
Plasma and Fusion Research: Regular Articles Volume 4, 007 (2009)

Theoretical Study of the Electrostatic Lens Aberrations of
a Negative Ion Accelerator for a Neutral Beam Injector

Kenji MIYAMOTO and Akiyoshi HATAYAMA1)

Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi,
Tokushima 772-8502, Japan

1)Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

(Received 25 July 2008 / Accepted 21 December 2008)

Aberrations due to the electrostatic lenses of a negative ion accelerator for a neutral beam injector and
the space charge effect are theoretically investigated. A multi-stage extractor/accelerator is modeled and the
aberration coefficients are numerically calculated using the eikonal method, which is conventionally used in
electron optics. The aberrations are compared with the radii of a beam core with good beam divergence and a
beam halo with poor beam divergence. H− beamlet profile measurements give the 1/e radii of the beam core
and beam halo of 5.8 mm (beam divergence angle: 6 mrad) and 11.5 mm (beam divergence angle: 12 mrad),
respectively. When the beam divergence angle of the beam core is 5 mrad and the beam energy is 406 keV, the
aberrations due to the electrostatic lenses are less than a few millimeters, thus are less than the radii of the beam
core and beam halo. The geometrical aberrations due to the space charge effect (negative ion current density:
10 mA/cm2), however, are estimated to be much larger than the radius of the beam halo. Although the aperture
radii of the grids are not taken into account in this estimation, the results indicate that the space charge effect is
an important factor in the aberration or beam halo in a negative ion accelerator.
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1. Introduction
A negative ion-based neutral beam injection system

(N-NBI system) is a promising candidate for plasma heat-
ing and current drive of fusion reactors such as the interna-
tional thermonuclear experimental reactor (ITER). ITER
requires the N-NBI system to provide high power neutral
beams with a beam energy of 1 MeV and beam power of
50 MW using three injectors [1–4].

A negative ion source/accelerator that can produce
negative ion beams with high current and power is the key
component for the N-NBI system. Negative ion beams
with a beam energy of 1 MeV, beam current of 40 A, and
beam current density of 20 mA/cm2 are required for the
ITER-NBI [1–4]. To suppress the geometrical loss of neg-
ative ion beams and heat loads in the beamline, NB duct,
and injection port, it is essential to accelerate the negative
ion beams with good beam optics.

As for the H− beam optics, Holmes et al. measured
the H− ion beamlet produced with a pure volume source,
and reported that the profile consists of two Gaussian
portions—a beam core with good divergence and a beam
halo with poor divergence [5]. H− ion beamlet profiles
with these two Gaussian portions were confirmed with the
400 keV negative ion accelerator [6, 7]. In the ITER-NBI,
the beamlet is also considered to consist of the beam core
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(< 5 mrad) and beam halo (> 15 mrad), and the ITER-NBI
is designed on the basis that the power fraction of the beam
halo is estimated to be 15% of the total beam power [8].

It is well known that the effects of aberrations degrade
the charged particle beam optics. Generating aberrations is
inevitable when the charged particle beams are extracted,
accelerated, transmitted, and focused with electrostatic and
magnetic fields. For charged particle optical instruments
in the field of the electron microscopes and focused ion
beam systems, aberrations degrade the focused beam spot,
limiting the spatial resolution of these instruments. There-
fore, in developing of the charged particle optical instru-
ments, many authors have studied the aberrations due to
the electrostatic lens, magnetic lens, and space charge ef-
fect [9–17].

In the ITER-NBI design, there is no specification
for an acceptable level of aberration. However, very lit-
tle is known about the aberrations in the negative ion
source/accelerator for the N-NBI system. In fact, the aber-
rations arise from the electrostatic lenses, magnetic lenses
produced by the magnetic filter and permanent magnets
for electron suppression, the plasma-beam boundary, and
the space charge effect. Moreover, the aberrations are con-
sidered to be one of the reasons for the beam halo. As
described above, although the beam halo was verified ex-
perimentally in the H− beamlet profile [5–7], its physical

c© 2009 The Japan Society of Plasma
Science and Nuclear Fusion Research

007-1



Plasma and Fusion Research: Regular Articles Volume 4, 007 (2009)

mechanism is not clear.
The main purpose of the present study is to investi-

gate the aberrations in the extractor/accelerator theoreti-
cally. This paper focuses on aberrations due to the electro-
static lenses and the space charge effect. The well-known
eikonal method [17–21] is used to calculate these aberra-
tions, and the calculated aberrations are discussed quanti-
tatively by comparing them with the radii of the beam core
and beam halo, as reported in Refs. [6, 7].

This article is constructed as follows: the calculation
models for the electrostatic potential, negative ion beam
trajectory, and aberration are described in Sec. 2: the cal-
culation results are shown and discussed in Sec. 3: and a
summary is given in Sec. 4.

2. Calculation Model
Figure 1 shows a cross-sectional view of the extrac-

tor and accelerator for the present model. Figure 1 (a)
shows an overall view of the extractor and accelerator and
Fig. 1 (b) shows a magnified view of the extractor. The ex-
tractor and accelerator are multi-aperture and multi-stage
types. Negative ions are extracted and accelerated electro-
statically.

The extractor consists of a plasma grid (PG) and an ex-
traction grid (EXG), which have the same structure as the
extractor of the negative ion source for ITER-NBI. In or-
der to extract negative ions with good beam optics, the PG
and EXG are shaped to produce convergent electrostatic
lenses in the extractor. Permanent magnets are embedded
in the EXG to suppress the electrons extracted along with
negative ions. These magnets produce the magnetic lens.
In the present model, this magnetic lens is not taken into
account.

