JUﬂIPeF | Engineering - 2-
y DayOneM

NETWORKS Simplicity

DAY ONE: vVSRX on KVM

——

Configure the vSRX in a KVM environment
and build lab topologies on day one.

e e

By Rahul Verma & Madhavi Katti

http://www.juniper.net/books
https://www.juniper.net

DAY ONE: vSRX on KVM

Day One: vSRX on KVM is for network administrators, network architects, or engineers in-
terested in quickly starting to use the Juniper Networks vSRX Virtual Firewall. Any time you
need to design and test different topology use cases, train yourself or others, or even practice
certification exams, this book covers such usage with step-by-step instructions and practical
examples.

Day One: vSRX on KVM requires basic networking knowledge and a general understanding of
the TCP/IP protocol suite, Linux systems, and Ubuntu. Written in tandem with the Juniper
vSRX documentation, it curates links and tutorials with the Juniper TechLibrary and saves time
for vSRX users by coordinating deployment steps with the TechLibrary’s archives. Learn how
to deploy VSRX instances today!

Hardware
Virtual Environment
VSRX_00
ge -0/0/0 ge -0/0/1
Green_net E‘Eﬁ Red_net
192.168.10.1/24 172.16.10.1/30 T
enol eno2 eno3 eno4

IT’S DAY ONE AND YOU HAVE A JOB TO DO, SO LEARN HOW TO:

m Install vSRX's prerequisite packages and configure and deploy an instance of vSRX on KVM.

m Create a single instance topology and then a multi-device topology using two vSRX instances.
m Design topologies for different use cases.

m Complete the three challenge topologies.

m Troubleshoot VSRX operations.

1

4418

893 —

Juniper Networks Books are focused on network reliability and
efficiency. Peruse the complete library at www .juniper.net/books. _J U' I | | e r

NETWORKS

ISBN

978194

http://www.juniper.net/books
https://www.juniper.net/documentation
https://www.juniper.net
https://www.juniper.net

Day One: vSRX on KVM

by Rahul Verma and Madhavi Katti

Chapter 1: Introductionto vSRXon KVM 9
Chapter 2: Getting Started with vSRXon KVM, 20
Chapter 3: Build Your Own Topology on KVM 38
Chapter 4: Troubleshooting VSRX on KVM. 68
ADDENIX . 80
Most Active VSRX Support Issues 92

{&

Juniper

NETWORKS

Day One

https://www.juniper.net

© 2019 by Juniper Networks, Inc.

All rights reserved. Juniper Networks and Junos are
registered trademarks of Juniper Networks, Inc. in the
United States and other countries. The Juniper Networks
Logo and the Junos logo, are trademarks of Juniper
Networks, Inc. All other trademarks, service marks,
registered trademarks, or registered service marks are the
property of their respective owners. Juniper Networks
assumes no responsibility for any inaccuracies in this
document. Juniper Networks reserves the right to change,
modify, transfer, or otherwise revise this publication
without notice.

Published by Juniper Networks Books

Authors: Rahul Verma, Madhavi Katti

Technical Reviewers: Casper Rijnders, Vikas Singh,
Jayadevi Santhanagopalan, Pramod Nellikka,
Vikas Vishwanathan, Antoine Taza

Editor in Chief: Patrick Ames

Copyeditor: Nancy Koerbel

Tllustrator: Karen Joice

Project Management: Indira Upadhayaya

ISBN: 978-1-941441-89-3 (print)
Printed in the USA by Vervante Corporation.

ISBN: 978-1-941441-88-6 (ebook)

Version History: v1, April 2019
2345678910

http://www.juniper.net/dayone

About the Authors

Rahul Verma is a CFTS engineer based in Bengaluru,
India. He has 10 years of experience working with
different Juniper product lines, mainly ScreenOS and
Junos (SRX and vSRX). This is his first Day One, but in
his many years of work as a Technical Support Engineer,
he’s seen how important the Day One series is for newbies.

Madhavi Katti is an Information Development Engineer at
Juniper Networks with over 10 years of experience in
writing and developing documentation for networking and
telecommunications. Madhavi contributes to product
documentation for security and virtualization products.

Authors’ Acknowledgments

We would like to thank Patrick Ames and Nancy Koerbel
for guidance on writing for the Day One series. We would
also like to thank the technical reviewers and JTAC for
looking over our words and offering plenty of encourage-
ment along the way. Thanks to Karen Joice for support in
developing illustrations, and special thanks to our
managers Indira Upadhayaya, Sujit Nair, and Aditya
Maheshwari for their vision, support, and encouragement.

Feedback? Comments? Error reports? Email them to
dayone@juniper.net.

http://www.juniper.net/dayone

Welcome to Day One

This book is part of the Day One library, produced and published by Juniper Net-
works Books.

Day One books cover the Junos OS and Juniper Networks networking essentials
with straightforward explanations, step-by-step instructions, and practical exam-
ples that are easy to follow. You can obtain the books from various sources:

m Download a free PDF edition at http://www.juniper.net/dayone.
® Many of the library’s books are available on the Juniper app: Junos Genius.

m Get the ebook edition for iPhones and iPads from the iBooks Store. Search for
Juniper Networks Books or the title of this book.

m Get the ebook edition for any device that runs the Kindle app (Android,
Kindle, iPad, PC, or Mac) by opening your device’s Kindle app and going to
the Amazon Kindle Store. Search for Juniper Networks Books or the title of
this book.

m Purchase the paper edition at Vervante Corporation (www.vervante.com) for
between $15-$40, depending on page length.

m Note that most mobile devices can also view PDF files.

TechLibrary Connection

This Day One book makes a direct connection to the Juniper TechLibrary and all
of its security docs for both the SRX Series and vSRX. Here are some vital starting
points to visit in the TechLibrary (and throughout this book you’ll find dozens
more curated links that point to other instructional content you might consider):

Security Products and Solutions: https://www.juniper.net/us/en/products-services/
security/.

SRX Series Chassis Cluster Configuration Overview: https://www.juniper.net/doc-
umentation/en_US/junos/topics/task/operational/chassis-cluster-srx-series-creat-
ing.html.

Check the latest vSRX specs: https://www.juniper.net/us/en/products-services/se-
curity/srx-series/vsrx/.

All vSRX documentation starts here: https://www.juniper.net/documentation/
product/en_US/vsrx.

Download vSRX here: https://www.juniper.net/us/en/dm/free-vsrx-triall/.

http://www.juniper.net/dayone
https://www.juniper.net/us/en/training/junos-genius/
http://www.vervante.com
https://www.juniper.net/us/en/products-services/security/
https://www.juniper.net/us/en/products-services/security/
https://www.juniper.net/documentation/en_US/junos/topics/task/operational/chassis-cluster-srx-series-creating.html
https://www.juniper.net/documentation/en_US/junos/topics/task/operational/chassis-cluster-srx-series-creating.html
https://www.juniper.net/documentation/en_US/junos/topics/task/operational/chassis-cluster-srx-series-creating.html
https://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
https://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
https://www.juniper.net/documentation/product/en_US/vsrx
https://www.juniper.net/documentation/product/en_US/vsrx
https://www.juniper.net/us/en/dm/free-vsrx-trial/

Vi

What You Need to Know Before Reading This Book

You should be familiar with the basic administrative functions of Junos OS and
UNIX, including the ability to work with operational commands and to read,
understand, and change configurations.

There are several books in the Day One library on learning Junos, at http://www.
juniper.net/dayone.

This book assumes that you, the reader, have intermediate-level knowledge of:

® Basic networking and an understanding of the TCP/IP protocol.

m Linux system administration (preferably Ubuntu), and knowledge of the
Linux virtualization solution (KVM).

m Junos OS operational and configuration modes.
® Junos OS and how to use its CLIL.

m Configuration of feature sets on SRX Series devices.

What You Will Learn by Reading This Book

m Understand the architecture of the vSRX, its specifications, and its licensing
models.

m Install vSRX’s prerequisite packages, and configure and deploy an instance of
vSRX on KVM.

m Create a single instance topology and then a multi-device topology using two
vSRX instances.

m Design topologies for different use cases.
m Complete the three challenge topologies.

m Troubleshoot vSRX operations.

http://www.juniper.net/dayone
http://www.juniper.net/dayone

Vii

VSRX

DOCUMENTATION PATH

v

< Datasheets

Byyy
DayOne:

VSRX on KVM

Getting Started

Release Notes

Deployment Guides

Use Cases

Feature Guides

System Administration

Developer Resources

Support Resources

viii

All Things vSRX

vSRX virtual firewall product page: https://www.juniper.net/us/en/products-
services/security/srx-series/vsrx/

List of supported features on vSRX in Junos OS Release, Feature Explorer:
https://apps.juniper.net/feature-explorer/select-platform.html?category=Securi
ty&typ=1#pid=20600616& platform=vSRX

vSRX product datasheet: https://www.juniper.net/assets/us/en/local/pdf/
datasheets/1000489-en.pdf

vSRX in the AWS Marketplace: https://aws.amazon.com/marketplace/pp/
BO1LYWCGDX/

Try vSRX in vLabs: https://jlabs.juniper.net/vlabs

More vSRX product documentation:

m AWS: https://www.juniper.net/documentation/en_US/vsrx/information-
products/pathway-pages/security-vsrx-aws-guide-pwp.html

m KVM: https://www.juniper.net/documentation/en_US/vsrx/information-
products/pathway-pages/security-vsrx-kvm-guide-pwp.html

® Microsoft Azure: https://www.juniper.net/documentation/en_US/vsrx/
information-products/pathway-pages/security-vsrx-azure-guide-pwp.html

m Contrail: https://www.juniper.net/documentation/en_US/vsrx/information-
products/pathway-pages/security-vsrx-contrail-guide-pwp.html

B VMWare: https://www.juniper.net/documentation/en_US/vsrx/information-
products/pathway-pages/security-vsrx-vmware-guide-pwp.html

® Microsoft Hyper-V: https://www.juniper.net/documentation/en_US/vsrx/
information-products/pathway-pages/security-vsrx-hyper-v-guide-pwp.html

https://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
https://www.juniper.net/us/en/products-services/security/srx-series/vsrx/
https://apps.juniper.net/feature-explorer/select-platform.html?category=Security&typ=1#pid=20600616&platform=vSRX
https://apps.juniper.net/feature-explorer/select-platform.html?category=Security&typ=1#pid=20600616&platform=vSRX
https://www.juniper.net/assets/us/en/local/pdf/datasheets/1000489-en.pdf
https://www.juniper.net/assets/us/en/local/pdf/datasheets/1000489-en.pdf
https://aws.amazon.com/marketplace/pp/B01LYWCGDX/
https://aws.amazon.com/marketplace/pp/B01LYWCGDX/
https://jlabs.juniper.net/vlabs
https://www.juniper.net/documentation/en_US/vsrx/information-products/pathway-pages/security-vsrx-aws-guide-pwp.html
https://www.juniper.net/documentation/en_US/vsrx/information-products/pathway-pages/security-vsrx-aws-guide-pwp.html
https://www.juniper.net/documentation/en_US/vsrx/information-products/pathway-pages/security-vsrx-kvm-guide-pwp.html
https://www.juniper.net/documentation/en_US/vsrx/information-products/pathway-pages/security-vsrx-kvm-guide-pwp.html
https://www.juniper.net/documentation/en_US/vsrx/information-products/pathway-pages/security-vsrx-azure-guide-pwp.html
https://www.juniper.net/documentation/en_US/vsrx/information-products/pathway-pages/security-vsrx-azure-guide-pwp.html
https://www.juniper.net/documentation/en_US/vsrx/information-products/pathway-pages/security-vsrx-contrail-guide-pwp.html
https://www.juniper.net/documentation/en_US/vsrx/information-products/pathway-pages/security-vsrx-contrail-guide-pwp.html
https://www.juniper.net/documentation/en_US/vsrx/information-products/pathway-pages/security-vsrx-vmware-guide-pwp.html
https://www.juniper.net/documentation/en_US/vsrx/information-products/pathway-pages/security-vsrx-vmware-guide-pwp.html
https://www.juniper.net/documentation/en_US/vsrx/information-products/pathway-pages/security-vsrx-hyper-v-guide-pwp.html
https://www.juniper.net/documentation/en_US/vsrx/information-products/pathway-pages/security-vsrx-hyper-v-guide-pwp.html

Chapter 1

Introduction to vSRX on KVM

This chapter reviews virtualization in a nutshell and compares a traditional physi-
cal architecture with a virtual one. It then compares a physical network with a vir-
tual network, discussing the components involved and what changes in the
transition from physical to virtual. This follows with a virtual form of the SRX
Series, the vSRX, its basic components, and how it communicates. The chapter
concludes by detailing the minimum hardware and software requirements for in-
stalling vSRX on KVM and a brief on the licensing model.

Virtualization fundamentally centralizes administrative tasks while improving
scalability and workloads, which can lead to the consolidation of network infra-
structure, lower cost, greater security, ease of management, and other benefits.

Consider a scenario where there are no public transportation systems, such as rail-
ways and buses, and millions of people driving their own vehicles to reach their
destination. What happens? Frequent traffic congestion, increased use of fuels,
more air pollution, and a waste of everyone’s time.

Public transportation systems save lots of resources compared to every passenger
driving their own vehicle.

If you compare virtualization to a public transport system, then the physical host is
a train or bus and the virtual machines are the passengers. Adopting to virtualiza-
tion means that instead of using multiple computers running on their own hard-
ware (everyone has their own car), everything is moved to a single server that acts
as a host and runs virtual instances of multiple computers.

Let’s start with understanding how virtualization works and how networks are
virtualized.

10 Chapter 1: Introduction to vSRX on KVM

Virtualization in a Nutshell

Figure 1.1

Virtualization can be defined as the creation of multiple virtual resources from one
physical resource. This is similar to one physical system performing the same func-
tion as that of multiple physical systems.

Consider this example: you and your colleague share a project built on Windows
and have an executable in “.exe” format. What do you do? How do you run it?
Will you go to IT and say I need a Windows machine to run that executable?

What if you can run Windows in a virtualized environment? It could be the solu-
tion you’re looking for, and a fruitful one, too, saving you time and resources.

Yes, this is doable. All you need is a special software package that allows virtual-
ized environments to be built on top of your host machine.

Your laptop is hardware (a metal or plastic box that you carry in your backpack)
and the moment you power it up, it boots up with installed software (let’s say
MacOS). This software gives you the look and feel of the host machine. Now, to
enable a virtualized environment, the special software you need is known as a
hypervisor. A hypervisor sits between the hardware and software layer and allows
for the host to be virtualized. This is what allows Windows to run on MacOS.

Figure 1.1 further illustrates how a hypervisor alters a traditional architecture.

Application

Operating Virtualization
System Layer
 —|

—

Hardware Hardware
Traditional Virtual
Architecture Architecture

Traditional and Virtual Architecture

On the left side of Figure 1.1 you have a traditional architecture composed of the
underlying host hardware, the host operating system (OS) installed, and applica-
tions running on the OS. When you compare this to virtualized architecture, you
have a virtualization layer that fits between the hardware and the OS.

11 Virtualization in a Nutshell

The host (let’s say an x86 hardware) contains all the physical interface cards,
CPUs, and memory, and also contains the base operating system (for example,
Ubuntu). On top of this you deploy the hypervisor, and then install Windows in a
virtual form—or let’s say SRX—in a virtual form factor.

It’s the hypervisor that exposes the underlining hardware resources and partitions
your physical server hardware into multiple virtual machines (VM). VMs are an
instance created by utilizing the physical hardware resources.

Multiple VMs can run on top of a host machine and share the same physical host
resources, and they act like a real computer with their operating system and de-
vices (virtual hardware — CPUs, Memory, I/O).

Comparing a Physical Network with a Virtual Network

Figure 1.2

Let’s discuss what changes from the physical networking prospective when you
add virtual resources. Figure 1.2 visualizes a simple enterprise network — a typical
office network.

Switch Router

N External
Network

pNIC

2

Qc
gc

Physical Network Topology

12 Chapter 1: Introduction to vSRX on KVM

Figure 1.3

The components of Figure 1.2 are:

End user devices: laptops, desktops, guest user devices.

Physical NIC (pNIC): network interface cards on end user devices.
Servers: database server, ticketing tool server, authentication server.
Layer 2 switches: connecting user machines to servers.

External network: the switch is usually connected to a cable or DSL modem or
router which provides Internet access to end user devices.

Physical servers use one or multiple network interfaces cards (NICs). Those physi-
cal NICs connect to physical switch ports. NIC communicates with other NICs in
the same network using a network switch, and also when connecting to a different
network, such as the Internet. The switch is connected to a router that allows net-
works to communicate with each other.

However, in a virtual world most of the physical components get converted into a
virtual component. Figure 1.3 captures what those changes are.

vSwitch Router
—, External
P Network

pNIC pNIC

VvNIC

Physical Server

Network with Open vSwitch or Linux Bridge

13 Introduction to vSRX

And the components of Figure 1.3 are:

m Host server: physical server runs the operating systems and hypervisor
software.

m Virtual end user devices: in virtual networks, these are VMs run as a software
entity within the host server.

m Virtual NIC: VMs have vNICs connecting them to a virtual switch.

m Virtual switch: virtual switches provide inter-VM connectivity as well as
external access to a physical switch.

m Physical NIC: the physical NIC are installed on physical host servers and
support network connectivity to external networks.

m External network: the switch is usually connected to a cable or DSL modem or
router which provides Internet access to end user devices.

You can see the difference that virtualization brings to the plate as compared to a
physical networking setup.

In virtual networks, virtual devices and VMs are connected to virtual switches
through vNICs.

How does a virtual switch provide external physical network access or Internet
connectivity to virtual machines?

The answer is that the virtual switch uses the pNICs associated with the host serv-
er to connect the virtual network to the physical network.

Network functions like routing, switching, firewalls, load balancing, and many
more are being virtualized because of the cost savings that virtualization brings to
the table. The Juniper virtualized platform for security is vSRX, with other func-
tions represented by the vMX in the routing sector and the vQFX in the switching
sector.

Introduction to vSRX

The vSRX is a virtual Juniper Networks SRX Series firewall that is optimized to
run as software on x86 servers. Like other physical SRX Series devices, the vSRX
runs on Junos OS and offers the same features as the SRX Series firewalls.

The vSRX can be installed on any server hardware of your choice, as long as it is
x86-based with an Intel Nehalem or newer generation CPU, and running KVM or
VMware.

14 Chapter 1: Introduction to vSRX on KVM

vSRX Architecture

Let’s briefly review the basic architecture of the vSRX before installing and config-
uring it. Figure 1.4 shows the building blocks of the vSRX virtual firewall.

VSRXVM

Junos Control Plane

Advanced Services

MGD
(Management
DEE)]

RPD

Flow Processin;
(Routing Protocol E

Daemon) Packet Forwarding

DPDK
(Data Plane Development Kit)
Junos OS

(64-bit SMP, FreeBSD 11.x)

HYPERVISORS / CLOUD ENVIRONMENTS

KVM AWS Microsoft @
(Kernel-based (Amazon Azure

Virtual Web Cloud Contrail Cloud

Machines) Services) Deployment Deployment

Physical x86

Figure 1-4 VSRX Architecture

NOTE This architecture diagram and this book are based on the vSRX3.0,
which is supported from Junos OS Release 18.4R1 onwards.

MORE? Always check the vSRX product pages for the latest iterations of vSRX
releases and the TechLibrary’s Release Notes: https://www.juniper.net/documenta-
tion/product/en_US/vsrx and https://www.juniper.net/documentation/en_US/vsrx/
information-products/topic-collections/release-notes/18.4/index.html.

Table 1.1 provides details on the components of the vSRX architecture.

https://www.juniper.net/documentation/product/en_US/vsrx
https://www.juniper.net/documentation/product/en_US/vsrx
https://www.juniper.net/documentation/en_US/vsrx/information-products/topic-collections/release-notes/18.4/index.html
https://www.juniper.net/documentation/en_US/vsrx/information-products/topic-collections/release-notes/18.4/index.html

15 Introduction to vSRX

Table 1.1 vSRX Architecture Components

Component Description

Physical X86 The server at the hardware layer contains the physical network interface cards (NICs),
CPUs, and memory. This can be any industry standard x86 servers (running Intel
processors) that support virtualization capabilities.

Hypervisors Over the hardware layer, kernel-based virtual machine (KVM), VMware ESXi provides
the host environment for vSRX to run as a VM. This manages the boot complex, CPU
memory storage, and various other hardware components of the host.

Guest OS Junos OS runs as a guest OS; it runs the control plane as Routing Engine and the data
plane as Packet Forwarding Engine. The Packet Forwarding Engine does utilize DPDK
for higher performance.

vCPU Represents the logical CPU virtualized by the Intel x86 64-bit CPU. vSRX uses one virtual

CPU (vCPU) for the Routing Engine and at least one vCPU for the Packet Forwarding
Engine.

Management process
MGD/ Routing
protocol process
(RPD)

MGD provides communication between the other processes and an interface to the
configuration database.

RPD defines how routing protocols such as RIP, OSPF, and BGP operate on the device,
including selecting routes and maintaining forwarding tables.

Packet Forwarding

Processes packets and applies filters, routing policies, and other security features.

DPDK

A set of data plane libraries and network interface controller drivers for fast packet
processing on Intel A platform.

Supports para-virtualized NIC drivers like Virtio VMXNET3, and direct I/O like
SR-IOV.

You can install the vSRX virtual firewall on:

= KVM

® VMware ESXi,

® Juniper Networks Contrail

® Amazon Web Services (AWS) cloud

® Microsoft Azure Cloud

MORE? For a list of up-to-date supported platforms for vSRX, see Juniper’s

Feature Explorer application:

https://apps.juniper.net/home/#vSRX/Features

https://apps.juniper.net/feature-explorer/parent-feature-info.
html?pFName=Virtualization.

https://apps.juniper.net/home/#vSRX/Features
https://apps.juniper.net/feature-explorer/parent-feature-info.html?pFName=Virtualization
https://apps.juniper.net/feature-explorer/parent-feature-info.html?pFName=Virtualization

16 Chapter 1: Introduction to vSRX on KVM

How vSRX Communicates

When you talk about interfaces, something like 1-Gigabit Ethernet (ge) or
10-Gigabit Ethernet (xe) interface, comes to mind. Since this is a virtualized envi-
ronment, it’s wise to also learn about the virtualized terminologies about virtual-
ized interfaces.

