Chapter 14: International cooperation

2

1

- 3 **Coordinating Lead Authors:** Anthony Patt (Switzerland), Lavanya Rajamani (India)
- 4 Lead Authors: Preety Bhandari (India), Antonina Ivanova Boncheva (Mexico), Alejandro Caparrós
- (Spain), Kamal Djemouai (Algeria), Izumi Kubota (Japan), Jacqueline Peel (Australia), Agus Sari
 (Indonesia), Detlef F. Sprinz (Germany), Jørgen Wettestad (Norway)
- 7 Contributing Authors: Rachael Garett (Switzerland/the United States of America), Oliver Geden
- 8 (Germany), Kilian Raiser (Germany), Harro Van Asselt (the Netherlands)
- 9 Review Editors: Esther Badiola (Spain), Pasha Carruthers (Cook Islands)
- 10 Chapter Scientist: Zyaad Boodoo (Mauritius)
- 11 Date of Draft: 15/01/2020

1 Table of Contents

2	Chapter 14:	International cooperation	14-1
3	Executive	summary	14-3
4	14.1 Intr	oduction	14-5
5	14.1.1	Key findings from AR5	14-5
6	14.1.2	Developments since AR5	14-6
7	14.2 Eva	aluating international cooperation	14-7
8	14.2.1	Framing concepts for assessment of the Paris Agreement	14-7
9	14.2.2	Climate Clubs	14-10
10	14.2.3	Assessment criteria	14-12
11	14.3 The	e UNFCCC and the Paris Agreement	14-13
12	14.3.1	The UN climate change regime	14-13
13	14.3.2	Elements of the Paris Agreement relevant to mitigation	14-19
14	14.3.3	Assessment of the Paris Agreement	
15	14.4 Sup	pplementary means and mechanisms of implementation	14-39
16	14.4.1	Finance	
17	14.4.2	Science, technology and innovation	14-44
18	14.4.3	Capacity Building	14-47
19	14.4.4	Cooperative mechanisms and markets	14-48
20	14.4.5	International Governance of SRM and CDR	14-49
21	Cross-W	Vorking Group Box SRM: Solar Radiation Modification	14-49
22	14.5 Mu	lti-level, multi-actor governance	14-55
23	14.5.1	International cooperation at multiple governance levels	14-56
24	14.5.2	International sectoral agreements and institutions	14-65
25	14.5.3	Civil society and social movements	14-71
26	14.5.4	Transnational business and public-private partnerships and initiatives	
27	14.5.5	International co-operation at the sub-national and city levels	14-77
28	14.6 Syr	nthesis	14-78
29	14.6.1	Changing nature of international cooperation	14-78
30	14.6.2	Overall assessment of international cooperation	14-79
31	14.7 Gaj	ps in Knowledge and Data	
32	Frequently	Asked Questions	
33	References	3	
34			

35

1 **Executive summary**

2 New forms of international cooperation have emerged since AR5 in line with an evolving understanding of effective mitigation policies, processes, and institutions, and together with pre-3 4 existing forms these are vital for achieving climate mitigation goals in the context of sustainable 5 development (robust evidence, high agreement). Since AR5, international cooperation has shifted towards facilitating national level mitigation action through numerous channels, including both 6 7 processes established under the UNFCCC regime and through regional and sectoral agreements and 8 organisations. International cooperation is now believed to be effective at helping countries achieve 9 long-term mitigation targets when it directly supports countries' development and diffusion of low-10 carbon technologies, often at the level of individual sectors, which can simultaneously lead to 11 significant benefits in the areas of sustainable development and equity (medium evidence, medium 12 agreement). While previous assessments have noted important synergies between the outcomes of 13 climate mitigation and achieving sustainable development objectives, there now appear to be synergies between the two processes themselves (medium evidence, high agreement). {14.2, 14.3, 14.5, 14.6} 14

International cooperation under the UN climate regime has taken an important new direction with the conclusion and entry into force of the 2015 Paris Agreement, which strengthened the objective of the UN climate regime, including its long-term temperature goal, but adopted a different architecture to that of the Kyoto Protocol to achieve it (*robust evidence*, *high agreement*). The core national commitments under the Kyoto Protocol have been legally binding quantified emission

- The core national commitments under the Kyoto Protocol have been legally binding quantified emission targets for developed countries based on common metrics and tied to well-defined mechanisms for
- 21 monitoring and enforcement. By contrast the commitments under the Paris Agreement are procedural, 22 extend to all parties, and are designed to trigger domestic policies and measures, enhance transparency,
- extend to all parties, and are designed to trigger domestic policies and measures, enhance transparency, and stimulate climate investments, particularly in developing countries, and to lead iteratively to rising
- and stimulate climate investments, particularly in developing countries, and to lead iteratively to rising
 levels of ambition across all countries (*robust evidence, high agreement*). Issues of equity remain of
- central importance in the UN climate regime, notwithstanding shifts in the operationalisation of
- 26 'common but differentiated responsibilities' from Kyoto to Paris. {14.3}
- 27 There are conflicting views on whether the Paris Agreement's commitments and mechanisms will
- 28 lead to the attainment of its stated goals. The strongest critique of the Paris Agreement is that it lacks 29 a mechanism to review the adequacy of individual Parties' Nationally Determined Contributions 30 (NDCs), and that collectively current NDCs are inconsistent in their level of ambition with achieving 31 the Paris Agreement's temperature goal (robust evidence, high agreement). Arguments in support of 32 the Paris Agreement are that the processes it initiates and supports will lead in multiple ways to rising 33 levels of ambition over time (medium evidence, medium agreement). These are met with counter 34 arguments, either suggesting that the incentives created under the Paris Agreement are insufficient to 35 lead to the necessary changes, or that these changes will not occur in time (medium evidence, medium 36 agreement). The extent to which countries increase the ambition of and effectively implement their 37 NDCs will depend in part on the successful implementation of the support mechanisms in the Paris 38 Agreement, and in turn will determine whether the goals of the Paris Agreement are met. {14.3, 14.4}

39 The Paris Agreement is intended to support all countries in setting and achieving ambitious 40 mitigation targets, however other forms of international cooperation provide critical support for 41 such actions in particular regions, sectors and industries, types of emissions, and at the sub-42 national level (medium evidence, high agreement). Social science modelling suggests that sub-global 43 and regional cooperation, often described as 'climate clubs,' can play an important role in accelerating 44 mitigation, including the potential for reducing mitigation costs through linking national carbon 45 markets, although actual examples of these remain limited (medium evidence, high agreement). 46 Agreements addressing ozone depletion, transboundary air pollution, and release of mercury are all 47 leading to reductions in the emissions of specific greenhouse gases (robust evidence, high agreement).

1 Cooperation is occurring at multiple governance levels, including cities, with trans-national partnerships and alliances involving non-state and sub-state actors playing a growing role in stimulating 2 3 low-carbon technology diffusion and emissions reductions (medium evidence, medium agreement). 4 Such trans-national efforts include those focused on climate litigation; for these, the impacts are unclear

- 5 but promising. Climate change is being addressed in a growing number of international agreements operating at sectoral levels, as well as within the practices of a number of multilateral organisations and
- 6
- 7 institutions (robust evidence, high agreement). {14.2, 14.4, 14.5, 14.6}

8 International cooperation is proving effective, yet would need to be strengthened in several key 9 respects in order to support mitigation action consistent with limiting temperature rise to well 10 below $2^{\circ}C$ in the context of sustainable development and equity (*medium evidence*, high 11 agreement). There are multiple metrics of effectiveness in the literature. In relation to environmental effectiveness, while overall greenhouse gases (GHGs) have continued to rise through at least 2018, 12 13 there are some areas where international cooperation has already had an effect, such as reducing many 14 countries' CO₂ emissions from the AFOLU sector, as well as emissions of some non-CO₂ greenhouse 15 gases (medium evidence, medium agreement). In other areas where effectiveness can be assessed -16 transformative potential, distributive outcomes, economic performance, and institutional strength -17 international cooperation is having a positive effect, but one that is as yet too weak to achieve the 18 objectives of the Paris Agreement (medium evidence, medium agreement). Collectively, countries' 19 NDCs are inadequate for achieving the temperature goal of the Paris Agreement. A large number of 20 developing countries' NDCs are contingent on receiving assistance with respect to finance, technology 21 development and transfer, and capacity-building, to an extent greater than what has been provided to 22 date. Sectoral and sub-global cooperation is providing critical support, and yet there is room for further 23 progress. In some cases, notably with respect to aviation and shipping, sectoral agreements have 24 adopted climate mitigation goals that fall far short of what would be required to achieve the temperature 25 goal of the Paris Agreement. Moreover, there are cases where international cooperation may be 26 hindering mitigation efforts, with evidence that trade and investment agreements, as well as agreements 27 within the energy sector, impede national mitigation efforts (*medium evidence, medium agreement*). 28 {14.2, 14.3, 14.4, 14.5, 14.6}

1 14.1 Introduction

2 This chapter assesses the role of international cooperation in mitigating the effects of climate change. 3 Such cooperation includes multilateral global cooperative agreements between nation states such as the 4 1992 United Nations Framework Convention on Climate Change (UNFCCC), and its related legal 5 instruments, the 1997 Kyoto Protocol and the 2015 Paris Agreement, but also plurilateral agreements 6 involving fewer states, as well as those focused on particular economic and policy sectors, such as 7 components of the energy system. Moreover, this chapter assesses the role of transnational agreements 8 and cooperative arrangements between non-state and sub-state actors, including municipal 9 governments, private-sector firms and industry consortia, and civil society organisations. This chapter 10 does not assess international cooperation within the European Union, as this is covered in Chapter 13 11 of this report.

12 Past IPCC assessment reports have discussed the theoretical literature, providing insights into the 13 rationale for international cooperation, as well as guidance as to its structure and implementation. This 14 chapter limits such theoretical discussion primarily to the new developments since AR5. Important 15 developments in this respect include attention to climate clubs (groups of countries and potentially nonstate actors that can work together to achieve particular objectives), and the effects of framing the global 16 17 climate change mitigation challenge as one of accelerating a socio-technical transition or transformation, shifting development pathways accordingly, in addition to (or rather than) solving a 18 19 global commons problem. This chapter draws from theory to identify a set of criteria by which to assess 20 the effectiveness of existing form of international cooperation.

21 The rest of this chapter describes the existing cooperative international agreements, institutions, and 22 initiatives with a view to clarifying how they operate, what effects they are meant to have, and 23 ultimately, whether they work. At the heart of this lies the Paris Agreement, which sets the overall 24 framework for international cooperation under the UNFCCC at the global scale. In many ways, the 25 Paris Agreement fundamentally reshapes the intention and structure of such cooperation, from one 26 oriented towards target setting, monitoring, and enforcement, to one that is oriented towards supporting 27 and enabling nationally determined actions, as well as catalysing non-state and sub-state actions at 28 multiple levels of governance. In addition to the Paris Agreement, many forms of cooperation have 29 taken shape in parallel: those designed to address other environmental problems that have a significant 30 impact on climate mitigation; those operating at the sub-global or sectoral level; and, those where the 31 main participants are non-state actors. The chapter ends with a synthetic overall assessment of the 32 effectiveness of international cooperation as it exists today, and identifies areas where the need for 33 improved international cooperation is acute.

34 14.1.1 Key findings from AR5

35 AR5 found that two characteristics of climate change make international cooperation essential: that it 36 is a global commons problem that needs to be addressed in a coordinated fashion at the global 37 scale; and, that, given the global diversity with respect to opportunities for and cost of mitigation, there 38 are economic efficiencies associated with cooperative solutions (13.2.1.1). Consequently, AR5 39 found evidence to suggest that climate policies that are implemented across geographical regions would 40 be more effective in terms of both their environmental consequences and their economic costs (13.13, 41 13.6, 14.4). AR5 also suggested that regional cooperation could offer opportunities beyond what 42 countries may be able to achieve in isolation. The opportunities it noted are due to geographic 43 proximity, shared infrastructure and policy frameworks, trade, and cross-border investments, and 44 examples included renewable energy pools across borders, networks of energy infrastructure and 45 coordinated forestry policies (1.2, 6.6, 15.2, 14.2). AR5 also suggested that policy linkages exist across 46 regional, national, and sub-national scales (13.3.1, 13.5.1.3). For these reasons, AR5 suggested that 47 although UNFCCC remains the primary international forum for climate negotiations, many other

1 institutions engaged at the global, regional, and local levels do and should play an active role 2 (1.3.3.1,13.4.1.4,13.5). Further AR5 noted that the inclusion of climate change issues across a variety

- 3 of forums often creates institutional linkages between mitigation and adaptation (13.3,13.4,13.5). In
- 4 addition to centralised cooperation and governance, with a primary focus on the UNFCCC and its
- 5 associated institutions, AR5 noted the emergence of new transnational climate-related institutions of
- 6 decentralised authority such as public-private sector partnerships, private sector governance initiatives,
- 7 transnational NGO programs, and city-let initiatives (13.2,13.3.1,13.12). It noted that these have
- 8 resulted in a multiplicity of cooperative efforts in the form of multilateral agreements, harmonised
- 9 national policies and decentralised but coordinated national and regional policies (TS 38, 13.4.1, 13.3.2, 10 14.4). Finally, it suggested that international cooperation may also have a role in promoting a more
- 11 active engagement of the private sector in technological innovation and cooperative efforts leading to
- 12 technology transfer and development of new technologies (13.3, 13.9, 13.12).

