w1, w2), U ′2)) = lim

I
µw2
u,1((w1, w2))

It follows by an obvious limit argument from Lemma (1.3.5), that the value of µw1,u on this
subset is θu,n({v})µwv,n(U2) which together with Lemma 1.3.4 implies the condition of Lemma
1.2.1 in this case.

Let q > 0. Assume by induction that the condition of Lemma 1.2.1 is known for all U1 ⊂
skq−1H[u, v] and all U2 and let U1 ⊂ skqH[u, v]1,∗. By Lemma 1.2.17 we may assume that
U1 = (k, (w1, w2), U ′1) where u < w1 < w2 < v and U ′1 is a measurable subset of skq−1H[w2, v]m,∗
for some m 6= 1. Then

[ss](resu,v × resv,w)−1(U1 × U2) = (k, (w1, w2), (resw2,v × resv,w)−1(U ′1 × U2)) (15)

By the inductive assumption

µwx,k(j
w
x,w2

(resw2,v × resv,w)−1(U ′1 × U2)) = µwx,k(j
w
x,w2

res−1
w2,v(U

′
1))µwv,l(U2)

where l is such that U2 ⊂ n−1
v ({l}). By Lemma 1.3.5, the value of µwu,1 on (29) is∫

x∈(w1,w2)
µwx,k(j

w
x,w2

(resw2,v × resv,w)−1(U ′1 × U2))dθu,m =

16



=

(∫
x∈(w1,w2)

µwx,k(j
w
x,w2

res−1
w2,v(U

′
1))dθu,k

)
µwv,l(U2)

and using Lemma 1.3.5 again we get (6). Theorem is proved.

�

For u < v and k 6= 1 let λvu,k denote the co-restriction of µvu,1 to ∆[k[1]]
u,v q∆[k]

u,v = (u, v].

Proposition 1.2.19 [adddet] An additive Markov pre-process on H[s, t] is determined by the
function h(−,−) and measures λvu,k for k 6= 1 and s ≤ u < v ≤ t.

Proof: Let µ and ν be two additive Markov pre-processes such that the corresponding functions
h and measures λ coincide. Let us prove that the restrictions of µ and ν to skqH[u, v]n,∗ coincide
for all n and q. Let

addn : (H[u, v]1,∗)n → H[u, v]n,∗

be the iterated addition map. Since add−1
n (skqH[u, v]n,∗) ⊂ (skqH[u, v]1,∗)n and our pre-processes

are additive it is sufficient to show that they coincide on sk1H[u, v]1,∗ and that if they coincide on
skq−1H[u, v]n,1 for all n then they coincide on skqH[u, v]1,∗. That µ and ν coincide on sk1H[u, v]1,∗
follows from the definition of h and λ and the fact that

sk1H[u, v]1,∗ = ∆[1]
u,v q (qk 6=1(∆[k[1]]

u,v q∆[k]
u,v))

Assume that they coincide on sqq−1H[u, v]n,∗ for all n and all u, v. By Lemma 1.2.17 it is sufficient
to show that they coincide on subsets (k, (w1, w2), U) in skqH[u, v]1,∗.

We have
(k, (w1, w2), U) = (resu,w2 × resw2,v)

−1(((w1, w2) ⊂ ∆[k[1]]
u,w2

)× U

and we conclude that µ and ν agree on (k, (w1, w2), U) by the Markov property. �

Let µ be an additive pre-process. For any u ∈ [s, t] let e(u) be the smallest element of E which is
greater than u. If no such element exist i.e. if h(u, t) 6= 0 we set e(u) =∞.

For s ≤ u < v ≤ t and k 6= 1 define measures αvu,k on (u, v] by the formula:

αvu,k = ((x1, k1)∗(µvu,1))|(u,v]×k.

Intuitively, αvu,k(B), for a measurable B in (u, v], is the probability that a singleton which is alive
at time u will have its history traceable up to time v and the first transformation event in this
history will occur at x ∈ B and will have multiplicity k.

Theorem 1.2.20 [th2] For an additive Markov process µ∗∗, any k 6= 1 and s ≤ u < v ≤ t one has

[th2eq0]λv,ku = (αvu,k) ∗ hk(−, v) (16)
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Proof: One verifies immediately using the Markov property for u, v, t that the two measures agree
on {v}. Therefore it is sufficient to show that

[th2eq0a](λv,ku )|(u,v) = ((αvu,k) ∗ hk(−, v))|(u,v) (17)

For convenience we will consider (16) as an equality of two measures on [u, v) which are zero on
{u}.

Lemma 1.2.21 [th2l1] For any Markov sub-process µ∗∗, any k 6= 1 and any s ≤ u ≤ y < y+ ≤
v ≤ t one has

[th2eq1]λvu,k([y, y+)) = λ
y+

u,k([y, y+))hk(y+, v) (18)

[th2eq2]
λ
y+

u,k([y, y+))υvy+,k
=

= µvu,n({Γ ∈ H[u, v] | (x1, k1)(Γ) ∈ [y, y+)× {k} and x1(R(Γ)) > y+})
(19)

Proof: Equation (18) follow from Lemma 1.2.1 with U1 = {[y, y+) ⊂ ∆k
u,y+
} and U2 = ∆k[1]

y+,v.

Equation (19) follow from Lemma 1.2.1 with U1 = {[y, y+) ⊂ ∆k
u,y+
} and U2 = H[y+, v]k,∗. � It

is sufficient to consider the cases v > e(u) and v < e(u). Suppose that v > e(u). Then Markov
property applied to points u, e(u), v implies that the measures on both sides of (16) are supported
in e(u) and their values at this point agree. Assume that v < e(u). Then for all x ∈ [u, v) one has
h(x, v) ≥ h(u, v) > 0 and (16) is equivalent to the assertion that for all w ∈ [u, v) one has

[th2eq3]αvu,k([u,w)) =
∫
x∈[u,w)

(h(x, v))−kdλvu,k (20)

Let us denote the function under the integral by f(x) and the measures involved by α and λ
respectively.

Lemma 1.2.22 [th2l2] For all ε > 0 there exists δ > 0 such that for any partition u = x0 < · · · <
xn = w of the interval [u,w) such that |xi+1 − xi| < δ one has∑

|α([xi, xi+1))− f(xi+1)λ([xi, xi+1)) | < ε

Proof: By Lemma 1.2.21 we have

f(xi+1)µvu,k([xi, xi+1)) =

= µvu,n({Γ ∈ H[u, v] | (x1, k1)(Γ) ∈ [xi, xi+1)× {k} and x1(R(Γ)) > xi+1})

Therefore
α([xi, xi+1))− f(xi+1)λ([xi, xi+1)) =

= µvu,n({Γ ∈ H[u, v] | (x1, k1)(Γ) ∈ [xi, xi+1)× {k}, and x1(R(Γ)) ≤ xi+1)})
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If |xi+1 − xi| < δ we conclude that∑
i

α([xi, xi+1))− f(xi+1)λ([xi, xi+1)) ≤ µvu,n({Γ ∈ sk>1H[u, v]n,∗ |x1(R(Γ))− x1(Γ) < δ})

Since ⋂
δ→0

{Γ ∈ sk>1H[u, v]n,∗ |x1(R(Γ))− x1(Γ) < δ} = ∅

we conclude by σ-additivity of µvu,n that for each ε > 0 there exists δ > 0 such that∑
i

α([xi, xi+1))− f(xi+1)λ([xi, xi+1)) < ε

and all terms in this sum are non-negative. � Let (h(u,w))−k = C <∞. To prove the theorem it
remains to verify that

inf

{∑
i

| f(xi+1)λ([xi, xi+1))−
∫
x∈[xi,xi+1)

f(x)dλ |

}
= 0

where inf is taken over all partitions u = x0 < · · · < xn = w of [u,w). Since both
∫
x∈[xi,xi+1) f(x)dλ

and f(xi+1)λ([xi, xi+1)) lie between infx∈[xi,xi+1]f(x)λ([xi, xi+1)) and supx∈[xi,xi+1]f(x)λ([xi, xi+1))
it is sufficient to verify that

[th2eq4]inf

{∑
i

| supx∈[xi,xi+1]f(x)− infx∈[xi,xi+1]f(x) |λ([xi, xi+1))

}
= 0 (21)

Lemma 1.2.23 [th2l4] Let f be a right continuous monotone increasing function on [u,w]. Then
for all ε > 0 there exists a finite set of points a1, . . . aN(ε) ∈ [u,w) and δ > 0 such that for all
(y, y+] ⊂ [u,w)\{a1, . . . , aN} satisfying |y+− y| < δ one has |supx∈[y,y+]f(x)− infx∈[y,y+]f(x)| < ε.

Proof: Observe first that if the conclusion of the lemma holds for two functions then it holds
for their sum. Since f is of right continuous and monotone increasing we can write it as a sum
f = f1 + f2 where f1 is continuous and f3 is a right continuous step function with countable set of
points of discontinuity (see e.g. [1]). In addition both functions are monotone increasing.

For f1 which is continuous we may take N = 0 since a bounded continuous function on an interval
is uniformly continuous and supx∈[y,y+]f(x)− infx∈[y,y+]f(x) = f(y+)− f(y).

Let A be the set of discontinuity points of f2 and for a ∈ A let ∆(f, a) be the jump in this
point. Then

∑
a∈A ∆(f, a) < ∞. Therefore there is a finite number of points a1, . . . , aN ∈ A

such that
∑

a∈A′ ∆(f, a) < ε where A′ = A\{a1, . . . , aN}. The conclusion of the lemma is then
satisfied for these points a1, . . . , aN and any δ > 0. If [y, y+] ⊂ [u,w)\{a1, . . . , aN} then obviously
|supx∈[y,y+]f2(x) − infx∈[y,y+]f2(x)| < ε. If (y, y+] ⊂ [u,w)\{a1, . . . , aN} but y ∈ {a1, . . . , aN} we
still have |supx∈[y,y+]f2(x)− infx∈[y,y+]f2(x)| < ε due to the fact that f2 is right continuous. � To
prove (21) we have to show that for any ε > 0 there exists a partition such that

[th2eq5]
∑
i

| supx∈[xi,xi+1]f(x)− infx∈[xi,xi+1]f(x) |λ([xi, xi+1)) < ε (22)
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Let
C1 = λ([u,w))

C2 = supx∈[u,w]f(x)− infx∈[u,w]f(x)

Using Lemma 1.2.23 let we may find a finite subset a1, . . . , aN and δ > 0 such that for any
(y+, y] ∈ [u,w) satisfying y+ − y < δ one has

|supx∈[y,y+]f(x)− infx∈[y,y+]f(x)| < ε/2C1

Consider partitions which contain intervals [ai− δ′, ai), the lengths of all the intervals are less than
δ and each interval contains at most one of the points from a1, . . . , aN . By σ-additivity of λ we can
choose δ′ such that ∑

i

λ([ai − δ′, ai)) < ε/2C2

Elementary computation shows that for such a partition (22) is satisfied. �

Embeddings jwu,v allow us to consider a process µ∗∗ on H[s, t] as a collection of measures jvs,u ◦ µvu,n
on spaces H[s, v]n,∗ for v ≤ t.

Definition 1.2.24 [com] A process on H[s, t] is called co-measurable if for all n and v the map-
pings

u 7→ jvs,x ◦ µvx,n
are kernels from [v, t) to H[v, t]n,∗.

Remark 1.2.25 The name co-measurable is chosen to avoid confusion with standard notion of a
measurable process. See e.g. [3].

Lemma 1.2.26 [th2l8] If µ is co-measurable then the mapping x 7→
∑

k 6=1 α
v
x,k ⊗ δ{k} is a sub-

probability kernel from [s, v) to (s, v]×N6=1.

Proof: It is sufficient to show that for any k 6= 1 and any s < u ≤ v the function x 7→ αvx,k((s, u])
is a measurable function on [s, v). This function is zero for x ≥ u and for x < u one has

αvx,k((s, u]) = µvx,1((jvs,x)−1(x1, k1)−1((s, u]× {k}))

which proves the lemma. �

Proposition 1.2.27 [arecom] An additive Markov process µ∗ on H[s, t] is co-measurable.

Proof: Since for a Markov process measures µvu,n are projections of measures µtu,n it is sufficient
to consider the case v = t.
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Since our process is additive it is further sufficient to show that the measures µtx,1 considered as
measures on H[s, t] form a kernel from [s, t). In view of Lemma 1.2.17 it is sufficient to verify that
the functions

f1 : x 7→ µtx,1(∆[1]
x,t)

f2 : x 7→ µtx,1(∆[k]
x,t) for k 6= 1

and
f3 : x 7→ µtx,1(H[x, t] ∩ (k, (w1, w2), U))

are measurable. For any Markov process functions f1, f2 are monotone increasing on [s, t) and
therefore are measurable. To show that f3 is measurable let I1 = (s, w1), I2 = (w1, w2) and
I3 = (w2, t). It is clearly sufficient to verify that the restrictions of f3 to I1, I2 and I3 are measurable.
Observe first that

for, x ∈ I1 one has H[x, t] ∩ (k, (w1, w2), U) = (k, (w1, w2), U),

for, x ∈ I2 one has H[x, t] ∩ (k, (w1, w2), U) = (k, (x,w2), U),

for, x ∈ I3 one has H[x, t] ∩ (k, (w1, w2), U) = ∅.

Using Markov property we conclude that

f3(x ∈ I1) = h(x,w1)f3(w1)

which is measurable since h(−, w1) is a monotone increasing function. To prove that f3 is measur-
able on I2 it is sufficient to show that it is measurable on I2 ∩ [e, e+1) for all e ∈ E. For x in this
intersection we have

f3(x) = h(e, x)−1f3(e)

and since h(e,−) is measurable and non zero on [e, e+1) we conclude that f3 is measurable. �

Corollary 1.2.28 [comcor] Let µ∗∗ be an additive Markov process. Then the mapping

x 7→
∑
k

αvx,k ⊗ δk

defines a sub-probability kernel from [s, v) to (s, v]×N6=1.

Proof: It follows from Lemma 1.2.26 and Proposition 1.2.27. �

Lemma 1.2.29 [th2l5] For an additive Markov process and any s ≤ u < v ≤ t one has

αvu,k = (αtu,k)
|(u,v]

Proof: Follows from the Markov property with respect to the points u, v, t. �

Lemma 1.2.30 [th2l6] For an additive Markov process and any s ≤ u < v ≤ t one has

[maineq1]h(u, v) = 1−
∑
k 6=1

αtu,k((u, v]) (23)
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Proof: For any process one has

h(u, v) = 1−
∑
k 6=1

αvu,k((u, v])

together with Lemma 1.2.29 it implies (23). �

Lemma 1.2.31 [th2l7] Let µ be an additive Markov process. Then for any k 6= 1 and any s ≤
u < v ≤ t one has

(αtu,k)
|(v,t] = h(u, v)(αtv,k)

|(v,t]

Proof: The condition (3) is equivalent to the condition that for k 6= 1 and s ≤ u < v < w ≤ t one
has

αtu,k((v, w]) = h(u, v)αtv,k((v, w])

which we get from immediately from Lemma 1.2.1 applied to points u, v, t and subsets

U1 = ∆[1]
u,v

U2 = {Γ ∈ H[v, t]1,∗|x1(Γ) ≤ w, k1(Γ) = k} .

�

Proposition 1.2.32 [pr4] An additive Markov process on H[s, t] is completely determined by the
collection of measures αtu,k for s ≤ u < t and k 6= 1 on (u, t].

Proof: It follows from Proposition 1.2.19, Lemma 1.2.30 and Theorem 1.2.20. �

Summarizing some of the results of this section we see that any additive Markov process µ on [s, t]
defines a sub-probability kernel [s, t)→ (s, t]×N6=1 of the form

u 7→
∑
k 6=1

αtu,k ⊗ δ{k}

such that for the function h(−,−) defined by the formula of Lemma 1.2.30 one has:

h(u, v)h(v, w) = h(u,w)

and
α
|(v,t]
u,k = h(u, v)α|(v,t]v,k

and moreover that µ is uniquely determined by αtu,k.

Let us say that a process µ is irreducible if for all v < t one has µvs,1(∆[1]) 6= 0. An irreducible
additive Markov process is completely determined by a single sub-probability measure αts,∗ on
(s, t]×N 6=1 such that αts,∗((s, t)×N6=1) < 1.

We will see in the next section that to any measure satisfying this condition and such that in addition
αs,k = 0 for sufficiently large k there corresponds a unique irreducible additive Markov process on
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H[s, t] therefore obtaining a complete classification of irreducible additive Markov processes with
restricted branching multiplicities on H[s, t].

A process which is not irreducible may be considered as a collection of irreducible processes on
H[e, e+] for e ∈ E. Conversely, for any countable subset E ⊂ [s, t] such that for any e ∈ E there
exists e+ ∈ E ∩ {t} satisfying the condition (e, e+) ∩ E = ∅ and any collection of additive Markov
processes on H[e, e+] such that, in addition h(e, e+) = 0 for e+ ∈ E there exists a unique process on
H[s, t] with this E and these restrictions to intervals [e, e+]. Due to this fact we will often restrict
our attention below to irreducible processes.

Proposition 1.2.33 [pr5] An additive Markov process on H[s, t] is uniquely determined its tran-
sition kernels φvu.

Proof: The transition kernels determine the projections of measures µvu,n under the map

n : H[u, v]n,∗ → N[u,v]

which sends Γ to the function nΓ : x 7→ nx(Γ). In view of Proposition 1.2.32 it remains to show
that these projections determine the measures αvu,k. It follows immediately from the definition of
this measures and the lemma below. �

Lemma 1.2.34 [p5l1] Let A be a dense countable subset of (u, v). Then for Γ ∈ H[u, v]1,∗ one
has:

1. for k 6= 1 and w ≤ v, (x1, k1)(Γ) ∈ (u,w) × {k} if and only if for all N > 0 there exists
a1, a2 ∈ A such that u < a1 < a2 < w, |a2 − a1| < ε, nΓ(a2) = k and for all a ∈ A such that
a ≤ a1, nΓ(a) = 1,

2. for any k, (x1, k1)(Γ) = (v, k) if and only if nΓ(v) = k and for all a ∈ A such that a < v one
has nΓ(a) = 1.

Proof: Straightforward, using the fact that the functions nΓ are right continuous. �

Lemma 1.2.35 [kcontl1] For an additive Markov process and k 6= 1 such that for all e ∈ E,
αte,k({e+}) = 0 there exists a unique measure γk such that for any u ∈ [s, t) one has

[kconteq1]αtu,k = h(u,−) ∗ γk (24)

Proof: Let γk be the unique measure on [s, t] such that for any e ∈ Eµ one has

γ
|[e,e+)
k = h(e,−)−1 ∗ (αte,k)

|[e,e+)
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Let us show that it satisfies the condition of the lemma. Since αtu,k(u+) = 0, both sides of (??) are
concentrated on (u, u+) and it is sufficient to check that

h(u,−)−1 ∗ (αtu,k)
|(u,u+) = γ

|(u,u+)
k

which follows immediately from Lemmas 1.2.31 and 1.2.5.

If γk and γ′k are two measures satisfying the condition of the lemma then they are equal on each
interval [e, e+) they coincide with h(e,−)−1(αte,k)

|(e,e+) and therefore they coincide with each other.
� Measure γk is called the rate measure for events of multiplicity k. Note that these measures are
bounded on closed intervals which do not contain points from E but may be unbounded around
points from this set. Because of the structure of E we get the following property of γk’s:

Lemma 1.2.36 [th6l3] For any k 6= 1 and any x ∈ [s, t) there exists x′ > x such that γk((x, x′)) <
∞.

For a measure γ satisfying the conclusion of Lemma 1.2.36 define E(γ) as the set such that x ∈ E(γ)
if and only if x = s or x > s and for all x′ < x one has γk((x′, x)) =∞. The conclusions of Lemmas
4.3.9, 4.3.10 hold, with obvious modifications, for the sets E(γ). This implies in particular that
measures γk are σ-finite.

Lemma 1.2.37 [th6l4] For any k one has E(γk(µ)) ⊂ Eµ.

Proof: Follows immediately from the fact that γk for any k is bounded on closed intervals which
do not contain points of Eµ. �

Recall that a measure on R is called non-atomic if its value on any point is zero. A measure is
non-atomic if and only if its distribution function is continuous.

Definition 1.2.38 [kcont] An additive Markov process is called k-continuous if measures αtu,k are
non-atomic for all u ∈ [s, t). An additive Markov process is called continuous if it is k-continuous
for all k 6= 1.

For a measure α on an interval [u, v] let Distr(α) be the (right-continuous) distribution function
of α:

Distr(α)(x) = α[u, x]

Lemma 1.2.39 [th6l1] Let γ be a bounded non-atomic measure on [u, v] and F be a bounded
non-negative measurable function on this interval. Then there exists a unique (bounded) measure
α on [u, v] such that

[inteq](F −Distr(α)) ∗ γ = α (25)

The function Distr(α) is of the form

[inteq1]Distr(α)(x) = e−G(x)

∫
t∈[u,x]

F (t)eG(t)dγ (26)
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where G = Distr(γ). If F takes values in [0, 1] then α is a sub-probability measure.

Proof: Consider first the case when γ = dx is the Lebesgue measure on [u, v]. Then solutions of (25)
are in one to one correspondence with monotone increasing non-negative functions A = Distr(α)
such that for all x ∈ [u, v] one has

[inteq2]
∫ x

u
(F (t)−A(t))dt = A(x) (27)

which holds if and only if A is absolutely continuous, A(u) = 0 and

A′(x) = F (x)−A(x)

almost everywhere (see e.g. [1, p.106]). Set

A(x) = e−x
∫ x

u
F (t)etdt

Then A is absolutely continuous and the equation (27) is satisfied (e.g. by [1, p.108,ex.35]). Since
et−x ≤ 1 on [0, x] we have A ≤ F and by (27) we conclude that A is monotone increasing. If there
are two solutions A1, A2 then their difference A = A1 −A2 is a solution of the equation

A(x) = −
∫ x

u
A(t)dt

A solution of this equation has a continuous derivative everywhere which implies that it is zero by
the standard uniqueness for the ordinary differential equations.

