

Version 9.X

SOFTWARE MANUAL

PiCPro™
GIDDINGS & LEWIS, INC.

Version 9.X

SOFTWARE MANUAL

PiCPro™

GIDDINGS & LEWIS, INC.

NOTE

Progress is an on going commitment at Giddings & Lewis. We continually strive to offer the most
advanced products in the industry; therefore, information in this document is subject to change without
notice. The illustrations and specifications are not binding in detail. Giddings & Lewis shall not be
liable for any technical or editorial omissions occurring in this document, nor for any consequential or
incidental damages resulting from the use of this document.

DO NOT ATTEMPT to use any Giddings & Lewis product until the use of such product is completely
understood. It is the responsibility of the user to make certain proper operation practices are
understood. Giddings & Lewis products should be used only by qualified personnel and for the
express purpose for which said products were designed.

Should information not covered in this document be required, contact the Customer Service
Department, Giddings & Lewis, 660 South Military Road, P.O. Box 1658, Fond du Lac, WI 54936-
1658. Giddings & Lewis can be reached by telephone at (920) 921–7100.

401-54513-00

Version 2298

© 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998 Giddings & Lewis, Inc.

Inductosyn is a registered trademark of Farrand Industries, Inc.
IBM is a registered trademark of International Business Machines Corp.
Pentium and Pentium Pro are trademarks of Intel Corporation.
Windows 95, Microsoft® and MS-DOS® are registered trademarks of Microsoft Corporation.
ARCNET® is a registered trademark of Datapoint
PiC900, PiCPro, PiCServoPro, PiCTune, PiCProfile, LDOMerge, PiCMicroTerm, and PiC Programming Pendant are registered trademarks
of Giddings & Lewis, Inc.

Table of Contents

Introduction to the Software Manual .. 1-1

CHAPTER 1-Getting Started with PiCPro for Windows

Introduction to PiCPro for Windows .. 1-3
The Computer Workstation ... 1-4
Hardware Connections .. 1-5
PiCServoPro/PiCPro Installation .. 1-6
Installing PiCServoPro on the hard disk ... 1-6
Using PiCServoPro/PiCPro .. 1-10
Menu Bars, Menus and Pop-Ups .. 1-12
Setting Up the Workstation Software ... 1-14
Workstation menu ... 1-14
Configuring the Printer ... 1-16
Printing Extended ASCII Characters .. 1-17
Project Manager .. 1-18
Introduction ... 1-18
Using Project Manager ... 1-19

 Subdirectory Structures... 1-26

CHAPTER 2- Introduction to PiCPro and Programming

Introduction ... 2-1
Prerequisites for PiCPro Programming ... 2-1
Components of a Module .. 2-1

Networks ... 2-1
Software Declarations Table ... 2-4
Hardware declarations table .. 2-5
PiCPro menu system ... 2-7
Main menu .. 2-7
Module Menu .. 2-8
Network Menu .. 2-9
How to Create or Open a Module ... 2-10
How to add, change, and delete network elements ... 2-15

Cutting and pasting within a network ... 2-16
How to exit a network ... 2-16
How to create a second network ... 2-16
How to save and close a module ... 2-17
Designing networks .. 2-18

CHAPTER 3-Programming and Declarations

Network Menu - Wires ... 3-2
Network Menu - Contacts/Coils ... 3-3
Network Menu - Functions ... 3-4
Chaining Functions/Blocks ... 3-9
Network Menu - Data ... 3-10
TOC-1

Bitwise .. 3-11
Numeric ... 3-12
String ... 3-13
Time:time of day ... 3-14
Time:duration .. 3-15
Function/Block Data ... 3-15
Data Groups of Variables - Arrays and Structures ... 3-16
Network Menu - Horizontal .. 3-19
Network Menu - Vertical .. 3-19
Network Menu - Longname .. 3-19
Module Menu - Declarations .. 3-20
Hardware Declarations - Master and Expansion racks 3-20
Software Declarations ... 3-23
Software Declarations - Variable Menu ... 3-27
Declaring Arrays and Structures ... 3-34
Arrays .. 3-34
Structures .. 3-37
Structure with Arrays .. 3-38
Array of Structures .. 3-40
Array of Structures with Arrays .. 3-42
Module Menu - View .. 3-52

CHAPTER 4-System Integration

Introduction ... 4-1
Module Menu - Download .. 4-2
Module Menu - Monitor ... 4-5
Monitor Nenu - Animate ON .. 4-5
Monitor Menu - View ON .. 4-7
Monitor Menu - Edit View List .. 4-8
Module Menu - Print ... 4-13
Module Menu - UDFB Build (User defined function block) 4-16
Module Menu - Task Build ... 4-17
Module Menu - Hex-86 Dump ... 4-18
Module Menu - Bin-86 Dump .. 4-18
Module Menu - Build Dependency List ... 4-18
Processor Menu - Scan Control .. 4-21
Processor Menu - Flash Disk Operations .. 4-25
Processor Menu - Backup User Prog. ... 4-26
Processor Menu - Restore User Prog. ... 4-26
Processor Menu - Time Read/Set ... 4-26
Peer-to-Peer/PiC(Servo)Pro Communications .. 4-27
Processor Menu - Set Network Node ID .. 4-28
Processor Menu - Connect to Node .. 4-28
Processor Menu - Status .. 4-29
Troubleshooting an Application ... 4-30
TOC-2

CHAPTER 5-Motion Control Concepts

Background Information on Closed Loop Control ... 5-1
Introduction to Motion Control with the PiC .. 5-2
Basic Motion Control Programming Process ... 5-6

CHAPTER 6-Servo Setup and Tuning

Introduction to Servo Setup Data .. 6-1
Entering Servo Setup Data .. 6-4
Making a Setup Data Function/Saving a .SRV File 6-23
Creating a Servo Library for User-Defined Functions 6-23
Introduction to Tuning ... 6-25
Axis Tuning .. 6-26
Changing Inputs .. 6-27
Viewing Outputs ... 6-28
Other Features of the Servo Setup Program ... 6-30
Other Features of the Axis Menu .. 6-32

CHAPTER 7-Axis Profile Setup

Background Information on Ratio Profiles ... 7-1
Introduction to the PiC Profile program ... 7-5
Entering Profile Data .. 7-6
Making a Profile Function/Saving a .PRO File .. 7-14
Using the Profile Function .. 7-15
Other Features of the PiC Profile Program ... 7-16

CHAPTER 8-UDFB Guidelines

Introduction ... 8-1
Creating a Module to Convert to a UDFB ... 8-2
 Software Declarations .. 8-4
UDFB Variables - Inputs and Outputs ... 8-4
Programming Notes .. 8-5
An Example of a UDFB and Module ... 8-6
Creating the UDFB ... 8-10
Using the UDFB ... 8-12
Type Checking .. 8-12
Editing UDFBs .. 8-13
Viewing the UDFB Module (LDO) from Another Module 8-15

CHAPTER 9-TASKs

Introduction ... 9-1
Programming ... 9-2
Creating a TASK ... 9-3
Interlocking Data when using Tasks ... 9-10
Setting up Semaphore Flags .. 9-10
TOC-3

CHAPTER 10-PiC and SERCOS

Introduction ... 10-1
Background Information ... 10-2
SERCOS Functions ... 10-2
Telegrams .. 10-3

CHAPTER 11- Stepper Axis Module

Introduction ... 11-1
Servo Setup ... 11-1
Notes on using Motion Library Functions and Variables with the Stepper 11-2

Appendix A - Module Filenames ... A-1

Appendix B -PiCPro Function Errors and Error Codes

General Errors ... B-1
I/O Function Block Error Codes ... B-1
STRING Function Errors .. B-4

Appendix C - PiCServoPro Error Codes... C-1

Appendix D - Function Input/Output Data Type Reference D-1

Appendix E - PiCServoPro Reference Card - Errors/Variables E-1

Appendix F - Stepper Reference Card... F-1

Appendix G - Time Axis ... G-1

Appendix H - Command Line Switches .. H-1

Appendix I - Diagnostic LED Error Codes... I-1

Appendix J - IBM ASCII Chart .. J-1

Application Note 1... AN-1

Index ... i
TOC-4

Introduction to the Software Manual

The software manual covers information needed to program the PiC900 with the
PiCServoPro or PiCPro software packages. The PiCServoPro software package is
required for motion control applications. The PiCPro software package is required
for all other PiC900 applications.

There is also a Hardware Manual and a Function/Function Block Reference Guide.

Table 1. Summary of Software Manual

Read Title For information on

Chapter 1 Getting Started with PiCPro for
Windows

• Software installation procedures

• Workstation and printer setup

Chapter 2 Introduction to PiCPro and Pro-
gramming

• Programming with PiCPro

Chapter 3 Programming and Declarations • Creating an application program

• Entering software and hardware declarations

Chapter 4 System Integration • Commands used to interact between the
software and the PiC900

Chapter 5 Motion Control Concepts • Motion control with PiCServoPro

Chapter 6 Servo Setup and Tuning • Entering setup data for axes

• Tuning axes

Chapter 7 Axis Profile Setup • Creating ratio profiles for master/slave
applications

Chapter 8 UDFBs • Offers guidelines writing an LDO to convert
to a UDFB and how to use the UDFB feature

Chapter 9 TASKs • Offers guidelines writing an LDO to convert to
a TASK and how to use the TASK feature

Chapter 10 PiC and SERCOS • Offers guidelines when working with SERCOS and
the PiC

Chapter 11 Stepper Axis Module • Provides software information when working with the
stepper axis module

Appendix A Filenames • Definitions of all filenames

Appendix B PiCPro Function Errors and Error
Codes

• Function errors and I/O function block error codes

Appendix C PiCServoPro Error Codes • Motion control errors

Appendix D Data Types of Function Inputs/Out-
puts

• Alphanumeric list of inputs/outputs to
functions/blocks, giving data type of each

Appendix E PiCServoPro Reference Card • PiCServoPro errors and variables

Appendix F Stepper Reference Card • Stepper motor control module (SMCM)
commands, control words, status, and errors

Appendix G Time Axis • An explanation of the time axis

Appendix H Command Line Switches • List DOS switches that can be entered on the command
line

Appendix I Diagnostic LED Error Codes • Describes the flashing LED error codes on the
CPU module.

Appendix J ASCII Codes • A chart of the IBM ASCII codes

Application Note • Engineering note

 NOTES

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

CHAPTER 1 Getting Started with PiCPro for Windows

Introduction to PiCPro for Windows

PiCPro for Windows is software packages available to program the programmable
industrial computer (PiC900/PiC90).

• Project manager - allows you to manage an application through development
and production phases and then maintain the application

• Control programmer (PiCPro) - an off-line ladder logic programming package
used to create and edit application programs (also called software modules)

• Servo setup and tuning (SrvSetup) - an axes setup and tuning program

• Sercos setup (SRCSETUP) - a SERCOS setup program

• Axis profile setup (PiCPfl) - a program used in master/slave applications to
create ratio profiles where the motion of a slave axis relative to the position of
a master axis is defined

PiCPro may be used alone if the application does not require motion control.

This chapter provides information on how to get started using the software. It covers the
following:

• installing PiCServoPro (or PiCPro) on the computer workstation

• using PiCServoPro (or PiCPro)

• setting up the workstation and its serial port

• configuring a printer to print out ladder diagrams and documentation

• using the project manager
Starting PiCPro/PiCServoPro 1-3

The Computer Workstation

The PiCServoPro/PiCPro software runs on IBM PC compatible platforms. The
requirements for a workstation are found in Table 1-1.

*It is recommended that you use DOS 6.2 facilities to load DOS “HIGH” between
640 K and 1 MB. Use the memory above 1 MB for a RAMDISK to store tempo-
rary files generated by PiCPro. Leave at least 256 K of memory above 1 MB for
use by PiCPro. You can tell PiCPro to use the RAMDISK for temporary files by
using the DOS SET command in your autoexec.bat file.

SET TMP = Drive:\Directory

Table 1-1. Work station requirements

Recommended

Computer An 80386 or 80486 based IBM PC or 100% compatible

Memory
2 MB of RAM with at least 580 K of memory available to
PiCPro*

Monitor IBM VGA display adapter and monitor

Disk drives Hard drive to install the software on, plus one floppy diskette drive for the
installation disks. PiCServoPro needs at least 1.2 M of disk space. The
floppy drive may be 3 1/2” (720K) or 5 1/4” (360 K).

Serial
communic
ations port
to PiC900

RS232 port

MS DOS
version

6.2
1-4 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Hardware Connections

A cable is supplied with the PiCPro software disks, with one end labeled "PiC900"
and the other "Computer". Connect the "Computer" end to the serial port you spec-
ified in the Computer dialog box.

Figure 1-1 shows how the cable is connected to the PiCPro Port.

Figure 1-1. Hardware Connection to the PiCPro Port on the PiC900 CPU Module

The pin-out for the CPU serial port is given in the hardware manual. The pin-out
for the workstation serial port should be in the computer manual.

IMPORTANT

Be careful to plug the "Computer" end of the cable into the workstation serial
port, and the "PiC900" end into the PiCPro Port on the CPU or CSM/CPU
module.

PiCPro

PORT

USER
PORT

To

s

Starting PiCPro/PiCServoPro 1-5

PiCServoPro/PiCPro Installation

The PiCServoPro or PiCPro software is supplied on one disk.

Installing PiCServoPro or PiCPro is a matter of following prompts on the worksta-
tion screen. The PiC(Servo)Pro files are installed to and maintained in two directo-
ries. The installation procedure creates the two directories. The option to use
default directory names is provided.

Installing PiCServoPro on the hard disk

In the procedure below, type the words given in bold type. A symbol such as
<Enter> or <F10> means that you should press that key.

Insert the Program Disk in Drive A:.

Type a:install. The screen in Figure 1-2 appears.

Use the arrow keys to highlight an option. Press <Enter>.

FIGURE 1 - 1. Select PiCServoPro or PiCPro Software

Most screens in the installation procedure give you an Abort option. If you want to
stop installation, use the down-arrow key to highlight Abort and press <Enter>.
The DOS prompt appears.

If you Abort after the directories are created, this message
appears. Type any key to get the DOS prompt. The directo-
ries remain on disk, together with any files that have been
installed in them. Use DOS commands to remove them.

To continue installation, use the arrow keys to make a selec-
tion and press <ENTER>.

 …ÕÕÕª
 ∫ Place the selection bar on the desired selection and press <Enter>. ∫
 ∫ Use � and � to move the selection bar. ∫
 »ÕÕÕº

 …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
 ∫ Select software package ∫
 ∫ to Install ∫
 «ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ∂
 ∫ ServoPro Software ∫
 ∫ PiCPro Software ∫
 ∫ Abort Installation ∫
 »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

 PiCPro/PiCServoPro Installer
 Copyright (c) Giddings & Lewis, Inc. 1989-1996. All rights reserved.

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ Install ∫
∫ PiCServoPro ∫
∫ from drive ∫
«ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ∂
∫ A: ∫
∫ B: ∫
∫ Abort Installation ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº
1-6 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

FIGURE 1 - 2. Destination Screen when Installing on a Hard Disk

Press <F10> to accept the default directory names.

Check the directory names in the upper
box. If they are not correct, select Abort
and start over.

If the directory names are correct , press
<Enter>.

The “Expanding” message box appears.

 …ÕÕÕª
 ∫ During installation, the contents of the original copy of ∫
 ∫ your PiCPro/PiCServoPro disk will be copied into directories ∫
 ∫ of your choice. ∫
 ∫ ∫
 ∫ Please fill in the following information. ∫
 »ÕÕÕº

 ⁄ƒƒƒƒƒƒƒƒƒ Enter Destination Information ƒƒƒƒƒƒƒƒƒø
 ≥ ≥
 ≥ PiCServoPro Source Disk will be in drive A: ≥
 ≥ ≥
 ≥ Copy PiCPro, Motion Utilities and Help Messages ≥
 ≥ To Drive & Directory :<C:\PICPRO > ≥
 ≥ ≥
 ≥ Copy Logic and Motion Libraries ≥
 ≥ To Drive & Directory :<C:\PICLIB > ≥
 ≥ ≥
 ≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
 ≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
 ≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
 ¿ƒƒƒŸ
 Copyright (c) Giddings & Lewis, Inc. 1989-1996. All rights reserved.

…ÕÕª
∫ PiCServoPro program files will be put in directory ∫
∫ =>C:\PICPRO ∫
∫ Logic & Motion Libraries will be put in directory ∫
∫ =>C:\PICLIB ∫
»ÕÕÕÕÕÕ…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕªÕÕÕÕÕº
 ∫ Ready to install from disk in Drive A ∫
 ∫ ∫
 ∫ Select Continue when ready ∫
 «ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ∂
 ∫ Continue with installation ∫
 ∫ Abort Installation ∫
 »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

 …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
 ∫ Expanding PICPRO.EX? ∫
 ∫ Please Wait... ∫
 »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº
Starting PiCPro/PiCServoPro 1-7

The following AUTOEXEC.BAT screen appears giving you the three choices

described.

The following CONFIG.SYS screen appears again offering three choices.

The installation software can automatically change the AUTOEXEC.BAT and
CONFIG.SYS DOS files, or create new files to accommodate PiC(Servo)Pro.

 …ÕÕÕª
 ∫ The current PATH must be updated to include ∫
 ∫ C:\PICPRO ∫
 ∫ and the PICLIB environment variable must be set to ∫
 ∫ C:\PICLIB ∫
 ∫ Three choices are available: update the existing AUTOEXEC.BAT file ∫
 ∫ (this includes making AUTOEXEC.BAT if it does not exist), write a ∫
 ∫ new file called NEWEXEC>PIC or do neither. ∫
 »ÕÕÕº

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ Update or write PATH, Esc for neither ∫
«ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ∂
∫ Update existing AUTOEXEC.BAT file ∫
∫ Write a NEWEXEC.PIC file ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

 …ÕÕÕª
 ∫ Your CONFIG.SYS must be updated to have ∫
 ∫ FILES=30 ∫
 ∫ Three choices are available: update the existing CONFIG.SYS file ∫
 ∫ (this includes making CONFIG.SYS if it does not exist), write a ∫
 ∫ new file called NEWSYS.PIC or do neither. ∫
 »ÕÕÕº

…ÕÕÕª
∫ Update or write CONFIG.SYS, Esc for neither ∫
«ƒƒƒ∂
∫ Update existing CONFIG.SYS file ∫
∫ Write a NEWSYS.PIC file ∫
»ÕÕÕº

1-8 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

The CONFIG.SYS file may need the following line also:

DEVICE=C:\DOS\ANSI.SYS

Install ANSI.SYS in the CONFIG.SYS file if panning across a graphed profile
(created with PiCServoPro) causes the new screen to overwrite the old screen
instead of erasing it. This is caused by older or incompatible graphics cards.

When all the files have been copied to the specified directories, a final screen
appears.

Possible installation problems

IMPORTANT

The AUTOEXEC.BAT file should include these two statements at
the end of installation:
PATH=C:\PiCPro (or the directory name you supply).
SET PICLIB=C:\PiCLib (or the directory name you supply).
The CONFIG.SYS file should contain the line:
FILES=30

If this message appears, insert the correct
disk and press <Enter>.
Certain computer clones are not completely
compatible with IBM XT or AT. If you get
this message when the disk is correct, try
Installing PiCServoPro on a different
computer. If another computer is not
available, it can also be installed manually.
Consult Giddings & Lewis.

If this message appears, the installation
procedure has already stopped; pressing a key
returns you to the DOS prompt. Use the
chkdsk command to see if hidden files might
be reducing free disk space below the
minimum required size.
 If you cannot make room for PiCServoPro,
you may need to install its development tools
individually.

 …ÕÕÕª
 ∫ PiCServoPro Installation Complete. ∫
 ∫ ∫
 ∫ Don't forget to reboot to set PATH and FILES. ∫
 ∫ ∫

…ÕÕÕª
∫ Incorrect diskette in drive A: ∫
∫ Please put the correct diskette in the drive. ∫
»ÕÕÕº

Not Enough Room on target drive for the utilities
PiCPro utilities will not be installed!

Please see your manual for instructions on installing
a Subset of the utilities.

Press any key to continue
Starting PiCPro/PiCServoPro 1-9

Using PiCServoPro/PiCPro

Create another directory on your hard disk in which to store the programs you cre-
ate. If you create many application programs, you might need more than one appli-
cations directory with names that relate to their contents.

Change to the drive and directory where the application programs are stored
before you load PiCServoPro or PiCPro, as shown in Table 1-3.

NOTE ON UPGRADES

When you receive a new version of PiCServoPro/PiCPro software
from Giddings & Lewis, use the /u switch on the command line when
starting PiCPro for the first time.

C:/picpro /u
This will cause all the UDFBs you have in your system to be updated.
It is necessary to do this to ensure that your system will function
properly.
It is important that the /u switch be used on all directories containing
UDFBs, either through the PICLIB environment variable or by de-
fault.
Whenever you receive a new version of PiCServoPro/PiCPro soft-
ware from Giddings & Lewis, also complete these tasks to ensure
that your system will function properly.
PiCPro scans the function libraries and, if it finds any UDFBs that
call other functions created at a later date, it will ask if you want
PiCPro to recompile these UDFBs automatically. Answer Yes.
Run the ServoSetup program and remake your servo setup function.
Download your program to the PiC.

Table 1-1. Starting up PiCServoPro or a Development Tool

To run PiCServoPro To run PiCPro alone

At the DOS prompt, change to the
directory where your application
programs are stored, and then type
picservo<Enter>.

At the DOS prompt, change to the
directory where your application pro-
grams are stored, and then type
picpro<Enter>.
1-10 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

FIGURE 1 - 3. PiCServoPro Initial Screen

The following menus appear under the three items on the menu bar. The chapter
numbers on the left tell you where you can find more information on them.

 WWWWorkstation PPPProcessor pRojects

 Welcome to PiCServoPro
 fl
 <W> Pulls down the Workstation menu
 <P> Pulls down the Processor menu
 <T> Pulls down the Tools menu
 <F9> Calls up a help message

(Chapter 4)

(Chapter 1)

(Chapter 2, 3, 4)
(Chapter 6)
(Chapter 10)
(Chapter 7)

(Chapter 1)

 …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
 ∫ New project ∫
 ∫ Edit project info. ∫
 ∫ Open/retrieve project ∫
 ∫ Delete project from list ∫
 ∫ Print project(s).... ∫
 ∫ Copy workstation project ∫
 ∫ Update FMSDISK ∫
 ∫ FMSDISK directory ∫
 ∫ connect To node ∫
 ∫ Set network node ID ∫
 »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

 …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
 ∫ Control programmer (PICPRO) ∫
 ∫ Servo setup and tuning (SRVSETUP) ∫
 ∫ sErcos setup (SRCSETUP) ∫
 ∫ Axis profile setup (PICPFL) ∫
 »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

 WWWWorkstation PPPProcessor pRojects
 …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
 ∫ HHHHelp on PiCServoPro ∫
 ∫ CCCComputer Setup ∫
 ∫ PPPPrinter Setup ∫
 ∫ RRRReturn to DOS ∫
 »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº
Starting PiCPro/PiCServoPro 1-11

Menu Bars, Menus and Pop-Ups

The top line of this screen is called the menu bar. Every PiCServoPro or develop-
ment tool screen has a menu bar, which contains a row of menu items. If you high-
light a menu name and press <Enter> a menu drops down under the name, with its
top item highlighted. Use the down-arrow key to highlight any other item, then
press <Enter> to select the highlighted item. Depending on the item, one of the fol-
lowing appears:

• An entirely new screen with a different menu bar.

• Another menu whose name is the item you selected.

• A pop-up selection box with several options to select from.

• A pop-up dialog box with blank entry fields to fill in. If you highlight an
entry field and press <F8>, you usually get a selection list of all available
choices. Highlight a choice and press <Enter> to put it in the entry field. Or
type data in the entry field.

• A pop-up message box or a message in the lower left corner of the screen
that tells you what task is going on. If the message merely confirms what
you asked for, it may come and go. Otherwise it remains on screen until
you press a key to erase it.

Hot Keys

One letter in every item on the menu bar, and in each submenu, dialog box or
selection list, is in bold style. This letter, always capitalized and usually the first
one, is called a hot key. If you press a hot key, the corresponding option is selected
at once.

If you then press either H or <Enter>, the PiCServoPro Help message appears.

<F9> Help key

PiCServoPro has a context-sensitive help system. That is, each help screen is differ-
ent depending on where the highlighting is. Call for HELP at any time by pressing
the <F9> key. As a general rule, get as close to a problem as possible before you
press <F9>.

When the PiCServoPro initial screen appears, the menu name Workstation is high-
lighted. If you press <F9> the Help message briefly explains the items in that
menu. Press W so the Workstation menu drops down, and then use the down-arrow
key to move the highlight down the menu. If you press <F9> for each item, you
can see that the Help message applies only to the highlighted item.

For instance, in the screen in Figure 1-4, press W.
The Workstation menu drops down, with the top
item, Help on PiCServoPro, highlighted. WWWWorkstation PPPProcessor pRojects

 …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
 ∫ HHHHelp on PiCServoPro ∫
 ∫ CCCComputer Setup ∫
 ∫ PPPPrinter Setup ∫
 ∫ RRRReturn to DOS ∫
 »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº
1-12 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

General-purpose keys

 is used in programming to delete a highlighted network or an
entry in a table. When you press you always get a pop-up
that asks you to confirm that you want to delete the item.

<Enter> Accepts a choice on a list or a menu or in a dialog box. In Figure
1-1 at the start of the installation procedure, you used <Enter> to
choose either PiCServoPro or PiCPro.

<Esc> Cancels something. If you called up a dialog box, menu or list by
mistake and just want to erase it from the screen, press this key.
In Figure 1-2, <Esc> would cancel anything you typed in the
blanks and restore the default directory names.

<F8> is the List key. If you highlight an entry field on a dialog box, this
key will usually bring up a selection list of all available items
that could be used in that entry field. Highlight an item on the list
and press <Enter>. It is copied into the entry field.

<F9> is the Help key. Press this key at any time to call up a help screen.
The message that is displayed is relative to the function you are
performing.

<F10> Accepts a number of choices at once. It is used for a dialog box
with a number of entry fields or a table that must be filled in. You
must use <F10> to Accept an edited network, since <Enter>
Accepts only elements within the network. In Figure 1-2, <F10>
confirmed the names of the directories to be used in the installa-
tion procedure.

<Ins> is used in programming to make room for a new network or a
new entry in a table. The highlighted item is moved down one
space so the new material can be entered above it.

←, ↑, ↓, → The arrow keys allow you to move around in a menu, list, or net-
work until the item you want to work with is highlighted.

Certain PiCServoPro screens use such key combinations as <Alt>E or <Alt>M for
special purposes. These uses are indicated on screen or in a Help message.
Starting PiCPro/PiCServoPro 1-13

Setting Up the Workstation Software

The workstation and the PiC900 system must be able to communicate with each
other before you can send a PiCPro application program to the system. Communi-
cation requires both software and hardware compatibility.

Workstation menu

PiCServoPro/PiCPro software requires certain information about the workstation
so it can communicate with the monitor screen and the PiC900 system. The Work-
station - Computer setup menu item is identical in all development tools. Thus if
PiCPro has the correct parameters, Servo Setup does also.

Press WC to bring up the Computer Setup dialog
box. If all the default choices are correct, press
<F10> to Accept them and return to the Worksta-
tion menu. <Esc> simply erases the dialog box
and leaves the default options unchanged.

<Enter> or the down-arrow key highlights each
option in turn:

Color Display: If the workstation display screen is
black-and-white, press N to change the default.

Remove Snow: IF you have a CGA adapter board
and IF the screen flickers during updates, press Y.
Use this option only if you must, since it slows
screen updates.

Display lines: The default for the number of lines
displayed on the screen is 25. An EGA monitor
can be set to 43 and a VGA monitor can be set to
50.

Press <F8> to bring up the list of these three
choices.

Control connected to: You must specify which com-
puter port will be used to communicate with the
PiC900 system.

⁄ƒƒƒƒƒƒƒƒƒƒƒƒƒ Computer setup ƒƒƒƒƒƒƒƒƒƒƒƒø
≥ ≥
≥ Color Display: No ≥
≥ Remove Snow: No ≥
≥ ≥
≥ Display lines ≥
≥ Press <F8> for choices: 25 ≥
≥ ≥
≥Control connected to Com [1 or 2]: 1 ≥
≥ ≥
≥ Communication baud rate ≥
≥ Press <F8> for choices: 57600≥
≥ ≥
≥ Changes will be implemented with ≥
≥ the next start of this program ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒŸ

AA1106-1692
1-14 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

If you press <Esc> any changes you made in the computer dialog box are ignored.

Temporary baud rate change

When you need to operate at a different baud rate for a short time, you can change
the baud rate by typing in a new rate on the command line. Enter a /B and the
desired rate after the PiCPro command. The example below will enter a baud rate
of 9600.

PiCPro /B9600

If any number other than the baud rates listed in the Computer dialog box is
entered on the command line, the PiC900 will not lock on. To see if communica-
tions has been established, check the lower right hand corner of the screen to the
left of the time. An up arrow indicates PiCPro is still looking for the PiC900. A
double-headed arrow indicates that communications between PiCPro and the
PiC900 is established.

This temporary baud rate will remain in effect until you restart PiCPro.

NOTE: Lower rates will slow down communication tasks such as downloading,
monitoring, etc.

Communication baud rate: The default
baud rate for communicating between
PiCPro and the PiC900 through the
communications port is 57600.

When you want to operate your sys-
tem at a baud rate other than 57600,
you can change the baud rate here.
Press <F8> to bring up a list of avail-
able baud rates as shown on the left.

Move the cursor to the rate you want
and press <F10> to accept the new
rate.

You can repeat this procedure any-
time you want to change to a different
rate.

NOTE: Not all computers can per-
form at the 115200 baud rate.

NOTE

If you made any changes in the Computer dialog box, restart the de-
velopment tool so the software has the correct settings.
• Exit to DOS.
• At the DOS prompt type the name of the development tool.

⁄ƒƒƒƒƒƒƒƒƒƒƒƒƒ Computer setup ƒƒƒƒƒƒƒƒƒƒƒƒø
≥ ≥
≥ Color Display: No ≥
≥ Remove Snow: No ≥
≥ ≥
≥ Display lines ≥
≥ Press <F8> for choices: 25 ≥
≥ ≥
≥Control connected to Com [1 or 2]: 1 ≥
≥ ≥
≥ Communication baud rate ≥
≥ Press <F8> for choices: 57600≥ ≥
≥ ≥ Changes will be implemented with ≥
≥ the next start of this program ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒŸ

⁄ Baud Rates ø
≥300 ≥
≥600 ≥
≥1200 ≥
≥2400 ≥
≥4800 ≥
≥9600 ≥
≥19200 ≥
≥38400 ≥
≥57600 ≥
≥115200 ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒŸ

AA1107-1692
Starting PiCPro/PiCServoPro 1-15

Configuring the Printer

Before you change anything in this dialog box, use the self-test on the printer to
make sure it works properly and use DOS commands to check that the computer
workstation can communicate with the printer.

FIGURE 1 - 4. Example of Printer Configuration Open and Close Strings.

Press WP (Workstation - Printer) to bring up the dialog
box.

Page Length/Width: defines the size of the printed page. The
default setting assumes the printer uses paper 11" long (at
6 lines to the inch) and 8.5" wide (at 10 characters to the
inch with 0.25" borders). If the printer has a wide platen,
you must change the Page Width, since PiCPro measures
the page in columns rather than inches or centimeters. For
instance it can print 132 columns on paper 14" wide.

Printer Open/Close String: allows you to send special charac-
ters to the printer before and after the material to be
printed is sent. This gives you the option of using various
modes that may be available with your printer. Consult
your printer manual.

If your printer requires an ESCAPE in the open or close
string, use the hex code ($1B) shown in the example
below. ASCII symbols can be used in combination with
the hex symbols.

⁄ƒƒƒƒƒƒƒƒƒƒ Printer setup ƒƒƒƒƒƒƒƒƒƒø
≥ ≥
≥ Page Length (Lines): 66 ≥
≥ Page Width (Columns): 80 ≥
≥ Printer Open String:< >≥
≥ Printer Close String:< >≥
≥ Replace '⁄' with : ⁄ ≥
≥ 'ø' with : ø ≥
≥ '¿' with : ¿ ≥
≥ 'Ÿ' with : Ÿ ≥
≥ '≈' with : ≈ ≥
≥ '√' with : √ ≥
≥ '¥' with : ¥ ≥
≥ '≥' with : ≥ ≥
≥ 'ƒ' with : ƒ ≥
≥ '¬' with : ¬ ≥
≥ '¡' with : ¡ ≥
≥ '�' with : � ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

AA132-1190

⁄ƒƒƒƒƒƒƒƒƒƒ Printer setup ƒƒƒƒƒƒƒƒƒƒø
≥ ≥
≥ Page Length (Lines): 45 ≥
≥ Page Width (Columns): 80 ≥
≥ Printer Open String:< $1B?"# >≥
≥ Printer Close String:< $1B> >≥
≥ Replace '⁄' with : ⁄ ≥
≥ 'ø' with : ø ≥
≥ '¿' with : ¿ ≥
≥ 'Ÿ' with : Ÿ ≥
≥ '≈' with : ≈ ≥
≥ '√' with : √ ≥
≥ '¥' with : ¥ ≥
≥ '≥' with : ≥ ≥
≥ 'ƒ' with : ƒ ≥
≥ '¬' with : ¬ ≥
≥ '¡' with : ¡ ≥
≥ '�' with : � ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ
1-16 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Printing Extended ASCII Characters

The application program you create on the workstation screen uses the normal
computer keys, plus twelve other text symbols supplied by PiCPro.

PiCPro uses the IBM extended ASCII character set to draw wires, functions, and
function blocks.

If your printer is IBM compatible, your hard copy should be correct. If it doesn't
look like a ladder diagram, try these suggestions in sequence.

1. Check your printer manual to see if you can set DIP switches or a dial pointer
for the "IBM extended ASCII" character set.

2. The printer may use software rather than hardware to specify its character set.
If so, its manual gives you a Printer Open String that selects the IBM extended
ASCII character set while PiCPro is sending to the printer, and a Printer Close
String that returns it to normal for other uses. Insert these paired codes in the
blanks for the third and fourth options in the dialog box. If you use Condensed
Mode also, the printer manual has another pair of strings that opens and closes
both options together.

3. If you have a printer that doesn't print IBM extended ASCII, substitute

a "+" sign for the all the symbols marking corners,

a "!" sign for the vertical bar (fifth from the bottom),

a "-" sign for the horizontal bar (fourth from the bottom),

a ">" sign for the triangle at the bottom of the list.

These are regular punctuation marks, so any printer can recognize them.
Starting PiCPro/PiCServoPro 1-17

Project Manager

Introduction

The project manager is a tool to help you manage your applications. It creates a
description of your project defining all related files and their locations on disk. You
can then edit, delete, or print this description as required.

Once the project files have been defined, you can work on the development of your
application using the tools of PiCPro, servo setup, SERCOS setup, and/or the pro-
file editor. A compressed file containing all the files identified in the project
description can be created. This file can be stored on the FMSDISK. Any UDFB
source and library files required by the project will be automatically included when
the FMSDISK is updated.

The project manager can play a role in simplifying your control maintenance. You
can maintain the PiC control by using a PC with only the PiC programming tools
installed. All the files required for your application can be stored in the PiC on the
FMSDISK. When you open a project on your PC from the FMSDISK, the com-
pressed file is loaded onto the PC. The name of the project is automatically
inserted in the project list. The compressed file is exploded into the subdirectory
structure and filenames as described in the project description. You can then use
the software tools to maintain the project. When finished, the project manager
automatically scans all files and determines whether the file resident on the PiC
FMSDISK requires updating and prompts you accordingly.

A summary of the capabilities of the project manager are listed below.

• Allows you to control the development of a project in a development, pro-
duction, and archive version.

• Allows you to work with multiple versions of PiCPro. It eliminates the
need to change the path in your AUTOEXEC.BAT file and to enter a SET
PICLIB = statement everytime you want to switch to a different version of
PiCPro.

• Simplifies creating a single disk containing all the files required for an
application.

• Provides the tools needed to store a single compressed file containing all
the files required for an application on the FMSDISK in the PiC.

• Allows you to update the FMSDISK on the PiC without stopping the scan
when working in version 9.0 or higher.
1-18 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Using Project Manager

Begin the project manager by running PiCServoPro version 9.0 or higher.

1. From the main menu, press R (pRojects). This brings up the menu shown
below. Press N (New) to define a new project description.

When you create a new project description, it is put in the project database
which is a file called PICPRO.PRJ in your PICPRO directory.
The remaining commands allow you to edit, open, delete, print, copy, or update
your FMSDISK with a copy of the project description, view the FMSDISK
directory, connect to a different control on the network, and set the network
node ID.

2. When you are defining a new project description, the box below appears. Enter
the name of the new project (up to 80 characters). Press <F10> to accept. This
will create a new project in the project database.

3. If the project is new, you will specify the directories and paths in the box
below.
In PiCPro Path, enter the path including the drive to where the version of
PiCPro you want to use with this project is located.
 In PiCLib Path, you typically will include multiple paths separated by semico-
lons; one to the standard libraries in PiCPro and others to UDFB libraries
which are stored in a subdirectory other than your main project directory.
 In Main .LDO Path, you set the single path including the drive to where the
main module for this project is located. This subdirectory is also where you
must store all of the servo setup, SERCOS setup, profiles, and project specific
UDFBs.
 In UDFB.LDO Path, you set the path(s), separated by semicolons, to the

 Workstation Programs pRrojects

 …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
 ∫ New project ∫
 ∫ Edit project info. ∫
 ∫ Open/retrieve project ∫
 ∫ Delete project from list ∫
 ∫ Print project(s).... ∫
 ∫ Copy workstation project ∫
 ∫ Update FMSDISK ∫
 ∫ FMSDISK Directory ∫
 ∫ connect To node ∫
 ∫ Set network node id ∫
 »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

 ⁄ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ New Project ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒø
 ≥ ≥
 ≥ Project Name:< >≥
 ≥ ≥
 ≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
 ≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
 ≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
 ¿ƒƒŸ
Starting PiCPro/PiCServoPro 1-19

source code for all the UDFBs used in this project including those stored in the
main project directory.
Press <F10> to accept the project data.

4. The box below appears. Enter the appropriate files for the project. If there are
multiple setup files, separate each with a semicolon.

 At File with list of Other Files, specify the list as @filename.ext where file-
name.ext is the name of a file that contains the list of additional files to include.

At Compressed File, enter the name for a file that the project manager will cre-
ate. Typically, this would be the same name as your main LDO. This file will
contain all the files you listed in a compressed form to send to the FMSDISK
using the project manager’s Update FMSDISK command.

Press <F10> to accept the project data.

5. Now you have all the information describing this project in the project man-
ager database. An example is shown below. Notice the box on the right. It is
the list of any files you entered in Step 5. By placing the cursor on the appro-

 ⁄ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Enter Project Data ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒø
 ≥ ≥
 ≥ Project:WRAPPER MACH ≥

 ≥

 ≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥

 ≥ PiCPro Path:<C:\PICPRO90; > ≥
 ≥ PICLIB Path:<C:\PICPRO90;C:\PICPRO90\ASFB; > ≥
 ≥ Main .LDO Path:<C:\PICPRO90\WRAPPER > ≥
 ≥ UDFB .LDO Path:<C:\PICPRO90\ASFB; > ≥

 ≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
 ≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
 ¿ƒƒƒŸ

 ⁄ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Enter Project Data ƒƒƒƒƒƒƒƒƒƒƒƒƒø
 ≥ ≥
 ≥ Project:WRAPPER MACH ≥
 ≥ ≥
 ≥ Main Ladder File [.LDO]: WRAPPER ≥
 ≥ ≥
 ≥ Servo Setup File(s) [.SRV]:<W1_SERVO >≥
 ≥ Servo Setup Library(s) [.LIB]:<ZSERVO >≥
 ≥ ≥
 ≥ Sercos Setup File(s) [.SRC]:< >≥
 ≥ Serco Setup Library(s) [.LIB]:< >≥
 ≥ ≥
 ≥ Profile Setup File(s) [.PRO]:< >≥
 ≥Profile Setup Library(s) [.LIB]:< >≥
 ≥ ≥
 ≥ File with list of Other Files: ≥
 ≥ ≥
 ≥ Compressed File [.G&L]: APP_1 ≥
 ≥ ≥
 ≥ ≥
 ≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
 ≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
 ≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
 ¿ƒƒƒŸ
1-20 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

priate file and pressing <Enter>, you open the file using the PiCPro version you
specified in the PiCPro Path entry of your description. In this example, version
9.0 is being used.

NOTE: Whenever you want to exit this page, press <Esc> to return to the
PiCServoPro menu.

6. If you want to edit an existing project description, press R (pRojects), E (Edit).
The following box appears. Press <F8> to bring up a list of projects in the
project database.

7. If you are opening an existing project, it can either come from the workstation
or the PiC’s FMSDISK.

When opening an existing project from the workstation, either type in the
name of the project or press <F8> to bring up a list of projects. Move the cur-
sor to the project you want to open and press <Enter>.

 Name :WRAPPER
 PiCPro Path :C:\PICPRO90
 PICLIB Env.Variable :C:\PICPRO90;C:\PICPRO90\ASFB
 Main .LDO Path :C:\PICPRO90\WRAPPER
 UDFB .LDO Path :C:\PICPRO90\ASFB;PICPRO90\WRAPPER
 Project Details:__
 Main .LDO Name :APP1.LDO
 Servo .SRV Name(s) :W1_SERVO.SRV
 Servo .LIB Name (s) :ZSERVO.LIB
 Sercos .SRC Name (s) :....Unspecified....
 Sercos .LIB Name (s) :....Unspecified....
 Profile .PRO Name (s):....Unspecified.... ⁄ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒø
 Profile .LIB Name (s):....Unspecified.... ≥Select a File or <Esc> ≥
 Other File(s) :....Unspecified.... ≥ WRAPPER.LDO ≥
 ≥ W1_SERVO.SRV ≥
 ¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

 ⁄ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Select Project ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒø
 ≥ ≥
 ≥ Project Name:< >≥
 ≥ ≥
 ≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
 ≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
 ≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
 ¿ƒƒŸ

 …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
 ∫ Open Project ∫
 «ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ∂
 ∫ from Workstation.... ∫
 ∫ from FMSDISK.... ∫

 »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº
Starting PiCPro/PiCServoPro 1-21

8. If you want to print the description of a single project or all projects in the data-
base, press R (pRojects), P (Print). The box below appears. Make your selec-
tion and press <Enter>.

If you print a single project description, the select project box appears and you
choose the project from the <F8> list or enter the name yourself. Below is an
example of a single file print out.

If you choose to print all the project descriptions, the following Print Setup box
appears. The <F8> list contains the .LST file and you can select from it or enter
the filename.

9. The Copy command allows you to copy an entire project. This is a way you
can move your development project to a production version.

Enter the name of the project you want to copy from and the name of the new
project location. Press <F10>.

 ⁄ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒø
 ≥ Print Project(s)≥
 ≥ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ≥
 ≥ Single project ≥
 ≥ All projects ≥
 ¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

 Project Project 1: WRAPPER

 Name :WRAPPER Ladder
 PiCPro Path :C:\PICPRO90
 PICLIB Var :C:\PICPRO90;C:\PICPRO90\ASFB
 Main .LDO Path :C:\PICPRO90\WRAPPER
 UDFB .LDO Path :C:\PICPRO90\ASFB;C:\PICPRO90\WRAPPER
 Main .LDO Name :WRAPPER.LDO
 Servo .SRV Name :W1_SERVO.SRV
 Servo .LIB Name :ZSERVO.LIB
 Sercos .SRC Name :....Unspecified....
 Sercos .LIB Name :....Unspecified....
 Profile .PRO Name:....Unspecified....
 Profile .LIB Name:....Unspecified....
 Other File(s) :....Unspecified....
 Compress into :APP1.G&L

 ⁄ƒƒƒƒƒƒƒƒƒ Print Setup ƒƒƒƒƒƒƒƒƒø
 ≥ ≥
 ≥ List Filename :<PICPROJ.LST >≥
 ≥ ≥
 ≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
 ≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
 ≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
 ¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ
1-22 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

10. The Update FMSDISK command allows you to update the FMSDISK on the
PiC with a compressed file containing the current project. When using PiCSer-
voPro version 9.0 or later, the FMSDISK can be updated without stopping the
scan. Select the project from the <F8> list or type it in. Press <F10> to
accept.

The message below appears as the project is being prepared to send to the
FMSDISK.

11. When the processing is complete, the following screen appears. You can chose
to update the FMSDISK with or without the scan running on the PiC. Move
the cursor to make your choice and press <Enter>.

After the FMSDISK is updated, the following message appears.

 ⁄ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Copy Project ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒø
 ≥ ≥

 ≥

 ≥ ≥

 ¿ƒƒƒŸ

 ≥ From Project Name:< > ≥
 ≥ To Project Name:< > ≥

 ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
 ≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
 ≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥

 ⁄ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Select Project ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒø
 ≥ ≥
 ≥ Project Name:< >≥
 ≥ ⁄Projects in Databaseø
 ≥ ⁄ƒƒƒƒƒƒƒƒø ≥WRAPPER ≥
 ≥ ≥ Cancel ≥ ≥WRAPPER2 ≥
 ≥ ¿ƒ<Esc>ƒƒŸ ≥WRAPPER3 ≥
 ¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ≥WRAPPER4 ≥
 ≥WRAPPER5 ≥
 ¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

…ÕÕÕª
∫Processing: ∫
∫ C:\PICPRO90\WRAPPER.LDO ∫
∫Function: SCS_WRIT ∫
»ÕÕÕº
 ∫ Compressing ∫
 ∫ Project files... ∫
 »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

 …ÕÕª
 ∫ Control is scanning a program. ∫
 ∫ Would you like to ∫
 «ƒƒ∂
 ∫ Update FMSDISK while Control is Scanning ∫
 ∫ Stop the Scan and Update FMSDISK ∫
 »ÕÕº
Starting PiCPro/PiCServoPro 1-23

If you are using an earlier version of PiCPro than version 9.0, the scan will
have to be stopped in order to update the FMSDISK. The following warnings
appear in succession.

The following message appears as the FMSDISK is being updated.

When the update is complete, the following message reminds you that the scan
on the PiC is not running.

12. The FMSDISK Directory command allows you to see the file currently in the
PiC FMSDISK.

 …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
 ∫ FMSDISK: Updated. ∫
 ∫ Control is Scanning Program. ∫
 ∫ ∫
 »Õ Press any key to continue ÕÕº

 …ÕÕª
 ∫ WARNING: The Update Disk command will Stop Scan, ∫
 ∫ erase the FLASH Disk and write new information. ∫
 ∫ ∫
 ∫ Are you SURE you want to Continue? ∫
 «ƒƒ∂
 ∫ Yes ∫
 ∫ No ∫
 »ÕÕº

 …ÕÕª
 ∫ Ready to Stop Scan on Control & Update FLASH Disk! ∫
 ∫ ∫
 »ÕÕÕÕÕÕÕÕÕÕÕÕ Press any key to continue ÕÕÕÕÕÕÕÕÕÕÕÕÕº

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ Formatting & Updating FMSDISK: ∫
∫ Please Wait ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

 …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
 ∫ FMSDISK: Updated ∫
 ∫ Control is not Scanning Program ∫
 ∫ ∫
 »ÕÕÕÕ Press any key to continue ÕÕÕÕÕº

’ÕÕÕ∏
≥ Files/Dirs in ≥
≥ CONTROL:FMSDISK:*.* <8245248 formatted bytes free> ≥
‘ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ’ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ∏
 ≥WRAPPER.G&L 358 97-03-211:00a ≥
 ‘ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕæ
1-24 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

13. The Connect to node command allows you to connect to a different PiC on the
network.

14. The Set network node id command allows you the set the node id for this node.

 ⁄ Connect to Control at Network Node Id ø
 ≥ ≥
 ≥ Node Id: ≥
 ≥ ≥
 ≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
 ≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
 ≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
 ¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

 ⁄ Set Control at Network Node Id ø
 ≥ ≥
 ≥ Node Id: ≥
 ≥ ≥
 ≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
 ≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
 ≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
 ¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ
Starting PiCPro/PiCServoPro 1-25

y

Subdirectory Structures

When you want to create a production version of the development application you
are working on, use the copy command. The table below illustrates the subdirec-
tory structure.

Development Version of the Project Production Version of the Project
Project 1:WRAPPER

Name :WRAPPER Development Version

PiCPro Path :C:\PICPRO901

PICLIB Env.Variable:C:\PICPRO902;C:\PICPRO90\ASFB3

Main .LDO Path :C:\PICPRO90\WRAPPER\DEV4

UDFB.LDO Path :C:\PICPRO90\WRAP-
PER\DEV5;C:\PICPRO90\ASFB6

Main .LDO Name :WRAPPER.LDO

Servo .SRV Name(s) :W1_SERVO.SRV

Servo .LIB Name (s):ZSERVO.LIB

Sercos .SRC Name (s) :....Unspecified....

Sercos .LIB Name (s) :....Unspecified....

Profile .PRO Name (s):....Unspecified....

Profile .LIB Name (s):....Unspecified....

Other File(s) :....Unspecified....

Compress into :WRAPPER.G&L

Project 1:WRAPPER

Name :WRAPPER Production Copy

PiCPro Path :C:\PICPRO901

PICLIB Env.Variable:C:\PICPRO902;C:\PICPRO90\WRAP-
PER\PROD\ASFB3

Main .LDO Path :C:\PICPRO90\WRAPPER\PROD4

UDFB.LDO Path:C:\PICPRO90\WRAPPER\PROD5;C:\PICPRO90\WRAP-
PER\PROD\ASFB6

Main .LDO Name :WRAPPER.LDO

Servo .SRV Name(s) :W1_SERVO.SRV

Servo .LIB Name (s):ZSERVO.LIB

Sercos .SRC Name (s) :....Unspecified....

Sercos .LIB Name (s) :....Unspecified....

Profile .PRO Name (s):....Unspecified....

Profile .LIB Name (s):....Unspecified....

Other File(s) :....Unspecified....

Compress into :WRAPPER.G&L

NOTE: During development, all ASFBs and their asso-
ciated libraries are stored in a subdirectory:

C:\PICPRO90\ASFB

NOTE: The process of copying the project will create a cop
of all required ASFBs and their associated libraries in the

main project subdirectory.

Footnotes are for subdirectories where the:
1version of PiC software tools (PiCPro 9.0 in this example) is stored.
2standard PiCPro library files are stored.
3standard ASFB library files are stored.
4application files (main .LDO, .SRV, etc.) are stored.
5project specific UDFB source files are stored.
6standard ASFB source files used by this project are stored.
1-26 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

CHAPTER 2 Introduction to PiCPro and Programming

Introduction

PiCPro is the tool you use to create, maintain, and monitor execution of a PiC900
software program. PiCPro is a menu driven system. All functions are performed by
selecting menu items.

The software program created with PiCPro is called a module. A module is a lad-
der logic based program which incorporates higher level commands.

This chapter introduces PiCPro and the components of a module, showing how to
use PiCPro to create a module.

Prerequisites for PiCPro Programming

A prerequisite to creating a module is to have a good understanding of ladder dia-
gram logic. This manual shows how elements of ladder diagrams are entered with
the PiCPro language, but it assumes that you are proficient with ladder program-
ming.

Components of a Module

A module consists of three components - networks, a software declarations table,
and one hardware declarations table for every rack (master and expansion).

Networks are the executable portion of a module. They contain ladder logic and
higher level commands.

The software declarations table contains information about the data and about cer-
tain operations performed in the networks.

A hardware declarations table contains the locations of all hardware modules and
input/output points.

Networks

PiCPro numbers networks consecutively. Each network is executed sequentially
unless a command forces execution to be out of numerical sequence. Within a net-
work as shown in Figure 2-1, the ladder logic is executed left to right, top to bot-
tom.
Starting PiCPro/PiCServoPro 2-1

FIGURE 2 - 1. An Example Network

AA201-2790

Figure 2-2 labels the elements in a network. Descriptions of these elements are
found in the table that follows.

FIGURE 2 - 2. Elements in a Network

 ≥...1.......NET1
 Generate 1 second and 1 minute time ticks�
 ≥ ⁄TON1ƒƒƒƒƒø
 ≥ ≥ TON ≥
 ≥ T1_SEC ≥ ≥ T1_SEC
 √ƒƒƒ|/|ƒƒƒƒƒ¥IN Q√ƒƒƒƒƒƒƒƒƒƒ¬ƒƒƒ()ƒƒƒ
 ≥ ≥ ≥ ≥
 ≥ T1_SEC0ƒ¥PT ET√ ≥
 ≥ ≥ ≥ ≥
 ≥ ¿ƒƒƒƒƒƒƒƒƒŸ ≥
 ≥ SCAN1LOW ≥
 √ƒƒƒ|/|ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ
 ≥
 ≥

 ⁄ƒƒƒƒƒƒƒƒƒø
 ≥ MOVE ≥
 ≥ ≥
 ¥EN OK√
 ≥ ≥
 0¥IN1 OUT1√ƒPCOUNT
 ¡ ƒ ƒ ƒ ƒ ¡

>>NET3

SCAN1LOW
| |ƒ

 ⁄ƒƒƒƒƒƒƒƒƒø
 ≥ MOVE ≥
 ≥ ≥
 ¥EN OK√
 ≥ ≥
 0¥IN1 OUT1√ƒPCOUNT
 ¡ ƒ ƒ ƒ ƒ ¡

 ≥...1.......NET1
 Generate 1 second and 1 minute time ticks�
 ≥ ⁄TON1ƒƒƒƒƒø
 ≥ ≥ TON ≥
 ≥ T1_SEC ≥ ≥ T1_SEC
 √ƒƒƒ|/|ƒƒƒƒƒ¥IN Q√ƒƒƒƒƒƒƒƒƒƒ¬ƒƒƒ()ƒƒƒ
 ≥ ≥ ≥ ≥
 ≥ T1_SEC0ƒ¥PT ET√ ≥
 ≥ ≥ ≥ ≥
 ≥ ¿ƒƒƒƒƒƒƒƒƒŸ ≥
 ≥ SCAN1LOW ≥
 √ƒƒƒ|/|ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ
 ≥
 ≥

vertical wire

>>NET3

jump command

network label

horizontal wire
function block

comments
variables

contact

function
variables

combination wire

coilpower rail

network number

constant

SCAN1LOW
| |ƒ

cursor

AA203-2790
2-2 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Elements of Networks

Network Size

A network is an array or matrix that is comprised of rectangles, called cells. A cell
is about the size of the cursor. Each element in a network occupies at least one cell.
Some elements, such as functions, occupy several cells.

PiCPro accepts a network whose cells form a rectangle with an area less than or
equal to 255. The area of a network is the product of its width times its length,
where the width is the widest row and the length is the longest column.

In the example above the UPDATE_L coil occupies one cell. Also the T1_SEC
contacts and the PCOUNT variable occupy one cell each. The MOVE function
occupies four cells. The entire segment of logic occupies fifteen cells as shown on
the right.

Description

comments Optional documentation for each network.

contacts, control relays, coils Represent hardwired inputs and outputs and/or internal logic.

functions Perform operations such as arithmetic or motion control.

 function blocks Perform operations that must retain data for a period of time, such as
timing and counting operations.

jump command Causes execution of the module to jump or move to a specified
network.

label Optional name assigned to a network, required for the jump
command.

 variables

structures and arrays

Elements whose values can change. They are used as inputs to and
outputs from functions and function blocks, and to represent the states
of contacts, control relays, and coils.
Group of variables that has a common link.

Elements Elements in cells

≥ T1_SEC UPDATE_L
 √ƒƒƒ|P|ƒƒƒƒƒƒƒƒ(S)ƒƒƒƒ¥
 ≥ ⁄ƒƒƒƒƒƒƒƒƒø
 ≥ ≥ MOVE ≥
 ≥ T1_SEC ≥ ≥
 √ƒƒƒ|P|ƒƒƒƒƒ¥EN OK√
 ≥ ≥ ≥
 ≥ 0ƒ¥IN1 OUT1√ƒPCOUNT
 ≥
 ≥ ¡ ƒ ƒ ƒ ƒ ¡

 ≥ T1_SEC UPDATE_L
 √ƒƒƒ|P|ƒƒƒƒƒƒƒƒ(S)ƒƒƒƒ¥
 ≥ ⁄ƒƒƒƒƒƒƒƒƒø
 ≥ ≥ MOVE ≥
 ≥ T1_SEC ≥ ≥
 √ƒƒƒ|P|ƒƒƒƒƒ¥EN OK√
 ≥ ≥ ≥
 ≥ 0ƒ¥IN1 OUT1√ƒPCOUNT
 ≥
 ≥ ¡ ƒ ƒ ƒ ƒ ¡

Starting PiCPro/PiCServoPro 2-3

Software Declarations Table

The data in the software declarations table tells PiCPro about the variables and
function blocks in the networks and how much memory to reserve for each one.

FIGURE 2 - 3. Example Software Declarations Table

Elements of Software Declarations Table

Description

Name Unique name (maximum of eight characters) assigned to every variable and
function block.

Type Defines the type of data or function block and enables PiCPro to reserve mem-
ory for each element.

I/O Pt. For a variable representing a physical input or output, tells PiCPro where the
hardware module is located and which channel is being used.

Init. Val. Assigns an initial value to a variable.

…NameÕÕÕÕÕÕÕTypeÕÕÕÕÕÕÕÕÕÕÕÕÕI/O Pt.ÕÕÕÕInit. Val.ÕÕLong NameÕÕÕÕÕÕ
∫SW1 BOOL I03.01
∫SW2 BOOL I03.02
∫COIL1 BOOL O07.01
∫COIL2 BOOL O07.02
∫DURATION TIME 1000ms
∫PROMPT1 STRING(6) READY!
∫PROMPT2 STRING(5) DONE!
∫TIMER1 <fb>TON
∫
∫
∫
∫
2-4 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Hardware declarations table

The data in the hardware declarations tables tells PiCPro the configuration of the
hardware modules in each rack. A module has a hardware declarations table for the
master rack and a hardware declarations table for every expansion rack.

FIGURE 2 - 4. Example hardware declarations tables.

