Axial Piston Variable Pump A4VG

RA 92004-A/12.09 1/60

Data sheet

Series 40 Sizes NG45 to 175 Nominal pressure 6500 psi (450 bar) Maximum pressure 7250 psi (500 bar) Closed circuit

Content

Ordering code for standard program	2
Technical data	6
HP - Proportional control hydraulic, pilot-pressure related	12
HW - Proportional control hydraulic, mechanical servo	13
EP - Proportional control electric	14
EZ – Two-point control electric	15
DA - Automatic control speed related	16
HT - Hydraulic control, direct controlled	18
EV - Electric control, direct controlled	19
Dimensions size 45 to 175	20
Through drive dimensions	44
Overview of attachments	47
Combination pumps A4VG + A4VG	48
Pressure cut-off	49
Bypass function	49
High-pressure relief valves	50
Mechanical stroke limiter	51
Ports X ₃ and X ₄ for stroking chamber pressure	51
Filtration boost circuit / external supply	52
Connector for solenoids	56
Sensors	56
Installation situation for coupling assembly	58
Installation instructions	59
General instructions	60

Features

- Variable axial piston pump of swashplate design for hydrostatic drives in closed circuit
- The flow is proportional to the drive speed and displacement.
- The flow increases as the angle of the swashplate is adjusted from zero to its maximum value.
- Flow direction changes smoothly when the swashplate is moved through the neutral position.
- A wide range of highly adaptable control devices with different control and regulating functions, for all important applications.
- Two pressure-relief valves are provided on the high pressure ports to protect the hydrostatic transmission (pump and motor) from overload.
- The high-pressure relief valves also function as boost valves.
- The integrated boost pump acts as a feed pump and control pressure supply.
- The maximum boost pressure is limited by a built-in boost pressure-relief valve.
- The integral pressure cut-off is standard
- High pressure level for high power density and good efficiency

Ordering code for standard program

		3		0.4	0.5	000	0.5	00	000	/	40	_	10	N	4.4	4.	1	7.	10	A	000	0		
0				04	05	06	07	08	09		10	11	12	13	14	15	16	17	18	19	20	21	22	2 23
	Axial Swas					abla.	nomi	201 04		- GE)O no:	(450	hor)	m ovi				7050	no: //	500 h	(مد)			A4\
					, varie	abie,	11011111	iai pi	essure	9 000	o psi	(450	Dai),	IIIaxi	illulli	press	ure	7250	psi (300 L	ai)			A4V
	Opera				.:.																			
)2	Pump	o, cios	sea (circu	IIT																			G
	Size														2				1	l	1	I .	I	1
23	≈ Dis	place	men	t V _g	max									in cm in in ³					-	-				-
														in ins	rev]
	Contr																	045	065	085	110	145	I _	
	Propo hydra		al co	ontro	ol	-			ire rela			p = 9	0 to 2	260 p	si (6	to 18	bar)	•	•	•	•	•	•	HP
	liyala	uno							servo aft wi		er							•	•	•	•	•	•	HW
							ree p					with r	eutra	l pos	tion s	witch	1	•	•	•	•	•	•	HW
	Propo		al co	ontro	ol						,	U = 1	2 V E	C				•	•	•	•	•	•	EP1
	electr	'IC										U = 2	4 V [C				•	•	•	•	•	•	EP2
	Two-p		cont	rol								U = 1	2 V 🛭	C				•	•	•	•	•	•	EZ1
04	electr	'IC										U = 2	4 V [С				•	•	•	•	•	•	EZ2
	Auton			rol								U = 1	2 V E	С				•	•	•	•	•	•	DA1
	speed											U = 2	4 V [C				•	•	•	•	•	i 175 i 10.68 i 175 • • • • • • • • • • • • • • • • • • •	DA
	Hydra				direct	cont	rolled											•	•	•	•	•	_	HT.
	Electi direct										,	U = 1	2 V E	C				О	О	О		0	0	EV1
	4/3-d				e,							U = 2	4 V [С				0	0	0	0	0	0	EV2
	one D	RE v	alve																					
	Press	ure c	ut-c	ff														045	065	085	110	145	175	
	Witho	out					V	vithou	ıt byp	ass								•	•	•	•	•	•	0
05							٧	vith b	ypass	i								•	•	•	•	•	•	С
	With with b					1)	f	ixed s	etting	I								•	•	•	•	•	•	D
	Conne	ector	for	sole	noid	s ¹⁾												045	065	085	110	145	175	
06	Witho																	•	•	•	•	•	•	0
	DEU	TSC+	l - m	olde	ed co	nnec	tor, 2-	pin –	witho	ut su	ppres	sor d	iode					•	•	•	•	•	•	Р
	Swive	l ang	le ir	ndica	ator													045	065	085	110	145	175	
07	Without												•	•	•	•	•	•	0					
	Electi	ric sw	ivel	angl	e ser	nsor												•	•	•	•	•	•	R
	Auxili	ary fu	ıncti	ions														045	065	085	110	145	175	
	Without														•	•	•	•	•	•	0			
00	With	mech	anic	al st	roke	limite	er, exte	ernally	/ adju	stabl	е							•	•	•	•	•	•	М
80	With	ports	Х ₃ ,	X ₄ fo	or str	oking	chan	nber p	oressu	ire								•	•	•	•	•	•	Т
	With	mech	anic	al st	roke	limite	er and	ports	х X ₃ , X	4								•	•	•	•	•	•	В

¹⁾ Connectors for other electric components can deviate.

3/60

Ordering code for standard program

A 4	V (G								/	40	Α		N			1			Α		0		
01	1 ()2	03	04	05	06	07	08	09		10	11	12	13	14	15	16	17	18	19	20	21	22	23
ı	DA co	ontr	ol va	lve															НР	HW	нт	DA	ΕP	
	With	out																	•	•	•	-	•	0
	With	DA	cont	rol va	ılve, fi	xed s	etting												•	•	•	•	•	1
	With	DA	contr	ol val	ve, me	ech.		Actua	tina (liroot	ion	clock	wise						•	•	•	•	•	2
	adjus	tabl	e with	n posi	ition le	ever		Actua	ung c	ineci	1011	count	er-clc	ckwis	se				•	•	•	•	•	3
											h valv mine			l,					_	_	_	0	-	4
	With contr									ıg inc	h valv	e mo	unted	l,					_	-	-	0	-	5
	With	DA	cont	rol va	ılve, fi	xed s	etting	, port	s for	oilot o	contro	ol dev	ice						•	•	•	0	•	6
	Serie																							
	Serie		Inde	9x ()																				40
	Version		of po	rt and	d fixir	ng thi	reads	i																
11	ANS	I																						Α
	Direc																							
12	View	ed f	rom o	drive	shaft						-	clock												R
												count	er-clo	ckwis	se									L
•	Seals	6																						
13	NBR	(nit	rile-c	aouto	chouc	;), sha	ıft sea	al ring	in FK	M (fl	uor-ca	aoutc	houc)											N
	Moun	tino	ı flan	nae														045	065	085	110	145	175	
	SAE			<u> </u>		1	01-2	(B)										•	-	-	-	-	-	B2
						1	27-2	(C)										•	-	-	-	-	-	C2
14						1	27-2/	'4 (C)										_	•	•	•	-	-	C6
						1	52-2	/4 (D)										_	_	О	•	•	•	D6
						1	65-4	(E)										-	-	-	-	О	•	E4
	Drive	sha	aft															045	065	085	110	145	175	
	Splin					1	1/4 i	n 14T	12/2	4DP								•	•	-	-	-	-	S7
	ANSI	IB9	2.1a-	-1976	6	1	1/2 i	n 17T	12/2	4DP								•	0	-	-	-	-	S9
4.						1	3/8	in 21	16/3	32DP)							-	-	•	•	-	-	V8
15						1	3/4	in 137	8/16	DP								_	_	•	•	•		T1
						2	2 in 15	T 8/1	6DP									-	-	-	•	•	_	T2
						2	2 1/4 i	n 17T	8/16	DP								-	-	_	-	-	•	Т3
9	Servic	ce li	ne po	orts														045	065	085	110	145	175	
	SAE				and E	3, side	e (45°	left)										•	•	•	•	•	•	1
	Boos	t pu	ımp a	and r	otary	grou	p ver	sion										045	065	085	110	145	175	
	Stand	darc	rota	ry gro	oup			boost	pum	inte	grate	d, thr	ough	drive	conv	ertible	;	•	•	•	•	•	•	F
17								witho	ut boo	st pu	ump, t	throu	gh dri	ve co	nverti	ble		•	•	•	•	•	•	U
''	High-	-spe	ed ro	otary	group)		boost	pum	o inte	grate	d, thr	ough	drive	conv	ertible	;	-	_	-	•	•	0	V
							•	witho	ut boo	st pu	ump, t	throug	gh driv	e cor	vertik	ole		_	-	-	•	•	О	W
•=	Availa		e rod n			O =	On r	eques	st		_	= No	ot ava	ilable										

2) Cannot be combined with EV

= Preferred program

Ordering code for standard program

A4V	G								/	40	Α		N			1			Α		0		
01	02	03	04	05	06	07	08	09		10	11	12	13	14	15	16	17	18	19	20	21	22	23

Through drive

Flange SAE	J744		Couplin	g for splined sha	ft ³⁾							
	Mountin	g variant										
Diameter	Symbol	Designation	Diamete	er	Designation	045	065	085	110	145	175	_
Without						•	•	•	•	•	•	0000
82-2 (A)	8	A1	5/8 in	9T 16/32DP	S2	0	0	0	0	0	0	A1S2
	0-0	A2	5/8 in	9T 16/32DP	S2	•	•	•	•	•	0	A2S2
101-2 (B)	8	B1	7/8 in	13T 16/32DP	S4	0	О	0	0	0	•	B1S4
	·	ы	1 in	15T 16/32DP	S5	0	О	0	0	0	0	B1S5
	0-0	B2	7/8 in	13T 16/32DP	S4	•	•	0	0	•	•	B2S4
		D2	1 in	15T 16/32DP	S5	•	•	•	•	•	0	B2S5
	o	B5 ⁴⁾	7/8 in	13T 16/32DP	S4	0	О	0	0	0	0	B5S4
	ď	DO "	1 in	15T 16/32DP	S5	0	0	0	0	0	0	B5S5
101-4 (B)	ij	B4	7/8 in	13T 16/32DP	S4	0	0	0	0	0	0	B4S4
	8-9	Б 4	1 in	15T 16/32DP	S5	0	0	0	0	0	0	B4S5
127-2 (C)	8	C1	1 in	15T 16/32DP	S5	0	0	0	0	0	О	C1S5
8	6	C1	1 1/4 in	14T 12/24DP	S7	0	0	0	0	0	0	C1S7
			1 in	15T 16/32DP	S5	0	0	0	0	•	О	C2S5
		CO	1 1/4 in	14T 12/24DP	S7	•	•	•	•	•	•	C2S7
	0-0	C2	1 3/8 ir	21T 16/32DP	V8	-	-	•	0	•	•	C2V8
			1 3/4 ir	13T 8/16DP	T1	-	-	-	-	•	•	C2T1
	~ ~	C5 ⁴⁾	1 in	15T 16/32DP	S5	0	0	0	0	0	0	C5S5
	6	C5 ⁻⁷	1 1/4 in	14T 12/24DP	S7	0	0	0	0	0	0	C5S7
127-4 (C)	#	C4	1 in	15T 16/32DP	S5	_	0	0	0	0	О	C4S5
	8-9	C4	1 1/4 in	14T 12/24DP	S7	_	0	0	0	0	0	C4S7
	~	C6	1 3/8 ir	21T 16/32DP	V8	_	-	0	0	0	0	C6V8
152-4 (D)	##	D4	1 3/4 ir	13T 8/16DP	T1	_	-	_	-	•	•	D4T1
		De	1 3/8 ir	21T 16/32DP	V8	_	-	-	0	0	0	D6V8
	%न्तु ।	D6	1 3/4 ir	13T 8/16DP	T1	_	-	-	-	0	0	D6T1
165-4 (E)	## ##	Γ4	1 3/4 ir	13T 8/16DP	T1	_	-	-	_	_	•	E4T1
	9-9	E4	2 in	15T 16/32DP	T2	_	_	_	-	-	-	E4T2

	High-pressure valves	045	065	085	110	145	175	
19	With high-pressure relief valve, direct controlled	•	•	•	•	•	•	Α

	Filtration of boost circuit / external supply	045	065	085	110	145	175	
	Filtration in the boost pump suction line	•	•	•	•	•	•	S
	Filtration in the boost pump pressure line:							_
	Ports for external boost circuit filtration (F _e and F _a)	•	•	•	•	•	•	ט
20	Filter mounted with cold start valve	•	•	•	•	•	•	F
	Filter mounted with cold start valve and electric contamination indicator	•	•	•	•	•	•	В
	External supply (on version without integrated boost pump)	•	•	•	•	•	•	Е

^{■ =} Available

O = On request

-= Not available

⁼ Preferred program

³⁾ Coupling for splined shaft acc. to ANSI B92.1a-1976

⁴⁾ Viewed from through drive

-K

-S

Ordering code for standard program

4V	G								/	40	Α		N			1			Α		0		
1	02	03	04	05	06	07	08	09		10	11	12	13	14	15	16	17	18	19	20	21	22	23
Pres																065	085	110	14	5 17	'5 <u> </u>		
Without ● ● ● ● ● ●															0								
Other sensors 045 065 085 110 145 175																							
Wit	hout															•	•	•	•	•		•	0
Spe	ed s	enso	r DSN	∕I ⁵⁾ m	ounte	d										•	•	•	•	•			٧
Standard / special version Standard version -0																							
	Pres Wit Oth Wit	Pressure Without Other se Without Speed s	Pressure sen Without Other sensor Without Speed sensor	Pressure sensors Without Other sensors Without Speed sensor DSN	Pressure sensors Without Other sensors Without Speed sensor DSM ⁵⁾ me	Pressure sensors Without Other sensors Without Speed sensor DSM ⁵⁾ mounte	Pressure sensors Without Other sensors Without Speed sensor DSM ⁵⁾ mounted	Pressure sensors Without Other sensors Without Speed sensor DSM ⁵⁾ mounted	Pressure sensors Without Other sensors Without Speed sensor DSM ⁵⁾ mounted	Pressure sensors Without Other sensors Without Speed sensor DSM ⁵⁾ mounted	02	02 03 04 05 06 07 08 09 10 11	Pressure sensors Without Other sensors Without Speed sensor DSM ⁵⁾ mounted	Pressure sensors Without Other sensors Without Speed sensor DSM ⁵⁾ mounted	Pressure sensors Without Other sensors Without Speed sensor DSM ⁵⁾ mounted	Pressure sensors Without Other sensors Without Speed sensor DSM ⁵⁾ mounted	02 03 04 05 06 07 08 09 10 11 12 13 14 15 16	02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17	02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18	Pressure sensors	Pressure sensors 045 065 085 110 14 Without 045 065 085 110 14 Without 045 065 085 110 14 Without 045 065 085 110 14 Speed sensor DSM ⁵⁾ mounted 045 065 085 085 045 065	Pressure sensors Other sensors Other sensors Other sensor DSM ⁵⁾ mounted Other sensor DSM ⁵⁾ mounted	Pressure sensors 045 065 085 110 145 175 Without 046 065 085 110 145 175

combined with attachment part or attachment pump

combined with attachment part or attachment pump

Note

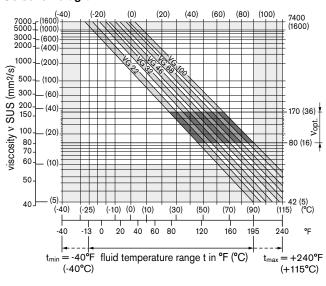
Special version

Short designation X refers to a special version not covered by the ordering code.

■ = Available	O = On request	– = Not available
= Preferred program		

⁵⁾ Observe the requirements for the electronics

Hydraulic fluid


Before starting project planning, please refer to our data sheets RE 90220 (mineral oil) and RE 90221 (environmentally acceptable hydraulic fluids) for detailed information regarding the choice of hydraulic fluid and application conditions.

The variable pump A4VG is not suitable for operation with HFA, HFB and HFC. If HFD or environmentally acceptable hydraulic fluids are being used, the limitations regarding technical data and seals must be observed.

Please contact us.

When ordering, indicate the hydraulic fluid that is to be used.

Selection diagram

Details regarding the choice of hydraulic fluid

The correct choice of hydraulic fluid requires knowledge of the operating temperature in relation to the ambient temperature: in a closed circuit the circuit temperature.

The hydraulic fluid should be chosen so that the operating viscosity in the operating temperature range is within the optimum range (v_{opt}), see shaded area of the selection diagram. We recommended that the higher viscosity class be selected in each case.

Example: At an ambient temperature of X °F (X °C), an operating temperature of 140 °F (60 °C) is set in the circuit. In the optimum operating viscosity range (v_{opt} shaded area), this corresponds to the viscosity classes VG 46 or VG 68; to be selected: VG 68.

Note

The case drain temperature, which is affected by pressure and speed, is always higher than the circuit temperature. At no point of the component may the temperature be higher than 240 °F (115 °C), however. The temperature difference specified below is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be maintained due to extreme operating parameters, please contact us.