Consider now the case of general non-atomic γ. We may assume that γ 6= 0. Its distribution
function is a continuous mapping

G : [u, v]→ [0, G(v)]

Define a mapping X+ : [0, G(v)]→ [u, v] by the formula

X+(y) = sup{x |G(x) ≤ y}

Then γ = (X+)∗(dy) (see e.g. [7, p.34]). Since G is continuous, X+ is an order preserving
embedding with a measurable image U which a complement to the disjoint union of countably
many intervals of the form [y, y′). Any solution α of (25) is supported in U and therefore there
exists a unique measure α1 on [0, G(v)] such that α = (X+)∗(α1). Using the fact that X+ is an
order preserving embedding one verifies further that

Distr(α1) = Distr(α) ◦X+

Therefore the mapping α1 7→ X+
∗ (α1) defines a bijection between the solutions of (25) and the

solutions of the equation
(F ◦X+ −Distr(α1)) ∗ dy = α1

which implies, by the first part of the proof, that a solution to (25) exists and is unique. The
explicit formula for

Distr(α) = Distr(X+
∗ (α1))

where
Distr(α1)(y) = e−y

∫ y

0
F (X+(z))ezdz

easily follows. �
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Remark 1.2.40 It is plausible that the equation (25) has a unique solution for any bounded γ.
For example, if γ is the delta-measure concentrated at a point a ∈ [u, v] then there exists a unique
solution and it is of the form (F (a)/2)δa. In this case however it is not given by the formula (26)
which, for γ = δa gives the distribution function of F (a)δa.

Example 1.2.41 [th6ex1] If, in Lemma 1.2.39, we have F = c where c is a constant then

Distr(α)(x) = c(1− e−Distr(γ))

Lemma 1.2.42 [th6l2] Let µ, µ′ be two irreducible processes and I a subset of N6=1 such that

1. for i ∈ I the processes µ and µ′ are i-continuous and γi(µ) = γi(µ′),

2. for j ∈ J = N6=1\I one has αts,j(µ) = αts,j(µ
′).

Then µ = µ′.

Proof: Let γI =
∑

i∈I γi, αI =
∑

i∈I α
t
u,i and AI be the distribution function for αI . Then the

definitions of h and γi imply that

αI = (1−AJ −AI) ∗ γ

where AJ is the distribution function for
∑

j∈J α
t
s,j .

Applying Lemma 1.2.39 to the restrictions of γ to intervals [s, u] with u < t we conclude that there
is a unique αI satisfying this equation. Then

h = 1− (AJ +AI)

and we recover measures αts,i for i ∈ I from the defining property of γi. �

Example 1.2.43 [th6ex2] In the assumptions of Lemma 1.2.42 we have the following explicit
formulas for Ai = Distr(αts,i) for i ∈ I. As in the proof set

AJ = Distr(
∑
j∈J

αts,j)

AI = Distr(
∑
i∈I

αts,i)

and let
γ = sumi∈Iγi

G = Distr(γ)

Then
AI(x) = e−G(x)

∫
t∈[s,x]

(1−AJ(t))eG(t)dγ

and
Ai(x) =

∫
t∈[s,x]

(1−AI(t)−AJ(t))dγi
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Example 1.2.44 [th6ex3] Combining Examples 1.2.41 and 1.2.43 we get in the case when J = ∅
the following explicit formulas for Ai:

Ai =
∫
t∈[s,x]

e−
P
i∈I Distr(γi)(t)dγi

In particular, if γi = cidx where ci’s are constants we get:

Ai(x) = (ci/
∑
i∈I

ci)(1− e−(
P
ci)(x−s))

αts,i = cie
−(

P
ci)(x−s)dx

The following proposition connects measures γk with the probability density functions for events
of multiplicity k which form the basis of the classical theory of branching Markov processes.

Proposition 1.2.45 [pr7] An additive Markov process is k-continuous if and only if for any u ∈
[s, t) one has

lim
ε→0,ε>0

φu+ε
u (1, k) = 0

In the case when γk = gk(x)dx one further has

lim
ε→0,ε>0

φu+ε
u (1, k)/ε = gk(u)

Proof: ??? �

1.3 Construction of processes

We start with a construction of a wide class of additive processes on H[s, t] not all of which are
Markov processes. Let

θ : [s, t)→ [s, t]×N6=1

be a sub-probability kernel such that for any u ∈ [s, t) the measure θ(u) is concentrated on (u, t].
As usually we will write θu instead of θ(u) and θu,k for the co-restriction of θu to [s, t]× {k}.

Then there exists a measurable space (Ω,F) and a probability measure P on it together with a
measurable map

I = Iθ : [s, t)× Ω→ ((s, t]×N6=1)q pt

such that
[aalpha]I(x,−)∗(P ) = θ(x). (28)

Let Iu : Ω→ ((s, t]×N6=1)q pt be the restriction of I to {u} × Ω.
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Remark 1.3.1 In fact we can always choose Ω = [0, 1] and P = dx. The map Iu in this case is
defined by the following explicit algorithm starting with the distribution functions Tu,k of measures
θu,k.Let cu,k = θu,k([u, t]) and let Ck = c0 + · · ·+ ck−1. Define, following [7, p.34], a map

I+
u,k : [0, ck)→ [s, t]

by
I+
u,k(y) = sup{y |Tu,k(x) ≤ y}

For y ∈ [0, 1] set

Iu(y) =
{
Iu,k(y) if Ck ≤ y < Ck+1

pt otherwise

Since θ(u) is concentrated on (u, t]×N6=1 we may assume that

Iu(Ω) ⊂ ((u, t]×N6=1)q pt.

Let us define subsets Xv
u,n,N of Ω∞ inductively as follows:

Xv
u,n,0 = ∅

and for N > 0, Xv
u,0,N = Ω∞ and for n > 0:

Xv
u,n,N =

{
ω ∈ Ω∞| ∀1 ≤ i ≤ n (Xu(ωi) ∈ (([v, t]×N6=1)q pt) or (ωi+n, ωi+2n, . . . ) ∈ Xv

X(ωi),N−1)
}

Set
Xv
u,n = ∪N≥0X

v
u,n,N .

Lemma 1.3.2 [simpl7] The subsets Xv
u,n,N and Xv

u,n are measurable.

Proof: Straightforward. �

Note that Xu
u,n = Ω∞.

Example 1.3.3 [divergent] Let x1, . . . , xi, . . . be an increasing sequence of points of [s, t] such
that limn xn = t and for any i one has xi < t. Consider the kernel α which sends s ≤ u < t to the
measure δxi × {2} where i is the first index for which xi > u. Then Xv

u,1 = Ω∞ for all u and v < t
and Xt

u,1 = ∅ for all u < t.

Consider the maps Mv
u,n from Ω∞ to H[u, v] q pt defined by the following inductive construction.

For ω ∈ Xv
u,n set

Mv
u,0(ω) = ∗0

Mv
u,1(ω) =


∆[1]
u,v if I(u, ω1) = (x, k) and x > v or I(u, ω1) = pt

[k] ∗xMv
x,k(ω2, . . . ) if I(u, ω1) = (x, k) and x < v

∆[k]
u,v if I(u, ω1) = (v, k)

Mv
u,n(ω) =

∑n
i=1M

v
1,u(ωi, ωi+n, ωi+2n, . . . )

28



where
∑

refers to the disjoint union of histories. For ω ∈ Ω∞\Xv
u,n set Mv

u,n(ω) = pt. For u = v
we set Mu

u,n ≡ {n}.

Set µvu,n = (Mv
u,n)∗(P⊗∞)|H[u,v]. Considering µvu,∗ as (sub-probability) kernels from N to H[u, v]

we get a pre-process on H[s, t].

Let
θu,k = θ(u)|(s,t]×{k}

be the measure on (s, t] which is the co-restriction of θ(u) to (s, t] × {k}. The following three
lemmas give an inductive description of measures µvu,n directly in terms of θu,k. Since µuu,n = δ{n}
we only consider the case u < v.

Lemma 1.3.4 [q0] For any s ≤ u < v ≤ t one has

µvu,0(∆∗0u,v) = 1

µvu,1(∆[n]
u,v) =


1−

∑
k 6=1 θu,k((u, v]) for n = 1

θu,n({v}) for n 6= 1

Proof: We have
(Mv

u,0)−1(∆∗0u,v) = X0,u = Ω∞

which proves the first equality. We have

(Mv
u,1)−1(∆[1]

u,v) = {ω ∈ Ω∞| Iu(ω1) ∈ ((v, t]×N6=1)q pt} .

Therefore

P⊗∞((Mv
u,1)−1(∆[1]

u,v)) = P (I−1
u ((v, t]×N6=1)q pt) = 1−

∑
k 6=1

θu,k((u, v])

Finally
(Mv

u,1)−1(∆[n]
u ) = {ω ∈ Ω∞| Iu(ω1) = (v, n)}

which proves the last equality. �

Lemma 1.3.5 [n1] For any u < w1 < w2 < v and any measurable U ⊂ H[w2, v]n,∗ one has

µvu,1(k, (w1, w2), U) =
∫
x∈(w1,w2)

µvx,k(j
v
x,w2

(U))dθu,k

Proof: It follows from the fact that

(Mv
u,1)−1(k, (w1, w2), U) =

=
{
ω ∈ Ω∞| I(ω1) ∈ (w1, w2)× {k}, (ω2, . . . ) ∈ Xv

I(ω1), M
v
I(ω1)(ω2 . . . ) ∈ jvI(ω1),w2

(U)
}

where I(−) = Iu(−). �

29



Lemma 1.3.6 [ng1] Let π be a combinatorial type with n(π) > 1. Then

(µvn,u)|∆
π
u = ((µv1,u)⊗n)|add

−1
n (∆π

u)

where addn is the addition map

H[u, t]1,∗ × · · · ×H[u, t]1,∗ → H[u, t]n,∗.

Proof: Follows immediately from the definition of Mv
u,n for n > 1. � As an immediate corollary

from Lemma 1.3.6 we see that the pre-processes µ∗∗ are additive. In view of Lemma 1.2.17, we
conclude that Lemmas 1.3.4 and 1.3.5 completely determined µ in terms of θ.

Lemma 1.3.7 [mu0] The pre-processes constructed above are right continuous.

Proof: By Lemma 1.3.4 we have

h(u, v) = 1−
∑
k 6=1

θu,k((u, v])

which implies that h(−,−) is right continuous and the claim of the lemma follows from Theorem
4.3.8. �

Lemma 1.3.8 [xinv] For any w > v > u and any k one has Xw
u,k ⊂ Xv

u,k and

Xv
u,k = ∪w>vXw

u,k

Proof: Follows by easy induction from the construction of Xv
u,k,N . �

Lemma 1.3.9 [ta] For the process constructed from a kernel θ one has

αvu,k = υv−,k ∗ θ
|(u,v]
u,k

Proof: It is sufficient to compare the measures on the right and left hand sides on intervals (u,w]
where w ≤ v. We have

(Mv
u,1)−1(x1, k1)−1((u,w]× {k}) =

{
ω ∈ Ω∞ | I(ω1) ∈ (u,w]× {k} and (ω2, . . . ) ∈ Xv

I(ω1)

}
(where I(−) = Iu(−)). Therefore

αvu,k((u,w]) = µvu,1((x1, k1)−1((u,w]× {k})) =
∫
x∈(u,w]

P⊗∞(Xv
x,k)dθu,k

and since
υvu,k = P⊗∞(Xv

u,k)

the claim of the lemma follows. �
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Theorem 1.3.10 [th3] Let θ be a sub-probability kernel as above such that the following conditions
hold:

1. for all s ≤ u < v < w ≤ t one has

(1−
∑
k 6=1

θu,k((u, v]))(1−
∑
k 6=1

θv,k((v, w])) = (1−
∑
k 6=1

θu,k((u,w]))

2. for all s ≤ u < v < t and n 6= 1 one has

θ|(v,t]u,n = (1−
∑
k 6=1

θu,k((u, v])) θ|(v,t]v,n

The the corresponding pre-process µ is a Markov pre-process.

Proof:

Lemma 1.3.11 [jmul] Suppose that θ satisfies conditions (1), (2). Then for any s ≤ u ≤ v <
w ≤ t one has

(µw1,u)|j
w
u,v(H[v,w]1,∗) = (1−

∑
k 6=1

θu,k((u, v]))µw1,v

Proof: For (µw1,u)|j
w
u,v(sk>0H[v,w]1,∗) it follows immediately from Lemmas 1.2.17 and 1.3.5 and condi-

tion (2). For µw1,u(∆[n]
u,w) and n 6= 1 from Lemma 1.3.4 and condition (2) and finally for µw1,u(∆[1]

u,w)
from Lemma 1.3.4 and condition (1). �

”If” We need to verify the condition of Lemma 1.2.1. Using additivity one can easily see that if this
condition holds for all U1 ⊂ skqH[v, t]1,∗ then it holds for all n and all U1 ⊂ skqH[v, t]n,∗. Therefore
we may proceed by induction on q and for each q we only need to consider the case n = 1.

Let q = 0. Then we have to consider two cases.

1. Let U1 = ∆[1]
u,v. Then

(resu,v × resv,w)−1(U1 × U2) = jwu,v(U2)

and the condition of Lemma 1.2.1 follows immediately from Lemma 1.3.11 and Lemma 1.3.4
for n = 1.

2. Let U1 = ∆[n]
u,v where n 6= 1. Then

(resu,v × resv,w)−1(U1 × U2) =
{

Γ ∈ sk>0H[u,w]1,∗|x1(Γ) = v, k1(Γ) = n,R(Γ) ∈ jwu,v(U2)
}

It follows by an obvious limit argument from Lemma (1.3.5), that the value of µw1,u on this
subset is θu,n({v})µwv,n(U2) which together with Lemma 1.3.4 implies the condition of Lemma
1.2.1 in this case.
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Let q > 0. Assume by induction that the condition of Lemma 1.2.1 is known for all U1 ⊂
skq−1H[u, v] and all U2 and let U1 ⊂ skqH[u, v]1,∗. By Lemma 1.2.17 we may assume that
U1 = (k, (w1, w2), U ′1) where u < w1 < w2 < v and U ′1 is a measurable subset of skq−1H[w2, v]m,∗
for some m 6= 1. Then

[ss](resu,v × resv,w)−1(U1 × U2) = (k, (w1, w2), (resw2,v × resv,w)−1(U ′1 × U2)) (29)

By the inductive assumption

µwx,k(j
w
x,w2

(resw2,v × resv,w)−1(U ′1 × U2)) = µwx,k(j
w
x,w2

res−1
w2,v(U

′
1))µwv,l(U2)

where l is such that U2 ⊂ n−1
v ({l}). By Lemma 1.3.5, the value of µwu,1 on (29) is∫

x∈(w1,w2)
µwx,k(j

w
x,w2

(resw2,v × resv,w)−1(U ′1 × U2))dθu,m =

=

(∫
x∈(w1,w2)

µwx,k(j
w
x,w2

res−1
w2,v(U

′
1))dθu,k

)
µwv,l(U2)

and using Lemma 1.3.5 again we get (6). Theorem is proved. �

We are now going to formulate a sufficient condition for the pre-process constructed from θ to be
a process.

Definition 1.3.12 [admiss] The map I is called admissible if the corresponding pre-process is a
process i.e. if P⊗∞(Xv

u,n) = 1 for all u, v, n.

One can verify easily that admissibility of I depends only on θ.

Consider the map Bv
u : [u, v] × Ω → (u, v] which equals {v} on {v} × Ω and whose restriction to

[u, v) × Ω is the composition of I with the projection which takes ((v, t] × N6=1) q pt to v and
(x, k) ∈ (u, v) ×N 6=1 to x. Since u and v are fixed below we will write B instead of Bv

u. Define a
map

L : [u, v]× ΩN → (u, v]N

setting
L(x0, ω1, ω2, . . . , ωN ) = (B(x0, ω1), B(B(x0, ω1), ω2), . . . ).

We will write xi(x0, ω) ∈ (s, t] for the i-component of L(x0, ω). Let

Y <v
x0,N

=
{
ω ∈ ΩN |xN−1(x0, ω) < v

}
Proposition 1.3.13 [pr2] Let θ∗,k = 0 for k > K. Then

P⊗∞(Ω∞\Xv
u,1,N ) ≤ KN−1 P⊗N (Y <v

u,N )

32



Proof: For n ≤ K define subsets Zvu,n,N setting Zvu,n,0 = ∅ and for N > 0, Zvu,0,N = Ω∞ and for
n > 0:

Zvu,n,N =
{
ω ∈ Ω∞| ∀1 ≤ i ≤ n (Iu(ωi) ∈ (([v, t]×N6=1)q pt) or (ωi+K , ωi+2K , . . . ) ∈ ZvI(ωi),N−1)

}
One observes easily that

P∞(Zvu,n,N ) = P∞(Xv
u,n,N )

We will write xIu(ω) and kIu(ω) for the first and the second component of Iu(ω) if it lies in
(s, t]×N 6=1. If Iu(ω) = pt we will write xIu(ω) = t and kIu(ω) = 1.

Lemma 1.3.14 [th4l1] One has ω ∈ Ω∞\Zvx0,k0,N
if and only if there exists a sequence i0, . . . , iN−1

such that for
xj = xIxj−1(ωi0+i1K+···+ij−1Kj−1)

kj = kIxj−1(ωi0+i1K+···+ij−1Kj−1)

we have 1 ≤ ij ≤ kj and xj < v for all 0 ≤ j ≤ N − 1.

Proof: Follows easily by induction on N from the definition of subsets Zvx0,k0
. � Let

Y <v
x0,k0

(i0, . . . , iN−1) =
{
ω | (ωi0 , ωi0+i1K , . . . ) ∈ Y <v

x0,N

}

Lemma 1.3.15 [th4l2] For any sequence i0, . . . , iN−1 one has

P⊗∞(Y <v
x0,k0

(i0, . . . , iN−1)) = P⊗N (Y <v
x0,N

)

Proof: Consider the map I : Ω∞ → ΩN which sends ω to (ωi0 , ωi0+i1K , . . . ). Since it is just a
partial projection the image of P⊗∞ under this map coincides with P⊗N which implies the claim
of the lemma. � Under the assumption of the proposition kj ≤ K for all j > 0 and therefore

Ω∞\Zvx0,1,N ⊂
⋃

i1,...,iN−1

Y v
x0,k0

(1, i1, . . . , iN−1)

where 1 ≤ ij ≤ K for all j. Together with Lemma 1.3.15 this implies the claim of the proposition.
�

Proposition 1.3.16 [pr3] Let θ be a kernel satisfying condition (2) of Theorem 1.3.10 and let
βvu = (Bv

u)∗(δu ⊗ P ). Then for u, v such that h(u, v) 6= 0 one has

P⊗N (Y <v
u,N ) =

∫
u<x1<···<xN<v

h(u, x1)−1 . . . h(u, xN−1)−1d(βvu)⊗N

Proof: We have
Y <v
u,N = L−1

u (u, v)N
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From the definition of L we conclude immediately that for any measurable B1, . . . , BN ∈ [s, t] one
has

P⊗N (L−1
u (B1 × · · · ×BN )) =

∫
x∈B1

P⊗(N−1)(L−1
x (B2 × · · · ×BN ))dβvu

If θ satisfies the condition (2) of Theorem 1.3.10 then h(u, x)(βvx)|(x,v) = (βvu)|(x,v). Since βvx is
concentrated on (x, v] we get

P⊗N (L−1
u ((u, v)N ))

∫
u<x1<x2<···<xN<v

h(u, x1)−1 . . . h(u, xN−1)−1d(βvu)⊗N

�

Theorem 1.3.17 [th4] Suppose that θ∗,k = 0 for all but finitely many k and limv→th(s, v) = c > 0.
Then θ is admissible.

Proof: From Proposition 1.3.16 we get

P⊗N (Y <t
u,N ) ≤ c1−N

N !
βu(u, t)

In view of Proposition 1.3.13 it remains to show that

limN→∞
(K/c)N−1

N !
= 0

which follows from the fact that for any finite number X one has

lim
N→∞

XN

N !
= 0.

�

Summarizing the results of the two previous sections we get the following theorem.

Theorem 1.3.18 [th5] Our constructions provide a bijection between irreducible, additive Markov
processes on H[s, t] whose branching multiplicities are bounded by K ≥ 0 and collections of sub-
probability measures αts,k on (s, t] given for k ∈ {0, 2, 3, . . . ,K} and satisfying the condition∑

k

αts,k((s, t)) < 1

In the case of processes which are i-continuous for some subset of indexes I ⊂ {0, 2, . . . ,K} we get
the following classification.

Theorem 1.3.19 [th6] Let K ≥ 0 and I a subset in {0, 2, . . . ,K}. Consider the following collec-
tion of data:
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1. for each i ∈ I, a non-atomic measure γi on (s, t] which is bounded on (s, u] for all u < t,

2. for each j ∈ {0, 2, . . . ,K}\I a sub-probability measure αts,j on (s, t] such that
∑

j α
t
s,j((s, t)) <

1.

Then there exists a unique irreducible additive Markov process µ on H[s, t] which is i-continuous for
all i ∈ I such that for i ∈ I one has γi = γi(µ) and for j ∈ {0, 2, . . . ,K}\I, one has αts,j = αts,j(µ).

Proof: The uniqueness result follows from Lemma 1.2.42. The existence follows from the same
argument which is used in the proof of this lemma combined with Theorem 1.3.18. �

Proposition 1.3.20 [pr8] Let µ be an additive Markov process with bounded multiplicities. Then
for all u, v and n one has

lim
q→∞

µvu,n(sk>qH[u, v]n,∗)→ 0

Proof: It is clearly sufficient to consider the case u = s and v = t. Let K be a multiplicities bound.
A simple inductive argument shows that

M t
s,n(Xt

s,n,N ) ⊂ skKNH[s, t]n,∗

since. Therefore
µts,n(sk>KNH[s, t]n,∗) ≤ 1−M t

s,n(Xt
s,n,N )

and since by Theorem 1.3.17 we have

limN→∞M
t
s,n(Xt

s,n,N ) = 1

the claim of the proposition follows. �

1.4 Birth and death processes

Definition 1.4.1 [bddef] A birth and death (resp. birth, death) process on H[s, t] is an additive
Markov process such that αvu,k = 0 for all u, v and k 6= 0, 2 (resp. k 6= 2, k 6= 0).

Definition 1.4.2 [nbddef] A normalized birth and death process is a 2-continuous birth and death
process such that γ2 = dx where dx is the Lebesgue measure on (u, t].

Let f : [s′, t′] → [s, t] be a strictly increasing function. Then it defines maps fu,v : H[u, v] →
H[f(u), f(v)] according to an obvious rule. For a pre-process µ∗∗ on H[s, t] define a pre-process
f∗(µ) on H[s′, t′] setting f∗(µ)vu,n = f∗(µ

f(v)
f(u)). One verifies easily that this operation preserves all

the properties of pre-processes considered above.
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There are two cases which are of special interest. One is the case of and inclusion i : [s′, t′] ⊂ [s, t]
when i∗(µ) is the restriction of µ to [s′, t′]. Another one is the case of an order preserving bijection
f : [s′, t′] → [s, t]. In this case f∗ is a bijection between pre-processes on H[s, t] and H[s′, t′]. The
α-invariants of pre-processes are transformed by this bijection by the rule

αvu,k(f
∗(µ)) = f∗(αf(v)

f(u),k)

Definition 1.4.3 Two process µ and µ′ are called weakly equivalent if there exists an order pre-
serving bijection f : [s, t]→ [s, t] such that µ′ = f∗(µ).