Master Rack Expansion I/O Rack

Expansion Block I/O

⁄ƒƒƒMaster Rack Hardware Declarations ƒƒƒø
≥ ≥
≥ Press <F8> for hardware list, then ≥
≥ select desired type and press <Enter>. ≥
≥ Slot 1: CSM ≥
≥ Slot 2: PiC900, 64K ≥
≥ Slot 3: Empty ≥
≥ Slot 4: Empty ≥
≥ Slot 5: Empty ≥
≥ Slot 6: Empty ≥
≥ Slot 7: Empty ≥
≥ Slot 8: Empty ≥
≥ Slot 9: Empty ≥
≥ Slot 10: Empty ≥
≥ Slot 11: Empty ≥
≥ Slot 12: Empty ≥
≥ Slot 13: Empty ≥
≥Expansion I/O Type: None ≥
≥ ≥
≥ ≥

⁄ Expansion Rack 1 Hardware Declarations ø
≥ ≥
≥ Press <F8> for hardware list, then ≥
≥ select desired type and press <Enter>. ≥
≥ Slot 1: CSM ≥
≥ Slot 2: I/O DRIVER ≥
≥ Slot 3: Empty ≥
≥ Slot 4: Empty ≥
≥ Slot 5: Empty ≥
≥ Slot 6: Empty ≥
≥ Slot 7: Empty ≥
≥ Slot 8: Empty ≥
≥ Slot 9: Empty ≥
≥ Slot 10: Empty ≥
≥ Slot 11: Empty ≥
≥ Slot 12: Empty ≥
≥ Slot 13: Empty ≥
≥ ≥
≥ ≥

⁄ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒDefine Block I/O Hardware configuration ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒø
≥01: Empty
≥02: Empty
≥03: Empty
≥04: Empty
≥05: Empty
≥06: Empty
≥07: Empty
≥08: Empty
≥09: Empty
≥10: Empty
≥11: Empty
≥12: Empty
≥13: Empty
≥14: Empty
≥15: Empty
≥16: Empty
≥17: Empty
≥18: Empty
≥19: Empty
≥20: Empty

≥21: Empty
≥22: Empty
≥23: Empty
≥24: Empty
≥25: Empty
≥26: Empty
≥27: Empty
≥28: Empty
≥29: Empty
≥30: Empty
≥31: Empty
≥32: Empty
≥33: Empty
≥34: Empty
≥35: Empty
≥36: Empty
≥37: Empty
≥38: Empty
≥39: Empty
≥40: Empty

≥41: Empty
≥42: Empty
≥43: Empty
≥44: Empty
≥45: Empty
≥46: Empty
≥47: Empty
≥48: Empty
≥49: Empty
≥50: Empty
≥51: Empty
≥52: Empty
≥53: Empty
≥54: Empty
≥55: Empty
≥56: Empty
≥57: Empty
≥58: Empty
≥59: Empty
≥60: Empty

≥61: Empty
≥62: Empty
≥63: Empty
≥64: Empty
≥65: Empty
≥66: Empty
≥67: Empty
≥68: Empty
≥69: Empty
≥70: Empty
≥71: Empty
≥72: Empty
≥73: Empty
≥74: Empty
≥75: Empty
≥76: Empty
≥77: Empty
≥
≥

 ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø
 ≥ Cancel ≥ ≥ Accept ≥
 ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ
Starting PiCPro/PiCServoPro 2-5

Hardware declarations table

Description

Slot 1 Reserved for the Central Services Module

Slot 2 Reserved for the CPU module (master rack), or the I/O driver mod-
ule (expansion racks)
Select the control type and then the CPU model type from the F8
list.

Slots 3 - 13 Defines the type and location of the I/O modules
Select the module type and then the correct module from the F8
list.

Expansion I/O Type Defines the type of expansion connected to the master rack.
2-6 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

PiCPro menu system

There are three levels of menus in PiCPro. At each level various submenus exist.
All functions performed in PiCPro are performed by selecting menu items. To cre-
ate or maintain the components of a module some of the submenus at each of the
three levels must be accessed. The submenus of the three menu levels are shown
below. Only one submenu at a time can be displayed on the workstation screen.

Main menu

The Main menu is the first screen to appear in PiCPro (after the introductory sign-
on screen).

The Workstation option was presented earlier. It was shown that items under this
selection are used to call up the Help system, set up the computer and printer, and
to exit PiCPro. The Workstation option of the Main menu is identical to the Work-
station option of the Module menu.

The Processor option has items that relate to the operations of the PiC900 such as
scan control and power reset. The Processor option of the Main menu is identical
to the Processor option of the Module menu.

The Module option is where a new or existing module name is entered by access-
ing New or Open respectively. Once a new name is entered, you can begin to build
the networks for the module. Once an existing module is opened, you can edit,
download, monitor, etc. that module.

NOTE: The New and Open items are available on the Module menu level also (see
next section).

FIGURE 2 - 5. Main Menu

 Workstation Processor Module

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª 	…ÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ Help ∫ 	∫ New ∫
∫ Computer setup ∫ 	∫ Open ∫
∫ Printer setup ∫ 	»ÕÕÕÕÕÕÕÕÕÕÕÕÕº
∫ Return to DOS ∫ 	
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº 	
 …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
 ∫ Scan control ∫
 ∫ ram disk operations ∫
 ∫ Flash Disk operations ∫
 ∫ Backup user prog. ∫
 ∫ Restore user prog. ∫
 ∫ Time read/set ∫
 ∫ Power reset ∫
 ∫ set Network node id ∫
 ∫ Connect to node ∫
 ∫ stAtus ∫
 »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº
Starting PiCPro/PiCServoPro 2-7

Module Menu

The Module menu is displayed after a module name is entered from the Main
menu, or when the third level Network menu is exited. From this level the hard-
ware declarations are made or changed. The software declarations can be made or
changed from this level or from the Network menu level.

Other functions performed at this level include: save, close, download, print, and
monitor execution of a module. Also available on the Module menu are editing
commands such as search for an element, add a network label, add comments to a
network, insert a network, and zoom the view of a network.

FIGURE 2 - 6. Module Menu

 Workstation Processor Module Declarations Network Element View

 …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª 	 	 …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª 	 …ÕÕÕÕÕÕÕÕÕª …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
 ∫ Help ∫ 	 	 ∫ Software ∫ 	 ∫ Find ∫ ∫ Zoom ∫
 ∫ Computer setup ∫ 	 	 ∫ Hardware Master Rack ∫ 	 ∫ Replace ∫ ∫ User Function∫
 ∫ Printer setup ∫ 	 	 ∫ Expansion Rack Hardware∫ 	 »ÕÕÕÕÕÕÕÕÕº ∫ Prev.Function∫
 ∫ Return to DOS ∫ 	 	 »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº 	 	 	»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕº
 »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº 	 	 	 	 …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª 	 	
…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª 	 	 	 	 ∫ Insert <Ins> ∫
∫ Scan control ∫ 	 	 	 	 ∫ Delete ∫
∫ ram Disk operations ∫ 	 	 	 	 ∫ Edit <Enter> ∫
∫ Flash disk operations ∫ 	 	 	 	 ∫ Find ∫
∫ Backup user prog. ∫ 	 	 	 	 ∫ Mark (start) ∫
∫ Restore user prog. ∫ 	 	 	 	 ∫ Label ∫
∫ Time read/set ∫ 	 	 	 	 ∫ Comment ∫
∫ Power reset ∫ 	 	 	 	 »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº
∫ set Network node id ∫ …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ Connect to node ∫ ∫ New ∫
∫ stAtus ∫ ∫ Open ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº ∫ Close ∫
 ∫ Save ∫
 ∫ save As ... ∫
 ∫ Download ∫
 ∫ Monitor ∫
 ∫ Force ∫
 ∫ Print ∫
 ∫ UDFB build ∫
 ∫ Task build ∫
 ∫ Hex-86 dump ∫
 ∫ Bin-86 dump ∫
 ∫ build dependency List ∫
 ∫ fInd duplicates ∫
 »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº
2-8 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Network Menu

The Network menu is displayed when a network is created (by selecting Network/
Insert from the Module menu) or edited (by selecting Network/Edit from the Mod-
ule menu). From this level elements are added to or deleted from a network. Soft-
ware declarations can be maintained at this level. Long names can be viewed,
edited, or added.

FIGURE 2 - 7. Network Menu

Wires Contacts/Coils Functions Data Jumps Horizontal Vertical Longname
…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ Horizontal ∫
∫ Vertical ∫
∫ Both ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ normally Open ƒƒƒ| |ƒƒƒ ∫
∫ normally Closed ƒƒƒ|/|ƒƒƒ ∫
∫ n.o. Positive trans. ƒƒƒ|P|ƒƒƒ ∫
∫ n.c. posItive trans.ƒƒƒ|/P|ƒƒƒ ∫
∫ n.o. Negative trans. ƒƒƒ|N|ƒƒƒ ∫
∫ n.c. negAtive trans.ƒƒƒ|/N|ƒƒƒ ∫
∫ Energize ƒƒƒ()ƒƒƒ ∫
∫ De-energize ƒƒƒ(/)ƒƒƒ ∫
∫ Set (Latch) ƒƒƒ(S)ƒƒƒ ∫
∫ Reset (Unlatch) ƒƒƒ(R)ƒƒƒ ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ In ∫
∫ in inVerted ∫
∫ Out ∫
∫ Software declarations ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ to Label ∫
∫ to Subroutine ∫
∫ Return ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

…ÕÕÕÕÕÕÕÕÕÕÕÕª
∫ Insert row ∫
∫ Delete row ∫
∫ Clear row ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕº

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ Insert column ∫
∫ Delete column ∫
∫ Clear column ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

…ÕÕÕÕÕÕÕÕÕÕª
∫ Arith ∫
∫ Binary ∫
∫ Counters ∫
∫ Datatype ∫
∫ Evaluate ∫
∫ Filter ∫
∫ Io ∫
∫ Motion ∫
∫ Sercos ∫
∫ String ∫
∫ Timers ∫
∫ USER ∫
∫ Xclock ∫
»ÕÕÕÕÕÕÕÕÕÕº
Starting PiCPro/PiCServoPro 2-9

How to Create or Open a Module

A new module is created or an existing one is opened by entering its name. A name
is entered by selecting New or Open from under the Module option of the Main
menu or Module menu.

A module becomes a DOS file when saved. Its name must conform to MS-DOS
standards for filenames. Filenames can have from 1 to 8 characters. Each character
must be from this list:

A - Z a - z 0 - 9 $ % ' _ @ { } ~ ` ! #

See a DOS manual for additional requirements.
PiCPro automatically adds an .LDO (ladder diagram object) extension to the file-
name. Throughout the programming process several other files, with the same pre-
fix or module name, but different extensions, are created by PiCPro. For a
complete list see Appendix A.

 Workstation Processor Module
2-10 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

1. Access New to create a new module. 1. Access Open to open an existing module.

The Module Menu is displayed after a module name is entered. (It can also be
returned to when editing a network by pressing <F10> or <ESC>).

The following screen appears:

2.Type the name of the new module.

3.Press <F10> to Accept it.

The following screen appears:

Instead of typing a name, the <F8> key
can be pressed to display a list of existing
modules. Use arrow keys to move the cur-
sor to a name.

Press <Enter> to select a name.

Press <F10> to Accept the name.

NOTE: If New was selected and <F8> is
pressed, an existing module will be
replaced with a new (empty) module.
PiCPro will prompt you before deleting
the existing module.

 Workstation Processor Module
 …ÕÕÕÕÕÕª
 ∫ New ∫
 ∫ Open ∫
 »ÕÕÕÕÕÕº

⁄ƒƒƒƒƒƒ Create a new module ƒƒƒƒƒø
≥ ≥
≥ Filename [.LDO]: ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

 Workstation Processor Module
 …ÕÕÕÕÕÕª
 ∫ New ∫
 ∫ Open ∫
 »ÕÕÕÕÕÕº

⁄ƒƒƒOpen an existing module ƒƒƒƒƒø
≥ ≥
≥ Filename [.LDO]: ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒ Open an existing module ƒƒø
≥ ⁄ƒƒƒƒƒƒƒƒƒƒƒø
≥ ≥ ≥
≥ Filename [.LDO]: ≥ Mod1 ≥
≥ ≥ Mod2 ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥ Mod3 ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥ Mod4 ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ¿ƒƒƒƒƒƒƒƒƒƒƒŸ
Starting PiCPro/PiCServoPro 2-11

When the Module Menu is displayed you can scroll through the module (the cursor
moves from one network number to the next) but you cannot move the cursor
inside a network.

When the Network Menu is displayed you can move the cursor throughout the net-
work but you cannot move it to another network. You must exit the network
(<F10> or <ESC>) and return to the second Module menu level.

NOTE: All network numbers are controlled (added/changed) by PiCPro. You may
assign an eight character label to any network (with the Label command under
Network).

 If a new module is being created
the lower portion of the screen is
blank (because there are no net-
works yet), and the End of Module
marker is at the top of the screen.
As networks are built (from the
Network Menu) this marker moves
down, always appearing at the end
of the module.

If an existing module is being
opened, or if the Module Menu is
accessed from the Network Menu,
the lower portion of the screen dis-
plays the network logic (or a por-
tion of it).

 Workstation Processor Module Declarations Network Element View
 ≥...........
 <End of Module>

..............

 ≥...1.......NET1
 Generate 1 second and 1 minute time ticks�
 ≥ ⁄TON1ƒƒƒƒƒø
 ≥ ≥ TON ≥
 ≥ T1_SEC ≥ ≥ T1_SEC
 √ƒƒƒ|/|ƒƒƒƒƒ¥IN Q√ƒƒƒƒƒƒƒƒƒƒ¬ƒƒƒ()ƒƒƒ
 ≥ ≥ ≥ ≥
 ≥ T1_SEC0ƒ¥PT ET√ ≥
 ≥ ≥ ≥ ≥
 ≥ ¿ƒƒƒƒƒƒƒƒƒŸ ≥
 ≥ SCAN1LOW ≥
 √ƒƒƒ|/|ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ
 ≥
 ≥

 >>NET3
SCAN1LOW
| |ƒ

 Workstation Processor Module Declarations Network Element View

2-12 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

The elements of a network are added or changed from the Network Menu. This
menu is always accessed from and returned to the Module Menu.

If you are creating a new module,
position the cursor as shown in the
diagram to the left before access-
ing the Network Menu.

If you are editing an existing mod-
ule, position the cursor on the net-
work number you want to edit
before accessing the Network
Menu.

 Workstation Processor Module Declarations Network Element View
 ≥...........
 <End of Module>

..............

 Workstation Processor Module Declarations Network Element View
 ≥...1.......
 Generate 1 second and 1 minute time ticks�
 ≥ ⁄TON1ƒƒƒƒƒø
 ≥ ≥ TON ≥
 ≥ T1_SEC ≥ ≥ T1_SEC
 √ƒƒƒ|/|ƒƒƒƒƒ¥IN Q√ƒƒƒƒƒƒƒƒƒƒ¬ƒƒƒ()ƒƒƒƒ¥
 ≥ ≥ ≥ ≥
 ≥ T1_SEC0ƒ¥PT ET√ ≥
 ≥ ≥ ≥ ≥
 ≥ ¿ƒƒƒƒƒƒƒƒƒŸ ≥
 ≥ SCAN1LOW ≥
√ |/| Ÿ
Starting PiCPro/PiCServoPro 2-13

 There are two ways to access the Network Menu.

1. Press <Enter> when the cursor is positioned as described above.

or

2. Use the Hot keys N,E (Network, Edit)

Workstation Processor Module Declarations Network Element View

When a new module is
being created, the Net-
work menu appears, the
network is assigned a
number, and the cursor
locates itself in the upper
left-hand cell of the net-
work.

When an existing mod-
ule is being edited, the
Network Menu appears
and the cursor moves
from the network num-
ber to the upper left-
hand cell in the network.
The cursor can then be
moved with the arrow,
tab, etc. keys.

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ Insert <Ins> ∫
∫ Delete ∫
∫ Edit <Enter> ∫
∫ Find ∫
∫ Mark (start) ∫
∫ Label ∫
∫ Comment ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

 ≥....1......

<End of Module>

 Wires Contacts/Coils Functions Data Jumps Horizontal Vertical Longname

 Wires Contacts/Coils Functions Data Jumps Horizontal Vertical Longname

 ≥...1.......
 Generate 1 second and 1 minute time ticks�
 ≥ ⁄TON1ƒƒƒƒƒø
 ≥ ≥ TON ≥
 ≥ T1_SEC ≥ ≥ T1_SEC
 √ƒƒƒ|/|ƒƒƒƒƒ¥IN Q√ƒƒƒƒƒƒƒƒƒƒ¬ƒƒƒ()ƒƒƒƒ¥
 ≥ ≥ ≥ ≥
 ≥ T1_SEC0ƒ¥PT ET√ ≥
 ≥ ≥ ≥ ≥
 ≥ ¿ƒƒƒƒƒƒƒƒƒŸ ≥
 ≥ SCAN1LOW ≥
 √ƒƒƒ|/|ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ
2-14 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

How to add, change, and delete network elements

To add or change an element in a network:

1. Position the cursor at the location where you want the element to be placed.

2. Select the element from its submenu.

PiCPro (re)places the element on the screen at the location of the cursor.

Functions and function blocks should be inserted one or two cells to the right of
the left power rail to allow room for entering inputs.

When contacts/coils, functions/blocks, and jumps are selected from the menus,
PiCPro positions the cursor to prompt you to enter data for them.

To delete an element, position the cursor on it and press the key.

Jump
Command

Coil Contact

Function block
name

Function block
input

 ≥...1.......NET1
 Generate 1 second and 1 minute time ticks�
 ≥ ⁄TON1ƒƒƒƒƒø
 ≥ ≥ TON ≥
 ≥ T1_SEC ≥ ≥ T1_SEC
 √ƒƒƒ|/|ƒƒƒƒƒ¥IN Q√ƒƒƒƒƒƒƒƒƒƒ¬ƒƒƒ()ƒƒƒ
 ≥ ≥ ≥ ≥
 ≥ T1_SEC0ƒ¥PT ET√ ≥
 ≥ ≥ ≥ ≥
 ≥ ¿ƒƒƒƒƒƒƒƒƒŸ ≥
 ≥ SCAN1LOW ≥
 √ƒƒƒ|/|ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ
 ≥
 ≥

>>NET3
SCAN1LOW
| |ƒ

>>
 ƒƒƒ()ƒƒƒ

 ƒƒƒ|/|ƒƒƒƒƒ

 ⁄ ƒƒƒƒƒø
 ≥ TON ≥
 ≥ ≥
 ¥IN Q√
 ≥ ≥
 ¥PT ET√
 ≥ ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

 ⁄TON1ƒƒƒƒƒø
 ≥ TON ≥
 ≥ ≥
 ¥IN Q√
 ≥ ≥
 ¥PT ET√
 ≥ ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

Starting PiCPro/PiCServoPro 2-15

Cutting and pasting within a network

It is possible to cut and paste network elements while editing a network. Follow the
procedure below.

1. Place the cursor on the element you want to cut and paste.

2. Press and hold down the <Shift> key. The selected element will now flash.
NOTE: If the element selected is a function/block, any directly connected
inputs and outputs will also be selected.

3. Use the arrow keys to move to the location you want to paste the selected ele-
ment.

4. Release the shift key. The element will be pasted in the current cursor location.
NOTE: If you want to paste the selected element in more than one location, do
not release the shift key. Press <Insert> wherever you want the element pasted.
If the new location would require that a function/block be deleted, you will be
asked to verify that you really want to do this.

How to exit a network

There are two ways to exit from editing a network. Exiting returns you to the Mod-
ule Menu.

1. Press <F10>. This accepts any changes you made to the network. You must
select SAVE or SAVE AS.. under the Module item to save your module to disk.

2. Press <ESC>. This gives you the option to save changes or ignore them.
PiCPro displays the message:

How to create a second network

After you have created and saved a network, the cursor positions itself at the end of
the network.

Press <Enter> or use the hot keys to reenter the Network (Menu) level. Network
number 2 is inserted. The number is assigned automatically by PiCPro.

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ Ignore changes and quit ∫
∫ editing Network #1 ∫
«ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ∂
∫ Yes ∫
∫ No ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº
2-16 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

How to save and close a module

A module is closed and/or saved from under the Module or Workstation menu
items.

There are three ways to save/close a module:

1. Select Close, Save or save As

If Close is selected, PiCPro will ask if you want to save changes.

If Save is selected, PiCPro will save any changes.

If save As is selected, PiCPro will ask you to enter a filename, will save the changes to that
file, and make that file the current module.

2. Select New or Open

If New or Open is selected, PiCPro will ask if you want to save changes to the existing
module and will close it.

3. Select Return to DOS

PiCPro will ask if you want to save changes to the module.

 Workstation Processor Module Declarations Network Element View

 …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
 ∫ Help ∫ ∫ New ∫
 ∫ Computer setup ∫ ∫ Open ∫
 ∫ Printer setup ∫ ∫ Close ∫
 ∫ Return to DOS ∫ ∫ Save ∫
 »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº ∫ save As ... ∫
 ∫ Download ∫
 ∫ Monitor ∫
 ∫ Force ∫
 ∫ Print ∫
 ∫ UDFB build ∫
 ∫ Task build ∫
 ∫ Hex-86 dump ∫
 ∫ Bin-86 dump ∫
 ∫ build dependency List ∫
 ∫ fInd duplicates ∫
 »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº
Starting PiCPro/PiCServoPro 2-17

Designing networks

When you build a module, the capabilities of the PiC900 and the editing features
of PiCPro to consider are:

1. Network layout is free format -- the number of elements on a rung and the
number of branches from a rung are limited only by the 255 cell area size.

2. Commands for editing a module enable you to do the following:

• search for and/or copy, move, delete entire networks

• insert networks (to be built) between two networks

• search for and/or replace elements throughout entire module

• add up to 100 lines of documentation to each network insert or delete rows and/or
columns of network logic.
2-18 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

CHAPTER 3 Programming and Declarations
Chapter 3 provides additional information on programming and declarations. It
covers the basic network elements used in creating/editing a network, data types
used in software declarations, examples of declaring arrays and structures, and
commands for editing and making global changes to a network or module.

The items on the third level Network menu will be covered first. These are used in
creating/editing a network in your module.

FIGURE 3 - 1. Network Menu

In addition, the following items from the second level Module menu will be cov-
ered. Chapter 4 also covers some of the items from the Module menu.

FIGURE 3 - 2. Module Menu

Wires Contacts/Coils Functions Data Jumps Horizontal Vertical Longname
…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ Horizontal ∫
∫ Vertical ∫
∫ Both ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ normally Open ƒƒƒ| |ƒƒƒ ∫
∫ normally Closed ƒƒƒ|/|ƒƒƒ ∫
∫ n.o. Positive trans. ƒƒƒ|P|ƒƒƒ ∫
∫ n.c. posItive trans.ƒƒƒ|/P|ƒƒƒ ∫
∫ n.o. Negative trans. ƒƒƒ|N|ƒƒƒ ∫
∫ n.c. negAtive trans.ƒƒƒ|/N|ƒƒƒ ∫
∫ Energize ƒƒƒ()ƒƒƒ ∫
∫ De-energize ƒƒƒ(/)ƒƒƒ ∫
∫ Set (Latch) ƒƒƒ(S)ƒƒƒ ∫
∫ Reset (Unlatch) ƒƒƒ(R)ƒƒƒ ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ In ∫
∫ in inVerted ∫
∫ Out ∫
∫ Software declarations ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ to Label ∫
∫ to Subroutine ∫
∫ Return ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

…ÕÕÕÕÕÕÕÕÕÕÕÕª
∫ Insert row ∫
∫ Delete row ∫
∫ Clear row ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕº

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ Insert column ∫
∫ Delete column ∫
∫ Clear column ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

…ÕÕÕÕÕÕÕÕÕÕª
∫ Arith ∫
∫ Binary ∫
∫ Counters ∫
∫ Datatype ∫
∫ Evaluate ∫
∫ Filter ∫
∫ Io ∫
∫ Motion ∫
∫ String ∫
∫ Timers ∫
∫ USER ∫
∫ Xclock ∫
»ÕÕÕÕÕÕÕÕÕÕº

 Workstation Processor Module Declarations Network Element View

 …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª …ÕÕÕÕÕÕÕÕÕª …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕª

 ∫ Software ∫ ∫ Find ∫ ∫ Zoom ∫
 ∫ Hardware Master Rack ∫ ∫ Replace ∫ ∫ User Function∫
 ∫ Expansion Rack Hardware∫ »ÕÕÕÕÕÕÕÕÕº ∫ Prev.Function∫
 »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕº
 …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
 ∫ Insert <Ins> ∫
 ∫ Delete ∫
 ∫ Edit <Enter> ∫
 ∫ Find ∫
 ∫ Mark (start) ∫
 ∫ Label ∫
 ∫ Comment ∫
 »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº
Starting PiCPro/PiCServoPro 3-1

Network Menu - Wires

Under Wires you can select three elements - a horizontal wire , a vertical wire, or a
combination wire. Use these elements to connect other elements in a network,
forming data paths along which data is transferred from one element to another.
Wires can also be used to broaden or lengthen the spacing of elements on the
screen.

When making connections within your network, the following keys provide tog-
gling ability for inserting/deleting horizontal and vertical wires.

For example, if the cursor is on a horizontal wire (A) and you press <ALT> I, a
vertical wire will be inserted above the horizontal one (B). If you use the down
arrow key to move the cursor back down on the vertical wire (C), and press
<ALT>I again, the vertical wire will be deleted (D).

Horizontal ƒ Provides a horizontal connection between elements in the network

Vertical ≥ Provides a vertical connection between elements in the network

Both Ÿ Provides a branch between elements in the network

<ALT>I ↑ Inserts/deletes a vertical wire on the right side of the cursor and moves the
cursor above the current location.

<ALT>M ↓ Inserts/deletes a vertical wire on the right side of the cursor and moves the
cursor below the current location.

<ALT>J ← Inserts/deletes a horizontal wire on the right side of the cursor and moves the
cursor to the left of the current location.

<ALT> K → Inserts/deletes a horizontal wire on the left side of the cursor and moves the
cursor to the right of the current location.

A. B. C. D.

Cursor

Horizontal wire

Cursor

Horizontal wire

Vertical wire

AA1144-4892

Cursor

Cursor

Horizontal wire
3-2 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Network Menu - Contacts/Coils

Under Contacts/Coils you can select the boolean elements listed below. Each bool-
ean element must be assigned a declared boolean variable in the software declara-
tions table. If the element represents a physical input or output, the declaration
must specify its location.

In ladder programming these elements symbolize the hardwired circuitry of the
system and the variables hold the values that represent their states. The values are
always 0 for OFF or deenergized, or 1 for ON or energized. When you insert one of
these elements into your network, the cursor locates itself above the item, prompt-
ing you to enter the name of the variable assigned to it.

*Transitional contacts pass power until the next update of the coil. Depending on
the logic in your ladder program, this may not be equal to one scan.

normally Open ƒƒƒ| |ƒƒƒ If the variable value equals 1, power flow/logic continuity is provided.
If the variable value equals 0, power flow/logic continuity is not pro-
vided.

normally
Closed

ƒƒƒ|/|ƒƒƒ If the variable value equals 1, power flow/logic continuity is not pro-
vided. If the variable value equals 0, power flow/logic continuity is pro-
vided.

n.o. positive
trans*

ƒƒƒ|P|ƒƒƒ If the last write to the variable caused it to go from 0 to 1, power flow/
logic continuity is provided; if the last write did not cause the variable
value to go from 0 to 1, flow/continuity is not provided or is dropped.

n.c. posItive
trans*

ƒƒƒ|/P|ƒƒ If the last write to the variable caused it to go from 0 to 1, power flow/
logic continuity is not provided or is dropped; if the last write did not
cause the variable value to go from 0 to 1, flow/continuity is provided.

n.o. negative
trans*

ƒƒƒ|N|ƒƒƒ If the last write to the variable caused it to go from 1 to 0, power flow/
logic continuity is provided; if the last write did not cause the variable
value to go from 1 to 0, flow/continuity is not provided or is dropped.

n.c. negative
trans*

ƒƒƒ|/N|ƒƒ If the last write to the variable caused it to go from 1 to 0, power flow/
logic continuity is not provided or is dropped; if the last write did not
cause the variable value to go from 1 to 0, flow/continuity is provided.

Energize ƒƒƒ()ƒƒƒ If power flow/logic continuity to this coil occurs, it is turned on. If
power flow/logic continuity to this coil drops, it is turned off.

De-energize ƒƒƒ(/)ƒƒƒ If power flow/logic continuity to this coil occurs, it is turned off. If
power flow/logic continuity to this coil drops, it is turned on.

Set (Latch) ƒƒƒ(S)ƒƒƒ If power flow/logic continuity to this coil occurs, it is turned on. If this
coil is on and power flow/logic continuity drops, it stays on. If power
flow/logic continuity to this coil does not occur, it does not turn on.

Reset
(Unlatch)

ƒƒƒ(R)ƒƒƒ If power flow/logic continuity to this coil occurs, it is turned off. If this
coil is off and power flow/logic continuity drops, it stays off. If power
flow/logic continuity to this coil does not occur, it does not turn off.
Starting PiCPro/PiCServoPro 3-3

Network Menu - Functions

There are several categories of functions/blocks as shown in the table below. Func-
tions and function blocks are the tools which perform operations on data. They
perform arithmetic operations, evaluate bits, read and write data, move axes, etc.
You specify input values and provide variables into which the PiC900 inserts the
output values. The execution of functions and function blocks is always triggered
by boolean logic - the wires, contacts/coils described above.

Each function and function block is similar to what is called a subroutine in other
programming languages. To use a function/block in your program, simply select
one from the menu and connect the inputs and outputs as required. Refer to the
Reference Manual for information on functions and function blocks.

Categories of Functions/Blocks

Category Description

Arith Perform addition, subtraction, multiplication, division, modulo (remainder), absolute
value, square root, transcendental, and negate (opposite) value operations.

Binary Perform operations on binary data - Logic operations - and, not, inclusive or, and
exclusive or; and Bit Shifting/Rotating operations - shift left, shift right, rotate left,
rotate right.

Counters Perform counting operations. They count up to a specified value or count down from
a specified value.

Datatype Convert the representation of data from one type to another.

Evaluate Compare the values of data. They compare whether values are equal to, not equal to,
greater than, less than, greater than or equal to, less than or equal to other values.

Filter Filter or sort data. They move data, find the maximum of two values, find the mini-
mum of two values, assign a value that is within predefined limits, select a value
based on the state of a contact, and select a value based on a numeric value.

Io Used with the analog in/out, 4-20 mA, thermocouple, RTD, stepper and serial com-
munications modules, the PiC900 communications network, or the data transfer
between DOS workstation files, PiC900 RAMDISK files and user port 2 on the
PiC900.

Motion Control axial movement.

Sercos Communicate serially in real-time between PiC and drives.

String Operate on STRINGs of data. They find the length of a string, or find, delete, insert,
extract, concatenate, or replace characters in a string.

Timers Energize or deenergize outputs after a duration of time.

USER Appears only after the user defined function block or task features have been used.
Any UDFB or TASK you create will be accessed through USER.

Xclock Perform clock and calendar functions. They extract the time or day of the week from
the PiC900, or assign a time to a variable. Can set up a servo clock to use with TASKs
when no servos are programmed.
3-4 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

The PiC900 processes a function or function block left to right - first the inputs are
gathered, then the operation is performed, and then the outputs are written. The
only time a function/block does not execute is when the logic at EN does not trig-
ger it.

Functions and function blocks are very similar to each other and they look similar
on the screen. The one important difference between them is that function blocks
may take more than one scan to complete an operation, whereas functions must
complete an operation synchronously with the scan.

This requires that function blocks have internal storage for their variables from
scan to scan until they complete the operation. You must declare function blocks
and assign each one a unique name so PiCPro can reserve memory for them. Func-
tions do not require this because they finish executing with the scan.

NOTE

Output variables will have unpredictable values and the output at OK
will not be energized when:
1. An output variable does not have enough bits to hold the result.
2. An output variable is an unsigned integer (recognizes only non-

negative numbers) and the result is negative.
3. The operation attempts to divide a number by zero.
4. The input data is invalid.
5. Floating point number results are infinite, indefinite or not-a-num-

ber.
Starting PiCPro/PiCServoPro 3-5

Function/Block Format

Functions and function blocks appear as rectangles on the screen. The labels inside
the boxes are not changeable. They tell you the inputs and outputs to enter, and
show you where to connect them.

Diagram of a Function

Diagram of a Function Block

A function block has the same general appearance as a function, but it also shows
the unique name you assign to it in software declarations.

NOTE: Function blocks maintain internal storage. Therefore, when the enable is
removed, the outputs typically will not change.

NOTE: Some functions/blocks can have several inputs/outputs.

Function/Block Inputs/Outputs

Each function/block has only certain types of data it accepts as inputs or provides
as outputs. PiCPro will flag you during the programming process if you attempt to
assign input/output data that is not acceptable for a function.

If a required input is missing, PiCPro will flag it when you attempt to exit (<F10>)
a network.

Connections to outputs are optional. Output variables do not need to be connected
to functions/blocks if you do not want to receive that output data.

The inputs to the function are on
the left side.

EN is where you connect the
boolean logic that will "enable"
or trigger execution of the func-
tion

IN is where you connect the
input variable that is to be oper-
ated on

A title, the name of the
function, appears at the top.

The outputs of the function
are on the right side.

OK is where you connect
logic that will have power
flow to it as soon as execution
has finished (successfully)

 OUT is where you connect
the variable that will hold the
result of the operation.

 ⁄ƒƒƒƒƒƒƒƒƒø
 ≥ TITLE ≥
 ≥ ≥
 ≥ ≥
ƒ¥EN OK√ƒ
 ≥ ≥
 ≥ ≥
ƒ¥IN OUT√ƒƒ
 ≥ ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

 ⁄ƒƒNAME ƒø
 ≥ TITLE ≥
 ≥ ≥
 ≥ ≥
ƒ¥EN OK√ƒ
 ≥ ≥
 ≥ ≥
ƒ¥IN OUT√ƒƒ
 ≥ ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ
3-6 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Boolean Inputs/Outputs

Boolean inputs and outputs are wires, contacts, control relays, or coils. Every func-
tion/block has a boolean input on the upper left side and a boolean output on the
upper right side. Although these inputs (or outputs) may have different labels, they
function the same for every function/block:

Some functions/blocks have more than one boolean input/output. Their usage
depends on the function/block. They might initialize a counter, trigger a timer, tell
that an axis is in position, etc.

Non-boolean inputs/outputs

The non-boolean inputs are constants or variables. They are either the data that is
to be operated on or they provide data required to perform the operation, such as a
number of counts.

The non-boolean outputs are variables. They either hold the result of the operation,
or hold other pertinent information about the operation.

Connection requirements

Inputs to and outputs from functions/blocks must be connected to the functions/
blocks.

To connect non-boolean elements use the Data menu. Select In or inVerted to enter
an input to a function/block. Select Out to enter an output for a function/block.

To connect a boolean element position the cursor at the input/output point, then
select the element from the Wires or Contacts/Coils menu.

Boolean Inputs Boolean Outputs

EN
(enable)
CD
(count
down)
CU
(count
up)
REQ
(request)

These inputs (on the upper
left side) are always used to
start execution of the func-
tion/block. The logic to this
point must be connected and
must be satisfied or the func-
tion/block is not executed.

OK
DONE
Q

These outputs (on the upper right side)
serve as a signal that the function/block
has finished executing and that the exe-
cution was successful. The ladder logic
connected to this point will be satisfied
immediately if and when the task has
been completed and no errors have
occurred.

The use of OK is optional but it can
serve as a troubleshooting tool. It does
not energize if an error occurs, such as
an overflow (output variable does not
have enough bits to hold the result).

 ⁄ƒƒƒƒƒƒƒƒƒø
 ≥ TITLE ≥
 CONT1 ≥ ≥ COIL1
ƒƒƒ|/|ƒƒƒƒƒ¥EN OK√ƒƒƒƒƒƒƒƒ()ƒƒƒƒ¥
 ≥ ≥
 VAR1ƒ¥IN OUT√ VAR2
 ≥ ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ
Starting PiCPro/PiCServoPro 3-7

Extensible functions

Some of the functions can be "extended" to accommodate more inputs. For exam-
ple the addition function lists two inputs on the left side of the rectangle, but the
function can accept and add up to 17 numbers.

You can lengthen the box to enter more inputs (by positioning the cursor on the
lower left side of the rectangle, and selecting Data In). All extensible functions can
have up to seventeen inputs. Once a function has been extended, it cannot be short-
ened.

Functions that are extensible are displayed on the screen with dashed lines outlin-
ing the lower border (instead of solid lines).

 ⁄ƒƒƒƒƒƒƒƒƒø
 ≥ TITLE ≥
 ≥ ≥
 ≥ ≥
ƒ¥EN OK√ƒƒ
 ≥ ≥
ƒ¥IN1 OUT√ƒƒ
 ≥ ≥
ƒ¥IN2 ≥

 ¡ ƒ ƒ ƒ ƒ Ÿ

 ⁄ƒƒƒƒƒƒƒƒƒø
 ≥ TITLE ≥
 ≥ ≥
 ≥ ≥
ƒ¥EN OK√ƒƒ
 ≥ ≥
ƒ¥IN1 OUT√ƒƒ
 ≥ ≥
ƒ¥IN2 ≥
 ≥ ≥
ƒ¥ ≥
 ≥ ≥
ƒ¥ ≥

	
 ¡ ƒ ƒ ƒ ƒ Ÿ

 ⁄ƒƒƒƒƒƒƒƒƒø
 ≥ TITLE ≥
 ≥ ≥
 ≥ ≥
ƒ¥EN OK√ƒƒ
 ≥ ≥
ƒ¥IN1 OUT√ƒƒ
 ≥ ≥
ƒ¥IN2 ≥
 ≥ ≥
ƒ¥ ≥
 ≥ ≥
ƒ¥ ≥
 ≥ ≥
ƒ¥ ≥
 ≥ ≥
ƒ¥ ≥
 ≥ ≥
ƒ¥ ≥
 ≥ ≥
ƒ¥ ≥
 ≥ ≥
ƒ¥ ≥
 ≥ ≥
ƒ¥ ≥
 ≥ ≥
ƒ¥ ≥
 ≥ ≥
ƒ¥ ≥
 ≥ ≥
ƒ¥ ≥
 ≥ ≥
ƒ¥ ≥
 ≥ ≥
ƒ¥ ≥
 ≥ ≥
ƒ¥ ≥
 ≥ ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

Extensible Function Extended Function Fully Extended Function
3-8 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Chaining Functions/Blocks

Functions/blocks can be linked or chained by data paths. In the following diagram
two links are shown.

1. OK is linked to EN. The successful execution of FUNC1 triggers the execution
of FUNC2.

2. OUT is linked to IN. The output value of FUNC1 is passed directly to FUNC2,
with no intermediate variable holding the value.

Any number of functions/blocks can be chained and a variety of connections can
be made. The requirements for chaining functions/blocks are:

1. If the output of a function block serves as an input to another function/block, it
must be the same type.

2. Outputs to inputs must flow left to right.

3. A wire must be used to connect the outputs of one function to the inputs of
another. They cannot be simply positioned side-by-side.

The diagram on the left illustrates correct chaining. The chaining on the right will
not work.

Acceptable chaining

Left to right data flow and

inputs/outputs are the same types

NOT acceptable chaining

No right to left data flow

 ⁄ƒƒƒƒƒƒƒƒƒø ⁄ƒƒNAME ƒø
 ≥ FUNC1 ≥ ≥ FUNC2 ≥
 ≥ ≥ ≥ ≥
 ≥ ≥ ≥ ≥
ƒ¥EN OK√ƒƒƒƒ¥EN OK√
 ≥ ≥ ≥ ≥
ƒ¥IN1 OUT√ƒƒø ≥ ≥
 ≥ ≥ ¿ƒ¥IN OUT√ƒƒ
ƒ¥IN2 ≥ ≥ ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ ¿ƒƒƒƒƒƒƒƒƒŸ

 ⁄ƒƒƒƒƒƒƒƒƒø ⁄ƒƒNAME ƒø
 ≥ FUNC1 ≥ ≥ FUNC2 ≥
 ≥ ≥ ≥ ≥
 ≥ ≥ ≥ ≥
ƒ¥EN OK√ƒƒƒƒ¥EN OK√ƒƒƒ
 ≥ ≥ ≥ ≥
ƒ¥IN1 OUT√ƒƒø ≥ ≥ ⁄
 ≥ ≥ ¿ƒ¥IN OUT√ƒƒŸ
ƒ¥IN2 ≥ ≥ ≥
 ¡ ƒ ƒ ƒ ƒ Ÿ ¿ƒƒƒƒƒƒƒƒƒŸ

 ⁄ƒƒƒƒƒƒƒƒƒø
 ≥ FUNC3 ≥
 ≥ ≥
 ≥ ≥
ƒ¥EN OK√ƒ
 ≥ ≥
ƒ¥IN1 OUT√ƒƒ
 ≥ ≥
ƒ¥IN2 ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

 ⁄ƒƒƒƒƒƒƒƒƒø ⁄ƒƒNAME ƒø
 ≥ FUNC1 ≥ ≥ FUNC2 ≥
 ≥ ≥ ≥ ≥
 ≥ ≥ ≥ ≥
ƒ¥EN OK√ƒƒƒƒ¥EN OK√
 ≥ ≥ ≥ ≥
ƒ¥IN1 OUT√ ≥ ≥
 ≥ ≥ ¥IN OUT√ƒƒ
ƒ¥IN2 ≥ ≥ ≥
 ¡ ƒ ƒ ƒ ƒ Ÿ ¿ƒƒƒƒƒƒƒƒƒŸ
Starting PiCPro/PiCServoPro 3-9

Network Menu - Data

In the data category, there are four choices as shown below.

All data elements that can be read from are in the form of variables or constants.
All data elements that can be written to are in the form of variables.

Variables serve three purposes:

1. They provide input values to functions/blocks.

2. They receive output values from functions/blocks.

3. They hold the values which represent the states of contacts, control relays, and
coils.

Variables must be created in the software declarations table. In that table you can
do the following:

1. Assign each variable a name.

2. Tell what kind of data it represents, called its data type.

3. Change its initial value - optional, PiCPro initializes all variables to zero.

4. Tell its hardware module location, if it represents a physical input or output.

5. Make it retentive, global, or external - optional, retentive makes it retain its
value upon a warm restart or power-on. (Global and external apply to attributes
shared with other LDOs that can be merged or with TASKs.)

6. Modify an attribute as an input or output to a user defined function block if the
module is to be converted to a UDFB.

Constants provide input values to functions/blocks. They cannot be entered any-
where else in the network.

Constant values must be entered in the same form and within the same range that a
variable value would be entered in the software declarations table.

There are several kinds of variables that can be created. Also, variables can be
manipulated in special groups called structures and arrays. All variables are in one
of the following categories.

In Selected to enable the connection and entering of
inputs to functions/blocks.

in inVerted Selected to enable the connection and entering of
inverted inputs to functions/blocks.

Out Selected to enable the connection and entering of out-
puts to functions/blocks.

Software
declarations

Calls up the declarations table. Allows access to the
software declarations while creating or editing net-
works.
3-10 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Bitwise

Bitwise variables/constants are used to represent binary values. When manipu-
lated, these types of data are treated as series of binary digits.

NOTE: Bitwise constants are limited to 32 bit values. A constant can be entered
for any bitwise data type. For data types 32 bits or less, the constant value must be
within the range of the data type. For data types greater than 32 bits, the 32 bit con-
stant value will be extended. Zeros will be placed in the 32 most significant bits.
The constant value will be held in the least significant 32 bits.

When booleans are entered as constants, enter the following.

For boolean initial values, enter a 0 or 1.

Data type # of bits Range Description

BOOL
boolean

1 0 or 1 A boolean value is a bit. Contacts, coils, and
control relays are always represented by bool-
ean variables , where: 0 = off/no, 1 = on/yes.

BYTE 8 eight 0s-1s Byte, word, double word, and long word val-
ues are groups of bits that are used when logi-
cal and bit manipulation operations are
performed.

WORD 16 sixteen 0s-1s

DWORD
double word

32 thirty-two 0s-1s

LWORD
long word

64 sixty-four 0s-1s

Formatting values

Bitwise values can be entered in binary, octal, decimal, or hexadecimal. The format for enter-
ing these values is shown below for the number 23. (2#, 8#, and 16# are required.)

binary - 2#10111 octal - 8#27 decimal - 23 hexadecimal - 16#17

For Enter

On (hex) 16#80 or (decimal) 128

Off 0
Starting PiCPro/PiCServoPro 3-11

Numeric

Numeric variables/constants are used to represent integers and real or floating
point numbers. When manipulated, these types of data are treated as numbers.

NOTE: You must have a math coprocessor installed on your PiC900/90 CPU module to
perform any functions involving any 64 bit registers, logarithmic, exponential, trig-
onometric, and floating point mathematical operations.

NOTE: Numeric constants are limited to 32 bit values. A constant can be entered for any
numeric data type (SINT, INT, LINT, etc.). For data types 32 bits or less, the con-
stant value must be within the range of the data type. For data types greater than 32
bits, the 32 bit constant value will be extended appropriately.

Data type # of
bits

Range Description

SINT
short integer

8 -128 to +127 Integers are whole numbers or zero.

INT
integer

16 -32,768 to +32,767

DINT
double integer

32 -2,147,483,648 to +2,147,483,647

LINT
long integer

64 -9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807

USINT
unsigned short

integer

8 0 to 255 Unsigned integers are greater than or
equal to zero. PiCPro will prevent you
from entering a negative number for an
unsigned integer.UINT

unsigned integer
16 0 to 65,535

UDINT
unsigned double

integer

32 0 to 4,294,967,295

ULINT
unsigned long

integer

64 0 to 9,223,372,036,854,775,807

REAL 32
significant digits 6-7

Real numbers are floating point numbers.
They contain a decimal point and an
exponent indicating the power of ten the
number is to be multiplied by to obtain the
value represented.

LREAL
long real

64
significant digits 15-16

Formatting values
Numeric values can be entered in binary, octal, decimal, or hexadecimal. The format for entering these
values (same as bitwise) is shown below for the number 35. (2#, 8#, and 16# are required.)

binary - 2#00100011 octal - 8#43 decimal - 35 hexadecimal - 16#23
3-12 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

String

String variables are used to represent a sequence of zero or more characters. The
characters are ASCII and/or extended ASCII.

Data
type

Length in bytes
(Internal)

Range Description

STRING Two plus num-
ber of declared
characters

0 - 255
ASCII char-
acters

String type variables are used to read or write mes-
sages. Every string has 2 extra bytes that hold
information about the string. The 1st byte tells the
maximum or declared length of the string. The 2nd
byte tells the actual length of the string.

NOTE: STRINGs cannot be entered as constants.

Formatting values

String values are keyed in exactly as they are to be interpreted. A 3 character combination of
the dollar sign ($) followed by 2 hexadecimal digits is interpreted as the hex representation of
an 8-bit ASCII character code. A 2 character combination of the dollar sign followed by a
character is the ASCII interpretation given below:

Character string Interpretation

$$ dollar sign

$' single quote

$L line feed

$N new line

$P form feed (page)

$R carriage return
Starting PiCPro/PiCServoPro 3-13

Time:time of day

Time of day values represent the time of day, the date, or both.

Data type # of
bits

Range Examples Description

DATE 16 Jan. 1,
1988 -
Dec. 31,
2051

Year/month/day
D#1992-12-31

Date and time values are used
when the date or time is to be
printed, or when an event is to be
triggered at a given moment in
time.

Values can be assigned manually
or extracted from the PiC900
clock (with functions).

TIME_OF_DAY 32 00:00:0
0 -
23:59:5
9

Hours/minutes/sec-
onds
TOD#23:59:59

DATE_AND_TIME 32 same
ranges
as
above,
com-
bined

Year/month/day/
hours/ minutes/sec-
onds
DT#1992-12-31-
23:59:59

Months are numbered 1 - 12. Days of the month are numbered 1 - 31.

Hours are numbered 0 - 23. Minutes are numbered 0 - 59. Seconds are numbered 0 - 59.

Formatting values

Values are entered in the following formats. (D#, TOD#, DT# , colons (:) and dashes (-) are
required)

DATE - D#1990-09-26 TIME_OF_DAY - TOD#16:26:23

DATE_AND_TIME - DT#2009-08-05-02:01:31

(Sept. 26, 1990) (4:26:23 p.m.) (Aug. 5, 2009, 2:01:31 a.m.)
3-14 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Time:duration

A time (duration) value represents an amount of time.

Function/Block Data

Constants can be inputs to any functions/blocks except functions that operate on
STRINGs (string values must be put into variables). A constant value must be in
the range and format it would be in if it were a variable value.

Generally, all input variables and the output variable must have the same data type.
However, this is not true for a function whose purpose is to change a data type i.e.,
converting numeric type data into bitwise type data. It is also not true for inputs
that are providing extraneous data for the operation, and outputs that are providing
information about the operation. In all other cases though, the output data type
must match the input data types.

Although input and output data must be of the same type, input and output vari-
ables usually do not have to be unique variables. For instance, you could add the
constant 1 to a variable called VAR1, and place the result in VAR1.

Functions which return a string type variable as an output have a unique character-
istic. The output variable must be assigned on the input (left) side of the function.
This is necessary because STRINGs require memory allocations before the opera-
tion is performed.

Data type # of
bits

Range Example Description

TIME 32 0 - 49d17h2m47s295ms

0 - 1193h2m47s295ms

0 - 71582m47s295ms

0 - 4294967s295ms

0 - 4294967295ms

Days/hours/ min-
utes/seconds/milli-
seconds
T#1d2h3m4s5ms

Time duration values serve
as inputs to timer func-
tions for counting up/
down for a specified
amount of time; and they
serve as outputs into
which elapsed time values
are entered.

d - day h - hour m - minute s - second ms - millisecond

Formatting values

Values are entered in the following formats. (T# is required, and d, h, m, s, and ms are
required if the value for that increment is not zero)

T#1d3h7m16s45ms T#14d T#459871ms

IMPORTANT

If an output variable is unique from an input variable, the input variable is un-
altered by execution of the function/block. Only the output variable is changed.
Starting PiCPro/PiCServoPro 3-15

Data Groups of Variables - Arrays and Structures

Variables can be grouped to create entities called arrays and structures. This ability
to group data enables you to keep various types of data together that have a com-
mon link. Values can be read into or written from these groups with I/O functions.
Also, individual variables in structures and arrays can serve as inputs to and out-
puts from functions/blocks.

More information on arrays and structures can be found in the section on software
declarations later in this chapter.
3-16 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Network Menu - Jumps

A jump command causes execution of the ladder to go to or "jump" to a designated
network in the program. The network being jumped to must have a label assigned
to it by you using the Label command under Network. Jumps are always made to
the beginning of a network.

When the jump "to Label" or "to Subroutine" command is selected, the Jump com-
mand is inserted into the network. You specify which network by supplying the
label when you enter the command.

When you jump to a label, you cannot return. When you jump to a subroutine, you
can use the Return command to return to a specific network in your ladder.

The diagram that follows illustrates how your program executes with jump to sub-
routine and return commands.

Notice that a return command is placed not only at the end of the subroutine, but
also at the end of the main module directly before the subroutine network. The
return at the end of the subroutine takes you back to the original jump to subrou-
tine command network. The return at the end of the main module program takes
you to the end of the module. If it were not included, the program would execute
the subroutine again.

It is recommended that subroutines be placed at the end of your main module pro-
gram.

to Label Places the symbol for the Jump to label command (>>) into the network and
prompts you to enter the label of the network to which execution should jump.

to Subroutine Places the symbol for the Jump to subroutine command (<) into the network and
prompts you to enter the label of the network to which execution should jump.

Return Places the symbol for the Return command (<return>) into the network.Can be
placed in a subroutine where it returns you to the network from which the jump
originated or in the main module (typically at the end of the program before any
subroutines) where it takes you to the <End Of Module> or in a UDFB source
ladder (typically at the beginning) where it takes you to the <End of Module> if
the enable (EN) is not set.
Starting PiCPro/PiCServoPro 3-17

Execution Path for Subroutine/Return Commands

If the jump to SUB1 is activated
(network 1), the program jumps
to the network labeled SUB1
(network 20). It will execute the
logic in subroutine 1.

When it reaches the return com-
mand in SUB1 (network 20), it
returns to network 1. It executes
any additional logic to the right
and/or below the subroutine
command.

When it reaches the return com-
mand at the end of the main pro-
gram (network 19), it executes
the end of the module function at
that point.

...20......SUB1

 (additional logic)

< >return

< >SUB1 (additional logic)

Module Program

< >return

...1......

...20......SUB1

 (additional logic)

< >return

...19......

.........

 <End of Module>

 (additional logic)

(Executes <End of Module>)
3-18 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Network Menu - Horizontal

NOTE: You cannot insert/delete/clear a row if it contains a function/block cell.

Network Menu - Vertical

Network Menu - Longname

The Longname command allows you to view/edit longnames. Longnames can
have up to 40 characters on four lines. You can view, edit, or add a longname to a
variable in a network. Place the cursor on the variable and press L (Longname).
When you add or change a longname for a variable in the network, PiCPro updates
the software declarations longname field automatically.

Longnames will appear on your screen when you use the View Zoom command.

Insert row This option inserts an empty row into the network, lengthening any vertical
wires in the row. The row gets inserted above the line that the cursor is on.

Delete row This option deletes the row the cursor is on and moves every row below it up
one line.

Clear row This option clears (deletes) the row the cursor is on, leaving an empty row. The
rows below the cleared row do not move up.

Insert column This option inserts a column into the diagram to the left of the cursor, widen-
ing the diagram with horizontal wires. All columns to the right of the cursor
shift right.

Delete column This option deletes the column the cursor is located on and shifts all columns
(to the right of the cursor) left.

Clear column This option clears (deletes) the column the cursor is on. All columns to the
right of the cursor do not shift, leaving a "cleared" column.
Starting PiCPro/PiCServoPro 3-19

Module Menu - Declarations

When in the Module menu level, the Declarations menu allows you to declare soft-
ware, hardware master rack, and expansion rack declarations. Software declara-
tions are also available when in the Network menu level under the Data menu.

Hardware Declarations - Master and Expansion racks

Hardware declarations define what type of hardware module occupies each slot in
all PiC900 racks.

The hardware configuration defined by the declarations tables is compared to the
software configuration when the module is downloaded. PiCPro can detect an error
such as an output that is defined at an input location. A message will be displayed
that describes the error when you issue the download command.

There is only one way to call up a hardware declarations table. Select Hardware
Master Rack from under the Declarations menu.

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ OUT3 calls for output 3 in slot 6 ∫
∫ which is not an output! ∫
∫ ∫
»ÕÕÕÕ Press any key to continue ÕÕÕÕº

 Workstation Processor Module Declarations Network Element View

 …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
 ∫ Software ∫
 ∫ Hardware Master Rack ∫
 ∫ Expansion Rack Hardware∫
 »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº
3-20 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

The Master Rack Hardware Declarations box lists the PiC900 slots, corresponding
to the position in the rack as shown below.

To declare your hardware modules in the Master Rack Hardware Declarations
table:

1. Position the cursor on the number.

2. Press <F8> to display the list of modules available.

3. Cursor to the appropriate group and then module.

4. Press <Enter> to make a selection.

5. Repeat steps 1 - 4 to enter each module.

6. If you are doing I/O expansion with either rack I/O modules or block I/O mod-
ules, you must indicate this in the last line of the Master Rack Hardware Decla-
ration table before entering information in the Expansion Hardware table.

7. Press <F10> to Accept the configuration.

IMPORTANT

Slots 1 and 2 are always dedicated to the CSM and the CPU modules.

Workstation Processor Module Declarations Network Element View
⁄ƒƒƒƒƒƒƒƒƒƒ Master Rack Hardware Declarations ƒƒƒƒƒƒƒø
≥ ≥
≥ Press <F8> for hardware list, then ≥
≥ select desired type and press <Enter>. ≥
≥ Slot 1: CSM ≥
≥ Slot 2: PiC900, 64K ≥
≥ Slot 3: Empty ≥
≥ Slot 4: Empty ≥
≥ Slot 5: Empty ≥
≥ Slot 6: Empty ≥
≥ Slot 7: Empty ≥
≥ Slot 8: Empty ≥
≥ Slot 9: Empty ≥
≥ Slot 10: Empty ≥
≥ Slot 11: Empty ≥
≥ Slot 12: Empty ≥
≥ Slot 13: Empty ≥
≥ Expansion I/O Type:None ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒŸ
Starting PiCPro/PiCServoPro 3-21

To declare Rack I/O Expansion racks: To declare Block I/O Expansion racks:

After selecting Rack I/O in the Hardware
Master Rack table, select Expansion Hard-
ware from the Declarations menu.

In the box that appears, enter the rack num-
ber. Expansion racks are numbered 1 to 7 ;
#1 is the rack connected to the master or
CPU rack, #2 is connected to #1, etc. Press
<F10> to Accept

Follow the steps (excluding step 6) above for
declaring the modules in the Master Rack.

After selecting Block I/O in the Hardware
Master Rack table, select Expansion Hard-
ware from the Declarations menu.

The Define Block I/O Hardware Configura-
tion table appears. Block I/O expansion
modules are numbered 1 to 77; #1 is the
module connected to the master or CPU rack,
#2 is connected to #1, etc.

Follow the steps (excluding step 6) above for
declaring the modules in the Master Rack.

IMPORTANT

Slots 1 and 2 are always ded-
icated to the CSM and the I/O
driver modules.
3-22 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Software Declarations

A complete software declarations table must have the names and data types of
every variable, contact, coil, function block, structure and array that is in the mod-
ule. It also must have the I/O locations for all physical inputs/outputs. Also, vari-
ables are given (different) default values, made retentive, and given long names
through software declarations.

There are three ways to call up the software declarations table.

.

1.The table can be called up from
the Module Menu. Usually this
menu is used if you are making
declarations before entering the
ladder logic. But it can be used at
any time when this menu is dis-
played.

2.The table can be called up from
the Network Menu. Usually this
menu is used if you want to edit
the table while entering the ladder
logic.

3.The table can be called up by
responding "yes" to this prompt.
This is the message that is dis-
played when you enter an element
into the network that has not yet
been declared (and must be
declared).

 Workstation Processor Module Declarations Network Element View
 ≥........... …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
 <End of Module> ∫ Software ∫
 ∫ Hardware Master Rack ∫
 ∫ Expansion Rack Hardware ∫
 »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

 ≥....1......

<End of Module>

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ In ∫
∫ in inVerted ∫
∫ Out ∫
∫ Software declarations ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

 Wires Contacts/Coils Functions Data Jumps Horizontal Vertical

…ÕÕÕª
∫ No memory has been set aside for INPUT1. ∫
∫ Add it to the table of software declarations? ∫
«ƒƒƒ∂
∫ Yes ∫
∫ No ∫
»ÕÕÕº
Starting PiCPro/PiCServoPro 3-23

The following will help you move around within the declarations table.

