
D
AY

O
N

E: IN
SID

E
TH

E M
X

 5G
D

avid
RoyJuniper Networks Books are focused on network reliability and

efficiency. Peruse the complete library at www.juniper.net/books.

DAY ONE: INSIDE THE MX 5G

By David Roy

DAY ONE: INSIDE THE MX 5G

Nothing gets network engineers more excited than a packet walkthrough within the most fabled
routing platform in the world, the Juniper Networks® MX Series 5G Universal Routing Platform.
With its new chassis, new hardware, and new ASICs, David Roy, author of several books on the Ju-
niper MX Series, shows off the box with its new chassis and new hardware, and then gets right into
the EA and ZT linecards. Step-by-step, David shows how packets navigate these monster ASICs.

This is the ultimate trip into big iron for those who can appreciate the scalability and programma-
bility of Juniper silicon. Follow the packet and David’s CLI command sequences as they illustrate
why the MX 5G and Junos® powers networks around the world.

IT’S DAY ONE AND YOU HAVE A JOB TO DO, SO LEARN HOW TO:

n Size the MX 5G family of products and discover how to apply them to your needs.

n Gain new skills with MX 5G hardware based on the EA or ZT ASICs.

n Understand the life of unicast, MPLS, and host packets in the MX 5G.

n Perform advanced troubleshooting on the MX 5G Series hardware.

“Have you ever wondered what actually happens to data packets entering your routers? This book gives
an excellent and very detailed view of the life of a packet “inside the box.” I’ve been working with Juniper
Networks routers for about 15 years now and have never seen anything publicly available that even comes
close to this level of detail, yet the book is an easy read and David perfectly guides you through it. Even
having years of hands on experience with the MX, I’ve learned so much! If you really want to understand
what is happening with a packet inside the box, this is the book to read.”

Melchior Aelmans, Lead Engineer, Cloud Providers, Juniper Networks

“When it comes to an MX PFE packet walkthrough, there is no better person to take you on that journey
than Dvid Roy. David has a deep and thorough understanding of the EA and ZT PFEs and shares his
knowledge in this exceptionally written book. Juniper’s fifth generation of TRIO PFEs introduces key new
innovations for engineers who are able to take their knowledge to the next level.”

Daniel Hearty, Juniper Ambassador, Principal Engineer, Telent,

Take an amazing trip inside the
MX Series 5G Universal Routing Platform

and explore the next generation of ASIC enablement.

http://www.juniper.net/books

D
AY

O
N

E: IN
SID

E
TH

E M
X

 5G
D

avid
RoyJuniper Networks Books are focused on network reliability and

efficiency. Peruse the complete library at www.juniper.net/books.

DAY ONE: INSIDE THE MX 5G

By David Roy

DAY ONE: INSIDE THE MX 5G

IT’S DAY ONE AND YOU HAVE A JOB TO DO, SO LEARN HOW TO:

n Size the MX 5G family of products and discover how to apply them to your needs.

n Gain new skills with MX 5G hardware based on the EA or ZT ASICs.

n Understand the life of unicast, MPLS, and host packets in the MX 5G.

n Perform advanced troubleshooting on the MX 5G Series hardware.

Nothing gets network engineers more excited than a packet walkthrough within the most fabled
routing platform in the world, the Juniper Networks® MX Series 5G Universal Routing Platform.
With its new chassis, new hardware, and new ASICs, David Roy, author of several books on the
Juniper MX Series, shows off the box and then gets right into the EA and ZT linecards. Step-by-
step, David shows how packets navigate these monster ASICs.

This is the ultimate trip into big iron for those who can appreciate the scalability and programma-
bility of Juniper silicon. Follow the packet and David’s CLI command sequences as they illustrate
why the MX 5G and Junos® powers networks around the world.

“Have you ever wondered what actually happens to data packets entering your routers? This book gives
an excellent and very detailed view of the life of a packet “inside the box.” I’ve been working with Juniper
Networks routers for about 15 years now and have never seen anything publicly available that even comes
close to this level of detail, yet the book is an easy read and David perfectly guides you through it. Even
having years of hands on experience with the MX, I’ve learned so much! If you really want to understand
what is happening with a packet inside the box, this is the book to read.”

Melchior Aelmans, Lead Engineer, Cloud Providers, Juniper Networks

“When it comes to an MX PFE packet walkthrough, there is no better person to take you on that journey
than Dvid Roy. David has a deep and thorough understanding of the EA and ZT PFEs and shares his
knowledge in this exceptionally written book. Juniper’s fifth generation of TRIO PFEs introduces key new
innovations for engineers who are able to take their knowledge to the next level.”

Daniel Hearty, Juniper Ambassador, Principal Engineer, Telent,

Take an amazing trip inside the
MX Series 5G Universal Routing Platform

and explore the next generation of ASIC enablement.

http://www.juniper.net/books

Day One: Inside the MX 5G

by David Roy

Chapter 1: The MX 5G: New Chassis, New Hardware . 9

Chapter 2: The MX 5G: Two Powerful ASICs . 39

Chapter 3: Follow Some Packets . 85

Appendices . 156

 iv

© 2020 by Juniper Networks, Inc. All rights reserved.
Juniper Networks and Junos are registered trademarks of
Juniper Networks, Inc. in the United States and other
countries. The Juniper Networks Logo and the Junos logo,
are trademarks of Juniper Networks, Inc. All other
trademarks, service marks, registered trademarks, or
registered service marks are the property of their respective
owners. Juniper Networks assumes no responsibility for
any inaccuracies in this document. Juniper Networks
reserves the right to change, modify, transfer, or otherwise
revise this publication without notice.

Published by Juniper Networks Books
Author: David Roy
Technical Reviewers: Josef Buchsteiner, Daniel Hearty,
Ramesh Pillutla
Editor in Chief: Patrick Ames
Copyeditor: Nancy Koerbel
Illustrations: David Roy
TechLibrary Resources: Saheer Karimbayil

Printed in the USA by Vervante Corporation.
Version History: v1, July. 2020
 2 3 4 5 6 7 8 9 10
Comments, errata: dayone@juniper.net

About the Author
David Roy is a network support engineer who works for
one of the main Service Providers in Europe: Orange.
During the last 12 years he was involved in many projects
based on IP and MPLS technologies. He is also a focus
technical support engineer for the French domestic
backbone of Orange. Before that, he was part of a Research
and Development team focused on Digital Video Broad-
casting and IP over Satellite technologies. He loves to
troubleshoot complex routing and switching issues and has
spent much time in the lab to reverse engineer different
routing platforms such as the Juniper MX series. He wrote
the second edition of MX Series, an O’Reilly book, and the
Day One book: This Week: An Expert Packet Walk-
through on the MX Series 3D. David is triple JNCIE SP
#703, ENT #305, and SEC #144. When he’s not diving into
the hardware’s routers, he plays drums, listens to rock, and
savors some nice beers. David can be reached on Twitter @
door7302.
Author’s Acknowledgments
I would like to thank my wife, Magali, and my two sons,
Noan and Timéo, for all their encouragement and support.
A very special thank you to Josef Buchsteiner from Juniper
Networks for helping me during the project and who was
also the main technical reviewer. A great thank you to
Daniel Hearty and Ramesh Pillutla for their deep technical
review, and to Patrick Ames for his review and assistance.
David Roy, IP/MPLS NOC Engineer, Orange France
JNCIE x3 (SP #703 ; ENT #305 ; SEC #144).

 v

Welcome to Day One

This book is part of the Day One library, produced and published by Juniper Net-
works Books. Day One books cover the Junos OS and Juniper Networks network-
administration with straightforward explanations, step-by-step instructions, and
practical examples that are easy to follow.

� Download a free PDF edition at http://www.juniper.net/dayone

� PDF books are available on the Juniper app: Junos Genius

� Purchase the paper edition at Vervante Corporation (www.vervante.com).

What You Need to Know Before Reading This Book

� You need to be very familiar with the Junos Operating System.

� You need to know the architecture of recent routers such as control plane and
forwarding plane separation.

� You need to have some knowledge about network hardware.

After Reading This Book You’ll Be Able To:

� Size the MX 5G family of products and discover how to apply them to your
needs.

� Gain new skills with MX 5G hardware based on the EA or ZT ASICs.

� Understand the life of unicast, MPLS, and host packets in the MX 5G.

� Perform advanced troubleshooting on the MX 5G Series hardware.

How This Book Is Set Up

� Chapter 1 of this book provides an overview of the MX 5G family. It presents
all the routers and their associated linecards.

� Chapter 2 takes a dive inside the hardware. It details how EA and ZT linecards
are designed and, step-by-step, how packets are handled and manipulated by
these two powerful ASICs.

� Chapter 3 relies on two simple examples of traffic – an MPLS transit traffic and
a simple ping flow – to explain with the most details possible how packets are
managed by the EA or ZT ASIC.

http://www.juniper.net/dayone
https://www.juniper.net/us/en/training/junos-genius/
http://www.vervante.com

 vi

MX 5G Resources in the Juniper TechLibrary

GENERAL RESOURCES

Network Management and Monitoring
Guide

https://www.juniper.net/documentation/en_US/junos/
information-products/pathway-pages/network-management/
network-management.html

Routing Protocols Overview https://www.juniper.net/documentation/en_US/junos/
information-products/pathway-pages/config-guide-routing/
config-guide-routing-overview.html

Software Installation and Upgrade Guide https://www.juniper.net/documentation/en_US/junos/
information-products/pathway-pages/software-installation-and-
upgrade/software-installation-and-upgrade.html

Introducing Junos OS Evolved https://www.juniper.net/documentation/en_US/junos/
information-products/pathway-pages/introducing-evo-guide.
html

Multicast Protocols User Guide https://www.juniper.net/documentation/en_US/junos/
information-products/pathway-pages/config-guide-multicast/
config-guide-multicast.html

Overview for Junos OS https://www.juniper.net/documentation/en_US/junos/
information-products/pathway-pages/system-basics/junos-
overview.html

MPLS Applications User Guide https://www.juniper.net/documentation/en_US/junos/
information-products/pathway-pages/config-guide-mpls-
applications/config-guide-mpls-applications.html

High Availability Feature Guide https://www.juniper.net/documentation/en_US/junos/
information-products/pathway-pages/config-guide-high-
availability/high-availability.html

Chassis-Level User Guide https://www.juniper.net/documentation/en_US/junos/
information-products/pathway-pages/system-basics/router-
chassis.html

HARDWARE (Chassis MX) RESOURCES

MX240 Universal Routing Platform
Hardware Guide

https://www.juniper.net/documentation/en_US/release-
independent/junos/information-products/pathway-pages/
mx-series/mx240/

MX480 Universal Routing Platform
Hardware Guide

https://www.juniper.net/documentation/en_US/release-
independent/junos/information-products/pathway-pages/
mx-series/mx480/

MX960 Universal Routing Platform
Hardware Guide

https://www.juniper.net/documentation/en_US/release-
independent/junos/information-products/pathway-pages/
mx-series/mx960/

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/network-management/network-management.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/network-management/network-management.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/network-management/network-management.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/config-guide-routing/config-guide-routing-overview.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/config-guide-routing/config-guide-routing-overview.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/config-guide-routing/config-guide-routing-overview.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/software-installation-and-upgrade/software-installation-and-upgrade.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/software-installation-and-upgrade/software-installation-and-upgrade.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/software-installation-and-upgrade/software-installation-and-upgrade.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/introducing-evo-guide.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/introducing-evo-guide.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/introducing-evo-guide.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/config-guide-multicast/config-guide-multicast.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/config-guide-multicast/config-guide-multicast.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/config-guide-multicast/config-guide-multicast.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/system-basics/junos-overview.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/system-basics/junos-overview.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/system-basics/junos-overview.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/config-guide-mpls-applications/config-guide-mpls-applications.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/config-guide-mpls-applications/config-guide-mpls-applications.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/config-guide-mpls-applications/config-guide-mpls-applications.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/config-guide-high-availability/high-availability.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/config-guide-high-availability/high-availability.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/config-guide-high-availability/high-availability.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/system-basics/router-chassis.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/system-basics/router-chassis.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/system-basics/router-chassis.html
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx240/
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx240/
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx240/
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx480/
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx480/
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx480/
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx960/
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx960/
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx960/

 vii MX 5G Resources in the Juniper Techlibrary

MX2010 Universal Routing Platform
Hardware Guide

https://www.juniper.net/documentation/en_US/release-
independent/junos/information-products/pathway-pages/
mx-series/mx2010/index.html

MX2008 Universal Routing Platform
Hardware Guide

https://www.juniper.net/documentation/en_US/release-
independent/junos/information-products/pathway-pages/
mx-series/mx2008/

MX2020 Universal Routing Platform
Hardware Guide

https://www.juniper.net/documentation/en_US/release-
independent/junos/information-products/pathway-pages/
mx-series/mx2020/index.html

SOFTWARE RESOURCES

Interface Naming Conventions for Rate
Selectability

https://www.juniper.net/documentation/en_US/junos/topics/
topic-map/interface-naming-conventions-rate-selectability.html

Configuring Rate Selectability on MX10003
MPC to Enable Different Port Speeds

https://www.juniper.net/documentation/en_US/junos/topics/
topic-map/rate-selectability-configuring.html#id-configuring-
rate-selectability-on-mx10003-mpc-to-enable-different-port-
speeds

Configuring Rate Selectability on MX204 to
Enable Different Port Speeds

https://www.juniper.net/documentation/en_US/junos/topics/
topic-map/rate-selectability-configuring.html#id-configuring-
rate-selectability-on-mx204-to-enable-different-port-speeds

Configuring Rate Selectability on
JNP10K-2101 MPC to Enable Different
Port Speeds

https://www.juniper.net/documentation/en_US/junos/topics/
topic-map/rate-selectability-configuring.html#id-configuring-
rate-selectability-on-jnp10k-2101-mpc-to-enable-different-port-
speeds

Configuring Rate Selectability on MPC10E-
15C-MRATE to Enable Different Port
Speeds

https://www.juniper.net/documentation/en_US/junos/topics/
topic-map/rate-selectability-configuring.html#id-configuring-
rate-selectability-on-mpc10e-15c-mrate-to-enable-different-port-
speeds

Configuring Rate Selectability on MPC10E-
10C-MRATE to Enable Different Port
Speeds

https://www.juniper.net/documentation/en_US/junos/topics/
topic-map/rate-selectability-configuring.html#id-configuring-
rate-selectability-on-mpc10e-10c-mrate-to-enable-different-port-
speeds

Configuring Rate Selectability on the
MX2K-MPC11E to Enable Different Port
Speeds

https://www.juniper.net/documentation/en_US/junos/topics/
topic-map/rate-selectability-configuring.html#id-configuring-
rate-selectability-on-mpc11e

Class of Service User Guide (Routers and
EX9200 Switches)

https://www.juniper.net/documentation/en_US/junos/
information-products/pathway-pages/cos/config-guide-cos.html

CLI User Guide https://www.juniper.net/documentation/en_US/junos/
information-products/pathway-pages/junos-cli/junos-cli.html

CLI Explorer https://apps.juniper.net/cli-explorer/

https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx2010/index.html
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx2010/index.html
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx2010/index.html
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx2008/
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx2008/
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx2008/
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx2020/index.html
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx2020/index.html
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx2020/index.html
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/interface-naming-conventions-rate-selectability.html
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/interface-naming-conventions-rate-selectability.html
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/rate-selectability-configuring.html#id-configuring-rate-selectability-on-mx10003-mpc-to-enable-different-port-speeds
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/rate-selectability-configuring.html#id-configuring-rate-selectability-on-mx10003-mpc-to-enable-different-port-speeds
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/rate-selectability-configuring.html#id-configuring-rate-selectability-on-mx10003-mpc-to-enable-different-port-speeds
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/rate-selectability-configuring.html#id-configuring-rate-selectability-on-mx10003-mpc-to-enable-different-port-speeds
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/rate-selectability-configuring.html#id-configuring-rate-selectability-on-mx204-to-enable-different-port-speeds
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/rate-selectability-configuring.html#id-configuring-rate-selectability-on-mx204-to-enable-different-port-speeds
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/rate-selectability-configuring.html#id-configuring-rate-selectability-on-mx204-to-enable-different-port-speeds
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/rate-selectability-configuring.html#id-configuring-rate-selectability-on-jnp10k-2101-mpc-to-enable-different-port-speeds
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/rate-selectability-configuring.html#id-configuring-rate-selectability-on-jnp10k-2101-mpc-to-enable-different-port-speeds
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/rate-selectability-configuring.html#id-configuring-rate-selectability-on-jnp10k-2101-mpc-to-enable-different-port-speeds
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/rate-selectability-configuring.html#id-configuring-rate-selectability-on-jnp10k-2101-mpc-to-enable-different-port-speeds
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/rate-selectability-configuring.html#id-configuring-rate-selectability-on-mpc10e-15c-mrate-to-enable-different-port-speeds
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/rate-selectability-configuring.html#id-configuring-rate-selectability-on-mpc10e-15c-mrate-to-enable-different-port-speeds
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/rate-selectability-configuring.html#id-configuring-rate-selectability-on-mpc10e-15c-mrate-to-enable-different-port-speeds
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/rate-selectability-configuring.html#id-configuring-rate-selectability-on-mpc10e-15c-mrate-to-enable-different-port-speeds
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/rate-selectability-configuring.html#id-configuring-rate-selectability-on-mpc10e-10c-mrate-to-enable-different-port-speeds
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/rate-selectability-configuring.html#id-configuring-rate-selectability-on-mpc10e-10c-mrate-to-enable-different-port-speeds
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/rate-selectability-configuring.html#id-configuring-rate-selectability-on-mpc10e-10c-mrate-to-enable-different-port-speeds
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/rate-selectability-configuring.html#id-configuring-rate-selectability-on-mpc10e-10c-mrate-to-enable-different-port-speeds
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/rate-selectability-configuring.html#id-configuring-rate-selectability-on-mpc11e
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/rate-selectability-configuring.html#id-configuring-rate-selectability-on-mpc11e
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/rate-selectability-configuring.html#id-configuring-rate-selectability-on-mpc11e
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/cos/config-guide-cos.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/cos/config-guide-cos.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-cli/junos-cli.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-cli/junos-cli.html
https://apps.juniper.net/cli-explorer/

 viii MX 5G Resources in the Juniper Techlibrary

HARDWARE RESOURCES

MX204 Universal Routing Platform
Hardware Guide

https://www.juniper.net/documentation/en_US/release-
independent/junos/information-products/pathway-pages/
mx-series/mx204/index.html

MX10003 Universal Routing Platform
Hardware Guide

https://www.juniper.net/documentation/en_US/release-
independent/junos/information-products/pathway-pages/
mx-series/mx10003/index.html

MX10008 Universal Routing Platform
Hardware Guide

https://www.juniper.net/documentation/en_US/release-
independent/junos/information-products/pathway-pages/
mx-series/mx10008/index.html

MX10016 Universal Routing Platform
Hardware Guide

https://www.juniper.net/documentation/en_US/release-
independent/junos/information-products/pathway-pages/
mx-series/mx10016/index.html

MPC10E-10C-MRATE https://www.juniper.net/documentation/en_US/release-
independent/junos/topics/reference/general/mpc10e-10c-mrate.
html

MPC10E-15C-MRATE https://www.juniper.net/documentation/en_US/release-
independent/junos/topics/reference/general/mpc10e-15c-mrate.
html

MX2K-MPC11E Modular Port
Concentrator

https://www.juniper.net/documentation/en_US/release-
independent/junos/topics/reference/general/mpc11e.html

MX10003 MPC (Multi-Rate) https://www.juniper.net/documentation/en_US/release-
independent/junos/topics/reference/general/mpc10003.html

Line card (MX10K-LC2101) https://www.juniper.net/documentation/en_US/release-
independent/junos/topics/reference/general/mx10008-line-card-
descripion.html

MX Series 5G Universal Routing Platform
Interface Module Reference

https://www.juniper.net/documentation/en_US/release-
independent/junos/information-products/pathway-pages/
mx-series/mx-module-index.html

https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx204/index.html
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx204/index.html
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx204/index.html
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx10003/index.html
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx10003/index.html
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx10003/index.html
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx10008/index.html
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx10008/index.html
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx10008/index.html
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx10016/index.html
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx10016/index.html
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx10016/index.html
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/general/mpc10e-10c-mrate.html
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/general/mpc10e-10c-mrate.html
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/general/mpc10e-10c-mrate.html
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/general/mpc10e-15c-mrate.html
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/general/mpc10e-15c-mrate.html
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/general/mpc10e-15c-mrate.html
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/general/mpc11e.html
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/general/mpc11e.html
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/general/mpc10003.html
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/general/mpc10003.html
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/general/mx10008-line-card-descripion.html
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/general/mx10008-line-card-descripion.html
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/general/mx10008-line-card-descripion.html
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx-module-index.html
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx-module-index.html
https://www.juniper.net/documentation/en_US/release-independent/junos/information-products/pathway-pages/mx-series/mx-module-index.html

Juniper has recently released a new line of high-speed equipment called the 5G
Universal Routing Platforms. This new line of routers relies on the MX204, the
MX10000 Series (aka MX10K), and some new MPCs for classic MXs (the
MX240, MX480, MX960, MX2008, MX2010, and MX2020). The MX204 is
the smallest router of the 5G family: a 1RU fixed platform. The MX10K Series in-
cludes the following members:

� MX10003

� MX10008

� MX10016

The 5G Universal Routing Platforms leverage the past innovations implemented
on the MX series and specifically rely on the TRIO chipset: a key element of MX
routers over the last several years. This new chassis has been completely redesigned
to improve power consumption, provide a better cooling environment, and, of
course, to handle very high rate interfaces (40Gbps, 100Gbps, 400Gbps, and even
more) on a new generation of Line cards.

This chapter presents the smallest member of the 5G family: the MX204, then it
details the MX10K Series, and finally, as we don’t want to forget the classic MXs,
it details two new line cards for current MXs in production. Indeed, these two
MPCs are the first ones that embed the fifth generation of TRIO ASIC and thus
naturally join the 5G family:

�

�

The MPC10e for MX240, MX480, and MX960

The MPC11e for MX2010 and MX2020

Chapter 1

The MX 5G: New Chassis and Hardware

 10 Chapter 1: The MX 5G: New Chassis and Hardware

MX204: Small but Powerful

Let’s introduce the MX204. This compact router is a fixed-form factor 1RU plat-
form. It provides a capacity of 400Gbps and fully supports all Junos features such
as HQoS. As expected, in order to offer this rich feature set the MX204 is not
based on a merchant silicon chipset but on the fourth generation of TRIO ASIC
whose code name is EA (aka Eagle ASIC). Figure 1.1 depicts the front view of the
MX204.

Figure 1 .1 MX204 Front View

This router has a single routing engine (RE) that relies on eight cores, 32GB of
memory, and a 100GB internal SSD disk. The RE also provides several manage-
ment interfaces that are accessible from the front of the device. Moreover, you can
observe that the MX204 has two blocks of network ports. The first one is a built-
in PIC of four multi-rates QSFPP ports, and the second PIC, also fixed, provides
eight 10GE SFP+ physical ports. From the rear view in Figure 1.2 we see:

� Fan modules

� Power supply modules (here DC but AC is also supported)

Figure 1 .2 MX204 Rear View

As observed, the MX204 provides power and cooling redundancy.

Now let’s open the MX204 to see its powerful engine. As mentioned previously,
the MX204 is made of one 400Gbps EA ASIC. The two built-in PICs are attached
to this single EA. Figure 1.3 shows the internal architecture of the MX204 PFE.

 11 MX204: Small but Powerful

Figure 1 .3 MX204 Packet Forwarding Engine

The built-in PIC in slot 0 consists of four QSFPP multi-rate ports where each port
may be configured as follows depending on the port profile:

� 1x1GE

� 4x10GE with a breakout cable for 4x10GE lanes

� 1x40GE per QSFPP port

� 1x100GE per QSFPP port

On this PIC, the rate of each port is by default 4x10GE. To override this default
behavior you can modify the port profile mode (at the PIC or port level). This is
achieved by the following CLI commands:

[edit]
door7302@mx204# set chassis fpc 0 pic 0 pic-mode ?
Possible completions:
 100G 100GE mode
 10G 10GE mode
 40G 40GE mode

door7302@mx204# set chassis fpc 0 pic 0 number-of-ports ?
Possible completions:
 <number-of-ports> Number of physical ports to enable on PIC (1..96)

door7302@mx204# set chassis fpc 0 pic 0 port 0 speed ?
Possible completions:
 100g Sets the interface mode to 100Gbps
 10g Sets the interface mode to 10Gbps
 40g Sets the interface mode to 40Gbps

The first command shown allows the configuration of the port profile at the PIC
level, which means that all ports attached to the PIC will operate at the same con-
figured speed. The next command is used to handle an oversubscription scenario
that’s usually used when the port profile at port level is preferred. Finally, the third
command shows you how to configure the port profile at port level.

 12 Chapter 1: The MX 5G: New Chassis and Hardware

The port mapping of the built-in PIC is depicted by Figure 1.4.

Figure 1 .4 4xQSFPP Port Mapping

Table 1.1 summarizes the port-naming convention of the built-in PIC in slot 0, de-
pending on the configured port profile mode.

Table 1 .1 Interface Naming of the 4xQSFPP PIC

PFE COMPLEX Port Number 10GE mode 40GE or 100GE mode

EA ASIC 0

0 xe-0/0/0:[0..3] et-0/0/0

1 xe-0/0/1:[0..3] et-0/0/1

2 xe-0/0/2:[0..3] et-0/0/2

3 xe-0/0/3:[0..3] et-0/0/3

The second fixed PIC in slot 1 consists of eight 10GE SFP+ ports. These ports, as
the four QSFPP ports of the PIC 0, also support 1GE port speed. To configure 1GE
speed on a given port you need to use this specific command at the interface level:

door7302@mx204# set interfaces xe-x/x/x gether-options speed 1g

The port mapping of this second PIC is shown on Figure 1.5.

Figure 1 .5 8xSFP+ Port Mapping

And Table 1.2 summarizes the interface naming of this 10GE PIC.

 13 The MX10003: Modular and Compact

Table 1 .2 Interface Naming of the 8xSFP+ PIC

PFE COMPLEX Port Number 10GE mode

EA ASIC 0

0 xe-0/1/0

1 xe-0/1/1

2 xe-0/1/2

3 xe-0/1/3

4 xe-0/1/4

5 xe-0/1/5

6 xe-0/1/6

7 xe-0/1/7

That’s it for the MX204 introduction, next up we move on to the larger 5G routers.

The MX10003: Modular and Compact

The new MX10003 is a compact and modular router, three rack units (3RU) tall,
that can provide up to 2.4Tbps of capacity (1.2Tbps per slot) and a large set of
routing and switching features as it leverages the TRIO ASIC, one of the most pow-
erful network chipsets in the world.

NOTE The capacity of the MX10003 at its release was 2.4Tbps. As you will see in
detail later on, the line card currently available for MX10003 is based on the 4th
generation of TRIO ASIC. As in all the MXs, the MX10003 supports the next
generation of TRIO ASICs that will provide greatly enhanced slot and per chassis
throughput.

Let’s first go inside the MX10003 chassis and its several components. Then we’ll
focus on its 1.2Tbps line card: the LC2103.

The MX10003 Chassis

As mentioned previously, the MX10003 is a compact chassis (3RU), which offers
two modular slots for hosting MPCs. Figure 1.6 shows the front view of a fully
configured MX10003. As you can see there are:

1. Two Routing and Control Boards (RCBs)

2. Modular Port Connectors (MPCs)

3. An MPC slot with a modular slot for a MIC daughter card

4. A second MPC slot with a modular slot for a MIC daughter card

 14 Chapter 1: The MX 5G: New Chassis and Hardware

Figure 1 .6 MX10003 Front View

NOTE The RE component actually hosts two separate functions: the routing
engine, which runs the Junos OS and the Control Board (CB), which manages all
the components of the chassis. Thus, the RE and CB assembled together are called
the RCB, for Routing and Control Boards.

As detailed later in this chapter, the current MX10003 MPC is made of two MICs:
one is a built-in MIC (MIC in slot 0) and the second one is modular (MIC in slot
1). Currently each slot offers 1.2Tbps of capacity but will be upgradeable to
7.2Tbps in the future. The current MPC supports multirate interfaces: 12x100GE,
or 18x40GE, or 72x10GE per line card.

Now let’s have a look at the rear view of the MX10003, shown in Figure 1.7.
There are six power supply modules (PSMs) – three at each end. The MX10003
supports both AC or DC PSM. In the middle of the chassis are the four fan mod-
ules for the cooling function.

 15 The MX10003: Modular and Compact

Figure 1 .7 MX10003 Rear View

When a chassis is shipped with the two RCBs, the six PSMs, and four fan trays, the
system is considered fully redundant meaning that a single point of failure of one
hardware component will not cause the entire system to fail. In fact, dual RCBs
with nonstop active routing feature (aka NSR) ensures that the control plane will
not be impacted in the event of a single RCB failure. At least three AC or DC PSM
modules are required to feed the entire chassis. The additional PSMs provide N+1
and N+N power redundancy. Despite the fact the chassis needs the four fan mod-
ules to provide optimized front-to-back air-cooling, the failure of one fan is not
disruptive. Indeed, the speed of the remaining fans is adjusted to keep the tempera-
ture below the threshold that might trigger a power-off of the chassis to save the
component’s integrity. Table 1.3 depicts which components are hot-removable/
insertable and which ones are hot-pluggable.

Table 1 .3 FRU Types for MX10003

FRU Type Hot-insertable Hot-removable Hot-pluggable
Master RCB with NSR X X

Master RCB without NSR X

Backup RCB with NSR X X

Backup RCB without NSR X X

MPC X X

MIC (installed in slot 1) X X

PSM X X

Fan module X X

Air Filter unit X X

Optic module X X

 16 Chapter 1: The MX 5G: New Chassis and Hardware

NOTE Hot-removable and hot-insertable field replaceable units (FRUs): you can
remove and replace these components without powering off the router or disrupt-
ing the routing functions. Hot-pluggable FRUs: you can remove and replace these
components without powering off the router, but the routing functions of the
system are interrupted when the component is removed.

In order to summarize what’s been discussed previously, let’s issue the show chassis
hardware on one MX10003 with two RCBs, one MPC in slot 1, three PSMs, and
four FANs:

door7302@mx10003# show chassis hardware
Hardware inventory:
Item Version Part number Serial number Description
Chassis AF213 JNP10003 [MX10003]
Midplane REV 01 750-066883 CAGZ6541 Midplane 2
Routing Engine 0 BUILTIN BUILTIN RE-S-1600x8
Routing Engine 1 BUILTIN BUILTIN RE-S-1600x8
CB 0 REV 10 750-067071 CAGZ9925 Control Board
 Mezz REV 06 711-066896 CAHA9151 Control Mezz Board
CB 1 REV 06 750-067071 CAGM1872 Control Board
 Mezz REV 12 711-066896 CAHS7148 Control Mezz Board
FPC 1 REV 08 750-066879 CAHD6676 LC2103
 CPU BUILTIN BUILTIN SMPC PMB
 PIC 0 BUILTIN BUILTIN 6xQSFPP
 PIC 1 REV 05 750-069305 CAGX1008 MIC1-MACSEC
PEM 2 REV 01 740-066938 1HS26500001 JNP-PWR1100-DC
PEM 3 REV 01 740-066938 1HS26500028 JNP-PWR1100-DC
PEM 5 REV 01 740-066938 1HS26490020 JNP-PWR1100-DC
Fan Tray 0 REV 02 760-069329 CAHA9125 JNP FAN 3RU
Fan Tray 1 REV 02 760-069329 CAHA9126 JNP FAN 3RU
Fan Tray 2 REV 02 760-069329 CAHA9131 JNP FAN 3RU
Fan Tray 3 REV 02 760-069329 CAHA9119 JNP FAN 3RU

Let’s look at the detail in the RCB component, which in this case is an RE-
S1600x8. This hardware element, also called the host subsystem, provides these
functions:

 � System control functions such as environmental monitoring

 � Routing Layer 2 and Layer 3 protocols

 � Communication to all components such as line cards, power, and cooling

 � Transparent clocking through BITS or GPS signal interfaces

 � Alarm and logging functions

The current RCB consists of an X86-based 8-core CPU. It has 64 GB of DDR4
RAM (expandable to 128 GB) and two slots of 128GB SSD storage.

 17 The MX10003: Modular and Compact

The LC2103 Line Card

The LC2103 line card is the first generation of MPC for the MX10003. This MPC
is a mix of a built-in PIC and a modular PIC. Indeed, the PIC in slot 0 is made of
six fixed QSFPP multi-rates ports and the PIC in slot 1 consists of a free slot that
could host a modular PIC. The current MICs available for this line card are:

 � 12xQSFPP without MACSEC

 � 12xQSFPP with MACSEC

Those two MICs have multi-rate ports: 10GE, 40GE, and 100GE. You are able to
configure the port profile (port speed) per MIC or per port. This line card is built
around the fourth generation of TRIO ASIC: the EA ASIC. Each MPC LC2103
includes three PFE complexes – each complex is based on one EA ASIC, which is
able to deliver up to 400Gbps bidirectional throughput. Unlike larger MX routers
that have dedicated fabric planes (SCB or SFB), the MX10003 is space-optimized;
the fabric ASIC (PF ASIC) is thus directly embedded on the line card itself. This
fabric ASIC provides switching functionality between the different PFEs (the three
complexes) on the MPC (intra line card forwarding) and between the different
MPCs of the chassis (inter line cards forwarding). Figure 1.8 depicts the overview
of the LC2103 line card.

Figure 1 .8 The LC2103 Internal Architecture

 18 Chapter 1: The MX 5G: New Chassis and Hardware

Let’s use a PFE command to check the internal composition of this MPC and confirm
what is detailed in Figure 1.8:

[edit]
SMPC0(mx10003 vty)# show jspec client

ID Name
 1 MPCS[0]
 3 XR2CHIP[0]
 4 XR2CHIP[2]
 5 XR2CHIP[4]
 6 XR2CHIP[1]
 7 XR2CHIP[3]
 8 XR2CHIP[5]
 9 EACHIP[0]
 10 EACHIP[1]
 11 EACHIP[2]
 12 PF_0

As expected, you can see there are three EA ASICs but there are also some other com-
ponents like the PF chip seen on Figure 1.8 or several XR2 chips, which are actually a
High Speed memory controller that each EA relies on to:

 � Hybrid Memory Controller (HMC)

 � Store packets in transit: WAN and fabric queuing

 � Inline JFlow records

XR2 used for lookup and queuing:

 � Routing information: routes, next hop, interface ID, programmed firewall filter,
counters, etc.

These functions are stored in several banks of memory, each of them attached directly
to an EA ASIC, as shown in Figure 1.9.

Figure 1 .9 The EA ASICs and Its Memory Blocks

Let’s refer back to Figure 1.8 to detail each PIC slot. The built-in PIC in slot 0 consists
of six QSFPP multi-rate ports, where each port may be configured as follows depend-
ing on the port profile:

 � 4x10GE, with a breakout cable, per physical QSFPP port

 � 1x40GE per QSFPP port

 19 The MX10003: Modular and Compact

On the PIC, the rate of each port is by default 4x10GE. To override this default
behavior you can modify the port profile mode (at the PIC or port level). The com-
mands to configure the port profile mode are the same as those presented for the
MX204. However, there are some restrictions on the LC2103. Both PICs (the
built-in one and the modular one) must use the same port profile, they cannot be
mixed. In other words, the same port profile mode must be used on both PICs of a
given MPC. Having said that, let’s see the port mapping of the built-in PIC depict-
ed by Figure 1.10.

Figure 1 .10 Built-in PIC Port Mapping – PIC Slot 0

NOTE Remember that to connect 10GE interfaces you need to use a specific
QSFPP module with a breakout cable to expand the physical port into four 10GE
lanes.

Table 1.4 summarizes the port naming conventions of the built-in PIC depending
on the configured port profile mode.

Table 1 .4 Interface Naming of the 6xQSFPP PIC

PFE COMPLEX Port Number 10GE mode 40GE mode

EA ASIC 0
0 xe-x/0/0:[0..3] et-x/0/0

1 xe-x/0/1:[0..3] et-x/0/1

EA ASIC 1
2 xe-x/0/2:[0..3] et-x/0/2

3 xe-x/0/3:[0..3] et-x/0/3

EA ASIC 2
4 xe-x/0/4:[0..3] et-x/0/4

5 xe-x/0/5:[0..3] et-x/0/5

Now let’s shift our attention to the modular PIC in slot 1. As mentioned earlier,
there’s currently one available MIC for this LC2103 line card shipped in two dif-
ferent versions: one with MACSEC and the other without it. The 12xQSFPP MIC
might be inserted in slot 1. As a built-in PIC the default port profile mode is 10GE
on all ports. You can select your desired port profile mode, and thus the speed of

 20 Chapter 1: The MX 5G: New Chassis and Hardware

the ports, by using the previous CLI commands (in this case for fpc pic slot 1).
The port mapping of this modular interface card is illustrated in Figure 1.11.

Figure 1 .11 MIC Port Mapping – PIC Slot 1

And once again, let’s list the interface naming depending on the port profile mode
in Table 1.5.

Table 1 .5 Interface Naming of the 6xQSFPP PIC

PFE COMPLEX Port Number 10GE mode 40GE or
100GE
modes

EA ASIC 0

0 xe-x/1/0:[0..3] et-x/1/0

1 xe-x/1/1:[0..3] et-x/1/1

2 xe-x/1/2:[0..3] et-x/1/2

3 xe-x/1/3:[0..3] et-x/1/3

EA ASIC 1

4 xe-x/1/4:[0..3] et-x/1/4

5 xe-x/1/5:[0..3] et-x/1/5

6 xe-x/1/6:[0..3] et-x/1/6

7 xe-x/1/7:[0..3] et-x/1/7

EA ASIC 2

8 xe-x/1/8:[0..3] et-x/1/8

9 xe-x/1/9:[0..3] et-x/1/9

10 xe-x/1/10:[0..3] et-x/1/10

11 xe-x/1/11:[0..3] et-x/1/11

This concludes our overview of the first new 5G router. Now let’s move to two
other routers in this new line of 5G routers – the MX10008 and the MX10016.
These two big routers are both based on the new Juniper Universal Chassis.

 21 MX10k and the Universal Chassis

MX10k and the Universal Chassis

The MX10008 and MX10016 are built around the new modular and powerful
universal chassis. This chassis is expected to solve some environmental issues by
offering a new design without a mid-plane and with a new cooling system. More-
over, the universal chassis, as indicated by its name, is intended not only for MX,
but also for PTX, and for QFX as well.

Indeed, there are many components that can be shared between these three device
platforms, including chassis, fans, power supplies, RE and control plane, and fab-
ric planes.

Common line cards are in the Juniper product plan, but currently only the line
cards are series-specific and cannot be shared between the platforms. Universal
chassis is available in two models – the JNP10008, which is a 13RU tall chassis,
and the JNP10016, which is a 21RU tall chassis. Both models provide redundancy
for all components: RE, power, cooling system, and fabric plane. Figure 1.12
shows the two models in the MX Series family.

Figure 1 .12 The 8- and 16-slot Universal Chassis

These new chassis are mid-plane-less. Actually fabric cards (inserted at the rear)
are directly connected to line cards (inserted at the front) via orthogonal direct
connectors. There are a total of six Switch Fabric Boards (SFBs) on both chassis
models. The six fabric cards operate in 5:1 redundancy mode. Nevertheless, the
model of fabric cards depends on the size of the chassis.

 22 Chapter 1: The MX 5G: New Chassis and Hardware

The MX10008 and MX100016 Chassis

The MX10008 and MX10016 offer either eight or sixteen MPC slots, respectively,
that are inserted from the front. You can also insert the two RCBs from the front
of the chassis. Currently the available universal RE is made of a ten core-based In-
tel CPUs, a 64GB memory (expandable to 128GB), and two internal SSD disks of
200GB each. Figure 1.13 shows the front view of an MX10008 and is annotated
with the following information:

1. Routing and control board (RCB)

2. Status LED panel

3. Handles

4. Installation holes

5. Line card slots 0-7 (numbered top to bottom)

NOTE This is exactly the same for MX10016, except for the number of MPC
slots.

Figure 1 .13 MX10008 Front View

 23 MX10k and the Universal Chassis

Next is the rear view of the chassis, in which you can observe the following com-
ponents depicted by Figure 1.14:

1. AC or DC power supplies

2. Fan trays with redundant fans

(When you remove the fan trays you have access to the right view of Figure 1.14):

3. Fan tray controllers

4. The Switch Fabric Board (SFBs)

Figure 1 .14 MX10008 Rear View

As the two fan trays are fully redundant, you can remove either fan tray to access
the fan tray controllers or SFBs, which are located behind the fans. Remove fan 0 if
you want to access to fan tray controller 0 and SFB 0, 1, and 2 or remove fan tray
1 if you want to access to fan tray controller 1 and SFB 3, 4, and 5.