Viscosity and temperature

	Viscosity [SUS (mm ² /s)]	Temperature	Comment
Storage		$T_{min} \ge -58 \text{ °F } (-50 \text{ °C})$ $T_{opt} = +41 \text{ °F to } +68 \text{ °F}$ (+5 °C to +20 °C)	up to 12 months with standard factory preservation up to 24 months with long-term factory preservation
(Cold) start-up ¹⁾	$v_{\text{max}} = 7400$ (1600)	$T_{St} \ge -40 \text{ °F}$ (-40 °C)	$t \leq 3$ min, without load (p ≤ 725 psi (50 bar)), n ≤ 1000 rpm
Permissible temperature difference		ΔT ≤ 45 °F (25 °C)	between axial piston unit and hydraulic fluid
Warm-up phase	v < 7400 to 1850 (1600 to 400)	T = -40 °F to -13 °F (-40 °C to -25 °C)	at $p_{nom},0.5$ • n_{nom} and $t\leq 15$ min
Operating phase			
Temperature difference		$\Delta T = approx. 9 °F (5 °C)$	The temperature of the hydraulic fluid in the bearing is (depending on pressure and speed) approx. 9 °F (5 °C) higher than that of the case drain fluid at port T.
Continuous operation	$v = 1850 \text{ to } 60$ (400 to 10) $v_{\text{opt}} = 80 \text{ to } 170$ (16 to 36)	T = -13 °F to +195 °F (-25 °C to +90 °C)	no restriction within the permissible data
Short-term operation	$v_{min} = < 60 \text{ to } 42$ (10 to 5)	T _{max} = +240 °F (+115 °C)	$t < 3 \text{ min, } p < 0.3 \cdot p_{\text{nom}}$
Shaft seal ring FKM ¹⁾		T ≤ +240 °F (+115 °C)	see page 7

¹⁾ At temperatures below -13 °F (-25 °C), an NBR shaft seal ring is required (permissible temperature range: -40 °F to +195 °F (-40 °C to +90 °C)).

Filtration of the hydraulic fluid

Filtration improves the cleanliness level of the hydraulic fluid, which, in turn, increases the service life of the axial piston unit.

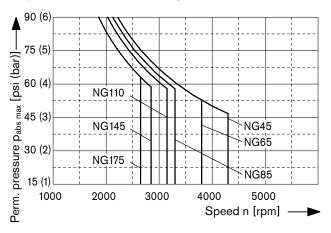
To ensure the functional reliability of the axial piston unit, a gravimetric evaluation is necessary for the hydraulic fluid to determine the amount of contamination by solid matter and to determine the cleanliness level according to ISO 4406. A cleanliness level of at least 20/18/15 is to be maintained.

Depending on the system and the application, for the A4VG, we recommend

Filter cartridges $\beta_{20} \ge 100$.

With an increasing differential pressure at the filter cartridges, the β -value must not deteriorate.

At very high hydraulic fluid temperatures 195 °F to maximum 240 °F (90 °C to maximum 115 °C), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.


If the above classes cannot be achieved, please contact us. For notes on filtration types, see page 55.

Shaft seal ring

Permissible pressure loading

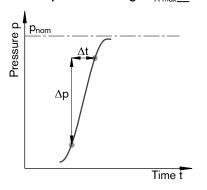
The service life of the shaft seal ring is affected by the speed of the pump and the case drain pressure. It is recommended that the average, continuous case drain pressure 45 psi (3 bar) absolute at operating temperature not be exceeded (maximum permissible case drain pressure 90 psi (6 bar) absolute at reduced speed, see diagram). Short-term (t < 0.1 s) pressure spikes of up to 145 psi (10 bar) absolute are permitted. The service life of the shaft seal ring decreases with an increase in the frequency of pressure spikes.

The case pressure must be equal to or greater than the external pressure on the shaft seal ring.

Temperature range

The FKM shaft seal ring may be used for case drain temperatures from -13 °F to +240 °F (-25 °C to +115 °C).

Note


For application cases below -13 °F (-25 °C), an NBR shaft seal ring is necessary (permissible temperature range: -40 °F to +195 °F (-40 °C to +90 °C)).

State NBR shaft seal ring in plain text when ordering. Please contact us.

Operating pressure range

Pressure at service line port A or B

Rate of pressure change R_{A max} 130000 psi/s (9000 bar/s)

Boost pump

Pressure at suction port S

Duration $p_{S min}$ ($v \le 140 SUS$)	$\underline{}$ \geq 12 psi absolute
$((v \le 30 \text{ mm}^2/\text{s}) $	\geq 0.8 bar absolute)
at cold starts, short-term (t < 3 min)	≥ 7.5 psi (0.5 bar) absolute
Maximum p _{S max}	$_{\rm}$ \leq 75 psi (5 bar) absolute
Nominal pressure p _{Sp nom}	365 psi (25 bar)
Maximum pressure p _{Sp max}	580 psi (40 bar)

Control pressure

To ensure the function of the control, the following control pressure is required depending on the speed and operating pressure (measurement point, port P_S):

For controls EP, HW and HP

Minimum control pressure $p_{St \, min}$ (at n = 2000 rpm) ______ 290 psi (20 bar)

For controls DA, HT

Minimum control pressure $p_{St \, min}$ (at n = 2000 rpm) ______ 365 psi (25 bar)

Definition

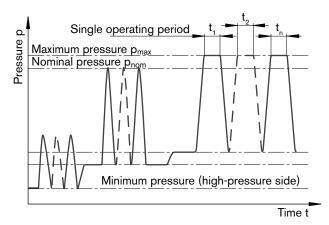
Nominal pressure pnom

The nominal pressure corresponds to the maximum design pressure.

Maximum pressure p_{max}

The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period.

Minimum pressure (high-pressure side)


Minimum pressure on the high-pressure side (A or B) that is required in order to prevent damage to the axial piston unit.

Minimum pressure (inlet)

Minimum pressure in inlet (A or B) that is required in order to prevent damage to the axial piston unit.

Rate of pressure change RA

Maximum permissible rate of pressure build-up and pressure reduction during a pressure change over the entire pressure range.

Total operating period = $t_1 + t_2 + ... + t_n$

Table of values (theoretical values, without efficiency levels and tolerances; values rounded)

Size		NG		45	65	85	110	145	175
Displacement		V _{g max}	in ³	2.76	3.98	5.21	6.74	8.87	10.70
variable pump		g max	cm ³	45.3	65.2	85.4	110.4	145.3	175.4
boost pump (at p = 290 p	si (20 bar))	V _{g Sp}	in ³	0.67	0.88	1.16	1.50	1.95	2.38
50031 pump (at p = 230 p	31 (20 Dai/)	v g Sp	cm ³	11	14.5	19	24.5	32	39
Standard rotary group			Citi		14.0	10	24.0	02	
Speed Speed									
at V _{g max}		n o	rpm	4300	3800	3300	3150	2850	2650
$\frac{\Delta t \cdot v_{g \text{ max}}}{\text{maximum } \Delta p = 580 \text{ psi}}$	(40 har) (t < 15 s)	n _{nom S}	rpm	4500	4000	3500	3350	3000	2800
minimum	(40 bai) (t < 10 3)	n _{min}	rpm	500	500	500	500	500	500
Flow		q _{v max}	gpm	51.4	65.5	74.4	91.9	109.4	122.7
at n _{nom S} and V _{g max}		Y v max	l/min	195	248	282	348	414	465
Power ¹⁾	Δp = 6250 psi	P _{max}	hp	187	239	271	335	399	447
at n _{nom S} , V _{g max} and	$\Delta p = 430 \text{ bar}$	_' max	kW	140	178	202	249	297	333
	Δp = 430 bai		KVV	140	170	202	243	291	000
High-speed rotary group Speed									
		n	rom	_	_	_	3400	3050	3000
at V _{g max}	(40 han) (4 / 15 a)	n _{nom H}	rpm						
$\max_{p = 1} \Delta p = 580 \text{ psi}$	(40 bar) (1 < 15 s)		rpm	_		_	3600	3200	3100
minimum		n _{min}	rpm		_	_	500	500	500
Flow		$q_{v \text{ max}}$	gpm	-	-		99.2	117.1	139.0
at n _{nom H} and V _{g max}			l/min	_	_		375	443	526
	$\Delta p = 6250 \text{ psi}$	_P _{max}	hp	_	-		362	427	507
$\frac{\text{at } n_{\text{nom S}}, V_{\text{g max}} \text{ and}}{T}$	$\Delta p = 430 \text{ bar}$	_	kW	_	-		269	318	377
Torque ¹⁾	$\Delta p = 6250 \text{ psi}$	_T _{max}	lb-ft	229	330	432	559	735	887
at $V_{g max}$ and	$\Delta p = 430 \text{ bar}$	_	Nm	310	446	584	756	994	1200
	$\Delta p = 1450 \text{ psi}$	_T	lb-ft	53	77	100	130	171	206
	$\Delta p = 100 \text{ bar}$		Nm	72	104	136	176	231	279
Rotary stiffness	drive shaft S7	С	lb-ft/rad	60568	75294	-	-	-	-
			Nm/rad	82119	102085	-	-	-	-
	drive shaft S9	С	lb-ft/rad	69986	97805	-	-	-	-
			Nm/rad	94888	132606	_	_	_	_
	drive shaft V8	С	lb-ft/rad	_	_	100167	123593	-	-
			Nm/rad	_	_	135808	167569	_	_
	drive shaft T1	С	lb-ft/rad	_	_	122536	3)	182841	193690
			Nm/rad	_	-	166137	3)	247899	262609
	drive shaft T2	С	lb-ft/rad	_	_	-	182317	218661	-
			Nm/rad	_	_	_	247189	296465	_
	drive shaft T3	С	lb-ft/rad	_	_	-	-	-	273789
			Nm/rad	_	_	_		-	371208
Moment of inertia for rotary of	group	J_{GR}	lb-ft ²	0.1139	0.2112	0.3322	0.5173	0.7831	1.3526
			kgm²	0.0048	0.0089	0.014	0.0218	0.0330	0.0570
Angular acceleration maximu	ım ²⁾	α	rad/s²	28000	22000	18000	14500	12000	10000
Filling capacity		V	gal	0.37	0.40	0.61	0.66	0.87	0.82
•			L	1.4	1.5	2.3	2.5	3.3	3.1
Mass approx. (without through	gh drive)	m	lbs	121	128	170	194	234	254
	-		kg	55	58	77	88	106	115

¹⁾ Without boost pump

Note

Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. We recommend testing the loads by means of experiment or calculation / simulation and comparison with the permissible values.

²⁾ The area of validity lies between the minimum required and maximum permissible speed.

It applies for external stimuli (e.g. engine 2 to 8 times rotary frequency, cardan shaft twice the rotary frequency).

The limit value applies for a single pump only.

The load capacity of the connection parts must be considered.

³⁾ On request

Permissible radial and axial loading on drive shaft

Size		NG		45	45	65	65	85	85	
Drive shaft			in	1 1/4	1 1/2	1 1/4	1 1/2	1 3/8	1 3/4	
Radial force maxim	ium	F _{q max}	lb	899	674	1169	1102	2293	1596	
at distance a	↓ ^F q⊓		N	4000	3000	5200	4900	10200	7100	
(from shaft collar)		a	in	0.94	1.06	0.94	1.06	0.94	1.32	
	<u>a</u>		mm	24	27	24	27	24	33.5	
Axial force		+ F _{ax max}	lb	785	785	967	967	1323	1323	
maximum	F		N	3490	3490	4300	4300	5885	5885	
	· ax → ↓ ↓ ↓	- F _{ax max}	lb	519	519	607	607	835	835	
			N	2310	2310	2700	2700	3715	3715	
Size		NG		110	110	110	145	145	175	175
Size Drive shaft		NG	in	110 1 3/8	110 1 3/4	110 2	145 1 3/4	145 2	175 1 3/4	175 2 1/4
Drive shaft Radial force maxim	um		in Ib							
Drive shaft Radial force maxim at distance a	ium ↓ ^F q∏	NG F _{q max}		1 3/8		2	1 3/4	2	1 3/4	2 1/4
Drive shaft Radial force maxim	Fq		lb	1 3/8 3102	1 3/4	2 1731	1 3/4 3147	2 2248	1 3/4 4271	2 1/4
Drive shaft Radial force maxim at distance a	a Fq	F _{q max}	lb N	1 3/8 3102 13800	1 3/4 _ _ On	2 1731 7700	1 3/4 3147 14000	2 2248 10000	1 3/4 4271 19000	2 1/4 3260 14500
Drive shaft Radial force maxim at distance a	Fq	F _{q max}	lb N in	1 3/8 3102 13800 0.94	1 3/4 _ _ On	2 1731 7700 1.57	1 3/4 3147 14000 1.32	2 2248 10000 1.57	1 3/4 4271 19000 1.32	2 1/4 3260 14500 1.57
Drive shaft Radial force maxim at distance a (from shaft collar)	Fq	F _{q max}	Ib N in mm	1 3/8 3102 13800 0.94 24	1 3/4 On request	2 1731 7700 1.57 40	1 3/4 3147 14000 1.32 33.5	2 2248 10000 1.57 40	1 3/4 4271 19000 1.32 33.5	2 1/4 3260 14500 1.57 40
Drive shaft Radial force maximat distance a (from shaft collar) Axial force	Fq	F _{q max}	Ib N in mm Ib	1 3/8 3102 13800 0.94 24 1417	1 3/4 On request	2 1731 7700 1.57 40 1417	1 3/4 3147 14000 1.32 33.5 1520	2 2248 10000 1.57 40 1520	1 3/4 4271 19000 1.32 33.5 1630	2 1/4 3260 14500 1.57 40 1630

Note

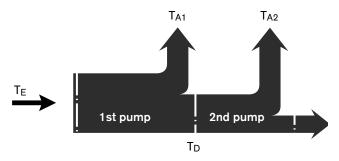
Special requirements apply in the case of belt drives. Please contact us.

Force-transfer direction of the permissible axial force:

+ $F_{ax max}$ = Increase in service life of bearings

F_{ax max} = Reduction in service life of bearings (avoid)

Determining the size


Flow
$$q_v = \frac{V_g \cdot n \cdot \eta_v}{231}$$
 [gpm] $\left(\frac{V_g \cdot n \cdot \eta_v}{1000} \text{ [I/min]} \right)$ $V_g = \text{Displacement per revolution in in}^3 \text{ (cm}^3)$ $\Delta p = \text{Differential pressure in psi (bar)}$ Torque $T = \frac{V_g \cdot \Delta p}{24 \cdot \pi \cdot \eta_{mh}}$ [Ib-ft] $\left(\frac{V_g \cdot \Delta p}{20 \cdot \pi \cdot \eta_{mh}} \text{ [Nm]} \right)$ $n = \text{Speed in rpm}$ $\eta_v = \text{Volumetric efficiency}$ Power $P = \frac{2 \pi \cdot T \cdot n}{33000} = \frac{q_v \cdot \Delta p}{1714 \cdot \eta_t}$ [hp] $\left(\frac{2 \pi \cdot T \cdot n}{60000} = \frac{q_v \cdot \Delta p}{600 \cdot \eta_t} \text{ [kW]} \right)$ $\eta_{mh} = \text{Mechanical-hydraulic efficiency}$ $\eta_t = \text{Total efficiency } (\eta_t = \eta_v \cdot \eta_{mh})$

Permissible input and through-drive torques

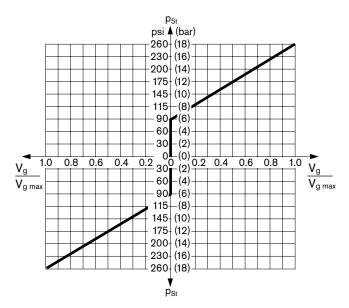
Size		NG		45	65	85	110	145	175
Torque at V _{g max} ar	d $\Delta p = 6250 \text{ psi}^{1)}$	T_{max}	lb-ft	229	330	432	559	735	887
	$\Delta p = 430 \text{ bar}^{1)}$	_	Nm	310	446	584	756	994	1200
Input torque at dri	re shaft, maximum ²⁾								
S7	1 1/4 in	T _{E max}	lb-ft	373	373	-	=	_	_
			Nm	506	506	-	-	-	-
S9	1 1/2 in	T _{E max}	lb-ft	723	723	_	=	-	-
			Nm	980	980	_	-	-	-
V8	1 3/8 in	$T_{\text{E max}}$	lb-ft	_	-	601	601	-	_
			Nm	_	-	815	815	_	_
T1	1 3/4 in	$T_{\text{E max}}$	lb-ft	_	-	1022	1022	1022	1022
			Nm	_	-	1385	1385	1385	1385
T2	2 in	$T_{\text{E max}}$	lb-ft	_	-	_	1661	1661	_
			Nm	_	-	-	2252	2252	_
T3	2 1/4 in	T _{E max}	lb-ft	_	-	-	-	-	2524
			Nm	_	-	-	-	-	3422
Maximum through	Maximum through-drive torque T _{D max} lb-ft			365	365	689	689	1066	1066
			Nm	495	495	934	934	1445	1445

¹⁾ Efficiency not considered

Torque distribution

²⁾ For drive shafts with no radial force

HP - Proportional control hydraulic, pilot-pressure related


The output flow of the pump can be steplessly varied in the range between 0 and 100 %, proportional to the pilot signal difference applied at the two pilot signal ports $(Y_1 \text{ and } Y_2)$.