The accelerator consists of a first acceleration grid
(A1G), second acceleration grid (A2G), and grounded grid

Fig. 1 Cross-sectional view of the extractor and accelerator in
the present model. (a) Overall view of the extractor and
accelerator. (b) A magnified view of the extractor.

(GRG). The aperture diameter, gap length, and number of
acceleration stages are the same as those of the accelerators
for JT-60U N-NBI [22, 23] and the 400 keV negative ion
source [24, 25]. The gap length is designed to be progres-
sively shorter in the downstream stages to form converging
electrostatic lenses at each grid aperture, and thereby sup-
press beam divergence due to the space charge effect.

2.1 Calculation of electric field
To calculate the electric field in the extractor and ac-

celerator, Laplace’s equation is solved using a finite differ-
ence method with successive over-relaxation.
1) The extractor and accelerator are modeled to be rota-
tionally symmetric. The r-axis is taken to be the direction
of the beam radius, whereas the z-axis is taken to be the
direction of beam acceleration.
2) The mesh sizes are 0.025, 0.05, 0.1, and 0.2 mm. The
minimum mesh size of 0.025 mm is approximately the De-
bye length λD in the extraction region of the negative ion
source. The Debye length λD can be estimated as follows:
at an arc power of 10 kW, the ion saturation current in the
extraction region is approximately 200 A/m2 [26, 27]. As-
suming that the electron temperature Te is 1 eV, and the
ratio of the electron density to the ion density is 0.9 [28],
one obtains

ne = 0.9

× 200

1.60×10−19× exp(−0.5)×√
1.60×10−19×1/1.67×10−27

= 1.9 × 1017 m−3.

Therefore, λD is estimated to be 0.017 mm.
3) The entrance of the PG is set to be z = 0 mm. The
position where the negative ion beamlet profiles was mea-
sured, as in Refs. [6,7], corresponds to z = 1214 mm in the
present model. Modeling to this position incurs high cal-
culation costs. Since an electric field generally penetrates
into the field-free region by a distance of the diameter of an
aperture (at most), the calculation region is modeled up to
z = 270 mm, i.e., 16 mm downstream from the GRG exit.
The regions of z > 270 mm are assumed to be field-free
(E = 0).
4) The plasma-ion boundary is equivalent to an object
plane z = zo. Except for the electrodes, the mesh regions
of z ≤ zo−dh are assumed to be the plasma region, and the
electrostatic potential is set to be zero.
5) The shape of the plasma-beam boundary will result in
the aberrations because the plasma-beam boundary has a
lens effect [29]. In the present model, the plasma-beam
boundary is assumed to be flat. Thus, aberrations caused
by the shape of the plasma-beam boundary are not con-
sidered. An example of equipotentials in the extractor is
shown in Fig. 2.
6) In the experiment, the GRG is grounded [6,7]: however,
the PG is grounded in the present model. The grid voltages
are modeled to be optically optimized at a beam energy
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Fig. 2 Example of equipotentials in the extractor.

Table 1 Voltages of each grid in the extractor and accelerator.

Grid PG EXG A1G A2G GRG
Voltage (kV) 0 6.40 139.73 273.07 406.40

of 406 keV, as shown in Table 1. The electrostatic lenses
in the present model are similar to those of the 400 keV
negative ion accelerator.

2.2 Calculation of ion beamlet trajectory
The paraxial ray equation of the negative ion beamlet

is given by [15]

u′′G +
φ′

2φ
u′G +

φ′′ + ρ
4φ

uG = 0, (1)

where φ is an electrostatic potential, and ρ is the space
charge density for the H− ion beamlet. In Eq. (1), primes
signify differentiation with respect to z. The paraxial
ray equation is solved using the fourth-order Runge-Kutta
method.

The two fundamental solutions of Eq. (1) are given as
g = g(z) (g-trajectory) and h = h(z) (h-trajectory) with the
following initial conditions at the object plane z = zo:

g(zo) = 1, g′(zo) = 0, h(zo) = 0, h′(zo) = 1. (2)

The solution of the paraxial ray Eq. (1) is given by

uG = A1g(z) + A2h(z), (3)

where A1 and A2 are the constants.
In general, the optical properties of the electrostatic

lenses can be evaluated from the g-trajectory and h-
trajectory (see Fig. 3):

• The position of an image plane z = zi is estimated
from h(zi) = 0.
• Magnification M is defined by g(zi) = |M|.

• Focal length fi is given by fi = − 1
g′(zi)

.

• The position of a focal plane z = zFi is given by zFi =

zi + M fi.
• The position of a principal plane z = zhi is given by

zhi = zFi − fi.

Moreover, the aberration due the electrostatic lenses
and the space charge effect can be estimated with the two
fundamental solutions, as will be shown in the next section.

2.3 Estimation of aberration due to the elec-
trostatic lenses

The aberration of the electrostatic lenses is calculated
using the eikonal method, which is conventionally used in
electron optics [17–21]. As the high order derivatives such
as φ(3) and φ(4) cause inaccuracies in numerical integration,
these high order derivatives are excluded using Seaman’s
procedure [30–32].

The space charge effect is not taken into account in the
following.