Let’s issue a show chassis hardware command on both the MX10008 and MX10016
chassis to summarize what’s been presented so far.

 24 Chapter 1: The MX 5G: New Chassis and Hardware

door7302@mx10008# show chassis hardware
Hardware inventory:
Item Version Part number Serial number Description
Chassis DE405 JNP10008 [MX10008]
Midplane REV 23 750-071974 ACPD4308 Midplane 8
Routing Engine 0 BUILTIN BUILTIN RE X10
Routing Engine 1 BUILTIN BUILTIN RE X10
CB 0 REV 02 711-065897 CAGY2617 Control Board
CB 1 REV 10 750-079562 CAKK7987 Control Board
FPC 1 REV 09 750-073174 CAJE3408 JNP10K-LC2102
 CPU REV 02 750-073391 CAHM7947 LC 2101 PMB
 PIC 0 BUILTIN BUILTIN 4xQSFP28 MACSEC
 PIC 1 BUILTIN BUILTIN 4xQSFP28 MACSEC
 PIC 2 BUILTIN BUILTIN 4xQSFP28 MACSEC
 PIC 3 BUILTIN BUILTIN 4xQSFP28 MACSEC
 PIC 4 BUILTIN BUILTIN 4xQSFP28 MACSEC
 PIC 5 BUILTIN BUILTIN 4xQSFP28 MACSEC
FPD Board REV 07 711-054687 ACPD0440 Front Panel Display
PEM 0 REV 01 740-073147 1EDM6170842 Power Supply DC
PEM 1 REV 01 740-073147 1EDM6170903 Power Supply DC
PEM 2 REV 01 740-073147 1EDM6170819 Power Supply DC
PEM 3 REV 01 740-073147 1EDM6130261 Power Supply DC
PEM 4 REV 01 740-073147 1EDM6170969 Power Supply DC
PEM 5 REV 01 740-073147 1EDM6170686 Power Supply DC
FTC 0 REV 14 750-072657 ACNY9996 Fan Controller 8
FTC 1 REV 13 750-072657 ACNS3200 Fan Controller 8
Fan Tray 0 REV 09 760-072656 ACNV1774 Fan Tray 8
Fan Tray 1 REV 09 760-072656 ACNV1685 Fan Tray 8
SFB 0 REV 25 750-072655 ACPD4573 Switch Fabric (SIB) 8
SFB 1 REV 28 750-072655 ACPK0928 Switch Fabric (SIB) 8
SFB 2 REV 28 750-072655 ACPM5424 Switch Fabric (SIB) 8
SFB 3 REV 28 750-072655 ACPL1841 Switch Fabric (SIB) 8
SFB 4 REV 28 750-072655 ACPL1881 Switch Fabric (SIB) 8
SFB 5 REV 28 750-072655 ACPL1941 Switch Fabric (SIB) 8

door7302@mx10016# show chassis hardware
Hardware inventory:
Item Version Part number Serial number Description
Chassis DL590 JNP10016 [MX10016]
Midplane REV 24 750-077138 ACPR5157 Midplane 16
Routing Engine 0 BUILTIN BUILTIN RE X10 128
Routing Engine 1 BUILTIN BUILTIN RE X10 128
CB 0 REV 05 711-065897 CAJD3802 Control Board
CB 1 REV 03 750-079562 CAJS5144 Control Board
FPC 0 REV 04 750-084779 CAKR7034 JNP10K-LC2101
 CPU REV 05 750-073391 CAKJ2874 LC 2101 PMB
 PIC 0 BUILTIN BUILTIN 4xQSFP28 SYNCE
 PIC 1 BUILTIN BUILTIN 4xQSFP28 SYNCE
 PIC 2 BUILTIN BUILTIN 4xQSFP28 SYNCE
 PIC 3 BUILTIN BUILTIN 4xQSFP28 SYNCE
 PIC 4 BUILTIN BUILTIN 4xQSFP28 SYNCE
 PIC 5 BUILTIN BUILTIN 4xQSFP28 SYNCE
FPC 11 REV 05 750-084779 CAKT4171 JNP10K-LC2101
 CPU REV 05 750-073391 CAKV2283 LC 2101 PMB
 PIC 0 BUILTIN BUILTIN 4xQSFP28 SYNCE
 PIC 1 BUILTIN BUILTIN 4xQSFP28 SYNCE
 PIC 2 BUILTIN BUILTIN 4xQSFP28 SYNCE
 PIC 3 BUILTIN BUILTIN 4xQSFP28 SYNCE

 25 MX10k and the Universal Chassis

 PIC 4 BUILTIN BUILTIN 4xQSFP28 SYNCE
 PIC 5 BUILTIN BUILTIN 4xQSFP28 SYNCE
FPD Board REV 07 711-054687 ACPS8855 Front Panel Display
PEM 0 REV 01 740-073147 1EDM6171155 Power Supply DC
PEM 1 REV 01 740-073147 1EDM6281575 Power Supply DC
PEM 2 REV 01 740-073147 1EDM6171044 Power Supply DC
PEM 3 REV 01 740-073147 1EDM6281244 Power Supply DC
PEM 4 REV 01 740-073147 1EDM6282093 Power Supply DC
PEM 5 REV 01 740-073147 1EDM6281413 Power Supply DC
PEM 6 REV 01 740-073147 1EDM6171071 Power Supply DC
PEM 7 REV 01 740-073147 1EDM6170709 Power Supply DC
PEM 8 REV 01 740-073147 1EDM6171169 Power Supply DC
PEM 9 REV 01 740-073147 1EDM6170754 Power Supply DC
FTC 0 REV 10 750-050309 ACPE8185 Fan Controller 16
FTC 1 REV 10 750-050309 ACPM2918 Fan Controller 16
Fan Tray 0 REV 10 760-057901 ACPL0546 Fan Tray 16
Fan Tray 1 REV 10 760-077141 ACPV7288 Fan Tray 16
SFB 0 REV 15 750-077140 ACPV3981 Switch Fabric (SIB) 16
SFB 1 REV 15 750-058270 ACPM2808 Switch Fabric (SIB) 16
SFB 2 REV 15 750-077140 ACPV3964 Switch Fabric (SIB) 16
SFB 3 REV 15 750-058270 ACPJ9834 Switch Fabric (SIB) 16
SFB 4 REV 15 750-058270 ACPV3917 Switch Fabric (SIB) 16
SFB 5 REV 15 750-058270 ACPM2804 Switch Fabric (SIB) 16

Before reviewing the MX10k line card, Table 1.6 depicts which components are
hot-removable/insertable, and which ones are hot-pluggable.

Table 1 .6 FRU Types of MX10k

FRU Type Hot-insertable Hot-removable Hot-pluggable

Master RCB with NSR X X

Master RCB without NSR X

Backup RCB with NSR X X

Backup RCB without NSR X X

MPC X X

SFB (Fabric) X X

PSM X X

Fan module X X

Air Filter unit X X

Optic module X X

 26 Chapter 1: The MX 5G: New Chassis and Hardware

The LC2101 Line Card

The current line card available for MX10008 and MX10016 is the LC2101. This
line card is designed around the fourth generation of TRIO ASIC. The card con-
sists of six pseudo PICs. They’re pseudo because the card is monolithic and does
not have any modular MIC slot. Each PIC is attached to four ports, thus the
LC2101 line card offers 24 multi-rates physical ports. There are two models of the
LC2101 line card – one with MACSEC and one without MACSEC. Both models
provide a throughput of either 1.44Tbps or 2.4Tbps.

NOTE The difference in the throughput bandwidth is not limited by a hardware
component. Actually, this is purely limited by software and therefore the 1.44Tbps
line card might be upgradable to 2.4Tbps via a simple CLI command. Just notice
that the 1.44Tbps mode requests less power. This is one use case for using the
lower bandwidth mode.

Regardless of the bandwidth mode (1.44 or 2.4Tbps), both models of line cards
are made of six EA ASICs. The internal view of the LC2101 is depicted by Figure
1.15. For the 1.44Tbps line card each EA ASIC is rate-limited to 240Gbps instead
of 400Gbps when the 2.4Tbps mode is enabled. As observed, each EA ASIC is
connected to four multi-rate ports on the WAN side and to the six SFBs on the fab-
ric side. Remember, as well, each EA ASIC is attached to two memory blocks (see
Figure 1.9) to handle packets and routing information.

Depending on the optical module you use, you can have any of these available in-
terface rates:

 � 4x10GE ports with a breakout cable

 � 1x40GE port with a 40GE QSFP+ module

 � 1x100GE port with a 100GE QSP28 module

As presented previously, when discussing the LC2103 line card of the MX10003
the rate of each port is, by default, 4x10GE. You can override this default configu-
ration by using dedicated CLI commands. The port profile mode is also configu-
rable at the PIC or port level without any restriction.

 27 MX10k and the Universal Chassis

Figure 1 .15 The LC2101 Internal Architecture

Let’s issue a show jspec client PFE command to show the ASICs hosted by the MPC
LC2101:

[edit]
IMPC0(mx10008 vty)# show jspec client

ID Name
 1 MPCS[0]
 2 XR2CHIP[0]
 3 XR2CHIP[2]
 4 XR2CHIP[4]
 5 XR2CHIP[6]
 6 XR2CHIP[8]
 7 XR2CHIP[10]
 8 XR2CHIP[1]
 9 XR2CHIP[3]

 28 Chapter 1: The MX 5G: New Chassis and Hardware

 10 XR2CHIP[5]
 11 XR2CHIP[7]
 12 XR2CHIP[9]
 13 XR2CHIP[11]
 14 EACHIP[0]
 15 EACHIP[1]
 16 EACHIP[2]
 17 EACHIP[3]
 18 EACHIP[4]
 19 EACHIP[5]

Finally let’s have a look at the port mapping of the LC2101 line card shown in Fig-
ure 1.16. The PIC annotation in Figure 1.16 is only there to facilitate the under-
standing of how physical ports are assigned internally to the EA ASIC. As we
mentioned, the LC2101 line card is monolithic without any physical MIC slots.

Figure 1 .16 The LC2101 Port Mapping

And, Table 1.7 shows you the port naming convention depending on the port pro-
file configuration.

Table 1 .7 Interface Naming of the LC2101 Line Card

PFE COMPLEX Port Number 10GE mode 40GE or 100GE modes

EA ASIC 0

0/0 xe-x/0/0:[0..3] et-x/0/0

0/1 xe-x/0/1:[0..3] et-x/0/1

0/2 xe-x/0/2:[0..3] et-x/0/2

0/3 xe-x/0/3:[0..3] et-x/0/3

EA ASIC 1

1/0 xe-x/1/0:[0..3] et-x/1/0

1/1 xe-x/1/1:[0..3] et-x/1/1

1/2 xe-x/1/2:[0..3] et-x/1/2

1/3 xe-x/1/3:[0..3] et-x/1/3

EA ASIC 2

2/0 xe-x/2/0:[0..3] et-x/2/0

2/1 xe-x/2/1:[0..3] et-x/2/1

2/2 xe-x/2/2:[0..3] et-x/2/2

2/3 xe-x/2/3:[0..3] et-x/2/3

 29	 The	Fifth	Generation	of	ASICs

EA ASIC 3

3/0 xe-x/3/0:[0..3] et-x/3/0

3/1 xe-x/3/1:[0..3] et-x/3/1

3/2 xe-x/3/2:[0..3] et-x/3/2

3/3 xe-x/3/3:[0..3] et-x/3/3

EA ASIC 4

4/0 xe-x/4/0:[0..3] et-x/4/0

4/1 xe-x/4/1:[0..3] et-x/4/1

4/2 xe-x/4/2:[0..3] et-x/4/2

4/3 xe-x/4/3:[0..3] et-x/4/3

EA ASIC 5

5/0 xe-x/5/0:[0..3] et-x/5/0

5/1 xe-x/5/1:[0..3] et-x/5/1

5/2 xe-x/5/2:[0..3] et-x/5/2

5/3 xe-x/5/3:[0..3] et-x/5/3

The Fifth Generation of ASICs

EA ASIC was the fourth generation of ASIC that was embedded on MPC7e,
MPC8e, and MPC9e. The fifth generation of TRIO, recently released by Juniper,
with the code name ZT, provides a full duplex bandwidth of 500Gbps and it is in
the core of the two new MPCs: MPC10e for MX and MPC11e for MX2K. Figure
1.17 illustrates the TRIO ASIC evolution.

Figure	1.17	 The	TRIO	Evolution

As you can see, since the fourth generation of TRIO all functions, such as queuing,
lookup, and rich CoS, are now integrated in a single chipset with no compromise
between features and throughput.

ZT brings the support of 400Gbps Ethernet interfaces as well as a new set of ad-
vanced inline features such as: Flexible Ethernet or FlexE, and a high capacity of
IPsec (via a Crypto module), and MACSEC tunnels. Let’s go inside these new
MPCs and take a look.

 30 Chapter 1: The MX 5G: New Chassis and Hardware

The MPC10e Line Card

The MPC10e is a new design for the MX240, MX480, or MX960. This line card
is delivered in two models: a 1Tbps and a 1.5Tbps line card. Actually the through-
put available by this 1.5Tbps line card depends on two factors:

� The version of the MX chassis

� The new fabric plane for MX: SCBE3

Indeed, the first condition to benefit the 1.5Tbps per slot on classic MXs is the new
version of the MX chassis. The Premium3 chassis allows the 1.5Tbps per line card
while MPC10e will operate at 1Tbps on the Premium2 chassis version (also
known as regular chassis). The second requirement for the MPC10e on your MX
chassis is to upgrade the fabric cards. Just as with previous upgrades, this is
achieved by switching the Switch Control Board to the latest version. For
MPC10e, the SCBE3 is required to enable the 1.5Tbps per slot.

NOTE There is no need to change power and cooling systems. Indeed, the
existing fan trays and power supplies of the MX will work with the MPC10e.

As already mentioned, the MPC10e consists of two models: a 10 multi-rate ports
line card named MPC10e 10C and a 15 multi-rate ports line card named MPC10e
15C. The physical ports are logically grouped in groups of five ports. Each group
of five ports is internally attached to a ZT ASIC. Within a given group, all ports
can handle QSFP28 modules, and the last port of each group supports the QS-
FP56-DD module.

To summarize, each group of five ports might handle these types of link rates:

� 25x10GE, by using a QSFPP-4x10GE module and a breakout cable on each
port of the group

� 5x40GE, by using a QSFPP-40GE module on each port of the group

� 5x100GE, by using a QSFP28-100GE module on each port

� 1x400GE, by using a QSFP56-DD module on the dedicated port of the group

NOTE ZT AZIC cannot be oversubscribed.

Figure 1.18 depicts the internal view of the MPC10e 10C, which is made of two
ZT ASICs.

 31	 The	Fifth	Generation	of	ASICs

Figure 1 .18 MPC10e 10C Internal Architecture

And the next figure, Figure 1.19, shows the internal view of an MPC10e 15C ver-
sion made of three ZT ASICs. You will have noticed that not all PFEs are connect-
ed to the fabric. Indeed, for this model of card, only the ZT0 and ZT1 complexes
are attached to the fabric via dedicated SerDes (Serializer/Deserializer), also
known as high-speed links. The third ZT ASIC uses inter ASIC high-speed links to
communicate through the fabric. In this case you can consider that ZT0 and ZT1
play the role of fabric bridge for ZT2.

NOTE This specific hardware configuration does not impact any ZT ASIC in
terms of performance. It just allows using more PFEs (ZT ASIC) on a given line
card due to the limited number of physical links available on the mid plane of the
chassis.

 32 Chapter 1: The MX 5G: New Chassis and Hardware

Figure 1 .19 MPC10e 15C Internal Architecture

Let’s use a PFE command to check the internal composition of this MPC10e 15C
and confirm what we see in Figure 1.19:

[edit]
NPC11(mx960 vty)# show jspec client

ID Name
 1 MPCS[0]
 2 ZTCHIP[0]
 3 ZTCHIP[1]
 4 ZTCHIP[2]

Now, let’s have a look at the port mapping and the port naming convention that
depends on the rate configured (port profile mode) of the MPC10e 10C.

 33	 The	Fifth	Generation	of	ASICs

Figure 1 .20 The MPC10e 10C Port Mapping

As mentioned, only the port 0/4 and 1/4 support QSFP56-DD modules. Now the
next table, Table 1.8, lists the port naming convention depending on the port pro-
file configuration.

Table 1 .8 Interface Naming of the MPC10e 10C Line Card

PFE COMPLEX Port
Number

10GE mode 40GE or 100GE
modes

400GE
support

ZT ASIC 0

0/0 xe-x/0/0:[0..3] et-x/0/0 NA

0/1 xe-x/0/1:[0..3] et-x/0/1 NA

0/2 xe-x/0/2:[0..3] et-x/0/2 NA

0/3 xe-x/0/3:[0..3] et-x/0/3 NA

0/4 xe-x/0/4:[0..3] et-x/0/4 et-x/0/4

ZT ASIC 1

1/0 xe-x/1/0:[0..3] et-x/1/0 NA

1/1 xe-x/1/1:[0..3] et-x/1/1 NA

1/2 xe-x/1/2:[0..3] et-x/1/2 NA

1/3 xe-x/1/3:[0..3] et-x/1/3 NA

1/4 xe-x/1/4:[0..3] et-x/1/4 et-x/1/4

Let’s do the same for the second model of MPC10e, with 15 ports. Figure 1.21
shows you the port mapping, and once again, only the last port (ports 0/4, ¼, and
2/4) of each PIC supports QSFP56-DD module.

Figure 1 .21 The MPC10e 15C Port Mapping

 34 Chapter 1: The MX 5G: New Chassis and Hardware

Table 1.9 lists the port naming convention depending on the port profile
configuration.

Table 1 .9 Interface Naming of the MPC10e 15C line card

PFE COMPLEX Port
Number

10GE mode 40GE or 100GE
modes

400GE
support

ZT ASIC 0

0/0 xe-x/0/0:[0..3] et-x/0/0 NA

0/1 xe-x/0/1:[0..3] et-x/0/1 NA

0/2 xe-x/0/2:[0..3] et-x/0/2 NA

0/3 xe-x/0/3:[0..3] et-x/0/3 NA

0/4 xe-x/0/4:[0..3] et-x/0/4 et-x/0/4

ZT ASIC 1

1/0 xe-x/1/0:[0..3] et-x/1/0 NA

1/1 xe-x/1/1:[0..3] et-x/1/1 NA

1/2 xe-x/1/2:[0..3] et-x/1/2 NA

1/3 xe-x/1/3:[0..3] et-x/1/3 NA

1/4 xe-x/1/4:[0..3] et-x/1/4 et-x/1/4

ZT ASIC 2

2/0 xe-x/2/0:[0..3] et-x/2/0 NA

2/1 xe-x/2/1:[0..3] et-x/2/1 NA

2/2 xe-x/2/2:[0..3] et-x/2/2 NA

2/3 xe-x/2/3:[0..3] et-x/2/3 NA

2/4 xe-x/2/4:[0..3] et-x/2/4 et-x/2/4

The MPC11e Line Card

The MPC11e line card is designed for the MX2K chassis, which includes the
MX2010 and the MX2020. The MPC11e is fully interoperable with other MX2K
MPCs such as the MPC6e, MPC8e, or MPC9e.

Like its smaller series member, the MPC10e, the MPC11e line card is made around
the ZT ASIC and thus allows 400GE interfaces and benefits of the all the advanced
inline features. The MPC11e provides a total capacity of 4Tbps. To leverage this
per-slot throughput you need to upgrade the SFBs to the newest release: at present,
the SFB version 3. The SFB3 allows 4Tbps per slot and now also supports eight
PFE destinations per MPC, while SFB2 supported four PFEs per MPC. Indeed, to
provide the 4Tbps of throughput, the MPC11e consists of eight ZT ASICs for a
total of 40 physical ports.

Like MPC10e, these 40 physical ports are split into eight groups of five ports. Each
group of five ports is internally attached to a ZT ASIC. The first port of each group
supports multi-rate, which means that ports 0/0, 1/0, 2/0, 3/0, 4/0, 5/0, 6/0, and
7/0 supports these modules and rates:

 35	 The	Fifth	Generation	of	ASICs

� 4x10GE support using QSFPP-4x10GE breakout optics

� 1x40GE support using QSFPP optics

� 1x100GE support using QSFP28 optics

� 1x400GE support using QSFP56 optics

All the other ports support 100GE rate with QSFP28 optic modules. You can re-
trieve all this information by issuing the following:

door7302@mx2020# show chassis pic fpc-slot <fpc-slot> pic-slot <pic-slot>
FPC slot 11, PIC slot 0 information:
[…]

Port speed information:

 Port PFE Capable Port Speeds
 0 0 4x10GE, 40GE, 100GE
 1 0 100GE
 2 0 100GE
 3 0 100GE
 4 0 100GE

NOTE There is no need to change power and cooling systems. Indeed, the
existing fan trays and power supplies of MX2K work with MPC11e.

The internal architecture of the MPC11e is depicted in Figure 1.22.

Figure 1 .22 MPC11e Internal Architecture

 36 Chapter 1: The MX 5G: New Chassis and Hardware

Due to the number of connectors available on the mid plane, not all ZT ASICs
(like the MPC10e 15C) have direct high-speed links from/to the fabric. Half of the
ZT uses another ZT like a fabric bridge, without impacting the performance and
the capacity of ZT ASIC.

Let’s check the following PFE command one more time to confirm the internal
composition of the MPC11e. As expected, we found our eight ZT ASICs:

[edit]
NPC11(mx2020 vty)# show jspec client

ID Name
 1 ZTCHIP[0]
 2 ZTCHIP[1]
 3 ZTCHIP[2]
 4 ZTCHIP[3]
 5 ZTCHIP[4]
 6 ZTCHIP[5]
 7 ZTCHIP[6]
 8 ZTCHIP[7]

The port numbering is a little bit complex on MPC11e. Figure 1.23 helps you to
better understand this port numbering:

Figure 1 .23 MPC11e Port Mapping

And Table 1.10 provides the port naming convention of the MPC11e depending
on the port profile configuration.

Table 1 .10 Interface Naming of the MPC11e Line Card

PFE COMPLEX Port Number 10GE mode 40GE or
100GE
modes

400GE
support

ZT ASIC 0

0/0 xe-x/0/0:[0..3] et-x/0/0 et-x/0/0

0/1 NA et-x/0/1 NA

0/2 NA et-x/0/2 NA

0/3 NA et-x/0/3 NA

0/4 NA et-x/0/4 NA

 37	 The	Fifth	Generation	of	ASICs

ZT ASIC 1

1/0 xe-x/1/0:[0..3] et-x/1/0 et-x/1/0

1/1 NA et-x/1/1 NA

1/2 NA et-x/1/2 NA

1/3 NA et-x/1/3 NA

1/4 NA et-x/1/4 NA

ZT ASIC 2

2/0 xe-x/2/0:[0..3] et-x/2/0 et-x/2/0

2/1 NA et-x/2/1 NA

2/2 NA et-x/2/2 NA

2/3 NA et-x/2/3 NA

2/4 NA et-x/2/4 NA

ZT ASIC 3

3/0 xe-x/3/0:[0..3] et-x/3/0 et-x/3/0

3/1 NA et-x/3/1 NA

3/2 NA et-x/3/2 NA

3/3 NA et-x/3/3 NA

3/4 NA et-x/3/4 NA

ZT ASIC 4

4/0 xe-x/4/0:[0..3] et-x/4/0 et-x/4/0

4/1 NA et-x/4/1 NA

4/2 NA et-x/4/2 NA

4/3 NA et-x/4/3 NA

4/4 NA et-x/4/4 NA

ZT ASIC 5

5/0 xe-x/5/0:[0..3] et-x/5/0 et-x/5/0

5/1 NA et-x/5/1 NA

5/2 NA et-x/5/2 NA

5/3 NA et-x/5/3 NA

5/4 NA et-x/5/4 NA

ZT ASIC 6

6/0 xe-x/6/0:[0..3] et-x/6/0 et-x/6/0

6/1 NA et-x/6/1 NA

6/2 NA et-x/6/2 NA

6/3 NA et-x/6/3 NA

6/4 NA et-x/6/4 NA

ZT ASIC 7

7/0 xe-x/7/0:[0..3] et-x/7/0 et-x/7/0

7/1 NA et-x/7/1 NA

7/2 NA et-x/7/2 NA

7/3 NA et-x/7/3 NA

7/4 NA et-x/7/4 NA

 38 Chapter 1: The MX 5G: New Chassis and Hardware

Mixing port speeds when dealing with a high-density linecard may quickly become
a nightmare when you have to identify a given port – especially when you need to
remotely pilot a technician to plug a fiber to a specific port. But no worries, re-
member there are some cool CLI commands that help you to identify a specific
port or a group of ports assigned to the same speed.

To blink a specific port you can use the following command:

door7302@mx2020# request chassis port-led <start|stop> fpc-slot <Slot> pic-slot <Slot> port <Port>
[duration <Time>]

To blink all the 10GE ports, use this command:

door7302@mx2020# request chassis port-led <start|stop> fpc-slot <Slot> pic-slot <Slot> port all-10g
[duration <Time>]

To blink all the 40GE ports, use this command:

door7302@mx2020# request chassis port-led <start|stop> fpc-slot <Slot> pic-slot <Slot> port all-40g
[duration <Time>]

To blink all the 100GE ports, use this command:

door7302@mx2020# request chassis port-led <start|stop> fpc-slot <Slot> pic-slot <Slot> port all-100g
[duration <Time>]

And finally, if needed, to blink all the ports use this command:

door7302@mx2020# request chassis port-led <start|stop> fpc-slot <Slot> pic-slot <Slot> port all-ports
[duration <Time>]

Now, it’s time to dive into the EA and ZT ASICs. Chapters 2 and 3 will help you to
better understand the internal hardware and software architectures and then bet-
ter know how host and transit packets are handled by these new chip sets.

Hope you are ready for this adventure—let’s go inside the MX5G!

This chapter provides a detailed view of two models of line card: one based on the
EA ASIC, and a second one based on the ZT ASIC. As you will see, the functional
blocks inside the two ASICs are quite similar, even if the ZT provides more ad-
vanced inline features, like the crypto engine, which allows inline MACsec with no
performance penalty, than the EA. We will not detail these specific features (like
FlexE or Inline IPsec) as the software supporting these advanced features was not
yet released when this book was written. We will focus on the classic features such
as routing traffic, handling control plane, and transit packets.

MORE? Media Access Control security (MACsec) provides point-to-point security
on Ethernet links and is defined by IEEE standard 802.1AE. You can use MACsec
in combination with other security protocols, such as IP Security (IPsec), and
Secure Sockets Layer (SSL), to provide end-to-end network security. Juniper
MPC10E/11E MPCs supports inline MACsec with no throughput/latency penal-
ties. For more see https://www.juniper.net/documentation/en_US/junos/topics/
topic-map/understanding_media_access_control_security_qfx_ex.html.

EA and ZT also have a similar architecture, therefore we’ll first describe the EA in
detail and then describe only the specificities of the ZT in a second part.

In this chapter, for all PFE commands related to MQSS or XQSS blocks, the num-
ber after the terms mqss or xqss refers to the Local PFE ID:

(mx vty)# show mqss [PFE-ID] xxxx

(mx vty)# show xqss [PFE-ID] xxxx

The PFE ID is a number between 0 and 7 depending on the number of PFEs /
ASICs of the MPC.

Chapter 2

MX 5G: Two Powerful ASICs

https://www.juniper.net/documentation/en_US/junos/topics/topic-map/understanding_media_access_control_security_qfx_ex.html
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/understanding_media_access_control_security_qfx_ex.html

 40 Chapter 2: MX 5G: Two Powerful ASICs

Internal View of EA-based Line Card

Let’s start with the EA-based line card. We will not describe a specific model of line
card. The MPC7e, MPC8e, MPC9e, LC2101, LC2103, and even the MX204,
which are all built around the EA ASIC, work the same way.

Software Architecture

The EA line card software architecture is based on a Linux host OS. The Juniper
software, embedded into the MPC, running on top of Linux, is called the micro-
kernel (aka uKernel). On the EA line card all the PFE software components run on
this single 32-bit process. The main tasks managed by the uKernel are:

 � ASIC initialization and management

 � Host packets handling – DDoS protection at CPU line card level

 � NH management / FIB programing

 � Distributed protocols support

 � Alarm / Error management

 � Syslog management

… and many other tasks

Figure 2.1 illustrates the software architecture of a typical EA line card.

Figure	2.1		 Software	Architecture	of	EA	Line	Card

 41 Internal View of EA-based Line Card

You can see in Figure 2.1 that the line card hosts a PCIe and an Ethernet switch.

You can connect to both software layers: the uKernel and Linux OS directly from
the RE. Figure 2.2 explains how you access the uKernel PFE shell or the Linux
shell.

Figure 2 .2 Interact with MPC

Ethernet is used by uKernel to communicate with the RE (Master/Backup). The
RE usually sends control plane packets to uKernel. After processing them, if need-
ed, the uKernel also sends the control plane packets to the EA via Ethernet, which
finally forwards the packets to the WAN interfaces. On the reverse side, when the
control plane comes from the WAN ports, the EA ASIC delivers them to the uKer-
nel by using DMA (direct memory access) through a PCIe interface. Those control
plane packets are then forwarded to the RE through the Ethernet port. Notice that
since Junos 17.4 there is a TurboTX mode, enabled by default, which allows the
RE to send some specific host outbound traffic to EA faster (WAN). This mode by-
passes the uKernel (outbound direction) and the RE sends its packets directly to
the EA (via Ethernet). For your information, this default mode can be turned off
with the following command (more detail on this mode in Chapter 3):

door7302@mx2020# set chassis turbotx-disable

For FIB updates, the RE sends FIB modifications through an IPC (interprocess
communication) message. For that, the RE sends its IPC messages via a raw socket
over Ethernet to the uKernel. Then uKernel handles IPC and programs the FIB into
the EA ASIC via PCIe interface. This useful tool, available at the shell level of the
RE, allows you to simulate a uKernel’s MPC connection to the Junos kernel (on
RE) to receive, like an MPC, the FIB updates. The command is named rtsockmon as
detailed in the below output:

droydavi@mx2020> start shell
% su
root@mx2020:/var/home/remote-su # rtsockmon -tn
 sender creator flag type op
[16:36:47:715.689] rpd unknown PI route change inet 2.0.0.0 tid=0 plen=24 type=user
flags=0x0 nh=dscd nhflags=0x0 nhidx=0 rt_nhiflist = 0 altfwdnhidx=0 filtidx=0 lr_id = 0 featureid=0

 42 Chapter 2: MX 5G: Two Powerful ASICs

rt_mcast_nhiflist=0 dflags 0x0

[16:36:47:717.023] rpd self P route change inet 2.0.0.0 tid=0 plen=24 type=user
flags=0x0 nh=dscd nhflags=0x1 nhidx=34 rt_nhiflist = 0 altfwdnhidx=0 filtidx=0 lr_id = 0 featureid=0
rt_mcast_nhiflist=0 dflags 0x0

The Figure 2.3 summarizes the different host flows.

Figure	2.3		 Host	Traffic	Flows	

Hardware Architecture

The novelty of the EA ASIC is that the three main components of the classic TRIO
architecture – the queuing, lookup, and rich QoS blocks – have been merged into
one single ASIC. Nevertheless, if we zoom inside the EA ASIC we’ll find these three
main functional blocks named like this:

 � MQSS block: This is the “Center” and in the queuing block, from previous
TRIO generations, it was the MQ or XM ASICs.

 43 Internal View of EA-based Line Card

 � LUSS block: This is the lookup block – from previous TRIO generations it was
the LU or XL ASICs.

 � XQSS block: And this is the rich QoS block – from previous TRIO generations
it was the QX or XQ ASICs.

Figure 2.4 gives you the first view of the internal architecture of the EA ASIC.

Figure	2.4		 Functional	Blocks	Inside	the	EA

Note again that the features managed by each block in Figure 2.4 are not exhaus-
tive; only the classic features are listed. Given that, what can you notice at first
glance?

The MQSS is the interface between the WAN side and the fabric side. Later we’ll
dive inside the MQSS to have a more precise look at this central block. For now, the
important thing to notice is that the host path, meaning all packets (Control plane,
OAM…) that wish to reach the line card CPU, or the RE, will use the MQSS block.

 44 Chapter 2: MX 5G: Two Powerful ASICs

The EA ASIC is also attached to external memory to store, among other things, the
packet during its processing: we called this part of the external memory the delay
bandwidth buffer or DBB. On each EA ASIC there is a buffer of 75 msecs per physi-
cal 10GE/40GE/100GE port.

Before carrying on our walk through the EA, let’s do a quick review of data ma-
nipulated by the TRIO ASIC family:

 � Data Unit or packet HEAD. This is actually a chunk (the first segment) of the
real packet. This chunk contains all the packet’s headers plus some parts of the
payload. On the EA ASIC, the HEAD could have a variable length but has a
maximum size of 224 bytes. Actually, if packet size is less than 224 bytes, this
entire packet is taken into account (HEAD = entire packet). Otherwise, if pack-
et size is more than 224 bytes, only the first 192 bytes compose the HEAD and
the rest of packet’s bytes are named TAIL.

 � Packet TAIL: The additional bytes corresponding to the data that are not in the
HEAD. Those remaining bytes are stored in external memory (DBB partition).

 � The Cells: When the entire packet needs to move from one PFE to another PFE
through the fabric this packet is split into small cells, which have a fixed size of
64 bytes.

Thus, only the packet HEAD is manipulated by the different blocks of the EA and
not the whole packet (except if the packet size is less than 224 bytes). HEAD plays
the role of packet descriptor inside the ASIC.

Let’s move back to Figure 2.4. The MQSS is also attached to the two other func-
tional blocks: the LUSS for all that concerns packet manipulation (the LUSS is like
the brain of the EA); and the XQSS, for all things regarding to WAN QoS: (port-
based queuing or hierarchical queuing features are managed by the XQSS). As
seen in Figure 2.4, XQSS is only used on the egress direction, meaning from fabric
to WAN, unless you request (by configuration) ingress queuing, which is not the
default configuration on Junos.

Finally, it’s important to recall, as for all the other TRIO generations, that the for-
warding of a packet between ports attached to the same EA ASIC doesn’t use the
fabric path (except in some tunneling use cases where the Anchor PFE is not the
same PFE as the ingress PFE – see the Appendix for details).

Ingress Packet Flow

We are now going to zoom inside the MQSS block in order to see some implemen-
tation details. MQSS is not a monolithic block. It’s also made of several smaller
functional sub-blocks. Each of them is in charge of one or several specific/dedi-
cated tasks. Let’s dive into MQSS and describe step-by-step how an ingress transit
packet, meaning one that's coming from the WAN, is manipulated by the MQSS.
Figure 2.5 zooms inside the MQSS.

 45 Internal View of EA-based Line Card

Figure	2.5		 Ingress	Traffic	Inside	the	MQSS

When the packet comes into an EA line card, it is first handled by the MAC block of
the MQSS. Here, the CRC32 of the Ethernet frame is checked and if it is right, the
MAC block removes it from the Ethernet frame. This one is then passed to the Pre-
classifier Engine (Step 1). At PFE level you can issue these following commands to
retrieve some stats from the MAC block. First let’s list all the MAC blocks
available:

(mx vty)# show mtip-cmac summary
 ID mtip_cmac name FPC PIC Port Chan ASIC Inst ifd (ptr)
--- ---------------------- --- --- ---- ---- ---- ---- ------------------ --------
 4 mtip_cmac.3.0.2 3 0 2 0 0 0 et-3/0/2 eb751850
 5 mtip_cmac.3.0.5 3 0 5 0 0 0 et-3/0/5 eb7528d0
 7 mtip_cmac.3.1.2 3 1 2 0 0 0 et-3/1/2 eb751e50
 8 mtip_cmac.3.1.5 3 1 5 0 0 0 et-3/1/5 eb751f10

Then, based on the ID information that matches your physical port, issue the sec-
ond command:

(mx vty)# show mtip-cmac 4 statistics
Statistics [port:0]

 aFramesTransmittedOK: 1834746125434
 aFramesReceivedOK: 2466155012772
 aFrameCheckSequenceErrors: 5199817945

 46 Chapter 2: MX 5G: Two Powerful ASICs

 aAlignmentErrors: 0
 aPAUSEMACCtrlFramesTransmitted: 0
 aPAUSEMACCtrlFramesReceived: 0
 aFrameTooLongErrors: 0
 aInRangeLengthErrors: 0
 VLANTransmittedOK: 859788549242
 VLANReceivedOK: 2466155012772
 ifOutOctets: 2615973002556
 ifInOctets: 72872523231284
 ifInUcastPkts: 1400030696112
 ifInMulticastPkts: 1079009218538
 ifInBroadcastPkts: 21474836490
 ifInErrors: 5199817945
 ifOutErrors: 0
 ifOutUcastPkts: 803946895624
 ifOutMulticastPkts: 73021516382
 ifOutBroadcastPkts: 68719483156
 etherStatsDropEvents: 0
 etherStatsOctets: 73335806763572
 etherStatsPkts: 2467059863421
 etherStatsJabbers: 0
 etherStatsFragments: 0
 etherStatsUndersizePkts: 0
 etherStatsOversizePkts: 0
 etherStatsPkts64Octets: 21474842780
 etherStatsPkts65to127Octets: 12888338147
 etherStatsPkts128to255Octets: 12884909162
 etherStatsPkts256to511Octets: 12884907842
 etherStatsPkts512to1023Octets: 1375161699747
 etherStatsPkts1024to1518Octets: 1096189627786
 etherStatsPkts1519toMaxOctets: 12884949285
 etherStatsPkts64OctetsTx: 73014654851
 etherStatsPkts65to127OctetsTx: 73021778201
 etherStatsPkts128to255OctetsTx: 12884903817
 etherStatsPkts256to511OctetsTx: 12884908800
 etherStatsPkts512to1023OctetsTx: 799649476582
 etherStatsPkts1024to1518OctetsTx: 12885278779
 etherStatsPkts1519toMaxOctetsTx: 12886501684

(mx vty)#)# show mtip-cmac 4 statistics-err
CMAC Error Statistics [port:0]

 aFrameCheckSequenceErrors: 5199817945
 aAlignmentErrors: 0
 aFrameTooLongErrors: 0
 aInRangeLengthErrors: 0
 ifInErrors: 5199817945
 ifOutErrors: 0
 etherStatsDropEvents: 0
 etherStatsJabbers: 0
 etherStatsUndersizePkts: 0
 etherStatsOversizePkts: 0

 47 Internal View of EA-based Line Card

Next step: the pre-classifier engine does a first macro classification based on the
packet header. It classifies the packets into two internal ingress streams: one CTRL
(aka Medium) stream and one BE (aka Low) stream. The CTRL stream conveys all
packets identified as control plane packets or OAM frames (host or transit) such
as ARP, BGP, ICMP, etc. and the BE stream carries all other types of traffic (transit
for the most part). This pre-classification avoids control plane packet drops when
the PFE (EA) is overloaded: which means the CTRL stream should never be
starved.

In order to collect the pre-classifier statistics you need to issue these sets of com-
mands. First of all, list all the pre-classifier instances currently running on a given
MPC:

(mx vty)# show precl-eng summary
 ID precl_eng name FPC PIC ASIC-ID ASIC-INST Port-Group (ptr)
--- -------------------- ---- --- ------- --------- ---------- --------
 1 MQSS_engine.9.0.60 9 0 60 0 NA 3b421ee0
 2 MQSS_engine.9.0.61 9 0 61 1 NA 3b430b08

Then, once you have identified which pre-classifier engine is attached to your given
ingress physical port, use the second command related to a specific pre-classifier
ID. To identify which pre-classifier is attached to your ingress port you need to re-
fer to the FPC, PIC, and if need be, the ASIC-INST (PFE ID) rows. In this next ex-
ample we want to check the MAC stats for port et-9/0/3, which is attached to FPC
9, PIC 0, and PFE 0 (aka ASIC-INST). So we are attached to pre-classifier 1:

(mx vty)# show precl-eng 1 statistics
 stream Traffic
 port ID Class TX pkts RX pkts Dropped pkts
------ ------- ---------- --------- --------- --------------
 24 1165 RT 0000000000000000 0000000000000000 0000000000000000
 24 1166 CTRL 0000000021495607 0000000021495607 0000000000000000
 24 1167 BE 0000000222685201 0000000222685201 0000000000000000

 25 1213 RT 0000000000000000 0000000000000000 0000000000000000
 25 1214 CTRL 0000000323743195 0000000323743195 0000000000000000
 25 1215 BE 0000076144622343 0000076144622343 0000000000000000

This command displays the statistics for all ports attached to this given pre-classi-
fier engine ID. For each port you’ll see the CRTL stream (also named Medium
stream) and BE stream (also named Low stream) statistics.