13 14.1.2 Developments since AR5

14 14.1.2.1 Negotiation of the Paris Agreement

15 The key development since AR5 has been the negotiation and adoption of the Paris Agreement, which, 16 while building on the UNFCCC, introduces a new approach to global climate governance. This new 17 approach, as discussed below (Section 14.3.1.1), is driven by the need to engage developing countries 18

- in emissions reductions, extend mitigation commitments to those developed countries that had rejected or withdrawn from the Kyoto Protocol, and to respond to the rapidly changing geopolitical context
- 19
- 20 (Section 14.3.1.2).

21 14.1.2.2 2030 Agenda for Sustainable Development and the Sustainable Development Goals

22 It has long been clear that a failure to mitigate climate change would exacerbate existing poverty, 23 accentuates vulnerability and worsens inequality (IPCC 2014), but a new development has been the 24 attempt to harmonise mitigation actions with those oriented towards social and economic development. 25 A key development since AR5 is the adoption of the 2030 Agenda for Sustainable Development, which 26 contains 17 Sustainable Development Goals (SDGs), which offer a aspirational narrative, coherent 27 framework and actionable agenda for addressing diverse issues of development through goals that balance the economic, social and environmental dimensions of sustainable development as well as 28 29 issues of governance and institutions (ICSU ISSC 2015). Scholars have noted that their implicit logic 30 makes them dependent on each other (Nilsson, Mans, Griggs, Dave, Visbek 2016), and this inter-31 dependency reflects a belief that it is difficult if not impossible to achieve economic and social gains 32 while neglecting environmental concerns, including climate change (Le Blanc 2015). They are 33 inextricably linked to the Paris Agreement, adopted a few weeks later. There is a growing body of 34 literature that examines the interlinkages between SDGs, including SDG 13 (taking urgent action to 35 combat climate change) and others, concluding that without a proper response to climate change, 36 success in many of the other SDGs would be difficult if not impossible (ICSU ISSC 2015; Le Blanc 37 2015; Nilsson, Mans, Griggs, Dave, Visbek 2016; Weitz et al. 2018). Initiatives such as The World in 38 2050 (TWI2050 2018), a large research initiative by a global consortium of research and policy 39 institutions, work on the premise that pursuing climate action and sustainable development in an 40 integrated and coherent way, based on a sound understanding of development pathways and dynamics

41 offers the strongest approach to enable countries to achieve their objectives in both agreements...

42 14.1.2.3 IPCC Special Reports on 1.5°C, Land and Oceans

43 Further key developments since AR5 include the release of three IPCC special reports. The first of these 44 assessed the differential impacts of limiting climate change to 1.5°C global average warming compared 45 to 2°C warming, indicated the emissions reductions necessary and enabling conditions to stay within this limit (IPCC 2018a). While the events that have unfolded since the report are not yet 46 47 comprehensively documented in literature, arguably the report has led to a renewed perception of the

1 media coverage in some parts of the world around a need to reduce emissions to net zero by 2050

(whether of GHGs or CO₂), rather than delaying such reductions until the latter half of the century, as had been previously understood. Its release is hence one factor explaining the rise in trans-national

4 climate mobilisation efforts (Boykoff and Pearman 2019). It has also played a role, in addition to the

5 Paris Agreement (Geden 2016a), in the numerous announcements, pledges and indications by

6 governments, including by all G-7 countries, of their adoption of net zero GHG targets for 2050. The

7 other two special reports focused on oceans and the cryosphere (IPCC 2019), and the potential of land-

8 related responses to contribute to adaptation and mitigation (IPCC 2020). There has been no literature

- 9 directly tying the publication of these latter two reports to changes in international cooperation.
- 10

11 **14.2 Evaluating international cooperation**

12 This section describes recent insights from social-science theory that can shed light on the need for and

13 ideal structure of international cooperation. This section starts by describing developments in framing

14 the underlying problem, move towards a body of theory describing the benefits of multi-lateral but sub-

15 global action, and ends with a theory-based articulation of assessment criteria.

16 **14.2.1 Framing concepts for assessment of the Paris Agreement**

17 Scholars have long framed climate mitigation as a problem of managing a global commons or public 18 good. Since AR5 the literature reflects an increasing attention to framing it as accelerating a 19 transformation to a low carbon society, and a sustainable development pathway, with a set of challenges 20 associated with such evolution taking place quickly (Patt 2017). As described briefly in this section, 21 there are clear points of overlap between these two framings in the application to challenges of 22 international cooperation, but there are also important differences. A brief explanation of these issues 23 is important for assessing the value of existing international cooperation and understanding whether 24 new forms of cooperation are valuable. This is especially the case when understanding climate 25 mitigation as being embedded in process of sustainable development more generally, as described in 26 Chapter 4 of this report.

27 Previous IPCC reports frame climate change mitigation as a public good, because everybody can enjoy the benefits of a more stable climate, and because the enjoyment of a stable climate by one party does 28 29 not interfere with its enjoyment by others (Stavins et al. 2014). This is consistent with framing climate 30 change as a tragedy of the commons problem (Gordon 1954; Hardin 1968). Within this framing, the 31 incentives for mitigation at the global level are greater than they are for any single country, since the 32 latter does not enjoy the benefits of its own mitigation efforts that accrue outside its own borders. This 33 framing does not preclude that countries would engage in mitigation, even ambitious mitigation, but it 34 suggests that these countries' level of ambition and speed of abatement would be greater still were they 35 part of a cooperative agreement. Only a fully multilateral binding agreement, covering all or most of 36 the countries of the world, would achieve the global optimum. As discussed in previous IPCC reports, 37 theoretical economists have shown that reaching such a global agreement is impeded by countries' 38 incentive to free-ride, namely benefit from other countries' abatement efforts while failing to abate 39 themselves (Barrett 1994; Gollier and Tirole 2015). Numerical models that integrate game theoretic 40 concepts, whether based on optimal control theory or on dynamic programming (see Annex C to this 41 report), have consistently confirmed this insight, at least in the absence of transfers (Germain et al. 2003; Lessmann et al. 2015; Chander 2017). For this reason, several recent (Stavins et al. 2014; 42 43 Battaglini and Harstad 2016; Asheim et al. 2006; Froyn and Hovi 2008) contributions have drawn 44 attention to the benefits of regional or sectoral agreements, or agreements focused on a particular subset 45 of GHGs, which can be seen as building blocks towards a global approach (Asheim et al. 2006; Froyn 46 and Hovi 2008; Sabel and Victor 2017; Stewart et al. 2017). In a dynamic context, this gradual approach

1 through building blocks can alleviate the free-riding problem and ultimately lead to global cooperation

2 (Caparrós and Péreau 2017). Other developments based on dynamic game theory suggest also that the

3 free-riding problem can be mitigated if the treaties do not prescribe countries' levels of green investment

4 and the duration of the agreement, as countries can credibly threat potential free-riders with a short-

term agreement where green investments will be insufficient due to the hold-up problem (Battaglini and
 Harstad 2016). Finally, thresholds and potential climate catastrophes have also been shown,

7 theoretically and numerically, to reduce free-riding incentives, especially for countries that may become

8 pivotal in failing to avoid the threshold (Barrett 2013; Emmerling et al. 2020).

9 In addition to mitigation in the form of emissions abatement, innovation in green technologies also has

10 public good features, leading for the same reasons to less innovation than would be globally ideal (Jaffe

et al. 2005), and falling prey to the same incentives for countries to free-ride on other countries' efforts.

Here as well theory suggests that there are benefits from cooperation on technology development at the regional or sectoral levels, but also that cooperation on technology, especially for breakthrough

technologies, may prove to be easier than for abatement (El-Sayed and Rubio 2014; Rubio 2017).

While the public goods and global commons framing identifies misaligned incentives as the primary barrier to mitigation taking place at a pace that would be globally optimal, a separate body of theory focuses on path dependent processes as an impediment to the deployment of the needed technologies. Many of the contributions to this theory lie within the discipline of economics, complementing and in no way contradicting the work on public goods. A growing body of work in this area, however, comes from other social sciences, based on the empirical study of historical cases of wholesale technological

21 transitions. Since AR5 this body of theory, which can be referred to as the technological transitions

framing, has taken on greater prominence in the scholarly literature, as described in detail in Chapter 1,

23 Section 1.6.4 of this report.

24 The roots of this transitions framing can be found in evolutionary economics. Here the guiding questions 25 are not concerned with market failures - and indeed evolutionary economics does not start from a 26 general hypothesis of efficient markets - but rather the processes that accelerate or postpone changes 27 in economic production and consumption systems. A core finding is that established technologies enjoy 28 lower production costs - as a result of past innovation and learning by doing - as well as higher value 29 to consumers, when such value correlates positively with the number of other people using the same 30 technology. These factors make it initially costly and unattractive to switch from an established 31 technology to a newer one, even if the new one is objectively superior (Arthur 1989). This mirrors the 32 conclusion of the dynamic economics literature, where the combination of infrastructure lock-in, 33 network effects with high switching cost, and dynamic market failures suggests that deployment and 34 adoption of clean technologies is path dependent (Aghion et al. 2014; Acemoglu et al. 2012), with a 35 multiplicity of possible equilibria. This implies that no outcome is guaranteed, although the most likely pathway will depend on economic expectations and initial conditions of the innovation process 36 37 (Krugman 2011). Therefore, the government has a role to play, either by shifting expectations (e.g. 38 credibly committing to climate policy), or by changing initial conditions (e.g. investing in green 39 infrastructure or subsidising clean energy research) (Aghion et al. 2014; Acemoglu et al. 2012).

40 As with the global commons framing, general conclusion of the evolutionary economics literature is 41 that government intervention is needed (Acemoglu et al. 2014), in particular given the irreversibility of 42 energy investments and the extremely long periods of operation of the typical energy investment 43 (Baldwin et al. 2020; Caparrós et al. 2015). Within the transitions framing, the primary goal of 44 governmental interventions is not to overcome free-riding and the misalignment of incentives, but rather 45 to overcome path-dependant factors such as lock-in, enabling new technologies to flourish (Patt and Lilliestam 2018). This implies a somewhat different policy architecture than that identified by the 46 47 global commons framing, operating within rather than across separate economic sectors (Geels et al. 48 2017, 2019). There is an emphasis in the transitions literature on adapting the 'regime' within which

1 technologies operate – including physical infrastructure networks, firm production capacities, and 2 institutional frameworks – in order to fit the new technologies' particular performance profiles

3 (Mazzucato 2016; Geels 2002; Grubb et al. 2014; Geels et al. 2017; Patt and Lilliestam 2018; Lilliestam

5 With respect to international cooperation, the two framings focus on different indicators of progress, 6 and potentially different types of cooperative action. Within the global commons framing, the primary 7 indicator of progress is the actual level of GHG emissions, and the effectiveness of policies can be 8 measured in terms of whether such emissions rise or fall (Patt and Lilliestam 2018). The fact that the 9 sum of all countries' emissions has continued to grow (IPCC 2018a), even as there has been a global recognition that they should decline, can be seen within this framing as being consistent with the 10 11 absence of a strong global agreement. Within this framing, there is traditionally an emphasis on treaties containing self-enforcing agreements (Olmstead and Stavins 2012), ideally through binding 12 13 commitments, as a way of dealing with the overarching problem of free-ridership (Barrett 1994; Finus 14 and Caparrós 2015). However, as discussed above, the emphasis has now shifted to a gradual 15 cooperation approach, either regional or sectoral, as an alternative way of dealing with free-riding 16 incentives (Sabel and Victor 2017; Stewart et al. 2017; Caparrós and Péreau 2017)(see Section 15.5.1.4). The gradual linkage of emission trading systems (discussed in Section 15.4.4.4), goes in the 17 18 same direction. There is also a literature suggesting that the diversity of the countries involved may in 19 fact be an asset to reduce the free-rider incentive (Finus and McGinty 2019; Pavlova and De Zeeuw 20 2013), which argues in favour of a system where developed and developing countries are fully involved 21 in mitigation, unlike the Kyoto Protocol and in line with the Paris Agreement. Finally, recent efforts 22 have discussed potential synergies between mitigation and adaptation efforts in a strategic context 23 (Bayramoglu et al. 2018)(see Section 15.5.1.2) In general, current efforts go beyond considering climate 24 policy as a mitigation-only issue, much in line with the discussion about linkages between climate 25 change and sustainable development policies described in detail in Chapter 1 of this report (1.4).