2.3.1 Geometrical aberration

From the eikonal method (see Appendix), the geometrical
aberration u3(zi) referred to the object side is given as

u3(zi) = M
(
C(o)

s u′o
2ū′o +C(o)

l u′oū′ouo +C(o)
r u′o

2ūo

+C(o)
a u2

oū′o +C(o)
f uoūou′o +C(o)

d u2
oūo

)
, (4)

In Eq. (4), the aberration is expressed in terms of the
beam trajectory and beam divergence angle at the object
plane, i.e., uG(zo) = uo, u′G(zo) = u′o. Moreover, ūo and ū′o
are the complex conjugates of uo and u′o, respectively. The
geometrical aberration coefficients of C(o)

s , C(o)
l , C(o)

r , C(o)
a ,

C(o)
f , C(o)

d are defined as follows:

C(o)
s : a coefficient of spherical aberration

C(o)
l , C(o)

r : a coefficient of coma
C(o)

a : a coefficient of stigmatism
C(o)

f : a coefficient of field curvature
C(o)

d : a coefficient of distortion
In terms of g(z) and h(z), the aberration coefficients of

C(o)
s , C(o)

l , C(o)
r , C(o)

a , C(o)
f , C(o)

d are given as follows:

C(o)
s =

1
32

∫ zi

zo

√
φ

φo

{
F1h4 + F2h3h′ + F3h2h′2

}
dz

− 1
32

√
φ

φo

[
E1h4 + E2h3h′ + E3h2h′2 + E5hh′3

]zi

zo
,

1
2

C(o)
l = C(o)

r =
1

128

∫ zi

zo

√
φ

φo

{
4F1gh

3

+ F2h2 (
2g′h + (gh)′

)
+ 2F3hh′(gh)′

}
dz

− 1
128

√
φ

φo

[
4E1gh

3 + E2h2 (
2g′h + (gh)′

)

+ 2E3hh′(gh)′ + E5h′2
(
2gh′ + (gh)′

)]zi

zo
,
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C(o)
a =

1
64

∫ zi

zo

√
φ

φo

{
2F1g

2h2−F2gg
′(gh)′+2F3ghg

′h′
}

dz

− I2

128
√
φo

∫ zi

zo

F4√
φ

dz − 1
64

√
φ

φo

[
2E1g

2h2

+ E2gh(gh)′ + 2E3ghg
′h′ + E5g

′h′(gh)′
]zi

zo
,

C(o)
f =

1
64

∫ zi

zo

√
φ

φo

{
4F1g

2h2+2F2gh(gh)′+F3(gh)′2
}

dz

− I2

128
√
φo

∫ zi

zo

F4√
φ

dz − 1
64

√
φ

φo

[
4E1g

2h2

+ E2gh(gh)′ + E3(gh)′2 + 2E5g
′h′(gh)′

]zi

zo
,

C(o)
d =

1
128

∫ zi

zo

√
φ

φo

{
4F1g

3h + F2g
2(2g′h + (gh)′)

+ 2F3gg
′(gh)′

}
dz − 1

128

√
φ

φo

[
4E1g

3h + E2g
2(2g′h

+ (gh)′
)
+ 2E3gg

′(gh)′ + E5g
′2 (

2gh′ + (gh)′
)]zi

zo
,

(5)

where

I =
√
φ
(
gh′ − g′h) ,

E1 =
1
2
φ′φ′′

φ2
+ φ(3),

E2 = −4φ′′

φ
,

E3 = −8φ′

φ
,

E5 = −16,

F1 = −3
4
φ′2φ′′

φ3
+

5
2

(
φ′′

φ

)2

,

F2 =
10φ′φ′′

φ2
,

F3 = 12

(
φ′

φ

)2

. (6)

On the other hand, the geometrical aberration u3(zi)
referred to the image side is given as

u3(zi) = C(i)
s u′i

2ū′i +C(i)
l u′i ū

′
iui +C(i)

r u′i
2ūi +C(i)

a u2
i ū′i

+C(i)
f uiūiu

′
i +C(i)

d u2
i . (7)

In this case, the aberrations are expressed in terms of the
beam trajectory and beam divergence angle at the image
plane, i.e., uG(zi) = ui, u′G(zi) = u′i . Moreover, ūi and ū′i are
the complex conjugates of ui and u′i , respectively.

The relation between the aberration coefficients in
Eqs. (4) and (7) is given by

C(i)
s = M4ξ3i C(o)

s ,

C(i)
l = 2M2ξ2i

{
M
fo

C(o)
s +C(o)

r

}
,

C(i)
r = M2ξ2i

{
M
fo

C(o)
s +C(o)

r

}
,

C(i)
a = ξi

⎧⎪⎪⎨⎪⎪⎩C(o)
a +

2MC(o)
r

fo
+

M2

f 2
o

C(o)
s

⎫⎪⎪⎬⎪⎪⎭ ,

C(i)
f = ξi

⎧⎪⎪⎨⎪⎪⎩C(o)
f +

4MC(o)
r

fo
+

2M2

f 2
o

C(o)
s

⎫⎪⎪⎬⎪⎪⎭ ,

C(i)
d =

1
M2

C(o)
d +

1
M fo

(
C(o)

f +C(o)
a

)
+

3C(o)
r

f 2
o
+

MC(o)
s

f 3
o
,

(8)

where

ξi =

√
φi

φo
, φo = φ(zo), φi = φ(zi). (9)

In Eq. (8), fo is the focal length on the object side.

2.3.2 Chromatic aberration

From the eikonal method, the chromatic aberration uc(zi)
referred to the object side is given as

uc(zi) = −M
(
C(o)

c u′o +C(o)
m uo

) Δφ
φi
, (10)

where eΔφ is the deviation of initial kinetic energy. In
Eq. (10), C(o)

c and C(o)
m are the coefficients of an axial chro-

matic aberration and chromatic aberration of magnifica-
tion, respectively. These coefficients are given as

C(o)
c =

3
8

∫ zi

zo

√
φo

φ

(
φ′

φ

)2

h2dz,

C(o)
m =

3
8

∫ zi

zo

√
φo

φ

(
φ′

φ

)2

ghdz +
1
4

(
φo

φi
− 1

)
. (11)

On the other hand, the chromatic aberration uc(zi) re-
ferred to the image side is given as

uc(zi) = −
(
C(i)

c u′i +C(i)
m ui

) Δφ
φi
. (12)