NOTE The RT (Real Time) stream is never used.

You can correlate the above stats with the following command that gives you the
assigned MAC port ID for a given physical interface:

(mx vty)# (mx vty)#show precl-eng 1 ifd-details
 IFD stream port eng-bitmap tcam-bitmap primap-index
 =========== ====== ==== ========== =========== ============
 et-9/0/0 24 24 0x0000000f 0x0003 -
 et-9/0/3 25 25 0x000000f0 0x000c -

 48 Chapter 2: MX 5G: Two Powerful ASICs

Figure 2.6 will help you determine the relationship between the last two
commands.

Figure	2.6		 IFD	and	Ingress	Stream	Mapping	for	Pre-classifier

Once pre-classified, the Ethernet frame is sent (Step 2) into the right ingress stream
(Medium/CTRL or Low/BE) attached to the WAN input (WI) block. WI manages
the Ethernet flow control mechanisms and then splits the packets into chunks if
needed. “If needed” means if the packet size is more than 224 bytes. As mentioned
earlier, EA ASIC plays only with small packets. Thus, if the packet size is less than
224Bytes the EA will handle the entire packet. Otherwise, only the first 192 bytes
of the packet will be taken into account and will constitute the packet HEAD (a
kind of packet descriptor for the EA ASIC). The rest of the packet (packet TAIL)
will be stored into the external memory (Step 3). The WI statistics are provided by
the following commands and with the eyes of a support engineer, you should usu-
ally have a look at the oversubscription drop statistics. Indeed, when the EA ASIC
is overloaded the drops might occur at the WI block level. Figure 2.7 shows sample
output. Notice that the MAC Port ID referring to a specific physical port can be
found by correlating with one other command (the pre-classifier engine’s com-
mand mentioned earlier).

NOTE These drops are also reported as interface Input Resource Error (see
below).

 49 Internal View of EA-based Line Card

Figure 2 .7 WI Input Drops Due to ASIC Overloading

Then the packet HEAD is supplied to the Dispatcher (Step 4), which creates a
packet context inside the ASIC and then passes the packet HEAD to the LO block
(Step 5). The LO is actually divided into four LO blocks. The four LO blocks man-
age the output interface toward the LUSS. You can retrieve some interesting statis-
tics for DRD to LO (DRD means Dispatcher ReorDer) interfaces and LO to LUSS
interfaces by issuing these commands:

(mx vty)# show mqss 0 drd stats

DRD statistics

DRD Global Statistics

Counter Name Total Rate per second

lo_pkt_cnt[0] 66311734494 4070
lo_pkt_cnt[1] 66578729162 4042
lo_pkt_cnt[2] 66444444187 4225
lo_pkt_cnt[3] 66442981009 3958
[..]

(mx vty)# show mqss 0 lo stats

 50 Chapter 2: MX 5G: Two Powerful ASICs

LO statistics

--
LO Block Parcel Name Counter Name Total Rate
--
[..] We kept only interesting counters:
0 M2L_Packet Parcels sent to LUSS 14779405183 4157 pps
0 M2L_Packet Parcel bytes sent to LUSS 319077328041 776520 bps
[..]
0 M2L_PacketHead Parcels sent to LUSS 51541997771 24952 pps
0 M2L_PacketHead Parcel bytes sent to LUSS 10720735536368 41520200 bps
[..]
0 Error Parcels Error parcels sent to LUSS 96109340 0 pps

NOTE M2L_Packet means the entire packet sent from MQSS LO to LUSS – this
counter is incrementing when LO processes packets with a size less than 224 bytes.
M2L_PacketHead means packet HEAD sent from MQSS LO to LUSS – this increments
when the size of the packet is more than 224 bytes, and therefore only the packet
HEAD has been kept inside the EA (the first 196 bytes).

Inside the LUSS, the packet or packet HEAD is processed: which means that many
tasks are performed by the several PPEs (Packet Processor Engine) of LUSS, among
others:

 � Packet lookup

 � Ingress classification

 � Ingress filtering, policing

 � Ingress rewriting

 � Multicast tree replication creation

 � Tunnel encap/decap

 � Fabric queue assignment if remote PFE, or WAN queue assigned if local PFE

 � Control plane packet identification

 � Anti-DDoS mechanism

We will cover some of the above-referenced LUSS tasks in more detail in Chapter
3, when we follow a MPLS transit packet and a host packet inside the EA and ZT
PFEs.

Now the packet exits the LUSS and goes back to MQSS where it is received by the
LI block (Step 7). LI is also made of four LI blocks. In parallel, LUSS has provided
information to MQSS such as which fabric queue to use in order to reach the re-
mote PFE (selected after the lookup), the multicast unary tree replication in case of
a multicast packet, or if the packet must be dropped. If needed, the command show
mqss <PFE-ID> li stats gives some similar outputs as the LO one. The packet’s

 51 Internal View of EA-based Line Card

header might be modified by the LUSS, thus the LI re-writes the received packet
(rewrites in case of the entire packet) or packet HEAD (add the HEAD to the
TAIL) into the external memory (Step 8).

The LI passes the packet or packet HEAD to the dispatcher (Step 8). When the dis-
patcher decides the packet is eligible to be sent out, it first asks the drop and stats
block (Step 9) if the packet needs to be dropped or not. If the answer is yes, all the
resources/contexts associated to the packet will be freed. If the drop and stats en-
gine determines that the packet should be forwarded to a remote PFE it notifies the
dispatcher, which then gives the lead to the cell compute block (Step 10). This
block calculates the number of fabric cells required to forward the entire packet
through the fabric and finally forwards the information to the Fabric Scheduler
(Step 11). Inside the fabric scheduler, based on the fabric queue assigned by LUSS
and the fabric CoS configuration, when the enqueued packet or packet HEAD is
now eligible to be sent out, the fabric scheduler retrieves the entire packet (remem-
ber LI has added the HEAD back after the LUSS processing) from the external
memory (Step 12) and sends the entire packet with other internal information in a
proprietary header (provided by LUSS) to the FO block (Step 13).

Before moving to the FO block, let’s do a review of how the fabric queue numbers
are assigned. Each MQSS maintains two separate queues per destination PFE. One
high priority queue and one low priority queue. For your information, the high
priority queue has 97.5% of guaranteed traffic and the low priority queue has
2.5%.

A packet is assigned to a given queue by the LUSS depending on your CoS configu-
ration. Here, after a sample CoS configuration:

door7302@mx2020# show configuration class-of-service
[…]
forwarding-classes {
 class BE queue-num 0 priority low;
 class SILVER queue-num 1 priority high;
 class GOLD queue-num 2 priority high;
 class PREMIUM queue-num 4 priority high;
}

In this sample configuration, all traffic classified into the BE forwarding class will
be assigned to the low priority fabric queues. All other traffic classified into the
SILVER, GOLD, or PREMIUM FC will be conveyed by the high priority fabric
queues. Now we know how fabric queue priority is assigned by configuration. We
can see how the queue number (queue ID) is calculated by the LUSS. The ingress
LUSS, after packet lookup, knows on which egress PFE the packet should be for-
warded to be sent out. Each PFE inside a chassis has got a local PFE ID. The local
ID depends on the type of MPC. Each MPC has a fixed number of PFEs between 1
and 8. The local PFE ID always starts to 0 and increments by 1 for the next PFE of
the MPC. For example, the MPC7e card has two PFEs numbered from 0 to 1
while the MPC11e has eight PFEs numbered from 0 to 7. Based on the local PFE
ID and the MPC slot number, which hosts this PFE, the LUSS can compute the fab-
ric queue number. Figure 2.8 details how the fabric queue number is assigned.

 52 Chapter 2: MX 5G: Two Powerful ASICs

Figure 2 .8 Fabric Queue Number Assignment

Now you know how to find the fabric queue number and priority of any destina-
tion PFE. Let’s move back to the fabric scheduler block of the MQSS. You are now
able to check traffic statistics for the high and low priority queue of a given egress
PFE with the following command. In the example we want to check the two fabric
queues used to reach the PFE 0 of the MPC in slot 11. The number 44 means it is a
destination MPC in slot 11 with the Local PFE ID 0. This is the low priority fabric queue
to reach PFE 0 of MPC in slot 11:

(mx vty)# show mqss 0 sched-fab q-node stats 44

Queue statistics (Queue 0044)

Color Outcome Counter Total Rate
 Name

All Forwarded (Rule) Packets 41687833905 99908 pps
 Bytes 21260794451722 407628536 bps
All TAIL drops Packets 0 0 pps
 Bytes 0 0 bps

 53 Internal View of EA-based Line Card

0 WRED drops Packets 0 0 pps
 Bytes 0 0 bps
1 WRED drops Packets 0 0 pps
 Bytes 0 0 bps
2 WRED drops Packets 0 0 pps
 Bytes 0 0 bps
3 WRED drops Packets 0 0 pps
 Bytes 0 0 bps

Drop structure

[..]
 : Queue Depth: 512 bytes

The 172 means it is a destination MPC in slot 11 with the Local PFE ID 0 plus the
offset of 128. This is the high priority fabric queue to reach PFE 0 of MPC in slot
11:

(mx vty)# show mqss 0 sched-fab q-node stats 172

Queue statistics (Queue 0172)

Color Outcome Counter Total Rate
 Name

All Forwarded (Rule) Packets 3643358325 1002 pps
 Bytes 58297008040 128312 bps
All TAIL drops Packets 0 0 pps
 Bytes 0 0 bps
0 WRED drops Packets 0 0 pps
 Bytes 0 0 bps
1 WRED drops Packets 0 0 pps
 Bytes 0 0 bps
2 WRED drops Packets 0 0 pps
 Bytes 0 0 bps
3 WRED drops Packets 0 0 pps
 Bytes 0 0 bps

Drop structure

[..]
 : Queue Depth: 0

Finally, the FO block (steps 13/14) splits the data (the entire packet with its ap-
pended proprietary header) in fixed sized cells. Then it sends a request over the
fabric targeting the remote PFE to ask it if the packet can be sent. When it is ready
to receive the packet the remote PFE acknowledges by sending back a grant mes-
sage to the source PFE.

NOTE This mechanism of request/grant allows an overloaded remote PFE to
back-press the source PFE. The egress PFE, when overloaded, may throttle the
grant messages and thus trigger packet buffering and, if needed, drops on the

 54 Chapter 2: MX 5G: Two Powerful ASICs

ingress PFE (buffering is done in fabric High / Low priority queues). The DBB is
also used to buffer packets in transit from one PFE to another one. The EA ASIC
offers a buffer of 4 msecs per Fabric queue.

Let’s retrieve some FO statistics by issuing the following command. Just have a
look at the second tab, the Counter Group 1. We will focus on Counter Group 0 in
Chapter 3:

(mx vty)# show mqss 0 fo stats

FO statistics

Counter group 0
[…]
Counter group 1

Set Type Mask Match Total Requests Requests per second Total Grants Grants per second
Total Cells Cells per second

0 Port 0x3ff 0x0 13631861284632 200150 17772996817814 380284
13631861284634 200152
1 Port 0x3ff 0x1 13631861284686 200158 17772996817818 380284
13631861284686 200158
2 Port 0x3ff 0x2 13631861284688 200161 17772996817815 380281
13631861284688 200161
3 Port 0x3ff 0x3 13631861284690 200165 17772996817827 380283
13631861284693 200168
4 Port 0x3ff 0x4 13631861284692 200169 17772996817825 380294
13631861284694 200171
5 Port 0x3ff 0x5 13631861284698 200177 17772996817833 380294
13631861284698 200176
6 Port 0x3ff 0x6 13631861284696 200176 17772996817850 380299
13631861284697 200175
7 Port 0x3ff 0x7 13631861284702 200183 17772996817833 380298
13631861284702 200183
8 Port 0x3ff 0x8 13631861284705 200189 17772996817843 380306
13631861284705 200189
9 Port 0x3ff 0x9 13631861284707 200188 17772996817863 380306
13631861284707 200186
10 Port 0x3ff 0xa 13631861284704 200182 17772996817844 380310
13631861284704 200180
11 Port 0x3ff 0xb 13631861284703 200176 17772996817866 380309
13631861284703 200176
12 Port 0x3ff 0xc 13631861284699 200173 17772996817868 380312
13631861284699 200173
13 Port 0x3ff 0xd 13631861284694 200173 17772996817871 380315
13631861284694 200173
14 Port 0x3ff 0xe 13631861284693 200173 17772996817877 380326
13631861284693 200173
15 Port 0x3ff 0xf 13631861284694 200173 17772996817893 380329
13631861284694 200173
16 Port 0x3ff 0x10 13631861284696 200175 17772996817898 380325
13631861284696 200175
17 Port 0x3ff 0x11 13631861271421 200178 17772996804498 380319
13631861271421 200178
18 Port 0x3ff 0x12 13631861284695 200176 17772996817903 380324

 55 Internal View of EA-based Line Card

13631861284695 200176
19 Port 0x3ff 0x13 13631861271809 200175 17772996804899 380314
13631861271809 200175
20 Port 0x3ff 0x14 13631861272284 200173 17772996805369 380311
13631861272284 200173
21 Port 0x3ff 0x15 13631861284693 200171 17772996817911 380299
13631861284693 200171
22 Port 0x3ff 0x16 13631861284693 200167 17772996817916 380292
13631861284693 200167
23 Port 0x3ff 0x17 13631861284695 200165 17772996817921 380293
13631861284696 200166

Total 327164670794069 4804146 426551923589855 9127307
327164670794078 4804148

In this case, we’re using a MX2020 with 24 (0 to 23) planes:

door7302@mx2020> show chassis fabric plane-location
------------Fabric Plane Locations-------------
Plane 0 Switch Fabric Board 0
Plane 1 Switch Fabric Board 0
Plane 2 Switch Fabric Board 0
Plane 3 Switch Fabric Board 1
Plane 4 Switch Fabric Board 1
Plane 5 Switch Fabric Board 1
Plane 6 Switch Fabric Board 2
Plane 7 Switch Fabric Board 2
Plane 8 Switch Fabric Board 2
Plane 9 Switch Fabric Board 3
Plane 10 Switch Fabric Board 3
Plane 11 Switch Fabric Board 3
Plane 12 Switch Fabric Board 4
Plane 13 Switch Fabric Board 4
Plane 14 Switch Fabric Board 4
Plane 15 Switch Fabric Board 5
Plane 16 Switch Fabric Board 5
Plane 17 Switch Fabric Board 5
Plane 18 Switch Fabric Board 6
Plane 19 Switch Fabric Board 6
Plane 20 Switch Fabric Board 6
Plane 21 Switch Fabric Board 7
Plane 22 Switch Fabric Board 7
Plane 23 Switch Fabric Board 7

So FO statistics show you the number of Request/Grant sent/received per plane. Be
careful, port number (displays by the previous MQSS FO stats command) doesn’t
mean plane number. For instance, Port 0 doesn’t mean Plane 0.

To retrieve which port number is really attached to which plane number you
should use the next command. The command requires two parameters:

 � The fabric board number that hosts the plane. For a MX2020 chassis it’s a
value between 0 and 7. Hereafter, we ask for SFB in slot 6.

 � The local plane ID. It depends on the number of planes hosted by fabric board.
In our case we have three planes per SFB, therefore this value could be 0, 1, or
2. Hereafter we ask for plane 0 (of SFB 6).

 56 Chapter 2: MX 5G: Two Powerful ASICs

The following output shows us that the plane 0 of SFB 6 (absolute plane number
18) is attached to port 5. Thus, the line of statistics prefixes with port 5 of the
show mqss 0 fo stats provides statistics regarding traffic sent to plane 18 (plane 0
of SFB 6):

(mx vty)#(mx vty)# show fabric link-detail 6 0
 PFE# - asic_name - port - tx_chan - rx_chan
===
 0 - EACHIP(0) - 5 - 57 - 12
 1 - EACHIP(1) - 5 - 57 - 12
 2 - EACHIP(2) - 5 - 57 - 12
 3 - EACHIP(3) - 5 - 57 - 12

Egress Packet Flow

The packet has crossed the fabric planes and has reached the egress EA PFE.
Figure 2.9 zooms in on the egress PFE. You will notice XQSS is now involved.

Figure 2 .9 Inside the Egress EA PFE

 57 Internal View of EA-based Line Card

The packet comes from the fabric side, into the FI block of the MQSS (Step 1). The
FI reassembles the packet from the cells and, as the ingress WI did earlier, it either
keeps the entire packet if its size is less than 224 bytes, or keeps only the first 196
bytes (HEAD) and pushes the rest of the packet (TAIL) into the external memory
(Step 2).

Some statistics can be collected from the FI block with the following command. The
statistics below give you the sum of all the FI streams, meaning all traffic coming
from all source PFEs destined to this PFE. We will see how to filter those statistics
for a given source PFE, if needed, in Chapter 3.

(mx vty)# show mqss 0 fi stats

--
Counter Name Total Rate
--
Valid data cells received from FABIO 1955808696468 816019 cps
Valid fabric grants received from FABIO 1955096652530 816001 grants/second
Valid fabric requests received from FABIO 1955808696477 816004 requests/second
Valid fabric requests sent to FO 1955808696477 816004 requests/second
Received cells in input block for enabled streams 1955808695145 816004 cps
Received packets in input block for enabled streams 196123577766 116051 pps
Cells dropped in FI memory interface 9 0 cps
Packets dropped in FI memory interface 3 0 pps
Packets sent out of PSV 196123577779 116051 pps
Error packets sent out of PSV 0 0 pps
--

It is important that FI handles packets into precisely separated streams depending
on the source PFE that has sent the packets. On the FI side each source PFE has two
streams, one high and one low, corresponding to the high and low priority fabric
queues described on the ingress side. The way to calculate the attached FI streams
of a given source PFE is the same as the formula used to calculate the fabric queue
numbers (see Figure 2.8) on the ingress PFE. For instance, the traffic sent by PFE 1
of the MPC in slot 9 will be received by the FI block:

 � Low priority stream: 37 = 4 x 9 + 1

 � High priority stream: 165 = 4 x 9 + 1 + 128

Figure 2.10 shows you the mapping between fabric queues on the ingress side and
fabric streams on the egress side.

 58 Chapter 2: MX 5G: Two Powerful ASICs

Figure 2 .10 Fabric Queue/Stream Mapping

Once handled by the FI, the packet or packet HEAD is sent to the dispatcher (Step 3)
that, per ingress direction, creates a context for the packet and forwards it to one of the
four LO blocks (Step 4). The 5/6 steps are almost the same as those described earlier
when the packet was in the ingress PFE. The LUSS does several tasks such as:

 � Look up the packet to find the forwarding interface to send out the packet.

 � Identify the WAN queue to use based on ingress classification – the forwarding
class assigned on the ingress side has been conveyed into the proprietary header
with the packet, but it can be overridden by the egress PFE.

 � Egress filtering and/or policing.

 � Rewrite some fields of the packet.

 � Add additional headers (dot1q, MPLS).

Then the packet moves back to MQSS (Step 6). You can use commands similar to those
presented for the ingress PFE to retrieve statistics between dispatcher/DRD and LO
(Step 4), between LO and the LUSS (Step 5), or LUSS and the LI block (Step 6):

 59 Internal View of EA-based Line Card

 � show mqss <pfe-id> drd stats

 � show mqss <pfe-id> lo stats

 � show mqss <pfe-id> li stats

The LI block copies the modified packet or packet HEAD to the external memory
and then gives it to the Dispatcher. This one asks the drop and stats engine of the
XQSS block if packet must be dropped or not (Step 8). If not, the dispatcher sends
to the packet HEAD, and when it becomes eligible to be sent out, to the XQSS
block (Step 9).

In the XQSS, the packet descriptor is handled by the WAN schedulers block where
it is enqueued in the right WAN queue assigned earlier by the LUSS. XQSS sup-
ports port and hierarchical queuing.

Let’s take a short break here to present how CoS is implemented by the XQSS
block. XQSS has been designed to support up to five levels of hierarchical schedul-
ers. Each level is actually a scheduler that manages priorities, shaping rates, and
bandwidth allocation. Finally, the last level of scheduler is attached to the WAN
queues. Figure 2.11 depicts this concept.

Figure 2 .11 Five Levels of the CoS Model

 60 Chapter 2: MX 5G: Two Powerful ASICs

On EA line cards currently only four levels are used:

 � A port scheduler CoS model

 � A per-unit scheduler CoS model

 � A two-level hierarchical scheduler CoS model

 � A hierarchical scheduler CoS model

Depending on your CoS configuration, some levels may be unused – so in this case
let’s talk about dummy nodes. Figure 2.12 presents how many levels are involved in
the EA’s XQSS for each previous CoS model.

Figure 2 .12 Supported EA CoS Modes and Levels Mapping

For the port scheduler mode, only the Level 1 node is involved. A maximum of
eight dedicated queues is thus attached to each physical port. This is the default
mode on Junos.

 61 Internal View of EA-based Line Card

For the per-unit scheduler mode, both Level 1 and Level 4 nodes are involved. The
port scheduling parameters are managed by a Level 1 node and one Level 4 sched-
uler node is assigned per interface’s unit. Each interface’s unit has a maximum of
eight queues.

For the two levels of hierarchical scheduler mode, as in the previous example, only
Level 1 (which manages port scheduling parameters) and Level 4 nodes are in-
volved. But here, a Level 4 scheduler manages either an interface’s unit or an inter-
face-set (a group of units). And finally there is also one dedicated Level 4 node for
all remaining units or interface-sets (configuration stanza: output-traffic-control-
profile-remaining). As with the other two modes, each Level 4 node is attached to a
maximum of eight queues.

Finally, the hierarchical scheduler mode involves Level 1, Level 3, and Level 4
nodes. Level 1 still manages port scheduling parameters. In this case, each inter-
face has its own Level 3 node scheduler directly attached to a maximum of eight
queues (Level 4 is unused). Moreover a separate Level 3 node is created for each
interface-set. Each unit of each interface-set is managed by a Level 4 node sched-
uler. This one is attached to eight queues. A dedicated Level 4 node is also created
for the remaining interface’s units of the interface-set. Finally, a garbage Level 3
node is also created for all the remaining interface’s units and interface-sets. This
Level 3 is directly attached to a maximum of eight queues as the Level 4 is a dum-
my node in this case.

As mentioned earlier, the packet is now enqueued into the XQSS. At the PFE level
you can check the WAN queues that are attached to:

 � a given physical port: identified by what we called an IFD.

 � a given interface’s unit: identified by what we called an IFL.

 � or a given interface-set: identified by what we called an IFLSET.

To make things simple, let’s use the default CoS model (port scheduling mode) on
the lab router. Let’s check for a given physical port, therefore, et-9/0/0, how WAN
queues are programmed into the XQSS.

You should first find the IFD index of your egress physical port. For that, issue the
following command. Notice, this command also displays the IFL index of each
unit attached to the physical interface:

door7302@mx2020# show interfaces et-9/0/0 | match index
 Interface index: 278 <<<<< IFD Index
 Logical interface et-9/0/0.0 (Index 606) <<<<< IFL Index

 62 Chapter 2: MX 5G: Two Powerful ASICs

Now issue the next PFE command on the MPC that hosts the physical interface to
retrieve the nodes information:

(mx vty)# show cos halp ifd 278
 rich queueing enabled: 1
 Q chip present: 1
IFD name: et-9/0/0 (Index 278) egress information
 XQSS chip id: 0
 XQSS : chip Scheduler: 0
 XQSS chip L1 index: 5
 XQSS chip dummy L2 index: 1989
 XQSS chip dummy L3 index: 5
 XQSS chip dummy L4 index: 2
 Number of queues: 8
 XQSS chip base Q index: 16

We have now the Level 1 node scheduler index (5) and the XQSS base queue index
(16 means index for queue 0, 17 is the index for queue 1, 18 for queue 2, etc.). With
that information you can first display the scheduler parameters attached to our
physical interface with the following command:

(mx vty)# show xqss 0 sched l1 5 <<< 5 = Level 1 node index retrieved above
L1 node configuration : 5
 state : Configured
 child_l2_nodes : 1
 scheduler_pool : 0
 gh_max_rate : 0
 gm_max_rate : 0
 gl_max_rate : 0
 eh_max_rate : 0
 el_max_rate : 0
 max_rate : 100000000000
 burst_size : 67108864 (adjusted burst_size : 67108864)
 byte_adjust : 22
 cell_mode : FALSE
 min_pkt_adjust : 0

And finally, check a given WAN queue of a given interface. Hereafter the queue 0
(queue index 16):

(mx vty)# show xqss 0 sched queue 16
 Q node configuration : 16
 state : Configured
 ISSU priority : HIGH
 scheduler_pool : 0
 max_rate : 100000000000
 g_rate : 2000000000
 weight : 5
 burst_size : 67108864 (adjusted burst_size : 67108864)
 byte_adjust : 22
 g_priority : GL
 e_priority : EL
 cell_mode : FALSE

 63 Internal View of EA-based Line Card

 tail_drop_rule : 1277
 wred_drop_rule : 4
 ecn_enable : FALSE
 queue_mode : DROP
 stats_enable : TRUE
 scaling profile : 3

The previous commands are provided just for your information, and hopefully
they might be helpful during complex troubleshooting sessions. Remember, classic
CLI commands usually give enough information such as, for CoS interface: show
interface queue <interface-name> egress or show class-of-service interface <inter-
face-name> comprehensive.

At this point there are several interactions between the WAN scheduler and what
we call the Packet Reader, which maintains the list of active streams (Step 10). To
summarize, when the scheduler decides the packet is eligible to be dequeued, the
Packet Reader notifies the cell block (Step 11). It actually provides information to
the cell block about the packet’s chucks. The cell block sends read requests to ex-
ternal memory (Step 12) in order to fetch the content of the entire packet (HEAD
and TAIL). External memory returns the requested data payload to the WO block.

Finally, the WO block sends the entire packet to the MAC block, which computes
and then appends the CRC32 to the Ethernet frame before sending out it. The WO
statistics are available by using the next example command. Just have a look at the
Counter set 0, which gives you the WAN output aggregated statistics (all Ethernet
ports attached to the EA ASIC).. We’ll see in Chapter 3 how to use Counter set 1 to
filter the view on a given port:

(mx vty)# show mqss 0 wo stats

WO statistics

Counter set 0

 Connection number mask : 0x0
 Connection number match : 0x0
 Transmitted packets : 137212310395 (100177 pps)
 Transmitted bytes : 113707212044499 (401766112 bps)
 Transmitted flits : 1254813302266 (600325 flits/sec)

Counter set 1
[…]

We have now finished our trip inside the EA ASIC.

As you will see in the next part of this chapter, there is much that is similar on the
ZT ASICs. But there are also a lot of new PFE commands. Let’s go inside.

 64 Chapter 2: MX 5G: Two Powerful ASICs

Internal View of ZT-based Line Card

ZT is based around three main functional blocks: MQSS, LUSS, and XQSS, much
like the EA ASIC. However, this ASIC is faster than the EA, requests less power,
and embeds more inline features such as inline IPsec support. Finally, one of the
most evolved features of ZT-based MPCs is the software running over the line
card’s CPU: this software has been completely rewritten to offer better perfor-
mance and flexibility. It also provides a new PFE shell which offers a lot of new
interesting commands.

So let’s start by presenting this new software architecture in comparison with the
EA-based MPC, and then we’ll go inside the ZT ASIC to show the differences with
the EA.

Software Architecture

The ZT and EA line cards are both based on the Linux host OS but the Juniper
software on top of this OS is totally different for the ZT.

The MPC11e line card is the first unified line card. It reuses the concepts and soft-
ware architectures of Junos EVO (a complete new generation of Junos not yet
widely deployed on the Juniper portfolio). The MPC10e line card, released before
the MPC11e, is a kind of hybrid card which does not totally include all the new
software enhancements we can find on the MPC11e, but nevertheless it’s evolved
compared to EA Line cards.

NOTE It’s important to mention that all future line cards will be based on EVO
concepts like the MPC11e.

As previously mentioned, on the EA line card all the PFE software components run
on a monolithic 32-bit process: the uKernel. On the ZT line card, these PFE soft-
ware components are split into several concurrent 64-bit processes to leverage
multi-core CPUs (the MPC10/11e runs an 8-core CPU). Figure 2.13 illustrates the
main modules of a ZT line card. As mentioned, the uKernel does the entire job on
the EA, while on the ZT line card it runs a lighter version with less functions. On
the ZT line card the uKernel is renamed platformd because it now manages only
platform-related tasks. Figure 2.13 shows you the main software modules.

 65 Internal View of ZT-based Line Card

Figure	2.13		 Software	Architecture	of	ZT	Line	Card

All the software modules on the ZT line card communicate and interact with each
other. On the ZT, platformd is responsible for bringing up the ASICs, initializing
the hardware components of some others—such as I2C bus, and SERDES inter-
faces—and collecting some hardware statistics. You can interact with the platfor-
md daemon through a shell (like the classic PFE shell attached to uKernel) to
retrieve some PFE statistics or troubleshooting PFE states. Notice that because
platformd doesn’t manage the same elements, like uKernel did, some classic and
well known PFE commands have been removed from the classic PFE shell. But
don’t worry, as there are similar commands available with the new PFE shell pro-
vided by the new software architecture.

All the ASIC management/programing tasks are now done by the CDA module.
CDA stands for Common Driver Architecture – a new generic ASIC driver frame-
work. It is composed of several processes that manage the ZT chip itself and its
three embedded components (MQSS, LUSS, and XQSS). To summarize, CDA is
the interface with the ASICs.

 66 Chapter 2: MX 5G: Two Powerful ASICs

The management module (Mgt.) includes several Linux processes (like syslog) and
Juniper processes (such as an instance of MGD, the same on the RE, that offers us
the new PFE shell). Having MGD embedded in the MPC enables some interesting
elements! You can now take advantage of the MGD’s flexibility for new PFE CLI
commands (such as a pipe match with regex support, or displaying the PFE com-
mand output in JSON or XML formats). Figure 2.14 shows you how to access the
old PFE shell (attached to platformd) by using the .0 channel, the new PFE shell (at-
tached to MGD) or the Linux OS.

Figure 2 .14 Interact with ZT MPC

Okay, let’s move to the next module: the AFT.

The AFT module, which means advance forwarding toolkit, is a new piece of software
that manages forwarding states at the MPC level. It provides flexibility to view, ma-
nipulate, add, remove, and update forwarding elements. It provides the abstraction
layer between the routing/firewalling/QoS configurations and the real forwarding
states that reside inside the ASICs.

For example, AFT handles the FIB updates (through IPC) coming from the RE’s ker-
nel, then it models this routing information as forwarding elements (called AFT
nodes), orchestrates an AFT token topology, and finally it communicates with the
CDA to push these forwarding states into the hardware. Figure 2.15 illustrates this
communication between several modules in a case of routing updates. Later we’ll
provide some PFE commands to interact with the AFT forwarding elements or to
retrieve hardware information from the CDA module.

 67 Internal View of ZT-based Line Card

Figure	2.15	 Inter-module	Communication	for	Route	Updates

In AFT the forwarding state representation is viewed like nodes connected to each
other to form trees (the forwarding paths). AFT provides flexible APIs to manipu-
late nodes and trees. Each node resides in a kind of sandbox and is identified
uniquely by an AFT token ID.

PacketIO is also a new module that comes with the ZT line card. It is responsible
for transmitting and receiving packets to and from the PFE forwarding ASIC with
better performances than on the EA line card. On the ZT line card all the ASICs,
the Linux host OS, and the RE are connected together around an Ethernet switch
hosted on the MPC. In Figure 2.16 you can see how host packets and FIB updates
are handled by the MPC. The packetIO process communicates with ZT ASIC
through virtual interfaces called FP (forwarding path). There is one FP interface
per ZT ASIC – therefore on MPC10e there are 3 FP and on MPC11e 8 FP inter-
faces. On the other side packetIO is connected to the RE (em0) through the CP0
virtual interface. Finally there is also a dedicated interface, ppm0, connected to
another process, PPMan, responsible for generating and handling inline keepalives
of a set of protocols (such as BFD, LACP, etc.). Each virtual FP interface has eight
ingress and eight egress queues to handle host traffic coming from and to the ZT
ASIC. The CP0 virtual interface has only eight egress queues (by default) to for-
ward traffic to RE.

 68 Chapter 2: MX 5G: Two Powerful ASICs

Figure	2.16		 Internal	Physical	Ethernet	Connections		

For FIB updates, the path to reach the ASIC is different. The RE sends updates via
a socket directly to the AFT module. As mentioned earlier, this module converts
these IPC messages into forwarding elements and then notifies the CDA module to
program these elements into the ZT ASIC through the PCIe interface.

NOTE There is also a connection between AFT and packetIO. This is needed in
case packetIO wants to send a resolve request to the RE via AFT and also to get
route information if needed as only AFT know such data.

Okay, we’ve completed our short break to present the software architecture of the
ZT line card. Now let’s go back inside ZT’s internal view.

Hardware Architecture

As mentioned earlier, the ZT ASIC, like the EA ASIC, is composed of three func-
tional blocks:

 � MQSS block: the queuing block

 � LUSS block: the lookup block

 � XQSS block: the rich QoSblock

 69 Internal View of ZT-based Line Card

The hardware architecture is similar to the EA, although note that the memory, its
type, and its placement have been totally redesigned. There are two banks of
memory:

 � A large external memory: This is in charge of storing packets, inline JFlow re-
cords, and etc.

 � A smaller but faster and more flexible internal memory: This is in charge of storing
a part of fabric queue buffer and some other data used by the LUSS block.

Globally, a ZT ASIC offers 75msecs of buffer per physical port and 3.8msecs of
buffer per fabric queue. Figure 2.17 illustrates the functional hardware architec-
ture of the ZT.

Figure	2.17	Functional	Blocks	Inside	the	ZT

 70 Chapter 2: MX 5G: Two Powerful ASICs

Figure 2.17 is very similar to when the EA ASIC was presented earlier in this chap-
ter. You’ll see that there are many similar PFE commands to collect various statis-
tics from the PFE. However, you will also note a number of new commands are
now available. Like all the previous generations of TRIO ASIC, ZT still manipu-
lates three kinds of data: packet HEAD, packet TAIL, and cells (presented in detail
in the EA walkthough).

Ingress Packet Flow

Let’s go inside the ZT MQSS block like we did for the EA. You will notice there
may be some redundant explanations, but the aim is to present the equivalent PFE
commands on the ZT and to avoid switching between EA explanations, described
in previous parts, and the ZT diagrams.

Figure	2.18		 Ingress	Traffic	Inside	the	ZT	MQSS

So far we haven’t directly accessed the MAC statistics on the MPC11e line card
coming from the MAC block. Nevertheless, you can retrieve some interesting Lay-
er 2 statistics with this new PFE command. Notice we are attached to the new PFE
shell. We didn’t use the .0 channel when issuing the start shell pfe network
command:

 71 Internal View of ZT-based Line Card

door7302@mx2020> start shell pfe network fpc11
root@mx2020-fpc11:pfe> show interfaces statistics et-11/0/0
 Traffic Statistics:
 Input Packets : 6802220021 Output Packets : 721154175
 Input Bytes : 3348146303930 Output Bytes : 346124228574
 Input Multicasts : 0 Output Multicasts : 0
 Input Residue Packets : 0 Output Residue Packets : 0

 Traffic Rates:
 Input pps : 0 Output pps : 0
 Input bps : 0 Output bps : 0

 IPv6 statistics:
 Input Packets : 29 Output Packets : 0
 Input Bytes : 1912 Output Bytes : 0

 Errors:
 Input errors : 0 Input framing errors : 0
 Input queue drops : 0 Input runts : 0
 Input giants : 0 Input discards : 0
 Input fifo errors : 0 Input no vc : 0
 Output errors : 0 Collisions : 0
 Carrier transitions : 43 Output fifo errors : 0
 Output discards : 0 Pic link errors : 0

 Host Path Statistics:
 Input Packets : 2004559 Output Packets : 14231160
 Input Bytes : 169134256 Output Bytes : 2856768029

 Host Path Rates:
 Input pps : 0 Output pps : 0
 Input bps : 0 Output bps : 0

 Mac Statistics: Receive Transmit
 Total octets 3470567269495 359547064725
 Total packets 6802223446 721422290
 Unicast packets 5409303618 719843019
 Broadcast packets 313 289
 Multicast packets 1392919515 1578982
 CRC/Align errors 0 0
 FIFO errors 0 0
 MAC control frames 0 0
 MAC pause frames 0 0
 Oversized frames 0
 Jabber frames 0
 Fragment frames 0
 VLAN tagged frames 0
 Code violations 0

 Macsec Statistics:
 Secure Channel transmitted
 Encrypted packets: 0
 Encrypted bytes: 0
 Protected packets: 0
 Protected bytes: 0
 Secure Association transmitted
 Encrypted packets: 0
 Protected packets: 0

 72 Chapter 2: MX 5G: Two Powerful ASICs

 Secure Channel received
 Accepted packets: 0
 Validated bytes: 0
 Decrypted bytes: 0
 Secure Association received
 Accepted packets: 0
 Validated bytes: 0
 Decrypted bytes: 0

 OutputStream: 1092
 StreamNumber: 560
 StreamToken: 34930
 StreamFlags: 0x04 (ESMC)
 Total Packets : 6802223415 Total Bytes : 3443358371535
 Rx0 Packets : 0 Rx0 Bytes : 0
 Rx1 Packets : 48711206 Rx1 Bytes : 12577876459
 Rx2 Packets : 6753512209 Rx2 Bytes : 3430780495076
 Drop0 Packets : 0 Drop0 Bytes : 0
 Drop1 Packets : 0 Drop1 Bytes : 0
 Drop2 Packets : 0 Drop2 Bytes : 0
 Unknown IIF Packets : 0 Unknown IIF Bytes : 0
 Checksum Packets : 0 Checksum Bytes : 0
 Unknown Proto Packets : 351 Unknown Proto Bytes : 38610
 Bad Ucast Mac Packets : 0 Bad Ucast Mac Bytes : 0
 Bad Ucast Mac IPv6 Packets : 0 Bad Ucast Mac IPv6 Bytes : 0
 Bad Smac Packets : 0 Bad Smac Bytes : 0
 In STP Drop Packets : 0 In STP Drop Bytes : 0
 Out STP Drop Packets : 0 Out STP Drop Bytes : 0
 Vlan Check Error Packets : 0 Vlan Check Error Bytes : 0
 Frame errors Packets : 0 Frame errors Bytes : 0
 Bad IPv4 Hdr Packets : 0 Bad IPv4 Hdr Bytes : 0
 Bad IPv4 Len Packets : 0 Bad IPv4 Len Bytes : 0
 Bad IPv6 Hdr Packets : 0 Bad IPv6 Hdr Bytes : 0
 Bad IPv6 Len Packets : 0 Bad IPv6 Len Bytes : 0
 Out MTU Error Packets : 0 Out MTU Error Bytes : 0
 L4 Len Error Packets : 0 L4 Len Error Bytes : 0
 Error Access Ctrl Packets : 0 Error Access Ctrl Bytes : 0

On the MPC10e it’s a little bit different. Although it’s based on the ZT ASIC, re-
member the MPC10e is a kind of hybrid card between two generations – the old
generation based on a monolithic uKernel and the new generation based on Junos
EVO architecture. Thus the MPC10e still has access to some MAC statistics via
next command. As you can see, we use fpc10.0; the .0 channel means we are con-
nected to the old PFE shell attached to the platformd process (also known as the
uKernel):

door7302@mx2020> start shell pfe network fpc10.0
(mx vty)# show ifd xe-10/0/0:0 mac statistics
Statistics

 aFramesTransmittedOK: 5218
 aFramesReceivedOK: 5218
 aFrameCheckSequenceErrors: 0
 aAlignmentErrors: 0
 aPAUSEMACCtrlFramesTransmitted: 0
 aPAUSEMACCtrlFramesReceived: 0

 73 Internal View of ZT-based Line Card

 aFrameTooLongErrors: 0
 aInRangeLengthErrors: 0
 VLANTransmittedOK: 0
 VLANReceivedOK: 0
 ifOutOctets: 1737594
 ifInOctets: 1737594
 ifInUcastPkts: 0
 ifInMulticastPkts: 5218
 ifInBroadcastPkts: 0
 ifInErrors: 0
 ifOutErrors: 0
 ifOutUcastPkts: 0
 ifOutMulticastPkts: 5218
 ifOutBroadcastPkts: 0
 etherStatsDropEvents: 0
 etherStatsOctets: 1737594
 etherStatsPkts: 5218
 etherStatsJabbers: 0
 etherStatsFragments: 0
 etherStatsUndersizePkts: 0
 etherStatsOversizePkts: 0
 etherStatsPkts64Octets: 0
 etherStatsPkts65to127Octets: 0
 etherStatsPkts128to255Octets: 0
 etherStatsPkts256to511Octets: 5218
 etherStatsPkts512to1023Octets: 0
 etherStatsPkts1024to1518Octets: 0
 etherStatsPkts1519toMaxOctets: 0
 etherStatsPkts64OctetsTx: 0
 etherStatsPkts65to127OctetsTx: 0
 etherStatsPkts128to255OctetsTx: 0
 etherStatsPkts256to511OctetsTx: 5218
 etherStatsPkts512to1023OctetsTx: 0
 etherStatsPkts1024to1518OctetsTx: 0
 etherStatsPkts1519toMaxOctetsTx: 0
 aMACControlFramesReceived: 0
 aCBFCPAUSEFramesReceived_0: 0
 aCBFCPAUSEFramesReceived_1: 0
 aCBFCPAUSEFramesReceived_2: 0
 aCBFCPAUSEFramesReceived_3: 0
 aCBFCPAUSEFramesReceived_4: 0
 aCBFCPAUSEFramesReceived_5: 0
 aCBFCPAUSEFramesReceived_6: 0
 aCBFCPAUSEFramesReceived_7: 0
 aCBFCPAUSEFramesTransmitted_0: 0
 aCBFCPAUSEFramesTransmitted_1: 0
 aCBFCPAUSEFramesTransmitted_2: 0
 aCBFCPAUSEFramesTransmitted_3: 0
 aCBFCPAUSEFramesTransmitted_4: 0
 aCBFCPAUSEFramesTransmitted_5: 0
 aCBFCPAUSEFramesTransmitted_6: 0
 aCBFCPAUSEFramesTransmitted_7:

On the ZT, the pre-classifier engine still does a first pre-classification based on the
packet header, and separates the traffic in two different internal streams (CTRL
and BE). Currently there are no pre-classifier statistics retrievable on the ZT-based
line card. Nevertheless, there is an enhancement scheduled for a next release to
add these statistics to be available for the ZT ASIC.