This Day One book focuses on KVM running on top of Ubuntu as its host OS, so
let’s understand the interfaces within this context and you’ll know the terms we’re
using.

A VM NIC (also known as a vNIC) on the KVM hypervisor, is known as a
VIRTIO interface and uses the keyword “vnet” to define it in configuration.

When two VMs are running on the same host and you want them to communi-
cate, this communication is provided by one of the following mediums:

®m Linux bridge

m Open Virtual Switch (OVS) - (Out of scope for this Day One book)
m SR-IOV (Single Root IO Virtualization)

m PCI pass-through

Figure 1.5 illustrates these virtual interfaces.

Hardware

Virtual Environment
VM 1 VM 2 VM 3

ethO - ethO - ethO

Linux Bridge

tapO [or Open vSwitch

v

Physical NIC E Physical NIC E

Figure1.5 Network with OpenVswitch or Linux Bridge

17 vSRX Minimum Hardware and Software Requirements

The virtual switch (Linux Bridge) works on lines similar to that of a physical
switch and assists in communication between multiple VMs that are connected to
it. The virtual switch can also have a connection to a physical NIC if the traffic is
required to flow outside the network. In a high-performance scenario, that is, at
throughput requirements of 3Gbps or greater for a VM, VIRTIO connectivity is
not feasible. vSRX supports pass-through of the virtual switch by directly com-
municating with the physical NIC.

There are two supported variants:

m SR-IOV - This variant allows a physical function to appear as multiple vINICs,
appearing as virtual functions.

m PCl-pass-through — This variant allows a physical function to appear directly
for a VM, bypassing the KVM hypervisor completely.

MORE? You can find information about OVS at: http://www.openvswitch.org/.

vSRX Minimum Hardware and Software Requirements

Before you start, install, and configure the vSRX, make sure your VM host meets
the following recommended hardware, server platform, and software require-
ments as provided in Table 1.2.

Table 1.2 Minimum Hardware and Software Requirements
Requirements Description
Linux KVM Hypervisor support Ubuntu 14.04.5, 16.04, and 16.10
Memory 4-32 GB
Disk space 20 GB IDE drive
vCPUs 2-17 vCPUs
Network Interface Cards 2-8 vNICs
Virtio

SR-IOV (Intel 82599, X520/X540)
SR-IOV (X710/XL710)

PCI pass-through (Intel XL710). PCI pass-through (Intel XL710) is
required if you intend to scale the performance and capacity of a vSRX
to 9 or 17 vCPUs and 16 or 32 GB vRAM.

Software Bridges Supports software-based virtual switches such as the Linux bridge or
the OpenVswitch bridge, and direct connectivity to PCI Pass-through
or an SR-IOV capable adapter.

http://www.openvswitch.org/

18 Chapter 1: Introduction to vSRX on KVM

MORE? For the latest updates to these requirements and the possible addition of
more supported platforms, always check the TechLibrary first: https://www.juni-
per.net/documentation/en_US/vsrx/topics/reference/general/security-vsrx-system-
requirement-with-kvm.html.

You may need to download a specific Junos OS release to take advantage of cer-
tain features.

vSRX Sizing Information

Table 1.3 lists the multicore vSRX flavors available for deployment.

Table 1.3 Available vSRX Flavors
Flavors RE vCPUs PFE vCPUs VRAM
Small 1 1 4G
Medium 1 4 8G
Large 1 8 16G
Extra Large 1 16 32G

For example, if a vSRX VM has 2 vCPUs and 4 GB of vRAM, the vSRX boots to
the smaller vCPU size. You can scale up a vSRX instance to a higher number of
vCPUs and amount of vRAM, but you cannot scale down an existing vSRX in-
stance to a smaller setting.

NOTE Scaling of the VM is discussed at the end of this book.

MORE? This Day One book is written with Junos OS (18.4) using vSRX3.0
architecture. In 18.4, vSRX3.0 supports small and medium flavors; support for
higher flavors are planned in upcoming releases. Please check the latest version
release notes for confirmation of the same::
https://www.juniper.net/documentation/en_US/vsrx/information-products/
topic-collections/release-notes/18.4/index.html.

Obtaining a vSRX Evaluation License

Okay, before installing the vSRX, the last item on your checklist is whether you
have an appropriate license. There’s good news here.

To speed deployment of licensed features, the vSRX software image provides you
with a 60-day product evaluation or trial license. This means when you download
and install the vSRX image, you are entitled to use the trial license for 60 days.
This product-unlocking license is required in order to use the basic functions of the

https://www.juniper.net/documentation/en_US/vsrx/topics/reference/general/security-vsrx-system-requirement-with-kvm.html
https://www.juniper.net/documentation/en_US/vsrx/topics/reference/general/security-vsrx-system-requirement-with-kvm.html
https://www.juniper.net/documentation/en_US/vsrx/topics/reference/general/security-vsrx-system-requirement-with-kvm.html
https://www.juniper.net/documentation/en_US/vsrx/information-products/topic-collections/release-notes/18.4/index.html
https://www.juniper.net/documentation/en_US/vsrx/information-products/topic-collections/release-notes/18.4/index.html

19 Summary

Summary

vSRX, such as networking, routing, and basic security features (such as stateful
firewall). You need to install a 30-day advanced security features license in order
to configure advanced security features.

DOWNLOAD You can download the trial license for advanced security features
from the vSRX Free Trial License Page at: https://www.juniper.net/us/en/dm/
free-vsrx-trial/.

Those are the fast track basics of virtualization and how a virtualized architecture
and network are different than a traditional architecture and network. The chap-
ter also covered the vSRX architecture (Routing Engine and Packet Forwarding
Engine), the platforms vSRX supports, what BSD vSRX is based on, and how
vSRX communicates within and outside a KVM host. And you have a checklist for
the minimum requirements for running a vSRX instance and the evaluation license
program. Now let’s install vSRX on KVM.

https://www.juniper.net/us/en/dm/free-vsrx-trial/
https://www.juniper.net/us/en/dm/free-vsrx-trial/

Chapter 2

Getting Started with vSRX on KVM

Let’s dig deeper into virtualization and create our first VM running the top-grade
Junos OS. Upon completion of this chapter, you will have the host with all the re-
quired software packages to run a VM. The host will be running multiple virtual
networks and a vSRX VM which you will configure and manage using basic com-
mands supported on the Junos security platform. Let’s get started.

Preparing the Host System for vSRX Installation

Chapter 1 discussed the architecture of vSRX. A virtual flavor of SRX can be in-
stantiated on various platforms. In this Day One book, we will concentrate on
KVM running on Ubuntu as the host operating system.

NOTE All configuration steps have been tested with Ubuntu versions 14.04.4 and
16.04. Though the snapshots in this Day One book are based on version 16.04,
version 14.04 varies in naming convention of the interfaces (emX in 14.04 as
compared to enoX in 16.04).

To install Ubuntu 16.04 in the host server, you need to download the ISO image
from the Ubuntu website: http://releases.ubuntu.com/16.04/. The Ubuntu image
available at the time of writing this book is: Ubuntu-16.04.5-server-amd64.iso.
The ISO can be loaded as a Virtual CD and a boot sequence can be set to boot
from the said ISO installation media. The installation process has multiple GUI
steps that you need to follow to install the Ubuntu server.

http://releases.ubuntu.com/16.04/

21 Preparing the Host System for vSRX Installation

IMPORTANT Follow the tutorial on the Ubuntu website: https://tutorials.
ubuntu.com/tutorial/tutorial-install-ubuntu-server-1604#0 .

Okay. Upon installation of Ubuntu 16.04 on your host, let’s verify the software
and kernel version and install the required Linux packages.
Verifying Software and Kernel Version
Follow these steps on your host machine to check basic information.
Step 1: Log in to the host machine using the SSH connection.

Step 2: Get to know your host system better by learning the name of the host,
software version, Linux kernel, and so on.

To check the details of the host, use the command uname (short for UNIX name)
which prints the details of the host:

root@LabHost:~# uname

Linux
(uname defines the kernel of the host)
Append ‘—-help’ with uname and you will immediately see list of possible entries.

Options (-s,-r,-v,-p) provide the information we require or we can use —a to view all details.
root@LabHost:~# uname -s

Linux

root@LabHost:~# uname -r

4.4.0-131-generic

root@LabHost:~# uname -v

#157-Ubuntu SMP Thu Jul 12 15:51:36 UTC 2018

root@LabHost:~# uname —p

x86_64

root@LabHost:~# uname -a

Linux LabHost 4.4.0-131-generic #157-Ubuntu SMP Thu Jul 12 15:51:36 UTC 2018 x86_64 x86_64 x86_64 GNU/
Linux

Step 3: Check the Ubuntu version:

root@LabHost:~# cat /proc/version
Linux version 4.4.0-131-generic (buildd@lgw@l-amd64-015) (gcc version 5.4.0 20160609 (Ubuntu
5.4.0-6ubuntul~16.04.10)) #157-Ubuntu SMP Thu Jul 12 15:51:36 UTC 2018

Installing Required Linux Packages

Once you have a host running with the Ubuntu operating system, the following
steps will help you to confirm that all the required packages are up to date, and if
they are not, to get them installed.

NOTE The apt in apt-get stands for advanced packaging tool and is a package
manager that allows the Linux system to download and install the packages.
The utility first checks the host for available packages, then updates the existing
package by downloading the new files required to keep the package up to date.
Follow these steps.

22 Chapter 2: Getting Started with vSRX on KVM

NOTE It is recommended that you log in as a root user so as not to use sudo in
each command and enter password twice.

Step 1: Update the list of available packages and their versions.

root@LabHost:~# apt-get update

Step 2: Install latest versions of the packages you have.

root@LabHost:~# apt-get upgrade

Step 3: Install the KVM and other required packages.

root@labHost:~# apt-get install gemu-kvm libvirt-bin bridge-utils

Step 4: Install GUI for Linux, that is, virt-manager.

root@labHost:~# apt-get install virt-manager

Step 5: Install the QEMU system package.

root@labHost:~# apt-get install gemu-system

Let’s divide an apt-get option into the following four stages:
m Checking the required and already installed packages.
m Fetching the required files.

m Unpacking the required files.

m Installing the package.

NOTE You must have HTTP access to the Internet to download these packages.

For example, here is what apt-get install output looks like:

root@LabHost:~# apt-get install gemu-system
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
gemu-slof gemu-system—arm gemu-system-mips gemu-system-misc gemu-system—ppc gemu-system-sparc
Suggested packages:
gemu samba vde2 openbios—ppc openhackware
The following NEW packages will be installed:
gemu-slof gemu-system gemu-system-arm gemu-system-mips gemu-system-misc gemu-system—ppc gemu-—
system-sparc
0 upgraded, 7 newly installed, @ to remove and 4 not upgraded.
Need to get 23.7 MB of archives.
After this operation, 154 MB of additional disk space will be used.
Do you want to continue? [Y/n] y
Get:1 http://in.archive.ubuntu.com/ubuntu xenial-updates/main amd64 gemu-system-
arm amd64 1:2.5+dfsg-5ubuntul@.34 [4,120 kB]
Get:2 http://in.archive.ubuntu.com/ubuntu xenial-updates/main amd64 gemu-system-
mips amd64 1:2.5+dfsg-5ubuntul@.34 [4,924 kB]
Get:3 http://in.archive.ubuntu.com/ubuntu xenial-updates/main amd64 gemu-slof all 20151103+dfsg-

23 Preparing the Host System for vSRX Installation

lubuntul.l [173 kB]

Get:4 http://in.archive.ubuntu.com/ubuntu xenial-updates/main amd64 gemu-system-—
ppc amd64 1:2.5+dfsg-5ubuntul@.34 [5,747 kB]

Get:5 http://in.archive.ubuntu.com/ubuntu xenial-updates/main amd64 gemu-system-—
sparc amd64 1:2.5+dfsg-5ubuntul@.34 [2,000 kB]

Get:6 http://in.archive.ubuntu.com/ubuntu xenial-updates/main amd64 gemu-system-—
misc amd64 1:2.5+dfsg-5ubuntul@.34 [6,773 kB]

Get:7 http://in.archive.ubuntu.com/ubuntu xenial-updates/main amd64 gemu-system amd64 1:2.5+dfsg-
5ubuntul@.34 [6,104 B]

Fetched 23.7 MB in 2min 55s (136 kB/s)

Selecting previously unselected package gemu-system-arm.

(Reading database ... 84651 files and directories currently installed.)
Preparing to unpack .../gemu-system-arm_1%3a2.5+dfsg-5ubuntul®.34_amd64.deb ...
Unpacking gemu-system—arm (1:2.5+dfsg-5ubuntul@.34)

Selecting previously unselected package gemu-system-mips.

Preparing to unpack .../gemu-system-mips_1%3a2.5+dfsg-5ubuntul®@.34_amd64.deb ...
Unpacking gemu-system-mips (1:2.5+dfsg-5ubuntul@.34)

Selecting previously unselected package gemu-slof.

Preparing to unpack .../gemu-slof_20151103+dfsg-lubuntul.1l_all.deb ...

Unpacking gemu-slof (20151103+dfsg-lubuntul.l)

Selecting previously unselected package gemu-system—ppc.

Preparing to unpack .../gemu-system-ppc_1%3a2.5+dfsg-5ubuntul@.34_amd64.deb ...
Unpacking gemu-system-ppc (1:2.5+dfsg-5ubuntul@.34)

Selecting previously unselected package gemu-system-—sparc.

Preparing to unpack .../qemu-system-sparc_1%3a2.5+dfsg-5ubuntul@.34_amd64.deb ...
Unpacking gemu-system-sparc (1:2.5+dfsg-5ubuntul@.34)

Selecting previously unselected package gemu-system-misc.

Preparing to unpack .../gemu-system-misc_1%3a2.5+dfsg-5ubuntul®@.34_amd64.deb ...
Unpacking gemu-system-misc (1:2.5+dfsg-5ubuntul@.34)

Selecting previously unselected package gemu-system.

Preparing to unpack .../gemu-system_1%3a2.5+dfsg-5ubuntul@.34_amd64.deb ...
Unpacking gemu-system (1:2.5+dfsg-5ubuntul@.34)

Processing triggers for man-db (2.7.5-1)

Setting up gemu-system-arm (1:2.5+dfsg-5ubuntul@.34)

Setting up gemu-system-mips (1:2.5+dfsg-5ubuntul@.34)

Setting up gemu-slof (20151103+dfsg-lubuntul.l)

Setting up gemu-system-ppc (1:2.5+dfsg-5ubuntul@.34)

Setting up gemu-system-sparc (1:2.5+dfsg-5ubuntul@.34)

Setting up gemu-system-misc (1:2.5+dfsg-5ubuntul@.34)

Setting up gemu-system (1:2.5+dfsg-5ubuntul@.34)

Virtual Networks
You need virtualized networks to process packets between VMs.

Our host OS is Ubuntu, and it is presumed you have installed KVM. We have
KVM convert the host OS into a hypervisor and expose the underlining hardware
to the VM. The VMs have vNIC and one VM can have multiple vINICs. The host
NIC is called a pNIC (physical NIC).

Virtual networks can be broadly classified as:
1. Linux bridge
2. OpenvSwitch [Out of scope of this Day One +book]

24 Chapter 2: Getting Started with vSRX on KVM

A Linux bridge acts as a network switch. You can connect both physical interfaces

(example: eth0) and virtual interfaces to the Linux bridge.

An OpenvSwitch (OVS) is an open source multilayer virtual switch. It enables
massive network automation through programmatic extensions. It can replace
Linux bridges.

Both Linux bridge and OVS offer switching infrastructure for the VMs to com-
municate. Also, pNICs can be connected to either for out-of-host connectivity.

This Day One focuses on using Linux bridges for VM communication.

With KVM installed correctly on the host, a predefined network named “default”
is already configured for us. Follow these steps on your host to verify that the de-
fault network is created:

Step 1: Check the networks installed on the host.

root@LabHost:~# virsh net-list ——all
root@LabHost:/etc/libvirt/gemu/networks# virsh net-list —--all

Name

State Autostart Persistent

default

active yes yes

Step 2: Check the details of the networks.

To display the details of the default network in XML format, use the option more as
shown here:

root@LabHost:~# more /etc/libvirt/gemu/networks/default.xml

<!—

WARNING: THIS IS AN AUTO-GENERATED FILE. CHANGES TO IT ARE LIKELY TO BE
OVERWRITTEN AND LOST. Changes to this xml configuration should be made

using:

virsh net-edit default
or other application using the libvirt API.

-

<network>

<name>default</name>
<uuid>908e88b6-2f5a-40ba-843e-09a5286ad764</uuid>
<forward mode='nat’/>

<bridge name='virbr@’ stp='on’ delay='0'/>

<mac address='52:54:00:56:10:fc’/>

<ip address='192.168.122.1" netmask='255.255.255.0">

<dhcp>

<range start='192.168.122.2"' end='192.168.122.254"/>

</dhcp>
</ip>
</network>
root@LabHost:~#

Step 3: Display more details about the default installed network.

25 Preparing the Host System for vSRX Installation

root@LabHost:~# virsh net—dumpxml default
<network>
<name>default</name>
<uuid>908e88b6-2f5a-40ba-843e-09a5286ad764</uuid>
<forward mode='nat’>
<nat>
<port start='1024' end='65535"/>
</nat>
</forward>
<bridge name='virbr@’ stp='on’ delay='0’'/>
<mac address='52:54:00:56:10:fc’/>
<ip address='192.168.122.1" netmask='255.255.255.0">
<dhcp>
<range start='192.168.122.2' end='192.168.122.254"/>
</dhcp>
</ip>
</network>

The output here shows that the network default is part of the Linux Bridge virbro.

Step 4: Check the details of network using bridge utility brett:

root@LabHost:~# brctl show virbro
root@LabHost:~# brctl show virbro
bridge name bridge id STP enabled interfaces
virbro 8000.5254005610fc yes virbr@-nic

Configuring Virtual Networks

Now let’s create some virtual networks to bind the VMs we create together. Cre-
ate the following three virtual networks:

1. Default
2. Routed [green_net]
3. Routed [red_net]

Create the Management [Default] Virtual Network

If the host does not have the default network configured, use the following steps
to create a default network. Otherwise, skip this procedure and start creating the
green_net and red_net networks.

IMPORTANT If the host already has a default network and if you try to create it
again, you might get an error message.

NOTE The networks are written in XML format and the virsh utility stores the
XML files of the networks in /etc/libvirt/qemu/networks.

26 Chapter 2: Getting Started with vSRX on KVM

Step 1: Navigate to the directory: /etc/libvirt/qgemu/networks:

root@LabHost:~# cd /etc/libvirt/gemu/networks

Step 2: Create the XML file for the network. Copy and paste the following
snippet:

root@LabHost: /etc/libvirt/gemu/networks # nano default.xml
<network>
<name>default</name>
<bridge name="virbr@”/>
<forward mode='nat’/>
<nat>
<port start ='1024' end='65535" />
</nat>
<bridge name='virbr@’ stp='on’ delay='0’' />
<ip address="192.168.122.1" netmask="255.255.255.0">
<dhcp>
<range start="192.168.122.2"end="192.168.122.254"/>
</dhcp>
</ip>
</network>
Step 3: Press Ctrl-X to exit and Press Y for Yes to save the changes.

Step 4: Define, start, and set the network to autostart once boot process com-
pletes.

Use the following three commands to first define, then start/autostart, the
network:

root@LabHost:~# virsh net-define /etc/libvirt/qemu/networks/default.xml
root@LabHost:~# virsh net-start default
root@LabHost:~# virsh net-autostart default

TIP The default network is by default set in “NAT” mode, meaning the
management interface is connected to the Internet, and the VM can also have
Internet connectivity as the private IP address would be NATED automatically by
the Host.

Create the Routed [green_net] Virtual Network
Let’s use the following steps to create a network green_net.

Step 1: Navigate to the location and create XML file. Create a file with the name
green_net.xml at /etc/libvirt/qemu/networks. Enter the following snippet:

root@LabHost:~# nano /etc/libvirt/qemu/networks/green_net.xml
<network>
<name>green_net</name>
<forward mode=’route’/>
<bridge name='green_net’ stp='on’ delay='0'/>
<ip address='192.168.123.1’' netmask='255.255.255.0">
<dhcp>
<range start='192.168.123.100' end='192.168.123.250'/>
</dhcp>
</ip>
</network>

27 Preparing the Host System for vSRX Installation

Step 2: Press Ctrl-X to exit and Press Y for Yes to save the changes.

Step 3: Define, start, and set the network to autostart once the boot process
completes. Use the following three commands to first define the network, and then
start/autostart the network:

root@LabHost:~# virsh net-define /etc/libvirt/qemu/networks/green_net.xml
root@LabHost:~# virsh net-start green_net

root@LabHost:~# virsh net-autostart green_net

root@LabHost:~# virsh net-define /etc/libvirt/qemu/networks/green_net.xml
Network green_net defined from /etc/libvirt/gemu/networks/green_net.xml

root@LabHost:~# virsh net-start green_net
Network green_net started

root@LabHost:~# virsh net-autostart green_net
Network green_net marked as autostarted

The network is created and started. The XML file should be updated with the
unique UUID (universally unique identifier) and MAC address.