These aberration coefficients C(i)
c , C(i)

m are given as

C(i)
c = M2ξ3i C(o)

c ,

C(i)
m = ξ

2
i

{
C(o)

m +
M
fo

C(o)
c

}
. (13)

2.3.3 Aberration coefficients with length

The position where the negative ion beamlet profile is mea-
sured corresponds to the image plane. Thus, to com-
pare the calculation results with the experimental results
in Refs. [6, 7], it is convenient to express the aberration in
terms of the beam trajectory and beam divergence angle at
the image plane. From Eqs. (7) and (12), the aberrations at
the image plane can be given as

Δu(zi) = C(i)
s u′i

2ū′i +C(i)
l u′i ū

′
iui +C(i)

r u′i
2ūi +C(i)

a u2
i ū′i

+C(i)
f uiūiu

′
i+C(i)

d u2
i ūi−

(
C(i)

c u′i+C(i)
m ui

) Δφ
φi
. (14)

The aberration coefficients in Eq. (14) differ in their
dimensions. Using si, which is the distance between a prin-
ciple plane zhi and the image plane zi, as shown in Fig. 3,
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Fig. 3 Diagram of the two fundamental paraxial trajectories.

the aberration coefficients can be expressed as those with
the dimension of length as follows:

Δu(zi) = c(i)
s u′i

2ū′i + c(i)
l u′i ū

′
iθi + c(i)

r u′i
2θ̄i + c(i)

a ū′iθ
2
i

+ c(i)
f u′iθiθ̄i + c(i)

d θ
2
i θ̄i −

(
c(i)

c u′i + c(i)
m θi

) Δφ
φi
, (15)

where

c(i)
s = C(i)

c , c(i)
l = C(i)

l si, c(i)
r = C(i)

r si, c(i)
a = C(i)

a s2
i ,

c(i)
f = C(i)

f s2
i , c(i)

d = C(i)
d s3

i , c(i)
c = C(i)

c , c(i)
m = C(i)

m si.

(16)

In Eq. (15), θi is an angle defined in Fig. 3, and θ̄i is
the complex conjugate of θi. In Sec. 3, the aberration due
to the electrostatic lenses is calculated using Eqs. (15) and
(16).

2.4 Estimation of aberration due to the
space charge effect

The geometrical aberration coefficients due to the
space charge effect are given as follows [17]:

• a coefficient of spherical aberration

CsS
(o) =

1
4ε0

∫ zi

zo

ρ(z)
φ(z)

h2h′2dz, (17)

• a coefficient of coma

ClrS
(o) =

1
8ε0

∫ zi

zo

ρ(z)
φ(z)

(
h2g′h′ + ghh′2

)
dz, (18)

• a coefficient of stigmatism

CaS (o) =
1

4ε0

∫ zi

zo

ρ(z)
φ(z)

hgh′g′dz, (19)

• a coefficient of field curvature

CfS
(o) =

1
4ε0

∫ zi

zo

ρ(z)
φ(z)

(
hg′ + gh′

)2 dz, (20)

• a coefficient of distortion

CdS (o) =
1

4ε0

∫ zi

zo

ρ(z)
φ(z)

(
ghg′2 + g2g′h′

)
dz. (21)

In Eqs. (17)–(21), ρ(z) is a space charge density for H−

ion beamlet given by

ρ(z) =
I

πR(z)2vz(z)
, (22)

where I is the total current, R(z) is the beamlet radius, and
vz(z) is the velocity component parallel to the z-axis. The
beamlet radius R(z) can be expressed by the relation

R(z) = Rog(z) + αoh(z), (23)

where Ro and αo are the beamlet radius and incident angle
at the object plane, respectively.

These aberration coefficients are referred to the object
side. Equation (8) transforms these aberration coefficients
into the aberration coefficients referred to the image side.

3. Result and Discussion
3.1 Dependence of aberration coefficients on

object planes
Before estimating the aberration due to the electro-

static lenses, the dependence of the aberration coeffi-
cients on the position of the object planes is investigated.
The aberration coefficients referred to the object side C(o)

(given by Eqs. (5) and (11)) are shown in Fig. 4 as a func-
tion of the object planes zo. On the other hand, the aber-
ration coefficients referred to the image side C(i) (given by
Eqs. (8) and (13)) are shown in Fig. 5 as a function of the
object planes zo. In Fig. 5, the aberration coefficients C(i)

are shown in a log scale. These aberration coefficients are
normalized by the values at zo = 1 mm. The mesh size is
0.1 mm.

Figures 4 and 5 show that the aberration coefficients
C(i) vary with zo larger than the aberration coefficients
C(o), except for the aberration coefficients of distortion C(i)

d .
For zo ≥ 2.5 mm, the aberration coefficients C(i) increase
monotonically with zo.

The reason C(o) and C(i) increase with zo can be qual-
itatively explained as follows: As zo is closer to the en-
trance of the PG (or the negative ion source), the negative
ion beams are affected significantly by the penetrating field
in the PG. The penetrating field causes the negative ion
beams to converge to the beam axis. Therefore, the nega-
tive ion beams starting from the larger zo can pass the loca-
tions peripheral to the aperture, and then are more heavily
influenced by the fringe field to aberration. This can be
confirmed by comparing the h-trajectory for zo = 1.0 mm
with that for zo = 4.5 mm, as shown in Fig. 6.

Note that the h-trajectory starting from zo = 1.0 mm
diverges after passing the location of z = zi. However,
this diverging trajectory does not contribute to aberration
because the integration of aberration coefficients is per-
formed in the range from z = zo to z = zi (see Eqs. (5)
and (11)).