<F10> or <ESC> Saves the table and exits the screen. The only time an entry (in
any field) is not saved is when <ESC> is pressed immediately after an entry has
been typed.

To move the cursor from:

The software declarations table
is shown on the left. There are
two menus that are explained in
the sections that follow.

Top -displays on the right at the top or beginning of the table

Field to field -with the arrow, tab, or enter keys.

Line to line -with the arrow, tab, or enter keys.

Page to page -with the page up and page down keys.

Top to bottom -with the end key, pressed 3 times.

Bottom -displays on the right at the bottom or end of the table.

Bottom to top -with the home key, pressed 3 times.

 Edit Variable
 …NameÕÕÕÕÕÕÕTypeÕÕÕÕÕÕÕÕÕÕÕÕÕI/O Pt.ÕÕÕÕInit. Val.ÕÕLong NameÕÕÕÕÕÕÕÕÕTopª
 ∫ ∫
 ∫ ∫
 ∫ ∫
 ∫ ∫
 ∫ ∫
 ∫ ∫
 ∫ ∫
 ∫ ∫
 ∫ ∫
 ∫ ∫
 ∫ ∫
 ∫ ∫
 ∫ ∫
 ∫ ∫
 ∫ ∫
 ∫ ∫

»Alt-M modifies attributeÕÕPress F10 to exitÕÕAlt-E enters fieldÕÕÕBottomº
3-24 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Software Declarations - Edit Menu

The Edit Menu is shown on the
left.

EI or <Ins> The Insert variable command allows you to insert a new line before the
line the cursor is on.

ED or The Delete variable command allows you to delete the current line
when the cursor is on the Name field. If the cursor is anywhere else in
the line, the field contents will be deleted.

EE or <Alt-E> The Edit field command allows you to edit the selected field. The cursor
can be moved from character to character within the field.

<ALT-D> Deletes an entire field when editing.

<ALT-U> Undoes editing changes.

EM or <Alt-M> The Modify attribute command allows you to modify the attribute of the
selected variable. To assign an attribute, position the cursor on the same
line as the variable (in any field), call up the list, then select an item
(with hot keys or with arrow keys and <ENTER>).

 Edit Variable
……ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕªÕÕÕI/O Pt.ÕÕÕÕInit. Val.ÕÕÕLong NameÕÕÕÕÕTopª
∫∫ Insert variable <Ins> ∫ ∫
∫∫ Delete variable ∫ ∫
∫∫ Edit field <Alt E> ∫ ∫
∫∫ Modify attribute <Alt M> ∫ ∫
∫∫ make Array <Alt A> ∫ ∫
∫»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº ∫

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ ∫
∫ Set or clear an attribute ∫
«ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ∂
∫ ∫
∫ Clear ∫
∫ Retentive ∫
∫ Global ∫
∫ Both global & retentive ∫
∫ External ∫
∫ variable IN ∫
∫ variable OUT ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº
Starting PiCPro/PiCServoPro 3-25

Clear - Clears or removes a variable's attribute.

Retentive - Makes a variable retentive (retains its value upon a warm restart or
power cycle, but not on a cold restart). Physical I/O points and individual structure
members cannot be made retentive. All other elements, including entire structures,
can be made retentive.

Global - (Used only with optional LDOMerge software package.)
Applied when the LDO is to be merged with one or more other LDOs. It identifies
the variable as the master or global variable. Any variable with the same name in
other LDOs will inherit this variable's definition (data type, I/O point, initial value)
when the LDOs are merged.

Both global & retentive - Defines the variable as the global variable and makes
the variable retentive. See descriptions above for retentive and global. It should be
applied only when the LDO is to be merged with one or more LDOs.

External - (Used with the optional LDOMerge software package or with TASKs.)
Applied to variables when an LDO is to be merged with one or more other LDOs.
It signals PiCPro that this variable is used in more than one LDO, and that the vari-
able's global definition is in another LDO. If the properties of this variable (data
type, I/O point, initial value) differ from the properties of its global counterpart, the
variable will acquire the properties of the global variable when the LDOs are
merged.

Applied to a TASK variable that is to be shared with other tasks.
NOTE: Only mark the variable as External in the TASK LDO, never in the main
LDO in which the TASK is called.

variable IN - Designates the variable as an input to a user defined function block.
When the LDO module you are creating will be converted to a UDFB, every vari-
able you want to use as an input to the UDFB must have this attribute.

NOTE: The first variable with the "I" attribute in the declarations table will
become the EN input of the UDFB. Its data type must be BOOL. Additional UDFB
inputs should be entered in the order you want them to appear on the left side of
the function block.

variable OUT - Designates the variable as an output to a user defined function
block. When the LDO module you are creating will be converted to a UDFB, every
variable you want to use as an output from the UDFB must have this attribute.

NOTE: The first variable with the "O" attribute in the declarations table will
become the OK output of the UDFB. Its data type must be BOOL. Additional
UDFB outputs should be entered in the order you want them to appear on the right
side of the function block.

EA or <Alt-A> The make Array command allows you to convert a variable to a
multi-element array or change the array size. To use the Array command, highlight
the Type field and press EA or <Alt A>.

Array size can range from 1 to 999 elements.
3-26 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Software Declarations - Variable Menu

1. Locate the cursor on the variable in the declarations table you want to mark.

2. Select the Mark (start) command.

The variable gets marked (highlighted) and the menu changes to Mark (end).
To mark more than one variable scroll the screen. Do not move the cursor if
you want only one variable marked.

3. Select Mark (end).

The screen displays the following prompt:

 The Variable Menu is shown on the
left.

VF or <ALT-F> The Find command finds an entry by the whole name or a portion of the
name, by the variable type, or by an I/O point. Enter the appropriate data
in the Find name, Find type, or Find I/O point box that appears when you
select one of the following

VN or <ALT-N> The find Next command finds the next occurrence of the name, type, or
I/O point from the last Find command. The search starts with the line
after the selected line.

VP or <ALT-P> The Purge unused command allows you to purge unused variables from
the software declarations table.

VM The Mark command allows you to mark, copy, delete, and move vari-
ables.

Edit Variable
 …NameÕÕÕ…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕªÕÕInit. Val.ÕÕÕLong NameÕÕÕÕÕTopª
 ∫ ∫ Find <Alt F> ∫ ∫
 ∫ ∫ find Next <Alt N> ∫ ∫
 ∫ ∫ Purge unused <Alt P> ∫ ∫
 ∫ ∫ Mark (Start) ∫ ∫
 ∫ »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº ∫
 ∫ ∫

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ ∫
∫ Find ∫
«ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ∂
∫ ∫
∫ Name or portion of name ∫
∫ variable Type ∫
∫ I/O point ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ ∫
∫Delete unused structure elements? ∫
«ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ∂
∫ Yes ∫
∫ No ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº
Starting PiCPro/PiCServoPro 3-27

4. Select Move, Copy, Delete or Unmark.

Move The screen displays the following prompt at the end of the marked selection
Move here <Enter>, or quit <Esc>

Scroll the screen to the location where you want the marked variable(s) to be
moved. The prompt moves too. Press <ESC> to exit - unmark the variable and
not move it. Press <Enter> to move the variable. It gets deleted from its previ-
ous location and inserted in front of the variable that is highlighted by the
prompt.

Copy Works identically to the Move command except that the variable is copied.
The original variable remains in place and a copy of it is placed at the location
of the prompt.

NOTE: You must change the name of each copied variable to prevent a conflict with existing
variables.

Delete Asks if you want to delete marked variables. Answer Yes or No.

Unmark Unmarks a variable, and exits out of the marking procedure.

The five types of data that are
entered are listed at the top of the
table. All data for an element is
entered in one row, spread into
columns.

NOTE: The first time the table is
called up, the cursor is on the
end_table entry. Simply start
typing and that entry will jump
to the next line.

Name – This must be the first entry made for an item.

Enter from 1 to 8 characters:

• 1st character - must be alpha (A - Z)

• 2nd - 8th characters -can be alpha (A - Z), numeric (0-9),
or underscore (_)

If a name is changed in this field, every occurrence of the
variable in the module is changed.

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ Marked Variables∫
«ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ∂
∫ Move ∫
∫ Copy ∫
∫ Delete ∫
∫ Unmark ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

 Edit Variable
 …NameÕÕÕÕÕÕÕTypeÕÕÕÕÕÕÕÕÕÕÕÕÕI/O Pt.ÕÕÕÕInit. Val.ÕÕLong NameÕÕÕÕÕÕÕÕÕTopª
 ∫entry1 bool I04.03 ∫
 ∫entry2 int 10 ∫
 ∫end_table void ∫
 ∫ ∫
 ∫ ∫
 ∫ ∫
 ∫ ∫
 ∫ ∫
 ∫ ∫
 ∫ ∫
 ∫ ∫
 ∫ ∫
 ∫ ∫
 ∫ ∫
 ∫ ∫
 ∫ ∫
 »Alt-M modifies attributeÕÕPress F10 to exitÕÕAlt-E enters fieldÕÕÕBottomº

 …NameÕÕÕÕÕÕÕ
 entry1
 entry2
 end_table
3-28 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

* The list can be called up by keying the first letter of the type. The list will
display starting with that element. If two or more types start with the same
letter, call up the list by typing the 1st, 2nd (and 3rd, etc.) letters.

Function BlockTypes

Call up a list of function blocks by pressing F when the cursor is in the type field
(or select function block from the list of types). Select a function block by moving
the cursor to one and pressing <ENTER> or by using hot keys.

The selected function block displays behind the characters <fb>.

String Types

If STRING is selected as the data type, PiCPro asks how many characters are to be
in the string.

1. Type in a number.

2. Press <F10>.

The number appears in brackets [] behind the word STRING.

Type This is the type of function block or the data type of a vari-
able. The Type is selected from a list.

PiCPro enters a type for every element after a name has
been entered. The type is either boolean (default) or the
type of the previous element. This is convenient if you are
entering several like items. For example, if you are entering
several physical outputs, PiCPro will enter boolean as the
type for each one, and number the output locations consec-
utively.

To change the type that PiCPro enters:

1.Position the cursor in the Type field

2.Press any key to display the list*

3.Scroll to a type

 ÕÕTypeÕÕÕÕÕ
 BOOL
 INT

…NameÕÕÕÕÕÕÕTypeÕÕÕÕÕÕÕÕÕÕÕÕ
∫TON1 <fb>TON

…NameÕÕÕÕÕÕÕTypeÕÕÕÕÕÕÕÕÕÕÕÕ
∫TON1 STRING[9]
Starting PiCPro/PiCServoPro 3-29

The master or CPU rack is #0. Expansion racks are numbered 1 - 7, where #1 is the
rack connected to the master, #2 is the rack connected to #1, etc. Slots are num-
bered left to right when facing the PiC900. Slot 1 and slot 2 are reserved for the
CSM/CPU module. On an expansion rack, slot 2 is reserved for the I/O Driver
module.

Master Rack

Enter 4 to 6 characters

• 1st - I or O Input or Output
• 2nd - 0 - 1 First digit of module slot number (omit if 0*)
• 3rd - 0 - 9 Second digit of module slot number
• 4th - . (point) Used as a separator
• 5th - 0 - 3 First digit of channel number (omit if 0*)
• 6th - 0 - 9 Second digit of channel number

Expansion Rack I/O

Enter 5 to 8 characters

• 1st - I or O Input or Output
• 2nd - 1 - 7 Expansion rack number (1 - 7)
• 3rd - . (point)Used as a separator
• 4th - 0 - 1 First digit of slot # (omit if 0*)
• 5th - 0 - 9 Second digit of slot #
• 6th - . (point)Used as a separator
• 7th - 0 - 3 First digit of channel number (omit if 0*)
• 8th - 0 - 9 Second digit of channel number

Expansion Block I/O

Enter 5 to 7 characters

• 1st/2nd - BI or BO Block Input or Block Output
• 3nd - 0 - 1 First digit of module number (omit if 0*)
• 4rd - 0 - 9 Second digit of module number
• 5th - . (point) Used as a separator
• 6th - 0 - 3 First digit of point number (omit if 0*)
• 7th - 0 - 9 Second digit of point number

*Zeros are entered automatically by the software in these cases.

I/O Pt. The I/O point is for physical inputs and outputs only. It defines
the rack and slot location of the hardware module, and the
channel location of the input or output. An input/output module
must be declared for the slot in the hardware declarations table.
The data type of the element must be boolean (or the cursor
will not move to this field).

When using Block I/O modules, the I/O point entered must
begin with BI for block input or BO for block output. Include
the block number and the point number separated by a decimal
point.

 ÕÕI/O Pt.ÕÕÕ
 I04.03
 INT
3-30 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Examples

If the input is in master rack at slot 4, channel 3, you enter:
I4.3

If the output is from expansion rack # 7 at slot 12, channel 10, you enter:
O7.12.10

If the input is in block I/0 module 33, point 5, you enter:
BI33.5

On modules having both inputs and outputs, the points are numbered sequentially
(starting at 1 for inputs and starting at 1 for outputs) in the software declarations
table as shown in the two examples below.

Remember that the status of a fuse (represented as FB in the table above) is
declared as an input.

BLOWN FUSE

The status of up to four fuses on an AC Output, DC Output, or combi-
nation I/O module can be made available to your ladder program. De-
clare the fuses as inputs in the software declarations table.

The 24V DC Output 16 point module
with four fuses

The 24V DC I/O 16/8 source module
with two fuses

Name Type I/O Point Name Type I/O Point

OUT1 BOOL O04.01 IN1 BOOL I05.01

OUT2 BOOL O04.02 IN2 BOOL I05.02

.

.

.

OUT16 BOOL O04.16 IN16 BOOL I05.16

FB1 BOOL I04.01 OUT1 BOOL O05.01

FB2 BOOL I04.02 OUT2 BOOL O05.02

.

FB4 BOOL I04.04 . . .

OUT8 BOOL O05.08

FB1 BOOL I05.17

FB2 BOOL I05.18
Starting PiCPro/PiCServoPro 3-31

Fast Inputs

The fast inputs available on the encoder, resolver, and servo encoder hardware
modules can be declared as inputs in the software declaration table. The inputs
are:

where X = the slot number

NOTE: If you are using the FAST_REF, MEASURE, or REGIST functions, you
cannot declare the fast inputs in the software declaration table. In that case, use the
STATUSSV function to find out the status of the fast inputs.

Initial Values for Bitwise and Numeric Variables

Values can be entered in binary, octal, decimal, or hexadecimal. Binary values
must be preceded by a 2#, octal by an 8#, and hexadecimal by a 16#. Decimal
numbers are not preceded by any characters.

PiCPro can convert the display of the values from one representation to another:

1. Press <F8> to display a list of the number systems.

2. Move the cursor to the applicable one.

3. Press <Enter> to convert the value.

Examples of the number 45

Binary 2#101101

Decimal 45

Octal 8#55

Hexadecimal 16#2D

Initial Values for Strings

String values are entered in a box, which appears when you start typing.

If you type more characters than you designated for the size of the string, PiCPro
changes the size of the string automatically.

For Channel 1 For Channel 2 For Channel 3 For Channel 4
X.1 X.3 X.5 X.7

Init. Val.

This field is optional. All variables have a default value equal
to zero. A value entered in this field becomes the (new) default
value. Default values go into effect when cold restarts are done.
They also go into effect for warm restarts for variables that are
not retentive.

 ÕÕInit. Val.

 10

÷ƒsize = 0ƒƒƒ∑
∫ ∫
∫ ∫
∫ ∫
∫ ∫
∫ ∫
”ƒƒΩ
3-32 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Only the first 11 characters of a string display in the Init. Val. field.

To display all characters

Press <ALT-E> when the cursor is in the Init. Val. field

Initial Values for Time Variables

• Values must be preceded by a D# for DATE, TOD# for TIME_OF_DAY or
DT# for DATE_AND_TIME.

• PiCPro enters these characters automatically - type only the numbers,
dashes, and colons:

Examples

D#1991-02-23

TOD#14:43:56

DT#1991-02-23-14:43:56

Initial Values for Time Duration Variables

Values are entered in increments of days, hours, minutes, seconds, and millisec-
onds. You must enter a d, h, m, s, and/or ms after an increment.

PiCPro can convert the display of the values from one representation to another:

1. Press <F7> to display a list of the increments.

2. Move the cursor to the applicable one.

3. Press <Enter> to convert the value.

Examples (maximum values shown)

T#49d17h2m47s295ms
T#1193h2m47s295ms
T#71582m47s295ms
T#4294967295ms

Long
name

This field is optional. It is used to enter a longer, more
descriptive name than the eight character Name. The Long
Name is displayed in this table and in the network using the
Longname command. It can be printed (see Print command
under Module).

•Enter from 1 to 40 characters.

After the Long Name is entered, only the first 10 characters
display. To display all characters, press <ALT-E> when the
cursor is in this field.

ÕÕÕInit. Val.ÕÕLong
 verylongstr

 ÕÕÕLong NameÕÕ
 long description
Starting PiCPro/PiCServoPro 3-33

Declaring Arrays and Structures

This section will cover software declarations of arrays, structures, structures with
arrays, an array of structures, and an array of structures with arrays. Each of these
represents a method of handling groups of variables.

Arrays

An array is a group of variables. Each variable in an array must be of the same data
type. Any data type is acceptable. An array can have from 2 to 999 variables and
the variables are called elements. Arrays are useful for handling large groups of
like data items.

As an example, assume that you have a list of 200 rod part numbers. An array
could be used to store the list. Each part number is an element in the array. This is
illustrated below.

An Array of Part Numbers

Declaring an Array

To declare an array, follow these steps:

1. Enter the Name and Type for the array variable you want to create.

In the example, RODS is the Name and a STRING with four characters is the
data Type.

NOTE: If all the elements in your array are to have the same value, enter the
value in the Init. Val column now before you create the array. That value will
then appear with each element in the array when it is declared. This will not be
done for the example since each rod part number is different and will have to
be entered individually.

Part Number Data
Type

STRING

STRING

.

.

.

STRING

STRING

R101

.

R200

.

R102

R199

…NameÕÕÕÕÕÕÕTypeÕÕÕÕÕÕÕÕÕÕÕÕÕ
∫RODS STRING[4]
3-34 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

2. Position the cursor in any field and press <ALT-A>. The Array Length box
appears: Enter a number from 2 to 999 for the array length.

In the example, there will be 200 elements in the array.

3. Press <F10> to accept your array length.

4. After you have entered the number of elements, x, that are to be in the array,
the variable gets duplicated that number of times. The index numbers (0...x-1)
appear behind the data type of the variable.

In the example, x = 200 and the index numbers will be 0 through 199 as shown
below.

5. To initialize or change the values of the elements in the array, move the cursor
to the Init. Val. field.

6. Press <Alt E>.

This box listing all the elements appears. If no initial value was entered before
the array was declared, then there will be no value at each element. (Scroll the
screen to view all the elements.)

7. To enter values, move the cursor with the arrow keys to the desired element.
Type in the value you want.

In the example, you would type in R101 at 0, R102 at 1, R103 at 2 through
R200 at 199.

8. Press <F10>.

The word ..Array.. will show in the Init. Val. field if the initial value for any ele-
ment in the array has been entered or changed.

⁄ƒƒƒƒƒƒ Array Length ƒƒƒƒƒƒø
≥ ≥
≥ Enter array length: ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

200

…NameÕÕÕÕÕÕÕTypeÕÕÕÕÕÕÕÕÕÕÕÕÕ
∫RODS STRING[4](0..199)

’ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ∏
≥ 0: ≥
≥ 1: ≥
≥ 2: ≥
≥ 3: ≥
≥ 4: ≥
≥ 5: ≥
≥ 6: ≥
≥ 7: ≥
≥ 8: ≥
≥ 9: ≥
≥ 10: ≥
≥ 11: ≥
≥ 12: ≥
≥ 13: ≥
‘ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕæ
Starting PiCPro/PiCServoPro 3-35

NOTE: If you increase the array length the "added" elements will have the
same value as the first element (index 0).

In the example, each additional element beyond 199 would have the value of
R101. The value for each additional element can be changed by following the
procedure above.

Referencing and Accessing Elements of Arrays in the Module

Array elements are referenced according to the position of the element within the
array. The positions are numbered 0 through x-1, where x is the number of ele-
ments. The position numbers are called index numbers and they act as pointers to
the elements. To access an element, you enter the name of the array and the index
number of the element.

One of the powerful features of arrays is that the index number can be a variable
(USINT or UINT). By using a variable and changing its value, you are able to
access every element in the array with a minimal number of commands.

The index number is entered in parentheses after the array name. For the example
array, the name RODS followed by constants or a variable called RODNUM can
be used to index the array as shown below.

IMPORTANT

Be careful to enter the correct index number for the element you want. PiCPro
does not prevent you from entering an invalid index number. If an index number
is greater than "x - 1," a memory location after the array will be accessed. The
results are unpredictable.

Name with constant or variable Contents of each element Data type

RODS(0) or RODS(RODNUM) R101 string

RODS(1) or RODS(RODNUM) R102 string

. . . .

RODS(198) or RODS(RODNUM) R199 string

RODS(199) or RODS(RODNUM) R200 string

…NameÕÕÕÕÕÕÕTypeÕÕÕÕÕÕÕÕÕÕÕÕÕI/O Pt.ÕÕÕÕInit. Val.ÕÕLong
∫RODS STRING[4[(0..199) ...ARRAY...
3-36 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Structures

A structure is a group of variables where the variables can be of any data type
except another structure. Each variable that comprises a structure is called a mem-
ber. A structure can have an unlimited number of members.

When you create a structure (in the software declarations table) you are creating a
template or framework for a group of data items.

As an example, assume that you have some information about a rod part that you
want grouped together. The data consists of a part number (PART), a description of
the part (DESC), its diameter (DIAM), the first operation on the part (OPER), and
the time it takes to perform the operation (TIME).

You could create a structure with five members, depicted in the box below.

Member name PART DESC DIAM OPER TIME

Data type string string usint string time

Declaring Structures

To declare a structure:

1. Enter its name.

For the example, the name will be ROUTING.

2. Position the cursor on the Type field.

3. Press <F8> to call up the list of types.

4. Select STRUCT as the type.

The screen will display as shown below:

The END_STRUCT entry is entered automatically by PiCPro.

NOTE

When booleans are used as data types in structures, each boolean occupies a
byte of memory and more scan time is required. It is the most significant bit of
the byte that indicates the state of the boolean.

Member data

R101
class A
 rod 126 deburr 15m

 …NameÕÕÕÕÕÕÕTypeÕÕÕÕÕÕÕÕÕÕÕ
 ∫ROUTING STRUCT
 ∫ END_STRUCT
Starting PiCPro/PiCServoPro 3-37

5. Enter the members for the structure.

For the example, there will be five members entered.

Position the cursor in the Name field on the END_STRUCT line. Press
<Insert>. Enter the member name, type, etc. as you would for any variable.

NOTE: A dot or period will be automatically inserted before the member name
by PiCPro. All member names (and only member names) start with a dot.

Members can be any data type except another structure.

Referencing and Accessing Members of Structures

To reference a member or access the data, enter the structure and member names,
separated by a dot or period.

For the ROUTING structure above with the members PART, DESC, DIAM,
OPER, and TIME, the names on the left are used in the module:

Structure with Arrays

A structure with arrays is a structure where one or more members are arrays of
data. Given the definitions and requirements of arrays and structures, it follows
that for a structure with arrays:

1. Each element in an array must be the same data type.

2. Each array can be a different data type.

3. The arrays can have different numbers of elements.

As an example, assume that for the structure shown earlier the information for that
part is expanded to include data about four diameters, operations, and times. This
is depicted in the following diagram of a structure that has three members which
are arrays; DIAM, OPER, and TIME.

Name that you use to
reference member

Contents of the
member

Data type you
assign

ROUTING.PART R101 string

ROUTING.DESC class A rod string

ROUTING.DIAM 126 usint

ROUTING.OPER deburr string

ROUTING.TIME 15 time

…NameÕÕÕÕÕÕÕTypeÕÕÕÕÕÕÕÕÕÕÕÕÕI/O Pt.ÕÕÕÕInit. Val.Õ
∫
∫ROUTING STRUCT
∫.PART STRING[4]
∫.DESC STRING[20]
∫.DIAM USINT
∫.OPER STRING[10]
∫.TIME TIME
∫ END_STRUCT
3-38 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

PART DESC DIAM OPER TIME

Declaring Structures with Arrays

A member of a structure is made into an array the same way that any variable is
made into an array. With the cursor in any field on the member line, press <Alt A>.
Enter the array length and press <F10>.

Also, initial values are assigned the same way that they are for arrays. With the
cursor in the Init. Val. field of the member, press <Alt E>.

DIAM, OPER, and TIME in the example are now arrays with four elements each.
Note that the initial value of one or more of their elements has been changed.

Referencing and Accessing Data in a Structure with Arrays

Since an array in a structure is a member, the entire array is accessed as any mem-
ber of a structure is accessed. Enter the structure name and member name.

The lowest level of data in a structure with arrays is an element in an array. To
access or reference an element you use a combination of the methods used to
access elements of arrays and members of structures. Input the name of the struc-
ture, the name of the member, and an index number for the array element.

For the structure with arrays shown above, where the structure is named ROUT-
ING, array element data is accessed as follows.

NOTE: A variable instead of a constant can be used for the index number.

DIAM elements Contents OPER elements Contents TIME elements Contents

ROUTING.DIAM(0) 126 ROUTING.OPER(0) deburr ROUTING.TIME(0) 15

ROUTING.DIAM(1) 122 ROUTING.OPER(1) polish ROUTING.TIME(1) 30

ROUTING.DIAM(2) 124 ROUTING.OPER(2) plate ROUTING.TIME(2) 90

ROUTING.DIAM(3) 123 ROUTING.OPER(3) polish ROUTING.TIME(3) 30

R101
class A
 rod 126 deburr 15m

122 polish 30m

124 plate 90m

123 polish 30m

…NameÕÕÕÕÕÕÕTypeÕÕÕÕÕÕÕÕÕÕÕÕÕI/O Pt.ÕÕÕÕInit. Val.Õ
∫
∫ROUTING STRUCT
∫.PART STRING[4]
∫.DESC STRING[20]
∫.DIAM USINT(0..3) ...ARRAY...
∫.OPER STRING[10] 0..3) ...ARRAY...
∫.TIME TIME0..3) ...ARRAY...
∫ END_STRUCT
Starting PiCPro/PiCServoPro 3-39

Array of Structures

An array of structures is an array whose elements are structures. By definition of
an array (that each element has the same data type) each structure in an array has
the same format. (i.e., if the first member of a structure is a string, then the first
member of all the structures in the array is a string, etc.)

As an example, assume that for the array and structure described above, you want
to have the structured data for all 200 parts. This is depicted in the following dia-
gram. Data for only 2 of the 200 parts is shown.

Declaring an Array of Structures

To declare an array of structures, follow these steps :

1. Declare the structure as described above. Add the members (Names, Types,
etc.)

2. Position the cursor on the line with the structure Name (ROUTING for the
example) in any field.

3. Press <ALT-A>. Enter the array length. (200 for the example.) The length of
the array appears by STRUCT.

4. To initialize members, position the cursor in the Init. Val field of the desired
member. Press <Alt E>.

Three boxes appear as shown below.

class A
 rod 126 deburr 15mR101

.

R200

.

.

class B
 rod

113 deburr 20m

.

…NameÕÕÕÕÕÕÕTypeÕÕÕÕÕÕÕÕÕÕÕÕÕI/O Pt.ÕÕÕÕInit.
∫
∫ROUTING STRUCT(0..199)
∫.PART STRING[4]
∫.DESC STRING[20]
∫.DIAM USINT
∫.OPER STRING[10]
∫.TIME TIME
∫ END_STRUCT
3-40 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

The cursor is always located in the middle box and only values in this box can
be changed. Use the left/right arrow keys to scroll the boxes left and right to
access other elements.

Pressing the right arrow key once brings these boxes into view.

And pressing the right arrow key again brings up these boxes.

The number of rows in each box corresponds to the number of members in
each structure (all of the structures are alike).

In the example, there are five members. Each box has five rows.

Using the arrow keys, position the desired array element in the middle box.

5. Position the cursor on the line of the member. Enter the value.

Press <Enter> to enter the value.

When all values have been entered, press <F10> to accept them.

For the example the boxes could contain the following:

…NameÕÕÕÕÕÕÕTypeÕÕÕÕÕÕÕÕÕÕÕÕÕI/O Pt.ÕÕÕÕInit. Val.ÕÕ
∫ ROUTING(0) ROUTING(1)
∫ROUTING STRUCT(0..199)⁄ƒƒƒƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒƒƒƒø
∫.PART STRING[4] ≥ ≥ ≥ ≥ ≥ ≥
∫.DESC STRING[20] ≥ ≥ ≥ ≥ ≥ ≥
∫.DIAM USINT ≥ ≥ ≥ ≥ ≥ ≥
∫.OPER STRING[10] ≥ ≥ ≥ ≥ ≥ ≥
∫.TIME TIME ≥ ≥ ≥ ≥ ≥ ≥
∫ END_STRUCT ¿ƒƒƒƒƒƒƒƒƒƒƒŸ ¿ƒƒƒƒƒƒƒƒƒƒƒŸ ¿ƒƒƒƒƒƒƒƒƒƒƒŸ

…NameÕÕÕÕÕÕÕTypeÕÕÕÕÕÕÕÕÕÕÕÕÕI/O Pt.ÕÕÕÕInit. Val.ÕÕ
∫ ROUTING(0) ROUTING(1) ROUTING(2)
∫ROUTING STRUCT(0..199)⁄ƒƒƒƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒƒƒƒø
∫.PART STRING[4] ≥ ≥ ≥ ≥ ≥ ≥
∫.DESC STRING[20] ≥ ≥ ≥ ≥ ≥ ≥
∫.DIAM USINT ≥ ≥ ≥ ≥ ≥ ≥
∫.OPER STRING[10] ≥ ≥ ≥ ≥ ≥ ≥
∫.TIME TIME ≥ ≥ ≥ ≥ ≥ ≥
∫ END_STRUCT ¿ƒƒƒƒƒƒƒƒƒƒƒŸ ¿ƒƒƒƒƒƒƒƒƒƒƒŸ ¿ƒƒƒƒƒƒƒƒƒƒƒŸ

…NameÕÕÕÕÕÕÕTypeÕÕÕÕÕÕÕÕÕÕÕÕÕI/O Pt.ÕÕÕÕInit. Val.ÕÕ
∫ ROUTING(1) ROUTING(2) ROUTING(3)
∫ROUTING STRUCT(0..199)⁄ƒƒƒƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒƒƒƒø
∫.PART STRING[4] ≥ ≥ ≥ ≥ ≥ ≥
∫.DESC STRING[20] ≥ ≥ ≥ ≥ ≥ ≥
∫.DIAM USINT ≥ ≥ ≥ ≥ ≥ ≥
∫.OPER STRING[10] ≥ ≥ ≥ ≥ ≥ ≥
∫.TIME TIME ≥ ≥ ≥ ≥ ≥ ≥
∫ END_STRUCT ¿ƒƒƒƒƒƒƒƒƒƒƒŸ ¿ƒƒƒƒƒƒƒƒƒƒƒŸ ¿ƒƒƒƒƒƒƒƒƒƒƒŸ

…NameÕÕÕÕÕÕÕTypeÕÕÕÕÕÕÕÕÕÕÕÕÕI/O Pt.ÕÕÕÕInit. Val.ÕÕ
∫ ROUTING (0) ROUTING(1) ROUTING(2)
∫ROUTING STRUCT(0..199)⁄ƒƒƒƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒƒƒƒø
∫.PART STRING[4] ≥ R101 ≥ ≥ R102 ≥ ≥ R103 ≥
∫.DESC STRING[20] ≥class A rod≥ ≥class A rod≥ ≥class B rod≥
∫.DIAM USINT ≥ 123 ≥ ≥ 125 ≥ ≥ 113 ≥
∫.OPER STRING[10] ≥ deburr ≥ ≥ deburr ≥ ≥ deburr ≥
∫.TIME TIME ≥ 15m ≥ ≥ 14m ≥ ≥ 15m ≥
∫ END_STRUCT ¿ƒƒƒƒƒƒƒƒƒƒƒŸ ¿ƒƒƒƒƒƒƒƒƒƒƒŸ ¿ƒƒƒƒƒƒƒƒƒƒƒŸ
Starting PiCPro/PiCServoPro 3-41

Since a structure in an array is simply an element in the array, the entire structure is
accessed as any element in an array is accessed. Enter the name of the array and
the element's index number.

The lowest level of data in an array of structures is a member in one of the struc-
tures. To access a member, use a combination of the methods used to access mem-
bers of structures and elements of arrays. Input the name of the structure, (all
structures in an array have the same name), its index number, and the name of the
member.

For the array of structures shown above, where the structures are named ROUT-
ING, data is accessed as follows.

NOTE: A variable instead of a constant can be used for the index number.

Array of Structures with Arrays

An array of structures with arrays is an array of structures each of which has one
or more members which are arrays of data. This is the most complex representa-
tion of data that can be created for the PiC900. It combines the four types of
groups of data - structures, arrays, arrays of structures, and structures with arrays.

IMPORTANT

If the members of a structure are to be initialized in the declarations table, ar-
rays of structures (and arrays of structures with arrays) can have no more than
14 members in the structure if 25 display lines has been chosen in Computer
Setup, 32 members if 43 lines has been chosen, and 39 members if 50 lines has
been chosen.
If the members are not being initialized in the declarations table, the number of
members is unlimited.

To access members in the
first structure, enter this

To access members in the
second structure, enter this

To access members in the
last structure, enter this

ROUTING(0).PART ROUTING(1).PART ROUTING(199).PART

ROUTING(0).DESC ROUTING(1).DESC ROUTING(199).DESC

ROUTING(0).DIAM ROUTING(1).DIAM ROUTING(199).DIAM

ROUTING(0).OPER ROUTING(1).OPER ROUTING(199).OPER

ROUTING(0).TIME ROUTING(1).TIME ROUTING(199).TIME
3-42 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Building upon the previous examples, assume that structured data is to be created
for the 200 parts, and that each structure should contain the arrayed data for four
operations. The following diagram depicts the array of structures with arrays. Only
2 of the 200 elements are shown.

class A
 rod

126 deburr 15m

122 polish 30m

124 plate 90m

123 polish 30m

R101

.

R200

.

.

class B
 rod

113 deburr 20m

110 polish 45m

112 plate

111 polish 30m

.

120m
Starting PiCPro/PiCServoPro 3-43

Declaring an Array of Structures with Arrays

Declaring an array of structures with arrays is done as explained above by declar-
ing a structure, an array, and a structure with an array.

The initialization of arrays of structures with arrays is the same as described for
arrays of structures with an additional step for a member which is an array. That
array is initialized like other arrays are initialized.

In the following example, the DIAM member has been declared an array. To ini-
tialize the elements in the array, position the cursor in the Init. Val. field on the
DIAM line. Press <Alt E> which brings up the three array of structure boxes. Press
<Alt E> again to bring up the array box as shown below.

Values are entered as they are for all arrays.

Referencing and Accessing the Data in an Array of Structures with Arrays

A structure is accessed the same way that it is accessed for an array of structures.

An array is accessed the same way that a member in an array of structures is
accessed.

The lowest level of data in an array of structures with arrays is an element in an
array. To access an element, you use a combination of the methods used to access
members and arrays. Input the name of the structure, its index number, the name of
the member, and the index number of the element.

IMPORTANT

If the members of a structure are to be initialized in the declarations table, ar-
rays of structures (and arrays of structures with arrays) can have no more than
14 members in the structure if 25 display lines has been chosen in Computer
Setup, 32 members if 43 lines has been chosen, and 39 members if 50 lines has
been chosen.
If the members are not being initialized in the declarations table, the number of
members is unlimited.

…NameÕÕÕÕÕÕÕTypeÕÕÕÕÕÕÕÕÕÕÕÕÕI/O Pt.ÕÕÕÕInit. Val.ÕÕ
∫ ROUTING(0) ROUTING(1)
∫ROUTING STRUCT(0..199)⁄ƒƒƒƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒƒƒƒø
∫.PART STRING[4] ≥ ≥ ≥ ≥ ≥ R102 ≥
∫.DESC STRING[20] ≥ ≥ ≥ ≥ ≥class B rod≥
∫.DIAM USINT(0...3) ≥ ≥ ≥ ≥ ≥ 113 ≥
∫.OPER STRING[10] ≥ ≥ ≥ ≥ ≥ deburr ≥
∫.TIME TIME ≥ ≥ ≥ ≥ ≥ 15m ≥
∫ END_STRUCT ¿ƒƒƒƒƒƒƒƒƒƒƒŸ ¿ƒƒƒƒƒƒƒƒƒƒƒŸ ¿ƒƒƒƒƒƒƒƒƒƒƒŸ

’ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ∏
≥ 0: 126 ≥
≥ 1: 122 ≥
≥ 2: 124 ≥
≥ 3: 123 ≥
‘ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕæ
3-44 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

For the array of structures with arrays shown above, where the name of each struc-
ture is ROUTING, the diameter data is accessed as follows for part #s R101 and
R200.

Module Menu - Network

The commands on the Network, Element, and View menus are covered in the next
three sections.

Network

On-Line Editing

In normal program development, you change your ladder and then download the
entire module to the PiC. The scan is stopped during this download and must be
started again when the download is complete.

There may be times when you need to edit the ladder on-line without stopping the
scan. If you have made changes to a ladder that is currently being scanned in the
PiC and do a Module Download, the following box appears. You can choose to
download the entire module stopping the scan (off-line edit) or to send a "patch"
with the scan running (on-line edit).

To access diameter data for
part # R101, enter this:

Contents To access operation data
for part # R200, enter this:

Contents

ROUTING(0).DIAM(0) 126 ROUTING(199).OPER(0) deburr

ROUTING(0).DIAM(1) 122 ROUTING(199).OPER(1) polish

ROUTING(0).DIAM(2) 124 ROUTING(199).OPER(2) plate

ROUTING(0).DIAM(3) 123 ROUTING(199).OPER(3) polish

Insert <Ins> Inserts a network where the cursor is located, and renumbers the networks
if the cursor is not at the end of the module. Pressing the <INS> key has
the same effect as selecting this command.

Delete Deletes the network the cursor is located on. PiCPro will prompt you first.
Pressing the key has the same effect as selecting this command.

Edit <Enter> Enters the network editing mode allowing you to make changes to an
existing network.

Pressing <Enter> when the cursor is on the network number has the same
effect as selecting this command.
Starting PiCPro/PiCServoPro 3-45

When you choose Patch the scanning ladder, only the changes you have just made
will be downloaded and the scan is not stopped. When the patch download is com-
plete, the following box appears and tells you what resources you still have avail-
able.

Some things to keep in mind when using the on-line edit (patching) feature are
listed below.

1. The application program cannot be in EPROM memory.

2. A downloaded patch becomes effective at the beginning of the next scan.

3. You can do up to 100 patches in a module with a limit of 40 internal tasks in any one patch
download, depending on memory available. If you exceed 40 tasks at one time, you must
do a full download stopping the scan.

Every time a network is modified, it is considered one patch but could include several
tasks.

The ‘Resources Still Available’ box lists the number of patches you have left.

4. PiCPro establishes a link table for labels and/or function/blocks added during on-line edit-
ing.

The ‘Resources Still Available’ box lists the number of links you have left.

5. You can use <Ctrl> S to undo the last patch(es) downloaded to the PiC. Although <Ctrl> S
removes the patch(es) from the PiC, it does not remove them from the LDO on your work-
station. You can now redo the patch(es) in the LDO on your workstation and do another
patch download.

…ÕÕÕª
∫ Stop the scan and download the entire module, ∫
∫ or allow the scan to continue and download only ∫
∫ the changes as patches? ∫
«ƒƒƒ∂
∫ SSSStop the scan and download ∫
∫ Patch the scanning ladder ∫
»ÕÕÕº

…ÕÕª
∫ * Resources Still Available * ∫
∫ ∫
∫ 8174 data bits ∫
∫ 32758 data bytes ∫
∫ 260656 code bytes ∫
∫ 99 patches ∫
∫ 26 label/function links ∫
∫ ∫
∫ Use <Ctrl-S> to abort the latest changes ∫
∫ ∫
»ÕÕÕÕÕÕÕ Press any key to continue ÕÕÕÕÕÕÕÕº
3-46 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

NOTE: <Ctrl> S removes the operation but not necessarily the effect of that operation
from the PiC. For example, if you add a new network that turns on a new coil and do a
patch download followed by a <Ctrl> S, the network is removed from the PiC but the coil
will remain on.

6. The changes you make and download with on-line edit are a permanent part of the pro-
gram in the PiC. They are included in any backup from the PiC.

7. When working with UDFBs, on-line editing can be done in the main module and in the
source ladders of any UDFBs.

8. If you have ignored a Save request from PiCPro at some point, on-line editing is prohib-
ited.

9. You can add new entries to the declaration table anywhere in the table, but the physical
address will be at the end of the list in the PiC.

10. Changes to existing hardware or software declarations will prevent a patch download.

You must do a full download to incorporate them into the module in the PiC.

11. You can add new variables with initial values with on-line edit, but you cannot change or
add initial values to existing variables without doing a full download.

The steps are:

1. Locate the cursor on a network

2. Select the Mark (start) command.

The network gets marked (highlighted) and the menu changes to Mark (end).
To mark more than one network, scroll the screen. Do not move the cursor if
you want only one network marked

3. Select Mark (end).

The screen displays the following prompt:

Find Locates (and scrolls to) a network. When you select this command you
are prompted to enter the number or label of the network you want to
find.Pressing <F8> will bring up a list of any network labels used in the
ladder.

Mark
(start)

Moves, copies, or deletes one or more networks. This command applies
only to whole networks (not portions), and moves or copies them to a
location in front of another network (not within one).

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ Marked Networks ∫
«ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ∂
∫ Move ∫
∫ Copy ∫
∫ Delete ∫
∫ Unmark ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº
Starting PiCPro/PiCServoPro 3-47

4. Select Move, Copy, Delete or Unmark. The menu changes to Mark(quit). You
can select "quit" to unmark the network and not make any changes to it.

Move The screen displays the following prompt at the end of the
marked selection.

Move here <Enter>, or quit <Esc>

Scroll the screen to the location where you want the marked
network(s) to be moved. The prompt moves too. Press
<ESC> to exit - unmark the network and not move it. Press
<Enter> to move the network. It gets deleted from its previ-
ous location and inserted in front of the network that is high-
lighted by the prompt.

Copy Works identically to the Move command, except the net-
work is copied. The original network remains in place and a
copy of it is placed at the location of the prompt.

Delete Works identically to the Delete command and DEL key
(described above).

Unmark Unmarks a network, and exits out of the marking procedure.

Label Assigns a label to a network. This is the label that must be present for a
Jump command. Position the cursor on the network number before
selecting this command. Labels are 1 to 8 characters - alpha, numeric,
or underscore (_). The first character cannot be numeric.

If a Jump command is in the network and there is no network with the
corresponding label, an error message appears when you try to down-
load the module.

Comment Calls up the "comment editor" which can be used to insert comments
(documentation) into a network. Comments make up the .REM file.
They are entered and get displayed directly below the network number.
They can be up to 100 lines in length, with 80 characters per line. Only
the top line of a comment is displayed at any time except when this
command is selected. A down arrowhead at the end of a comment line
indicates that there is more than one line of comments. Refer to the
<F9> Help screen, after selecting the Comment command, for detailed
information on comment editor commands.
3-48 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Module Menu - Element

All other types

This selection allows you to find any variable included in your program.

Enter the name of the variable. NOTE: Pressing <F8> will bring up a list of vari-
ables.

Leave the default direction forward or press N to enter No and search backward.
Press <F10> to begin search.

Find You can select the type of find you want to do from the following
prompt which is displayed when the Find command is selected:

The search for any type is done either forward or backwards from the
cursor location.

After the first occurrence is found, the following box appears and you
can choose Next to search forward or Previous to search backwards for
another occurrence.

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ Find ∫
«ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ∂
∫ All other types ∫
∫ Coils only ∫
∫ Function/block type ∫
∫ Jump to label/sub. ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

…ÕÕÕÕÕÕÕÕÕÕª
∫ Find ∫
«ƒƒƒƒƒƒƒƒƒƒ∂
∫ Next ∫
∫ Previous ∫
»ÕÕÕÕÕÕÕÕÕÕº

⁄ƒƒƒƒƒƒƒƒƒƒƒ Find Variable ƒƒƒƒƒƒƒƒƒƒƒø
≥ ≥
≥ Search variable: ≥
≥ ≥
≥ Dir. forward: Yes ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ
Starting PiCPro/PiCServoPro 3-49

Coils only

This selection allows you to find any coils included in your program.

Enter the name of the coil. NOTE: Pressing <F8> will bring up a list of available
coils.

Leave the default direction forward or press N to enter No and search backward.
Press <F10> to begin search.

Function/block type

This selection allows you to find any function/block included in your program.

Enter the name of the function/block. NOTE: Pressing <F8> will bring up a list of
available function/blocks.

Leave the default direction forward or press N to enter No and search backward.
Press <F10> to begin search.

Jump to label/sub

This selection allows you to find any jump to a label/subroutine command included
in your program.

⁄ƒƒƒƒƒƒƒƒƒ Find Coils Only ƒƒƒƒƒƒƒƒø
≥ ≥
≥ Search coil: ≥
≥ ≥
≥ Dir. forward: Yes ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒ Find Function Type ƒƒø
≥ ≥
≥ Search type: ≥
≥ ≥
≥ Dir. forward: Yes ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

⁄ƒƒ Find Jump Label/Sub. ƒø
≥ ≥
≥ Search label: ≥
≥ ≥
≥ Dir. forward: Yes ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ
3-50 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Enter the label. NOTE: Pressing <F8> will bring up a list of available labels.

Leave the default direction forward or press N to enter No and search backward.
Press <F10> to begin search.

Replace Replaces a variable or function block with a different variable or func-
tion block which may or may not be of the same type. This command is
applied forward from the cursor location. If there is ladder logic before
the cursor it is not searched. The substituting element must have been
declared or this command will not execute.

When the replace command is selected the following prompt appears:

After the name of the element has been entered, PiCPro searches for the
first occurrence of the variable/function block. When the first one is
found, this prompt is displayed:

If you respond "yes", the first change is made and the second occur-
rence (if it exists) is displayed. The process continues until all occur-
rences have been located.

If you respond "no", the first occurrence is not changed and the second
occurrence is searched for and displayed (if it exists). The process con-
tinues until all occurrences have been located (or you press ESC).

If you respond "global", all occurrences (after the cursor) are changed.

 ⁄ƒƒƒ Replace Variable ƒƒƒø
 ≥ ≥
 ≥ Replace: ≥
 ≥ ≥
 ≥ With: ≥
 ≥ ≥
 ≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
 ≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
 ≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
 ¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ Change variable ∫
∫ TON1? ∫
«ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ∂
∫ Yes ∫
∫ No ∫
∫ Global ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº
Starting PiCPro/PiCServoPro 3-51

Module Menu - View

Zoom Toggles the view of the module between the normal display and an
expanded display showing any longnames assigned to variables.

User Function Opens the module that was used to create a user defined function
block (UDFB) when running a module containing the UDFB.
Allows you to view through animation the logic occurring within the
function block.

Prev. Function Toggles back to the user defined function block that was opened pre-
viously to the one in view now. Allows you to view through anima-
tion the logic occurring within the function block.

⁄ƒƒƒƒƒƒƒƒƒƒƒƒ View User Function ƒƒƒƒƒƒƒƒƒƒƒø
≥ ≥
≥ From the list, move the cursor ≥
≥ to the desired function, and ≥
≥ press <Enter>. <F8> will recall ≥
≥ the list. ≥
≥ ⁄ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒø
≥ User Defined Function: ≥ADD :TEST1 ≥
≥ ¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒŸ
3-52 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

NOTE

The View User and View Previous Function features are only available from within a calling program.
An example of how they can be used is shown below.

Module TEST1.LDO is used to create the user defined function block TEST1. The function block TEST1
is used in the logic for module TEST2.LDO to create TEST2 function block. TEST2 is used in your final
module which is your calling program.

With the View - User Function feature, you can view and animate each module in descending order. With
PROG.LDO running you can view TEST2.LDO. From TEST2.LDO you can view TEST1.LDO as
illustrated below. With the View Previous Function, you can step back through the viewing order.

(Contains TEST2
function block)

PROG.LDO
(Calling program) TEST2.LDO

(Contains TEST1
function block)

VU (View - User)
to look at the logic

for TEST2

VU (View - User)
to look at the logic

for TEST1

Or MO (Module -
Open) to return
directly to your

program

TEST1.LDO

Used to create
TEST2 function

block

Used to create
TEST1 function

block

VP (View -
Previous) to look at

the logic for the
program LDO

VP (View -
Previous) to look at
the logic for TEST2
Starting PiCPro/PiCServoPro 3-53

NOTES
3-54 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

CHAPTER 4 System Integration

Introduction

Once an application program has been created with PiCPro or PiCServoPro soft-
ware, there are several PiCPro commands that allow you to integrate the program
with the PiC900.

The commands are found under the Processor menu and under the Module menu
as shown in Figure 4-1 and will be covered in this chapter. The Module menu com-
mands will be covered first. Note that the last 10 Module menu commands are cov-
ered here.

FIGURE 4 - 1. PiCPro commands covered in Chapter 4

Workstation Processor Module Declarations Network Element View

Commands
covered in
Chapter 4

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ New ∫
∫ Open ∫
∫ Close ∫
∫ Save ∫
∫ save As ... ∫
∫ Download ∫
∫ Monitor ∫
∫ Force ∫
∫ Print ∫
∫ UDFB build ∫
∫ Task build ∫
∫ Hex-86 dump ∫
∫ Bin-86 dump ∫
∫ build dependency List ∫
∫ fInd duplicates ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ Scan control ∫
∫ ram Disk operations ∫
∫ Flash disk operations ∫
∫ Backup user prog. ∫
∫ Restore user prog. ∫
∫ Time read/set ∫
∫ Power reset ∫
∫ set Network node id ∫
∫ Connect to node ∫
∫ stAtus ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº
Starting PiCPro/PiCServoPro 4-1

Module Menu - Download

When you create a New module or Open an existing one, the Download command
appears on the expanded Module menu. (See Figure 4-1.)

The specific memory areas cannot accept overflow from another area. If, for
instance, the value in the "data bits" category is larger than 8 K, overflow will
occur.

When the program is downloaded, anything that was in PiC900 memory is auto-
matically erased and the scan stops.

After an application program has been downloaded into the PiC900, you can con-
tinue to edit the program in the workstation using PiCPro commands. However,
any changes do not take effect until the program is downloaded again.

Downloading an application program compiles the ladder to an executable pro-
gram in the PiC900. The source form of your application program is still on your
workstation disk. It is the source form that allows you to make changes, run anima-
tion, etc.

Although you can use the Backup and Restore commands under the Processor
menu in PiCPro to back up your executable application program, this does not
backup your application in its source form.

Make backup copies of all the files listed below to ensure that you will always have
a copy of your application program in its source form.

The filenames with the following extensions must be backed up. The two files in
the column on the left must be backed up when using PiCPro and PiCServoPro. If
you are using PiCServoPro to create the application program, the additional three
files on the right must also be backed up.

PiCPro/PiCServoPro PiCServoPro
.LDO .SRV
.REM .PRO

.LIB

MD (Module - Download) These hot keys tell PiCPro to send
the module on screen to the PiC900 memory. A message in the
lower left corner says "Downloading network - - " with a num-
ber that increases from 1 to the total number of networks in the
module.

When the download is complete, the application memory usage
box appears. The memory areas are as follows:

8 K data bits for Booleans
32K data bytes for Variables
ladder code bytes for Your application ladder
total code bytes* for Your application ladder plus libraries

*The total code bytes must not exceed the application memory
(64K or 256K) available on your CPU module.

AA146-1190

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ Download complete: ∫
∫ ∫
∫ * Memory Usage * ∫
∫ 86 of 8k data bits ∫
∫ 268 of 32k data bytes ∫
∫ 308 ladder code bytes ∫
∫ 704 total code bytes ∫
∫ ∫
» Press any key to continue º
4-2 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

NOTE: If you have more than one of the files listed on the right that are part of this
application, be sure to back up all of them.

The definitions of these extensions are found in Appendix A.

Troubleshooting "Download"

These steps can help isolate the problem.

1. Check that the computer end of the cable is plugged into the computer serial
port, and the PiC900 end into CPU Port 1. Make sure the connections are tight.

2. Check that the CSM power LED is on.

3. Type WC (Workstation - Computer) to check if the correct computer serial port
is specified. If you made changes in the Computer setup screen, the new setup
parameters can not be used until you reload PiCServoPro.

4. Turn off the Run key and the CSM power switch, then turn the CSM switch
back on. Try again to download.

5. If the module still doesn't download, check each of these possible problems:

• an incorrect or damaged cable.

• a malfunctioning serial port on the workstation.

• a malfunctioning serial port on the CPU module.

If PiCPro cannot communicate with the
PiC900 system, this message comes up on
screen.

…ÕÕÕª
∫ Error :Control Communications Not Connected ∫
∫ ∫
∫ Press any key to continue, <F9> for help! ∫
»ÕÕÕº

AA147-1190
Starting PiCPro/PiCServoPro 4-3

PiCPro has a number of error-trapping routines that operate while you are creating
an application program. However some potential problems cannot be checked until
the program is being downloaded. They are pinpointed so you can correct them
easily.

Inputs and outputs of Functions/Function
Blocks are cross-checked during Download to
see if they are the correct data types.

If this message appears, correct the error in
data type and Download the application pro-
gram again. If there should be another data
type error, it will be caught on the second
Download.

Each physical input or output assigned to an
element in the Software Declaration table is
compared with the Hardware Declaration table
to make sure all necessary hardware modules
were declared.

If this message appears, correct the error in
either the Software or Hardware Declaration
table.

This message might appear if you start the
PiC900 using the Scan control commands. It
means that the Run key on the CSM is not
turned on.

An error like the one on the left will
appear if your ladder contains data
that requires a math coprocessor
installed on the CPU to process and
there is none.

NOTE: If you choose to continue
and need a math coprocessor , you
will get a scan loss error when you
attempt to scan the ladder.

…ÕÕª
∫ Data typing error! ∫
∫ TIME required, NUMERIC CONSTANT supplied ∫
∫ Network:5 row:3 col:1 ∫
∫ ∫
∫ Download suspended! ∫
∫ ∫
»ÕÕÕÕÕÕÕ Press any key to continue ÕÕÕÕÕÕÕÕº

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ TEST1 calls for a board in slot 4, ∫
∫ which is configured as an empty slot. ∫
∫ ∫
»ÕÕÕÕÕÕ Press any key to continue ÕÕÕÕÕÕº

AA148-1190

…ÕÕª
∫Error :Control Communication Command Not Executable∫
∫ ∫
∫ Press any key to continue, <F9> for help! ∫
»ÕÕº

…ÕÕª
∫Error :Incompatible Variable 'X' ∫
∫Use of 'LREAL' type requires a CPU with an NPX processor. ∫
∫ Do you wish to continue? ∫
∫ Yes ∫
∫ No ∫
∫ Ignore All ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ Press any key to continue ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº
4-4 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Module Menu - Monitor

The Monitor options instruct the PiC900 to send the application status data to the
computer workstation and display it on the screen.

These three commands will be covered next.

Monitor Nenu - Animate ON

With animate on, an image of the flow of power in the system is visible on the
workstation screen. If the RUN key in the CSM is turned on, the energy flow on
screen changes in response to program commands. If it is turned off, the image is
static reflecting the state of the application. See Figure 4-2.

Contacts, coils and connectors that are energized are highlighted on screen, and
those that are not energized are not highlighted. You can watch the flow of
power through all visible networks.

Numeric variables have their contents displayed above the variable name, and
they change as the contents change. For instance, you can watch a timer incre-
ment to its preset value, time out, and start again from 0 ms.

String variables display only the first 10 characters, enough to identify them. To
see the whole string you must add it to the View Variables List and turn View
on.

MMA (Module - Monitor - Animate ON) Toggles
Animate on and off.

MMV (Module - Monitor - View ON) Toggles the
View ON on and off. When it is on, variables entered
in the View Variables List appear in the lower right of
the display, with their current state or value.

MME (Module - Monitor - Edit view list) Brings up
the View Variable List. Any variables you want to
monitor continually can be added to the list. The list
is Saved in its own file (with extension .RTD for Real
Time Display) whenever you Save the application
program.

NOTE

A message telling you that the monitor functions are inhibited appears on the
screen if you attempt to monitor an LDO that has been changed since the last
download or has never been downloaded.

 The message tells you the name of the LDO currently in the PiC900.

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ MONITOR ∫
«ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ∂
∫ Animate ON ∫
∫ View ON ∫
∫ Edit view list ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

AA150-1190
Starting PiCPro/PiCServoPro 4-5

FIGURE 4 - 2. Display in Animate Mode

In this example, both EQ functions are always energized from the left power rail.
Each one compares a different constant with the same variable. Earlier in the pro-
gram, a timer and an ADD function set the integer variable SP2 to increment every
0.5 second. At the moment SP2 has reached 14, so OUT14 is energized and
OUT15 is not. In half a second, OUT14 will be de-energized and OUT15 ener-
gized.

Scroll the display up/down or pan left/right to see (portions of) other Animated net-
works.

If you type NE, NI, or Enter to enter a network, the Animate highlighting turns
off.

If you edit a network, Animate will not turn on when you exit from the network. A
message tells you that the workstation version is no longer identical with the one in
the PiC900. Download the module, then type MMA again to turn Animate back
on.

A complex element type consisting of a Boolean array with a variable array index
cannot be evaluated by animation. (It is still evaluated by the PiC900 ladder.) The
element (contact) on screen blinks when Animate is turned on. The power flow dis-
play stops at this element. Elements to the right of the blinking contact will have
their on/off status displayed.

 WWWWorkstation PPPProcessor MMMModule DDDDeclarations NNNNetwork EEEElement VVVView
≥...18......
≥ ⁄ƒƒƒƒƒƒƒƒƒø
≥ ≥ EQ ≥
≥ ≥ ≥
√ƒƒƒƒƒƒƒƒƒƒƒ¥EN OK√
≥ +14≥ ≥ OUT14
≥ SP2ƒ¥IN1 OUT√ƒƒƒ()ƒƒƒƒ¥
≥ ≥ ≥
≥ 14ƒ¥IN2 ≥
≥
≥ ¡ ƒ ƒ ƒ ƒ Ÿ
≥...19......
≥ ⁄ƒƒƒƒƒƒƒƒƒø
≥ ≥ EQ ≥
≥ ≥ ≥
√ƒƒƒƒƒƒƒƒƒƒƒ¥EN OK√
≥ +14≥ ≥ OUT15
≥ SP2ƒ¥IN1 OUT√ƒƒƒ()ƒƒƒƒ¥
≥ ≥ ≥
≥ 15ƒ¥IN2 ≥
≥
≥ ¡ ƒ ƒ ƒ ƒ Ÿ
≥...20......
 TEST1.LDO Net:19 10 00a
4-6 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

When working with floating point numbers, animation will return the following
labels if the result is infinite, indefinite, or not-a-number. The OK on the function
will not be set.