26 In the transitions framing, by contrast, emissions levels are the end (and often greatly delayed) result of 27 a large number of transformative processes. A given policy may be effective at stimulating such processes, even if a change in emissions is not yet evident, implying that emissions levels may be a 28 29 misleading indicator of progress (Patt 2017). The literature does not identify a single clear indicator to 30 use instead; there are many metrics of technological progress and transformation, described in Chapter 31 16, Section 16.3.3 of this report. In the transitions framing, the emphasis with respect to treaty design 32 is on providing mechanisms to support parties' voluntary actions, such as with financial and capacity-33 building support for new technologies and technology regimes within specific economic sectors (Geels 34 et al. 2019). This fits quite closely with an understanding of climate mitigation taking place within a 35 wider development agenda; in many cases it is a lack of development that creates a barrier to rapid 36 system transformation, which international cooperation can then address. Table 14.1 summarises the 37 key differences between the framings, with particular attention to the context of international 38 cooperation.

- 39
- 40

Table 14.1 Key implications of alternative framings on international cooperation

Framing	Barriers to mitigation	Treaty architecture	Indicator of progress
Public goods / global commons	Misalignment of incentives, free- riding	Self-enforcing emission reduction commitments, ideally with compliance mechanisms. Gradual cooperation, regional or sectoral, as building-blocks towards global cooperation.	Global and national emissions reductions

⁴ et al. 2012).

Path dependency /	Lock-in, network effects, existing	Financial, capacity-building, and technical and technology support for	Multiple metrics including technology costs, market
technological transition	infrastructure	voluntary actions to switch to green technologies	penetration, and performance

1

2 14.2.2 Climate Clubs

3 A recent development in the literature on international climate governance has been increased attention 4 to the potential for climate clubs – sub-global coalitions of states and non-state actors committed to 5 particular mitigation objectives (Victor 2011) – to advance global mitigation objectives. The literature 6 operates within the framing of climate change as a global commons problem, where it had previously 7 been seen as essential for cooperative action to take place globally, modifying that by identifying the 8 potential for valuable sub-global governance. The literature has a static dimension that focuses on the 9 incentives for actors to join such a club, and a dynamic one, which focuses on the "building blocks" for 10 global cooperative agreements.

11 The literature focusing on the static aspects of clubs highlight that they represent "coalitions of the 12 willing" (Falkner 2016a; Gampfer 2016), which offer a package of benefits, some of which are pure 13 public goods, and others being club benefits not accessible to non-club members (Hovi et al. 2016). 14 The latter, members-only or excludable part can be a system of transfers within the club (the coalition) 15 to compensate the countries with higher costs. For example, the benefit from participating in the club 16 can be to have access to a common emissions trading system, which is more attractive the larger the 17 number of countries involved (Doda and Taschini 2017). However, as costs and effort sharing 18 agreements are unsuccessful in a static context (Barrett 1994), mainly due to free-rider incentives, 19 several studies have proposed using tariffs on trade or other forms of sanctions to reduce the free-rider 20 incentives (Al Khourdajie and Finus 2020; Anouliès 2015; Eyland and Zaccour 2012; Helm and Sprinz 21 2000; Nordhaus 2015). In an influential paper, Nordhaus (2015) shows, based on his C-DICE model, 22 that a uniform percentage tariff on the imports of nonparticipants into the club region (at a relatively 23 low tariff rate, about 2%) can induce high participation within a range of carbon price values. More 24 recently, Al Khourdajie and Finus (2020) have confirmed that border carbon adjustments (see Chapter 25 13, Section 13.7.1) can lead to a large stable climate agreement, including full participation, which is 26 associated with large global welfare gains, but only if the club does not restrict membership (open 27 membership). However, there is also literature highlighting the perverse effects of trade sanctions 28 (Böhringer et al. 2015). Table 14.2 presents a number of key results related to climate clubs from a 29 static context.

- 30
- 31

Table 14.2 Key climate club static modelling results

	Aakre et al. (2018)	Nordhaus (2015)	Hovi et al. (2019); Sprinz et al. (2018)	Sælen et al. (2020); Sælen (2020) Sælen
Scope	Transboundary black carbon & methane in the Arctic	Global	Global	Global
Modelling method	TM5-FASST model	C-DICE	Agent-based model	Agent-based model
Border tax adjustment	No	Yes	No	No
Key results	Black carbon can be more easily	For non-participants in mitigation	Climate clubs can substantially	The architecture of the Paris

Second Order Draft

m se ir A p	controlled than nethane, based on self-interest; nclusion of non- Arctic Council major polluters desirable to control pollutants	efforts, modest tariffs on trade are advised to stabilise coalition for emission reductions	reduce GHG emissions, provided club goods are present. The departure of a single major actor (USA) reduces emissions coverage, yet is rarely fatal to the existence of the club	Agreement will achieve the 2°C goal only under a very fortunate constellation of parameters. US withdrawal further reduces these chances considerably
-------------------------	--	---	--	--

1

2 In a dynamic context, the literature on climate clubs highlights the co-called 'building blocks' approach 3 (Stewart, Oppenheimer, and Rudyk 2013a; Stewart, Oppenheimer, and Rudyk 2013b; Stewart, 4 Oppenheimer, and Rudyk 2017). This is a bottom-up strategy designed to create an array of smaller-5 scale, specialised initiatives for transnational cooperation in particular sectors and/or geographic areas with a wide range of participants. Potoski and Prakash (2013) provide a conceptual overview of 6 7 voluntary environmental clubs, showing that many climate clubs do not require demanding obligations 8 for membership and that a substantial segment thereof are mostly informational (Andresen 2014; 9 Weischer, Morgan, and Patel (2012). Also crafted onto the building blocks approach, Potoski (2017) demonstrates the theoretical potential for green certification and green technology clubs. In this 10 dynamic context, one question is whether to negotiate a single global agreement or to start with smaller 11 12 agreements in the hope that they will eventually evolve into a larger agreement. This issue has been 13 debated extensively in the context of free trade, where the question is whether a multilateral (global) 14 negotiating approach is better than a regional approach, seen as a building block towards global free 15 trade. Aghion, Antràs, and Helpman (2007) analysed this issue formally for trade, showing that a leader 16 would always choose to move directly to a global agreement. In the case of climate change, it appears that even the mildest form of club discussed above (an efforts and costs sharing agreement, as in the 17 case of the linkage of emission trading systems) can yield global cooperation following a building-18 19 blocks approach, and that the sequential path relying on building-blocks may be the only way to reach 20 global cooperation over time (Caparrós and Péreau 2017).

21 Results based on an agent based model suggest that only if there is a sufficiently high value to the club 22 good relative to the public good that a sufficient number of states will want to join the climate club, and 23 hence is an important determinant of whether such a club can grow over time, being a precursor to 24 effective global action (Hovi et al. 2017). In the wake of the United States exiting the Paris Agreement, 25 Sprinz et al. (2018) extended this model to explore whether climate clubs are stable against a leader 26 willing to change its status, e.g., from leader to follower or even completely leaving the climate club 27 (outsider), finding in most cases such stability to exist. Related studies on the macroeconomic incentives 28 for climate clubs by Paroussos et al. (2019) show that climate clubs are reasonably stable, both internally 29 and externally (i.e., no member willing to leave and no new member willing to join), and climate clubs 30 that include obligations in line with the 2°C goal combined with financial incentives to lift the risk 31 premium, facilitate technology diffusion; preferential trade arrangements for low-carbon goods can 32 reduce the macroeconomic effects of mitigation policies. Aakre et al. (2018) show numerically that 33 small groups of countries can limit black carbon in the Arctic, driven mainly for reasons of self-interest, vet reducing methane requires larger coalitions due to its larger geographical dispersal and require 34 35 stronger cooperation. More conceptually, van den Bergh et al. (2020) propose to create clubs which 36 either entail coalitions of countries levying carbon taxes or creating carbon markets which grow over 37 time, initially externally to the UNFCCC and subsequently embedded within the negotiation structure 38 of the UNFCCC; they do not provide empirical evidence or modelling support.

1 14.2.3 Assessment criteria

2 This section identifies a set of criteria for assessing the effectiveness of international cooperation, which 3 is applied later in the chapter. First, lessons from the implementation of other multilateral environmental 4 agreements (MEAs) can provide some guidance, particularly 'successful' agreements, such as the 5 Montreal Protocol (Green 2009). There is considerable literature on this topic, most of which predates 6 AR5, and which will therefore not be covered in detail. Issues include ways to enhance compliance, 7 and the fact that a low level of compliance with an MEA does not necessarily mean that the MEA has 8 no effect (Weiss and Jacobson 1998; Victor et al. 1998; Downs et al. 1996). Recent research examines 9 effectiveness from the viewpoint of the extent to which an MEA influences domestic action, including 10 the adoption of implementing legislation and policies (Brandi et al. 2019).

11 Many have pointed to the Montreal Protocol as an example of a successful treaty, and relevant for 12 solving climate change; this literature predates AR5, and is not repeated here. More recent scholarship 13 emphasises that the Paris Agreement has a greater 'bottom-up' character than many other MEAs, 14 including the Montreal or Kyoto Protocols, allowing for more decentralised 'polycentric' forms of 15 governance that engage diverse actors at the regional, national and sub-national levels (Victor 2016; 16 Jordan et al. 2015; Falkner 2016b; Ostrom 2010). Given this, lessons drawn from studies of MEA 17 regimes need to be supplemented with assessments of the effectiveness of cooperative efforts at other 18 governance levels and in other forums. Emerging research in this area proposes methodologies for this 19 task (Hsu et al. 2019a). Findings highlight the persistence of similar imbalances between developed and 20 developing countries as at the global level, as well as the need for more effective ways to incentivise

- 21 private sector engagement in transnational climate governance (Chan et al. 2018).
- 22 While environmental outcomes and economic performance have been long-standing criteria for 23 assessment of effectiveness, the other elements deserve some note. It is the case that the achievement 24 of climate objectives, such as limiting global average warming to $1.5 - 2^{\circ}$ C, will require the transition 25 from high- to low-carbon technologies, and the transformation of the sectors and social environments 26 within which those technologies operate. Such transformations are not linear processes, and hence many 27 of the early steps taken – such as supporting early diffusion of new renewable energy technologies – 28 will have little immediate effect on GHG emissions (Patt 2015; Geels et al. 2017). Assessing the 29 transformative potential of international cooperation takes these factors into account. Equity and 30 distributive outcomes are of central importance to the climate change debate, and hence for evaluating 31 the effects of policies. Equity encompasses the notion of distributive justice which refers to the 32 distribution of goods, burdens, costs and benefits among agents (Kverndokk 2018). Finally, the 33 literature on the performance of other MEAs highlights the importance of institutional strength.
- 34 Institutional strength can include regulative quality, mechanisms to enhance transparency and accountability, and administrative capacity. Regulative quality includes guidance and signalling 35 36 (Oberthür et al. 2017), as well as clear rules and standards to facilitate collective action (Oberthür and 37 Bodle 2016). The literature is clear that legally binding obligations (which require the formal expression 38 of state consent) and non-binding recommendations can each be appropriate, depending on the 39 particular circumstances (Skjærseth et al. 2006), and indeed it has been argued that for climate change 40 non-binding recommendations may better fit the capacity of global governance organisations (Kinley 41 et al. 2020). Mechanisms to enhance transparency and accountability are essential to collect and analyse 42 relevant data about parties' implementation of their obligations, and to identify and address challenges
- 43 in implementation (Kinley et al. 2020). Administrative capacity refers to the strength of the formal
- 44 bodies established to serve the parties to the regime and help ensure compliance and goal attainment
- 45 (Andler and Behrle 2009; Bauer et al. 2017).
- 46 In addition to building on the social science theory just described, we recognise that it is also important
- 47 to strike a balance between applying the same standards developed and applied to international 48 cooperation in AR5, and maintaining consistency with other chapters of this report (primarily Chapters)

- 1 1, 4, 13, and 15). Table 14.3 presents a set of criteria that do this, and which are then applied throughout
- 2 the remainder of this chapter.
- 3
- 0

4

Table 14.3 Criteria for assessing effectiveness of international cooperation

Criterion	Description	
Environmental outcomes	Does international cooperation lead to identifiable environmental benefits, namely the reduction of economy-wide and sectoral emissions of greenhouse gases from pre-existing levels or 'business as usual' scenarios?	
Transformative potential	Does international cooperation contribute to the enabling conditions for transitioning to a zero-carbon economy and sustainable development pathways at the global, national, or sectoral levels?	
Distributive outcomes	Does international cooperation lead to greater equity with respect to the costs, benefits, and burdens of mitigation actions, taking into account current and historical contributions and circumstances?	
Economic performance	Does international cooperation promote the achievement of economically efficient and cost-effective mitigation activities?	
Institutional strength	Does international cooperation create the institutional framework needed for the achievement of internationally agreed-upon goals, and contribute to national, sub-national, and sectoral institutions needed for decentralised and bottom-up mitigation governance?	