The positions of the image planes zi are shown in
Fig. 7 as a function of zo. As the position of object plane
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Fig. 4 Aberration coefficients referred to the object side C(o)

given by Eqs. (5) and (11) in the main text. These aber-
ration coefficients are normalized by the values at z = zo;
(a) geometrical aberration coefficients and (b) chromatic
aberration coefficients.

zo becomes far from the entrance of the PG, the position
of the image plane zi becomes far from the GRG exit. In
Refs. [6, 7], the negative ion beamlet profiles were mea-
sured about 1.0 m downstream of the GRG. This corre-
sponds to zi = 1.25 m in the present model. From Fig. 7,
the value of zi = 1.25 m is obtained for zo = 3.8 mm.

3.2 Dependence of aberration coefficients on
mesh size

The aberration coefficients with the dimension of
length c(i) (given by Eqs. (15) and (16)) are shown in Fig. 8
for zo = 4.0 mm. In the present calculation model, the

Fig. 5 Aberration coefficients referred to the image side C(i)

given by Eqs. (8) and (13) in the main text. These aber-
ration coefficients are normalized by the values at z = zo;
(a) geometrical aberration coefficients and (b) chromatic
aberration coefficients.

values of φo depend on the mesh size dh, even though the
position of the object plane zo is fixed. Thus, Fig. 8 com-
pares the aberration coefficients c(i) for four types of mesh
sizes: dh = 0.025 mm (φo = 16 V), 0.05 mm (φo = 32 V),
0.1 mm (φo = 64 V), and 0.2 mm (φo = 128 V). The mag-
nifications M are almost constant for these four types of
mesh sizes.

The deviations of the geometrical aberration coeffi-
cients are evaluated to be within 66%. The chromatic
aberration coefficients decrease in proportion to

√
φo. The

chromatic aberration coefficients for dh = 0.2 mm are
larger than those for dh = 0.025 mm by a factor of about 2.
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Fig. 6 Comparison of h-trajectories for zo = 1.0 mm and zo =

4.5 mm.

Fig. 7 Position of the image plane zi as a function of zo.

3.3 Contribution of electric field in the
extractor/accelerator to the aberration
coefficients

The contribution of the electric field at each z in the
extractor/accelerator to the aberration coefficients is shown

∫ z

zo

√
φ

φo

{
F1h4 + F2h3h′ + F3h2h′2

}
dz − 1

32

√
φ

φo

[
E1h4 + E2h3h′ + E3h2h′2 + E5hh′3

]z

zo∫ zi

zo

√
φ

φo

{
F1h4 + F2h3h′ + F3h2h′2

}
dz − 1

32

√
φ

φo

[
E1h4 + E2h3h′ + E3h2h′2 + E5hh′3

]zi

zo

. (24)

Fig. 8 Aberration coefficients referred to the image side with the
dimension of the length c(i) given by Eqs. (15) and (16) in
the main text. The position of the object plane is taken
to be zo = 4.0 mm. Comparison of aberration coefficients
c(i) for four types of mesh sizes: dh = 0.025 mm (φo =

16 V), 0.05 mm (φo = 32 V), 0.1 mm (φo = 64 V), and
0.2 mm (φo = 128 V).

in Fig. 9. The mesh size and position of the object plane
are dh = 0.025 mm and zo = 4.0 mm, respectively. The
vertical axis in Fig. 9 is defined such that the aberration
coefficients referred to the object side at z in Eqs. (5) and
(11) are normalized by those at the image plane z = zi. For
example, the normalized spherical aberration coefficient is
given as
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The normalized aberration coefficients vary largely
from the PG to the vicinity of the exit of the EXG, whereas
they are almost constant from the A1G to the GRG. This
indicates that the electrostatic lenses in the extractor con-
tribute dominantly to the aberration, and the contributions

Fig. 9 Contribution of the electric field at each z in the extrac-
tor/accelerator to the aberration coefficients. The mesh
size is dh = 0.025 mm. The vertical axis is defined such
that the aberration coefficients referred to the object side
at z are normalized by those at the image plane z = zi.

Table 2 Individual and total geometrical aberrations due to the electrostatic lenses.

dh Spherical Coma Coma Stigmatism Field Distortion Total
aberration curvatur

csu′i
2ū′i clu′i ū

′
iθ cru′i

2θ̄i caū′iθ
2
i cfu′iθiθ̄ cdθ

2
i θ̄i

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)
0.025 19.1 −55.0 −27.5 36.6 57.0 −29.8 0.47
0.05 17.4 −43.9 −22.0 27.4 48.5 −27.0 0.36
0.1 19.0 −41.8 −20.9 23.2 44.0 −23.5 0.036
0.2 25.8 −52.9 −26.4 27.6 54.1 −27.9 0.16

from the electrostatic lenses in the accelerator are negligi-
ble. This is due to the difference in strength of the conver-
gent electrostatic lenses. As the negative ion beam velocity
is much smaller in the extractor than in the accelerator, the
space charge effect is larger in the extractor than in the ac-
celerator. Therefore, to suppress the space charge effect,
the electrostatic lenses are stronger in the extractor than in
the accelerator.

3.4 Comparison of electrostatic lens aberra-
tions with negative ion beamlet profile

The aberration due to the electrostatic lenses are com-
pared with the radii of the beam core and beam halo
in Refs. [6, 7]. The aberrations for four cases of dh =
0.025 mm (φo = 16 V), 0.05 mm (φo = 32 V), 0.1 mm
(φo = 64 V), and 0.2 mm (φo = 128 V) are estimated from
the aberration coefficients in Fig. 8.