Monitor Menu - View ON

With View ON turned on, the list of enabled variables appears in the lower right
corner of the screen, each with its current value. (See Figure 4-3.) If the application
is running, these values change constantly to reflect the corresponding values in
PiC900 memory.

The Variables display remains in the same place on screen as you toggle Animate
on and off, use either Find option, or use the arrow keys to scroll the ladder. Type
MMV again to turn it off.

The Variables display always contains scan. Its value starts at 0 when the PiC900
starts scanning, and increments each scan as long as the PiC900 is in RUN mode.
Toggle the Run key on the CSM to reset the count to 0.

Animate and View options complement each other. (See Figure 4-3.) You can mon-
itor one network and keep track of the values of variables elsewhere in the program
at the same time.

FIGURE 4 - 3. Animate and View Options Both Turned On.

Value Output

+ infinity 1.#INF

- infinity -1.#INF

Indefinite digit.#IND

Not-a-number digit.#NAN

 WWWWorkstation PPPProcessor MMMModule DDDDeclarations NNNNetwork EEEElement VVVView
≥...18......
≥ ⁄ƒƒƒƒƒƒƒƒƒø
≥ ≥ EQ ≥
≥ ≥ ≥
√ƒƒƒƒƒƒƒƒƒƒƒ¥EN OK√
≥ +14≥ ≥ OUT14
≥ SP2ƒ¥IN1 OUT√ƒƒƒ()ƒƒƒƒ¥
≥ ≥ ≥
≥ 14ƒ¥IN2 ≥
≥
≥ ¡ ƒ ƒ ƒ ƒ Ÿ
≥...19......
≥ ⁄ƒƒƒƒƒƒƒƒƒø
≥ ≥ EQ ≥
≥ ≥ ≥
√ƒƒƒƒƒƒƒƒƒƒƒ¥EN OK√
≥ +14≥ ≥ OUT15 YES OUT14
≥ SP2ƒ¥IN1 OUT√ƒƒƒ()ƒƒƒƒ¥ NO OUT15
≥ ≥ ≥ T#500ms SP1
≥ 15ƒ¥IN2 ≥ +14 SP2
≥ NO CR2
≥ ¡ ƒ ƒ ƒ ƒ Ÿ NO CR3
≥...20...... 357926
 TEST1.LDO

scan
Starting PiCPro/PiCServoPro 4-7

Monitor Menu - Edit View List

If the variable is a contact or coil its data type is always a Boolean, so when you
press <Enter> "Boolean" is entered.

If the variable is a string, its data type is always a string, so when you press
<Enter> "String" is entered.

You may get this message when you try to access
Animate or View. First check that the PWR LED on
the CSM is on. If the LED is off, the PiC900 sys-
tem doesn't have power, and it cannot send data to
the workstation.

If the PiC900 system has power, check the commu-
nication cable and try again.

MME (Module - Monitor - Edit view list) brings
up the View Variables list. Press <Ins> and press
<F8> to bring up a list of variable types. Choose
the type from this list and press <Enter>. A list of
that type of variable in the LDO will appear. Select
the one you want to add to the view list and press
<Enter>. If the variable is an array, it will be
inserted into the list as ARRAY(). You must enter
the index in the parenthesis.

Or you can type the name of the first variable you
want to monitor. If the name is not entered in the
Software Declaration table, a pop-up tells you
Symbol not found.

When you press <Enter> a selection list gives all

…ÕÕÕª
∫ Error : Control Communication ∫
∫ ∫
∫ Press any key to continue, <F9> for help! ∫
»ÕÕÕº

⁄EnbƒƒƒƒƒƒƒƒƒƒƒƒView Variables Listƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒø
≥ OP14 � Boolean ≥
≥ OP15 � Boolean ≥
≥ * OUT14 � Boolean ≥
≥ * OUT15 � Boolean ≥
≥ * SP1 � Time (Milliseconds) ≥
≥ * SP2 � Signed decimal ≥
≥ CR1 � Boolean ≥
≥ * CR2 � Boolean ≥
≥ * CR3 � Boolean ≥
≥ * scan ≥
≥ ≥
≥ ≥
¿Alt-E toggles EnbƒƒƒƒƒƒƒƒƒƒƒƒƒIns (before) or DelŸ
4-8 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Press <Enter> or <F10> to Accept the table and return to the main screen.

The view list holds lines of variables equal to the number of lines on your screen
minus three. For example, if your screen has 25 lines, you can enter 22 lines of
variables. If the list is full and you need to view other variables, you must delete
some entries to make room. Press the key and a pop-up asks you to confirm
that you want to Delete the highlighted entry.

NOTE: The scan entry cannot be deleted or disabled.

The Enb (enable) option lets you display some variables from the list and suppress
others. A variable preceded by an asterisk is Enabled. Highlight an entry in the
View Variables list and press <Alt>E to toggle Enb off; press <Alt>E again to tog-
gle it on. Only Enabled variables are displayed when the View Variables option is
turned on. You can eliminate distractions by displaying only variables you are con-
cerned with at the moment.

NOTE: If there is not enough memory to store the monitored variables, an insuffi-
cient memory message will be displayed on the bottom line.
Starting PiCPro/PiCServoPro 4-9

Module Menu - Force

Force is a way to alter the contents of up to 64 variables while the program is run-
ning. It is a powerful tool in isolating a problem.

In testing (debugging) a software module you can Force a value into

• an input element to simulate the data input from an application device
which has not been connected.

• an element that enables a function or function block you want to check.

• a timer's preset variable to check what happens when it times out.

• In troubleshooting an application you can Force a value into an output element to
locate a problem when troubleshooting an application.

• selected elements between an input that works and an output that doesn't, to isolate an
internal problem

Variables are forced by entering their names and values in a list , by marking them
(in the list) to be forced, and by turning on the forcing option.

An example of a forcing list is shown below.

In the example list above, OUT14 and OUT15 are "marked" for forcing. This is
designated by the asterisks in the Enb (enable) column. OUT14 and OUT15 will
equal 1 and 0, respectively, when forcing is turned on.

OP13 and OUT14 are marked for "group" forcing. This is designated by the aster-
isks in the Grp (group) column. OP13 and OUT14 will equal 0 and 1, respectively,
when forcing and group are turned on.

WARNING

Do not Force any variable in a program that is running an application
until you are sure you understand all effects the changes may cause.
A malfunctioning program may:

• cause injury
• damage the machinery

…NameÕÕÕÕÕÕValueÕÕÕÕÕÕÕEnbÕGrpÕª
∫OUT13 0 ∫
∫OP13 0 * ∫
∫OUT14 1 * * ∫
∫OUT15 0 * ∫
∫OUT16 0 ∫
∫OUT17 ?not found? ∫
∫end_table ∫
» forcing is offÕÕ group is offº
4-10 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

NOTE: Group forcing is on only when "forcing" is on. When group forcing is on,
all variables with an asterisk in either the Enb or Grp columns are forced. When
forcing is on and group forcing is not on, only variables with an asterisk in the Enb
column are forced.

When Force is selected from under the Module menu, this screen appears:

The three options on this screen are:

IMPORTANT

Animation may not reflect forced conditions. Physical inputs are forced at the
beginning of the scan. All other variables are forced at the end of the scan. The
writing of variable values by the LDO is not inhibited by forcing. Therefore it
is possible to change the state of a control relay or coil during the scan, but not
"see" the change in animation.

Forcing <Ctrl-F> OFF You can toggle the forcing feature on and off by performing any of the
following:

1. press <Ctrl-F>
2. use hot keys (M, F, F)
3. position the cursor on this option and press <ENTER>

Group enable <Ctrl-G>
OFF

You can toggle group forcing on and off by performing any of the fol-
lowing:

1. press <Ctrl-G>
2. use hot keys (M, F, G)
3. position the cursor on this option and press <ENTER>

Edit force list You can call up the forcing table by performing any of the following:

1. use hot keys (M, F, E)
2. position the cursor on this option and press <ENTER>

…NameÕÕÕÕÕÕValueÕÕÕÕÕÕÕEnbÕGrpÕª
∫OUT13 0 ∫
∫OP13 0 * ∫
∫OUT14 1 * * ∫
∫OUT15 0 * ∫
∫OUT16 0 ∫
∫OUT17 ?not found? ∫
∫end_table ∫

Forced when forcing
and group are on.

Forced when forcing
is on and group is off.

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ ∫
∫ Force ∫
«ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ∂
∫ ∫
∫ Forcing <Ctrl-F> OFF ∫
∫ Group enable <Ctrl-G> OFF ∫
∫ Edit force list ∫
∫ ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº
Starting PiCPro/PiCServoPro 4-11

To enter variables and values in the table:

1. Position the cursor (on the line) following the line where the variable should
appear and press <Insert>.

2. Press <F8> to bring up a list of data types. Choose the type and press
<ENTER> This brings up a list of variables of that type in the LDO. Highlight
the one you want to enter on the Force list and press <ENTER>. If the variable
is an array, it will be inserted into the list as ARRAY(). You must enter the index
number in the parenthesis.
You can also type in the variable name.

Use <tab>, <ENTER>, or right arrow to move the cursor to the value field.

3. Enter a value.

Use <tab>, <ENTER>, or right arrow to move the cursor to the Enb field.

4. Press any key, except <Delete> or spacebar, to turn enable on for the variable.
(An asterisk appears when the variable is enabled.)

Use <tab>, <ENTER>, or right arrow to move the cursor to the Grp field.

5. Press any key, except <Delete> or spacebar, to include the variable in a group.
(An asterisk appears when the variable is in a group.)

To delete a variable from the table:
Position the cursor on the variable name and press .

To disable or "ungroup" a variable:
Position the cursor in the Enb or Grp field and press <Delete> or the spacebar.

To change table data:
Position the cursor on the name or value and type over the data.

If you type in the name of a variable in the Force list that has not been declared, a
message appears in the Value column that says ?not found?.

If a value that is out of range is entered for a variable, the value reverts to its former
value.
4-12 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Module Menu - Print

PiCPro can Print to a printer, to a modem, or to a file on disk. A Printed file on disk
contains codes for carriage returns and other printer requirements.

If you Print to a file on disk, the primary name is the same as the one you loaded in
PiCPro, but the extension is .LST instead of .LDO. In creating this text file, PiCPro
inserts carriage returns, form feeds, and so on. You can use DOS commands to
send this file to the printer as needed.

MP (Module - Print) brings up a dialog box.

Print to: The default entry sends the program to
a disk file. If you want a hard copy of the lad-
der diagram, change the first option to the
port where the printer cable is connected.
Common port names are LPT1 (parallel port
1) or PRN (a printer port).

Cross reference: Leave the default Yes to include
in the printout a list of all the elements in the
program, with the numbers of all the net-
works each one was used in.

Declarations: The software and hardware decla-
ration tables can be printed. Press <F8> to
bring up the list of Print Options shown on the
left. The first three choices apply to the soft-
ware declarations table.

The default is to print the software declara-
tions table in the order the variables were
entered. It can also be printed listing the vari-
ables alphabetically or listing the variables by
data type. You can also choose to not have the
declarations printed by selecting None.

If None is chosen, neither the software nor the
hardware declarations will be printed.

⁄ƒƒƒƒƒƒƒƒƒƒƒ Print Module ƒƒƒƒƒƒƒƒƒƒƒø
≥ ≥
≥ Print to: TEST1.LST ≥
≥ ≥
≥ Cross reference: Yes ≥
≥ ≥
≥ Declarations <F8>: Order entered ≥
≥ ≥
≥ Networks: Yes ≥
≥ ≥
≥ From network: 1 ≥
≥ To network: 1 ≥
≥ ≥
≥ Full comments: Yes ≥
≥ Long names: Yes ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒƒƒƒ Print Module ƒƒƒƒƒƒƒƒƒƒƒø
≥ ≥
≥ Print to: TEST1.LST ≥
≥ ≥
≥ Cross reference: Yes ≥
≥ ⁄ƒPrint Optionsƒø
≥ Declarations <F8>: Order entered ≥Order entered ≥
≥ ≥Alphabetically ≥
≥ Networks: Yes ≥By type ≥
≥ ≥None ≥
≥ From network: 1 ¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ
≥ To network: 1 ≥
≥ ≥
≥ Full comments: Yes ≥
≥ Long names: Yes ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ
Starting PiCPro/PiCServoPro 4-13

Print out characteristics

When you print out a copy of your LDO, the symbols described below may appear.

Networks: Leave the default Yes to include in the
printout a list of all the elements in each network.

From/To network: You can Print part of a module.
The default gives the first and last network num-
bers in the module, but you can choose to begin or
end with any other networks.

Full comments: Leave the default Yes to print all
lines of comments that are entered in the applica-
tion program. No will print only the first line of
comments on each network.

NOTE: To force a page eject, type $P where you
want the top of the page to appear.
To have a heading appear on the top of each page
in your printout, type $H (left justified), followed
by the heading you want when entering com-
ments. This heading will continue to appear on
each page until the next $H occurs.

Long names: Leave the default Yes to print the long
name (as declared in the software Declarations
table) above the name of all variables. No will
print only the Name.

Symbol Description

& Appears in the cross reference section of the printout and also in Network Coil
Usage message at the bottom of a network telling you that the output/coil is sourced
in more than one place.

/ Appears in the cross reference section of the printout and also in Network Coil
Usage message at the bottom of a network telling you that the contact is normally
closed.

@ If any variable name in the LDO network is more than eight characters, an alias is
substituted at the location. (@001 would represent the first substitution, @002 the
second, and so on.)

The Aliases used in above network message at the bottom of the network lists all the
aliases used in that network and the variable names they replaced.

I04.01
or

I2.04.01

Appears under a real world input to indicate the following:

I(I)nput in master rack , slot 4 (04), channel 1 (01)
or

I(I)nput in expansion rack 2 (2), slot 4 (04), channel (01)

O03.01
or

O2.03.01

Appears under a real world output to indicate the following:

O(O)utput in master rack , slot 3 (03), channel 1 (01)
or

O(O)utput in expansion rack 2 (2), slot 3 (03), channel (01)

wider than 80 columns

PC monitor

longer than 24 rows

network diagram

↓
printed network diagram

page 1 page 2 page 3

page 4 page 5 page 6
4-14 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Troubleshooting the Print Option

PiCPro sends out a file, but cannot check if it reaches the printer or modem.

• If the printer operates but the printout doesn't look like the ladder diagram
on screen, you may need to change the printer settings. This is discussed in
detail in the section on Printer Setup in Chapter 1.

• If the file does not print, these steps can help isolate the problem.

1. The printer must be on-line and supplied with paper.

2. Check that the computer end of the cable is plugged into the correct
port. Make sure the connections are tight at both ends.

3. Run the printer's diagnostics tests, then try again to print the program.

4. If the printer still does not print, check each of these possibilities:

• an incorrect or damaged cable.

• a malfunctioning port on the workstation.

• a malfunctioning port on the printer.
Starting PiCPro/PiCServoPro 4-15

Module Menu - UDFB Build (User defined function block)

The User defined function block command allows you to convert the logic in the
module (.LDO) you have created into a single function block.

MU (Module - UDFB build) brings up the dialog
box on the left.

Type in the name you want to appear in the
USER library list of the Functions menu. It will
receive the .LIB extension automatically.

The new library containing your function block
can be accessed from the Functions menu when
PiCPro is restarted. See below.

IMPORTANT

Always keep the UDFB .LIB file and the corresponding UDFB .LDO file in the
same directory.

When PiCPro is restarted, the Functions
menu will contain the word USER.

FU (Functions - USER) accesses a list of all
libraries you have created for UDFBs.
Accessing the library will bring up a list of
individual function blocks you have created
and stored in that library.

The UDFB can now be used in any LDO
you create. It can also be included as part of
an LDO that you want to use to create
another UDFB.

See Chapter 8 for more information on
UDFBS.

⁄ƒƒƒƒƒƒ User Defined Function Block ƒƒƒƒƒƒƒø
≥ ≥
≥ The function/task cannot be found in ≥
≥ any existing library. Please indicate ≥
≥ which library it should be added to. ≥
≥ ≥
≥ Function Library [.LIB]:< UDFB > ≥
≥ ≥
≥ NOTE: The PiCPro function/task lists ≥
≥ will be updated the next time PiCPro ≥
≥ is started. ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒŸ

…ÕÕÕÕÕÕÕÕÕÕª
∫ Arith ∫
∫ Binary ∫
∫ Counters ∫
∫ Datatype ∫
∫ Evaluate ∫
∫ Filter ∫
∫ Io ∫
∫ Motion ∫
∫ String ∫
∫ Timers ∫
∫ USER ∫
∫ Xclock ∫
»ÕÕÕÕÕÕÕÕÕÕº

USER will show up in the Functions
menu after you have made a UDFB
or a TASK and restarted PiCPro.
Acessing USER will up any libraries
you have created to hold your UDFBs
or TASKs.
4-16 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Module Menu - Task Build

The task build command allows you to convert the logic in a task module (.LDO)
you have created into a TASK function block that can be used in your main LDO

IMPORTANT

Always keep the TASK .LIB file and the corresponding TASK .LDO file in the
same directory.

MT(Module - Task build) brings up the dia-
log box on the left.

Type in the name you want to appear in the
USER library list of the Functions menu. It
will receive the .LIB extension automati-
cally.

The new library containing your task can be
accessed from the Functions menu when
PiCPro is restarted. See below.

When PiCPro is restarted, the Functions
menu will contain the word USER.

FU (Functions - USER) accesses a list of
all libraries you have created for tasks and/
or UDFBs. Accessing the library will bring
up a list of individual tasks you have cre-
ated and stored in that library.

The task can now be used in an LDO you
create.

See Chapter 9 for more information on
TASKs.

⁄ƒƒƒƒƒƒƒƒƒƒƒƒƒ User Defined Task ƒƒƒƒƒƒƒƒƒƒƒƒƒø
≥ ≥
≥ The function/task cannot be found in ≥
≥ any existing library. Please indicate ≥
≥ which library it should be added to. ≥
≥ ≥
≥ Function/Task Library [.LIB]:< >≥
≥ ≥
≥ NOTE: The PiCPro function/task lists ≥
≥ will be updated the next time PiCPro ≥
≥ is started. ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒŸ

…ÕÕÕÕÕÕÕÕÕÕª
∫ Arith ∫
∫ Binary ∫
∫ Counters ∫
∫ Datatype ∫
∫ Evaluate ∫
∫ Filter ∫
∫ Io ∫
∫ Motion ∫
∫ String ∫
∫ Timers ∫
∫ USER ∫
∫ Xclock ∫
»ÕÕÕÕÕÕÕÕÕÕº

USER will show up in the Functions
menu after you have made a UDFB or
a TASK and restarted PiCPro.
Accessing USER will bring up any
libraries you have created to hold your
UDFBs and/or TASKs.
Starting PiCPro/PiCServoPro 4-17

Module Menu - Hex-86 Dump

MH (Module - Hex 86 dump) An .LDO file that has been Opened in the computer
workstation can be saved in Intel 8086 Hex format using the Hex-86 dump com-
mand on the Module menu. The name automatically has the same filename as the
.LDO file with the .HEX extension. This file may then be copied to an EPROM
programmer to program your EPROMs.

The CPU write-ups in the Hardware Manual contains information on EPROM pro-
grammers and on the types of EPROMs to use.

Module Menu - Bin-86 Dump

MB (Module - Bin 86 dump) An .LDO file that has been Opened in the computer
workstation can be saved as a binary file using the Bin-86 dump command on the
Module menu. The name automatically has the same filename as the .LDO file
with the .BIN extension. Thus an application program can be stored on one disk or
directory in both forms.

This .BIN file can then be loaded into the PiC900 using the Restore command on
the Processor menu.

Module Menu - Build Dependency List

ML(Module - build dependency List) This command allows you to build a com-
plete list of all the files that are related to the module you are currently running in
PiCPro. The list can include all the LDO source, REM source, UDFB/TASK
sources, and UDFB/TASK libraries needed to run the program.

If you have Flash memory installed on your control, the dependency list can be
used to send all the listed files to the FMSDISK using Flash Disk operations under
the Processor menu.

ML (Module - build dependency List) A file
containing a list of all the files the module
currently running in PiCPro depends upon can be
built with this command.

Enter a name for the output file at Output File
Name.

The default for the next three items is to include all
of them.

The List of Other files allows you to include
additional files in the dependency list. If the file
you enter here is a list of several files, use the @ in
front of the filename to include all the connected
files in the dependency list.

Press F10 to build the dependency list.

⁄ƒƒƒƒƒƒƒƒƒƒ Build Dependency List ƒƒƒƒƒƒƒƒƒƒø
≥ ≥
≥ Output File Name:< > ≥
≥ ≥
≥ ≥
≥ Select which of the following to include: ≥
≥ ≥
≥ Program Source: Yes ≥
≥ ≥
≥ UDFB/TASK Source: Yes ≥
≥ ≥
≥ UDBF/TASK Libraries: Yes ≥
≥ ≥
≥ List of Other files:< > ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒŸ
4-18 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

To view the dependency list, exit PiCPro and open the output file in any text editor.
An example of this text file follows.

Example

In this example, an output file called EX.LST was created with the build depen-
dency list command. In the List of Other files box, a previously created list of
other files called OTHERS.LST was entered in the format shown. The @ indicates
that OTHERS.LST contains a list of all the files to be included. Without the @,
only the OTHERS.LST file would be included.

⁄ƒƒƒƒƒƒƒƒƒƒ Build Dependency List ƒƒƒƒƒƒƒƒƒƒø
≥ ≥
≥ Output File Name:<EX.LST > ≥
≥ ≥
≥ ≥
≥ Select which of the following to include: ≥
≥ ≥
≥ Program Source: Yes ≥
≥ ≥
≥ UDFB/TASK Source: Yes ≥
≥ ≥
≥ UDBF/TASK Libraries: Yes ≥
≥ ≥
≥ List of Other files:<@OTHERS.LST > ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒŸ
Starting PiCPro/PiCServoPro 4-19

You may include other files in this dependency list by typing them in. Be sure to
follow the format shown when you enter files by editing the text file.

It is possible to create up to six subdirectories by editing the text file. For example,
if you wanted to put the PAGE.BN1 from the above example in a subdirectory
called PAGE, you would enter the following as your destination.

Source Destination

C:\EXAMPLES\A099.BN1 ; \PAGE.BN1

Source Destination

C:\EXAMPLES\A099.BN1 ; \PAGE\PAGEBN1

’ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ ex.lst ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ∏
≥# Dependency file for EXAMPLE.LDO ≥
≥# Format: ≥
≥# Source (Workstation) File Spec. ; Destination (Control) File Spec.≥
≥# ≥
≥# ≥
≥# Program Source ≥
≥# ≥
≥C:\EXAMPLES\EXAMPLE.LDO ; \EXAMPLE.LDO ≥
≥C:\EXAMPLES\EXAMPLE.REM ; \EXAMPLE.REM ≥
≥# ≥
≥# UDFB Source ≥
≥# ≥
≥C:\EXAMPLES\PAGEUDFB.LDO ; \PAGEUDFB.LDO ≥
≥C:\EXAMPLES\PAGEUDFB.REM ; \PAGEUDFB.REM ≥
≥# ≥
≥# UDBF Libraries ≥
≥# ≥
≥C:\EXAMPLES\PAGE.LIB ; \PAGE.LIB ≥
≥# ≥
≥# List of Other files ≥
≥# ≥
≥# Contents of OTHERS.LST ≥
≥# ≥
≥# Other files required for page example LDO ≥
≥# ≥
≥# Source (Workstation) File Spec. ; Destination (Control) File Spec.≥
≥# ≥
≥# ≥
≥# ≥
≥C:\EXAMPLES\A099.BN1 ; \PAGE.BN1 ≥
≥C:\EXAMPLES\FILE1.TXT ; \FILE1.TXT ≥
≥# ≥
≥# ≥
≥C:\EXAMPLES\FILE2.TXT ; \FILE2.TXT ≥
≥ ≥
≥ÕÕ≥
4-20 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Module Menu - FInd Duplicates

MI(Module - fInd duplicates) This command allows you to search through your
LDO for coils, variables, or function blocks that are used more than once in the
LDO. If a duplicate coil, variable, or function block is found, a message appears
and you will be asked if you want to continue.

Processor Menu - Scan Control

When the PiC900 is running, the CPU repeatedly scans the application program in
its memory. A scan is the cyclical process of:

1. Reading data from the hardware input modules
2. Using the forcing list to modify input data
3. Executing ladder logic and using the data to update program variables
4. Using the forcing list to modify output data
5. Sending commands to the hardware output modules
6. Sending data to the computer workstation (to be displayed in PiCPro animation and/or

view modes)

NOTE: When you created your application program, the PiC900 hardware mod-
ules were declared under Hardware declarations. Each input/output point was
assigned to a specific logic element through the Software declarations.

Step 3 above is called the "ladder scan", and steps 1, 2, 4, 5 and 6 are called the
"system overhead." How long a scan takes depends on the length and complexity
of the program.

The PiC900 system shuts down as a safety measure if either the ladder scan or the
overhead takes more than 200 ms.

P (Processor) The Processor menu contains
six commands shown on the left. They will
all be covered in the next six sections start-
ing with Scan control.

WARNING

Do not use any commands in the Scan Control menu until you understand
how the PiC900 system runs and exactly how the command will affect the
application. Starting or stopping the scan at random may:

• cause injury
• damage the machinery

 WWWWorkstation PPPProcessor MMMModule
 …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª

∫ Scan control ∫
∫ ram Disk operations ∫
∫ Flash Disk operations ∫
∫ Backup user prog. ∫
∫ Restore user prog. ∫
∫ Time read/set ∫
∫ Power reset ∫
∫ set Network node id ∫
∫ Connect to node ∫
∫ display stAtus ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº
Starting PiCPro/PiCServoPro 4-21

PSH (Processor - Scan control - Hot restart) Restarts the scan, keeping element
values as they were when the scan was stopped. The application continues as if the
Stop scan command had not been sent.

PSC (Processor - Scan control - Cold restart) Restarts the scan with all elements
returned the initial values Declared by the programmer, as if the module had just
been downloaded.

PSW (Processor - Scan control - Warm restart) Restarts the scan. All elements that
were Declared by the programmer to be "retentive" keep the values they had when
the scan stopped. All other elements return to the initial values they had when the
module was first downloaded. Scanning resumes and the application continues
normally.

NOTE: If one of the hardware modules fails to pass its diagnostics tests when
power is cycled, its DIAG LED remains lit. The system will not begin its scan
cycle when you turn on the CSM Run key.

It is possible, though not advisable, to start the system from the workstation with-
out replacing the defective module. If the PiC900 system is not connected to an
application, you could type Y at the "Diagnostics failure" pop-up. The scan LED
goes on, and the hardware inputs and outputs function as normally as possible,
depending on the type of failure.

PS (Processor - Scan control) gives the Scan
Control menu.

PSS (Processor - Scan control - Stop) Turns
the scan off. The current scan is completed,
but the logic commands sent to the output
modules are all 0. Power is still on to the sys-
tem, so all elements in the program - timers,
counters, input contacts, output coils, and so
on - keep their values until the scan starts
again.

PSO (Processor - Scan control - One scan)
The CPU runs through one complete scan and
then sends zeros to all outputs.

If you then type PSC to start the scan from the work-
station, this message appears on screen, to advise you
of the hardware failure. Press <Enter> to acknowledge
the warning, then change the module according to the
guidelines in the Hardware manual.

"Test 1" simply indicates which test was unsuccessful.
If you have repeated failures and have to call Giddings
& Lewis, the test number gives an indication as to what
is wrong.

AA134-1190

 WWWWorkstation PPPP rocessor MMMM odule

 …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
 ∫ Scan Control ∫
 «ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ∂
 ∫ Stop scan ∫
 ∫ run One scan ∫
 ∫ Hot restart ∫
 ∫ Warm restart ∫
 ∫ Cold restart ∫
 »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ The control diagnostics indicate ∫
∫ a failure in slot 3, test 1. ∫
∫ Do you wish to continue? ∫
∫ ∫
∫ No ∫
∫ Yes ∫
»ÕÕÕÕÕÕÕ ÕÕÕÕÕÕÕÕº ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ
4-22 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Processor Menu - Ram Disk Operations

A RAMDISK is a hardware option which makes extra memory available to the
PiC900 system. When working from the current disk or directory on the worksta-
tion, RAMDISK files can be listed, deleted, sent, retrieved, and renamed. They are
then available to the PiC whether the workstation is connected or not.

See I/O function blocks for information on accessing the RAMDISK from the
application program and the workstation files.

PD (Processor - ram Disk operations) This menu allows you to
handle data files in additional memory on RAMDISK where the
PiC900 CPU can access them as needed.

The first command lists any directory/file on the RAMDISK and
the amount of disk space available.

PDL (Processor - ram Disk opera-
tions - List) A listing of the direc-
tories/files stored in the
RAMDISK will appear. In this
example, the RAMDISK contains
two directories and one file. There
are 57392 bytes of disk space
available on the RAMDISK.

To bring up a list of the files within
a directory, highlight the directory
and press <Enter>.

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ Control Disk Operations ∫
«ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ∂
∫ List directory ∫
∫ Delete file/directory ∫
∫ Send file ∫
∫ Retrieve file ∫
∫ reName file ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

’ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ∏
≥ Files/Dirs in ≥
≥ RAMDISK:*.* <57392 bytes free> ≥
‘ÕÕÕÕÕÕÕÕÕÕÕÕ’ÕÕÕ∏
 ≥BINARY <DIR> 10-06-92 09:27a ≥
 ≥HEX <DIR> 10-06-92 09:28a ≥
 ≥FILE.TXT 2089 10-06-92 09:30a ≥
 ‘ÕÕÕæ

Name
<DIR> or
file size

Date Time

AA1140-4292
Starting PiCPro/PiCServoPro 4-23

 PDD (Processor - ram Disk operations - Delete)
Pressing <F8> will bring up a list of directories/files
on the RAMDISK. Select the file you want to delete
from the list and press <Enter>. Press <F10> to delete
the file or <Esc> to cancel.

NOTE: You must delete all the files within a directory
before you can delete the directory. You must type the
name of the empty directory in the Delete File field in
order to delete it. It cannot be selected from the <F8>
list. When you select a directory from the list, it dis-
plays a list of the files within the directory.

PDS (Processor - ram Disk operations - Send) Any
file/directory can be copied into the RAMDISK from
the workstation under the same or a different name.

Enter the name of the directory/file either by typing
the directory/filename/extension or by pressing <F8>
and choosing the file you want from the selection box.

Move the cursor to the second entry field and enter the
destination for the file (directory/filename/ extension)
in the RAMDISK using the same name or a different
one. Pressing <F8> lists the directories/files already in
the RAMDISK.

Press <F10> to send the file or <Esc> to cancel.

PDR (Processor - ram Disk operations - Retrieve) A
file can be retrieved from the RAMDISK and sent to
the workstation. Again you can keep the RAMDISK
name or change it.

Press <F10> to retrieve the file or <Esc> to cancel.

PDN (Processor - ram Disk operations - reName)
Allows you to rename a file/directory on the RAM-
DISK.

Press <F10> to rename the file or <Esc> to cancel.

⁄ƒƒ Delete File on Control RAMDISK ƒø
≥ ≥
≥ <F8-Select List> ≥
≥ Delete File :< >≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

AA1139-4292

⁄ƒƒ Send File to ControlRAMDISK: ƒƒø
≥ ≥
≥ <F8-Select List> ≥
≥ Workstation File : ≥
≥ ≥
≥ To RAMDISK File : ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

AA162-1790

⁄ƒRetrieve File on Control RAMDISK ƒø
≥ ≥
≥ <F8-Select List> ≥
≥ Control File :< >≥
≥ To ≥
≥ Workstation File :< >≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

AA1137-4292

⁄ƒRename File on Control RAMDISK ƒø
≥ ≥
≥ <F8-Select List> ≥
≥ Control File :< >≥
≥ To ≥
≥ New File Name :< >≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

AA1138-4292
4-24 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Processor Menu - Flash Disk Operations

When the FMSDISK hardware option is installed on the PiC CPU, files can be
stored on the FMSDISK. These files can then be accessed from the LDO using
some of the functions in the COMM group.

FMSDISK files can be listed, retrieved, and updated using the commands found
under the Processor menu.

PF (Processor - Flash Disk operations) This
menu allows you to handle data files on the
FLASHdisk.

The first command lists any directory/file
on the FMSDISK and the amount of disk
space available.

PFL (Processor - Flash Disk operations -
List directory) The file or files on the FMS-
DISK can be listed using this command.

PFR (Processor - Flash Disk operations -
Retrieve) A file can be retrieved from the
FMSDISK and sent to the workstation.

Press <F10> to retrieve the file or <Esc> to cancel.

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ Control FlashDisk Operations ∫
«ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ∂
∫ List directory ∫
∫ Retrieve file ∫
∫ Update Disk ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

’ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ∏
≥ Files/Dirs in ≥
≥FMSDISK:*.* <57392 bytes free> ≥
‘ÕÕÕÕÕÕÕÕÕÕÕÕ’ÕÕÕ∏
 ≥PAGE <DIR> 10-06-92 09:27a ≥
 ≥FILE.LDO 2089 10-06-92 09:30a ≥
 ‘ÕÕÕæ

Name
<DIR> or
file size Date Time

⁄ƒƒƒRetrieve File from Controlƒƒƒƒƒƒø
≥ ≥
≥ <F8-Select List> ≥
≥ Control File :< >≥
≥ To ≥
≥ Workstation File :< >≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ
Starting PiCPro/PiCServoPro 4-25

Processor Menu - Backup User Prog.

PB (Processor - Backup) A program in PiC900 memory may be Backed up as a
binary file directly to the computer disk. When you type its filename in the dialog
box, you must include the extension .BIN so you can use the Restore command
later.

NOTE: If you are working with an LDO on your workstation, the filename of that
LDO with a .BIN extension appears in the entry field.

Processor Menu - Restore User Prog.

PR (Processor - Restore) A computer file in binary format with extension .BIN
may be Restored to PiC900 memory. The Restore option may be used whether you
used Backup or Bin-86 dump command to create the file. When you type the name
in the dialog box, you must type its extension as well.

Processor Menu - Time Read/Set

PFU (Processor - Flash Disk operations -
Update)

Enter the filename if sending an individual
file. If the file you enter here is a list of
several files, use the @ in front of the file-
name to include all the connected files in
the dependency list.

 The @ indicates that FILENAME.LST
contains a list of all the files to be included.
Without the @, only the FILENAME.LST
file would be included.

Press <F10> to update the FMSDISK with
a file or a list of files or <Esc> to cancel.

PT (Processor - Time) The PiC900 system has its own
battery-powered clock located in the CSM.

If the date or the time in this dialog box is wrong, high-
light it and press <F8>. The correct value is filled in
from computer memory. When the dialog box is
accepted, the PiC900 clock is set with its values.

⁄ƒƒƒƒƒƒƒƒ Update FLASH Disk ƒƒƒƒƒƒƒƒø
≥ ≥
≥ <F8-Select List> ≥
≥ File Name :< >≥
≥ ≥
≥ To Flash Disk File:< >≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

AA136-1190

⁄ƒƒ Adjust Control's time & date ƒƒƒø
≥ ≥
≥ Enter time (HH:MM): 08:10 ≥
≥ ≥
≥ Enter date (YY-MM-DD): 92-06-10 ≥
≥ ≥
≥ <F8> for DOS time and date ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ
4-26 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Processor Menu - Power Reset

NOTE: When you cycle power, communication between the computer and the PiC
is cut off. If you are using Animate or View Variables, cycling power turns the option
off. A Communication Error message appears. Press any key to erase the message,
then toggle the option off and on again.

Also make sure any files you have open on the RAMDISK or the workstation if
connected are closed.

Peer-to-Peer/PiC(Servo)Pro Communications

Peer-to-peer communication using twisted pair wire can be set up between PiCs
whose CPUs have network hardware. See the hardware manual for details.

If you want to communicate to networked PiCs through PiC(Servo)Pro in order to
program, monitor, force, or tune, you will use the next two commands found under
the Processor menu.

PP (Processor - Power reset) This command has the
same effect as using the switch on the CSM to cycle
power. A pop-up asks you to confirm the command.

When power is cycled, either with this command or
with the CSM switch, the scan resumes with a warm
restart (see Warm restart above under Scan control).

WARNING

WARNING

Do not reset PiC power until you understand how the system runs and
exactly how power loss will affect the application. Starting or stop-
ping an application at random, may:

• cause injury
• damage the machinery

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ Reset the control power?∫
«ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ∂
∫ Yes ∫
∫ No ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

AA137-1190
Starting PiCPro/PiCServoPro 4-27

Processor Menu - Set Network Node ID

Each PiC on the network must be given a unique node ID number. The range of
numbers available is 1 to 255 excluding 65 (41 Hex). 65 is reserved to identify the
PiC physically connected to the PC through the RS232 programming port. This is
the local node. All other PiCs on the network are called network nodes.

Setting the node to zero clears the ID and removes the PiC from the network.

NOTE: The system node number set with this command has priority over any node
number set from the LDO using the NETOPN function block. If you are using the
Network function blocks, the source ID number entered in the NETOPN function
block must match the ID number assigned with this command. If it does not, an
error is indicated. A transitional contact must be used to enable the Network func-
tion blocks.

If no system network node id number is set, then any ID can be set by the
NETOPN function block.

Processor Menu - Connect to Node

PN (Processor - set Network node id) This command
allows you to set the network node ID for this node.

Initially, you must connect the PC to each PiC through
the RS232 programming port to set the network node
ID. The node ID will not have to be set again unless
you want to change it or unless the CPU module in the
PiC is changed. The scan is stopped when you set the
node.

PC (Processor - Connect to node) Once a node
ID has been assigned to every PiC on the net-
work, this command allows you to connect the
PC to any PiC on the network.

⁄ Set Control Network Node Id ø
≥ ≥
≥ Node Id.: 00 ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

⁄Connect to Control at Network Node Idø
≥ ≥
≥ Node Id.: 00 ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ
4-28 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Processor Menu - Status

The display status box provides the following information.

Line 1 Lists the version number of the EPROM installed in the PiC CPU.

Line 2 Lists the name of the LDO currently loaded into the control and the date and time the
LDO was last downloaded.

Line 3 Tells you whether the scan is running or stopped.

Line 4 Tells you the position of the Run/Stop switch.

Line 5 Tells you whether forcing is enabled or disabled.

Line 6 Lists run time failures that also appear on the CPU diagnostic LED.

Line 7 Lists hardware failures of modules in the rack(s) whose diagnostics have failed.

Line 8 Lists the type of CPU in the control and the amount of application memory.

Line 9 Lists the size of RAMdisk memory if installed.

Line 10 Lists the size of FMS disk memory if installed.

Line 11 Lists the network node ID of the PiC if it has been set.

PA (Processor - stAtus) This command
allows you to display the status of the con-
trol you are connected to.

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ Control EPROM Version ∫
∫ Program Downloaded ∫
∫ ∫
∫ Scan is Stopped ∫
∫ Run/Stop switch in Run Position ∫
∫ Forcing is Disabled ∫
∫ No Run Time Failures ∫
∫ No Hardware Failures. ∫
∫ CPU Type : ∫
∫ RAMdisk : ∫
∫ FMSdisk : ∫
∫ Network Node ID : ∫
∫ ∫
∫ Press any key to continue ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº
Starting PiCPro/PiCServoPro 4-29

Troubleshooting an Application

If a program does not work properly, there may be a bug in the software module
that is running the PiC900 system. However you cannot be sure of that until you
eliminate the system hardware, the I/O connections, and the application as possible
causes of the difficulty. If you reach the last step in Table 4-2, you may assume the
error is in the software module.

Checklist in Troubleshooting

Checklist What should happen If it doesn't

Check the "fuse blown" (FB) LEDs on
output modules and SCAN LED on CSM
module.

FB LEDs on output
modules all off.
SCAN LED on CSM is
lit.

Turn off RUN/STOP key
and main disconnect.
Replace the fuse.
Turn on power.
Turn on the RUN/STOP key
to restart the scan.

Cycle power on the system to see if the
modules pass their diagnostics tests.

DIAG LEDs all go out. Turn off power at the main
disconnect. Unscrew the ter-
minal connector on the
faulty hardware module,
replace it with another of
the same type, and screw the
connector on the new mod-
ule. Turn on power.

Check the Software Declaration table to
see which element names correspond to
the problem outputs. Use the Element-Find
command to bring a coil up on screen, and
turn on Animate. If the logic value in the
coil corresponds to the voltage at the
screw terminal, Force the opposite value
into the coil. Repeat with other possible
problem outputs.

The outputs respond
properly to logic com-
mands.

Turn off power at the main
disconnect. Follow the pro-
cedure above to replace the
output module.

Find and Animate the contacts that corre-
spond to input points. At each input screw
terminal turn the voltage on and off while
watching the logic state of the correspond-
ing contact.

The contacts have the
correct logic states.

Turn off power at the main
disconnect switch. Follow
the procedure above to
replace the input module.

Turn input devices on and off and see how
the input elements respond. Also Force 1s
and 0s into output elements and watch
how the corresponding devices respond.

Continuity and applica-
tion devices check out.

Correct problems.

Force the input elements one at a time and
see if the output elements react as
expected.

The outputs work cor-
rectly.

Use Animate with the Find
commands to trace the logic
flow. Force variables at vari-
ous points in this flow to
isolate networks that should
be edited.
4-30 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

CHAPTER 5 Motion Control Concepts
This chapter presents an overview of motion control with the PiC. The focus is on
closed loop servo control where the PiC receives/sends information from/to a servo
axis.

The PiC can also be used with a “read only” or digitizing axis where it receives
position information from the axis but does not send information to the axis. Often,
this axis is used as a master to another servo axis.

Background Information on Closed Loop Control

Closed loop control is characterized by the ability to compare the actual value of a
controlled variable (i.e. axis position) to its desired or commanded value and auto-
matically take action based on that comparison. It is a self-correcting system.

In Figure 5-1, the command source provides a desired value. The actual output
value of the machine or process is sent back and compared to this commanded
value. The difference between the commanded and actual value represents an error.
The controller computes command signals to send to the machine or process to
correct for the error. The machine or process acts as the final correcting device to
bring the actual output as close as possible to the commanded input while main-
taining a stable system.

When the controlled variable being monitored and corrected is the position of an
axis, the system is referred to as a servo system.

FIGURE 5 - 1. Closed Loop System

An open loop control system (Figure 5-2) is not self-correcting. A command is
issued to the controller and action is taken. The controlled variable output is con-
trolled by system inputs only. Because there is no feedback, no account is taken of
the actual system output.

FIGURE 5 - 2. Open Loop System

Controller
Command

Source
Controlled
Variable

Comparator

AA556-1890

Feedback

Machine or
Process

Command
Source Controller Machine or

Process
Controlled
Variable

AA587-2190
Starting PiCPro/PiCServoPro 5-1

The majority of information presented in this chapter focuses on closed servo loop
control.

Introduction to Motion Control with the PiC

Figure 5-3 gives an overview of a motion control system with the PiC. A summary
of the components follows.

1. The system is controlled by the PiC.

GLOS (Giddings & Lewis operating system) is a real time multitasking operat-
ing system on the CPU designed for maximum efficiency in motion control
applications. The PiC provides motion control for up to 16 axes.

2. When the PiC is used for motion control, PiCServoPro software on a personal
computer is required. PiCServoPro includes three program development tools:

• PiC programmer (PiCPRO)--the off-line system used to develop ladder
programs for an application

• Servo setup and tuning (SRVSETUP)--the Servo setup program used to set up axes
and tune servo loops

• Axis profile setup (PiCPFL)--the PiC Profile program used to build ratio profiles for
master/slave applications

The personal computer provides the platform to:

• use PiCServoPro software to create, edit, and print application programs

• perform high-speed serial communication with the PiC for downloading
the ladder program, tuning the servo loop, running scan control, monitoring
the ladder program, viewing variables, and forcing variables

Refer to Chapter 1 of this manual for the procedure to install PiCServoPro on
your IBM or compatible PC.

3. Refer to Chapters 2 and 3 of this manual for information on programming with
PiCPro.

4. Machine control inputs and outputs required for the application

The position loop which includes:

• The feedback device on the machine sending position information to the
PiC via the feedback module

NOTE: If the system has a master rack and one or more expansion racks,
feedback modules must always be installed in the master rack; not in an
expansion rack.

• The PiC sending signals to the motor drive via the analog output module

5. The optional operator interface devices (Fluke touch screen, PiC Program-
ming Pendant)
5-2 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

FIGURE 5 - 3. Motion Control with the PiC

In order to control a position loop, the PiC must:

1. Read feedback information on the actual position of the axis from the feedback
module.

2. Perform calculations on servo data.

3. Write command signals to the analog output module to correct for any error in
position.

Calculations are performed on the servo data by interrupting the ladder scan, per-
forming calculations, issuing commands, and then continuing the ladder scan. By
doing this on an interrupt basis, the servo calculations can be done on a constant
time interval and more frequently than if they had to be done in the ladder. This
provides for much finer resolution in position control.

Figure 5-4 gives a detailed picture of how the servo software in the PiC handles
servo data with a position loop.

The command source comes from the ladder program you create. Specifically,
commands such as feedrate, distance, endpoint, etc. are contained in the standard
move functions incorporated in your ladder. The servo software accesses this data
from a queue.

PiC 900

(GLOS)

Motor
Drive

 Position Loop

Machine Inputs/Outputs

Machine Servos/
Feedback Devices

User provided Personal Computer
for Program Development

(using PiCServoPro Software)

AA555-1890

PiC900™

CSM CPU OUTPUTINPUT

1

5

4

32

Operator Interface Devices
(optional)

1 2 3

4 5 6

7 8 9

. 0 +/-

EN

Giddings & Le

OUTPUTOUTPUTINPUT
Starting PiCPro/PiCServoPro 5-3

There are two queues available:

• The active queue which holds the move that is currently being executed for
the specified axis.

• The next queue which holds the move that will be executed when the active
move is completed or aborted for the specified axis.

Using queues allows the moves to be executed faster than if they were dependent
on the running of the ladder. It also keeps the time between the first move and the
second move for the specified axis as short as possible.

The queues are transparent to you for the most part. They can, however, be manip-
ulated with standard functions as described in the Function/Function Block man-
ual. An identification or “que” number is assigned by the software to each move
when the OK output on the move function is set. The sequential range of que num-
bers is from 1 to 255.

During iteration, the servo software makes the necessary calculations and gener-
ates command segments. These command segments are fed into the position loop
(1) on a real time interrupt rate designated by you. A typical choice is 4 ms. Every
4 ms or interrupt the command segment is added to the command position. Typi-
cally, the servo loop is executed eight times for each update received from the iter-
ator. When running in master/slave applications, iteration occurs every interrupt.

The actual position being read from the feedback module is compared to the com-
mand position. A following error is calculated from the difference between the
command position and the actual position.

This error is then fed into the PID (proportional, integral, derivative) loop which
converts it to a proportional digital velocity command. The PID loop is a compen-
sation network used to improve the output of the position loop. Any or all of the
components of the compensation network can be used in an application:

• The proportional control causes the output to change in proportion to the
value of the following error.

• The integral control causes the output to change in proportion to the value
of the error over a period of time at a zero velocity command.

• The derivative control causes the output to change in proportion to the rate
of change of the error.

Feed forward is also part of the compensation network. It corrects for some or all
of the following error.

The Analog Output module converts the digital velocity to an analog velocity com-
mand and sends it to the drive/motor unit.
5-4 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

FIGURE 5 - 4. PiC Position Loop Control

C
O

M
P

U
T

E
R

M
A

T
H

D
IG

IT
A

L
F

ILT
E

RC
O

M
M

A
N

D

P
O

S
IT

IO
N

F
O

LLO
W

IN
G

E
R

R
O

R
P

ID
C

alculations

A
X

IS
 V

E
LO

C
IT

Y
C

O
M

M
A

N
D

C
O

M
P

U
T

E
P

O
S

IT
IO

N

A
N

A
LO

G

O
U

T
P

U
T

G
M

O
T

O
R

T
A

C
H

 or
E

N
C

O
D

E
R

P
O

S
IT

IO
N

 L
O

O
P

D
R

IV
E

A
M

P
L

IF
IE

R

M
A

C
H

IN
E

IT
E

R
A

T
IO

N

(32 m
s)

S
E

R
V

O
 U

P
G

R
A

D
E

 (S
U

G
)

(typ
ically 4 m

s)

S
E

R
V

O
 S

O
F

T
W

A
R

E

V
E

L
O

C
IT

Y
 L

O
O

P

P
iC

900

A
C

T
U

A
L P

O
S

IT
IO

N

F
E

E
D

B
A

C
K

D
E

V
IC

E
--

E
N

C
O

D
E

R
 or

R
E

S
O

LV
E

R

F
E

E
D

 F
O

R
W

A
R

D

F
E

E
D

B
A

C
K

M

O
D

U
LE

A
A

579-2090

F
rom

 ladder
program

2.

1.

ENDPOINT

A
C

T
IV

E
Q

U
E

U
E

FEEDRATE M
o

ve

F
u

n
ctio

n

DIRECTION

N
E

X
T

Q
U

E
U

E

FEEDRATE M
o

ve

F
u

n
ctio

n

Starting PiCPro/PiCServoPro 5-5

NOTE: There is also a velocity loop (2) in the control system independent of the
PiC. The velocity loop ensures a constant motor speed and a tight servo loop. An
encoder or tachometer provide the feedback signal. When an outside load distur-
bance causes deviations in the velocity, the loop allows for instantaneous compen-
sation. It controls velocity only, not position. It is internal to the drive and motor
package.

Basic Motion Control Programming Process

To accomplish motion control for your application, there are some general consid-
erations presented here. They are designed to give you an overview of what needs
to be done. Your individual application will dictate the actual logic needed in your
program.

When developing your motion control program, there are three general areas to
consider.

1. Preparing for axis motion

The standard motion function STRT-
SERV [along with the user-defined
setup function (USER_SET) which
will be explained later] is required to
initialize setup data, run the servo
software, and start interrupts.

The loop is closed with the
CLOSLOOP function. (See setup
section that follows.)

The servo software is now ready to
accept commands for motion.

2. Performing axis motion

By entering any move function, the
servo software is told to perform cer-
tain tasks. These can be as simple as
jogging an axis or as complex as per-
forming a ratio profile in a master/
slave application.

NOTE: Use a transitional contact to
start each move type.

3. Evaluating axis motion

This involves programming that will
check for errors, read servo data, and
make appropriate decisions based on
the information it receives.

≥ ⁄ƒƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒƒø
≥ ≥USER_SET ≥ ≥STRTSERV ≥
≥ FRSTSCAN ≥ ≥ ≥ ≥ INIT_OK
√ƒƒƒ|P|ƒƒƒƒƒ¥EN OK√ƒƒƒƒƒƒƒƒƒƒƒ¥EN OK√ƒƒƒ(S)ƒƒƒƒ¥
≥ ≥ ≥ ≥ ≥
≥ ¿ƒƒƒƒƒƒƒƒƒŸ ≥ ERR√ƒSTR_ERR
≥ ≥ ≥
≥ ¿ƒƒƒƒƒƒƒƒƒŸ
≥ ⁄ƒƒƒƒƒƒƒƒƒø
≥ ≥CLOSLOOP ≥
≥ MACH_ST ≥ ≥
√ƒƒƒ|P|ƒƒƒƒƒ¥EN OK√
≥ ≥ ≥
≥ 1ƒ¥AXIS ≥
≥ ≥ ≥
≥ ¿ƒƒƒƒƒƒƒƒƒŸ AA410-2490

FRSTSCAN
ƒƒƒ(S)ƒƒƒƒ

 ⁄ƒƒƒƒƒƒƒƒƒø
≥ ≥DISTANCE ≥
≥ SW1 ≥ ≥
√ƒƒƒ|P|ƒƒƒƒƒ¥EN OK√
≥ ≥ ≥
≥ 1ƒ¥AXIS QUE√ƒQUEUE
≥ ≥ ≥
≥ VEL_RATEƒ¥RATE ≥
≥ ≥ ≥
≥ 1000ƒ¥DIST ≥
≥ ≥ ≥
≥ ¿ƒƒƒƒƒƒƒƒƒŸ AA411-2490

≥ ⁄ƒƒƒƒƒƒƒƒƒø
≥ ≥ E_STOP? ≥
≥ ≥ ≥
√ƒƒƒƒƒƒƒƒƒƒƒ¥EN OK√
≥ ≥ ≥ A1_ESTOP
≥ 1ƒ¥AXIS ESTP√ƒƒƒ()ƒƒƒƒ¥
≥ ≥ ≥
≥ ¿ƒƒƒƒƒƒƒƒƒŸ
≥ AA412-2490
5-6 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Setup data

Before the loop can be closed for any axis, there is axis setup information the PiC
needs in order to know how your system is setup. The USER_SET function shown
in (1) above is made by you with the Servo setup program and holds all the setup
information for all the axes used in your application. The procedure for doing this
is covered in Chapter 6 of this manual.

The setup data is divided into three sections. These sections and their related data
are listed below.

1. Scaling data - tells the servo software how the axis units (inches, millime-
ters, degrees, etc.) and ladder units (integers used in the ladder program)
relate to the feedback units the software uses to perform its calculations and
issue its commands.

Input scaling - Feedback units, ladder units, and axis units for data manipu-
lation

Output scaling - Commanded voltage, motor RPM, and counts/motor revo-
lution to scale value for the analog output module

Figure 5-5 illustrates how the setup data is used by the servo software to control
motion.

2. Iterator data - provides the
servo software with data on how
the axis should be handled by
the move iterator.

3. Position loop data - provides the
servo software with data it needs to
control the position loop for the
axis.

Velocity limit Input polarity

Acceleration ramp Output polarity

Deceleration ramp Analog output offset

Controlled stop ramp Feed forward percent

Slow velocity filter Proportional gain

Fast velocity filter Integral gain

Slow/fast velocity threshold Plus integral error limit

Rollover on position Minus integral error limit

Rollover position Derivative gain

Software upper limit Following error limit

Software lower limit Update rate

Ignore limits until referenced? In position band
Starting PiCPro/PiCServoPro 5-7

FIGURE 5 - 5. Setup Data used by Servo Software

R
ollover

P
osition

C
om

m
and

P
osition

Ignore
Lim

its?

Q
u

eu
e

P
o

sitio
n

 L
o

o
p

Iterato
r

In-position
B

and

F
ollow

ing
E

rror

V
elocity
Lim

it

S
calin

g
 D

ata

F
eedback U

nits/
Ladder U

nits

S
oftw

are
U

pper Lim
it

S
oftw

are
Low

er Lim
it

C
heck

O
ffset

O
utput P

olarity

 A
nalog O

utput
M

odule

P
roportional G

ain

Integral G
ain

D
erivative G

ain

F
eed F

orw
ard P

ercent

C
ounts per M

otor R
evolution

V
oltage

M
otor R

P
M

 at V
oltage

C
heck

F
ollow

ing
E

rror Lim
it

Input
P

olarity

E
ncoder

R
esolver

F
eedback D

evice

E
ncoder T

ype

E
ncoder D

river

Actual
Position

(F
rom

/to hardw
are)

P
roportional G

ain
Integral G

ain
D

erivative G
ain

F
eed F

orw
ard P

ercent

U
sed to

calculate

M
otor

D
rive

A
cceleration R

am
p

D
eceleration R

am
p

C
- S

top R
am

p

Ladder U
nits/

A
xis U

nits

S
low

 V
elocity F

ilter

F
ast V

elocity F
ilter

S
low

/F
ast V

elocity
T

hreshold

O
utput

S
caling

Input S
caling

A
A

409-2490

P
rovides all servo data

from
 m

ove function in
ladder program

 needed
to perform

 calculations to

issue com
m

ands.
5-8 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

CHAPTER 6 Servo Setup and Tuning
Servo setup and tuning is a program development tool used to:

1. Enter setup data for all axes used in your application with the servo setup por-
tion.

2. With communications established between the PC and the PiC, change six of
the setup parameters and view on-line variables and errors for the selected axis
with tuning (PiCTune).

This chapter covers both of these features of the Servo setup program.

Introduction to Servo Setup Data

For each axis used in your application, certain setup parameters must be entered
and included in your program. This is done with the Servo setup and tuning (SRVSETUP)
program found under the Programs menu.

There are three categories of setup data in the Servo setup program:

1. Scaling data - sets up the ratio between feedback units, ladder units, and axis
units. This allows you to enter axis units instead of feedback units in the appro-
priate places for iterator and position loop data in setup. The three types of
units are defined below.

Feedback units - the units the servo software uses to perform its calculations
and issue its commands in.

Ladder units - the units used in the ladder program. They must be integers.

Axis units - the units of measurement (inches, millimeters, degrees) for the
system. They may be integers or non-integers (decimals) and are used in the
Servo setup program to enter certain types of setup data.

2. Iterator data - specifies how data such as limits, ramps, filters, and roll overs
will be handled by the move iterator.

3. Position loop data - provides the servo software with information on how the
axis is set up for the position loop.

Figure 6-1 illustrates how the setup data interacts with PiCPro on the PC and the
CPU on the PiC. A general overview of using the Servo setup program with
PiCPro and the PiC follows.

1. Use the Servo setup program (SRVSETUP.EXE) to enter setup data for your
application. Save this data in a file (your name.SRV). [USER.SRV in Figure 6-
1]

2. Use the Servo setup program to make a function containing this setup data.
Assign an appropriate name. (USER_SET is the name of this function in the
example ladder network at x(6) in Figure 6-1.)

This function is placed in a library file you create (your name.lib) which
PiCPro can find. The library file holds servo functions defined by you (such as
Starting PiCPro/PiCServoPro 6-1

the USER_SET function in Figure 6-1) for your application. [ZSERVO.LIB in
Figure 6-1]

The procedure to do this will be explained in section 6.3 of this chapter.

3. Use the PiCPro software (PICPRO.EXE) to create an application program
(your name. LDO). [USER.LDO in the example]

4. Include the setup function you made in a network of your ladder program.

5. Download the application program to the PiC. The setup data for your applica-
tion is sent to the PiC in the form of a function.