5

6 14.3 The UNFCCC and the Paris Agreement

7 14.3.1 The UN climate change regime

8 14.3.1.1 Instruments & Milestones

9 The international climate change regime, in evolution for three decades, comprises the 1992 UNFCCC, the 1997 Kyoto Protocol, and the 2015 Paris Agreement. The UNFCCC is a 'framework' convention, 10 11 capturing broad convergence among states on an objective, a set of principles, and general obligations relating to mitigation, adaptation, reporting and support. The UNFCCC categorises Parties into Annex 12 I and Annex II, with the former comprising developed country Parties with a GHG stabilisation goal, 13 14 and the latter comprising developed country Parties except for those with economies in transition, with 15 additional obligations relating to the provision of financial and technology support. All Parties, 16 including developing country Parties, characterised as non-Annex-I Parties, have reporting obligations, 17 as well as obligations to take policies and measures on mitigation and adaptation. The UNFCCC also 18 establishes the institutional building blocks for global climate governance. Both the 1997 Kyoto 19 Protocol and the 2015 Paris Agreement are 'related legal instruments' in that only Parties to the UNFCCC can be Parties to these later instruments. 20

The Kyoto Protocol concretises the general obligations in the UNFCCC for developed countries, specifying GHG emissions reduction targets for the 2008-2012 commitment period for countries listed in its Annex B (which corresponds to Annex I to the UNFCCC) (UNFCCC 1997, Art. 3 and Annex B). The Kyoto Protocol entered into force in 2005. Shortly thereafter, states began negotiating a second commitment period under the Protocol for Annex B Parties, as well as initiated a process under the

26 UNFCCC to consider long-term cooperation among all Parties.

At COP 13 in Bali in 2007, parties adopted the *Bali Action Plan* that launched negotiations aimed at a new agreement providing for the UNFCCC's 'full, effective and sustained implementation'. The

1 agreement was to be adopted at COP 15 in Copenhagen in 2009, but negotiations failed to deliver a 2 consensus document. The result instead was the Copenhagen Accord, which was taken note of by the 3 COP. While it was a political agreement with no formal legal status under the UNFCCC, it reflected 4 significant progress on several fronts and set in place the building blocks for the Paris Agreement, 5 namely: setting a goal of limiting global temperature increase to 2°C; calling on all countries to put 6 forward mitigation pledges; establishing broad terms for the reporting and verification of countries' 7 actions; setting a goal of mobilising \$100 billion a year by 2020 in public and private finance for 8 developing countries; and, calling for the establishment of a new Green Climate Fund and Technology 9 Mechanism (Rogelj et al. 2010; Rajamani 2010; UNFCCC Decision 2/ CP. 15). One hundred forty states endorsed the Copenhagen Accord, with 85 countries entering pledges to reduce their emissions 10 11 by 2020 (Christensen and Olhoff 2019a). Following the Copenhagen Accord, the European Union (EU) 12 approached those developing countries that shared its desire for a legally binding regime covering all 13 major emitters, and explored compromises with veto players, such as China and the United States (US). 14 This bridge-building strategy was combined with a conditional pledge to agree to an extension of the

Kyoto Protocol (Bäckstrand and Elgström 2013). 15

16 At COP 16 in Cancun in 2010, parties adopted a set of decisions termed the Cancun Agreements that

17 effectively formalised the core elements of the Copenhagen Accord, and the pledges states made, under

the UNFCCC. The Cancun Agreements were regarded as an interim arrangement through to 2020, and 18

19 parties left the door open to further negotiations toward a legally binding successor to the Kyoto

20 Protocol (Freestone 2010; Liu 2011). Collectively the G-20 states are on track to meeting the mid-level

21 of their Cancun pledges, although there is uncertainty about some individual pledges. However, there 22 is an estimated gap of 8-10 GtCO₂eq between emissions expected under full implementation of pledges

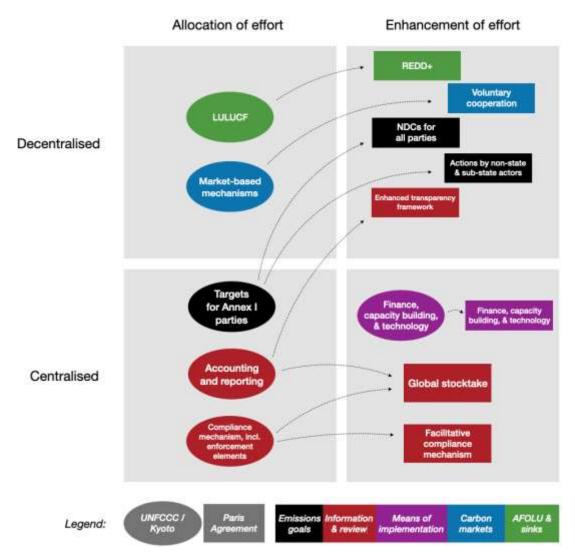
23 and the level consistent with the 2°C target (Christensen and Olhoff 2019a).

24 At the 2011 Durban climate conference, parties launched negotiations for 'a Protocol, another legal 25 instrument or agreed outcome with legal force' with a scheduled end to the negotiations in 2015 26 (UNFCCC 2012, Dec. 1, para. 2). At the 2012 Doha climate conference, parties adopted a second 27 commitment period for the Kyoto Protocol, running from 2013-2020. The Doha amendment entered 28 into force in January 2021. Given the subsequent adoption of the Paris Agreement, the Kyoto Protocol 29 is unlikely to continue beyond 2020 (Bodansky, Brunnée, & Rajamani, 2017b). At the end of the 30 compliance assessment period under the Kyoto Protocol, Annex B parties were in full compliance with 31 their targets; in some cases, through the use of the Protocol's flexibility mechanisms (Shishlov et al. 32 2016).

- 33 Although both the Kyoto Protocol and Paris Agreement are under the umbrella of the UNFCCC, they 34 represent fundamentally different approaches to international cooperation on climate change (Falkner 35 2016b; Held and Roger 2018). The Paris Agreement is characterised as a 'decisive break' from the 36 Kyoto Protocol (Keohane and Oppenheimer 2016). The mitigation efforts under the Kyoto Protocol 37 take the form of targets that, albeit based on national self-selection, were part of the multilateral 38 negotiation process, whereas under the Paris Agreement parties make 'nationally determined' 39 contributions. Some have characterised this as a distinction between a 'top down' and 'bottom up' 40 approach (Doelle 2016; Chan 2016a; Bodansky and Rajamani 2016; Bodansky et al. 2016) but others 41 disagree (Depledge 2017). The Kyoto Protocol's core obligations are legally binding, substantive 42 obligations of result. By contrast, the Paris Agreement's core obligations are legally binding procedural 43 obligations, complemented by obligations of conduct (Rajamani 2016a).
- 44
- The broad differences between the two treaties are summarised in Table 14.4 below. The Kyoto targets 45 apply only to developed country/Annex I parties, but the procedural obligations relating to NDCs in the
- Paris Agreement apply to all parties, with some flexibilities for Least Developed Countries (LDCs), 46
- 47 Small Island Developing States (SIDs), and developing countries that need it in light of their capacities.
- 48 The Kyoto targets are housed in its Annex B, therefore requiring a formal process of amendment for

1 revision, whereas the Paris NDCs are located in an online registry that is maintained by the Secretariat, 2 but to which parties can upload their own NDCs. The Kyoto Protocol allows Annex B parties to use 3 three market-based mechanisms - the Clean Development Mechanism (CDM), Joint Implementation 4 and International Emissions Trading - to fulfil their GHG targets. The Paris Agreement permits parties 5 to cooperate voluntarily on markets, in the form of cooperative approaches under Article 6.2, and a 6 mechanism with international oversight under Article 6.4, subject to rules relating to integrity and 7 accounting that are yet to be agreed (La Hoz Theuer et al. 2019). Article 5 also provides explicit 8 endorsement of REDD+. The Kyoto Protocol contains an extensive reporting and review process, 9 backed by a compliance mechanism. This mechanism includes an enforcement branch, to ensure 10 compliance, and sanction non-compliance, with its national system requirements, and GHG targets. By 11 contrast, the Paris Agreement relies on informational requirements and flows to enhance the clarity of 12 NDCs, and to track progress in the implementation and achievement of NDCs.

- 12
- 13 14


Table 14.4 Key differences	between the Paris Agreeme	nt and the Kvoto Protocol
Tuble 14.4 Rey unter cheep	between the runs rigitenite	in and the hyperbill totocol

Feature	Kyoto Protocol	Paris Agreement
Objective	Primarily mitigation-focused (although in continuation of UNFCCC objective, which refers to food security and sustainable development)	Mitigation in line with a long-term temperature goal, adaptation and finance goals, as well as sustainable development and equity
Architecture	Differentiated targets, based on national offers submitted to the multilateral negotiation process ('top-down'), and multilaterally negotiated common metrics	Nationally determined ('bottom-up' or 'hybrid') contributions subject to transparency and multilateral consideration of progress
Coverage of mitigation-related commitments	Developed country parties (FCCC Annex I/Kyoto Annex B)	All parties
Targets	Legally-binding, differentiated mitigation targets inscribed in treaty	Non-binding contributions incorporated in parties' NDCs but subject to several normative expectations including those relating to highest possible ambition, progression and common but differentiated responsibilities and respective capabilities, in light of different national circumstances
Timetable	Two commitment periods (2008-2012; 2013-2020)	Initial NDCs for timeframes from 2020 running through 2025 or 2030 with new NDCs every five years
Adaptation	Parties to formulate and implement national adaptation measures, share of proceeds from CDM to fund adaptation	Qualitative global goal on adaptation to enhance adaptative capacity and resilience, and reduce vulnerability, parties to undertake national adaptation planning and implementation
Loss and Damage	Not covered	Cooperation and facilitation to enhance support for loss and damage, including through the Warsaw International Mechanism on Loss and Damage under the UNFCCC

Second Order Draft	Chapter 1	4 IPCC AR6 WGIII
Transparency	Reporting and review – developed country parties only	Enhanced transparency framework and five- yearly global stocktake for a collective assessment of progress towards goals – all parties
Support	Advances FCCC commitments for developed countries relating to provision of finance, development and transfer of technology to developing countries	Enhances reporting in relation to support, expands the base of donors, and tailors support to the needs and capacities of developing countries
Implementation	Market mechanisms (international emissions trading, joint implementation, CDM)	Voluntary cooperation on mitigation (including through market-based approaches); encouragement of REDD+
Compliance	Compliance committee with facilitative and enforcement branches; sanctions for non- compliance	Facilitative compliance committee; no sanctions

1

2 Figure 14.1 depicts graphically some of the key differences associated with moving from the Kyoto 3 Protocol to the Paris Agreement. Each instrument contains mechanisms oriented towards particular 4 governance functions, and yet the specific forms of the mechanisms differ. In its first commitment 5 period, the Kyoto Protocol mechanisms were oriented around allocating national emissions reduction 6 responsibilities in order to achieve a collective target of 5% emissions reductions across Annex 1 7 countries; the market mechanisms, compliance regime, and national reporting were all associated with increasing the efficiency and enforceability of this allocation. By contrast, the Paris Agreement's 8 9 commitments relate to a set of long-term objectives, with each of the mechanisms oriented towards 10 accelerating and enhancing efforts over time towards achieving these. There has been a shift from 11 centralised mechanisms under Kyoto to more decentralised ones under Paris.

1

Figure 14.1 Schematic representation of the main mechanisms in the UNFCCC, Kyoto Protocol, and
 Paris Agreement. 'Allocation of effort' instruments are associated with determining and allocating
 countries' relative mitigation efforts in order to achieve the intermediate cumulative emissions target for
 Annex 1 countries. 'Enhancement of effort' instruments are associated with enhancing all countries'
 mitigation efforts, independent of other countries' mitigation efforts, in order to achieve the long-term
 temperature goal. Decentralised processes are those determined and carried out by individual parties,
 whereas centralised are those taking place at the UNFCCC organs.

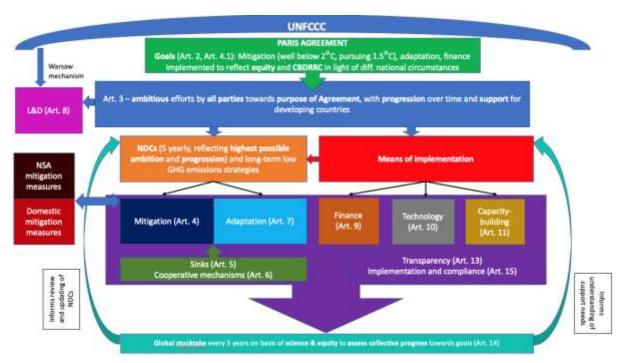
9 14.3.1.2 Negotiating Context and Dynamics

10 The 2015 Paris Agreement was negotiated in a starkly different geopolitical context to that of the 1992 11 UNFCCC, and even the 1997 Kyoto Protocol (Streck and Terhalle 2013; Ciplet et al. 2015). The 12 'rupturing binary balance of superpowers' of the 1980s had given way to a multipolar world with several 13 distinctive trends: emerging economies began challenging US dominance (Jernnäs and Linnér 2019); 14 industrialised countries' emissions peaked in the 2010s and started declining, while emissions from 15 emerging economies began to grow (Falkner 2019); the EU stretched eastwards and became 16 increasingly supra-national (Kinley et al. 2020); disparities within the group of developing countries 17 increased (Ciplet et al. 2015); and, the role of non-state actors in mitigation efforts gathered salience 18 (Falkner 2019; Bäckstrand et al. 2017; Kuyper et al. 2018b). The rise of emerging powers, many of 19 whom now have 'veto power', however, some noted, did not detract from the unequal development and 20 inequality at the heart of global environmental politics (Hurrell and Sengupta 2012).