Step 4: Check the XML for details. Open the file green_net.xml that you just
created and check the changes:

root@LabHost:~# more /etc/libvirt/qemu/networks/green_xml.xml
root@LabHost:~# more /etc/libvirt/qemu/networks/green_net.xml
<!—-
WARNING: THIS IS AN AUTO-GENERATED FILE. CHANGES TO IT ARE LIKELY TO BE
OVERWRITTEN AND LOST. Changes to this xml configuration should be made
using:

virsh net-edit green_net
or other application using the libvirt API.
_

<network>
<name>green_net</name>
<uuid>cc8867f9-4523-4f1f-b8b6-5e19c36084fe</uuid>
<forward mode='route’/>
<bridge name='green_net’ stp='on’ delay='0'/>
<mac address='52:54:00:4b:9a:07' />
<ip address='192.168.123.1" netmask='255.255.255.0">
<dhcp>
<range start='192.168.123.100" end='192.168.123.250"/>
</dhcp>
</ip>
</network>
root@LabHost:~#

root@LabHost:~# virsh net-list
Name State Autostart Persistent

default active yes yes
green_net active yes yes

28 Chapter 2: Getting Started with vSRX on KVM

NOTE Since this virtual network is in route mode, traffic would only be routed
and not NAT’d. Also note the IP address is useful if DHCP is being used for the
connected interfaces, or else the interfaces can be connected with any static
address and this virtual network will work as a normal bridge.

Create the Routed [red_net] Virtual Network
Use the following steps to create a network green_net:

Step 1: Create an XML file in directory: /etc/libvirt/qgemu/networks. You can use
the following snippet:

root@LabHost:~# nano /etc/libvirt/qgemu/networks/red_net.xml
<network>
<name>red_net</name>
<forward mode='route’/>
<bridge name='red_net’ stp='on’ delay='0'/>
<ip address='192.168.124.1" netmask='255.255.255.0">
<dhcp>
<range start='192.168.124.100" end='192.168.124.250"'/>
</dhcp>
</ip>
</network>

Step 2: Define, start, and auto-start the network:

root@LabHost:~# virsh net-define /etc/libvirt/gemu/networks/red_net.xml
Network red_net defined from /etc/libvirt/qemu/networks/red_net.xml
root@LabHost:~# virsh net-start red_net

Network red_net started

root@LabHost:~# virsh net-autostart red_net

Network red_net marked as autostarted

Step 3: Check that the network has been started:

root@LabHost:~# more /etc/libvirt/qemu/networks/red_net.xml

<!—

WARNING: THIS IS AN AUTO-GENERATED FILE. CHANGES TO IT ARE LIKELY TO BE

OVERWRITTEN AND LOST. Changes to this xml configuration should be made using:
virsh net-edit red_net

or other application using the libvirt API.

—_>

<network>
<name>red_net</name>
<uuid>3ef5070e-1cf2-4095-a2a8-c162003fdb87</uuid>
<forward mode='route’'/>
<bridge name='red_net’ stp='on’ delay='0'/>
<mac address='52:54:00:16:2d:c5'/>
<ip address='192.168.124.1" netmask='255.255.255.0">
<dhcp>
<range start='192.168.124.100' end='192.168.124.250'/>
</dhcp>
</ip>
</network>

29 Installing vSRX on KVM

Next, let’s take another look at the three networks that we have created. Run the
following two commands to get network information.

Virsh command:

root@LabHost:~# virsh net-list —-all
root@LabHost:~# virsh net-list —--all
Name State Autostart Persistent
default active yes yes
green_net active yes yes
red_net active yes yes
Brctl command:
root@LabHost:~# brctl show
root@LabHost:~# brctl show
bridge name bridge id STP enabled interfaces
green_net 8000.5254004b9a07 yes green_net-nic
red_net 8000.525400162dc5 yes red_net-nic
virbro 8000.5254005610fc yes virbr@-nic

Installing vSRX on KVM

Now that you have the required packages, such as KVM, QEMU, and Libvirt, in-
stalled on the host OS, and you’ve created a few virtual networks, too, it’s time to
instantiate our first vSRX VM.

A VM instance requires specifying multiple important parameters that define a
running VM. Let’s jot down all the required ones. Values shown in the following
list are sample values only and you must change any details necessary to match
your network configuration:

® VM name [=vSRX_00]

® RAM [=4096]

m CPU Model [=SandyBridge]
m Number of vCPUs [=2]

m Base Architecture [=x86_64]
m Image of the VM [=<vSRX>.qcow2]

m Image Format [=qcow2]

m Disk Size [=20]

m Device Type [=disk]

m OS Type [=Linux]

m Networks to be imported [=default, green_net,red_net]

30 Chapter 2: Getting Started with vSRX on KVM

Use the CLI and the virt-install command to pass all the required parameters and
start the installation process for a vSRX instance.

NOTE A GUI version (virt-manager) is also available to perform the same task.
However, some actions cannot be performed using the GUI and you are required
to use the CLI. So, to avoid confusion, we have used CLI throughout the book and
discussed the GUI procedure in the Appendix.

To create the VM, use the following sequence.

Step 1: Download your copy for the vSRX from the Juniper website: https://
support.juniper.net/support/downloads/.

Step 2: Now, retain this image file as a master file and also create a copy of the
image file.

When you create a copy of the image file, name it in-line with the VM you are
about to spin. In this example, copy and name the image file as img_vSRX_00.qcow2;
and then use the name for creating vSRX_00 VM:

root@LabHost:/var/lib/libvirt/images# cp junos-vsrx3-x86-64-18.4R1.8.qcow2 img_vSRX_00.qgcow2
root@LabHost:/var/lib/libvirt/images# cd ~

root@LabHost:~# 1ls -la /var/lib/libvirt/images/

total 1430284

drwx--x--x 2 root root 4096 Jan 26 08:38 .

drwxr-xr-x 7 root root 4096 Jan 26 06:36 ..

—-rw—-r——r—— 1 root root 732299264 Jan 26 08:38 img_vSRX_00.qcow2

-rw-r——r—— 1 root root 732299264 Jan 26 05:22 junos-vsrx3-x86—64-18.4R1.8.qcow2

Step 3: Install the vSRX VM.

Copy and paste the following snippet in a text editor to confirm that spaces are
copied correctly:

virt-install —--name vSRX_0@0 --ram 4096 —-cpu SandyBridge, —-vcpus=2 —-arch=x86_64 —--disk path=/var/
lib/libvirt/images/img_vSRX_00.qcow2,size=16,device=disk,bus=ide, format=qcow2 —--os-type linux —-os-
variant rhel7 —--import --network=network:default,model=virtio —-network=network:green_
net,model=virtio —--network=network:red_net,model=virtio

root@LabHost:~# virt-

install ——name vSRX_00 —-ram 4096 ——cpu SandyBridge, —--vcpus=2 —-arch=x86_64 —--disk path=/var/lib/
libvirt/images/img_vSRX_00.qcow2,size=16,device=disk,bus=ide, format=qcow2 --os-type linux --os-
variant rhel7 —-import --network=network:default,model=virtio —-network=network:green_
net,model=virtio ——network=network:red_net,model=virtiok=network:green_

net,model=virtio —-network=network:red_net,model=virtio

Starting install...
Creating domain... | 0B 00:00:04

(virt-viewer:3196): GSpice-WARNING #*: PulseAudio context failed Connection refused
(virt-viewer:3196): GSpice-WARNING sk: pa_context_connect() failed: Connection refused

Domain creation completed.
root@LabHost:~#

https://support.juniper.net/support/downloads/
https://support.juniper.net/support/downloads/

31 Managing vSRX VM on KVM

NOTE Upon executing this command the virt-viewer console window will open,
which shows the boot logs printed on its screen. Close the window to complete the
domain creation.

Step 4: Check the status of the installed VM using the virsh command:

root@LabHost:~# virsh list —all
root@LabHost:~# virsh list ——all
Id Name State

1 VSRX_00 running
The output defines the unique identifier, name and the state of the VM.

Step 5: Check if the virtual networks you specified as parameters have been
connected to the VM:

root@LabHost:~# virsh domiflist vSRX_00
root@LabHost:~# virsh domiflist VvSRX_00

Interface Type Source Model MAC

vneto network default virtio 52:54:00:86:82:c2
vnetl network green_net virtio 52:54:00:25:e1:06
vnet2 network red_net virtio 52:54:00:9f:5e:6e

The output here displays that the specified networks are part of the VM, and also
lists details of the assigned MAC address and vNIC interface on the VM side.

Managing vVSRX VM on KVM

From the host, you can directly connect to the vSRX instance using the virsh com-
mand. Use the following steps to manage the VM:

Step 1: Access vSRX VM. Type the following virsh command to connect to the
console of the VM:

root@LabHost:~# virsh console vSRX_00
root@LabHost:~# virsh console vSRX_00
Connected to domain VvSRX_00

Escape character is %]

lag enhanced disabled 0

i >

If you execute the virsh console vSRX_00 command right after the virt-install, you
can watch the progress of the installation; it’s a quick process if you are using
vSRX version for Junos OS Release 18.4. But if you log on to the console after
boot the process completes, you’ll see the following prompt:

root@LabHost:~# virsh console vSRX_00

Connected to domain VvSRX_00
Escape character is *]

32 Chapter 2: Getting Started with vSRX on KVM

From here, you need to press Return [Enter Keyword] to get the login prompt:

root@LabHost:~# virsh console vSRX_00
Connected to domain vSRX_00
Escape character is *]

FreeBSD/amd64 (Amnesiac) (ttyu@)
login:

Step 2: At the login prompt, enter the root and at the password prompt, press
Enter:

root@LabHost:~# virsh console vSRX_00
Connected to domain vSRX_00

Escape character is *]

lag enhanced disabled 0

FreeBSD/amd64 (Amnesiac) (ttyu@)
login: root

——— JUNOS 18.4R1.8 Kernel 64-bit XEN JNPR-11.0-20181207.6c2f68b_2_bu
root@:~ #

Step 3: After you are authenticated, verify or check the vSRX with following
commands. To get to the CLI from the shell prompt, enter c1i and then enter the
show version command to confirm the version of the VM:

root@:~ # cli
root>

root> show version

Model: VvSRX

Junos: 18.4R1.8

JUNOS 0S Kernel 64-bit XEN [20181207.6c2f68b_2_builder_stable_11]
JUNOS 0S libs [20181207.6c2f68b_2_builder_stable_11]

JUNOS 0S runtime [20181207.6c2f68b_2_builder_stable_11]

JUNOS 0S time zone information [20181207.6c2f68b_2_builder_stable_11]
JUNOS 0S libs compat32 [20181207.6c2f68b_2_builder_stable_11]

JUNOS 0S 32-bit compatibility [20181207.6c2f68b_2_builder_stable_11]
JUNOS py extensions [20181217.004159_builder_junos_184_r1]

JUNOS py base [20181217.004159_builder_junos_184_r1]

Step 4: Check the hardware version:

root> show chassis hardware
Hardware inventory:

Item Version Part number Serial number Description
Chassis 8287c40d8c2b VSRX
Midplane
System IO
Routing Engine VSRX-S
FPC 0 FPC

PIC @ VSRX DPDK GE

Power Supply 0@

Note here that for Routing Engine, VSRX-S means that this is a small flavor of
vSRX.

33 Managing vSRX VM on KVM

Step 5: Check the Packet Forwarding Engine status:

root> show chassis fpc pic-status
Slot @ Online FPC
PIC 0@ Online VSRX DPDK GE
Step 6: Check the interfaces that are available for configuration:

root> show interfaces terse

Interface Admin Link Proto Local Remote

ge-0/0/0 up up

gr-0/0/0 up up

ip-0/0/0 up up

1sq-0/0/0 up up

1t-0/0/0 up up

mt-0/0/0 up up

sp-0/0/0 up up

sp-0/0/0.0 up up inet

inet6

sp-0/0/0.16383 up up inet

ge-0/0/1 up up

dsc up up

fti0 up up

fxp@ up up

fxp0.0 up up

gre up up

ipip up up

irb up up

100 up up

100.16384 up up inet 127.0.0.1 --> 0/0

100.16385 up up inet 10.0.0.1 --> 0/0
10.0.0.16 --> 0/0
128.0.0.1 --> 0/0
128.0.0.4 --> 0/0
128.0.1.16 --> 0/0

100.32768 up up

1si up up

mtun up up

pimd up up

pime up up

ppo up up

ppdo up up

pped up up

sto up up

tap up up

vlan up down

Table 2.4 lists the virtual networks mapped to the interfaces on vSRX VM.

Table 2.4 Network to Interface Mapping
Network Name vSRX Interfaces
default fxp0
green_net ge-0/0/0
red_net ge-0/0/1

34 Chapter 2: Getting Started with vSRX on KVM

NOTE The order in which networks are added using the virt-install command
determines its numbering in the VM.

Step 7: Log out from the VM and get back to the host, (press Ctrl +) from the
keyboard to return to the host).

Step 8: Stop the VM. To stop a VM gracefully, first perform a power off from
Junos:

root> request system power-off

Next, from the host, execute the following so it does not delete the VM instance
but just stops the VM:
root@LabHost:~# virsh destroy vSRX_00

root@LabHost:~# virsh list ——all
Id Name State

1 VSRX_00 running
root@LabHost:~# virsh destroy vSRX_00
Domain vSRX_00 destroyed

root@LabHost:~# virsh list —-all
Id Name State

- VSRX_00 shut off

Step 9: To restart or power up the inactive vSRX instance, execute the following
virsh command:

root@LabHost:~# virsh start vSRX_00
root@LabHost:~# virsh start vSRX_00
Domain VvSRX_00 started

root@LabHost:~#

root@LabHost:~# virsh console VvSRX_00

Connected to domain vSRX_00

Escape character is *]

/packages/sets/active/boot/os-kernel/

kernel text=0x451f38 data=0x83b38+0x30d940 syms=[0x8+0x95f28+0x8+0x826f2]
/packages/sets/active/boot/junos—net-platform/mtx_re.ko size 0x284fd8 at 0Oxcfc000
loading required module ‘netstack’
/packages/sets/active/boot/netstack/netstack.ko size ©0x1496958 at 0xf81000
loading required module ‘crypto’
/packages/sets/active/boot/os—crypto/crypto.ko size 0x43df@ at 0x2418000
loading required module ‘pvi_db’

root@LabHost:~# virsh list ——all
Id Name State

2 VSRX_00 running

35 Configuring vSRX VM on KVM

Configuring vSRX VM on KVM

Since you have installed your first VM instance, let’s start configuring it by issuing
a few basic commands in the following steps.

Step 1: Navigate through different modes in CLI. The ‘>’ symbol shows that we
are in operational mode. Type the following command to enter into configuration
mode:

root> configure

[edit]

root#

‘#' sign with edit in square brackets defines the configuration mode.

Step 2: Now configure the credentials and hostname. To set the root password
type the following command and then enter the password twice:

[edit]

root# set system root-authentication plain-text-password
New password: <Type Once>

ReType New Password : <Type Again>

root> configure

Entering configuration mode

[edit]

root# set system root-authentication plain-text-password
New password:

Retype new password:

[edit]
root# set system host-name vSRX_00

[edit]
root# commit
commit complete

[edit]
root@vSRX_00#

Step 3: Enter into configuration mode (working with the # hashtag prompt) once
Junos responds commit complete, this confirms that the configuration has been
applied. Notice that we are in configuration mode.

Step 4: Navigating through the different modes, exit three times so as to log in
with the just-set root password:

[edit]
root@vSRX_00# exit
Exiting configuration mode

root@vSRX_00> exit
root@:~ # exit
logout

36 Chapter 2:

Getting Started with vSRX on KVM

FreeBSD/amd64 (vSRX_00) (ttyu®)

login: root
Password:

Last login: Sat Jan 26 03:23:47 on ttyu@

——— JUNOS 18.4R1.8 Kernel 64-bit XEN JNPR-11.0-20181207.6c2f68b_2_bu

root@vSRX_00:~ #

[edit]

Since only one console connection to the VM is allowed, what if you need multiple
console connections for multiple sessions to the same VM?

The solution is to use SSH connections to the VM from the host on the fxp0 (man-
agement). Remember, while configuring/checking the “default” predefined VM,
we saw an IP subnet defined and a DHCP address space allocated [192.168.122.2
t0 192.168.122.254]. We can leverage the same and configure the vSRX fxp inter-
face to act as a DHCP client to receive an IP address in the range.

To gain SSH access to the VM follow these steps.
Step 1: Log in to vSRX_00VM using the console and configure fxp0:

root@vSRX_00# set interfaces fxp@.0 family inet dhcp-client

[edit]

root@vSRX_00# commit and-quit

commit complete

Exiting configuration mode

Step 2: Check to see that the IP address is assigned:

root@vSRX_00> show interfaces terse | match fxp

fxp0
fxp0.0

root@vSRX_00>

up up
up up inet 192.168.122.144/24

Step 3: Log out from the console and try to log in:

root@LabHost:~# ssh 192.168.122.144

The authenticity of host ‘192.168.122.144 (192.168.122.144)’ can’'t be established.
ECDSA key fingerprint is SHA256:xfvj3h7Ee2Ji+TBOnWIXdpdkYEjsgNLHYt5k8UanMbg.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added ‘192.168.122.144° (ECDSA) to the list of known hosts.

Password:
Password:
Password:

Received disconnect from 192.168.122.144 port 22:2: Too many password failures for root
Connection to 192.168.122.144 closed by remote host.
Connection to 192.168.122.144 closed.

root@LabHost:~#

There seems to be a problem. We are trying to log in using SSH with root, which
requires it to be explicitly allowed in the configuration.

37 Checking Licenses Installed

Step 4: Allow the SSH root access. This configuration allows users to log in to the
VM as root through SSH:

[edit]
root@vSRX_01# set system services ssh root-login allow

[edit]
root@vSRX_01# commit
commit complete

Step 5: Log out from VM and retry SSH from the host:

root@LabHost:~# ssh 192.168.122.144

Password:

Last login: Tue Jan 29 11:44:17 2019

——— JUNOS 18.4R1.8 Kernel 64-bit XEN JNPR-11.0-20181207.6c2f68b_2_bu
root@SRX_01:~ #

Checking Licenses Installed

The following sample shows details of an evaluation license in the CLI:

root@vSRX_00> show system license
License usage:

Licenses Licenses Licenses Expiry
Feature name used installed needed
Virtual Appliance 1 1 0 59 days
remote-access—ipsec-vpn-client 0 2 0 permanent

Licenses installed:

License identifier: E420588955

License version: 4

Software Serial Number: 20150625

Customer ID: vSRX-JuniperEval

Features:

Virtual Appliance - Virtual Appliance
count-down, Original validity: 6@ days

root@vSRX_00>

Summary

You should now have all the information you need on how to build and manage a
vSRX VM and connect it to the instance for lab purposes and other uses. That be-
ing said, Chapter 3 is all the more engaging because you are going to set up a few
topologies and scale up an existing vSRX VM.

Chapter 3

Building a Simple Topology

Hey, congratulations on installing your first vSRX VM.

This chapter provides hands-on instruction to building small topologies that can
be used as templates for building larger and more complex topologies. First it re-
views the single vSRX VM that you created in Chapter 2, builds another vSRX
instance, and verifies the communication between them. Then it creates a high
availability cluster with two new VM instances, followed by stitching the first two
topologies together using another instance acting as an Internet Router. You will
then build a topology to understand how a vSRX VM can interact with the physi-
cal NIC using Linux bridge (virtual network), concluding with a topology where
you bypass the Linux Bridge and connect the VM directly to the physical NIC us-
ing SR-IOV.

It’s a busy chapter so let’s get started!

Building Your First Topology

This lab creates a simple topology by using two vSRX instances as in Figure 3.1.

Hardware

Virtual Environment VSRX_00 VSRX_01

e-0/0/0 ge-0/0/1 ge-0/0/1 ge-0/0/0
Green_net ¢ E@a +—> Red_net > E@a > Blue_net

192.168.10.1/24 172.16.10.1/30 172.16.10.2/30 192.168.12.1/24

Figure 3.1 Lab Topology for Site-to-Site Setup

39 Building Your First Topology

What do we already have with us? vSRX_00 VM. Okay, let’s use that VM and see
what we need to add more.

As per the first topology, the two VMs connect to each other using the red network
(simulating WAN side) and the green and blue networks simulating LAN side for
respective VM. If you recall, in Chapter 2 we created two virtual networks red_net
and green_net. We shall be using the same networks and will create one more net-
work for the vSRX_01 VM-side LAN connection.

The ge-0/0/0 interface from each VM is connected to green_net and blue_net net-
works and ge-0/0/1 interface is connected to the red_net network.

Our goals for this lab exercise are:
m Create the network as shown in the topology

m Configure the green_net, blue_net and red_net facing interfaces on vSRX VMs
(vSRX_00 and vSRX_01)

m Ping from vSRX_00 to vSRX_01, via red_net-side interface
m Ping from vSRX_00 green_net interface to vSRX_01 blue_net interface
The following steps explore how to build your first vSRX topology on KVM.

Step 1: What we have is vSRX_00, let’s check the status of the VM and the
networks connected:

root@LabHost:~# virsh list ——all

Id Name

State

2 VSRX_00

running

root@LabHost:~# virsh domiflist VvSRX_00

Interface Type Source Model MAC
vneto network default virtio 52:54:00:86:82:c2
vnetl network green_net virtio 52:54:00:25:e1:06
vnet2 network red_net virtio 52:54:00:9f:5e:6e
TIPS “Domiflist” can be broken into a domain interface list to memorize.

NOTE Command “virsh domiflist <vm-name>” provides information about the
virtual interface a VM is connected to and its details.

Step 2: Before creating the second VM, you need to create the virtual network
blue_net.