 74 Chapter 2: MX 5G: Two Powerful ASICs

Once pre-classified, the Ethernet frame is sent (Step 2) into the right ingress stream
(Medium/CTRL or Low/BE) attached to the WI block. On the ZT, WI also man-
ages the Ethernet flow control mechanisms and then splits the packets into chunks
if needed (if the packet size is greater than 224 bytes). The TAIL is stored either in
the internal or external memory. The WI command presented for the EA is still
valid. You can, like the EA, check oversubscription drops on ZT with the follow-
ing combination of commands shown in Figure 2.19. In this case we are attached
to platformd (the old PFE shell).

Figure 2 .19 WI Input Drops Due to ASIC Overloading

Next, the packet HEAD is supplied to the dispatcher (Step 4), which creates a
packet context inside the ASIC and then passes the packet HEAD to the LO block
(Step 5). The LO block on the ZT is also divided into four LO blocks. The four LO
blocks manage the output interface toward the LUSS. You can still retrieve inter-
esting statistics for DRD to LO (DRD means dispatcher) interfaces, and LO to
LUSS interfaces, by going to the platformd shell and issuing the same commands
we used for the EA:

door7302@mx2020> start shell pfe network fpc11.0
(mx vty)# show mqss 0 drd stats

DRD statistics

 75 Internal View of ZT-based Line Card

DRD Global Statistics

Counter Name Total Rate per second

lo_pkt_cnt[0] 66311734494 4070
lo_pkt_cnt[1] 66578729162 4042
lo_pkt_cnt[2] 66444444187 4225
lo_pkt_cnt[3] 66442981009 3958
[..]

(mx vty)# show mqss 0 lo stats

LO statistics

--
LO Block Parcel Name Counter Name Total Rate
--
[..] We kept only interesting counters:
0 M2L_Packet Parcels sent to LUSS 14779405183 4157 pps
0 M2L_Packet Parcel bytes sent to LUSS 319077328041 776520 bps
[..]
0 M2L_PacketHead Parcels sent to LUSS 51541997771 24952 pps
0 M2L_PacketHead Parcel bytes sent to LUSS 10720735536368 41520200 bps
[..]
0 Error Parcels Error parcels sent to LUSS 96109340 0 pps

Inside the LUSS packet or packet HEAD things are processed in the same way
we’ve already seen on the EA. The packet exits the LUSS and goes back to the
MQSS where it is received by the LI block (Step 7). LI is also made of four LI
blocks. In parallel, LUSS has provided information such as the fabric queue to
MQSS to use in order to reach the remote PFE (selected after the lookup), and the
multicast unary tree replication in case of a multicast packet or in case the packet
must be dropped. If needed, issue the show mqss <PFE-ID> li stats command in or-
der to retrieve similar outputs of the LO command. The packet’s header might be
modified by the LUSS, thus the LI re-writes the received packet (re-writes in case of
the entire packet) or packet HEAD (appends the HEAD to the TAIL) into the in-
ternal or external memory (Step 8).

The LI gives the packet or packet HEAD to the dispatcher (Step 8). When the Dis-
patcher decides the packet is eligible to be sent out, it first inquires from (Step 9)
the drop and stats block whether the packet needs to be dropped or not. If the an-
swer is yes, all the resources and contexts associated to the packet will be freed. If
the drop and stats engine determines that the packet should be forwarded to a re-
mote PFE it notifies the Dispatcher, which then gives the lead to the cell compute
block (Step 10). This block calculates the number of fabric cells required to for-
ward the entire packet through the fabric and finally forwards the information to
the fabric scheduler (Step 11).

 76 Chapter 2: MX 5G: Two Powerful ASICs

Based on the fabric queue assigned by LUSS and the fabric CoS configuration in-
side the fabric scheduler, when the enqueued packet or packet HEAD is eligible to
be sent out, the fabric scheduler retrieves the entire packet (remember LI has add-
ed back the HEAD after the LUSS processing) from the internal or external memo-
ry (Step 12) and sends the entire packet with additional internal information
(provided by the LUSS) to the FO block (Step 13).

The fabric stream computation on ZT uses the same formula on the EA. Here is a
quick formula reminder:

If the egress Local PFE ID is <= 3:

 � Low Priority Queue Number = (Egress MPC slot Number x 4) + Egress Local
PFE ID

 � High Priority Queue Number = (Egress MPC slot Number x 4) + Egress Local
PFE ID + 128

If the egress Local PFE ID is > 3:

 � Low Priority Queue Number = (Egress MPC slot Number x 4) + (Egress Local
PFE ID – 4) + 256

 � High Priority Queue Number = (Egress MPC slot Number x 4) + (Egress Local
PFE ID – 4) + 384

On the ZT you can also check traffic statistics for the high and low priority queues
of a given egress PFE with the next command sequence. The example checks the
two fabric queues used to reach the PFE 0 of the MPC in slot 9. We are attached to
the old PFE shell (platformd) for these commands. The 36 means it is a destination
MPC in slot 9 with the Local PFE ID 0. This is the low priority fabric queue to reach PFE
0 of MPC in slot 9:

(mx vty)# show mqss 0 sched-fab q-node stats 36

Queue statistics (Queue 0036)

Color Outcome Counter Total Rate
 Name

All Forwarded (Rule) Packets 8543761366 0 pps
 Bytes 4377380549158 0 bps
All TAIL drops Packets 0 0 pps
 Bytes 0 0 bps
0 WRED drops Packets 0 0 pps
 Bytes 0 0 bps
1 WRED drops Packets 0 0 pps
 Bytes 0 0 bps
2 WRED drops Packets 0 0 pps
 Bytes 0 0 bps
3 WRED drops Packets 0 0 pps
 Bytes 0 0 bps
--

 77 Internal View of ZT-based Line Card

Next, the 164 means it is a destination MPC in slot 9 with the Local PFE ID 0 plus
the offset of 128. Here is the High priority fabric queue used to enqueue traffic tar-
geting PFE 0 of MPC in slot 9:

(mx vty)# show mqss 0 sched-fab q-node stats 164

Color Outcome Counter Total Rate
 Name

All Forwarded (Rule) Packets 1915035095 1016 pps
 Bytes 49227552773 208832 bps
All TAIL drops Packets 178 0 pps
 Bytes 2848 0 bps
0 WRED drops Packets 0 0 pps
 Bytes 0 0 bps
1 WRED drops Packets 0 0 pps
 Bytes 0 0 bps
2 WRED drops Packets 0 0 pps
 Bytes 0 0 bps
3 WRED drops Packets 0 0 pps
 Bytes 0 0 bps

Finally the FO splits the data (the entire packet plus a proprietary header append-
ed to the packet that conveys additional internal information computed by the
LUSS) in fixed-sized cells. Then, it sends a request over the fabric targeting the re-
mote PFE to ask it if packets can be sent. The remote PFE acknowledges when it is
ready to receive the packet by sending a grant message back to the source PFE.
You can retrieve some FO statistics by issuing the next command, just have a look
at the second tab - the Counter Group 1:

(mx vty)# show mqss 0 fo stats

FO statistics

Counter group 0
[…]
Counter group 1

--
--
Set Type Mask Match Total Requests Requests per second Total Grants Grants per second
Total Cells Cells per second
--
--
0 Port 0x3ff 0x0 13631861284632 200150 17772996817814 380284
13631861284634 200152
1 Port 0x3ff 0x1 13631861284686 200158 17772996817818 380284
13631861284686 200158
2 Port 0x3ff 0x2 13631861284688 200161 17772996817815 380281
13631861284688 200161
3 Port 0x3ff 0x3 13631861284690 200165 17772996817827 380283
13631861284693 200168

 78 Chapter 2: MX 5G: Two Powerful ASICs

4 Port 0x3ff 0x4 13631861284692 200169 17772996817825 380294 13631861284694
200171
5 Port 0x3ff 0x5 13631861284698 200177 17772996817833 380294 13631861284698
200176
6 Port 0x3ff 0x6 13631861284696 200176 17772996817850 380299 13631861284697
200175
7 Port 0x3ff 0x7 13631861284702 200183 17772996817833 380298 13631861284702
200183
8 Port 0x3ff 0x8 13631861284705 200189 17772996817843 380306 13631861284705
200189
9 Port 0x3ff 0x9 13631861284707 200188 17772996817863 380306 13631861284707
200186
10 Port 0x3ff 0xa 13631861284704 200182 17772996817844 380310
13631861284704 200180
11 Port 0x3ff 0xb 13631861284703 200176 17772996817866 380309
13631861284703 200176
12 Port 0x3ff 0xc 13631861284699 200173 17772996817868 380312
13631861284699 200173
13 Port 0x3ff 0xd 13631861284694 200173 17772996817871 380315
13631861284694 200173
14 Port 0x3ff 0xe 13631861284693 200173 17772996817877 380326
13631861284693 200173
15 Port 0x3ff 0xf 13631861284694 200173 17772996817893 380329
13631861284694 200173
16 Port 0x3ff 0x10 13631861284696 200175 17772996817898 380325
13631861284696 200175
17 Port 0x3ff 0x11 13631861271421 200178 17772996804498 380319
13631861271421 200178
18 Port 0x3ff 0x12 13631861284695 200176 17772996817903 380324
13631861284695 200176
19 Port 0x3ff 0x13 13631861271809 200175 17772996804899 380314
13631861271809 200175
20 Port 0x3ff 0x14 13631861272284 200173 17772996805369 380311
13631861272284 200173
21 Port 0x3ff 0x15 13631861284693 200171 17772996817911 380299
13631861284693 200171
22 Port 0x3ff 0x16 13631861284693 200167 17772996817916 380292
13631861284693 200167
23 Port 0x3ff 0x17 13631861284695 200165 17772996817921 380293
13631861284696 200166

Total 327164670794069 4804146 42655192358985 9127307 327164670794078
4804148

Remember, in our case we’re using a MX2020 with 24 (0 to 23) planes, this is why
the FO statistics show, for the 24 planes, the number of Request/Grant sent/re-
ceived per plane. Like on the EA, the port number is not a direct mapping to the
plane number so you should issue the next command. It requires the FPC slot
number and the local PFE ID. In this next case for the FO statistics of FPC 18 PFE
1, the line prefix with 2 Ports provides statistics of Plane 14, the line with 4 Port
with the statistics of Plane 12 , and so on:

mx2020-fpc18:pfe> show fabric fo-plane-map fpc 18 pfe 1
FO Port : Plane Number
 2 : 14
 4 : 12
 5 : 13
 8 : 20
[…]

 79 Internal View of ZT-based Line Card

Egress Packet Flow

So the packet has crossed the fabric planes and has reached the egress ZT PFE. Fig-
ure 2.20 zooms in on the egress PFE. You can see that this diagram is very close to
the EA one. There is, however, internal memory only present on the ZT. You can
also see that the XQSS is now involved on the egress side.

Figure 2 .20 Inside the Egress ZT PFE

The packet enters from the fabric side into the FI block of the MQSS (Step 1).
Some statistics can be collected from the ZT’s FI block using the next command.
The statistics give you the sum of all the FI streams, meaning all traffic coming
from all source PFEs destined to this PFE. You’ll see in Chapter 3 how to filter
those statistics for a given source PFE.

 80 Chapter 2: MX 5G: Two Powerful ASICs

(mx vty)# show mqss 0 fi stats

--
Counter Name Total Rate
--
Valid data cells received from FABIO 273519730395 24207 cps
Valid fabric grants received from FABIO 121395399826 24201 grants/second
Valid fabric requests received from FABIO 273519730395 24207 requests/second
Valid fabric requests sent to FO 273519730395 24207 requests/second
Received cells in input block for enabled streams 273519689042 24207 cps
Received packets in input block for enabled streams 70017562934 24073 pps
Cells dropped in FI memory interface 5 0 cps
Packets dropped in FI memory interface 1 0 pps
Packets sent out of PSV 70017562949 24073 pps
Error packets sent out of PSV 0 0 pps
--

Remember, on the FI side each source PFE has two input streams: one high stream
and one low stream corresponding to the high and low priority fabric queues on
the ingress side. The way to calculate the FI streams of a given source PFE is the
same as the formula used to calculate the ingress fabric queues.

Once handled by the FI, the packet or packet HEAD is sent to the Dispatcher (Step
3) that, per ingress direction, creates a context for the packet and forwards it to
one of the four LO blocks (Step 4). Steps 5 and 6 are almost the same as the ones
described earlier when the packet was in the ingress PFE. The LUSS does several
tasks such as identifying the WAN ouput queue to use based on the ingress clas-
sification. Then the packet moves back to the MQSS (Step 6). You can use similar
commands presented for the ingress PFE to retrieve statistics between Dispatcher/
DRD and LO (Step 4), between LO and the LUSS (Step 5), or LUSS and the LI
block (Step 6):

 � show mqss <PFE-ID> drd stats

 � show mqss <PFE-ID> lo stats

 � show mqss <PFE-ID> li stats

The LI block copies the modified packet or packet HEAD to internal or external
memory and then gives it to the dispatcher who asks the drop and stats engine of
the XQSS block if the packet must be dropped or not (Step 8). If not, the dispatch-
er sends the packet, when eligible to be sent out, to the XQSS block (Step 9).

In the XQSS, the packet HEAD is handled by the WAN schedulers block where it
is enqueued in the right WAN queue assigned earlier by the LUSS. The XQSS sup-
ports port and hierarchical queuing. The ZT ASIC also supports the five levels of
CoS model. Figure 2.21 reminds you how the CoS modes are modeled inside the
ZT ASIC.

 81 Internal View of ZT-based Line Card

Figure 2 .21 Supported ZT CoS Modes and Levels Mapping

As mentioned earlier, the packet is now enqueued in the XQSS. All the PFE CoS
statistics have been moved to the new PFE shell (the show cos halp on platformd
(uKernel) doesn’t exist anymore). You should first find the IFD index of your
egress physical port. For that issue the following command:

door7302@mx2020# show interfaces et-11/0/0 | match index
 Interface index: 237 <<<<< IFD Index

Now issue the following new PFE command on the MPC that hosts the physical
interface to retrieve the AFT token ID attached to the CoS configuration of your
given interface:

door7302@mx2020> start shell pfe network fpc11
root@mx2020-fpc11:pfe> show class-of-service interface scheduler hierarchy index 237
Interface Schedulers:
 Name Type Index Level Node-Token Shaping-Rate
 et-11/0/0 IFD 237 1 34939 100000000000

As mentioned earlier, on the ZT line card all is modeled as a forwarding element
identified by an AFT Token ID. This is also the case for the CoS parameters. To
resolve a specific Token ID, use this specific command:

 82 Chapter 2: MX 5G: Two Powerful ASICs

door7302@mx2020> start shell pfe network fpc11
root@ntdib999-fpc11:pfe> show sandbox token 34939
AftNode : AftCosSched token:34939 group:0 nodeMask:0x1
DebugTxt:NA
ParentToken:NA
SchedMapToken:29976742
StreamToken:34930
MaxLevels:1
Level:0
Enable:1
SchedMode:Nominal
OverheadAcct:24
dbbTimeU:0.00 seconds
GlobalBaseId:0
SchedNodeType:2
Node Index:237
Node Name:et-11/0/0
Parent Name:
Interface Rate:100.00Gbps
DelayBufferRate:100.00Gbps

Table: CoS Scheduler AFT Node

 Rate | Priority | Rate | Burst |
 Type | Group | (bps) | Size (B}|
----------+-----------+---------+---------+
Guaranteed| Nominal| 100.0G| 32.8K|
----------+-----------+---------+---------+
 Excess| Nominal| 100.0G| 1.0|
 Excess| StrictHigh| 100.0G| 1.0|
 Excess| High| 100.0G| 1.0|
 Excess| Med High| 100.0G| 1.0|
 Excess| Med Low| 100.0G| 1.0|
 Excess| Low| 100.0G| 1.0|
----------+-----------+---------+---------+
 Maximum| Nominal| 100.0G| 1.2G|
 Maximum| StrictHigh| 0.0| 0.0|
 Maximum| High| 0.0| 0.0|
 Maximum| Med High| 0.0| 0.0|
 Maximum| Med Low| 0.0| 0.0|
 Maximum| Low| 0.0| 0.0|

JnhHandle : JnhHandleCosSchedNode Jnh:0x0 PfeInst:0 Paddr:0x0 Vaddr:0x0

CoS Scheduler Node:

 PFE Instance : 0
 L1 Index : 7
 L2 Index : 7
 L3 Index : 7
 L4 Index : 8
Enhanced Priority Mode : 0
Table: Queue Configuration

 83 Internal View of ZT-based Line Card

--

 Index | Shaping-Rate | Transmit-Rate | Burst | Weight | G-Priority | E-Priority | Tail-Rule | WRED-Rule |

--------+--------------+---------------+--------+--------+------------+------------+-----------+-----------+

 64 | 100.0G | 2.0G | 1.2G | 5 | GL | EL | 1278 | 0 |

 65 | 100.0G | 6.0G | 1.2G | 15 | GL | EL | 1255 | 0 |

 66 | 100.0G | 32.0G | 1.2G | 80 | GL | EL | 1255 | 0 |

 67 | 100.0G | 0.0 | 1.2G | 1 | GH | EH | 1087 | 0 |

 68 | 100.0G | 50.0G | 1.2G | 50 | GH | EH | 1278 | 0 |

 69 | 100.0G | 10.0G | 1.2G | 50 | GM | EH | 1087 | 0 |

 70 | 100.0G | 0.0 | 1.2G | 1 | GL | EL | 279 | 0 |

 71 | 100.0G | 0.0 | 1.2G | 1 | GL | EL | 279 | 0 |

--------+--------------+---------------+--------+--------+------------+------------+-----------+-----------+

Queue Statistics:

 PFE Instance : 0

 Transmitted Dropped

 Bytes Packets Bytes Packets

 Queue:0 370666928769(0 bps) 704331542(0 pps) 0(0 bps) 0(0

pps)

 Queue:1 0(0 bps) 0(0 pps) 0(0 bps) 0(0 pps)

 Queue:2 0(0 bps) 0(0 pps) 0(0 bps) 0(0 pps)

 Queue:3 2844662397(0 bps) 11089454(0 pps) 0(0 bps) 0(0

pps)

 Queue:4 0(0 bps) 0(0 pps) 0(0 bps) 0(0 pps)

 Queue:5 629934723(0 bps) 6313366(0 pps) 0(0 bps) 0(0

pps)

 Queue:6 0(0 bps) 0(0 pps) 0(0 bps) 0(0 pps)

 Queue:7 0(0 bps) 0(0 pps) 0(0 bps) 0(0 pps)

Previous nodes count: 3

Next nodes count : 2

Entries count : 0

You can also retrieve the per queue statistics of a given physical port at the PFE
level by issuing this command:

door7302@mx2020> start shell pfe network fpc11
mx2020-fpc11:pfe> show class-of-service interface queue-stats index 237
Physical interface : et-11/0/0 (Interface index: 237, Egress queues: 8)
Queue: 0
 Queued Packets : 704331691 0 pps
 Queued Bytes : 370666941285 0 bps
 Transmitted Packet : 704331691 0 pps
 Transmitted Bytes : 370666941285 0 bps
 Tail-dropped Packets : 0 0 pps
 RL-dropped Packets : 0 0 pps
 RL-dropped Bytes : 0 0 bps
 RED-dropped Packets : 0 0 pps
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps
 RED-dropped Bytes : 0 0 bps
 Low : 0 0 bps
 Medium-low : 0 0 bps
 Medium-high : 0 0 bps

 84 Chapter 2: MX 5G: Two Powerful ASICs

 High : 0 0 bps
 Queue-depth bytes :
 Average : 0
 Current : 0
 Peak : 1518
 Maximum : 316669952show mqss 0 wo stats

WO statistics

At this point there are several interactions between the WAN scheduler and what
we called the Packet Reader that maintain the list of active streams (Step 10). To
summarize, when the WAN scheduler decides the packet is eligible to be dequeued,
the Packet Reader notifies the cell block (Step 11). It actually provides information
to the cell block about the packet’s chucks. The cell block sends Read requests to
external or internal memory (Step 12) in order to fetch the content of the entire
packet (HEAD and TAIL). External or internal memory returns the requested data
payload to the WO block.

Finally the WO block sends the entire packet to the MAC block, which computes
and then appends the CRC32 to the Ethernet frame before sending it out.

The WO statistics are available by using the next command. Just have a look at the
Counter set 0, which gives you the WAN output aggregated statistics (all Ethernet
ports attached to the EA ASIC). We’ll see in the Chapter 3 how to use Counter set 1
to filter the view on a given port:

door7302@mx2020> start shell pfe network fpc11.0
(mx vty)# show mqss 0 wo stats

WO statistics

Counter set 0

 Connection number mask : 0x0
 Connection number match : 0x0
 Transmitted packets : 137212310395 (100177 pps)
 Transmitted bytes : 113707212044499 (401766112 bps)
 Transmitted flits : 1254813302266 (600325 flits/sec)

Counter set 1
[…]

This last command concludes Chapter 2. You need most of the commands pre-
sented here in Chapter 3. Indeed, Chapter 3 takes two specific use cases to illus-
trate how to troubleshoot the EA or the ZT PFEs.

This chapter reviews and extends what was presented in Chapter 2. It uses two
simple examples of following traffic to do that:

 � The first is MPLS transit traffic.

 � The second is a simple OAM traffic: our classic friend, a ping echo/reply.

During this deep dive we refer to the Local PFE ID/index and the Global PFE ID/
index. As mentioned previously, the Local PFE ID is the local index assigned, on a
given MPC, to the PFEs. This Local PFE ID is a number between 0 and 7 depend-
ing on the number of PFEs in the MPC.

The global PFE ID/index is computed as:

 � MPC slot number * 4 + Local PFE ID (when Local ID is <= 3)

 � 80 + MPC slot number * 4 + Local PFE ID (when Local ID is > 3)

For example, our MPC11e is installed in slot 11 with eight PFEs:

 � The Local PFE ID are assigned from 0 to 7

 � The Global PFE ID for local PFEs 0 to 3 are: 44 (Slot 11 * 4 + Local ID (0)), 45,
46, and 47

 � The Global PFE ID for local PFEs 4 to 7 are: 124 (80 + Slot 11 * 4 + Local ID
(0)), 125, 126, and 127

Chapter 3

Follow the Packets

 86 Chapter 3: Follow the Packets

One last point to mention: just remember that when we issue the start shell pfe
network fpcX command for the ZT ASIC we will be attached to the new PFE shell,
the one managed by MGD. When we issue the other start shell pfe network fpcX.0
command we will be connecting to the old PFE shell, managed by platformd also
known as uKernel on the EA ASIC.

Okay, now we’re ready to begin. Let’s start with following MPLS traffic.

MPLS in Transit in the EA and ZT

Figure 3.1 illustrates the network topology we’ll use throughout this section. As
observed, it’s a very simple topology with three routers involved: mx1, mx2, mx3.
We will focus on mx2, a MX2020, with two line cards, one a MPC9e and one a
MPC11e. The physical port et-9/0/0 is attached to MPC9e in slot 9 and the et-
11/0/0 to the MPC11e in slot 11. Junos 20.1 is on all routers.

Figure 3 .1 Simple MPLS Network Topology

Both interfaces have ISIS and MPLS LDP protocols enabled.

A question you may have is: Why LDP and not SR MPLS?

We preferred using LDP in order to have a SWAP of labels with two distinct val-
ues. Usually the SWAP still occurs with SR MPLS and global range, but with the
same label value. It will be easier to check where the SWAP occurs inside the PFEs
with LDP (but it would be exactly the same with RSVP or SR MPLS).

There are two unidirectional streams configured. Each stream has a fixed through-
put: 100Kpps. The first one enters in an EA ASIC (MPC9e) and is forwarded to a
ZT ASIC (MPC11e). The second one is the reverse: coming from the ZT and des-
tined to the EA ASIC. At each step we’ll track both streams to show you PFE com-
mands on both ASICs. Sometimes the command will be the same as was seen in
Chapter 2, and sometimes not.

 87 MPLS in Transit in the EA and ZT

First, let’s go inside the mpls.0 routing table to track pure MPLS transit flows:

door7302@mx2020> show route table mpls.0
mpls.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

2223 *[LDP/9] 00:00:46, metric 1
 > to 192.168.1.2 via et-9/0/0.0, Swap 339376
2221 *[LDP/9] 00:00:15, metric 1
 > to 192.168.2.2 via et-11/0/0.0, Swap 299792

As shown above, this is as simple as it gets! There are only two entries: one for each
stream. The flow 1 labeled with 2221 is received by et-9/0/0.0. The label is swapped
to 299792 and forwarded to et-11/0/0.0. The flow 2 labeled with 2223 is received
by et-11/0/0.0 and forwarded to et-9/0/0.0 after the label is swapped for 339376.
You can use the same command except with the detail option and have a look at the
next-hop index to retrieve the value, which we will need later:

door7302@mx2020> show route table mpls.0 detail | match "entry|index"
2223 (1 entry, 1 announced)
 Next hop type: Router, Next hop index: 543
2221 (1 entry, 1 announced)
 Next hop type: Router, Next hop index: 550

The MPLS forwarding table gives us the same information:

door7302@mx2020> show route forwarding-table table default family mpls
Routing table: default.mpls
MPLS:
Destination Type RtRef Next hop Type Index NhRef Netif
2223 user 0 192.168.1.2 Swap 339376 543 2 et-9/0/0.0
2221 user 0 192.168.2.2 Swap 299792 550 2 et-11/0/0.0

Keep in mind this LFIB view is the LFIB from the point of view of the RE, more pre-
cisely, from the RE RPD’s module named KRT(KRT is the module within RPD
which is the interface to the Kernel). This means it is the LFIB’s view before pushing
it to the PFE. You can also retrieve similar information by using the hidden CLI KRT
command, which gives you the translation between a next-hop ID and its related
data: show krt next-hop <NH-TYPE> index <NH-INDEX>. The NH-TYPE is the “router”
whose information was provided by the previous show route table mpls.0 detail:

door7302@mx2020> show krt next-hop router index 543
 Next-hop type: Router
 Index: 543
 Address: 0x5214f1c
 Reference count 2
 Kernel Table Id 0
 Next hop: 192.168.1.2 via et-9/0/0.0
 Label operation: Swap 339376
 Load balance label: Label 339376: None;
 Label element ptr: 0x4fc2b40
 Label parent element ptr: 0x0
 Label element references: 1
 Label element child references: 0
 Label element lsp id: 0
 Session Id: 0x176c
 Flags: explicit-add on-nhid-tree

 88 Chapter 3: Follow the Packets

The information is pushed via IPC messages to the MPCs, where they are convert-
ed into FIB states and finally installed into ASIC’s memory. As mentioned earlier,
you can use the RE shell command rtsockmon to simulate an MPC connection and
see the RIB to FIB activity. Let’s do it and simulate a network event: a simple flap
of et-9/0/0:

door7302@mx2020> start shell
% su
Password:
mx2020:/var/home/lab # rtsockmon –t
[…]
nexthop delete inet addr=192.168.1.2 nh=ucst flags=0x85 uflags=0x0 idx=543 ifidx=396 filteridx=0
tid=0 lr_id=0 infotype = 0 fwdnhidx = 0 fwdnhtype = 0 nh_adders=0x0000000000000000 subnh=542 MPLS
Data: opcode=5, flags=0x0, selfid=805311035, parentid=0, mtu=0, lbl_count=1, policer_count=0
label[0]: label=339376, proto=3, lb_attr=None
nexthop add inet addr=192.168.1.2 nh=ucst flags=0x85 uflags=0x0 idx=543 ifidx=396 filteridx=0
tid=0 lr_id=0 infotype = 0 fwdnhidx = 0 fwdnhtype = 0 subnh=542 MPLS Data: opcode=5, flags=0x0,
selfid=805311037, parentid=0, mtu=0, lbl_count=1, policer_count=0 label[0]: label=339376, proto=3,
lb_attr=None
[…]

You can see that next-hop ID 543 was first deleted when the interface et-9/0/0
went down and then added back when the link came back up. You can see all the
KRT information pushed to MPCs due to network events.

Don’t forget to use this awesome command that can help you in case of ECMP or
LAG to find the right forwarding interface. Based on well-known IP stack fields, or
a packet hexa dump, the next command specifies which output interface will be
used to forward a given stream (the jsim PFE command is no longer necessary to
achieve that):

door7302@mx2020> show forwarding-options load-balance ?
Possible completions:
 destination-address Destination IP address
 destination-port Destination port
 family Layer 3 family
 ingress-interface Ingress Logical Interface
 packet-dump Raw packet dump in hex without '0x'
 source-address Source IP address
 source-port Source port
 tos Type of Service field
 transport-protocol Transport layer protocol

Now it’s time to go inside the PFE!

The aim is to track both flow (flow 1 and flow 2) inside the EA and ZT. At each
step we’ll try to provide the PFE commands used on both ASICs. Remember, flow
1 comes in from mx2 with the label 2221 and is handled by EA ASIC, while flow 2
comes in from mx2 with label 2223 and is handled by a ZT ASIC.

 89 MPLS in Transit in the EA and ZT

MPLS Packet on the Ingress PFE

Before tracking the MPLS transit packets let’s first check some routing stuff at the
PFE level, meaning the MPLS FIB, this time with the PFE point of view. On the EA
ASIC you can use this next PFE command, which is very similar to what’s in classic
CLI operational mode:

(mx vty)# show route mpls table default
MPLS Route Table 0, default.0, 0x800c8:
Destination Type ID NhRef
------------- ----- ----- -----
default Discard 50 1
2221 Unicast 550 1 et-11/0/0.0
2223 Unicast 543 1 et-9/0/0.0

On the ZT the equivalent command is:

door7302@mx2020> start shell pfe network fpc11
mx2020-fpc11:pfe> show route proto mpls name default

Index Destination NH Id NH Type NH Token
----- -------------------------------- --------- --------- ---------
0 default 50 Discard 1477
0 2221 550 Unicast 1453283
0 2223 543 Unicast 1453327

Take a few moments to ponder the power to have MGD at the PFE level on ZT-
based line cards.

You can actually display the PFE command outputs in JSON or XML like we did,
for a long time, at the CLI level:

mx2020-fpc11:pfe> show route proto mpls name default | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/20.1I0/junos">
 <route-entry-information junos:style="brief" >
[…]
 <entries>
 <proto>mpls</proto>
 <index>0</index>
 <prefix></prefix>
 <destination>2221</destination>
 <length>20</length>
 <nexthop>550</nexthop>
 <nexthop-type>Unicast</nexthop-type>
 <nhToken>1453283</nhToken>
 </entries>
[…]
 </route-entry-information>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

So cool, isn’t it?

 90 Chapter 3: Follow the Packets

Now, if you want more detail about a specific next hop installed in PFE on the EA
line card, we can issue the next command. Suppose you are attached to the ingress
PFE where the packets come in. Therefore, on the EA line card (MPC in slot 9) you
want to check in detail the entry about the next-hop index 550. This one is at-
tached to the forwarding entry with the label value equal to 2221. Remember, this
is flow 1 (in Figure 3.1), which is received by the MPC in slot 9 and forwarded to
MPC in slot 11.

Let’s issue the command for next-hop index 550 (the output has been truncated
for the sake of this book):

 (mx vty)# show nhdb id 550 extensive
 ID Type Interface Next Hop Addr Protocol Encap MTU Flags PFE
internal Flags
----- -------- ------------- --------------- ---------- ------------ ---- 550 Unicast
et-11/0/0.0 - MPLS Ethernet 1488
[…]
Topo-link:
[pfe-0]: 0x11c000000002262c
 ModifyNH: Subcode=SetNH-Token(7),Desc=0x0,Data=0x2262c,NextNH=0
 (pfeDest:44, TokenIdMode:0/ , VC memberId:0, token:0x226/550)
[…]

What can we see? The egress physical port et-11/0/0, which is a port that is not
attached to local PFE. It means that packets entering with label 2221 should be
forwarded through the fabric to another PFE. You can see the topology table gives
us the selected egress PFE. In our case the PFE destination (aka pfeDest) is 44
(11*4+0). This is the global PFE index: the egress port is attached to PFE 0 of
MPC in slot 11.

There is a similar PFE command on the ZT. Next, let’s check the detail about next-
hop index 543 attached to incoming label 2223:

door7302@mx2020> start shell pfe network fpc11
mx2020-fpc11:pfe> show nh detail index 543
Nexthop Info:

NH Index : 543
NH Type : Unicast
NH Proto : tag
NH Flags : 0x1
IF Name : et-9/0/0.0
Prefix : 789120
NH Token Id : 1453327
NH Route Table Id : 0
Sgid : 0
[…]
Platform Info

 FabricToken: 18446744073709551615
 EgressToken: 18446744073709551615
 IngressFeatures:

 91 MPLS in Transit in the EA and ZT

Container token: 1453327
#1 SetNhToken tokens:
 Mask : 0x0
 [SetNhToken:1453326]
[…]

You need a second command to display the content of a specific AFT token. In our
example, we want to display the information about the SetNhToken 1453326. So use
the helpful command here:

door7302@mx2020> start shell pfe network fpc11
mx2020-fpc11:pfe> show sandbox token 1453326
AftNode : AftTrioFwd token:1453326 group:0 nodeMask:0xffffffffffffffff nextHopId:543 coreNumber:36
nexthopIdMode:0 linkIdValid:0 childLinkId:0 isDefaultLink:0 cwPresent:0
JnhHandle : JnhHandleFwd Jnh:0x11c0000000021f24 PfeInst:ff Paddr:0x0 Vaddr:0x0 AppType:NH
JNH decode:
ModifyNH: Subcode=SetNH-Token(7),Desc=0x0,Data=0x21f24,NextNH=0
 (pfeDest:36, TokenIdMode:0/ , VC memberId:0, token:0x21f/543)
[…]

Now you can see the selected egress PFE (pfeDest), which is for label 2223 the glob-
al PFE index 36 (actually this is local PFE 0 of MPC in slot 9: 9*4+0).

Great! We have checked the LFIB consistency on each ingress MPC and for both
flows. Now, let’s track the packets themselves.

In Chapter 2 we saw that incoming packets are first handled by the WI block (we
didn’t check their pre-classification engine stats). As already mentioned, by default
WI statistics shows aggregated stats – the input traffic sum of all physical ports at-
tached to the WI. On the EA line card the command is:

(mx vty)# show mqss 0 wi stats
WI statistics

[...]
Total incoming statistics

--
Counter Name Total Rate
--
Received Packets 23682709482 500044 pps
Received Bytes 12027207901532 2008145200 bps
Flushed Packets 0 0 pps
--
[...]
Tracked stream statistics

--
Track Stream Stream Total Packets Packets Rate Total Bytes Bytes Rate Total
EOPE EOPE Rate
 Mask Match (pps) (bps) (pps)

--
0 0xff 0x8f 14535685879 500037 7413198556434 408151104 0
0

 92 Chapter 3: Follow the Packets

[...]
47 0x0 0x0 23682709462 500045 12027207891332 408149280 0
0

And for ZT:

door7302@mx2020> start shell pfe network fpc11.0
(mx vty)# show mqss 0 wi stats

WI statistics

[...]
Total incoming statistics

--
Counter Name Total Rate
--
Received Packets 117422462371 299977 pps
Received Bytes 59950705219198 1211095920 bps
Flushed Packets 0 0 pps
--
[...]
Tracked stream statistics

--

Track Stream Stream Total Packets Packets Rate Total Bytes Bytes Rate Total
EOPE EOPE Rate
 Mask Match (pps) (bps) (pps)
--

0 0x0 0x0 117422462332 299975 59950705199152 411087704 0
0
[...]
49 0x0 0x0 117422462356 299975 59950705211488 411087704 0
0

If you have a look at Total Incoming Statistics, you should observe the total packet
received by the WI block. At the end of the output you can see a specific table
called Tracked Stream Statistics. These specific counters (47 for EA, and 49 for ZT)
are configurable. By default they also count all packets. It is possible to temporar-
ily configure a specific counter to count packets received on a given port attached
to the WI block of a given PFE.

To do that you should first find the incoming stream number attached to your in-
gress interface, which conveys the traffic. For that, issue this command on the EA
(the last 0 at the end means ingress direction):

(mx vty)# show mqss 0 ifd list 0
Ingress IFD list

IFD name IFD index PHY stream LUSS SID Traffic Class

et-9/0/0 439 1165 560 0 (High)
et-9/0/0 439 1166 560 1 (Medium)

 93 MPLS in Transit in the EA and ZT

et-9/0/0 439 1167 560 2 (Low)
et-9/0/3 455 1213 764 0 (High)
et-9/0/3 455 1214 764 1 (Medium)
et-9/0/3 455 1215 764 2 (Low)
et-9/0/0 439 1278 560 3 (Drop)
et-9/0/3 455 1278 764 3 (Drop)

And on ZT the command is the same as before:

door7302@mx2020> start shell pfe network fpc11.0
(mx vty)# show mqss 0 ifd list 0
Ingress IFD list

IFD name IFD index PHY stream LUSS SID Traffic Class

et-11/0/0 535 1165 560 0 (High)
et-11/0/0 535 1166 560 1 (Medium)
et-11/0/0 535 1167 560 2 (Low)
et-11/0/1 536 1197 696 0 (High)
et-11/0/1 536 1198 696 1 (Medium)
et-11/0/1 536 1199 696 2 (Low)
et-11/0/2 537 1213 764 0 (High)
et-11/0/2 537 1214 764 1 (Medium)
et-11/0/2 537 1215 764 2 (Low)
et-11/0/3 538 1229 832 0 (High)
et-11/0/3 538 1230 832 1 (Medium)
et-11/0/3 538 1231 832 2 (Low)
et-11/0/4 539 1245 900 0 (High)
et-11/0/4 539 1246 900 1 (Medium)
et-11/0/4 539 1247 900 2 (Low)
et-11/0/3 538 1275 832 3 (Drop)
et-11/0/4 539 1275 900 3 (Drop)
et-11/0/1 536 1276 696 3 (Drop)
et-11/0/2 537 1276 764 3 (Drop)
et-11/0/0 535 1277 560 3 (Drop)

Remember, only low and medium streams are used. The pre-classifier of the EA or
ZT has assigned the stream low to our MPLS flows because they have not been
identified as control plane or OAM traffic but rather as transit traffic. Therefore
the WI stream ID is 1167 for both incoming interfaces.

Now to configure the WI counter. For EA use the following command:

(mx vty)# test mqss 0 wi stats stream 0 0 143

What does 0 0 143 mean?

The first 0 means WAN port group 0 – it’s always 0. The next 0 is the counter ID.
As noted, on the EA you have 48 counters available (0 to 47) and for ZT you have
50 counters (0 to 49). Here we use the counter index 0 for our stats. Finally, the
last number is the incoming stream connection. This value is derived from the in-
coming stream number (retrieved previously – for us it was 1167) from which we
subtract 1024 (1167-1024 = 143). Then we can again issue the previous show mqss
0 wi stats command to display the Tracked stream statistics table:

 94 Chapter 3: Follow the Packets

(mx vty)# show mqss 0 wi stats
[...]

