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INTRODUCTION
Sensor and Data Fusion

The term “sensor and data fusion” refers to tech-
niques that combine data from multiple sources to pro-

duce new information and inferences and achieve more 
complete, clear, precise, accurate, and timely estimates 

pstream data fusion (UDF) refers to the processing, exploita-
tion, and fusion of sensor data as closely to the raw 
sensor data feed as possible. Upstream processing mini-

mizes information loss that can result from data reduction 
methods that current legacy systems use to process sensor data; in addition, upstream 
processing enhances the ability to exploit complementary attributes of different data 
sources. Since the early 2000s, APL has led a team that pioneered development of 
UDF techniques. The most mature application is the Air Force Dynamic Time Critical 
Warfighting Capability program, which fuses a variety of sensor inputs to detect, locate, 
classify, and report on a specific set of high-value, time-sensitive relocatable ground tar-
gets in a tactically actionable time frame. During the late 2000s, APL began expanding 
the application of UDF techniques to new domains such as space, maritime, and irregu-
lar warfare, demonstrating significant improvements in detection versus false-alarm 
performance, tracking and classif ication accuracy, reporting latency, and production of 
actionable intelligence from previously unused or corrupted data. This article introduces 
the concept, principles, and applicability of UDF, providing a historical account of its 
development, details on the primary technical elements, and an overview of the chal-
lenges to which APL is applying this technology.

Upstream Data Fusion: History, Technical 
Overview, and Applications to Critical 
Challenges
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Upstream Data Fusion Concept
“Upstream data fusion” (UDF) refers to the process-

ing, exploitation, and fusion of sensor data as closely to 
the raw sensor data feed as possible within the limits 
imposed by technical feasibility and operational practi-
cality. Upstream processing minimizes the information 
loss that can result from the data reduction methods 
used by current legacy systems that process data from a 
particular single source; in addition, upstream process-
ing enhances the ability of the fusion process to exploit 
the complementary attributes of different data sources. 
The UDF process taps data at an appropriate point in 
the processing chain near the sensor source (chosen to 
acquire the desired information content within engi-
neering feasibility and without disrupting current opera-
tional processes) and bypasses the data reduction and 
detection thresholding steps inherent to a traditional 
single-sensor processing approach. It then exploits the 
upstream data by tuning detection sensitivity to respond 
to faint signatures and discriminating between the true 
targets and the consequent large number of false can-
didates by fusing data across complementary sensor 
phenomenologies, diverse view geometries, and differ-
ent times. In addition, processing of raw (or nearly raw) 
sensor data allows the UDF algorithms to extract and 
exploit measurement data (e.g., target position) and 
associated uncertainties (e.g., error statistics such as vari-
ance or covariance) with the highest possible precision, 
as well as to exploit attribute data that are not normally 
reported in traditional processing chains. Applying UDF 
to operational problems in the ground, maritime, and 
space domains has demonstrated significant improve-
ments in detection versus false-alarm performance, 
tracking and classification accuracy, reporting latency, 
and production of actionable intelligence from previ-
ously unused or corrupted data. The benefits of UDF are 
more fully described in the UDF Benefits section.

A typical legacy downstream fusion process captures 
and fuses post-detection data from the available sources. 
Each of the individual sensor systems applies its own 
processing, data reduction, and detection threshold-
ing to produce a set of candidate targets (e.g., ground, 
maritime, or space targets) in its data stream. In particu-
lar, each individual system is tuned to optimize its own 
intrinsic performance, meaning that detection thresh-
olds are set to relatively high levels to maintain a low 
false-alarm rate while reducing the data processing load. 
This reduces the probability of detecting targets whose 
signatures may be only faintly observed in the sensor 
data (i.e., below the defined threshold). Moreover, data 
that are identified as “bad” or “corrupted” are usually 
discarded because they may not be reliable enough to 
support decision making within that individual process-
ing chain, even though these data can often reinforce 
(or contradict) the information accrued from other 
sensors. The performance of a downstream fusion pro-

of the unknown quantities than could be achieved by 
the use of a single source alone. Fusion of data from 
multiple sensors provides several advantages over deriv-
ing estimates from a single source (see, e.g., Refs. 1 and 
2). First, a statistical advantage is gained by combining 
independent observations. Second, the relative posi-
tion or motion of sensors can be exploited to provide 
a geometric advantage in estimating kinematic states 
and other attributes of an observed object. Third, the 
relative strengths and weaknesses of dissimilar data 
types can be, respectively, magnified and mitigated by 
combining them judiciously. Fusing different data types 
from multiple sensor sources, in particular from different 
sensing phenomenologies (also referred to as modali-
ties), broadens the number of physical observables avail-
able to the fusion process, which results in significant 
improvements in detection, tracking, and classification 
performance as well as resistance to countermeasures 
and changing conditions. 

The U.S. military has acquired and currently oper-
ates a diverse ensemble of intelligence, surveillance, and 
reconnaissance (ISR) assets but tasks and exploits them 
in self-contained enterprises, often referred to as “stove-
pipes,” using a combination of automated and manual 
processes that are highly specialized to a particular ISR 
asset, data type, application, or military domain and do 
not systematically interact with other such stovepipes. 
This approach often fails to fully exploit complemen-
tary capabilities and opportunities for collaboration 
(see, e.g., Refs. 3–6). The sensors provide an enormous 
volume of data but often do not support precision 
engagements of targets of interest because of deficien-
cies in fusion and exploitation of the available data. 
The process of tasking, collecting, processing, exploit-
ing, and disseminating ISR data is generally divorced 
from the rapidly evolving tactical picture and the needs 
of the end user (e.g., theater commander or exploita-
tion system operator). Improved sensor and data fusion 
capabilities are needed to satisfy the warfighter’s accu-
racy, persistence, and timeliness requirements (see, e.g., 
Ref. 7). 

In general, the ability of a multiple-sensor ensemble 
to provide persistent coverage on all targets, with high 
accuracy, high detection probability, and low false-
alarm rate, will be constrained by limits on the number 
and diversity of assets, platform speed, maneuverabil-
ity, view angle, sensor coverage and update rates, sensor 
resolution, and mismatch of target and sensor phe-
nomenologies. Coverage gaps, missed detections, false 
alarms, errors in the sensor support data, and classifier 
confusion will cause geo-location and classification 
errors, incorrect associations, track loss or discontinui-
ties, and spurious tracks, resulting in an ambiguous and 
unreliable tactical ground picture. Fusion and exploi-
tation systems must be robust enough to address these 
realistic conditions.
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dissimilar sensor modalities (intercepted signals, images, 
conventional radar, and ground moving target indica-
tor radar) supplying pieces of complementary upstream 
information that are traditionally exploited separately 
and combined using only products intended for end-user 
consumption (if at all).

UDF Principles
UDF is based on the principles of efficient infor-

mation processing and rigorous model-based evidence 
accrual for multiple, possibly highly dissimilar, data 
types. Efficiency is a key tenet because of the need to 
extract all useful information from a potentially over-
whelming volume of source data while maintaining 
computational tractability at achievable data transmis-
sion rates. It is achieved through a modular, distributed 
architecture in which

• software components referred to as “screeners,” spe-
cialized to each sensor, process raw data from each 
sensor individually and transmit a dramatically 
reduced volume of essential data elements to the 
fusion process; and

• fusion and output conditioning software compo-
nents, common to all sensors, exploit upstream 
information from the screeners to quickly but judi-
ciously eliminate statistically unlikely possibilities. 