6. When the USER_SET function, in combination with the STRTSERV standard
motion function, is called in the ladder, the setup data is copied into the RAM
memory of the PiC.

7. PiCTune is a part of the Servo setup program used to read and write certain
setup data for each axis. It will be covered in section 6.4 of this chapter.

WARNING WHEN UPGRADING PICPRO

Always remake your setup function and download your LDO when you up-
grade your PiCServoPro software to the latest version.

≥ ⁄ƒƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒƒø
≥ ≥USER_SET ≥ ≥STRTSERV ≥
≥ FRSTSCAN ≥ ≥ ≥ ≥ INIT_OK
√ƒƒƒ|P|ƒƒƒƒƒ¥EN OK√ƒƒƒƒƒƒƒƒƒƒƒ¥EN OK√ƒƒƒ(S)ƒƒƒƒ¥
≥ ≥ ≥ ≥ ≥
≥ ¿ƒƒƒƒƒƒƒƒƒŸ ≥ ERR√ƒSTR_ERR
≥ ≥ ≥
≥ ¿ƒƒƒƒƒƒƒƒƒŸ

User-defined function

AA414-2690
6-2 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

FIGURE 6 - 1. The Servo Setup Program Data Flow

SRVSETUP.EXE
Program for entering setup

data and tuning axes

Download application
program from PiCPro
on the PC to the CPU
memory of the PiC900

PC
Workstation

USER.LDO
Application program

Write an
application
program using
PiCPro

CPU of
PiC 900

PiC900™

PiC

CPU

Data Flow

ZSERVO.LIB

USER.SRV
Source file of setup data
Calculations performed

PICPRO.EXE
PiCPro programming
software for PiC900

Enter, edit, save
setup data

Make a
function

Include setup
function in LDO

AA576-4992

Places setup
data in RAM

when activatedLADDER

RAM

PIC900
MEMORY

EN OKP

SERV_ON
S

INIT_OKSTRTSERV
EN OK

ERR STR_ERR

PiCTUNE

Key
Represents data files
created by user

Represents executable files
supplied with PiCServoPro

5

6

7 (See Figure 6-6.)

21

3

Contains setup function
made by user (The USER_SET
function in ladder example at 6)

4

USER_SET
Starting PiCPro/PiCServoPro 6-3

Entering Servo Setup Data

The procedure for entering setup data for each axis used in your application is cov-
ered in this section.

This is done from the Servo setup and tuning (SRVSETUP) menu under Programs.

.

NOTE

The same methods of moving around within PiCPro discussed in an earlier
chapter apply to PiCServoPro also. (Hot keys, menus, etc.)

At any point, you may use the <F9> key to receive additional information on the item
the selection bar is on.

When PiCServoPro is
called up on the PC, the
screen shown on the left
appears momentarily (hit
any key to move to next
screen) before the menu bar
containing Workstation and
Programs appears.

The Workstation menu offers
the same items as explained
in Chapter 1. In addition
there is a Help on PiCServo-
Pro message.

 �������� ������
 �� �� �� ��
 �� �� �� �� ��
 �� �� �� ��
 �������� �� ��
 �� �� ��
 �� �� �� ��
 �� �� �� ��
 �� �� ������
 ������ ��������
 �� �� �� ��
�� �� ������ ������� �� �� ������ �� �� ������� ������
 �� �� �� �� �� �� �� �� �� �� �� �� �� ��
 ������ �� �� �� �� �� �� �� �������� �� �� �� ��
 �� ������ ������� �� �� �� �� �� ������� �� ��
�� �� �� �� �� �� �� �� �� �� �� �� �� ��
 �� �� �� �� �� ���� �� �� �� �� �� �� ��
 ������ ������ �� �� �� ������ �� �� �� ������

 PiC900 PiCServoPro
 Version XX.XX
 Copyright (c) 1989-1990 Giddings & Lewis Inc.
 All Rights Reserved.

AA506-1490
6-4 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Accessing Programs brings up the three choices shown below. To enter setup data,
place the cursor on Servo setup and tuning (SRVSETUP) and press <Enter>.

The menu bar on the left will appear. The Pro-
cessor menu allows you to use the servo setup
and tuning program over your network.

Press P (Processor) to display the choices
under Processor. If you want to connect to
another node on your network, press C (Con-
nect to Node).

If you want to display the status of the control
you are connected to, press A (display of stA-
tus).

NOTE: In the right bottom of the screen, the
number of the connected node appears.

Press F (File) to display the choices under File.
If a new file for setup data is being created,
press N (New).

If a file that was created previously is being
worked on, press O (Open).

NOTE: When opening existing files, the F8 key
displays a list of any files that have been previ-
ously created.

 Workstation Processor pRojects
 …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
 ∫ Control programmer (PICPRO) ∫
 ∫ Servo setup and tuning (SRVSETUP) ∫
 ∫ sErcos setup (SRCSETUP) ∫
 ∫ Axis profile setup (PICPFL) ∫
 »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

 Welcome to PiCServoPro
 fl
 <W> Pulls down the Workstation menu
 <P> Pulls down the Processor menu
 <T> Pulls down the Tools menu
 <F9> Calls up a help message

 Workstation Processor File
’ÕÕÕÕÕÕÕÕÕÕÕÕÕÕ…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕªÕÕÕÕ∏
≥ ∫ Connect to Node ∫ ≥
≥ ∫ display stAtus ∫ ≥
≥ »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº ≥

 Workstation Processor File
’ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ…ÕÕÕÕÕÕªÕÕ
≥ ∫ New ∫
≥ ∫ Open ∫
≥ »ÕÕÕÕÕÕº
Starting PiCPro/PiCServoPro 6-5

The menu bar will change as shown below and you will be prompted to add an axis
by choosing “insert” from the Axis menu.

Press AI (Axis - Insert) or the <Insert> key.

When creating a new file, this box appears and
you must type in a name for your setup data
file. Press F10 to accept the name and continue.

NOTE: After F10 is pressed, notice that the
name of your setup data file with the extension
.SRV appears on the bottom of the screen. This
file will hold all the setup data for all axes used
in your application.

⁄ƒƒƒƒƒƒƒƒƒƒƒƒƒ New File ƒƒƒƒƒƒƒƒƒƒƒƒƒø
≥ ≥
≥ Filename for setup :< >≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

AA517-1490

 Workstation Processor File Axis
’ÕÕ∏
≥To add an axis, select `Insert' command from the `Axis' menu ≥
≥ <End of axis table> ≥

 Workstation Processor File Axis
Õ Label ÕÕÕ Axis # ÕÕ…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
 ∫ Insert axis <Ins> ∫
 ∫ Redefine axis <Ctl-R> ∫
 ∫ Delete axis ∫
 ∫ Feedback data <Ctl-F> ∫
 ∫ Edit axis data <Enter> ∫
 ∫ Tune axis <Ctl-T> ∫
 »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº
6-6 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

The Define Axis box appears. The Feedback Module field has been added.
NOTE: The same box appears if you choose to redefine an axis after it has been
inserted.

Depending on the feedback module chosen, one of the boxes shown below will
appear after you press <F10> so that you can enter setup data for the module. You
can also change any data entered in these Configure boxes from the Axis menu
using the Feedback data command <CTL - F>.

In the Define Axis box, the Axis label is entered
automatically. You can change this label. You must
provide the hardware information based on your
application.

The types of axes that can be defined include:

Servo application

A servo axis controlled by the PiC. Fill in all
information.

Digitizing axes

An input-only axis (Fill in only Feedback Module and
Input slot and channel. Axis #’s 49 through 64 are
reserved for this use.)

The Feedback Module field
allows you to enter the
feedback device used for
the axis. Press <F8> to
bring up a list of types.
Move the cursor to the
feedback device you are
using and press <Enter>.

Fill in the appropriate slot/
channel information and
press <F10>.

NOTE: When SERCOS is
the feedback type, enter the
ring number in the channel
entry.

NOTE: When Stepper is
the Feedback type, the
input slot/channel entry
must match the output slot/
channel entry.

Press <Esc> to cancel data

⁄ƒƒƒƒƒƒƒƒƒƒƒ Define Axis ƒƒƒƒƒƒƒƒƒƒƒø
≥ ≥
≥ ≥
≥ Axis Label : AXIS_1 ≥
≥ ≥
≥ Feedback Module : ≥
≥ ≥
≥ Input slot : ≥
≥ ≥
≥ channel : ≥
≥ ≥
≥ Output slot : ≥
≥ ≥
≥ channel : ≥
≥ ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

AA518-3692

⁄ƒƒƒƒƒƒƒƒƒƒ Define Axis ƒƒƒƒƒƒƒƒƒƒø
≥ ≥
≥ ≥
≥ Axis Label : AXIS_1 ≥
≥ ’ÕÕÕÕFeedback TypeÕÕÕÕÕ∏
≥ Feedback Module : ≥Encoder ≥
≥ ≥Resolver ≥
≥ Input slot : ≥Analog Input ≥
≥ ≥TTL Input ≥
≥ channel : ≥SERCOS ≥
≥ ≥Stepper ≥
≥ ‘ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕæ
≥ Output slot : ≥
≥ ≥
≥ channel : ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ
Starting PiCPro/PiCServoPro 6-7

Encoder Setup

Each box has a default setting in it. Pressing <F8> will bring up a list of available
choices for some of the entries. With the cursor on an entry, press <F9> to get Help
messages.

Resolver Setup

The resolver does not require any other setup data. An inductosyn device may also
be used. Enter “Resolver” if using an inductosyn.

Enter the correct driver for the encoder being used.

Single-ended or Differential

Enter the encoder type being used in your application.
It may be either quadrature or pulse.

Quadrature type assumes that there are four counts for
each quadrature cycle. The rising and falling edges of
both channel A and channel B are counted.

Pulse type counts either channel A or channel B so
that one count is recorded per cycle.

⁄ƒƒƒ Configure Encoder Module ƒƒƒø
≥ ≥
≥ ≥
≥ Encoder Driver :<Differential >≥
≥ ≥
≥ Encoder Type :<Quadrature >≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

AA1120-3692
6-8 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Analog Input Setup

 Select the filter time from the <F8> list.

If you are using the module in the 4/20 mA mode,
press Y(es) at the 4/20 mA offset field. The Bipo-
lar field will be changed to “No” and unipolar
input range of 0 to 5 is inserted by the software.
These defaults cannot be changed when in the 4/
20mA mode.

When not using the 4/20 mA mode, the bipolar or
unipolar voltage range is selected from the <F8>
lists shown below.

Unipolar Ranges Bipolar Ranges

⁄ƒƒ Configure Analog Input Module ƒø
≥ ≥
≥ ≥
≥ Filter Time :<1 ms > ≥
≥ ≥
≥ 4/20 mA offset :<No > ≥
≥ ≥
≥ Bipolar :<Yes > ≥
≥ ≥
≥ Range (Volts) :<-10 to 10 >≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

AA1121-3692

Analog Input Filter Time
≥1 ms ≥
≥10 ms ≥
≥100 ms ≥
≥110 ms ≥
‘ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕæ

’ÕÕAnalog Input RangeÕÕ∏
≥0 to 10 ≥
≥0 to 5 ≥
≥0 to 2.5 ≥
≥0 to 1.25 ≥
≥0 to 1 ≥
≥0 to 0.5 ≥
≥0 to 0.25 ≥
≥0 to .125 ≥
‘ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕæ

’ÕÕAnalog Input RangeÕÕ∏
≥-10 to 10 ≥
≥-5 to 5 ≥
≥-2.5 to 2.5 ≥
≥-1.25 to 1.25 ≥
≥-1 to 1 ≥
≥-0.5 to 0.5 ≥
≥-0.25 to 0.25 ≥
≥-0.125 to .125 ≥
‘ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕæ
Starting PiCPro/PiCServoPro 6-9

TTL Setup

Selections are based on the type of feedback device
you are using.

TTL input data is defined as valid depending on
what is selected from the list.

Binary

High - Whenever input 24 is high, the
inputs are not allowed to change.

Low - Whenever input 24 is low, the inputs
are not allowed to change.

Same - Whenever two consecutive reads of
the inputs are the same. The 24th
input is not used.

Gray code - Alternative to binary encoding.
Only one bit of a gray code number
changes at a time. The 24th input is
not used.

Enter the number of position data bits your device
requires. A minimum of eight bits is required.

A maximum of 16 and a minimum of 8 bits can
be used if Same or Gray code is selected above.
The 24th input is not used.

A maximum of 23 bits can be used if High or
Low is selected with the 24th bit used as an indi-
cator of valid data.

The input unsigned/signed defaults to unsigned.
Most TTL devices return an unsigned pattern
with one end of travel all 1’s and the other end all
0’s. If the device returns a signed pattern with all
0’s in the center of travel, change the default to
signed by pressing <F8> and choosing Signed.

⁄ƒƒƒƒ Configure TTL Input Module ƒƒƒø
≥ ≥
≥ ≥
≥ Data Valid :<High on 24th> ≥
≥ ≥
≥ # of data bits :<23 > ≥
≥ ≥
≥ Input unsigned/signed :<Unsigned >≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

 ’ÕÕData Valid ifÕÕÕ∏
 ≥High on 24th IP ≥
 ≥Low on 24th IP ≥
 ≥Same - No 24th IP ≥
 ≥Gray code ≥
 ‘ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕæ
6-10 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

SERCOS Setup

After defining an axis, the menu bar displays the information as shown below. The
cursor is positioned after the last entry so that pressing <Insert> allows you to define
the next axis.

There are five columns containing the information that defines the axis.

When a SERCOS slave is connected to a servo axis,
SERCOS is chosen as the feedback module. Enter the
slave number in the Configure SERCOS Module box.

NOTE: Only a servo loop axis may be connected to a
SERCOS slave.

Column Name Description

1 Label Represents an eight character label assigned by
the servo software.

It can be changed by you to an application-specific
label to identify the axis throughout the Servo
setup program. It only applies to the axis in setup.

2 Axis # Represents the number assigned by the servo soft-
ware to identify the axis in the ladder program. It
cannot be changed by you.

You enter this number at the AXIS input of any
standard motion function for that axis used in your
ladder program.

3 Feedback
Module

Identifies the feedback device being used on the
axis.

4 Input Slot/
Channel

Defines the hardware input of the axis.

5 Output Slot/
Channel

Defines the hardware output of the axis.

⁄ƒƒ Configure SERCOS Module ƒƒø
≥ ≥
≥ ≥
≥ Slave Number 1-8 :< > ≥
≥ ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

’Õ Label ÕÕÕ Axis # ÕÕÕ Feedback Module ÕÕ Input Slot/Chan Õ Output Slot/Chan Õ∏
≥ AXIS_1 1 Encoder 3 / 1 4 / 1 ≥
≥ AXIS_2 2 Resolver 5 / 1 6 / 1 ≥
≥ AXIS_3 3 Analog Input 7 / 1 4 / 2 ≥
≥ AXIS_4 4 TTL Input 8 / 1 9 / 2 ≥
Starting PiCPro/PiCServoPro 6-11

Stepper Axis Setup

The stepper type defaults to CW/CCW.

Depending on the type of stepper you are using,
select from the <F8> list. ⁄ƒƒƒƒƒ Configure Stepper Module ƒƒƒø

≥ ≥
≥ ≥
≥ Stepper Type:<CW/CCW > ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

 ’ÕÕStepper Type ÕÕÕ∏
 ≥CW/CCW ≥
 ≥Step/Direction ≥
 ‘ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕæ
6-12 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Number of Servo and Digitizing Axes Available

It is possible to define up to 32 servo axes with input and output and up to 32 dig-
itizing axes with input only. Figure 6-2 shows 16 servo axes and 16 digitizing
axes. The servo software numbers the servo axes 1 through 16 for the first 16
servo axes and 101 through 116 for the second 16 servo axes. The digitizing axes
are numbered from 49 through 80 in the Axis # column.

FIGURE 6 - 2. Maximum Number of Axes

Once the axis has been defined, return to the menu bar and press A (Axis) E (Edit)
or <Enter>.

This brings up the list of setup parameters shown in Figure 6-3 that must be
entered for each axis used in the application. (It may be necessary to scroll through
the list to view all of them.) The setup data is divided into three sections:

1. Scaling data

2. Iterator data

3. Position loop data

There is a default value connected with each parameter. When the selection bar is
on a parameter, there is a help window at the bottom of the screen for that parame-
ter. The message offers a brief explanation of the parameter and the range of values
that can be entered if it is necessary to change the default value.

 Workstation Processor File Axis
’ÕÕ Label ÕÕÕ Axis # ÕÕ Feedback Module ÕÕ Input Slot/Channel ÕÕ Output Slot/Channel Õ∏
≥ AXIS_1 1 Encoder 3 / 1 4 / 1 ≥
≥ AXIS_2 2 Encoder 3 / 2 4 / 2 ≥
≥ AXIS_3 3 Encoder 3 / 3 4 / 3 ≥
≥ AXIS_4 4 Encoder 3 / 4 4 / 4 ≥
≥ AXIS_5 5 Resolver 5 / 1 4 / 5 ≥
≥ AXIS_6 6 Resolver 5 / 2 4 / 6 ≥
≥ AXIS_7 7 Resolver 5 / 3 4 / 7 ≥
≥ AXIS_8 8 Resolver 5 / 4 4 / 8 ≥
≥ AXIS_9 9 Analog Input 6 / 1 8 / 1 ≥
≥ AXIS_10 10 Analog Input 6 / 2 8 / 2 ≥
≥ AXIS_11 11 Analog Input 6 / 3 8 / 3 ≥
≥ AXIS_12 12 Analog Input 6 / 4 8 / 4 ≥
≥ AXIS_13 13 TTL Input 7 / 1 8 / 5 ≥
≥ AXIS_14 14 Encoder 13 / 1 8 / 6 ≥
≥ AXIS_15 15 Encoder 13 / 2 8 / 7 ≥
≥ AXIS_16 16 Encoder 13 / 3 8 / 8 ≥
≥ AXIS_17 49 Encoder 9 / 1 ≥
≥ AXIS_18 50 Encoder 9 / 2 ≥
≥ AXIS_19 51 Encoder 9 / 3 ≥
≥ AXIS_20 52 Encoder 9 / 4 ≥
≥ AXIS_21 53 Encoder 10 / 1 ≥
≥ AXIS_22 54 Encoder 10 / 2 ≥
≥ AXIS_23 55 Encoder 10 / 3 ≥
≥ AXIS_24 56 Encoder 10 / 4 ≥
≥ AXIS_25 57 Encoder 11 / 1 ≥
≥ AXIS_26 58 Encoder 11 / 2 ≥
≥ AXIS_27 59 Encoder 11 / 3 ≥
≥ AXIS_28 60 Encoder 11 / 4 ≥
≥ AXIS_29 61 Resolver 12 / 1 ≥
≥ AXIS_30 62 Resolver 12 / 2 ≥
≥ AXIS_31 63 Resolver 12 / 3 ≥
≥ AXIS_32 64 Resolver 12 / 4 ≥
≥ <End of axis table> ≥

Se
rv
o
ax
es

Di
gi

ti
zi

ng

ax
es
Starting PiCPro/PiCServoPro 6-13

The F8 key will bring up a list of choices to select from with some parameters.

The F9 key will provide additional information on the three Input Scaling data
lines.

FIGURE 6 - 3. Setup Data Parameter List
’ Main Data ÕÕÕ∏
≥ SCALING DATA ≥
≥ Input ƒ¬ƒƒƒƒƒ Feedback Units 1 ≥
≥ Scaling √ƒƒƒƒƒ Ladder Units 1 ≥
≥ ¿ Ladder Units/Axis Units 1 ≥
≥ Output ƒ¬ƒƒƒƒ Commanded Voltage 10000 ≥
≥ Scaling √ƒ Motor RPM at Voltage 1000 ≥
≥ ¿ Counts/Motor Revolution 1000 ≥
≥ ITERATOR DATA ≥
≥ Velocity Limit 0.0000000000 ≥
≥ Acceleration Ramp 3839941406.0 ≥
≥ Deceleration Ramp 3839941406.0 ≥
≥ Controlled Stop Ramp 3839941406.0 ≥
≥ Slow Velocity Filter 0 ≥
≥ Fast Velocity Filter 0 ≥
≥ Slow/Fast Velocity Threshold 0.0000000000 ≥
≥ Rollover on Position No ≥
≥ Rollover Position 0.0000000000 ≥
≥ Software Upper Limit 536870911.00 ≥
≥ Software Lower Limit -536870912.0 ≥
≥ Ignore Limits until Referenced? Yes ≥
≥ POSITION LOOP DATA ≥
≥ Input Polarity Positive ≥
≥ Output Polarity Positive ≥
≥ Analog Output Offset 0 ≥
≥ Feed Forward Percent 0 ≥
≥ Proportional Gain 100 ≥
≥ Integral Gain 0 ≥
≥ Plus Integral Error Limit 0.0000000000 ≥
≥ Minus Integral Error Limit 0.0000000000 ≥
≥ Derivative Gain 0 ≥
≥ Following Error Limit 0.0000000000 ≥
≥ Update rate 4 millisec ≥
≥ In Position Band 0.0000000000 ≥
‘ÕÕæ

3

2

1

AA429-3692
6-14 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

You may find it helpful to scroll through each parameter and read the help window
connected with each.

The following tables also describes the parameters.

FIGURE 6 - 4. Descriptions of Scaling Data

Parameter Description

SCALING DATA

Input Scaling - The three lines here establish a scaling ratio between the feedback units the
servo software used to perform its calculations and issue its commands, the units used in the
ladder, and the units entered in setup.

NOTE: When using SERCOS feedback, it is recommended that units be entered in a 1:1
ratio.

Feedback
Units/Lad-
der Units

Feedback units are the units the servo software uses to perform its calculations
and issue its commands. Ladder units are the units used in the ladder program.
Ladder units must be integers.

The ratio of the feedback device signal to the PiC feedback units is:

One revolution of a resolver = 4000 feedback units

One pulse of an encoder = one feedback unit

NOTE: One cycle of a quadrature type encoder equals four pulses.

NOTE: You cannot enter fractional values here.

Ladder Unit
/Axis Units

Axis units are the units of measurement (inches, millimeters, degrees) used in
your system. They are used to enter values for several setup parameters.

Enter the ratio of ladder units to axis units. (1, 10, 100, 1000, 10000, or
1000000)

IMPORTANT

Keep in mind that certain iterator and position loop data is entered
in axis units. The default values are also in axis units and are some-
times at the upper limit of an acceptable value (ramps and software
limits). If you choose a ratio for your ladder units/axis units that is
greater than 1, then these default values will exceed the limit.
Change the default value to a lower value for those parameters.
Starting PiCPro/PiCServoPro 6-15

FIGURE 6 - 5. Descriptions of Iterator Data

Output Scaling - These three parameters provide the information the controller needs to be
able to calculate how much voltage the analog output will need to operate the axis at a certain
speed and how many feedback units will be received for each motor revolution.

Commanded Voltage

Motor RPM at Voltage

Counts/Motor Revolution

Enter a commanded voltage in millivolts.

Enter the motor RPM at the commanded volt-
age entered above.

Enter the number of feedback units that occur
for each motor revolution.

NOTE: These parameters are used for scaling
servo calculations by the servo software. They
do not represent limits.

Application Note on using PiCTune (see next section) to help determine what scaling infor-
mation to enter for the number of fu/min/volt of the D/A.

1. Enter 100% for the feed forward value.

2. Move the axis at a fixed velocity in either always the positive or always the
negative direction.

3. Observe the following error in PiCTune. If the following error is not zero, the
velocity scaling is incorrect.

4. Change the Motor RPM at Voltage in Servo Setup.
For example, if you are jogging in the positive direction and the error is
always negative, increase the RPMs and vice versa.

5. Return to PiCTune and perform a field download. Again, observe the follow-
ing error.

6. Repeat the above steps until the following error is close to zero.

7. Finally, remake the servo setup function and perform a complete download of
the ladder.

Parameter Description

ITERATOR DATA

Velocity
Limit

Enter the maximum velocity the motor should ever be commanded to in axis
units/min. Limits the maximum motor RPM. Does not apply to a slave axis.

WARNING

The position loop may cause the axis to travel faster than this
speed if enough position, integral, and/or derivative error accu-
mulates.
6-16 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Typical values are 100,000 to 10,000,000 AU/min (where 1 AU = 1 LU), not
to exceed 4095 FU/update. NOTE: If 1 AU ≠ 1 LU, scale these values accord-
ingly.

Acceleration
Ramp

Enter the rate in axis units/minute/second at which the servo software will
iterate the axis to reach a higher velocity command.

Typical values are 10,000 to 10,000,000 AU/min/sec (where 1 AU = 1 LU),
not to exceed 1023 FU/update/update. NOTE: If 1 AU ≠ 1 LU, scale these
values accordingly.

Deceleration
Ramp

Enter the rate in axis units/minute/second at which the servo software will
iterate the axis to reach a lower velocity command.

Typical values are 10,000 to 10,000,000 AU/min/sec (where 1 AU = 1 LU),
not to exceed 1023 FU/update/update. NOTE: If 1 AU ≠ 1 LU, scale these
values accordingly.

Controlled
Stop Ramp

Enter the rate in axis units/minute/second at which the servo software will
iterate the axis to reach a controlled stop.

Typical values are 10,000 to 10,000,000 AU/min/sec (where 1 AU = 1 LU),
not to exceed 1023 FU/update/update. NOTE: If 1 AU ≠ 1 LU, scale these
values accordingly.

Slow Veloc-
ity Filter

Enter the milliseconds the filter will take to smooth out a “step” change in
velocity while the axis is moving at slow velocities.

NOTE: Specifically, the value entered represents the milliseconds that the
servo software takes to carry out 63.2% of the step change.

Range: 0 - 10000 ms

Fast Velocity
Filter

Enter the milliseconds the filter will take to smooth out a “step” change in
velocity while the axis is moving at fast velocities.

NOTE: Specifically, the value entered represents the milliseconds that the
servo software takes to carry out 63.2% of the step change.

Range: 0 - 10000 ms

Slow/Fast
Velocity
Threshold

Enter the velocity in axis units/minute (AU/min) at which the slow or fast
velocity filter should be applied.

Typical value is 0, not to exceed 4095 FU /update.

Rollover on
Position

This parameter acts as a reference reset.

Enter “Yes” if you want the axis position to roll over to zero when the Rollover Position
entered on the next line is reached.

Enter “No” if you do not want the axis position to roll over. The commanded position will
then accumulate.

Rollover
Position

Enter the rollover position in axis units.

Typical values are 100 to 1,000,000 AU (where 1 AU = 1 LU), not to exceed 536870911
FU. NOTE: If 1 AU ≠ 1 LU, scale these values accordingly.
Starting PiCPro/PiCServoPro 6-17

Software
Upper Limit

Enter the software-imposed upper travel limit in axis units. Exceeding this limit will
generate a C-stop condition.

Typical values are 100 to 1,000,000 AU (where 1 AU = 1 LU), not to exceed 536870911
FU. NOTE: If 1 AU ≠ 1 LU, scale these values accordingly.

Software
Lower Limit

Enter the software-imposed lower travel limit. Exceeding this limit will generate a C-stop
condition.

Typical values are 100 to 1,000,000 AU (where 1 AU = 1 LU), not to exceed 536870911
FU. NOTE: If 1 AU ≠ 1 LU, scale these values accordingly.

Ignore limits
until
referenced?

A “Yes” here allows a machine reference to occur without exceeding the software limits
designated earlier. This is useful if you exceed the software limits because of how far you
have to travel to your reference switch or where your reference switch is located.

After the machine reference is complete, the software limits are in effect.

Ref switch
(Machine

Reference)

Machine
operating

range

User-defined
software + limit

(C-stop)

User-defined
software - limit

(C-stop)

AA553-1690
6-18 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

FIGURE 6 - 6. Descriptions of Position Loop Data

Parameter Description

POSITION LOOP DATA

Input
polarity

Provides a software method of changing the polarity of the position feedback
device.

If the input polarity is incorrect, the axis will either “run away” or move in the
wrong direction. If this occurs, then enter the opposite polarity here.

Output
polarity

Provides a software method of changing the polarity of the analog output.

If the output polarity is incorrect, the axis will either “run away” or move in
the wrong direction. If this occurs, then enter the opposite polarity here.

Analog Out-
put Offset

If it is not possible to get a zero volts reading from a voltmeter placed across
the analog output channel for the axis, enter the amount of voltage in milli-
volts that allows you to reach a zero reading.

Range: -10000 to 10000 mV

Feed For-
ward Percent

Enter a percentage (from 0 to 100%) that you want the position loop to com-
pensate for the lag that occurs between the generation of the following error
and the correction of that error by the PID calculations.

Range: 0 - 100%

Proportional
Gain

Proportional gain calibrates corrective action proportional to the amount of
following error. The value entered represents the axis units per minute for
each axis unit of following error.

Typical values are 1,000 - 5,000 AU/min/AUFE.

Integral Gain Integral gain determines corrective action proportional to the amount of fol-
lowing error summed over the time duration of the error at a zero velocity
command. The longer the following error exists, the greater the integral error.
The value entered represents the number of axis units per minute per axis unit
of following error times minutes.

Typical value is 0. If required, up to 32,000 AU/min/AUFE*min.

Plus Integral
Error Limit

Tells the position loop to ignore any additional integral error beyond the value
entered when the axis is moving in a positive direction.

Typical value is 0. If required, from 100,000 to 500,000,000 AUFE*update
(where 1 AU = 1 LU). NOTE: If 1 AU ≠ 1 LU, scale these values accordingly.
Starting PiCPro/PiCServoPro 6-19

Make any necessary changes to the default values for each setup parameter for the
first axis in your application.

Other Axes

After entering the setup data for one axis, the setup data for any remaining axes in
your application must also be entered.

Minus Inte-
gral Error
Limit

Tells the position loop to ignore any additional integral error beyond the value
entered when the axis is moving in a negative direction.

Typical value is 0. If required, from -500,000,000 to - 100,000 AUFE*update
(where 1 AU = 1 LU). NOTE: If 1 AU ≠ 1 LU, scale these values accordingly.

Derivative
Gain

Derivative gain determines the corrective action proportional to the magni-
tude of change of the following error. The value entered represents the num-
ber of axis units per min for each axis unit of following error per minute.
Typically, this is set to 0.

Typical value is 0. If required, up to 500 AU/min/AUFE/min.

Following
Error Limit

Enter the amount of excess error in axis units to allow before an E-stop condi-
tion occurs.

Typical values are 10 to 10,000 AU (where 1 AU = 1 LU), not to exceed
536870911 FU. NOTE: If 1 AU ≠ 1 LU, scale these values accordingly.

Update Rate Enter in milliseconds how often the servo upgrade occurs. 4 ms is adequate for
most applications. Lower values consume more CPU processing time. If too
many axes have too low an update rate, the CPU may not have enough process-
ing time available to run the user program.

The iteration rate is eight times the servo upgrade rate:

SUG (ms) Iteration Rate (ms)
.25 2
.5 4
1 8
2 16
4 32
8 64

For digitizing axes, the update rates are .25, .5, 1, 2, 4, 8, or 16 ms.

A rate can be selected for each axis.

NOTE: In master/slave moves, the iteration rate is the same as the servo
upgrade rate.
The update rate for the master axis and the slave axis must be the same in any
master/slave move.

In Position
Band

Enter the distance in axis units that the axis must be on either side of its end-
point before the in position flag is set. This in position flag can be used in your
program.

Typical values are 10 to 1,000 AU (where 1 AU = 1 LU), not to exceed
536870911 FU. NOTE: If 1 AU ≠ 1 LU, scale these values accordingly.
6-20 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Leave the setup data screen by pressing <F10>. This accepts all your setup data for
AXIS_1.

The screen where all the axes for your application have been defined appears.

In the example below, two axes have been defined. Place the selection bar on
AXIS_2 and press <Enter>.

This brings up the setup data screen again with AXIS_2 at the top. All the setup
parameters contain the default values. There are two approaches to changing the
data for this second axis.

1. Scroll through the entire list, changing default values to meet the requirements
of this axis.

2. Use the copy command to copy setup data from a previously entered axis.

The procedure for using the copy command follows.

AA438-3792

 Axis
 AXIS_1 IP Slot/Ch:3/1 OP Slot/Ch: 4/1 Encoder/Differential/Quadrature
’ Main Data ÕÕÕ∏
≥ SCALING DATA ≥
≥ Input ƒ¬ƒƒƒƒƒ Feedback Units 1 ≥
≥ Scaling √ƒƒƒƒƒ Ladder Units 1 ≥
≥ ¿ Ladder Units/Axis Units 1 ≥
≥ Output ƒ¬ƒƒƒƒ Commanded Voltage 10000 ≥
≥ Scaling √ƒ Motor RPM at Voltage 1000 ≥
≥ ¿ Counts/Motor Revolution 1000 ≥
≥ ITERATOR DATA ≥
≥ Velocity Limit 0.0000000000 ≥
≥ Acceleration Ramp 3839941406.0 ≥
≥ Deceleration Ramp 3839941406.0 ≥
≥ Controlled Stop Ramp 3839941406.0 ≥
‘ÕÕæ
’Help WindowÕÕÕ∏
≥Scaling data establishes a scaling ratio between the feedback units the ≥
≥servo software uses to perform its calculations and issue its commands ≥
≥and the units of measurement (inches, millimeters, degrees etc.) you use ≥
≥to refer to your system. ≥
≥ ≥
≥ ≥
‘ÕÕæ

 Workstation Processor File Axis
’Õ Label ÕÕÕ Axis # ÕÕÕFeedback Module ÕÕInput Slot/ChannelÕÕ Output Slot/ChannelÕ∏
≥ AXIS_1 1 Encoder 3 / 1 4 / 1 ≥
≥ AXIS_2 2 Encoder 3 / 2 4 / 2 ≥
≥ ≥
≥ <End of axis table>
Starting PiCPro/PiCServoPro 6-21

From the setup data screen for AXIS_2, press
AC (Axis - Copy).

 This brings up the Copy from axis box with the cur-
sor flashing in the Axis Label field. Enter the label
of the axis whose setup data you want to copy.
The <F8> key will bring up a list of all axes
defined.

Arrow down to the next field, Copy All Fields/Current
Field. The default is to CURRENT. This will copy
only the field from the setup screen on which
the selection bar is placed.

If you want to copy all fields
from the axis, press <F8> to
bring up the choices and
select ALL.

Now all the setup data for AXIS_1 will be cop-
ied to AXIS_2. Press <F10>.

It is still possible to scroll through the setup data
for AXIS_2 and change individual parameters if
needed. Press <F10> when finished.

 Axis
…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ View other axis ∫
∫ Copy other axis ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

AA434-2690

⁄ƒƒƒƒƒƒƒ Copy from axis ƒƒƒƒƒƒø
≥ ≥
≥ Axis Label : ≥
≥ ≥
≥ Copy All Fields/ ≥
≥ Current Field : CURRENT ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

AA432-2690

AA433-2690

⁄ƒƒƒƒƒƒƒ Copy from axis ƒƒƒƒƒƒø
≥ ≥
≥ Axis Label : AXIS_1 ≥
≥ ≥
≥ Copy All Fields/ ’ÕÕÕÕÕCopy Field/sÕÕÕÕÕ∏
≥ Current Field : CURRENT ≥ALL ≥
≥ ≥CURRENT ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ‘ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕæ
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒ Copy from axis ƒƒƒƒƒƒø
≥ ≥
≥ Axis Label : AXIS_1 ≥
≥ ≥
≥ Copy All Fields/ ≥
≥ Current Field : ALL ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

AA437-2690
6-22 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Making a Setup Data Function/Saving a .SRV File

Once all the setup data has been entered for all axes used for your application, the
next step will be to define the servo function. This function will be stored in the
servo library you will create and can then be called into your ladder program to ini-
tialize the setup data for your application.

Creating a Servo Library for User-Defined Functions

NOTE: It is recommended that you create a separate library for all user-defined
functions. This will keep them separated from the standard functions found in the
PiCLib directory.

As an example, choose a name for your library which will have a unique first letter
(or hot key) so that when it appears in the Functions menu of PiCPro with the stan-
dard functions and function blocks, it will be easy for you to access while pro-
gramming. A name like “Zservo” will place it at the end of the Functions list as
shown in Figure 6-4.

Create a path to your user-created library and enter that path in Library Filename in the
Make function box. In this example, \PICLIB\ZSERVO could be typed. This would put
Zservo in the PiCLib directory.

You can also use the Zservo library to hold any profile functions you define for
master/slave applications. These are covered in the next chapter.

From the File menu, choose Make function block.

Press FM (File - Make function)

The Make function box appears and you enter:

1. An appropriate name for the function.
(For example: USER_SET)

2. The servo.lib filename you are storing all
your servo functions in.
For example: \PiCLib\Zservo
(See the section below on creating a
library for user-defined functions.)
A .lib extension is added automatically.

3. The Save Setup data line defaults to
“Yes.” This ensures that all your setup
data will be saved in the .SRV file.

 Workstation Processor File Axis
…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ New ∫
∫ Open ∫
∫ Close ∫
∫ Save ∫
∫ save As ∫
∫ Make function ∫
∫ Print ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

⁄ƒƒƒƒƒƒƒƒƒƒ Make function ƒƒƒƒƒƒƒƒƒø
≥ ≥
≥ ≥
≥ Function name : ≥
≥ ≥
≥ Library Filename :< >≥
≥ ≥
≥ Save Setup data: Yes ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

AA477-2090
Starting PiCPro/PiCServoPro 6-23

FIGURE 6 - 7. User-Defined Function Blocks in PiCPro Functions Menu.

Using Z as a hot key will bring up a list of all the functions you have defined and
stored in the Zservo library.

Initialize setup data

The servo setup function you make with the Servo setup program containing the
setup data for all axes used in your application must be incorporated into your lad-
der program. To initialize all the setup data you use the standard motion function
STRSERV with your setup function. Figure 6-8 below illustrates a network
designed in PiCPro that does this.

FIGURE 6 - 8. Initializing Setup Data in Your LDO

Wires Contacts/Coils Functions Data Jumps Horizontal Vertical Longname
≥...1....... …ÕÕÕÕÕÕÕÕÕÕª
≥ ∫ Arith ∫
≥ ∫ Binary ∫
≥........... ∫ Counters ∫
 <End of Module> ∫ Datatype ∫
 ∫ Evaluate ∫
 ∫ Filter ∫
 ∫ Io ∫
 ∫ Motion ∫
 ∫ String ∫
 ∫ Timers ∫
 ∫ USER ∫
 ∫ Xclock ∫
 ∫ Zservo ∫
 »ÕÕÕÕÕÕÕÕÕÕº

≥ ⁄ƒƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒƒø
≥ ≥USER_SET ≥ ≥STRTSERV ≥
≥ FRSTSCAN ≥ ≥ ≥ ≥ INIT_OK
√ƒƒƒ|P|ƒƒƒƒƒ¥EN OK√ƒƒƒƒƒƒƒƒƒƒƒ¥EN OK√ƒƒƒ(S)ƒƒƒƒ¥
≥ ≥ ≥ ≥ ≥
≥ ¿ƒƒƒƒƒƒƒƒƒŸ ≥ ERR≥ STR_ERR
 ¿ƒƒƒƒƒƒƒƒƒŸ

≥ FRSTSCAN
√ƒƒƒ(S)ƒƒƒƒ¥
≥

6-24 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Introduction to Tuning

The tuning portion of the Servo setup and tuning (SRVSETUP) program provides remote
tuning capabilities. Adjustments to offsets and gains can be done through software
instead of manual potentiometer settings on the hardware modules.

Figure 6-9 illustrates how PiCTune works with the PiC. Your program would be
downloaded and running on the PiC. You bring up the PiCTune screen on the PC
and make any changes to the inputs.

You can download those changes directly from the PiCTune screen (path 1). If you
want the changes to be a permanent part of your setup parameters, then leave the
PiCTune screen and return to the axis table screen and make a function (path 2).

FIGURE 6 - 9. PiCTune Data Flow

PC
Workstation

(View)

SRVSETUP.EXE

Write an
application
program using
PiCPro

CPU of
PiC 900

PiC900™

PiC

CPU

Data Flow

ZSERVO.LIB
Contains setup function
made by user

USER.SRV
Source file of setup data
Calculations performed

PICPRO.EXE
PiCPro programming
software for PiC900

Enter, edit, save
setup data

Make a
function

Include setup
function in
LDO

Download
application program
from PiCPro on the

PC to the CPU
memory of the

PiC900

USER.LDO
Application program

PiCTune

INPUTS OUTPUTS
Tune axis screen

Hitting hot keys FD
(File Download) allows
changes to the input

parameters to be
incorporated while the
program is running.
These are temporary
changes which are

lost if power is cycled
unless path 2 is

followed.

Follow this path to incorporate
tuning input changes permanently
into the application program.

AA577-4992

1

2

(Tune)

Places setup
data in RAM
when activated

USER_SET

EN OKP
SERV_ON

S

INIT_OKSTRTSERV

EN OK

ERR STR_ERR

LADDER

RAM

PIC900 MEMORY

Key Represents data files
created by user

Represents executable files
supplied with PiCServoPro
Starting PiCPro/PiCServoPro 6-25

Axis Tuning

The servo axis tuning feature , available under the Axis menu of Servo Setup
(Tune axis) or <Control T> allows you to view the Outputs column and change the
Inputs column on the screen shown in Figure 6-10 for the designated servo axis.

FIGURE 6 - 10. PiCTune Screen

In PiCTune you can view two outputs in the Outputs column for a digitizing axis as
shown below.

NOTE: The only Estop error that appears with a digitizing axis is the loss of feed-
back error.

NOTE

The items listed in the Inputs column can also be written to and read from your
ladder using the TUNEREAD and TUNEWRIT functions.

NOTE

Pressing the <F9> Help key when in the PiCTune screen will bring up a de-
scription of all the E, C, and P errors. Use the <PgUp> and PgDn> keys to scroll
through the categories.

 Axis Processor Fields
 AXIS_1 Inputs AXIS_1 Outputs
�Proportional Gain 100 Proportional Gain 101
�Integral Gain 0 Integral Gain 0
�Derivative Gain 0 Derivative Gain 0
�Analog Output Offset 0 Analog Output Offset 0
�Slow Speed Filter 0 Slow Speed Filter 0
�Feed Forward Percent 0 Feed Forward Percent 0
 Following Error 0
 Commanded Velocity 0
 Actual Position 0
 Commanded Position 0
 Analog output in mv 0
 Active Move None [000]
 Next Move None [000]
 EStop Error ˘˘˘˘˘˘˘˘
 CStop Error ˘˘˘˘˘˘˘˘
 Prog Error Low Byte ˘˘˘˘˘˘˘˘
 Prog Error High Byte ˘˘˘˘˘˘˘˘
 Servo Loop State Open

 Axis Processor Fields
 1 Inputs 1 Outputs
�No Inputs Actual Position 0
 EStop Error ˘˘˘˘˘˘˘˘

6-26 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Changing Inputs

There are six parameters in the input column that you can change. The procedure
to change an input is as follows:

1. Place the selection bar on the parameter you want to change.

2. Enter the new value.

3. Be sure the parameter is marked. It is marked if a triangle is on the left of the
parameter as shown in Figure 6-11. When you enter PiCTune, the default is to
have all six parameters marked.

FIGURE 6 - 11. Marked Input Parameters in PiCTune

The parameter can be unmarked by pressing F M (Fields - Mark/Unmark) with
the selection bar on the parameter. See Figure 6.12.

FIGURE 6 - 12. Mark/Unmark Toggle

Any parameter that is unmarked will not be downloaded to the PiC. In Figure
6-13, the first three parameters are unmarked and the last three are marked.

FIGURE 6 - 13. Marked and Unmarked Parameters

4. After entering all values you want to change, press FD (Fields - Download).
The values you entered will take effect immediately in your ladder program.
They will remain in effect until you either change and download them again or
the SRTSERV function in your program is reinitialized.

5. To tune or view another axis in your application, press A V (Axes - View). Type
in the label of the next axis you want to tune or view (or press <F8> and select
the axis from the list). Press <F10>. The axis label you chose now appears at
the top of the PiCTune screen. Proceed as described above.

 Axis Processor Fields
 AXIS_1 Inputs
�Proportional Gain 100
�Integral Gain 0
�Derivative Gain 0
�Analog Output Offset 0
�Slow Speed Filter 0
�Feed Forward Percent 0

Marked
inputs

 Axis Processor Fields
 …ÕÕÕÕÕÕÕÕÕÕÕÕÕª
�Proport∫ Mark/Unmark ∫
�Integra∫ Download ∫
�Derivat»ÕÕÕÕÕÕÕÕÕÕÕÕÕº
�Analog Output Offset
�Slow Speed Filter
�Feed Forward Percent

 Axis Processor Fields
 AXIS_1 Inputs
 Proportional Gain 100
 Integral Gain 0
 Derivative Gain 0
�Analog Output Offset 0
�Slow Speed Filter 0
�Feed Forward Percent 0

Unmarked
inputs

Marked
inputs
Starting PiCPro/PiCServoPro 6-27

6. If you want your changes to become a permanent part of your program, leave
PiCTune by pressing <F10> and make a function to replace the previous one.
Download your ladder program again. Now the changes you made in PiCTune
are permanently in your ladder program.

7. To leave the PiCTune screen, press <F10>. Pressing <Esc> allows you to leave
the PiCTune screen without saving any changes in the workstation. Any
changes that have been downloaded to the PiC are in RAM memory of the PiC
until the servos are reinitialized.

The values you have changed in PiCTune appear with the specific parameter in
the Edit axis data screen.

Viewing Outputs

The outputs on the right side of the PiCTune screen can only be read, not written.
They are divided into four groups as shown in Figure 6-14.

1. Setup parameters

2. On-line servo variables.

3. Errors

4. Loop status

FIGURE 6 - 14. Outputs on PiCTune screen

Setup parameters

The first six outputs are setup parameters from the Edit axis data screen--the same
six that can be written to in the input column of the PiCTune screen.

On-line servo variables

The next seven outputs are on-line servo variables. They are being read back to you
as they occur.

On-line servo
variables

 AXIS_1 Outputs
 Proportional Gain
 Integral Gain
 Derivative Gain
 Analog Output Offset
 Slow Speed Filter
 Feed Forward Percent
 Following Error
 Commanded Velocity
 Actual Position
 Commanded Position
 Analog output in mv
 Active Move
 Next Move
 EStop Error
 CStop Error
 Prog Error Low Byte
 Prog Error High Byte
 Servo Loop State

AA401-2993

Setup
parameters

E-stop, C-
stop, and

Programming
errors

Loop open
or closed
6-28 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Errors

The E-stop, C-stop, and programming errors can be viewed from the PiCTune
screen. The ESTOP Error and the CSTOP Error each have eight bits displayed. The Prog
Error Low Byte and the Prog Error High Byte display 16 bits for programming errors.

An error is present if an “E” appears in any bit location. These errors can be identi-
fied by pressing the <F9> Help key or by referring to the tables found in Appendix
C or the descriptions of the E_ERRORS, C_ERRORS, and P_ERRORS functions.

Loop status

This output indicates if the D/A is zeroed (open loop) or is attempting to zero the
following error (closed loop).
Starting PiCPro/PiCServoPro 6-29

Other Features of the Servo Setup Program

File Menu of Servo Setup

The New, Open, and Close commands allow you to create a new .SRV file, open an
existing one, or close the one you are working on from within the Servo setup pro-
gram.

Save creates a your
name.SRV file which con-
tains all the setup data you
entered with the Servo setup
program. It performs the
same function as choosing
“Yes” for the Save Setup data
in the Make Function box.

If save As is chosen, the Save
file as box appears and you
can type in a new filename
over the old. The .SRV
extension is added automati-
cally.

This is a copy function.
Both the file with the old
name and the file with the
new name will be in your
directory.

 Workstation Processor File Axis
…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ New ∫
∫ Open ∫
∫ Close ∫
∫ Save ∫
∫ save As ∫
∫ Make function ∫
∫ Print ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

⁄ƒƒƒƒƒƒƒƒƒ Save file as ... ƒƒƒƒƒƒƒƒƒø
≥ ≥
≥ Filename for setup :<USER.SRV > ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

AA552-1690
6-30 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

The Print command creates a text
(.LST) file of your setup data on
disk. This can then be sent to your
printer.

You can also go directly to the
printer by entering the printer port
name in the Print Setup box (i.e.,
LPT1). No .lst file is created.

You have the option of printing the
setup data for the axis you have the
selection bar on or all the axes in
your setup file. Make your selection.

The Print Setup box appears with the
name of the setup file and the .LST
extension.

The setup of your printer is handled
with the Printer setup command found
under the Workstation menu.

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ Print axis data ∫
«ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ∂
∫ This axis ∫
∫ All axes ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

AA405-2390

⁄ƒƒƒƒƒƒƒƒ Print Setup ƒƒƒƒƒƒƒƒø
≥ ≥
≥ List Filename :<USER.LST> ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

AA404-2390
Starting PiCPro/PiCServoPro 6-31

Other Features of the Axis Menu

Setup Table Screen

Other features under the Axis menu in the table screen give you the ability to rede-
fine an existing axis with the Redefine axis command. This changes the hardware def-
inition of the axis. The axis label can also be changed here. Be sure to make a
function again and download your program to incorporate the new definition.

You can delete an axis no longer needed with the Delete command.

Setup Edit Screen

Another feature under the Axis menu in the setup edit screen is the VIEW command
which allows you to view the setup parameters for a second axis.

PiCTune Screen

The View other axis command allows you to view a second axis on the same screen.
Enter the label of the second axis (or use the <F8> key) in the View Axis box and
press <F10>. The PiCTune screen now shows tune information for both axes with
the first one active.

The axis menu adds a Resume command which toggles back to displaying the first
axis only.
6-32 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

CHAPTER 7 Axis Profile Setup
When using the PiC in a master/slave application where the motion of a servo axis
(slave) is tied to the position transducer of another axis (master), position or ratio
profiles using the PiC Profile program can be defined. Each profile allows the slave
axis to respond in a multitude of accelerations, decelerations, and velocities to the
position of the master axis during a single cycle.

There can be from 1 to 18 ratio profiles initialized in the LDO. These profiles are
used with the RATIOPRO function.

Axis profile setup (PiC Profile) is a program development tool which allows you to
do this. This chapter provides some background information on profiles and
explains how to use the PiC Profile program.

Background Information on Ratio Profiles

With absolute positioning, incremental distance, and velocity moves, motion is
based on acceleration, velocity, and distance.

With master/slave moves, motion is based on the position of the master axis.

In many servo applications, velocity profiles are used to generate positioning
sequences for the servos as illustrated in Figure 7-1. The horizontal coordinate rep-
resents elapsed time and the vertical plane represents velocity. The area under the
velocity curve is the axis accumulated distance. At any point in time, the axis posi-
tion can be calculated.

FIGURE 7 - 1. Velocity Profile

V
el

oc
ity

(in
ch

es
/m

in
ut

e)

X Time = Axis Position

Time (msec)

Axis Position

100 200 300 400

50

100

150

200

250

Velocity X Time =
Position

Time AA588-2290
Starting PiCPro/PiCServoPro 7-1

The PiC uses ratio profiles to generate positioning sequences for servos. In syn-
chronization applications where an axis is slaved to a master position transducer,
ratio profiles are independent of time. In the ratio profile shown in Figure 7-2, the
horizontal coordinate is the master accumulated distance and the vertical plane is
the ratio of the slave distance to the master distance. Now the area under the curve
is the slave accumulated distance and is tied to the master position, not time.

FIGURE 7 - 2. Ratio Profile

The profile defines where the slave should be in relationship to where the master is
at any point in the cycle. The servo software uses this information to calculate the
position command it sends to the position loop for controlling the slave axis.

Slave Position

1 2 3 4

.5

1.0

1.5

2.0

2.5

Master Position (inches)

X Master position = Slave position
AA589-2290

R
at

io
S

la
ve

 P
os

iti
on

M
as

te
r

P
os

iti
on

Slave position
Master position
7-2 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

The position of the slave at any given point is dependent on where the master is. It
is independent of time. In Figure 7-3, when the master reaches 2 inches, the slave
would have covered the shaded area under the curve. It would not matter if it took
the master 1 minute or 1 hour to travel 2 inches.

FIGURE 7 - 3. Slave Position After Two Inches of Master Travel

This provides a very easy method of programming the speed of an operation. If
you want to increase the speed of the cycle, adjust the speed of the master axis; the
slave axis will follow automatically.

Slave Position

1 2 3 4

.5

1.0

1.5

2.0

2.5

Master Position (inches)

X Master position = Slave position
AA590-2290

R
at

io
S

la
ve

 P
os

iti
on

M
as

te
r

P
os

iti
on

Slave position
Master position
Starting PiCPro/PiCServoPro 7-3

An Example of Using a Ratio Profile

One example for using a ratio profile is shown in Figure 7-4. This application rep-
resents a cutting operation. Some features to note include:

• The draw rolls represent the master axis. It is not always necessary to have
the PiC controlling the master axis. The PiC may just be receiving feed-
back information from the master axis as illustrated in Figure 7-4.

• The rotary knife represents the slave axis. This axis is controlled by the
PiC.

• Because the length of the cut product does not equal the circumference of
the rotary knife, the slave and master axes cannot be operating at a constant
ratio throughout each cycle. The ratio must be constant during the cut.
Then it will be necessary for the slave to accelerate and decelerate in order
to be in position for the next cut.

FIGURE 7 - 4. Ratio Profile Cutting Operation

AA545-1590

Stationary Machine
Shear Point

Rotary Knife

Continuous Web
of Material

Draw Rolls

Slave Axis

Feedback
Device

MotorGear
Box

Drive

Feedback
Device

PiC
900

Master Axis

Length of cut product is
not equal to the

circumference of the
rotary knife.
7-4 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Introduction to the PiC Profile program

The PiC Profile program of PiCServoPro provides the capability of defining pro-
files that can be used in master/slave applications. Figure 7-5 illustrates how the
PiC Profile program works with the PiC. It is similar to the Servo setup program.

You enter the data to define a profile in a .pro file, make a function for the profile
data, incorporate that function in your ladder program (.LDO file), and download
the program to the PiC. When the profile function is called in the ladder, the data is
initialized and you are ready to run the profile with a RATIOPRO standard motion
function.

FIGURE 7 - 5. Data Flow for the PiC Profile Program

USER.LDO
Application program

Write an application
program using PiCPro

CPU of
PiC 900

PiC900™

PiC

CPU

Data Flow

USER.LIB
Contains profile function(s)
made by user

USER.PRO
Source file of profile data
Calculations performed

PICPRO.EXE
PiCPro programming
software for PiC900

Enter, edit, save
profile data

Make a
function

Include profile
function in LDO

PICPFL.EXE
Program for creating

ratio profiles

When the PROFILE
function is enabled,
it assigns PNUM to
the profile data.

PC
Workstation

AA578-1990

Download application
program from PiCPro
on the PC to the CPU
memory of the PiC900

PROFILE
EN OKP

SERV_ON

PNUM(1 - 24)LADDER

PIC900 MEMORY

Key Represents data files
created by user

Represents executable files
supplied with PiCServoPro
Starting PiCPro/PiCServoPro 7-5

Entering Profile Data

With PiCServoPro running on the PC, the help message (<F9>) when the selection
bar is on Programs explains what the PiC Profile program allows you to do
(Figure 7-6).

FIGURE 7 - 6. Axis Profile Setup from Programs Help Message

IMPORTANT

The ratio used in any profile should not cause the slave axis to exceed the me-
chanical limits of its maximum velocity rate or maximum acceleration rate.

NOTE

When moving through the PiC Profile program, press <F9> for a help mes-
sage on any item the selection bar is placed on.

 Workstation Programs pRojects
 …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕPrograms MenuÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
 ∫ Commands on this menu allow you to run . . . ∫
 ∫ ∫
 ∫ Control programmer PiCPro, the program that turns your ∫
 ∫ computer into a program development and ∫
 ∫ debugging tool for the PiC900 Programmable ∫
 ∫ industrial Computer. ∫
 ∫ ∫
 ∫ Servo setup and tuning SrvSetup, the program that sets up the ∫
 ∫ control's servo processor to work properly with ∫
 ∫ your axes, and allows you to adjust the setup ∫
 ∫ data while the axes are running. ∫
 ∫ ∫
 ∫ ∫
 ∫ SERCOS setup SrcSetup, the program that sets up the ∫
 ∫ control's SERCOS processor to work properly with∫
 ∫ your axes. ∫
 ∫ ∫
 ∫ ∫
 ∫ Axis profile setup PiCPfl, the program that defines the ∫
 ∫ motion of a slave axis relative to the ∫
 ∫ distance traveled by a master axis. ∫
 ∫ ∫
 ∫ To learn more, pull down the menu and place the selection bar on the ∫
 ∫ desired command--then press <F9> again. ∫
 »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕPress any key to continue ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

7-6 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Press P to display the Pro-
grams menu.

With the Programs menu dis-
played, press A to select the
axis profile setup (PiCPfl) pro-
gram.

The menu bar changes to Work-
station File as shown on the left.

Press FN (File - New) to cre-
ate a new file for the profile
you will be defining.

[Press FO (File - Open) to
open files containing profiles
that have already been defined.
Remember that <F8> will pro-
vide a list of previously cre-
ated files.

Type in a filename for the pro-
file you are about to define and
press <F10>. (If you are open-
ing a previously created file,
that filename should appear in
the Open Profile File box.)

Press <F10>.

pRojects Workstation Programs
 …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
 ∫ Control programmer (PICPRO) ∫
 ∫ Servo setup and tuning (SRVSETUP) ∫
 ∫ Axis profile setup (PICPFL) ∫
 »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

 Workstation File
 …ÕÕÕÕÕÕª
 ∫ New ∫
 ∫ Open ∫
’ÕÕÕÕÕÕÕÕÕÕÕÕÕÕ»ÕÕÕÕÕÕº

AA525-1590

⁄ƒƒƒƒƒƒƒƒƒƒƒƒƒ New Profile ƒƒƒƒƒƒƒƒƒƒƒƒø
≥ ≥
≥ Filename for profile :< >≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

AA526-1590
Starting PiCPro/PiCServoPro 7-7

The screen below appears with the master and slave axis data you entered dis-
played. The menu bar changes to Workstation File Segment.

From this screen, you will enter all the segments for the profile you are creating.
Note that your name.pro appears at the bottom of the screen

The Define Units box
appears. Here you enter
the number of feedback
units from the feedback
device per the number of
ladder units and the lad-
der unit/axis unit value for
the master and slave axes.
A scaling factor is created
by this data allowing the
workstation to convert
axis units entered by you
to feedback units used to
perform calculations.