1 In this altered context, unlike in the 1990s when the main cleavages were between the EU and the US 2 (Hurrell and Sengupta 2012), US- China 'great power politics' came to be seen as determinative of 3 outcomes in the climate change negotiations (Terhalle and Depledge 2013). The US-China joint 4 announcement (Whitehouse 2014), for instance, before the 2014 Lima climate conference, brokered the 5 deal on differentiation that came to be embodied in the Paris Agreement (Rajamani 2016a; Ciplet and Roberts 2017). Others have identified, on the basis of economic might, political influence, and 6 7 emissions levels, three influential groups - the first comprising the US with Japan, Canada, and Russia, the second is the EU and the third comprising China, India and Brazil (Brenton 2013). The emergence 8 9 of the Major Economies Fora (MEF), among other climate clubs (discussed in Section 14.2.2) reflects this development (Brenton 2013). It also represents a 'minilateral' forum, built on a recognition of 10 11 power asymmetries, in which negotiating compromises are politically tested and fed into multilateral

12 processes (Falkner 2016a).

13 Beyond the climate 'great powers', in the decade leading up to the Paris climate negotiations, increasing differences within the group of developing countries divided the 134-strong developing country alliance 14 of the G-77/China into several interest-based coalitions (Bodansky et al. 2017b; Vihma et al. 2011). A 15 division emerged between the vulnerable least developed and small island states on the one side and 16 17 rapidly developing economies, the BASIC (Brazil, South Africa, India and China) on the other, as the 18 latter are 'decidedly not developed but not wholly developing' (Hochstetler and Milkoreit 2013). This 19 'fissure' in part led to the High Ambition Coalition in Paris between vulnerable countries and the more 20 progressive industrialised countries (Ciplet and Roberts 2017). A division also emerged between the 21 BASIC countries (Hurrell and Sengupta 2012), characterised as never more than a 'sum of their national 22 parts' (Hochstetler and Milkoreit 2013). In the lead up to the Paris negotiations, China and India formed 23 the Like-Minded Developing Countries with OPEC and ALBA countries, to resist the erosion of 24 differentiation in the regime. Yet, the 'complex and competing' identities of India and China, with 25 differing capacities, challenges and self-images, have also led to tensions in the negotiations (Ciplet and 26 Roberts 2017; Rajamani 2017). Other developing countries' coalitions also played an important role in 27 striking the final deal in Paris. The small island states, despite their lack of structural power, played a 28 leading role, in particular in relation to advocating the 1.5°C long term temperature goal (Ourbak and 29 Magnan 2018; Agueda Corneloup and Mol 2014). The Association of the Latin American and 30 Caribbean Countries (AILAC) that emerged in 2012, and overtook the Bolivarian Alternative for the 31 Americas (ALBA) in terms of influence in the negotiations, also played a decisive role (Watts and 32 Depledge 2018).


33 Leadership is considered essential to reaching international agreements and overcoming collective 34 action problems (Karlsson et al. 2012). The Paris negotiations, were faced, as a reflection of the 35 multipolarity that had emerged, with a 'fragmented leadership landscape' with the US, EU, and China 36 being perceived as leaders at different points in time and to varying degrees (Parker et al. 2014; Karlsson 37 et al. 2012). Small island states are also credited with demonstrating 'moral leadership'(Agueda 38 Corneloup and Mol 2014), and non-state and sub-state actors are beginning to be recognised as pioneers 39 and leaders (Wurzel et al. 2019). There is also burgeoning literature on the emergence of diffused 40 leadership and salience of followers (Parker et al. 2014; Busby and Urpelainen 2020).

It is in the context of this complex, multipolar and highly differentiated world - with a heterogeneity of interests, constraints and capacities - increased contestations over shares of the carbon and development space, as well as diffused leadership, that the Paris Agreement was negotiated. This context fundamentally influenced the shape of the Paris Agreement in particular on issues relating to its architecture, 'legalisation' (Karlas 2017) and differentiation (Bodansky et al. 2017b; Kinley et al. 2020) (discussed below).

1 **14.3.2** Elements of the Paris Agreement relevant to mitigation

2 The 2015 Paris Agreement to the UNFCCC, which entered into force on 4 November 2016, and has 3 189 Parties as of date, is at the centre of international cooperative efforts for climate change mitigation 4 and adaptation in the post-2020 period. Although its legal form was heavily disputed in its four-year 5 negotiating process (Maljean-Dubois and Wemaëre 2016; Rajamani 2015; Klein et al. 2017; Bodansky 6 et al. 2017b), the Paris Agreement is a treaty containing provisions of differing levels of "bindingness" 7 (Bodansky 2016; Oberthür and Bodle 2016; Rajamani 2016b). The legal character of provisions within 8 a treaty, and the extent to which particular provisions lend themselves to assessments of compliance or 9 non-compliance, depends on factors such as the normative content of the provision, the precision of its 10 terms, the language used, and the oversight mechanisms in place (Bodansky 2015; Oberthür and Bodle 11 2016; Rajamani 2016b; Werksman 2010). Assessed on these criteria, the Paris Agreement contains the 12 full spectrum of provisions, from hard to soft law (Pickering et al. 2019; Rajamani 2016b) and even 13 non-law, which plays a narrative-building and context-setting role (Rajamani 2016b). The key features 14 of the Paris Agreement are set out in Box 14.1.

16

Figure 14.2 Key elements of the Paris Agreement under the umbrella of the UNFCCC. Arrows illustrate the interrelationship between the different elements of the Paris Agreement, in particular between the Agreement's goals, required actions (through nationally determined commitments (NDCs)), means of implementation (finance, technology and capacity-building), transparency framework and global stocktake process. The figure also represents points of interconnection with domestic mitigation measures, whether taken by state parties or by nonstate actors (NSAs).

Figure 14.2 illustrates graphically the key elements of the Paris Agreement. The centrepiece of the Paris Agreement is a set of binding procedural obligations requiring parties to 'prepare, communicate, and maintain' 'nationally determined contributions' (NDCs) (UNFCCC 2015a, Art. 4.2) every five years (UNFCCC 2015a, Art. 4.9). These obligations are complemented by: (1) an 'ambition cycle' that expects parties' successive NDCs, informed by five-yearly global stocktakes (Art 14), to represent a progression on their previous NDCs (Bodansky et al. 2017b; UNFCCC 2015a), and (2) an 'enhanced

30 transparency framework' that places extensive informational demands on parties, tailored to capacities,

and establishes review processes to enable tracking of progress towards achievement of NDCs (Oberthür and Bodle 2016). In contrast to the 'top-down' Kyoto Protocol with its internationally inscribed targets and timetable for emissions reduction for developed countries, the Paris Agreement is

a hybrid of 'bottom-up' national contributions embedded in an international system of transparency and
 accountability for all countries (Doelle 2016; Maljean-Dubois and Wemaëre 2016) accompanied by a

accountability for all countries (Doelle 2016; Maljean-Dubois and Werr
shared global goal, in particular in relation to a temperature limit.

7 14.3.2.1 Context, objective and purpose

8 The preamble of the Paris Agreement lists several factors that provide the interpretative context for the 9 Agreement (Carazo 2017; Bodansky et al. 2017b), including a reference to human rights. The human 10 rights implications of climate impacts garnered particular attention in the lead up to Paris (Duyck 2015; 11 Mayer 2016). In particular, the Human Rights Council, its special procedures mechanisms, and the Office of the High Commissioner for Human Rights, through a series of resolutions, reports, and 12 13 activities, advocated a rights-based approach to climate impacts, and sought to integrate this approach 14 in the climate change regime. The Paris Agreement's preambular recital on human rights recommends 15 that parties take into account 'their respective obligations on human rights' (UNFCCC 2015a, 16 preambular recital 14), a first for an environmental treaty (Knox 2016). The 'respective obligations' referred to in the Paris Agreement include those relating to the right to life (UNGA 1948, Art. 3, 1966, 17 18 Art. 6), right to health (UNGA 1966b, Art. 12), right to an adequate standard of living, including the 19 right to food (UNGA 1966b, Art. 11), which has been read to include the right to water and sanitation 20 (CESCR 2002, 2010), the right to housing (CESCR 1991), and the right to self-determination (UNGA 21 1966a,b, Art. 1). In addition, climate impacts contribute to displacement and migration (Mcadam 2016; 22 Mayer and Crépeau 2016), and have disproportionate effects on women (Pearse 2017). There are 23 differing views on the value and operational impact of the human rights recital in the Paris Agreement 24 (Adelman 2018; Boyle 2018; Savaresi 2018; Duyck et al. 2018; Knox 2019; Rajamani 2018). 25 Notwithstanding opportunities to mainstream and operationalise human rights in the climate regime 26 post-Paris (Duyck et al. 2018), and references to human rights in COP decisions, the 2018 Paris 27 Rulebook contains limited and guarded references to human rights (Duyck 2019; Rajamani 2019) (see

28 Section 14.5.1.2).

29 The overall purpose of international cooperation through the Paris Agreement is to enhance the 30 implementation of the UNFCCC, including its objective of stabilising atmospheric GHG concentrations 31 'at a level that would prevent dangerous anthropogenic interference with the climate system' (UNFCCC 32 1992, Art. 2). The Paris Agreement aims to strengthen the global response to the threat of climate 33 change, in the context of sustainable development and efforts to eradicate poverty, by '[h]olding the 34 increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing 35 efforts to limit the temperature increase to 1.5°C above pre-industrial levels' (UNFCCC 2015a, Art. 36 2(1)(a)). There is an ongoing structured expert dialogue in the context of the second periodic review of 37 the UNFCCC (the first was held between 2013-215) aimed at enhancing understanding of the long-term 38 global goal, pathways to achieving it, and assessing the aggregate effect of steps taken by Parties to 39 achieve the goal.

Some authors interpret the Paris Agreement's temperature goal as a single goal with two inseparable elements, the well below 2°C goal pressing towards 1.5°C (Rajamani and Werksman 2018), but others interpret the goal as a unitary one of 1.5°C with minimal overshoot (Mace 2016). Although having a long-term goal has clear advantages, the literature highlights the issue of credibility, given the lengthy timeframe involved (Urpelainen 2011), and stresses that future regulators may have incentives to relax current climate plans, which could have a significant effect on the achieved GHG stabilisation level (Gerlagh and Michielsen 2015).

47 As the risks of adverse climate impacts, even with a 'well below' 2°C increase, are profound, the 48 objective extends to increasing adaptive capacity and fostering climate resilience (UNFCCC 2015a, 1 Art. 2(1)(b)), as well as redirecting investment and finance flows (Thorgeirsson, 2017; UNFCCC, 2 2015a, Art. 2(1)(c)). The finance and adaptation goals are not quantified in the Paris Agreement, but 3 the temperature goal and the pathways they generate will enable a quantitative assessment of the 4 resources necessary to reach these goals, and the nature of the impacts requiring adaptation (Rajamani 5 and Werksman 2018). The decision accompanying the Paris Agreement records an agreement to set a new collective quantified finance goal prior to 2025 (not explicitly limited to developed countries), with 6 7 \$100 billion yr⁻¹ as a floor (Bodansky et al. 2017b; UNFCCC 2016a, para. 53). The objective also 8 references sustainable development and poverty eradication, and underscores the need to integrate the

9 SDGs in the implementation of the Paris Agreement (Sindico 2016).

10 The Paris Agreement's objective is accompanied by an expectation that the Agreement 'will be' 11 implemented to 'reflect equity and the principle of common but differentiated responsibilities and respective capabilities (CBDRRC), in the light of different national circumstances' (UNFCCC 2015a, 12 13 Art. 2.2). This provision generates an expectation that parties will implement the agreement to reflect 14 CBDRRC, and is not an obligation to do so (Rajamani 2016a). Further, the inclusion of the term 'in 15 light of different national circumstances' introduces a dynamic element into the interpretation of the 16 CBDRRC principle. As national circumstances evolve, the application of the principle will also evolve (Rajamani 2016a). This change in the articulation of the CBDRRC principle is reflected in the shifts in 17 18 the nature and extent of differentiation in the climate change regime (Maljean-Dubois 2016; Rajamani 19 2016a; Voigt and Ferreira 2016a), including through a shift towards 'procedurally-oriented 20 differentiation' for developing countries (Huggins and Karim 2016).