The overall aberration at the image plane is given as

Δu(zi) = csu
′
i
2ū′i + clu

′
i ū
′
iθi + cru

′
i
2θ̄i + caū′iθ

2
i

+ cfu
′
iθiθ̄i + cdθ

2
i θ̄i −

(
ccu′i + cmθi

) Δφ
φi
. (25)

In the above equation, u′i and ū′i correspond to the beam di-
vergence angle of the beam core at z = zi. This divergence
angle of negative ion beamlet is taken to be 5 mrad. From
Fig. 3, θi and θ̄i correspond to the beam divergence angle
of the beam core from the principal plane. The calcula-
tion results show that the value of θi or θ̄i is approximately
4.5 × 10−3, regardless of dh. The electrostatic potential at
the image plane φi is 406 keV.

The individual and total geometrical aberrations are
shown in Table 2. In Refs. [6, 7], the measured 1/e
radii for the beam core and halo are 5.8 mm (beam diver-
gence angle: 6 mrad) and 11.5 mm (beam divergence an-
gle: 12 mrad), respectively. Each geometrical aberration
is the same order as the radius of the beam halo. How-
ever, the geometrical aberrations have positive or negative
signs, and thereby cancel each other. The total geometrical
aberrations are less than 1 mm. Thus, the total geometri-
cal aberrations are much smaller than the radii of the beam
core and halo.

The chromatic aberrations are shown in Fig. 10 as a
function of the deviation of the initial kinetic energy eΔφ.
The wide range of eΔφ, from 0.001 to 100 eV, was sur-
veyed. The chromatic aberrations increase linearly with
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Table 3 Individual and total geometrical aberrations due to the space charge effect.

αo Spherical Coma Stigmatism Field Distortion Total
aberration curvature

(mm) (mm) (mm) (mm) (mm) (mm)
0.1 −1.72 × 105 1.80 × 105 −1.87 × 105 −3.74 × 105 1.95 × 105 −3.59 × 105

0.2 −7.92 × 105 8.25 × 105 −8.60 × 105 −1.72 × 105 8.96 × 105 −1.65 × 106

Fig. 10 Chromatic aberrations as a function of the deviation of
the initial kinetic energy eΔφ.

eΔφ. Below eΔφ ≤ 100 eV, the chromatic aberrations are
less than 2 mm, and negligible compared with the radii of
the beam core and halo.

3.5 Geometrical aberrations due to space
charge effect

The geometrical aberrations due to the space charge
effect are summarized in Table 3 for dh = 0.1 mm. From
Eq. (23), the H− beamlet trajectory or R(z) depends on the
initial beamlet radius Ro, the incident angle αo at the ob-
ject plane, and the total current I. In this calculation, Ro

is taken to be 7 mm. For the present calculation model, a
realistic H− beamlet trajectory will become the minimum
beam radius at the position where the negative ion profiles
were measured in Refs. [6, 7] (z = 1214 mm in the present
model). The values of αo = 0.1 and αo = 0.2 are taken be-
cause the corresponding H− beamlet trajectories R(z) be-
come minimum around z = 1200 mm. The H− beamlet
trajectories R(z) for αo = 0.1 and αo = 0.2 are shown in
Fig. 11. The current density is 10 mA/cm2, thus, the total
current is π × 0.72 cm2 × 10 mA/cm2 = 15.4 mA.

Comparing Tables 2 and 3 show that the geometrical
aberrations increase drastically due to the space charge ef-
fect. The total aberrations due to the space charge effect

Fig. 11 H− beamlet trajectories for the incident angles of αo =

0.1 and αo = 0.2 with a negative ion current density of
10 mA/cm2.

range from 105 to 106 mm of order of magnitude, and are
much larger than the radii of the beam core and halo. In
reality, H− beamlets with such large radii impinge on the
grids in the extractor and accelerator. Therefore, in taking
account of the aperture radii of the grids, the geometrical
aberration is considered to be less than the estimated val-
ues in Table 3. However, the results indicate that the space
charge effect is an important factor for aberrations or halo
in a negative ion accelerator.

007-9



Plasma and Fusion Research: Regular Articles Volume 4, 007 (2009)

4. Summary
The aberrations of the negative ion source/accelerator

for neutral beam injector were theoretically estimated. The
aberrations are considered to be caused by the electrostatic
lenses, magnetic lenses, space charge effect, and shape of
the beam-plasma boundary. In this study, the aberrations
due to the electrostatic lenses and the space charge effect
were investigated, and compared with the radii of the beam
core and halo obtained in the H− beamlet profile measure-
ments with the 400 keV negative ion accelerator. From this
measurement, the 1/e radii of the beam core and beam halo
were evaluated to be 5.8 and 11.5 mm, respectively. In
the present calculation, the beam energy was taken to be
406 keV, and the electrostatic lenses were similar to those
of the 400 keV negative ion accelerator. The aberration
coefficients were numerically calculated using the eikonal
method, which is conventionally used in electron optics.

The calculation results are summarized as follows:

1) The electrostatic lenses in the extractor dominantly
contribute to the aberration coefficients.

2) Based on the assumption that the divergence angle of
the beam core is 5 mrad, the aberration due to the elec-
trostatic lenses is less than a few millimeters, i.e., less
than the radii of the beam core and halo. Therefore,
the aberration due to the electrostatic lenses in the ex-
tractor/accelerator is not the reason for the beam halo.

3) With a negative current density of 10 mA/cm2, the ge-
ometrical aberrations due to the space charge are es-
timated to be from 105 to 106 mm of order of mag-
nitude. Unlike the aberration from the electrostatic
lenses, the geometrical aberration due to the space
charge is much larger than the radii of the beam core
and beam halo. Although the aperture radii of the
grids are not taken into account in this estimation, the
results indicate that the space charge effect is an im-
portant factor in the aberration or beam halo in the
negative ion accelerator.