The pilot signal, which comes from an external source, is a pressure signal. Flow is negligible, as the pilot signal is only acting on the control piston of the control valve.

This control piston then directs control hydraulic fluid into and out of the stroke cylinder to adjust pump displacement as required.

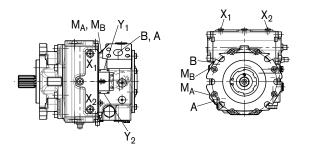
A feedback lever connected to the stroke piston maintains the pump flow for any given pilot signal within the control range.

If the pump is also equipped with a DA control valve (see page 16), automotive operation is possible for travel drives.

 V_g = Displacement at p_{St} $V_{g max}$ = Displacement at p_{St} = 260 psi (18 bar)

Pilot signal $p_{St} = 90$ to 260 psi (6 to 18 bar) (at port Y_1 , Y_2)

Start of control at 90 psi (6 bar)

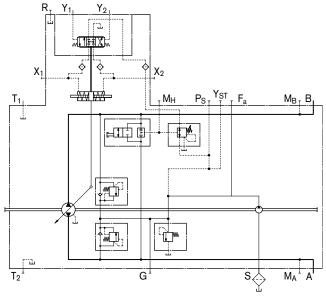

End of control at 260 psi (18 bar) (maximum displacement V_{q max})

Note

In the neutral position, the HP control unit must be vented to the tank via the external pilot control device.

Assignment
Direction of rotation - Control - Flow direction

		Size	Pilot	Control	Flow	Operating
		Size	signal	pressure	direction	pressure
ъ		45 to 175	Y ₁	X ₁	B to A	M _A
Direction of rotation	Š	45 to 175	Y ₂	X_2	A to B	M _B
ect	>	45 to 175	Y ₁	X ₁	A to B	M _B
ᅙᅙ	Dire rota ccw	3 45 to 175	Y ₂	X_2	B to A	M _A

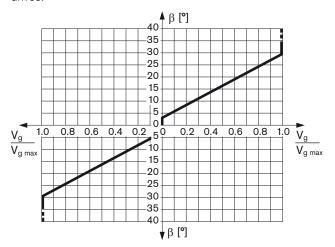


Note

The spring return feature in the control unit is not a safety

The spool valve inside the control unit can get stuck in an undefined position by internal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, the axial piston unit can no longer supply the flow specified by the operator.

Check whether your application requires that remedial measures be taken on your machine in order to bring the driven consumer into a neutral position (e. g. immediate stop).



HW - Proportional control hydraulic, mechanical servo

The output flow of the pump can be steplessly varied in the range between 0 to 100 %, proportional to the rotation of the control lever between 0° and ± 29 °.

A feedback lever connected to the stroke piston maintains the pump flow for any given position of the control lever between 0° and 29°.

If the pump is also equipped with a DA control valve (see page 16), automotive operation is possible for travel drives.

Swivel angle β at the control lever for deflection:

Start of control at $\beta = 3^{\circ}$

End of control at $\beta = 29^{\circ}$ (maximum displacement $V_{q \text{ max}}$)

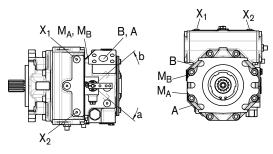
Mechanical stop for β: ±40°

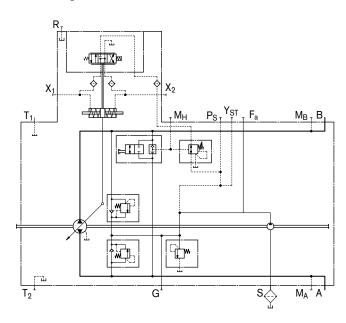
The maximum required torque at the lever is 15 lb-in (170 Ncm). To prevent damage to the HW control unit, a positive mechanical stop must be provided for the HW control lever.

Note

Spring centering enables the pump, depending on pressure and speed, to move automatically to the neutral position $(V_g=0)$ as soon as there is no longer any torque on the control lever of the HW control unit (regardless of deflection angle).

Variation: Neutral position switch

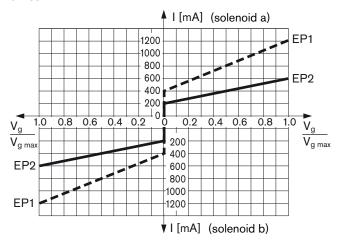

The switch contact in the neutral position switch is closed when the control lever on the HW control unit is in its neutral position. The switch opens if the control lever is moved out of neutral in either direction.


Thus, the neutral position switch provides a monitoring function for drive units that require the pump to be in the neutral position during certain operational states (e. g. starting diesel engines).

Technical data, neutral position switch								
Load capacity	20 A (continuous), without switching operating							
Switching capacity	15 A / 32 V (ohmic load)							
	4 A / 32 V (inductive load)							
Connector version	DEUTSCH DT04-2P-EP04 (mating connector, see page 56)							

Assignment
Direction of rotation - Control - Flow direction

		Size	Lever direction	Control pressure	Flow direction	Operating pressure
5		45 to 175	a	X_2	A to B	M _B
Direction of rotation	§	45 10 175	b	X ₁	B to A	M _A
ecti	>	45 to 175	а	X_2	B to A	M _A
_ 로 <u> </u>	S of S	45 to 175	b	X ₁	A to B	M _B


EP - Proportional control electric

The output flow of the pump can be steplessly varied in the range between 0 to 100 %, proportional to the electrical current supplied to solenoid a or b.

The electrical energy is converted into a force acting on the control piston. This control piston then directs control hydraulic fluid into and out of the stroke cylinder to adjust pump displacement as required.

A feedback lever connected to the stroke piston maintains the pump flow for any given current within the control range.

If the pump is also equipped with a DA control valve (see page 16), automotive operation is possible for travel drives.

Standard

Proportional solenoid without emergency actuation.

On request

Proportional solenoid with emergency actuation and spring return.

Technical data, solenoid	EP1	EP2			
Voltage	12 V (±20 %)	24 V (±20 %)			
Start of control at V _{g 0}	400 mA	200 mA			
End of control at V _{g max}	1200 mA	600 mA			
Limiting current	1.54 A	0.77 A			
Nominal resistance (at 68 °F (20 °C))	5.5 Ω	22.7 Ω			
Dither frequency	100 Hz	100 Hz			
Actuated time	100 %	100 %			
Type of protection see connector design page 56					

The following electronic controllers and amplifiers are available for controlling the proportional solenoids:

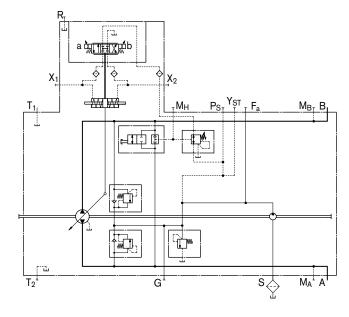
- BODAS controller RC Series 20 ______ RE 95200 Series 21 _____ RE 95201 Series 22 _____ RE 95202 Series 30 ______ RE 95203 and application software

- Analog amplifier RA ______RE 95230

Further information can also be found on the Internet at www.boschrexroth.com/mobile-electronics.

Note

The spring return feature in the control unit is not a safety device


The spool valve inside the control unit can get stuck in an undefined position by internal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, the axial piston unit can no longer supply the flow specified by the operator.

Check whether your application requires that remedial measures be taken on your machine in order to bring the driven consumer into a neutral position (e. g. immediate stop).

Assignment Direction of rotation - Control - Flow direction

		Size	Actuation of solenoid		Flow direction	Operating pressure
of o		45 to 175	а	X ₁	B to A	M _A
ë c	્ટે	45 to 175	b	X ₂	A to B	M _B
Direction of rotation	≥	45 to 175	a	X ₁	A to B	M _B
2 5	Dire rota ccw	45 to 175	b	X_2	B to A	M _A

15/60

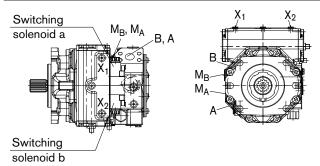
EZ - Two-point control electric

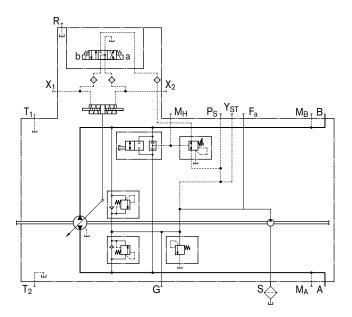
By energizing or de-energizing a control current at either switching solenoid a or b, the stroke cylinder of the pump is supplied with control pressure by the EZ control unit. In this way, the swashplate and, thus, the pump displacement is variable without intermediate settings from $V_g=0$ to $V_{g\,max}$. A solenoid is assigned to each flow direction.

Technical data, solenoid	EZ1	EZ2
Voltage	12 V (±20 %)	24 V (±20 %)
Neutral position V _g = 0	de-energized	de-energized
Position V _{g max}	current	current
	energized	energized
Nominal resistance (at 68 °F (20 °C))	5.5 Ω	21.7 Ω
Nominal power	26.2 W	26.5 W
Active current, minimum required	1.32 A	0.67 A
Actuated time	100 %	100 %

Type of protection see connector design page 56

Standard


Switching solenoid without emergency actuation.


On request

Switching solenoid with emergency actuation and spring return.

Assignment
Direction of rotation - Control - Flow direction

		Size	Actuation of solenoid		Flow direction	Operating pressure
5		45 to 175	a	X_2	A to B	M _B
Direction of rotation	გ	45 to 175	b	X ₁	B to A	M _A
atio	>	45 to 175	a	X_2	B to A	M _A
호호	rota	45 10 175	b	X ₁	A to B	M _B

DA - Automatic control speed related

The DA closed loop control is an engine speed-dependent system for travel drives. The built-in DA control valve generates a pilot pressure that is proportional to pump (engine) drive speed. This pilot pressure is directed to the stroke cylinder of the pump by an electromagnetically actuated 4/3-directional valve. The pump displacement can be steplessly varied in each flow direction and is influenced by both the speed of the pump drive and the system pressure.

The flow direction (i. e. machine moving forward or backward) is determined by either solenoid a or b being activated.

Increasing the drive speed of the pump generates a higher pilot pressure from the DA control valve resulting in increased flow and/or delivery pressure from the pump.

Depending on the selected operating characteristics of the pump, increasing the system pressure (i. e. machine load) will have the effect of swiveling the pump back to a smaller displacement. An overload protection circuit for the engine (against stalling) is achieved by combining this pressure-dependent reduction in pump stroke with a reduction in pilot pressure as the engine speed drops.

Any additional power requirement, e. g. hydraulic functions from attachments, could cause the speed of the engine to drop further. This will cause a further reduction in pilot pressure and thus of the pump displacement. Automatic power distribution and full exploitation of the available power are achieved in this way, both for the travel drive and for the implement hydraulics, with priority given to the implement hydraulics.

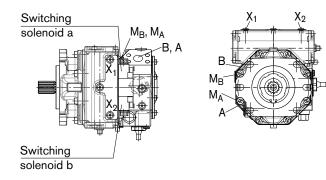
Various override options are available for DA control function to allow controlled operation of the implement hydraulics with high rpm at reduced vehicle speed.

The DA control valve can also be used in pumps with EP, HW, HT and HP control units to protect the combustion engine against overload.

DA closed loop control is only suitable for certain types of drive system and requires review of the engine and vehicle parameters to ensure that the pump is used correctly and that machine operation is safe and efficient. We recommend that all DA applications be reviewed by a Rexroth application engineer.

Technical data, solenoid	DA1	DA2				
Voltage	12 V DC (±20 %)	24 V DC (±20 %)				
Neutral position V _{g 0}	de-energized	de-energized				
Position V _{g max}	current energized	current energized				
Nominal resistance (at 68 °F (20 °C))	5.5 Ω	21.7 Ω				
Nominal power	26.2 W	26.5 W				
Active current, minimum required	1.32 A	0.67 A				
Actuated time	100 %	100 %				
Type of protection see connector design page 56						

Standard

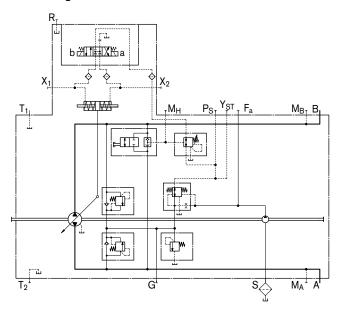

Switching solenoid without emergency actuation.

On request

Switching solenoid with emergency actuation and spring return.

Assignment Direction of rotation - Control - Flow direction

		Size	Actuation of solenoid		Flow direction	Operating pressure
J o		45 to 175	а	X_2	A to B	M _B
Direction of rotation	⋛	45 to 175	b	X ₁	B to A	M _A
ecti	>	45 to 175	а	X_2	B to A	M _A
ᇐᇶ	Dire rota ccw	45 to 175	b	X ₁	A to B	M _B


DA - Automatic control speed related

Function and control of DA control valves

DA control valve, fixed setting (1)

Pilot pressure is generated in relation to drive speed. When ordering, state in plain text: Start of control (set at factory).

Circuit diagram

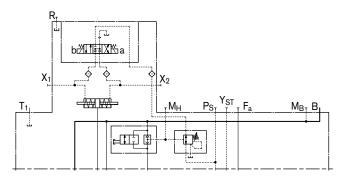
DA control valve, mechanically adjustable with position lever (2, 3)

Pilot pressure is generated in relation to drive speed. When ordering, state in plain text: Start of control (set at factory).

Pilot pressure may be reduced, independently of drive speed, through mechanical actuation of the position lever (inch function).

The maximum permissible operating torque at the position lever is $T_{max} = 3$ lb-ft (4 Nm).

Maximum angle of rotation 70°, lever position: any.


Version 2

Actuating direction of the position lever: clockwise

Version 3

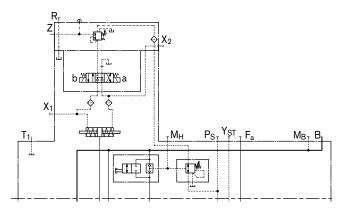
Actuating direction of the position lever: counter-clockwise

Circuit diagram

DA control valve fixed setting and braking inch valve mounted (4, 5) (only for pumps with DA control unit)

- Version with pressure reduction valve

Permits the pilot pressure to be reduced independently of the drive speed via hydraulic control (port Z).

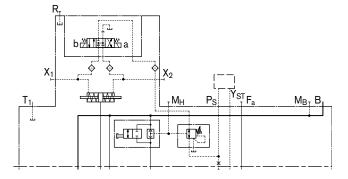

Version 4

Control at port Z by means of brake fluid according to ISO 4925 (**no** mineral oil), from the vehicle braking system (hydraulically linked with the service brake).

Version 5

Control at port Z by means of brake fluid based on mineral oil.

Circuit diagram


DA control valve fixed setting, ports for pilot control device as inch valve (6)

Reduction of the pilot pressure, independent of the drive speed is achieved by the mechanical actuation of the pilot control device.

The pilot control device is installed separately from the pump (for example in the driver's cabin) and connected to the pump by two hydraulic control lines via ports P_S and Y_{ST} .

A suitable pilot control device must be ordered separately and is not included in the delivery contents.

Detailed information is available from our sales department and on our website www.boschrexroth.com/da-control. Use our computer program to work out the input design that meets your needs. A drive with DA control must be approved by Rexroth.

HT - Hydraulic control, direct controlled

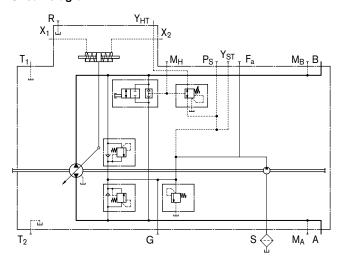
With the direct-controlled hydraulic control (HT), pump displacement is influenced by a hydraulic control pressure applied directly to the stroke piston through either port X_1 or X_2 .

The flow direction is dependent on which control pressure port is pressurized.

Pump displacement is steplessly varied and proportional to the applied control pressure, but is also influenced by system pressure and pump drive speed.

Port $Y_{\rm HT}$ must be used as the control pressure source for the selected control unit in order to optimally use the built-in pressure cut-off valve. See page 49 for a description of the pressure cut-off function.


Maximum permissible control pressure: 580 psi (40 bar)


Use of the HT control requires a review of the engine and vehicle parameters to ensure that the pump is set up correctly. We recommend that all HT applications be reviewed by a Rexroth application engineer.

If the pump is also equipped with a DA control valve (see page 16), automotive operation is possible for travel drives.

Assignment Direction of rotation - Control - Flow direction

		Size	Control	Flow	Operating
		Oize	pressure	direction	pressure
–		45 to 175	X ₁	B to A	M _A
0 0	Š		X_2	A to B	M _B
Direction of rotation	>	45 to 175	X ₁	A to B	M _B
호	CCW	45 (0 175	X_2	B to A	M _A
	٥		^ 2	D to A	IVIA

19/60

EV - Electric control, direct controlled

The output flow of the pump can be steplessly varied in the range between 0 to 100 %. The control pressure level is proportional to the electric current applied to the solenoid of the pressure reducing valve. By energizing or de-energizing a control current at either switching solenoid a or b on the EV control unit, the stroke cylinder of the pump is supplied with this control pressure level.

The resulting pump displacement at a certain pilot pressure is dependent on the speed and operating pressure of the pump.