NOTE: If you use axis
units to enter profile data,
the servo software may
have to round off values
when converting the axis
units to feedback units for
calculations. In some
applications, this could
cause inaccurate position-
ing.

To avoid this, use feed-
back units to enter profile
data. Do this by having
feedback units equal lad-
der units and the ladder
units/axis units equal to
“1” in the Define Units box.
Now you will be entering
profile data in feedback
units.

It is recommended that the
units you define for setup
data match what you enter
here for profile data.

AA528-1590

⁄ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Define Units ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒø
≥ ≥
≥ MASTER AXIS DATA ≥
≥ Input ƒƒƒƒƒ¬ƒƒƒƒƒƒƒƒ Feedback Units: ≥
≥ Scaling ≥ ≥
≥ √ƒƒƒƒƒƒƒƒ Ladder Units: ≥
≥ ≥ ≥
≥ F8-Choices ¿Ladder Units/Axis Unit : 1 ≥
≥ ≥
≥ ≥
≥ SLAVE AXIS DATA ≥
≥ Input ƒƒƒƒƒ¬ƒƒƒƒƒƒƒƒ Feedback Units: ≥
≥ Scaling ≥ ≥
≥ √ƒƒƒƒƒƒƒƒ Ladder Units: ≥
≥ ≥ ≥
≥ F8-Choices ¿Ladder Units/Axis Unit : 1 ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒŸ

1

1

1

1

7-8 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Press S I (Segment - Insert) to bring up the Insert segment box. Enter two of any of
the three variables listed in the box. The third will be calculated for you.

IMPORTANT

The PiC Profile program ensures that the starting ratio of the first seg-
ment is “0.” You must ensure that the ending ratio of the last segment
is “0.”

AA529-1590

 Workstation File Segment
 Master Axis Slave Axis Selection Bar on Segment:1
Feedback Units: 50000 40000 Total Master Distance : 0
Ladder Units: 50000 40000 Total Slave Distance : 0
 LU / AU : 1 1
’ÕÕ∏
≥............To add a segment, select Insert from the Segment menu ≥
≥<End of Profile Segments> ≥

’ÕÕ∏
≥............To add a ⁄ƒƒƒƒƒƒƒƒ Insert segment ƒƒƒƒƒƒƒøegment menu ≥
≥<End of Profile Segme≥ ≥ ≥
≥ ≥ ≥ ≥
≥ ≥ Master Distance :< >≥ ≥
≥ ≥ ≥ ≥
≥ ≥ Slave Distance :< >≥ ≥
≥ ≥ ≥ ≥
≥ ≥ Ending Ratio :< >≥ ≥
≥ ≥ ≥ ≥
≥ ≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥ ≥
≥ ≥ ≥ Cancel ≥ ≥ Accept ≥ ≥ ≥
≥ ≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥ ≥
≥ ¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ ≥

 Workstation File Segment
 Master Axis Slave Axis Selection Bar on Segment:1
Feedback Units: 50000 40000 Total Master Distance : 0
Ladder Units: 50000 40000 Total Slave Distance : 0
 LU / AU : 1 1
Starting PiCPro/PiCServoPro 7-9

An example profile with five segments is shown below. The total distance of the
master and slave are shown in the upper right. The Ending Ratio column shows the
ratio at the end of that segment.

The formula used to calculate the ending ratio of each segment is:

Ratio end = 2 () - Ratio start

The PiC Profile program will plot a graph of
your profile if your workstation is equipped with
a CGA, EGA, VGA, or a Hercules Hi-Resolution
Monochrome graphics card. See note below.

To view the graph, press FG (File - Graph).

NOTE ON PANNING PROFILES

When panning a profile wider than your screen, the new screen may
overwrite the old instead of erasing it. This problem usually occurs
on workstations with older Hercules Hi-Res Monochrome or CGA
cards or video cards that are not completely compatible with the IBM
standard.
The problem can be corrected by installing the ANSI.SYS in your CON-
FIG.SYS file using the following:

DEVICE = C:\DOS\ANSI.SYS
This assumes that ANSI.SYS is in your DOS directory on the C drive. Substi-
tute the path where your ANSI.SYS is for C:\DOS\. See your DOS manual for
additional information on installing DEVICE drivers.

slave distance
master distance

AA440-1590

 Workstation File Segment
 Master Axis Slave Axis Selection Bar on Segment:1
Feedback Units: 50000 40000 Total Master Distance : 14
Ladder Units: 50000 40000 Total Slave Distance : 13
 LU / AU : 1 1
’Õ Master Distance ÕÕÕÕÕÕÕ Slave Distance ÕÕÕÕÕÕÕÕÕ Ending Ratio ÕÕÕÕÕÕÕÕÕÕÕÕÕ∏
≥ 4 2 1 ≥
≥ 4 4 1 ≥
≥ 2 3 2 ≥
≥ 2 3 1 ≥
≥ 2 1 0 ≥

 Workstation File Segment
…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ New ∫
∫ Open ∫
∫ Close ∫
∫ Save ∫
∫ save As ∫
∫ Redefine Units ∫
∫ Make function ∫
∫ Print ∫
∫ Graph ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

AA531-1590
7-10 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

The graph in Figure 7-7 illustrates the plot of a profile with five segments. A seg-
ment is represented by the area between two consecutive rectangular markers.

FIGURE 7 - 7. Plot of Ratio Profile

`

-1.00

-0.80

-0.60

-0.40

-0.20

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

 1.20

 1.40

 1.60

 1.80

 2.00

 2.20

 2.40

 2.60

 2.80

 0.0 2.8 5.6 8.4 11.2

14.0

Profile Plot:- Ratio vs Master distance
Hit ESC to Return

Master Distance

R
at

io

AA540-1590

One segment

Master Distance
Starting PiCPro/PiCServoPro 7-11

A new segment usually begins where the slope of the ratio between the slave and
the master changes. However, as shown in Figure 7-8, the beginning of the last
segment does not represent a change in the slope. It was defined as a separate seg-
ment because the profile will be repeated.

Whenever a repeating profile is used, it is important to keep the ending ratio of the
first segment close to the starting ratio of the last segment.

FIGURE 7 - 8. First and Last Segments of Repeating Profiles

-
1.00

-
0.80

-
0.60

-
0.40

-
0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

0.0

2.8

5.6

8.4

11.2

14.
0

Profile Plot:- Ratio vs Master distance
Hit ESC to Return

R
at

io

Define as last
segment if
repeating
profiles.

The ending ratio of the first segment is close to the starting
ratio of the last segment.

Master Distance
7-12 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

These ratios should be matched as close as possible so that there is not a large
“step” for the slave axis once repeating is started. The first and last segment of a
repeating profile are dropped as illustrated in Figure 7-9.

FIGURE 7 - 9. Repeating Profile

NOTE

The first segment of a profile is the acceleration period for the move. The last
segment of the profile is the deceleration to stop for the move.

Both these segments are ignored during continuous operation.

1 2 3 4 5

First Segment Last Segment

Portion of profile that will be repeated when profile runs continuously.

The first segment must begin at zero.
The last segment must end at zero.
However, if the profile will be repeated
continuously in your application, it will not
include the first and last segment.
Starting PiCPro/PiCServoPro 7-13

Making a Profile Function/Saving a .PRO File

Once the profile has been defined, the next step is to make a function. This function
will be stored in the same servo library you created to hold the setup function and
can then be called into your ladder program as required.

From the File menu, choose Make
function. Press FM.

The Make function box appears and
you enter:

1. An appropriate name for the
function. (For example,
PROF_1)

2. The servo.lib filename you
are storing all your servo
functions in (/PiCLib/
Zservo).

3. “Yes” to save all the profile
data for this profile in a .pro
file. (The default is “Yes.”)

Press <F10> to accept data.

 Workstation File Segment

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ New ∫
∫ Open ∫
∫ Close ∫
∫ Save ∫
∫ save As ∫
∫ Redefine Units ∫
∫ Make function ∫
∫ Print ∫
∫ Graph ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

AA536-1590

⁄ƒƒƒƒƒƒƒƒƒƒ Make function ƒƒƒƒƒƒƒƒƒø
≥ ≥
≥ ≥
≥ Function name : ≥
≥ ≥
≥ Library Filename :< >≥
≥ ≥
≥ Save Profile data: Yes ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

AA593-2390
7-14 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Using the Profile Function

You have now completed the following tasks:

1. Defining a ratio profile using the PiC Profile program

2. Creating a profile function

3. Saving the profile data in a .pro file

You may have made one or more profile functions. Each function can be called in
your ladder program as needed.

The profile function will look like the one shown below.

IMPORTANT

Be sure to follow the two steps listed below in the order given when using pro-
files:
1. Initialize the servo data.
2. Initialize the profile data by including the profile function in your LDO

before calling the RATIOPRO function that uses it.

This is the profile function defined when making a function. It must be
enabled in your ladder program in order to initialize the axis profile data
you entered using the PiC Profile program.

Inputs: EN (BOOL) = enables execution

PNUM = (USINT) The number you assign to the profile
(range from 1 to 18) giving it a specific memory location sep-
arate from any other profiles you may have created for your
program.

Outputs: OK (BOOL) = execution complete (The OK will not be set if
a number other than 1 through 18 has been entered in
PNUM.)

 ⁄ƒƒƒƒƒƒƒƒƒø
 ≥ PROF_1 ≥
 ≥ ≥
 ¥EN OK√
 ≥ ≥
 ¥PNUM ≥
 ≥ ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

AA581-2190
Starting PiCPro/PiCServoPro 7-15

Other Features of the PiC Profile Program

This section explains other items available with the PiC Profile program.

File menu

Under the file menu, the New, Open, and Close commands allow you to define a new
profile, open an existing .pro file (use the <F8> key to display a list of existing pro-
files), and close a file while in the PiC Profile program.

Once the axis profile setup data has been initialized, a RATIOPRO function is
entered in your LDO in order to begin execution of the ratio profile identified
at PNUM.

Inputs: EN (BOOL) = enables execution

AXIS (USINT) = identifies slave axis

MAST (SINT) = master axis

PNUM (USINT) = profile number (1 through 18)

MSTR (DINT) = Master start position

RPTP (BOOL) = repeat profile

RVAL (BOOL) = reversal allowed

BKPR = (BOOL) = back to back profiles

Outputs: OK (BOOL) = execution complete

¥MAST ≥
≥ ≥
¥PNUM ≥
≥ ≥
¥MSTR ≥
≥ ≥
¥RPTP ≥
≥ ≥
¥RVAL ≥
≥ ≥
¥BKPR ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒƒø
≥RATIOPRO ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS QUE√
≥ ≥

AA569-5190

 Workstation File Segment
…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ New ∫
∫ Open ∫
∫ Close ∫
∫ Save ∫
∫ save As ∫
∫ Redefine Units ∫
∫ Make function ∫
∫ Print ∫
∫ Graph ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

AA531-1590
7-16 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

The Save command creates a
.pro file containing the pro-
file information you entered
with the PiC Profile pro-
gram.

It performs the same save as
choosing “Yes” in the Make
function box.

If save As is chosen, the Save
profile as box appears and you
can type in a new filename.

PROF_1.PRO is the exam-
ple name and can be typed
over to change. It is not nec-
essary to type the file exten-
sion .PRO. That will be
entered automatically.

This command is a copy.
The profile with the old
name remains in your direc-
tory along with the one with
the new name.

Redefine units allows you to
enter new units to use in the
profile.

Press <F10> to accept the
new units.

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ PROF_1.PRO ∫
∫Profile file 'PROF_1.PRO' Created∫
∫ ∫
»ÕÕÕ Press any key to continue ÕÕÕº

AA544-1590

⁄ƒƒƒƒƒƒƒƒƒ Save profile as ... ƒƒƒƒƒƒƒƒø
≥ ≥
≥ Filename for profile :<PROF_1.PRO >≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

AA542-1590

⁄ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ ReDefine Units ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒø
≥ ≥
≥ MASTER AXIS DATA ≥
≥ Input ƒƒƒƒƒ¬ƒƒƒƒƒƒƒƒ Feedback Units: ≥
≥ Scaling ≥ ≥
≥ √ƒƒƒƒƒƒƒƒ Ladder Units: ≥
≥ ≥ ≥
≥ F8-Choices ¿Ladder Units/Axis Unit : 1 ≥
≥ ≥
≥ ≥
≥ SLAVE AXIS DATA ≥
≥ Input ƒƒƒƒƒ¬ƒƒƒƒƒƒƒƒ Feedback Units: ≥
≥ Scaling ≥ ≥
≥ √ƒƒƒƒƒƒƒƒ Ladder Units: ≥
≥ ≥ ≥
≥ F8-Choices ¿Ladder Units/Axis Unit : 1 ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒŸ

AA595-2390
Starting PiCPro/PiCServoPro 7-17

Segment menu

Under the segment menu, you can use the Insert segment command to add a segment
anywhere in the profile being defined. Place the selection bar on the segment that
occurs after the position where you want to insert a new segment, fill in the Insert
segment box, and press<F10>.

The Delete segment command allows you to delete any segment in the profile you are
defining. Place the selection bar on the segment you want to delete and press
.

The Edit segment command lets you alter a segment in the profile you are defining.
The Edit segment box appears with the master distance, slave distance, and ending
ratio for the segment displayed. Type in new values as needed.

The print command prints
the current profile to a text
file (.LST file) on disk. You
can then send this .LST file
to your printer.

You can also go directly to
the printer by entering the
printer port name in the Print
Setup box (i.e., LPT1). No
.lst file is created.

The current filename
appears in the List Filename.
Press <F10> to create the
.LST file.

⁄ƒƒƒƒƒƒƒƒ Print Profile ƒƒƒƒƒƒƒƒø
≥ ≥
≥ List Filename :<PROF_1.LST> ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

AA594-2390

 Workstation File Segment

AA532-1590

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ Insert segment <Ins> ∫
∫ Delete segment ∫
∫ Edit segment <Enter> ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº
7-18 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

CHAPTER 8 UDFB Guidelines

Introduction

The user defined function block (UDFB) feature will allow you to convert the logic
in a module (.LDO) into an individual function block. When you create a function
block, it is placed in a library. Whenever PiC(Servo)Pro is executed, the UDFB
will be available through this library under the Functions menu. It can then be used
in a network of any module you create.

Using the UDFB feature results in an application program that is better organized,
more readable, and easier to maintain. Some of the ways the UDFB can be used
are listed below.

• UDFBs can segregate the logic for a section of an application program (i.e.
diagnostics, fault logging, etc.)

• "Custom" functions with a higher level of functionality can be created (i.e.
analog output with ramping).

• A single UDFB can replace in-line programming of repetitive machine
functions (i.e. axis 1 fault control, axis 2 fault control, etc.)

The form of a UDFB is shown in Figure 8-1. The EN and OK are required. The
remaining inputs and outputs are determined by you when creating the module.

The user defined function block follows the same conventions as the standard func-
tion blocks found in PiCPro. It must be declared in the software declarations table
when it is used in the network of a module. You assign a name to it when it is
declared.

FIGURE 8 - 1. Template for a User Defined Function Block

The first section of this chapter offers guidelines to follow when creating a module
that can be converted into a UDFB.

The second section presents an example LDO and the procedure to follow to con-
vert it to a UDFB.

⁄ƒNAME ƒƒƒø
≥ UDFB ≥
≥ ≥
¥EN OK√ƒ
≥ ≥
¥IN1 OUT1√ƒ
≥ ≥
¥IN2 OUT2√ƒ
≥ ≥
¥IN3 OUT3√ƒ
≥ ≥
¥ √ƒ

≥ ≥
¥INn OUTn√ƒ
¿ƒƒƒƒƒƒƒƒƒŸ
Starting PiCPro/PiCServoPro 8-1

Creating a Module to Convert to a UDFB

• Naming the module
The name of the module will become the name of the UDFB. Be sure the
name you choose does not already exist in another module you want to
convert to a UDFB or in a standard function or function block supplied by
PiC(Servo)Pro.

• Contents of the module
Only the logic you want handled by the UDFB should be included in the
module. The size of any UDFB can be up to 64K.

• Programming Note
The logic contained in the UDFB is scanned regardless of whether or not
there is power flow into the EN input. Therefore, in the majority of cases,
you will want to include the following lines of logic in your UDFB module.

This ensures that you will always have control of the EN and OK in any module
you use the function block in. It causes the program to jump to the end of the
UDFB logic if the EN is not set. This prevents the logic in the function block from
being scanned unless the EN is set.

The only situation where you would not want to control the EN and OK in this way
is if you ever create a UDFB which would need to work when the EN is not set.
The TOF (timer off) standard function block is an example. The function block
continues to execute after the EN is reset.

• Data handling
Data is passed to the UDFB from its inputs in one of two ways depending
on its type.

1. If the internal input is any variable other than a structure, string or an array,
then the value of the external input is passed to the UDFB. This value is acted
upon internally in the UDFB leaving the external variable unchanged.

EN

JUMPEND

JUMPEND:

1

N

All rungs with UDFB logic.

AA889-3391

EN OK
8-2 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

2. If the internal input is a structure, string, or an array, then a pointer is passed to
the UDFB. This pointer gives the location of the associated data in the calling
program. The data is acted upon outside the UDFB.

IMPORTANT

Data is copied and pointers are passed into a UDFB only when there is power
flow to the first input (EN). String, array, or structure pointers within a UDFB
must not be accessed until power flow to the EN has occurred.

⁄ƒNAME ƒƒƒø
≥ UDFB ≥
≥ ≥
¥EN ≥
≥ ≥
¥SIZE ≥
≥ ≥

The value of DATA1 (1234) is
copied into the variable SIZE

when power flow at EN occurs.

AA896-3691

DATA1

SW1

Power
flow

1234

⁄ƒNAME ƒƒƒø
≥ UDFB ≥
≥ ≥
¥EN ≥
≥ ≥
¥RATE ≥
≥ ≥

The pointer to the storage location DATA (0) is
passed to RATE when power flow to EN occurs.
All accesses to RATE within the UDFB actually
manipulate the storage locations reserved for
DATA.

AA897-3691

DATA(0)

SW1

Power
flow

Pointer to DATA (0)
Starting PiCPro/PiCServoPro 8-3

 Software Declarations

Variables of any type with optional initial values may be declared for use in the
module. However, variables cannot be external, retained, global, or discrete I/O.

NOTE: If you need to add discrete I/O in order to test the module, be sure to
remove it from the ladder and the software declarations table before creating the
UDFB.

The variables which will become the inputs for the UDFB may be any data type
except function blocks.

The variables which will become the outputs for the UDFB may be any data type
except function blocks, structures, arrays, and strings.

Inputs that are structures, arrays, and strings all pass pointers to the UDFB and,
therefore, cannot be used as outputs. It is possible, however, to design a function
block in which the result of the function block being executed ends up in a struc-
ture, array, or string used as an input.

UDFB Variables - Inputs and Outputs

• Naming variables
The first four characters you assign to the UDFB input and output variables
will become the labels in the UDFB template.

• Marking inputs and outputs
The inputs and outputs for the UDFB will be designated in the software
declarations table with an I or O. There must always be at least one input
and one output for a UDFB.

• Order of inputs and outputs
The first input and the first output will always become the EN (enable) and
the OK of the function block. Their data type is BOOL. They should appear
before any other UDFB inputs and outputs in the declarations table.

Additional UDFB inputs and outputs should be entered in the declaration
table in the order you want them to appear in the function block template.
The inputs appear on the left side of the template and the outputs on the
right.

• Number of inputs and outputs
The maximum number of inputs or outputs is 64. It is recommended that
you keep the number of inputs and outputs to the UDFB to a minimum
(under 16). More can be declared if necessary, but transferring all the
inputs and outputs to and from a function block does use scan time. There
is also the constraint of the 255 element matrix to consider. If you have a
large number of inputs, you may want to enter them as a structure using
just one input.
8-4 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Programming Notes

Recursion/Nesting

When one UDFB calls another UDFB or itself, recursion or nesting occurs. When
PiCPro is checking function dependencies, deep nesting (more than four levels)
can cause a stack overflow in the workstation. The following error message will
appear if this occurs.

Size of UDFB Libraries

Because PiCPro copies the entire UDFB library whenever you do a UDFB build
during program development, it is recommended that you keep the size of the
UDFB library under 100K. This will improve the time it takes to build the UDFBs.

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ WARNING ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ ∫
∫Deep nesting of UDFBs can cause the stack in the control to overflow with ∫
∫unpredictable results. Generally UDFBs should not be nested to more than ∫
∫four levels. ∫
∫ ∫
»ÕÕÕÕÕÕÕÕÕÕÕ Press any key to continue checking the next UDFB ÕÕÕÕÕÕÕÕÕÕÕÕÕº
Starting PiCPro/PiCServoPro 8-5

An Example of a UDFB and Module

This section presents an example of a module that will be converted to a UDFB
and the procedure for creating and using a UDFB.

The module is called D2A_RAMP.LDO and contains five networks as shown
below. The function block created from it will provide digital to analog conversion
with ramping. The comments in the LDO are shown.

D2A_RAMP LDO Module for UDFB

 Workstation Processor Module Declarations Network Element View
≥
≥
≥. 1.......
≥ EN OK
√ƒƒƒ| |ƒƒƒƒƒƒƒƒ()ƒƒƒƒ¥
≥ EN
√ƒƒƒ|/|ƒƒƒƒƒ>>ENDFUNC
≥
≥
≥...2.......
≥In addition to EN and OK, this module uses the following variables
≥
≥CMND = desired command value in counts for the analog output
≥RATE = the maximum amount to ramp in counts every time tick
≥TIC = the actual analog output is updated every time tick
≥MAX = maximum limit for the actual command
≥MIN = minimum limit for the actual command
≥ACT = actual command for the analog output based on ramp
≥ This would be the input variable to analog output function.
≥
≥The timer RAMPTMR will energize DONE for one scan every time tick.
≥
≥If, when the timer times out, the actual analog output is not equal to the
≥desired command, UPDATE will be set for one scan.
≥
≥
≥ ⁄RAMPTMRƒƒø
≥ ≥ TON ≥
≥ DONE ≥ ≥ DONE
√ƒƒƒ|/|ƒƒƒƒƒ¥IN Q√ƒƒƒ()ƒƒƒƒ¥
≥ ≥ ≥
≥ TICƒ¥PT ET√
≥ ≥ ≥
≥ ¿ƒƒƒƒƒƒƒƒƒŸ
≥
≥
≥ ⁄ƒƒƒƒƒƒƒƒƒø
≥ ≥ NE ≥
≥ DONE ≥ ≥
√ƒƒƒ| |ƒƒƒƒƒ¥EN OK√
≥ ≥ ≥ UPDATE
≥ CMNDƒ¥IN0 OUT√ƒƒƒ()ƒƒƒƒ¥
≥ ≥ ≥
≥ ACTƒ¥IN1 ≥
≥ ≥ ≥
≥ ¿ƒƒƒƒƒƒƒƒƒŸ
≥
≥
8-6 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

≥...3.......
≥If updating the actual, calculate the difference between command and actual
≥and store in DIFFRNCE.
≥
≥If DIFFRNCE absolute value (can be negative) is less than the ramp rate,
≥then the amount to change the command by is equal to DIFFRNCE.
≥
≥If DIFFRNCE absolute value is greater than or equal to the ramp rate, then
≥the amount to change the command by is equal to
≥ RAMPRATE if DIFFRNCE is positive
≥ - RAMPRATE if DIFFRNCE is negative
≥
≥
≥
≥ ⁄ƒƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒƒø
≥ ≥ SUB ≥ ≥ ABS ≥ ≥ LT ≥
≥UPDATE ≥ ≥ ≥ ≥ ≥ ≥ ⁄ƒƒƒƒƒƒƒƒƒø
√ƒƒ| |ƒƒƒƒƒ¥EN OK√ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ¥EN OK√ƒƒƒƒƒ¥EN OK√ ≥ MOVE ≥
≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥
≥ CMNDƒ¥IN0 DIFF√ƒDIFFRNCE≥DIFFRNCEƒ¥IN OUT√ƒƒƒƒƒ¥IN1 OUT√ƒƒƒƒƒƒƒƒƒƒƒ¥EN OK√
≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥
≥ ACTƒ¥IN1 ≥ ≥ ¿ƒƒƒƒƒƒƒƒƒŸRATEƒ¥IN2 ≥ DIFFRNCEƒ¥IN1 OUT1√ƒCHANGE
≥ ≥ ≥ ≥
≥ ¿ƒƒƒƒƒƒƒƒƒŸ ≥ ¡ ƒ ƒ ƒ ƒ Ÿ ¡ ƒ ƒ ƒ ƒ ¡
≥ ≥ ⁄ƒƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒƒø
≥ ≥ ≥ ABS ≥ ≥ GE ≥
≥ ≥ ≥ ≥ ≥ ≥ ⁄ƒƒƒƒƒƒƒƒƒø
≥ ¿ƒƒƒƒƒƒƒƒƒ¥EN OK√ƒƒƒƒƒ¥EN OK√ ≥ GE ≥
≥ ≥ ≥ ≥ ≥ ≥ ≥ ⁄ƒƒƒƒƒƒƒƒƒø
≥ DIFFRNCEƒ¥IN OUT√ƒƒƒƒƒ¥IN1 OUT√ƒƒƒƒƒƒƒƒƒƒƒ¥EN OK√ ≥ MOVE ≥
≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥
≥ ¿ƒƒƒƒƒƒƒƒƒŸRATEƒ¥IN2 ≥ ≥DIFFRNCEƒ¥IN1 OUT√ƒƒƒƒƒƒ¥EN OK√
≥ ≥ ≥ ≥ ≥ ≥
≥ ¡ ƒ ƒ ƒ ƒ Ÿ ≥ 0ƒ¥IN2 ≥ RATEƒ¥IN1 OUT1√ƒCH>*
≥ ≥
≥ ≥ ¡ ƒ ƒ ƒ ƒ Ÿ ¡ ƒ ƒ ƒ ƒ ¡
≥ ≥ ⁄ƒƒƒƒƒƒƒƒƒø
≥ ≥ ≥ LT ≥
≥ ≥ ≥ ≥ ⁄ƒƒƒƒƒƒƒƒƒø
≥ ¿ƒƒƒƒƒƒƒƒƒ¥EN OK√ ≥ SUB ≥
≥ ≥ ≥ ≥ ≥
≥ DIFFRNCEƒ¥IN1 OUT√ƒƒƒƒƒƒ¥EN OK√
≥ ≥ ≥ ≥ ≥
≥ 0ƒ¥IN2 ≥ 0ƒ¥IN0 DIFF√ƒCH>*
≥ ≥ ≥
≥ ¡ ƒ ƒ ƒ ƒ Ÿ RATEƒ¥IN1 ≥
≥ ≥ ≥
≥ ¿ƒƒƒƒƒƒƒƒƒŸ
≥
≥ * Same as CHANGE
≥
≥ ...4.......
≥
≥ Add the amount of change to the actual analog output command.
≥ ⁄ƒƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒƒø
≥ ≥ ADD ≥ ≥ LIMIT ≥
≥ UPDATE ≥ ≥ ≥ ≥
≥ ƒƒƒ| |ƒƒƒƒƒ¥EN OK√ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ¥EN OK√
≥ ≥ ≥ ≥ ≥
≥ ACTƒ¥IN1 SUM√ƒƒƒƒƒƒƒƒƒƒø MINƒ¥MIN OUT√ƒACT
≥ ≥ ≥ ≥ ≥ ≥
≥ CHANGEƒ¥IN2 ≥ ¿ƒƒƒƒƒƒƒƒƒƒƒ¥IN ≥
≥ ≥ ≥
≥ ¡ ƒ ƒ ƒ ƒ Ÿ MAXƒ¥MAX ≥
≥ ≥ ≥
≥ ¿ƒƒƒƒƒƒƒƒƒŸ
≥ ...5....... ENDFUNC:
≥
≥ ƒƒƒƒƒƒƒƒƒƒƒ
≥
 <End of Module>
 D2A_RAMP.LDO Net: 5
Starting PiCPro/PiCServoPro 8-7

You must mark all the inputs and outputs for the function block in the software
declarations table. Figure 8-2 shows the declaration table for the example ladder.
The first input is the EN and the first output is the OK. The remaining five inputs
will appear in order on the left side of the D2A_RAMP function block and the one
output will appear on the right below the OK as shown below Figure 8-2.

FIGURE 8 - 2. Software Declarations Table for the D2A_RAMP.LDO

Example UDFB

Inputs and
Outputs for

UDFB

Inputs and Outputs for UDFB

…NameÕÕÕÕÕÕÕÕÕÕTypeÕÕÕÕÕÕÕÕÕÕÕÕÕI/O Pt.ÕÕÕÕInit. Val.ÕÕÕLong NameÕÕÕÕÕTopª
∫EN I BOOL ∫
∫OK O BOOL ∫
∫DONE BOOL ∫
∫DIFFRNCE INT ∫
∫RAMPTMR <fb>TON ∫
∫CMND I INT ∫
∫ACT O INT ∫
∫TIC I TIME ∫
∫UPDATE BOOL ∫
∫RATE I INT ∫
∫MAX I INT ∫
∫MIN I INT ∫
∫CHANGE INT ∫
∫end_table void ∫
∫ ∫
∫ ∫
»ÕAlt-M modifies attributeÕÕPress F10 to exitÕÕÕAlt-E enters fieldÕBottomº

⁄ NAME ƒø
≥D2A_RAMP ≥
≥ ≥
¥EN OK√
≥ ≥
¥CMND ACT√
≥ ≥
¥TIC ≥
≥ ≥
¥RATE ≥
≥ ≥
¥MAX ≥
≥ ≥
¥MIN ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ
8-8 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Procedure for Marking the Variables

 Select Declarations Software to bring up
the software declarations table.

With the cursor in the line with the variable
you want to mark as an input or output,
press <Alt M> to bring up the list of
attributes shown on the left.

variable IN - this attribute designates the
variable as an input to the user defined
function block. When the LDO module is
converted to a UDFB, every variable you
want to use as an input to the UDFB must
have this attribute.

NOTE: The first variable with the "I"
attribute in the declarations table will
become the EN input of the UDFB. Its data
type is BOOL. Additional UDFB inputs
should be entered in the order you want
them to appear on the left side of the func-
tion block.

variable OUT - this attribute designates
the variable as an output to the user defined
function block. When the LDO module is
converted to a UDFB, every variable you
want to use as an output from the UDFB
must have this attribute.

NOTE: The first variable with the "O"
attribute in the declarations table will
become the OK output of the UDFB. Its
data type is BOOL. Additional UDFB out-
puts should be entered in the order you
want them to appear on the right side of the
function block.

Press I or O to declare that variable as an
input or an output for the UDFB.

Press <F10> to exit and accept all your
entries.

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ ∫
∫ Set or clear an attribute ∫
«ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ∂
∫ ∫
∫ Clear ∫
∫ Retentive ∫
∫ Global ∫
∫ Both global & retentive ∫
∫ External ∫
∫ variable IN ∫
∫ variable OUT ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

AA1078-4591
Starting PiCPro/PiCServoPro 8-9

Error Messages

Some of the error messages you may see when working with the UDFB feature
include those shown below.

Creating the UDFB

Once the LDO module containing all the logic you want your function block to
execute has been written and all the inputs and outputs to the UDFB are marked,
you are ready to create the function block by accessing the Module menu.

If you attempt to create a UDFB with-
out marking the inputs and outputs, the
messages shown at the left appear.

or

If the first input and output (for EN and
OK) are not declared as BOOL or not
marked as I or O, the messages at the
left appear.

If any of the variables are declared as
discrete I/O or as external, retained, or
global, the message on the left appears.

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ At least one input required ∫
∫ ∫
»Õ Press any key to continue Õº

 or
…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫At least one output required ∫
∫ ∫
»Õ Press any key to continue Õº

…ÕÕª
∫Name, the first input, is not a BOOLEAN ∫
∫ ∫
»ÕÕÕÕÕÕ Press any key to continue ÕÕÕÕÕÕÕº

AA1079-4591

…ÕÕª
∫Name,the first output, is not a BOOLEAN ∫
∫ ∫
»ÕÕÕÕÕÕ Press any key to continue ÕÕÕÕÕÕÕº

AA1080-4591

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ Invalid symbol attribute in IN1 ∫
∫ ∫
»ÕÕÕ Press any key to continue ÕÕÕº

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ New ∫
∫ Open ∫
∫ Close ∫
∫ Save ∫
∫ save As ... ∫
∫ Download ∫
∫ Monitor ∫
∫ Force ∫
∫ Print ∫
∫ UDFB build ∫
∫ TASK build ∫
∫ Hex-86 dump ∫
∫ Bin-86 dump ∫
∫ build dependency List ∫
∫ fInd duplicates ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

 Workstation Processor Module Declarations Network Element View
8-10 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

The UDFB command allows you to convert the logic in the module (.LDO) you
have created into a single function block.

MU (Module - UDFB) brings up the dialog
box on the left.

Type in the name of the library you want to
appear in the USER library list of the Func-
tions menu. It will receive the .LIB exten-
sion automatically.

For this example, the library is UDFB.

The new library containing your function
block can be accessed from the Functions
menu when PiCPro is restarted.

IMPORTANT

Always keep the UDFB.LIB file and the corresponding UDFB.LDO file(s) in
the same directory.

When PiCPro is restarted,
the Functions menu will
contain the word USER.

FU (Functions - USER)
accesses a list of all librar-
ies you have created for
UDFBs. Accessing the
library will bring up a list
of individual function
blocks you have created
and stored in that library.

In this example, there is
only one example in each
list. In the library list, it is
UDFB and in the function
block list, it is
D2A_RAMP.

The UDFB can now be
used in any LDO you cre-
ate. It can also be included
as part of an LDO that you
want to use to create
another UDFB.

⁄ƒƒƒƒƒƒ User Defined Function Block ƒƒƒƒƒø
≥ ≥
≥ The function cannot be found in any ≥
≥ existing library. Please indicate ≥
≥ which library it should be added to. ≥
≥ ≥
≥ Function Library [.LIB]:< UDFB >≥
≥ ≥
≥ NOTE: The PiCPro function lists will ≥
≥ be updated the next time PiCPro is ≥
≥ started. ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒŸ

…ÕÕÕÕÕÕÕÕÕÕª
∫ Arith ∫
∫ Binary ∫
∫ Counters ∫
∫ Datatype ∫
∫ Evaluate ∫
∫ Filter ∫
∫ Io ∫
∫ Motion ∫
∫ String ∫
∫ Timers ∫
∫ USER ∫
∫ Xclock ∫
»ÕÕÕÕÕÕÕÕÕÕº

…ÕÕÕÕÕÕÕÕÕÕª
∫ ∫
∫ UDFB ∫
∫ ∫
»ÕÕÕÕÕÕÕÕÕÕº

…ÕÕÕÕÕÕÕÕÕÕª
∫ ∫
∫ D2A_RAMP ∫
∫ ∫
»ÕÕÕÕÕÕÕÕÕÕº

Press
FU

Press
<Enter>

Function Menu

List of user
function
libraries

List of user
function
blocks

AA1076-4591

Press
<Enter> to

insert in
network
Starting PiCPro/PiCServoPro 8-11

Using the UDFB

The function block is now stored in the library and can be inserted in a network in
any module you create. The function block created from the D2A_RAMP.LDO is
shown below with a description of its inputs and outputs.

The inputs to the D2A_RAMP function block specify the desired end command
(CMND), the ramp update time (TIC), the size of the D/A step (RATE), and the
maximum (MAX) and minimum (MIN) output value.

The output to the function block can be fed to any function that requires ramping.

Type Checking

When exiting a network containing a UDFB, type checking of variables will be
performed when F10 is pressed. The data types must match.

For example, in the D2A_RAMP function block, the data type at the CMND input
was defined as an integer in the D2A_RAMP.LDO. When you use the
D2A_RAMP function block in a new module, the variable you use at the CMND
input must also be an integer.

With variables, if nothing is connected to an input, no data is passed.

With pointers associated with strings, structures, and arrays, type checking is per-
formed to ensure that a memory area is connected. PiCPro will not allow an input
requiring a memory area to be left unconnected.

Digital to
analog with
ramping

 Inputs: EN (BOOL) - enables execution

CMND (INT) - desired command value in
counts for the analog output

TIC (TIME) - designates the time tick in which
the actual analog output is updated

RATE (INT) - the maximum amount to ramp in
counts every time tick.

MAX (INT) - the maximum limit for the actual
analog command

MIN (INT) - the minimum limit for the actual
analog command

Outputs: OK (BOOL) - execution completed without
error

⁄ NAME ƒø
≥D2A_RAMP ≥
≥ ≥
¥EN OK√
≥ ≥
¥CMND ACT√
≥ ≥
¥TIC ≥
≥ ≥
¥RATE ≥
≥ ≥
¥MAX ≥
≥ ≥
¥MIN ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

⁄ƒNAME ƒƒƒø
≥ UDFB ≥
≥ ≥
¥EN ≥
≥ ≥
¥INT ≥
≥ ≥

INT

Data types must
be the same.

AA894-3691
8-12 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Editing UDFBs

Depending on the type of change you are making to the UDFB, it can either be
done off-line or on-line. PiCPro will determine this and put up one of the two mes-
sages shown below when you press MU (Make User). When you make an on-line
edit change, one more choice is added to the menu as shown on the right.

These editing choices are described below.

Yes, replace the function in the library changes the module in the library and requires a
full download. If you add any function/blocks and/or declarations that require ini-
tialization, you must remake the UDFB and do a full download.
NOTE: Strings always require initialization.

replace the function with a Debug version allows you to create a debug version of the
UDFB. Creating a debug version adds additional data bits (40), data bytes (80),
and function/jump links (20) to each instantiation of the UDFB for more extensive
on-line changes.
NOTE: Minor changes that do not add things like new functions, declarations or
jump labels can be made on-line without creating a debug version.

No, do nothing exits this menu without doing anything.

no, Patch the function in the running ladder allows you to make an on-line edit change
to this UDFB. This does not change the version of the module in the library, but
does allow you to continue to animate and do on-line editing.

The following message appears when the patch download is complete.

Off-Line Editing On-Line Editing

⁄ƒNAME ƒƒƒø
≥ UDFB ≥
≥ ≥
¥EN ≥
≥ ≥
¥A(0) ≥
≥ ≥

A(0)

Must be
string,

structure,
or array

AA895-3691

…ÕÕÕª
∫ Function block D2A_RAMP is already defined∫
∫ in library .\UDFB.LIB ∫
∫ Continue and replace it? ∫
«ƒƒƒ∂
∫ Yes, replace the function in the library ∫
∫ replace the function with a Debug version ∫
∫ No, do nothing ∫
»ÕÕÕº

…ÕÕÕª
∫ Function block D2A_RAMP is already defined ∫
∫ in library .\UDFB.LIB ∫
∫ Continue and replace it? ∫
«ƒƒƒ∂
∫ Yes, replace the function in the library ∫
∫ replace the function with a Debug version ∫
∫ No, do nothing ∫
∫ no, Patch the function in the running ladder∫
»ÕÕÕº
Starting PiCPro/PiCServoPro 8-13

Any patches you make are included in the UDFB LDO file only. They will not be
included in the UDFB library file until you choose to update the library.

When you attempt to exit PiCPro or open a module, the following message will
appear if you have added function/blocks that are not in the current downloaded
module. You must update the main module if you want to continue using animation
and on-line editing.

…ÕÕª
∫ * Resources Still Available * ∫
∫ ∫
∫ 40 data bits ∫
∫ 80 data bytes ∫
∫ 260656 code bytes ∫
∫ 98 patches ∫
∫ 20 local label/function links ∫
∫ 26 global label/function links ∫
∫ ∫
∫ Use <Ctrl-S> to abort the latest changes ∫
∫ ∫
»ÕÕÕÕÕÕÕ Press any key to continue ÕÕÕÕÕÕÕÕº

…ÕÕª
∫ The library version of this function does not match∫
∫ the .LDO or the version currently in the PiC. ∫
∫ Do you wish to update the library version? ∫
∫ ∫
∫ NOTE: Updating the library will require a full ∫
∫ download before more on-line-edit of this ∫
∫ function can occur. ∫
«ƒƒ∂
∫ Yes ∫
∫ No ∫
»ÕÕº

…ÕÕª
∫ Because of changes made to one or more UDFBs,∫
∫ internal changes are required to the main ∫
∫ module in order to be able to continue to ∫
∫ animate and do on-line-edit. ∫
∫ Do you wish to update the main module? ∫
«ƒƒ∫
∫ Yes ∫
∫ No ∫
»ÕÕº
8-14 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Viewing the UDFB Module (LDO) from Another Module

When you are running a module containing your UDFB, you may want to view the
logic in the module used to create the UDFB. This is possible from the View menu.

VU (View - User Function) brings up
the View User Function box. A list of
UDFBs will appear on the right. (The
name you assigned to the function
block when it was declared appears to
the left in the list box.)

Press <Enter> to choose the UDFB
whose module you want to open. Press
<F10> to accept your choice. The
UDFB module will open. You can run
animation to observe the logic within
this module for your UDFB.

Use MO (Module - Open) to return to
your calling program.

…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
∫ Zoom ∫
∫ User Function ∫
»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

 Workstation Processor Module Declarations Network Element View

⁄ƒƒƒƒƒƒƒƒƒƒƒƒ View User Function ƒƒƒƒƒƒƒƒƒƒƒø
≥ ≥
≥ From the list, move the cursor ≥
≥ to the desired function, and ≥
≥ press <Enter>. <F8> will recall ≥
≥ the list. ≥
≥ ⁄ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒø
≥ User Defined Function: ≥RAMP :D2A_RAMP≥
≥ ¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒŸ

AA1077-4591
Starting PiCPro/PiCServoPro 8-15

NOTE

The View User Function feature is only available from within a calling program.
An example of how the View User Function feature can be used is shown below.
Module TEST1.LDO is used to create the user defined function block TEST1. The function
block TEST1 is used in the logic for module TEST2.LDO to create TEST2 function block.
TEST2 is used in your final module which is your calling program.
With the View - User Function feature, you can view and animate each module in descending
order. With PROG.LDO running you can view TEST2.LDO. From TEST2.LDO you can
view TEST1.LDO as illustrated below.

(Contains TEST2
function block)

PROG.LDO
(Calling program) TEST2.LDO

(Contains TEST1
function block)

VU (View - User
Function) to look at
the logic for TEST2

VU (View - User
Function) to look at
the logic for TEST1

MO (Module -
Open) to return
to your program

AA1081 4591

TEST1.LDO

Used to create
TEST2 function

block

Used to create
TEST1 function

block
8-16 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

CHAPTER 9 TASKs

Introduction

A TASK is a programming tool that allows you to create a module (.LDO) that will
execute at periodic intervals or on the rising or falling edge of a boolean variable
from within your main LDO. This provides the ability to schedule events from
your main LDO.

Tasks are programmed similar to UDFBs. You convert the TASK LDO into a func-
tion block that is stored in a library. Whenever PiC(Servo)Pro is executed, the
TASK will be available through this library under the Functions menu. It can then
be used in a network of your main LDO.

There are some differences between TASKs and UDFBs as listed below.

• Tasks can access I/O modules located in the main rack of the control.

• A task cannot be programmed within another task or within a UDFB.

• The on-line edit feature cannot be used in a network containing a task.

• Forcing is not allowed in a task.

• When you insert tasks into your main LDO, the function block template is
always the same. You cannot program any inputs or outputs for a TASK.
They are predefined.

There are three types of TASKs available:

1. Servo Interrupt Tasks - triggered on the 1, 2, 4, 8, or 16 ms servo time tick

2. Hardware Interrupt Tasks - triggered on a hardware event

3. System Tick Tasks - triggered on a multiple of the 10 ms system time tick

NOTE: Variables 44 through 48 are available to be used with servo tasks using the
READ_SV and WRITE_SV functions. Refer to the Function/Function Block Ref-
erence Guide for information on these variables.

WARNING

Use discretion when programming tasks in your LDO. You must have a thor-
ough understanding of how they work and what affect they will have on your
program to ensure that your program will execute properly.
Starting PiCPro/PiCServoPro 9-1

Programming

Every task you create and subsequently use in your main LDO will use the tem-
plate shown below. FILE will be replaced with the name of your task LDO file
when you build the TASK. You will provide a NAME when you declare the func-
tion block in the software declarations table of your main LDO.

The EN must be on for a task to run.

The SERV, HDWR, and SYST inputs are mutually exclusive. Only one can be con-
nected at a time depending on whether your task is a servo, hardware, or system
interrupt task.

The errors that can appear at the ERR output are listed below.

ERR = 1 Task installation failure

ERR = 2 The time tick requested is larger than 10.92 minutes.

ERR = 3 The servo task is faster than the servo interrupt time.

Template for
Task Func-
tion Blocks

Inputs: EN (BOOL) - enables execution

SERV (TIME) - 1, 2, 4, 8, or 16 ms constant for
servo task. Enter in the T# format.

HDWR(BOOL) - I/O point used to trigger the hard-
ware interrupt task must be programmed as D (Data)
I (In) or D (Data) V (in inVerted) which inverts a
boolean input. Never program a wire or contact to
this BOOL input.

SYST (TIME) - constant or variable based on 10 ms
system time tick. If a time is entered that is not a
multiple of 10, it will be rounded up to the next 10
ms increment. Time must be less than 10.92 min-
utes. Enter in the T# format.

Outputs: OK (BOOL) - set if EN is on and the TASK is suc-
cessfully installed.
Does not indicate whether or not the task has run.

FAIL (BOOL) - set if ERR ≠0.

ERR (INT) - 0 if no error; ≠0 if an error.

⁄ƒƒNAME ƒƒø
≥ FILE ≥
≥ ≥
¥EN OK√ƒ
≥ ≥
¥SERV FAIL√ƒ
≥ ≥
¥HDWR ERR√ƒ
≥ ≥
¥SYST √ƒ
¿ƒƒƒƒƒƒƒƒƒŸ
9-2 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Creating a TASK

1. Open a new module in PiCPro. The name you give the module will become the
name of the TASK function block. Be sure the name you choose does not
already exist in a standard or user defined function block or in another task
module.

2. Create your TASK program. Keep in mind the following:

• Tasks can access I/O located in the main rack of the control.
Declare any hardware module whose I/O you use in a task in both the main
LDO and in the task LDO hardware declaration tables.
(In the main LDO, all hardware modules must be declared whether the
main LDO uses them or not. In the task LDO, only the hardware modules
used in the task LDO must be declared in the task LDO.)

• Hardware outputs used in a task may not be used in the main LDO. Hard-
ware inputs may be used in a task and in the main LDO. Hardware inputs
and outputs used in one task may be used in other task(s). Declare them
only in the software declaration table of the LDO(s) they will be used in.

• Inputs are strobed at the beginning of a task. Outputs are strobed at the end
of a task. NOTE: When the task is running, only the inputs and outputs in
the task, not the inputs and outputs in the main LDO, will be strobed.

• Do not use timer functions in a task.

• If software data information in a task needs to be shared with other tasks,
declare it as External (E) in the software declarations table of the task
LDO. This data must also be declared in the software declarations table of
the main LDO whether the main LDO uses it or not. In the main LDO, it is
never marked as External (E) or Global (G).

NOTE: Never assign the External attribute to direct I/O used in the LDO.

• To ensure that the data to be transferred between LDOs is from the same
scan, interlock multiple externals, arrays, structures and variables. An
example of setting semaphore flags as interlocks can be found at the end of
this chapter.
Starting PiCPro/PiCServoPro 9-3

The tables that follow summarize some of the rules for making hardware and soft-
ware declarations in the main and task LDOs.

*Never mark External any direct I/O used in the LDO.

Hardware modules and I/O points may be used in multiple task LDOs. They must
be declared in all task LDOs they are used in.

• When using functions from the I/O or Motion library, the following rules
apply.

I/O Functions

Functions in these groups that access an I/O module must be called in the main
LDO or within the same task.

I/O functions in these groups can be called in the main LDO only.

Hardware Declarations

Description in Main LDO in Task LDO

Hardware module used in task LDO Yes Yes

Hardware module used in main LDO Yes No

Hardware module used in both LDOs Yes Yes

Software Declarations

Description in Main LDO in Task LDO

Hardware input used in task LDO No Yes

Hardware input used in main LDO Yes No

Hardware input used in both LDOs Yes Yes

Hardware output used in task LDO No Yes

Hardware output used in main LDO Yes No

Hardware output used in both LDOs Not Allowed

Variable used in task LDO No Yes

Variable used in main LDO Yes No

Variable used in both LDOs Yes Yes
Mark External*

ANLGIN ANLGOUT JKTHERM

READFDBK RTDTEMP STEPPER

COMM NETWORK
9-4 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

These I/O functions can be called in both the main LDO and the task LDO.

Motion Functions

These motion functions can only be called in the main LDO.

These motion functions may not interrupt each other, i.e. if one function is access-
ing a queue, a second function is not allowed to interrupt the first function and
access the same queue. If this occurs, the function in the interrupting task will not
execute and the OK will not be set.

These motion functions can be called in both the main LDO and any task LDO.

BAT_OK? PID

STRTSERV CAM_OUT MEASURE REGIST SCURVE

SC_START SCA_SEND SCA_RECV SCA_CLOS SCA_ACKR

SCA_REF SCA_ERST SCS_SEND SCS_RECV SCS_ACKR

SCS_REF

DISTANCE POSITION VEL_END VEL_STRT GR_END

RATIOCAM RATIOPRO RATIOSLP RATIOSYN RATIO_GR

RATIO_RL REP_END SYN_END FAST_REF LAD_REF

IN_POS? NEWRATIO NEW_RATE ABRTALL ABRTMOVE

Q_AVAIL? Q_NUMBER FAST_QUE C_RESET E_RESET

PART_CLR PART_REF

ACC_DEC CAPTINIT CAPTSTAT CLSLOOP? CLSLOOP?

COORD2RL C_ERRORS C_STOP C_STOP? E_ERRORS

E_STOP E_STOP? HOLD HOLD_END OPENLOOP

P_ERRORS P_RESET RATIOSCL READ_SV REF_DNE?

REF_END TME_ERR? TUNEREAD TUNEWRIT WRITE_SV

R_PERCEN SCR_CONT SCR_ERR SCR_PHAS SCS_CTRL

SCS_READ SCS_STAT SCS_WRIT
Starting PiCPro/PiCServoPro 9-5

The following motion function can only be called once because it does a read and
then clear of all but one status flag. After an event occurs, only the first read of the
status will recognize the corresponding flag.

3. After the task LDO is completed, use the M (Module) T (Task build) command
to create the TASK function block.

4. The User Defined Task box appears as shown below. TASK function blocks,
just like UDFBs, are stored in a library. Enter the name of the library you want
to store the TASK function block in and press <F10> to accept. Tasks and
UDFBs may be stored in the same library.

The library will appear under the F (Functions) U (User) command when editing
or inserting a network after PiCPro is started again.

5. Once your task(s) has been created, you can call it in your main LDO. When
you enter the TASK function in your main LDO, you set up the type of inter-
rupt it will be and when it will run. Some things to keep in mind when using
TASKs in your main LDO are listed below.

• HDWR interrupts can come from the first input in each group of eight on
the digital input modules (numbers X.1, X.9, X.17, or X.25) or from the fast
input on the encoder/resolver modules. The fast inputs must be numbered
as X.1 for channel one, X.3 for channel two, X.5 for channel three, and X.7
for channel four.
NOTE: X represents the slot number for the module.

STATUSSV

IMPORTANT

Always keep the TASK.LIB file(s) and the TASK.LDO file(s) in the same directory.

⁄ƒƒƒƒƒƒƒƒƒƒƒƒƒ User Defined Task ƒƒƒƒƒƒƒƒƒƒƒƒƒø
≥ ≥
≥ The function/task cannot be found in ≥
≥ any existing library. Please indicate ≥
≥ which library it should be added to. ≥
≥ ≥
≥ Function/Task Library [.LIB]:< >≥
≥ ≥
≥ NOTE: The PiCPro function/task lists ≥
≥ will be updated the next time PiCPro ≥
≥ is started. ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒŸ
9-6 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

• Servo interrupt tasks put the heaviest burden on system resources. Always

try to conserve system resources by using the appropriate task i.e., do not
use a servo task when a system or hardware task can accomplish the same
thing.

• Servo interrupts are based on the servo clock. The servo clock can be
started in one of two ways:

1. Calling the STRTSERV function when running servos.

2. Calling the SERVOCLK function when not running servos.

When tasks are triggered in the main LDO, system tasks will interrupt the main
LDO; hardware tasks will interrupt system tasks and the main LDO, and servo
tasks will interrupt, hardware tasks, system tasks, and the main LDO. Figures 9-2
and 9-3 illustrate this hierarchy.

If there are multiple tasks of one type in the main LDO, the TASK that is declared
first in the software declarations table will execute first.
Starting PiCPro/PiCServoPro 9-7

FIGURE 9 - 1. Priority between the Main LDO, Hardware, and System Tasks

Start First Scan

Enable Hardware
Task

Enable
System Task

Represents the
main LDO

10

M
ai

n
LD

O

H
ar

dw
ar

e
Ta

sk

Sy
st

em

Ta
sk

1. Hardware Task
Triggered

3. Hardware Task
Triggered

20

30

40

50

60

70

80

90

T
im

e
in

 m
ill

is
ec

on
ds

Represents a
system task set to
run every 20 ms

Represents a hardware
task set to run

whenever a hardware
interrupt occurs

KEY

2. Hardware Task
Triggered

(Interrupts main LDO/
Delays system task)

(Interrupts main LDO/
Interrupts system
task)

(Interrupts main LDO)
9-8 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

FIGURE 9 - 2. Priority of the Main LDO, Hardware, and Servo Tasks

M
ai

n
LD

O

w
ith

 U
D

FB

Start First Scan

Enable Hardware Task

STRTSERV
Represents the
main LDO with

an UDFB
10

H
ar

dw
ar

e
Ta

sk

Se
rv

o
Ta

sk

1. Hardware Task
Triggered

2. Hardware Task
Triggered

20

30

40

50

60

70

80

90

T
im

e
in

 m
ill

is
ec

on
ds

Represents a servo
task running every 16
ms at the end of the

servo section

Represents an interrupt
task set to run whenever

a hardware interrupt
occurs

KEY

Enable Servo Task

U
D

F
B

Represents a servo
running every 8 ms

3. Hardware Task
Triggered

(Interrupts main LDO)

(Delayed by servo/
Interrupts main LDO)

(Interrupted by servo/
Interrupts main LDO)
Starting PiCPro/PiCServoPro 9-9

Interlocking Data when using Tasks

Whenever data is exchanged between the main LDO and a task LDO, there is a
possibility of inaccurate data being transferred. This is dependent on when a task
interrupts the main LDO or interrupts a lower priority task accessing the same
data.

In order to preserve the integrity of the data that is being read/written, you need to
program an interlock between the main LDO and the task LDO. One method of
interlocking data is to use semaphore flags as explained in the following section.

A semaphore flag refers to a way of communicating between the main LDO and a
task LDO when a significant event has occurred.

Setting up Semaphore Flags

In setting up semaphore flags, the main LDO energizes a LOCK flag which pre-
vents the task LDO from reading or writing data while data is being transferred to
or from the main LDO. After the data transfer is complete, the main LDO deener-
gizes the LOCK flag and the task LDO is allowed to read or write the data.

There are two examples presented here. In the first one the data is being transferred
from the task LDO to the main LDO and in the second the data is being transferred
from the main LDO to the task LDO. In both examples the main LDO has control
of the data even though tasks of higher priority are accessing it.

Semaphore Flags when Data Transfer occurs from Task LDO to Main LDO

The MOVE function with a task output (TO) data structure is used in both the main
and task LDO. The TO structure acts as a buffer for the data transfer. The TO struc-
ture is marked External (only in the task LDO software declarations table, not the
main LDO software declarations table) allowing that data to be used by both the
main and task LDOs.

In the Main LDO

When the MOVE function in the main LDO is enabled, the following sequence of
events occurs.

1. TO.LOCK is energized by moving LOCK into TO.LOCK.

2. TO.COUNT is moved into COUNT.

3. TO.LOCK is de-energized by moving UNLOCK into TO.LOCK.
9-10 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

The variables for the main LDO are defined below.

The section of the software declaration table for the main LDO is shown below.

Variable Definition

TO Task output structure

.LOCK Semaphore flag

.COUNT Count variable to be written by the task LDO

COUNT Main LDO count variable

LOCK IN1 to MOVE function, set to 1

UNLOCK IN3 to MOVE function, set to 0

Declaration Table in Main LDO

≥ ⁄ƒƒƒƒƒƒƒƒƒø
≥ ≥ MOVE ≥
≥ ≥ ≥
√ƒƒƒƒƒƒƒƒƒƒƒ¥EN OK√
≥ ≥ ≥
≥ LOCKƒ¥IN1 OUT1√ƒTO.LOCK
≥ ≥ ≥
≥ TO.COUNTƒ¥ √ƒCOUNT
≥ ≥ ≥
≥ UNLOCKƒ¥ √ƒTO.LOCK
≥
≥ ¡ ƒ ƒ ƒ ƒ ¡

Declaration Table in Main LDO
…NameÕÕÕÕÕÕÕÕÕÕTypeÕÕÕÕÕÕÕÕÕÕÕÕÕI/O Pt.ÕÕÕÕInit. Val.ÕÕÕLong NameÕÕÕÕÕTopª
∫TO STRUCT ∫
∫.LOCK BOOL ∫
∫.COUNT DINT ∫
∫ END_STRUCT ∫
∫COUNT DINT ∫
∫LOCK BOOL 1 ∫
∫UNLOCK BOOL 0 ∫
Starting PiCPro/PiCServoPro 9-11

In the Task LDO

In the task LDO, the following sequence of events occurs.

1. If TO.LOCK is off, then move the data. (Step 2)
If TO.LOCK is on, do not move data.

2. T_COUNT is moved into TO.COUNT.

The variables for the task LDO are defined below.

The section of the software declaration table for the task LDO is shown below.