Proposition 1.4.4 [pr6] A birth and death process is weakly equivalent to a normalized birth and
death process if and only if it is 2-continuous and γ2((u, v)) > 0 for v > u. In this case the
corresponding normalized process is unique.

Proof: Straightforward. �

Proposition 1.4.5 [pr11] Let αts,0 be a sub-probability measure on (s, t] such that αts,0((s, t)) <
1. Then there exists a unique irreducible normalized birth and death process on H[s, t] such that
αts,0(µ) = αts,0.

Proof: It is a particular case of Theorem 1.3.19. �

1.5 Compositions, re-gluings and related constructions

For finite sets X, B and a function ψ : X → N such that

tr(ψ) =
∑
x∈X

ψ(x) = #B

set
C(B,X,ψ) = {f : B → X |ψ(f) = ψ}

and let
c(B,X,ψ) = #C(B,X,ψ)

The number c(B,X,ψ) depends only on X and ψ but it will be convenient for us to keep B in the
notation. We will also use the set of maps

C ′(B,X,ψ) = {f : B → X |ψ(f) ∼= ψ}

where ψ ∼= ψ′ of the exists a permutation s : X → X such that ψ′ = ψ ◦ s. Set further

G(Γ′,Γ′′) = C(τ−1
Γ′′ (v), τ−1

Γ′ (v), ψΓ′)

G′(Γ′,Γ′′) = C ′(τ−1
Γ′′ (v), τ−1

Γ′ (v), ψΓ′)
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Set
c(Γ′,Γ′′) = (#G(Γ′,Γ′′))−1

∑
f∈G(Γ′,Γ′′)

Γ′ ∪f Γ′′

c′(Γ′,Γ′′) = (#G′(Γ′,Γ′′))−1
∑

f∈G′(Γ′,Γ′′)

Γ′ ∪f Γ′′

where the right hand sides are considered as a measures on H[u,w]. This defines probability kernels

c : H[u, v]×N H[v, w]→ H[u,w]

c′ : H[u, v]×N H[v, w]→ H[u,w]

Lemma 1.5.1 [cl1] One has
(resu,v × resv,w) ◦ c = Id

Proof: Let Γ′ = resu,v(Γ) and Γ′′ = resv,w(Γ). Then there is a well defined map

[ceq1]g : τ−1
Γ′′ (v)→ τ−1

Γ′ (v) (30)

such that for any vertex x ∈ τ−1
Γ′ (v) one has

[ceq2]#(g−1(x)) = ψΓ′(x) (31)

Conversely, given Γ ∈ H[u, v], Γ′ ∈ H[v, w] and a map g as above there exists a unique Γ′ ∪g Γ′′ ∈
H[u,w] corresponding to these data which implies the claim of the lemma. �

Set
mv+(Γ) = c ◦ (resu,v × resv,w)

mv(Γ) = c′ ◦ (resu,v × resv,w)

Lemma 1.5.2 [proj] The kernels mv and mv+ are projectors i.e.

mvmv = mv

mv+mv+ = mv+

Proof: For mv+ it follows immediately from Lemma 1.5.1. To prove that mv observe first that for
Γ′ ∈ H[u, v]n,∗ and Γ′′ ∈ H[v, w]n,∗ one has

(resu,v × resv,w)(c′(Γ′,Γ′′)) = mv(Γ′)⊗ Γ′′

and
c′(Γ′,Γ′′) = c′(mv(Γ′),Γ′′)

Applying these equalities to Γ′ = resu,v(Γ) and Γ′′ = resv,w(Γ) we get

mvmv(Γ) = c′ ◦ (res× res) ◦ c′ ◦ (res× res)(Γ) = c′(mv(Γ′)⊗ Γ′′) = c′(Γ′,Γ′′) = mv(Γ)

�
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Lemma 1.5.3 [mvpmv] One has
mv+mv = mv

Proof: Straightforward. �

Remark 1.5.4 Note the neither mv nor mv+ is a homomorphism with respect to the disjoint union
of histories.

Proposition 1.5.5 [pr12] Let µ be an additive Markov process on H[s, t]. Then its is invariant
under mixings i.e. for any u ≤ y ≤ v one has

my ◦ µvu = µvu

and
my+ ◦ µvu = µvu

Proof: The second statement follows from the first one by Lemma 1.5.3. To prove the first one let
us generalize the construction of Lemma 1.2.17 as follows. Let k 6= 1, u < w1 < w2 < v and let f
be a measurable function on H[w2, v]k,∗. Define a function (k, (w1, w2), f) on H[u, v]1,∗ setting

(k, (w1, w2), f)(Γ) =
{
f(R(Γ)) if (x1, k1)(Γ) ∈ (w1, w2)× {k}
0 otherwise

such that if f is the indicator function for U ⊂ H[w2, v]k,∗ then (k, (w1, w2), f) is the indicator
function for (k, (w1, w2), U).

Lemma 1.5.6 [pr11l1] For a Markov process µ one has∫
H[u,v]1,∗

(k, (w1, w2), f)dµvu,1 = λw2
u,k

∫
H[w2,v]k,∗

fdµvw2,k

Proof: It follows immediately from the Markov property applied to the triple (u,w2, v). � The
equality µvu,k ◦my = µvu,k holds on sk0H[u, v] for all k since for Γ ∈ sk0H[u, v] one has my(Γ) = Γ.
Assume that it holds on skq−1H[u, v] for all k. Let us show that the equality µvu,1 ◦my = µvu,1 holds
on skqH[u, v]. In view of Lemma 1.2.17 it is sufficient to show that

(µvu,1 ◦my)(k, (w1, w2), U) = µvu,1(k, (w1, w2), U)

for all k 6= 1, u < w1 < w2 < v and U ∈ skq−1H[w2, v]k,∗. We have

(µvu,1 ◦my)(k, (w1, w2), U) =
∫
H[u,v]

m∗y(k, (w1, w2), IU )dµvu,1

where IU is the indicator function of U and m∗y(f) is the pull-back of this function with respect to
the kernel my.
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Lemma 1.5.7 [pr11l2] One has

m∗y(k, (w1, w2), f) =
{

(k, (w1, w2),m∗y(f)) for y ≥ w2

(k, (w1, w2), f) for y ≤ w2

Proof: Straightforward from the fact that

(k, (w1, w2), f) = (resu,w2 × resw2,v)
∗(I(w1,w2) × f)

where I(w1,w2) is the indicator function of (w1, w2) considered as a subset in ∆[k[1]]
u,w2 . � Applying

Lemmas 1.5.7 and 1.5.6 we get∫
H[u,v]

m∗y(k, (w1, w2), IU )dµvu,1 =
∫
H[u,v]

m∗y(k, (w1, w2),m∗y(IU ))dµvu,1 =

= λw2
u,k

∫
H[w2,v]k,∗

m∗y(IU )dµvw2,k = λw2
u,k

∫
H[w2,v]k,∗

IUdµ
v
w2,k =

=
∫
H[u,v]

(k, (w1, w2), IU )dµvu,1

where the third equality holds by the inductive assumption since IU is supported on skq−1H[u, v].
To finish the inductive step it remains to verify that the equality µvu,k ◦ my = µvu,k holds on
skqH[u, v]k,∗ for k 6= 1. This follows from the additivity of µ and the fact that add−1

k (skqH[u, v]k,∗) ⊂
(skqH[u, v]1,∗)k. �

Set
F (X,ψ′, k) = {ψ : X → N |ψ ≤ ψ′ and tr(ψ) = k}

Let B be a finite set, A ⊂ B its subset with k elements and Γ ∈ H[u, v] a history such that
nv(Γ) = tr(ψγ) = #B. Denote ψ−1

Γ (v) by X. Set

sk(A,B,Γ) =
∑

ψ∈F (X,ψΓ,k)

c(B\A,X,ψΓ − ψ)c(A,X,ψΓ)
c(B,X,ψ(Γ′))

Γψ

which we interpret as a measure (a sum of δ-measures) on H[u, v]. It depends only on the isomor-
phism class of the pair of sets A ⊂ B and since the number of elements of B is known only on the
number of elements k of A. When possible we will denote it by sk(Γ).

Note that if k = nv(Γ) then sk(Γ) = Γ and if k > nv(Γ) then sk(Γ) = 0.

The measure sk(Γ) is always a probability measure. Indeed consider a map

C(B,X,ψΓ)→ F (X,ψ′, k)

which sends f to ψ(f|A). One verifies easily that this map is well defined and its fiber over ψ is the
product of C(A,X,ψ) and C(B\A,X,ψΓ − ψ) which implies that∑

ψ∈D(X,ψΓ,k)

c(B\A,X,ψΓ − ψ)c(A,X,ψΓ) = c(B,X,ψ(Γ′)).
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1.6 Death free histories

A history Γ ∈ H[u, v] is called death free if ψ−1(0) = ∅ and for any vertex x such that τ(x) < v
there exists at least one edge starting in x. We let H̃[u, v] denote the set of death free histories
over [u, v] and H̃D[u, v] the set of ordered death free histories over [u, v]. The space H̃D[u, v] (resp.
H̃[u, v]) can also be described as the [u, v]-geometric realization of the simplicial monoid defined as
follows. Let F̃ (resp. F̃Ab) be the co-triple on monoids (resp. commutative monoids) which takes
a monoid A to the free monoid generated by the pointed set (A, 1), e.g. F̃ (pt) = pt. Let further F̃∗
(resp. F̃Ab∗ ) be the functor which sends a monoid to the simplicial monoid defined by this co-triple.
There are obvious natural transformations of co-triples i : F̃ → F , r : F → F̃ (resp. i : F̃Ab → FAb

and r : FAb → F̃Ab) where F and FAb are the co-triples considered in Section ??.

Proposition 1.6.1 [pr9] The space H̃D[u, v] (resp. H̃[u, v]) is naturally identified with |F̃∗(N)|[u,v]

(resp. |F̃Ab∗ (N)|[u,v]). The geometric realization of i gives the natural embedding of it to HD[u, v]
(resp. to H[u, v]). The geometric realization of r gives maps

H[u, v]→ H̃[u, v]

HD[u, v]→ H̃D[u, v]

which which we denote by rv. These maps send a history to the ancestral history of the present day
survivors. More precisely, rv(Γ) is the death free history obtained from Γ by the successive removal
of all vertices x such that τ(x) = v and ψ(x) = 0 or τ(x) < v and there are no edges starting at x.

Proof: Straightforward. �

The simplicial sets F̃∗(N) and F̃Ab∗ (N) are locally finite. Moreover, one has the following result.

Proposition 1.6.2 [topstr] The space H̃D[u, v] (resp. H̃[u, v]) is the disjoint union of the form

H̃D[u, v] = qn≥0H̃D[u, v]∗,n

H̃[u, v] = qn≥0H̃[u, v]∗,n

The space H̃∗,0 consists of one point corresponding to the empty history. For n > 0, the spaces
H̃D[u, v]∗,n and H̃[s, t]∗,n are finite contractible CW -complex of dimension n− 1.

Proof: Straightforward. �

Remark 1.6.3 [cubes] There are obvious descriptions of H̃D[u, v]∗,n and H̃[u, v]∗,n along the lines
of the descriptions of HD[u, v]∗,n and H[u, v]∗,n given in Remark ??. In the ordered case and for
n > 0 we get that HD[u, v]∗,n is the [u, v]-nerve of the category whose objects are order preserving
surjections [n − 1] → [i] and morphisms are morphisms under [n − 1]. One observes easily that
this category is a partially-ordered set which is isomorphic to the set of subsets of {1, . . . , n − 1}.
Correspondingly

H̃D[u, v]∗,n = [u, v]n−1
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The geometry of H̃[u, v]∗,n appears to be less regular. Explicit computation shows that

H̃[u, v]∗,0 = H̃[u, v]∗,1 = pt

H̃[u, v]∗,2 = ∆1
[u,v]

H̃[u, v]∗,3 = ∆2
[u,v]

and H̃[u, v]∗,4 is the union of two copies of ∆3
[u,v] along a 2-dimensional face.

Remark 1.6.4 [ultrametric] For an element Γ ∈ H̃[u, v] of level q define a distance on the set
Vq+1(Γ) of final vertices of Γ setting

d(v1, v2) = v − xi+1(Γ)

where i is the largest index such that the images of v1 and v2 in Vi coincide if such an index exists
and

d(v1, v2) =∞

otherwise. One verifies that Vq+1(Γ) with this distance function is an ultra-metric space (where 0
and ∞ are allowed as distances). Moreover, there is a natural bijection between H̃[u, v]∗,n and the
set of isomorphism classes of ultra-metric spaces with n elements such that for any v1, v2 one has
d(v1, v2) < v − u or d(v1, v2) =∞.

Remark 1.6.5 [genhist] Previous remarks show that every point of H̃[u, v]∗,n (resp. H̃D[u, v]∗,n)
lies in the closure of a simplex of dimension n− 1 and it belongs to the interior of such a simplex
if and only if the corresponding history Γ has the following properties:

1. there are exactly n vertices v with τ(v) = t (i.e. ψ ≡ 1),

2. for any v such that τ(v) 6= s, t there exists exactly two edges starting in v,

3. for any v1, v2 such that τ(v1) = τ(v2) 6= t one has v1 = v2, in particular there is exactly one
vertex v with τ(v) = s.

We will call histories which satisfy these conditions generic and denote their space by B̃[u, v] (resp.
B̃D[u, v]). As a space B̃[u, v] (resp. B̃D[u, v]) is naturally homeomorphic to the disjoint union of
open [u, v]-simplexes and tis dense in H̃[u, v]. (resp. H̃D[u, v]).

In what follows we will write rv instead of r to emphasize the special role which the final time
moment plays in the definition of r. We will also restrict our attention to the case of ordered
histories giving the corresponding results for un-ordered histories as remarks.

We obviously have
(rv)−1(H̃D[u, v]∗,n) = HD[u, v]∗,n
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We set
HD[u, v]jm,n = (rv)−1(H̃D[u, v]j,n) ∩HD[u, v]m,n

i.e. HD[u, v]jm,n is the set of histories with m initial members j of which have living descendants
at time v and n final members.

For a process µ on HD[s, t], m, j ≥ 0 and s ≤ u ≤ v ≤ t set

ηvu,µ(m, j) = µvu,m(HD[u, v]jm,∗)

As always we will omit µ from our notation whenever possible. We have ηvu(m, 0) = φvu(m, 0) and
in general ηvu(m, j) is the probability that in a population with m members at time u exactly j of
them will have living descendants at time v.

Let further ηvu : N→ N be the kernels defined by the rule

{m} 7→
∑
j≥0

ηu,µ(m, j)δ{j}

If µ is an additive process then one has

[pr10eq1]ηvu(m, j) = C(m, j)ηvu(1, 1)jηvu(1, 0)m−j (32)

Proposition 1.6.6 [pr10] Let µ : N→ HD[u, v] be an additive kernel such that (nu)∗µ = Id and
µ(1, HD[u, v]11,∗) 6= 0. Then there exists a unique kernel µ̄ : N→ H̃D[u, v] such that the square

[pr10eq1]

N
η−−−−→ N

µ

y yµ̄
HD[u, v] rv−−−−→ H̃D[u, v]

(33)

where
η(m) =

∑
j

µ(HD[u, v]jm,∗)δj

commutes and this kernel is additive.

Proof: Let rjm be the restriction of rv to a HD[u, v]jm,∗

rjm : HD[u, v]jm,∗ → H̃D[u, v]j,∗

and µjm be the co-restriction of µ(m) to HD[u, v]jm,∗.

Lemma 1.6.7 [pr10l1] One has

(rjm)∗(µjm) = C(m, j)η(1, 0)m−j(addj)∗(((r1
1)∗(µ1

1)⊗j))

where
add1,j : (H̃D[u, v]1,∗)×j → H̃D[u, v]j,∗

is the restriction of the addition map.

42



Proof: Since rv is a homomorphism of monoids we have a commutative diagram

HD[u, v]×m addm−−−−→ HD[u, v]

r×mv

y yrv
H̃D[u, v]×m addm−−−−→ H̃D[u, v]

We have
X = add−1

m r−1
v (H̃D[u, v]j,∗) = add−1

m (HD[u, v]jm,∗) =

= qI⊂{1,...,m}
m∏
i=1

HD[u, v]ε(i)1,∗

where I runs through the j-element subsets of {1, . . . ,m} and ε(i) = 1 for i ∈ I and ε(i) = 0
otherwise. Since µ(m) = (addm)∗(µ(1)) we have

(rjm)∗(µjm) = (addm)∗(rmv )∗((µ(1)⊗m)|X)

Since X is the disjoint union of C(m, k) components such that each one is obtained by permutation
of factors from (HD[u, v]11,∗)

×j × (HD[u, v]01,∗)
×(m−j) and H̃D[u, v]0,∗ = pt we get the required

equality. �

To finish the proof of the proposition observe first that under our assumptions

η(j, j) = η(1, 1)j > 0

Commutativity of (33) is equivalent to the assertion that for all m, k ≥ 0 one has

η(m, j)µ̄(j) = (rjm)∗(µjm)

Set µ̄(j) = η(j, j)−1(rjj)∗(µ
j
j). From the Lemma 1.6.7 we get

(rjj)∗(µ
j
j) = (addj)∗(((r1

1)∗(µ1
1)⊗j))

and therefore
(rm,j)∗(µjm) = C(m, j)η(1, 0)m−j(rjj)∗(µ

j
j)

Then for m > j we have

η(m, j)µ̄(j) = η(m, j)η(j, j)−1(rjj)∗(µ
j
j) = C(m, j)η(1, 0)m−j(rjj)∗(µ

j
j) = (rjm)∗(µjm)

The additivity of µ̄ follows easily by a similar argument. �

Let now µ be an additive Markov process on HD[s, t]. Define a death-free process µ̃ by the formula

µ̃vu = (resu,v)∗(µ̄tu)

The process µ̃ is called the ancestral process of the process µ. From the proof of Proposition 1.6.6
we have the following explicit formula for µ̃tu,j :

µ̃tu,j = ηtu(1, 1)−j(rju,j)∗((µ
v
u,j)
|HD[u,t]jj,∗)

where rju,j is the restriction of rt to HD[u, t]jj,∗.
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Theorem 1.6.8 [th7] If µ is an additive Markov process then µ̃ is an additive Markov process.

Proof: We already know that µ̃ is additive. It remains to verify that it satisfies the conditions
of Lemma 1.2.1. Since the process is additive it is enough to show that for any ñ ≥ 0, any
s ≤ u < v <≤ t, any measurable U in H̃D[u, v]1,ñ and any measurable V in H̃D[v, t]ñ,∗ one has

[th7eq1]µ̃tu,1((resu,v × resv,t)−1(U × V )) = µ̃vu,1(U)× µ̃tv,ñ(V ) (34)

In view of Lemma 1.1.8 we may assume that

V = addñ(V1 × · · · × Vñ)

where Vi’s are measurable subsets in H̃D[v, t]1,∗.

For a subset I ⊂ {1, . . . , n} and a history Γ ∈ HD[u, v]n,∗ denote by ΓI the history given by the
same data as Γ except that Vq+1(ΓI) = Vq+1(Γ)\I. Let further

rIv : HD[u, v]→ H̃D[u, v]

the map Γ 7→ rv(ΓI). Intuitively it corresponds to taking the ancestral history of Γ under the
assumption that the present day members from I are considered dead.

By Lemma 1.6.9 below we have

µ̃tu,1((resu,v × resv,t)−1(U × V )) = ηtu(1, 1)−1(
∑
n≥ñ

∑
I

ηtv(1, 1)ñηtv(1, 0)n−ñµvu,1((rIv)
−1(U))) µ̃tv,ñ(V )

Setting V = H̃D[v, t]ñ,∗ we get

µ̃vu,1(U) = µ̃tu,1(res−1
u,v(U)) = µ̃tu,1((resu,v × resv,t)−1(U × H̃D[v, t]ñ,∗)) =

= ηtu(1, 1)−1(
∑
n≥ñ

∑
I

ηtv(1, 1)ñηtv(1, 0)n−ñµvu,1((rIv)
−1(U)))

and therefore (34) holds. �

Lemma 1.6.9 [th7l1] Under the assumptions made above one has:

ηtu(1, 1)µ̃tu,1((resu,v × resv,t)−1(U × V )) = (
∑
n≥ñ

∑
I

ηtv(1, 1)ñηtv(1, 0)n−ñµvu,1((rIv)
−1(U))) µ̃tv,ñ(V )

where I runs through subsets of ñ-elements in {1, . . . , n}.

Proof: Let r1
1 be the restriction of rt to HD[v, t]11,∗. We will use the same notation for the restriction

of rt to HD[u, t]11,∗. By Lemma 1.1.7 the map

resu,v × resv,t : HD[u, t]1,∗ → qn HD[u, v]1,n ×HD[v, t]n,∗
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is a bijection and since a history on [u, t] is death free if and only if its restrictions to [u, v] and
[v, t] are death free so is the map

resu,v × resv,t : H̃D1,∗[u, t]→ qñ H̃D[u, v]1,ñ × H̃D[v, t]ñ,∗

Let X be the image of HD[u, t]11,∗ under the first map. Then there is a unique map

f : X → H̃D[u, v]1,ñ × H̃D[v, t]ñ,∗

such that the square

HD[u, t]11,∗
resu,v×resv,t−−−−−−−−→ X

r1
1

y yf
H̃D[u, t]1,∗

resu,v×resv,t−−−−−−−−→ qñ H̃D[u, v]1,ñ × H̃D[v, t]ñ,∗

commutes.

For a subset I ⊂ {1, . . . , n} let HD[v, t]In,∗ be the subset of HD[v, t]#In,∗ which consists of histories
Γ such that p ∈ V0(Γ) = {1, . . . , n} has living descendants at time t if and only if it lies in I.