Tracked stream statistics

Track Stream Stream Total Packets Packets Rate Total Bytes Bytes Rate
 Mask Match pps) (bps)

0 0xff 0x8f 951165 100009 485093702 408033136

We refind our 100K pps, which comes into et-9/0/0. You can clear the counter
config by issuing this last command:

(mx vty)# test mqss 0 wi stats default 0 0

Let’s do the same on ZT. Actually, it’s exactly the same set of commands:

test mqss 0 wi stats stream 0 0 143
show mqss 0 wi stats
[...]
Tracked stream statistics

Track Stream Stream Total Packets Packets Rate Total Bytes
 Mask Match (pps)

0 0xff 0x8f 498787 100037 256376518
test mqss 0 wi stats default 0 0

Our two flows are handled well by the WI block. The next step you can do is cap-
ture a transit packet before and after its processing by the LUSS block. Some cool
PFE commands allow us to capture a packet (the packet HEAD) inside a PFE. If
you want to focus on a specific type of traffic you have the ability to specify a
hexadecimal pattern of eight bytes maximum in length. This specific hexadecimal
pattern is used as a packet filtering condition: it means PFE should find this pattern
inside the packet to capture it. Eight bytes is small but usually enough to identify a
specific flow. You can use these eight bytes to filter:

 � A specific Ether type

 � A specific MPLS label

 � An IPv4 address

 � A couple of IPv4 source/destination addresses

 � A part of an IPv6 address

 � A source or destination MAC address

 95 MPLS in Transit in the EA and ZT

It is important to conclude that research is done by default on the 32 first bytes of
the packet (internal packet header included). If you want to research beyond that,
you should provide an offset to look further into the packet: usually if you can’t
capture your packet you can try using the offset option to analyze beyond the 32
first bytes: later we’ll see some examples where offset is required.

What if you want to filter on the ingress side?

In this case capture packets:

On the EA – MPLS packet (EtherType 0x8847) with label 2221 (this is flow 1)

On the ZT - MPLS packet (EtherType 0x8847) with label 2223 (this is flow 2)

Let’s have a quick look at the MPLS header in Figure 3.2.

Figure 3 .2 MPLS Header

The label is encoded in 20 bits followed by the traffic class field (3 bits) and the S
bit. Therefore, for our cases both flows are best effort traffic, which means for us
the traffic class field is set to 0. The S bit is set to 1 for labels 2221 and 2223, as
they are the last labels of the stack. The TTL field is variable; we don’t want to fil-
ter on it. Finally, we will filter on the first 24 bits of the MPLS header plus the
EtherType. For flow 1 it will give us the following hexadecimal pattern:

0x8847 + 008ad hex(2221) + 000 (TC) + 1 (S) = 0x8847008ad1

And for flow 2:

0x8847 + 008af hex(2223) + 000 (TC) + 1 (S) = 0x8847008af1

Now we’re ready to capture our ingress packet. Let’s start on the EA ASIC. First of
all, enable packet capture on the right PFE (jnh 0 means PFE 0):

(mx vty)# test jnh 0 packet-via-dmem enable

Next, capture packets that match our hexadecimal pattern 8847008ad1. To do so,
always set the 0x3 option, which means capturing all types (packet and packet
HEAD). We don’t need the offset option – if needed replace <Offset> by a value
such as 32:

(mx vty)# test jnh 0 packet-via-dmem capture 0x3 8847008ad1 <Offset>

 96 Chapter 3: Follow the Packets

Wait a little and then stop the capture by using the 0x0 option:

(mx vty)# test jnh 0 packet-via-dmem capture 0x0

Finally, dump the capture’s buffer. Don’t be scared about the amount of data pro-
vided – the buffer size is by default quite large and allows capturing a bunch of
packets:

(mx vty)# test jnh 0 packet-via-dmem decode
Wallclock: 0x9af39a24
Dispatch: callout 0 error 0 Size 0d8 X2EA_PKT_HEAD (1) ReorderId 073c Stream Wan (48f) PktLen 01fe
ChnkTyp 1 TailLen 013e ChnkDataOff 00 ChnkDataLen 10 ChkSum 00 ChnkPtr 00ce37b
IxPreClass 2 IxPort 00 IxMyMac 1
139e48f001fe0000813e0010000ce37b8008
 […]
Wallclock: 0x9af3a190
Reorder: EA2X_REORDER_SEND_TERMINATE (d) HasTail 1 Stat 0
ReorderId 073c Color 0 Qop ENQUEUE (2) Qsys FAB (1) Queue 0002c
Frag 0 RefCnt 0 OptLbk 0 NumTailHoles 00
ChnkTyp 1 TailLen 013e ChnkDataOff 00 ChnkDataLen 10 ChkSum 00 ChnkPtr 00ce37b
PType MPLS (4) SubType 2 PfeMaskF 0 OrigLabel 1 SkipSvc 0 IIF 0018c
FC 00 DP 0 SkipSample 0 SkipPM 0 L2Type None (0) IsMcast 0 SrcChas 1 MemId 0
PfeNum 2c PfeMaskE 0 FabHdrVer 1
RwBuf 00000000 SvcCtx 0 ExtHdr 0 PfeMaskE2 0 Token 000226
d873c050002c000005b0d00f0600d7d0d9044000813e0000813e0010000ce37b4220018c000105810000000000000226
 […]

For each captured packet you have two dumps. Dumps with the same “Reorde-
rId” are part of the same capture.

The first dump gives you the packet information before LUSS processing, meaning
when the MQSS sends the packet to the LUSS. The second dump gives you the
packet information after it was processed by the LUSS – actually when it comes
back in the MQSS. Figure 3.3 helps us to illustrate these very useful dumps

Figure 3 .3 How to Decode Ingress Packet Capture on the EA

 97 MPLS in Transit in the EA and ZT

Figure 3.3 shows you that there is so much relevant pieces of information provided
by the packet capture, such as:

 � Ethernet packet header plus its payload before processing.

 � Packet header plus its payload after processing. We can see that the Ethernet
header has been removed by the ingress LUSS – the MPLS TTL has been decre-
mented (TTL 3f became 3e) but the label has not yet been swapped (assuming
this action will be done on the egress side – we’ll see this later).

 � We also discovered which fabric queue has been assigned and which egress PFE
the lookup has selected. This is for flow 1 the Fabric queue 44 – low priority
queue to reach global PFE ID 44 (PFE 0 hosted by MPC in slot 11).

At the end of your troubleshooting, don’t forget to disable packet capture:

(mx vty)# test jnh 0 packet-via-dmem disable

If needed, you can copy the hexadecimal string of the captured packet and paste it
on site such as: https://hpd.gasmi.net/. This helps you to decode packets like tcp-
dump or wireshark. See Figure 3.4:

https://hpd.gasmi.net/

 98 Chapter 3: Follow the Packets

Figure 3 .4 Decode Transit Packets

Let’s do the same on ZT. Enable packet capture on the right PFE (inst 0 means PFE
0):

door7302@mx2020> start shell pfe network fpc11
mx2020-fpc11:pfe> test jnh packet-via-dmem inst 0 enable

Then capture packets that match our hexadecimal pattern 8847008af1. Always
set the 0x3 option, which means capturing all types (packet and packet HEAD). We
don’t need the offset option :

 99 MPLS in Transit in the EA and ZT

mx2020-fpc11:pfe> test jnh packet-via-dmem-capture inst 0 parcel-type-mask 0x3 match-string 8847008af1
offset <Offset>

Wait a little and then stop the capture:

mx2020-fpc11:pfe> test jnh packet-via-dmem-capture inst 0 parcel-type-mask 0x0

And finally, dump the buffer of capture. Once again, don’t be scared about the
amount of data displayed:

mx2020-fpc11:pfe> test jnh packet-via-dmem-dump inst 0
 Wallclock: 0x721fba73
 Dispatch: callout 0 error 0 Size 0d8 X2EA_PKT_
HEAD (1) ReorderId 0444 Stream Wan (48f) PktLen 0202
 ChnkTyp 1 TailLen 0142 ChnkDataOff 00 ChnkDataLen 10 ChkSum 00 ChnkPtr 3fab7c6
 IxPreClass 2 IxPort 00 IxMyMac 1
 122248f00202bdab8142001003fab7c68008 000000004c961475 37ab6487886345a3 8847008af13f4500
01ea000000004011 f7e0ac101501ac10 1401003f003f01d6 d0509cbb38ff72e3 f5b649786961e000 0000101112136783
4a7d01b21a1b1c1d 1e1f202122232425 262728292a2b2c2d 2e2f303132333435 363738393a3b3c3d 3e3f404142434445
464748494a4b4c4d 4e4f505152535455 565758595a5b5c5d 5e5f606162636465 666768696a6b6c6d 6e6f707172737475
767778797a7b7c7d 7e7f808182838485 868788898a8b
 Wallclock: 0x721fc04b
 Reorder: EA2X_REORDER_SEND_TERMINATE (d) HasTail 1 Stat 0
 ReorderId 0444 Color 0 Qop ENQUEUE (2) Qsys FAB (1) Queue 00024
 Frag 0 RefCnt 0 OptLbk 0 NumTailHoles 00
 ChnkTyp 1 TailLen 0142 ChnkDataOff 00 ChnkDataLen 10 ChkSum 00 ChnkPtr 3fab7c6
 PType MPLS (4) SubType 2 PfeMaskF 0 OrigLabel 1 SkipSvc 0 IIF 00192
 FC 00 DP 0 SkipSample 0 SkipPM 0 L2Type None (0) IsMcast 0 SrcChas 1 MemId 0
 PfeNum 24 PfeMaskE 0 FabHdrVer 1
 RwBuf 00000000 SvcCtx 0 ExtHdr 0 PfeMaskE2 0 Token 00021f
 d84440500024000005b20002f6004800d90fb000813e00008142001003fab7c64220019200010481000000000000021f
008af13e450001ea 000000004011f7e0 ac101501ac101401 003f003f01d6d050 9cbb38ff72e3f5b6 49786961e0000000
1011121367834a7d 01b21a1b1c1d1e1f 2021222324252627 28292a2b2c2d2e2f 3031323334353637 38393a3b3c3d3e3f
4041424344454647 48494a4b4c4d4e4f 5051525354555657 58595a5b5c5d5e5f 6061626364656667 68696a6b6c6d6e6f
7071727374757677 78797a7b7c7d7e7f 8081828384858687 88898a8b

Also on the ZT, for each captured packet you have two dumps: one before pro-
cessing (MQSS to LUSS) and the second after processing (LUSS to MQSS). Figure
3.5 helps illustrate this tricky new output. As for the EA, the dump on the ZT
shows you similar information such as:

 � Ethernet packet header plus its payload before processing.

 � Packet header plus its payload after processing.

 � We also retrieved which fabric queue has been assigned and which egress PFE
the lookup has selected. This is for flow 2 the Fabric queue 36 – low priority
queue to reach global PFE ID 36 (PFE 0 hosted by MPC in slot 9).

 100 Chapter 3: Follow the Packets

Figure 3 .5 How to Decode Ingress Packet Capture On ZT

At the end of your troubleshooting on ZT, don’t forget to disable packet capture:

mx2020-fpc11:pfe> test jnh packet-via-dmem inst 0 disable

Now we know how the packet has been manipulated by the ingress PFE and we
also know which fabric queue has been assigned for each flow. Remember you can
deduce the fabric queue used based on the outgoing interface and your CoS con-
figuration: if needed, refer to the formula on Figure 2.8. So let’s check fabric queue
statistics. On the EA ASIC we want to check fabric queue 44, which is the Low
priority queue to reach PFE 0 of the MPC in slot 11:

 101 MPLS in Transit in the EA and ZT

(mx vty)# show mqss 0 sched-fab q-node stats 44

Queue statistics (Queue 0044)

Color Outcome Counter Total Rate
 Name

All Forwarded (Rule) Packets 25997467162 100032 pps
 Bytes 13263582199401 408130816 bps
All TAIL drops Packets 0 0 pps
 Bytes 0 0 bps
0 WRED drops Packets 0 0 pps
 Bytes 0 0 bps
1 WRED drops Packets 0 0 pps
 Bytes 0 0 bps
2 WRED drops Packets 0 0 pps
 Bytes 0 0 bps
3 WRED drops Packets 0 0 pps
 Bytes 0 0 bps

You can see that all of our packets of flow 1 are forwarded well to MPC in slot 11.
No ingress fabric drop occurred: good!

Let’s do the same on the ZT line card. Here, you want to check how flow 2 is for-
warded to PFE 0 of MPC in slot 9. Issue the same command as used on the EA, but
here we display statistics for fabric queue 36 (PFE 0 of MPC in slot 9):

door7302@mx2020> start shell pfe network fpc11.0
(mx vty)# show mqss 0 sched-fab q-node stats 36
Queue statistics (Queue 0036)

Color Outcome Counter Total Rate
 Name

All Forwarded (Rule) Packets 19542826070 99995 pps
 Bytes 9971715252564 407980808 bps
All TAIL drops Packets 0 0 pps
 Bytes 0 0 bps
0 WRED drops Packets 0 0 pps
 Bytes 0 0 bps
1 WRED drops Packets 0 0 pps
 Bytes 0 0 bps
2 WRED drops Packets 0 0 pps
 Bytes 0 0 bps
3 WRED drops Packets 0 0 pps
 Bytes 0 0 bps

As expected, our 100Kpps are forwarded without any ingress fabric drops. Before
leaving the ingress PFE and moving to the egress side let’s have a look at the FO
block of the ingress PFE. Earlier you saw the command to give you aggregated sta-
tistics. On EA it was:

 102 Chapter 3: Follow the Packets

(mx vty)# show mqss 0 fo stats
FO statistics

Counter group 0
--
--
Set Type Mask Match Total Packets Packets per second Total Bytes Bits per second
Total Cells Cells per second
--
--
0 Stream 0x0 0x0 11647589 124054 4825432776 411190080
77383308 824249
1 Stream 0x0 0x0 19057649 124054 7895323948 411190080
126613774 824255
2 Stream 0x0 0x0 19057649 124054 7895324458 411190080
126613784 824257

The Counter group 0 table allows you to configure specific FO counters like we did
for WI. By default, this table gives the aggregated statistics (sum of all remote PFE)
for each counter. To enable a specific counter use this specific test command. Here
we want to check stats for remote stream 44:

(mx vty)# test mqss 0 fo stats resource 0 0 0 44

What does 0 0 0 44 mean?

 � The first 0 is Counter group 0.

 � The second 0 is the counter number we want to use – here, counter 0. There are
36 counters available.

 � The third 0 means we want to collect fabric stream statistics .

 � 44 is the stream we want to collect statistics: LOW fabric stream of PFE 0 in
slot 11.

Once the counter is set, issue back the command to show FO statistics and have a
look at Counter Group 0 and counter ID 0. You can see our 100Kpps flows and its
equivalent number of cells sent over the fabric to PFE 0/MPC slot 11:

(mx vty)# show mqss 0 fo stats
FO statistics

Counter group 0
--
--
Set Type Mask Match Total Packets Packets per second Total Bytes Bits per second
Total Cells Cells per second
--
--
0 Stream 0x3ff 0x2c 23242778 100101 11853816780 408412488
185942224 800816

You can reset a specific counter to its default configuration by using the next com-
mand below: 0 0 means counter 0 of counter group 0:

(mx vty)# test mqss 0 wi stats default 0 0

 103 MPLS in Transit in the EA and ZT

On the ZT, it’s exactly the same command to configure a FO counter for a given
fabric stream. Can you recall the list of commands without their output?

 � Start shell PFE network fpc11.0

 � Test mqss 0 fo stats resource 0 0 0 36

It’s 36 because we want to collect statistics for the LOW fabric stream of remote
PFE 0 hosted by MPC in slot 9.

 � Show mqss 0 fo stats

 � Test mqss 0 fo stats default 0 0

Okay, it’s time to move on to the egress PFE. For flow 1 we will dive into MPC in
slot 11 (on the ZT ASIC) and for flow 2 we will move to MPC in slot 9 (on the EA
ASIC).

MPLS Packet on Egress PFE

Now we’re going to do almost the same thing we did on the ingress PFE but in re-
verse. The first thing to check on the egress PFE is the FIB’s programing. On the
EA we reuse the following command to retrieve next-hop information:

(mx vty)# show route mpls table default
MPLS Route Table 0, default.0, 0x800c8:
Destination Type ID NhRef
------------- ----- ----- -----
default Discard 50 1
2221 Unicast 550 1 et-11/0/0.0
2223 Unicast 543 1 et-9/0/0.0

Then we’re going to see the details of the next-hop 543, which is attached to flow
2 (ingress label 2223). This output shows us that the Layer 2 header is pre-com-
puted (source, destination, MAC addresses). There is also what we call a JHH
word pointer, which provides in this case information about label manipulation:

(mx vty)# show nhdb id 543 extensive
 ID Type Interface Next Hop Addr Protocol Encap
----- -------- ------------- --------------- ---------- ------------
 543 Unicast et-9/0/0.0 - MPLS Ethernet

[...]

Topo-link:
[pfe-0]: 0x11c0000000021f24
 ModifyNH: Subcode=SetNH-Token(7),Desc=0x0,Data=0x21f24,NextNH=0
 (pfeDest:36, TokenIdMode:0/ , VC memberId:0, token:0x21f/543)

[...]
NH Egress/Fabric:
 Feature List: NH
 [pfe-0]: 0x087b30f800100000;
 f_mask:0x82008000000000; c_mask:0xe000000000000000; f_num:27; c_num:3, inst:0x0
 Idx#8 labels:

 104 Chapter 3: Follow the Packets

 [pfe-0]: 0x121fffffe1c52db0 << JNH word: Label pointer information

 Idx#14 counter:
 [pfe-0]: 0x2bfffffc8c000d00

 Idx#24 ucast:
 [pfe-0]: 0x129926fac007c8c1
PFE:0
Encap-ptr chain:

Encapsulation Pointer (0xeabd5b70) data:
 Encap-ptr-type:ether-da
[...]
 Ether-DA Details:
 Dest MAC:64:87:88:63:45:51 <<<<<<<<<<< Pre-computed Destination Mac
 InnerTPID(0x0)
[...]
Encapsulation Pointer (0x3208b4d8) data:
 Encap-ptr-type:ether-sa
[...]
 Ether-SA Details:
 Source MAC:4c:96:14:75:36:19 <<<<<<<<<<< Pre-computed Source Mac
 OuterTPID(0x0)
[...]

The JHN Word 0x121fffffe1c52db0 can be decoded with the following command:

(mx vty)# show jnh 0 decode 0x121fffffe1c52db0
ModifyNH: Subcode=SetLabel(8),Desc=0xffffff,Data=0x1c52db0,NextNH=0
 (label:0x52db0/339376, no_ttl_prop:0, fixed_exp_valid:0, fixed_exp:7, el flags 0)

And here we see label 2223 is swapped to value 339376, as expected. Let’s do the
same thing on the ZT line card. First of all, call back the command to display the
MPLS routing table:

mx2020-fpc11:pfe> start shell pfe network fpc11
mx2020-fpc11:pfe> show route proto mpls name default

Index Destination NH Id NH Type NH Token
----- -------------------------------- --------- --------- ---------
0 default 50 Discard 1477
0 2221 550 Unicast 1453283
0 2223 543 Unicast 1453327

Then check the next-hop 550 related to flow 1. We retrieve, like on the EA, the
pre-computed Layer 2 header and the label value for the swap operation:

mx2020-fpc11:pfe> start shell pfe network fpc11
mx2020-fpc11:pfe> show nh detail index 550
Nexthop Info:

NH Index : 550
NH Type : Unicast
NH Proto : tag
NH Flags : 0x1
IF Name : et-11/0/0.0 <<< egress interface
Prefix : 789120
NH Token Id : 1453283
NH Route Table Id : 0

 105 MPLS in Transit in the EA and ZT

Sgid : 0
OIF Index : 402
Underlying IFL : .local..0 (0)
Session Id : 5997
Num Tags : 1
Label : 0x49310eff (299792)lbFlags: 0 <<<< Swap Label
MTU : 0
L2 Length : 12
L2 Data : 00:00:01:92:80:00:64:87:88:63:45:a3 <<<<
 Precomputed Ethernet Header (Dst/Src Mac Adresses)
[...]
Container token: 1453283
#1 SetNhToken tokens:
 Mask : 0x0
 [SetNhToken:1453282]

 EgressFeatures:

Container token: 1453288
#0 PushLabels tokens:
 Mask : 0x0
 [PushLabels:1453285] <<<<<< Here it's the token ID not the label
#1 StatsCounter tokens:
 Mask : 0x1
 [StatsCounter:1453287]
#5 UcastEncap tokens:
 Mask : 0x0
 [UcastEncap:1453286]

mx2020-fpc11:pfe> show sandbox token 1453285 << Entry Token for Label
 Manipulation
AftNode : AftList token:1453285 group:0 nodeMask:0x1 nodes: {1453284,} <<<<<<<
 Next Token 1453284

mx2020-fpc11:pfe> show sandbox token 1453284 << Resolve next token
 1453284
AftNode : AftEncap token:1453284 group:0 nodeMask:0x1 name: label keys: {{ field:packet.mpls.label,
data:Value 299792, <<<< New Label Value (SWAP)
JnhHandle : JnhHandleEncapLabel Jnh:0x121fffffe1c49310 PfeInst:0 Paddr:0x0 Vaddr:0x0 AppType:NH

After checking the consistency of the LFIB on both egress line cards you can first see
statistics about the amount of traffic received by the FI block coming from a specific
source PFE.

You can configure a specific counter for the FI block much like with the FO block.
On EA (MPC in slot 9) we want to see how many packets are received from source
PFE 44 (the PFE 0 of MPC in slot 11). This is actually flow 2 that comes from MPC
in slot 11 and has crossed the fabric to reach MPC in slot 9. Configuring an FI
counter is very similar to what we did for FO. Let’s first do it on the EA line card:

(mx vty)# test mqss 0 fi stats stream 44

Notice here we are on the egress PFE. The above command requests to specify the
incoming stream from the egress's point of view. The 44 means the traffic comes
from PFE 0 in slot 11. Refer to Figure 2.10 if you need a quick refresher about the
fabric queue/stream logic.

 106 Chapter 3: Follow the Packets

Now, issue the following command. We again find our 100Kpps. No drop is iden-
tified on the FI side. All seems fine at this waypoint:

(mx vty)# show mqss 0 fi stats
FI statistics

Stream number mask : 0x3ff
Stream number match : 0x2c
--
Counter Name Total Rate
--
Valid data cells received from FABIO 1991474 824209 cps
Valid fabric grants received from FABIO 1991418 824201 grants/second
Valid fabric requests received from FABIO 1991473 824209 requests/second
Valid fabric requests sent to FO 1991473 824209 requests/second
Received cells in input block for enabled streams 1932968 800008 cps
Received packets in input block for enabled streams 241620 100000 pps
Cells dropped in FI memory interface 0 0 cps
Packets dropped in FI memory interface 0 0 pps
Packets sent out of PSV 241620 100000 pps
Error packets sent out of PSV 0 0 pps

Don’t forget to reset the FI counter to its default configuration:

(mx vty)# test mqss 0 fi stats default

This is exactly the same set of commands as on the ZT. For the next example we
just change the fabric stream number to 36, which is attached to source PFE 0 in
slot 9:

door7302@mx2020> start shell pfe network fpc11.0
(mx vty)# test mqss 0 fi stats stream 36

(mx vty)# show mqss 0 fi stats

FI statistics

Stream number mask : 0x3ff
Stream number match : 0x24
--
Counter Name Total Rate
--
Valid data cells received from FABIO 3161238 824347 cps
Valid fabric grants received from FABIO 3161176 824344 grants/second
Valid fabric requests received from FABIO 3161237 824347 requests/second
Valid fabric requests sent to FO 3161237 824347 requests/second
Received cells in input block for enabled streams 3068358 800134 cps
Received packets in input block for enabled streams 383545 100017 pps
Cells dropped in FI memory interface 0 0 cps
Packets dropped in FI memory interface 0 0 pps
Packets sent out of PSV 383544 100016 pps
Error packets sent out of PSV 0 0 pps

(mx vty)# test mqss 0 fi stats default

Our 100Kpps of flow 1 are there, as well, with no drop. It’s time to capture our
packet on the egress side – meaning from fabric to WAN. As we saw earlier on the
ingress PFE, the commands will display the packet before and after its processing

 107 MPLS in Transit in the EA and ZT

by the egress LUSS. We saw that the label swap operation didn’t occur on the in-
gress PFE and also the Layer 2 Ethernet header has been removed by the ingress
LUSS. Therefore, the hexadecimal pattern we will use to filter our capture will be a
little bit different.

Indeed, we could not match on the MPLS ether type 0x8847, as it has been
stripped. We decided to only match based on the label value (+ TC and S flags as
these 4 bits are part of a byte shared with the label value).

For flow 1 it will give us the following hexadecimal pattern:

008ad hex(2221) + 000 (TC) + 1 (S) = 0x008ad1

And for flow 2 we will have:

008af hex(2223) + 000 (TC) + 1 (S) = 0x008af1

Now we’re ready to capture our egress packet. Let’s start on the EA ASIC. First of
all, enable packet capture on the right PFE (jnh 0 means PFE 0) like we did on the
ingress:

(mx vty)# test jnh 0 packet-via-dmem enable

Then capture packets that match our hexadecimal pattern 8847008af1 (flow 2 is
sent out by EA line card.) Always set the 0x3 option, which means capturing all
types (packet and packet HEAD). No offset is needed:

(mx vty)# test jnh 0 packet-via-dmem capture 0x3 008ad1 <Offset>

Wait some time and then stop the capture:

(mx vty)# test jnh 0 packet-via-dmem capture 0x0

And finally, dump the buffer of captured packets, and we’ll have a look at just a
couple:

(mx vty)# test jnh 0 packet-via-dmem decode
Wallclock: 0x1f0919d0
Dispatch: callout 0 error 0 Size 0d8 X2EA_PKT_HEAD (1) ReorderId 1823 Stream Fab (2c) PktLen 01fe
ChnkTyp 1 TailLen 013e ChnkDataOff 00 ChnkDataLen 10 ChkSum 00 ChnkPtr 0705839
PType MPLS (4) SubType 2 PfeMaskF 0 OrigLabel 1 SkipSvc 0 IIF 00192
FC 00 DP 0 SkipSample 0 SkipPM 0 L2Type None (0) IsMcast 0 SrcChas 1 MemId 0
PfeNum 24 PfeMaskE 0 FabHdrVer 1
RwBuf 00000000 SvcCtx 0 ExtHdr 0 PfeMaskE2 0 Token 00021f
1c1182c001fe0000813e0010007058394220019200010481000000000000021f
 008af13e450001ea
 000000004011f7e0

Wallclock: 0x1f0922e4
Reorder: EA2X_REORDER_SEND_TERMINATE (d) HasTail 1 Stat 1
ReorderId 1823 Color 0 Qop ENQUEUE (2) Qsys WAN (0) Queue Wan (18)
Stats Map 0 len_adjust 10 cnt_addr 0042506
Frag 0 RefCnt 0 OptLbk 0 NumTailHoles 00
ChnkTyp 1 TailLen 013e ChnkDataOff 00 ChnkDataLen 10 ChkSum 00 ChnkPtr 0705839 WanCookie 0000
dd823040001801ea05b2585500200425060053d0d9035000813e0010007058390000
 6487886345514c96
 14753619884752db
 013e450001ea0000
 00004011f7e0ac10
 […]

 108 Chapter 3: Follow the Packets

As the ingress captures, for each captured packet you have two dumps (Wallclock).
The first dump gives you the packet information before LUSS processing, meaning
when the MQSS sends the packet to the LUSS. The second dump gives you the
packet after LUSS when it comes back in the MQSS.

Before its processing by the LUSS we saw that the packet is tagged as coming from
the fabric (stream fab is displayed – here it’s 0x2C = 44 – it comes from PFE 0 of
MPC in slot 11 as expected). After processing, we see that the LUSS has assigned a
WAN queue 0x18 (24) – if you check the detail of the egress packet in hexadecimal
you should see that the new Layer 2 header has been added and the MPLS label
value has been swapped. Figure 3.6 helps you to decode these outputs.

Figure 3 .6 How to Decode Egress Packet Capture On the EA

 109 MPLS in Transit in the EA and ZT

At the end of your troubleshooting, don’t forget to disable the packet capture:

(mx vty)# test jnh 0 packet-via-dmem disable

Let’s do the same on the ZT. First of all, enable packet capture on the right egress
PFE (inst 0 means PFE 0):

door7302@mx2020> start shell pfe network fpc11
mx2020-fpc11:pfe> test jnh packet-via-dmem inst 0 enable

Then capture packets that match our hexadecimal pattern 8847008ad1 (Flow 1 is
sent out by the ZT line card.) Always set the 0x3 option, which means capturing all
types (packet and packet HEAD):

mx2020-fpc11:pfe> test jnh packet-via-dmem-capture inst 0 parcel-type-mask 0x3 match-
string 008ad1 offset <Offset>

Wait some time and then stop the capture:

mx2020-fpc11:pfe> test jnh packet-via-dmem-capture inst 0 parcel-type-mask 0x0

And finally, dump the capture’s buffer. Once again, don’t be scared about the
amount of data displayed:

mx2020-fpc11:pfe> test jnh packet-via-dmem-dump inst 0
Wallclock: 0xe0af0798
 Dispatch: callout 0 error 0 Size 0d8 X2EA_PKT_
HEAD (1) ReorderId 1228 Stream Fab (24) PktLen 01fe
 ChnkTyp 1 TailLen 013e ChnkDataOff 00 ChnkDataLen 10 ChkSum 00 ChnkPtr 3f96b0f
 PType MPLS (4) SubType 2 PfeMaskF 0 OrigLabel 1 SkipSvc 0 IIF 0018c
 FC 00 DP 0 SkipSample 0 SkipPM 0 L2Type None (0) IsMcast 0 SrcChas 1 MemId 0
 PfeNum 2c PfeMaskE 0 FabHdrVer 1
 RwBuf 00000000 SvcCtx 0 ExtHdr 0 PfeMaskE2 0 Token 000226
 1914024001fe65ed813e001003f96b0f4220018c000105810000000000000226 008ad13e450001ea
000000004011f7e0 ac101401ac101501 003f003f01d6861b 9cbb38ff72e3f5b6 49786960a0000000 10111213a9c19275
01b21a1b1c1d1e1f […]

Wallclock: 0xe0af0e5c
 Reorder: EA2X_REORDER_SEND_TERMINATE (d) HasTail 1 Stat 1
 ReorderId 1228 Color 0 Qop ENQUEUE (2) Qsys WAN (0) Queue Wan (40)
 Stats Map 0 len_adjust 10 cnt_addr 00211f6
 Frag 0 RefCnt 0 OptLbk 0 NumTailHoles 00
 ChnkTyp 1 TailLen 013e ChnkDataOff 00 ChnkDataLen 10 ChkSum 00 ChnkPtr 3f96b0f WanCookie 0000
 dd228040004001ea05b0d05100200211f6099980d90c3000813e001003f96b0f0000 6487886345a34c96
147537ab88474931 013e450001ea0000 00004011f7e0ac10 […]’

And once again, for each captured packet on the egress side you have two dumps:
the one before processing: MQSS to LUSS, and the second one after processing:
LUSS to MQSS. Figure 3.7 helps you to understand the output.

 110 Chapter 3: Follow the Packets

Figure 3 .7 How to Decode Packet Egress Capture on the ZT

At the end of your troubleshooting on the egress ZT, don’t forget to disable packet
capture:

mx2020-fpc11:pfe> test jnh packet-via-dmem inst 0 disable

We know how the packet has been manipulated by the egress PFE (Layer 2 added
Label swap) and we also know which WAN queue has been assigned for each flow.
Remember, on the EA and the ZT that WAN queues are managed by the XQSS
block. So the queue 24 will enqueue packets of flow 2 on the EA XQSS and queue 60
will be used on the ZT XQSS for flow 1. You can retrieve XQSS statistics for a giv-
en queue on the EA by issuing this command:

(mx vty)# show xqss 0 sched queue 24 local-stats
Queue:24
 Forwarded pkts : 26319795124 100007 pps
 Forwarded bytes: 14002112664864 425633320 bps
 Dropped pkts : 0 0 pps
 Dropped bytes : 0 0 bps

 111 MPLS in Transit in the EA and ZT

You can see that our 100Kpps of flow 2 are there. You can also check CoS statis-
tics of your given egress interface with the show cos halp command. Here queue 0 of
et-9/0/0 conveys the 100Kpps. Actually, this queue 0 of et-9/0/0 is the absolute
queue number 24 on the XQSS (see previous command):

(mx vty)# show cos halp ifd queue-stats et-9/0/0
IFD index: 439 Queue: 0
 Last Enqueue time : No packets
Queued :
 Packets : 26336604909 100024 pps
 Bytes : 14011055457530 53213200 Bps
Transmitted :
 Packets : 26336604909 100024 pps
 Bytes : 14011055457530 53213200 Bps
 Tail-dropped pkts : 0 0 pps
 Tail-dropped bytes: 0 0 Bps
 RED-dropped pkts :
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps
 RED-dropped bytes :
 Low : 0 0 Bps
 Medium-low : 0 0 Bps
 Medium-high : 0 0 Bps
 High : 0 0 Bps
 RL-dropped pkts : 0 0 pps
 RL-dropped bytes : 0 0 Bps
 Queue depths :
 Average : 0
 Current : 510
 Peak till now : 1530
 Maximum : 316669952
[…]

On the ZT, you can use a new set of commands to display interface statistics at the
PFE level. You should first retrieve the IFD index of your physical port:

door7302@mx2020> start shell pfe network fpc11
mx2020-fpc11:pfe> show interfaces et-11/0/0 | match index
 Name: et-11/0/0 Index: 535

And call next the following command:

mx2020-fpc11:pfe> show class-of-service interface queue-stats index 535
Physical interface : et-11/0/0 (Interface index: 535, Egress queues: 8)
Queue: 0
 Queued Packets : 26370165892 100002 pps
 Queued Bytes : 14028401532285 425604704 bps
 Transmitted Packet : 26370165892 100002 pps
 Transmitted Bytes : 14028401532285 425604704 bps
 Tail-dropped Packets : 0 0 pps
 RL-dropped Packets : 0 0 pps
 RL-dropped Bytes : 0 0 bps
 RED-dropped Packets : 0 0 pps
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps

 112 Chapter 3: Follow the Packets

 RED-dropped Bytes : 0 0 bps
 Low : 0 0 bps
 Medium-low : 0 0 bps
 Medium-high : 0 0 bps
 High : 0 0 bps
 Queue-depth bytes :
 Average : 0
 Current : 0
 Peak : 1530
 Maximum : 316669952

Finally, the last thing we can check on the egress PFE is the WO statistics. On the
EA and ZT this is the same PFE command:

(mx vty)# show mqss 0 wo stats
WO statistics

Counter set 0

 Connection number mask : 0x0
 Connection number match : 0x0
 Transmitted packets : 33977564640 (500057 pps)
 Transmitted bytes : 17279896388620 (2008221760 bps)
 Transmitted flits : 203348335667 (3000309 flits/sec)

Counter set 1

 Connection number mask : 0x1f
 Connection number match : 0x1d
 Transmitted packets : 5131 (0 pps)
 Transmitted bytes : 811958 (0 bps)
 Transmitted flits : 10276 (0 flits/sec)

The counter 0 gives the aggregate statistics. This means it provides output traffic
stats for physical ports attached to the MQSS instance. We can configure a specific
counter to filter output traffic attached to a specific port. To do that, use the test
command one more time. But before that you need to find the connection ID al-
located to your given port. For that, issue the command either on the EA or the ZT
(the commands below are similar on both ASICs):

(mx vty)# show mqss 0 wo wan-conn-entry

WAN connection entries

Connection Allocated Port Speed IFD Name

0 No - -
1 No - -
2 No - -
3 No - -
4 No - -
5 No - -

 113 MPLS in Transit in the EA and ZT

6 No - -
7 No - -
8 No - -
9 No - -
10 No - -
11 No - -
12 No - -
13 No - -
14 No - -
15 No - -
16 No - -
17 No - -
18 No - -
19 No - -
20 No - -
21 No - -
22 No - -
23 No - -
24 Yes 100 GE et-9/0/0
25 Yes 100 GE et-9/0/3

The connection ID of our et-9/0/0 interface is 24. Now we can configure the WO
counter 1 to display output statistics of et-9/0/0:

(mx vty)# test mqss 0 wo stats conn 1 24

And issue back the command to display WO statistics:

(mx vty)# show mqss 0 wo stats

WO statistics

Counter set 0

 Connection number mask : 0x0
 Connection number match : 0x0
 Transmitted packets : 34020270536 (100027 pps)
 Transmitted bytes : 17301675780631 (408100088 bps)
 Transmitted flits : 203604564340 (600148 flits/sec)

Counter set 1

 Connection number mask : 0x1f
 Connection number match : 0x18
 Transmitted packets : 663939 (100021 pps)
 Transmitted bytes : 338608369 (408098408 bps)
 Transmitted flits : 3983628 (600144 flits/sec)

At the end, reset the counter configuration to its default value:

(mx vty)# test mqss 0 wo stats default

This last command ends the first part of this chapter. We can now move to part
two, where we will try to better understand how the control plane/OAM traffic
is handled and managed by the two ASICs.

 114 Chapter 3: Follow the Packets

A Host Packet Targets the MX

Figure 3.8 shows you the network topology we are going to use during this second
part of the chapter. We are using a tester to generate ICMP echo request packets.
The tester is connected to two interfaces of the MX: one is attached to an MPC9e
in slot 9 and the second one to an MPC11e in slot 11.

On each interface, the tester sends 200pps of ICMP echo-request targeting the
loopback0 of the MX: 172.16.254.254.

Figure	3.8		 Network	Topology	to	Track	Host	Traffic

As we did during the first part of this chapter, we will provide the point of view of
the EA and the point of view of the ZT at each step. Let’s go inside!

Tracking Host Inbound Traffic

On both line cards, the ICMP echo-request packets are first handled by the MAC
block of the EA or ZT. Then the pre-classifier engine of both ASICs performs a
short packet analysis, and based on well-known packet headers, it determines if
the packet is a control plane/OAM packet or not. At this point, the EA or ZT are
not able to know if the packet is a packet in transit or a packet trying to reach the
router itself (only the look-up step, done by the LUSS, will give this information).

Nevertheless, this pre-classification should detect our traffic as OAM and there-
fore classify it into the CTRL/medium WI input stream. On the EA we have access
to the pre-classifier statistics (not yet on the ZT as mentioned earlier). We confirm
with the following two commands and our 200pps are put into the right input
stream:

(mx vty)# show precl-eng summary
 ID precl_eng name FPC PIC ASIC-ID ASIC-INST Port-Group (ptr)
--- -------------------- ---- --- ------- --------- ---------- --------
 1 MQSS_engine.9.0.60 9 0 60 0 NA f6f023d0
 2 MQSS_engine.9.0.61 9 0 61 1 NA f6f12a90

 115 A Host Packet Targets the MX

(mx vty)# show precl-eng 1 statistics
 stream Traffic
 port ID Class TX pkts RX pkts Dropped pkts
------ ------- ---------- --------- --------- --------------
 24 1165 RT 0000000000000000 0000000000000000 0000000000000000
 24 1166 CTRL 0000000013872090 0000000013872090 000000000000000 <<<< It’s
incrementing – these are our ICMP echo-request
 24 1167 BE 0000066904792122 0000066904792122 0000000000000000

Then, packets are processed as usual (for instance: HEAD and TAIL are extracted
if needed) by the MQSS block until they are forwarded to the LUSS. On the LUSS
the lookup engine detects the packets are targeting the router: we name this type of
traffic host inbound. From the EA or ZT’s point of view the host inbound traffic is
a kind of packet exception.

Exception statistics are available by issuing this CLI command:

door7302@mx2020> show pfe statistics exceptions fpc <FPC-SLOT>
Slot 11

 PFE State Invalid

 sw error DISC(64) 12 768

 Routing

 control pkt punt via nh PUNT(34) 10853 1246951
 host route PUNT(32) 1505273 741629096

 PFE State Invalid

 sw error DISC(64) 12 768

 Routing

 control pkt punt via nh PUNT(34) 10567 1183534
 host route PUNT(32) 3484 243866

The command above gives you aggregated statistics, which means for all PFEs of a
given MPC. If you want to see the exception statistics of a specific PFE more pre-
cisely you must issue the following PFE command on the EA (0 means PFE 0 in our
case – the terse option allows you to display only non-zero values). Moreover, be-
fore issuing the command, you can clear exceptions statistics – this is what we do
below. Notice some exception counters cannot be cleared – this is why you can see
some warnings (just don’t take these warnings into account).