Create a file in /etc/libvirt/qemu/networks with name vlue_net.xml. Copy and
paste the following snippet:

40 Chapter 3: Building a Simple Topology

root@LabHost:~# nano /etc/libvirt/qemu/networks/blue_net.xml
<network>
<name>blue_net</name>
<forward mode='route’/>
<bridge name='blue_net’ stp='on’ delay='0’'/>
<ip address='192.168.125.1" netmask='255.255.255.0">
<dhcp>
<range start='192.168.125.100' end='192.168.125.250"'/>
</dhcp>
</ip>
</network>

If using nano, Press A X and enter yes to save changes:

root@LabHost:~# more /etc/libvirt/qemu/networks/blue_net.xml
<network>
<name>blue_net</name>
<forward mode='route’/>
<bridge name='blue_net’ stp='on’ delay='0’'/>
<ip address='192.168.125.1" netmask='255.255.255.0">
<dhcp>
<range start='192.168.125.100' end='192.168.125.250"'/>
</dhcp>
</ip>
</network>

Step 3: Define, start, and autostart the blue_net network:

root@LabHost:~# virsh net-define /etc/libvirt/gemu/networks/blue_net.xml
Network blue_net defined from /etc/libvirt/gemu/networks/blue_net.xml

root@LabHost:~# virsh net-start blue_net
Network blue_net started

root@LabHost:~# virsh net-autostart blue_net
Network blue_net marked as autostarted

root@LabHost:~#

Step 4: Confirm that the network is installed and started:

root@LabHost:~# virsh net-list —--all

Name State Autostart Persistent
blue_net active yes yes
default active yes yes
green_net active yes yes
red_net active yes yes

Step 5: Next, let's instantiate the second VM, that is, vSRX_01. Navigate to the
vSRX image location and create a copy as “img_vSRX_01.qcow2”:

root@LabHost:~# cp /var/lib/libvirt/images/junos-vsrx3-x86-64-18.4R1.8.qcow2 img_vSRX_01.qcow2
root@LabHost:~#

root@LabHost:~# ls -la /var/lib/libvirt/images/

total 2274832

drwx—-—-x--x 2 root root 4096 Jan 27 15:56 .

41 Building Your First Topology

drwxr-xr-=x 7 root root 4096 Jan 26 06:36 ..

—-rw—-r——r—— 1 libvirt-qemu kvm 864813056 Jan 27 15:56 img_vSRX_00.qcow2

-rw-r——r—— 1 root root 732299264 Jan 27 15:56 img_vSRX_01.qcow2

-rw-r——r—— 1 root root 732299264 Jan 26 ©05:22 junos-vsrx3-x86-64-18.4R1.8.qcow2

Step 6: Use the virsh command to install vSRX_01. When running multiple
instances of vSRX on the same host, each vSRX instance needs to be configured
with a unique identifier:

root@LabHost:~# virt-

install —--name vSRX_01 ——ram 4096 --cpu SandyBridge, —-vcpus=2 —--arch=x86_64 --disk path=/var/lib/
libvirt/images/img_vSRX_@1.qcow2,size=16,device=disk,bus=ide, format=qcow2 —--os-type linux —-os-
variant rhel7 —-import --network=network:default,model=virtio ——network=network:blue_
net,model=virtio ——-network=network:red_net,model=virtio

root@LabHost:~# virt-

install ——name VvSRX_01 —-ram 4096 —-—cpu SandyBridge, —--vcpus=2 —-arch=x86_64 —--disk path=/var/lib/
libvirt/images/img_vSRX_01.qcow2,size=16,device=disk,bus=ide, format=qcow2 —--os-type linux —-os-
variant rhel7 —-import --network=network:default,model=virtio ——-network=network:blue_
net,model=virtio ——-network=network:red_net,model=virtio

Starting install...

Creating domain...

0B 00:00:04

(virt-viewer:9510): GSpice-WARNING s*: PulseAudio context failed Connection refused

(virt-viewer:9510): GSpice-WARNING s*: pa_context_connect() failed: Connection refused
Domain creation completed.

| @ [] N WSRX_01 (1) - Virt Viewer
| File View Sendkey Help
theiZz: <Intel 828011 (ICHI9) USB controller> port OxcOe@-OxcOff irq 10 at device
8.2 on pcio
1sbus2 on uhci2
ehci®: <{Intel 828011 (ICH9) USB 2.0 controller> mem OxfcOda®OO-OxfcOdafff irq 1
at device 8.7 on pci®
tsbus3: EHCI wversion 1.0
tsbus3: run timeout
ehci®: USB init failed err=18
evice_attach: ehci® attach returned 6
irtio_pcid4: <VirtID PCI Balloon adapter> port OxclO0-Oxcllf irq 10 at device 9.
D on pcid
tkthG: <Keyboard controller (iB8042)> port Ox60,0xb4 irgq 1 on acpi®
tkbd®: <AT Keyboard> irgq 1 on atkbdcO®
tkbd®: [GIANT-LOCKED]
tart®: <16550 or compatible> port Ox3f8-0x3ff irq 4 on acpi®
1art®: console (10472,n,8,1)
tart®: [GIANT-LOCKED]
orm@: <ISA Option ROM> at iomem OxefOOO-Oxeffff on isad
Initializing Kernel PUIDB.
t_product_prop_init: product_model = vsrx vsrx
load_static_kop_init: product_model = vsrx vsrx
load_static_kernel_pvidb_data: Initialising wsrx Early PUIDB len
nified Seng Kes mode is turned off(
t_product_prop_init: product_model = vsrx vsrx
Jload _static _kernel pvidb data: Initialising vsrx Early PUIDB len =

Step 7: Check the status and the interface connected using the following com-
mands:

42 Chapter 3: Building a Simple Topology

root@LabHost:~# virsh list —-all

Id Name State

2 VSRX_00 running

3 VSRX_01 running

root@LabHost:~# virsh domiflist vSRX_01

Interface Type Source Model MAC
vnet3 network default virtio 52:54:00:37:a4:bd
vnet4 network blue_net virtio 52:54:00:67:34:eb
vnet5 network red_net virtio 52:54:00:90:c9:18

Step 8: Check the overview of the virtual networks and interfaces:

root@LabHost:~# brctl show

bridge name bridge id STP enabled interfaces
blue_net 8000.5254002090c0 yes blue_net-nic
vnet4
green_net 8000.5254004b9a07 yes green_net-nic
vnetl
red_net 8000.525400162dc5 yes red_net-nic
vnet2
vnet5
virbro 8000.5254005610fc yes virbr@-nic
vneto
vnet3

Step 9: Connect to console of vSRX_01 and configure the root password and the
hostname:

root@LabHost:~# virsh console vSRX_01
Connected to domain VvSRX_01
Escape character is *]

FreeBSD/amd64 (Amnesiac) (ttyu@)
login: root

——— JUNOS 18.4R1.8 Kernel 64-bit XEN JINPR-11.0-20181207.6c2f68b_2_bu
root@:~ # cli

root> configure

Entering configuration mode

[edit]

root# set system root-authentication plain-text-password

New password:

Retype new password:

[edit]
root# set system host-name vSRX_01

[edit]
root# commit
commit complete

[edit]
root@vSRX_01#

43 Building Your First Topology

Now that the two vSRX VMs are up and running with the connected virtual net-
works, per the requirement, you should be able to:

m Ping to vSRX_01 red_net interface from vSRX_00 red_net interface.

m Ping to vSRX_01 blue_net interface from vSRX_00 green_net interface, over
the red_net interface.

Let’s revisit the interface to network mapping as shown in Table 3.1.

Table 3.1 Interface to Network Mapping
Network VvSRX Interface
default fxp0
green_net/blue_net ge-0/0/0
red_net ge-0/0/1

The first interface mapped in virt-install command was green_net/blue_net and
the same interface is mapped to the first revenue interface on the vSRX VM, that
is, ge-0/0/0 in respective VM. To configure the vSRX_00 and vSRX_01, use the
following steps.

Step 1: On vSRX_00, enter configuration mode, and complete the configuration
for basic security zones and bind them to the traffic interfaces:

root@vSRX_00> configure
Entering configuration mode

[edit]

root@vSRX_00#

set security zones security-zone green host-inbound-traffic system-services all
set security zones security-zone green host-inbound-traffic protocols all

set security zones security-zone green interfaces ge-0/0/0.0

set security zones security-zone red host-inbound-traffic system-services all
set security zones security-zone red host-inbound-traffic protocols all

set security zones security-zone red interfaces ge-0/0/1.0

set interfaces ge-0/0/0 unit @ family inet address 192.168.10.1/24

set interfaces ge-0/0/1 unit @ family inet address 172.16.10.1/30

Step 2: On vSRX_01, enter configuration mode, and complete the configuration
for basic security zones and bind them to the traffic interfaces:

root@vSRX_01> configure
Entering configuration mode

[edit]

root@vSRX_01#

set security zones security-zone blue host-inbound-traffic system-services all
set security zones security-zone blue host-inbound-traffic protocols all

set security zones security-zone blue interfaces ge-0/0/0.0

set security zones security-zone red host-inbound-traffic system-services all
set security zones security-zone red host-inbound-traffic protocols all

44 Chapter 3: Building a Simple Topology

set security zones security-zone red interfaces ge-0/0/1.0
set interfaces ge-0/0/0 unit @ family inet address 192.168.12.1/24
set interfaces ge-0/0/1 unit @ family inet address 172.16.10.2/30

Now that you have configured the link between vSRX_00 VM and vSRX_01 VM
using the interfaces ge-0/0/0 and ge-0/0/1, you need to check the connectivity over
the interfaces.

Step 3: Validate the connectivity using the ping command on the red_net,
vSRX_00 to vSRX_01 and vice-versa:

[edit]

root@vSRX_00# run ping 172.16.10.2 count 3

PING 172.16.10.2 (172.16.10.2): 56 data bytes

64 bytes from 172.16.10.2: icmp_seq=0 tt1=64 time=2.393 ms
64 bytes from 172.16.10.2: icmp_seq=1 tt1=64 time=0.833 ms
64 bytes from 172.16.10.2: icmp_seq=2 tt1=64 time=0.822 ms

-—— 172.16.10.2 ping statistics ——
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.822/1.349/2.393/0.738 ms

Step 4: Further, validate the connectivity from green_net on vSRX_00 to blue_net
interface IP on vSRX 01:

root@vSRX_00# run ping 192.168.12.1 interface ge-0/0/@ count 3
PING 192.168.12.1 (192.168.11.1): 56 data bytes

ping: sendto: No route to host

ping: sendto: No route to host

ping: sendto: No route to host

——— 192.168.12.1 ping statistics ———
3 packets transmitted, @ packets received, 100% packet loss

No route! Oh no! Do you have the correct routing and policy statement in place to
allow the traffic? No, so we need to add it.

Step 5: To add the correct routing and policy statement you need to allow traffic
between the two zones on vSRX_00:

root@vSRX_00> configure
Entering configuration mode

[edit]

root@vSRX_00#

set routing-options static route 0.0.0.0/0 next—hop 172.16.10.2

set security policies from-zone green to-zone red policy VvSRX_00_to_vSRX_01 match source-address any
set security policies from-zone green to-zone red policy vSRX_00_to_vSRX_01 match destination-
address any

set security policies from-zone green to-zone red policy vSRX_00_to_vSRX_01 match application any
set security policies from-zone green to-zone red policy VvSRX_00_to_vSRX_01 then permit

45 Building Your Second Topology

Step 6: Enable vSRX_01 to receive and allow traffic from red_net towards blue_

net:

root@vSRX_01> configure
Entering configuration mode

[edit]
root@vSRX_01#

set routing-options static route 0.0.0.0/0 next-hop 172.

set security policies
set security policies
address any

set security policies
set security policies

from-zone
from-zone

from-zone
from-zone

red to-zone blue
red to-zone blue

red to-zone blue
red to-zone blue

policy
policy

policy
policy

16.10.1
VSRX_00_to_vSRX_01 match source-address any
VSRX_00_to_vSRX_01 match destination-

VSRX_00_to_vSRX_01 match application any
VSRX_00_to_vSRX_01 then permit

Step 7: Now, ping from vSRX_00 and confirm the session on vSRX_01:

root@vSRX_00# run ping 192.168.12.1 interface ge-0/0/0 count 3
PING 192.168.12.1 (192.168.11.1): 56 data bytes
64 bytes from 192.168.12.1: icmp_seq=0 ttl=64 time=1.964 ms
64 bytes from 192.168.12.1: icmp_seq=1 tt1=64 time=0.677 ms
64 bytes from 192.168.12.1: icmp_seq=2 tt1=64 time=0.819 ms

——— 192.168.11.1 ping statistics -—
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/stddev =

0.677/1.153/1.964/0.576 ms

root@vSRX_01# run show security flow session protocol icmp | refresh 1

Session ID: 12, Policy name: VvSRX_00_to_vSRX_01/6, Timeout: 4, Valid
In: 192.168.10.1/0 ——> 192.168.12.1/53790;icmp, Conn Tag: 0x0, If: ge-0/0/1.0, Pkts: 1, Bytes: 84,
Out: 192.168.12.1/53790 -—> 192.168.10.1/0;icmp, Conn Tag: @0x0, If: .local..®, Pkts: 1, Bytes: 84,

TIPS

In a lab environment you can simulate a site-to-site VPN tunnel using this
topology.

Building Your Second Topology

Guess what you are trying to achieve in this second topology? It’s high availability
(HA). Here’s a quick checklist of what you need to accomplish this task:

m Two new vSRX VMs

® Two new virtual networks for control and fabric connections

For the vSRX high availability (chassis cluster) topology, you need a pair of the
same version vSRX instances. A high availability pair can have only two members,
sometimes also called a cluster pair. See Figure 3.2.

46 Chapter 3: Building a Simple Topology

Hardware

Virtual Environment

VSRX_nodeO

192.168.11.10/24 Virtual Switch

e

—
—_

—

Blue_net

Figure 3.2 Topology for vSRX Instances in High Availability

HA SRX cluster has two unique links, namely, control and fabric links. The con-

trol link is used for cluster communication and for configuration synchronization.
The fabric link on the other side is used for synchronizing the RTOs (real-time ob-
jects, that is sessions, etc.). You connect these links using isolated virtual networks.

Let’s get started.

On the host, create two new isolated networks ctrl_net and fab_net for control
link and fabric link, respectively.

Step 1: Create a file with name ctrl_net.xml at /etc/libvirt/gemu/networks and copy
and paste the following snippet:

root@LabHost:~# nano /etc/libvirt/qemu/networks/ctrl_net.xml
<network>
<name>ctrl_net</name>
<bridge name='ctrl_net’ stp='on’ delay="0'/>
<ip address='192.168.126.1" netmask='255.255.255.0">
<dhcp>
<range start='192.168.126.100"' end='192.168.126.250'/>
</dhcp>
</ip>
</network>
root@LabHost:~# more /etc/libvirt/qemu/networks/ctrl_net.xml
<network>
<name>ctrl_net</name>
<bridge name='ctrl_net’ stp='on’ delay="0'/>

47 Building Your Second Topology

<ip address='192.168.126.1" netmask='255.255.255.0">
<dhcp>
<range start='192.168.126.100' end='192.168.126.250"'/>
</dhcp>
</ip>
</network>

Step 2: Define and start the network:

root@LabHost:~# virsh net-define /etc/libvirt/qemu/networks/ctrl_net.xml
Network ctrl_net defined from /etc/libvirt/qemu/networks/ctrl_net.xml
root@LabHost:~# virsh net-start ctrl_net

Network ctrl_net started

root@LabHost:~# virsh net-autostart ctrl_net

Network ctrl_net marked as autostarted

Step 3: On the same lines, create another network for fabric link as fab_net:

root@LabHost:~# nano /etc/libvirt/qemu/networks/fab_net.xml
root@LabHost:~# virsh net-define /etc/libvirt/gemu/networks/fab_net.xml
Network fab_net defined from /etc/libvirt/qgemu/networks/fab_net.xml

root@LabHost:~# virsh net-start fab_net
Network fab_net started

root@LabHost:~# virsh net-autostart fab_net
Network fab_net marked as autostarted

root@LabHost:~# more /etc/libvirt/qemu/networks/fab_net.xml

<!l—

WARNING: THIS IS AN AUTO-GENERATED FILE. CHANGES TO IT ARE LIKELY TO BE

OVERWRITTEN AND LOST. Changes to this xml configuration should be made using:
virsh net-edit fab_net

or other application using the libvirt API.

-

<network>
<name>fab_net</name>
<uuid>280cea77-6552-40d4-8caf-98aad42a2e578</uuid>
<bridge name='fab_net’ stp='on’ delay='0"/>
<mac address='52:54:00:17:ba:13'/>
<ip address='192.168.127.1" netmask='255.255.255.0">
<dhcp>
<range start='192.168.127.100" end='192.168.127.250"'/>
</dhcp>
</ip>
</network>
root@LabHost:~#

Step 4: Verify that you now have five networks on the host:

root@LabHost:~# virsh net-list —--all

Name State Autostart Persistent
blue_net active yes yes
ctri_net active yes yes
default active yes yes
fab_net active yes yes
green_net active yes yes

red_net active yes yes

48 Chapter 3: Building a Simple Topology

Step 5: Now that the networks are ready, let’s jump in to spin the two VMs that
are NodeO and Node1 as primary and backup for a high availability chassis
cluster. The first thing to do is to copy two more images from the master image.
These are named imagev3_node0.qcow2 and imagev3_nodel.qcow2:

root@LabHost:~# cp /var/lib/libvirt/images/junos-vsrx3-x86-64-18.4R1.8.qcow2 /var/lib/libvirt/
images/img_vSRX_node®.qcow2

root@LabHost:~# cp /var/lib/libvirt/images/junos-vsrx3-x86-64-18.4R1.8.qcow2 /var/lib/libvirt/
images/img_vSRX_nodel.qcow2

root@LabHost:~# 1s /var/lib/libvirt/images/

root@LabHost:~# 1s -la /var/lib/libvirt/images/

total 3830932

drwx——x--x 2 root root 4096 Jan 27 16:51 .

drwxr-xr-x 7 root root 4096 Jan 26 06:36 ..

—-rw-r——r—-— 1 libvirt-qemu kvm 864878592 Jan 27 16:51 img_vSRX_00.qcow2

—-rw—-r——r—— 1 libvirt-qemu kvm 861077504 Jan 27 16:52 img_vSRX_01.qcow2

-rw-r——r—— 1 root root 732299264 Jan 27 16:51 img_vSRX_node®.qcow?2

—-rw-r——r-—— 1 root root 732299264 Jan 27 16:51 img_vSRX_nodel.qcow2

—-rw—-r——r—— 1 root root 732299264 Jan 26 05:22 junos-vsrx3-x86-64-18.4R1.8.qcow2

Step 6: Install a VM named vSRX_node0:

root@LabHost:~# virt-install —-name VvSRX_

node@® —--ram 4096 —-cpu SandyBridge, ——vcpus=2 —--arch=x86_64 --disk path=/var/lib/libvirt/images/
img_vSRX_node@.qcow2,size=16,device=disk,bus=ide, format=qcow2 --os-type linux --os-

variant rhel7 —-import --network=network:default,model=virtio —-network=network:ctrl_
net,model=virtio —-network=network: fab_net,model=virtio —--network=network:blue_

net,model=virtio ——-network=network:red_net,model=virtio

root@LabHost:~# virt-install —-name VvSRX_

node@ —-ram 4096 --cpu SandyBridge, --vcpus=2 -—arch=x86_64 —-disk path=/var/lib/libvirt/images/
img_vSRX_node@.qcow2,size=16,device=disk,bus=ide, format=qcow2 --os-type linux --os-

variant rhel7 ——import --network=network:default,model=virtio —-network=network:ctrl_
net,model=virtio —-network=network: fab_net,model=virtio ——network=network:blue_
net,model=virtio —-network=network:red_net,model=virtio

Starting install...
Creating domain... 0 B 00:00:06

(virt-viewer:10220): GSpice-WARNING *x*: PulseAudio context failed Connection refused

(virt-viewer:10220): GSpice-WARNING xx*: pa_context_connect() failed: Connection refused
Domain creation completed.

Step 7: Follow Step 6 to create another VM, let’s call it vSRX_nodel. Two things
need to be changed — the VM name and the image file name:

root@LabHost:~# virt-install ——name VSRX_

nodel —--ram 4096 --cpu SandyBridge, --vcpus=2 --arch=x86_64 —-disk path=/var/lib/libvirt/images/
img_vSRX_nodel.qcow2,size=16,device=disk,bus=ide, format=qcow2 —--os-type linux —--0s-—

variant rhel7 —--import --network=network:default,model=virtio --network=network:ctrl_
net,model=virtio ——network=network: fab_net,model=virtio ——network=network:blue_
net,model=virtio —-network=network:red_net,model=virtio

Starting install...
Creating domain... | 0B
00:00:06

(virt-viewer:10416): GSpice-WARNING *x*: PulseAudio context failed Connection refused

49 Building Your Second Topology

(virt-viewer:10416): GSpice-WARNING *x: pa_context_connect() failed: Connection refused
Domain creation completed.

Step 8: Finally, the VMs are installed, let’s check the status:

root@LabHost:~# virsh list ——all

Id Name State

2 VSRX_00 running
3 VSRX_01 running
4 VSRX_node®@ running
5 VSRX_nodel running

This brings us to the completion of the two requirements. Do you remember what
they were?... Configuring isolated virtual networks and instantiating VMs.