We have
f−1(U × V ) = qn≥ñ,IYn,I

where
Yn,I = f−1(U × V ) ∩HD[v, t]In,∗

We further have

f−1(U × V ) ∩HD[v, t]In,∗ = (rIv)
−1(U)× addn(ZI,1 × ZI,n)

where

ZI,j =
{

(r1
1)−1(Vi(j,I)) for j ∈ I

HD[u, t]1,0 for j ∈ {1, . . . , n}\I

and i(j, I) is the sequential number of j as an element of I. Therefore

µtu,1((resu,v × resv,t)−1(f−1(U × V ))) =
∑
n≥ñ

∑
I,#I=ñ

µvu,1((rIv)
−1(U)) (µtv,1)⊗n(ZI,1 × · · · × ZI,n) =

=
∑
n≥ñ

∑
I,#I=ñ

µvu,1((rIv)
−1(U)) ηtv(1, 0)n−ñ

ñ∏
i=1

µtv,1((r1
1)−1(Vi))

On the other hand

µ̃tv,ñ(V ) =
ñ∏
i=1

(µ̃tv,1(Vi)) = ηtv(1, 1)−ñ
ñ∏
i=1

µtv,1((r1
1)−1(Vi))

and
µtu,1((resu,v × resv,t)−1(f−1(U × V ))) =

= µtu,1((r1
1)−1(resu,v × resv,t)−1(U × V )) = ηtu(1, 1)µ̃t1,u((resu,v × resv,t)−1(U × V ))

which finishes the proof. �
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1.7 Older stuff

Let u1 ≤ · · · ≤ uq be a monotone increasing sequence in [s, t] and let Γ be a singleton history.
Define nu1,...,uq(Γ) ∈ S◦(q−1)(N) inductively as follows:

1. if q = 1 we set nu1(Γ) to be the number of population members at time u1 which is defined
as the number of initial vertices of Ru1(Γ) or equivalently as the number of final vertices of
Lu1(Γ) counted with their multiplicities as illustrated by the picture:

2. If q > 1 consider Ru1(Γ). If Ru1(Γ) = ∅ we set nu1,...,uq(Γ) = ∗q−2. Otherwise let Ru1(Γ) =
qΓi be the decomposition of Ru1(Γ) into the union of connected components. Then

nu1,...,uq(Γ) =
∑
i

[nu2,...,uq(Γi)].

Proposition 1.7.1 [borel1] The smallest σ-algebra on H[s, t] which makes all the functions nu1,...,uq

for all q ≥ 1 measurable coincides with the Borel σ-algebra B.

Proof: For (u1, . . . , ul) ∈ ∆l and ε > 0 let U(u1, . . . , ul; ε) be the subset of (x1, . . . , xl) ∈ ∆l such
that |ui − xi| < ε. One verifies easily that subsets of the form U = U(u1, . . . , ul; ε)× {γ} generate
B. It remains to show that such a subset can be defined in terms of the functions nu1,...,uq .

Observe that for any γ ∈ S◦(l+1)(N) and any 0 ≤ k1 ≤ · · · ≤ kl+1 ≤ q there is an element
δk1,...,kl+1

(γ) ∈ S◦(q−1)(N) such that

nv1,...,vq(u1, . . . , ul; γ) = δk1,...,kl+1
(γ)

where ki is the number of vi’s in [s, ui) for i ≤ l and kl+1 is the number of vi’s in [s, t). In particular
it shows that the intersection of n−1

v1,...,vq(δ) with ∆l×{γ} is given by equations of the form vi < uj
and therefore it is Borel measurable.

Conversely, fix γ ∈ S◦(l+1)(N) and consider the set of Γ such that for any v1, . . . , vq there exists
k1 ≤ · · · ≤ kl+1 ≤ q such that

nv1,...,vq(Γ) = δk1,...,kl+1
(γ).
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Then this set coincides with ∆l × {γ} ⊂ H[s, t]. Replacing all v1, . . . , vq in this condition by all
rational ones (or all from any dense countable subset) we do not change the set. This shows that
subsets of the form ∆l × {γ} are measurable with respect to the σ-algebra generated by functions
nv1,...,vq .

For (u1, . . . , ul) ∈ ∆l and ε > 0 let U(u1, . . . , ul; ε) be the subset of (x1, . . . , xl) ∈ ∆l such that
|ui − xi| < ε. One verifies easily that subsets of the form U = U(u1, . . . , ul; ε) × {γ} generate
B. It remains to show that such a subset can be defined in terms of the functions nu−1,...,uq .
According to the previous remark the subset ∆l×{γ} itself is measurable. It remains to show that
U(u1, . . . , ul; ε)×{γ} can be defined as an intersection of ∆l×{γ} with a measurable subset. Such
a measurable subset is easy to produce using countable combinations of functions nv1,v2 for pairs
s < v1 ≤ v2 ≤ t. � Let Sv

u be the σ-algebra on H[s, t] generated by the functions nw1,...,wq with
wi ∈ (u, v]. We have the following obvious result.

Lemma 1.7.2 [ispaths] The collection of data (N, H[s, t], nu,Sv
u) forms a path system.

The space H[s, t] has a structure of a commutative topological monoid given by the obvious map a :
H×H → H corresponding to the disjoint union of histories. One verifies easily that these maps are
measurable with respect to all of the σ-algebras Sv

u and that the functions nu are homomorphisms
from H[s, t] to N.

Let us say that a Markov process Pu : N → H[s, t] on H[s, t] is additive if the kernels Pu are
homomorphisms of monoids i.e. if for i, j ∈ N one has

[eq1]a∗(Pu(k,−)⊗ Pu(l,−)) = Pu(k + l,−) (35)

where Pu(n,−) is the measure on St
u defined by the point n of N.

Proposition 1.7.3 [ptop] For any branching Markov process (Pu,v : N → N)s≤u≤v≤t on N over
[s, t] there exist a unique additive Markov process Pu on H[s, t] with transition kernels Pu,v.

Proof: ??? �

For a given Γ the function u 7→ nu(Γ) from [s, t] to N is continuous from the above i.e. it satisfies
the condition

[ca] lim
ε≥0,ε→0

nu+ε(Γ) = nu(Γ) (36)

Remark 1.7.4 For a given u function Γ 7→ nu(Γ) from H to N need not be continuous.

Let [u, v] ⊂ [s, t]. One can easily see that there is only one reasonable way define a restriction map

cu,v : H[s, t]→ H[u, v]

such that for any Γ and any w ∈ [u, v] one has nw(Γ) = nw(cu,v(Γ)).
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Lemma 1.7.5 [mes1] The functions nu and the maps cu,v are measurable with respect to the Borel
σ-algebras.

Proof: ??? � Let Sv
u be the smallest σ-algebra which makes cu,v measurable with respect to the

Borel σ-algebra on H[u, v]. By Lemma 1.7.5, the system (N, H[s, t],Sv
u, nw) is a ’path system’ i.e.

it satisfies the conditions of the definition of a Markov process (see [3, Def.1, p.40]) which do not
refer to the measures. We call it the singleton path system. A Markov process on this path system
is a collection of probability kernels

Pu : N→ (H[s, t],St
u)

such that the collection Pu,v = nvPu : N→ N has the standard Markov property

Pu,u = Id

Pv,w ◦ Pu,v = Pu,w.

We will assume in addition that our processes satisfy a stronger version of the ’future depends on
the past only through the present’ condition.

Condition 1.7.6 [condA] For any s ≤ u ≤ v ≤ t one has

(Pu)|St
v

= Pv ◦ Pu,v

Our first goal is to construct a class of additive Markov processes on the singleton path system
which correspond to branching Markov processes on N satisfying certain continuity conditions.

1.8 Branching Markov processes on N

The dynamics of the population which consists identical individuals is fully described by a collection
of probability kernels Pu,v : N → N given for all u ≤ v, u, v ∈ [s, t]. The value Pu,v(m,−) of Pu,v
on m is the measure on N whose value Pu,v(m,n) on n is the probability for a population having m
members at time u to have n members at time v. The assumption that the individuals are age-less
is equivalent to the condition that these kernels form a Markov process i.e. that for u ≤ v ≤ w one
has

Pv,w ◦ Pu,v = Pu,w.

We further assume that the individuals are independent (i.e. not ’aware’ of each other) which is
equivalent to the condition that this is a branching process i.e. that Pu,v are homomorphisms of
monoids in the category of probability kernels.

Such processes have standard description in terms of generating functions - formal power series of
the form

[eform]F (u, v;x) =
∞∑
n=0

Pu,v(1, n)xn. (37)
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The branching property implies that Pu,v(m,n) is the n-th coefficient of the power series F (u, v;x)m

and the Markovian condition becomes equivalent to the relation

[mcomp]F (u,w;x) = F (u, v;F (v, w;x)). (38)

This description provides a bijection between collections of formal power series F (u, v;x) of the
form (37) satisfying the conditions

F (u, v; 1) = 1

Pu,v(1, n) ≥ 0

and (38) and the isomorphism classes of branching Markov processes on N. We let BM(N; s, t)
denote this set of isomorphism classes.

1.9 Branching Markov processes and E-path system

We want to construct for any such process (F (t1, t2;x))s≤t1≤t2≤t which satisfies some continuity
condition for the functions F (t1, t2)(1)[n] an additive Markov process on the singleton path system
H[s, t] with the transition kernels given by F (t1, t2;x). We will do it in two steps starting with a
construction of intermediate path systems Ē[s, t] and E[s, t].

Set:
Ē[s, t] =

∏
u∈[s,t]

∏
v∈[u,t]

(
∐
n≥0

SnN)

where SnN is the i-th symmetric power of N. Define a map

e : H[s, t]→ Ē[s, t]

by the condition that pru,v(e(Γ)) is in SnN if Γ has n members a1, . . . , an at time u and in this
case it is given by {m1}+ · · ·+ {mn} where mi is the number of descendants of ai at time v.

Remark 1.9.1 The invariant e(Γ) has a better behavior than a more simple invariant which assigns
to Γ the function

(u 7→ nu(Γ)) ∈
∏
u∈[s,t]

N

since, as we will see below, for any e ∈ Ē[s, t] there are only finitely many Γ such that e(Γ) = e and
nu(Γ) does not have this property. For example consider the history Γw which has two members
at the initial moment and the only transformation events are the death of the first one and the
division of the second one into two both occurring at the same time w. Then for any w ∈ (s, t] we
have nu(Γ) ≡ 2.

Let St
s be the product σ-algebra of the maximal σ-algebras on the countable set

∐
i≥0 S

nN. For
any [u, v] ⊂ [s, t] we have a projection Ē[s, t] → Ē[u, v] and we let Sv

u denote the pull back to
Ē[s, t] of Sv

u on Ē[u, v].
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For u ∈ [s, t] let nu : Ē[s, t]→ N be the map which takes e to n such that pru,u(e) ∈ SnN. AS in
the case of H[s, t], one verifies immediately that the collection (N, Ē[s, t],Sv

u, nu) is a path system.

The monoid structure on qn≥0S
nN defines a monoid structure on Ē[s, t] and as before we call

a process of this path system additive if the corresponding kernels Pu : N → (Ē[s, t],St
u) are

homomorphisms of monoids.

Proposition 1.9.2 [ext1] For any branching Markov process F (t1, t2;x) on N over [s, t] there
exists a unique additive Markov process on Ē[s, t] with the transition kernels given by F (t1, t2;x).

Proof: ??? � Let O = {(u, v)|s ≤ u ≤ v ≤ t}. Define E[s, t] as the subset of Ē[s, t] which consists
of functions ρ : O → S∞N satisfying the following conditions:

1. ρ takes only a finite number of different values,

2. if u < v then there exists δ > 0 such that for all ε ≤ δ one has ρ(u+ ε, v) = ρ(u, v),

3. if v < t then there exists δ > 0 such that for all ε ≤ δ one has ρ(u, v + ε) = ρ(u, v),

The property (36) shows that for any Γ ∈ H[s, t] one has e(Γ) ∈ E[s, t].

Let Rs
t be the smallest σ-algebra which makes the functions nx for s ≤ x ≤ t measurable with

respect to the obvious σ-algebra on N. The standard construction shows that for any m ∈ N, and
any s ∈ [−T, 0] there is a unique measure Ps,m on (V,Rs

0) such that for n ∈ N and t ≥ s one has
Ps,m(n−1

t (n)) = P (s, t)[m,n] and that one has the following result.

Proposition 1.9.3 [pr1] The collection of data (nt,Rs
t , Ps,m) is a Markov process (in the sense

of [3, Def.1, p.40]) with the phase space N and the space of elementary events H[−T, 0].

Therefore our first step is to show that the process (nt,Rs
t , Ps,m) has a canonical extension to a

process on a wider set of σ-algebras with respect to which r is measurable. Let Ss
t = r−1(Rs

t ) be
the smallest σ-algebra which makes the map r measurable with respect to the σ-algebra Rs

t on H̃.
It is generated by subsets

Sx,m = r−1(Rx,m)

for s ≤ x ≤ t, where
Rx,m = n−1

x (m).

Let Tst = Rs
t + Ss

t .

Corollary 1.9.4 [c1] The composition

N
P ′s→ H

r→ H
nt→ N

is a homomorphism whose value on 1 is represented by the power series F (s, t;D(t) + (1−D(t))x)
where D(t) = F (t, 0; 0).

50



Proof: We have D(t) = F (t, 0; 0) = Pt,1(R0,0). Considering formal power series we get from (??):

∑
n≥0

P ′s,1(St,n)xn =
∑
k,n≥0

Ps,1(Rt,k)
∑

i1+···+in=n

n∏
j=1

P ′t,1(St,ij )x
n =

=
∑
k

Ps,1(Rt,k)(
∑
i

P ′t,1(St,i)xi)n =
∑
k

Ps,1(Rt,k)(D(t) + (1−D(t))x)k.

which proves the corollary. � Let

φt = D(t) + (1−D(t))x

and let
φ−1
t = (x−D(t))/(1−D(t))

such that
[eq4]φt(φ−1

t (x)) = φ−1
t (φt(x)) = Id. (39)

Set
F̃ (s, t;x) = φ−1

s (F (s, t;φt(x)).

The equations (39) imply immediately that the series F̃ satisfy the relations (38) and therefore
define a branching Markov process. We have:

F̃ (s, t; 0) = φ−1
s (F (s, t;D(t))) = φ−1

s (D(s)) = 0

i.e. this process is death free. We let P̃s denote the corresponding probability kernels N→ (H̃,Rs
0).

Lemma 1.9.5 [l1] There are commutative diagrams of probability kernels:

N
φ∗s−−−−→ N

Ps

y yP̃s
(H,Ts0) r−−−−→ (H̃,Rs

0)

nt

y ynt
N

φ∗t−−−−→ N

where φ∗s is the additive probability kernel N→ N corresponding to the power series φs.

Proof: Follows immediately from Corollary 1.9.4. � Let’s write φ∗s(n) =
∑

k akδk where δk is the
δ-measure concentrated at k. By Corollary 1.9.4 we have

Ps(n)[St1,n1 ∩ · · · ∩ Stq ,nq ] = Ps(n)[r−1(Rt1,n1 ∩ · · · ∩Rtq ,nq)] =

= P̃sφ
∗
s(n)[Rt1,n1 ∩ · · · ∩Rtq ,nq ] =

∑
k

akP̃s(k)[Rt1,n1 ∩ · · · ∩Rtq ,nq ].

Assume that s ≤ t1 ≤ · · · ≤ tq. Since P̃s for a Markov process we have

P̃s(k)(Rt1,n1 ∩ · · · ∩Rtq ,nq) = P̃s(k)[Rt1,n1 ]P̃t1(n1)[Rt2,n2 ] . . . P̃tq−1(nq−1)[Rtq ,nq ]
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and therefore, again by Corollary 1.9.4

Ps(n)[St1,n1 ∩ · · · ∩ Stq ,nq ] = (
∑
k

akP̃s(k)[Rt1,n1 ])P̃t1(n1)[Rt2,n2 ] . . . P̃tq−1(nq−1)[Rtq ,nq ] =

= nt1P̃sφ
∗
s(n)[n1]P̃t1(n1)[Rt2,n2 ] . . . P̃tq−1(nq−1)[Rtq ,nq ] =

= φ∗t1nt1Ps(n)[n1]P̃t1(n1)[Rt2,n2 ] . . . P̃tq−1(nq−1)[Rtq ,nq ]

Using again formal power series we get the following result.

Lemma 1.9.6 [fc1] The value of Ps(n)[St1,n1 ∩ · · · ∩ Stq ,nq ] is the coefficient at xn1
1 . . . x

nq
q in the

expression (F (s, t1;φt1(x1))nF̃ (t1, t2;x2)n1 . . . F̃ (tq−1, tq;xq)nq−1.

1.10 Reduced processes

Remark 1.10.1 The measures on H[s, t] which we are going to consider in this paper vanish on
the subsets of the form

ι2,u = {Γ such that there exists a division point v with φ(v) = u}

but not necessarily on the subsets of the form

ι0,u = {Γ such that there exists a death point v with φ(v) = u}

so we should be careful with the behavior of our constructions on the subsets of the second kind
but not of the first.

Remark 1.10.2 One verifies easily that there are histories Γ,Γ′ such that nu(Γ) = nu(Γ)′ for all
u but nur(Γ) 6= nur(Γ′) for some value of u. In the most simple example of this kind the function
nu(Γ) = nu(Γ)′ is the step function taking values 2, 3, 2. This implies in particular that r is not
measurable with respect to the minimal σ-algebras which are generated by the functions nu.

1.11 Parameters space for singleton processes

Definition 1.11.1 [abar] For s ≤ t define the set Ā[s, t] as the set of functions σ : [s, t] → (0, 1]
satisfying the following conditions

1. σ is smooth outside of a finite number of points τi ∈ (s, t) and in all smooth points it satisfies
the inequality

[mainineq]σ′ ≥ −σ(1− σ) (40)

2. for any x ∈ {τi} ∪ {s} the limit

σ+(x) = limε>0,ε→0σ(x+ ε)

exists and one has σ+(x) = σ(x),
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3. for any x ∈ {τi} ∪ {t} the limit

σ−(x) = limε>0,ε→0σ(x− ε)

exists and one has σ−(x) ≤ σ(x)

4. σ(t) = 1.

Define a topology on Ā[s, t] by the metric

dist(f, g) = |f(s)− g(s)|2 + |f(t)− g(t)|2 +
∫ t

s
|f(x)− g(x)|2dx

or by any equivalent one.

Lemma 1.11.2 [value] For any x ∈ [s, t] the function f 7→ f(x) is continuous on Ā[s, t].

Proof:(Sketch) Our definition of the metric immediately implies the statement of the lemma for
x = s, t. Therefore we may assume that x ∈ (s, t). We need to show that for any f ∈ Ā, ε > 0 there
exists δ(ε) > 0 such that |f(x)− g(x)| ≥ ε implies that dist(f, g) ≥ δ(ε). Assume for example that
g(x) > f(x). Then in order for g to be close to f on the interval (x, t], g has to decrease as fast
as possible. However, its rate of decrease is limited by the inequality (40) which allows one to find
the required δ. �

Proposition 1.11.3 [pex1] For any σ ∈ Ā[−T, 0] there exists a unique singleton process F (x, y;u)
such that for x ∈ [s, t] one has:

σ(x) = 1− F (x, 0; 0).

Proof: Let us first consider the case when σ is smooth. Let F be a singleton process with the
death rate d(t). Set

δ(s, t) =
∫ t

s
d(x)dx

By [5, p.47] we have:

F (s, t;u) = 1− (1− u)et−s−δ(s,t)

1 + (1− u)
∫ t
s e

t−x−δ(x,t)dx
.

Set F (x;u) = F (x, 0;u) and δ(x) = δ(x, 0) then

F (t;u) = 1− (1− u)e−(t+δ(t))

1 + (1− u)
∫ 0
t e
−(x+δ(x))dx

Set
φ(t) = 1 + e

R 0
t e
−(x+δ(x))dx

Then
φ′ = −e−(x+δ(x))
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and

F (t;u) = 1 +
(1− u)φ′(t)

1 + (1− u)(φ(t)− 1)

1− σ(t) = F (t; 0) = 1 +
φ′

φ

c−
∫ 0

t
σ(x)dx = ln(φ)

From φ(0) = 2 we get:
φ(t) = 2e

R 0
t σ(x)dx

and φ′ = −σφ. We get:

F (t;u) =
(φ(t)−1 − 1 + σ(t))u+ 1− σ(t)

(φ(t)−1 − 1)u+ 1

Since this is an invertible function of u with the inverse

F ◦(−1)(t, u) =
−u+ 1− σ(t)

(φ(t)−1 − 1)u+ 1− φ(t)−1 − σ(t)

and from the Markovian property we get

F (s, t;u) = F (s;u) ◦ F ◦(−1)(t;u)

i.e.

F (s, t;u) =
(−σ(s)φ(t)−1 + φ(t)−1 − φ(s)−1)u+ φ(s)−1 − φ(t)−1 − σ(t)φ(s)−1 + φ(t)−1σ(s)

(φ(t)−1 − φ(s)−1)u+ φ(s)−1 − φ(t)−1 − φ(s)−1σ(t)

which gives us an explicit formula for F as a function of σ when σ is smooth. Setting

φ(s, t) = e−
R t
s σ(x)dx

we get

[fsigma]F (s, t;u) = 1− σ(s)
u− 1

(1− φ(s, t))u+ φ(s, t)− 1− φ(s, t)σ(t)
. (41)

Simple computation shows that such a system of functions forms a process (i.e. that all the
coefficients in the Taylor series in u are non-negative) iff

φ(s, t) ≤ 1− σ(s)
1− σ(t)

and that this condition holds for any σ ∈ Ā[−T, 0]. We denote the process (41) by Fσ.

�
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2 Likelihood functional

2.1 Singleton processes

We consider here a particular class of branching Markov processes on N which we call singleton
processes. Intuitively these processes describe the situation of a birth and death process with a
constant birth rate equal 1. More precisely we consider families

F (s, t;u) =
∑

bk(s, t)uk

such that for ε ≥ 0 one has:

bk(t− ε, t) =


o2(ε) for k > 2
ε+ o2(ε) for k = 2
o(ε) for k = 0

We assume our time interval to be (−∞, 0] and write D(t) = b0(t, 0) for the cumulative death rate
of our process from t to 0.

We start with explicit calculation of F and F̃ in case when bi’s are smooth enough to use the
standard differential equations describing generating functions of branching processes. Since we
consider birth and death processes there are functions p0, p1, p2 such that p0 + p1 + p2 = 0 and we
have:

[eq21]
∂F (t, 0;u)

∂t
= −f(t, F (t, 0, u)) (42)

where f(t, x) = p2(t)x2 + p1(t)x+ p0(t) (see e.g. [5, Th.4, p.39]). Since we assume that the birth
rate is constant and equals 1 we have p2 = 1 and therefore p1 = 1− p0 where p0 is the death rate.
Then

f(t, x) = (x− p0(t))(x− 1)

We will write d(t) instead of p0(t).