In our case the ping packets are counted as host route exceptions:

(mx vty)# clear jnh 0 exceptions
Relative counters cannot be cleared
[…]
(mx vty)# sho jnh 0 exceptions terse

 116 Chapter 3: Follow the Packets

Reason Type Packets Bytes
==
Routing

control pkt punt via nh PUNT(34) 1 80
host route PUNT(32) 836 410744

Similar commands can be used on the ZT (inst 0 means PFE 0):

door7302@mx2020> start shell pfe network fpc11
mx2020-fpc11:pfe> clear jnh exceptions inst 0
mx2020-fpc11:pfe> show jnh exceptions inst 0 level terse

 Routing

 control pkt punt via nh PUNT(34) 14 1524
 host route PUNT(32) 1716 845566

As you can see from the previous command outputs, there is a type and an ID be-
tween the parenthesis () associated with each exception. There are actually two
types: PUNT and DISCARD. PUNT means the packet might be handled by the
upper level (the line card CPU or the RE). DISCARD means the packet matching
the exception must be silently discarded by the ASIC. The associated ID uniquely
identifies the exception.

Let’s take a short break to have a better look at the exceptions. Punted packets can
usually be captured by the classic monitor traffic interface command since those
packets usually reach the host. This is the case of our ping packets:

door7302@mx2020> monitor traffic interface et-9/0/0 matching "icmp[icmptype]==icmp-echo" no-resolve
verbose output suppressed, use <detail> or <extensive> for full protocol decode
Address resolution is OFF.
Listening on et-9/0/0, capture size 96 bytes

18:03:05.959314 In IP 192.168.3.1 > 172.16.254.254: ICMP echo request, id 0, seq 0, length 474

But with DISCARD exceptions, the previous command will give you nothing be-
cause drops occurred inside the ASIC. Sometimes it can be interesting to view
which packet is considered as an exception to discard. The name of the exception
usually gives you the first information about the nature of the packet, but if we
need more, how to proceed?

Junos offers us a way to capture exception traffic quite easily: only exceptions with
a type DISCARD can be captured. To illustrate this feature let’s apply a firewall
filter on the loopback0 that drops all ICMP traffic:

door7302@mx2020> show configuration firewall family inet filter PROTECT-RE
term 1 {
 from {
 protocol icmp;
 }
 then {
 discard;
 }
}
term 2 {

 117 A Host Packet Targets the MX

 then accept;
}

First on the EA, you can now see packets are no longer seen as host route but as
firewall discard. You can also see the type of the exception is DISCARD with the
ID 67:

(mx vty)# show jnh 0 exceptions terse

Reason Type Packets Bytes
==

Firewall

firewall discard DISC(67) 5822 2876068

Routing

control pkt punt via nh PUNT(34) 52 4846
host route PUNT(32) 23450 11416404

To capture packets of this specific exception you should use this set of commands
(using the ID and type previously retrieved):

(mx vty)# debug jnh exceptions-trace
(mx vty)# debug jnh exceptions 67 discard

When you think your packet has been dropped (by calling back show jnh X excep-
tion periodically), you can issue the next command to display the captured pack-
ets. Hopefully you have good eyes, because the dump is in hexadecimal. Notice
there is an internal header attached to your packet – just look at your IP packet by
looking for the well-known IPv4 signature 45 xx xx:

(mx vty)# show jnh exceptions-trace
 [7185] jnh_exception_packet_trace:1456 ###############
 [7186] jnh_exception_packet_trace:1461 [iif:496,code/info:195 D(firewall discard)/0x0,score:(0x0),p
type:2/0,orig_ptype:2,offset:14,orig_offset:14,len:508,l2iif:0,oif:0,BD 0,l2-off=0,token=1048575]
 [7187] jnh_exception_packet_trace:1485 0x00: 20 00 c3 00 00 00 01 f0 00 0e 01 fc 80 00 00 20
 [7188] jnh_exception_packet_trace:1485 0x10: 0e 00 00 40 01 00 0f ff ff 00 00 00 00 00 00 4c
 [7189] jnh_exception_packet_trace:1485 0x20: 96 14 75 36 19 64 87 88 63 45 51 08 00 45 00 01
 [7190] jnh_exception_packet_trace:1485 0x30: ee 00 00 00 00 3f 01 0b 57 c0 a8 03 01 ac 10 fe
 [7191] jnh_exception_packet_trace:1485 0x40: fe 08 00 b2 9b 00 00 00 00 9c bb 38 ff 72 e3 f5
 [7192] jnh_exception_packet_trace:1485 0x50: b6 49 78 69 60 c0 00 00 00 da da da da 7b 4e 78
 [7193] jnh_exception_packet_trace:1485 0x60: 75 01 b6 da da da da da da da da da da da da da
 [7194] jnh_exception_packet_trace:1485 0x70: da da da da da da da da da da da da da da da da
 [7195] jnh_exception_packet_trace:1456 ###############

Don’t forget to disable the packet capture at the end of your troubleshooting
session:

(mx vty)# undebug jnh exceptions-trace

If you want to do a similar capture on the ZT, first of all, check as we did earlier
the exception statistics to confirm that our pings are now seen as firewall discard
exceptions:

 118 Chapter 3: Follow the Packets

door7302@mx2020> start shell pfe network fpc11
mx2020-fpc11:pfe> show jnh exceptions inst 0 level terse

 Firewall

 firewall discard DISC(67) 1653 816582

 Routing

 control pkt punt via nh PUNT(34) 12 1267
 host route PUNT(32) 6 402

Sounds good, the firewall discard is continuously incrementing. Now you can en-
able packet capture for this specific exception:

mx2020-fpc11:pfe> debug jnh exceptions state enable inst 0 exception 67 type DISCARD

Next, enable the dump of these packets into the syslog of the MPC (this command
is available since Junos 20.2):

mx2020-fpc11:pfe> set host-path ports punts trace enable

And finally, issue the command to see the dumped packets:

mx2020-fpc11:pfe> show syslog
packetio[18339]: Trace.
 CPU Hdr

 ptype: 2
 sub type: 0
 stream type: 1
 reason: 195
 punt: 268
 drop reason: 67
 token: 1048575
 input Ifl: 414
 l2 input Ifl: 0
 output Ifl: 0
 l2len: 508
 l2Offset 0
 l3Offset 14
 origL3Type 2
 origL3Offset 14
 ddosProto 0x4001
 fwdClass 0
 vbfFlowId 0
 hostOrig: 0
 pktLen: 0
 addInfo: 0x0
 :
 Packet inIf:fp0 outIf:cp0 type:Init net:Trace Pkt Len: 494 pos: 0
 45 00 01 ee 00 00 00 00 3f 01 0a 57 c0 a8 04 01
 ac 10 fe fe 08 00 1e 97 00 00 00 00 9c bb 38 ff
 72 e3 f5 b6 49 78 69 61 80 00 00 00 da da da da
 1c 6e ab 59 01 b6 da da da da da da da da da da
 da da da da da da da da da da da da da da da da

 119 A Host Packet Targets the MX

The good thing on the ZT is that the internal header is decoded and only the cap-
tured packet is displayed in hexadecimal. Like on the EA, at the end you must dis-
able both the packet capture and the syslog dump with the following two
commands:

mx2020-fpc11:pfe> debug jnh exceptions state disable inst 0 exception 67 type DISCARD
mx2020-fpc11:pfe> set host-path ports punts trace disable

Remove the firewall filter applied on the lo0 and let’s move on!

Still inside the LUSS, this host inbound traffic that might be dropped or rate-limit-
ed by any input firewall filter configured either on the lo0 or on the physical inter-
faces. Of course, the packets should match the firewall family.

If the packets are accepted, they are processed by a first level of DDoS protection
(still inside the LUSS). Remember there are three levels of DDoS protection on the
TRIO. Figure 3.9 provides a quick refresher on how the distributed protection is
managed on TRIO line cards.

Therefore, if needed, a new rate limiting is performed by the LUSS’s DDoS protec-
tion feature depending on either default policer values or your own set system
ddos-protection xxx configuration.

Figure	3.9		 Distributed	DDoS	Protection

 120 Chapter 3: Follow the Packets

To check DDoS statistics occurring at the ASIC level, you can use these PFE com-
mands on the EA. You should supply the name of the protocol for which you wish
to see the stats (? displays all protocols supported by the DDoS protection feature).

Now let’s check ICMP statistics:

(mx vty)# show ddos policer icmp stats
DDOS Policer Statistics:
 arrival pass # of
 idx prot group proto pol scfd loc pass drop rate rate flows
 --- --- -------- ----------- --- ----- ------- -------- -------- ------ ------ -----
 77 900 icmp aggregate on normal UKERN 3296726 0 200 200 0
 PFE-0:0 3296726 0 200 200 0
 PFE-1:0 0 0 0 0 0
 PFE-2:0 0 0 0 0 0
 PFE-3:0 0 0 0 0 0

With this command, you can see statistics of the two first levels of DDoS protec-
tion. Remember that Level 1 is managed by the ASIC itself – here the EA. Level 1
statistics are given by the lines starting with the prefix PFE. In our case we have
four PFEs, so four EA ASICs on this line card; this is why we have four lines of sta-
tistics. We can confirm our 200pps of ICMP have been accepted by the EA (rate
column) and forwarded to Level 2. The Level 2 of DDoS protection on the EA line
card is managed by the uKernel process (the uKernel line gives you the statistics of
the second level). We see the 200pps are also accepted by Level 2 and therefore for-
warded to the RE where Level 3 DDoS protection will occur.

If you wish to retrieve the configuration of a given protocol you can use this sec-
ond command. On the EA the default ICMP policer is configured at 20Kpps (same
configuration is set for the three levels):

(mx vty)# show ddos policer configuration icmp
DDOS Policer Configuration:

 UKERN-Config PFE-Config

 idx prot group proto on Pri rate burst rate burst
 --- --- ------------ ------------ -- -- ------ ----- ------ -----
 77 900 icmp aggregate Y Hi 20000 20000 20000 20000

Let’s do the same for the ZT. On the ZT you should use a combination of three
commands, but first let’s list all supported protocols (named Group):

door7302@mx2020> start shell pfe network fpc11
mx2020-fpc11:pfe> show ddos groups
Ddos Proto Groups:

Proto Group Group Id
 host-path 0
 resolve 1
 filter-action 2
 Dynamic-Vlan 3
 PPP 4
 PPPoE 5
 DHCPv4 6

 121 A Host Packet Targets the MX

 DHCPv6 7
 Virtual-Chassis 8
 ICMP 9
 IGMP 10
 OSPF 11
[…] Output has been truncated.

Once you have identified your protocol you can issue the second command to list
the policer(s) available for this specific protocol. For this exercise it’s ICMP, but
pay attention here. The following command is case sensitive and there is an ‘s’ at
the end of the word policers (actually there is the same command without an s
and we are going to use it after this one). Notice at the same time you can see the
policers configuration:

door7302@mx2020> start shell pfe network fpc11
mx2020-fpc11:pfe> show ddos policers ICMP
Host Path Ddos Policers:

Group Policer Id BWidth Burst BWScale BTScale RcvTime P Q
ICMP aggregate 0x0900 20000 20000 100 100 300 2 0

And finally, for a given group, ICMP for us, and policer name, aggregate for us, you
can retrieve statistics.

Here the command used is policer without the s:

door7302@mx2020> start shell pfe network fpc11
mx2020-fpc11:pfe> show ddos policer ICMP aggregate
Ddos Proto:

Group Policer Id BWidth Burst BWScale BTScale RcvTime P Q
ICMP aggregate 0x0900 20000 20000 100 100 300 2 0

Loc Total Rcvd Pkts Total Drops Policer Drops Flow drops Other drops [Rate(pps) Max Rate
PktIo 3453803 0 0 0 0 200 200
Pfe:0 3453967 0 0 0 0 200 201
Pfe:1 0 0 0 0 0 0 0
Pfe:2 0 0 0 0 0 0 0
Pfe:3 0 0 0 0 0 0 0
Pfe:4 0 0 0 0 0 0 0
Pfe:5 0 0 0 0 0 0 0
Pfe:6 0 0 0 0 0 0 0
Pfe:7 0 0 0 0 0 0 0
Sum 3453967 0 0 0 0 200 201

Violations:
Loc State Start Last Count
PktIo ok --- --- 0
Pfe:0 ok --- --- 0
Pfe:1 ok --- --- 0
Pfe:2 ok --- --- 0
Pfe:3 ok --- --- 0
Pfe:4 ok --- --- 0
Pfe:5 ok --- --- 0
Pfe:6 ok --- --- 0
Pfe:7 ok --- --- 0
Sum ok --- --- 0

 122 Chapter 3: Follow the Packets

You can also see the two first levels of DDoS protection statistics. Level 1 (lines
starting with Pfe:) shows the 200pps are also accepted by the the ZT ASIC of PFE
0 and then forwarded to the upper level. On the ZT line card, the second level of
DDoS protection is managed by the packetIO module. This is why the Level 2 sta-
tistics line starts with the statement PktIo. Once again, the 200pps, which do not
violate the default ICMP policer (20Kpps), are accepted and forwarded to the Lev-
el 3 hosted by the RE.

If packets are accepted by the Level 1 DDoS protection, they are forwarded back
to the MQSS with some internal information such as:

 � The type of exception

 � The WAN queue assigned to enqueue host inbound traffic

 � The DDoS protocol ID (will be used by other levels of DDoS protection). The
DDoS ID, in our ICMP case, is 0x900. Looking back at the previous output
you can see this value under the Id column.

The interface to reach the router’s processor is visible, for the MQSS, just like a
classic WAN output interface. As said, the LUSS assigned a WAN output queue to
host inbound traffic. There are actually eight queues for the internal host interface
(like a classic physical port has). To retrieve information about the eight queues
attached to the internal host interface you can use the following set of commands
on the EA. First, retrieve the output stream index attached to the host interface:
look for Host in the Type column.

For our line card the WAN output stream attached to the host interface is 1088.
The last 1 means egress direction:

(mx vty)# show mqss 0 phy-stream list 1

Egress PHY stream list

--
Stream Type Enabled NIC PIC Connection L1 Node
Number Slot Slot Number
--
[…]
1087 Loopback No 255 255 29 255
1088 Host Yes 255 255 28 0
[…]

With this stream ID you can retrieve the eight queue indexes. Here we have queue
ID 1008 for Queue 0, 1009 for queue 1, up to 1015 for queue 7:

(mx vty)# show mqss 0 phy-stream 1088 1

Egress PHY stream structure

 123 A Host Packet Targets the MX

Stream number : 1088
Stream type : Host
[...]
Queues : 1008..1015
Number of Queues : 8
Stream weight : 1

You can also retrieve similar information by issuing this next command, where the
last 0 means the PFE 0. It can be different if you want to check the same informa-
tion on a different PFE:

(mx vty)# show cos halp stream-sched-nodes 0
==
[…]
==
Stream id: 1088 <<< Host Wan output stream
 L1 index : 0
 L2 index : 1984
 L3 index : 0
 L4 index : 126
 Base Q index : 1008 <<< First queue
==
[…]

Finally, you can now collect queue statistics with the next command. Here we dis-
play the statistics about queue 0 (absolute queue ID 1008) of the host interface.
We are lucky this is the queue that conveys our 200 pps of echo-request. You can
see that the host queues are also managed by the XQSS block, just like a classic
physical port:

(mx vty)# show xqss 0 sched queue 1008 local-stats
Queue:1008
 Forwarded pkts : 666476 200 pps
 Forwarded bytes: 357629164 862536 bps
 Dropped pkts : 0 0 pps
 Dropped bytes : 0 0 bps

Let’s try to do the same on the ZT, which is quite different. There is a virtual inter-
face named .punt which represents the internal host interface. Let’s first retrieve
information about this specific interface:

door7302@mx2020> start shell pfe network fpc11
mx2020-fpc11:pfe> show interfaces .punt
 Name: .punt Index: 49157 IflCount: 1 Type: 0 Weight: 1

 CfgState: Up OverallState: Down Slot: 11 PfeInst: 255
 Local: Yes IsAggregate: No MTU: 0 PfeId: 0
 LinkState: Down Macsec: Disabled Pic: 255 PicPort: 65535
 VlanEnabled: False StatsMgr Map: Present
 ChannelCount: 0 IfdSpeed: 1000000000
[…]

Note the index of this interface: here it is 49157. With this index you can issue a sec-
ond command to display queue statistics (you might remember we used this com-
mand in part one of this chapter to collect output statistics for physical interfaces).

 124 Chapter 3: Follow the Packets

As shown here, we find our 200pps conveyed by queue 0:

mx2020-fpc11:pfe> show class-of-service interface queue-stats index 49157
Physical interface : .punt (Interface index: 49157, Egress queues: 8)
Queue: 0
 Queued Packets : 5207847 200 pps
 Queued Bytes : 3025743683 929544 bps
 Transmitted Packet : 5207847 200 pps
 Transmitted Bytes : 3025743683 929544 bps
 Tail-dropped Packets : 0 0 pps
 RL-dropped Packets : 0 0 pps
 RL-dropped Bytes : 0 0 bps
 RED-dropped Packets : 0 0 pps
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps
 RED-dropped Bytes : 0 0 bps
[…]
Queue: 1
 Queued Packets : 57700 3 pps
 Queued Bytes : 8451806 3328 bps
[…]

There are two other cool commands on the ZT to collect similar information. The
first command allows you to retrieve the AFT Token ID associated to the configu-
ration of the scheduler attached to the host interface (we re-use the IFD of the
.punt interface as a parameter):

mx2020-fpc11:pfe> show class-of-service interface scheduler hierarchy index 49157
Interface Schedulers:
 Name Type Index Level Node-Token
 .punt IFD 49157 1 1071

And once the AFT token ID is translated with the second command (which is used
next), you can see both the scheduler configuration and the queue statistics (there’s
a preference for this last command):

mx2020-fpc11:pfe> show sandbox token 1071
[…]
Node Index:49157
Node Name:.punt
Parent Name:
Interface Rate:1.00Gbps
DelayBufferRate:1.00Gbps

Table: CoS Scheduler AFT Node

 Rate | Priority | Rate | Burst |
 Type | Group | (bps) | Size (B}|
----------+-----------+---------+---------+
Guaranteed| Nominal| 1.0G| 32.8K|
----------+-----------+---------+---------+
 Excess| Nominal| 1.0| 1.0|
 Excess| StrictHigh| 1.0| 1.0|
 Excess| High| 1.0| 1.0|
 Excess| Med High| 1.0| 1.0|
 Excess| Med Low| 1.0| 1.0|

 125 A Host Packet Targets the MX

 Excess| Low| 1.0| 1.0|
----------+-----------+---------+---------+
 Maximum| Nominal| 1.0G| 12.5M|
 Maximum| StrictHigh| 0.0| 0.0|
 Maximum| High| 0.0| 0.0|
 Maximum| Med High| 0.0| 0.0|
 Maximum| Med Low| 0.0| 0.0|
 Maximum| Low| 0.0| 0.0|

[…]
CoS Scheduler Node:
[…]
Enhanced Priority Mode : 0
Table: Queue Configuration

 Index | Shaping-Rate | Transmit-Rate | Burst | Weight | G-Priority | E-Priority | Tail-Rule |
WRED-Rule |
--------+--------------+---------------+--------+--------+------------+------------+-----------+
 8 | 1.0G | 0.0 | 32.8K | 60 | GL | EL | 639 | 0 |
 9 | 1.0G | 0.0 | 32.8K | 20 | GL | EH | 639 | 0 |
 10 | 1.0G | 0.0 | 32.8K | 127 | GL | EL | 639 | 0 |
 11 | 1.0G | 0.0 | 32.8K | 127 | GL | EH | 639 | 0 |
 12 | 1.0G | 0.0 | 32.8K | 20 | GL | EL | 639 | 0 |
 13 | 1.0G | 0.0 | 32.8K | 10 | GL | EL | 639 | 0 |
 14 | 1.0G | 0.0 | 32.8K | 1 | GL | EL | 639 | 0 |
 15 | 1.0G | 0.0 | 32.8K | 30 | GL | EL | 639 | 0 |
--------+--------------+---------------+--------+--------+------------+------------+-----------+
Queue Statistics:
 PFE Instance : 0
 Transmitted Dropped
 Bytes Packets Bytes Packets
--

 Queue:0 3064034488(929768 bps) 5273752(201 pps) 0(0 bps)
0(0 pps)
 Queue:1 8550945(968 bps) 58389(2 pps) 0(0 bps)
0(0 pps)
 Queue:2 6650(0 bps) 50(0 pps) 0(0 bps)
0(0 pps)
 Queue:3 5478047(1648 bps) 27951(2 pps) 0(0 bps)
0(0 pps)
 Queue:4 0(0 bps) 0(0 pps) 0(0 bps)
0(0 pps)
 Queue:5 417(0 bps) 3(0 pps) 0(0 bps)
0(0 pps)
 Queue:6 143(0 bps) 1(0 pps) 0(0 bps)
0(0 pps)
 Queue:7 0(0 bps) 0(0 pps) 0(0 bps)
0(0 pps)
[…]

If you wish to know exactly which queue is assigned to the inbound traffic of a
specific host, you can issue this command on the EA line card and have a look at
the “q#” row:

(mx vty)# show ddos asic punt-proto-maps
PUNT exceptions directly mapped to DDOS proto:

 126 Chapter 3: Follow the Packets

code PUNT name group proto pid q# bwidth burst
---- -------------------- --------- ------ ---- -- ------ ------
 1 PUNT_TTL ttl aggregate 3c00 5 2000 10000
 3 PUNT_REDIRECT redirect aggregate 3e00 0 2000 10000
 5 PUNT_FAB_OUT_PROBE_PKT fab-probe aggregate 5700 0 20000 20000
 7 PUNT_MAC_FWD_TYPE_HOST mac-host aggregate 4100 2 20000 20000
 8 PUNT_TUNNEL_FRAGMENT tun-frag aggregate 4200 0 2000 10000
[...]

And for ZT line card issue this similar command and focus on the “Q” row as
well:

door7302@mx2020> start shell pfe network fpc11
mx2020-fpc11:pfe> show ddos all-policers
Ddos Policers:

Group Policer Id BWidth Burst BWScale BTScale RcvTime P Q Rcvd Packets Drops
Rate(pps) States
host-path aggregate 0x0000 25000 25000 100 100 300 0 0 0 0 0
ok
resolve aggregate 0x0100 5000 10000 100 100 300 1 0 0 0 0
ok
resolve other 0x0101 2000 2000 100 100 300 0 6 0 0 0
ok
resolve ucast-v4 0x0102 3000 5000 100 100 300 0 6 0 0 0
ok
resolve mcast-v4 0x0103 3000 5000 100 100 300 0 6 0 0 0
ok
[...]

There is also another way to retrieve this information. Indeed you can capture a
host inbound packet after the LUSS processing. We explained the packet capture
procedure during part one of this chapter, but let’s do it again for our specific ping
packet. We have to find a pattern inside the packet to filter our capture. So let’s use
the IPv4 source address followed by IPv4 destination address as the pattern to use
for filtering: 0xC0A80301AC10FEFE.

But while doing this on the EA something strange happened!

The packet we captured seems to be coming from the fabric. The output says that
our packet was received by the fabric stream 164 (a4), and if you take a look at the
hexadecimal dump you should see your matching pattern, but the IPv4 header
seems to be cut.

Actually our packets are made of 512 bytes. Therefore as the size is more than
224bbytes, the packet we captured is the HEAD. When the packet is made of a
HEAD and a TAIL, the internal header is bigger than when there is no TAIL (this
means there are more internal fields appended before the packet). Remember that
the packet capture feature looks in the first 32 bytes by default. Thus, if the offset
is not correct, since the local memory of the LUSS is not cleared out, you’d think
you would get the packets you look for — but it’s a trap. In this case we captured a
self-fabric probe packet (see the Appendix). If you see the statement PType CTRL (1)
you can deduce that you captured internal packets/keepalives:

 127 A Host Packet Targets the MX

(mx vty)# test jnh 0 packet-via-dmem enable
(mx vty)# test jnh 0 packet-via-dmem capture 0x3 C0A80301AC10FEFE
(mx vty)# test jnh 0 packet-via-dmem capture 0x0
(mx vty)# test jnh 0 packet-via-dmem decode

Wallclock: 0x8d6d90ef <<<< Before LUSS Processing
Dispatch: callout 0 error 0 Size 0d8 X2EA_PKT_HEAD (1) ReorderId 172a Stream Fab (a4) PktLen 0200
ChnkTyp 1 TailLen 0140 ChnkDataOff 00 ChnkDataLen 10 ChkSum 00 ChnkPtr 06b1b7b
PType CTRL (1) SubType f PfeMaskF 0 OrigLabel 0 SkipSvc 0 IIF 00000
FC 00 DP 0 SkipSample 0 SkipPM 0 L2Type None (0) IsMcast 0 SrcChas 0 MemId 0
PfeNum 00 PfeMaskE 0 FabHdrVer 1
RwBuf 00000000 SvcCtx 0 ExtHdr 0 PfeMaskE2 0 Token 000000
1b950a400200000081400010006b1b7b1f000000000000010000000000000000
 010b57c0a80301ac <<< Some parts of the IPv4 header is missing
 10fefe08002c9800
 0000009cbb38ff72
 e3f5b649786960c0
 000000dadadadabc
 2cbd9a01b6dadada
Wallclock: 0x8d6d9479 <<<< After LUSS Processing
Reorder: EA2X_REORDER_SEND_TERMINATE (d) HasTail 1 Stat 0
ReorderId 172a Color 0 Qop DROP (1) Qsys WAN (0) Queue Drop (0)
Frag 0 RefCnt 0 OptLbk 0 NumTailHoles 00
ChnkTyp 1 TailLen 0140 ChnkDataOff 00 ChnkDataLen 10 ChkSum 00 ChnkPtr 06b1b7b
d972a0200000000005b79050040146d15d0020000000000081400010006b1b7b
 00

No worries. We mentioned earlier that you can set an offset to look for after the
first 32 bytes. Let’s do it:

(mx vty)# test jnh 0 packet-via-dmem enable
(mx vty)# test jnh 0 packet-via-dmem capture 0x3 C0A80301AC10FEFE 32
(mx vty)# test jnh 0 packet-via-dmem capture 0x0
(mx vty)# test jnh 0 packet-via-dmem decode
Wallclock: 0x20f548f5 <<<< Before LUSS Processing
Dispatch: callout 0 error 0 Size 0d8 X2EA_PKT_HEAD (1) ReorderId 09d8 Stream Wan (48e) PktLen 01fe
ChnkTyp 1 TailLen 013e ChnkDataOff 00 ChnkDataLen 10 ChkSum 00 ChnkPtr 014d947
IxPreClass 1 IxPort 00 IxMyMac 1
14ec48e001fe0000813e00100014d9474008
 4c96147536196487
 8863455108004500
 01ee000000003f01
Wallclock: 0x20f5a58b <<<< After LUSS Processing
Reorder: EA2X_REORDER_SEND_TERMINATE (d) HasTail 1 Stat 0
ReorderId 09d8 Color 0 Qop ENQUEUE (2) Qsys WAN (0) Queue Host (3f0)
Frag 0 RefCnt 0 OptLbk 0 NumTailHoles 00
ChnkTyp 1 TailLen 013e ChnkDataOff 00 ChnkDataLen 10 ChkSum 00 ChnkPtr 014d947
PType IPV4 (2) Subtype 0 Score 00 Reason 20 AddInfo 00203 IIF 001f0
L2Off 00 L3Off 0e PktLen 01fc StreamType 1 LUid 0 L2iif 00000 OrigPType IPV4 (2) OrigL3Off 0e BDid 0000
DdosProto 0900 FC 00 DP 0 TokenIsOIF 0 Token 000000 FlowId 000000 EgrIIF 00000

Looks good this time!

You can see that the packet comes from the input stream 1166 (0x48E) – the
CTRL Stream of et-9/0/0/ – the same that was found at the beginning part two in
this chapter. After LUSS processing we can finally find what we are looking for: the
WAN output queue assigned to this host inbound traffic is 1008 (0x3F8) – this
matches with what we saw previously. Don’t forget to disable packet capture:

 128 Chapter 3: Follow the Packets

(mx vty)# test jnh 0 packet-via-dmem disable

If needed you can do it the same thing on the ZT. The pattern to match is a little bit
different because the source address is different on this side:
C0A80401AC10FEFE

mx2020-fpc11:pfe> test jnh packet-via-dmem inst 0 enable
mx2020-fpc11:pfe> test jnh packet-via-dmem-capture inst 0 parcel-type-mask 0x3 match-
string C0A80401AC10FEFE offset 32
mx2020-fpc11:pfe> test jnh packet-via-dmem-capture inst 0 parcel-type-mask 0x0
mx2020-fpc11:pfe> test jnh packet-via-dmem-dump inst 0

As usual, disable the packet capture at the end:

mx2020-fpc11:pfe> test jnh packet-via-dmem inst 0 disable

Now the host packets are dequeued from the WAN queue managed by the XQSS
and come back to the MQSS. The WO block puts together a packet HEAD and
TAIL (if needed) to rebuild the entire packet. On the EA line card the WO block
forwards the packets plus an internal header to the uKernel through the PCIe in-
terface. This track is managed by the TOE (Traffic Offload Engine), a piece of
hardware inside the TRIO ASIC that does many things – on the EA it is used to
deliver host inbound packets to the uKernel, for instance.

You can, if needed, collect statistics from the TOE. The TOE manages eight
streams. For each stream you’ve got both RX and TX statistics. Pay attention here:
RX means packets received by the TOE from the MQSS – those packets will then
be sent to the uKernel. TX means packets sent to the MQSS – those packets have
been received by the uKernel. So in our case, regarding host inbound traffic, we
should have a look at the RX statistics of stream 0 (mapping of the Queue 0):

(mx vty)# show toe pfe 0 mqss 0 toe-inst 0 packet-stats stream 0
Stream 0: halt flag is NOT set
 TX Packets
MQSS TOE pfe 0 asic 0 toe 0 mailbox register 12 contains 0x0004b3e9
[…]
 TX Rates:
 packets per second: 1
 descriptors per second: 1
 bytes per second: 81
 descriptors completed since last count: 94
 TX Errors:
[…]
MQSS TOE pfe 0 asic 0 toe 0 mailbox register 11 contains 0x01d28ba8
[…]
 RX Rates: <<< FROM MQSS and then forwarded to uKERNEL
 packets per second: 202 <<<<< our 200pps pings
 descriptors per second: 202
 bytes per second: 107981
 completed since last count: 9550
 RX Errors:
[…]

 129 A Host Packet Targets the MX

On the ZT this process is totally different (even if the TOE is still there – it is used,
today, to collect some ASIC’s statistics, for instance). There is a dedicated internal
Ethernet port to send/receive host traffic and this port is used to forward the host
inbound traffic to the packetIO module. If you need to collect statistics about the
WO stream attached to this given Ethernet port you can follow the next proce-
dure. First retrieve the connection number of the WO stream attached to the inter-
nal GE port. Just look for the GE type. Actually there are two internal Ethernet
ports per ZT – only the first one is used today. So, for us, the WO stream attached
to the internal host port is 1089 and its connection number is 50, as shown here:

door7302@mx2020> start shell pfe network fpc11.0
(mx vty)# show mqss 0 phy-stream list 1
Egress PHY stream list

--
Stream Type Enabled NIC PIC Connection L1 Node
Number Slot Slot Number
--
[...]
1089 GE Yes 255 255 50 0 <<<< Internal GE port
1090 GE Yes 255 255 51 255
1091 Crypto Yes 255 255 53 2
1092 WAN Yes 11 0 40 4
1100 WAN Yes 11 0 30 5
[...]

With this information you can configure a WO counter for this specific connection
number. The 0 50 means counter 0 – connection number 50:

(mx vty)# test mqss 0 wo stats conn 0 50

Finally, issue the well-known command to display WO statistics and have a look
at the counter 0:

(mx vty)# show mqss 0 wo stats
WO statistics

Counter set 0
 Connection number mask : 0x3f
 Connection number match : 0x32
 Transmitted packets : 14766 (203 pps) <<<< our pings
 Transmitted bytes : 8162781 (899168 bps)

Reset your WO counterback at end:

(mx vty)# test mqss 0 wo stats default

It’s time to leave the ASIC and move to the uKernel (for the EA) or packetIO (for
the ZT).

On the EA line card the host traffic coming from the WAN is received on a PCIe
interface. It then processes by several threads of the uKernel process. We already
mentioned that the inbound traffic is rate-limited by the second level of DDoS

 130 Chapter 3: Follow the Packets

protection. The traffic that is accepted is then encapsulated into a proprietary tun-
neling protocol named TTP (Trivial Tunneling Protocol). On the EA you can re-
trieve statistics of the TTP thread by issuing this command:

(mx vty)# show ttp statistics
TTP Statistics:
 Receive Transmit
 ---------- ----------
 L2 Packets 33850 0
 L3 Packets 21071434 0
 Drops 0 0
 Netwk Fail 0 0
 Queue Drops 0 0
 Unknown 0 0
 Coalesce 0 0
 Coalesce Fail 0 0

TTP Transmit Statistics:
 Queue 0 Queue 1 Queue 2 Queue 3
 ---------- ---------- ---------- ----------
 L2 Packets 0 0 0 0
 L3 Packets 0 0 0 0

TTP Receive Statistics:
 Control High Medium Low Discard
 ---------- ---------- ---------- ---------- ----------
 L2 Packets 0 21822 12028 0 0
 L3 Packets 0 39261 21032173 << Pings 0 0
 Drops 0 0 0 0 0
 Queue Drops 0 0 0 0 0
 Unknown 0 0 0 0 0
 Coalesce 0 0 0 0 0
 Coalesce Fail 0 0 0 0 0

Just have a look at the information marked as Receive. Indeed, like on TOE, Receive
means packets received by the TTP thread, processed (encapsulated), and forward-
ed to the RE. Notice, the TTP receive thread has got four queues (control, high, me-
dium, and low). You can also check if there are discards at this level. The traffic,
once encapsulated, is pushed to the RE via one Ethernet port attached to the Ether-
net Switch, embedded on the line card. The Figure 3.10 illustrates the trip made by
the host inbound packets into the EA line card until they reach the RE.

 131 A Host Packet Targets the MX

Figure 3 .10 Host Inbound Processing On the EA

As you can see in Figure 3.10, the Linux OS is connected to the Ethernet Switch by
two Ethernet ports (one per RE). Let’s go to the Linux OS of the line card and issue
two Linux ip commands:

door7302@mx2020> start shell
% su
Password: xxx
mx2020:/var/home/remote-su # rsh -Ji 128.0.0.25

mx2020-fpc9:~# ip link 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode
DEFAULT group default qlen 1
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0: <BROADCAST,MULTICAST,NOARP,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT group default
qlen 1000
 link/ether 02:00:00:00:00:19 brd ff:ff:ff:ff:ff:ff
3: peth1: <BROADCAST,MULTICAST,NOARP,UP,LOWER_UP> mtu 9600 qdisc mq state UP mode DEFAULT group
default qlen 1000
 link/ether 00:00:00:00:00:ff brd ff:ff:ff:ff:ff:ff
4: sit0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN mode DEFAULT group default qlen 1
 link/sit 0.0.0.0 brd 0.0.0.0
5: eth1@peth1: <BROADCAST,MULTICAST,NOARP,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT
group default qlen 1000
 link/ether 02:00:00:00:00:19 brd ff:ff:ff:ff:ff:ff
6: eth_asic@peth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9600 qdisc noqueue state UP mode DEFAULT
group default qlen 1000
 link/ether 00:00:00:00:00:fe brd ff:ff:ff:ff:ff:ff

 132 Chapter 3: Follow the Packets

mx2020-fpc9:~# ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,NOARP,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000
 link/ether 02:00:00:00:00:19 brd ff:ff:ff:ff:ff:ff
 inet 128.0.0.25/2 brd 191.255.255.255 scope global eth0
 valid_lft forever preferred_lft forever
3: peth1: <BROADCAST,MULTICAST,NOARP,UP,LOWER_UP> mtu 9600 qdisc mq state UP group default qlen 1000
 link/ether 00:00:00:00:00:ff brd ff:ff:ff:ff:ff:ff
4: sit0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN group default qlen 1
 link/sit 0.0.0.0 brd 0.0.0.0
5: eth1@peth1: <BROADCAST,MULTICAST,NOARP,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
qlen 1000
 link/ether 02:00:00:00:00:19 brd ff:ff:ff:ff:ff:ff
6: eth_asic@peth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9600 qdisc noqueue state UP group default
qlen 1000
 link/ether 00:00:00:00:00:fe brd ff:ff:ff:ff:ff:ff

You can see there are two physical ports:

 � eth0

 � eth1 renamed peth1: p stands for physical

� peth1 is shared for two usages. There are two sub-interfaces:

� eth1@peth1 (alias eth1): which is actually similar to eth0

� eth_asic@peth1 (alias eth_asic): which is the logical interface (VLAN) used
to push control plane traffic from the RE to the ASIC (this is the host outbound
case and we’ll cover it during the next section of this chapter).

The internal IP address (here 128.0.0.25) is used to established sockets with the
RE and it is configured either on eth0 or eth1@peth1, depending on if the master
routing engine is RE0 or RE1. If RE0 is the master then the IP address will be as-
signed to eth0: this is the case, here. Eth0 and eth1@peth1 are physically connect-
ed to the interface PMB-ETH0 and PMB-ETH1 of the Ethernet Switch. As
observed, both REs are also remotely connected to this switch by one Ethernet
port: the CB0 port attached to RE0 and CB1 to RE1. Remember there is also an
Ethernet switch embedded on the RE/CB. The information related to this RE Eth-
ernet switch is accessible by issuing these following commands:

 � show chassis ethernet-switch

 � show chassis ethernet-switch statistics <port>

If needed, you can also collect statistics of the embedded Ethernet switch on the
EA line card. Let’s issue the following command to display how physical ports of
the Ethernet Switch are connected:

 133 A Host Packet Targets the MX

(mx vty)# show mesw ports
GE-Port | Link | Speed | Auto-Neg | Port-map

0-0 UP 1000 Disabled EA2-0
0-1 UP 1000 Disabled EA2-1
0-2 UP 1000 Disabled EA3-0
0-3 UP 1000 Disabled EA3-1
0-4 UP 1000 Disabled EA0-0
0-5 UP 1000 Disabled EA0-1
0-6 UP 1000 Disabled EA1-0
0-7 UP 1000 Disabled EA1-1
0-8 UP 1000 Disabled CB0 << to RE0
0-9 UP 1000 Disabled CB1 << to RE1
0-10 UP 1000 Disabled PTP-1588
0-11 DOWN 1000 Disabled MIC0
0-12 DOWN 1000 Disabled MIC1
0-13 UP 1000 Disabled PMB-ETH0 << to eth0
0-14 UP 1000 Disabled PMB-ETH1 << to eth1@peth1
0-15 DOWN 1000 Disabled N/C

We refind the four ports, already mentioned, attached to the Linux OS and remotely to
both REs. But, as observed, you can see there are also two Ethernet ports directly con-
nected to each EA ASIC. The first port (EAx-0) is used for the PTP synchronization.
The second port (EAx-1) is used to convey host outbound traffic – more detail about it
later. You can also display the VLAN assignment by using this second command and
thus deduce which port can communicate with other ports:

(mx vty)# show mesw port_vlan 0
MESW port VLAN assignments
Port VID

0 3
1 2
2 3
3 2
4 3
5 2
6 3
7 2
8 1
9 2
10 3
11 3
12 3
13 1
14 2
15 1

 134 Chapter 3: Follow the Packets

Finally, you can retrieve per port statistics by issuing the next command. The first
number means the switch number, which is always 0. The second number is the
port number. Let’s display statistics of the PMB-ETH0 port (port 13):

(mx vty)# show mesw statistics 0 13
Traffic statistics
 34229350 good octets received
 134562896 good octets sent
 Packet statistics
 0 Undersize packets received
 0 Oversize packets received
 0 Jabber packets received
 Frame statistics
 0 MAC Transmit errors
 259317 MAC good frames received
 1551776 MAC Good frame sent
 0 MAC bad frames received
 0 bad octets received
 259305 Broadcast frames received
 1551775 Broadcast frames sent
 10 Multicast frames received
 0 Multicast frames sent
 1033403 Frames of 64 byte size
 12 Frames of 65 to 127 byte size
 777677 Frames of 128 to 255 byte size
 0 Frames of 256 to 511 byte size
 0 Frames of 512 to 1023 byte size
 0 Frames of size 1024 and more
 0 Excessive collisions
 0 Unrecognized MAC control frames received
 0 Flow control frames sent
 0 Good flow control messages received
 0 Drop events
 0 Fragemnts received
 Other errors
 0 MAC Receive error
 0 CRC errors
 0 Collisions in MAC
 0 Late collisions in MAC

On the ZT line card, we leave the ASIC by using the Ethernet port attached to the
ZT. The physical and logical internal connectivity is quite different on the ZT. Fig-
ure 3.11 illustrates this.