Variable Definition

TO Task output structure

.LOCK Semaphore flag

.COUNT Count variable to write to the main LDO

T_COUNT Task variable to be transferred into COUNT in main LDO

Declaration Table in Task LDO

≥ ⁄ƒƒƒƒƒƒƒƒƒø
≥ ≥ MOVE ≥
≥ TO.LOCK ≥ ≥
√ƒƒƒ|/|ƒƒƒƒƒ¥EN OK√
≥ ≥ ≥
≥ T_COUNTƒ¥IN1 OUT1√ƒTO.COUNT
≥
≥ ¡ ƒ ƒ ƒ ƒ ¡

Declaration Table in Task LDO
…NameÕÕÕÕÕÕÕÕÕÕTypeÕÕÕÕÕÕÕÕÕÕÕÕÕI/O Pt.ÕÕÕÕInit. Val.ÕÕÕLong NameÕÕÕÕÕTop
∫TO E STRUCT
∫.LOCK BOOL
∫.COUNT DINT
∫ END_STRUCT
∫T_COUNT DINT
∫
9-12 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Semaphore Flags for Data Transfer from Main LDO to Task LDO

The MOVE function with a task input (TI) data structure is used in both the main
and task LDO. The TI structure acts as a buffer for the data transfer. The TI struc-
ture is marked External (only in the task LDO software declarations table, not the
main LDO software declarations table) allowing that data to be used by both the
main and task LDOs.

In the Main LDO

When the MOVE function in the main LDO is enabled, the following sequence of
events occurs.

1. TI.LOCK is energized by moving LOCK into TI.LOCK.

2. SETPOINT is moved into TI.STPT.

3. TI.LOCK is de-energized by moving UNLOCK into TI.LOCK.

The variables for the main LDO are defined below.

Variable Definition

TI Task input structure

.LOCK Semaphore flag

.STPT Setpoint to be read by task LDO

SETPOINT Main LDO setpoint variable

LOCK IN1 to MOVE function, set to 1

UNLOCK IN3 to MOVE function, set to 0

Main LDO
≥ ⁄ƒƒƒƒƒƒƒƒƒø
≥ ≥ MOVE ≥
≥ ≥ ≥
√ƒƒƒƒƒƒƒƒƒƒƒ¥EN OK√
≥ ≥ ≥
≥ LOCKƒ¥IN1 OUT1√ƒTI.LOCK
≥ ≥ ≥
≥ SETPOINTƒ¥ √ƒTI.STPT
≥ ≥ ≥
≥ UNLOCKƒ¥ √ƒTI.LOCK
≥
≥ ¡ ƒ ƒ ƒ ƒ ¡
Starting PiCPro/PiCServoPro 9-13

The section of the software declaration table for the main LDO is shown below.

In the Task LDO

In the task LDO, the following sequence of events occurs.

1. If TI.LOCK is off, then move the data. (Step 2)
If TI.LOCK is on, do not move data.

2. TI.STPT is moved into T_STPT.

The variables for the task LDO are defined below.

The section of the software declaration table for the task LDO is shown below.

Variable Definition

TI Task input structure

.LOCK Semaphore flag

.STPT Setpoint data to be read by the task LDO

T_STPT Task variable to hold setpoint from main LDO

Declaration Table in Main LDO
…NameÕÕÕÕÕÕÕÕÕÕTypeÕÕÕÕÕÕÕÕÕÕÕÕÕI/O Pt.ÕÕÕÕInit. Val.ÕÕÕLong NameÕÕÕÕÕTo
∫TI STRUCT
∫.LOCK BOOL
∫.STPT DINT
∫ END_STRUCT
∫SETPOINT DINT
∫LOCK BOOL 1
∫UNLOCK BOOL 0

 ⁄ƒƒƒƒƒƒƒƒƒø
 ≥ MOVE ≥
 TI.LOCK ≥ ≥
√ƒƒƒ|/|ƒƒƒƒƒ¥EN OK√
 ≥ ≥
 TI.STPTƒ¥IN1 OUT1√ƒT_STPT

 ¡ ƒ ƒ ƒ ƒ ¡

Declaration Table in Task LDO
…NameÕÕÕÕÕÕÕÕÕÕTypeÕÕÕÕÕÕÕÕÕÕÕÕÕI/O Pt.ÕÕÕÕInit. Val.ÕÕÕLong NameÕÕÕÕÕTopª
∫TI E STRUCT ∫
∫.LOCK BOOL ∫
∫.STPT DINT ∫
∫ END_STRUCT ∫
∫T_STPT DINT ∫
9-14 Starting PiCPro/PiCServoPro

Introduction
CHAPTER 10 PiC and SERCOS
Introduction

SERCOS is a SErial, Realtime COmmunication System developed to interface
with digital controls and drives. Fiber optic cables are used to transmit data seri-
ally allowing for improved noise immunity and fast update times. SERCOS allows
motion control in velocity, torque, or position modes.

Giddings & Lewis recommends that you acquire a copy of the NEMA SERCOS
Specification for reference information, especially if you will be performing
advanced control techniques. The SERCOS Specification is available through
ANSI. To order call ANSI at 212-642-4900 and ask for Manual IEC 1491.

SERCOS allows you to create a digital instead of an analog motion control net-
work. A typical PiC/SERCOS network is illustrated below. The network consists
of up to eight digital drives connected to one master in a ring topology in which
messages travel unidirectionally. The network can support two fiber optic rings
from one SERCOS module.

Figure 10- 1. PiC/SERCOS Network

NOTE: Currently, the PiC/SERCOS configuration supports a slave controlling a
single drive on the ring. It does not support a slave controlling a group of drives as
described in the SERCOS Specification.

PiC

Ring 1 Ring 2

SERCOS
Module

Master

Digital Drives

Slaves

Digital Drives

Slaves

1 2 8 1 2 8

(up to 8) (up to 8)
SERCOS 10-1

Background Information
Background Information

SERCOS Functions

The Motion library contains the following function/function blocks in the groups
listed. Refer to the Function/Function Block Reference Guide for a complete
description of the function/function blocks.

NOTE

SCA_... function blocks have an AXIS input to identify the SERCOS axis that
has been initialized in Servo setup.
SCS_... function/function blocks identify the SERCOS axis by slot, ring, and
slave numbers.

SCR_... function/function blocks apply to one ring.
SC_... function applies to all rings.

DATA Group

SCA_RECV - receives data from the service channel of the AT for a servo axis

SCA_SEND - sends data to the service channel of the MDT for a servo axis

ERRORS Group

SCA_ERST - resets E-errors and closes the loop on a servo SERCOS axis

INIT Group

SCA_CLOS - reads the current position and closes the loop on a servo SERCOS axis

REF Group

SCA_ACKR - acknowledges the reference cycle for a servo axis

SCA_REF - starts the reference cycle on the servo SERCOS axis

SERC_SLV Group

SCS_ACKR - acknowledges the reference cycle for an non-servo axis

SCS_CTRL - writes the control bits to the MDT

SCS_READ - reads cyclic data from the AT

SCS_RECV - receives data from the service channel of the AT for a non-servo axis

SCS_REF - starts the reference cycle on the non-servo SERCOS axis

SCS_SEND - sends data to the service channel of the MDT

SCS_STAT - reports the status from the AT

SCS_WRIT - writes data to the cyclic data of the MDT

SERC_SYS Group

SCR_CONT - continues communication if it was halted after Phase 2

SCR_ERR - reports ring errors

SCR_PHAS - reports the highest phase number completed

SC_START - copies the user data into the SERCOS module
10-2 SERCOS

Background Information
Telegrams

SERCOS has a master/slave communications structure with the PiC as the master
and the drives as the slaves. All the communication between the two is done with
messages referred to as “telegrams.” A telegram is an ordered bit stream carrying
data and timing information.

There are three standard telegrams used in SERCOS communication as described
below:

The type of data transferred by these telegrams is determined by the telegram type
you enter in SERCOS setup. IDN 15 contains the telegram types available. They
are described below.

*If the slave will be controlled by the Motion.Lib, 4 is the telegram type number
that is entered in SERCOS setup.

**IDN 32 is sent by the SERCOS software if telegram type 1 through 6 is entered
in SERCOS setup.

Name Description

1. MST - Master Synchronization Telegram - sent by the PiC to
the drives to set the timing and synchronization for
everything that happens on the network.

2. AT - Amplifier Telegram - sent by the drives to the PiC.

3. MDT - Master Data Telegram - sent by the PiC to the drives
after it receives the last AT in a cycle.

IDN 15
Telegram Type Description IDN 32**

0 No data (Not Sent)

1 Torque control 1

2 Velocity control, velocity feedback 2

3 Velocity control, position feedback 2

4* Position control, position feedback 3

5 Position and velocity control, position and velocity feedback 3

6 Velocity control 2

7 User-defined (Not Sent)
SERCOS 10-3

Background Information
SERCOS Slaves (using SCS_... function/function blocks)

Figures 10.2 and 10.3 indicate how some of the SERCOS function/function blocks
are used in the communication structure when working with slaves that have not
been initialized in Servo setup.

Figure 10-2. The MDT Structure

Figure 10-3. The AT Structure

Servo SERCOS Axes (using SCA_... function blocks)

Figures 10.4 and 10.5 illustrates what happens within the communication structure
when working with servo axes that have been initialized in Servo setup.

Figure 10-4. The MDT Structure

Figure 10-5. The AT Structure

Control Master Service Cyclic Data

SCS_CTRL SCS_SEND SCS_WRIT

MDT

F/FB

Status Drive Service Cyclic Data

SCS_STAT SCS_RECV SCS_READF/FB

AT

Control Master Service Cyclic Data

SCA_SEND

MDT

(Done Internally)(Done Internally)

Status Drive Service Cyclic Data

SCA_RECV

AT

(Done Internally) (Done Internally)
10-4 SERCOS

Background Information
IDNs
SERCOS has a system of identification numbers (IDNs) used to access specific
data. You can find a list of these IDNs in the SERCOS specification. There is a
standardized set covering the following categories:

There is also a user-defined set of IDNs available.
Below is a list of IDNs that must be supported by any slave device you are using.
They are listed in the order they are worked through as Phase 2 and 3 proceed. For
complete descriptions of these IDNs, consult the SERCOS specification.

1. General parameters 6. Definitions of telegram contents

2. Diagnostics 7. Drive operation modes

3. Lists of operation data 8. Standard operation data

4. Internal and external signals 9. Drive parameters

5. Manufacture specifications

IDN

READ Description

00003 Shortest AT Transmission Starting Time (T1min)

00004 Transmit/Receive Transmission Time (TATMT)

00005 Minimum Feedback Processing Time (T4min)

00088 Receive to Receive Recovery Time (TMTSY)

00090 Command Value Proceeding Time (TMTSG)

00096 Slave Arrangement 0

WRITE Description

00001 Control Unit Cycle Time, TNcyc

00002 Communication Cycle Time, TScyc

00006 AT Transmission Starting Time (T1)

00007 Feedback Acquisition Capture Point

00008 Command Value Valid Time

00009 Position of Data Record in MDT

00010 Length of Master Data Telegram

00015 Telegram Type Parameter

00032 Primary Operation Mode

00089 MDT Transmission Starting Time

R/W Description

00099 Reset Class1 Diagnostic

00127 CP3 Transition Check

00128 CP4 Transition Check

P
h

as
e

2

Phase3
SERCOS 10-5

Background Information
Note on Working with Procedure Command Function IDNs

There are two types of IDNs used in SERCOS.

1. Parameter data IDNs - These handle simple commands (i.e., IDN 100 where
the value for gain can be read or written). You define the values for these IDNs.

2. Procedure command function (PCF) IDNs - These are IDN commands that
take a longer time to execute (i.e., IDN 262, load parameter data or homing
cycle). With PCFs the one word DATA values hold bit patterns that relay the
progress of the function. The MDT has two bits and the AT has five bits.
All PCFs use these bits the same way. This bit field provides the
communication between the master and the slave.

Follow these steps to use a PCF IDN.

1. Start the procedure by sending the PCF IDN with the data value of 3 using SCS_
SEND or SCA_SEND. This sets (bit 0 = 1) and enables (bit 1 = 1) the PCF.
SIZE for PCF IDNs is one word.

2. In the SCS_RECV or SCA_RECV function blocks, enter a 1 as the ELEM
member of the DATA structure.

3. Continually read the PCF IDN value using SCS_RECV or SCA_RECV
function blocks. If the command was received by the drive, a status of 7 will be
read. This means the drive acknowledges the command set (bit 0 = 1) and
enabled (bit 1 = 1). If no error occurs and the procedure is complete, a status of
3 is returned. This means the drive acknowledges the command set (bit 0 = 1),
enabled (bit 1 = 1), and executed (bit 2 = 0). This may take only a few SERCOS
updates or several minutes depending on the PCF. If an error occurred during
the procedure, bit 3 will equal 1.
NOTE: There is a change bit (bit 5) in the status word which can be used to
avoid continually reading the PCF IDN value as described above. See the
SERCOS specification for more information on this change bit.

4. After the read value of the PCF IDN equals status of 3, the command set (bit 0
= 1), the enabled (bit 1 = 1), and executed (bit 2 = 0), or the read value has status
bit 3 set (≥ 8), the PCF must be sent again using SCS_SEND or SCA_SEND
with data = 0. This cancels the procedure by sending the PCF IDN with bit 0 =
0.

This PCF procedure and other advanced SERCOS features are described in the
SERCOS specification. Refer to section 7.4.4 of the NEMA SERCOS specifica-
tion for more detailed information on PCFs.

NOTE: PCFs may not be used in the SERCOS setup list.
10-6 SERCOS

Background Information
Phases

During initialization, the SERCOS system moves through five communication
phases (0 through 4) before normal communication can begin. These are summa-
rized below.

The movement through these five communication phases occurs in sequential
order. In SERCOS setup, it is possible to decide to halt the movement after the
completion of Phase 2 allowing you to send additional IDNs specific to your appli-
cation which you did not enter in SERCOS setup and then resume moving through
Phase 4. At the end of Phase 4, you have another opportunity to send IDNs as illus-
trated in the flow chart.

Phase # Description

Phase 0 Closes the communication ring and allows initialization to proceed.

Phase 1 An identification phase where the PiC addresses each drive individually
and waits for an acknowledgment.

Phase 2 Sets parameters for cyclic data transmission.

Phase 3 Sets parameters for non-cyclic or service channel data transmission.

Phase 4 The SERCOS ring can begin normal operation as defined by the applica-
tion.
SERCOS 10-7

Background Information
Figure 10-6. IDNs and Phases

NOTE: It is not possible to go back to a previous phase unless you go all the way
back to Phase 0 and reinitialize.

Phase 0

Phase 1

Phase 2

Phase 3

Phase 4

Process IDNs
sent from setup

Pause
after Phase 2

selected in
setup

No

Yes

Process ladder

Call SCR_CONT

Phases completed

Use SCS_SEND/
SCS_RECV to
send/receive

additional IDNs

IDNs

 Use SCS_SEND/
SCS_RECV to
send/receive

additional IDNs

NOTE: SCA_SEND and
SCA_RECV function blocks used
with servo SERCOS axes cannot be
used until the servos have been ini-
tialized (START_SV function called
successfully). This can only occur
after Phase 4.
10-8 SERCOS

Background Information
Cyclic Operation

After initialization is complete, SERCOS transmits critical data such as command
values, feedback values, etc. in synchronized, cyclic form. This data is updated
cyclically in real time at the update rate set in the PiC.

Service Channel

Non-critical data such as diagnostics, loop gains, etc. are transferred over a service
channel. This data is transferred once each cycle and goes both ways. It may take
several cycles to transfer data. The transfer is initiated by the PiC. Figures 10.2 to
10.5 illustrate this transfer.
SERCOS 10-9

Background Information
Notes on using Standard Motion.Lib Functions and Variables with SERCOS

This section summarizes things you should be aware of when using SERCOS feed-
back and the motion library of PiCServoPro.

READ_SV/WRITE_SV Functions

These READ_SV and WRITE_SV variables cannot be used when using SERCOS
feedback on an axis.

All other READ_SV and WRITE_SV variables can be used with an axis using
SERCOS feedback.

TUNEREAD/TUNEWRIT Functions

The filter variable is the only one that can be read and written by these functions
when using a SERCOS axis. The remaining TUNEREAD/TUNEWRIT variables
cannot be used with a SERCOS axis.

CLOSLOOP/OPENLOOP Functions

The CLOSLOOP function is not called on a SERCOS axis. The SCA_CLOS
function block is used to close the loop on the SERCOS axis. The top three bits of
the SERCOS control word are set on subsequent SERCOS updates. When the
OPENLOOP function is called, the top three bits of the SERCOS control word are
cleared on subsequent SERCOS updates.

E_RESET Function

The E_RESET function is not called on a SERCOS axis. The SCA_ERST is used
to reset E-stop conditions on a SERCOS axis. The SCA_ERST function will read
the current position of the drive prior to closing the position loop.

Var # Name

9 Fast input position (Hardware)

10 Registration/referencing position change

11 Consecutive bad marks

19 Fast input direction

20 Fast input distance

24 Registration switch

27 Backlash compensation

28 TTL feedback

29 Reference switch position

46 Set user PID command

47 User PID command

48 Disable servo software
10-10 SERCOS

Background Information
REGIST Function

The registration function cannot be used on a SERCOS axis.

Reference-Related Functions

The SCA_REF (servo) and the SCS_REF (non-servo) function blocks are used to
perform referencing functions with a SERCOS axis.

The reference-related functions in PiCServoPro on the left below cannot be used
with a SERCOS axis. The functions on the right can be used with a SERCOS axis.

 STRTSERV Function

The SERCOS ring must be into Phase 4 of its communication cycle before the ser-
vos can be initialized. Call STRTSERV after Phase 4 has started.

An additional error can appear at the ERR output with a SERCOS axis.

Not Available
with SERCOS

Available with
SERCOS

FAST_REF PART_REF

LAD_REF PART_CLR

REF_DNE?

REF_END

ERR# Description

5 The axis update rate in PiCServoPro is different from the SERCOS
ring update rate.
SERCOS 10-11

Background Information
10.1 Startup Procedure

This section will explain what you need to do to start up your system.

SERCOS Setup

You define the SERCOS configuration for all the SERCOS axes using the SER-
COS setup tool in PiCServoPro.

1. Run PiCServoPro by typing picservo at the DOS prompt.

2. When this screen is displayed, type PE (Processor, sErcos setup) to start the
SERCOS setup program.

3. Type FN (File, New) to create a new SERCOS setup file [or FO (File, Open) to
open an existing SERCOS setup file].

4. When the New File box appears, type in the name of the file and press <F10>
to accept or <Esc> to cancel.

 Workstation Processor pRojects

 ∫ Servo setup and tuning (SRVSETUP) ∫
 ∫ sErcos setup (SRCSETUP) ∫
 ∫ Axis profile setup (PICPFL) ∫
 »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

 ∫ Control programmer (PICPRO) ∫
 …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª

 Workstation File
’ÕÕÕÕÕÕÕÕÕÕÕÕÕÕ…ÕÕÕÕÕÕªÕÕÕ
≥ ∫ New ∫
≥ ∫ Open ∫
≥ »ÕÕÕÕÕÕº
≥
≥

 Workstation File
’ÕÕ
≥
≥
≥
≥
≥
≥
≥ ⁄ƒƒƒƒƒƒƒƒƒƒƒƒƒ New File ƒƒƒƒƒƒƒƒƒƒƒƒƒø
≥ ≥ ≥
≥ ≥ Filename for setup :< >≥
≥ ≥ ≥
≥ ≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
≥ ¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ
≥
≥

10-12 SERCOS

Background Information
5. The following appears. Press RI (Ring, Insert) to insert one of two rings avail-
able with each SERCOS module.

The following dialog box appears. Fill in the information according to the require-
ments of your application to enter the first ring and the first slave axis.

Slot Number
The Slot number identifies which slot the SERCOS module is installed in the PiC
rack.
Ring Number
The Ring Number identifies whether this slave axis is on the first or second ring on
a SERCOS module.
Update Rate
The update rate for any ring cannot exceed the PiC update rate. The PiC update
rate is the fastest of all servos initialized. If the SERCOS slave is a servo axis, the
ring update rate must be the same as the axis update rate.

 Workstation File Ring
’Õ Slot/Ring ÕÕÕ Updat…ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕªte ÕÕ Slave Label ÕÕ Slave Number ÕÕ
≥ ∫ Insert ring ∫
≥.......... <End of ta∫ Edit ring data ∫
≥ ∫ Delete ring ∫
≥ »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº
≥

⁄ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Insert Ring ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒø
≥ ≥
≥ ≥
≥ Slot Number (3 - 13): ≥
≥ ≥
≥ Ring Number (1 or 2): ≥
≥ ≥
≥ Update Rate (1, 2, 4, or 8 ms): ≥
≥ ≥
≥ Baud Rate (2 or 4 MBaud): ≥
≥ ≥
≥ Pause after Phase 2? (Yes or No): ≥
≥ ≥
≥ Slave Label: ≥
≥ ≥
≥ Slave Number (1 to 8): ≥
≥ ≥
≥ Telegram Number (0 to 7): ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒŸ
SERCOS 10-13

Background Information
Baud Rate
Currently, most devices operate at 2MBaud.
Pause after Phase 2?
A Yes allows you to send/receive additional IDNs if required.
Slave Label
You can assign a name to the slave axis here.
Slave Number
The slaves on a ring must be numbered sequentially. For example, if you have
three slave axes on a ring, number them 1, 2, 3; not 1, 2, 4. The number entered
here must match the address switch set on the slave.
NOTE: The Slot Number, Ring Number, and Slave Number correspond to the SRS
input on the SERCOS functions which identify this slave axis.
Telegram Number
Enter the type of telegram data you will use in your application. If the slave will
be controlled by the Motion.Lib, 4 is the telegram type number that must be
entered in here.

Press <F10> to accept (or <Esc> to cancel).

6. To enter additional slave axes for the ring, press SI (Slave, Insert).

IDN 15 Telegram Type Description

0 No data

1 Torque control

2 Velocity control, velocity feedback

3 Velocity control, position feedback

4 Position control, position feedback

5 Position and velocity control, position and velocity feedback

6 Velocity control

7 User-defined

 Workstation File Ring Slave
’Õ Slot/Ring ÕÕÕ Update ÕÕÕÕ …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª Label ÕÕÕ Slv # ÕÕÕ Tel # ÕÕ∏
≥ ∫ Insert slave ∫ ≥
≥ ∫ Edit slave data ∫ ≥
≥ ∫ Delete slave ∫ ≥
≥ ∫ eNter IDN numbers ∫ ≥
≥ »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº ≥
10-14 SERCOS

Background Information
7. The following dialog box appears. Fill in the information.

8. (Optional) To enter the number of any additional IDNs you may want to send,
press SN (Slave, eNter IDN number). The following screen appears.

9. Press II (IDN Number, Insert IDN number).

 ⁄ƒƒƒƒƒƒƒƒƒƒƒƒ Insert Slave ƒƒƒƒƒƒƒƒƒƒƒƒø
 ≥ ≥
 ≥ ≥
 ≥ Slave Label: ≥
 ≥ ≥
 ≥ Slave Number (1 to 8): ≥
 ≥ ≥
 ≥ Telegram Number (1 to 7): ≥
 ≥ ≥
 ≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
 ≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
 ≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
 ¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

 IDN Number
 Slave Label: AXIS1 Slave Number: 1 Slot/Ring: 3/1
’ÕÕÕ IDN Number ÕÕÕÕÕ Size in Words ÕÕÕÕÕÕÕÕ Data ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ∏
≥ <End of IDN list> ≥
≥ ≥
≥ ≥
≥ ≥

 IDN Number
 …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª Slave Number: 6 Slot/Ring: 3/1
’∫ Edit IDN Number ∫Size in Words ÕÕÕÕÕÕÕÕ Data ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ∏
≥∫ Delete IDN Number ∫IDN list> ≥
≥∫ Insert IDN Number ∫ ≥
≥»ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº ≥
≥ ≥
≥ ≥
SERCOS 10-15

Background Information
10. The following screen appears. Enter the information required. Press <F10> to
accept the data and return to the previous menu.

11. After all the data has been entered, you will make a function that will be used
in your LDO. Press FM (File, Make function).

12. The box shown below appears. Enter the name of the function. Enter the name
of the library the function should be stored in. A Yes in Save Setup Data means
that the SERCOS setup data will automatically be stored to disk. A No means
you will have to use either the Save or save As option under the File menu to
save it.

 ⁄ƒƒƒƒƒƒƒƒƒƒƒƒ Insert IDN ƒƒƒƒƒƒƒƒƒƒƒƒø
 ≥ ≥
 ≥ ≥
 ≥ IDN Number: ≥
 ≥ ≥
 ≥ Size in Words (1 or 2): ≥
 ≥ ≥
 ≥ Data: ≥
 ≥ ≥
 ≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
 ≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
 ≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
 ¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

 Workstation File Ring Slave
 …ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕª
 ∫ New ∫
 ∫ Open ∫
 ∫ Close ∫
 ∫ Save ∫
 ∫ save As ∫
 ∫ Make function ∫
 ∫ Print ∫
 »ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕº

 ⁄ƒƒƒƒƒƒƒƒƒƒ Make function ƒƒƒƒƒƒƒƒƒø
 ≥ ≥
 ≥ Function name : ≥
 ≥ ≥
 ≥ Library Filename :< >≥
 ≥ ≥
 ≥ Save Setup data: Yes ≥
 ≥ ≥
 ≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
 ≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
 ≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
 ¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ
10-16 SERCOS

Background Information
Application Notes for Your Ladder Program

This section contains programming information.

SERCOS Startup

The SERCOS setup data is made into the USERDAT function in SERCOS setup. The SC_START
function installs all the data to the SERCOS module specified in the setup data.

OPTIONAL: If you will be pausing after phase 2 to send additional IDNs using the
SCS_SEND function, call the SCR_PHAS until it indicates that phase 2 is completed.
After all the IDNs have been sent, use the SCR_CONT function to continue through
phase 4.

Call the SCR_PHAS function until phase 4 is completed. After phase 4 is completed, the SERCOS
functions can be used to send or receive information. The SERCOS or Motion functions can be used to
control position.

≥ ⁄ƒƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒƒø
≥ ≥USERDAT ≥ ≥SC_START ≥
≥ ≥ ≥ ≥ ≥
√ƒƒƒ|P|ƒƒƒƒƒ¥EN OK√ƒƒƒƒƒƒƒƒƒƒƒ¥EN OK√ƒ
≥ ≥ ≥ ≥ ≥
≥ ¿ƒƒƒƒƒƒƒƒƒŸ ≥ ERR√ƒ
≥ ≥ ≥
≥ ¿ƒƒƒƒƒƒƒƒƒŸ
≥

≥ ⁄ƒƒƒƒƒƒƒƒƒø
≥ ≥SCR_CONT ≥
≥ ≥ ≥
√ƒƒƒ|P|ƒƒƒƒƒ¥EN OK√ƒ
≥ ≥ ≥
≥ ¥SR ERR√ƒ
≥ ≥ ≥
≥ ¿ƒƒƒƒƒƒƒƒƒŸ
≥

≥ ⁄ƒƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒƒø
≥ ≥SCR_PHAS ≥ ≥ EQ ≥
≥ ≥ ≥ ≥ ≥
√ƒƒƒƒƒƒƒƒƒƒƒ¥EN OK√ƒƒƒƒƒƒƒƒƒƒƒƒƒ¥EN OK√ƒ
≥ ≥ ≥ ≥ ≥
≥ SR ¥SR PHAS√ƒPHAS PHAS ƒ¥IN1 OUT√ƒ
≥ ≥ ≥ ≥ ≥
≥ ¿ƒƒƒƒƒƒƒƒƒŸ 2ƒ¥IN2 ≥
≥ ¿ƒƒƒƒƒƒƒƒƒŸ
≥

≥ ⁄ƒƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒƒø
≥ ≥SCR_PHAS ≥ ≥ EQ ≥
≥ ≥ ≥ ≥ ≥
√ƒƒƒƒƒƒƒƒƒƒƒ¥EN OK√ƒƒƒƒƒƒƒƒƒƒƒ¥EN OK√ƒ
≥ ≥ ≥ ≥ ≥
≥ SR ¥SR PHAS√ƒPHAS PHASƒ¥IN1 OUT√ƒ
≥ ≥ ≥ ≥ ≥
≥ ¿ƒƒƒƒƒƒƒƒƒŸ 4 ƒ¥IN2 ≥
≥ ¿ƒƒƒƒƒƒƒƒƒŸ
≥
SERCOS 10-17

Background Information
You can control axis position using either servo or non-servo SERCOS function/
function blocks . In SERCOS setup, the telegram type must be Telegram 4 position
mode. As defined by the SERCOS specification, with Telegram 4 IDN 47 is cyclic
data sent from the PiC to the slave. IDN 51 is cyclic data sent from the slave to the
PiC. When using a servo axis, SERCOS is selected as the feedback type in Servo
Setup.

Servo SERCOS Axis Position Control

The servo setup data is made into the USERSTUP function in servo setup. The STRTSERV function
installs all the data.

To close a SERCOS axis loop, use the SCA_CLOS function. It will read IDN 47, update
the servo data with the new position, send the value as commanded position, and set the con-
trol bits to cause the drive to close it.

≥ ⁄ƒƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒƒø
≥ ≥USERSTUP ≥ ≥STRTSERV ≥
≥ ≥ ≥ ≥ ≥
√ƒƒƒ|P|ƒƒƒƒƒ¥EN OK√ƒƒƒƒƒƒƒƒƒƒƒ¥EN OK√ƒ
≥ ≥ ≥ ≥ ≥
≥ ¿ƒƒƒƒƒƒƒƒƒŸ ≥ ERR√ƒ
≥ ≥ ≥
≥ ¿ƒƒƒƒƒƒƒƒƒŸ
≥

⁄ƒƒƒƒƒƒƒƒƒø
≥SCA_CLOS ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ
10-18 SERCOS

Background Information
Referencing with the SCA_REF Function Block

The SCA_REF function block performs all the functions of SCS_REF and also updates the
servo data with the new position.

Use the SCA_ACKR function block to acknowledge that the reference cycle is complete.
Control will return to the PiC after this function block is called.

 ⁄ NAME ƒø
 ≥ SCA_REF ≥
 ≥ ≥
 ¥REQ DONE√
 ≥ ≥
 ¥AXIS FAIL√
 ≥ ≥
 ¥DIM ERR√
 ≥ ≥
 ¥OPTN SERR√
 ≥ ≥
 ≥ STAT√
 ≥ ≥
 ≥ RSLT√
 ¿ƒƒƒƒƒƒƒƒƒŸ

 ⁄ NAME ƒø
 ≥SCA_ACKR ≥
 ≥ ≥
 ¥REQ DONE√
 ≥ ≥
 ¥AXIS FAIL√
 ≥ ≥
 ≥ SERR√
 ≥ ≥
 ≥ ERR√
 ¿ƒƒƒƒƒƒƒƒƒŸ
SERCOS 10-19

Background Information
Non-servo SERCOS Axis Position Control

The SCS_WRIT and SCS_READ functions are used to write and read cyclic data.

When operating in the position mode, IDN 47 contains the position command value. You
must read this value from the drive before the loop is closed using the SCS_RECV function
block.

Write this position value using SCS_WRIT before the control bits are set using the
SCS_CTRL function.

When the control bits are set, the drive is told to go to the commanded position using IDN
47. Since this is where the drive is, there will be no movement.

 ⁄ƒƒƒƒƒƒƒƒƒø
 ≥SCS_READ ≥
 ≥ ≥
 ¥EN OK√
 ≥ ≥
 ¥SRS VALU√
 ≥ ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

 ⁄ƒƒƒƒƒƒƒƒƒø
 ≥SCS_WRIT ≥
 ≥ ≥
 ¥EN OK√
 ≥ ≥
 ¥SRS ≥
 ≥ ≥
 ¥VALU ≥
 ≥ ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

 ⁄ NAME ƒø
 ≥SCS_RECV ≥
 ≥ ≥
 ¥REQ DONE√
 ≥ ≥
 ¥SRS FAIL√
 ≥ ≥
 ¥DATA ERR√
 ≥ ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

 ⁄ƒƒƒƒƒƒƒƒƒø
 ≥SCS_WRIT ≥
 ≥ ≥
 ¥EN OK√
 ≥ ≥
 ¥SRS ≥
 ≥ ≥
 ¥VALU ≥
 ≥ ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

 ⁄ƒƒƒƒƒƒƒƒƒø
 ≥SCS_CTRL ≥
 ≥ ≥
 ¥EN OK√
 ≥ ≥
 ¥SRS ≥
 ≥ ≥
 ¥IN1 ≥
 ≥ ≥
 ¥IN2 ≥
 ≥ ≥
 ¥IN3 ≥
 ≥ ≥
 ¥OPTN ≥
 ≥ ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

0

10-20 SERCOS

Background Information
Referencing with the SCS_REF Function Block

The current position from the drive must be read to perform referencing. The reference cycle
within the drive defines the value for IDN 47. The SCS_REF function reads the value for
IDN 47 as the last step in the reference process and returns this value in the RSLT output.

The RSLT value must be sent by the SCS_WRIT function before calling the SCS_ACKR
function.

Again, the drive is told to go to the commanded position in IDN 47.

 ⁄ NAME ƒø
 ≥ SCS_REF ≥
 ≥ ≥
 ¥REQ DONE√
 ≥ ≥
 ¥SRS FAIL√
 ≥ ≥
 ¥DIM ERR√
 ≥ ≥
 ¥OPTN SERR√
 ≥ ≥
 ≥ STAT√
 ≥ ≥
 ≥ RSLT√
 ¿ƒƒƒƒƒƒƒƒƒŸ

 ⁄ƒƒƒƒƒƒƒƒƒø
 ≥SCS_WRIT ≥
 ≥ ≥
 ¥EN OK√
 ≥ ≥
 ¥SRS ≥
 ≥ ≥
 ¥VALU ≥
 ≥ ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

 ⁄ NAME ƒø
 ≥SCS_ACKR ≥
 ≥ ≥
 ¥REQ DONE√
 ≥ ≥
 ¥SRS FAIL√
 ≥ ≥
 ≥ SERR√
 ≥ ≥
 ≥ ERR√
 ¿ƒƒƒƒƒƒƒƒƒŸ
SERCOS 10-21

Background Information
Rollover on Position

PiC900 with PiCServoPro and Motion.Lib

To use the rollover on position feature with a servo axis, a rollover value is either entered in
servo setup or written with variable 12.

SERCOS Drive

To use the rollover on position feature (referred to as modulo) with a SERCOS drive, IDN 76
(bit 7) is used to turn the feature on and IDN 103 defines the rollover value.

Application Note

When using the rollover on position feature with a servo SERCOS axis, you must combine
both methods described above.

To implement rollover on position on a servo SERCOS axis the following must be true:

IDN 76 Bit 7 = 1 IDN 103 = the rollover value In Servo Setup or Variable 12 = rollover value

To prevent rollover on position on a servo SERCOS axis the following must be true:

IDN 76 Bit 7 = 0 IDN 103 = NA In Servo Setup or Variable 12 = 0
10-22 SERCOS

Introduction
CHAPTER 11 Stepper Axis Module
Introduction

Stepper motors can be controlled by:

• The stepper motor control module (SMCM) using the PiCPro stepper
functions

or

• The stepper axis module (SAM) using Servo Setup and the move types
available in the PiCPro motion library. It can be a master or a slave in the
application.

This chapter covers the stepper axis module. Any move type from the motion
library can be used to perform motion control with the stepper except those move
types requiring a fast input. There is no feedback from the stepper axis module.

 Servo setup is used to set up the stepper axis module and create a start servo func-
tion.

Servo Setup

The Feedback Module field
allows you to enter the
feedback device used for
the axis. Press <F8> to
bring up a list of types.
Move the cursor to the
feedback device you are
using and press <Enter>.

Fill in the appropriate slot/
channel information and
press <F10>.

NOTE: When SERCOS is
the feedback type, enter the
ring number in the channel
entry.

NOTE: When Stepper is
the Feedback type, the
input slot/channel entry
must match the output slot/
channel entry.

Press <Esc> to cancel data

⁄ƒƒƒƒƒƒƒƒƒƒ Define Axis ƒƒƒƒƒƒƒƒƒƒø
≥ ≥
≥ ≥
≥ Axis Label : AXIS_1 ≥
≥ ’ÕÕÕÕFeedback TypeÕÕÕÕÕ∏
≥ Feedback Module : ≥Encoder ≥
≥ ≥Resolver ≥
≥ Input slot : ≥Analog Input ≥
≥ ≥TTL Input ≥
≥ channel : ≥SERCOS ≥
≥ ≥Stepper ≥
≥ ‘ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕæ
≥ Output slot : ≥
≥ ≥
≥ channel : ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ
Stepper 11-1

Notes on using Motion Library Functions and Variables with the Stepper
Stepper Axis Setup

Once all the setup data has been entered, define the servo function. This function
will be stored in the servo library and can then be called into your ladder program
to initialize the setup data for your application.

Notes on using Motion Library Functions and Variables with the Stepper

This section summarizes things you should be aware of when using the stepper and
the motion library of PiCServoPro.

READ_SV/WRITE_SV Functions

These READ_SV and WRITE_SV variables cannot be used when using the step-
per on an axis.

All other READ_SV and WRITE_SV variables can be used with a stepper axis.

The stepper type defaults to CW/CCW.

Depending on the type of stepper you are using,
select from the <F8> list.

Var # Name

4 Position error

9 Fast input position (Hardware)

10 Registration/referencing position change

11 Consecutive bad marks

19 Fast input direction

20 Fast input distance

24 Registration switch

27 Backlash compensation

28 TTL feedback

29 Reference switch position

46 Set user PID command

47 User PID command

48 Disable servo software

⁄ƒƒƒƒƒ Configure Stepper Module ƒƒƒø
≥ ≥
≥ ≥
≥ Stepper Type:<CW/CCW > ≥
≥ ≥
≥ ⁄ƒƒƒƒƒƒƒƒø ⁄ƒƒƒƒƒƒƒƒø ≥
≥ ≥ Cancel ≥ ≥ Accept ≥ ≥
≥ ¿ƒ<Esc>ƒƒŸ ¿ƒƒ<F10>ƒŸ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒŸ

 ’ÕÕStepper Type ÕÕÕ∏
 ≥CW/CCW ≥
 ≥Step/Direction ≥
 ‘ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕæ
11-2 Stepper

Notes on using Motion Library Functions and
NOTE: Feedback units are stepper units. Ladder units may still be used.

TUNEREAD/TUNEWRIT Functions

The filter variable is the only one that can be read and written by these functions
when using a stepper axis. The remaining TUNEREAD/TUNEWRIT variables
cannot be used with a stepper axis.

CLOSLOOP, OPENLOOP, REGIST, and MEASURE Functions

These functions cannot be used on a stepper axis.

Reference-Related Functions

The reference-related functions in PiCServoPro on the left below cannot be used
with a stepper axis. The functions on the right can be used with a stepper axis.

 STRTSERV Function

 Call STRTSERV to initialize the stepper axis and begin the stepper motion.

ERRORS

There is no loss of feedback or excess error. If an E-stop error occurs, the com-
mand to the stepper will be zeroed.

Not Available
with Stepper

Available with
Stepper

FAST_REF PART_REF

LAD_REF PART_CLR

REF_DNE?

REF_END
Stepper 11-3

Notes on using Motion Library Functions and Variables with the Stepper
NOTES
11-4 Stepper

Appendices

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Appendix A - Module Filenames
The following table shows the files that are created during the programming pro-
cess.

Extensions Type of file Created/updated upon

Filename is module name

LDO

Ladder Diagram Object

ladder or network logic file Save

LBK

Ladder BacKup

backup copy of the LDO file - is
the version previous to the version
created with last Save

Save

REM

REMarks

the documentation or comments
for all networks in a module

Save

RBK
Remarks BacKup

backup copy of the remarks file Save

FRC

FoRCing

list of variables that can be forced,
and their values

Save, if forced variables are
designated

RTD

Real Time Display

list of variables in the View Vari-
ables List

Edit view list

LST

LiST

print file containing LDO, REM,
and cross-reference, formatted for
printing

Print

HEX

HEXadecimal

hex representation of the LDO file Hex-86 dump

BIN

BINary

compiled (PiC900 language) LDO
file - cannot be converted "back"
into uncompiled state for animat-
ing, etc.

Download
Starting PiCPro/PiCServoPro A-3

Filename is name you assign

SRV

SeRVosetup

setup data for all axes used in
application

Save

PRO

PROfile

ratio profile data for master/slave
applications

Save

LIB

LIBrary

user-defined functions/function
blocks to be used in LDO

Make function

BAK

BAcKup

backup copy of LIB file - the ver-
sion created with the last save

Save

DPL

DePendency
List

list of all the files the currently
loaded module depends upon

build dependency List

G&L

Giddings &
Lewis

compressed file from the Project
Manager program

Update FMSDISK
A-4 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Appendix B -PiCPro Function Errors and Error Codes

General Errors

For all functions: the output variables will have unpredictable values and the output at
OK, DONE, or Q will not be energized when:

1. An output variable does not have enough bits to hold the result.

2. An output variable is an unsigned integer and the result is negative.

3. The operation attempts to divide a number by zero.

4. The input data is invalid.

I/O Function Block Error Codes

When the I/O functions execute, if an error occurs - the output at DONE is not ener-
gized, the output at FAIL is energized, and the output at ERR has one of the following
values.

ERROR NUMBER : 01 ERROR NAME: OPCODE_ERROR
Invalid Device Open Mode specified for function (e.g.16#602).

ERROR NUMBER : 02 ERROR NAME: HANDLE_ERROR
This error is generated when the handle to a function is invalid. Some reasons for this
might be - trying to use I/O functions with an unopened handle, trying to do a READ
on a handle opened for WRITE ONLY, or trying to do a WRITE to a handle opened for
READ ONLY.

ERROR NUMBER : 03 ERROR NAME: ALREADY_OPEN
Reserved for Giddings & Lewis. Internal GLOS Error.

ERROR NUMBER : 04 ERROR NAME: OPEN_ERROR
OPEN Mode (READ/WRITE/APPEND) specified is not valid.

ERROR NUMBER : 05 ERROR NAME: DEVICE_EMPTY
Reserved for Giddings & Lewis.

ERROR NUMBER : 06 ERROR NAME: READ_ERROR
This error can be one of the errors listed below depending on the device you are using.

1. DISK driver detects a checksum error on the DISK.
Media error on DISK reading disk FCB (File Control Block).

2. A parity, overrun, or framing error exists in the data in the input buffer of the
COM port.

ERROR NUMBER : 07 ERROR NAME: WRITE_ERROR
Error writing data to the device.

ERROR NUMBER : 08 ERROR NAME: WRITE_PROTECT
Reserved for Giddings & Lewis.

ERROR NUMBER : 09 ERROR NAME: DEVICE_ERROR
The Seek origin is not A00, A01, or A02.
Improper device name - not PICPRO:, USER:, RAMDISK:.
Starting PiCPro/PiCServoPro B-1

Attempted to do a STATUS on a file.
Attempted to do a file operation on a non-DOS device.
Bad Parity in the configuration string or a hardware error in configuring the port.
Attempted to do a second or subsequent operation before the first one was completed.

ERROR NUMBER : 10 ERROR NAME: OUT_OF_HANDLES
Too many files open. A maximum of 10 handles can be used. Every READ-WRITE or
APPEND operation uses 2 handles. A READ ONLY or a WRITE ONLY uses 1 han-
dle.

ERROR NUMBER : 11 ERROR NAME: INVALID_DEVICE
Improper device name - not PICPRO:, USER:, RAMDISK:, or any name you have
given a device at the NAMZ input of a function block.

ERROR NUMBER : 12 ERROR NAME: INVALID_FILE_NAME
Filename format is wrong (Bad filename).
Filename too large.

ERROR NUMBER : 13 ERROR NAME: TOO_MANY_DRIVERS
Reserved for Giddings & Lewis. Internal GLOS Error.

ERROR NUMBER : 14 ERROR NAME: TOO_MANY_CONNECTIONS
Reserved for Giddings & Lewis. Internal GLOS Error.

ERROR NUMBER : 15 ERROR NAME: DOS_READ_WRITE_ERROR
Error in Reading From or Writing to a DISK file.

ERROR NUMBER : 16 ERROR NAME: DOS_DEVICE_ERROR
Reserved for Giddings & Lewis.

ERROR NUMBER : 17 ERROR NAME: DOS_FILE_NOT_OPEN
READ, WRITE, or SEEK on a file that is not open.

ERROR NUMBER : 18 ERROR NAME: DOS_INVALID_ACCESS
Attempted to CLOSE a file that was not open.
SEEK has a problem seeking to a new location.
Attempted to write to a file opened for read only.

ERROR NUMBER : 19 ERROR NAME: DOS_FILE_NOT_IN_DIR
Filename not found in directory.
Volume name not found in directory.

ERROR NUMBER : 20 ERROR NAME: DOS_FILE_ALREADY_OPEN
Attempted to OPEN a file that is already open.

ERROR NUMBER : 21 ERROR NAME: DOS_WRITE_PROTECT
Error when trying to delete a READ ONLY file from DISK.

ERROR NUMBER : 22 ERROR NAME: DOS_MODE_ERROR
Invalid mode inputted to OPEN.
Invalid mode inputted to SEEK.

ERROR NUMBER : 23 ERROR NAME: DOS_OUT_OF_HANDLES
No more handles available - too many files open. A Maximum of 10 handles are avail-
able in the PiC900.

ERROR NUMBER : 24 ERROR NAME: DOS_END_OF_DIR
No more directory entries.
B-2 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

ERROR NUMBER : 25 ERROR NAME: DOS_FUNCTION_LOCKED
Reserved for Giddings & Lewis. Internal GLOS error.

ERROR NUMBER : 26 ERROR NAME: DOS_RENAME_NEW_EXISTS
Reserved for Giddings & Lewis.

ERROR NUMBER : 27 ERROR NAME: DOS_RENAME_OLD_OPEN
Reserved for Giddings & Lewis.

ERROR NUMBER : 28 ERROR NAME: DOS_RENAME_NO_OLD
Reserved for Giddings & Lewis.

ERROR NUMBER : 29 ERROR NAME: DOS_ATTRIB_INVALID
Reserved for Giddings & Lewis. Internal GLOS Error.

ERROR NUMBER : 30 ERROR NAME: DOS_HANDLE_TOO_LARGE
Reserved for Giddings & Lewis.

ERROR NUMBER : 31 ERROR NAME: DOS_DISK_ERROR
General error on disk drive.

ERROR NUMBER : 32 ERROR NAME: DEVICE_PARITY_ERROR
Reserved for Giddings & Lewis.

ERROR NUMBER : 33 ERROR NAME: END_OF_DEVICES
Device driver for the device specified was not found.

ERROR NUMBER : 34 ERROR NAME: IO_DEV_ABORTED
Reserved for Giddings & Lewis.

ERROR NUMBER : 35 ERROR NAME: DUPLICATE_FILENAME
Reserved for Giddings & Lewis.

ERROR NUMBER : 36 ERROR NAME: NO_MEMORY
Reserved for Giddings & Lewis.

ERROR NUMBER : 37 ERROR NAME: DOS_NO_BUFFERS
No memory to get more file buffers.

ERROR NUMBER : 38 ERROR NAME: DOS_DIR_NOT_EMPTY
Reserved for Giddings & Lewis.

ERROR NUMBER : 39 ERROR NAME: DOS_DIR_NOT_FOUND
Reserved for Giddings & Lewis.

ERROR NUMBER : 40 ERROR NAME: DOS_OUT_OF_FATS
No more entries available in the FAT (File Attribute Table). Reduce the number of files
in this directory.

ERROR NUMBER : 41 ERROR NAME: DOS_SDIR_EXISTS
Reserved for Giddings & Lewis.

ERROR NUMBER : 42 ERROR NAME: FILESPEC_TOO_LONG
Reserved for Giddings & Lewis.

ERROR NUMBER : 43 ERROR NAME: NO_DEFAULT_DEVICE
Reserved for Giddings & Lewis.

ERROR NUMBER : 44 ERROR NAME: PARAMETER_ERROR
Occurs if the value entered at the CNT input of the READ function block is larger than
the declared size of a string used as the BUFR input.
Starting PiCPro/PiCServoPro B-3

STRING Function Errors

When the STRING functions execute, if an error occurs - the output at OK is not ener-
gized and the STRING variable output will be null (have length zero).

An error occurs:

If the length of IN1 > length of OUT

If the length of IN2 > length of OUT

If the length of IN1 + length of IN2 > length of OUT

If IN2, or IN3, ... or IN17 = OUT

An error occurs:

If P = 0

If P > 255

If P > length of IN

If L > 255

If length of IN - L > length of OUT

An error occurs:

If length of IN1 = 0

If length of IN2 = 0

If length of IN2 > length of IN1

An error occurs:

If P = 0

If P > 255

If P > length of IN1

If IN2 = OUT

If length of IN1 + length of IN2 > length of OUT

⁄ƒƒƒƒƒƒƒƒƒø
≥ CONCAT ≥
≥ ≥
¥EN OK√ƒ
≥ ≥
¥OUT---OUT√ƒ
≥ ≥
¥IN1 ≥
≥ ≥
¥IN2 ≥
¡ ƒ ƒ ƒ ƒ Ÿ

⁄ƒƒƒƒƒƒƒƒƒø
≥ DELETE ≥
≥ ≥
¥EN OK√ƒ
≥ ≥
¥OUT---OUT√ƒ
≥ ≥
¥IN ≥
≥ ≥
¥L ≥
≥ ≥
¥P ≥
¿ƒƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒƒø
≥ FIND ≥
≥ ≥
¥EN OK√ƒ
≥ ≥
¥IN1 OUT√ƒ
≥ ≥
¥IN2 ≥
¿ƒƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒƒø
≥ INSERT ≥
≥ ≥
¥EN OK√ƒ
≥ ≥
¥OUT---OUT√ƒ
≥ ≥
¥IN1 ≥
≥ ≥
¥IN2 ≥
≥ ≥
¥P ≥
¿ƒƒƒƒƒƒƒƒƒŸ
B-4 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

An error occurs:

If L > 255

If L > length of OUT

An error occurs:
If P > 0
If P > 255
If P > length of IN
If L > 255
If L > length of OUT

An error occurs:

If P = 0

If P > 255

If P > length of IN1

If L > 255

If IN1 = OUT

If IN2 = OUT

If length of IN1 - L + length of IN2 > length of OUT

An error occurs:

If L > OUT

If L > 255

⁄ƒƒƒƒƒƒƒƒƒø
≥ LEFT ≥
≥ ≥
¥EN OK√ƒ
≥ ≥
¥OUT---OUT√ƒ
≥ ≥
¥IN ≥
≥ ≥
¥L ≥
¿ƒƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒƒø
≥ MID ≥
≥ ≥
¥EN OK√ƒ
≥ ≥
¥OUT---OUT√ƒ
≥ ≥
¥IN ≥
≥ ≥
¥L ≥
≥ ≥
¥P ≥
¿ƒƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒƒø
≥ REPLACE ≥
≥ ≥
¥EN OK√ƒ
≥ ≥
¥OUT---OUT√ƒ
≥ ≥
¥IN1 ≥
≥ ≥
¥IN2 ≥
≥ ≥
¥L ≥
≥ ≥
¥P ≥
¿ƒƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒƒø
≥ RIGHT ≥
≥ ≥
¥EN OK√ƒ
≥ ≥
¥OUT---OUT√ƒ
≥ ≥
¥IN ≥
≥ ≥
¥L ≥
¿ƒƒƒƒƒƒƒƒƒŸ
Starting PiCPro/PiCServoPro B-5

NOTES
B-6 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Appendix C - PiCServoPro Error Codes
E-stop, C-stop, programming, and timing errors

The servo codes covered in this appendix apply to the E-stop, C-stop, program-
ming, and timing errors that can occur when using PiCServoPro. The first three
apply to individual axes. The timing error is connected to the entire system.

1. C-stop (controlled-stop) errors

When a C-stop occurs, the following happens:

• The axis remains in servo lock and the axis is brought to a controlled stop
at the rate specified by the controlled stop ramp in setup.

• The active and next queues are cleared.

• The FAST_QUE mode is canceled when the C-stop is reset.

2. E-stop (Emergency-stop) errors

When an E-stop occurs, the following happens:

• The system is out of servo lock.

• A zero voltage is sent to the analog outputs.

• The active and next queues are cleared.

• The FAST_QUE mode is canceled when the E-stop is reset.

If it is a loss of feedback E-stop error, then the machine reference must be
redone.

In most respects, you are in a condition immediately following initialization
with the exception of the que number. The que number does not start over but
continues from where it left off when the E-stop occurred.

Remember that the que number is assigned by the software from 1 to 255.
When 255 is reached, it rolls over to 1.

3. Programming errors

These errors occur during master/slave moves or a FAST_QUE call. They may
prevent the move from being placed in the queue (or if the move is in the
queue, abort the move) or they may prevent the OK on the function from being
set.

4. Timing error

All the servo calculations for one interrupt must be completed in the time
frame selected by you in setup (1, 2, 4, or 8 ms) before the next interrupt
begins. If not, a timing error occurs.
Starting PiCPro/PiCServoPro C-1

The timing error is connected to the entire system. This error is monitored in
the ladder program with the TME_ERR? function. If the boolean output at
ERR is set, a timing error is occurring. Depending upon the system, this can
affect performance.

NOTE: The TME_ERR? function is an inquiry as to whether or not there has been
a timing error. The C_STOP? and E_STOP? functions are inquiries as to whether a
C-stop or E-stop has occurred.

These errors are accessible in one or two modes as described below.

1. The ERRS output on the E_ERRORS, C_ERRORS, P_ERRORS and the ERR
output of TME_ERR? standard functions (Figure C-1)

The ERRS output for E-stop, C-stop, and programming errors is a word, or two
bytes, as shown below. The MSB bit (indicated by the “x”) in the high byte
word indicates that there is an error in all cases. The low byte of the word is
where the individual errors are located.

x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

High byte Low byte

The ERR output for a timing error is a boolean.

The functions are used in your ladder program. By monitoring the ERRS out-
put for each type of error, it is possible to tell what error is present by referring
to the tables included here.

FIGURE C - 1. Standard Motion Functions with ERRS Word Output

2. The output side of the PiCTune screen in the Servo setup program (Figure C-2)

IMPORTANT

Always set an E-stop on all axes when a timing error occurs.

⁄ƒƒƒƒƒƒƒƒƒø
≥TME_ERR? ≥
≥ ≥
¥EN OK√
≥ ≥
≥ ERR√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

AA413-2490
C-2 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

The E-stop, C-stop and programming errors are found at the bottom of the
screen. An “E” appears in any of the eight bit locations if an error is present.
The three tables that follow identify the errors.

The timing error is not available in this mode.

FIGURE C - 2. Errors on the PiCTune Screen

In these tables, the Bit Location column indicates which bit is set in the low or
high byte of the word connected to each error.

The Hex Value column represents the form the error is returned in while monitor-
ing the ERR output in the ladder program.

NOTE

Pressing the <F9> Help key when in the PiCTune screen will bring up a de-
scription of all the E, C, and P errors. Use the <PgUp> and PgDn> keys to scroll
through the categories.

 Axis Fields
 AXIS_1 Inputs AXIS_1 Outputs
�Proportional Gain 100 Proportional Gain 101
�Integral Gain 0 Integral Gain 0
�Derivative Gain 0 Derivative Gain 0
�Analog Output Offset 0 Analog Output Offset 0
�Slow Speed Filter 0 Slow Speed Filter 0
�Feed Forward Percent 0 Feed Forward Percent 0
 Following Error 0
 Commanded Velocity 0
 Feedback Position 0
 Commanded Position 0
 Analog output in mv 0
 Active Move None [000]
 Next Move None [000]
 EStop Error ˘˘˘˘˘˘˘˘
 CStop Error ˘˘˘˘˘˘˘˘
 Prog Error Low Byte ˘˘˘˘˘˘˘˘
 Prog Error High Byte ˘˘˘˘˘˘˘˘

The errors connected with each
bit location are covered in the
tables that follow.
Starting PiCPro/PiCServoPro C-3

Emergency Stop Errors

Error Description Bit Location
(low byte)

Hex
Value

(in
LDO)8 7 6 5 4 3 2 1

(not used)

(not used)

(not used)

(not used)

User-set An E-stop on a servo axis has occurred
which was called in the ladder using the
ESTOP function.

E 8008

Overflow
error

A slave delta overflow during runtime
has occurred. This problem is most
likely to occur if you are moving at a
high rate of speed and/or the slave dis-
tance is very large compared to the mas-
ter distance.

There are two conditions that can set
this bit.

1. In FU, if the master moved position
times the slave distance entered is
greater than 31 bits.

2. In FU, if the

is greater than 16 bits.

E 8004

Excess error When an excess following error has
occurred, the axis has exceeded the
limit entered in the Servo setup program
as the following error limit. This repre-
sents the maximum distance the com-
manded axis position can be from the
actual axis position.

E 8002

Loss of
feedback

A loss of feedback from the feedback
device has occurred. Available for servo
and digitizing axes.

E 8001

master moved x SDIS
MDIS
C-4 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Controlled Stop Errors

*This error can occur with feedrate override, new feedrate, position, distance,
velocity, or machine reference moves.

Error Description Bit Location
(low byte)

Hex
Value

(in
LDO)8 7 6 5 4 3 2 1

Part refer-
ence error

Move was in progress when a part refer-
ence or a part clear function was called.

E 8080

Part refer-
ence dimen-
sion error

When the dimension for the part refer-
ence was converted to feedback units, it
was too big to fit into 29 bits.

E 8040

Distance or
position
move
dimension
error

When the dimension for the move was
converted to feedback units, it was too
big to fit into 31 bits.

E 8020

Feedrate
error*

When the feedrate for the move was
con-verted to feedback units per servo
up-grade, it was too big to fit into 32
bits or it exceeds the velocity limit
entered in setup.

E 8010

Machine
reference
dimension
error

When the dimension for the machine
reference was converted to feedback
units, it was too big to fit into 29 bits.

E 8008

User-
defined C-
stop

When this bit is set, a user-defined C-
stop has occurred.

E 8004

Negative
software
limit
exceeded

The command position exceeded the
user-defined negative software end
limit.

E 8002

Positive
software
limit
exceeded

The command position exceeded the
user defined positive software end limit.

E 8001
Starting PiCPro/PiCServoPro C-5

The programming errors listed in the next two tables can be divided into two cate-
gories--those connected to the FAST_QUE function and those connected to the
master/slave moves.

The first error listed (bit location 8 of low byte) is connected to the FAST_QUE
function. The remaining errors are connected to the master/slave moves.

Programming Errors (Low Byte)

Error Description Bit Location
(low byte)

Hex
Value

(in
LDO)8 7 6 5 4 3 2 1

The FAST
axis in the
FAST_QUE
function
moved too
far in wrong
direction

The axis traveled more than 65,535 FU
in the opposite direction of the value
entered in DIST of the FAST_QUE
function.