We further have
F̃ (t, 0;u) = φ−1

t F (t, 0;u) = (F −D(t))/(1−D(t))

and
[eq22]F = (1−D(t))F̃ +D(t). (43)

where D(t) = F (t, 0; 0). Substituting (43) in (42) and using the consequence

∂D(t)
∂t

= −f(t,D(t))

of (42) we get
∂F̃

∂t
+ f(t,D(t))F̃ −D(t)

∂F̃

∂t
− f(t,D(t)) =

= −(p0 + p1(1−D(t))F̃ + p1D(t) + (1−D(t))2F̃ 2 +D(t)2 + 2D(t)(1−D(t))F̃ )

which implies for D(t) 6= 1:

(1−D(t))F̃ 2 − (1−D(t))F̃ = −∂F̃
∂t
.
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Since D(t) = F (t, 0; 0) the (42) implies that we have

∂D

∂t
= (D − d)(1−D)

Let us denote 1−D(t) by σ(t). Then σ(t) is the probability that one population member at time
t will have at least one living descendant at time 0 and it is connected with the death rate by the
equation

σ′ = σ(σ + d− 1)

The condition d ≥ d0 where d0 is a constant is then equivalent to the condition

1− σ + (σ′/σ) ≥ d0

and since σ ≥ 0 this is equivalent to

σ′ ≥ σ(σ + d0 − 1)

For d0 = 0 we get the inequality
σ′ ≥ −σ(1− σ)

Since F̃ (s, t;u) for all s, t is determined by F̃ (t, 0;u) through equations 38 we see (using again [5,
Th.4, p.39]) that F̃ (s, t;u) is the generating function of a birth process with the birth rate equal to
σ(t).

Using the explicit formula for the generating functions of such processes (see e.g. [5, Ex.9, p.46])
we get:

[m1]F̃ (s, t;u) =
q(t)u

(q(t)− q(s))u+ q(s)
(44)

where

q(t) = exp(
∫ 0

t
σ(x)dx).

Let’s write
[ared]F̃ (s, t;u) =

∑
k

ak(s, t)uk (45)

From (44) we get:
∂F̃

∂u
=

q(s)q(t)
((q(t)− q(s))u+ q(s))2

∂2F̃

∂u2
= 2

q(s)q(t)(q(s)− q(t))
((q(t)− q(s))u+ q(s))3

and therefore
a1(s, t) =

q(t)
q(s)

a2(s, t) =
q(t)
q(s)

(1− q(t)
q(s)

)

Let us consider the sequence of t′s and n′s is of the form

t0, t0, t1 − ε, t1 + ε, t2 − ε, t2 + ε, . . . , tq − ε, tq + ε, tq+1

N, ñ, ñ, ñ+ 1, ñ+ 1, ñ+ 2, . . . , ñ+ q − 1, ñ+ q, ñ+ q
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where ε is sufficiently small such that the sequence of t′s is an increasing one. We want to compute

F (N, ñ; t0, . . . , tq+1) = Pt0(N)[St0,ñ, . . . , Stq ,ñ+q].

By Lemma 1.9.6 we get

F (N, ñ; t0, . . . , tq+1) =
(
N

ñ

)
(1−σ(t0))N−ñσ(t0)ña1(t0, t1− ε)ñ ña1(t1− ε, t1 + ε)ñ−1a2(t1− ε, t1 + ε)

a1(t1 + ε, t2 − ε)ñ+1(ñ+ 1)a1(t2 − ε, t2 + ε)ña2(t2 − ε, t2 + ε) . . .

. . . (ñ+ q − 1)a1(tq − ε, tq + ε)ñ+q−2a2(tq − ε, tq + ε)a1(tq + ε, tq+1)ñ+q

Set

[bi]Bi =



∫ t1−ε
t0

σ(x)dx for i = 0∫ ti+1−ε
ti+ε

σ(x)dx for i = 1, q − 1∫ tq+1

tq+ε
σ(x)dx for i = q

(46)

and for i = 1, . . . , q:

[ci]Ci =
∫ ti+ε

ti−ε
σ(x)dx (47)

The we have:

F (N, ñ; t0, . . . , tq+1; ε) = M

(
N

ñ

)
(1−σ(t0))N−ñσ(t0)ñe−ñB0e−ñC1(1−e−C1)e−(ñ+1)B1e−(ñ+1)C2(1−e−C2) . . .

. . . e−(ñ+q−1)Cq(1− e−Cq)e−(ñ+q)Bq

where
M = ñ(ñ+ 1) . . . (ñ+ q − 1).

2.2 Computation A

???This lemma has to be reproved for functions in Ā.

Lemma 2.2.1 [cp1] Let t0 < t1 and σ0, σ1 ∈ (0, 1]. A smooth function σ : [t0, t1] → R such that
σ(t0) = σ0, σ(t1) = σ1 and

[cond1]σ′ ≥ −σ(1− σ) (48)

exists if and only if
[asser1]σ1 ≥

σ0

σ0 + (1− σ0)et1−t0
(49)

or equivalently
[asser2]σ0 ≤

σ1

σ1 + (1− σ1)et0−t1
(50)

and the equalities are achieved for a unique function

[s01]σ(u) =
σ0

σ0 + (1− σ0)eu−t0
(51)
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Proof: The equivalence of (49) and (50) is obvious. Let σ be a function satisfying the conditions
of the proposition. Let us show that (49) holds. If σ1 = 1 then (49) is obvious. Therefore, we may
assume that σ1 < 1. Assume that for all x, σ(x) > 0. Set

[cp1eq2]φ(x) = − σ′

σ(1− σ)
. (52)

Then (48) implies that φ(x) ≤ 1. Solving (52) with the initial condition σ(t0) = σ0 we get:

σ(u) =
σ0

σ0 + (1− σ0)eΦ(u)

where
Φ(u) =

∫ u

t0

φ(x)dx ≤ t1 − t0

which implies (49). This computation also implies that the condition which we have started with
(that σ > 0) is superfluous and that the only smooth function for which (49) is an equality is (51).

Suppose now that σ1 ∈ [0, 1] satisfies the strong version of (49). Let ε > 0 be a sufficiently small
number. Consider the function of the form (51) on the interval [t0, t1− ε] and extend it to a smooth
function on [t0, t1] with σ(t1) = σ1 such that on the segment [t1 − ε, t1] we have σ′ >> 0. Clearly,
such σ satisfies (48). �

??? The following lemma also has to be reproved for σ ∈ Ā. Change the definition of Ā removing
the normalization σ(t) = 1.

Lemma 2.2.2 [bcomp] Let σ be a function satisfying the conditions of Lemma 2.2.1. Then

[asser3](1 + σ1(et1−t0 − 1))−1 ≤ e−
R t1
t0
σ(x)dx ≤ 1 + σ0(et0−t1 − 1) (53)

The equality is achieved in the class of smooth functions only if the equality holds in (49). In this
case the only function which achieves the equality in any of the inequalities of (53) is (51) which
makes both inequalities to be equalities.

Proof: Lemma 2.2.1 shows that

σ(u) ≥ σ0

σ0 + (1− σ0)eu−t0

and
σ(u) ≤ σ1

σ1 + (1− σ1)eu−t1

Computing the integrals we get (53). �

2.3 Computation B

Set

[fofsigma]F (t1, . . . , tq+1; ε) = e−C1(1− e−C1)e−2B1e−2C2(1− e−C2) . . . e−qCq(1− e−Cq)e−(q+1)Bq

(54)
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and
G(N, t0; ε) = N(1− σ(t0))N−1σ(t0)e−B0

such that
F (N, 1; t0, . . . , tq+1; ε) = q!G(N, t0; ε)F (t1, . . . , tq+1).

Proposition 2.3.1 [redf1] For any σ ∈ Ā[t1, tq+1] which maximizes F (t1, . . . , tq+1) there exists
T < t1 such that for any t0 ≤ T there is an extension of σ to an element of Ā[t0, tq+1] which
maximizes F (N, 1; t0, . . . , tq+1; ε).

Proof: We will show that for any y > 0 there exists T such that for t0 < T a function f ∈ Ā[t0, t1]
which maximizes G(N, t0; ε) exists and for any such function one has f(t1) < y. Applying this
result to y = σ(t1) we get a function f which, when ’concatenated’ with σ will lie in Ā[t0, tq+1] and
maximizes both F (t1, . . . , tq+1) and G(N, t0; ε).

�

Proposition 2.3.2 [redf2] Let ε be admissible with respect to t1, . . . , tq+1. Then there exists T <<
t1 such that for any t0 ≤ T and any function σ ∈ Ā[t0, tq+1] which maximizes F (N, 1; t0, . . . , tq+1; ε)
the restriction σ|[t0,t1] maximizes maxN≥1G(N, t0; ε) and the restriction σ|t1,tq+1

maximizes F (t1, . . . , tq+1).

Proof: ??? �

Lemma 2.3.3 [redf3] For any t1, . . . , tq+1 and any sufficiently small ε there exists a function
σ ∈ Ā[t1, tq+1] which maximizes F (t1, . . . , tq+1).

Proof: ??? �

2.4 Computation C

Here we consider the problem of maximizing F (t1, . . . , tq+1; ε) as a functional on Ā[t1− ε, tq+1]. For
σ in Ā[t1 − ε, tq+1] and 1 ≤ i ≤ q set:

yi(σ) = σ(ti + ε)

Definition 2.4.1 A number ε > 0 is called admissible relative to t1, . . . , tq+1 if ε < −(1/2)ln(q/(q+
1)) and ε < (ti+1 − ti)/2 for all i = 1, . . . , q.

Note that the conditions imposed on ε imply that the sequence t1− ε, t1 + ε, t2− ε, . . . , tq + ε, tq+1 is
an increasing one and that e−Ci > i/(i+ 1) for i = 1, . . . , q which in turn implies that the functions
e−iCi(1− e−Ci) are increasing functions of Ci.

In what follows we consider t1, . . . , tq+1 to be fixed.
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Lemma 2.4.2 [ccl1] For a given collection 0 ≤ y1, . . . , yq ≤ 1 the set C(y1, . . . , yq; ε) of functions
σ ∈ Ā[t1 − ε, tq+1] such that yi(σ) = yi for i = 1, . . . q − 1 is non-empty if and only if

[conc]
yi

yi + (1− yi)eti+1−ti−2ε
≤ yi+1

yi+1 + (1− yi+1)e−2ε
(55)

Proof: It follows easily from Lemma 2.2.1. �

Lemma 2.4.3 [ccl2] If C(y1, . . . , yq; ε) is non-empty then there exists a unique element σ there
which maximizes F (t1, . . . , tq; ε) and one has

σ(ti − ε) =
yi

yi + (1− yi)e−2ε

σ−(ti+1 − ε) =
yi

yi + (1− yi)eti+1−ti−2ε

σ−(tq+1) =
yq

yq + (1− yq)etq+1−tq−ε

e−Ci = (1 + yi(e2ε − 1))−1

e−Bi =
{

1 + yi(e2ε−(ti+1−ti) − 1) for i < q

1 + yq(eε−(tq+1−tq) − 1) for i = q

Proof: By definition F is given by (54) where Bi and Ci are defined by (46) and (47) respectively.
The terms of the product depending on Bi’s are decreasing in Bi’s and in view of the fact that ε
is admissible the terms depending on Ci are increasing in Ci. For a given yi, Lemma 2.2.2 shows
that there exists a unique function σ ∈ Ā[ti − ε, ti + ε] (resp. σ ∈ Ā[ti + ε, ti+1 − ε] for i < q
and σ ∈ Ā[qi + ε, tq+1] for i = q) such that σ(ti + ε) = yi which maximizes Ci (resp. minimizes
Bi). The inequalities (55) show that we can concatenate these functions and get a function σ in
Ā(t1− ε, tq+1) which maximizes the product. One can easily see now that any other function which
maximizes the product also should maximize each of the term and therefore it coincides with the
σ which we have constructed. � Set

δ = e2ε − 1

ri =
{
e2ε−(ti+1−ti) for i < q

eε−(tq+1−tq) for i = q

Re-writing the formulas of Lemma 2.4.3 we get:

σ(ti − ε) = (1 + δ)yi(δyi + 1)−1

σ−(ti+1 − ε) = riyi((ri − 1)yi + 1)−1

e−Ci = (δyi + 1)−1

1− e−Ci = δyi(δyi + 1)−1

e−Bi = (ri − 1)yi + 1
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and we get for our function F (t1, . . . , tq+1; ε) the expression:

F = δq
q∏
i=1

yi((ri − 1)yi + 1)i+1(δyi + 1)−(i+1)

which we have to maximize on the set of y1, . . . , yq satisfying

y1 ≥ 0

yi+1 ≥ (1 + δ)yi((1 + δ − ri+1)yi + ri+1)−1 for i=1,. . . ,q

1 ≥ yq+1

Note that all the expressions involve Moebius (linear fractional) functions of yi which we may
describe in terms of 2x2 matrices considered up to a scalar multiple:

Mi =
(
ri − 1 1
δ 1

)

Ei =
(

1 + δ 0
1 + δ − ri ri

)−1

=
(

ri 0
ri − (1 + δ) 1 + δ

)
Then our function becomes

F = δq
q∏
i=1

yiMi(yi)i+1

and the conditions
y1 ≥ 0

yi+1 ≥ E−1
i+1(yi) for i=1,. . . ,q

1 ≥ yq+1

we have
det(Ei) = ri(1 + δ) > 0

which implies that Ei(y) are increasing functions. Set

Ai = Ei+1 . . . Eq

and introduce new variables:
ui = A−1

i (yi)

Then the function becomes

[ufun]F = δq
q∏
i=1

Ai(ui)Mi(Ai(ui))i+1 (56)

and the inequalities become
[uineq]0 ≤ u1 ≤ · · · ≤ uq ≤ 1 (57)

i.e. we have to find maximums of (56) on the simplex (57). We have:

EjEj+1 =
(

rj 0
rj − (1 + δ) 1 + δ

)(
rj+1 0

rj+1 − (1 + δ) 1 + δ

)
=
(

rjrj+1 0
rjrj+1 − (1 + δ)2 (1 + δ)2

)
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which implies that

Ai =
(

ri+1 . . . rq 0
ri+1 . . . rq − (1 + δ)q−i (1 + δ)q−i

)
and

MiAi = (1 + δ)−1

(
ri . . . rq − (1 + δ)q−i (1 + δ)q−i

ri+1 . . . rq − (1 + δ)q−i−1 (1 + δ)q−i−1

)

Proposition 2.4.4 [umax] There exists ρ > 0 such that for any 0 < ε < ρ, any i = 1, . . . q and
any k = 1, . . . , q + 1− i the function

k−1∏
j=0

Ai+j(u)Mi+j(Ai+j(u))i+j+1

has a unique maximum for u ∈ (0, 1].

Proof: ??? �

2.5 Computation for δ = 0

Set si = 1− ri . . . rq since rj ≤ 1 we have 1 > si ≥ si+1 ≥ 0 and any monotone decreasing sequence
of si’s may arise from a combinations of the event times t1 ≤ · · · ≤ tq. For δ = 0 our formulas
become:

Ai =
(

1− si+1 0
−si+1 1

)
MiAi =

(
−si 1
−si+1 1

)
fi(x) = Ai(x)Mi(Ai(x))i+1 = (1− si+1)x(−six+ 1)i+1(−si+1x+ 1)−(i+2)

fi,k =
k−1∏
j=0

fi+j(x) = (
k−1∏
j=0

(1− si+j+1))xk(−six+ 1)i+1(−si+kx+ 1)−(i+k+1)

Lemma 2.5.1 [maxfik] For k > 0 the function fi,k(x) has a unique maximum on [0, 1] at the
point

xi,k =
k

(i+ k + 1)si − (i+ 1)si+k

Proof: Elementary computation. �

3 Algorithms

4 Appendix. Some basic notions of probability

The main notion which we need is that of a probability kernel. Consider two measurable spaces
(X,A), (Y,B) where X and Y are sets and A,B are σ-algebras of subsets of X and Y respectively.
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A probability kernel P : (X,A) → (Y,B) is a function X × B → R≥0 such that for any x ∈ X
the function P (x,−) is a probability measure on B and for any U ∈ B the function P (−, U) is a
measurable function on (X,A). Probability kernels can be composed in a natural way. The category
whose objects are measurable spaces and morphisms are probability kernels was first considered
in [4] and we will call it the Giry category. Any measurable map f : (X,A) → (Y,B) may be
considered as a probability kernel which takes a point x of X to the δ-measure δf(x).

The Giry category has a monoidal structure given on the level of spaces by the direct product. The
monoidal category axioms are essentially equivalent to the Fubbini theorems.

The definition of a Markov process which we use is similar to but slightly different from the one
adopted in [].

Definition 4.0.2 [pathsystem] A path system over the interval [s, t] is the following collection
of data:

1. A measurable space (X,A) which is called the phase space of the system,

2. A set Ω which is called the path space of the system,

3. A family of maps ξu : Ω→ X given for all u ∈ [s, t],

4. A family of σ-algebras Sv
u on Ω given for all u ≤ v in [s, t].

These data should satisfy the following conditions:

1. For [u, v] ⊂ [a, b] one has Sv
u ⊂ Sb

a,

2. For u ∈ [s, t] the map ξu : (Ω,Su
u)→ (X,A) is measurable.

For simplicity of notation we will sometimes abbreviate the notation for a path system omitting
some of its components e.g. we may write (Ω,Sv

u) instead of (X,A,Ω, ξu,Sv
u).

We define the standard path system St(X,A) associated with (X,A) setting Ω = X [s,t], ξu to be
the projections and Sv

u to be the smallest σ-algebra which makes ξw for w ∈ [u, v] measurable.

Definition 4.0.3 [mprocess] A Markov process on a path system ((X,A),Ω, ξu,Sv
u) is a collection

of probability kernels
Pu : (X,A)→ (Ω,St

u)

such that ξu ◦ Pu = Id and for u ≤ v the square

(X,A) Pu−−−−→ (Ω,St
u)

Pu,v

y y
(X,A) Pv−−−−→ (Ω,St

v)

(58)
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where
Pu,v = ξv ◦ Pu,

commutes.

One verifies easily that for a Markov process P and for u ≤ v ≤ w one has

[comp0]Pu,u = Id (59)

[comp1]Pv,w ◦ Pu,v = Pu,w (60)

Conversely, suppose that we are given a family of probability kernels Pu,v : (X,A)→ (X,A) for all
[u, v] ⊂ [s, t] which satisfy the conditions (59) and (60). Then it is easy to define a Markov process
on the standard path system associated with (X,A) with these transition kernels. We will say that
a Markov process on (X,A) is such a collection of kernels or equivalently a Markov process on the
standard path system associated with (X,A).

Definition 4.0.4 [mps] Let (X,A,Ω, ξu,Sv
u) and (X,A,Ω′, ξ′u,R

v
u) be two path systems over [s, t]

with the same phase space. A morphism from the first to the second is a map f : Ω→ Ω′ such that:

1. for any u ∈ [s, t] one has ξ′u ◦ f = ξ′u,

2. for any u ≤ v in [s, t] the map f is measurable with respect to Sv
u and Rv

u.

For any path system on (X,A) there is a unique morphism from it to the standard path system
St(X,A) on (X,A).

Lemma 4.0.5 [mpm] Let f be a morphism of path systems as in Definition 4.0.4 and (Pu)u∈[s,t]

a Markov process on the first one. Then the kernels fPu form a Markov process on the second
system.

Proof: Elementary verification. � Note that for a morphism f of paths systems and a process P
on the first one the transition kernels Pu,v for P and fP coincide.

Definition 4.0.6 [lkh] Let (Y,B) be a measurable space and y ∈ Y . Suppose that Y also carries a
topology. The we define a partial order ≥y on the set of measures on (Y,B) setting µ ≥y µ′ if there
exists an open neighborhood U of y such that for any measurable Z in U one has µ(U) ≥ mu′(U).

Lemma 4.0.7 [contcase] Let (Y,B) be a measure space which also carries a topology and y ∈ Y .
Let further µ be a measure on Y and f, g two continuous non-negative functions on Y . If f(y) >
g(y) then fµ ≥y gµ.
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Proof: ??? �

Example 4.0.8 [add1] Note that if under the assumptions of Lemma 4.0.7 we have f(y) = g(y)
then one may have fµ ≥y gµ, gµ ≥y fµ or fµ and gµ may be incomparable relative to ≤y.

Definition 4.0.9 [likelihood] Let P : (X,A)→ (Y,B) be a probability kernel, y a point of Y and
assume that Y has a topology.

A maximal likelihood reconstruction of y relative to P is a point x of X such that for any x′ one
has P (x,−) ≥y P (x′,−).

Lemma 4.0.10 [existence] Let P : (X,A) → (Y,B) be a probability kernel of the form x 7→ fxµ
where µ is a measure on (Y,B) and (fx)x∈X is a collection of continuous functions on Y . Let y ∈ Y
and suppose that there exists a point x ∈ X such that for any x′ 6= x one has fx(y) > fx′(y). Then
x is the maximal likelihood reconstruction of y relative to P .

Proof: It follows immediately from Lemma 4.0.7. �

4.1 Leftovers

General definitions The bijection (3) can be extended to a bijection between H[s, t] and the
geometric realization of a simplicial monoid. Recall that for a simplicial set X∗ = (Xi, σ

j
i , ∂

j
i )i≥0

its geometric realization |X∗| is the topological space of the form

|X∗| = qi≥0(Xnd
i ×∆i)/ ≈

where Xi
nd is the subset of non-degenerate simplexes in Xi and ≈ is an equivalence relation defined

in the standard way by the boundary maps ∂ji (see e.g. [2]). If ∆i
op is the open simplex for i > 0

and the point for i = 0 then there is a bijection of sets

|X∗| = qi≥0X
nd
i ×∆i

op

Let ∆i
[s,t] be the set of non decreasing increasing sequences x1 ≤ · · · ≤ xi in [s, t] for i > 0 and the

point for i = 0. These spaces are canonically homeomorphic to the standard simplexes and we may
consider the topological realization functor | − |[s,t] based on ∆∗[s,t] instead of ∆∗. The simplexes
∆i

(s,t) considered above are the open analogs of ∆i
[s,t].

Recall that for any co-triple M on a category C and any object X of C we have a simplical
object M∗(C) whose i-simplicies are given by Mi(X) = M◦(i+1)(X). Consider the co-triple FAb
on the category of commutative monoids which takes a monoid A to the free commutative monoid
generated by A as a set, e.g. FAb(pt) = N,
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One verifies easily that the set of combinatorial types of level q is naturally isomorphic as a monoid
to FAbq(N) and that a combinatorial type is non-degenerate in our sense if and only if it corresponds
to a non-degenerate simplex of FAb∗(N). Together with (3) this observation implies immediately
that

[simplrep2]H[s, t] = |FAb∗(N)|[s,t]. (61)

Remark 4.1.1 [htype] Since the co-triple FAb∗ is given by the composition of the forgetful functor
to sets with its left adjoint we conclude that H[s, t] with the topology defined by (61) is homotopy
equivalent to N. A history Γ belongs to the connected component given by the number of final
vertices with multiplicities defined by ψ.

Remark 4.1.2 It seems that if we start with a co-triple which takes a commutative monoid A to
the free commutative monoid generated by the set A × X where X is a set and apply the same
constructions we will get a path system for branching processes with X-types.

For a combinatorial type we let n0(π) denote the number of elements in the last set of π or
equivalently the number of ”connected components” of π.

The commutative monoid structure on H[s, t] provided by its realization as |FAb∗(N)|[s,t] corre-
sponds to the disjoint union of histories. To distinguish it below from the addition of points of
H[s, t] considered as δ-measures we will denote this operation by (Γ1,Γ2) 7→ Γ1 q Γ2.