Mathematically rigorous model-based evidence 
accrual is a key tenet (Dynamic Time-Critical Warfight-
ing Capability Feasibility Demonstration Plan, 23 August 

2001) because of the need 
to properly combine mul-
tiple, possibly highly dissimi-
lar, data types in situations 
where each data type con-
tributes essential informa-
tion to the fused solution but 
cannot resolve the targets or 
their key attributes individu-
ally. Each sensing modal-
ity produces a distinct set 
of observables or measured 
quantities that may not be 
immediately comparable 
in form or dimensionality. 
These must be combined 
objectively (e.g., without 
subjective weights) within 
a common mathematical 
framework. Inferences must 
be updated as the data are 
received and must accurately 
reflect the accumulated 
information and aggregate 
uncertainty. 

cess is therefore inherently limited by the reduced set 
of thresholded data and the resulting limited number of 
candidate detections that it receives. 

Figure 1 illustrates the concept of tapping and exploit-
ing upstream sensor data to produce information that is 
not available through current means of processing single- 
sensor data. The UDF technique captures the raw or 
partially processed upstream data before decisions are 
made (i.e., before detection thresholds are applied) and 
performs an efficient multiple-level screening process 
to search the upstream data for candidate detections. 
Screening thresholds are set very low to ensure that data 
that would otherwise be rejected are considered in the 
fusion process. This increases the probability of detec-
tion of actual targets but also increases the number of 
false alarms that are passed to the fusion process. The 
false alarms will typically be rejected in the fusion pro-
cess, because, in general, there will not be corroborating 
evidence from other sensor inputs. In this manner, UDF 
discovers targets and activity that would not be found 
using a legacy fusion process.

When exploited in their traditional stovepipes, the 
different data types, or sensing modalities, that are avail-
able for a particular mission can produce very different 
observables, intermediate information products, and end 
products or releasable report formats. UDF efficiently 
extracts, accrues, and reports information by using spe-
cialized screener, fusion, and output conditioning com-
ponents (described in the UDF Design Overview and 
Primary Technical Elements section). Figure 2 illustrates 
an example of applying the UDF methodology to a set of 
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ciples. For example, it is critical to the evidence accrual-
based fusion process that information supplied by the 
screener be extracted purely from the source data, unal-
tered by incorporating exogenous sources or assumptions 
(referred to as “prior-free” information). (For example, it 
is traditional and appropriate for legacy sensor systems to 
incorporate terrain elevation data directly into products 
intended for end users.) A serious consequence of vio-
lating the prior-free prerequisite is the risk of accruing 
the same exogenous information repeatedly and redun-
dantly in fusion as if it represented new and independent 
data. Also, for example, screeners typically output engi-
neering support, measurement, and attribute data with 
fidelity and precision that is not normally passed to an 
end user but is necessary to associate observations with 
objects under conditions of high rates of false alarms. 

The fusion component (or distributed set of fusion 
components) performs data association, kinematic state 
estimation, and class estimation by applying statisti-
cal methods to the candidate detections from multiple 
screeners, over time, to identify candidate detections 
with true targets of interest, objects that are not targets 
of interest (e.g., persistent clutter), or random noise in 
the sensor data. (Current UDF realizations use a central-
ized fusion component. Decentralized fusion is a subject 
of current research that is not covered in this article.) 
The data association process uses a multiple-hypothesis 
formulation, referred to as Multiple Hypothesis Data 
Association (MHDA), which applies Bayesian evidence 
accrual (see, e.g., Ref. 8) to recursively evaluate likeli-
hood ratio statistics on multiple association hypotheses 

The screeners decide what data to transmit to fusion 
(e.g., candidate detections) and condition those data 
to prepare them for consumption by a fusion process 
adhering to the principle of mathematically rigorous 
model-based evidence accrual (a process referred to as 
“data conditioning”). The screeners are physically (e.g., 
geographically) distributed, each as close as possible to 
its corresponding sensor given practical considerations 
(e.g., at a ground station or on board the sensing plat-
form). They are also logically distributed in the archi-
tecture, meaning that each screener is an independent 
functional unit that interfaces to the fusion process 
through a predefined information exchange schema. 
Each screener is specialized to the sensor type and runs 
without interfering with the existing operational pro-
cessing flow. The screeners extract candidate detections 
with detection thresholds intentionally set low to maxi-
mize detection sensitivity so that faint signatures pass 
reporting thresholds. As a consequence, the screener 
passes a much larger number of potentially false detec-
tions than would normally be tolerated by a traditional 
detection process reporting targets to a user or down-
stream fusion process. The screeners transmit only the 
essential data elements for candidate detections from the 
upstream processing to the fusion process for correlation 
and state estimation.

Data conditioning includes some commonly applied 
sensor data processing functions, such as extracting 
measurements and features, converting to common 
units, and aligning to common reference frames, as well 
as more subtle functions necessary to apply UDF prin-
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was followed by a larger conference at APL in March 
2000. At the end of this conference, the three organiza-
tions agreed to form a development team with APL as 
the lead. The concept was discussed and refined at the 
National Correlation Working Group Workshop, held at 
Ft. Monroe, Virginia, on 23–25 May 2000.9

By August 2001 the development team was convinced 
that the “Five-Minute War” concept was feasible (docu-
mented in Dynamic Time-Critical Warfighting Capability 
Feasibility Demonstration Plan, 23 August 2001). Around 
this time, the term “upstream data fusion” was coined 
to succinctly refer to the underlying enabling technol-
ogy. The team proposed the initiation of a major new 
research program to develop a prototype capability and 
test it in a series of progressively more challenging dem-
onstrations. The first step, completed in March 2002, 
was a more detailed investigation of potential benefits 
(as described in the UDF Benefits section) and demon-
stration of selected benefits by using previously collected 
sensor data.

Following that success and under the leadership of 
a visionary APL program manager, Bill Walker (Fig. 3, 
right), a multidisciplinary team was formed by adding 12 
new industry partners to the original three, bringing the 
total to 15 organizations and more than 200 individuals. 
The new partners were BAE Systems, Defense Consul-
tants Ltd., Dynetics, Francisco & Associates Inc., Keith 
S. Peyton, Lockheed Martin Corporation, Orincon, Sci-
ence Applications International Corporation (SAIC), 
Scitor Corporation, Titan Corporation – Aerospace, 
Veridian Systems Division Inc., and Zel Technologies, 
LLC. The team set a goal of conducting a live end-to-end 
demonstration by May 2004. To handle the complexity 
and risk associated with the proposed effort, the team 
made two key decisions. First was the adoption of an agile 
software development method. Because the concept was 
so new, no firm requirements existed. Traditional software 
development presumes that the technology and require-
ments are available at the outset and are stable through-
out development. Agile methods accommodate frequent 
adaptation and were, therefore, well suited to develop-
ment of the UDF prototype. After careful comparison of 

the available options, an agile 
software development method 
known as “Scrum” (see, e.g., 
Ref. 10) was selected. Second, 
the team adopted a philosophy 
that emphasized cooperation 
over competition, wherein the 
prototype was synthesized by 
choosing, modifying, and inte-
grating pieces of algorithms and 
code contributed by team mem-
bers. The team referred to the 
cooperative synthesis approach 
as “breed-the-best,” which is a 

and enable the correct hypothesis to dominate compet-
ing incorrect hypotheses over time. The rigorous appli-
cation of likelihood-based statistical inference requires 
physics-based and empirically derived models of the sen-
sors (with emphasis on error processes, precisely quan-
tified uncertainties, and sensitivity of measurements to 
states), targets (with emphasis on statistical distributions 
of observable features and signatures), and background 
environment. This approach properly considers a large 
number of uncertain possibilities without making early 
decisions or applying heuristics with limited applicabil-
ity. It exploits the complementary attributes of diverse 
sensor phenomenologies, sensor geometries, and data 
collected over time to maintain a low system-level (post-
correlation and report release) false-alarm rate. 