E 8080

Profile num-
ber not
found

Data for a profile move is not valid. E 8040

Master axis
not avail-
able

This error can occur when using the
FAST_QUE function or the functions
for master/slave moves (RATIO_GR,
RATIOSYN, or RATIOPRO). The con-
ditions that can set this bit:

1. Master axis or fast axis not initialized

2. Interrupt rates different for axes

3. Axis at slave input is the same as axis
at master input in master/slave moves

E 8020

(not used)

(not used)

(not used)

(not used)

Master start
position for
lock on

When the dimension for the lock posi-
tion was converted to feedback units, it
was too big to fit into 32 bits.

E 8001
C-6 Starting PiCPro/PiCServoPro

ST
A

R
T

IN
G

P
iC

P
R

O
/P

iC
SE

R
V

O
P

R
O

Programming Errors (High Byte)

Error Description Bit Location
(high byte)

Hex
Value

(in
LDO)8 7 6 5 4 3 2 1

This bit is set whenever any of the
remaining 15 bits is set.

X 8000

(not used)

(not used)

(not used)

Master axis
beyond start
point

The master axis is beyond its starting
point for a ratio synchronization
(RATIOSYN) move.

E 8800

Slave axis
beyond start
point

The slave axis is beyond its starting
point for a ratio synchronization
(RATIOSYN) move.

E 8400

Master dis-
tance not
valid

When the master distance is converted
to feedback units, it is greater than 16
bits.

E 8200

Slave dis-
tance not
valid

When the slave distance is converted to
feedback units, it is greater than 16 bits.

E 8100
Starting PiCPro/PiCServoPro C-7

NOTES
C-8 Starting PiCPro/PiCServoPro

Appendix D - Function Input/Output Data Type Reference

This is a quick reference giving the data types of all the inputs and outputs of the functions
and function blocks used in PiCPro and PiCServoPro. The input or output is on the left
and the data type is on the right.

If an input/output is listed more than once, it has more than one data type depending on the
function it comes from. In that case, the functions are listed below the input/output and
data type. All the various IN inputs and OUT outputs are covered in Tables D-1 and D-2.

4mA0...................................... BOOL D PID
IN
P

U
T

/O
U

T
P

U
T

D
A

T
A

 T
Y

P
E

S

10ms....................................... BOOL

100ms BOOL

A

ACCL..................................... UDINT

ACT ..DINT

PID

ACT ...INT

NETRCV, NETSND, READ, WRITE

ACTV.....................................WORD

ANGLREAL/LREAL

AXISUSINT

B

BEG.. BOOL

BIPO....................................... BOOL

BKPR BOOL

BTVL ..DINT

BUFRARRAY, STRUCT, STRING

C

CAMARRAY OF STRUCTURES

CD .. BOOL

CFGZSTRING

CHAN.....................................USINT

CLRCUINT

CLSD...................................... BOOL

CMD ...UINT

CNT...INT

COMN STRUCT

CONF................................ STRUCT

COS............................REAL/LREAL

CSTOP................................... BOOL

CNTL..UINT

CU .. BOOL

CV ...INT

DABL.......................................BOOL

DATA DINT

DAY.. UINT

DBUF........ ARRAY, STRUCT, STRING

DCNT.. INT

DECLUDINT

DEN... INT

DESTARRAY OF STRUCT

DID...USINT

DIFF(same as IN0)

DIM... DINT

DIR......................................STRING

DIST... DINT

DISTANCE, FAST_QUE

DIST.......................................UDINT

REGIST

DVND................ NUMERIC or TIME

DONE......................................BOOL

DROP....................................... DINT

DTST...................................STRING

DVSR.................... same NUMERIC
as DVND or DINT if DVND = TIME

E

ELEM UINT

EN ...BOOL

ERR...BOOL

TME_ERR?, ANLG_OUT

ERR... INT

ASSIGN, CLOSE, CONFIG,
NETOPEN, NETRCV, NETSND,
OPEN, READ, SEEK, STATUS,
WRITE, DELFIL, FRESPACE,
RENAME, COORD2RL,
TUNEWRIT

ERR.. SINT

ERRUSINT

A_INCHIT, A_INCHRD,
A_INMDIT, ARTCHIT,
ARTDCHRD, ARTDMDIT,
ATMPCHIT, ATMPCHRD,
ATMPMDIT, STRTSERV,
CAPTINIT, SERVOCLK

ERRS.................................... WORD

ESTPBOOL

ET .. TIME

F

FAHR......................................BOOL

FAIL ..BOOL

FAST......................................USINT

G

G ...BOOL

H

HILT ..BOOL

HNDL.. INT

I

IGNR......................................UDINT

INPS..BOOL

INs..........................(See Table D-1.)

ISTSTRUCT

K

K.......................................NUMERIC

L

L .. INT

LD ...BOOL

LEN... INT

LGTHUDINT

LOG REAL/LREAL

LOLT.......................................BOOL

LN REAL/LREAL
Appendix D - Function Data Type Reference D-1

M

MAN..BOOL

MAST.....................................USINT

MAX............................ same as MIN

MCND............... NUMERIC or TIME

MDST..DINT

µsec ..UINT

MIN ... any

MODE... INT

MOVE................................STRUCT

MPLR.....................same NUMERIC
as MCND or DINT if MCND = TIME

MSTR..DINT

N

N ..USINT

NAMESTRING

NAMZ..................................STRING

NUM.. INT

RATIOSCL

NUM.................................NUMERIC

NUM2STR, STR2NUM

NUM............................REAL/LREAL

EXP, LOG, LN

NUM.......................................USINT

USIN2STR, STR2USI

O

OFF...DINT

OFST ..UINT

OK...BOOL

ON...DINT

OPTN.................................... WORD

ORG.. INT

OUTs(See Table D-2.)

P

P.......................................NUMERIC

DELETE, INSERT, MID, REPLACE

PLUSBOOL

PNT USINT

PNUM.................................... USINT

POS..DINT

PROD..................... same as MCDN

PT ...TIME

PV... INT

Q

Q...BOOL

QAVL......................................BOOL

QTY ..DINT

QUE....................................... USINT

QUOT......................same as DVND

R

R ...BOOL

RACK USINT

RATE.....................................UDINT

RATE..TIME

SERVOCLK

RDNEBOOL

REALARRAY OF STRUCT

REFD..DINT

REM.........................same as DVND

REQ..BOOL

REV ..BOOL

ROOT........................ same as SQR

RNGE.................................... USINT

RPER USINT

RPTP......................................BOOL

RSCD STRUCT

RSLT ..DINT

RVALBOOL

S

SDIR.......................................BOOL

SDST..DINT

SEG1................................. STRUCT

SET .. BOOL

SID... USINT

SIN..............................REAL/LREAL

SIZE ...DINT

SIZE USINT

CAPTINIT

SLOT..................................... USINT

SLPE................. ARRAY OF STRUCTURES

SPT ..DINT

SQR.............. UDINT, UINT, USINT,
or constant

SRCE ARRAY OF STRUCT

SSTR..DINT

STAT ...INT

NETMON, STATUS

STATWORD

STATUSSV

STRSTRING

STRC STRUCT

SUMsame as IN1

T

TANREAL/LREAL

TBUF........ ARRAY, STRUCT, STRING

TCNT...INT

TIME...UINT

TOLR..................................... UDINT

TYPE..................................... USINT

V

VALU...INT

VAR.. SINT

VARS STRUCT

W

WEEK..................................... BOOL
D-2 Appendix D - Function Data Type Reference

IN
P

U
T

/O
U

T
P

U
T

D
A

T
A

 T
Y

P
E

S

TABLE D-1. IN inputs

[Inputs for extensible functions are followed with (ext).
]

Input Data type Functions

IN BITWISE NOT, ROL, ROR, SHL, SHR

BOOL TOF, TON, TP

DATE DATE2STR

DATE_AND_TIME CLOCK, DT2DATE, DT2STR, DT_2_TOD

NUMERIC ABS, NEG

STRING DELETE, LEFT, MID, RIGHT

TIME TIME2STR

TIME_OF_DAY TOD2STR

same as MIN LIMIT

IN0 NUMERIC or TIME SUB

any except STRUCT SEL

IN0 (ext) any except STRUCT MUX

IN1 any except BOOL or STRUCT NE

DATE D_TOD2DT, S_D_D

DATE_AND_TIME A_DT_T, S_DT_DT, S_DT_T

STRING FIND, INSERT, REPLACE

TIME_OF_DAY A_TOD_T, S_TOD_T, S_TOD_TO

same as IN0 SEL, SUB

IN1 (ext) any MOVE

any except BOOL or STRUCT EQ, GE, GT, LE, LT, MAX, MIN

BITWISE AND, OR, XOR

NUMERIC or TIME ADD

STRING CONCAT

same as IN0 MUX

IN2 DATE S_D_D

DATE_AND_TIME S_DT_DT

TIME A_DT_T, A_TOD_T, S_DT_T, S_TOD_T

TIME_OF_DAY D_TOD2DT, S_TOD_TO

same as IN1 NE

STRING FIND, INSERT, REPLACE

IN2 (ext) same as IN1 ADD, AND, EQ, GE, GT, LE, MAX, MIN, OR, XOR

STRING CONCAT, REPLACE
Appendix D - Function Data Type Reference D-3

TABLE D-2. OUT outputs

Output Data type Functions

OUT BOOL CAM_OUT, EQ, GE, GT, LE, LT, NE

DATE DT2DATE

DATE_AND_TIME A_DT_T, CLOCK, D_TOD2DT, S_DT_T

same as IN ABS, NEG, NOT, ROL, ROR, SHL, SHR

same as IN0 MUX, SEL

same as IN1 AND, OR, XOR

same as MIN LIMIT

NUMERIC FIND

TIME S_D_D, S_DT_DT, S_TOD_TO

TIME_OF_DAY A_TOD_T, DT2TOD, S_TOD_T

OUT1 same as IN1 MAX, MIN, MOVE

OUT----OUT STRING CONCAT, DATE2STR, DELETE, DT2STR, INSERT,
LEFT, MID, REPLACE, RIGHT, TIME2STR, TOD2STR,

NOTE

There are also INs/OUTs on all the data type conversion functions. In those functions, the
IN is always the data type you are converting from and the OUT is always the data type
you are converting to.
D-4 Appendix D - Function Data Type Reference

Appendix E - PiCServoPro Reference Card - Errors/Variables

R

E
F

E
R

E
N

C
E

C
A

R
D

STRTSERV func errs

0 No error

1 Bad user function data

2 Not enough low memory

3 Feedback module(s) not found

4 Analog module(s) not found

Word output from STATUSSV function

Characteristic Binary value Hex

Move started 00000000 0000000(1) 0001

Fast input occurred 00000000 000000(1)0 0002

Fast input on 00000000 00000(1)00 0004

Good mark detected 00000000 0000(1)000 0008

Bad mark detected 00000000 000(1)0000 0010

DIST + TOLR
exceeded

00000000 00(1)00000 0020

Fast input rising 00000000 0(1)000000 0040

E-stop
Error

Bit Location
(low byte)

Hex
Value

(in LDO)
8 7 6 5 4 3 2 1

User-set E 8008

Overflow error E 8004

Excess error E 8002

Loss of
feedback

E 8001

C-stop
Error

Bit Location
(low byte)

Hex
Value

(in
LDO)8 7 6 5 4 3 2 1

Part reference error E 8080

Part reference dimen-
sion error

E 8040

Distance or position
move dimension error

E 8020

Feedrate error E 8010

Machine reference
dimension error

E 8008

User-defined
C-stop

E 8004

Negative software
limit exceeded

E 8002

Positive software limit
exceeded

E 8001

Programming
Error

Bit Location
(high byte)

Hex
Value

(in
LDO)8 7 6 5 4 3 2 1

Set whenever a P error
occurs.

X 8000

Master axis beyond
start point

E 8800

Slave axis beyond start
point

E 8400

Master distance not
valid

E 8200

Slave distance not
valid

E 8100

Programming
Error

Bit Location
(low byte)

Hex
Value

(in
LDO)8 7 6 5 4 3 2 1

The FAST axis in the
FAST_QUE function

moved too far in
wrong direction

E 8080

Profile number not
found

E 8040

Master axis not
available E 8020

Master start position
for lock on

E 8001
Appendix E - PiCServoPro Reference Card E-1

Variables used with the READ_SV (Read column) and WRITE_SV (Write column) func-
tions. These variables are used with servo (S), time (T), and/or digitizing (D) axes.
V# Variable Description Read Write

1 Actual position S, T, D T

2 Move type
11 pos 18 ratiopro
12 dist 20 ratiosyn/gr
14 vel st 22 ratiocam
16 lad ref or 23 ratioslp

fast ref 24 ratio real

S

3 Command position S, D

4 Position error S

5 Slow velocity filter error S

6 Command velocity S, T T

7 Position change S, D

8 Feedback last S, D

9 Fast input position S, D

10 Reg/ref position change S, D

11 Consecutive bad marks S, D S, D

12 Rollover on position S, T, D S, T, D

13 Slave offset incremental S S

14 Master offset incremental S S

15 Slave offset absolute S S

16 Master offset absolute S S

17 Slave offset filter S

18 Master offset filter S

19 Fast input direction S, D

20 Fast input distance S, D

21 Reversal not allowed S S

22 Fast input position (software) S, D

23 Position (software) of axis 1 with
fast input on axis 2

S, D S, D

24 Registration switch S, D S, D

V# Variable Description Read Write

25 Fast queuing S S

26 Synchronized slave start S, D, T S, D,T

27 Backlash compensation S S

28 TTL feedback S, D S, D

29 Reference switch position S

30 Filter time constant S S

31 Filter error limit S S

32 Velocity compensation flag S S

33 Filter lag S

34 Position change over several
interrupts

S, D S, D

35 Part reference offset S, D

36 Software upper limit S S

37 Software lower limit S S

38 Commanded position (before
slow velocity filter)

S, D

39 Following error limit S S

40 In-position band S S

41 Current segment number S

42 Slave distance into segment S

43 Master distance into segment S

44 Set user iteration command S S

45 User iteration command S S

46 Set user PID command S S

47 User PID command S S

48 Disable servo software S S

49 (Reserved)

50 Override endlimit check S S

51 Write SERCOS position S S
E-2 Appendix E - PiCServoPro Reference Card

R
E

F
E

R
E

N
C

E
C

A
R

D

Data Capture

Axis variables that can be captured on a servo interrupt basis with the CAPTINIT
function.

Error numbers and descriptions for the CAPTINIT function ERR output are listed
below.

VAR Description Type VAR Description Type

1 Actual Position DINT 7 Position change INT

2 Fast Input BYTE 8 Feedback position DINT

3 Commanded position DINT 9 Prefilter commanded DINT

4 Position error DINT 10 Prefilter command change INT

5 Slow velocity filter error INT 11 Remaining master offset DINT

6 Command change INT 12 Remaining slave offset DINT

0 No error

1 The CAPTSTAT function has not stopped capturing data from a previous data capture
initialization.

2 An axis number in the structure is invalid.

3 The limit of eight variables in the array of structures has been exceeded.

4 Parameter number in the structure is out of range.

5 The CAPINIT function was called before the STRTSERV function was called.
Appendix E - PiCServoPro Reference Card E-3

NOTES
E-4 Appendix E - PiCServoPro Reference Card

ST
E

P
P

E
R

R

E
F

E
R

E
N

C
E

 C
A

R
D

Appendix F - Stepper Reference Card
.

Profile Commands Range # Control Words

1 Distance move ±2,147,352,575 steps 1 Enable profile

2 Position move ±2,147,352,575 steps 2 Pause profile

3 Velocity move ±1,000,000 steps/sec 3 Continue profile

4 Set maximum velocity 1-1,000,000 steps/sec 4 E-stop

5 Set acc/dec rate 1-16,777,215 steps/sec/sec 5 C-stop

6 Set reference ±2,147,352,575 steps 6 Step/direction mode
(default)

7 Pause N/A 7 CW/CCW mode

Word output from STEPSTAT function

Characteristic Binary value Decimal Hex

Profile enabled 00000000 0000000x(1) 1 0001

Profile paused 00000000 000000x(1)0 2 0002

At velocity 00000000 00000x(1)00 4 0004

Que empty 00000000 0000x(1)000 8 0008

Que full 00000000 000x(1)0000 16 0010

Control word not processed 00000000 00x(1)00000 32 0020

Errors displayed in the .ERROR member of stepper structure

Error #

No error 0

Invalid rack number or remote rack not available 1

Invalid slot number 2

Module not found at rack and slot location or not enough channels on module 3

Invalid command number 4

Invalid data for the command 5

Invalid control number 6

Stepper function called before STEPINIT function called 7
Appendix F - Stepper Reference Card F-1

NOTES
F-2 Appendix F - Stepper Reference Card

T
IM

E
 A

X
IS
Appendix G - Time Axis
The time axis feature allows a servo axis to be slaved to time instead of a physical
master position transducer. All the master/slave functions can be used with a time
axis.

There are four axis numbers reserved for a time based master; 25, 26, 27 and 28.
This is the number used to identify the master time axis on the input to a master/
slave function as shown below.

The S_CURVE function or the command velocity variable 6 can be used to move a
time axis. The time axis can be manipulated with variables 1, 12, and 26 as
described below. Use the WRITE_SV and READ_SV functions to work with these
variables.

To Reference: Actual Position (Variable 1)

The actual position variable allows you to read the position of the time axis or
change the current position by writing a value with the WRITE_SV function. The
variable is in ladder units.

Range = +2147483647 to -2147836648 ladder units

To Control Velocity: S_CURVE Function or Command Velocity (Variable 6)

You can use either the S_CURVE function or the command velocity variable 6 to
move a time axis.

S_CURVE Function

When using the S_CURVE function with a time axis, you can use the distance,
position, or velocity moves to "move" the axis. The S_CURVE function must be
called first when using these moves. See the S_CURVE description in the Func-
tion/Function Block Reference Guide.

Command Velocity Variable 6

If you are not using the S_CURVE function, the command velocity variable can be
used to define how fast the time axis will travel. It is programmed in ladder units
per second. When the WRITE_SV function is called with variable 6, the time axis
will step to the programmed velocity.

⁄ƒƒƒƒƒƒƒƒƒø
≥RATIO_GR ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS QUE√
≥ ≥
¥MAST ≥
≥ ≥
¥SDST ≥
≥ ≥
¥MDST ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Enter a number from 25 to 28

for a time based master.
Appendix G - Time Axis G-1

Each ladder unit of the time axis travel represents the portion of time programmed
by this variable. For example, if a value of 1000 is programmed as the number of
ladder units per second for the velocity, then the time axis would move one ladder
unit in 1 msec. If the master distance (MDST) was set at 1000 and the slave dis-
tance (SDST) was set at 2000 in the RATIO_GR function above, it would take the
slave axis 1 sec to move 2000 units.

By entering a zero, the time axis is stopped. In effect, you have "stopped time."
This provides the ability to synchronize multiple slave axes. You call all the moves
you want to synchronize and then write a non zero value to variable 6. All the axes
will begin motion at the same time.
NOTE: In order for all slave axes to start at the same time, the master start position
of any master/slave move with a MSTR input would have to have the same value
(or zero) at its MSTR input. If the option to ignore master start is selected, the
slave axes will start when the master axis begins to move.

An alternative method for synchronizing slave starts is to use variable 26 as
described below.

Range = ±2,000,000 ladder units/sec

To Define Rollover: Rollover on Position (Variable 12)

The rollover on position variable allows you to select where the time will reset to
zero. The variable is entered in ladder units.

NOTE: Without rollover on position when 2,147,483,647 is reached, the next num-
ber will be -2,147,483,648. The count continues to zero and back up to
2,147,483,647, etc.

Range = 1 to 536,870,912 ladder units (Entering a zero turns rollover on position
off.)

To Synchronize Slave Axes: Synchronized Slave Start (Variable 26)

The synchronized slave start variable allows you to tell the time axis which of its
slave axes must be queued up before any of them begin their move. Each slave axis
you want to synchronize is identified by setting a bit in a DINT using the lower 16
bits where the LDB = axis 1 and the MSB = axis 16. When the last "set" axis has
been queued, all the slave axes will begin their move on the next interrupt.

The WRITE_SV function with variable 26 must be called before the move. It can
be called again when you want to identify a different set of synchronized slave
axes. Change the bits only after the slave axes identified in the first WRITE_SV
function have started to move.

Writing a zero to variable 26 clears all identified axes. The READ_SV function
can be used to read the number of slave axes being synchronized.
G-2 Appendix G - Time Axis

L
IN

E
 SW

IT
C

H
E

S

Appendix H - Command Line Switches

The following list describes MS-DOS command line switches that are available for
use with PiCPro in certain situations. Type in the switch on the command line after
typing picpro or picservo. If you are using more than one switch on the command
line, each switch must be separated by a space.

The MS-DOS user interrupt number 65h is used as the default interrupt by the Gid-
dings & Lewis Communications driver to communicate to the PiC control. If this
user interrupt is used by some other program in your PC, you can change to
another user interrupt number by using the /i switch. Other user interrupt numbers
available to enter at <num> include 60, 61, 62, 63, 64, or 66.

Command Description

/e Extended/Expanded Memory

Inhibits PiCPro from using extended/expanded memory. Use
this switch if PiCPro is having problems with the EMM
(Extended Memory Manager) currently installed in your
workstation.

/f Soft Bit Memory

Enables soft bit memory in all Turbo processors that do not
have soft bit memory as standard.

NOTE: Soft bit memory is standard in the PiC91X proces-
sors.

/u Update UDFBs

This switch must be used so that all UDFBs will be updated
the first time you run PiCPro software after loading the latest
version of PiCPro.

Command Description

/i<num> Interrupt Number

Allows you to change the default interrupt number (65) used
for communications.
Appendix H - Command Line Switches H-1

NOTES
H-2 Appendix H - Command Line Switches

L
E

D
 E

R
R

O
R

 C
O

D
E

S

Appendix I - Diagnostic LED Error Codes

While the PiC900 is running, the DIAG LED on the CPU module will flash a three digit
code signal if there is an error. For example, if there is a long pause-flash-pause-flash-
flash-pause-flash-flash-flash-long pause, the code is 123. The errors are described below

* Errors connected with I/O expansion. Refer to the I/O Driver Module write-up in
the Hardware Manual for more information.

Code Error Description

122 No math coprocessor Attempted to perform floating point operation with no math coproces-
sor installed on the CPU.

123 Scan too long A ladder scan loss has occurred because the CPU takes more than 200
ms to scan the application program.

Whenever the scan light is out, the discrete outputs go to the OFF
state and the analog outputs are zeroed.

124 Excessive overhead The system overhead update time is excessive.

125 Insufficient memory There is insufficient memory on the CPU to run the current program.

126 No hardware bit memory There is no bit memory installed on the CPU and the program
requires it.

127 No software bit memory There is no bit memory capability via software and the program
requires it.

222 Driver error No driver support on the CPU for the I/O module. Update your sys-
tem EPROMs.

22_ Master rack error The I/O modules in the master rack do not match what was declared
in the hardware master declaration table. The number of flashes in the
third digit (_) identifies the slot number that is in error.

231* No daughter board There is no communications daughter board installed on the CPU
when attempting to do expansion I/O communications.

232* Communications error A failure has occurred in remote I/O communications.

233* Number of racks error The number of expansion racks in the system does not match the
number of expansion racks declared in the expansion hardware decla-
ration table.

3_ _* Expansion rack error The I/O modules in the expansion rack(s) or the block I/O modules do
not match what was declared in the expansion hardware declaration
table.

For rack expansion:

The number of flashes in the second digit indicates the remote rack
(1 through 8).
The number of flashes in the third digit indicates the slot number.

For block I/O modules:

The number of flashes in the second and third digits indicates the
block I/O module (01 through 77). The second digit will flash a 1 - 7,
10 for 0.. The third digit will flash a 1 - 9, 10 for 0.
For example, if the second digit flashes 3 times and the third digit
flashes 10 times, the module is 30.
Appendix I - Diagnostic LED Error Codes I-1

NOTES
I-2 Appendix I - Diagnostic LED Error Codes

A
SC

II C
H

A
R

T

Appendix J - IBM ASCII Chart

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char

00 0x00 NUL 32 0x20 SPC 64 0x40 @ 96 0x60 `

01 0x01 33 0x21 ! 65 0x41 A 97 0x61 a

02 0x02 34 0x22 " 66 0x42 B 98 0x62 b

03 0x03 © 35 0x23 # 67 0x43 C 99 0x63 c

04 0x04 ® 36 0x24 $ 68 0x44 D 100 0x64 d

05 0x05 ß 37 0x25 % 69 0x45 E 101 0x65 e

06 0x06 ™ 38 0x26 & 70 0x46 F 102 0x66 f

07 0x07 BEL 39 0x27 ' 71 0x47 G 103 0x67 g

08 0x08 BS 40 0x28 (72 0x48 H 104 0x68 h

09 0x09 HT 41 0x29) 73 0x49 I 105 0x69 i

10 0x0A LF 42 0x2A * 74 0x4A J 106 0x6A j

11 0x0B VT 43 0x2B + 75 0x4B K 107 0x6B k

12 0x0C FF 44 0x2C , 76 0x4C L 108 0x6C l

13 0x0D CR 45 0x2D - 77 0x4D M 109 0x6D m

14 0x0E 46 0x2E . 78 0x4E N 110 0x6E n

15 0x0F j 47 0x2F / 79 0x4F O 111 0x6F o

16 0x10 ˜ 48 0x30 0 80 0x50 P 112 0x70 p

17 0x11 ˇ 49 0x31 1 81 0x51 Q 113 0x71 q

18 0x12 ↕ 50 0x32 2 82 0x52 R 114 0x72 r

19 0x13 !! 51 0x33 3 83 0x53 S 115 0x73 s

20 0x14 ¶ 52 0x34 4 84 0x54 T 116 0x74 t

21 0x15 § 53 0x35 5 85 0x55 U 117 0x75 u

22 0x16 - 54 0x36 6 86 0x56 V 118 0x76 v

23 0x17 ◊ 55 0x37 7 87 0x57 W 119 0x77 w

24 0x18 ≠ 56 0x38 8 88 0x58 X 120 0x78 x

25 0x19 Ø 57 0x39 9 89 0x59 Y 121 0x79 y

26 0x1A Æ 58 0x3A : 90 0x5A Z 122 0x7A z

27 0x1B ¨ 59 0x3B ; 91 0x5B [123 0x7B {

28 0x1C ¿ 60 0x3C < 92 0x5C \ 124 0x7C :

29 0x1D 61 0x3D = 93 0x5D] 125 0x7D }

30 0x1E s 62 0x3E > 94 0x5E ^ 126 0x7E ~

31 0x1F t 63 0x3F ? 95 0x5F _ 127 0x7F ›
Appendix J - BM ASCII Chart J-1

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char

128 0x80 Ç 160 0xA0 à 192 0xC0 ¿ 224 0xE0 ‡

129 0x81 ü 161 0xA1 í 193 0xC1 ¡ 225 0xE1 ·

130 0x82 é 162 0xA2 ó 194 0xC2 ¬ 226 0xE2 ‚

131 0x83 â 163 0xA3 ú 195 0xC3 √ 227 0xE3 „

132 0x84 ä 164 0xA4 ñ 196 0xC4 ƒ 228 0xE4 ‰

133 0x85 à 165 0xA5 Ñ 197 0xC5 ≈ 229 0xE5 Â

134 0x86 å 166 0xA6 ª 198 0xC6 ∆ 230 0xE6 Ê

135 0x87 ç 167 0xA7 º 199 0xC7 « 231 0xE7 Á

136 0x88 ê 168 0xA8 ¿ 200 0xC8 » 232 0xE8 Ë

137 0x89 ë 169 0xA9 © 201 0xC9 … 233 0xE9 È

138 0x8A è 170 0xAA ™ 202 0xCA 234 0xEA Ω
139 0x8B ï 171 0xAB ´ 203 0xCB À 235 0xEB Î

140 0x8C î 172 0xAC ¨ 204 0xCC Ã 236 0xEC ∞
141 0x8D ì 173 0xAD ¡ 205 0xCD Õ 237 0xED ∆
142 0x8E Ä 174 0xAE « 206 0xCE Œ 238 0xEE Œ

143 0x8F Å 175 0xAF » 207 0xCF œ 239 0xEF «

144 0x90 É 176 0xB0 ∞ 208 0xD0 – 240 0xF0 ∫
145 0x91 Æ 177 0xB1 ± 209 0xD1 — 241 0xF1 ±

146 0x92 Æ 178 0xB2 ≤ 210 0xD2 “ 242 0xF2 ≥
147 0x93 ô 179 0xB3 ≥ 211 0xD3 ” 243 0xF3 ≤
148 0x94 ö 180 0xB4 ¥ 212 0xD4 ‘ 244 0xF4 Ù

149 0x95 ó 181 0xB5 µ 213 0xD5 ’ 245 0xF5 ı

150 0x96 û 182 0xB6 ∂ 214 0xD6 ÷ 246 0xF6 ∏
151 0x97 ù 183 0xB7 ∑ 215 0xD7 ◊ 247 0xF7 ≈
152 0x98 ÿ 184 0xB8 ∏ 216 0xD8 ÿ 248 0xF8 ˚

153 0x99 Ö 185 0xB9 π 217 0xD9 Ÿ 249 0xF9 •

154 0x9A Ü 186 0xBA ∫ 218 0xDA ⁄ 250 0xFA ˙

155 0x9B ¢ 187 0xBB ª 219 0xDB ¤ 251 0xFB √
156 0x9C £ 188 0xBC º 220 0xDC ‹ 252 0xFC ¸

157 0x9D ¥ 189 0xBD Ω 221 0xDD › 253 0xFD ˝

158 0x9E û 190 0xBE æ 222 0xDE fi 254 0xFE ˛

159 0x9F ü 191 0xBF ø 223 0xDF fl 255 0xFF
J-2 Appendix J - BM ASCII Chart

Application Note

Application Note 1
Reading and Writing STRINGs from a Structure

The following applies only to Reading and Writing STRINGs that are members of
a Structure using just the structure name as the Memory Area (BUFR) input to
the READ and WRITE function blocks in PiCPro.

Any variable of type 'STRING' has an actual size that is 2 more than its 'Declared'
length. These two bytes are in the beginning of the STRING and are normally hid-
den from the user. The first byte contains the maximum or 'Declared' length of the
STRING, and the second byte contains the actual length of the STRING.

This means that the structure size will be increased by two bytes for every
STRING element in the structure.

Examples:

1. MY_STRUC STRUCT

.ONE DINT

.NAME STRING[10]

.TWO DINT

END_STRUCT

Example 1 has a size of 20 bytes (4 bytes for .ONE, 12 bytes for the .NAME ele-
ment and 4 bytes for .TWO).

2. MY_STR2 STRUCT

.NAMES STRING[10](0..3)

END_STRUCT

Example 2 has a size of 48 bytes (12 bytes for each STRING of 10, and it is an
array of 4 STRINGs).

So if you Write a structure that contains a 'STRING' type member, it is important
to write out the complete structure (i.e. if you write out MY_STR2 make sure you
write out 48 bytes and not 40 bytes).

Similarly if you Read into a structure that contains a STRING type member, it is
important to read in the complete structure (i.e. if you read in MY_STR2 make
sure you read in 48 bytes and not 40 bytes).

This does not apply if you Read from/Write to a STRING type variable itself. In
the example above, it would not apply if you read from/write to
MY_STRUC.NAME or MY_STR2.NAMES(3). In this case, PiCPro automati-
cally updates the two hidden length bytes as the STRING is read in.
Application Notes AN1-3

Some additional examples:

1. Consider a ladder with a structure declared as :

MY_STR2 STRUCT

.NAMES STRING[10](0..3)

END_STRUCT

To write out all four STRINGs in the structure completely, you would use,

To read all four STRINGs into the structure completely, you would use,

Note that this also means that the device you are reading the STRINGs from in this
manner MUST store them in the following format:

1 BYTE 'Declared' Length in PiCPro (In this example 10)

1 BYTE Actual Length of the STRING (actual number of characters in this
STRING)

(The actual length must be less than or equal to the declared length)

BYTES of the STRING itself. (In this example 10 Bytes. Even if the actual number
of characters in the STRING is less than the Declared Length, the STRING must
be padded up to the declared length. You can use any character you choose to pad
the STRING.)

 ⁄ƒƒNAME ƒƒø
 ≥ WRITE ≥
 ≥ ≥
 P ¥REQ DONE√ƒ
 ≥ ≥
 HANDLE¥HNDL FAIL√ƒ
 ≥ ≥
 48¥CNT ERR√ƒ
 ≥ ≥
 MY_STR2¥BUFR ACT√ƒ
 ¿ƒƒƒƒƒƒƒƒƒŸ

 ⁄ƒƒNAME ƒƒø
 ≥ READ ≥
 ≥ ≥
 P ¥REQ DONE√ƒ
 ≥ ≥
 HANDLE¥HNDL FAIL√ƒ
 ≥ ≥
 48¥CNT ACT√ƒ
 ≥ ≥
 MY_STR2¥BUFR-BUFF√ƒ
 ≥ ≥
 ≥ ERR√ƒ
 ¿ƒƒƒƒƒƒƒƒƒŸ
AN1-4 Application Notes

If you are reading from/writing to the STRING itself, you do not need to account
for the two hidden bytes as in the examples below. PiCPro will automatically
update these bytes when it knows the input to BUFR is a 'STRING'.

2. Consider a STRING declared as :

NAMES STRING[10](0..3)

To write out just one STRING completely, you would use,

To read in the NAME written above, you would use,

 ⁄ƒƒNAME ƒƒø
 ≥ WRITE ≥
 ≥ ≥
 P ¥REQ DONE√ƒ
 ≥ ≥
 HANDLE¥HNDL FAIL√ƒ
 ≥ ≥
 10¥CNT ERR√ƒ
 ≥ ≥
NAMES(2)¥BUFR ACT√ƒ
 ¿ƒƒƒƒƒƒƒƒƒŸ

 ⁄ƒƒNAME ƒƒø
 ≥ READ ≥
 ≥ ≥
 P ¥REQ DONE√ƒ
 ≥ ≥
 HANDLE¥HNDL FAIL√ƒ
 ≥ ≥
 10¥CNT ACT√ƒ
 ≥ ≥
NAMES(3)¥BUFR-BUFF√ƒ
 ≥ ≥
 ≥ ERR√ƒ
 ¿ƒƒƒƒƒƒƒƒƒŸ
Application Notes AN1-5

NOTES
AN1-6 Application Notes

Index
A
acceleration ramp 6-17
aliases 4-14
amplifier telegram (AT) 10-3
analog input 6-7

feedback 6-7
filter times 6-7
ranges 6-7

analog output
offset 6-19
polarity 6-19

animate 2-7
Animate, Moniter menu

real time display 4-5
Application Note N-3
application notes

SERCOS 10-17
application program

Download 4-2
print ladder 4-13
test on Download 4-4

Arithmetic functions 3-4
arrays 3-16

declare 3-34
define 3-34
elements 3-34
intialize 3-34
of structs w/arrays 3-43
of structures 3-41
size 3-34

ASCII 3-13
chart J-1

AT
structure 10-4

attributes
UDFB 3-10, 8-9
variables 3-27

Autoexec.bat 1-8
axis profile setup see PiC Profile
axis units, define 6-1, 6-15
axis (in setup)

label 6-11
number 6-11

B
Backup

application program 4-2
Processor menu, define 4-26

baud rate 1-15
Bin-86 dump 4-18
binary

file 4-18
numbers 3-32

Binary functions 3-4
bit 3-11
Bitwise

constants 3-11
data types 3-11
initial value 3-32

blown fuse 3-31
BOOL boolean 3-11
boolean

coils 3-3
contacts 3-3
control relays 3-3
elements 3-3
I/O Pt. 3-31
logic 3-3
structure member 3-37

BYTE 3-11

C
carriage return 3-13
CD 3-7
cells 2-1
channel 3-30
character codes 3-13
clear

column 3-19
row 3-19

close module 2-17
Closed loop see position loop

define 5-1
codes

diagnostic I-1
floating point 4-7

coils
add to network 2-15
boolean 3-3, 3-11
define 2-3
find 3-50
latch 3-3
reset 3-3
Index i

set 3-3
unlatch 3-3

color display 1-14
column

clear 3-19
delete 3-19
insert 3-19

commanded voltage output scaling 6-19
comments 2-3, 3-48
Config.sys 1-9, 7-10
connect to node, Processor menu 4-28
connect, input/output 3-7
constants 3-10, 3-11
contacts

add to network 2-15
define 2-3
transitional 3-3

control relays
boolean 3-11
define 3-3

controlled stop ramp 6-17
copy

axis setup data 6-20
network 3-48

Counter function blocks 3-4
counts/motor revolution, output scaling 6-16
C-stop

define C-1
errors C-5

bit locations C-5
hex value C-5

CU 3-7
Cut and paste within network 2-16
cyclic data

SERCOS 10-9
C_ERRORS function C-2
C_STOP? function C-2

D
Data In 3-10
Data inVerted 3-10
Data Out 3-10
data types

Bitwise 3-11
DATE 3-14
DATE_AND_TIME 3-14
define 3-10
input to function 3-6
inputs/outputs D-1
Numeric 3-12

String 3-13
Time duration 3-14
Time of day 3-14
Type field 3-29

Datatype functions 3-4
DATE 3-14

initial values 3-33
DATE_AND_TIME 3-14, 3-33
day 3-15
deceleration ramp 6-17
decimal 3-11, 3-33
declarations

array 3-34
array of structures 3-40
array of structures w/arrays 3-44
blown fuse 3-31
Bottom table 3-24
hardware 3-20
Init. Val. field 3-44
I/O Pt. field 3-30
keystrokes 3-24
Long name field 3-33
menu 3-20, 3-24
Name field 3-28
software 3-23
structures 3-37
tables 3-23, 3-24
Top table 3-24
Type field 3-29

default values, setup data 6-13
define axes, number of 6-11
delete

column 3-19
element 2-15
network 3-45
row 3-19

delete command 3-25
delete file, RAMDISK 4-23
dependency list 4-18
derivative

control 5-4
gain 6-19

diagnostic error codes I-1
diagnostics see troubleshooting
dialog box, define 1-12
digitizing axes 5-1, 6-7, 6-13
DINT double int 3-12
disk operations

flash 4-25
RAM 4-23

display status Processor menu 4-29
ii Index

documentation, comments 2-3, 3-48
dollar sign 3-13
DONE 3-7
DOS, installing software 1-6
Download, Module menu

Monitor options 4-5
procedure 4-2
troubleshooting 4-3

DWORD double word 3-11

E
edit field command 3-25
edit network 3-45
elements

array 3-34
ladder logic 3-7
network 2-1

EN 3-6, 3-7, 3-9
Enable

Force table 4-10
View Variables table 4-9

encoder 6-7
driver 6-7
type 6-7

end of module 2-12
Energize coil 3-3
error codes, diagnostic I-1
errors

accessing C-1
C-stop C-1
E-stop C-1
PiCPro functions B-1
programming C-1
timing C-1

E-stop
define C-1
errors

bit locations C-4
hex value C-4

Evaluate functions 3-4
extended/expanded memory H-1
extensible functions 3-8
external 3-26
E_ERRORS function C-2

F
fast inputs

software declarations 3-32
FAST_QUE function, programming

error C-1

faults, diagnostic I-1
feed forward

compensation network 5-4
percent 6-19

feedback
analog input 6-9, 6-12
encoder 6-8
resolver 6-8
TTL 6-10

feedback device
analog input 6-7
encoder 6-7
inductosyn 6-7
polarity 6-19
resolver 6-7
stepper 11-1
TTL input 6-7

feedback units, define 6-1, 6-15
file

extensions see Appendix A
names 2-11, A-3
transfer 4-23, 4-25

Filter functions 3-4
find

coils 3-50
function block 3-50
network 3-47
Prev. 3-52
Replace 3-51
variables 3-50

find command 3-27
Flash disk 4-18

Processor menu 4-25
FMSDISK

list files 4-25
retrieve file 4-25
update 4-25

following error
define 5-4
limit 6-20

Force 4-10
form feed 3-13
formula, ending ratio 7-10
function block

add to network 2-15
declare 3-29
define 2-4, 3-4
find 3-51
raplace 3-51
Type 3-29

functions
Index iii

add to network 2-15
CD 3-7
chain 3-9
CU 3-7
data flow 3-9
define 2-3, 3-4
DONE 3-7
EN 3-6, 3-7
execute 3-4, 3-6
extensible 3-8
IN 3-6, 3-8
inputs 3-4, 3-6, 6-4

data types D-1
number of inputs 3-8
OK 3-6, 3-7
OUT 3-6
outputs 3-4, 3-6, 6-4

data types D-1
Q 3-7
REQ 3-7

fuse blown 3-31

G
global 3-26
GLOS, define 5-2
Group 4-10

H
hardware

declarations 2-5, 3-20
declarations table 2-5

headings, in ladder printout 4-13
help

Workstation menu 1-13
<F9> key 1-13

Hex-86 dump 4-18
hexadecimal

convert 3-11, 3-32
numbers 3-11

horizontal
menu 3-19
wire 3-2

hour 3-15

I
IDN 10-5
IN 3-10
in position flag 6-20
IND 4-7
index number 3-36

inductosyn 6-7
INF 4-7
Initial Value field 2-4, 3-44
input

boolean 3-31
Data In 3-10
location 3-31
number of 3-8
physical 3-20, 3-31
to functions 3-9, 3-10

insert
column 3-19
network 3-45
row 3-19
table entry 3-28

insert command 3-25
installing software, abort option 1-6
INT integer 3-12
integral

control 5-4
error limit

minus 6-20
plus 6-20

gain 6-19
interrupt number H-1
iteration

command position 5-4
command segments 5-4
rate 6-20
servo calculations 5-4

iterator data
define 6-1
descriptions 6-16

I/O function blocks 3-4, 4-23
I/O Pt. field 2-5, 3-30

J
Jump 2-3, 3-48
Jump to label 3-17
Jump to subroutine 3-17

K
keys

<Alt> 1-13
 1-13
<Enter>, accept 1-13
<Esc>, cancel 1-13
<F10>, accept 1-13
<F8>, list 1-13
<F9>, help 1-13
iv Index

<Ins>, arrow 1-13

L
Label 2-3, 3-48
ladder units, define 6-1, 6-15
Latch coil 3-3
LED error codes I-1
library size, UDFB 8-5
line feed 3-13
LINT long int 3-12
list files

FMSDISK 4-25
RAMDISK 4-23

Long Name field 2-4, 3-33
longname 3-19
LREAL long real 3-12
LWORD long word 3-11

M
machine I/O, PiC system 5-2
main menu 2-7
mark variables 3-27
mark, network 3-38
master data telegram (MDT) 10-3
master synchronization telegram (MST) 10-3
master/slave, application 7-1
math coprocessor I-1
MDT

structure 10-4
member 3-37
memory

extended/expanded H-1
memory, PiC900 4-2
menu

define 1-14
label 2-7
PiCPro 2-7

message, on-screen 1-14
millisecond 3-15
minute 3-15
modify command 3-25
module

animate 2-8
close 2-17
components 2-1
create 2-10
end of 2-12
hardware 3-20
name 2-11
new 2-12, 2-16

open 2-11, 2-16
Prev Function view 3-52
print 2-8
save 2-17
save As 2-17
User Function view 3-52
zoom view 3-52

module menu 2-8
modules, PiC900 3-20
moniter application program 4-5
month 3-14
motion control

evaluate axis motion 5-6
introduction 5-1
perform move 5-6
PiC 5-2
prepare axis 5-6
start move 5-6

motion functions 3-4
move, network 3-38
MS-DOS, user interrupt H-1

N
Name field 3-31
NAN 4-7
negative transition (n.c.) 3-3
negative transition (n.o.) 3-3
NEMA SERCOS Specification 10-1
nesting, UDFB 8-5
network 2-1

add element 2-15
copy 3-48
create 2-13, 2-14, 2-15
cut and paste 2-16
delete 3-45
delete element 2-14
design 2-18
edit 2-13, 3-45
elements 2-2, 2-3
escape 2-16
example 2-2
execute 2-2
Find 3-47, 3-48
insert 3-45
Jump 3-48
Label 2-3, 2-13, 3-48
mark 3-47
move 3-48
number 2-2, 2-13
on-line edit 3-45
open 2-14
Index v

save 2-16
size 2-3
unmark 3-48

network menu 3-1
new line 3-13
Next command 3-49
next command 3-27
node

connect 4-28
set 4-28

node number 6-5
non-boolean i/o 3-7
normally Closed 3-3
normally Open 3-3
Numeric

constants 3-12
convert 3-32
data types 3-12

O
octal 3-11, 3-32
OK 3-6, 3-9
on-line edit, network 3-45
open loop, define 5-1
operator interface device, PiC system 5-2
output

Data Out 3-10
of functions 3-6, 3-9, 3-10
physical 3-30

P
patching 3-46
peer-to-peer, PiCPro 4-27
personal computer, purpose 5-2
phases

SERCOS 10-7
PiC Profile

data flow 7-5
define 7-1
define units 7-8
graph 7-10
other features 7-16

PiC900 system
Port1 see workstation 1-5
start from workstation 4-22

PiCPro
define 1-3, 5-2
errors B-1
menus 2-7

PiCServoPro

define 1-3, 5-2
development tools see PiCPro, Servo Setup,

and PiC Profile
start-up 1-11

PiCTune see tuning
screen 6-26, C-3

view errors C-3
PiC/SERCOS network 10-1
PID loop see proportional, integral, derivative

define 5-4
setup 6-19

pop-up, define 1-12
position loop

control 5-3
PiC 5-2, 5-5

position loop data
define 6-1
descriptions 6-19

positive transition (n.c.) 3-3
positive transition (n.o.) 3-3
power reset, Processor menu 4-27
Prev Function 3-52
Previous command 3-49
print

declarations 4-13
ladder format 4-13
longnames 4-14
module 2-13
.LST file 4-13

printer
extended ASCII 1-17
troubleshooting 4-15
Workstation menu 1-16

printout characteristics 4-14
pro file

change name 7-17
define 7-5

Processor menu 4-21
profile

example 7-15
repeat 7-12
with RATIOPRO 7-16

profile data
create new file 7-7
example 7-10
initialize 7-15
make a function 7-14
open existing file 7-7
print 7-18
save 7-14
segments 7-9
vi Index

profile (ratio), example 7-4
programming errors

bit locations C-6
define B-1, C-1
hex value C-6

project manager
description 1-18
using 1-19

proportional
control 5-4
gain 6-19

purge unused variables 3-27
P_ERRORS function C-2

Q
Q 3-7
queue

active 5-4
define 5-4
next 5-4
number 5-4

R
RAMDISK 4-23

delete file 4-24
list files 04 - , 4-23
Processor menu 4-23
raname file 4-24
retrieve file 4-24
send file 4-24

ratio profile, background 7-1
RATIOPRO function

programming errors C-6
real time display 4-5

Animate 4-5
View Variable List 4-8

real time interrupt, iteration 5-4
recursion 8-5
reference card D-1
reference, ignore limits 6-18
rename file, RAMDISK 4-23
replace 3-51
Replace command 3-51
REQ 3-6
requirements 1-4
resolver 6-7
restart 4-27
restore, Processor menu, define 4-26
retentive variables 3-23

warm restart 4-22

retrieve file
FMSDISK 4-25
RAMDISK 4-23

return from subroutine 3-17
rollover

on position 6-17
position 6-17

S
save

module 2-16
.BIN 4-26

scaling data
define 6-1
descriptions 6-15
example 6-15, 6-16
input 6-15
output 6-15, 6-16

scan
count, real time display 4-5
ladder scan 4-21
operating system overhead 4-21
start 4-22
stop 4-22

screen display lines 1-14
second 3-15
semaphore flag 9-10
send file, RAMDISK 4-23
SERCOS

and standard motion.lib functions 10-10
and variables 10-10
application notes 10-17
AT 10-3
cyclic data 10-9
functionfunction blocks 10-2
introduction 10-1
MDT 10-3
MST 10-3
network (PiC) 10-1
phases 10-7
scaling units 6-15
service channel data 10-9
setup 10-12
specification (NEMA) 10-1
telegrams 10-3

service channel data
SERCOS 10-9

servo 5-1, 6-5, 6-11
axes calculations procedure 5-3
library, create 6-23
programming overview 5-6
Index vii

system define 5-1
Servo setup

data flow 6-3
define 5-2, 6-1

servo upgrade (SUG), rate 6-20
Set coil 3-3
set network node id, Processor menu 4-29
setup

SERCOS 10-12
setup data 5-1

and motion control 5-1
create a new file 6-5
enter 6-4
handled by PiC 5-8
initialize 6-24
iterator data 5-1
list of 6-14
make a function 6-23
position loop data 5-6
print 6-31
processor menu 6-5
scaling data 5-6
type of axes 6-6

single quote 3-13
slot, hardware 3-21
soft bit memory H-1
software

declarations 2-4, 3-10, 3-23
declarations table 2-4

software declarations command
delete 3-25
edit field 3-25
find 3-27
insert 3-25
mark 3-27
modify 3-25
next 3-27
purge unused variables 3-27

software limit
lower 6-18
upper 6-18

srv file
define 6-6
save 6-23

status of control 4-29
step reference card F-1
stepper

and standard motion.lib functions 11-2
and variables 11-2
axis module 11-1
configure 11-2

software 11-1
String

Appl Note N-3
data type 3-13
declare 3-29
display value 3-32
functions 3-4
initial values 3-32
outputs 3-15

structures
arrays of 3-40
declare 3-37
define 3-37
members 3-37
size 3-37
with arrays 3-38

switches, command line H-1

T
tab 3-13
task 3-4, 4-16

and I/O functions 9-4
and motion functions 9-4
creating 9-3
defintion 9-1
interlocking data 9-10
interruption 9-6
priority 9-6
programming 9-2
rules 9-3
UDFB comparision 9-1

telegrams
SERCOS 10-3

TIME duration 3-15
initial values 3-33

Time of day 3-15
time read/set, Processor menu 4-26
Timer function blocks 3-4
time, axes G-1
TIME_OF_DAY 3-15, 3-33
timing error, define C-2
TME_ERR? function C-2
troubleshooting

Animate 4-5
communications error 4-8
download 4-3
PiC900 system 4-30
printer 4-15

TTL
binary encoding 6-10
feedback 6-10
viii Index

gray code 6-10
input 6-7

tuning
data flow 6-25
define 6-1
download changes 6-27
inputs, marking 6-27
introduction 6-25
PiCTune screen 6-27
save changes 6-27
view ouputs 6-28

Type field 2-4

U
UDFB 4-16

attributes 3-10
change 8-13
create 8-10
create module 8-2
definition 8-1
errors 8-10
guidelines 8-1
handle data 8-2
inputs/outputs 8-4
library size 8-5
module example 8-6
nesting 8-5
recursion 8-5
software declarations 8-8
store 8-12
template 8-1
type check 8-12
use 8-12
variables

IN 8-9
marking 8-9
OUT 8-9

view Prev function 3-52
view user function 3-52, 8-12

UDINT unsigned double int 3-12
UINT unsigned int 3-12
ULINT unsigned long int 3-12
units

axis 6-15
feedback 6-15
ladder 6-15

Unlatch coil 3-3
unmark network 3-48
update FMSDISK 4-25
update rate 6-20
update UDFBs H-1

user defined function blocks 3-4
User Function 3-52

V
variables 3-10

attributes 3-28
declare 3-27
default values 3-27
define 2-3
external 3-26
find 3-49
force 4-10
global 3-26
group 3-37
IN 3-26
initial values 3-32
Name 3-27
OUT 3-26
replace 3-51
retentive 3-26
types 3-10
unique 3-15

velocity
filter 6-17

fast 6-17
slow 6-17

limit 6-17
profile 7-1

velocity loop
define 5-6

vertical
menu 3-19
wire 3-2

View
errors 6-28
loop status 6-28
on-line servo variables 6-28
Prev. Function 3-52
setup parameters 6-28
User Function 3-52
zoom 3-52

View Variables, Monitor menu
real time display 4-8

W
wires

both 3-2
define 2-3
horizontal 3-2
toggling 3-2
vertical 3-2
Index ix

WORD 3-11
workstation 1-4

cable to PiC900 1-5
configure 1-5, 1-14
Workstation menu 1-14

X
Xclock functions 3-4

Y
year 3-14

Z
Zoom 3-52

Symbols
.LST file 4-13
x Index

	NOTE
	Introduction to the Software Manual

	CHAPTER 1 Getting Started with PiCPro for Windows
	Introduction to PiCPro for Windows
	The Computer Workstation
	Hardware Connections
	PiCServoPro/PiCPro Installation
	Using PiCServoPro/PiCPro
	Hot Keys
	<F9> Help key
	General-purpose keys

	Setting Up the Workstation Software
	Temporary baud rate change

	Configuring the Printer
	Printing Extended ASCII Characters
	Project Manager

	CHAPTER 2 Introduction to PiCPro and Programming
	Introduction
	Components of a Module
	Network Size

	PiCPro menu system
	How to Create or Open a Module
	How to add, change, and delete network elements
	How to exit a network
	How to create a second network
	How to save and close a module
	Designing networks

	CHAPTER 3 Programming and Declarations
	Network Menu - Wires
	Network Menu - Contacts/Coils
	Network Menu - Functions
	Function/Block Format
	Function/Block Inputs/Outputs
	Boolean Inputs/Outputs
	Non-boolean inputs/outputs
	Connection requirements
	Extensible functions

	Network Menu - Data
	Network Menu - Horizontal
	Network Menu - Vertical
	Network Menu - Longname
	Module Menu - Declarations
	Function BlockTypes
	String Types
	Master Rack
	Expansion Rack I/O
	Expansion Block I/O
	Examples
	Fast Inputs
	Initial Values for Bitwise and Numeric Variables
	Initial Values for Strings
	Initial Values for Time Variables
	Initial Values for Time Duration Variables
	Declaring an Array
	Referencing and Accessing Elements of Arrays in the Module
	Declaring Structures
	Referencing and Accessing Members of Structures
	Declaring Structures with Arrays
	Referencing and Accessing Data in a Structure with Arrays
	Declaring an Array of Structures
	Declaring an Array of Structures with Arrays
	Network
	On-Line Editing
	All other types
	Coils only
	Function/block type
	Jump to label/sub

	Module Menu - View

	CHAPTER 4 System Integration
	Introduction
	Module Menu - Download
	Troubleshooting "Download"

	Module Menu - Monitor
	Module Menu - Print
	Print out characteristics

	Module Menu - UDFB Build (User defined function block)
	Module Menu - Task Build
	Module Menu - Hex-86 Dump
	Module Menu - Bin-86 Dump
	Module Menu - Build Dependency List
	Example

	Processor Menu - Scan Control
	Processor Menu - Flash Disk Operations
	Processor Menu - Backup User Prog.
	Processor Menu - Restore User Prog.
	Processor Menu - Time Read/Set
	Processor Menu - Set Network Node ID
	Processor Menu - Connect to Node
	Processor Menu - Status
	Troubleshooting an Application

	CHAPTER 5 Motion Control Concepts
	Background Information on Closed Loop Control
	Introduction to Motion Control with the PiC
	Basic Motion Control Programming Process
	Setup data

	CHAPTER 6 Servo Setup and Tuning
	Introduction to Servo Setup Data
	Entering Servo Setup Data
	Encoder Setup
	Resolver Setup
	Analog Input Setup
	TTL Setup
	SERCOS Setup
	Stepper Axis Setup
	Number of Servo and Digitizing Axes Available
	Other Axes

	Making a Setup Data Function/Saving a .SRV File
	Initialize setup data

	Introduction to Tuning
	Axis Tuning
	Setup parameters
	On-line servo variables
	Errors
	Loop status

	Other Features of the Servo Setup Program
	File Menu of Servo Setup

	Other Features of the Axis Menu
	Setup Table Screen
	Setup Edit Screen
	PiCTune Screen

	CHAPTER 7 Axis Profile Setup
	Background Information on Ratio Profiles
	An Example of Using a Ratio Profile

	Introduction to the PiC Profile program
	Entering Profile Data
	Making a Profile Function/Saving a .PRO File
	Using the Profile Function
	Other Features of the PiC Profile Program
	File menu
	Segment menu

	CHAPTER 8 UDFB Guidelines
	Introduction
	Creating a Module to Convert to a UDFB
	Recursion/Nesting
	Size of UDFB Libraries

	An Example of a UDFB and Module
	Procedure for Marking the Variables
	Error Messages

	CHAPTER 9 TASKs
	Introduction
	I/O Functions
	Motion Functions

	Interlocking Data when using Tasks
	Semaphore Flags when Data Transfer occurs from Task LDO to Main LDO
	In the Main LDO
	In the Task LDO
	Semaphore Flags for Data Transfer from Main LDO to Task LDO
	In the Main LDO
	In the Task LDO

	CHAPTER 10 PiC and SERCOS
	Introduction
	Background Information
	SERCOS Slaves (using SCS_... function/function blocks)
	Servo SERCOS Axes (using SCA_... function blocks)
	IDNs
	Note on Working with Procedure Command Function IDNs
	Phases
	Cyclic Operation
	Service Channel
	READ_SV/WRITE_SV Functions
	TUNEREAD/TUNEWRIT Functions
	CLOSLOOP/OPENLOOP Functions
	E_RESET Function
	REGIST Function
	Reference-Related Functions
	STRTSERV Function
	Application Notes for Your Ladder Program

	CHAPTER 11 Stepper Axis Module
	Introduction
	Stepper Axis Setup

	Notes on using Motion Library Functions and Variables with the Stepper
	READ_SV/WRITE_SV Functions
	TUNEREAD/TUNEWRIT Functions
	CLOSLOOP, OPENLOOP, REGIST, and MEASURE Functions
	Reference-Related Functions
	STRTSERV Function
	ERRORS

	Appendix A - Module Filenames
	Appendix B -PiCPro Function Errors and Error Codes
	General Errors
	I/O Function Block Error Codes
	STRING Function Errors

	Appendix C - PiCServoPro Error Codes
	E-stop, C-stop, programming, and timing errors

	Appendix D - Function Input/Output Data Type Reference
	Appendix E - PiCServoPro Reference Card - Errors/Variables
	Data Capture

	Appendix F - Stepper Reference Card
	Appendix G - Time Axis
	To Reference: Actual Position (Variable 1)
	To Control Velocity: S_CURVE Function or Command Velocity (Variable 6)
	S_CURVE Function
	Command Velocity Variable 6
	To Define Rollover: Rollover on Position (Variable 12)
	To Synchronize Slave Axes: Synchronized Slave Start (Variable 26)

	Appendix H - Command Line Switches
	Appendix I - Diagnostic LED Error Codes
	Appendix J - IBM ASCII Chart
	Application Note 1
	Reading and Writing STRINGs from a Structure

