

AUTOMOTIVE CURRENT TRANSDUCER FLUXGATE TECHNOLOGY CAB 300-C/SP2

Introduction

The CAB family is for battery monitoring applications where high accuracy and very low offset are required.

Features

- Transducer using Fluxgate technology
- Zero offset
- Unlimited over-current capability
- Panel mounting
- Unipolar + 12 V battery power supply
- T_A = 40 °C .. + 85 °C
- Accuracy (over temperature range)
 - ε_{G} = Sensitivity error < 0.5 %
 - ε_1 = Linarity error < 0.1 %
- Output signal:
 - CAN.C (500 kbps)
- Optional internal digital low-pass frequency filter.

Special feature

• Connector type PIN Tyco AMP 1473672-1.

Advantages

- No offset error
- High accuracy
- Low linearity error
- Full galvanic separation.

Automotive applications

- Hybrid and electric vehicle battery pack
- · Conventional lead-acid batteries
- Accurate current measurement for battery management applications (SOC, SOH, SOF etc.).

Principle of Fluxgate Transducers

A low-frequency fluxgate transducer is made of a wound core which saturates under low induction.

A current chopper switches the winding's current to saturate the magnetic core alternatively at $\pm B$ max with a fixed frequency.

Fluxgate transducers use the change of the saturation's point symmetry to measure the primary current.

Due to the principle of switching the current, all offsets (electric and magnetic) are cancelled.

N° 97.H5.46.002.0

Dimensions CAB 300-C/SP2 (in mm)

Mechanical characteristics

- Plastic case PBT GF 30
- Magnetic core
 Nanochristallin
- Mass 67 g
- Electrical terminal coating Tin plated

Mounting recommendation

Connector type

Connection

Pin	Pin Out		
А	CAN-L		
В	CAN-H		
С	GND		
D	U _c		

Tyco-AMP P/N: 1 473672-1

 I_{p} (positive primary current direction)

Absolute ratings (not operating)

Parameter	Symbol	Unit	Specification	Conditions
Load dump over-voltage	U _c	V	32	400 ms
Over-voltage	U _c	V	24	1 minute
Reverse polarity	U _c	V	-50	
Minimum supply voltage	U _{C min}	V	6	Continuous
Maximum supply voltage	U _{C max}	V	18	Continuous
Electrostatic discharge voltage	U _{ESD}	KV	4	Pins
Insulation resistance	R _{is min}	MΩ	500	500 V-ISO 16750-2
Rms voltage for AC insulation test, 50 Hz, 1 min	U _d	KV	2.5	50 Hz,1 min
Creepage distance	d _{Cp}	mm	7.2	
Clearance	d _{ci}	mm	6.95	

Operating characteristics in nominal range ($I_{\rm PN}$)

Doromotor	Symbol	Unit	Specification			Conditiona	
Farameter			Min	Typical	Max	Conditions	
	Electrical Data						
Primary current, measuring range	I _{PM}	A	-350		350		
Supply voltage	U _c	V	8	13.5	16	full accuracy	
Current consumption @ $I_p = 0 A$	I _c	mA		30		@ U _c = 13.5 V @ 25 °C	
Current consumption @ $I_{\rm p}$ = 350 A	I _c	mA		80		I_{c} is a function of I_{p} ; @ U_{c} = 13.5 V @ 25 °C	
	Performance Data						
Linearity error	ε	%	-0.1		0.1	in temperature range	
Offset current @ $I_{\rm p}$ = 0 A	I _o	mA	-10		10	min/max values @ 3 sigma; 8 V to 16 V; from -40 °C to 85 °C	
Overall accuracy @ $I_{\rm p}$ = ± 350 A	X _G	mA	-1750		1750	min/max values @ 3 sigma; 8 V to 16 V; from -40 °C to 85 °C	
Phase shift	$\Delta \boldsymbol{\varphi}$	ms		1.5		without digital filtering	
Ambient operating temperature	T _A	°C	-40		105		

Can Output

CAN Interface characteristics:

- CAN High Speed, SAE CAN Class C
- High speed CAN transceiver: TJA1040
- CAN protocol: Version 2.0A/B
- Byte order: big endian (Motorola)

Parameter	Unit	Value	Comments
CAN speed	kbps	500	possible configuration: 125 to 1000
CAN oscillator tolerance	%	0.27	

Message Description	ID	Name	Data Lenght (Nb bytes)	Type of frame	Message launch type	Signal Description	Signal Name	Start Bit	End Bit
				Cyclic		I _ρ Value: 8000000H=0mA, 7FFFFFFH=-1mA, 80000001H=1mA	IP_VALUE	0	31
Return Current I _P (mA): 0x3C. Filtered value	0x3C2	0x3C2 CAB300_IP	IP 8	Standard	tranceived message 10ms cycle	b0: Error Information (0=Normal, 1: failure	ERROR_INDICATION	32	32
						b7 to b1: RxQuality (0 to 100%)	ERROR_INFORMATION	33	39
						Vacant bits (fixed to 0)	VACANT_DATA_3BYTES	40	63
						Set to 0x02	PCI	0	7
Start/Stop CAN TX	0x6F0 ТУ	TX_Control	8	Standard	Asynchronous received message	0x28 (Stop CAN) / 0x29 (Start CAN)	BS	8	15
						Set to 0x02	Stmin	16	23
						Set to 0xFFFF FFFF	VACANT_DATA_5BYTES	24	63