Technical data, pressure reducing valve	EV1	EV2
Voltage	12 V	24 V
Start of control at V _{g 0}	800 mA	360 mA
End of control at V _{g max}	1800 mA	800 mA
Limiting current	1.8 A	0.8 A
Nominal resistance (at 68 °F (20 °C))	2.4 Ω	12 Ω
Dither frequency	200 Hz	200 Hz
Actuated time	100 %	100 %
Type of protection see connec	ctor design page	e 56

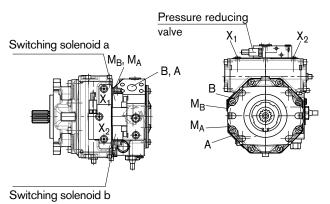
The following electronic controllers and amplifiers are available for controlling the proportional solenoids:

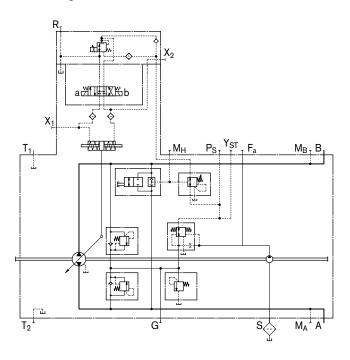
 BODAS controller RC 	
Series 20	RE 95200
Series 21	RE 95201
Series 22	RE 95202
Series 30	RE 95203
and application software	
- Analog amplifier RA	RE 95230

Further information can also be found on the Internet at www.boschrexroth.com/mobile-electronics.

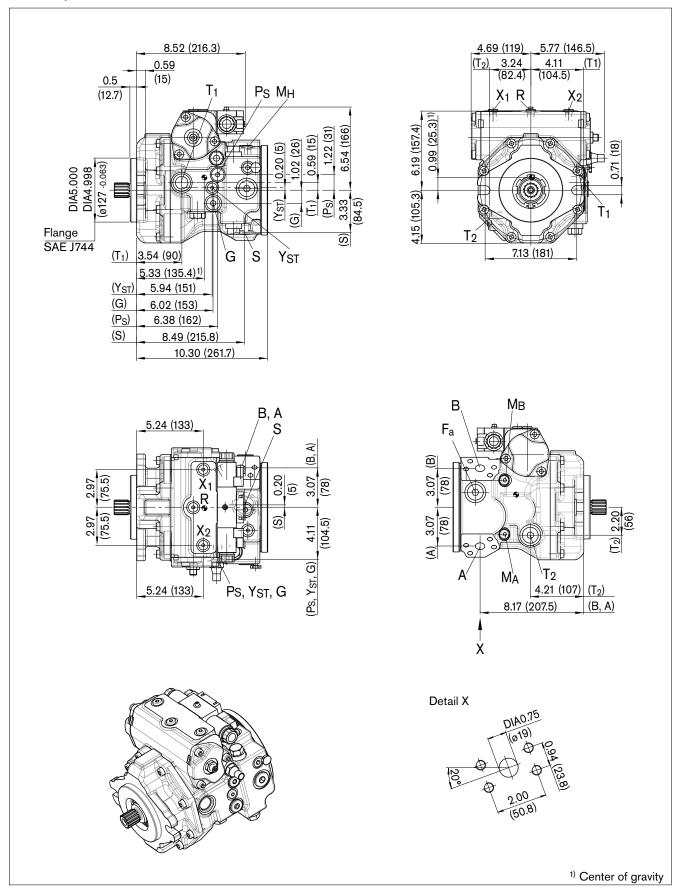
Technical data, solenoid	EV1	EV2
Voltage	12 V (±20 %)	24 V (±20 %)
Neutral position V _g = 0	de-energized	de-energized
Position $V_{g max}$	current energized	current energized
Nominal resistance (at 68 °F (20 °C))	5.5 Ω	21.7 Ω
Nominal power	26.2 W	26.5 W
Active current, minimum required	1.32 A	0.67 A
Actuated time	100 %	100 %
Type of protection see connecte	or design page	56

Standard

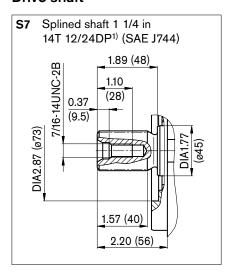

Switching solenoid without emergency actuation.


On request

Switching solenoid with emergency actuation and spring return.


Assignment Direction of rotation - Control - Flow direction

		Size	Actuation of solenoid		Flow direction	Operating pressure
45 + 455		a	X_2	A to B	M _B	
Direction of to 175 Approximately 45 to 175 Approximately 45 to 175	b	X ₁	B to A	M _A		
atic Alera 126	a	X_2	B to A	M _A		
ξģ	cc co 175	b	X ₁	A to B	M _B	


EP - Proportional control electric

Before finalizing your design, request a binding installation drawing. Dimensions in in (mm).

Dimensions size 45

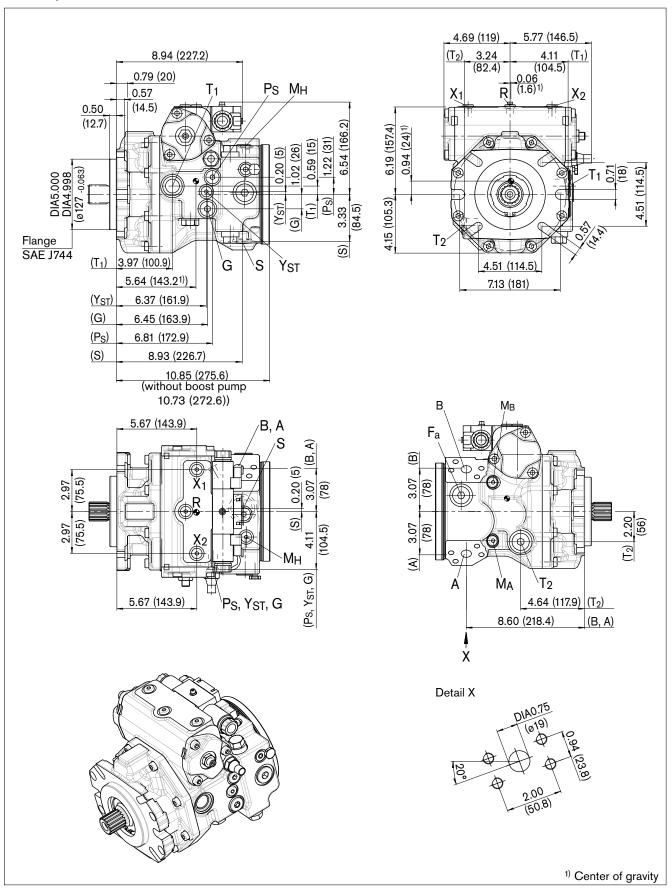
Drive shaft

Ports

Designation	Port for	Standard	Size ²⁾	Maximum pressure [psi (bar)] ³⁾	State
A, B ⁸⁾	Service line	SAE J518 ⁴⁾	3/4 in	7250 (500)	0
	Fixing thread A/B, screw	ISO 68	3/8-16UNC; 0.83 (21) deep		О
	grade 8 with hardened washer				_,
S	Suction	ISO 11926	1 5/16-12UN-2B; 0.79 (20) deep	75 (5)	O ⁵⁾
T ₁	Tank	ISO 11926	1 1/16-12UN-2B; 0.79 (20) deep	45 (3)	O ⁶⁾
T_2	Tank	ISO 11926	1 1/16-12UN-2B; 0.79 (20) deep	45 (3)	X ⁶⁾
R	Air bleed	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	45 (3)	Х
X ₁ , X ₂	Control pressure (upstream of orifice)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	х
X ₁ , X ₂	Control pressure (upstream of orifice, HT only)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
X ₃ , X ₄ ⁷⁾	Stroking chamber pressure	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
G	Boost pressure	ISO 11926	7/8-14UNF-2B; 0.67 (17) deep	580 (40)	Χ
Ps	Pilot pressure, inlet	ISO 11926	3/4-16UNF-2B; 0.59 (15) deep	580 (40)	Х
Ps	Pilot pressure, inlet (DA6 only)	ISO 11926	3/4-16UNF-2B; 0.59 (15) deep	580 (40)	0
Y _{ST}	Pilot pressure, outlet	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
Y _{ST}	Pilot pressure, outlet (DA6 only)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
Y _{HT}	Pilot pressure, outlet (HT only)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
M _A , M _B	Measuring pressure A, B	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	7250 (500)	Х
M _H	Measuring high pressure	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	7250 (500)	Х
Fa	Boost pressure, inlet	ISO 11926	1 1/16-12UN-2B; 0.79 (20) deep	580 (40)	Х
Y ₁ , Y ₂	Pilot signal (HP only)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
Z	Inch signal (DA4 and 5 only)	ISO 11926	3/8-24UNF-2B; 0.39 (10) deep	580 (40)	0

- 1) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Observe the general instructions on page 60 for the maximum tightening torques.
- 3) Short-term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) Only dimensions according to SAE J518
- 5) Plugged for external supply
- $_{6)}$ Depending on installation position, T_{1} or T_{2} must be connected (see also page 59).
- 7) Optional, see page 51
- 8) For the maximum utilization of pressure, only grade 8 screws and hardened washers are to be used to tighten the SAE flange shells.
- O = Must be connected (plugged on delivery)
- X = Plugged (in normal operation)

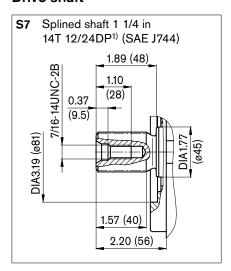
Note


The ports and fixing threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified operating conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.

HP	HW
Proportional control hydraulic, pilot-pressure related	Proportional control hydraulic, mechanical servo
нт	EZ
Hydraulic control, direct controlled	Two-point control electric
EV	
Electric control, direct controlled	
, , , , , , , , , , , , , , , , , , ,	
I	

DIIII011010110 0120 10		installation drawing. Differisions in in (mili).
DA - Automatic control speed related		
D Δ1	DA2	

control valve fixed setting	Control valve mechanically adjustable with position lever
DA4, DA5	DA6
Control valve fixed setting and braking inch valve mounted	Control valve fixed setting and ports for pilot control device


EP -Proportional control electric

Before finalizing your design, request a binding installation drawing. Dimensions in in (mm).

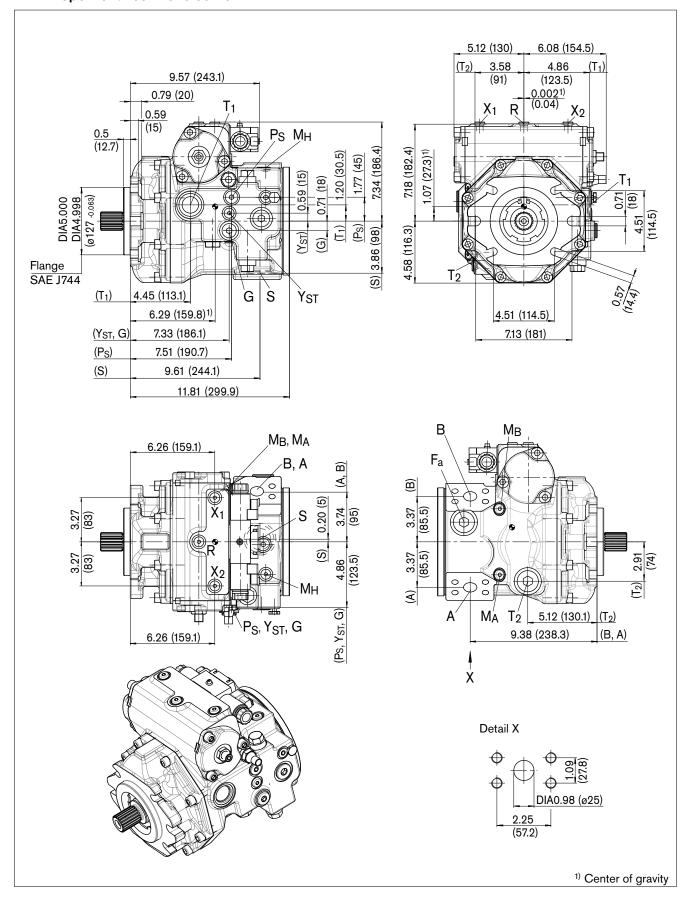
Dimensions size 65

Drive shaft

Ports

Designation	Port for	Standard	Size ²⁾	Maximum pressure [psi (bar)] ³⁾	State
A, B ⁸⁾	Service line Fixing thread A/B, screw grade 8 with hardened washer	SAE J518 ⁴⁾ ISO 68	3/4 in 3/8-16UNC; 0.83 (21) deep	7250 (500)	0
S	Suction	ISO 11926	1 5/16-12UN-2B; 0.79 (20) deep	75 (5)	O ⁵⁾
T ₁	Tank	ISO 11926	1 1/16-12UN-2B; 0.79 (20) deep	45 (3)	O ⁶⁾
T ₂	Tank	ISO 11926	1 1/16-12UN-2B; 0.79 (20) deep	45 (3)	X ₆)
R	Air bleed	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	45 (3)	Х
X ₁ , X ₂	Control pressure (upstream of orifice)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	х
X ₁ , X ₂	Control pressure (upstream of orifice, HT only)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	О
X ₃ , X ₄ ⁷⁾	Stroking chamber pressure	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	X
G	Boost pressure	ISO 11926	7/8-14UNF-2B; 0.67 (17) deep	580 (40)	Х
Ps	Pilot pressure, inlet	ISO 11926	3/4-16UNF-2B; 0.59 (15) deep	580 (40)	Χ
Ps	Pilot pressure, inlet (DA6 only)	ISO 11926	3/4-16UNF-2B; 0.59 (15) deep	580 (40)	0
Y _{ST}	Pilot pressure, outlet	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
Y _{ST}	Pilot pressure, outlet (DA6 only)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
Y _{HT}	Pilot pressure, outlet (HT only)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
M _A , M _B	Measuring pressure A, B	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	7250 (500)	Х
M _H	Measuring high pressure	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	7250 (500)	Χ
Fa	Boost pressure, inlet	ISO 11926	1 1/16-12UN-2B; 0.79 (20) deep	580 (40)	Χ
Y ₁ , Y ₂	Pilot signal (HP only)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
Z	Inch signal (DA4 and 5 only)	ISO 11926	3/8-24UNF-2B; 0.39 (10) deep	580 (40)	0

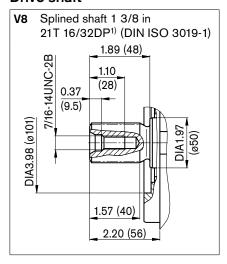
- 1) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Observe the general instructions on page 60 for the maximum tightening torques.
- 3) Short-term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) Only dimensions according to SAE J518
- 5) Plugged for external supply
- 6) Depending on installation position, T₁ or T₂ must be connected (see also page 59).
- 7) Optional, see page 51
- 8) For the maximum utilization of pressure, only grade 8 screws and hardened washers are to be used to tighten the SAE flange shells.
- O = Must be connected (plugged on delivery)
- X = Plugged (in normal operation)


Note

The ports and fixing threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified operating conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.

HP	HW
Proportional control hydraulic, pilot-pressure related	Proportional control hydraulic, mechanical servo
HT	EZ
Hydraulic control, direct controlled	Two-point control electric
EV	
Electric control, direct controlled	
·	

DA2 Control valve mechanically adjustable with position lever
DA6 Control valve fixed setting and ports for pilot control device


EP - Proportional control electric

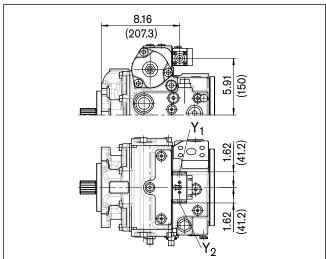
Before finalizing your design, request a binding installation drawing. Dimensions in in (mm).