Output conditioning is a post-processing component 
that prepares fusion output for use by a human user and 
determines when the end product is releasable to the user.

UDF History
The development of UDF at APL was initiated by two 

retired Air Force officers, the late Roy Robinette and the 
late Michael (“Cisco”) Francisco (Fig. 3, left and center, 
respectively). On the basis of their experience as combat 
pilots in Vietnam, they were convinced that a great deal 
of operationally relevant sensor data was not being fully 
exploited by the military (later documented in Ref. 7). To 
address the perceived deficiency, they developed a con-
cept they called the “Five-Minute War.” The name was 
chosen to emphasize the potential capability to quickly 
find and prosecute lethal threats during the short periods 
of time when they would expose themselves to surveil-
lance. Roy and Cisco presented the idea to industry, but 
it did not generate significant interest because of skepti-
cism that such a concept could ever be made practical. 
Consequently, they convened a nonprofit partnership 
consisting of APL, Georgia Tech Research Institute, and 
Draper Laboratory to assess the feasibility and utility of 
the concept. A preliminary conference was held at the 
Air Force’s Unmanned Aerial Vehicles Battle Labora-
tory, then at Eglin Air Force Base, in January 2000. This 

Figure 3. UDF pioneers Roy Robinette, Michael (“Cisco”) Francisco, and Bill Walker. (Michael 
Francisco photo courtesy of Air and Space Power Journal.)
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fictional revolutionary artificial intelligence system that 
gains self-awareness in the 1984 movie The Terminator). 
Later, on the day of the live demonstration, raw data 
collected by operational sensors were combined auto-
matically by the prototype. At one instant, with local 
and remote visitors watching the unscripted events, the 
combined results showed a dramatic improvement over 
observations seen by one sensor alone. Remote visi-
tors were not able to see the results immediately at that 
moment, but they did note the sudden eruption of clap-
ping and shouting that they heard coming from team 
members at the demonstration site.

After the successful May 2004 demonstration, 
another demonstration was planned for June 2006 
under more stressful conditions, including some target 
countermeasures. For this demonstration and to sup-
port future development, an entirely new fusion algo-
rithm was designed by Dr. David Porter and the late Dr. 
Larry Levy. This algorithm was designed from scratch 
to employ fully recursive logic and to treat ingested 
modalities in a balanced and mathematically rigorous 
fashion. The algorithms were implemented in software 
by John Florence and Dr. Andrew Newman. Additional 
improvements were made to the data screeners and to 
the overall software architecture. The demonstration 
in June 2006 was, again, highly successful. Despite the 
countermeasures, targets were reliably detected and 
accurately located with very few false alarms. At one 
point, the Air Force Chief of Staff was invited to watch 
the live results at the Pentagon. Under the unscripted 
conditions, very little was happening during the short 
period he was able to visit. However, moments after he 
left a very successful event occurred. His subordinates 
quickly sent him an e-mail message reporting the results. 
Soon afterward UDF became known supportively as 
“dumpster diving” and “Trash-INT” to emphasize how it 
could glean useful information from collected data that 
would otherwise be discarded.

The next live demonstration occurred in June 2008, 
which successfully showed the capability to process addi-
tional sensors and report on additional target types. In 
March 2009 the prototype was activated for the first 
time with continuous operational feeds. This test was 
conducted over a 2-week period, primarily to assess 
robustness. Operational availability, i.e., the fraction of 
time the prototype ran unattended, was extremely high. 
The prototype was deployed as a limited operational 
capability for nearly 3 months in the fall of 2009 and on 
several occasions since. During the test and assessment 
process, the prototype has been undergoing continuous 
refinement and maturation based on these operational 
experiences. An initial prototype deployment for use by 
intelligence analysts at operational sites is planned for 
the spring of 2013. 

Since 2008, APL has expanded the application 
of UDF techniques to critical challenges and new 

word play contradiction on the commonly used “best-of-
breed” approach whereby synthesis is achieved through 
competition by choosing the best finished product or 
component for each individual function. The develop-
ment philosophy proved surprisingly effective in produc-
ing a working prototype within the schedule and funding 
constraints, leading the team to affectionately call the 
resulting product “stone soup.” 

This was truly a team effort, as shown by the many 
contributors across a number of organizations (see 
Acknowledgments). A few members of that team and its 
successors are mentioned in what follows with the sin-
cere hope that neither the authors nor the readers will 
diminish the contributions of others. (All contributors 
are or were affiliated with APL unless otherwise noted.) 
Dr. David Porter, Dr. James Christ, and Dr. Glenn Mitzel 
developed the original functional architecture design 
(an early, more detailed version of Fig. 1) in an intense 
2 weeks of isolation. It was subsequently refined by the 
larger team and became the framework for all other devel-
opment. The physical architecture was designed under 
the leadership of Glen Long. The software architecture 
was developed under the leadership of Steve Wieprecht. 
The team applied the Scrum software development pro-
cess under the leadership of Will Menner. The screeners 
for two of the sensing modalities were developed under 
the leadership of Dr. Christopher Boswell, Dr. Patricia 
Murphy, and Dr. Chung Fu Chang (Lockheed Martin). 
One screener design was based on prior work by Myron 
Brown and extended to include new target features and 
detection and geo-location techniques. The target fea-
tures and the complex code required to extract them 
were contributed by multiple organizations, each having 
decades of experience with the specific sensing modali-
ties. For another sensing modality, a relatively mature 
automated fusion capability was available and adequate 
for the first live demonstration. Applying the breed-the-
best philosophy, that capability was modified to accept 
raw data from other screeners under the leadership of 
Marshall Alworth and Mike Rector (both with Scitor 
Corporation; Alworth has since joined APL). Output 
conditioning, which turned the impossibly complex 
output of the automated fusion capability into a final 
end-user product, was developed by Jeff Gilbert.

The demonstration in May 2004 was highly success-
ful. Real targets were deployed on test ranges where their 
positions were precisely measured for comparison with 
reported locations. During the final preparations for the 
demonstration, after one long day of work and with ini-
tial installation at the demonstration site complete, the 
site team turned on the prototype and was ready to leave 
for the night. Suddenly the first live data appeared and 
the prototype processed the data. The site team stayed 
for hours convincing themselves that the results seemed 
reasonable. That event became known to the whole team 
as the day “Skynet went operational” (Skynet refers to a 
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It is common to characterize sensor system per-
formance by using a receiver operating characteristic 
(ROC) curve, which plots probability of detection versus 
false alarm rate over a range of detection thresholds. 
Figure 5 shows the performance gain when going from 
single-sensor detection processing (orange) to one-step 
upstream fusion (blue) in which a Boolean AND opera-
tion is applied to combine the two single sensor decision 
logics, and further to two-steps upstream fusion (green) 
in which the decision variables are accessed and com-
bined apart from individual decision logics by using a 
joint probability distribution function. 