Appendix. Eikonal Method
Let us consider the motion of a charged particle with

an electric charge e and mass m. In the eikonal method, the
variational function F satisfies

Δ

∫
Fdz = 0, (A1)

where

F =
√
φ̂
(
1 + x′2 + y′2

) − η (Axx′ + Ayy
′ + Az

)
,

η =

√
e

2m
,

φ̂ = φ(1 + εφ),

ε =
e

2mc2
. (A2)

In Eq. (A2), c is the velocity of light. In the absence of
a magnetic field, the magnetic vector potential is zero, i.e.,

Ax = Ay = Az = 0. In the non-relativistic approximation,
ε is zero. Consider an optical system without a magnetic
field, and the non-relativistic case. Moreover, the space
charge effect is not taken into account.

First we deal with the geometrical aberration. From
Eq. (A1), the Lagrange equation of motion is given as

d
dz

(
∂F
∂ū′

)
− ∂F
∂ū
= 0, (A3-1)

d
dz

(
∂F
∂u′

)
− ∂F
∂u
= 0. (A3-2)

The characteristic function F can be expanded as fol-
lows:

F = F0 + F2 + F4 + · · · , (A4)

F0 =
√
φ,

F2 =

√
φ

2

(
u′ū′ − φ

′′

4φ

)
,

F4 = −
√
φ

{
1

128

(
φ′′2−φ(4)φ

φ2

)
(uū)2 +

φ′′

16φ
(
uūu′ū′

)

+
1
8

(
u′ū′

)2
}
. (A5)

In Eq. (A5), F2 corresponds to the paraxial ray and
F4 corresponds to the aberration. When we neglect the
aberration term F4, Eq. (A3-1) is given as

d
dz

(
∂(F0 + F2)
∂ū′

)
− ∂(F0 + F2)

∂ū
= 0. (A6)

By substituting Eq. (A5) into (A6), we obtain

u′′ +
φ′

2φ
u′ +
φ′′

4φ
u = 0. (A7)

Equation (A7) is the paraxial equation, and the solu-
tion corresponds to the paraxial ray uG.

In estimating the aberration, we should take F4 into
account for Eq. (A3-1):

d
dz

(
∂(F0 + F2 + F4)

∂ū′

)
− ∂(F0 + F2 + F4)

∂ū
= 0.

(A8)

Equation (A8) can be written as

d
dz

(
∂F2

∂ū′

)
− ∂F2

∂ū
=
∂F4

∂ū
− d

dz

(
∂F4

∂ū′

)
. (A9)

The solution of Eq. (A9) will be written as u = uG+u3,
where uG and u3 are the paraxial ray uG and geometrical
aberration, respectively. Note that u3 is the third order
term. By substituting u = uG + u3 into the left side, we
obtain

d
dz

(
∂F2

∂ū′

)
− ∂F2

∂ū
=

√
φ

2

{
(uG+u3)′′ +

φ′

2φ
(uG+u3)′

+
φ′′

4φ
(uG + u3)

}
. (A10)
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Since uG is the solution of the paraxial equation (A7),
Eq. (A10) can be transformed into

d
dz

(
∂F2

∂ū′

)
− ∂F2

∂ū
=

√
φ

2

(
u′′3 +

φ′

2φ
u′3 +

φ′′

4φ
u3

)
.

(A11)

On the other hand, let us define the right side of
Eq. (A9) as

W = W
(
u, ū, u′, ū′, u′′, ū′′

)
=
∂F4

∂ū
− d

dz

(
∂F4

∂ū′

)
.

(A12)

The right side of Eq. (A9) W (u, ū, u′, ū′u′′, ū′′) can be
expanded in Taylor’s series:

W
(
u, ū, u′, ū′, u′′, ū′′

)
= W

(
uG, ūG, u

′
G, ū

′
G, u

′′
G, ū

′
G

)
+
∂W
∂ū

∣∣∣∣∣
G

ū3 +
∂W
∂u

∣∣∣∣∣
G

u3

+
∂W
∂ū′

∣∣∣∣∣
G

ū′3 +
∂W
∂u′

∣∣∣∣∣
G

u′3 +
∂W
∂ū′′

∣∣∣∣∣
G

ū′′3 +
∂W
∂u′′

∣∣∣∣∣
G

u′′3 .

(A13)

In Eq. (A11),
∂W
∂ū

∣∣∣∣∣
G

,
∂W
∂u

∣∣∣∣∣
G

,
∂W
∂ū′

∣∣∣∣∣
G

,
∂W
∂u′

∣∣∣∣∣
G

,
∂W
∂ū′′

∣∣∣∣∣
G

,

∂W
∂u′′

∣∣∣∣∣
G

denote
∂W
∂ū

∣∣∣∣∣
ū=ūG

,
∂W
∂u

∣∣∣∣∣
u=uG

,
∂W
∂ū′

∣∣∣∣∣
ū′=ū′G

,
∂W
∂u′

∣∣∣∣∣
u′=u′G

,

∂W
∂ū′′

∣∣∣∣∣
ū′′=ū′′G

,
∂W
∂u′′

∣∣∣∣∣
u′′=u′′G

, respectively. In the third or-

der approximation of the aberration, the terms
∂W
∂ū

∣∣∣∣∣
G

ū3,

∂W
∂u

∣∣∣∣∣
G

u3,
∂W
∂ū′

∣∣∣∣∣
G

ū′3,
∂W
∂u′

∣∣∣∣∣
G

u′3,
∂W
∂ū′′

∣∣∣∣∣
G

ū′′3 ,
∂W
∂u′′

∣∣∣∣∣
G

u′′3 can be

negligible, since u3 is the third order term. Thus, we obtain

W
(
u, ū, u′, ū′, u′′, ū′′

)
= W

(
uG, ūG, u

′
G, ū

′
G, u

′′
G, ū

′′
G

)
.