Dimensions size 85

Drive shaft

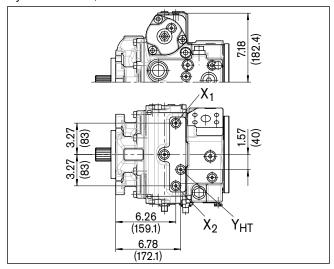
Ports

Designation	Port for	Standard	Size ²⁾	Maximum pressure [psi (bar)] ³⁾	State
A, B ⁸⁾	Service line Fixing thread A/B, screw grade 8 with hardened washer	SAE J518 ⁴⁾ ISO 68	1 in 7/16-14UNC; 0.87 (22) deep	7250 (500)	0
S	Suction	ISO 11926	1 5/8-12UN-2B; 0.79 (20) deep	75 (5)	O ⁵⁾
T ₁	Tank	ISO 11926	1 5/16-12UN-2B; 0.79 (20) deep	45 (3)	O ⁶⁾
T ₂	Tank	ISO 11926	1 5/16-12UN-2B; 0.79 (20) deep	45 (3)	X ⁶⁾
R	Air bleed	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	45 (3)	Х
X ₁ , X ₂	Control pressure (upstream of orifice)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
X ₁ , X ₂	Control pressure (upstream of orifice, HT only)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
X ₃ , X ₄ ⁷⁾	Stroking chamber pressure	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
G	Boost pressure	ISO 11926	7/8-14UNF-2B; 0.67 (17) deep	580 (40)	Х
Ps	Pilot pressure, inlet	ISO 11926	3/4-16UNF-2B; 0.59 (15) deep	580 (40)	Х
Ps	Pilot pressure, inlet (DA6 only)	ISO 11926	3/4-16UNF-2B; 0.59 (15) deep	580 (40)	0
Y _{ST}	Pilot pressure, outlet	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
Y _{ST}	Pilot pressure, outlet (DA6 only)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
Y_{HT}	Pilot pressure, outlet (HT only)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
M _A , M _B	Measuring pressure A, B	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	7250 (500)	Х
M _H	Measuring high pressure	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	7250 (500)	Х
Fa	Boost pressure, inlet	ISO 11926	1 5/16-12UN-2B; 0.79 (20) deep	580 (40)	Х
Y ₁ , Y ₂	Pilot signal (HP only)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
Z	Inch signal (DA4 and 5 only)	ISO 11926	3/8-24UNF-2B; 0.39 (10) deep	580 (40)	0

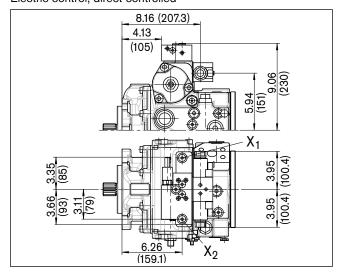

- 1) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Observe the general instructions on page 60 for the maximum tightening torques.
- 3) Short-term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) Only dimensions according to SAE J518
- 5) Plugged for external supply
- $_{6)}$ Depending on installation position, T_{1} or T_{2} must be connected (see also page 59).
- 7) Optional, see page 51
- 8) For the maximum utilization of pressure, only grade 8 screws and hardened washers are to be used to tighten the SAE flange shells.
- O = Must be connected (plugged on delivery)
- X = Plugged (in normal operation)

Note

The ports and fixing threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified operating conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.

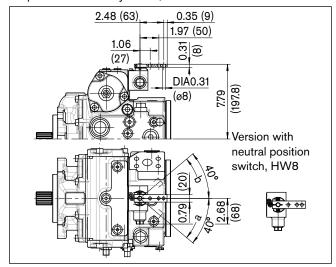

HP

Proportional control hydraulic, pilot-pressure related

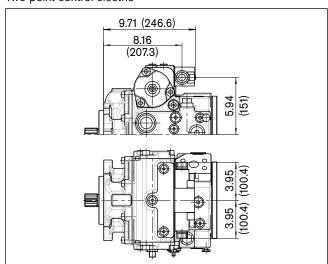

HT

Hydraulic control, direct controlled

ΕV


Electric control, direct controlled

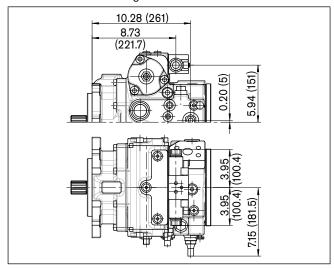
Before finalizing your design, request a binding installation drawing. Dimensions in in (mm).


HW

Proportional control hydraulic, mechanical servo

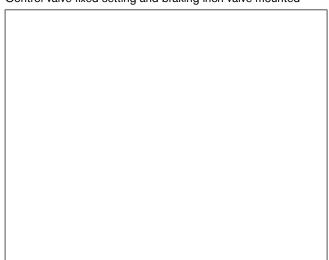
ΕZ

Two-point control electric


Before finalizing your design, request a binding installation drawing. Dimensions in in (mm).

Dimensions size 85

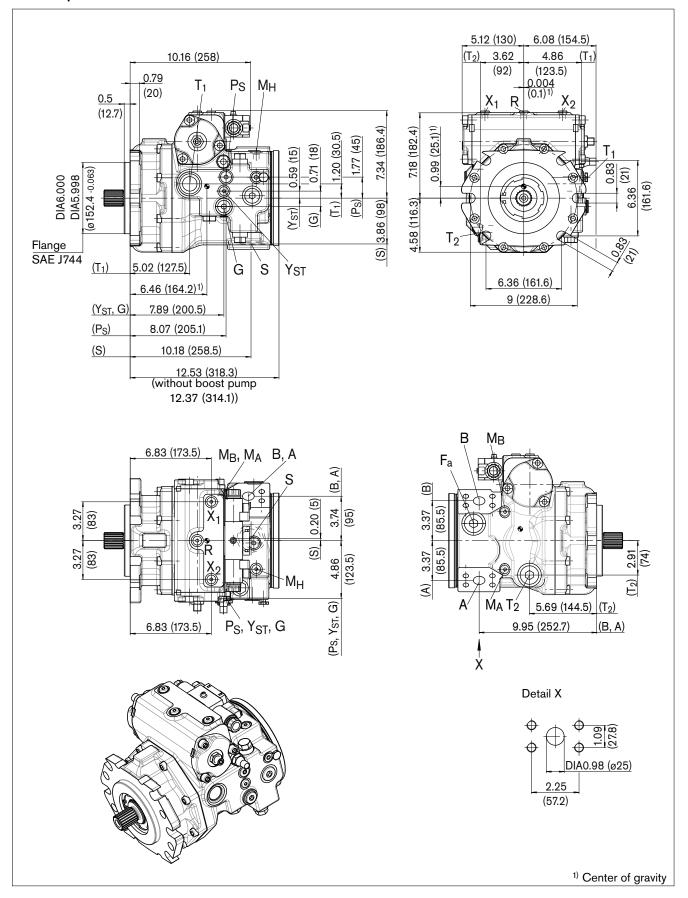
DA - Automatic control speed related


DA1

Control valve fixed setting

DA4, DA5

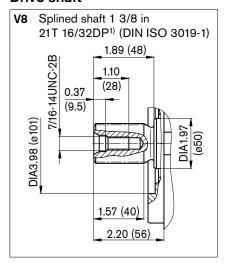
Control valve fixed setting and braking inch valve mounted



DA2

Control valve mechanically adjustable with position lever

Control valve fixed setting and ports for pilot control device


EP - Proportional control electric

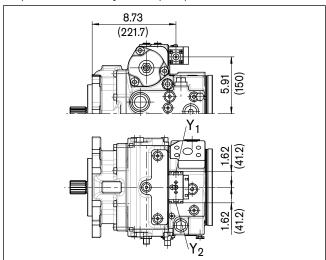
Before finalizing your design, request a binding installation drawing. Dimensions in in (mm).

Dimensions size 110

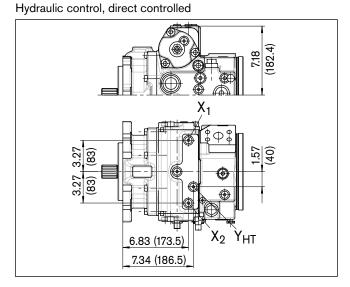
Drive shaft

Ports

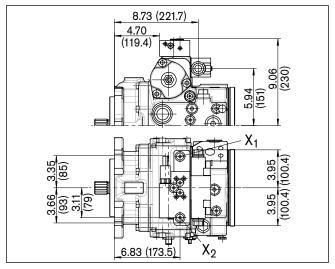
Designation	Port for	Standard	Size ²⁾	Maximum pressure [psi (bar)] ³⁾	State
A, B ⁸⁾	Service line Fixing thread A/B, screw grade 8 with hardened washer	SAE J518 ⁴⁾ ISO 68	1 in 7/16-14UNC; 0.87 (22) deep	7250 (500)	0
S	Suction	ISO 11926	1 5/8-12UN-2B; 0.79 (20) deep	75 (5)	O ⁵⁾
T ₁	Tank	ISO 11926	1 5/16-12UN-2B; 0.79 (20) deep	45 (3)	O ⁶⁾
T ₂	Tank	ISO 11926	1 5/16-12UN-2B; 0.79 (20) deep	45 (3)	X ⁶⁾
R	Air bleed	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	45 (3)	Х
X ₁ , X ₂	Control pressure (upstream of orifice)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
X ₁ , X ₂	Control pressure (upstream of orifice, HT only)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	О
X ₃ , X ₄ ⁷⁾	Stroking chamber pressure	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Χ
G	Boost pressure	ISO 11926	7/8-14UNF-2B; 0.67 (17) deep	580 (40)	Χ
Ps	Pilot pressure, inlet	ISO 11926	3/4-16UNF-2B; 0.59 (15) deep	580 (40)	Х
Ps	Pilot pressure, inlet (DA6 only)	ISO 11926	3/4-16UNF-2B; 0.59 (15) deep	580 (40)	0
Y _{ST}	Pilot pressure, outlet	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
Y _{ST}	Pilot pressure, outlet (DA6 only)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
Y _{HT}	Pilot pressure, outlet (HT only)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
M_A, M_B	Measuring pressure A, B	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	7250 (500)	Χ
M _H	Measuring high pressure	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	7250 (500)	Χ
Fa	Boost pressure, inlet	ISO 11926	1 5/16-12UN-2B; 0.79 (20) deep	580 (40)	Х
Y ₁ , Y ₂	Pilot signal (HP only)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
Z	Inch signal (DA4 and 5 only)	ISO 11926	3/8-24UNF-2B; 0.39 (10) deep	580 (40)	0


- 1) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Observe the general instructions on page 60 for the maximum tightening torques.
- 3) Short-term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) Only dimensions according to SAE J518
- 5) Plugged for external supply
- $_{6)}$ Depending on installation position, T_{1} or T_{2} must be connected (see also page 59).
- 7) Optional, see page 51
- 8) For the maximum utilization of pressure, only grade 8 screws and hardened washers are to be used to tighten the SAE flange shells.
- O = Must be connected (plugged on delivery)
- X = Plugged (in normal operation)

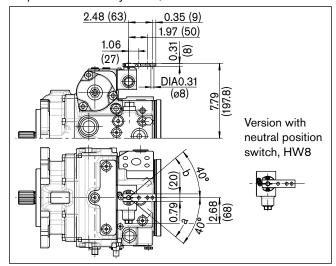
Note


The ports and fixing threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified operating conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.

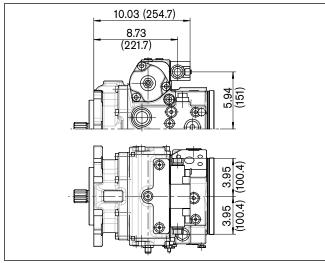
HP


Proportional control hydraulic, pilot-pressure related

H I Hudraulia aantral diraat aa


EV Electric control, direct controlled

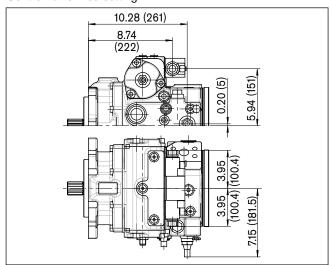
Before finalizing your design, request a binding installation drawing. Dimensions in in (mm).


HW

Proportional control hydraulic, mechanical servo

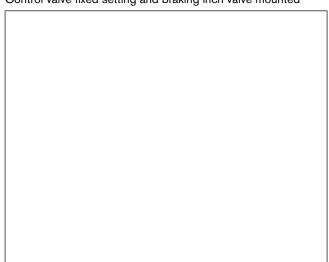
F7

Two-point control electric


Before finalizing your design, request a binding installation drawing. Dimensions in in (mm).

Dimensions size 110

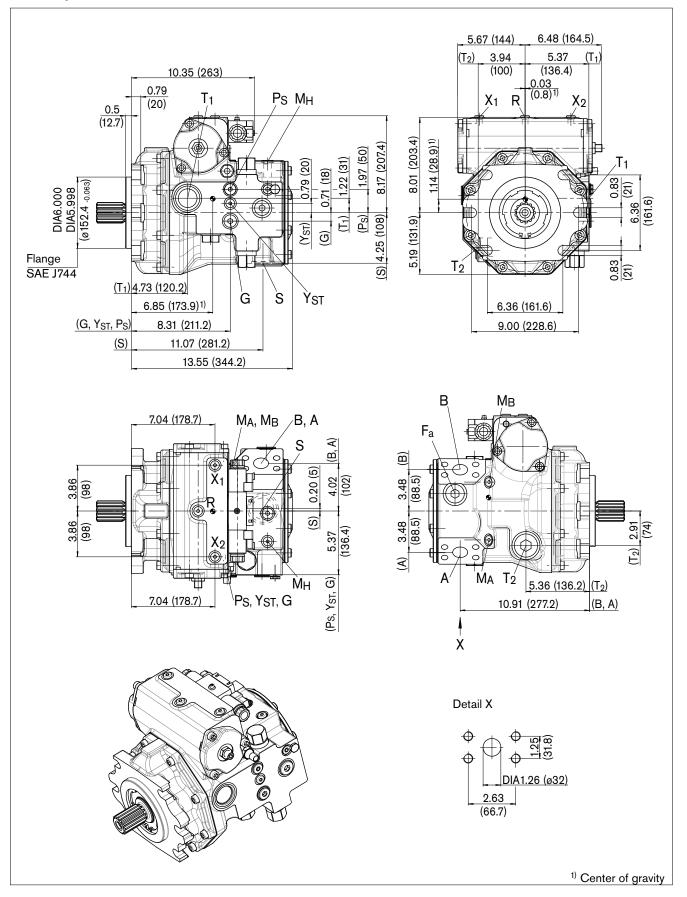
DA - Automatic control speed related


DA1

Control valve fixed setting

DA4, DA5

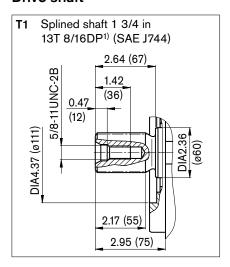
Control valve fixed setting and braking inch valve mounted



DA2

Control valve mechanically adjustable with position lever

Control valve fixed setting and ports for pilot control device


EP - Proportional control electric

Before finalizing your design, request a binding installation drawing. Dimensions in in (mm).

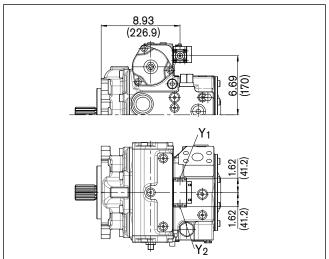
Dimensions size 145

Drive shaft

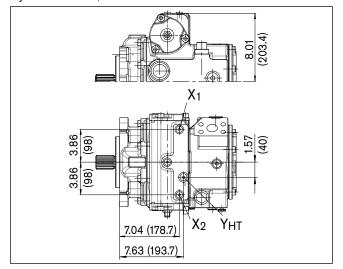
Ports

Designation	Port for	Standard	Size ²⁾	Maximum pressure [psi (bar)] ³⁾	State
A, B ⁸⁾	Service line Fixing thread A/B, screw grade 8 with hardened washer	SAE J518 ⁴⁾ ISO 68	1 1/4 in 1/2-13UNC; 0.75 (19) deep	7250 (500)	0
S	Suction	ISO 11926	1 7/8-12UN-2B; 0.79 (20) deep	75 (5)	O ⁵⁾
T ₁	Tank	ISO 11926	1 5/8-12UN-2B; 0.77 (19.5) deep	45 (3)	O ⁶⁾
T ₂	Tank	ISO 11926	1 5/8-12UN-2B; 0.77 (19.5) deep	45 (3)	X ⁶⁾
R	Air bleed	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	45 (3)	Χ
X ₁ , X ₂	Control pressure (upstream of orifice)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	х
X ₁ , X ₂	Control pressure (upstream of orifice, HT only)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
X ₃ , X ₄ ⁷⁾	Stroking chamber pressure	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Χ
G	Boost pressure	ISO 11926	7/8-14UNF-2B; 0.67 (17) deep	580 (40)	Х
Ps	Pilot pressure, inlet	ISO 11926	3/4-16UNF-2B; 0.59 (15) deep	580 (40)	Χ
Ps	Pilot pressure, inlet (DA6 only)	ISO 11926	3/4-16UNF-2B; 0.59 (15) deep	580 (40)	0
Y _{ST}	Pilot pressure, outlet	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Χ
Y _{ST}	Pilot pressure, outlet (DA6 only)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
Y _{HT}	Pilot pressure, outlet (HT only)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
M _A , M _B	Measuring pressure A, B	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	7250 (500)	Χ
M _H	Measuring high pressure	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	7250 (500)	Χ
Fa	Boost pressure, inlet	ISO 11926	1 5/16-12UN-2B; 0.79 (20) deep	580 (40)	Χ
Y ₁ , Y ₂	Pilot signal (HP only)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
Z	Inch signal (DA4 and 5 only)	ISO 11926	3/8-24UNF-2B; 0.39 (10) deep	580 (40)	0

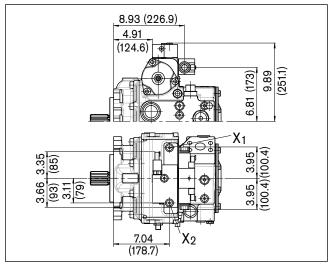
- 1) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Observe the general instructions on page 60 for the maximum tightening torques.
- 3) Short-term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) Only dimensions according to SAE J518
- 5) Plugged for external supply
- $_{6)}$ Depending on installation position, T_{1} or T_{2} must be connected (see also page 59).
- 7) Optional, see page 51
- 8) For the maximum utilization of pressure, only grade 8 screws and hardened washers are to be used to tighten the SAE flange shells.
- O = Must be connected (plugged on delivery)
- X = Plugged (in normal operation)


Note

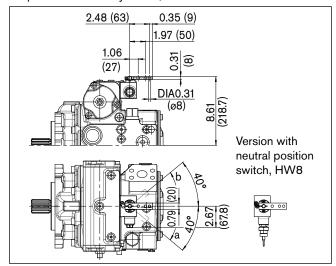
The ports and fixing threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified operating conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.