Diagnostic Trouble Code (DTC)

FAILURE MODE	$I_{\rm P}$ VALUE	ERROR INDICATION	ERROR INFORMATION
Error on dataflash CRC	FFFF FFFF	1	0x41
Fluxgate running at high frequency (<2.5 kHz) for more than 10 ms	FFFF FFFF	1	0x42
Fluxgate not oscillating for more than 20ms	FFFF FFFF	1	0x43
CAB entenred in fail safe mode	FFFF FFFF	1	0x44
Signal not available for more than 100ms	FFFF FFFF	1	0x46
Bridge voltage protection	FFFF FFFF	1	0x47

Accuracy curves

02June2015/version 2

CAB Test table

Test	Test standard	Procédure				
Environmental test						
Shipping/Storage Temperature Exposure	ISO 16750-4	164 hours, -40 °C/+85 °C, power off, slope 0.6 °C/min				
Low Temperature Operating Endurance		120 hours, -40 °C, power on				
High Temperature Operating Endurance		4752 hours, 85 °C, power on				
Powered Thermal Cycle Endurance	ISO 16750-4	540 cycles/100 min: -40 °C (20 min), +85 °C (20 min), Slope 4 °C/min: 900 hours				
Thermal Shock		-40 °C (20 min soak) / 85 °C (20 min soak), 1000 cycles, with connectors => 667 hours (28 days)				
Thermal Humidity Cycle	IEC 60068-2-38	240 hours, -10 °C/+65 °C, 93% humidity				
High Temperature Operating Endurance	IEC 60068-2-67	85 °C, 85% humidity, 1000 hours Performance after test: $I_{\rm O}$ ≤ 20 mA, $X_{\rm G}$ ≤ 3000 mA				
Vibration		5 Hz to 1000 Hz (table 6-10), 20 hours / axis, 3 axis + -40 °C / +85 °C during 8 hours and 25 °C during 12 hours				
Mechanical Shock	ISO 16750-3	500m/s2, 10 each direction (60 total) Half sine pulse				
Package Drop		With final packaging 1m, 1 bottom, 4 bottom edges, 4 bottom corners => total 9 drops 1 meter on concrete floor.				
Handling Drop	ISO 16750-3	1 fall in one direction for each sensor, from 1 meter on concrete floor				
Dust (and other solid intrusion)	ISO 20653	IP category: 4				
Water intrusion	ISO 20653	IP category: 1				
Dew formation test	IEC 60068-2030					
Mixed Flowing Gas	IEC 60068-2-60					
Chemical exposure outside cabin	ISO 16750-5	24 hours / fluid; see PV test report for list of fluids				

CAB Test table

EMC Test					
CISPR 25 Conducted RF Emissions-Voltage on	CISPR25	Narrow band: 0.15 to 108 MHz Wide band: 0.15 to 200 MHz			
CISPR 25 Conducted RF Emissions-Current on all	CISPR25	Narrow band: 0.15 to 108 MHz Wide band: 0.15 to 200 MHz			
CISPR 25 Radiated Emissions	CISPR25	30 to 1000 MHz			
Bulk Current Injection (BCI) Test	ISO 11452-4	According to ISO 11452-4			
ALSE with a Ground Plane	ISO 11452-2	According to ISO 11452-2			
Transient Disturbances Conducted along Supply	ISO 7637-2	According to ISO 7637-2			
Transient Disturbances Conducted along I/O	ISO 7637-3	According to ISO 7637-3			
Handling Test	ISO 10605	Test method: IEC 61000-4-2 (2008) pins: ± 4 KV case: ± 8 KV			
Operating Test	IEC 61000-4-2	Test method: IEC 61000-4-2 (2008) Indirect contact discharge: ± 8 KV Air discharge: ± 20 KV			
Impulse Noisy Test		± 2 KV noise simulator, on each line			
Fast Transient Noise Test		± 2 KV fast transient simulator, on each line			
Electrical Test					
Supply Voltage Range		8 V to 16 V; from -40 °C to 105 °C			
Supply Voltage Ripple	SAE J1113-2	According to SAE J1113-2			
Supply Voltage Drop Out		Supply Voltage Drop from 11 V to 0 V and return to 11 V Drop duration increase from 10 µs to 1 ms (sensor functionnal) and from 1 ms to 2 s (sensor not damaged)			
Supply Voltage Dips		Supply voltage Dips from 11 V to dip voltage and return to 11 V Dips voltage are 5.5 V, 5 V, 4.5 V, 4 V, 3.5 V and 3 V Dips duration for each level are 100 µs-1 ms (sensor functionnal) and 1 ms - 500 ms (sensor not damaged)			
Slow decreases and increase	ISO 16750-2 (2004)	According to ISO 16750-2			
Defective regulation (full fielded alternator)		24 V, 1 minute			
Jumps Start		18 V, 60 minutes, @ 65 °C			
Load Dump		32 V, 400 ms; 5 pulses			
Reverse Supply Voltage	ISO 16750-2 (2004)	-16 V, 1 minute			

PERFORMANCES PARAMETERS DEFINITIONS

Linearity:

The maximum positive or negative discrepancy with a reference straight line $I_{\rm p}$ value = $f(I_{\rm p})$ Unit: linearity (%) expressed with full scale of $I_{\rm PN}$.

Accuracy:

Accuracy is the maximum error between measured value and a reference value.

Phase delay:

The phase delay is the maximum time difference between CAN frame sending and internal sampling of primary current.