 135 A Host Packet Targets the MX

Figure 3 .11 Host Inbound Processing On ZT

On the ZT, there are also two physical interfaces, eth0 and eth1, but on this type
of line card the eth0 is dedicated to communicate with the upper level (the REs),
and the eth1 to the lower level (the ZT ASICs). Let’s again issue the two ip com-
mands on the Linux OS of the ZT line card:

door7302@mx2020> start shell
% su
Password: xxx
mx2020:/var/home/lab # ssh -Ji root@128.0.0.27
mx2020-fpc11:/# ip link
[…]
2: eth0: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT group
default qlen 1000
 link/ether 02:00:00:00:00:1b brd ff:ff:ff:ff:ff:ff
3: eth1: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP> mtu 9600 qdisc mq state UP mode DEFAULT group
default qlen 1000
 link/ether 00:00:00:00:00:ff brd ff:ff:ff:ff:ff:ff
[…]
8: vib: <BROADCAST,MULTICAST,NOARP,PROMISC,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT
group default qlen 1000

 136 Chapter 3: Follow the Packets

 link/ether 02:00:00:00:00:1b brd ff:ff:ff:ff:ff:ff
9: eth0_cb0@eth0: <BROADCAST,MULTICAST,NOARP,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT
group default qlen 1000
 link/ether 02:00:00:00:00:1b brd ff:ff:ff:ff:ff:ff
10: eth0_cb1@eth0: <BROADCAST,MULTICAST,NOARP,UP,LOWER_UP> mtu 1500 qdisc noqueue master vib state UP
mode DEFAULT group default qlen 1000
 link/ether 02:00:00:00:00:1b brd ff:ff:ff:ff:ff:ff
11: eth_fp0@eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9600 qdisc noqueue state UP mode DEFAULT group
default qlen 1000
 link/ether 00:00:00:00:05:fe brd ff:ff:ff:ff:ff:ff
12: eth_fp1@eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9600 qdisc noqueue state UP mode DEFAULT group
default qlen 1000
 link/ether 00:00:00:00:04:fe brd ff:ff:ff:ff:ff:ff
[…]

mx2020-fpc11:/# ip addr
[…]
2: eth0: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000
 link/ether 02:00:00:00:00:1b brd ff:ff:ff:ff:ff:ff
 inet6 fe80::ff:fe00:1b/64 scope link
 valid_lft forever preferred_lft forever
3: eth1: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP> mtu 9600 qdisc mq state UP group default qlen 1000
 link/ether 00:00:00:00:00:ff brd ff:ff:ff:ff:ff:ff
 inet6 fe80::ff:fe00:1b/64 scope link
 valid_lft forever preferred_lft forever
[…]
8: vib: <BROADCAST,MULTICAST,NOARP,PROMISC,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
qlen 1000
 link/ether 02:00:00:00:00:1b brd ff:ff:ff:ff:ff:ff
 inet 128.0.0.27/2 scope global vib
 valid_lft forever preferred_lft forever
9: eth0_cb0@eth0: <BROADCAST,MULTICAST,NOARP,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group
default qlen 1000
 link/ether 02:00:00:00:00:1b brd ff:ff:ff:ff:ff:ff
10: eth0_cb1@eth0: <BROADCAST,MULTICAST,NOARP,UP,LOWER_UP> mtu 1500 qdisc noqueue master vib state UP
group default qlen 1000
 link/ether 02:00:00:00:00:1b brd ff:ff:ff:ff:ff:ff
11: eth_fp0@eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9600 qdisc noqueue state UP group default qlen
1000
 link/ether 00:00:00:00:05:fe brd ff:ff:ff:ff:ff:ff
12: eth_fp1@eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9600 qdisc noqueue state UP group default qlen
1000
 link/ether 00:00:00:00:04:fe brd ff:ff:ff:ff:ff:ff
[…]

Actually there are two sub interfaces, eth0_cb0 and eth0_cb1, and they are dedi-
cated, respectively, to communicate with RE0 and RE1. Only one sub interface is
used by packetIO depending on which RE is the master. There is also a virtual in-
terface named vib that hosts the IP address of the MPC to communicate with the
REs. Depending on which RE is primary, the vib interface is bounded to the eth0_
cbX interface. Hereafter, RE0 is primary, so eth0_cb0 is currently used and there-
fore bounded to vib virtual Layer 3 port:

mx2020-fpc11:/# brctl show vib
bridge name bridge id STP enabled interfaces
vib 8000.02000000001b no eth0_cb1

 137 A Host Packet Targets the MX

On the other side, depending on the number of ZT ASICs, there is one sub inter-
face (physically attached to eth1) used by packetIO to communicate with each ZT
ASIC: those interfaces are named like that: eth_fp0, eth_fp1 … until eth_fp7 (on
MPC11e).

The ZT MPC provides some cool packetIOs statistics. You can first use this com-
mand to see statistics of all packetIO interfaces:

door7302@mx2020> start shell pfe network fpc11
mx2020-fpc11:pfe> show host-path ports
Name State Tx-Packets Tx-Rate(pps) Rx-Packets Rx-Rate(pps) Drop-
Packets Drop-
Rate(pps)
===
fp7 READY 112232 3 30564 3 0 0
fp6 READY 21747 1 21788 1 0 0
ppm0 READY 55895 1 56107 1 0 0
pktin0 READY 0 0 81272 0 0 0
am0 READY 0 0 0 0 0 0
cp0 READY 930967 201 938639 202 0 0
fp0 READY 908022 201 898920 201 0 0
fp1 READY 21747 1 21762 1 0 0
fp2 READY 72368 1 65404 1 0 0
fp3 READY 21747 1 21860 1 0 0
fp4 READY 21747 1 21831 1 0 0
fp5 READY 70319 1 79284 1 0 0

This command shows us that fp0 sub interface is currently receiving 200pps (these
are our ping echo-request coming from ZT ASIC 0 (PFE 0)). There is also a nice
python script available on the Linux host OS the line card that allows you to mon-
itor in real time the above statistics (like monitor “monitor interface traffic”):

door7302@mx2020> start shell
% su
Password:
ssh -Ji root@128.0.0.27
Last login: Wed May 20 15:21:43 2020 from 128.0.0.1
--- JUNOS 20.1R1.3-EVO Linux (none) 4.8.28-WR2.2.1_standard-
gcf18df4 #1 SMP PREEMPT Tue Jan 28 19:10:46 PST 2020 x86_64 x86_64 x86_64 GNU/Linux
mx2020-fpc11:/# monitor_interface_traffic.py

These packets have been processed by packetIO modules (DDoS protection Level
2, TTP encapulation) and forwarded to the RE by using the CP0 interface (200pps
in the TX direction). The CP0 is linked to the logical interface eth0_cb0 as the
master RE is currently RE0. Eth0_cb0 is itself attached to physical port eth0.

Remember, each FP interface has eight ingress/egress queues and CP0 has only
eight egress queues. You can display detailed statistics of FP or CP interfaces.

For our given FP interface, you will see the 200pps ping-echo requests are received
by the TX queue 4. The RX 200pps displayed are actually the echo-reply coming
from the RE (we will cover that later):

 138 Chapter 3: Follow the Packets

door7302@mx2020> start shell pfe network fpc11
mx2020-fpc11:pfe> show host-path ports fp0
Host Path Port
 Name : fp0
[…]
Packet Stats:
Name Tx-Packets Tx-Rate(pps) Rx-Packets Rx-Rate(pps)
===
If 1027899 201 1018823 202
Transport 1027899 201 1018823 202
Io 1027899 201 1020650 202
Io-Prio-0 942738 200<<egress Q 0 0
Io-Prio-1 0 0 0 0
Io-Prio-2 0 0 0 0
Io-Prio-3 62820 0 0 0
Io-Prio-4 0 0 950302 200<<ingress Q
Io-Prio-5 0 0 23 0
Io-Prio-6 0 0 51277 2
Io-Prio-7 22341 1 17221 0

Now issue the same command for the CP0 port. As mentioned earlier, the CP0 in-
terface performs only egress queuing. Hereafter, we will see the 200pps of ping
echo-requests processed by packetIO, enqueued in TX queue 4, and finally for-
warded to RE:

mx2020-fpc11:pfe> show host-path ports cp0
Host Path Port
 Name : cp0
[…]
Packet Stats:
Name Tx-Packets Tx-Rate(pps) Rx-Packets Rx-Rate(pps)
===
If 1097239 201 1104877 201
Transport 1097239 201 1104877 201
Io 1097239 201 1104877 201
Io-Prio-0 66 0 0 0
Io-Prio-1 0 0 0 0
Io-Prio-2 0 0 0 0
Io-Prio-3 0 0 0 0
Io-Prio-4 1008559 200<<egress Q 0 0
Io-Prio-5 72 0 0 0
Io-Prio-6 88542 1 0 0
Io-Prio-7 0 0 0 0

Finally, it is also possible on the ZT line card to collect information about the em-
bedded Ethernet Switch. These statistics are managed by the platformd module;
therefore you have to connect to the old shell:

door7302@mx2020> start shell pfe network fpc11.0
(mx vty)# show esw ports
Dev/Port Mode Link Speed Duplex Loopback Mode Port-map
--------- ---------------- ----- ----- ------ ------------- ---------
0/0 1000_BaseX Up 1G Full None ZT7
0/1 1000_BaseX Up 1G Full None ZT6
0/2 1000_BaseX Up 1G Full None ZT5
0/3 1000_BaseX Up 1G Full None ZT4

 139 A Host Packet Targets the MX

0/4 1000_BaseX Up 1G Full None ZT3
0/5 1000_BaseX Up 1G Full None ZT2
0/6 1000_BaseX Up 1G Full None ZT1
0/7 1000_BaseX Up 1G Full None ZT0
0/8 1000_BaseX Up 1G Full None CB0
0/9 1000_BaseX Up 1G Full None CB1
0/10 n/a Down n/a Full N/A N/C
0/11 n/a Down n/a Full N/A N/C
0/12 n/a Down n/a Full N/A N/C
0/13 KR Up 10G Full None PMB-ETH0
0/14 KR Up 10G Full None PMB-ETH1
0/15 n/a Down n/a Full N/A N/C

To retrieve statistics of a given port, issue the second command. The first number
means the switch number, which is always 0. The second number is the port
number:

(mx vty)# show esw statistics 0 13
Good Octets Received: 780595144
Bad Octets Received: 0
MAC Transmit Error: 0
BRDC Packets Received: 46174
MC Packets Received: 0
Size 64: 135
Size 65 to 127: 849229
Size 128 to 255: 342789
Size 256 to 511: 68884
Size 512 to 1023: 2145479
Size 1024 to 1518: 0
Size 1519 to Max: 0
Good Octets Sent: 1842085313
Excessive Collision: 0
MC Packets Sent: 0
BRDC Packets Sent: 271584
FC Sent: 0
Good FC Received: 0
Drop Events: 0
Undersize Packets: 0
Fragments Packets: 0
Oversize Packets: 0
Jabber Packets: 0
MAC RX Error Packets Received: 0
Bad CRC: 0
Collisions: 0
Late Collision: 0
FC Received: 0
Good UC Packets Received: 1631327
Good UC Packets Sent: 2270946
Multiple Packets Sent: 0
Deferred Packets Sent: 0

Both our streams of 200pps have successfully passed the DDoS protection levels 1
and 2, respectively, managed by the ASIC and the line card’s CPU. Now those two
flows arrive on the RE (through the TTP tunnel).

Remember TTP is used between the MPC and the RE to encapsulated control
plane/OAM packets. The TTP header allows conveying the internal piece of

 140 Chapter 3: Follow the Packets

information collected, in particular, during LUSS processing. For instance, the
TTP header carries the type of packet and the DDoS protocol identifier ,which will
be used by the third DDoS protection level.

Is it possible to decode the TTP header?

Actually yes! Let’s first identify the internal port used by your RE to communicate
with the MPCs.

The setup in this chapter uses an MX2020 with the RE-MX2000-1800X4 model.
On this type of RE, TTP traffic coming from MPC is received on the em0 internal
Ethernet port..

How do I know that?

First you need to refer to this document: https://www.juniper.net/documentation/
en_US/release-independent/junos/topics/reference/general/routing-engine-m-mx-t-
series-support-by-chassis.html .

For all models of routers and all models of REs available it lists the name(s) of the
internal interfaces (have a look at the Internal Ethernet Interface column). In our
case, the output table mentions two internal ports: em0, em1.

To find which port is used to communicate with the MPCs, you just have to issue
this hidden command (from the classic Junos CLI):

door7302@mx2020> show tnp addresses | match "IF|fpc"
 Name TNPaddr MAC address IF MTU E H R
fpc6 0x16 02:00:00:00:00:16 em0 1500 4 0 3
fpc9 0x19 02:00:00:00:00:19 em0 1500 4 0 3
fpc11 0x1b 02:00:00:00:00:1b em0 1500 2 0 3
fpc18 0x22 02:00:00:00:00:22 em0 1500 2 0 3

Have a look at the IF column: for us this is the em0, which should receive (and
send) TTP traffic coming from (to) the MPCs.

The last step before decoding the TTP: we must find the IP address of the MPCs.

We already said that each MPC has an internal IP address within the range
128.0.0.0/2. To deduce the IP address assigned to a given MPC, follow this
formula:

 � The IP of an MPC = 128.0.0.[16 + MPC slot number]

 � The master RE always has the IP 128.0.0.1.

Now, we have everything we need to capture and decode, for example, TTP traffic
coming from the MPC in slot 9. The MPC in slot 9 has the IP address 128.0.0.25
(16+9). We now use the classic monitor traffic interface command to capture the
TTP traffic coming from MPC in slot 9:

https://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/general/routing-engine-m-mx-t-series-support-by-chassis.html
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/general/routing-engine-m-mx-t-series-support-by-chassis.html
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/general/routing-engine-m-mx-t-series-support-by-chassis.html

 141 A Host Packet Targets the MX

door7302@mx2020> monitor traffic interface em0 matching "ip src 128.0.0.25" layer2-headers detail
In IP (tos 0x0, ttl 64, id 33897, offset 0, flags [DF], proto: TTP (84), length: 542) 128.0.0.25 >
128.0.0.1: TTP, type L3-rx (3), ifl_input 324, pri medium (3), length 502, proto ipv4 (2), hint(s)
[none] (0x00008010), queue 0, nh_index 884
 TTP TLV's:
 Num :: Type - Length - Value

 1 :: 2 - 4 - 0x9 0x0 0x0 0x0

 ifd_mediatype Ethernet (1), ifl_encaps Ethernet (14), cookie-len 0, payload IP
 -----payload packet-----
 IP (tos 0x0, ttl 63, id 0, offset 0, flags [none], proto: ICMP (1), length: 494) 192.168.3.1 >
172.16.254.254: ICMP echo request, id 0, seq 0, length 474

It’s magic! Junos’s tcpdump decodes the TTP. We can retrieve, as mentioned, the
type of traffic, the protocol, the DDoS protection ID (0x900 = ICMP aggregate),
and finally, our ICMP echo-request packet (tunneled).

Once decapsulated by the master RE, the packets are handled by Level 3 of DDoS
protection (packets had been already identified as ICMP aggregate traffic by the
LUSS – with information conveyed in the TTP header):

door7302@mx2020> show ddos-protection protocols icmp statistics terse
Packet types: 1, Received traffic: 1, Currently violated: 0

Protocol Packet Received Dropped Rate Violation State
group type (packets) (packets) (pps) counts
icmp aggregate 3423801 0 400 0 ok

You can see that both streams of 200pps each are well accepted by the third level
of policing, as we didn’t violate (the sum of both flows = 400pps) the threshold of
20Kpps.

This last command ends the explanation about how host inbound traffic is man-
aged by the EA and ZT Line cards. We are now moving to the last segment in fol-
lowing the RE’s answers to our 400pps echo-requests.

Tracking Host Outbound Traffic

It’s time for the IP stack of the RE to reply to the echo-requests.

The echo-reply packets are built by the RE kernel and we can easily see them by
using the well-known monitor traffic interface command:

door7302@mx2020> monitor traffic interface et-9/0/0 no-resolve matching "icmp[icmptype]==icmp-
echoreply" layer2-headers
Listening on et-9/0/0, capture size 96 bytes
Out 4c:96:14:75:36:19 > 64:87:88:63:45:51, ethertype IPv4 (0x0800), length 74: truncated-ip - 434
bytes missing! 172.16.254.254 > 192.168.3.1: ICMP echo reply, id 0, seq 0, length 474
Out 4c:96:14:75:36:19 > 64:87:88:63:45:51, ethertype IPv4 (0x0800), length 74: truncated-ip - 434
bytes missing! 172.16.254.254 > 192.168.3.1: ICMP echo reply, id 0, seq 0, length 474
Out 4c:96:14:75:36:19 > 64:87:88:63:45:51, ethertype IPv4 (0x0800), length 74: truncated-ip - 434
bytes missing! 172.16.254.254 > 192.168.3.1: ICMP echo reply, id 0, seq 0, length 474

 142 Chapter 3: Follow the Packets

You can notice the Layer 2 header is already computed by the RE. Those echo-re-
plies are then pushed to the right MPC (found by the RE after a kernel lookup
based on its local RIB) on which the packets must be sent out. The prior command
output showed us the packets before their TTP encapsulation. If you want to see
the TTP encapsulation you must capture traffic on the em0, as we did earlier. Let’s
do it. Here only traffic sent to the MPC in slot 11 (the IP address 128.0.0.27
(16+11)):

door7302@mx2020> monitor traffic interface em0 matching "ip dst 128.0.0.27" detail layer2-headers
Out 02:01:01:00:00:05 > 02:00:00:00:00:1b, ethertype IPv4 (0x0800), length 570: (tos 0x0, ttl 64, id
11889, offset 0, flags [none], proto: TTP (84), length: 556) 128.0.0.1 > 128.0.0.27: TTP, type L2-tx
(2), ifd_output 228, pri unknown (0), length 516, proto unkwn (0), hint(s) [no key lookup]
(0x00009009), queue 0, nh_index 0
 TTP TLV's:
 Num :: Type - Length - Value

 1 :: 21 - 4 - 0x0 0x0 0x1 0xf4

 ifd_mediatype Ethernet (1), ifl_encaps Ethernet (14), cookie-len 0, payload ETHER
 -----payload packet-----
 4c:96:14:75:37:ab > 64:87:88:63:45:a3, ethertype IPv4 (0x0800), length 516: (tos 0x0, ttl 64,
id 11887, offset 0, flags [none], proto: ICMP (1), length: 494) 172.16.254.254 > 192.168.4.1: ICMP echo
reply, id 0, seq 0, length 474

As shown in the output, the echo-reply is totally embedded (Layer 2 included) into
the TTP packet. The TTP provides some pre-computed information to the lower
layers, especially the egress interface (IFD and the IFL (provided through the TLV))
and the queue assigned (this is the relative WAN queue number: 0 to 7). Here
queue 0 is assigned. Remember host outbound queue assignment is something
configurable and there are two ways to modify the default host queue assignment,
either:

 � With the knob set class-of-service host-outbound-traffic

 � By using an egress firewall filter applied to the loopback0.

We are going to illustrate the modification of the host queue assignment by using
the first knob that allows us to globally modify the host outbound queue. First of
all, let’s have a look back at our CoS configuration:

{master}[edit class-of-service]
door7302@mx2020# show
[…]
forwarding-classes {
 class BEST_EFFORT queue-num 0 priority low;
 class SILVER queue-num 1 priority high;
 class GOLD queue-num 2 priority high;
 class PREMIUM queue-num 4 priority high;
 class HOST_GEN queue-num 3 priority high;
 class CONTROL_PLANE queue-num 5 priority high;
}
[…]

 143 A Host Packet Targets the MX

We have six forwarding-classes. The aim of our test is to force the host outbound
traffic to use the FC HOST_GEN – queue number 3. Let’s commit this piece of
config:

door7302@mx2020> edit exclusive
{master}[edit]
door7302@mx2020# set class-of-service host-outbound-traffic forwarding-class HOST_GEN
door7302@mx2020# commit and-quit

Now, let’s issue back the previous monitor traffic interface command and check
back at the TTP header:

monitor traffic interface em0 matching "ip dst 128.0.0.27" detail layer2-headers
Out 02:01:01:00:00:05 > 02:00:00:00:00:1b, ethertype IPv4 (0x0800), length 570: (tos 0x0, ttl 64, id
9305, offset 0, flags [none], proto: TTP (84), length: 556) 128.0.0.1 > 128.0.0.27: TTP, type L2-tx
(2), ifd_output 228, pri unknown (0), length 516, proto unkwn (0), hint(s) [no key lookup]
(0x10009009), queue 3, nh_index 0
 TTP TLV's:
 Num :: Type - Length - Value

 1 :: 21 - 4 - 0x0 0x0 0x1 0xf4

 ifd_mediatype Ethernet (1), ifl_encaps Ethernet (14), cookie-len 0, payload ETHER
 -----payload packet-----
 4c:96:14:75:37:ab > 64:87:88:63:45:a3, ethertype IPv4 (0x0800), length 516: (tos 0x0, ttl 64,
id 9303, offset 0, flags [none], proto: ICMP (1), length: 494) 172.16.254.254 > 192.168.4.1: ICMP echo
reply, id 0, seq 0, length 474

As you can now see, the queue field of the TTP header has the value 3, which is,
based on our CoS configuration, the HOST_GEN forwarding class.

Let’s keep this CoS configuration enabled for the rest of this section.

On the EA line card, the TTP traffic, transmitted by the RE, is handled in two dif-
ferent ways depending on the configuration. By default, and since Junos 17.4, an
enhanced mode named TurboTX is available and allows handling high rates of
control plane packets generated by the RE. Before this feature was introduced, the
TTP handling and decapsulation was performed by a dedicated thread of the uKe-
rnel. Remember that uKernel is a single mono-core process.

To enhance the MPC’s performances, a new dedicated process has been developed
for transmitting more control plane packets per second. Turbo-TX is using the sec-
ond CPU core on the line card, which is mostly idle. This way it can achieve
~80kpps transmit side. In addition, with a raw socket filter (BPF filter) the Tur-
boTX feature allows bypassing the uKernel for the management of some TTP
packets (usually L2 packets directly generated by the RE). The TurboTX process
removes the TTP header, adds another internal header understandable by the EA
ASICs, and finally forwards the control plane traffic to a dedicated Ethernet port
attached to the EA ASIC. Actually it’s a sub-interface named eth_asic attached
physically to the eth1 port.

 144 Chapter 3: Follow the Packets

When TurboTX is not available, or disabled by using the set chassis turbotx-dis-
able command, the TTP header is handled and removed by the uKernel, which
then forwards the control plane packets (with additional info) to the EA ASIC
through the PCIe interface. Without TurboTX, packets coming in on the ASIC
from the PCIe interface are received by the TOE block.

On the EA, with TurboTX enabled, you can collect statistics of the TurboTX pro-
cess by issuing the following command (have a look at the second part of the out-
put regarding TurboTX):

(mx vty)# show ttp statistics
[…]
Turbotx Stats:
TTP Receive Stats:

 Num Recv 3063964 (200/sec) <ping with TTP header from RE
 Num Recv Errors 0 (0 /sec)
 Num Flush Writes 0 (0 /sec)
 Num Flush Reads 0 (0 /sec)

TTP Transmit Stats:

 Num Xform Fails 0 (0 /sec)
 Num Sends 3063964 (200 /sec) <ping without TTP to EA
 Num Send Fails 0 (0 /sec)
 Num flush 2964777 (190 /sec)
 Num Parse Fail 0 (0 /sec)
 Num Platform Xform Fails 0 (0 /sec)
 Num Invalid Instance 0 (0 /sec)
 Num Ukern Reroute Packets 0 (0 /sec)

TX Ring Stats:

 Queued Packet : 0
 Flush Success : 2964777
 Flush Fail : 0
 Flush Retry : 0

Buffer Pool Stats:

 Num Buf Allocs : 3065051
 Num Buf Frees : 3063964

State Manager:

 Init OK : yes
 DB PID : 963
 Poller Errors : 0

Total Stats:

 Receives : 3063964
 Receive Drops : 0
 Send : 3063964
 Send Drops : 0

 145 A Host Packet Targets the MX

The same command can be used when TurboTX is disabled to check the TTP sta-
tistics received and handled by the TTP thread of the uKernel. You can also check
when TurboTX is not enabled in the TOE statistics. Remember TX stats on TOE
means received from upper layer (via PCIe) and transmitted internally to the ASIC.
Let’s issue the following command after disabling the TurboTX feature:

(mx vty)# show toe pfe 0 mqss 0 toe-inst 0 packet-stats
Stream 0: halt flag is NOT set
 TX Packets
MQSS TOE pfe 0 asic 0 toe 0 mailbox register 12 contains 0x000d843b
[…]
 TX Rates:
 packets per second: 202 <<< from uKernel and TX to MQSS
 descriptors per second: 202
 bytes per second: 105140
 descriptors completed since last count: 266
 TX Errors:
[…]

Let’s enable the TurboTX feature back and have a look at Figure 3.12, which sum-
marizes what we discussed before and gives you an overview of the end of the trip
for the host outbound traffic inside the egress EA ASIC.

Figure 3 .12 Host Outbound Processing On the EA

 146 Chapter 3: Follow the Packets

If needed you can again collect statistics on the Ethernet switch by using these two
commands:

 � show mesw ports

 � show mesw statistics <port-number>

On the ZT line card, it’s quite different. Since the software that manages all host
traffic has been completely rethought (packetIO), there is no need for the Tur-
boTX feature. Indeed, TTP packets coming from the RE are received by the CP0
interface, processed by the packetIO module (TTP decap, adding internal header),
and then they are enqueued in one queue of the FPx interface attached to the right
ZT ASIC, and finally forwarded to the ZT ASIC via the dedicated Ethernet port.
Once again you can check packetIO statistics by issuing the following commands:

door7302@mx2020> start shell pfe network fpc11
mx2020-fpc11:pfe> show host-path ports
Name State Tx-Packets Tx-Rate(pps) Rx-Packets Rx-Rate(pps) Drop-
Packets Drop-Rate(pps)
===
fp7 READY 470563 3 207474 3 4 0
fp6 READY 107928 1 107969 1 0 0
ppm0 READY 194360 1 204942 1 0 0
pktin0 READY 0 0 262654 0 0 0
am0 READY 0 0 0 0 0 0
cp0 READY 8068891 201 7808200 202<from RE 0 0
fp0 READY 7846013 202<to ASIC 8026174 201 0 0
fp1 READY 107928 1 107943 1 0 0
fp2 READY 196399 1 258101 1 0 0
fp3 READY 107928 1 108041 1 0 0
fp4 READY 107928 1 108012 1 0 0
fp5 READY 186381 1 195454 1 0 0

We can display detailed statistics for the CP0 interface. Notice there is no ingress
queuing on CP0 interface – this is why all TTP traffic from the RE are aggregated
in one RX counter:

mx2020-fpc11:pfe> show host-path ports cp0
Host Path Port
 Name : cp0
Packet Stats:

 147 A Host Packet Targets the MX

Name Tx-Packets Tx-Rate(pps) Rx-Packets Rx-Rate(pps)
===
If 8100523 201 7839810 201
Transport 8100523 201 7839810 201
Io 8100523 201 7839810 201 <from RE
Io-Prio-0 8229 0 0 0
Io-Prio-1 0 0 0 0
Io-Prio-2 0 0 0 0
Io-Prio-3 0 0 0 0
Io-Prio-4 7732894 200 0 0
Io-Prio-5 288 0 0 0
Io-Prio-6 359112 1 0 0

And then, we can do the same for FP0 interface. As seen, the host outbound pack-
ets are enqueued in queue number 3 of the FP0 interface and finally forwarded to
the ZT ASIC 0:

mx2020-fpc11:pfe> show host-path ports fp0
Host Path Port
 Name : fp0
Packet Stats:
Name Tx-Packets Tx-Rate(pps) Rx-Packets Rx-Rate(pps)
===
If 7901509 201 8081700 201
Transport 7901509 201 8081700 201
Io 7901508 201 8156582 201
Io-Prio-0 3742658 0 0 0
Io-Prio-1 0 0 77 0
Io-Prio-2 0 0 0 0
Io-Prio-3 4050647 200< to ZT Asic 0 0
Io-Prio-4 0 0 7736021 200
Io-Prio-5 0 0 104 0
Io-Prio-6 0 0 290511 1
Io-Prio-7 108204 1 54987 0

Like on the EA, on the ZT line card you can issue the following set of commands
to retrieve statistics of the Ethernet switch embedded on the line card (use the old
shell for those commands):

 � show esw ports

 � show esw statistics <port-number>

Figure 3.13 provides a schematic view of how the host outbound packets are han-
dled by the ZT line card after we began our trip a few chapters ago.

 148 Chapter 3: Follow the Packets

Figure 3 .13 Host Outbound Processing On the ZT

Now we are back again inside the ASIC: either the EA or the ZT. On the EA, de-
pending if TurboTX is enabled or not, the traffic coming from the RE is handled by
one of these WI input streams (the last 0 means ingress):

(mx vty)# show mqss 0 phy-stream list 0

Ingress PHY stream list

--
Stream Type Enabled NIC PIC Connection Traffic Class
Number Slot Slot Number
--
[…]
1088 Host < TurbotTX disabled
1089 GE <unsed Yes 255 255 26 4 (Invalid)
1090 GE < TurboTX enabled
[…]

 149 A Host Packet Targets the MX

Indeed, when TurboTX is disabled, the traffic received by the TOE is served to the
MQSS through the WI input stream with the type Host (1088). When it is enabled,
the traffic is received by the second dedicated Ethernet port attached to the EA
ASIC. Therefore, look for the second stream with type GE. Here it’s the WI stream
1090. We left TurboTX enabled in our case. You can, as you now know how to do
it, configure a specific WI input counter for the stream 1090. Let’s configure it:

(mx vty)# test mqss 0 wi stats stream 0 0 66

The 0 0 66 means the first 0 is the WAN port group 0 – it’s usually 0. The next 0 is
the counter ID. As noted, on the EA you have 48 counters available (0 to 47). Here
we use the counter index 0 for our statistics. Finally the last number is the incom-
ing stream connection. This value is derived from the incoming stream number
(retrieved previously – for us this is 1090), from which we subtract 1024 (1090-
1024 = 66). Now call the next command and have a look at counter 0, and we
should discover our echo-replies:

(mx vty)# show mqss 0 wi stats
WI statistics

[…]
Oversubscription drop statistics
[…]
Tracked stream statistics

Track Stream Stream Total Packets Packets Rate Total Bytes Bytes Rate Total
EOPE EOPE Rate
 Mask Match (pps) (bps)
(pps)
--

0 0xff 0x42 896379 208 <<< echo-reply 467373164 866704 0

Of course, as always, don’t forget to reset the counter 0:

(mx vty)# test mqss 0 wi stats default 0 0

On the ZT there is only one choice, because the host outbound traffic is always
received by the internal GE port. Look for the first GE type and note the WI input
stream value (for us it’s 1089):

door7302@mx2020> start shell pfe network fpc11.0
(mx vty)# show mqss 0 phy-stream list 0
Ingress PHY stream list

--
Stream Type Enabled NIC PIC Connection Traffic Class
Number Slot Slot Number
--
[…]
1089 GE <from pktIO Yes 255 255 50 4 (Invalid)
1090 GE <unsed Yes 255 255 51 4 (Invalid)
1091 Crypto Yes 255 255 53 0 (High)
1165 WAN Yes 11 0 40 0 (High)
[…]

 150 Chapter 3: Follow the Packets

Create a WI counter for this stream (65 = 1089-1024):

(mx vty)# test mqss 0 wi stats stream 0 0 65

And display the WI statistics:

(mx vty)# show mqss 0 wi stats
WI statistics

[…]
Tracked stream statistics

Track Stream Stream Total Packets Packets Rate Total Bytes Bytes Rate Total
EOPE EOPE Rate
 Mask Match (pps) (bps)
(pps)
--
0 0xff 0x41 51035 202< echo-reply 27491121 869128 0

And reset the default counter configuration at the end of your troubleshooting:

(mx vty)# test mqss 0 wi stats default 0 0

We are almost at the end of our trip.

Received by the WI block, the host outbound traffic follows its path until it reach-
es the LUSS. A new packet manipulation is performed inside the LUSS. Once again
we can capture the packet to see the state of the packet before and after the LUSS
processing. We decided to filter the capture based on the IPv4 source address fol-
lowed by IPv4 destination in hexadecimal: 0xAC10FEFEC0A80301.

As you can see, next we use an offset of 48 bytes. Why? We found it by dichotomy.
Usually you start with no offset, and if you capture nothing or an internal liveness
packet marked as followed (PType CTRL (1)) you could progressively increment the
offset by eight bytes, and so on.

This is what we did until we didn’t capture a ptype CTRL packet:

(mx vty)# test jnh 0 packet-via-dmem enable
(mx vty)# test jnh 0 packet-via-
dmem capture capture 0x3 AC10FEFEC0A80301 32 <<< Offset 32 was not the good value
(mx vty)# test jnh 0 packet-via-dmem capture 0x0
(mx vty)# test jnh 0 packet-via-dmem decode
Wallclock: 0x88414a0d
[…]
PType CTRL (1) SubType f <<< Means it’s a Fabric probe not our packet
[…]

Let’s plug in another offset value:

(mx vty)# test jnh 0 packet-via-dmem capture 0x3 AC10FEFEC0A80301 48
(mx vty)# test jnh 0 packet-via-dmem capture 0x0
(mx vty)# test jnh 0 packet-via-dmem decode
PFE 0 Parcel Dump:
Wallclock: 0xfc7502fc <<< MQSS to LUSS
Dispatch: callout 0 error 0 Size 0d8 X2EA_PKT_HEAD (1) ReorderId 09df Stream GE (442) << WI inputStream

 151 A Host Packet Targets the MX

ChnkTyp 1 TailLen 015a ChnkDataOff 00 ChnkDataLen 10 ChkSum 00 ChnkPtr 0b798a1
DMAC 020000000050 SMAC 020000000060 Etype 0800
PType HOST (8) < no more CTRL pkt Subtype 0 Score 00 Reason 00 AddInfo 000c0 IIF 00001
L2Off 80 L3Off 00 PktLen 2200 StreamType 0 LUid 0 L2iif 30000 OrigPType UNK (0) OrigL3Off 64 BDid 8788
DdosProto 6345 FC 14 DP 1 TokenIsOIF 0 Token 0c9614 FlowId 3a9b0c EgrIIF 08004

You can see the output confirms:

420021a0000815a001000b798a10200000000500200000000600800800000000c000001800022000300
00006487886345514c9614753619080045

 0001ee0520000040
 010537ac10fefec0
 a803010000601600
 0000009cbb38ff72
 e3f5b64978696000
 000000dadadada36
 ebd75e01b6dadada
 dadadadadadadada
[...]
Wallclock: 0xfc750a18 <<< LUSS to MQSS
Reorder: EA2X_REORDER_SEND_TERMINATE (d) HasTail 1 Stat 1
ReorderId 09df Color 0 Qop ENQUEUE (2) Qsys WAN (0) Queue Wan (13) <<<< WAN output Queue
Stats Map 0 len_adjust 02 cnt_addr 0040146
Frag 0 RefCnt 0 OptLbk 0 NumTailHoles 00
ChnkTyp 1 TailLen 015a ChnkDataOff 00 ChnkDataLen 10 ChkSum 00 ChnkPtr 0b798a1 WanCookie 0000
dc9df0400013030105b7500d000404014601084020000000815a001000b798a10000
 6487886345514c96
 1475361908004500
 01ee052000004001
 0537ac10fefec0a8
 0301000060160000
 00009cbb38ff72e3
 f5b6497869600000
 0000dadadada36eb
 d75e01b6dadadada
 dadadadadadadada
[...]

Don’t forget to disable capture:

(mx vty)# test jnh 0 packet-via-dmem disable

Let’s analyze that last capture. We can see that the packet before LUSS processing
is identified as coming from the WI input stream 0x442 – 1090 (the stream we
mentioned earlier attached to the internal GE port connected to the EA – remem-
ber TurboTX is enabled). After the LUSS processing, the packet comes back into
the MQSS with some additional information such as the WAN output queue to
use to enqueue the packet. In our case this is the WAN queue ID: 0x13 (queue 19).
The queue 19 is the absolute queue, and it is managed by the XQSS, which is actu-
ally the queue 3 (FC HOST_GEN) of the egress port et-9/0/0.

How did we deduce that absolute queue 19 is equal to queue 3?

We already know that the packet should be sent out via the et-9/0/0 interface (see
prior discussion on the TTP header – field ifd_output). The IFD of et-9/0/0 is 311:

 152 Chapter 3: Follow the Packets

door7302@mx2020> show interfaces et-9/0/0| match index
 Interface index: 311, SNMP ifIndex: 1000
 Logical interface et-9/0/0.0 (Index 324) (SNMP ifIndex 1008)

With this IFD index and the following command we can display the CoS param-
eter attached to the physical port et-9/0/0:

(mx vty)# show cos halp ifd 311
--
 rich queueing enabled: 1
 Q chip present: 1
IFD name: et-9/0/0 (Index 311) egress information
 XQSS chip id: 0
 XQSS : chip Scheduler: 0
 XQSS chip L1 index: 5
 XQSS chip dummy L2 index: 1989
 XQSS chip dummy L3 index: 5
 XQSS chip dummy L4 index: 2
 Number of queues: 8
 XQSS chip base Q index: 16
Queue State Max Guaranteed Burst Weight Priorities Drop-Rules Scaling-profile
Index rate rate size G E Wred Tail ID
------ ----------- ----------- ------------ ------- ------ ---------- ---------- ---------------
 16 Configured 100000000000 2000000000 67108864 5 GL EL 4 1277 3
 17 Configured 100000000000 6000000000 67108864 15 GL EL 4 1254 3
 18 Configured 100000000000 32000000000 67108864 80 GL EL 4 1254 3
 19 Configured 100000000000 Disabled 67108864 1 GH EH 4 1086 1
 20 Configured 100000000000 50000000000 67108864 50 GH EH 4 1277 1
 21 Configured 100000000000 10000000000 67108864 50 GM EH 4 1086 2
 22 Configured 100000000000 0 67108864 1 GL EL 0 278 3
 23 Configured 100000000000 0 67108864 1 GL EL 0 278 3

As seen above, the absolute base queue ID of the et-9/0/0 is the queue ID 16. This
means that queue 0 is mapped to queue 16, queue 1 is mapped to queue 17, and so
on. Thus, the queue 3 of the forwarding class HOST_GEN is actually the absolute
queue ID 19: 0x13 – the information provided by the packet capture.

Finally let’s issue the next command to retrieve statistics of the absolute queue 19:

(mx vty)# show xqss 0 sched queue 19 local-stats
Queue:19
 Forwarded pkts : 8629661 200 pps
 Forwarded bytes: 4578894829 852216 bps
 Dropped pkts : 0 0 pps
 Dropped bytes : 0 0 bps

Once dequeued the host outbound packets move back from XQSS to MQSS, are
handled by the WO block, which merges HEAD and TAIL of the packets (if need-
ed) and forwards them to the MAC block and, bye-bye, our echo-replies leave our
router.