One of the important consequences of (61) is that there is a natural triangulation on H[s, t]×n with
respect to which the disjoint union map

qn : H[s, t]×n → H[s, t]

is simplicial. The q-dimesnional simplexes of this triangulation are of the form π1×· · ·×πn where πi
are combinatorial types of level q (length q+1) such that π1 + · · ·+πn is non-degenerate. We denote
the simplex corresponding to π1 × · · · × πn by ∆π1×···×πn

(s,t) . Let π1, . . . πn be combinatorial types of
the same level q − 1 ≥ 0 such that [π1] + · · · + [πn] is non-degenerate. Let further (u, v) ⊂ (s, t)
and B ⊂ ∆q−1

(v,t). Denote by ((u, v), B, [π1]× · · · × [πn]) the subset of ∆[π1]×···×[πn]
(s,t) which consists of

points (x1, . . . , xq) such that x1 ∈ (u, v) and (x2, . . . , xq) ∈ B.

Lemma 4.1.3 [tech1] One has

((u, v), B, [π1]× · · · × [πn]) =

= ((ress,v × resv,t)×n)−1({(Γ′i,Γ′′i )ni=1 | (Γ′1, . . . ,Γ′n) ∈ (u, v) and (Γ′′1, . . . ,Γ
′′
n) ∈ B ; i = 1, . . . , n})

where (u, v) is considered as the subset of

∆[n0(π1)[1]]×···×[n0(πn)[1]]
(s,v) ⊂ H[s, v]×n1,∗

and B is considered as a subset of

∆π1×···×πn
(v,t) ⊂ H[v, t]n0(π1),∗ × · · · ×H[v, t]n0(πn),∗
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Proof: Straightforward. �

There are two main ways to construct singleton histories inductively. For two singleton histories
Γ1, Γ2 on [s, t] their disjoint union Γ1 q Γ2 is a singleton history. This operation makes H[s, t]
into a commutative monoid whose initial element is the empty history. The restriction maps are
homomorphisms with respect to this monoid structure.

For u ∈ (s, t] and Γ ∈ H[u, t]k,∗ we let [k] ∗u Γ denote the unique history such that

π(Lu([k] ∗u Γ)) = [k]

and
Ru([k] ∗u Γ) = Γ.

One observes easily that any history can be obtained by a combination of these two operations
from the history 1 ∈ H[t, t].

Let Γ ∈ H[s, t] and let ψ : VΓ,t → N be a function. We let Γψ denote the history which is identical
to Γ except that ψΓψ = ψ.

For a map of finite sets f : V2 → V1 denote by ψ(f) the function

ψ(f)(x) = #(f−1(x))

Let Γ′ ∈ H[s, u], Γ′′ ∈ H[u, t] and f : VΓ′′,u → VΓ′,u be a map. Then we can glue Γ′ and Γ′′ in the
obvious way obtaining a history Γ′ ∪f Γ′′ ∈ H[s, t] such that

ress,u(Γ′ ∪f Γ′′) = Γ′ψ(f)

and
resu,t(Γ′ ∪f Γ′′) = Γ′′

For s = t we set H[s, t]ord = H[s, t] = N and interpret it as the set of isomorphism classes of
linearly ordered finite sets.

Given two ordered histories Γ1, Γ2 on [s, t] there is a unique ordering on Γ1qΓ2 in which all elements
of Vs,Γ1 precede all elements of Vs,Γ2 such that Γ1 and Γ2 are ordered sub-histories of Γ1qΓ2. This
construction makes H[s, t]ord into a non-commutative monoid whose initial element is again the
empty history. Observe, that given an ordered set X and a map Y → X with the orderings on
each of its fibers we may equip Y with a ”lexicographical” ordering in an obvious way. Conversely,
given orderings on sets X and Y and a function ψ : X → N such that tr(ψ) = #Y there are a
unique map f : Y → X and orderings on its fibers such that ψ(f) = ψ and the corresponding
lexicographical order on Y coincides with the original one. If we denote the elements of X and Y
by natural numbers than this map sends 1, . . . , ψ(1) to 1, ψ(1) + 1, . . . , ψ(1) + ψ(2) to 2 etc.

For an ordered history Γ and u ∈ [s, t] we may define an ordering on Vu starting with the ordering
on Vs and extending it lexicographically using the local orderings on edges starting at a given
vertex.
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Furthermore, Lu(Γ) carries an obvious ordering and Ru(Γ) carries the ordering which is defined by
the ordering on Vu(Ru(Γ)) = Vu+ε(Γ) and the same local orderings as before.

This construction defines the restriction maps

resu,v : H[s, t]ord → H[u, v]ord

which satisfy the condition that for (u′, v′) ⊂ (u, v) one has

resu′,v′resu,v = resu′,v′

For an ordered Γ the sets Vxi(Γ),Γ are ordered and therefore we get a sequence of maps of ordered
sets

Vt(Γ)
fq→ Vxq(Γ)

fq−1→ · · · f1→ Vx1(Γ)

which together with the function ψΓ on Vt(Γ) and points x1, . . . , xq defines Γ uniquely up to an
isomorphism. This lets us to assign to each ordered Γ an invariant of the form

πord(Γ) = (n0; k1,1, . . . , k1,n0 ; k2,1, . . . , k2,n1 ; . . . ; kq+1,1, . . . , kq+1,nq)

where for i > 0 one has ni = ki,1 + · · ·+ ki,ni−1 defined as follows:

1. n0 = #Vx1(Γ) = ns(Γ)

2. ki,j = #f−1
i (j) where j is the element number j in Vxi(Γ) for i ≤ q

3. kq+1,j = ψΓ(j) where j is the element number j in Vt(Γ).

One observes easily that Γ is completely determined by the collection (πord, x1, . . . , xq) and that
such a collection corresponds to an ordered history if and only if s < x1 < · · · < xq < t and for all
i ≤ q there exists j such that ki,j 6= 1. Therefore there is a bijection

[simplrep3]H[s, t]ord = qπord∆
q(π)
(s,t) (62)

where ∆q
(s,t) = {s < x1 < · · · < xq < t} and πord runs through the isomorphism classes of sequences

of maps of ordered finite sets Vq+2
fq+1→ Vq+1

fq→ · · · f1→ V1 such that for i = 1, . . . , q the map fi is
not an isomorphism or equivalently through the set of sequences as above.

Remark 4.1.4 [simplord] There is a direct analog of (61) for ordered histories. One has

[simplrep4]H[s, t]ord = |F∗(N)|[s,t] (63)

where F is the co-triple on the category of non-commutative monoids which takes a monoid to the
free monoid generated by its underlying set.
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The combinatorial types [k], k[1] and [k[1]] correspond uniquely to the ordered combinatorial types
(1; k), (k; 1, . . . , 1) and (1; k; 1, . . . , 1) respectively and we will sometimes use the shorter notations
[k], k[1] and [k[1]] in the context of the ordered histories. Note that

[sk01]sk0H[u, v]ord1,∗ = sk0H[u, v]1,∗ =
∐
k≥0

∆[k]
(u,v) (64)

If Γ ∈ H[u, t]ordk,∗ where u ∈ (s, t] then [k] ∗u Γ has a unique ordering such that Ru([k] ∗u Γ) = Γ
which allows us to extend the construction Γ→ [k] ∗u Γ to ordered histories.

4.2 Appendix: Processes on un-ordered histories

For a combinatorial type π define d(π) inductively as follows:

1. d([k]) = 1 for all k ∈ N,

2. if π =
∑
ni[σi] where σi 6= σj for i 6= j then

d(π) =
(
∑

i ni)!∏
i ni!

∏
i

d(σi)ni

(in particulard([π]) = d(π)).

For a pre-process µ define νv,πµ,u as the measure on ∆q(π)
(u,v) which is the co-restriction of d(π)−1µvu,n0(π)

to ∆π
(u,v). As usual we will omit µ from the notation when possible.

Theorem 4.2.1 [th8] Let µ be an additive Markov pre-process on H[s, t]. Let π, π′ be two combi-
natorial types with the same local invariant K. Then for any s ≤ u < v ≤ t one has νv,πu = νv,π

′
u .

Proof: Let us first generalize the notations introduced above to simplexes ∆π1×···×πn
(u,v) of H[u, v]×n.

Set n0,i = n0(πi). This simplex has dimension q = q(πi) and lies in H[u, v]n0,1,∗×· · ·×H[u, v]n0,n,∗.
We let νv,π1×···×πn

u denote the co-restriction of

d(π1)−1 . . . d(πn)−1 µvu,n0,1
⊗ . . .⊗ µvu,n0,n

to this simplex. We are going to prove that for (πi)ni=1, (π′i)
n
i=1 which are of the same level q and

which are locally equivalent i.e.

[th8eq0]K(
∑
i

πi) = K(
∑
i

π′i) (65)

and both sums are non-degenerate we have

[th8eq1]νv,π1×···×πn
u = ν

v,π′1×···×π′n
u (66)

It follows by induction from Lemmas 4.2.2,4.2.3 and 4.2.4 below.
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Lemma 4.2.2 [th8l1] The equality (66) holds for all locally equivalent ([σj ]), ([σ′j ]) with q([σj ]) =
q([σ′j ]) = 0.

Proof: We have [σj ] = [kj ] and [σ′j ] = [k′j ] for some kj , k′j ∈ N. Since they are locally equivalent

there is a permutation of factors of H[u, v]×n1,∗ which takes ∆×j [σj ](u,v) to ∆
×j [σ′j ]
(u,v) . Since (µvu,1)⊗n is

invariant under such permutations we conclude that

(µvu,1)⊗n(∆×j [σj ](u,v) ) = (µvu,1)⊗n(∆
×j [σ′j ]
(u,v) )

On the other hand d([σj ]) = d([σ′j ]) = 1 and we conclude that (66) holds. �

Lemma 4.2.3 [th8l2] Let q ≥ 0. If (66) holds for all locally equivalent ([σj ]), ([σ′j ]) with q([σj ]) =
q([σ′j ]) ≤ q then it holds for all locally equivalent (πi), (π′i) with q(πi) = q(π′i) ≤ q.

Proof: Consider the disjoint union map

a = ×ni=1qn0,i : H[u, v]×n0,1

1,∗ × · · · ×H[u, v]×n0,n

1,∗ → H[u, v]n0,1,∗ × · · · ×H[u, v]n0,n,∗

and let n0 =
∑n

i=1 n0,i. Since this map is the geometric realization of the map of simplicial sets
given by addition of combinatorial types we have

a−1(∆π1×···×πn
(u,v) ) =

∐
(σj)∈Σ

∆×j [σj ](u,v)

Where Σ is the set of sequences (σ1, . . . , σn1) such that for each i = 1, . . . , n

n0,i+n0,i−1+···+n0,1∑
j=1+n0,i−1+···+n0,1

[σj ] = πi

Since µ is additive we have

µvu,n0,1
⊗ . . .⊗ µvu,n0,n

= a∗((µvu,1)⊗n0)

Since the decomposition of a combinatorial type into a sum of types of the form [−] is unique up
to the permutation of factors and the co-restriction of (µvu,1)⊗n0 to ∆×j [σj ](u,v) does not depend on the
choice of (σj) in Σ. We conclude that

νv,π1×···×πn
u = #Σ

n∏
i=1

d(πi)−1
n0∏
j=1

d(σj)ν
v,×j [σj ]
u

for any (σj) ∈ Σ. Recalling our definition of d(πi) we conclude that

n∏
i=1

d(πi) = #Σ
n0∏
j=1

d(σj)

and therefore
νv,π1×···×πn
u = ν

v,×j [σj ]
u
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a similar equality holds for (π′i) and for (σ′j) in the corresponding set Σ′. On the other hand

K(
∑
j

[σj ]) = K(
∑
i

πi) = K(
∑
i

π′i) = K(
∑
j

[σ′j ])

and by the assumption of the lemma we conclude that

νv,π1×···×πn
u = ν

v,π′1×···×π′n
u

�

Lemma 4.2.4 [th8l3] Let q > 0. If (66) holds for all locally equivalent (πi), (π′i) with q(πi) =
q(π′i) < q then (66) holds for all locally equivalent ([σj ])nj=1, ([σ′j ])

n
j=1 with q([σj ]) = q([σ′j ]) = q.

Proof: The Borel σ-algebra of ∆×j [σj ](u,v) = ∆q
(u,v) is generated in the strong sense by ”rectangles” of

the form ((w1, w2), B,×j [σj ]) where (w1, w2) ⊂ (u, v) and B ⊂ ∆q−1
(w2,v). By Lemma 4.1.3 we have

((w1, w2), B,×j [σj ]) = (res×nu,w2
)−1((w1, w2) ⊂ ∆×j [n0(σj)[1]]

(u,w2) )× (res×nw2,v)
−1(B ⊂ ∆×jσj(w2,v))

Since µ is a Markov pre-process we conclude that

ν
v,×j [σj ]
u ((w1, w2), B,×j [σj ]) =

∏
j

d(σj)−1 (µvu,1)⊗n((w1, w2), B,×j [σj ]) =

=
∏
j

d(σj)−1 (µw2
u,1)⊗n((w1, w2) ⊂ ∆×j [n0(σj)[1]]

(u,w2) ) (⊗jµvw2,n0(σj)
)(B ⊂ ∆×jσj(w2,v)) =

= (µw2
u,1)⊗n((w1, w2) ⊂ ∆×j [n0(σj)[1]]

(u,w2) ) νv,×jσjw2 (B ⊂ ∆×jσj(w2,v))

and a similar equality holds for ([σ′j ]). We have q(σj) = q(σ′j) = q − 1. By the assumption of the
lemma we conclude that

ν
v,×jσj
w2 (B) = ν

v,×jσ′j
w2 (B)

On the other hand there is a permutation of factors on H[u,w2]×n which takes ∆×j [n0(σj)[1]]

(u,w2) to

∆
×j [n0(σ′j)[1]]

(u,w2) and since (µw2
u,1)⊗n is invariant under such permutations we conclude that

(µw2
u,1)⊗n((w1, w2) ⊂ ∆×j [n0(σj)[1]]

(u,w2) ) = (µw2
u,1)⊗n((w1, w2) ⊂ ∆

×j [n0(σ′j)[1]]

(u,w2) )

� �

4.3 Appendix: some remarks on Markov pre-processes

Lemma 4.3.1 [ob00] Let µ∗∗ be a Markov pre-process. Then for any n,m ≥ 0 and any u ≤ v < w
in [s, t] the function hn(u, v + ε)φwv+ε(n,m) is monotone decreasing in ε and one has

lim
ε>0,ε→0

hn(u, v + ε)φwv+ε(n,m) = hn(u, v)φwv (n,m)
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Proof: Applying Lemma 1.2.1 to U1 = ∆n[1]
u,v+ε and U2 = H[v + ε, w]n,m we get

hn(u, v + ε)φwv+ε(n,m) = µwu,n(res−1
u,v+ε(∆

n[1]
u,v+ε) ∩ n−1

w (m)).

Since for ε′ ≥ ε one has

res−1
u,v+ε′(∆

n[1]
u,v+ε′) ∩ n

−1
w (m) ⊂ res−1

u,v+ε(∆
n[1]
u,v+ε) ∩ n−1

w (m)

and
∪ε→0(res−1

u,v+ε(∆
n[1]
u,v+ε) ∩ n−1

w (m)) = res−1
u,v(∆

n[1]
u,v ) ∩ n−1

w (m)

our claims follow. �

Recall that a function f on [s, t] is called monotone increasing (resp. decreasing) if for x ≤ y one
has f(x) ≤ f(y) (resp. f(x) ≥ f(y)). A function is called right continuous if for all u ∈ [s, t) one
has

lim
ε>0,ε→0

f(u+ ε) = f(u).

The following two lemmas give some elementary properties of such functions which will be used
below.

Lemma 4.3.2 [rcim2] Any right continuous function f on [s, t] is measurable.

Proof: It is sufficient to show that for any a the subset Ua = {x : f(x) < a} is measurable. For
y ∈ (Q∪ {t})∩Ua consider the set Va,y = {w ∈ [s, t] | [w, y] ⊂ U}. This set is of the form [y−, y] or
(y−, y] where y− = Inf(Va,y) and in particular it is measurable. Let us show that

Ua = ∪y∈(Q∪{t})∩UaVa,y

which would imply that U is measurable. The inclusion ”⊃” is obvious from the definition of Va,y.
If t ∈ Ua then t ∈ Va,t. Let u ∈ Ua ∩ [s, t). Since f is right continuous there exists ε > 0 such that
[u, u + ε] ⊂ Ua. Let y be any element of [u, u + ε] ∩Q. Then u ∈ Va,y which proves the inclusion
”⊂”. �

Lemma 4.3.3 [pirc] Let f be a right continuous on [s, t). If f is monotone increasing then for
any a+ > a such that f−1([a, a+)) 6= ∅ there exists b+ > b such that f−1([a, a+)) = [b, b+). If f is
monotone decreasing then for any a+ > a such that f−1((a, a+]) 6= ∅ there exists b− < b such that
f−1((a, a+]) = [b−, b).

Proof: Consider for example the case of an increasing f . Then if f−1([a, a+)) 6= ∅ we have

f−1([a,∞)) = [b, t)

and
f−1((−∞, a+)) = [s, b+)

which implies the claim of the lemma. �
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As a corollary of Lemma 1.2.5 we see in particular that for a Markov pre-process the functions
hn(u, v) are monotone increasing in u and monotone decreasing in v. Since υwv,m ≤ 1 and

[eq01]
∑
m≥0

φu,v(n,m) = υvu,n (67)

we also see that for a Markov pre-process the functions υvu,n are monotone decreasing in v.

Remark 4.3.4 We will see from examples below (??) that there are Markov pre-processes on
H[s, t] such that υvu,n are not monotone in u.

Lemma 4.3.5 [ob01] Let µ∗∗ be a Markov pre-process. Then for any m,n ≥ 0 and any u ≤ v < w
in [s, t] the function φu,v+ε(m,n)hn(v + ε, w) is monotone increasing in ε and one has

lim
ε>0,ε→0

φu,v+ε(m,n)hn(v + ε, w) = φu,v(m,n)hn(v, w)

Proof: Applying Lemma 1.2.1 to U1 = H[u, v + ε]m,n and U2 = ∆n[1]
v+ε,w we get

φu,v+ε(m,n)hn(v + ε, w) = µwu,m(res−1
v+ε,w(∆n[1]

v+ε,w))

and since
∩ε→0(res−1

v+ε,w(∆n[1]
v+ε,w)) = res−1

v,w(∆n[1]
v,w )

our claim follows. �

Definition 4.3.6 [rcont] A pre-process µ∗∗ is called non-degenerate if υuu,k = 1 for all u, k. It is
called right continuous if for any u ∈ [s, t] and any k, υvu,k is a right continuous function in v from
[s, v] to [0, 1].

If µ is non-degenate then hn(u, u) = 1 for all n and u. Note that any process on H[s, t] is automat-
ically non-degenerate and right continuous.

Remark 4.3.7 For a Markov pre-process one has (υuu,k)
2 = υuu,k and therefore a Markov pre-process

is non-degenerate if and only if υuu,k 6= 0 for all u, k.

Theorem 4.3.8 [th1] Let µ∗∗ be a non-degenerate Markov pre-process on H[s, t]. Then the follow-
ing conditions are equivalent:

1. for all n ≥ 0 functions υvu,n are right continuous in u and if u < t then there exits w > u such
that υwu,n 6= 0,

2. for all n ≥ 0 functions hn(u, v) are right continuous in u and if u < t then there exits w > u
such that υwu,n 6= 0,
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3. for all n ≥ 0 functions φvu(n,m) are right continuous in u and if u < t then there exits w > u
such that υwu,n 6= 0,

4. for all n ≥ 0 functions υvu,n are right continuous in v,

5. for all n ≥ 0 functions hn(u, v) are right continuous in v,

6. for all n ≥ 0 functions φvu(n,m) are right continuous in v.

Proof: Observe first that if for all u < t then there exits v > u such that υwu,n 6= 0 then, since υvu,n
are monotone decreasing in v we have υvu,n 6= 0 for all u ≤ v ≤ w.

Let u and w be as above. Taking the sum over m in Lemma 4.3.1 and setting v = u we get

[feqp] lim
ε>0,ε→0

hn(u, u+ ε)υwu+ε,n = υwu,n (68)

which implies that there exists ε > 0 such that hn(u, u + ε) 6= 0. Without loss of generality we
may assume that u+ ε = w.

(1)⇒ (2), (5) When υvu,n is right continuous in u equation (68) implies that

( lim
ε>0,ε→0

hn(u, u+ ε))υwu,n = υwu,n

and since υwu,n 6= 0 we conclude that

lim
ε>0,ε→0

hn(u, u+ ε) = 1

Together with Lemma 1.2.5 we conclude that (2) and (5) hold.

(2)⇒ (5) Immediate from Lemma 1.2.5 since for all u there exists w such that hn(u,w) 6= 0.

(5)⇒ (3) Since hn(u, u) = 1 condition (5) also implies that for any u there exists w > u satisfying
hn(u,w) 6= 0. Since υwu,n ≥ hn(u,w) we conclude that υwn,u 6= 0.

Taking in Lemma 4.3.5 v = u we get

lim
ε>0,ε→0

hn(u, u+ ε)φwu+ε(n,m) = φwu (n,m)

for all w > u and using condition (5) we get that φwu (n,m) is right continuous in u.

(2)⇒ (6) We need to show that

[seqp] lim
ε>0,ε→0

φv+ε
u (m,n) = φvu(m,n) (69)

Let w be such that hn(v, w) 6= 0. Then Lemma 4.3.5 together with the right continuity of hn(−,−)
in the first variable implies (69).

(6)⇒ (4) Immediately follows from the fact that υvu,n =
∑

m φ
v
u(n,m).
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(4)⇒ (2) Since functions υvu,n are right continuous in v and υuu,k = 1 there exists w > u such that
υwu,n 6= 0 and as explained above such that hn(u,w) 6= 0. Taking in Lemma 4.3.5 m 6= n and v = u
we get

[eq020] lim
ε→0

φu,u+ε(m,n) = 0 (70)

Therefore we have

[teqp]1 = lim
ε→0

υu+ε
u,n = lim

ε→0

∑
m

φu,u+ε(n,m) = lim
ε→0

φu,u+ε(n, n) (71)

Form Lemma 4.3.5 for m = n and v = u we get for all w > u

lim
ε>0,ε→0

φu,u+ε(n, n)hn(u+ ε, w) = hn(u,w)

which together with (71) implies that hn(u, v) is right continuous in u.

(3)⇒ (1) Immediately follows from the fact that υvu,n =
∑

m φ
v
u(n,m).