21 Although NDCs are developed by individual state parties, the Paris Agreement requires that these are 22 undertaken by parties 'with a view' to achieving the Agreement's purpose and collectively 'represent a 23 progression over time' (UNFCCC 2015a, Art. 3). The Paris Agreement also encourages parties to align 24 the ambition of their NDCs with the temperature goal through the Agreement's 'ambition cycle', thus 25 imparting operational relevance to the temperature goal (Rajamani and Werksman 2018). Article 4(1) 26 contains a further non-binding requirement that parties 'aim' to reach global peaking of GHG 'as soon 27 as possible' and to undertake rapid reductions thereafter to achieve net zero GHG emissions 'in the 28 second half of the century'. Coupling this requirement with the long-term temperature goal in Article 29 2.1(a) implies a need to reach net zero GHG emissions between 2065 and 2100 (IPCC 2018a, ch2, table 30 2.4). (Rogelj et al. 2015). To reach net zero CO_2 around 2050, in the short-term global net human-31 caused CO₂ emissions would need to fall by about 45% from 2010 levels by 2030 (IPCC 2018b). 32 Reaching net-zero GHG emissions requires resorting to carbon dioxide removal methods (IPCC 2018b), 33 there are divergent views on different methods. Albeit non-binding, this provision has acted as a catalyst 34 for several national net-zero GHG targets, as well net zero CO₂ and GHG targets across local 35 governments, sectors, businesses, and other actors (Data-Driven EnviroLab; NewClimate Institute 36 2020). There is a wide variation in the targets that have been adopted - in terms of their legal character 37 (policy statement, executive order or national legislation), scope (GHGs or CO₂) and coverage (sectors 38 or economy-wide). National net-zero targets could be reflected in the long-term strategies that states 39 are urged to submit under Article 4.19, but only a few states have submitted such strategies thus far. 40 The Paris Rulebook, agreed at the Agreement's first meeting of the parties in 2018, further strengthens 41 the operational relevance of the temperature goal by requiring parties to provide information when 42 submitting their NDCs on how these contribute towards achieving the objective identified in UNFCCC 43 Article 2, and Paris Agreement Articles 2.1 (a) and 4.1 (UNFCCC 2019a, Annex I, para. 7).

44 14.3.2.2 NDCs, progression and ambition

Each party to the Paris Agreement has a binding procedural obligation to 'prepare, communicate and maintain' successive NDCs 'that it intends to achieve.' Parties have a further binding procedural obligation to 'pursue domestic mitigation measures' (UNFCCC 2015a, Art. 4.2). These procedural

48 obligations are coupled with an obligation of conduct to make best efforts to achieve the objectives of

- 1 NDCs (Mayer 2018; Rajamani 2016a). Many states have adopted climate policies and laws, discussed
- 2 in Chapter 13, and captured in databases (LSE Grantham Research Institute on Climate Change and the
- 3 Environment).

4 The framing and content of NDCs is thus largely left up to parties, although certain normative 5 expectations apply. These include developed country leadership through these parties undertaking 6 economy-wide absolute emissions reduction targets (UNFCCC 2015a, Art. 4.4), as well as 7 'progression', 'highest possible ambition' and 'common but differentiated responsibilities and respective capabilities in light of different national circumstances' (Art 4.3). There is 'a firm 8 9 expectation' that for every five year cycle a party puts forward a new NDC that is 'more ambitious than their last' (Rajamani 2016a). While what represents a party's highest possible ambition and progression 10 11 is not prescribed by the Agreement or elaborated in the Paris Rulebook (Rajamani and Bodansky 2019),

- 12 these obligations could be read to imply a due diligence standard (Voigt and Ferreira 2016b).
- 13 In communicating their NDCs, every five years (UNFCCC 2015a, Art. 4.9), all parties have a binding 14 obligation to 'provide the information necessary for clarity, transparency and understanding' (UNFCCC 15 2015a, Art. 4.8). These requirements are further elaborated in the Paris Rulebook (UNFCCC 2019b; Doelle 2019). This includes binding requirements — for Parties' second and subsequent NDCs — to 16 17 provide quantifiable information on the reference point e.g. base year, reference indicators and target 18 relative to the reference indicator (UNFCCC 2019a, Annex I, para 1). It also requires parties to provide 19 information on how they consider their contribution 'fair and ambitious in light of different national 20 circumstances', and how they address the normative expectations of developed country leadership, progression and highest possible ambition (UNFCCC 2019a, Annex I, para. 6). However, parties are 21 22 required to provide the enumerated information only 'as applicable' to their NDC (UNFCCC 2019a, 23 Annex I, para. 7). This allows parties to determine the informational requirements placed on them 24 through their choice of NDC. In respect of parties' first NDCs or NDCs updated by 2020, such 25 quantifiable information 'may' be included, 'as appropriate', signalling a softer requirement (UNFCCC 26 2019a, Annex I, para. 9).
- 27 Parties' first NDCs submitted to the registry maintained by the UNFCCC vary in terms of type of NDC, 28 reference points, time frames, and scope and coverage of GHGs. A significant number of NDCs include 29 an adaptation contribution, and several NDCs have conditional components, for instance, being 30 conditional on the use of market mechanisms or on the availability of support (UNFCCC 2016b). There 31 are wide variations across NDCs. Uncertainties are generated through interpretative ambiguities in the 32 assumptions underlying NDCs, which results in estimated emissions for 2030 ranging from 47 to 63 33 GtCO₂eq yr⁻¹ (Rogelj et al. 2017). Many omit important mitigation sectors, provide little detail on 34 financing implementation, and are poorly designed to meet assessment and review needs (Pauw et al. 35 2018). Although, it is estimated that the land-use sector could contribute as much as 20% of the full 36 mitigation potential of all the intended NDC targets (Forsell et al. 2016), there are variations in how 37 the land-use component is included, and the related information provided, leading to large uncertainties 38 on whether and how these will contribute to the achievement of the NDCs (Forsell et al. 2016; Fyson 39 and Jeffery 2019; Grassi et al. 2017; Obergassel et al. 2017a; Benveniste et al. 2018). All these 40 variations make it challenging to aggregate the efforts of countries and compare them to each other 41 (Carraro 2016). Although parties attempted to discipline the variation in NDCs, including whether they 42 could be conditional, through elaborating the 'features' of NDCs in the Rulebook, no agreement was 43 possible on this. Thus, parties continue to enjoy considerable national discretion in the formulation of 44 NDCs (Rajamani and Bodansky 2019; Weikmans et al. 2019). The second round of NDCs due by 2020, 45 but delayed due to the pandemic, are yet to be analysed.

46 There are several approaches to evaluating NDCs incorporating indicators such as CO_2 emissions, GDP,

47 energy intensity of GDP, CO_2 per energy unit, CO_2 intensity of fossil fuels, and share of fossil fuels in

1 emissions such as infrastructure investment, energy demand, or installed power capacity (Jeffery et al.

2 2018; Iyer et al. 2017). One approach is to combine the comparison of aggregate NDC emissions using

3 Integrated Assessment Model scenarios with modelling of NDC scenarios directly, and carbon budget

4 analyses (Jeffery et al. 2018). Another approach is to engage in a comprehensive assessment of several

5 approaches that reflect the different viewpoints of the Parties under the UNFCCC (Höhne et al. 2018;

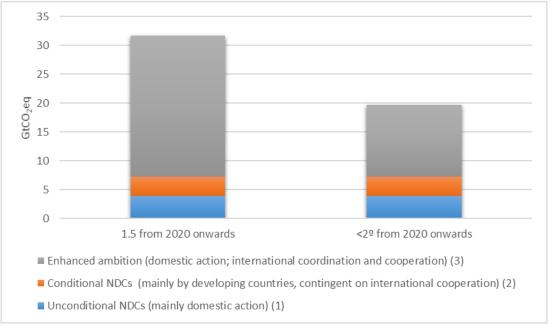
6 Aldy et al. 2017).

It is clear, however, that the NDCs communicated by parties for the 2020-2030 period are insufficient to achieve the temperature goal (Alcaraz et al. 2019; Schleussner et al. 2016; UN Environment Programme 2018; Rogelj et al. 2016; den Elzen et al. 2016; UN Environment Programme 2019; Robiou du Pont and Meinshausen 2018), and the emissions gap is larger than ever (Christensen and Olhoff 2019b) (see Chapter 4). The IPCC 1.5°C Report notes that pathways that limit global warming to 1.5°C with no or limited overshoot show up to 40-50% reduction from 2010 levels by 2030, and that current pathways reflected in the NDCs are consistent with cost-effective pathways that result in a global

14 warming of about 3°C by 2100 (IPCC 2018b SPM, D.1.1).

15 Many conditional NDCs may not be feasible as the conditions are not clearly defined and existing promises of support are insufficient (Pauw et al. 2020). Moreover, 'leadership by conditional 16 17 commitments' (when some states promise to take stronger commitments if others do so as well), and 18 the system of pledge-and-review, may lead to decreasing rather than deeper contributions over time 19 (Helland et al. 2017). Some note, however, that many of the NDCs are conservative and may be 20 overachieved, that NDCs may be strengthened over time as expected under the Paris Agreement, and 21 there are significant non-state actions that have not been adequately captured in the NDCs (Höhne et 22 al. 2017). Further, if all conditional and unconditional NDCs are implemented, net land use, land use 23 change and forestry emissions will decrease in 2030 compared to 2010 levels, but large uncertainties 24 remain on how Parties estimate, project and account for emissions and removals from this sector 25 (Forsell et al. 2016). According to the estimates in Table 4.3 (Chapter 4), communicated unconditional 26 commitments imply about a 7% reduction of world emissions by 2030, in terms of Kyoto GHGs, 27 compared to a scenario where only current policies are in place. If conditional commitments are also 28 included, the reduction in world emissions by 2030 would be about 12%.

29 Particularly relevant for this chapter on international cooperation is the significant contribution of


30 conditional NDCs, as such NDCs require international cooperation on finance, technology and capacity-

- building (Kissinger et al. 2019), through article 6 and in the form of bilateral agreements and market
 mechanisms (UNFCCC 2016b). More broadly there is a 'policy inconsistency' between the facilitative,
- 32 international (ONFCCC 20100). More broadly there is a "poncy inconsistency" between the facilitative,
 33 'bottom up' architecture of the Paris Agreement, and both the setting of the long-term temperature goal,

as well as expectations that it will be delivered (Geden 2016b). As Figure 14.3 shows, there is a large

- share of additional effort needed to reach a 1.5°C compatible path by 2030 (and even a 2°C compatible
- 36 path). International coordination and cooperation will be crucial to enhance the ambition of current
- pledges, as countries will be more willing to increase their ambition if matched by other countries
- 38 (coordination) and if cost-minimising agreements between developed and developing countries,
- through article 6 and other means, are fully developed (cooperation) (Sælen 2020).

40

1

2 Figure 14.3 The role of international cooperation in achieving a 1.5°C (respectively 2°C) 3 compatible path by 2030. The figure represents the contribution of unconditional and 4 conditional NDCs, and the remaining emissions gap, to the reductions in emissions needed to 5 move from current policies to cost-effective long-term mitigation pathways for limiting warming to 1.5° C with no or low (<0.1°C) overshoot (50% chance), respectively for limiting warming to 6 7 2°C (66% chance), using in all cases median values. See Cross-Chapter Box 3 in Chapter 4, 8 Figure 1, and Table 4.1 for details. (1) Unconditional NDCs refer mainly to domestic abatement 9 actions, although developed countries can use international cooperation, Article 6, to meet their 10 targets. (2) Conditional NDCs require international cooperation, mainly through Article 6 and 11 in the form of bilateral agreements, market mechanism, and monetary or technological 12 transfers. Conditional NDCs have been proposed almost exclusively by developing countries. (3) 13 Enhanced ambition can potentially be achieved through national and international actions. 14 International coordination of more ambitious efforts promotes global ambition and 15 international cooperation provides the cost-saving basis for more ambitious future NDCs.

16

17 14.3.2.3 NDCs, fairness and equity

The Paris Agreement encourages Parties, while submitting their NDCs, to explain how these are 'fair and ambitious' (UNFCCC 2015a, Art. 4.8 read with UNFCCC 2016a, para. 27). The Rulebook obliges Parties to provide information on 'fairness considerations, including reflecting on equity' as applicable to their NDC (UNFCCC 2019a, paras 7 and 9, Annex, paras. 6(a) and (b); Rajamani and Bodansky 2019).

23 In the first round of NDCs, most Parties declared their NDCs as fair (Robiou du Pont et al. 2017). Their 24 claims, however, were largely unsubstantiated or drawn from analysis by in-country experts (Winkler 25 et al. 2018). At least some of the indicators Parties have identified in their NDCs as justifying the 26 'fairness' of their contributions, such as a 'small share of global emissions', and assumptions that 27 privilege current emissions levels ('grandfathering') are not in accordance with principles of 28 international environmental law (Rajamani, L., Jeffrey, L., Hohne, N., Hans, F., Glass). Moreover, the 29 NDCs reveal long-standing institutional divisions and divergent climate priorities between Annex I and 30 non-Annex I Parties, suggesting that equity and fairness concerns remain salient and need to be

1 addressed (Stephenson et al. 2019). Fairness concerns also affect the share of carbon dioxide removal 2 (CDR) responsibilities for major emitters if they delay near-term mitigation action (Fyson et al. 2020).

3 It is challenging, however, to determine 'fair shares', and address fairness and equity in a world of

voluntary climate contributions (Chan 2016a), in particular, since these contributions are insufficient 4 5 (see above Section 14.3.2.2.). Self-differentiation in contributions has also led to fairness and equity

6 being discussed in terms of individual national contributions rather than between categories of countries

7 (Chan 2016a). In the climate change regime, one option is for Parties to provide more rigorous

8 information under the Paris Agreement to assess fair shares (Winkler et al. 2018), and another is for

9 Parties to articulate what equity principles they have adopted in determining their NDCs, how they have

10 operationalised these principles, and explain their mitigation targets in terms of the portion of the

11 appropriated global budget (Hales and Mackey 2018).