The single-sensor ROC comes from classical binary 
detection theory. For normally distributed decision vari-
ables it can be expressed as

 P P1 1– – –, ,d k f k
m1– k

k
 = ^ h8 B, 

where k = 1,2 for the individual sensors;  is the cumula-
tive distribution function of a zero-mean, unit-variance 
normal random variable; m is the decision variable mean 
(imposed only by the target);  is the decision variable 
standard deviation; Pd denotes probability of correct 
detection; and Pf denotes probability of false alarm. The 

signal-to-noise ratio (SNR) is 
therefore given by m/. The 
orange line in Fig. 5 plots this 
curve for a common SNR of 
10 dB (roughly 3.16).

For this analysis, the logic 
rule for fusing decisions one step 
upstream is defined to require 
that the sensors agree on detec-
tion decisions. Other logic rules 
(such as those requiring at least 
one detection) are possible but 
are not considered here. To 
achieve the same probability of 
detection for the fused result as 
for the individual sensors, the 
individual sensor probabilities 
of detection must be increased 

domains including space, maritime, and irregular war-
fare, described in the UDF Application Areas section. In 
addition, APL has recently initiated internal research 
and development efforts to investigate the feasibility of 
applying UDF technology to detection and character-
ization of underground facilities, protection of docked 
submarines carrying nuclear weapons, and area defense 
against terrorist attacks.

UDF BENEFITS

Detection
The improved detection capabilities of UDF can be 

illustrated using a simplified analysis (originally docu-
mented in an APL internal presentation by Mitzel entitled 
“Illustration of the Potential Benefits of Upstream Data 
Fusion for Target Detection,” dated April 2001) with two 
notional sensor systems with identical processing, deci-
sion logic, and performance characteristics. For the pur-
poses of this analysis, the UDF concept simply depicted 
in Fig. 1 is further simplified to two sensors where the 
sensor processing for each sensor is assumed to consist of 
computation of a decision variable and the application 
of decision logic to that variable. Figure 4 depicts three 
distinct approaches for determining whether a target is 
present or absent given the source data from two sen-
sors. First, decisions are produced from each individual 
sensor using its intrinsic processing and decision logic 
(orange). Second, one step upstream (blue), a decision is 
produced by combining the decisions made by the two 
individual sensor processing chains. This approach may 
require some modification of the individual sensor deci-
sion logic to adjust the individual decision thresholds for 
the purpose of maintaining a fixed probability of detec-
tion. Third, two steps upstream (green), a decision is 
produced using the internal decision variable of each of 
the two individual sensor processing chains.
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tion of data from multiple sources inevitably requires 
assumptions about such matters as the independence 
of errors, temporal error behavior (e.g., from persistent 
biases), and error magnitudes. When the combination 
is purely downstream, those assumptions are often made 
without understanding or knowledge of the underlying 
error mechanisms. 

UDF facilitates access to higher-quality engineering 
support data. It therefore enables better error accounting 
and error modeling. Specific examples of the improve-
ment include the elimination of conservative “fudge” fac-
tors (ad hoc adjustable parameters with weak theoretical 
justification), isolation of common error contributions 
(e.g., elevation data), incorporation of correlation dura-
tions for slowly varying biases (systematic errors in the 
sensor measurements), and the ability to estimate and 
compensate for bias errors by correlating across different 
sensing modalities without relying on off-line calibration. 
Similarly, UDF facilitates access to raw data where subtle 
features for target classification can only be exploited.

Timeliness
UDF bypasses some of the downstream processing for 

individual sensors (as shown previously in Fig. 2), which 
typically includes processing that primarily conditions 
the individual sensor output product for human con-
sumption. This reduces system processing latency. Fur-
thermore, the UDF process is implemented recursively, 
so that a very small amount of additional data and pro-
cessing from one sensor may become the tipping point 
for reporting given all the other previous data. 

Improvements in timeliness can be dramatic. For 
example, for a single sensor, the number of observa-
tions to reach a reporting threshold may be large and 
may take a significant amount of time to collect. How-
ever, in the UDF approach, if a target has been barely 
missed in previous sensor observations but the memory 
of that detection has been recursively retained (consis-
tent with the principle of evidence accrual described in 
the UDF Principles section), then the first indications 
of the target from another sensor, although themselves 
not reportable, may result in a combined detection long 
before enough observations from the single sensor would 
have been collected and exploited.

Robustness to Countermeasures
UDF is a logical response to countermeasures that 

are designed to reduce target observables, to confound 
a limited set of modalities, or to restrict the exposure of 
key target signatures. UDF exploits more subtle target 
features and scales to include more modalities. More-
over, as explained in the previous section on timeliness 
benefits, even the most fleeting target signature may 
provide a sufficient amount of corroborating evidence to 
detect and report the target.

by lowering the thresholds. Assuming that the indi-
vidual sensor statistics are independent, the composite 
probability of detection is the product of the individual 
probabilities of detection. Assuming that the decision 
variables for both sensors are identically distributed, the 
ROC one step upstream is given by
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The blue line in Fig. 5 plots this curve for a common 
SNR of 10 dB.

For fused decisions two steps upstream, this analy-
sis assumes simultaneous stimuli of the two sensors but 
with access to the individual decision variables them-
selves. The new decision logic requires the sum of the 
two normalized decision variables to exceed a thresh-
old. It is easy to see that such decision logic may show 
improvement over one-step upstream logic. For one-
step upstream logic, both sensors must meet individual 
detection thresholds. For two-step upstream logic, the 
individual thresholds are irrelevant. A weak decision 
variable measurement in one sensor can be compensated 
by a strong measurement in the other variable as long 
as the sum meets the specified sum threshold. The sum 
is normally distributed with zero mean and a standard 
deviation of 2  m/. Therefore, using the same reason-
ing as in the single-sensor case but with the summed 
decision variable,
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When comparing this with the ROC for a single 
sensor, it is apparent that this is equivalent to a gain in 
SNR of 2  (~3 dB). The green line in Fig. 5 plots this 
curve for a common sensor SNR of 10 dB.

For a fixed probability of detection it is obvious that 
the false alarm rates will be substantially reduced as 
the fusion decision logic is applied further upstream. 
For instance, at a detection probability of 0.80 the false 
alarms are reduced by more than a factor of 10 at one step 
upstream and nearly 100 at two steps upstream. Con-
versely, for a fixed false alarm rate, the detection prob-
ability will be improved. This implies that the system 
will achieve detections that would otherwise go unre-
ported. Although the illustration is simplistic, detection 
gains of these types have been repeatedly demonstrated 
in the field.

Other Benefits
Target Location and Classification

Fusing location estimates from multiple independent 
sources generally improves accuracy. But the combina-
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Screeners
Each screener ingests data directly from the source, 

or with the minimum intervening transmission and pro-
cessing that is feasible, practical, and advantageous to 
system performance. The screener often resides on the 
sensor platform or the processing element that it directly 
feeds in its traditional processing chain. Screener pro-
cessing is specialized for the particular data type, using 
detailed physics-based and empirical models of the spe-
cific sensor phenomenology. Therefore, screening algo-
rithms must be developed for each distinct sensor type, 
and a screener software component is required to process 
the upstream data from each individual sensor. 

The essential functions of each screener are to extract 
candidate targets from upstream sensor data, measure 
observables, convert all observable data to a common 
format and units, align data to common reference frames 
where necessary, estimate measurement error with the 
maximum possible precision, and assure that informa-
tion produced is prior-free. High precision prior-free 
observable data are essential for fusion to accurately and 
faithfully compute and represent estimate uncertainties 
and association probabilities. 