Dimensions size 145

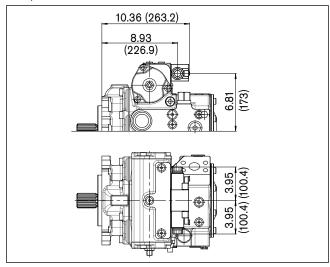
HP

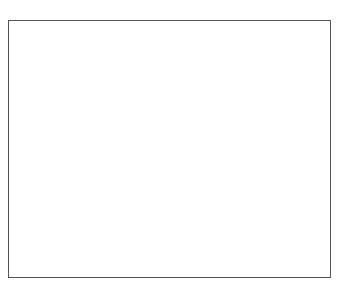

Proportional control hydraulic, pilot-pressure related

Hydraulic control, direct controlled


EV Electric control, direct controlled

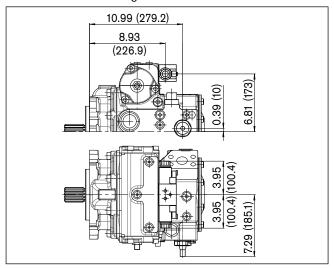
Before finalizing your design, request a binding installation drawing. Dimensions in in (mm).


HW

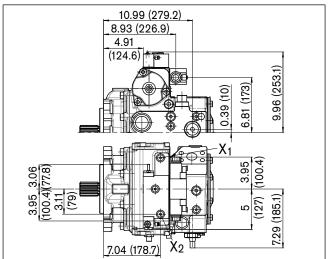

Proportional control hydraulic, mechanical servo

ΕZ

Two-point control electric


Before finalizing your design, request a binding installation drawing. Dimensions in in (mm).

Dimensions size 145

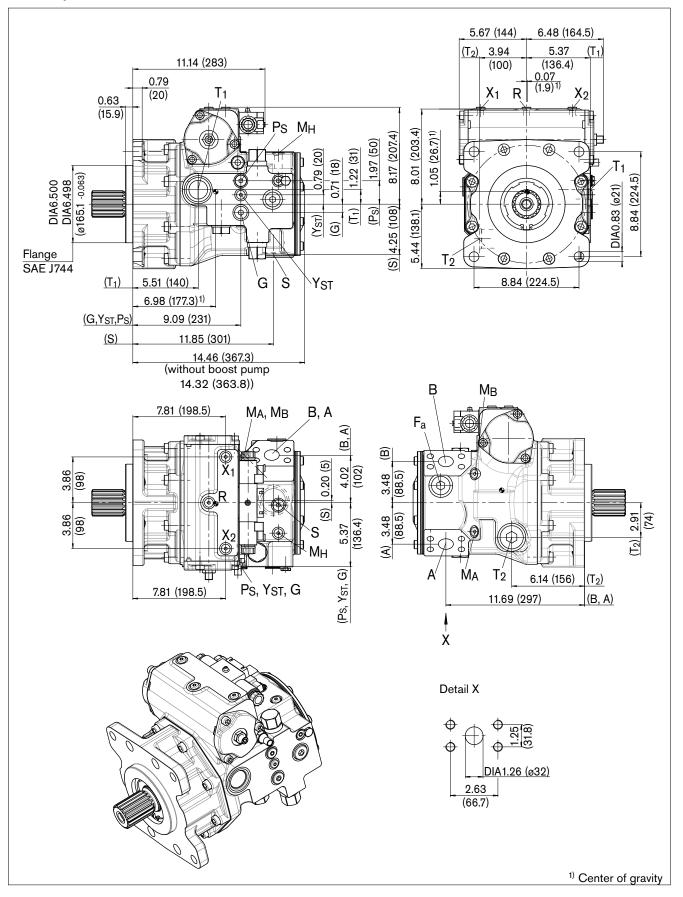

DA - Automatic control speed related

DA1

Control valve fixed setting

DA4, DA5Control valve fixed setting and braking inch valve mounted

DA2


Control valve mechanically adjustable with position lever

П	Λ	C

Control valve fixed setting and ports for pilot control device

Dimensions size 175

EP - Proportional control electric

Before finalizing your design, request a binding installation drawing. Dimensions in in (mm).

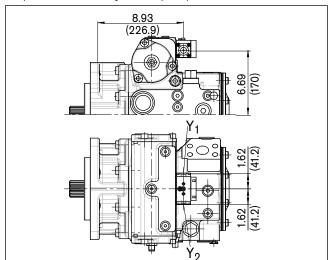
Dimensions size 175

Drive shaft

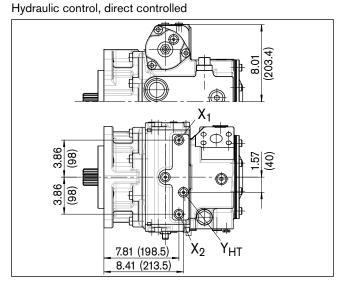
Ports

Designation	Port for	Standard	Size ²⁾	Maximum pressure [psi (bar)] ³⁾	State
A, B ⁸⁾	Service line Fixing thread A/B, screw grade 8 with hardened washer	SAE J518 ⁴⁾ ISO 68	1 1/4 in 1/2-13UNC; 0.75 (19) deep	7250 (500)	0
S	Suction	ISO 11926	1 7/8-12UN-2B; 0.79 (20) deep	75 (5)	O ⁵⁾
T ₁	Tank	ISO 11926	1 5/8-12UN-2B; 0.77 (19.5) deep	45 (3)	O ⁶⁾
T ₂	Tank	ISO 11926	1 5/8-12UN-2B; 0.77 (19.5) deep	45 (3)	X ⁶⁾
R	Air bleed	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	45 (3)	Χ
X ₁ , X ₂	Control pressure (upstream of orifice)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	х
X ₁ , X ₂	Control pressure (upstream of orifice, HT only)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
X ₃ , X ₄ ⁷⁾	Stroking chamber pressure	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Χ
G	Boost pressure	ISO 11926	7/8-14UNF-2B; 0.67 (17) deep	580 (40)	Χ
Ps	Pilot pressure, inlet	ISO 11926	3/4-16UNF-2B; 0.59 (15) deep	580 (40)	Χ
Ps	Pilot pressure, inlet (DA6 only)	ISO 11926	3/4-16UNF-2B; 0.59 (15) deep	580 (40)	0
Y _{ST}	Pilot pressure, outlet	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Χ
Y _{ST}	Pilot pressure, outlet (DA6 only)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
Y _{HT}	Pilot pressure, outlet (HT only)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
M _A , M _B	Measuring pressure A, B	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	7250 (500)	Χ
M _H	Measuring high pressure	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	7250 (500)	Χ
Fa	Boost pressure, inlet	ISO 11926	1 5/16-12UN-2B; 0.79 (20) deep	580 (40)	Χ
Y ₁ , Y ₂	Pilot signal (HP only)	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
Z	Inch signal (DA4 and 5 only)	ISO 11926	3/8-24UNF-2B; 0.39 (10) deep	580 (40)	0

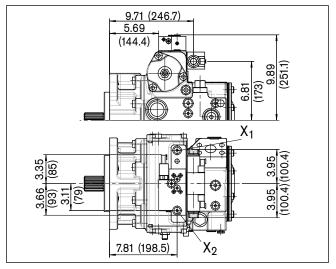
- 1) ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Observe the general instructions on page 60 for the maximum tightening torques.
- 3) Short-term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) Only dimensions according to SAE J518
- 5) Plugged for external supply
- $_{6)}$ Depending on installation position, T_{1} or T_{2} must be connected (see also page 59).
- 7) Optional, see page 51
- 8) For the maximum utilization of pressure, only grade 8 screws and hardened washers are to be used to tighten the SAE flange shells.
- O = Must be connected (plugged on delivery)
- X = Plugged (in normal operation)


Note

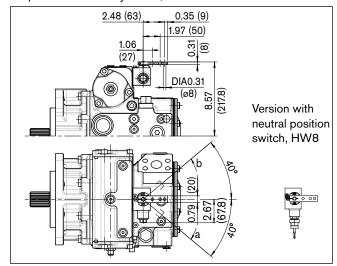
The ports and fixing threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified operating conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.


Dimensions size 175

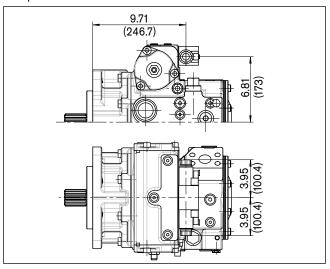
HP


Proportional control hydraulic, pilot-pressure related

TI Juduanija aantual dira


EV Electric control, direct controlled

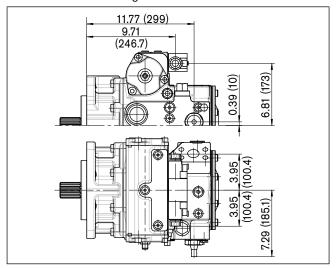
Before finalizing your design, request a binding installation drawing. Dimensions in in (mm).


HW

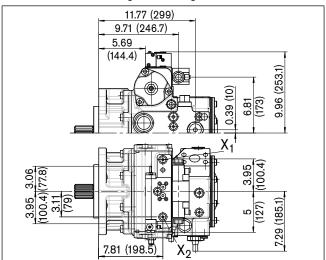
Proportional control hydraulic, mechanical servo

ΕZ

Two-point control electric


Before finalizing your design, request a binding installation drawing. Dimensions in in (mm).

Dimensions size 175

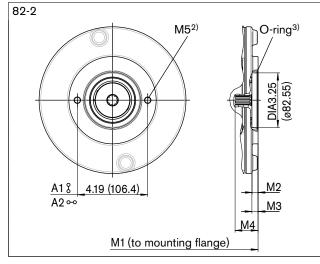

DA - Automatic control speed related

DA1

Control valve fixed setting

DA4, DA5Control valve fixed setting and braking inch valve mounted

DA2


Control valve mechanically adjustable with position lever

_	^	^
	Δ	h

Control valve fixed setting and ports for pilot control device

Through drive dimensions

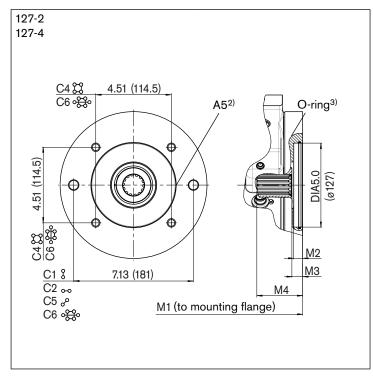
Flange SAE J744			Coupling for splined shaft ¹⁾									
	Mounting	g variant										
Diameter	Symbol	Designation	Diamet	er	Designation	045	065	085	110	145	175	
Without						•	•	•	•	•	•	0000
82-2 (A)	8	A1	5/8 in	9T 16/32DP	S2	О	0	0	0	0	0	A1S2
	0-0	A2	5/8 in	9T 16/32DP	S2	•	•	•	•	•	0	A2S2
101-2 (B)	8	D4	7/8 in	13T 16/32DP	S4	0	0	0	0	0	•	B1S4
	6	B1	1 in	15T 16/32DP	S5	0	0	0	0	0	0	B1S5
			7/8 in	13T 16/32DP	S4	•	•	0	0	•	•	B2S4
	o-o	B2	1 in	15T 16/32DP	S5	•	•	•	•	•	0	B2S5
	0	DE4)	7/8 in	13T 16/32DP	S4	0	0	0	0	0	0	B5S4
	°°	B5 ⁴⁾	1 in	15T 16/32DP	S5	0	0	0	0	0	0	B5S5
101-4 (B)	↔	₿\$ B4	7/8 in	13T 16/32DP	S4	О	0	0	0	0	0	B4S4
¥4	6-6		1 in	15T 16/32DP	S5	0	0	0	0	0	0	B4S5

NG		M1	M2	М3	M4	M5
45	in	10.54	0.35	0.37	1.39	3/8-16UNC-2B;
40	mm	267.7	9	9.4	35.3	0.59 (15) deep
65	in	11.09	0.35	0.37	1.63	
63	mm	281.6	9	9.4	41.3	_
0.E	in	12.04	0.35	0.37	1.41	
85	mm	305.9	9	9.4	35.8	_
110	in	12.77	0.35	0.37	1.36	
110	mm	324.3	9	9.4	34.6	
445	in	13.63	0.35	0.37	1.37	
145	mm	346.2	9	9.3	34.7	•
175	in	14.54	0.35	0.36	1.31	
175	mm	369.3	9	9.1	33.4	-

101-2		
101-4		
	B4 \$\frac{1}{2} 3.50 (89) \qua	۵)
	M5 ²⁾ O-ring	3 ³⁾
B4\$3_3.50 (89)	0.1944.0	
0	+- 	
3.5		
→		
4		
Δ		
	R19 575 (146)	
	B2 • M3	
	B5° M4	
	M1 (to mounting flange)	
	mi (mounting mango)	

NG		M1	M2	МЗ	M4	M5
45	in	10.66	0.39	0.49	1.70	1/2-13UNC-2B;
45	mm	270.7	10	12.4	43.3	0.63 (16) deep
65	in	11.20	0.39	0.49	1.74	
	mm	284.6	10	12.4	44.3	
85	in	12.16	0.39	0.43	1.89	
00	mm	308.9	10	10.9	47.9	
110	in	12.89	0.39	0.43	1.96	
	mm	327.3	10	10.9	49.9	
145	in	13.75	0.39	0.41	1.62	
145	mm	349.2	10	10.3	41.2	
175	in	14.66	0.39	0.41	1.63	
	mm	372.3	10	10.3	41.3	

¹⁾ Coupling for splined shaft according to ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5


²⁾ Thread according to ISO 68, observe the general instructions on page 60 for the maximum tightening torques.

³⁾ O-ring included in the delivery contents

⁴⁾ Viewed from through drive

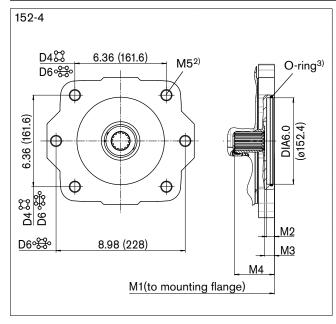
Through drive dimensions

Flange SAE J	Flange SAE J744		Couplin	Coupling for splined shaft ¹⁾								
	Mounting variant											
Diameter	Symbol	Designation	Diamet	er	Designation	045	065	085	110	145	175	
127-2 (C)	φ	C1	1 in	15T 16/32DP	S5	0	0	0	0	0	0	C1S5
6 	ь 		1 1/4 ir	14T 12/24DP	S7	0	0	0	0	О	0	C1S7
		C2	1 in	15T 16/32DP	S5	0	0	0	0	•	0	C2S5
	0-0		1 1/4 ir	14T 12/24DP	S7	•	•	•	•	•	•	C2S7
	•		1 3/8 ii	n 21T 16/32DP	V8	_	_	•	0	•	•	C2V8
			1 3/4 ir	n 13T 8/16DP	T1	_	_	_	_	•	•	C2T1
	go	C5 ⁴⁾	1 in	15T 16/32DP	S5	0	0	0	0	0	0	C5S5
	· · · · · · · · · · · · · · · · · · ·		1 1/4 ir	14T 12/24DP	S7	0	0	0	0	0	0	C5S7
127-4 (C)	; ;	0.4	1 in	15T 16/32DP	S5	_	0	0	0	0	0	C4S5
	6-6 	C4	1 1/4 ir	14T 12/24DP	S7	_	0	0	0	0	0	C4S7
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	C6	1 3/8 ii	n 21T 16/32DP	V8	-	-	0	0	0	0	C6V8

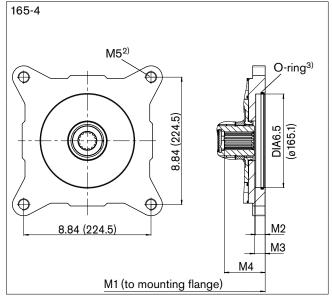
NG		M1	M2	М3	M4
45	in	10.78	0.55	0.61	2.11
45	mm	273.7	14	15.4	53.7
65	in	11.32	0.55	0.61	2.23
65	mm	287.6	14	15.4	56.7
0.5	in	12.40	0.55	0.59	2.25
85	mm	314.9	14	14.9	57.1
110	in	13.12	0.55	0.67	2.29
110	mm	333.3	14	16.9	58.2
145	in	13.98	0.55	0.64	2.74
145	mm	355.2	14	16.3	69.6
175	in	14.89	0.55	0.64	2.47
1/5	mm	378.3	14	16.3	62.7

M5	
NG 45 to 65, 2-hole	5/8-11UNC-2B;
	0.75 (19) deep
NG 85 to 175, 2-hole	5/8-11UNC-2B;
	0.83 (21) deep
NG 85 to 175, 4-hole	1/2-13UNC-2B;
	0.63 (16) deep

¹⁾ Coupling for splined shaft according to ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5


²⁾ Thread according to ISO 68, observe the general instructions on page 60 for the maximum tightening torques.