12 Equity is critical to addressing climate change, including through the Paris Agreement (Klinsky et al.

13 2017), however, since the political feasibility of developing equity principles within the climate change

regime is low, it needs to be developed through mechanisms and actors outside the regime (Lawrence 14 15

and Reder 2019). Equity and fairness concerns are being raised in national and regional courts that are

16 increasingly being asked to determine if the climate actions pledged by states are adequate in relation 17

- to their 'fair share' (Supreme Court of the Netherlands, Civil Division 2019; European Court of Human
- 18 Rights 2020), as it is only in relation to such a 'fair share' that the adequacy of a state's contribution 19 can be assessed in the context of a global collective action problem. Domestic courts have stressed that

20 as climate change is a global problem of cumulative impact, all emissions contribute to the problem

21 regardless of their relative size and there is a normative expectation under the UNFCCC and Paris

22 Agreement for developed countries to 'take the lead' in addressing GHG emissions (Preston 2020).

23 Given the limited avenues for multilateral determination of fairness, the onus is on the scientific

24 community to generate methods to assess fairness (Herrala and Goel 2016; Lawrence and Reder 2019),

25 and on peer-to-peer comparisons to create pressure for ambitious NDCs (Aldy et al. 2017).

26 There are a range of options to assess or introduce fairness. These include: adopting differentiation in 27 financing rather than in mitigation (Gajevic Sayegh 2017); adopting a carbon budget approach (Alcaraz 28 et al. 2019; Hales and Mackey 2018), which may occur through the transparency processes (Hales and 29 Mackey 2018); quantifying national emissions allocations using different equity approaches, including 30 those reconciling finance and emissions rights distributions (Robiou du Pont et al. 2017); using data on 31 adopted emissions targets to find an ethical framework consistent with the observed distribution (Sheriff 32 2019); adopting common metrics for policy assessment (Bretschger 2017); and developing a template 33 for organising metrics on mitigation effort - emission reductions, implicit prices, and costs - for both ex 34 ante and ex post review (Aldy et al. 2017). The burden of agricultural mitigation can also be distributed 35 using different approaches to effort sharing (responsibility, capability, need, equal cumulative percapita emissions) (Richards et al. 2018). Further, there are temporal (inter-generational) and spatial 36 37 (inter-regional) dimensions to the distribution of the mitigation burden, with additional emissions 38 reductions in 2030 improving both inter-generational and inter-regional equity (Liu et al. 2017b). Some 39 of the equity approaches rely on 'grandfathering' as an allocation principle, which has arguably led to 40 'cascading biases' against developing countries (Kartha et al. 2018), and is morally 'perverse' (Caney 41 2011).

42 14.3.2.4 Transparency and accountability

43 Although NDCs reflect a 'bottom-up', self-differentiated approach to climate mitigation actions, the 44 Paris Agreement couples this to an international transparency framework designed to track progress in 45 implementing and achieving mitigation contributions (UNFCCC 2015a, Art. 13). This transparency

framework is applicable to all Parties, although with flexibilities for developing country Parties that 46

47 need it in light of their capacities (Mayer 2019). Each Party is required to submit a national inventory

48 report, as well as 'the information necessary to track progress in implementing and achieving' its NDC,

- 1 (UNFCCC 2015a, Art. 13.7) biennially (UNFCCC 2016a, para. 90). The Paris Rulebook requires all
- 2 Parties to submit their national inventory reports using the 2006 IPCC Guidelines (UNFCCC 2019c,
- 3 Annex, para. 20).

In relation to the provision of information necessary to track progress towards implementation and achievement of NDCs, the Paris Rulebook allows each party to choose its own qualitative or quantitative indicators (UNFCCC 2019c, Annex, para. 65), a significant concession to national sovereignty (Rajamani and Bodansky 2019). The Rulebook phases in common reporting requirements

- sovereighty (Rajaman and Bodansky 2017). The Rulebook phases in common reporting requirements
 for developed and developing countries (except LDCs and SIDs) at the latest by 2024 (UNFCCC 2019c,
- para. 3), but offers flexibilities in 'scope, frequency, and level of detail of reporting, and in the scope of
- 10 the review' for those developing countries that need it in light of their capacities (UNFCCC 2019c,
- 11 Annex para. 5). Some differentiation also remains for information on support provided to developing
- 12 countries (Winkler et al. 2017), with developed country parties required to report such information

13 biennially, while others are only 'encouraged' to do so (UNFCCC 2015a, Art. 9.7).

14 The information provided by Parties in biennial transparency reports and GHG inventories will undergo 15 technical expert review, which must include assistance in identifying capacity-building needs for developing country parties that need it in light of their capacities. Each Party is also required to 16 17 participate in a 'facilitative, multilateral consideration of progress' of implementation and achievement 18 of its NDC. Although the aim of these processes is to expose each Party's actions on mitigation to 19 international review, thus establishing a weak form of accountability for NDCs at the international level, 20 the Rulebook circumscribes the reach of these processes (Rajamani and Bodansky 2019). The technical expert review teams are prohibited in mandatory terms ('shall not') from making 'political judgments' 21 22 or reviewing the 'adequacy or appropriateness' of a party's NDC, domestic actions, or support provided 23 (UNFCCC 2019c, Annex, para. 149). This, among other such provisions, has led some to argue that the 24 scope and practice of existing transparency arrangements reflects rather than mediates ongoing disputes 25 around responsibility, differentiation and burden sharing, and thus there is limited answerability through 26 transparency (Gupta and van Asselt 2019). There are also limits to the extent that the enhanced 27 transparency framework will reduce ambiguities, and associated uncertainties, for instance, in how 28 LULUCF is incorporated into the NDCs (Fyson and Jeffery 2019) and lead to increased ambition 29 (Weikmans et al. 2019). More broadly, there has been weak translation of transparency norms into 30 accountability (Ciplet et al. 2018). Hence, the Paris Agreement's effectiveness in ensuring NDCs are 31 achieved will depend on additional accountability pathways at the domestic level involving political 32 processes and civil society engagement (Karlsson-Vinkhuyzen et al. 2018; Jacquet and Jamieson 2016; 33 Van Asselt 2016; Campbell-Duruflé 2018a).

34 **14.3.2.5** Global stocktake

35 The Paris Agreement's transparency framework is complemented by the global stocktake, which will take place every five years (starting in 2023) and assess the collective progress towards achieving the 36 37 Agreement's purpose and long-term goals (UNFCCC 2015a, Art. 14). The scope of the global stocktake 38 is comprehensive – covering mitigation, adaptation and means of implementation and support – and the 39 process is to be facilitative and consultative. The Paris Rulebook cautiously (i.e. 'as appropriate') 40 expands the scope of the global stocktake to take into account social and economic consequences and 41 impacts of response measures, and loss and damage associated with the adverse effects of climate 42 change (UNFCCC, 2019d, paras. 8-10).

The global stocktake is to occur 'in the light of equity and the best available science.' While the focus of the global stocktake is on collective and not individual progress towards the goals of the Agreement, the inclusion of equity in the global stocktake 'leaves the door open for a dialogue on equitable burden sharing' (Rajamani 2016a). The Paris Rulebook seeks to operationalise equity by including consideration of it in the modalities and sources of inputs for the global stocktake (UNFCCC, 2019d, paras 1, 2, 13, 27, 31, 36h and 37g), which will likely result in equity being factored into the outcome 1 of the stocktake (Winkler 2019). The Rulebook does not, however, resolve the tension between the 2 collective nature of the assessment that is authorised by the stocktake and the individual assessments

3 required to determine relative fair share (Zahar 2019; Rajamani and Bodansky 2019).

- 4 The global stocktake is seen as crucial to encouraging parties to increase the ambition of their NDCs
- 5 (Huang 2018; Milkoreit and Haapala 2019; Hermwille et al. 2019) as its outcome 'shall inform Parties
- 6 in updating and enhancing, in a nationally determined manner, their actions and support' (Art 14.3).
- 7 The Rulebook provides for the stocktake to draw on a wide variety of inputs sourced from a full range
- 8 of actors, including 'non-Party stakeholders' (UNFCCC, 2019d, para. 37). However, the Rulebook
- 9 specifies that the global stocktake will be 'a Party-driven process' (UNFCCC, 2019d, para. 10), will
- not have an 'individual Party focus', and will include only 'non-policy prescriptive consideration of
- 11 collective progress' (UNFCCC, 2019d, para. 14).

12 14.3.2.6 Conservation of sinks and reservoirs, including forests

- 13 Article 5 of the Paris Agreement calls for parties to take action to conserve and enhance sinks and
- 14 reservoirs of greenhouse gases, including forests, and encourages countries to take action in to support
- 15 the REDD+ framework under the Convention. The explicit inclusion of land use sector activities,
- including forest conservation, is potentially a 'game changer' as it encourages countries to safeguard ecosystems for climate mitigation purposes (Grassi et al. 2017). Analyses of parties (I)NDCs shows
- 17 ecosystems for climate infugation purposes (Grassi et al. 2017). Analyses of parties (I)NDCs shows 18 pledged mitigation from land use, and forests in particular, provides a quarter of the emission reductions
- 19 planned by parties and, if fully implemented, would result in forests becoming a net sink of carbon by
- 20 2030 (Forsell et al. 2016; Grassi et al. 2017).
- 21 A key action endorsed by Article 5 is REDD+, which refers to mechanisms established under the
- UNFCCC for reducing emissions from deforestation and forest degradation and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks in developing
- countries (Park et al. 2013). Article 5.2 encourages parties to implement and support the existing
- framework for REDD+, including through 'results-based payments' i.e. provision of financial payments
- 26 for verified avoided or reduced forest carbon emissions (Turnhout et al. 2017). The existing REDD+
- 27 framework set up under decisions of the UNFCCC COP includes the Warsaw Framework for REDD+,
- 28 which specifies modalities for measuring, reporting and verifying (MRV) greenhouse gas emissions
- and removals. This provides an essential tool for linking REDD+ activities to results-based finance (V_{1}, \dots, V_{n})
- 30 (Voigt and Ferreira 2015). Appropriate finance support for REDD+ is also considered critical to move
- from its inclusion in many countries' NDCs to implementation on the ground (Hein et al. 2018). Since public finance for REDD+ is limited, private sector participation is expected to leverage REDD+
- 33 (Parker and Streck 2012; Pistorius and Kiff 2015; Seymour and Busch 2016; Ehara et al. 2019;
- Henderson et al. 2013). It is worth noting that REDD+ cannot be considered as a comprehensive
- 35 solution in its current form for Article 5 implementation.
- Article 5.2 also encourages parties' support for 'alternative policy approaches' to forest conservation and sustainable management such as 'joint mitigation and adaptation approaches.' It reaffirms the
- importance of incentivising, as appropriate, non-carbon benefits associated with such approaches (e.g.
- 39 improvements in the livelihoods of forest-dependent communities, facilitating poverty reduction and
- sustainable development). This provision, along with the support for non-market mechanisms in Article
 6 (discussed below), is seen as an avenue for cooperative joint mitigation-adaptation and non-market
- 42 REDD+ activities with co-benefits for biodiversity conservation (Gupta and Dube 2018).

43 14.3.2.7 Cooperative approaches

- 44 The content and potential importance of Article 6 of the Paris Agreement on cooperative approaches
- 45 should be viewed against the background of key lessons from the market-based mechanisms under the
- 46 Kyoto Protocol, particularly the Clean Development Mechanism (CDM).