In general, each screener may also perform pattern 
classification algorithms using the extracted feature 
data to produce conditional likelihoods of the target 
belonging to particular object classes (e.g., target types, 
persistent clutter, and random clutter). However, the 
screener does not perform a traditional target recogni-
tion or classification function. It produces only candi-
dates and conditional likelihoods rather than making 
final decisions about target class or identity. Feature 
distributions for objects of interest can be estimated 
as Gaussian mixture densities by applying maximum 
likelihood expectation maximization and data mining 
techniques to empirical data. In addition, the screener 
may also provide the functionality to deal with cor-
rupted measurements and dynamically calibrate sensors 
to remove bias error. 

To keep pace with potentially high volumes of sensor 
data, low-complexity design of screener algorithms 
and models for fast computational processing is essen-
tial. The techniques and algorithms must be robust to 
varying conditions (e.g., illumination, collection geom-
etries), be adaptive for new targets and backgrounds, and 
exploit all available information (e.g., spatial, temporal, 
and spectral). Screener design often applies a multilevel 
screening algorithm to efficiently search the upstream 
source data in near real time to find candidate targets 
in the data stream. For example, the first-level screening 
may apply a fast, coarse anomaly-detection technique 
to identify a very large number of candidate targets. 
Second and higher levels of screening, as appropriate, 
progressively screen the remaining candidates, applying 
more sophisticated algorithms such as pixel-level, object-
level, and feature-level algorithms (see, e.g., Ref. 12). 

Required Computational and Communications Capacity
By deploying screeners as far upstream as possible and 

judiciously controlling the release of fused information 
to the user according to rigorously computed uncertain-
ties and confidence factors, the UDF framework allows 
a significant reduction in the communications capacity 
required to transmit data among networked components 
and to end users. This reduction is particularly dramatic 
for sensing modalities producing extremely high volumes 
of data such as full-motion video (FMV) and wide-area 
imaging. End-to-end reductions in required communica-
tions capacity of many orders of magnitude have been 
demonstrated in field tests. In addition, the overall com-
putational load is distributed and the processing capacity 
of each individual component can be chosen according 
to its specific loading profile.

Asset Employment Efficiency
UDF not only improves awareness of those targets for 

which it is certain, but it also keeps careful track of the 
ambiguities and uncertainties about targets that are not 
yet reportable. This additional information facilitates 
the optimal use of limited surveillance assets to collect 
the last piece of accruable evidence as opposed to initi-
ating a new search. Also, accurate assessments of uncer-
tainty and ambiguity form a basis for choosing the assets 
and focusing their attention where it will be most useful. 
This UDF benefit forms the technical foundation for 
a more comprehensive concept referred to as “Closed-
Loop Collaborative ISR” (CLCISR), which is the subject 
of the article by Newman and DeSena in this issue.

UDF DESIGN OVERVIEW AND PRIMARY 
TECHNICAL ELEMENTS

UDF Processing General Framework
The general framework for UDF processing consists 

of several distributed upstream screeners performing 
detection and data conditioning functions; one or more 
fusion elements performing data association, kinematic 
state estimation, and class estimation functions; and an 
output conditioning element, each of which is described 
in general terms in the sections below (some references 
are provided for detailed descriptions, although in many 
cases the details are program specific and access may be 
limited). These components, and to a lesser extent the 
framework itself, must be specialized for the particular 
sensor types and mission while adhering to the general 
UDF design principles. Current realizations employ a 
centralized fusion element, although decentralized fusion 
designs are feasible (see, e.g., Ref. 11) and are the sub-
ject of current research. The general framework is illus-
trated in Fig. 6, which shows one possible realization for 
a ground target surveillance and reconnaissance mission.
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result is a complete partition of the set of screener detec-
tions into subsets corresponding to real objects in the 
observed physical space or spurious noise (false alarms). 
Each possible such partition is referred to as an associa-
tion hypothesis (see discussion of multiple hypothesis 
techniques below). Kinematic state estimation typically 
refers to the process of inferring the position and motion 
variables (e.g., geo-location, velocity, or orbital elements) 
of detected objects. Object class estimation refers to the 
process of inferring the types of detected objects chosen 
from a set of discrete categories. In certain applications, 
at a higher fidelity, target identity may also be inferred. 
These functions within the fusion element are tightly 
coupled, as described below, and are illustrated by exam-
ple in Fig. 6.

The data association and state estimation func-
tions process candidate detection data from all sensor 
screeners asynchronously. This is possible because the 
screeners are designed to report observable data by using 
common data formats and units known to the data asso-
ciation and state estimation functions. However, the 
techniques applied depend on expected target properties 
and behavior.

Most importantly for UDF, the screening thresh-
olds applied by screening are intentionally kept low to 
maintain a high probability of detecting actual targets of 
interest. As a consequence, the screener passes a much 
higher number of detections, which initially produces a 
much higher false alarm rate than would be tolerated 
by a traditional detection process reporting targets to a 
user or downstream fusion process. The UDF framework 
relies on data association across sensor phenomenolo-
gies, sensor geometries, and data collected over time to 
maintain a low system-level (post-correlation and report 
release) false alarm rate. 

Fusion
The fusion element (or elements) performs data 

association, kinematic state estimation, and object 
class estimation. Data association refers to the process 
of determining the origin of each detection produced 
by the screeners as an object already observed (and 
tracked), a new object not yet observed, or a false alarm 
induced by random phenomena. This includes correla-
tion across the various sensor types and over time. The 
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Figure 6. One possible realization of a general framework for UDF processing. DTED, Digital terrain elevation data; LLR, log likelihood 
ratio.
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dynamically estimate observable sensor bias errors where 
applicable. Recursive linear and nonlinear filtering 
techniques are used to update target and bias state esti-
mates with new measurement data and, depending on 
the application, to propagate estimates forward in time 
to correlate with the next set of available measurement 
data. In general, the MHDA algorithms must properly 
account for cross-track correlations in the bias states. 
The class estimation function applies Bayes’s law and the 
law of total probability to update a discrete probability 
distribution on the class of each candidate target object 
(see, e.g., Refs. 17 and 18). The MHDA computes the log 
likelihood score for each candidate association of obser-
vations (that form a track) recursively with a data update 
that combines a kinematic component derived from the 
filter residuals and residual covariance (or square root 
information quantities) and a feature-based component 
derived from classifier-generated conditional probabili-
ties of detected objects in feature space. 

The UDF prototypes developed by APL have been 
based on the Reid MHT formulation13 and modern vari-
ants.14–16, 19 Traditionally, MHT couples MHDA with 
independent track filters, commonly Kalman or iterated 

The multiple hypothesis methodology is essential to 
data association in the UDF framework where screener 
detection sensitivity, and consequent false alarm rates, 
is set intentionally high. The MHDA approach [often 
referred to as Multiple Hypothesis Tracking (MHT) 
in the literature because of its common application to 
moving target tracking problems13–16] applies Bayesian 
evidence accrual to recursively evaluate likelihood ratio 
statistics on multiple association hypotheses and enable 
the correct hypothesis to dominate competing hypoth-
eses over time. As the term suggests, “evidence accrual” 
refers to a technique for combining information from 
different sources and over time in which estimates and 
decisions are updated according to physical and statisti-
cal models whenever new data become available. Bayes-
ian evidence accrual, or Bayesian inference, applies 
Bayes’s law relating prior and posterior probability densi-
ties of the estimated parameters. It provides a straight-
forward and theoretically sound method of recursively 
updating belief about unknown random variables by 
incorporating information from different sources. A 
likelihood ratio test is a common statistical test used to 
compare the fit of two models to the available data. The 
log likelihood ratio is the test statistic that quantifies the 
relative fits. For MHDA, the log likelihood ratio statis-
tic is computed for each association hypothesis under 
consideration, with the hypothesis that all detections 
are false alarms serving as the basis of comparison (see 
Refs. 14 and 15 and references therein for more details).