Next, head into one VM at a time and configure them to take their tags, of master
and backup. Let’s use the following steps to configure the two vSRX VMs as an
HA pair:

Step 1: On the vSRX console, log in to vSRX_00 to enable chassis cluster and
assign it role of node0:

Command from Operational mode: - root> set chassis cluster cluster-id 1 node @ reboot

root@LabHost:~# virsh console vSRX_node@
Connected to domain VvSRX_node®
Escape character is *]

FreeBSD/amd64 (Amnesiac) (ttyu@)

login: root

——— JUNOS 18.4R1.8 Kernel 64-bit XEN JNPR-11.0-20181207.6c2f68b_2_bu
root@:~ # cli

root> set chassis cluster cluster-id 1 node @ reboot

Successfully enabled chassis cluster. Going to reboot now.

root>
%k FINAL System shutdown message from root@ sk
System going down IMMEDIATELY

Upon reboot, the solo root prompt would change as follows:

FreeBSD/amd64 (Amnesiac) (ttyu@)

login: root

Last login: Sun Jan 27 11:27:56 on ttyu@

——— JUNOS 18.4R1.8 Kernel 64-bit XEN JNPR-11.0-20181207.6c2f68b_2_bu
root@:~ #

root@:~ # cli

{primary:node0}

root>

Step 2: Similarly, console log in to vSRX_01 to enable chassis cluster and assign it
the role of nodel. Upon reboot, the nodel should take ownership as secondary:
root> set chassis cluster cluster-id 1 node 1 reboot
FreeBSD/amd64 (Amnesiac) (ttyu@)
login: root
Last login: Sun Jan 27 11:29:47 on ttyu@

50 Chapter 3: Building a Simple Topology

——— JUNOS 18.4R1.8 Kernel 64-bit XEN JINPR-11.0-20181207.6c2f68b_2_bu
root@:~ #

root@:~ # cli

{secondary:nodel}

root>

Step 3: Log back in to node0 to check the cluster status:

root> show chassis cluster status
{primary:node0}

root> show chassis cluster status
Monitor Failure codes:

CS Cold Sync monitoring FL Fabric Connection monitoring
GR GRES monitoring HW Hardware monitoring

IF Interface monitoring IP IP monitoring

LB Loopback monitoring MB Mbuf monitoring

NH Nexthop monitoring NP NPC monitoring

SP SPU monitoring SM Schedule monitoring

CF Config Sync monitoring RE Relinquish monitoring

Cluster ID: 1
Node Priority Status Preempt Manual Monitor-failures

Redundancy group: @ , Failover count: 1
noded 1 primary no no None
nodel 1 secondary no no None

Step 4: Next, check the interfaces configured. You will be amazed to see node0
showing node1 interfaces, too:

root> show interface terse
During the virt-install command, we added the networks in the following order

and the same interface mapping is displayed as shown in Table 3.2. In the follow-
ing table “ge-7-x-x” denotes the interface on nodel.

Table 3.2 Network to Interface Mapping
Network NodeO Nodel
default fxp0.0 fxp0.0
ctrl_net em0.0 em0.0
fab_net ge-0/0/0 ge-7/0/0
blue_net ge-0/0/1 ge-7/0/1
red_net ge-0/0/2 ge-7/0/2

NOTE The fab interface defined here is ge-0/0/0, in the real world it can be any
interface that a user wishes to assign to it.

The vSRX cluster uses two interfaces exclusively for clustering:

m Cluster control link (em0)

51 Building Your Second Topology

m Cluster fabric links (fab0 and fab1). For example, you can specify ge-0/0/0 as
fab0 on node0 and ge-7/0/0 as fab1 on nodel:

{primary:node0@}
root> show interfaces terse

Interface Admin Link Proto Local Remote

ge-0/0/0 up up

g r-0/0/0 up up

ip-0/0/0 up up

1t-0/0/0 up up

ge-0/0/1 up up

ge-0/0/2 up up

ge-7/0/0 up up

ge-7/0/1 up up

ge-7/0/2 up up

dsc up up

emo up up

emo. o up up inet 129.16.0.1/2

143.16.0.1/2

tnp 0x1100001

fabo up down

fabo.0 up down inet 30.17.0.200/24

fabl up down

fabl.0 up down inet 30.18.0.200/24

ftio up up

fxp0 up up

fxp0.0 up up

Step 5: Set the root password:

root@vSRX_Node@# set system root-authentication plain-text-password
New password:
Retype new password:

Step 6: Finally, let’s configure the cluster with fab interface and green and red
interfaces:

set apply-groups “${node}”
set groups node@ system host-name vSRX_Node®
set groups nodel system host-name vSRX_Nodel

set interfaces fab@ fabric-options member-interfaces ge-0/0/0
set interfaces fabl fabric-options member-interfaces ge-7/0/0

set chassis cluster redundancy—-group @ node @ priority 100
set chassis cluster redundancy-group @ node 1 priority 1
set chassis cluster redundancy-group 1 node @ priority 100
set chassis cluster redundancy-group 1 node 1 priority 1

set chassis cluster reth-count 2

set interfaces ge-0/0/1 gigether-options redundant-parent reth@

set interfaces ge-7/0/1 gigether-options redundant-parent reth®

set interfaces reth@® redundant-ether-options redundancy-group 1

set interfaces reth@® unit @ family inet address 192.168.11.10/24

set security zones security-zone blue host-inbound-traffic system-services all
set security zones security-zone blue host-inbound-traffic protocols all

set security zones security-zone blue interfaces reth0.0

52 Chapter 3: Building a Simple Topology

set interfaces ge-0/0/2 gigether—options redundant-parent rethl

set interfaces ge-7/0/2 gigether-options redundant-parent rethl

set interfaces rethl redundant-ether-options redundancy-group 1

set interfaces rethl unit @ family inet address 172.16.11.1/30

set security zones security-zone red host-inbound-traffic system-services all
set security zones security-zone red host-inbound-traffic protocols all

set security zones security-zone red interfaces rethl.0

Notice that once you commit the configuration, the commit is applied to both the
nodes:

{primary:node0} [edit]

root# commit

node0:

configuration check succeeds
nodel:

commit complete

node0:

commit complete

Step 7: Check the cluster interface status using the following command.

The fab interface should be up/up and the reth interface status should be up:

root@vSRX_Node@# run show chassis cluster interfaces
{primary:node0}[edit]

root@vSRX_Node@# run show chassis cluster interfaces
Control link status: Up

Control interfaces:
Index Interface Monitored-Status Internal-SA Security
0 emo Up Disabled Disabled
Fabric link status: Up

Fabric interfaces:

Name Child-interface Status Security
(Physical/Monitored)
fabo ge-0/0/0 Up / Up Disabled
fabo
fabl ge-7/0/0 Up / Up Disabled
fabl
Redundant-ethernet Information:
Name Status Redundancy-group
reth@ Up 1
rethl Up 1
Redundant-pseudo-interface Information:
Name Status Redundancy-group
100 Up 0

Step 8: Finally, check the status of the cluster. The status must show ‘Up’ for both
RGs (RGO and RG1):

{primary:node0} [edit]

root@vSRX_Node@# run show chassis cluster status

Monitor Failure codes:
CS Cold Sync monitoring FL Fabric Connection monitoring
GR GRES monitoring HW Hardware monitoring
IF Interface monitoring IP IP monitoring

53 Building Your Third Topology

LB Loopback monitoring MB
NH Nexthop monitoring NP
SP SPU monitoring SM
CF Config Sync monitoring RE

Cluster ID: 1

Node Priority Status

Redundancy group: @ , Failover count:
node@ 100 primary

nodel 1 secondary

Redundancy group: 1 , Failover count:
node@® 100 primary

nodel 1 secondary

Mbuf monitoring

NPC monitoring
Schedule monitoring
Relinquish monitoring

Preempt Manual

1
no
no

1
no
no

no
no

no
no

Monitor-failures

None
None

None
None

The topology is now complete with the two vSRX VMs configured in a high avail-

ability pair.

Building Your Third Topology

First, let’s visualize this next exercise in Figure 3.3.

Branch

VSRX_00

Green_net \e4—p Eﬁa

ge-0/0/0
192.168.10.1/24

Figure 3.3

<> Red_net
ge-0/0/1

172.16.10.1/30
@D
&)

Internet Router

Cloud

Headquarters \

VSRX_nodeO

192.168.11.10/24

\ A/

FiE

VSRX_node1;

£ rethO
Virtual Switch

—_

—
R

—

Blue_net

Topology for vSRX Instances in Headquarter to Branch Setup

54 Chapter 3: Building a Simple Topology

Doesn’t Figure 3.3 look familiar? Yes, it is! We built one part of this topology in
Topology 1 of this chapter, and the second part was created in Topology 2. Now,
in Topology 3, let’s use the first two topologies and simulate a production setup of
a branch office connecting to its headquarters location. Branch location setup is
connected to the green_net on its one side via interface ge-0/0/0 and red_net on the
other side to the interface ge-0/0/1. Likewise, HQ cluster is connected to the blue_
net on rethO and red_net on reth1.

The red_net from each side of the branch and HQ is connected to another VM act-
ing as an Internet router for this topology. This acts as a routing device between
the branch and HQ location.

So, let’s get going and prep Topology 3. First a list: what do we already have and
what do we need next?

m A high availability (chassis cluster) setup in HQ — Configured in Topology 2
B VM instance in branch node — Configured in Topology 1 [let’s use vSRX_00]
m Router as Internet cloud — We need to create this VM

Before configuring the HQ and branch vSRX devices you need to create another
VM that can act as an Internet router. Let’s first create another vSRX VM, then
configure it to act as an Internet router.

Then let’s use the following steps to configure an Internet router named
vSRX _Int_Router.

Step 1: Copy another image from the master vSRX image with name image3_int_
router.qcow?2:

root@LabHost:~# cp /var/lib/libvirt/images/junos-vsrx3-x86-64-18.4R1.8.qcow2 /var/lib/libvirt/
images/img_Internet_Router.qcow2

root@LabHost:~# 1s -la /var/lib/libvirt/images/

total 4824156

drwx——x--x 2 root root 4096 Jan 28 08:47 .

drwxr-xr-x 7 root root 4096 Jan 26 06:36 ..

-rw-r——r—— 1 root root 732299264 Jan 28 08:47 img_Internet_Router.qcow2
—-rw-r——r—-— 1 libvirt-qgemu kvm 866385920 Jan 28 08:47 img_vSRX_00.qcow2

—-rw-r——r—— 1 libvirt-qemu kvm 862781440 Jan 28 08:47 img_vSRX_01.qcow2

—-rw-r——r—— 1 libvirt-qgemu kvm 876085248 Jan 28 08:47 img_vSRX_node®.qcow2

—-rw—-r——r—— 1 libvirt-qgemu kvm 870055936 Jan 28 08:47 img_vSRX_nodel.qcow2

-rw-r——r—— 1 root root 732299264 Jan 26 05:22 junos-vsrx3-x86-64-18.4R1.8.qcow2

Step 2: Using the virt-install command, instantiate the VM:

virt-install —-name VvSRX_Internet_

Router —-ram 4096 —--cpu SandyBridge, —-vcpus=2 —--arch=x86_64 --disk path=/var/lib/libvirt/images/
img_Internet_Router.qcow2,size=16,device=disk,bus=ide, format=qcow2 --os-type linux —--os-

variant rhel7 ——import --network=network:default,model=virtio —-network=network:red_
net,model=virtio —-network=network:red_net,model=virtio

root@LabHost:~# virt-install ——name vSRX_Internet_

Router —--ram 4096 —--cpu SandyBridge, —--vcpus=2 —-arch=x86_64 —--disk path=/var/lib/libvirt/images/
img_Internet_Router.qcow2,size=16,device=disk,bus=ide, format=qcow2 --os-type linux —--os-—

variant rhel7 —--import --network=network:default,model=virtio —-network=network:red_

55 Building Your Third Topology

net,model=virtio ——network=network:red_net,model=virtio

Starting install...
Creating domain... | 0 B 00:00:04

(virt-viewer:18616): GSpice-WARNING *x: PulseAudio context failed Connection refused

(virt-viewer:18616): GSpice-WARNING *x: pa_context_connect() failed: Connection refused
Domain creation completed.

Step 3: Log in to the VM using the console, and configure the root password and
hostname:

root# set system host-name Internet_Router

root# set system root-authentication plain-text-password
New password:

Retype new password:

root@LabHost:~# virsh console vSRX_Internet_Router
Connected to domain VvSRX_Internet_Router

Escape character is *]

FreeBSD/amd64 (Amnesiac) (ttyu@)
login: root

——— JUNOS 18.4R1.8 Kernel 64-bit XEN JNPR-11.0-20181207.6c2f68b_2_bu
root@:~ # cli

root> configure

Entering configuration mode

[edit]

root# set system host-name Internet_Router

root# set system root-authentication plain-text-password

New password:

Retype new password:

[edit]
root# commit
commit complete

Step 4: Configure the vSRX VM to act as a router, use the following commands,
and commit:

NOTE Remember, when creating the VM for the Internet router, we added three
networks to the VM ---namely default, red_net, and red_net. This means that the
ge-0/0/0 and ge-0/0/1 on the new VM are both part of red_net. Both interfaces
have separate subnets with one side connecting to Branch and the other to HQ:

set security zones security-zone red interfaces ge-0/0/0.0

set security zones security-zone red interfaces ge-0/0/1.0

set interfaces ge-0/0/0 unit @ family inet address 172.16.10.2/30

set interfaces ge-0/0/1 unit @ family inet address 172.16.11.2/30

set routing-options static route 192.168.10.0/24 next-hop 172.16.10.1
set routing-options static route 192.168.11.0/24 next-hop 172.16.11.1

Step 5: Confirm that you are able to ping to the Branch and the HQ red network
side interface IP addresses:

56 Chapter 3: Building a Simple Topology

[edit]

root@Internet_Router# run ping 172.16.10.1 count 2

PING 172.16.10.1 (172.16.10.1): 56 data bytes

64 bytes from 172.16.10.1: icmp_seq=0 tt1=64 time=1.807 ms
64 bytes from 172.16.10.1: icmp_seq=1 tt1=64 time=0.748 ms
-—— 172.16.10.1 ping statistics ——

2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.748/1.277/1.807/0.530 ms

[edit]

root@Internet_Router# run ping 172.16.11.1 count 2

PING 172.16.11.1 (172.16.11.1): 56 data bytes

64 bytes from 172.16.11.1: icmp_seq=0 tt1=64 time=36.931 ms
64 bytes from 172.16.11.1: icmp_seq=1 tt1=64 time=0.785 ms
——— 172.16.11.1 ping statistics ——-

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max/stddev = 0.785/18.858/36.931/18.073 ms

set
set
set
set

security
security
security
security

blue_net

set
set
set
set
set

set

set
set
set
set

security
security
security
security

Step 6: Configure the Branch VM, IR, and HQ cluster to allow traffic pass from
vSRX_00 green_net side to HQ blue_net side.

Now that the topology is built, it’s time to configure the branch and HQ cluster to
allow traffic between green_net on branch side to reach green_net on HQ side.

Branch Side Configuration:

address-book global address green_net 192.168.10.0/24

address-book global address hq_blue_net 192.168.11.0/24

policies from-zone green to-zone red policy branch_to_HQ match source-address green_net
policies from-zone green to-zone red policy branch_to_HQ match destination-address hq_

policies from-zone green to-zone red policy branch_to_HQ match application any
policies from-zone green to-zone red policy branch_to_HQ then permit
address—-book global address green_net 192.168.10.0/24

address-book global address hg_green_net 192.168.11.0/24

routing-options static route 0.0.0.0/0 next-hop 172.16.10.2

security

security
security
security
security

blue_net

set
set

security
security

IR Configuration:

policies default-policy permit-all

HQ Configuration:

address-book global address green_net 192.168.10.0/24

address-book global address hg_blue_net 192.168.11.0/24

policies from-zone red to-zone blue policy branch_to_HQ match source-address green_net
policies from-zone red to-zone blue policy branch_to_HQ match destination-address hq_

policies from-zone red to-zone blue policy branch_to_HQ match application any
policies from-zone red to-zone blue policy branch_to_HQ then permit

set routing-options static route 0.0.0.0/0 next-hop 172.16.11.2

[edit]
root@vSRX_00# run ping 192.168.11.10 interface ge-0/0/0 count 2
PING 192.168.11.10 (192.168.11.10): 56 data bytes

Step 7: Confirm that the VM in branch can ping to HQ side green network
interface:

57 Building Your Fourth Topology

64 bytes from 192.168.11.10: icmp_seq=0 tt1=63 time=6.603 ms
64 bytes from 192.168.11.10: icmp_seq=1 tt1=63 time=1.335 ms

——- 192.168.11.10 ping statistics ——

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max/stddev = 1.335/3.969/6.603/2.634 ms
root@vSRX_Node@> show security flow session protocol icmp | refresh 2
———(refreshed at 2019-01-28 04:26:09 UTC)-——

node®:

Session ID: 24, Policy name: branch_to_HQ/6, State: Active, Timeout: 2, Valid
In: 192.168.10.1/0 ——> 192.168.11.10/64291;icmp, Conn Tag: 0x@, If: rethl.0, Pkts: 1, Bytes: 84,
Out: 192.168.11.10/64291 ——> 192.168.10.1/0;icmp, Conn Tag: 0x0, If:

local..@, Pkts: 1, Bytes: 84,

Session ID: 26, Policy name: branch_to_HQ/6, State: Active, Timeout: 4, Valid
In: 192.168.10.1/1 ——> 192.168.11.10/64291;icmp, Conn Tag: @0x0, If: rethl.0, Pkts: 1, Bytes: 84,
Out: 192.168.11.10/64291 ——> 192.168.10.1/1;icmp, Conn Tag: 0x0, If:

local..0, Pkts: 1, Bytes: 84,

Total sessions: 2

Lab Challenge 1: Create one more VM as a host behind each vSRX VM green_net/
blue_net and ping between the two hosts.

Building Your Fourth Topology

First, let’s visualize this next exercise shown in Figure 3.4.

Hardware
Virtual Environment
VSRX_00
ge-0/0/0 ge-0/0/1
Green_net “—> EIEH “—> Red_net
192.168.10.1/24 172.16.10.1/30 |
enol eno2 eno3 v eno4

— ===
— &

Gateway

Figure 3.4 Topology for Adding Interface to Virtual Network

58 Chapter 3: Building a Simple Topology

In the last three topologies, we did a hands-on exercise to create VMs and join the
VMs to virtual networks. In this lab exercise, you’ll reuse the first VM (vSRX_00)
that you created and connect that VM to the host physical NIC to a gateway (a
Layer 3 hop external to the host). In this Fourth Topology, we’ll learn the new con-
cept of how to add an interface to an existing virtual network.

Here is a quick checklist of what’s necessary to build the topology:
m vSRXVM

m Connecting the VMs VN to pNIC

m Physical NIC available on host

m Cable connecting from pNIC to gateway

m Gateway configured with a reachable IP address
To check and configure the VM, use the following steps.

Step 1: Check if the vSRX_00V M is running;:
root@LabHost:~# virsh list ——all

Id Name State

2 VSRX_00 running
4 VSRX_node®@ running
5 VSRX_nodel running
7 VSRX_Internet_Router running
8 VSRX_01 running

NOTE Shut off VM vSRX_01 from Topology 1, as it is already part of red_net
and is configured with the other /30 IP address of the subnet. In this topology, we

used the IP on the gateway. Use the “virsh destroy vSRX_01” command to shut
off the VM.

Step 2: Check the virtual networks associated with the said VM:
root@LabHost:~# virsh domiflist vSRX_00

Interface Type Source Model MAC

vneto network default virtio 52:54:00:86:82:c2
vnetl network green_net virtio 52:54:00:25:e1:06
vnet2 network red_net virtio 52:54:00:9f:5e:6e

Step 3: Check the details of network red_net with bridge_utils command brctt:

root@LabHost:~# brctl show red_net

bridge name bridge id STP enabled interfaces

red_net 8000.525400162dc5 yes red_net-nic
vnetlo
vnetl5
vnetl7
vnetl8
vnet2

59 Building Your Fourth Topology

Step 4: Add the required physical interface to the bridge by using the bridge-utility
bretl:

root@LabHost:~# brctl addif red_net eno4

root@LabHost:~# brctl show red_net

bridge name bridge id STP enabled interfaces

red_net 8000.246€96a97155 yes eno4
red_net-nic
vnetl0
vnetl5
vnetl7
vnetl8
vnet2

NOTE Note that eno4 is the physical interface in the lab host server connected to
the gateway router.

Step 5: Confirm that the physical link is connected. Use the following commands
to check:

root@LabHost:~# ip link

3: eno4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gqdisc mq master red_

net state UP mode DEFAULT group default gqlen 1000
link/ether 24:6e€:96:a9:71:55 brd ff:ff:ff:ff:ff:ff

TIPS up state means that the interface is connected with the cable. No_CARRIER
confirms that no cable connected to the port.

Step 6: Check the connectivity. Connect to the vSRX VMs and ping to the next

hop device:
root@vSRX_00> show interfaces terse | match “ge-0/0"
ge-0/0/0 up up
ge-0/0/0.0 up up inet 192.168.10.1/24
ge-0/0/1 up up
ge-0/0/1.0 up up inet 172.16.10.1/30

root@vSRX_00> ping 172.16.10.2 count 2

PING 172.16.10.2 (172.16.10.2): 56 data bytes

64 bytes from 172.16.10.2: icmp_seq=0 ttl1=64 time=17.451 ms
64 bytes from 172.16.10.2: icmp_seq=1 tt1=64 time=9.403 ms
——- 172.16.10.2 ping statistics ——

2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max/stddev = 9.403/13.427/17.451/4.024 ms

Step 6: Confirm that the packets are actually being sent to the physical interface.
Let’s use the tcpdump utility on vnet2 and eno4:

root@LabHost:~# tcpdump —-nni vnet2 icmp

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on vnet2, link-type EN1OMB (Ethernet), capture size 262144 bytes

11:12:46.331581 IP 172.16.10.1 > 172.16.10.2: ICMP echo request, id 22308, seq 0, length 64
11:12:46.345728 IP 172.16.10.2 > 172.16.10.1: ICMP echo reply, id 22308, seq 0, length 64
11:12:47.329925 IP 172.16.10.1 > 172.16.10.2: ICMP echo request, id 22308, seq 1, length 64
11:12:47.338636 IP 172.16.10.2 > 172.16.10.1: ICMP echo reply, id 22308, seq 1, length 64

60 Chapter 3: Building a Simple Topology

root@LabHost:~# tcpdump —-nni eno4 icmp

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on eno4, link-type EN1@MB (Ethernet), capture size 262144 bytes

11:12:46.331598 IP 172.16.10.1 > 172.16.10.2: ICMP echo request, id 22308, seq @, length 64
11:12:46.345705 IP 172.16.10.2 > 172.16.10.1: ICMP echo reply, id 22308, seq @, length 64
11:12:47.329942 IP 172.16.10.1 > 172.16.10.2: ICMP echo request, id 22308, seq 1, length 64
11:12:47.338631 IP 172.16.10.2 > 172.16.10.1: ICMP echo reply, id 22308, seq 1, length 64

Building Your Fifth Topology

In the Fourth Topology, you connected the VM via a virtual network to a physical
NIC. In the Fifth Topology, you will learn to bypass connecting the VM to any of
the virtual networks and connect to the physical NIC directly, as shown in Figure
3.5.