(A14)

Note that from Eq. (A14), mathematically, u, ū, u′, ū′,
u′′, ū′′ on the right side of Eqs. (A9) or (A12) are equiv-
alently replaced with uG, ūG, u′G, ū′G, u′′G, ū′′G. Thus, we

define F4G as F4G = F4

(
uG, ūG, u′G, ū

′
G

)
, and in the third

approximation of the aberration, we obtain

W
(
u, ū, u′, ū′, u′′, ū′′

)
=
∂F4G

∂ūG
− d

dz

(
∂F4G

∂ū′G

)
. (A15)

From Eqs. (A11) and (A15), the ray equation for the
aberration is given as

√
φ

2

(
u′′3 +

φ′

2φ
u′3 +

φ′′

4φ
u3

)
=
∂F4G

∂ūG
− d

dz

(
∂F4G

∂ū′G

)
.

(A16)

We set the solution of Eq. (A16) as

u3 = αg + βh. (A17)

Moreover, we add the condition of

α′g + β′h = 0. (A18)

The initial condition for the aberration is set at
u3(zo) = u′3(zo) = 0. By applying Lagrange’s method of
undetermined multipliers to Eq. (A17), we obtain

α =

[
2
φ0

∂F4G

∂ū′G
h

]z

zo

− 2√
φ0

∫ z

zo

{
∂F4G

∂ūG
h +
∂F4G

∂ū′G
h′

}
dz,

β =

[
− 2
φ0

∂F4G

∂ū′G
g

]z

zo

+
2√
φ0

∫ z

zo

{
∂F4G

∂ūG
g +
∂F4G

∂ū′G
g′

}
dz.

(A19)

The initial condition for the paraxial ray is set to be
uG(zo) = uo, u′G(zo) = u′o. The paraxial ray can be ex-
pressed as

uG(z) = uog(z) + u′oh(z). (A20)

Thus, we obtain

u′G(z) = uog
′(z) + u′oh′(z),

ūG(z) = ūog(z) + ū′oh(z),

ū′G(z) = ūog
′(z) + ū′oh′(z). (A21)

From Eq. (A21), we can obtain the following rela-
tions:

∂F4G

∂ū′o
=
∂F4G

∂ūG
h +
∂F4G

∂ū′G
h′,

∂F4G

∂ūo
=
∂F4G

∂ūG
g +
∂F4G

∂ū′G
g′. (A22)

By substituting Eq. (A22) into Eq. (A19), we obtain

α =

[
2
φo

∂F4G

∂ū′G
h

]z

zo

− 2√
φo

∂

∂ū′o

∫ z

zo

F4Gdz,

β =

[
− 2
φo

∂F4G

∂ū′G
g

]z

zo

+
2√
φo

∂

∂ūo

∫ z

zo

F4Gdz. (A23)

The values of g(z) and h(z) at the image plane z = zi

are given by g(zi) = M, h(zi) = 0 (see Fig. 3). Thus, with
Eq. (A17), the aberration at z = zi is expressed as

u3(zi) = α(zi)g(zi) + β(zi)h(zi) = Mα(zi). (A24)

By replacing u, ū, u′, ū′ in the term F4 with the parax-
ial solutions uG, ūG, u′G, ū′G, and substituting Eqs. (A20)
and (A21) into Eq. (A23), we obtain

α =

[
2
φo

∂F4G

∂ū′G
h

]z

zo

+C(o)
s u′o

2ū′o
2 +C(o)

l u′oū′ouo

+C(o)
r u′o

2ūo+C(o)
a u2

oū′o+C(o)
f uoūou′o+C(o)

d u2
oūo,

(A25)

where the coefficients of C(o)
s , C(o)

l , C(o)
r , C(o)

a , C(o)
f , C(o)

d are
given as follows:

C(o)
s =

∫ z

zo

√
φ

φo

{
1

32

(
φ′′2 − φ(4)φ

φ2

)
h4

+
φ′′

4φ
h2h′2 +

1
2

h′4
}

dz,
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1
2

C(o)
l = C(o)

r =

∫ z

zo

√
φ

φo

{
1
32

(
φ′′2 − φ(4)φ

φ2

)
gh3

+
φ′′

8φ
(gh)′hh′ +

1
2
g′h′3

}
dz,

C(o)
a =

∫ z

zo

√
φ

φo

{
1

32

(
φ′′2 − φ(4)φ

φ2

)
g2h2

+
φ′′

4φ
gg′hh′ +

1
2
g′2h′2

}
dz,

C(o)
f =

∫ z

zo

√
φ

φo

{
1

32

(
φ′′2 − φ(4)φ

φ2

)
g2h2

+
φ′′

8φ
(gh′ + g′h)2 + g′2h′2

}
dz,

C(o)
d =

∫ z

zo

√
φ

φo

{
1

32

(
φ′′2 − φ(4)φ

φ2

)
g3h

+
φ′′

8φ
gg′(gh)′ +

1
2
g′3h′

}
dz. (A26)

The first term on the right side of Eq. (A25) becomes
zero because h(zo) = h(zi) = 0. Therefore, the aberration
is given by

u3(zi) = M
(
C(o)

s u′o
2ū′o +C(o)

l u′oū′ouo +C(o)
r u′o

2ūo

+C(o)
a u2

oū′o +C(o)
f uoūou′o +C(o)

d u2
oūo

)
.

(A27)

The chromatic aberration uc can be calculated with a
similar procedure, and is given by Eqs. (10) and (11) in the
main text.
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