The MHDA methodology generates alternative data 
association hypotheses whenever the data cause an 
ambiguous or conflicting situation (illustrated by exam-
ple in Fig. 7). Each hypothesis is a complete and noncon-
flicting set of detection-to-track associations. Decision 
making is delayed by propagating hypotheses in antici-
pation that subsequent data will resolve the uncertainty. 
Association hypotheses are evaluated, ranked, con-
firmed, and denied via recursive computation of likeli-
hood statistics derived from the input data and model 
parameters. As each new set of measurements is made 
available to the data association process, the algorithm 
considers the possible ways that the new measurements 
can associate with the existing tracks. Using precise 
kinematic information, and based on the consistency 
of the measurements with the target (or background) 
models, the system uses Bayesian likelihood techniques 
to calculate likelihood measures for the hypotheses. 
Unlikely hypotheses are pruned, and the probability 
mass is re-normalized over the remaining hypotheses. 
In this manner, true targets are reinforced by evidence 
from multiple sensor modalities and will pass the report-
ing thresholds; false targets decorrelate and are rejected.

The data association function operates in conjunc-
tion with the state and class estimation functions. The 
state estimation function estimates the kinematic state 
of all candidate target objects. It may also be used to 

hypothesis
 true
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2 detectst1 2 detectst2

3 detectst3 1 detectt4

    trutht4

fasle
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Figure 7. Example MHDA association of detections into tracks 
over four time steps.
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approach inherently presents situations in which two or 
more competing hypotheses are similar, cannot be fully 
resolved given the available data, and the remaining 
differences are not important for the given application. 
Presenting these close, but distinct, hypotheses to a user 
would be confusing and distracting and would reduce 
the operator’s confidence in system performance. The 
output conditioning function (internal presentations 
and private communications, J. M. Gilbert, APL, 2003–
2011) resolves this ambiguity in the MHDA output by 
statistically aggregating similar association hypotheses 
to produce logical entities, called “groups,” that repre-
sent possible targets. These groups are the main objects 
of interest in determining releasability of target reports 
to the tactical user and computing metrics on fused 
output. Output conditioning provides a rigorous means 
of aggregating two or more hypotheses or target tracks 
that individually are too ambiguous or have insufficient 
confidence to pass a releasability threshold but can do 
so in aggregate.

UDF APPLICATION AREAS

Relocatable Time-Sensitive Ground Targets
The most mature application of UDF is the Air 

Force Dynamic Time Critical Warfighting Capability 
(DTCWC) program currently managed by the Air Force 
Research Laboratory (AFRL). DTCWC applies UDF to 
a variety of sensor inputs to detect, locate, classify, and 
report on a specific set of high-value, time-sensitive relo-
catable ground targets in a tactically actionable time-

extended Kalman filter variants that are efficient recur-
sive estimators of the state of a dynamical system from a 
series of noisy measurements. The APL prototypes instead 
use an iterated extended square root information filtering 
(SRIF) technique19, 20 for the track filters to recursively 
estimate target and bias states from sensor measurements 
and altitude data.21 The SRIF algorithm has advantages 
over the Kalman filter and its other variants in terms 
of numerical stability and precision, computational effi-
ciency, and amenability to distributed processing. The 
MHDA and SRIF implementations estimate and com-
pensate for sensor bias errors within the core algorithms, 
including approximate accounting for cross-track correla-
tion (internal presentations and private communications, 
D. W. Porter and L. J. Levy, APL, 2003–2006).

The APL prototypes have been designed to run in a 
multiple-sensor, multiple-target setting where the sensor 
data may include a mixture of dissimilar data types. The 
fusion processing is augmented with support for process-
ing ambiguous, nonlinear, and biased measurement,22 

as well as processing of dissimilar data types with per-
formance that is robust to different orders of the input 
data.23 The kinematic state estimation function employs 
and switches between linear and nonlinear filtering 
techniques at different steps in the algorithm as needed 
to balance the need for estimation accuracy with the 
need for computational tractability. The various realiza-
tions that have been developed at APL are equipped with 
specialized capabilities to process and fuse specific data 
types such as angle measurements from screening opti-
cal imagery, range and range rate measurements from 
radar sources, and other data types relevant to ground 
and maritime surveillance 
applications such as time 
difference of arrival from RF 
signal intercepts and moving 
target indicator (MTI) con-
tacts from radar and video 
sources. Some realizations 
also include a multiple 
model capability for tracking 
targets exhibiting different 
types of motion behavior. 

Output Conditioning
Output conditioning 

refers to the process of 
aggregating and resolving 
competing hypotheses to 
provide target reports to the 
end user. Fusion and output 
conditioning are tightly 
coupled and require a coher-
ent design to function prop-
erly together. The MHDA Figure 8. UDF of diverse sensors against relocatable ground threats.
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detection reports were made accessible to trained per-
sonnel for use in supporting operations, collections, and 
analytic decisions. During 2012 and 2013, DTCWC has 
been deploying an initial prototype for use by intel-
ligence analysts at operational sites as the first step in 
transitioning to an operational capability.

The field demonstrations and LOC assessments 
have confirmed the feasibility and operational utility of 
UDF in support of the DTCWC mission against a set 
of relocatable time-sensitive ground targets. They have 
shown that UDF can achieve high detection probability 
(e.g., detecting targets that would have been missed by 
a single-sensor system) with very low false alarm rates, 
and geo-location accuracy capable of supporting target 
engagement. Furthermore, they have shown the ability 
to overcome corrupted data, whereby information from 
one sensor system was used to automatically reject poor 
measurements from another system, and to automati-
cally estimate and remove certain types of bias errors.

Maritime Situational Awareness 
The Navy needs to track ships globally to coun-

ter resurgent and emerging surface naval threats.29, 30 
Worldwide ship tracking typically relies on a combina-
tion of marine radar and vessel self-reporting, such as 
the Automatic Identification System (AIS), a system 
whereby ships broadcast their unique identification, 
position, course, and speed. However, these sources of 
information are not adequate for tracking many impor-
tant vessels that are of interest to the Navy and may be 
attempting to hide in regions of dense maritime traffic, 
conceal their identity and position, or otherwise defeat 
surveillance.

The maritime surveillance problem presents unique 
challenges in terms of the extremely large area required 
for coverage, long track durations, and high density of 
vessels in many areas of interest (Fig. 9). Available sensor 
types include surface MTI radars, a variety of imaging 
modalities, and passive systems such as AIS and RF 
signal receivers. However, there is no single sensor that 
detects, tracks, and identifies ships throughout their 
voyages over wide areas.31 Moreover, individual sensors 
suffer from weaknesses such as periodic coverage, narrow 
coverage, unreliable detection, inaccurate kinematic 
information, imprecise identification, and high sensitiv-
ity to weather conditions. It is necessary to combine and 
correlate data from disparate surveillance sensors. This 
is further challenged by dense shipping backgrounds and 
unpredictable latencies in data transmission that cause 
data from different sources to arrive out of sequence rela-
tive to collection time. 