Hardware

Virtual Environment

VSRX_SRIOV
Green_net Ye—p El%ﬁ

ge-0/0/0 ge-0/0/1
192.168.50.1/30 192.168.20.1/30

enol eno2 eno3 eno4

Figure 3.5 Topology for Connecting VM to Physical NIC Using SRIOV

The technology here is called SR-IOV (single-root I/O virtualization). SR-IOV ex-
tends the concept of virtualized functions to pNIC. The single physical NIC card
can be divided into up to 16 partitions. NIC maintains different queues. Each of
the queues can be plugged into VMs directly, as separate interfaces, bypassing the
hypervisor completely.

MORE? For more information about SR-IOV, see: https://www.juniper.net/
documentation/en_US/junos/topics/concept/disaggregated-junos-sr-iov.html.

Juniper supports Intel 82599, X520/540, X710/XL710, Mellanox ConnectX-3,
and ConnectX-4 Family adapters.

https://www.juniper.net/documentation/en_US/junos/topics/concept/disaggregated-junos-sr-iov.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/disaggregated-junos-sr-iov.html

61 Building Your Fifth Topology

root@LabHost:~#
PCI (sysfs)

MORE? And for more details about what Juniper supports, see: https://www.
juniper.net/documentation/en_US/vsrx/topics/task/configuration/security-vsrx-
kvm-add-sr-iov-interfaces.html.

Here is a checklist of what’s necessary to complete the Fifth Topology:
m Prepare the host to allow using SR-IOV
m Confirm the virtual function PCI address to be used
m Spina VM with only a default virtual network
m Confirm connectivity
Jump into your host and use the following steps to prepare it.

Step 1: Insert and confirm that a Juniper supported SR-IOV NIC is inserted into
the host:

lshw —c network —-businfo
———— (It does take some time here to retrieve the output)

Bus info Device Class Description

pCci@0000:01:00.0 enol network 82599ES 10-Gigabit SFI/SFP+ Network Connection
pci@0000:01:00.1 eno2 network 82599ES 10-Gigabit SFI/SFP+ Network Connection
pCci@0000:07:00.0 eno3 network I350 Gigabit Network Connection
pci@0000:07:00.1 eno4 network I350 Gigabit Network Connection

Figure 3.6

Here, Intel 82599 is in slots 1 and 2, and we’ll use eno2 for SR-IOV connections.

Step 2: Enable the Intel VT-d CPU virtualization extensions in BIOS. Connect to
the console of your host server and navigate to the BIOS setting. On this server,
navigate to Virtualization Technology under Launch System Setup > System BIOS
> System BIOS Settings > Processor Setting (see Figure 3.6).

System BIOS

System BIOS Settings « Processor Settings

Eoglcal Processor s e @ ENED © Disabled
QP SPEEd s @ N@ximum data rate

Alternate RTID (Requestor Transaction ID) Setting -~ ¢ Enabled @ Disabled
Virtualization Technology = @ Enabled © Disabled

System BIOS Settings for SR-IOV (Processor)

https://www.juniper.net/documentation/en_US/vsrx/topics/task/configuration/security-vsrx-kvm-add-sr-iov-interfaces.html
https://www.juniper.net/documentation/en_US/vsrx/topics/task/configuration/security-vsrx-kvm-add-sr-iov-interfaces.html
https://www.juniper.net/documentation/en_US/vsrx/topics/task/configuration/security-vsrx-kvm-add-sr-iov-interfaces.html

62 Chapter 3: Building a Simple Topology

NOTE Verify the process with the vendor because different systems have
different methods to enable VT-d.

Step 3: Further, SR-IOV global is required to be set to Enabled in BIOS.

On this server, SR-IOV Global Enable is located by navigating System BIOS >
System BIOS Settings > Integrated Devices and set it to Enabled, as shown in
Figure 3.7.

System BIOS

System BIOS Settings - Integrated Devices

USB 3.0 Setting « s (@ Disabled © Enabled
User Accessible USB Ports - E All Ports On 8
Internal USB Port - e e @ ON © Off
Integrated RAID Controller - : @ Enabled ¢ Disabled
Integrated Network Card 1 - - - S @ Enabled O Disabled {0S)
L0 B N o T R @ ¥ = 1< 0] =T | @ Disabled
11O Non-Posted Prefetch s @y Enabled ¢ Disabled
IO Snoop HolOFf RESPONGE --wemrmsrssennne | 2656 Cyeles K
Embedded Video CONLroller - @ Enabled © Disabled
Current State of Embedded Video Controller - Enabled
Figure 3.7 System BIOS Settings for SR-IOV (Integrated Devices)

Step 4: Next, we need to enable IOMMU (input-output memory management
unit). This is required as SR-IOV virtual functions are queues connecting directly
to the VM.

root@LabHost:~# echo intel_iommu=on > /boot/grub/grub.conf

Step 5: Update Grub and reboot the system:

root@LabHost:~# GRUB_CMDLINE_LINUX_DEFAULT="intel_iommu=on”
root@LabHost:~# update-grub

root@LabHost:~# update-grub

Generating grub configuration file ...

Found linux image: /boot/vmlinuz-3.16.0-30-generic
Found initrd image: /boot/initrd.img-3.16.0-30-generic
Found memtest86+ image: /memtest86+.elf

Found memtest86+ image: /memtest86+.bin

done

Step 6: Reboot the host using the keyword “reboot”.

63 Building Your Fifth Topology

Now that you have enabled the host with the capability to utilize SR-IOV func-
tionality, follow the steps below to divide the SR-IOV NIC, eno2, into different
virtual functions and then spin up the VM.

Step 1: Define four virtual functions for eno2 interface, update the sriov_numvfs
file with number 4:

root@LabHost:~# echo 4 > /sys/class/net/eno2/device/sriov_numvfs
root@LabHost:~# more /sys/class/net/eno2/device/sriov_numvfs

Step 2: Recheck the hardware details to see that the virtual functions are listed

correctly:
root@LabHost:~# lshw —-c network -businfo
Bus info Device Class Description
pci@0000:01:00.0 enol network 82599ES 10-Gigabit SFI/SFP+ Network Connection
pci@0000:01:00.1 eno2 network 82599ES 10-Gigabit SFI/SFP+ Network Connection
pci@0000:01:10.1 etho network Illegal Vendor ID
pci@0000:01:10.3 ethl network Illegal Vendor ID
pci@E0000:01:10.5 eth2 network Illegal Vendor ID
pci@0000:01:10.7 eth3 network Illegal Vendor ID
pci@o000:07:00.0 eno3 network I350 Gigabit Network Connection
pci@0000:07:00.1 eno4 network I350 Gigabit Network Connection

You can clearly see the difference: eno2 now has four new interfaces, that is, vir-
tual functions specifically denoted as eth0, eth1, eth2, and eth3.

Step 3: Create an image copy from the master vSRX file:

root@LabHost:~# cp /var/lib/libvirt/images/junos-vsrx3-x86-64-18.4R1.8.qcow2 /var/lib/libvirt/
images/img_vSRX_SRIOV.qcow2

root@LabHost:~# 1s -la /var/lib/libvirt/images/

total 5671648

drwx——x--x 2 root root 4096 Jan 29 16:01 .

drwxr-=xr-=x 7 root root 4096 Jan 29 15:31 ..

—-rw-r——r—-— 1 libvirt-gemu kvm 864288768 Jan 28 11:27 img_Internet_Router.qcow2
—-rw-r——r—— 1 libvirt-gemu kvm 866844672 Jan 28 11:27 img_vSRX_00.qcow2

—-rw-r——r—-— 1 libvirt-gemu kvm 864288768 Jan 28 11:00 img_vSRX_01.qcow2

—-rw—-r——r—— 1 libvirt-gemu kvm 876937216 Jan 28 11:27 img_vSRX_node®.qcow2

—-rw-r——r—-— 1 libvirt-gemu kvm 870776832 Jan 28 11:26 img_vSRX_nodel.qcow2

—-rw-r——r—— 1 root root 732299264 Jan 29 16:01 img_vSRX_SRIOV.qcow2

-rw-r——r—— 1 root root 732299264 Jan 26 05:22 junos-vsrx3-x86-64-18.4R1.8.qcow2

Step 4: Copy and paste the following command to instantiate the VM:

virt-install --name vSRX_SRIOV —-ram 4096 --cpu SandyBridge, —-vcpus=2 —--arch=x86_64 --disk path=/
var/lib/libvirt/images/img_vSRX_SRIOV.qcow2,size=16,device=disk,bus=ide, format=qcow2 ——os-

type linux --os-variant rhel7 —--import --network=network:default,model=virtio —-host-
device=pci_0000_01_10_1 ——host-device=pci_0000_01_10_5

root@LabHost:~# virt-install —-—-name VSRX_

SRIOV —-ram 4096 --cpu SandyBridge, —--vcpus=2 --arch=x86_64 --disk path=/var/lib/libvirt/images/
img_vSRX_SRIOV.qcow2,size=16,device=disk, bus=ide, format=qcow2 --os-type linux --o0s-

variant rhel7 —--import --network=network:default,model=virtio --host-device=pci_0000_01_10_1 —-host-
device=pci_0000_01_10_5

64 Chapter 3: Building a Simple Topology

Starting install...

Creating domain... | 0 B 00:00:04

(virt-viewer:3187): GSpice-WARNING x*: PulseAudio context failed Connection refused
(virt-viewer:3187): GSpice-WARNING *x: pa_context_connect() failed: Connection refused
Domain creation completed.

Step 5: Check that the vSRX VM is running;:

root@LabHost:~# virsh list ——all

Id Name State

1 VSRX_SRIOV running

- VSRX_00 shut off
VSRX_01 shut off

- VSRX_Internet_Router shut off

- VSRX_node®d shut off

- VSRX_nodel shut off

Step 6: Log in to the console using the virsh command and check show interface
upon login:
root@LabHost:~# virsh console VvSRX_SRIOV

Connected to domain vSRX_SRIOV
Escape character is *]

FreeBSD/amd64 (Amnesiac) (ttyu@)
login: root
Last login: Thu Jan 17 11:12:30 on ttyu@

——— JUNOS 18.4R1.8 Kernel 64-bit XEN JINPR-11.0-20181207.6c2f68b_2_bu
root@:~ # cli
root>

root> show chassis fpc pic-status

Slot @ Online FPC

PIC @ Online VSRX DPDK GE
root> show interfaces terse
Interface Admin Link Proto Local Remote
ge-0/0/0 up up
gr-0/0/0 up up
ip-0/0/0 up up
1sq-0/0/0 up up
1t-0/0/0 up up
mt-0/0/0 up up
sp-0/0/0 up up
sp-0/0/0.0 up up inet

inet6

sp-0/0/0.16383 up up inet
ge-0/0/1 up up
dsc up up

Now that the VM is up and the SR-IOV interfaces are detected, let’s configure the
interfaces and then check the connectivity. What are we trying to achieve? We are
bypassing the hypervisor and have connected the VM directly to the physical NIC
by using virtual functions.

65 Building Your Fifth Topology

set
set
set
set
set
set

set
set
set
set
set
set

set
set
set
set
set
set

set
set
set
set
set
set

As we mentioned earlier, now the virtual functions are like queues that pass traffic
to the NIC and then outside. So, in order to segregate traffic on the virtual func-
tions (0 — 3), let’s configure these VMs to explicity define VLANSs on their inter-

faces. To summarize, multiple virtual functions will have multiple VLAN traffic on

the pNIC, and the connected next hop switch should be a truck port to accept this
traffic.

To configure and confirm the connectivity, use the following steps.

Step 1: Configure ge-0/0/0 and ge-0/0/1 with a VLAN and an IP address in the
same subnet as its respective gateway address:

security zones security-zone green host-inbound-traffic system-services all
security zones security-zone green host-inbound-traffic protocols all
security zones security-zone green interfaces ge-0/0/0.301

interfaces ge-0/0/0 vlan-tagging

interfaces ge-0/0/0 unit 301 vlan-id 301

interfaces ge-0/0/0 unit 301 family inet address 192.168.50.1/30

security zones security-zone red host-inbound-traffic system-services all
security zones security-zone red host-inbound-traffic protocols all
security zones security-zone red interfaces ge-0/0/1.302

interfaces ge-0/0/1 vlan-tagging

interfaces ge-0/0/1 unit 302 vlan-id 302

interfaces ge-0/0/1 unit 302 family inet address 172.16.20.1/30

Step 2: Enable the next-hop gateway to accept tagged traffic from two different
VLANSs on the same interface. We used a Juniper EX Series switch configured in
the following fashion.

You need to check your gateway type and configure it accordingly:

interfaces ge-0/0/16 unit @ family ethernet-switching vlan members vlan301
interfaces irb unit 301 family inet address 192.168.50.2/30
routing-instances DAYONE_GREEN instance-type virtual-router
routing-instances DAYONE_GREEN interface irb.301

vlans vlan301 vlan-id 301

vlans vlan301 13-interface irb.301

interfaces ge-0/0/16 unit @ family ethernet-switching vlan members vlan302
interfaces irb unit 302 family inet address 172.16.10.2/30
routing-instances DAYONE_RED instance-type virtual-router
routing-instances DAYONE_RED interface irb.302

vlans vlan302 vlan-id 302

vlans vlan302 13-interface irb.302

Step 3: Check the connectivity by using the ping utility:

[edit]

root# run ping 192.168.50.2 count 3

PING 192.168.50.2 (192.168.50.2): 56 data bytes

64 bytes from 192.168.50.2: icmp_seq=0 tt1=64 time=8.279 ms
64 bytes from 192.168.50.2: icmp_seq=1 tt1=64 time=7.810 ms
64 bytes from 192.168.50.2: icmp_seq=2 ttl=64 time=10.737 ms

66 Chapter 3: Building a Simple Topology

——— 192.168.50.2 ping statistics ——-
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/stddev = 7.810/8.942/10.737/1.284 ms

[edit]

root# run ping 172.16.20.2 count 3

PING 172.16.10.2 (172.16.10.2): 56 data bytes

64 bytes from 172.16.10.2: icmp_seq=0 tt1=64 time=6.181 ms
64 bytes from 172.16.10.2: icmp_seq=1 tt1=64 time=5.652 ms
64 bytes from 172.16.10.2: icmp_seq=2 tt1=64 time=10.657 ms

-—— 172.16.10.2 ping statistics ——

3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/stddev = 5.652/7.497/10.657/2.245 ms

Step 4: Confirm that the ping response is from the gateway; confirm the ARP
learned on either side:

root@Contrail-DataSwitch# run show arp | match “ge-0/0/1|ge-0/0/0"

02:09:¢0:28:1f:8e 172.16.20.1 172.16.20.1 irb.302 [ge-0/0/16.0] none
02:09:c0:bf:3b:dd 192.168.50.1 192.168.50.1 irb.301 [ge-0/0/16.0] none
root@ataSwitch# run show arp | match “irb.301|irb.302"

02:09:¢0:28:1f:8e 172.16.20.1 172.16.20.1 irb.302 [ge-0/0/16.0] none
02:09:c0:bf:3b:dd 192.168.50.1 192.168.50.1 irb.301 [ge-0/0/16.0] none

Step 5: Check yourself with the “show interface” command to ensure that the
MAC address is correct:

root@vSRX_SRIOV> show interfaces ge-0/0/0 | match Current

Current address: 02:09:c0:bf:3b:dd, Hardware address: ©02:09:c0:bf:3b:dd
root@vSRX_SRIOV> show interfaces ge-0/0/1 | match Current

Current address: 02:09:c0:28:1f:8e, Hardware address: 02:09:c0:28:1f:8e

Well, that’s all for this topology.

Check this yourself: the same MAC address will be defined in the “ip link” output
for the two virtual functions assigned:

5: eno2: <BROADCAST,MULTICAST,UP,LOWER_

UP> mtu 1500 qdisc mq state UP mode DEFAULT group default glen 1000
link/ether 24:6e:96:a29:71:52 brd ff:ff:ff:ff:ff:ff
vf @ MAC 02:09:c0:bf:3b:dd, spoof checking on, link-state auto, trust off
vf 1 MAC 00:00:00:00:00:00, spoof checking on, link-state auto, trust off
vf 2 MAC 02:09:c0:28:1f:8e, spoof checking on, link-state auto, trust off
vf 3 MAC 00:00:00:00:00:00, spoof checking on, link-state auto, trust off

6/ Summary

Summary

In this chapter you discovered how simple it is to deploy and interconnect multiple
vSRXs on the same Linux host. You started by connecting two vSRX VMs over a
red network, simulating what one can call a site-to-site topology. You next config-
ured two vSRX VMs in high availability (chassis cluster) pair which can be used in
a HQ location. You next merged the First Topology and the Second Topology to-
gether with another VM acting as an internet router, which one can call a branch
to HQ topology. To conclude, you learned ways to connect an vSRX instance to
the physical NIC of the host, initially using Linux bridges, and then bypassing the
same for high performance requirements using SR-IOV.

Chapter 4

Troubleshooting vSRX on KVM

This chapter begins by familiarizing you with different utilities used to verify the
host and the VM state. Next, it covers how to check the vSRX VM’s Routing En-
gine and Packet Forwarding Engine state, and further in you’ll learn how to con-
firm traffic flows over the virtual network. The chapter concludes by reviewing
different log files on the host and the vSRX VM and how to use them.

Verify Host and VM State

To verify the VM’s states and the networks configured and connected, you can
generally use the following two Linux utilities:

m Virsh

® Bretl

More on Virsh (Virtual Shell) Command.

Recall that in Section 1 of Chapter 2, you installed some packages, and libvirt was
one of them. Libvirt is an open source software for managing VMs. There is an
API library, a daemon (libvirtd), and a command line utility (virsh). Juniper uses
libvirt to create and manage vSRX instances.

Virsh, a command line user interface tool you have used extensively in this Day
Onmne book is used to create, start, pause, and shut down a domain (by domain we
mean a VM). Usage:

virsh [OPTION].. <command> <domain> [ARG]..

69 Verify Host and VM State

m Where opTION includes usage of ‘~v’ for version check, command is like ‘1ist” which
lists all VMs.

B domain is the numeric domain ID, or the domain name, or the domain
uuid<id,name,uuid>.

B ARG are command-specific options.

For reference always use the “~-help” option: -
virsh ——help

Let’s [earn more about using the virsh command:

Step1: List all the VMs on your host:

root@LabHost:~# virsh list ——all

Id Name State

10 VSRX_SRIOV running
- VSRX_00 shut off
- VSRX_01 shut off
- VSRX_Int_Router shut off
- VSRX_Node® shut off
- VSRX_Nodel shut off

Step 2: List all the networks configured on your host:
root@LabHost:~# virsh net-list —--all

Name State Autostart Persistent
ctrl_net active yes yes
default active yes yes
fab_net active yes yes
green_net active yes yes
red_net active yes yes

Step 3: List all the networks bound to a VM:
root@LabHost:~# virsh domiflist vSRX_00

Interface Type Source Model MAC

- network default virtio 52:54:00:42:61:aa
- network green_net virtio 52:54:00:0f:77:62
- network red_net virtio 52:54:00:de:39:25

Have you noticed that the Interface column is empty in the above output? Do you
know why? Answer: Check the VM state in the output sample showed in Step 1.

Step 4: Check the XML output of a VM:

root@LabHost:~# virsh dumpxml vSRX_00

<domain type='"kvm’'>
<name>VSRX_00</name>
<uuid>9d69d7b2-42d8-2092-94e4-2d7b1df283ea</uuid>
<memory unit='KiB’>4194304</memory>

/0 Chapter 4: Troubleshooting vSRX on KVM

<currentMemory unit='KiB’'>4194304</currentMemory>
<vcpu placement='static’>2</vcpu>
<0S>

<. Skipped>
<memballoon model='virtio’>
<address type='pci’ domain='@x0000’' bus='0x00' slot='0x06’ function='0x0’'/>
</memballoon>
</devices>
</domain>

Step 5: Explore the virsh world yourself:

root@LabHost:~# virsh ——help

virsh [options]... [<command_string>]
virsh [options]... <command> [args...]
options:
-Cc | ——connect=URI hypervisor connection URI
-r | ——readonly connect readonly
-d | ——debug=NUM debug level [0-4]
-h | ——help this help

<...Truncated>

More on BRCTL

BRCTL stands for bridge control. In Linux, this utility is used for Ethernet bridge
administration tasks such as setting up, maintaining, and inspecting the bridge
configuration. To do it yourself, hop onto your host to explore the brctt
command:

Step 1: Check that the bridge is configured on the host:

root@LabHost:~# brctl show

bridge name bridge id STP enabled interfaces
ctri_net 8000.52540002c30c yes ctri_net-nic
fab_net 8000.525400e8f115 yes fab_net-nic
green_net 8000.525400260e78 yes green_net-nic
red_net 8000.52540088230e yes red_net-nic
virbro 8000.246€96a97150 no enol
vneto
NOTE At the time this output was collected, the host had only one VM

running, vSRX_SRIOV, which has only one virtio interface (default virtual
network) and the two others that are bypass interfaces to the pNIC. Hence, you
see only one virtual interface ‘vnet0’ attached to virbrO.

Try it yourself: Spin up other VMs and observe the difference it makes to the above
output.

Step 2: Add a physical NIC to a bridge:

root@LabHost:~# brctl addif red_net eno4

root@LabHost:~# brctl show

bridge name bridge id STP enabled interfaces
ctrl_net 8000.52540002c30c yes ctrl_net-nic
fab_net 8000.525400e8115 yes fab_net-nic

71 Routing Engine and Packet Forwarding Engine on vSRX

green_net 8000.525400260e78 yes green_net-nic
red_net 8000.246e96a97155 yes eno4
red_net-nic
virbro 8000.246e€96a97150 no enol
vneto
NOTE As shown in the above example, the network red_net now has its

root@LabHost:~# b

connection to the physical NIC. With correct configuration on the device con-
nected via interface eno4, VMs connected via virtual network (red_net) can
communicate with the outside network.