Hey! 200pps of ping echo-replies are still in the ZT ASIC. Indeed, we’ve stopped
our trip on the ZT side in the WI block where we found that host outbound pack-
ets coming from packetIO were handled by the WI input stream 1089. As on the

 153 A Host Packet Targets the MX

EA, packets are split into HEAD and TAIL (if needed) and take their trip inside the
MQSS until reaching the LUSS. We can perform a similar packet capture on the
ZT based also on the IPv4 source and destination addresses. The hexadecimal pat-
tern used as filter is therefore: 0xAC10FEFEC0A80401. As observed, we also use
an offset of 48 bytes (again, we found this value by dichotomy):

door7302@mx2020> start shell pfe network fpc11
mx2020-fpc11:pfe> test jnh packet-via-dmem inst 0 enable
mx2020-fpc11:pfe> test jnh packet-via-dmem-capture inst 0 parcel-type-mask 0x3 match-
string AC10FEFEC0A80401 offset 48
mx2020-fpc11:pfe> test jnh packet-via-dmem-capture inst 0 parcel-type-mask 0x0
mx2020-fpc11:pfe> test jnh packet-via-dmem-dump inst 0
PFE 0 Parcel Dump:
 Wallclock: 0x0c6136e6 << MQSS to LUSS
 Dispatch: callout 0 error 0 Size 0d8 X2EA_PKT_
HEAD (1) ReorderId 0998 Stream GE (441) << WI stream (GE)
 ChnkTyp 1 TailLen 015e ChnkDataOff 00 ChnkDataLen 10 ChkSum 00 ChnkPtr 3fae477
 DMAC fe0000000000 SMAC 0000000000fe VLAN 81000004 Etype 0800
 14cc4410021e23c8815e001003fae477fe00000000000000000000fe810000040800 800000e40c080001
00000001f4000000 6487886345a34c96 147537ab08004500 01eeb40c00004001 554aac10fefec0a8 04010000f6e20000
00009cbb38ff72e3 f5b649786961a000 0000dadadadacabe 0cbd01b6dadadada dadadadadadadada dadadadadadadada
dadadadadadadada dadadadadadadada dadadadadadadada dadadadadadadada dadadadadadadada dadadadadadadada
dadadadadadadada dadadadadadadada dadadadadada
Wallclock: 0x0c613c1a << LUSS to MQSS
 Reorder: EA2X_REORDER_SEND_TERMINATE (d) HasTail 1 Stat 1
 ReorderId 0998 Color 0 Qop ENQUEUE (2) Qsys WAN (0) Queue InSrvc (2b). <<< WAN output Queue
 Stats Map 0 len_adjust 02 cnt_addr 002123e
 Frag 0 RefCnt 0 OptLbk 0 NumTailHoles 00
 ChnkTyp 1 TailLen 015e ChnkDataOff 00 ChnkDataLen 10 ChkSum 00 ChnkPtr 3fae477
 Magic 0000 Tun 0 IngQ 1 RefCnt 0 OptLbk 0 TailHndl 886345a34c961475
 IxPreClass 0 IxPort 17 IxMyMac 1
dc998040002b040105b1c84b900402123e01c8000001f400815e001003fae47700006487886345a34c96147537ab
0800450001eeb40c 00004001554aac10 fefec0a804010000 f6e2000000009cbb 38ff72e3f5b64978 6961a0000000dada
dadacabe0cbd01b6 dadadadadadadada dadadadadadadada dadadadadadadada dadadadadadadada dadadadadadadada
dadadadadadadada dadadadadadadada dadadadadadadada dadadadadadadada dadadadadadadada dadadadadadadada
dada

mx2020-fpc11:pfe> test jnh packet-via-dmem inst 0 disable

As expected, the host outbound packet is identified as coming from the WI input
stream 0x441 (stream 1089 – already found earlier). The second part of the cap-
ture informs us on which WAN output queue of the XQSS the packet will be en-
queued: this is the absolute queue ID 0x2b – queue ID 43. Retrieve the IFD index
of the et-11/0/0, here it’s IFD 228:

door7302@mx2020> show interfaces et-11/0/0 | match index
 Interface index: 228, SNMP ifIndex: 617
 Logical interface et-11/0/0.0 (Index 500) (SNMP ifIndex 850)

Using the command below, you can retrieve the Token ID attached to the CoS pa-
rameters/statistics of the et-11/0/0:

door7302@mx2020> start shell pfe network fpc11
mx2020-fpc11:pfe> show class-of-service interface scheduler hierarchy index 228
Interface Schedulers:

 154 Chapter 3: Follow the Packets

 Name Type Index Level Node-Token Shaping-Rate Guaranteed-Rate Delay-
Buffer-Rate Excess-Rate
 et-11/0/0 IFD 228 1 3157 100000000000 100000000000
100000000000 100000000000

Finally, let’s resolve the AFT Token IDin order to display the CoS configuration
and statistics (those stats come from XQSS):

mx2020-fpc11:pfe> show sandbox token 3157
[…]
Node Index:228
Node Name:et-11/0/0
Parent Name:
Interface Rate:100.00Gbps
DelayBufferRate:100.00Gbps
[…]
CoS Scheduler Node:
 PFE Instance : 0
 L1 Index : 4
 L2 Index : 4
 L3 Index : 4
 L4 Index : 5
Enhanced Priority Mode : 0
Table: Queue Configuration
--

 Index | Shaping-Rate | Transmit-Rate | Burst | Weight | G-Priority | E-Priority | Tail-Rule |
WRED-Rule |
--------+--------------+---------------+--------+--------+------------+------------+-----------+----
-------+
 40 | 100.0G | 2.0G | 1.2G | 5 | GL | EL | 1278 | 0 |
 41 | 100.0G | 6.0G | 1.2G | 15 | GL | EL | 1255 | 0 |
 42 | 100.0G | 32.0G | 1.2G | 80 | GL | EL | 1255 | 0 |
 43 | 100.0G | 0.0 | 1.2G | 1 | GH | EH | 1087 | 0 |
 44 | 100.0G | 50.0G | 1.2G | 50 | GH | EH | 1278 | 0 |
 45 | 100.0G | 10.0G | 1.2G | 50 | GM | EH | 1087 | 0 |
 46 | 100.0G | 0.0 | 1.2G | 1 | GL | EL | 279 | 0 |
 47 | 100.0G | 0.0 | 1.2G | 1 | GL | EL | 279 | 0 |
--------+--------------+---------------+--------+--------+------------+------------+-----------+----
-------+

Queue Statistics:

 PFE Instance : 0
 Transmitted Dropped
 Bytes Packets Bytes Packets
--

 Queue:0 41885064578(0 bps) 78737147(0 pps) 0(0 bps)
0(0 pps)
 Queue:1 0(0 bps) 0(0 pps) 0(0 bps)
0(0 pps)
 Queue:2 0(0 bps) 0(0 pps) 0(0 bps)
0(0 pps)
 Queue:3 4796032280(851504 bps) 9081386(202 pps) 0(0 bps)
0(0 pps)
 Queue:4 0(0 bps) 0(0 pps) 0(0 bps)

 155 A Host Packet Targets the MX

0(0 pps)
 Queue:5 9055577(0 bps) 45092(0 pps) 0(0 bps)
0(0 pps)
 Queue:6 0(0 bps) 0(0 pps) 0(0 bps)
0(0 pps)
 Queue:7 0(0 bps) 0(0 pps) 0(0 bps)
0(0 pps)

With this last command you’ll see the absolute egress queue indexes attached to
port et-11/0/0 and the queues’ statistics at the same time.

We see that absolute queue index 43 is actually queue 3 (HOST_GEN forwarding
class). The queue 3 conveys, as expected, our 200 pps of echo-reply. Those pack-
ets, once dequeued, return to the MQSS (from XQSS) and finally leave the router
after they were handled by the WO and MAC blocks of the ZT ASIC.

This is the end of our trip inside EA and ZT ASIC. If you are still alive and inter-
ested, there are two more little topics explained quickly in the Appendixes:

 � How Junos uses internal keepalives to detect internal HW/SW failures – we
talked briefly about PFE lLiveness, host loopback probes, and fabric probes
earlier in this chapter. The first part of the Appendix should provide more de-
tailfor you about those concepts.

 � And the second topic, how tunnels are managed on the EA and ZT. It’s a short
review that reuses the commands we already used to analyze a specific tun-
neled traffic: a GRE tunnel.

EA/ZT Data Path Health Check

During our packet capture troubleshooting sessions performed in Chapter 3, we
mentioned that sometimes we can catch internal packets. Those internal packets,
which are generated by the line card itself, even if there is no data plane traffic, al-
low the system to detect internal failures and to response to these failure by isolat-
ing and trying to restore the piece of hardware in the faulty state.

There are actually three kinds of self-generated packets:

 � Host data path health check: Sent every second by either the uKernel on the EA
or packetIO on the ZT line card.

 � Fabric self-probe: Sent every 50ms by each LUSS over the fabric to itself.

 � PFE liveness: Sent every 1ms by each LUSS toward each remote operational
PFE.

Let’s take an MX2020 with two line cards: one MPC9e in slot 9 and one MPC11e
in slot 11 and put this MX2020 alone in the dark, meaning put on it a factory de-
fault configuration, shut down all physical ports, and use a console port to manage
it.

Why are we doing this?

You don’t want to be polluted by any control plane packets such as ARP, or even
management protocols like SSH.. You will see that even in this configuration there
is still life inside our MX2020.

Appendices

 157 EA/ZT Data Path Health Check

Host Data Path Check

The host data path check mechanism allows detecting failure along the host path.
Every second an echo packet is generated by the uKernel or the packetIO process
depending on the type of line card.

On the EA, it is sent to the ASIC via the PCIe interface and it is received by the
TOE and delivered to the MQSS, which forwards it to the LUSS. The packet is
destined to loop back to the uKernel. After LUSS processing, the packet comes
back into the MQSS, then it is enqueued in the host WAN queue (into XQSS), and
finally it goes back to the uKernel via the PCIe interface.

When the host path check module detects five consecutive packet losses, it triggers
what we call a PFE Wedge condition: the host path is isolated.

On the ZT line card it’s almost the same mechanism except that echo packets are
sent and received by the packetIO through the internal port attached to the ZT.

Figure A.1 illustrates this on both types of line card.

Figure A .1 Host Data Path Health Check

Let’s check the TOE statistics on the PFE 0 of the MPC9e. As observed there is one
pps received and sent by the TOE: this is our host data path check packet:

(mx vty)# show toe pfe 0 mqss 0 toe-inst 0 packet-stats stream 0
Stream 0: halt flag is NOT set
 TX Packets
MQSS TOE pfe 0 asic 0 toe 0 mailbox register 12 contains 0x00148133
 accepted: 0000000001343795
 TX Rates:
 packets per second: 1
[…]

 158 Appendices:

MQSS TOE pfe 0 asic 0 toe 0 mailbox register 11 contains 0x0231b1d2
 RX Packets:
 accepted: 0000000036811218
 RX Rates:
 packets per second: 1
[…]

On the ZT line card you can issue the following PFE command to see that every FP
interface of packetIO is sent and received 1pps. We neglected to mention that the
uKernel and the packetIO check the host path of every ASICs of the MPC:

mx2020-fpc11:pfe> show host-path ports | match "Name|fp"
Name State Tx-Packets Tx-Rate(pps) Rx-Packets Rx-Rate(pps) Drop-
Packets Drop-Rate(pps)
fp7 READY 150216 1 151404 1 0 0
fp6 READY 56512 1 56686 1 0 0
fp0 READY 10353425 1 10355643 1 0 0
fp1 READY 56512 1 56572 1 0 0
fp2 READY 56512 1 56530 1 0 0
fp3 READY 56512 1 56526 1 0 0
fp4 READY 56512 1 56524 1 0 0
fp5 READY 56512 1 56523 1 0 0

Moreover, on ZT line card, you can also check if “Wedge” has been triggered by
issuing this following command:

door7302@mx2020> start shell pfe network fpc11
mx2020-fpc11:pfe> show host-path app wedge-detect pfe-status
+------------+---------+
| PFE Number | Status |
+------------+---------+
07	Online
06	Online
05	Online
04	Online
00	Online
01	Online
02	Online
03	Online
+------------+---------+

Fabric Self Probe / PFE Liveness

The next two mechanisms allow checking the forwarding path. They are more ag-
gressive in terms of pps to quickly detect any forwarding issue in order to isolate
and try to restore the faulty path.

Fabric self probes (or self pings) are sent by the LUSS to itself, but through the fab-
ric. This single packet is big enough to be split as there are enough fabric cells to
cover all the fabric planes available. The self ping is sent every 50ms (20pps rate).
These self pings are conveyed in the high fabric queue. Figure A.2 illustrates the
mechanism.

 159 EA/ZT Data Path Health Check

Figure A .2 Fabric Self Ping

The last mechanism is named PFE Liveness. It allows a given PFE to test every re-
mote destination (remote PFE). In this case, the LUSS generates for each remote
PFE a unidirectional packet every 1ms (1000pps rate). The remote PFE detects any
fabric blackholing or source PFE issue by checking the sequence number of re-
ceived packets. These PFE liveness packets are conveyed in the high fabric queue
of each PFE. Figure A.3 illustrates the mechanism.

Figure A .3 PFE Liveness

 160 Appendices:

Let’s check the Fabric queue statistics on PFE 0 of the MPC9e and have a specific
look at the high fabric queue to reach the remote PFE 0 hosted by the MPC in slot
11. We specify the queue 172, which is the fabric queue ID to reach PFE 0 in slot 11
(128 + (4 * 11 + 0)):

(mx vty)# show mqss 0 sched-fab q-node stats 172

Queue statistics (Queue 0172)

Color Outcome Counter Total Rate
 Name

All Forwarded (Rule) Packets 258417654 1000 pps
 Bytes 4136499889 128192 bps

As expected we see the 1000pps PFE Liveness stream to test the PFE0-slot11 desti-
nation. Issue the same command but for the high fabric queue attached to itself:
164 (128 + (4*9 +0)):

(mx vty)# show mqss 0 sched-fab q-node stats 164

Queue statistics (Queue 0164)

Color Outcome Counter Total Rate
 Name

All Forwarded (Rule) Packets 264423857 1020 pps
 Bytes 6798895444 210336 bps

Interesting, here we see 1020pps. This is actually the sum of the two data path
health check mechanisms: the PFE liveness 1000pps sent to itself through the fabric
and the fabric self ping at 20pps.

Handling Tunnels on the EA and ZT

The EA and ZT support Inline Tunneling such as GRE (gr- interface), or Logical-
Tunnel (lt- interface).

NOTE Starting with Junos 19.3R1, Junos also supports flexible tunnels inter-
faces. With this specific feature you don’t care about tunnel PIC location and
bandwidth, redundancy question, and number of IFL restrictions, as all is handled
inside. It’s typically used for VXLAN but now for all other sort of tunnel encapsu-
lation features as well. More information can be retrieved here: https://www.
juniper.net/documentation/en_US/junos/topics/concept/flexible_tunnel_interfaces_
overview.html.

https://www.juniper.net/documentation/en_US/junos/topics/concept/flexible_tunnel_interfaces_overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/flexible_tunnel_interfaces_overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/flexible_tunnel_interfaces_overview.html

 161 Handling Tunnels on the EA and ZT

The tunnel feature can be enabled per PFE. The configuration statement is the
following:

door7302@mx2020# set chassis fpc <fpc-slot> pic <pic-slot> tunnel-services bandwidth ?
Possible completions:
 <bandwidth> Bandwidth reserved for tunnel service
 100g 100 gigabits per second
 10g 10 gigabits per second
 1g 1 gigabit per second
 200g 200 gigabits per second
 20g 20 gigabits per second
 300g 300 gigabits per second
 30g 30 gigabits per second
 400g 400 gigabits per second
 40g 40 gigabits per second
 50g 50 gigabits per second
 60g 60 gigabits per second
 70g 70 gigabits per second
 80g 80 gigabits per second
 90g 90 gigabits per second

The bandwidth option allows reserving a part of the ASIC/PFE bandwidth for the
tunnel processing. The tunnel encapsulation and decapsulation are performed by
the LUSS block. Notice that the PFE in charge of the tunnel service is not always
the PFE attached to the ingress or egress ports. Actually, the tunnel service might
be managed by any PFE of the router. This is one will be reachable through the
fabric by other PFEs if they need to perform tunneling processing. The placement
of the tunnel service usually depends on your architecture (current load of the in-
gress or egress PFEs), the required latency, and if you wish to save or not save fab-
ric bandwidth. Figure A.4 illustrates how encapsulation and decapsulation are
done by the tunnel service PFE. As you can see, encapsulation requests more PFE
capacity as there is a double LUSS circulation. The first circulation into LUSS is for
adding the tunnel header, and then the tunneled traffic loops back to LUSS a sec-
ond time (by using a loopback internal stream) in order to perform the tunnel
lookup. The decapsulation process is simpler; in one round the LUSS removes the
tunnel header and performs inner header lookup.

As seen previously, traffic might come from the WAN interface or fabric and might
be sent out also to WAN or fabric.

 162 Appendices:

Figure	A.4		 Tunnel	Encapsulation/Decapsulation	On	the	EA	or	ZT

Let’s consider two examples to illustrate these functionalities:

 � Inline GRE decapsulation

 � Simple use of logical tunnel interface

Inline GRE Decapsulation

The first use case is depicted by Figure A.5. There are two MXs. We have set up a
GRE tunnel between MX1 and MX2 and a unidirectional 100Kpps stream is sent
by a tester. MX1 encapsulates the traffic while MX2 decapsulates it. The MPC in
slot 9 is an EA line card (MPC9e) and the one in slot 11 is an MPC11e (ZT based).
MX2 has two physical ports, both attached to PFE 0 of each MPC.

 163 Handling Tunnels on the EA and ZT

Figure A .5 GRE Topology

Let’s focus on the MX2. The tunnel service is configured on the ZT line card – es-
pecially on PFE 7: a different PFE of ingress or egress PFEs. The tunnel configura-
tion is the following:

chassis {
 fpc 11 {
 pic 7 {
 tunnel-services {
 bandwidth 10g;
 }
 }
 }
}
interfaces {
 gr-11/7/0 {
 unit 0 {
 tunnel {
 source 172.16.254.254;
 destination 192.168.3.1;
 }
 family inet {
 address 192.167.1.1/30;
 }
 }
 }

Figure A.6 illustrates how the GRE tunnel is handled by the MX2.

 164 Appendices:

Figure	A.6		 Inline	GRE	Decapsulation

Let’s try to figure out how GRE decapsulation is performed. You can do a first
packet capture on the ingress EA PFE (refer to Chapter 3 if you need the details of
the commands to perform the EA or ZT packet capture – here we only show the
result of the capture).

The ingress PFE receives the tunneled traffic and the packet capture gives us this
output:

Wallclock: 0x76bdc118
Dispatch: callout 0 error 0 Size 06e X2EA_PKT (0) ReorderId 0327 Stream Wan (48f)
IxPreClass 2 IxPort 00 IxMyMac 1
0193c8f08008
 4c96147536196487
 8863455108004500
 0052000000003f2f
 0cc5c0a80301ac10
 fefe000008004500
[…]
Wallclock: 0x76bdc9b6
Reorder: EA2X_REORDER_SEND_TERMINATE (d) HasTail 0 Stat 0
ReorderId 0327 Color 0 Qop ENQUEUE (2) Qsys FAB (1) Queue 0012f <<< Low Fab Queue to reach PFE 7 / Slot
11 (303)
PType IPV4 (2) SubType 0 PfeMaskF 0 OrigLabel 0 SkipSvc 0 IIF 00142
FC 00 DP 0 SkipSample 0 SkipPM 0 L2Type None (0) IsMcast 0 SrcChas 1 MemId 0
PfeNum 7f PfeMaskE 0 FabHdrVer 1
RwBuf 00000000 SvcCtx 0 ExtHdr 0 PfeMaskE2 0 Token 000272
d0327050012ff85405b4d84d4da48000d12000014200010fe10000000000000272
 4500005200000000
 3e2f0dc5c0a80301
 ac10fefe00000800
 4500003a00000000
 4011b40902000001
[…]

The ingress LUSS identified the traffic as having reached the end of the tunnel and
therefore the traffic must be decapsulated. It knows that tunnel service PFE is the
PFE 7 in slot 11. This is why we see the packet as marked to be forwarded to fabric

 165 Handling Tunnels on the EA and ZT

queue 303 (0x12f) after the LUSS processing. This is actually the low fabric queue
to reach PFE 7 in slot 11. If you check this specific queue on the ingress EA PFE
you’ll discover our 100Kpps of tunneled traffic:

(mx vty)# show mqss 0 sched-fab q-node stats 303

Queue statistics (Queue 0303)

Color Outcome Counter Total Rate
 Name

All Forwarded (Rule) Packets 5934626143 100055 pps
 Bytes 1118819211658 78443400 bps
All TAIL drops Packets 0 0 pps
 Bytes 0 0 bps
0 WRED drops Packets 0 0 pps
 Bytes 0 0 bps
1 WRED drops Packets 0 0 pps
 Bytes 0 0 bps
2 WRED drops Packets 0 0 pps
 Bytes 0 0 bps
3 WRED drops Packets 0 0 pps
 Bytes 0 0 bps

Now, let’s move on to the MPC11 and especially PFE 7. We can perform another
packet capture. Here we see that the packet came from the PFE 0 in slot 9 (stream
fab = 36 (0x24)) and the outer IP and GRE headers are still there before the LUSS
(tunnel anchor PFE) processes it. After LUSS processing, we see that the outer IP +
GRE headers have been removed and a lookup of the inner IP header gave the fab-
ric stream 44 (0x2C) as next hop, which is actually the fabric queue to reach the
egress PFE. This is the PFE 0 of this MPC in slot 11 (where it is attached the egress
port et-11/0/0):

Wallclock: 0xb42a2783
 Dispatch: callout 0 error 0 Size 070 X2EA_PKT (0) ReorderId 1212 Stream Fab (24) UdpCsum 8b4b
 PType IPV4 (2) SubType 0 PfeMaskF 0 OrigLabel 0 SkipSvc 0 IIF 00142
 FC 00 DP 0 SkipSample 0 SkipPM 0 L2Type None (0) IsMcast 0 SrcChas 1 MemId 0
 PfeNum 7f PfeMaskE 0 FabHdrVer 1
 RwBuf 00000000 SvcCtx 0 ExtHdr 0 PfeMaskE2 0 Token 000272
 090902408b4b2000014200010fe10000000000000272 4500005200000000 3e2f0dc5c0a80301 ac10fefe00000800
<<< outer IP + GRE header 4500003a00000000 4011b40902000001 c0a80401003f003f 00268dba9cbb38ff
72e3f5b649786960 4000000010111213 7c07351700021a1b 8c31

Wallclock: 0xb42a2ec3
 Reorder: EA2X_REORDER_SEND_TERMINATE (d) HasTail 0 Stat 0
 ReorderId 1212 Color 0 Qop ENQUEUE (2) Qsys FAB (1) Queue 0002c
 PType IPV4 (2) SubType 0 PfeMaskF 0 OrigLabel 0 SkipSvc 0 IIF 0015a
 FC 00 DP 0 SkipSample 0 SkipPM 0 L2Type None (0) IsMcast 0 SrcChas 1 MemId 0
 PfeNum 2c PfeMaskE 0 FabHdrVer 1
 RwBuf 00000000 SvcCtx 0 ExtHdr 0 PfeMaskE2 0 Token 0002b0
d1212050002cf86e05b3804e4a4e0004d12000015a0001058100000000000002b0 <<< No more Tunnel >>>
4500003a00000000 3f11b50902000001 c0a80401003f003f 00268dba9cbb38ff 72e3f5b649786960 4000000010111213
7c07351700021a1b 8c31

 166 Appendices:

A double check of the fabric queue 44 on PFE 7 shows us our 100Kpps of decap-
sulated traffic:

(mx vty)# show mqss 7 sched-fab q-node stats 44

Queue statistics (Queue 0044)

Color Outcome Counter Total Rate
 Name

All Forwarded (Rule) Packets 5903103845 100865 pps
 Bytes 1111434879150 59712456 bps
All TAIL drops Packets 0 0 pps
 Bytes 0 0 bps
0 WRED drops Packets 0 0 pps
 Bytes 0 0 bps
1 WRED drops Packets 0 0 pps
 Bytes 0 0 bps
2 WRED drops Packets 0 0 pps
 Bytes 0 0 bps
3 WRED drops Packets 0 0 pps
 Bytes 0 0 bps

Finally, we can launch a third packet capture: this time on PFE 0 of the MPC11.
It’s actually a classic lookup result performed by the egress PFE. We first see that
all of the packet came from the PFE 7 in slot 11 (stream fab 303 – 0x12f)). Then
we can retrieve the WAN output queue ID assigned to the packet: the queue 40
(0x28). You can notice the Ethernet header has been computed and appended:

Wallclock: 0xcdf97460
 Dispatch: callout 0 error 0 Size 058 X2EA_PKT (0) ReorderId 189c Stream Fab (12f) UdpCsum 9d55
 PType IPV4 (2) SubType 0 PfeMaskF 0 OrigLabel 0 SkipSvc 0 IIF 0015a
 FC 00 DP 0 SkipSample 0 SkipPM 0 L2Type None (0) IsMcast 0 SrcChas 1 MemId 0
 PfeNum 2c PfeMaskE 0 FabHdrVer 1
 RwBuf 00000000 SvcCtx 0 ExtHdr 0 PfeMaskE2 0 Token 0002b0
 0c4e12f09d552000015a0001058100000000000002b0 4500003a00000000 3f11b50902000001 c0a80401003f003f
0026d9959cbb38ff 72e3f5b649786960 a000000010111213 89907bb200021a1b 8c31

Wallclock: 0xcdf9798a
 Reorder: EA2X_REORDER_SEND_TERMINATE (d) HasTail 0 Stat 1
 ReorderId 189c Color 0 Qop ENQUEUE (2) Qsys WAN (0) Queue InSrvc (28)
 Stats Map 0 len_adjust 10 cnt_addr 00211e0
 Magic 0000 Tun 0 IngQ 1 RefCnt 0 OptLbk 0 TailHndl 886345a34c961475
 IxPreClass 0 IxPort 17 IxMyMac 1
 d589c0400028f85605b2d01300200211e000006487886345a34c96147537ab 08004500003a0000 00003f11b5090200
0001c0a80401003f 003f0026d9959cbb 38ff72e3f5b64978 6960a00000001011 121389907bb20002 1a1b8c31

 167 Handling Tunnels on the EA and ZT

Just for fun, we can also check the CoS configuration and statistics of the egress
port et-11/0/0 based on its IFD (330). We find our 100Kpps enqueued in queue 0
which is, based on the queue configuration info below, the absolute queue 40 (the
same queue ID the packet capture output gave us earlier):

mx2020-fpc11:pfe> show class-of-service interface scheduler hierarchy index 330
Interface Schedulers:
 Name Type Index Level Node-Token
 et-11/0/0 IFD 330 1 3223
mx2020-fpc11:pfe> show sandbox token 3223
[…]
Table: Queue Configuration

 Index | Shaping-Rate | Transmit-Rate | Burst | Weight | G-Priority | E-Priority | Tail-Rule |
WRED-Rule |
--------+--------------+---------------+--------+--------+------------+------------+-----------+-
 40 | 100.0G | 2.0G | 1.2G | 5 | GL | EL | 1278 | 0 |
 41 | 100.0G | 6.0G | 1.2G | 15 | GL | EL | 1255 | 0 |
 42 | 100.0G | 32.0G | 1.2G | 80 | GL | EL | 1255 | 0 |
 43 | 100.0G | 0.0 | 1.2G | 1 | GH | EH | 1087 | 0 |
 44 | 100.0G | 50.0G | 1.2G | 50 | GH | EH | 1278 | 0 |
 45 | 100.0G | 10.0G | 1.2G | 50 | GM | EH | 1087 | 0 |
 46 | 100.0G | 0.0 | 1.2G | 1 | GL | EL | 279 | 0 |
 47 | 100.0G | 0.0 | 1.2G | 1 | GL | EL | 279 | 0 |
--------+--------------+---------------+--------+--------+------------+------------+-----------+----
-------+
Queue Statistics:
 PFE Instance : 0
 Transmitted Dropped
 Bytes Packets Bytes
Packets
--

 Queue:0 1254425766564(76806120 bps) 6007099073(100008 pps) 0(0 bps)
0(0 pps)
 Queue:1 0(0 bps) 0(0 pps) 0(0 bps)
0(0 pps)
 Queue:2 0(0 bps) 0(0 pps) 0(0 bps)
0(0 pps)
 Queue:3 7286416711(912 bps) 13762594(2 pps) 0(0 bps)
0(0 pps)
 Queue:4 0(0 bps) 0(0 pps) 0(0 bps)
0(0 pps)
 Queue:5 0(0 bps) 0(0 pps) 0(0 bps)
0(0 pps)
 Queue:6 0(0 bps) 0(0 pps) 0(0 bps)
0(0 pps)
 Queue:7 0(0 bps) 0(0 pps) 0(0 bps)
0(0 pps)

 168 Appendices:

Simple Use of Logical Tunnel Interface

This is a second use case to illustrate the packet recirculation case inside the tunnel
service PFE. This time we rely on a simple topology using a logical system. Figure
A.7 shows you the topology.

Figure A .7 Logical System Topology

As observed, the real router instance and the logical system both have physical
ports connected to them. Both instances are connected together with a logical tun-
nel interface: lt-11/7.0. The tester sends a 100Kpps stream, which is first routed by
the logical system instance, then followed by the default routing instance. Once
again, we use the PFE 7 of the MPC 11 to achieve the role of tunnel service PFE.
The MX2 configuration is the following:

chassis {
 fpc 11 {
 pic 7 {
 tunnel-services {
 bandwidth 10g;
 }
 }
 }
}
interfaces {
 et-11/0/0 {
 unit 0 {
 family inet {
 address 192.168.2.1/30;
 }
 family iso;
 }
 }
 lt-11/7/0 {
 unit 2 {
 encapsulation ethernet;
 peer-unit 1;
 family inet {
 address 172.16.0.2/30;
 }
 family iso;
 }
 }
}
logical-systems {

 169 Handling Tunnels on the EA and ZT

 LSYS-RTR {
 interfaces {
 et-9/0/0 {
 unit 0 {
 family inet {
 address 192.168.1.1/30;
 }
 family iso;
 }
 }
 lt-11/7/0 {
 unit 1 {
 encapsulation ethernet;
 peer-unit 2;
 family inet {
 address 172.16.0.1/30;
 }
 family iso;
 }
 }
 }
}

Now the aim is to to one more time find out how forwarding is done with a set of
PFE commands in this kind of topology.. You should be able to build this kind of
data flow diagram in Figure A.8.

Figure A .8 Logical Tunnel PFE Handling

The first step is to perform a packet capture on the PFE 0 / slot 9. The first LUSS
identified the next hop as the lt interface. Therefore, it forwards the traffic to the
tunnel service PFE. It uses the low fabric queue for that to reach the PFE 7 / slot 11
(FAB queue 303 – 0x12f)):

Wallclock: 0xfee800b5
Dispatch: callout 0 error 0 Size 06e X2EA_PKT (0) ReorderId 0682 Stream Wan (48f)
IxPreClass 2 IxPort 00 IxMyMac 1
034148f08008
 4c96147536196487

 170 Appendices:

 8863455108004500
 0052000000003f11
 f972ac101484ac10
 1584003f003f003e
[...]
Wallclock: 0xfee80a69
Reorder: EA2X_REORDER_SEND_TERMINATE (d) HasTail 0 Stat 0
ReorderId 0682 Color 0 Qop ENQUEUE (2) Qsys FAB (1) Queue 0012f
PType IPV4 (2) SubType 0 PfeMaskF 0 OrigLabel 0 SkipSvc 0 IIF 00142
FC 00 DP 0 SkipSample 0 SkipPM 0 L2Type None (0) IsMcast 0 SrcChas 1 MemId 0
PfeNum 7f PfeMaskE 0 FabHdrVer 1
RwBuf 00000000 SvcCtx 0 ExtHdr 0 PfeMaskE2 0 Token 000311
d0682050012ff85405b4084850280000d12000014200010fe10000000000000311
 4500005200000000
 3e11fa72ac101484
 ac101584003f003f
 003e0ca69cbb38ff
[...]

A quick check of the fabric queue statistics confirms this:

(mx vty)# sho mqss 0 sched-fab q-node stats 303
Queue statistics (Queue 0303)

Color Outcome Counter Total Rate
 Name

All Forwarded (Rule) Packets 6254418747 100140 pps
 Bytes 1150158886850 78510072 bps
All TAIL drops Packets 0 0 pps
 Bytes 0 0 bps
0 WRED drops Packets 0 0 pps
 Bytes 0 0 bps
1 WRED drops Packets 0 0 pps
 Bytes 0 0 bps
2 WRED drops Packets 0 0 pps
 Bytes 0 0 bps
3 WRED drops Packets 0 0 pps
 Bytes 0 0 bps

Let’s move to PFE 7 / slot 11 and perform and second packet capture. This time it’s
more complex. Actually we see the double circulation. The first round inside the
tunnel service LUSS gives this:

 Wallclock: 0x8566a6a0
 Dispatch: callout 0 error 0 Size 070 X2EA_PKT (0) ReorderId 10a1 Stream Fab (24) UdpCsum 4ea5
 PType IPV4 (2) SubType 0 PfeMaskF 0 OrigLabel 0 SkipSvc 0 IIF 00142
 FC 00 DP 0 SkipSample 0 SkipPM 0 L2Type None (0) IsMcast 0 SrcChas 1 MemId 0
 PfeNum 7f PfeMaskE 0 FabHdrVer 1
 RwBuf 00000000 SvcCtx 0 ExtHdr 0 PfeMaskE2 0 Token 000311
 085082404ea52000014200010fe10000000000000311 4500005200000000 3e11fa10ac1014b5 ac1015b5003f003f
003ec1259cbb38ff 72e3f5b649786960 e000000010111213 06dd86dc001a1a1b 1c1d1e1f20212223 2425262728292a2b
2c2d2e2f30313233 4a20
 Wallclock: 0x8566ac12
 Reorder: EA2X_REORDER_SEND_TERMINATE (d) HasTail 0 Stat 1
 ReorderId 10a1 Color 0 Qop ENQUEUE (2) Qsys WAN (0) Queue Wan (68)
 Stats Map 0 len_adjust 20 cnt_addr 00214c8 WanCookie dea8

 171 Handling Tunnels on the EA and ZT

 d50a10400068f86605b2c803d0400214c8dea8 0000000000000000 7000030000000200 4e961475385b4e96
1475385a08004500 0052000000003e11 fa10ac1014b5ac10 15b5003f003f003e c1259cbb38ff72e3 f5b649786960e000
00001011121306dd 86dc001a1a1b1c1d 1e1f202122232425 262728292a2b2c2d 2e2f303132334a20

We confirm that traffic came from the PFE 0 / Slot 9 because it was received by
fabric stream 36 (0x24). The first lookup shows us that the traffic should now be
forwarded to the WAN queue 104 (0x68). Strange, isn’t it, because there is no
physical port attached to this PFE. Actually it’s an internal stream called loopback.
To retrieve the statistics of this specific queue, you first need to find the AFT token
ID assigned to the CoS configuration of the lt-11/7/0 interface:

mx2020-fpc11:pfe> show class-of-service interface scheduler brief | match lt-11/7/0
Interface Schedulers:
 Name Index Mode Levels Node-Token
[...]
 lt-11/7/0 478 Port 1 7376

Then, if you resolve this token ID (7376), you should see the CoS queue configura-
tion and statistics of the lt-11/7/0. You will observe that the queue 0 conveys the
100Kpps – which is, based on the queue configuration table, the absolute queue
index 104 (the queue provided by the first LUSS lookup).

mx2020-fpc11:pfe> show sandbox token 7376
Table: Queue Configuration
--

 Index | Shaping-Rate | Transmit-Rate | Burst | Weight | G-Priority | E-Priority | Tail-Rule |
WRED-Rule |
--------+--------------+---------------+--------+--------+------------+------------+-----------+----
-------+
 104 | 10.0G | 2.5G | 125.0M | 25 | GL | EL | 1037 | 0 |
 105 | 10.0G | 2.5G | 125.0M | 25 | GL | EL | 1037 | 0 |
 106 | 10.0G | 2.5G | 125.0M | 25 | GL | EL | 1037 | 0 |
 107 | 10.0G | 2.5G | 125.0M | 25 | GL | EL | 1037 | 0 |
 108 | 10.0G | 0.0 | 125.0M | 1 | GL | EL | 279 | 0 |
 109 | 10.0G | 0.0 | 125.0M | 1 | GL | EL | 279 | 0 |
 110 | 10.0G | 0.0 | 125.0M | 1 | GL | EL | 279 | 0 |
 111 | 10.0G | 0.0 | 125.0M | 1 | GL | EL | 279 | 0 |
--------+--------------+---------------+--------+--------+------------+------------+-----------+----
-------+

Queue Statistics:
 PFE Instance : 7
 Transmitted Dropped
 Bytes Packets Bytes
Packets
--

 Queue:0 23383348456(83189320 bps) 224839889(99988 pps) 0(0 bps)
0(0 pps)
 Queue:1 0(0 bps) 0(0 pps) 0(0 bps)
0(0 pps)
 Queue:2 0(0 bps) 0(0 pps) 0(0 bps)
0(0 pps)
 Queue:3 189968(0 bps) 1248(0 pps) 0(0 bps)

 172 Appendices:

0(0 pps)
 Queue:4 0(0 bps) 0(0 pps) 0(0 bps)
0(0 pps)
 Queue:5 62(0 bps) 1(0 pps) 0(0 bps)
0(0 pps)
 Queue:6 0(0 bps) 0(0 pps) 0(0 bps)
0(0 pps)
 Queue:7 0(0 bps) 0(0 pps) 0(0 bps)
0(0 pps)

This traffic dequeued from the XQSS is reinjected (as it comes from a classic WAN
interface) into the MQSS for a second round. The second part of the packet cap-
ture output gives us information about this second lookup:

 Wallclock: 0xe62045f6
 Dispatch: callout 0 error 0 Size 080 X2EA_PKT (0) ReorderId 0390 Stream Lbk (402) UdpCsum efaa
 Magic dea Tun 1 IngQ 0 RefCnt 0 OptLbk 0 TailHndl 0000000000000000
 PType BRIDGE (7) SkipSvc 0 Probe 0 LM 0 CCC 0 Channel 0003 FC 00 DP 0 Hash 00000 L2Type Ether (2)
vrf_lpbk 0
 01c84020efaadea800000000000000007000030000000200 4e961475385b4e96 1475385a08004500
0052000000003e11 facaac101458ac10 1558003f003f003e 805b9cbb38ff72e3 f5b6497869600000 000010111213ce84
e0b9001a1a1b1c1d 1e1f202122232425 262728292a2b2c2d 2e2f303132334a20
 Wallclock: 0xe6204cc6
 Reorder: EA2X_REORDER_SEND_TERMINATE (d) HasTail 0 Stat 0
 ReorderId 0390 Color 0 Qop ENQUEUE (2) Qsys FAB (1) Queue 0002c
 PType IPV4 (2) SubType 0 PfeMaskF 0 OrigLabel 0 SkipSvc 0 IIF 001f2
 FC 00 DP 0 SkipSample 0 SkipPM 0 L2Type None (0) IsMcast 0 SrcChas 1 MemId 0
 PfeNum 2c PfeMaskE 0 FabHdrVer 1
 RwBuf 00000000 SvcCtx 0 ExtHdr 0 PfeMaskE2 0 Token 0002b0
 d0390050002c780005b1c8130003000000200001f20001058100000000000002b0 4500005200000000
3d11fbcaac101458 ac101558003f003f 003e805b9cbb38ff 72e3f5b649786960 0000000010111213 ce84e0b9001a1a1b
1c1d1e1f20212223 2425262728292a2b 2c2d2e2f30313233 4a20

As seen here, the second lookup shows that the packet comes from the WI internal
loopback stream 1026 (0x402) and must be forwarded to the fabric queue 44
(0x2c). You can check, if needed, the WI stream 1026 (the last 0 means ingress),
which is considered as loopback:

(mx vty)# show mqss 7 phy-stream list 0

Ingress PHY stream list

--
Stream Type Enabled NIC PIC Connection Traffic Class
Number Slot Slot Number
--
[…]
1026 Loopback Yes 11 7 54 0 (High)
[…]

We could also enable a WI counter to see if we received the reinjected traffic com-
ing from the XQSS (WAN queue 104). Remember, the last number 2 is the stream
number value – 1024 (here: 1026 - 1024 = 2)

(mx vty)# test mqss 7 wi stats stream 0 0 2
(mx vty)# show mqss 7 wi stats

 173 Handling Tunnels on the EA and ZT

WI statistics

Tracked stream statistics

Track Stream Stream Total Packets Packets Rate Total Bytes
 Mask Match (pps)

0 0xff 0x2 539346 99984 61485421

Finally, before leaving the PFE 7, let’s check the fabric queue 44 (0x2c) which is
assigned to PFE 0 / Slot 11:

(mx vty)# show mqss 7 sched-fab q-node stats 44

Queue statistics (Queue 0044)

Color Outcome Counter Total Rate

Name

All Forwarded (Rule) Packets 6284740952 100331 pps

Bytes 1145278412220 78660232 bps
All TAIL drops Packets 0 0 pps

Bytes 0 0 bps
0 WRED drops Packets 0 0 pps

Bytes 0 0 bps
1 WRED drops Packets 0 0 pps

Bytes 0 0 bps
2 WRED drops Packets 0 0 pps

Bytes 0 0 bps
3 WRED drops Packets 0 0 pps

Bytes 0 0 bps

At the end, the traffic will reach the PFE 0 / slot 11 and after a last lookup of the
LUSS PFE 0 / slot 11 it will leave the router through the et-11/0/0 port.

	Front Cover
	Back Cover
	Title Page & Table of Contents
	Copyright & About the Author
	Welcome to Day One
	MX 5G Resources in the Juniper Techlibrary
	Chapter 1: The MX 5G: New Chassis and Hardware
	MX204: Small but Powerful
	The MX10003: Modular and Compact
	MX10k and the Universal Chassis
	The Fifth Generation of ASICs

	Chapter 2: MX 5G: Two Powerful ASICs
	Internal View of EA-based Line Card
	Internal View of ZT-based Line Card

	Chapter 3: Follow the Packets
	MPLS in Transit in the EA and ZT
	A Host Packet Targets the MX

	Appendices
	EA/ZT Data Path Health Check
	Handling Tunnels on the EA and ZT