In a series of efforts using real and simulated sensor 
data, APL showed the potential of UDF to improve 
maritime situational awareness by screening and fusing 
upstream data from a variety of operational sensors that 

frame.24–27 Figure 8 illustrates a prototypical mission 
supported by DTCWC. An automated UDF capability 
is the critical enabling technology for DTCWC because 
of the need to prosecute evasive targets employing coun-
termeasures (e.g., frequent relocation, camouflage, and 
other mitigation of observables and spoofing of signa-
tures) during short periods of time when they expose 
themselves to surveillance. DTCWC has successfully 
demonstrated an automated end-to-end capability to 
fuse live data feeds in several controlled field demon-
strations on test ranges (May 2004, June 2006, and June 
2008) as well as in uncontrolled limited operational 
capability (LOC) assessments using operational sensor 
data against real targets in operational environments 
(several during 2009–2012). 

The early history of what was to become DTCWC, 
including some details about the early field demonstra-
tions, is described in the UDF History section. The 2004 
field demonstration validated the technical feasibility 
of the UDF concept as applied to the DTCWC mis-
sion. The 2006 field demonstration showed the feasibil-
ity of the MHDA-based fusion approach, the capability 
to perform successfully in a more challenging natural 
environment under more realistic conditions including 
some target countermeasures, and the capability to pro-
vide timely actionable target information to users in a 
targeting cell. 

In June 2008, DTCWC was exercised over multiple 
days by using live national and tactical sensor data feeds 
to demonstrate and assess new capabilities including 
integration of a new tactical sensor, reporting on a new 
target of interest, a reengineered fusion engine, and a 
browser-based user interface. DTCWC was operated 
from an Air Force distributed ground system site, which 
controlled the distributed system components resident 
at data collection sites. DTCWC achieved report-
ing accuracy, a false alarm rate, an estimate error, and 
performance latency that were all within operational 
parameters for tasking the new tactical sensor in its tip-
ping and cueing role. 

In March 2009, DTCWC was run in an operational 
setting for the first time, with the primary objective of 
assessing system availability for users. The prototype ran 
nearly continuously for more than 2 weeks. With that 
success to bolster the case, in the fall of 2009 DTCWC 
was assessed at a Technology Readiness Level of 7 by an 
Air Force-led, independent assessment team. The results 
of these UDF demonstrations and assessments were rec-
ognized and documented by the Joint Defense Science 
Board Intelligence Science Board Task Force on Inte-
grating Sensor-Collected Intelligence.28

 From October 2009 through January 2012, the 
DTCWC program conducted a series of LOC assess-
ments during which DTCWC processed live operational 
data from supported sources and produced detection 
reports within specified areas of interest. DTCWC 
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catalog of most, if not all, 
objects in orbit (Fig. 10). 
Traditional space surveil-
lance and tracking systems 
operate with high detec-
tion thresholds with an 
emphasis on rejecting false 
alarms. The post-detection 
data are fused to produce 
orbit tracks. In addition, 
processing and exploitation 
of metric data (e.g., satel-
lite position and velocity) 
and feature data (e.g., pho-
tometric and radiometric 
signatures) are tradition-
ally performed in separate 
organizational stovepipes. 
Traditional methods have 
performed well in finding, 
tracking, and identifying 

larger objects in Earth orbit, but smaller objects, includ-
ing a variety of potential threats, are often lost or missed 
entirely. In addition, current methods are severely chal-
lenged when satellites maneuver from their expected 
orbital trajectory or are in close proximity to (and hence 
possibly confused with) other satellites. Enhancements 
to persistence and timeliness of space situational aware-
ness (SSA) are needed to deal with stressing cases such 
as dim, closely spaced, and maneuvering objects. 

In 2009–2010, APL completed a project sponsored 
by the Air Force Space and Missile Systems Center to 
investigate the operational utility of UDF techniques 
to detection and tracking of dim resident space objects 
(RSOs) and discrimination of closely spaced RSOs using 
space surveillance sensor data. The project executed a 

are currently exploited separately, and to do so without 
interfering with their current operational procedures 
or capabilities. These efforts emphasized the benefit of 
fusing sensors that provide strong target feature infor-
mation with sensors that provide persistent area cover-
age and precise target location information. They also 
showed the adaptability of the UDF framework, with 
relatively minor modifications to current realizations, to 
maintaining track custody of maneuvering surface tar-
gets over long periods of time while traveling through 
dense backgrounds. 

In this work, track-oriented MHT techniques16 were 
applied to more efficiently process sensor data for long-
duration tracking (by contrast, the DTCWC time-
sensitive targeting mission forced an emphasis on track 
initiation for targets with short exposure times). Multi-
ple motion model filtering techniques (see, e.g., Ref. 32) 
were applied to enhance tracking of maneuvering ships. 
A novel nonlinear filtering technique, using an iter-
ated extended SRIF, multiple motion models, and the 
Dyer–McReynolds smoother,33 was developed to enable 
tracking of maneuvering ships using out-of-sequence 
measurement data. The results showed that, even in 
dense ship traffic environments, the UDF approach 
can reinforce the existing sensor track picture.34 This 
improvement could provide valuable intelligence to the 
warfighter on existing tracks and enable cues to vessels 
of interest entering the platform’s area of regard.

Space Situational Awareness
As our reliance on space systems and space technol-

ogy grows, so does the potential for collisions and other 
spacecraft interactions, leading to potentially serious 
consequences. It is essential to maintain an accurate 

Figure 9. Global maritime ship traffic density. (Reproduced with permission from “Maritime Ship-
ping Routes and Strategic Passages,” The Geography of Transport Systems, http://people.hofstra.
edu/geotrans/eng/ch1en/appl1en/maritimeroutes.html, © 1998–2012, Dr. Jean-Paul Rodrigue, Hof-
stra University, New York.)

Figure 10. Computer-generated image of objects in Earth orbit. 
(Image from NASA Orbital Debris Program Office photo gallery.)

http://people.hofstra.edu/geotrans/eng/ch1en/appl1en/maritimeroutes.html
http://people.hofstra.edu/geotrans/eng/ch1en/appl1en/maritimeroutes.html
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macy and influence over the relevant populations.” It 
is characterized by the use of “indirect and asymmet-
ric approaches, though it may employ the full range 
of military and other capabilities, in order to erode an 
adversary’s power, influence, and will.”39 The types of 
operations conducted as part of irregular warfare include 
counterinsurgency, counterterrorism, and unconven-
tional warfare. These operations typically require 
time-sensitive prosecution of hidden, fleeting, and 
maneuvering targets, including individual people. In 
response to stressing demands on persistence and timeli-
ness of ISR, the military has fielded a large number of 
surveillance assets to theaters of operation, producing 
an overwhelming volume of imagery, FMV, and other 
types of sensor data. UDF technology has the potential 
to mitigate the enormous demand on communications 
and computing infrastructure and on human analysts 
and operators and to turn all of these data into timely, 
actionable intelligence. 

 APL recently demonstrated a prototype UDF capa-
bility at the Joint Expeditionary Force Experiment 2010 
(JEFX 10).40, 41 JEFX is a Chief of Staff of the Air Force-
directed series of experiments that combines live, vir-
tual, and constructive forces to create a near-seamless 
warfighting environment in which to assess the ability 
of selected initiatives to provide needed capabilities to 
warfighters. JEFX 10 was focused on irregular warfare 
and assessed emerging technologies and capabilities 
against several relevant operational threads, including 
convoy protection, urban targeting, raid insertion, and 
personnel recovery. The JEFX 10 infrastructure featured 
an airborne network used to share information among 
airborne platforms and ground nodes, enabling dynamic 
command and control of airborne platforms and weap-
ons. The JEFX 10 live fly experiment took place at the 
Nevada Test and Target Range near Las Vegas, Nevada, 
in April 2010.