Step 3: Explore the brct1 world yourself:
rctl ——help

Usage: brctl [commands]

commands:
addbr
delbr
addif
delif
hairpin
setageing

<...Truncated>

<bridge> add bridge

<bridge> delete bridge

<bridge> <device> add interface to bridge
<bridge> <device> delete interface from bridge
<bridge> <port> {on|off} turn hairpin on/off
<bridge> <time> set ageing time

Routing Engine and Packet Forwarding Engine on vSRX

What is a Routing Engine and a Packet Forwarding Engine? Why do they need to
communicate? How do we check the state of these two?

These two terms are also known as the control plane and the data plane, respec-
tively. A Routing Engine performs any control tasks like routing adjacency and
ARP learning, and feeds the Packet Forwarding Engine with information for it to
continue working at peak speeds.

Since this is a book about security, let’s talk about session. A stateful device like
vSRX needs to keep track of the traffic that passes through it to confirm the valid-
ity of that traffic.

Taking an example of a TCP connection, once the first SYN packet arrives at
vSRX, it is sent to the flow-daemon in the Packet Forwarding Engine to perform
the basic checks (policy checks, routing check, firewall check, etc.). Once allowed,
the packet has to be sent to the destination. Before that, the destination IP address
ARP has to be resolved by the Routing Engine. If the Routing Engine is unable to
send the ARP Request, or the destination does not revert with an ARP reply, the
packet is dropped. If the Routing Engine receives a reply, it updates the Packet
Forwarding Engine with the information, the packet is sent safely to the destina-
tion, and a session is installed.

/2 Chapter 4: Troubleshooting vSRX on KVM

Let's check the Routing Engine and Packet Forwarding Engine on a vSRX:
Step 1: Connect to the Routing Engine.

Upon login to the vSRX VM, you first connect to the BSD shell, and when you
type cli, you are connected to the Routing Engine of the VM. When you type show
chassis routing-engine on the Routing Engine, you see the details about the Rout-
ing Engine as shown here:

root@LabHost:~# virsh console VvSRX_SRIQV

Connected to domain vSRX_SRIOV

Escape character is *]

login: root

Password:

Last login: Sun Jan 20 00:49:39 from 172.29.186.31

——— JUNOS 18.4R1.8 Kernel 64-bit XEN JINPR-11.0-20181207.6c2f68b_2_bu
root@:~ #
root@:~ # cli
root> show chassis routing-engine
Routing Engine status:
Total memory 4050 MB Max 3119 MB used (77 percent)
Control plane memory 4050 MB Max 3119 MB used (77 percent)
5 sec CPU utilization:

User 0 percent

Background 0 percent

Kernel 0 percent

Interrupt 0 percent

Idle 99 percent
Model VSRX RE
Start time 2019-01-19 06:26:33 UTC
Uptime 23 hours, 52 minutes, 14 seconds
Last reboot reason Router rebooted after a normal shutdown.
Load averages: 1 minute 5 minute 15 minute

1.19 1.11 1.08

NOTE If you are able to connect to the operational mode and execute the
commands, this means that the Routing Engine is running.

Step 2: Check the status of the Packet Forwarding Engine:

root> show chassis fpc pic-status
Slot @ Online FPC
PIC @ Online VSRX DPDK GE

NOTE If the FPC continues to be offline, you need to check the messages or
chassisd logs to get more information about the cause. How to see the log files is
explained later in this chapter.

Step 3: To connect to shell, type “start shell” on configuration mode:

root@vSRX_00> start shell

root@vSRX_00:~ # uname -a

FreeBSD vSRX_00 INPR-11.0-20181207.6c2f68b_2_bu FreeBSD INPR-11.0-20181207.6c2f68b_2_builder_
stable_11 #0 r356482+6c2f68b(HEAD): Thu Dec 6 21:49:22 PST 2018 builder@feyrith.juniper.net:/
volume/build/junos/occam/1lvm-5.0/freebsd/stable_11/20181113.154712_2_builder_stable_11.6c2f68b/obj/
amd64/juniper/kernels/JINPR-AMD64—

/3 Routing Engine and Packet Forwarding Engine on vSRX

NOTE This is vSRX UNIX shell and you can navigate through the directories.

Step 4: To check which processes are running on the vSRX VM, connect to the
shell and type “ps —aux”:

root@vSRX_00:~ # ps —aux

USER PID %CPU SMEM Vsz RSS TT STAT STARTED TIME COMMAND
root 11 144.3 0.0 0 32 - RL 23:32 822:57.23 [idlel
root 5364 59.3 65.3 2807508 2709892 - S 23:34 437:02.42 /usr/sbin/srx

Step 5: Check the processes running from the CLI:

root@vSRX_00> show system processes extensive
last pid: 6198; 1load averages: 1.34, 1.33, 1.29 up 0+10:43:09 10:16:01
280 processes: 9 running, 249 sleeping, 22 waiting

Mem: 38M Active, 693M Inact, 2918M Wired, 56M Buf, 270M Free
Swap: 1024M Total, 1024M Free

PID USERNAME PRI NICE SIZE RES STATE C TIME WCPU COMMAND
11 root 155 ki3l oK 32K RUN 0 603:30 94.48% idle{idle: cpu@}
11 root 155 ki3l 0K 32K CPU1 1 220:51 51.56% idle{idle: cpul}
5364 root 88 0 2742M 2646M CPU1 1 421:51 51.17% srxpfe{lcore-slave-1}
5364 root 21 0 2742M 2646M RUN 0 15:44 2.10% srxpfe{srxpfe}
5443 root 20 0 94748K 17220K RUN 0 5:41 0.29% llmd{llmd}
5660 root 20 ® 822M 44500K RUN 0 3:16 0.10% authd
5534 root 20 © 737M 32864K select © 0:00 0.10% mgd

Understanding Packet Walk and Taps

Have you ever been to a running event? How do the organizers ensure that the
athletes run the whole distance and in a certain amount of time?

The race route is generally predefined, and a transponder working on a radio-fre-
quency identification (RFID) basis is attached to the athlete. It emits a unique code
that is detected by radio receivers located at strategic points throughout the event.

Consider traffic/packets as a runner and virtual networks (vINIC) as the strategic
points where tapping can confirm if the runner (traffic/packet) is reached the par-
ticular vNIC or not. Let’s use the following topology to try and understand the
flow:

VSRX_00 ———vnet_x ——- red_net ——— vnet_x ———-vSRX_01

When you initiate a ping from vSRX_00 to vSXR_0, what all needs to be in order
for the ping to work?

m vSRX_00 - Correct interface IP address and zone configuration
m vSRX_00 - Interface connected to the red_net

m red_net-Network showing the connected MAC address of the above interface

/4 Chapter 4: Troubleshooting vSRX on KVM

m vSRX_01 - Correct interface IP address and zone configuration

m vSRX 00 -Interface connected to the red_net

m red_net — Network showing the connected MAC address of the above interface
To do it yourself: Jump in and do some packet dumps. Use the following steps:

Step 1: Start the vSRX_00 and vSRX_01 VM if they are shut off:

virsh start vSRX_00
virsh start vSRX_01
“virsh list —all” should show the VM as ‘running’

Step 2: Once the VMs boot up, log in and check that the interfaces are up using the
following command from the operational mode:

root@vSRX_00> show interface terse

Step 3: Confirm that the interface configuration is accurate:

VSRX_00 — ge-0/0/1 ip should be 172.16.10.1
VSRX_01 — ge-0/0/1 ip should be 172.16.10.2

Step 4: Check the MAC address on the vSRX VM:

root@vSRX_00> show interfaces ge-0/0/1 | match Current
Current address: 52:54:00:de:39:25, Hardware address: 52:54:00:de:39:25

root@vSRX_01> show interfaces ge-0/0/1 | match Current
Current address: 52:54:00:c0:c6:d6, Hardware address: 52:54:00:c0:c6:d6

Step 5: Check that the virtual network has the correct MAC address on the con-

nected virtual NIC:
root@LabHost:~# brctl showmacs red_net
port no mac addr is local? ageing timer
2 24:6€:96:a29:71:55 yes 0.00
1 52:54:00:88:23:0e yes 0.00
4 52:54:00:c0:c6:d6 no 59.69
3 52:54:00:de:39:25 no 59.69
4 fe:54:00:c0:c6:d6 yes 0.00
3 fe:54:00:de:39:25 yes 0.00

Step 6: Confirm that the correct port number connected to the VM by using the
virsh command as following:

root@LabHost:~# virsh domiflist vSRX_00

Interface Type Source Model MAC
vnet2 network default virtio 52:54:00:42:61:aa
vnet3 network green_net virtio 52:54:00:0:77:62

vnet4 network red_net virtio 52:54:00:de:39:25

75 Routing Engine and Packet Forwarding Engine on vSRX

root@LabHost:~# virsh domiflist vSRX_01

Interface Type Source Model MAC

vnet5 network default virtio 52:54:00:00:48:2e
vnet6 network green_net virtio 52:54:00:3f:4f:ea
vnet7 network red_net virtio 52:54:00:c0:c6:d6

As shown in the sample above, vnet4 and vnet7 are the virtual interfaces where you
can tap into the traffic.

Step 7: Capture the traffic. Open two separate SSH sessions to the host and start
capturing using the tcpdump utility in Linux:

root@LabHost:~# tcpdump -nni vnet4 icmp
root@LabHost:~# tcpdump -nni vnet7 icmp

Step 8: Open another SSH to the host and console log in to vSRX_00 and send
two ICMP ping to 172.6.10.2:

root@vSRX_00> ping 172.16.10.2 count 2

PING 172.16.10.2 (172.16.10.2): 56 data bytes

64 bytes from 172.16.10.2: icmp_seq=0 tt1=64 time=1.097 ms
64 bytes from 172.16.10.2: icmp_seq=1 tt1=64 time=1.184 ms

——— 172.16.10.2 ping statistics ——
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max/stddev = 1.097/1.140/1.184/0.044 ms

Step 9: Use the tcpdump utility to show the ICMP echo and reply:

root@LabHost:~# tcpdump -nni vnet4 icmp

tcpdump: WARNING: vnet4: no IPv4 address assigned

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on vnet4, link-type EN1OMB (Ethernet), capture size 65535 bytes

13:25:25.684932 IP 172.16.10.1 > 172.16.10.2: ICMP echo request, id 48405, seq 0, length 64
13:25:25.685348 IP 172.16.10.2 > 172.16.10.1: ICMP echo reply, id 48405, seq 0, length 64
13:25:26.685234 IP 172.16.10.1 > 172.16.10.2: ICMP echo request, id 48405, seq 1, length 64
13:25:26.685867 IP 172.16.10.2 > 172.16.10.1: ICMP echo reply, id 48405, seq 1, length 64
root@LabHost:~# tcpdump -nni vnet7 icmp

tcpdump: WARNING: vnet7: no IPv4 address assigned

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on vnet7, link-type EN1@MB (Ethernet), capture size 65535 bytes

13:25:25.684955 IP 172.16.10.1 > 172.16.10.2: ICMP echo request, id 48405, seq 0, length 64
13:25:25.685328 IP 172.16.10.2 > 172.16.10.1: ICMP echo reply, id 48405, seq 0, length 64
13:25:26.685249 IP 172.16.10.1 > 172.16.10.2: ICMP echo request, id 48405, seq 1, length 64
13:25:26.685839 IP 172.16.10.2 > 172.16.10.1: ICMP echo reply, id 48405, seq 1, length 64

NOTE If you do not see ICMP echo on vnet4 capture, you need to “monitor
traffic interface ge-0/0/1” on the vSRX VM to check if ICMP is being crafted.

Likewise, in case you have a physical NIC connected to a virtual network and the
traffic is destined to exit out, you need to initiate the tcpdump utility on the physi-
cal interface from the host.

/6 Chapter 4: Troubleshooting vSRX on KVM

Understanding Host and vSRX VM Logs

One of the reasons we like Linux and consider it a great operating system is that
anything and everything happening on and to the system is being logged in some
manner. This information is very important and is invaluable when one is trouble-
shooting a problem.

On Ubuntu, or on vSRX, logging is saved in the traditional system subdirectory /
var/log.

Both Linux (Ubuntu) and vSRX are open to allow the user to configure in order to
write a certain type of log to a specific file.

Here is a list of a few default log files that could be helpful while troubleshooting a
problem:

Host Log Files
VM Info

On an Ubuntu host, under “/var/log/libvirt/qgemu” path, you’ll see files for each
VM that you spin.

The file name is the VM name followed by an extension “.log’.
Do it yourself: navigate to the directory and see the log files for your VMs.

If the VM does not start up upon using the virsh command, the error generated for
the non-starting VM is listed here in the following log files:

kern.log

As the name suggests any information relating to the kernel running on your host
can be seen from here.
syslog

What you have as a messages file in vSRX is a syslog file in Linux (Ubuntu).
Consult the system log when you can’t locate the desired log information in an-
other log.

vSRX VM Logs

messages

You can view the system messages in the log files with the ‘show log messages” com-
mand. Information about any daemon or any configuration change or any event is
logged in this file. To view the log messages, type the following command from a
vSRX VM operational mode:

77

Routing Engine and Packet Forwarding Engine on vSRX

root>show log messages
root> show log messages

Jan
Jan
Jan
Jan
Jan
Jan

130:
130:
130:
130:
130:
130:

38

eventd[20226]: SYSTEM_ABNORMAL_SHUTDOWN: System abnormally shut down
eventd[20226]: SYSTEM_OPERATIONAL: System is operational

kernel: Copyright (c) 1992-2017 The FreeBSD Project.

kernel: Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994
kernel: The Regents of the University of California. All rights reserved.
kernel: FreeBSD is a registered trademark of The FreeBSD Foundation.

Chassisd Logs

Chassisd log files display details of the chassis-control process such as events and
information relating to hardware, chassis control, and related logs. You can also
find information related to the Packet Forwarding Engine in chassisd logs.

You can see the logs related to Routing Engine-Packet Forwarding Engine connec-
tion here:

root> show log chassisd

Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan

Jan

140

FPC in slot @ goes online
fru_power_on_state_timer: FPC @ step 0

FPC @ power on in 7 sec

alarmd connection completed

send: clear all chassis class alarms
fru_power_on_state_timer: FPC @ step 1

Power on FPC 0
CHASSISD_IPC_WRITE_ERR_NULL_ARGS: FRU has no connection arguments fru_send_msg FWDD
send: fwdd, fpc @ powered on
setup_power_on_timeout FPC timeout 300 secs
ch_ipc_connect:Setting TCP keepalive count to 5.

CMLC: Chasd TCP socket KeepIdle=1000,KeepInterval=1000 KeepCount=5

Jsrpd (Juniper Services Redundancy Protocol Daemon)

Information about the chassis cluster, such as events leading to the redundancy
feature of Junos, is available in this log file:

root> show log jsrpd

Jan 19 12:30:39 JSRPD release 18.4R1.8 built by builder on 2018-12-
17 04:35:07 UTC starting, pid 20289

Jan 19 12:30:39 node id invalid, cluster-id @ in kernel

Since the chassis cluster is not enabled on the node from where this output is tak-
en, the node ID we see is invalid. Connect to the VM vSRX_Node0 VM to check
the chassis cluster log. Execute an RG-1 failover using the following command and
check the log messages in jsrpd logs:

root> request chassis cluster failover redundancy group 1 node 1

Interactive-commands

This log file gives information about all the commands that a user runs on the CLI.
This command is handy in an event when you need to understand all commands
that were run by different users, or by you in the past:

/8 Chapter 4: Troubleshooting vSRX on KVM

root> show log interactive-commands | last 5

Jan 20 10:31:25

LINE: User ‘root’, command ‘show log chassisd | last 100

Jan 20 10:33:07
Jan 20 10:35:34
Jan 20 10:38:44
commands ‘

Jan 20 10:38:52

mgd [22399]: UI_CMDLINE_READ_

mgd [22399]: UI_CMDLINE_READ_LINE: User ‘root’, command ‘show log chassisd ‘
mgd [22399]: UI_CMDLINE_READ_LINE: User ‘root’, command ‘show log jsrpd *

mgd [22399]: UI_CMDLINE_READ_LINE: User ‘root’, command ‘show log interactive-

mgd [22399]: UI_CMDLINE_READ_LINE: User ‘root’, command ‘show log interactive-

commands | last 5 *

Issues You Might Face While Installing vSRX

- VM boots but stuck in boot process and shows kernel panic error

Check to see if the boot file is correct. Upon download of the image file always
check the checksum and compare the same with the one provided on the website.

- EPC-PIC status stuck in present or Offline state

Use the following CLI command to check the status:

root> show chassis fpc pic-status

Slot 0 Present

FPC

Check “chassisd” logs in vSRX to confirm cause of the FPC stuck in Present state.
- Error: “Host does not support passthrough of pci device.”

As stated in the error message, mostly this error is relative to SR-IOV not enabled
either in BIOS or on GRUB. Follow the steps in the lab exercise carefully:

Error: “Error starting domain: Device 0000:01:10.1 not found: could not access /sys/bus/pci/
devices/0000:01:10.1/config: No such file or directory”

This error indicates that the number of virtual functions are not defined in the file
sriov_numvfs.

- vSRX with SR-IOV interfaces does not show up if the host interface is down.

Reference: https://kb.juniper.net/KB31894. This is as per design as the DPDK link
level status detecting API is not implemented for the SR-IOV physical function.

https://kb.juniper.net/KB31894

/9 Summary

Summary

Now that you have learned how to build and configure vSRX VMs, why not go
ahead and deploy the vSRX to meet your own specific requirements? The virtual
SRX enables you to quickly introduce a new service or sandbox-test a new
configuration.

The vSRX supports Layer 2 to Layer 7 technologies that are available on a physi-
cal SRX. However, it is always best to check the supported and unsupported fea-
tures on a vSRX version by checking the release notes here: https://www.juniper.
net/documentation/product/en_US/vsrx.

If you’re looking for new use cases for vSRX, try these:

Private cloud — vSRX maximizes resources by pooling and sharing along with
managing functional separation to keep the data private.

Public and hybrid cloud — vSRX VM dedicated to each customer as an IPsec
end point.

vCPE solution — vSRX dedicated for a specific feature such as UTM for one
customer and IPS+AppSecure for another customer.

uCPE solution — vSRX running on a Universal CPE chassis such as NFX plat-
forms.

Virtual environment — vSRX acting as a security path for VMs on a server.

Sandbox — vSRX allows you to create a Junos sandbox with vSRX in your lab
environment to allow you to create network simulation and configuration test-
ing.

https://www.juniper.net/documentation/product/en_US/vsrx
https://www.juniper.net/documentation/product/en_US/vsrx

Appendix

This Appendix contains assorted bits of useful information that didn’t fit in the
step-by-step instructions within the book, including the 10 Most Active vSRX
Support Issues (and the links to their answers).

Installing vSRX with virt-manager (GUI Package in Linux)

In Linux, you utilized virsh to create, console, manage, and destroy VMs. Linux
offers another utility which has a graphical interface for the user.

Checklist for using the virt-manager utility:
m X11 Forwarding enabled on your text editor
m Virt-manager program installed on the host

X11 Forwarding requires you to check your connection settings in a text editor
and enable the feature while adding your display as 127.0.0.1:0.0 (that is your lo-
cal machine). Here’s an example for enabling X11 forwarding using Secure CRT
terminal:

Open an SSH session in SecureCRT and navigate to Connection > Port-Forward-
ing > Remote/X11.

81 Installing vSRX with virt-manager (GUI Package in Linux)

Category:
¥ Connection Remotely forwarded connections
Logon Actions
v SSH2 Name A Remote Address Local Host
SFTP Session
Advanced
v Port Forwarding
¥ Terminal
¥ Emulation
Modes
Emacs
Mapped Keys
Advanced
¥ Appearance
Window Add... Edit... Delete
Log File
Printing X11 forwarding
X/Y/Zmodem
Selecting this option causes SecureCRT® to request that the remote machine
forward X11 data to the X server running on the local machine.
Forward X11 packets
Enforce X11 authentication
Display: 127.0.0.1:0.0

Recall you have already installed the virt-manager package in Chapter 2. Now log
in to the host and complete the following steps:

root@LabHost:~# virt-manager

A new GUI window pops up as shown .

0@ '\ Virtual Machine Manager

File Edit View Help

[Bl Open © -

Name v CPU usage
w QEMU/KVM

“ VvSRX_00
Running

3 9| VSRX_01
Running

) | vSRX_noded
Running

) | vSRX_nodel
Running

11l

The Virtual Machine Manager window lists all the VMs that are configured on the
host and displays their status. To instantiate a VM using virt-manager follow these

steps.

Step 1: Copy the vSRX image and save it with a new name to create a VM using
virt-manager:

82 Appendix:

root@LabHost:~# cp /var/lib/libvirt/images/junos—-vsrx3-x86-64-18.4R1.8.qcow2 /var/lib/libvirt/
images/img_vSRX_VirtM.qcow2

root@LabHost:~# 1s -la /var/lib/libvirt/images/

total 4822560

drwx——x--x 2 root root 4096 Jan 28 04:05 .

drwxr-=xr-=x 7 root root 4096 Jan 26 06:36 ..

—-rw-r-—r—— 1 libvirt-gemu kvm 866189312 Jan 28 04:05 img_vSRX_00.qcow2

—-rw-r——r—— 1 libvirt-gemu kvm 862453760 Jan 28 04:05 img_vSRX_01.qcow2

—-rw-r-—r—— 1 libvirt-gemu kvm 875560960 Jan 28 04:05 img_vSRX_node@.qcow?2

—-rw-r——r—— 1 libvirt-gemu kvm 869466112 Jan 28 04:05 img_vSRX_nodel.qcow2

—-rw-r-—r—— 1 root root 732299264 Jan 28 04:05 img_vSRX_VirtM.qcow2

-rw-r——r—— 1 root root 732299264 Jan 26 05:22 junos-vsrx3-x86-64-18.4R1.8.qcow2

Step 2: Click on the Create New Virtual Machine icon and select the Import exist-
ing disk image. Click Forward.