³⁾ O-ring included in the delivery contents


⁴⁾ Viewed from through drive

Through drive dimensions

Flange SAE J744 Coupling for splined shaft ¹⁾											
	Mounting variant										
Diameter	Symbol	Designation	Diameter	Designation	045	065	085	110	145	175	
152-4 (D)	ij	D4	1 3/4 in 13T 8/16DP	T1	_	-	_	-	•	•	D4T1
	0.0	De	1 3/8 in 21T 16/32DP	V8	_	-	-	0	0	0	D6V8
8	950	∘∰ D6	1 3/4 in 13T 8/16DP	T1	_	-	-	-	0	0	D6T1
165-4 (E)	H	E4	1 3/4 in 13T 8/16DP	T1	_	-	-	-	_	•	E4T1

NG		M1	M2	МЗ	M4	M5
110	in	13.28	0.55	0.63	2.24	3/4-10UNC-2B;
110	mm	337.4	14	15.9	56.9	0.87 (22) deep
145	in	14.02	0.55	0.39	2.93	
145	mm	356.2	14	10	74.4	
475	in	14.93	0.55	0.70	3.00	
175	mm	379.3	14	17.8	76.3	

NG		M1	M2	M3	M4	M5
175	in	15.0	0.67	0.76	3.07	3/4-10UNC-2B;
	mm	381	17	19.4	77.9	0.87 (22) deep

¹⁾ Coupling for splined shaft according to ANSI B92.1a-1976, 30° pressure angle, flat root, side fit, tolerance class 5

²⁾ Thread according to ISO 68, observe the general instructions on page 60 for the maximum tightening torques.

³⁾ O-ring included in the delivery contents

Overview of attachments

Through d	Through drive ¹⁾		Attachment for 2nd pump							
Flange	Coupling for spline shaft	Short code	A4VG/40 NG (shaft)	AA4VG/32 NG (shaft)	AA10VG NG (shaft)	AA10VO/31 NG (shaft)	A10VO/53 NG (shaft)	AA11VO NG (shaft)	External gear pump	
82-2 (A)	5/8 in	A_S2	_	-	-	18 (U)	10 (U)	_	Size F NG4 to 22 ²⁾	
101-2 (B)	101-2 (B) 7/8 in B_S4		-	-	18 (S)	28 (S,R) 45 (U,W)	28 (S,R) 45 (U,W)	-	Size N NG20 to 32 ²⁾ Size G NG38 to 45 ²⁾	
	1 in	B_S5	_	28 (S)	28, 45 (S)	45 (S,R)	45 (S,R) 60 (U,W)	40 (S)	_	
101-4 (B)	7/8 in	B4S4	_	=	=	=	-	=	=	
	1 in	B4S5	-	_	_	_	_	_	_	
127-2 (C)	1 in	C_S5	_	40 (U)	-	-	_	-	-	
	1 1/4 in C_S7		45 (S7)	40, 56, 71 (S)	63 (S)	71 (S,R) 100 (U,W)	85 (U,W)	60 (S)	_	
	1 3/8 in	C2V8	_	56, 71 (T)	-	-	-	60 (T)	-	
	1 3/4 in	C2T1	_	-	63 (T)	-	-	-	-	
127-4 (C)	1 in	C4S5	_	=	=	-	60 (U,W)	=	-	
	1 1/4 in	C4S7	65 (S7)	71 (S)	-	-	60 (S,R)	-	_	
	1 3/8 in	C6V8	85, 110 (V8)	71 (T)	-	-	-	60 (T)	_	
152-2/4 (D)	1 3/8 in	D6V8	85, 110 (V8)	-	-	-	-	75 (T)	_	
	1 3/4 in	D_T1	85, 110, 145, 175 (T1)	90, 125 (S)	_	140 (S)	-	95, 130, 145 (S)	-	
165-4 (E)	1 3/4 in	E4T1	145, 175 (T1)	180, 250 (S)	_	_	-	190, 260 (S)	_	
	2 in	E4T2	145 (T2)	_	-	-	_	190 (T)	-	

¹⁾ Availability of the individual sizes, see ordering code on page 4.2) Rexroth recommends special versions of the gear pumps. Please contact us.

Combination pumps A4VG + A4VG

Before finalizing your design, request a binding installation drawing. Dimensions in in (mm).

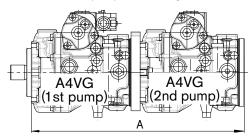
Overall length A

A4VG		A4VG (2nd pump) ¹)								
(1st pun	np)	NG45	NG65	NG85	NG110	NG145	NG175			
NG45	in	21.20	_	_	_	_	_			
NG45	mm	538.4	_	_	_	_				
NG65	in	21.86	22.53	_	_	_	_			
NG65	mm	555.3	572.2	_	_	_				
NG85	in	22.70	23.37	24.20	_	_	_			
NGOS	mm	576.6	593.5	614.8	_	_				
NG110	in	23.43	24.09	24.93	25.69	-	-			
NGTIO	mm	595	611.9	633.2	652.6	_	_			
NG145	in	24.29	24.95	25.79	26.56	27.57	_			
NG 145	mm	616.9	633.8	655.1	674.5	700.4				
NG175	in	25.20	25.86	26.70	27.46	28.48	29.46			
NG 175	mm	640	656.9	678.2	697.6	723.5	748.3			

^{1) 2}nd pump without through drive and with boost pump, F0000/V0000

By using combination pumps, it is possible to have independent circuits without the need for splitter gearboxes.

When ordering combination pumps, the type designations of the 1st and 2nd pumps must be linked by a "+".


Order example:

A4VG065EP1DP000/40ARNC6S71FC2S7AS00-0+ A4VG045EP1DP000/40ARNC2S71F0000AS00-0

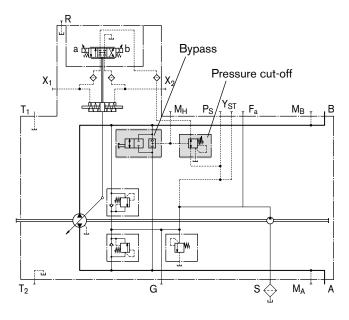
A tandem pump consisting of two equal sizes is permissible without additional supports where the dynamic acceleration does not exceed maximum 10 g = 322 ft/s² (= 98.1 m/s²).

We recommend the use of 4-hole mounting flanges for NG85 and larger.

For combination pumps consisting of more than two pumps, the mounting flange must be rated for the permissible mass torque.

Pressure cut-off

The pressure cut-off is a pressure control which, after reaching the set pressure, adjusts the displacement of the pump back to $V_{g\ min}$.


This valve prevents the operation of the high-pressure relief valves when accelerating or decelerating.

The high-pressure relief valves protect against the pressure spikes that occur during fast swiveling of the swashplate and limit the maximum pressure in the system.

The setting range of the pressure cut-off may be anywhere within the entire operating pressure range. However, it must be set 435 psi (30 bar) lower than the setting of the high-pressure relief valves (see setting diagram, page 50).

Please state the setting value of the pressure cut-off in plain text when ordering.

Circuit diagram with pressure cut-off Example: electric control, EPD

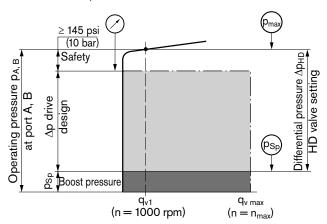
Bypass function

A connection between the two high-pressure channels can be established through the bypass valve.

Towing speed

The maximum towing speed is dependent on the gear ratio in the vehicle and must be calculated by the vehicle manufacturer. The corresponding flow of $Q=7.9~\mathrm{gpm}$ (30 l/min) must not be exceeded.

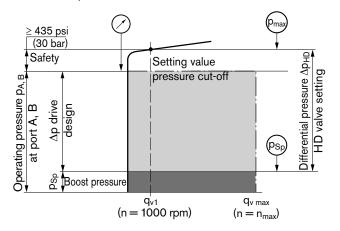
Towing distance


The vehicle may only be towed out of the immediate danger

High-pressure relief valves

The two high-pressure relief valves protect the hydrostatic transmission (pump and motor) from overload. They limit the maximum pressure in the respective high-pressure line and serve simultaneously as boost valves.

Setting diagram


Version without pressure cut-off

Example: boost pressure 290 psi (20 bar); operating pressure 6500 psi (450 bar)

Oper. press. $p_{A,B}$ - Boost press. p_{Sp} = Different. press. Δp_{HD} 6500 psi = **6210 psi** (450 bar - 20 bar = **430 bar**)

Version with pressure cut-off

Example: boost pressure 290 psi (20 bar); operating pressure 6500 psi (450 bar)

Oper. press. $p_{A,B}$ – Boost press. p_{Sp} + safety = Different. press. Δp_{HD} 6500 psi - 290 psi + 435 psi = **6645 psi** (450 bar - 20 bar + 30 bar = **460 bar**)

When ordering, state differential pressure setting in plain text:

The following values are available for selection for the differential pressure setting:

Preferred values [bar]: 400, 420, 450

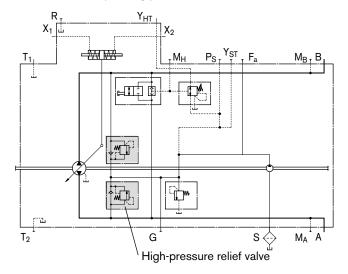
Optional values [bar]: 340, 370, 460, 470, 480

If not specified in the order, the valves are set to the differential pressure $\Delta p = 420$ bar.

High-pressure relief valve A

Differential pressure setting _____ $\Delta p_{HD} = ... psi$ (bar)

Opening pressure of the HD valve (at $q_{V 1}$) _ $p_{max} = ...$ psi (bar) $(p_{max} = \Delta p_{HD} + p_{Sp})$

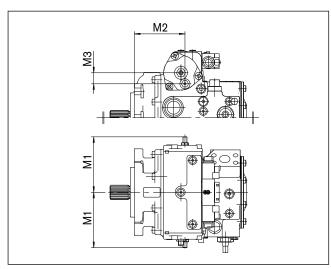

High-pressure relief valve B

Differential pressure setting $\Delta p_{HD} = ... psi$ (bar)

Opening pressure of the HD valve (at $q_{V 1}$) _ p_{max} = ... psi (bar) $(p_{max} = \Delta p_{HD} + p_{Sp})$

Note

The valve settings are made at n = 1000 rpm and at $V_{g\ max}$ ($q_{v\ 1}$). There may be deviations in the opening pressures with other operating parameters.

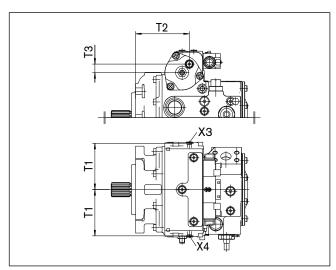

Mechanical stroke limiter

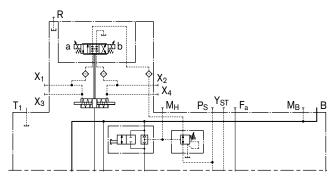
The mechanical stroke limiter is an auxiliary function allowing the maximum displacement of the pump to be steplessly reduced, regardless of the control unit used.


The stroke of the stroke cylinder and hence the maximum swivel angle of the pump are limited by means of two adjusting screws.

Dimensions

NG		M1	M2	M3
45	in	5.63	4.81	0.98
40	mm	143	122.1	24.9
65	in	5.63	5.24	0.98
00	mm	143	133	24.9
OF	in	6.19	5.48	1.09
85	mm	157.3	139.2	27.7
110	in	6.19	6.05	1.09
110	mm	157.3	153.6	27.7
145	in	6.70	6.10	1.33
145	mm	170.1	155	33.8
175	in	6.70	6.88	1.33
1/3	mm	170.1	174.8	33.8


Circuit diagram


Ports X₃ and X₄ for stroking chamber pressure

Dimensions

NG		T1	T2	T3
45	in	4.61	5.17	0.86
45	mm	117	131.3	21.8
65	in	4.61	5.60	0.86
00	mm	117	142.2	21.8
85	in	5.04	5.80	0.86
- 	mm	128	147.4	21.8
110	in	5.04	6.37	0.86
110	mm	128	161.8	21.8
145	in	5.59	6.49	1.04
145	mm	142	164.9	26.4
175	in	5.59	7.27	1.04
175	mm	142	184.7	26.4

Circuit diagram

Designation	Port for	Standard		Maximum pressure [psi (bar)] ²⁾	State
X_3, X_4	Stroking chamber pressure	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х

¹⁾ Observe the general instructions on page 60 for the maximum tightening torques.

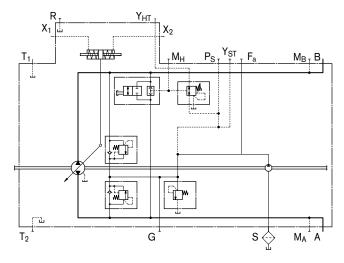
²⁾ Short-term pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings. Before finalizing your design, request a binding installation drawing. Dimensions in in (mm).

Version S (standard)

Filtration in the suction line of the boost pump

Standard version (preferred)

Filter type	filter without bypas
Recommendation	with contamination indicato
Flow resistance at filter cartridge	
With $v = 140$ SUS, $n = n_{max}$	Δp ≤ 1.5 ps
(30 mm ² /s, n = n_{max}	Δp ≤ 0.1 bar
With $v = 4600$ SUS, $n = n_{max}$	Δp ≤ 4.5 ps
$(1000 \text{ mm}^2/\text{s} \text{ n} = \text{n})$	$\Delta n < 0.3 \text{ har}$


Pressure at port S of the boost pump

Suction pressure $p_{S \text{ min}}$ ($v \le 140 \text{ SUS}$) $\longrightarrow \ge 12 \text{ psi absolute}$ (($v \le 30 \text{ mm}^2/\text{s}$) $\longrightarrow \ge 0.8 \text{ bar absolute}$) at cold starts, short-term ($t \le 3 \text{ min}$) $\ge 7.5 \text{ psi}$ (0.5 bar) absolute

at cold starts, short-term (t < 3 min) \geq 7.5 psi (0.5 bar) absolute Suction pressure p_{S max} \leq 75 psi (5 bar) absolute

The filter is not included in the delivery contents.

Circuit diagram - standard version S

Version D

Filtration in the pressure line of the boost pump, ports for external boost circuit filter

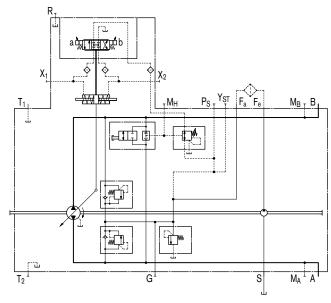
Boost pressure inlet	port F
Boost pressure outlet	port F
Filter type Filter with bypass are not recomn bypass please contact us.	nended. For applications with
Recommendation	_ with contamination indicato

Note

For versions with **HT** control (with pilot pressure not from boost circuit), the following filter type should be used:

Filter with bypass and with contamination indicator

Filter arrangement


Separate in the pressure line (line filter)

Flow resistance at filter cartridge With ν = 140 SUS (30 mm²/s) _____ $\Delta p \leq$ 15 psi (1 bar) At cold start _____ $\Delta p \leq$ 45 psi (3 bar)

(valid for entire speed range $n_{min} - n_{max}$)

The filter is not included in the delivery contents.

Circuit diagram - version D (external boost circuit filter)

Version F

Filtration in pressure line of boost pump, filter mounted

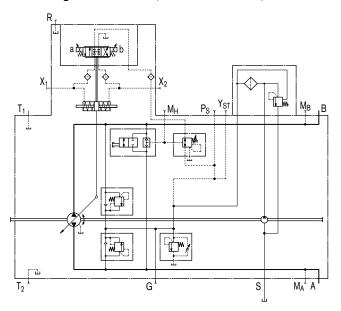
Filter type	filter without bypass
Filter grade (absolute)	20 microns
Filter material	glass fiber
Pressure capacity	1450 psi (100 bar)
Filter errengement	mounted on numn

Note

Filter is equipped with **cold start valve** and thereby protects the system from damage.


The valve opens at flow resistance $\Delta p \ge 90$ psi (6 bar).

Recommendation


With contamination indicator (variation B) (differential pressure $\Delta p = 75$ psi (5 bar))

Filter characteristics

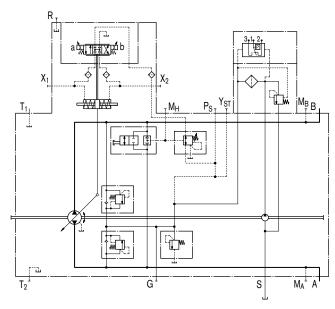
Differential pressure/volumetric flow characteristics conforming to ISO 3968 (valid for new filter cartridge).

Circuit diagram - version F (with mountable filter)

Version B

Filtration in pressure line of boost pump, filter mounted, with electric contamination indicator

Filtration similar to variation F, however additionally with electric contamination indicator.


Indication ______ electric

Connector design _____ DEUTSCH DT04-2P-EP04 (mating connector, see page 56)

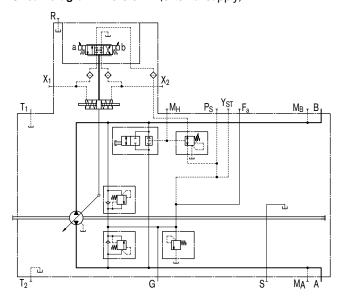
Differential pressure (switching pressure) $_{\Delta}p = 75 \text{ psi } (5 \text{ bar})$

Maximum switching capacity at 24 V DC ______ 60 W

Circuit diagram - version B

Version E External supply

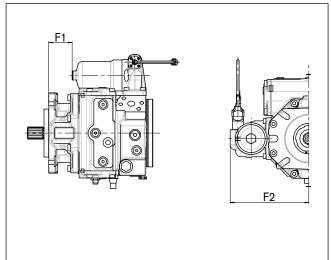
This variation should be used in versions **without** integrated boost pump (U).