The UDF initiative supported Navy Commander 
Second Fleet (COMSECFLT) Maritime Operations 
Center (MOC) participation in JEFX 10 with the goal of 
enhancing the MOC ISR tasking, processing, exploita-
tion, and dissemination capability and overall maritime 
domain awareness. The UDF prototype was deployed at 
the COMSECFLT MOC, Naval Station Norfolk, during 
the period April 12–23, 2010. The specific objective was 
to support the COMSECFLT MOC in executing irregu-
lar warfare operational threads by providing intelligence 
analysts and the collection manager with a common 
tactical picture of concurrent operations, precise geo-
referenced track information from multiple sources, 
and the ability to exploit large volumes of data rapidly 
and efficiently. 

The UDF prototype was specialized to consume and 
process FMV data collected by a team of unmanned 
aerial vehicles (UAVs) (illustrated in Fig. 11). The 
JEFX 10 operational threads used several Raven and 

10-day triple-site collection campaign (October 20–29, 
2009) using three geographically separated Raven-class 
optical sensors (see, e.g., Ref. 35) at Albuquerque, New 
Mexico; Maui, Hawaii; and Kwajalein Atoll, Marshall 
Islands. The campaign was the first historical instance 
of long-baseline simultaneous collections at three sites 
by Raven-class sensors on common objects. The project 
developed an optical image screener that detects RSO 
with weak signatures, extracts target features, and gener-
ates precise measurement error estimates. The screener 
operates with low detection thresholds to find candidates 
with weak signatures in the upstream data. The project 
also adapted the MHDA component used for ground 
surveillance applications to the space domain by incor-
porating the appropriate sensor measurement models 
corresponding to the Raven-class optical sensors and 
target dynamics models for propagating satellite motion. 
These UDF prototype components processed raw imag-
ery, detected a variety of geosynchronous satellites, and 
fused the extracted measurement data to track the satel-
lites with accuracy that was an order of magnitude better 
than that available from the Space Catalog. They also 
discriminated closely spaced geostationary satellites that 
are commonly cross-tagged by current operations (see 
Refs. 36 and 37). 

During 2010–2011, APL applied its UDF prototype 
as a major component of a project sponsored by AFRL. 
The aim was to demonstrate proof of concept for a semi-
automated dynamic sensor tasking capability with the 
goal of supporting Joint Space Operations Center’s rapid 
decision making in scenarios where the current delib-
erative, manually intensive process for tasking the U.S. 
Space Surveillance Network (SSN) is insufficiently 
responsive. The project used UDF software components 
operating in a closed feedback loop with sensor resource 
management software components to continually retask 
space-observing sensors to respond quickly to urgent 
information needs while maintaining minimal aggregate 
uncertainty (one realization of the CLCISR concept 
described in the Asset Employment Efficiency section). 
These components were exercised within a dynamic 
SSN sensor tasking simulation test bed, which was 
used to conduct simulation-based performance assess-
ment experiments and to quantify performance benefits 
in terms of track maintenance (target custody), search 
efficiency, and responsiveness to emergent information 
needs and changing priorities (see Ref. 38 for details). In 
2012, APL continued this work in support of the AFRL 
effort on the Ibex program, which was jointly spon-
sored by Defense Advanced Research Projects Agency 
(DARPA) and Air Force Space Command. 

Irregular Warfare
The U.S. DoD defines irregular warfare as “a violent 

struggle among state and non-state actors for legiti-
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More recently, in 2011, APL’s Precision Engagement 
Business Area’s Internal Research and Development 
(IR&D) projects extended the UDF-based FMV exploita-
tion capability to include automated target classification 
using techniques developed by Murphy and colleagues 
and based on the highly efficient Map Seeking Circuit 
(MSC) approach (see the article by Murphy et al. in 
this issue). Automatic target classification is important 

Buster UAVs as the primary FMV platforms. The pro-
totype consisted of a video exploitation component 
that automatically detected moving objects (shown in 
Fig. 11 and by example applied to JEFX 10 in Fig. 12), 
a MHT that fused all of the detection data to produce 
a common track picture, and a display and user inter-
face component that visualized the common track 
picture along with appropriate geospatial information 
such as maps and terrain as well as target coordinates, 
containment ellipses, and the source video (also shown 
in Fig. 11). It ran continuously and unattended during 
operational threads, with rare down-times requiring 
operator restart and very high operational availability. 
The system exploited a very high percentage (greater 
than 90%) of all CHK Raven and Buster video received 
at Navy COMSECFLT MOC and automatically 
detected moving targets, including vehicles and people. 
The detection and false alarm performance varied with 
video quality and environmental conditions. The desert 
background was uniform and sparse, which represented 
a very challenging environment for moving object 
detection. The UDF detection and track data were also 
transmitted to another prototype system developed by 
the Naval Postgraduate School, which used the data 
to recommend platform orbit adjustments to the Navy 
COMSECFLT MOC commanders.

UAV 1
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Moving object detection 
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Image
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Image
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Figure 11. JEFX 10 concept for UDF of multiple UAV FMV sources. USGS, U.S. Geological Survey; DRG, digital raster graphic.

Figure 12. Automatic detection of a moving vehicle on a road in 
the desert during JEFX 10.
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fully automated target recognition. Further research 
and development is required. The IR&D projects also 
prototyped and demonstrated the feasibility of using 
the enhanced tracking and classification capability 
to transmit alerts to a mobile user equipped with an 
Android-based device. The user is not required to visu-

for discriminating among different objects detected in 
the scene and correctly associating new detections with 
existing tracks. The idea is that the likelihood of incor-
rectly associating a detection with the wrong target is 
reduced when the classifying information can be used 
to strengthen the probability of candidate associations 
that are similar in terms of classification. The design 
(depicted in Fig. 13) also uses a feedback processing 
path that exploits the track information to enhance the 
target classification. Specifically, the target heading is 
used to reduce the search space for target orientation by 
the MSC algorithm. 

The extended UDF prototype was tested by process-
ing live video continuously from cameras mounted on 
buildings 13, 17, and 1 on APL’s campus. The system 
successfully produced detections and tracks on moving 
vehicles, along with classification scores indicating the 
degree of confidence in classifying the object as one of 
the target types of interest (sedan, pickup truck, and 
APL shuttle bus) (shown by example in Fig. 14). The 
extended UDF capability supports near-real-time pro-
cessing and exploitation of multiple FMV sources but 
is not yet mature enough to classify target types of 
interest with sufficient discriminating power to support 
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Figure 13. UDF-based FMV exploitation enhanced with automatic target classification.

Figure 14. Example of target detections, tracks, and classifica-
tion scores in processed FMV.
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CONCLUSIONS
APL led a team that pioneered and matured the 

development of UDF techniques. UDF combines diverse 
sensor data tapped at points in the sensor processing 
chain that come well before reporting to an end user. 
UDF has the potential to improve the collective capa-
bility of a diverse set of sensors to detect, locate, and 
classify difficult targets. UDF may relax computational 
and communications requirements, is inherently distrib-
uted and scalable, and forms the technical foundation 
for a more futuristic and comprehensive concept called 
CLCISR. Potential benefits of UDF have been demon-
strated at different levels of maturity in the laboratory 
and in the field for applications in time-critical target-
ing of relocatable ground targets, in maritime situation 
awareness, in space situational awareness, and in irreg-
ular warfare. Other contributions to critical ISR chal-
lenges are being investigated.
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