[NON] N\ Virtual Machine Manager
File Edit %| New VM

L=

Name

m Create a new virtual machine
I

Connection: QEMU/KVM

vS
o

u vS Choose how you would like to install the operating system
Ru
) Local install media (ISO image or COROM)

vs|
e

Network Install (HTTP, FTP, or NFS)

LRI §

vs| Network Boot (PXE)
Ru|

« Import existing disk image

» Architecture options

Cancel [Back i Forward I

Step 3: Browse to the location of the downloaded vSRX image and select the vSRX
image. Click on the select volume. Next, select Linux from the OS type list and se-
lect Red Hat Enterprise Linux 7 from the expanded Version list and click Forward.

83 Installing vSRX with virt-manager (GUI Package in Linux)

[\ Choase Starage Voluma

Size 1088.78 Gill Free { 9.72 Gifl In Use.
Location: Marflibflibvirt/images

volumes | | @ | ®

Volumes - Size Format Used By
img_Internet_Router.qcow2 18.00 GiB geowz VSRX_Intemet_Rout
img_vSRX_00.qcow2 18.00 GiBl geow2 VSRX_00
img_vSRX_01.qeow2 18.00 Gifl geow2 VSRX_01
img_vSRX_node0.qeow2 18.00 GiB geow2 VSRX_node0
img_vSRX_nodel.qcow2 18.00 Gifl geow2 VSRX_nodel

0 GiB geow2 VSRX_SRIOV

qeow2 1

junos-vsrx3-x86-54-16.4R1.8.qcow2 18.00 GiB

f}| ‘0|u Browse Local || Cancel || Choose Volume

% Virtual Machine Manager

Provide the existing sterage path:

| pvarflibjlibvirtfimages/img_vSRX_VirtM.qcow2 Browse...

Choose an operating system type and version

OS type: | Linux v‘

Version: | Red Hat Enterprise Linu | - ‘

Cancel || Back |i Forward

Step 5: Select RAM as 4096 and CPU as 2. Click Forward.

84 Appendix:

% Virtual Machine Manager
Fle | ®@ @ O [X| New VM

|i___| é virtual mac

usage

¥ QEN Choose Memory and CPU settings

Memory (RAM): | 4096 — + |MiB ﬁ

Up to 257847 MiB available on the host

Up to 40 available

| Cancel H Back H Forward |

Step 6: Name the VM as vSRX_VirtM and checkmark Customize configuration
before install. Click Finish.

X Virtual Machine Manager
(x| New VM

rtual machine

usage

¥ QEN Ready to begin the installation
Name: | vSRX_VirtM
0S: Red Hat Enterprise Linux 7.0

Install: Import existing OS image

Memory: 4096 MIB

CPUs: 2

E Storage: ..bvirtfimages/img_vSRX_VirtM.qcow2

« Customize configuration before install

» Network selection

Cancel Back | Finish

Step 7: Use the following screen to review more details about the VM.

85 Installing vSRX with virt-manager (GUI Package in Linux)

e0 X VSRX_VirtM on QEMU/KVM

of Begininstallation 3 cancel Installation

[Z] ovenvie Basic Details
C} CPUs Name: VSRX_VirtM
&5 Memory uuD: 23273e72-bad5-46a2-bal7-a9c8599b4116
I+, Boot Options Status: B shutoff (Shutdown)
__ Virtio Disk 1 Title:
NIC :46:9b:32 Description:
\# Tablet

B oisplay Spice

W Sound:ichs :

2 Console Hypervisor Details

Hypervisor: KvM

Architecture: x86_64

Emulator: fusrfbinjkvm-spice
Bl video Firmware: | pgiog =y
[controller use
@ use redirector 1
@ vse Redirector 2

2 Channel gemu-ga

Gn Channel spice

Chipset: {440FX +

Add Hardware ance|

Step 8: Click Add Hardware and select Network. Next select green_net network
in Network Source and select virtio in device model. Click Finish.

X ¥SRX_VirtM on QEMUJKVM

of Begin installation (@) Cancel Installation

oo [N/ Add New Virtual Hardware
cPuU:
ﬂ “| M controller

S8 Memd TR MNetwork source: | virtual network ‘green_net’ : Routed netwark -

"% Bootd | & Input

virtio| ™ Graphics MAC address: [| 52:54:00:13:00:3e
™ W Sound
NiC 4 & serial Device model: virtio -

() Tablet] |5 paratel
Il oispld (<6 console

i sound =& Channel
. USB Host Device
o PCI Host Device
G chand m yigeo
Gy Chand M watchdog
Bl video| & Filesystem
ﬂ Contrg | Smartcard

@ USB Redirection
@ vseq o
@ used RNG

Panic Notifier

cancel Finish

Add Hardware

Step 9: Follow Step 8 to add the red_net network also. Now, on the left side, you’ll
see the three NICs present.

86 Appendix:

8 N\ WSRX_VirtM on QEMU/KVM
segin Installat Q

Basic Details

Hypenvisor Details
Hyp 1

Step 10: Click Begin Installation. A console window opens for the new VM and
displays the status of the installation.

e0e® | VSRX_VirtM on QEMU/KVM
File Virtual Machine View Send Key
=0 g- @]

uhcil: <Intel 82BE11 (ICHI) USB controller> port Oxcl060-Oxcl1f irq 10 at device
8.1 on pci@

usbusl on uhcil
uhci2: <Intel 828011 (ICHI) USE controller> port @xc120-Oxci13f irq 10 at device
8.2 on pci
usbusZ on uhci
chci@: <Intel 828011 (ICHI) USE 2.0 controller> mem OxfcO
el 828011 (ICHI) USB 2.0 controller> mem OxfcOda@OO-Oxfcé

hei2
: ntel 828011 (ICHI) USB 2.0 controller> mem OxfcBda®00-OxfcOdafff irq 11
at device 8.7 on pci@

EHCI wversion 1.0
run timeout

device_attach: ehci® attach re

virtio_pci4: <VirtI0 PCI Block adapter> port OxcO08-0xcO3f mem Oxfc8dbooOe
10 at device 9.9 on pc
: <Uirtl0 Block Adapter> on virtio_pci4
18432HB (37748864 512 byte sectors)
: <VirtI0 PCI Balloon adapter> port Oxc140-8xc1Sf irq 10 at device 10

<Keyboard controller (i8042)> port Oxb
<AT Keyboard> irg 1 on atkbdcO®
[GIANT-LOCKED]

x64 irq 1 on acpi®

The VM manager creates and launches the vSRX VM. This is how you configure a
VM using virt-manager.

87 Installing vSRX with virt-manager (GUI Package in Linux)

Scaling Up a vSRX Instance

Scaling up a vSRX VM means increasing the throughput for processing traffic. The
base seeds are the memory and the CPU. For all the VMs that have spawned, we
pool 4GB as the memory and two vCPUs as the CPU. If one looks at the show chas-
sis hardware output clearly, the vSRX VM runs as an S (small) variant:

root@vSRX_SRIOV> show chassis hardware
Hardware inventory:

Item Version Part number Serial number Description
Chassis 4c7bd984b97f VSRX
Midplane
System I0
Routing Engine VSRX-S <<<<<<
FPC 0 FPC

PIC 0 VSRX DPDK GE

Power Supply 0
root@vSRX_SRIOV> show chassis routing-engine
Routing Engine status:
Total memory 4050 MB Max 3159 MB used (78 percent)
Control plane memory 4050 MB Max 3159 MB used (78 percent)

root@vSRX_SRIOV> show system processes extensive
last pid: 23045; 1load averages: 1.22, 1.21, 1.20 up 9+00:23:14 10:58:01
279 processes: 3 running, 254 sleeping, 22 waiting

Mem: 30M Active, 642M Inact, 2926M Wired, 60M Buf, 320M Free
Swap: 1024M Total, 28K Used, 1024M Free

PID USERNAME PRI NICE SIZE RES STATE C TIME WCPU COMMAND

11 root 155 ki3l oK 32K RUN 0 204.5H 100.00% idle{idle: cpu@}

11 root 155 ki3l oK 32K RUN 1 79.5H 55.47% idle{idle: cpul}

12368 root 52 0 2740M 2647M nanslp 1 136.8H 50.68% srxpfe{lcore-slave-1}
12368 root 21 0 2740M 2647M select 0 340:27 2.10% srxpfe{srxpfe}

12490 root 20 0 94748K 13752K nanslp © 113:26 0.39% llmd{llmd}

Scaling up means scaling the performance and capacity of a vSRX instance by
increasing the number of vCPUs, or the amount of vRAM allocated to the vSRX.
Simple!

So, to scale up a vSRX VM to an M variant, we define the vCPU to 5 and memory
to 8GB. When you define five vCPUs, one vCPU is required for the Routing Engine
and the remaining four are propagated for the Packet Forwarding Engine. You
need to configure network multi-queuing to support an increased number of vC-
PUs for the data plane (Packet Forwarding Engine).

This setting updates the libvirt driver to enable multi-queue virtio-net to scale up
the network performance as the number of vCPUs increases. We need to edit the
XML file of the VM to scale up the vSRX_01 VM into an M (medium) variant.

88 Appendix:

The changes required in the XML file are:
m vCPUs from2to 5
B Memory from 4194304 to 8388608

m Add this in the interface configuration to update the queue, at the <driver
name="vhost’ queues="x’/> line change as “<driver name="vhost’
queues="8’/>"

To change the XML file, follow these steps.

Step 1: Edit the file using the following command:

root@LabHost:~# virsh edit vSRX_01

Change the following:
<name>VSRX_01</name>
<uuid>6c02b04a-2e47-4add-bled-38fbe35bc192</uuid>
<memory unit='KiB’'>4194304</memory>
<currentMemory unit='KiB'>4194304</currentMemory>
<vcpu placement='static’>2</vcpu>

with;
<name>VSRX_01</name>
<uuid>6c02b04a-2e47-4add-bled-38fbe35bc192</uuid>
<memory unit='KiB’'>8388608</memory>
<currentMemory unit='KiB’'>8388608</currentMemory>
<vcpu placement='static’>5</vcpu>

Step 2: Add the following line for the green_net and red_net interfaces:

<driver name='vhost’ queues='8’/>

Step 3: Add the previous line after “model type” like this:

<interface type='network’>

<mac address='52:54:00:67:34:eb’/>

<source network='blue_net’/>

<model type=’virtio’'/>

<driver name='vhost’ queues=’'8"/>

<address type='pci’ domain='0x0000' bus='0x00' slot='0x04’ function='0x0'/>
</interface>
<interface type='network’>

<mac address='52:54:00:90:c9:18’' />

<source network='red_net’/>

<model type='virtio’/>

<driver name='vhost’ queues='8'/>

<address type='pci’ domain='0x0000' bus='0x00' slot='0x05’' function='0x0’'/>
</interface>

Now you can save the file.

Step 4: Start the VM after saving the file:

root@LabHost:~# virsh start vSRX_01
root@LabHost:~# virsh list ——all

89 Installing vSRX with virt-manager (GUI Package in Linux)

Id Name State

1 VSRX_SRIOV running
2 VSRX_01 running
- VSRX_00 shut off
- VSRX_Internet_Router shut off
- VSRX_node@ shut off
- VSRX_nodel shut off

Step 5: Log in to the VM and check the hardware, CPU, and memory details:

root@vSRX_01> show chassis hardware
Hardware inventory:

Item Version Part number Serial number Description
Chassis 38fbe35bc192 VSRX
Midplane
System IO
Routing Engine VSRX-M <<<<<
FPC 0 FPC

PIC 0 VSRX DPDK GE

Power Supply 0

And here you can notice that the Routing Engine value has changed from vsrx-s to
vsrx-M. This confirms that your VM instance is now scaled up to medium flavor:

root@vSRX_01> show chassis routing-engine
Routing Engine status:
Total memory 8146 MB Max 7006 MB used (86 percent)
Control plane memory 8146 MB Max 7006 MB used (86 percent)

root@vSRX_01> show system processes extensive
last pid: 15897; 1load averages: 3.65, 3.58, 3.54 up 8+23:45:44 10:59:56
303 processes: 13 running, 265 sleeping, 25 waiting

Mem: 32M Active, 679M Inact, 6727M Wired, 129M Buf, 478M Free
Swap: 1024M Total, 1024M Free

PID USERNAME PRI NICE SIZE RES STATE C TIME WCPU COMMAND
11 root 155 ki3l oK 80K RUN 0 204.3H 94.68% idle{idle: cpu@}
5366 root 52 0 6324M 6231M RUN 4 140.5H 64.99% srxpfe{lcore-slave-4}
5366 root 92 0 6324M 6231M CPU1 1 138.5H 64.79% srxpfe{lcore-slave-1}
11 root 155 ki3l oK 80K CPU3 3 111.4H 53.27% idle{idle: cpu3}
11 root 155 ki3l oK 80K CPU2 2 111.0H 52.78% idle{idle: cpu2}
5366 root 52 © 6324M 6231M RUN 2 104.8H 49.37% srxpfe{lcore-slave-2}
5366 root 52 0 6324M 6231M nanslp 3 104.4H 48.88% srxpfe{lcore-slave-3}
11 root 155 ki3l oK 80K RUN 1 77.3H 38.48% idle{idle: cpul}
11 root 155 ki3l oK 80K RUN 4 75.3H 37.50% idle{idle: cpu4d}
5366 root 21 0 6324M 6231M RUN 0 308:22 1.66% srxpfe{srxpfe}
5429 root 20 © 101M 17384K RUN 0 117:39 0.39% llmd{llmd}

90 Appendix:

Attach a New Network or Add an Interface to an Existing vSRX VM

Let’s say a need arises where you want to add another interface to a running vSRX
VM. You wouldn’t recreate the VM from scratch but just add another interface. So
let’s add a new network to vSRX_00 by using the following steps:

Step 1: First we need to create a new network, create a XML file, then define and
start the network:

root@LabHost:~# nano /etc/libvirt/gemu/networks/new_net.xml
<network>
<name>blue_net</name>
<forward mode='route’/>
<bridge name='blue_net’ stp='on’ delay='0’'/>
<ip address='192.168.125.1" netmask='255.255.255.0">
<dhcp>
<range start='192.168.125.100"' end='192.168.125.250"'/>
</dhcp>
</ip>
</network>

root@LabHost:~# virsh net-define /etc/libvirt/gemu/networks/new_net.xml
Network new_net defined from /etc/libvirt/qemu/networks/new_net.xml
root@LabHost:~# virsh net-start new_net

Network new_net started

root@LabHost:~# virsh net-autostart new_net

Network new_net marked as autostarted

Step 2: To check that the network is installed:

root@LabHost:~# virsh net-list —-all

Name State Autostart Persistent
blue_net active yes yes
ctri_net active yes yes
default active yes yes
fab_net active yes yes
green_net active yes yes
new_net active yes yes
red_net active yes yes

Step 3: To check what networks are already connected to vSRX_00:

root@LabHost:~# virsh domiflist vSRX_00

Interface Type Source Model MAC

vnet4 network default virtio 52:54:00:86:82:c2
vnet5 network green_net virtio 52:54:00:25:e1:06
vnet6 network red_net virtio 52:54:00:9f:5e:6e

Step 4: To connect the new network to a running VM:

root@LabHost:~# virsh attach-interface --domain VSRX_00 --type bridge —--source new_
net ——model virtio
Interface attached successfully

91 Attach a New Network or Add an Interface to an Existing vSRX VM

Step 5: For vSRX to install said network, a reboot is required:

root@LabHost:~# virsh console vSRX_00
Connected to domain VvSRX_00

Escape character is ~]

root@vSRX_00> request system reboot
Reboot the system ? [yes,no] (no) yes

Step 6: To check that the interface is installed, check using the virsh command.

Step 7: And, to check that the vSRX has the interface, check using CLI command:

root@vSRX_00> show interfaces terse

Interface Admin Link Proto Local Remote
ge-0/0/0 up up
ge-0/0/0.0 up up inet 192.168.10.1/24
gr-0/0/0 up up
ip-0/0/0 up up
1sq-0/0/0 up up
1t-0/0/0 up up
mt-0/0/0 up up
sp-0/0/0 up up
sp-0/0/0.0 up up inet
inet6
sp-0/0/0.16383 up up inet
ge-0/0/1 up up
ge-0/0/1.0 up up inet 172.16.10.1/30
ge-0/0/2 up up

Challenge Lab I: ~ Convert Topology 1 and create an IPsec tunnel between
vSRX_00 and vSRX _01.

Challenge Lab II: Convert Topology 3 and create an [Psec tunnel between
Branch and HQ.

Challenge Lab I11: Add a dynamic routing protocol over IPsec connections
created in Challenge Labs I & 11.

92

Most Popular vSRX Support Issues

Loading an Initial Configuration on vSRX:
https://www.juniper.net/documentation/en_US/vsrx/topics/task/configuration/se-
curity-vsrx-kvm-bootstrap-config.html.

Using Cloud-Init for the configuration:
https://www.juniper.net/documentation/en_US/vsrx/topics/task/configuration/se-
curity-vsrx-cloud-init-support.html.

Difference between vSRX2.0 and vSRX3.0:
https://kb.juniper.net/InfoCenter/index?page=content&id=KB33572.

SkyATP with vSRX:
https://kb.juniper.net/InfoCenter/index?page=content&id=KB31787.

New MAC address derivation after chassis cluster is enabled:
https://kb.juniper.net/InfoCenter/index?page=content&id=KB33244,

Interface Naming and mapping in vSRX Chassis Cluster mode:
https://www.juniper.net/documentation/en_US/vsrx/topics/reference/general/secu-
rity-vsrx-interface-names.html.

Memory utilization calculation and description of different types of memory:
https://kb.juniper.net/InfoCenter/index?page=content&id=KB32247.

vSRX interfaces did not go down when assigned to SR-IOV virtual functions:
https://kb.juniper.net/InfoCenter/index?page=content&id=KB31894.

vSRX Session Scaling:
https://www.juniper.net/documentation/en_US/vsrx/topics/concept/security-vsrx-
kvm-understanding.html#jd0e147.

Can a vSRX license be transferred to a new instance?
https://kb.juniper.net/KB33211.

Recovering root password for vSRX on KVM?
https://www.juniper.net/documentation/en_US/vsrx/topics/task/multi-task/securi-
ty-vsrx-kvm-root-password-recovery.html.

vSRX Feature License:
https://www.juniper.net/documentation/en_US/vsrx/topics/concept/security-vsrx-
feature-licenses-overview.html.

Managing License:
https://www.juniper.net/documentation/en_US/vsrx/topics/task/multi-task/securi-
ty-vsrx-license-managing.html.

vSRX License Model Numbers:
https://www.juniper.net/documentation/en_US/vsrx/topics/reference/general/secu-
rity-vsrx-feature-licenses.html.

https://www.juniper.net/documentation/en_US/vsrx/topics/task/configuration/security-vsrx-kvm-bootstrap-config.html
https://www.juniper.net/documentation/en_US/vsrx/topics/task/configuration/security-vsrx-kvm-bootstrap-config.html
https://www.juniper.net/documentation/en_US/vsrx/topics/task/configuration/security-vsrx-cloud-init-support.html
https://www.juniper.net/documentation/en_US/vsrx/topics/task/configuration/security-vsrx-cloud-init-support.html
https://kb.juniper.net/InfoCenter/index?page=content&id=KB33572
https://kb.juniper.net/InfoCenter/index?page=content&id=KB31787
https://kb.juniper.net/InfoCenter/index?page=content&id=KB33244
https://www.juniper.net/documentation/en_US/vsrx/topics/reference/general/security-vsrx-interface-names.html
https://www.juniper.net/documentation/en_US/vsrx/topics/reference/general/security-vsrx-interface-names.html
https://kb.juniper.net/InfoCenter/index?page=content&id=KB32247
https://kb.juniper.net/InfoCenter/index?page=content&id=KB31894
https://kb.juniper.net/KB33211
https://www.juniper.net/documentation/en_US/vsrx/topics/task/multi-task/security-vsrx-kvm-root-password-recovery.html
https://www.juniper.net/documentation/en_US/vsrx/topics/task/multi-task/security-vsrx-kvm-root-password-recovery.html
https://www.juniper.net/documentation/en_US/vsrx/topics/concept/security-vsrx-feature-licenses-overview.html
https://www.juniper.net/documentation/en_US/vsrx/topics/concept/security-vsrx-feature-licenses-overview.html
https://www.juniper.net/documentation/en_US/vsrx/topics/task/multi-task/security-vsrx-license-managing.html
https://www.juniper.net/documentation/en_US/vsrx/topics/task/multi-task/security-vsrx-license-managing.html
https://www.juniper.net/documentation/en_US/vsrx/topics/reference/general/security-vsrx-feature-licenses.html
https://www.juniper.net/documentation/en_US/vsrx/topics/reference/general/security-vsrx-feature-licenses.html

	Front Cover
	Back Cover
	Title Page & Table of Contents
	Copyright & About the Authors
	Welcome to Day One
	TechLibrary Connection
	What You Need to Know Before Reading This Book

	vSRX Documentation Path
	Chapter 1: Introduction to vSRX on KVM
	Virtualization in a Nutshell
	Introduction to vSRX
	vSRX Minimum Hardware and Software Requirements
	Summary

	Chapter 2: Getting Started with vSRX on KV
	Preparing the Host System for vSRX Installation
	Installing vSRX on KVM
	Managing vSRX VM on KVM
	Configuring vSRX VM on KVM
	Checking Licenses Installed
	Summary

	Chapter 3: Building a Simple Topology
	Building Your First Topology
	Building Your Second Topology
	Building Your Third Topology
	Building Your Fourth Topology
	Building Your Fifth Topology
	Summary

	Chapter 4: Troubleshooting vSRX on KVM
	Verify Host and VM State
	Routing Engine and Packet Forwarding Engine on vSRX
	Summary

	Appendix
	Installing vSRX with virt-manager (GUI Package in Linux)
	Attach a New Network or Add an Interface to an Existing vSRX VM

	Challenge Lab 1, 2, & 3
	Most Active vSRX Support Issues