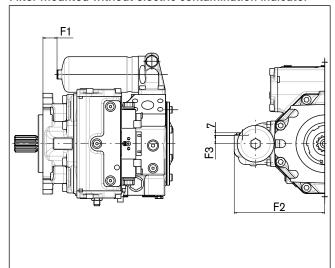

Port S is plugged.

Supply comes from port G.

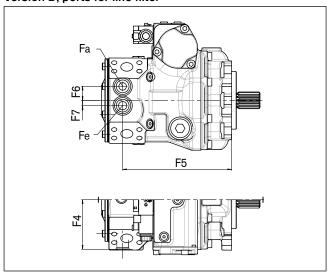
Filter arrangement _____separate

To ensure the functional reliability, maintain the required cleanliness level for the boost pressure fluid fed in at port G (see page 7).


Circuit diagram - version E (external supply)


Before finalizing your design, request a binding installation drawing. Dimensions in in (mm).

Dimensions


Version B Filter mounted with electric contamination indicator

Version F
Filter mounted without electric contamination indicator

Version D, ports for line filter

NG		F1	F2	F3	F4	F5	F6	F7	F _a , F _e
45	in	1.85	8.19	0.87	4.11	8.39	1.18	0.39	
45	mm	47.1	208	22	104.5	213.1	30	10	1 1/16-12UN-2B;
65	in	2.44	8.19	0.87	4.11	8.98	1.18	0.39	0.79 (20) deep
65	mm	62	208	22	104.5	228	30	10	
85	in	2.44	9.04	0.87	4.76	9.85	1.46	0.55	
65	mm	62.1	229.5	22	121	250.1	37	14	
110	in	3.01	9.04	0.87	4.76	10.41	1.46	0.55	
110	mm	76.5	229.5	22	121	264.5	37	14	1 5/16-12UN-2B;
145	in	1.46	9.04	0.87	5.16	11.35	1.46	0.55	0.79 (20) deep
145	mm	37.2	239.5	22	131	288.2	37	14	
175	in	2.24	9.04	0.87	5.16	12.13	1.46	0.55	
	mm	57	239.5	22	131	308	37	14	

Connector for solenoids

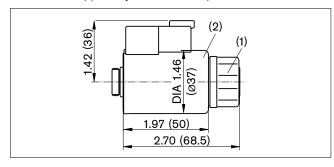
DEUTSCH DT04-2P-EP04, 2-pin

Molded, without bidirectional suppressor diode

Type of protection according to DIN/EN 60529: IP67 and IP69K

Circuit symbol

Without bidirectional suppressor diode



Mating connector

DEUTSCH DT06-2S-EP04 Rexroth Mat. No. R902601804

Consisting of:	DT designation
- 1 case	DT06-2S-EP04
- 1 wedge	W2S
- 2 female connectors	0462-201-16141

The mating connector is not included in the delivery contents. This can be supplied by Rexroth on request.

Changing connector position

If necessary, you can change the position of the connector by turning the solenoid.

To do this, proceed as follows:

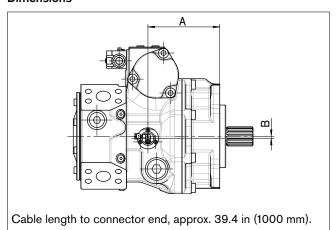
- Loosen the fixing nut (1) of the solenoid. To do this, turn the fixing nut (1) one turn counter-clockwise.
- 2. Turn the solenoid body (2) to the desired position.
- 3. Retighten the fixing nut. Tightening torque of the fixing nut: 3.7+0.7 lb-ft (5+1 Nm) (WAF 26, 12-sided DIN 3124)

On delivery, the position of the connector may differ from that shown in the brochure or drawing.

Sensors

Before finalizing your design, request a binding installation drawing. Dimensions in in (mm).

Speed sensor


Version A4VG...V has teeth on the rotary group.

With a speed sensor installed, a signal proportional to pump speed can be generated.

The DSM sensor measures the speed and direction of rotation and offers additional diagnostic functions. Ordering code, technical data, dimensions and details on the connector of the DSM sensor can be found in data sheet RE 95132.

The DSM sensor is mounted on the port provided for this purpose with a fixing screw.

Dimensions

NG		Α	В
45	in	4.84	0.22
45	mm	123	5.5
65	in	5.43	0.22
	mm	137.9	5.5
85	in	5.79	0.22
	mm	147.1	5.5
110	in	6.36	0.22
110	mm	161.5	5.5
1.45	in	7.13	0.22
145	mm	181.2	5.5
175	in	7.91	0.22
	mm	201.0	5.5

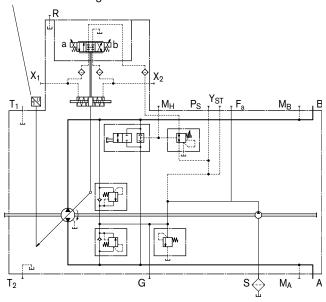
Sensors

Electric swivel angle sensor

For the swivel angle indicator, the pump swivel position is measured by an electric swivel angle sensor.

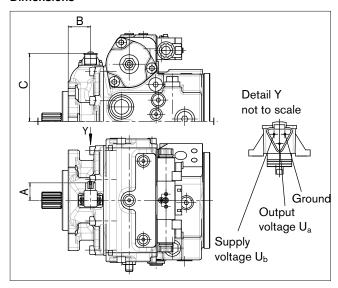
As an output parameter, the Hall effect swivel angle sensor delivers a voltage proportional to the swivel angle (see table of output voltages).

Characteristics				
Supply voltage U _b	10 to 30 V DC			
Output	1 V	2.5 V	4 V	
voltage U _a	$(V_{g max})$	(V_{g0})	(V _{g max})	
Reverse-connect protection	Short ci	cuit-resis	stant	
EMC resistance	Details of	n reques	st	
On a wation a target was war as	-40 °F to	240 °F		
Operating temperature range	(-40 °C to +115 °C)			
Vibration resistance				
sinusoidal vibration	10g / 5 to 2000 Hz			
EN 60068-2-6				
Shock resistance				
continuous shock IEC 68-2-29	25 <i>g</i>			
Resistance to salt spray				
DIN 50 021-SS	96h			
Type of protection DIN/EN 60529	IP67 ar	d IP69K		
Case material	Plastic			


Output voltage

		Flow direction ¹⁾	Operating pressure	Output voltage
on of n	CK	B to A	M _A	> 2.5 V
		A to B	M _B	< 2.5 V
Direction of rotation	٧	A to B	M _B	> 2.5 V
	SC	B to A	M _A	< 2.5 V

¹⁾ For flow direction, see controls


Circuit diagram

Electric swivel angle sensor

Before finalizing your design, request a binding installation drawing. Dimensions in in (mm).

Dimensions

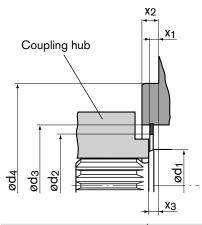
NG		A	В	С
4-	in	1.46	1.57	5.31
45	mm	37	39.9	134.8
C F	in	1.46	1.55	5.31
65	mm	37	39.4	134.8
0.5	in	1.46	1.87	5.66
85	mm	37	47.4	143.8
110	in	1.46	2.03	5.86
110	mm	37	51.5	148.8
145	in	1.46	2.09	6.33
145	mm	37	53.1	160.8
175	in	1.46	2.54	6.33
175	mm	37	64.4	160.8

Mating connector

DEUTSCH DT06-3S-EP04, Rexroth Mat. No. R902603524

Consisting of:	DT designation
- 1 case	DT06-3S-EP04
- 1 wedge	W3S
- 3 female connectors	0462-201-16141

The mating connector is not included in the delivery contents. This can be supplied by Rexroth on request.


Installation situation for coupling assembly

Before finalizing your design, request a binding installation drawing. Dimensions in in (mm).

To ensure that rotating components (coupling hub) and fixed components (case, retaining ring) do not come into contact with each other, the installation conditions described here must be observed. This depends on the size and the splined shaft.

SAE splined shaft (spline according to ANSI B92.1a-1976)

The outer diameter of the coupling hub must be smaller than the inner diameter of the retaining ring d_2 in the area near the drive shaft collar (dimension $x_2 - x_3$).

NG	Mounting flange		ød₁	ød _{2 min}	ød₃	ød ₄	x ₁	x ₂	X ₃
45	101-2 (B)	in	1.77	1.99	2.874 ±0.004	4.00	0.161 +0.008	0.38 _{-0.02}	0.315 ^{+0.035} -0.024
		mm	45	50.5	73 ±0.1	101.6	4.1 +0.2	9.7 -0.5	8 ^{+0.9} _{-0.6}
	127-2 (C)	in	1.77	1.99	2.874 ±0.004	5.00	0.004 +0.008	0.5 -0.02	0.315 ^{+0.035} _{-0.024}
		mm	45	50.5	73 ±0.1	127	0.1 +0.2	12.7 _{-0.5}	8 ^{+0.9} _{-0.6}
65	127-2/4 (C)	in	1.77	2.30	3.189 ±0.004	5.00	0.252 +0.008	0.5 -0.02	0.315 ^{+0.035} -0.024
		mm	45	58.5	81 ±0.1	127	6.4 +0.2	12.7 _{-0.5}	8 ^{+0.9} _{-0.6}
85	127-2/4 (C)	in	1.97	2.54	3.583 ±0.004	5.00	0.138 +0.008	0.5 -0.02	0.315 ^{+0.035} _{-0.024}
		mm	50	64.4	91 ±0.1	127	3.5 +0.2	12.7 _{-0.5}	8 ^{+0.9} -0.6
	152-2/4 (D)	in	On request						
		mm	On request						
110	110 127-2/4 (C) in		On request	On request					
	-	mm	On request						
	152-2/4 (D)	in	2.17	2.93	3.976 ±0.004	6.00	0.236 +0.008	0.5 -0.02	0.315 +0.035 -0.024
		mm	55	74.4	101 ±0.1	152.4	6.0 +0.2	12.7 _{-0.5}	8 ^{+0.9} _{-0.6}
145	152-2/4 (D)	in	2.36	3.32	4.370 ±0.004	6.00	0.291 +0.008	0.5 -0.02	0.315 ^{+0.035} _{-0.024}
		mm	60	84.4	111 ±0.1	152.4	7.4 +0.2	12.7 _{-0.5}	8 +0.9 -0.6
	165-4 (E)	in	On request						
		mm	On request						
175	175 152-2/4 (D)		On request						
		mm	On request						
	165-4 (E)	in	2.36	3.32	4.370 ±0.004	6.50	0.276 +0.008	0.63 -0.02	0.315 ^{+0.035} _{-0.024}
		mm	60	84.4	111 ±0.1	165.1	7.0 ^{+0.2}	15.9 _{-0.5}	8 ^{+0.9} _{-0.6}

Installation instructions

RA 92004-A/12.09 | A4VG Series 40

General

During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This is also to be observed following a relatively long standstill as the system may empty via the hydraulic lines.

The case drain fluid in the case interior must be directed to the tank via the highest tank port (T₁, T₂). The minimum suction pressure at port S must not fall below 12 psi (0.8 bar) absolute (cold start 7.5 psi (0.5 bar) absolute).

In all operational states, the suction line and tank line must flow into the tank below the minimum fluid level.

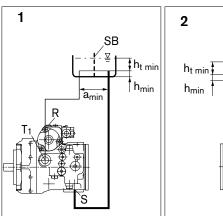
Installation position

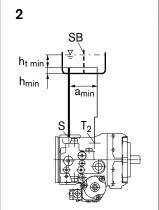
See examples below. Additional installation positions are available upon request.

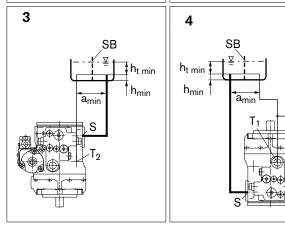
Recommended installation positions: 1 and 2.

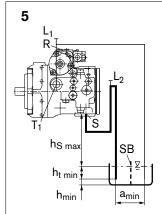
Note: With the "shaft up" installation position, an R₁-port is necessary (special version).

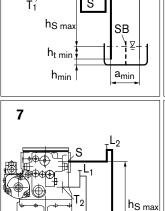
Below-tank installation (standard)

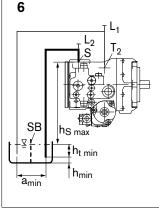

Pump below minimum fluid level of the tank.

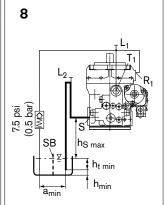

Above-tank installation


Pump above minimum fluid level of the tank


Observe the maximum permissible suction height $h_{S \text{ max}} = 31.5$ in (800 mm).


Recommendation for installation position 8 (shaft upwards): A check valve in the tank line (opening pressure 7.5 psi (0.5 bar)) can prevent draining of the case interior.





 $h_{S max} = 31.5$ in (800 mm), $h_{t min} = 7.87$ in (200 mm), $h_{min} = 3.94$ in (100 mm), SB = baffle (baffle plate)

When designing the tank, ensure adequate distance a_{min} between the suction line and the case drain line to prevent the heated, return flow from being drawn directly back into the suction line.

 h_{min}

Installation position	Air bleed	Filling
1	R	S + T ₁
2	_	S + T ₂
3	_	$S + T_2$
4	R ₁	S + T ₁

Installation position	Air bleed	Filling
5	L ₂ + R	$L_1 + L_2$
6	L_2 (S) + L_1 (T_2)	L_2 (S) + L_1 (T_2)
7	L_2 (S) + L_1 (T_2)	L ₂ (S) + L ₁ (T ₂)
8	L ₂ + R ₁	$L_1 + L_2$

General instructions

- The A4VG pump is designed to be used in closed circuit.
- Project planning, assembly and commissioning of the axial piston unit require the involvement of qualified personnel.
- The service line ports and function ports are only designed to accommodate hydraulic lines.
- During and shortly after operation, there is a risk of burns on the axial piston unit and especially on the solenoids. Take
 appropriate safety measures (e. g. by wearing protective clothing).
- Depending on the operational state of the axial piston unit (operating pressure, fluid temperature), the characteristic may shift.
- Pressure ports:

The ports and fixing threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified operating conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.

- The data and notes contained herein must be adhered to.
- The following tightening torques apply:
 - Threaded hole for axial piston unit:

The maximum permissible tightening torques $M_{G\ max}$ are maximum values for the threaded holes and must not be exceeded. For values, see the following table.

- Fittings:

Observe the manufacturer's instruction regarding the tightening torques of the used fittings.

- Fixing screws:

For fixing screws according to ISO 68 / DIN 13, we recommend checking the tightening torque individually according to VDI 2230.

- Locking screws:

For the metal locking screws supplied with the axial piston unit, the required tightening torques of locking screws M_V apply. For values, see the following table.

- The product is not approved as a component for the safety concept of a general machine according to DIN EN ISO 13849.

Threaded port sizes		Maximum permissible Required tightening tightening torque of the torque of the locking		WAF hexagon socket for the locking screws	
Standard	Size	threaded holes M _{G max}	screws M _V		
ISO 11926	3/8-24 UNF-2B	15 lb-ft	5 lb-ft	5/32 in	
		20 Nm	7 Nm		
	9/16-18 UNF-2B	59 lb-ft	18 lb-ft	1/4 in	
		80 Nm	25 Nm		
	3/4-16 UNF-2B	118 lb-ft	46 lb-ft	5/16 in	
		160 Nm	62 Nm		
	7/8-14 UNF-2B	177 lb-ft	94 lb-ft	3/8 in	
		240 Nm	127 Nm		
	1 1/16-12 UN-2B	266 lb-ft	108 lb-ft	9/16 in	
		360 Nm	147 Nm		
	1 5/16-12 UN-2B	398 lb-ft	146 lb-ft	5/8 in	
		540 Nm	198 Nm		
	1 5/8-12 UN-2B	708 lb-ft	236 lb-ft	3/4 in	
		960 Nm	320 Nm		
	1 7/8-12 UN-2B	885 lb-ft	288 lb-ft	3/4 in	
		1200 Nm	390 Nm		

Bosch Rexroth Corporation Hydraulics Axial & Radial Piston Units 8 Southchase Court Fountain Inn, SC 29644-9018, USA Telephone (864) 967-2777 Facsimile (864) 967-8900 www.boschrexroth-us.com © 2009 Bosch Rexroth Corporation

All rights reserved. Neither this document, nor any part of it, may be reproduced, duplicated, circulated or disseminated, whether by copy, electronic format or any other means, without the prior consent and authorization of Bosch Rexroth Corp.

The data and illustrations in this brochure/data sheet are intended only to describe or depict the products. No representation or warranty, either express or implied, relating to merchantability or fitness for intended use, is given or intended by virtue of the information contained in this brochure/data sheet. The information contained in this brochure/data sheet in no way relieves the user of its obligation to insure the proper use of the products for a specific use or application. All products contained in this brochure/data sheet are subject to normal wear and tear from usage.

Subject to change.