Theorem is proved. �

For a pre-process µ∗∗ define En,µ ⊂ [s, t] by the rule x ∈ En,µ if and only if e = s or for all sufficiently
small ε > 0 one has hn(x − ε, x) = 0. When no confusion is possible we will write En instead of
En,µ.

Lemma 4.3.9 [ob2] Let µ be a non-degenerate right continuous Markov pre-process. Then for
any e ∈ En such that hn(e, t) = 0 there exists a unique e+1 > e in En such that for all x ∈ [e, e+1)]
one has hn(e, x) 6= 0.

Proof: By Theorem 4.3.8 the function hn(e,−) is right continuous and therefore the set of zeros
of hn(e,−) is of the form [e+1, t] for some e+1 in (e, t]. For ε < e+1 − e we have 0 = h(e, e+1 + ε) =
h(e, e+1 − ε)h(e+1 − ε, e+1) and since h(e, e+1 − ε) 6= 0 we conclude that e+1 ∈ En. � Note that if
En 6= ∅ then there exists a unique e ∈ En such that hn(e, t) 6= 0. For this e we set e+1 = t.

Lemma 4.3.10 [ob3] For a a non-degenerate right continuous Markov pre-process µ the sets En
are countable.

Proof: We have
[ecov][s, t) = qe∈En [e, e+1) (72)

and since the sum of an uncountable number of non-zero numbers is infinite we conclude that En
is countable. �

Since for an additive process En = Em for all m,n 6= 0 we will write E = E(µ) for this set in the
additive context.
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Example 4.3.11 [nonrc] Consider a pre-process µ on H[s, t] such that the measures µvu,k are

concentrated on ∆k[1]
u,v . Such a pre-process is simply a collection of functions υvu,∗ on N. It is

additive if and only if υvu,k = (υvu,1)k and it is Markov if and only if υvu,kυ
w
v,k = υwu,k.

Set υuu,n = 1, υvu,0 = 1 and υvu,n = 0 for v > u and n > 0. This gives us an example of a non-
degenerate, additive Markov pre-process such that the functions υvu,n are right continuous in u but
not in v.

Let x ∈ (s, t) and set υvu,0 = 1 and for n > 0, υvu,n = 0 if u ≤ x and υvu,n = 1 if u > x. This defines a
degenerate additive, Markov pre-process for which functions υvu,n are right continuous in v but not
in u.

5 Summary

The general set-up for a problem of historical inference can be described as follows. First we should
specify the time period [t0, t1] which we are interested in. It must include both the times which we
want to learn about and the time or times at which the measurements are made. Next we need to
define the set H[t0, t1] of possible histories among which we will be looking for the best fit to our
data and a mapping from H[t0, t1] to the set D of possible data points which will be used as the
starting point of our inference. We also have to choose a function or functions from H[t0, t1] to
some set X whose values are the properties of histories which we are actually interested in, such as
the population size at some point t ∈ [t0, t1]. The next choice we have to make is that of a forward
historical model which describes how, for given values of historical parameters, an initial state of
a population will develop into a history. Finally, we should choose the sets I and P of reasonable
values of initial states and historical parameters:

I × P −−−−→ H[t0, t1] −−−−→ Dy
X

Let us outline now the form of different components of this set-up in the case of one of the most
basic inference problems - to infer the size of a haploid population at time t = −T based on the
genetic distances between its members at the present time t = 0. The time period to choose is
obviously [−T, 0]. The set H[−T, 0] or more generally the set H[u, v] of histories of non-structured
haploid populations is the set of ... Check what is the biologists terminology for this.

Let us consider the case of a singleton population history on time interval [t0, t1] under the as-
sumption that the population size N(t) remains ”very large” for all t ∈ [t0, t1]. Suppose that the
population develops under some birth-and-death dynamical model which is determined by birth
rate function b(t) and death rate function d(t) i.e. during the time interval [t, t + ∆t] there occur
approximately d(t)N(t)∆(t) death events and approximately b(t)N(t)∆(t) birth or division events
and the probability for a given individual to undergo a death or division event does not depend on
its previous history.
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Let us say that an individual which is alive at time t is ”lucky” if it has a living descendant at time
t1. Let Ñ(t) be the number of lucky individuals at time t. The ratio

σ(t) = Ñ(t)/N(t)

will be called the survival probability (from t to t1). Consider the sub-population of ”lucky”
individuals. The only events which occur in this sub-population are division events. The rate at
which these events occur may be computed as follows. During the interval [t, t+∆t] there is a total
of (approximately) C = b(t)N(t)∆(t) division events. Let C0 be the number of division events in
which both ”children” are unlucky, C1 the number of division events in which one child is ”lucky”
and another one ”unlucky” and C2 the number of events in which both children are ”lucky”. We
have C = C0 + C1 + C2 and, approximately,

C0 =

(
N(t+ ∆t)− Ñ(t+ ∆t)

N(t+ ∆t)

)2

· C, C2 =

(
Ñ(t+ ∆t)
N(t+ ∆t)

)2

· C

The number of division events in the lucky sub-population is C2 and assuming that (Ñ(t+ ∆t)−
Ñ(t))∆t is small and the same applies to N(−) we conclude that the probability for a lucky
individual to divide into two lucky ones during the time interval [t, t+ ∆t] equals

C2/Ñ(t) = b(t)σ(t)∆t

i.e. the sub-population of lucky individuals develops under the birth dynamic model with the birth
rate b̃(t) = b(t)σ(t). In particular we should approximately have:

[nlarge1]Ñ(t) = Ñ(t0) e
R t
t0
σ(x)b(x)dx

, σ(t) =
Ñ ′(t)

Ñ(t)b(t)
(73)

and therefore

[nlarge2]N(t) =
b(t)Ñ(t)2

Ñ ′(t)
(74)

which gives us a direct formula for the reconstruction of the total population size in terms of the
size of the lucky sub-population when the total number of individuals is very large and the birth
rate is known. The size of lucky-subpopulation at time t may be further interpreted as the number
of equivalence classes in the population at time t1 with respect to the equivalence relation in which
two individuals are ”equivalent” if their most recent common ancestor lived no earlier than t1 − t
time units ago.

Below we construct an algorithm which gives the best possible reconstruction of the survival prob-
ability function from the ancestral genealogy of individuals alive at time t1 in the case of finite
population size. Since the birth rate in the original population plays no role other than time
scaling parameter we assume b(t) = 1.

Let us consider a particular generic (see ??) ancestral genealogy Γ̃ on the time interval [t0, tq+1]
with ñ members at time t0 and times of division events being t1, . . . , tq. Suppose first that there are
so many events that we may try to approach the problem by taking a C1-approximation Ñ(t) of
the function ñ defined by the condition that for t ∈ [ti, ti+1) one has ñ(t) = ñ+ i and then applying
to it formulas (73), (74) to recover σ(t) and N(t).

77



In the simplest approach one may take a pice-wise linear approximation of ñ defined by the condition
Ñ(ti) = ñ+ i− 1. Then Ñ ′ is a pice-wise constant function defined outside of points ti such that

Ñ ′(t) = 1/(ti+1 − ti)

for t ∈ (ti, ti+1). Therefore we would get

σ(t) = 1/((ñ+ i)(ti+1 − ti))

which for almost all Γ̃ will have many values greater than 1.

Note: In the most simple demographic models the dynamics of a population is described by the
”grows rate” g which is actually the difference between the birth rate and the death rate g = b− d.
This difference fully determines the change in average population size according to the formula
N ′/N = g. Note however that g does not determine the dynamics of the ”lucky” sub-population
i.e. for (b, d), (b′, d′) such that b − d = b′ − d′ the dynamics of the lucky sub-populations may be
different. The most elementary example is given by the pairs b = 0, d = 0 and b = 1, d = 1. In the
first case N = Ñ while in the second Ñ = n/(t+ 1) where t is the time to the present.

Note: It might be better to explain the previous arguments starting with the idea of approximating
the continuous time by a given sequence of discrete time moments (”generations”) τj .

Note: The formulas derived above for any birth rate b(t) and death rate d(t) lead to the following:

[master]σ′ = σ(bσ − b+ d), σ(tnow) = 1 (75)

and
[relationseq]σ = Ñ/N, Ñ ′/Ñ = bσ, N ′/N = b− d (76)

From (76) we get
Ñ(t) = Ñ(tnow)e−

R tnow
t b(τ)σ(τ)dτ

N(t) = N(tnow)e−
R tnow
t (b(τ)−d(τ))dτ

where N(tnow) = Ñ(tnow) is the number of present day members.

If σ is a solution of (75) then one has:

σ =
e

R tnow
t (b(τ)−d(τ))dτ

1 +
∫ tnow
t b(x)e

R tnow
x (b(τ)−d(τ))dτdx

and

1/Ñ(t) =
1

Ñ(tnow)
· e

R tnow
t b(τ)σ(τ)dτ =

1
Ñ(tnow)

· (1 +
∫ tnow

t
b(x)e

R tnow
x (b(τ)−d(τ))dτdx)

Consider (b1, d1, N1,now) and (b2, d2, N2,now). Then Ñ1(t) = Ñ2(t) if and only if N1,now = N2,now

and
b1(t)e

R tnow
t (b1(τ)−d1(τ))dτ = b2(t)e

R tnow
t (b2(τ)−d2(τ))dτ (mod dt)
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or equivalently
b1(t)/N1(t) = b2(t)/N2(t) (mod dt)

If we are given Ñ(t) and d(t) then we can reconstruct b(t) as follows. We have

b̃ = Ñ ′/Ñ = bσ

From (75) we get
(b̃/b)′ = (b̃/b)(b̃− b+ d)

or
[relation2]b̃′b− b̃b′ + b̃b2 − b̃2b− b̃db = 0 (77)

Solving it in b we get
b′ = b(b+ b̃′/b̃− b̃− d)

or

b(t) = b(tnow)
e

R tnow
t (d+b̃−b̃′/b̃)dτ

1 +
∫ tnow
t e

R tnow
x (d+b̃−b̃′/b̃)dτdx

Since b̃ = dLog(Ñ)/dt and b̃′/b̃ = dLog(b̃)/dt we further have

e
R tnow
t (d+b̃−b̃′/b̃)dτ =

Ñ(tnow)
Ñ(t)

b̃(t)
b̃(tnow)

e
R tnow
t d(τ)dτ =

(1/Ñ)′(t)
(1/Ñ)′(tnow)

· e
R tnow
t d(τ)dτ

If we are given Ñ(t) and b(t) then we can reconstruct d(t) from (77) as

d = b̃′/b̃− b̃+ b− b′/b = Ñ ′′/Ñ ′ − 2Ñ ′/Ñ + b− b′/b

We see that the reconstruction of d involves the second derivative of Ñ while reconstruction of b
only the first derivative.

In addition we get:

b− d =
dlog

dt
(b+ 2Ñ − Ñ ′)

and correspondingly

N(t) = Nnowe
−

R tnow
t (b−d)dτ = b(t)

Ñ2(t)
Ñ ′(t)

which can also be seen directly from (76).

Let µt1n,t0(b, d) be the probability measure on H[t0, t1]n,∗ corresponding to the strictly continuous
birth and death process with n initial population members, birth rate b and death rate d. Let
r : H[t0, t1]→ H̃[t0, t1] be the map which assigns to a descending genealogy the ancestral genealogy
of members alive at time t1.

Proposition 1. Let
σ(t) = µt11,t(b, d)(H[t, t1]1,1)

be the non-extinction probability function associated with a strictly continuous birth and death
process with parameters b and d. Then σ′ exists everywhere and satisfies the equation

σ′ = σ(bσ − b+ d)
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Theorem 2. One has

r∗(µt1n,t0(b, d))|H̃[t0,t1]ñ,∗
= C(n, ñ)añ0 (1− a0)n−ñµt1ñ,t0(bσ, 0)

For an ancestral genealogy Γ̃ let n(Γ̃) be the number of connected components of Γ̃ and q(Γ) the
number of coalescent events in Γ̃. Let further x1, . . . , xq ∈ [t0, t1] be the times of coalescent events
in the increasing order. An ancestral genealogy Γ̃ is called semi-generic if all its coalescent events
are of multiplicity two and the times of distinct coalescent events are distinct.

Let Ji = [τ−i , τ
+
i ], i = 1, . . . , q be a sequence of subintervals of the interval [t0, t1] such that

τ+
i < τ−i+1. Denote by U(ñ, q, J) the set of all ancestral genealogies Γ̃ such that n(Γ̃) = ñ, q(Γ̃) = q

and xi(Γ̃) ∈ Ji.

Let further I0 = [t0, τ−1 ]; Ii = [τ+
i , τ

−
i+1], i = 1, . . . , q − 1; Iq = [τ+

q , t1]; be the components of the
complement [t0, t1]\J .

Proposition 3. One has

µt1ñ,t0(b̃, 0)(U(ñ, q, J)) =
q∏
i=0

e−(ñ+i)Bi ·
q∏
i=1

(ñ+ i− 1)e−(ñ+i)Ci(1− e−Ci)

where Bi =
∫
x∈Ii b̃(x)dx and Ci =

∫
x∈Ji b̃(x)dx.

A genealogy is completely determined by its combinatorial type π and the times of events x1, . . . , xq.
The set of all genealogies with a given combinatorial type is the open simplex

∆q(π)
(t0,t1) = {x1, . . . , xq | t0 < x1 < · · · < xq < t1}

For Γ with times of events xi(Γ) and

ε <
1
2
min{∆xi(Γ), i = 0, . . . , q + 1}

where
∆x0 = x1 − t0; ∆xi = xi+1 − xi, i = 1, . . . , q − 1; ∆xq+1 = t1 − xq;

Let
Uε(Γ) = {Γ′ |π(Γ′) = π(Γ) and |xi(Γ)′ − xi(Γ)| < ε for i = 1, . . . , q}

Proposition 4 Let Γ̃ a semi-generic ancestral genealogy with n(Γ̃) = ñ, q(Γ̃) = q and xi(Γ̃) = xi.
Let further b̃ be the birth rate of a continuous birth process. Then

µt1ñ,t0(b̃, 0)(Uε) = c(π(Γ)) · µt1ñ,t0(b̃, 0)(U(ñ, q, J({xi}, ε)))

where J({xi}, ε)i = {x | |x− xi| < ε} and c is a constant which does not depend on b̃.

Note: We can modify the ”master equation” introducing bias in the form of ”having a lucky sibling
makes one more (less) likely to be lucky” which will change the formulas for C0 and C2 given above.
However, it is unclear whether or not our main theorem which asserts that all of the information
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about b and d contained in Γ̃ is contained in ñ and the sequence t1, . . . , tq. will still apply in this
more general situation.

It might be very interesting to see how one can guess the value of such a bias coefficient from Γ̃
and then apply it to a real population (e.g. human).

1. [sum0] A normalized birth and death process µ∗∗,∗ over a time interval [t0, t1] is determined
by its survival probability function

σ(t) =
{

the probability that a population member alive at time t ∈ [t0, t1]
will have a living descendant at time t1.

}
The complement 1−σ(t) to σ(t) is the extinction probability function given by the transition
probability 1 7→ 0 over [t, t1] for the process µ.

2. [sum1] A function [t0, t1]→ [0, 1] is called a normalized survival function if it is the survival
probability function for a normalized birth and death process over [t0, t1]. We let Ā[t0, t1]
denote the set of all normalized survival functions.

3. [sum2]Normalized survival functions have the following properties:

(a) [sum2a] Normalized survival functions are right continuous.

(b) [sum2b] Let σ0 be a normalized survival function on [t0, t1] and σ1 a normalized survival
function on [t1, t2] such that σ0(t1) = σ1(t1). Then the function σ which equals σ0 on
[t0, t1] and σ1 on [t1, t2] is a normalized survival function.

(c) [sum2c] Let a0, a1 ∈ [0, 1]. A normalized survival function on [t0, t1] satisfying a0 = σ(t0)
and a1 = σ(t1) exists if and only if the following two equivalent inequalities hold:

[sum2ceq]a1 ≥
a0

(1− et1−t0)a0 + et1−t0
a0 ≤

a1

(1− et0−t1)a1 + et0−t1
(78)

If a1, a0 satisfy the corresponding equalities then such a function σ is unique and is
given by

σ(t) =
a0

(1− et−t0)a0 + et−t0
=

a1

(1− et−t1)a1 + et−t1

(d) [sum2d] Let [t0, t1] be a time interval and a0, a1 be two numbers such that inequalities
(78) are satisfied. Then a normalized survival function σ satisfying σ(t0) = a0, σ(t1) = a1

and ∫ t1

t0

σ(t)dt = A

exists if and only if

(1 + a1(et1−t0 − 1))−1 < e−A ≤ 1 + a0(et0−t1 − 1)

or (1 + a1(et1−t0 − 1))−1 = e−A and equalities hold in (78).

4. [sum3] Let
Γ̃ = {q, V0 ← · · · ← Vq+1; t1, . . . , tq}
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be a generic ancestral (i.e. death free) genealogy over [−T, 0]. Let ε > 0 be a number such
that (−T, t1 − ε, t1 + ε, t2 − ε, . . . , tq − ε, tq + ε, 0) is an increasing sequence i.e. such that

ε < t1 − (−T ); ε < ti+1 − ti, i = 1, . . . , q; ε < 0− tq;

Denote by Uε(Γ̃) the ε-neighborhood of Γ̃ in H̃[−T, 0] i.e. the set of genealogies of the form
{q, V0 ← · · · ← Vq+1;x1, . . . , xq} where xi ∈ [ti − ε, ti + ε].

5. [sum4] Let r : H[−T, 0]→ H̃[−T, 0] be the map which sends a singleton population history
into the ancestral genealogy of members which are alive at time 0.

6. [sum5] Let µ be a normalized birth and death process over [−T, 0] with the survival proba-
bility function σ. Let Γ̃ and ε be as above. Denote by Ii and Ji the intervals

I0 = [−T, t1 − ε); Ii = [ti + ε, ti+1 − ε), i = 1, . . . , q − 1; Iq = [tq + ε, 0);

and
Ji = [ti − ε, ti + ε)

Let ñ = #V0 be the number of population members in Γ̃ at time −T and n be any integer
≥ ñ. Then one has:

µ0
−T,n(r−1(Uε(Γ̃))) =

[sum5eq] = c(Γ̃)C(n, ñ) (1−σ(−T ))n−ñ σ(−T )ñ
q∏
i=0

e−(ñ+i)Bi

q∏
i=1

e−(ñ+i−1)Ci(1−e−Ci) (79)

where c(Γ̃) is a coefficient which does not depend on σ, T or n, C(n, ñ) is the binomial
coefficient and Bi, Ci are given by:

Bi =
∫
Ii

σ(t)dt Ci =
∫
Ji

σ(t)dt

If we sum up over all Γ̃ with given ñ and q then the coefficient c(Γ̃) becomes

c(ñ, q) = ñ(ñ+ 1) . . . (ñ+ q − 1)

7. [sum5.1] Let S[t0,t1] be the set of all normalized survival probability functions on [t0, t1]. Our
”optimization” problem can be formulated as following. Consider (79) as a function P (Γ̃, ε)
on the space

X = N×qt0∈[−∞,0]S[t0,0]

which we set to be 0 if t0 ≥ t1 − ε or n < ñ. Let

p(Γ̃, ε) = sup(n,t0,σ)∈X{P (Γ̃, ε)(n, t0, σ)}

be the maximal possible value of this function and for δ > 0 let

Vδ(Γ̃, ε) = P (Γ̃, ε)−1([p(Γ̃, ε)− δ, p(Γ̃, ε)]) ⊂ X

We are interested in the subset

V (Γ̃) = {x ∈ X | ∀δ > 0∃ε > 0 : ∀ε′ < ε(x ∈ Vδ(Γ̃, ε)}
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8. [sum6] Let S(a0, . . . , aq) be the set of normalized survival functions σ on [−T, 0] such that
a0 = σ(−T ) and ai = σ(ti − ε) for i = 1, . . . , q. We further denote t0 = −T and tq+1 = 0.
Then one has:

(a) [sum6a] It follows immediately from 3b and 3c that the set S(a0, . . . , aq) is non-empty
if and only if

[sum6aeq]a1 ≥
a0

(1− e(t1−ε−t0))a0 + e(t1−ε−t0)
(80)

and
[sum6aeq]ai+1 ≥

ai

(1− e(ti+1−ti))ai + e(ti+1−ti)
(81)

for i = 1, . . . , q − 1.
(b) [sum6b] If (81) hold and

ε <
1
2

log(1 +
1

ñ+ q − 1
)

then there exists a unique function σ in S(a0, . . . , aq) which maximizes the expression
(79). This function is given by

[sum6beq]σ(t) =



a0

(1−et−t0 )a0+et−t0
for t ∈ [t0, t1 − ε)

ai
(1−et−(ti−ε))ai+et−(ti−ε)

for t ∈ [ti − ε, ti+1 − ε) i = 1, . . . , q − 1

aq

(1−et−(tq−ε))aq+et−(tq−ε) for t ∈ [tq − ε, tq+1)

(82)
(c) [sum6c] The values of Bi and Ci for (82) are

e−B0 = (e(t0−(t1−ε)) − 1)a0 + 1

for i = 1, . . . , q − 1

e−Bi =
(e(ti−ti+1) − 1)ai + 1

(e−2ε − 1)ai + 1
and

e−Bq =
(e(tq−tq+1−ε) − 1)aq + 1

(e−2ε − 1)aq + 1
and

e−Ci = (e−2ε − 1)ai + 1

and the value of (79) is

[sum6ceq]c(Γ̃)C(n, ñ)
q∏
i=0

fi(ai) (83)

where
f0(a0) = añ0 ((et0−(t1−ε) − 1)a0 + 1)ñ (−a0 + 1)n−ñ

for i = 1, . . . , q − 1,

fi(ai) = (1− e−2ε)ai ((e(ti−ti+1) − 1)ai + 1)ñ+i ((e−2ε − 1)ai + 1)−1

and
fq(aq) = (1− e−2ε)aq ((e(tq−tq+1−ε) − 1)aq + 1)ñ+q ((e−2ε − 1)aq + 1)−1
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9. Let M(x) be the matrix

Mx =
(

1 0
1− ex ex

)
Then det(Mx) = ex > 0, MxMy = Mx+y and M−1

x = M−x. Below we consider Mx as a
Moebius transformation.

10. [sum7] The previous computations show that we need to find the maximum of (83) on the
domain defined by the inequalities 0 ≤ a0, aq ≤ 1 and inequalities (81) which are of the form

a1 ≥Mt1−ε−t0(a0)

and for i = 1, . . . , q − 1
ai+1 ≥Mti+1−ti(ai)

Set
M0 = Mt1−ε−t0 , Mi = Mti+1−ti , i = 1, . . . , q − 1;

Consider new variables
z0 = a0

and for i = 1, . . . , q
zi = M−1

0 M−1
1 . . .M−1

i−1(ai) = Mt0+ε−ti(ai)

or equivalently
ai = Mti−t0−ε(zi)

Then the inequalities take the form

0 ≤ z0 ≤ · · · ≤ zq ≤ 1

and the expression (83) takes the form

c(Γ̃)C(n, ñ) (1− e−2ε)q
q∏
i=0

gi(zi)

where
g0(z0) = zñ0 ((et0−(t1−ε) − 1)z0 + 1)ñ(−z0 + 1)n−ñ

for i = 1, . . . , q − 1

gi(zi) = et0+ε−tizi((et0+ε−ti+1 − 1)zi + 1)ñ+i((et0+ε−ti − 1)zi + 1)−(ñ+i+1)·

·(e
t0+ε−ti − 1)zi + 1

(et0−ε−ti − 1)zi + 1

and
gq(zq) = et0+ε−tqzq((et0−tq+1 − 1)zq + 1)ñ+q((et0+ε−tq − 1)zq + 1)−(ñ+q+1)·

·(e
t0+ε−tq − 1)zq + 1

(et0−ε−tq − 1)zq + 1
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11. [sum8] Let C be a compact space and f : C → R be a continuous function which takes its
maximal value in a unique point p ∈ C. Let further h be any other continuous function on
C. Consider the ”deformation” of f of the form f + ε h. Then for any neighborhood U of p
there exists δ such that for all ε < δ the points where f + ε h takes its maximal value are in
U . It follows immediately from the fact that h is bounded on C and there is positive number
which separates the value of f at p from its values on C\U .

12. [sum9] Comment (11) shows that we need to consider the case ε = 0 and then among the
points of maximum of the corresponding normalized function we should choose the ones which
have maxima of the functional for small ε’s in any neighborhood. Set

ci = 1− et0−ti , i = 1, . . . , q; cq+1 = 1− e−T

We have 0 ≤ c1 ≤ c2 ≤ · · · ≤ cq+1 ≤ 1 and

g0(z0) = zñ0 (−z0 + 1)n−ñ(−c1z0 + 1)ñ

gi(zi) = et0+ε−tizi(−ci+1zi + 1)ñ+i(−cizi + 1)−(ñ+i+1)

and we need to maximize C(n, ñ)
∏q
i=0 gi(zi) on {n ∈ N |n ≥ ñ} ×∆q+1 where ∆q+1 is the

standard simplex with coordinates 0 ≤ z0 ≤ · · · ≤ zq ≤ 1.

13. [sum10] We have:
∂g0

∂z0
= ...

For i = 1, . . . , q we have:

∂gi
∂zi

= et0+ε−ti(−ci+1zi + 1)ñ+i−1(−cizi + 1)−(ñ+i+2)((ci(ñ+ i)− ci+1(ñ+ i+ 1))zi + 1)

In particular the function gi on [0, 1] is increasing up to its maximum at the point

ui = min{1, 1
ci+1(ñ+ i+ 1)− ci(ñ+ i)

}

and is decreasing after this point.

14. [sum11] Let g0, . . . , gq be non-negative continuous functions on [0, 1] such that for any 0 ≤
i ≤ q, 0 ≤ k ≤ q − i the function

gi,i+k =
k∏
j=0

gi+j

is quasi-concave on [0, 1] i.e. there is a point ui,i+k ∈ [0, 1] such that gi,i+k increases
on [0, ui,i+k], reaches maximum at ui,i+k and decreases on [ui,i+k, 0]. Then the function∏q
i=0 gi(zi) has a unique global maximum on the simplex {0 ≤ z0 ≤ · · · ≤ zq ≤ 1}.

Let us proceed by induction on q. For q = 0 the statement is obvious. Suppose q > 0. Let
(z1, . . . , zq) be the point of maximum for g1(z1) . . . gq(zq). Consider two cases. If u0,0 < z1

then (u0,0, z1, . . . , zq) is a point of global maximum for g0(z0) . . . gq(zq) and since the value
at this point is the product of the maximal values of g0(z0) and g1(z1) . . . gq(zq) it is the
only point where maximum is reached. If u0,0 ≥ z1 then for any point of local maximum of
g0(z0) . . . gq(zq) we will have z0 = z1 and therefore any point of maximum for g0(z0) . . . gq(zq)
will be the point of maximum for g0,1(z1) . . . gq(zq). By induction such a point is unique.
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15. [sum12] Let us show that the functions gi of (12) satisfy the conditions of (14).

(a) [sum12a] For i ≥ 1 we have
gi,i+k(z) =

=

i+k∏
j=i

et0+ε−tj

 (−ciz + 1)−(ñ+i+1)

 k∏
j=1

(−ci+jz + 1)−2

 (−ci+k+1z + 1)ñ+i+kzk+1

The derivative of this function is of the form

g′i,i+k(z) =

=

i+k∏
j=i

et0+ε−tj

 (−ciz + 1)−(ñ+i+2)

 k∏
j=1

(−ci+jz + 1)−3

 (−ci+k+1z + 1)ñ+i+k−1zk·

·(A0z
k+1 + · · ·+Ak+1)

and therefore it has at most k + 1 critical points which are not zeroes or poles. On the
other hand

gi,i+k(0) = gi,i+k(1/ci+k+1) = 0

gi,i+k(1/ci+k) = · · · = gi,i+k(1/ci) =∞

and points 0, 1/ci+k+1, 1/ci+k, . . . , 1/ci form an increasing sequence. Since a function
must have a critical point between each two adjacent zeroes or poles and the total
number of critical points which are not at zeroes or poles is k+ 1 we conclude that there
is exactly one critical point ui,i+k of gi,i+k between 0 and 1/ci+k+1 and since our function
is non-negative on this interval it must be a maximum.

(b) [sum12b] For i = 0 we have:

g0,k(z) =

 k∏
j=1

et0+ε−tj

 k∏
j=1

(−cjz + 1)−2

 (−ck+1z + 1)ñ+k(−z + 1)n−ñzñ+k

Suppose that n = ñ. Our function has at most k + 1 critical point outside of poles and
zeroes. The sequence 0, 1/ck+1, . . . , 1/c1 is an increasing one and our function has zeroes
in the first two points of this sequence and poles in other points. If ñ+k is even then our
function is non-negative for z > 1/ck+1 and therefore must have critical points between
points 1/ck, 1/ck−1, . . . , 1/c1,+∞. Therefore it has exactly one critical point between 0
and 1/ck+1. A similar argument leads to the same conclusion for ñ+ k being odd.
For n > ñ similar reasoning shows that our function must have critical points on the
intervals (0, 1), (1, 1/ck+1), (1/ck, 1/ck−1),. . . , (1/c1,+∞) and since the total number of
critical points outside poles and zeroes is no more than k+ 2 there is exactly one critical
point on each interval and in particular on (0, 1). This proves that functions of (12)
satisfy the conditions of (14) and therefore the product g0(z0) . . . gq(zq) has a unique
maximum on the simplex 0 ≤ z0 ≤ · · · ≤ zq ≤ 0.

16. [sum13] More formulas for ε > 0. For 1 ≤ i ≤ j ≤ q − 1 we have:

gi,j(z, ε) =
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=

(
j∏
k=i

et0+ε−tk

)
zj−i+1((et0−ti+ε − 1)z + 1)−(ñ+i+1) ·

(
j∏

k=i+1

((et0−tk+ε − 1)z + 1)−2

)
·

·((et0−tj+1+ε − 1)z + 1)ñ+j ·
j∏
k=i

(et0−tk+ε − 1)z + 1
(et0−tk−ε − 1)z + 1

and
g0,j(z, ε) =

=

(
j∏

k=1

et0+ε−tk

)
zñ+j(−z + 1)n−ñ((et0−t1+ε − 1)z + 1)−2 ·

(
j∏

k=2

((et0−tk+ε − 1)z + 1)−2

)
·

·((et0−tj+1+ε − 1)z + 1)ñ+j ·
j∏

k=1

(et0−tk+ε − 1)z + 1
(et0−tk−ε − 1)z + 1

For j = q there is a slight modification dues to the fact that we have to write t0− tq+1 instead
of t0 − tq+1 + ε.

Let further Uε(t1, . . . , tq) be the set of generic ancestral genealogies with event points xi ∈
(ti − ε, ti + ε). Then

µ
tq+1

t0
(n, r−1(Uε(t1, . . . , tq))) =

= ñ(ñ+ 1) . . . (ñ+ q − 1)C(n, ñ) ·
q∏
i=0

(1− e−2ε)gi(zi, ε)

where gi = gi,i are given in (10).

17. Let us specify explicitly which normalized birth and death process corresponds to the ”op-
timal” survival probability function lying in S(a0, . . . , aq) i.e. what is the α

tq+1

0,t0
measure

for this process. It is clear that this measure is a sum of δ-measures concentrated in points
t1, . . . , tq, tq+1 with some coefficients. As the first step towards the description of this measure
we will compute the values

di = limε→0α
tq+1

0,ti−ε({ti})

i.e. the probability that a population member alive right before the time point ti will die at
this time point. Almost from definitions we have

di = 1−
ai−1a

−1
i

(1− eti−ti−1)ai−1 + eti−ti−1

for i = 1, . . . , q + 1 where aq+1 = 1.

18. Let us again consider the case ε = 0 and now assume also that q = 1. Then situation is
completely described by ñ and

c1 = 1− et0−t1 , c2 = 1− et0−t2

where c1, c2 are arbitrary numbers satisfying 1 ≥ c2 ≥ c1 ≥ 0. The probability function
normalized by the division by (1− e−2ε) and (1− c1) is

G(n, z0, z1) = ñC(n, ñ)zñ0 (−z0 + 1)n−ñ(−c1z0 + 1)ñz1(−c2z1 + 1)ñ+1(−c1z1 + 1)−(ñ+2)

which we have to maximize on {n ∈ N |n ≥ ñ} × {0 ≤ z0 ≤ z1 ≤ 1}.
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19. [sum19]Consider now the case when the death rate of the normalized birth and death process
which we consider is bounded from the below by a non-genative number d (more formally,
we may consider processes for which death rate is defined and is ≥ d on the complement to
a subset of Lebesgue measure zero). For the time being let us call the survival functions of
such processes ”d-normalized survival functions”. If σ is a d-normalized survival function on
[t0, t1) and a0 = σ(t0) then one has

σ ≥ (1− d)a0

(1− e(1−d)(t−t0))a0 + (1− d)e(1−d)(t−t0)
=

1− d
1− ce(1−d)t

where c = e(d−1)t0(a0 + d− 1)/a0. One further has:

e
−

R t1
t0

1−d
1−ce(1−d)t

dt
=
e(d−1)t1 − c
e(d−1)t0 − c

=

=
a0(e(d−1)(t1−t0) − 1) + 1− d

1− d
Note that

1− d
1− ce(1−d)t1

=
(1− d)a0

(1− e(1−d)(t1−t0))a0 + (1− d)e(1−d)(t1−t0)
= M0(a0)

where

Mi =

(
1 0

1−e(1−d)(ti+1−ti)

1−d e(1−d)(ti+1−ti)

)
For d = 1 we have special formulas. See ?? below.

20. Let S(a0, a1, . . . , aq; d) be the set of normalized survival functions σ such that d(σ) ≥ d,
σ(ti) = ai. From the previous discussion we see that this set is non-empty if and only if one
has ai+1 ≥Mi(ai) for i = 0, . . . , q − 1 and a0 ≥ 0, 1 ≥Mq(aq).

If d 6= 1 then the same reasoning as in the case of d = 0 shows that if S(a0, a1, . . . , aq; d) is
non-empty then for any n ≥ ñ and any sufficiently small ε > 0 there exists a unique function
σ there such that the corresponding process maximizes µtq+1

n,t0
(r−1(Uε(t1, . . . , tq))) and the

problem reduces to the maximization of the function (79) on the set of (a0, . . . , aq) satisfying
the inequalities ai+1 ≥Mi(ai) for i = 0, . . . , q − 1 and a0 ≥ 0, 1 ≥Mq(aq).

21. Doing the same computations as in (8c) we get:

e−Ci = ai
e2ε(d−1) − 1

1− d
+ 1

and for ε = 0 we get

e−Bi = ai
e(d−1)(ti+1−ti) − 1

1− d
+ 1

Modulo the factor (2ε)q we may re-write the function which we need to maximize as

ñ . . . (ñ+ q − 1)C(n, ñ)
q∏
i=0

fi(ai)
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where

f0(a0) = (1− a0)n−ñañ0 (a0
e(d−1)(t1−t0) − 1

1− d
+ 1)ñ

and for i = 1, . . . , q

fi(ai) = ai(ai
e(d−1)(ti+1−ti) − 1

1− d
+ 1)ñ+i

22. Set:
zi = M−1

0 . . .M−1
i−1(ai)

for i = 0, . . . , q and
zq+1 = M−1

0 . . .M−1
q (1)

Transformations Mi are order-preserving bijections and therefore the system of inequalities

0 ≤ a0; Mi(ai) ≤ ai+1, i = 0, . . . , q; Mq(aq) ≤ 1;

is equivalent to the system
0 ≤ z0 ≤ · · · ≤ zq ≤ zq+1

23. Let

Li =

(
e(d−1)(ti+1−ti)−1

1−d 1
0 1

)
Since z0 = a0 we have

f0(a0(z0)) = (1− z0)n−ñzñ0L0(z0)ñ

and since for i = 1, . . . , q
ai = Mi−1 . . .M0(zi)

we have:
fi(ai(zi)) = Mi−1 . . .M0(zi)(LiMi−1 . . .M0(zi))ñ+i

We further have

Mi−1 . . .M0 =
(

1 0
pi qi

)
LiMi−1 . . .M0 =

(
e(d−1)(ti+1−ti)pi+1 e(d−1)(ti+1−ti)qi+1

pi qi

)
where pi and qi are given by the recursive formulas:

p0 = 0; pi+1 = e(1−d)(ti+1−ti)

(
e(d−1)(ti+1−ti) − 1

1− d
+ pi

)
;

q0 = 1; qi+1 = e(1−d)(ti+1−ti)qi = e(1−d)(ti+1−t0);

Therefore
f0(a0(z0)) = eñ(d−1)(t1−t0)(1− z0)n−ñzñ0 (p1z0 + q1)ñ =

= (1− z0)n−ñzñ0 (z0
p1

q1
+ 1)ñ

and for i = 1, . . . , q

fi(ai(zi)) = e(ñ+i)(d−1)(ti+1−ti)zi(pizi + qi)−(ñ+i+1)(pi+1zi + qi+1)ñ+i =
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= e(d−1)(ti−t0)zi(zi
pi
qi

+ 1)−(ñ+i+1)(zi
pi+1

qi+1
+ 1)ñ+i

Set ci = −pi/qi. Then for 1 ≤ i ≤ j ≤ q one has

gi,j(z) = e(d−1)(ti−t0+···+tj−t0)zj−i+1(−ciz+ 1)−(ñ+i+1)

(
j∏

k=i+1

(−ckz + 1)−2

)
(−cj+1z+ 1)ñ+j

and

g0,j = e(d−1)(t1−t0+···+tj−t0)zñ+j(1− z)n−ñ
(

j∏
k=1

(−ckz + 1)−2

)
(−cj+1z + 1)ñ+j

We have

c0 = 0; ci+1 = −pi+1

qi+1
= ci +

e(d−1)(ti+1−t0) − e(d−1)(ti−t0)

d− 1
=
e(d−1)(ti+1−t0) − 1

d− 1

In particular 0 ≤ c1 ≤ · · · ≤ cq+1.

We have (
1 0
p q

)−1

=
(

1 0
−p/q 1/q

)
(

1 0
p q

)
·
(

1 0
p′ q′

)
=
(

1 0
p+ qp′ qq′

)
Our domain of definition for z1, . . . , zq is bounded from the above by

zq+1 = (Mq . . .M0)−1(1) = (cq+1 + q−1
q+1)−1 =

d− 1
de(d−1)(tq+1−t0) − 1

≤ 1

In particular 1/ci ≥ zq+1 for all i. This shows that our previous reasoning applies without
change to show that g1(z1) . . . gq(zq) has a unique maximum on 0 ≤ z1 ≤ · · · ≤ zq ≤ zq+1.

Note: for d = 1 we get zq+1 = 1/(1 + tq+1 − t0).

Note: We have

M−1
i =

(
1 0

1−e(d−1)(ti+1−ti)

1−d e(1−d)(ti+1−ti)

)
and

Mi−1(1) =
d− 1

de(d−1)(ti+1−ti) − 1

24. [sum24] In order to model or construct a birth process with the birth rate function σ on
[t0, t1] we need to describe for any m and u ∈ [t0, t1) the measure αt1u (m 7→ m+ 1) on (u, t1]
as the image of the Lebesgue measure on [0, 1] under a function F : [0, 1]→ (u, t1]q pt.
From the general comments made above we know that we may take F to be the supremum
or infinum inverse of the probability distribution function A : (u, t1]q pt→ [0, 1] of αt1u (m 7→
m+ 1). In our case this function is of the form

Au,m(t) = αt1u (m 7→ m+ 1)(u, t] =
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= 1− φtu(1, 1)m = 1− (e−
R t
u σ(x)dx)m

The main equation tells us that
σ′ = σ(σ + d− 1)

In the case of constant death rate d we get

σ =
c(d− 1)e(d−1)t

1− ce(d−1)t

Finding c from the condition σ(τ) = a we get:

c = e(1−d)τ a

a+ d− 1

and

σ(t) =
(d− 1)ae(d−1)(t−τ)

a+ d− 1− ae(d−1)(t−τ)

which after a simple transformation agrees with the formula of 19. We further have:

e−
R t1
t0
σ(t)dt =

e(d−1)t1 − c−1

e(d−1)t0 − c−1
=

=
ae(d−1)(t1−τ) − a− d+ 1
ae(d−1)(t0−τ) − a− d+ 1

which for τ = t0 again agrees with (19). For τ = t1 and a = 1 we get

e−
R t
u σ(x)dx =

e(d−1)(t−t1) − d
e(d−1)(u−t1) − d

Now we need to solve in t the equation

z = 1− (e−
R t
u σ(x)dx)m = 1− (e(d−1)(t−t1) − d)m(e(d−1)(u−t1) − d)−m

We get:
e(d−1)(t−t1) − d = (1− z)1/m(e(d−1)(u−t1) − d)

t = t1 + (d− 1)−1ln(d+ (1− z)1/m(e(d−1)(u−t1) − d))

25. Let us generalize the formulas further. Let d, b be two constants. The general form of the
solution for the equation

σ′ = σ(bσ − b+ d)

is

σ =
c(d− b)e(d−b)t

b− bce(d−b)t

where c is a constant. From the condition σ(τ) = a we find

c = e(b−d)τ ab

ab+ d− b

and

σ =
(d− b)ae(d−b)(t−τ)

ab+ d− b− abe(d−b)(t−τ)
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Then ∫ t1

t0

c(d− b)e(d−b)t

b(1− ce(d−b)t)
dt =

∫
t∈[t0,t1]

d ce(d−b)t

b(1− ce(d−b)t)
=

=
1
b
ln(

1− ce(d−b)t0

1− ce(d−b)t1
)

And for σ(τ) = a we get

e−
R t1
t0
bσ(t)dt =

1− ce(d−b)t1

1− ce(d−b)t0
=

=
abe(d−b)(t1−τ) − ab− d+ b

abe(d−b)(t0−τ) − ab− d+ b

For τ = t0 and a = a0 we get

e−
R t1
t0
bσ(t)dt = ab

1− e(d−b)(t1−t0)

d− b
+ 1

26. Let dmin, bmax ≥ 0, t0 < t1 and a0, a1 ∈ [0, 1] Consider the set S of triples of continuous on
the right functions b, d, σ on [t0, t1] such that

(a) 0 ≤ b(t) ≤ bmax and d(t) ≥ dmin,

(b) σ′ exists everywhere except possibly for a finite number of points xi,

(c) σ(xi)− limt↑xiσ(t) ≥ 0,

(d) for t 6= xi
[maineq]σ′ = σ(bσ − b+ d) (84)

(e) σ(t0) = a0 and σ(t1) = a1.

Consider the functional e−
R t1
t0
bσdτ on S. We need to find its maximal and minimal values and

the points where these values are achieved.

27. Lemma. For any σ ∈ S and t ∈ [t0, t1] one has σ(t) ∈ [0, 1].

28. Lemma S is non-empty if and only if

an ≥ e(dmin−bmax)(t1−t0)a0

Proof:

29. Proposition. If σ is a continuous function satisfying the equation (84) and σ(t0) = a0 then

g(t) = e
−

R t
t0
b(τ)σ(τ)dτ = 1− a0

∫ t

t0

b(x)e
R x
t0

(d(τ)−b(τ))dτ
dx

Proof: Direct verification that
σ = −(1/b)g′/g

satisfies (84).

30. Proposition. For given b, d, a0, a1 the maximal value of e−
R t1
t0
bσdτ is achieved by σ which is

continuous everywhere except possibly t0.

Proof: (see notes for March 23, 24, 2009).

92



April 15, 2009 Let D = (V,E,E → V × V ) be a directed (multi-)graph with the set of vertices
V and the set of edges E. Let Ei(D) be the set of paths of length i in D. For u ≤ v set

PD[u, v] = V q (qq≥0 qπ∈Eq+1(D) (∆q+1
(u,v) q∆q

(u,v)))

For u = v we have ∆q
(u,v) = ∅ for all q ≥ 0 and therefore

PD[u, u] = V

We can also describe PD[u, v] as the set of triples of the form

1. a right-continuous map g : [u, v]→ V ,

2. a finite subset x1, . . . , xn of (u, v] which includes all points of discontinuity of g,

3. for each i = 1, . . . , n a choice of an edge connecting g−(xi) = limx↑xi g(x) to g(xi).

The points of V correspond to constant functions. If π = (e1, . . . , eq+1) is a path then for
(x1, . . . , xq) ∈ ∆q

(u,v) the corresponding function is of the form

g([u, x1)) = ∂0(e1); g([xi, xi+1)) = ∂0(ei+1), i = 1, . . . , q − 1; g([xq, v)) = ∂0(eq+1);

and
g([v]) = ∂1(eq+1);

with distinguished points (x1, . . . , xq, v) and for (x1, . . . , xq+1) ∈ ∆q+1
(u,v) the corresponding function

is of the form

g([u, x1)) = ∂0(e1); g([xi, xi+1)) = ∂0(ei+1), i = 1, . . . , q; g([xq, v]) = ∂1(eq+1);

with distinguished points (x1, . . . , xq+1).

For [u′, v′] ⊂ [u, v] the restriction defines a map

PD[u, v]→ PD[u′, v′]

These maps clearly satisfy the conditions of Definition 4.0.2 and we obtain a path system PD.

We can modify the first description of PD[u, v] using the bijection

∆q+1
(u,v) q∆q

(u,v) = {u < x1 < · · · < xq+1 ≤ v}
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