- 1 As described in previous IPCC reports, the 1997 Kyoto Protocol included three international market-
- 2 based mechanisms. These operated among Annex I Parties (i.e. International Emissions Trading and
- Joint Implementation) and between Annex I Parties and non-Annex I countries (i.e. the CDM) (Grubb
- 4 et al. 2014; World Bank 2018). Joint Implementation, with projects and credits mainly being developed
- by Russia, Ukraine and some Eastern European countries, resulted in only a limited number of trades.
 International Emissions Trading was marginally more important, with trade mainly with the Russian
- and Eastern European countries as sellers and Japan as the key buyer. Demand has generally been low
- 8 (World Bank 2018).
- 9 Of the Kyoto Protocol's mechanisms, the CDM market has been the most important, with a 'gold rush'
- 10 period between 2005 and 2012. The CDM has also been used for implementing bilateral strategies and
- 11 unilateral (non-market) actions, hence virtually covering all the mechanisms now included in Article 6
- 12 of the Paris Agreement (Phillips 2013).
- 13 The EU, as the main buyer of credits, tightened its rules and restricted the use of CDM credits in 2011,
- 14 contributing to a sharp drop in the price of CDM credits in 2012. This price never recovered, as the
- 15 demand for CDM was very weak after 2012, mainly because of the difficulties encountered in securing
- 16 the entry into force of the Doha Amendment, which established the second commitment period of the
- 17 Kyoto Protocol (Michaelowa, A., Shishlov, I.; Brescia 2019). Although the Doha Amendment came
- 18 into force in January 2021, this price has not recovered.
- 19 Assessing the effectiveness of international emissions trading mechanisms is challenging. CDM 20 projects have been criticised for lack of 'additionality', problems of baseline determination and uneven 21 geographic coverage (as most projects were in India, China and Brazil) (Michaelowa, A. and 22 Michaelowa 2011a; Öko-Institut 2016; Michaelowa, A., Shishlov, I.; Brescia 2019). While a number 23 of early studies raised concerns about the additionality of CDM projects, more recent studies taking into 24 account regulatory tightening and learning how to devise robust additionality tests see a more positive 25 outcome (Michaelowa, A., Shishlov, I.; Brescia 2019). The CDM's contribution to capacity building in 26 some developing countries has been identified as possibly its most important achievement 27 (Gandenberger, C.; Bodenheimer, C.; Schleich, J.; Orzama, R.; Macht 2015; Spalding-Fecher, R., 28 Achanta, A. N., Erickson, P., Haites, E., Lazarus, M., Pahuja, N., ... Tewari 2012; Murata, A.; Jiang, 29 J.; Eto, R.; Tokimatsu, K.; Okajima, K.; Uchiyama 2016; Xu et al. 2016; Lindberg et al. 2018; Dong, 30 Y.; Holm Olsen 2017). The CDM lowered compliance costs significantly for the EU and Japan 31 (Spalding-Fecher, R., Achanta, A. N., Erickson, P., Haites, E., Lazarus, M., Pahuja, N., Tewari, 2012). 32 In host countries, the CDM led to the establishment of national approval bodies and the development 33 of an ecosystem of consultants and auditors. While this was costly (Michaelowa and Michaelowa 2017),
- 34 it provides a basis for GHG accounting under the Paris Agreement.
- This experience is relevant to the implementation of Article 6 of the Paris Agreement. Article 6.1 recognises the role that cooperative approaches can play, on a voluntary basis, in implementing parties' NDCs 'in order to allow for higher ambition' in their mitigation actions and to promote sustainable development and environmental integrity. It lists a number of specific types of cooperative approaches that come within its ambit, including internationally transferred mitigation outcomes (ITMOs), a 'mechanism to contribute to mitigation and support sustainable development', and a framework for non-market mechanisms.
- 42 Article 6.2 indicates that ITMOs can originate from a variety of sources including regional carbon 43 markets or REDD+. Parties can use ITMOs to achieve their NDCs but when engaging in this activity 44 shall promote sustainable development, ensure environmental integrity, ensure transparency, including 45 in governance, and apply 'robust accounting' in accordance with CMA guidance to prevent double 46 counting. While this provision, unlike similar provisions in the Kyoto Protocol, does not create an 47 international carbon market, it enables parties to pursue this option should they choose to do so, for 48 example, through the linking of domestic or regional carbon markets (Marcu 2016; Müller and

- 1 Michaelowa 2019). Article 6.2 could also be implemented in other ways, including direct transfers
- between governments, linkage of mitigation policies across two or more parties, sectoral or activity crediting mechanisms, and other forms of cooperation involving public or private entities, or both
- 4 (Howard 2017).

5 Assessments of the potential of Article 6.2 generally find that ITMOs are likely to result in cost 6 reductions in achieving mitigation outcomes, with the potential for such reductions to enhance ambition 7 and accelerate parties' progression of mitigation pledges across NDC cycles (Mehling 2018; Gao et al. 8 2016; Fujimori et al. 2016). However, a growing body of research – usually drawn from experience 9 with existing carbon markets and the Kyoto mechanisms - highlights environmental integrity risks 10 associated with using ITMOs under the Paris Agreement given the challenges that the diverse scope, 11 metrics, types and timeframes of NDC targets pose for robust accounting (Schneider and La Hoz Theuer 2019) and the potential for transfers of 'hot air' as occurred under the Kyoto Protocol (La Hoz Theuer 12 et al. 2019). These studies collectively affirm that robust governance, including guidance on accounting 13 14 for ITMOs, will be critical to ensuring environmental integrity (Müller and Michaelowa 2019; Mehling

- 15 2018).
- 16 Article 6.4 concerns the mitigation mechanism, referred to by some parties as the 'sustainable 17 development mechanism' (SDM). Unlike the CDM, there is no restriction on which parties can host
- 18 mitigation projects and which parties can use the resulting emissions reductions towards their NDCs
- (Marcu 2016). The SDM will operate under the authority and guidance of the CMA, and is to be
- 20 supervised by a body designated by the CMA in a similar fashion to the CDM.
- The SDM is to foster sustainable development. The decision adopting the Paris Agreement specifies experience with Kyoto mechanisms like the CDM as a basis for the new mitigation mechanism (UNECCC 201(b, new 27(b)) Command with the CDM under the Kyoto Protocol, the SDM has a
- 23 (UNFCCC, 2016b, para. 37(f)). Compared with the CDM under the Kyoto Protocol, the SDM has a
- 24 more balanced focus on both climate and development objectives, and a stronger political mandate to
- 25 measure sustainable development impact and to verify that the impacts are 'real, measurable, and long-26 term' (Olsen et al. 2018). There are also opportunities to integrate human rights into the SDM
- (Olsen et al. 2018). There are also opportunities to integrate human rights into the SDM
 (Calzadilla 2018; Obergassel et al. 2017). It is further subject to the requirement that it must deliver 'an
- overall mitigation in global emissions,' which operates in addition to the general requirement in Article
- 29 6 for cooperation to enhance ambition (Kreibich 2018).
- Negotiations over rules to operationalise Article 6 have proven intractable, failing to deliver both at COP-24 in Katowice in 2018, where the rest of the Paris Rulebook was agreed, and in COP-25 in
- 32 Madrid in 2019. There are entrenched differences between parties on several issues including: whether
- 32 to permit the carryover and use of Kyoto CDM credits, and AAUs, towards compliance with parties'
- NDCs, whether to impose a mandatory share of proceeds on both Article 6.2 and 6.4 mechanisms to
- fund adaptation; and, whether credits generated under Article 6.4 should be subject to accounting rules
- 36 under Article 6.2.

37 14.3.2.8 Finance flows

- Finance is the first of three means of implementation and support specified under the Paris Agreement to accomplish its objectives relating to mitigation (and adaptation) (UNFCCC 2015a, Art. 14.1). This
- 40 sub-section discusses the provision made in the Paris Agreement for international cooperation on
- finance. Section 14.4.1 below considers broader cooperative efforts on public and private finance flows
- 42 for climate mitigation, including by multilateral development banks and through instruments such as
- 43 green bonds.
- 44 As highlighted above, the objective of the Paris Agreement includes the goal of '[m]aking finance flows
- 45 consistent with a pathway towards low greenhouse gas emissions and climate-resilient development'
- 46 (UNFCCC 2015a, Art 2.1(c)). Provision of finance will be critical to achievement of many parties'

1 NDCs, particularly those that are framed in conditional terms (Zhang and Pan 2016; Kissinger et al.

2 2019) (see further Chapter 15 on investment and finance).

3 International cooperation on climate finance represents 'a complex and fragmented landscape' with a range of different mechanisms and forums involved (Roberts and Weikmans 2017). These include 4 5 entities set up under the international climate change regime, such as the UNFCCC financial 6 mechanism, with the Global Environment Facility (GEF) and Green Climate Fund (GCF) as operating 7 entities; special funds, such as the Special Climate Change Fund, the Least Developed Countries Fund 8 (both managed by the GEF), and the Adaptation Fund established under the Kyoto Protocol; the 9 Standing Committee on Finance, a constituted body which assists the COP in exercising its functions 10 with respect to the UNFCCC financial mechanism; and other bodies outside of the international climate 11 change regime, such as the Climate Investment Funds (CIF) administered through multilateral development banks (the role of these banks in climate finance is discussed further in Section 14.4.1 12

- 13 below).
- 14 Pursuant to decisions adopted at the Paris and Katowice conferences, parties agreed that the operating

15 entities of the financial mechanism - GEF and GCF - as well as the Special Climate Change Fund, the

Least Developed Countries Fund, the Adaptation Fund and the Standing Committee on Finance, all 16

17 serve the Paris Agreement (UNFCCC, 2016b, paras 58 and 63, 2019e, 2019a). The GCF, which became

18 operational in 2015, is expected to become the main mechanism for transferring public funds, and some

19 private funds, to developing countries to address climate change (Brechin and Espinoza 2017;

20 Antimiani et al. 2017).

21 Much of the current literature on climate finance and the Paris Agreement focuses on the obligations of 22 developed countries to provide climate finance to assist the implementation of mitigation and adaptation 23 actions by developing countries. The principal provision on finance in the Paris Agreement is the 24 binding obligation on developed country parties to provide financial resources to assist developing 25 country parties (UNFCCC 2015a, Art 9.1). This provision applies to both mitigation and adaptation and 26 is in continuation of existing developed country parties' obligations under the UNFCCC. This signals 27 that the Paris Agreement finance requirements must be interpreted in light of the UNFCCC (Yamineva 28 2016). The principal novelty introduced by the Paris Agreement is an expansion in the potential pool 29 of donor countries as article 9.2 encourages 'other parties' to provide or continue to provide such 30 support on a voluntary basis. However, 'developed countries should continue to take the lead in 31 mobilising climate finance', with a 'significant role' for public funds, and a requirement that such 32 mobilisation of finance 'should represent a progression beyond previous efforts' (UNFCCC 2015a, Art

33 9.3).

34 Beyond this there are no new recognised promises (Ciplet et al. 2018). In the Paris Agreement 35 negotiations, parties merely formalised and extended to 2025 previous long-term finance pledges made 36 under the international climate regime, such as the Copenhagen Accord's pledge by developed countries 37 to raise USD 100 billion yr⁻¹ by 2020. The Paris Agreement decision also provided for the CMA by 2025 to set a new collective quantified goal from a floor of USD 100 billion yr⁻¹, taking into account 38 39 the needs and priorities of developing countries (UNFCCC, 2016b, para. 53). This new collective goal 40 on finance is not explicitly limited to developed countries and could therefore encompass finance flows 41 from developing countries' donors (Bodansky et al. 2017b). A decision on the initiation of a process 42 for determining a new collective goal on finance has been deferred to the Glasgow COP26 in 2021 43 (UNFCCC, 2019b, para. 1; UNFCCC 2019f; H. Zhang, 2019).

44 It is widely recognised that the USD 100 billion vr^{-1} figure is a fraction of the broader finance and 45 investment needs of mitigation and adaptation embodied in the Paris Agreement (Peake and Ekins 46 2017). One estimate, based on a review of 160 (I)NDCs, suggests the financial demand for both

- 47 mitigation and adaptation needs of developing countries could reach USD 474 billion yr⁻¹ by 2030
- 48 (Zhang and Pan 2016). The OECD reports that climate finance provided and mobilised by developed

- 1 countries was USD 78.9 billion in 2018. This finance included four components: bilateral public,
- multilateral public (attributed to developed countries), officially-supported export credits and mobilised
 private finance (OECD 2020). Some research has also sought to quantify the climate finance 'gap'
- ³ private finance (OECD 2020). Some research has also sought to quantify the climate finance 'gap'
- resulting from the US withdrawal from the Paris Agreement, with estimates that the GCF funding gap
 will increase by USD 2 billion yr⁻¹, while the long-term finance gap for mobilisation of the \$100 billion
- 6 per annum will increase by around USD 5 billion yr⁻¹ (Chai et al. 2017). The new Biden administration,
- per annum with increase by around USD 5 binnon yr (Char et al. 2017). The new Biden administration,
 however, has pledged to re-join the Paris Agreement and reinstate US funding for the GCF (Norton
- 8 2020).
- 9 More broadly there is recognition of the need for better accounting, transparency and reporting rules to 10 allow evaluation of the fulfilment of finance pledges and the effectiveness of how funding is used (Xu 11 et al. 2016; Roberts et al. 2017; Gupta and van Asselt 2019; Jachnik et al. 2019). Some authors see the 'enhanced transparency framework' of the Paris Agreement (see Section 14.3.2.4 above), and the 12 13 specific requirements for developed countries to report on financial support and mobilisation efforts 14 (Articles 9.5 and 9.7), as promising marked improvements (Weikmans and Roberts 2019), including 15 for the fairness of effort-sharing on climate finance provision (Pickering et al. 2015). Others offer a 16 more circumspect view of the transformative capability of these transparency systems (Ciplet et al.
- 17 2018).
- 18 The more limited literature focusing on the specific finance needs of developing countries, particularly
- those expressed in NDCs conditional on international climate finance, suggests that once all countries have fully costed their NDCs, the demand for (public and private) finance to support NDC implementation is likely to be orders of magnitude larger than funds available from bilateral and multilateral sources. For some sectors, such as forestry and land-use, this could leave 'NDC ambitions ... in a precarious position, unless more diversified options are pursued to reach climate goals' (Kissinger et al. 2019). In addition, there is a need for fiscal policy reform in developing countries to ensure international climate finance flows are not undercut by public and private finance supporting unsustainable activities (Kissinger et al. 2019). During the 2018 Katowice conference, UNFCCC parties
- unsustainable activities (Kissinger et al. 2019). During the 2018 Katowice conference, UNFCCC parties
 agreed to conduct an assessment of developing countries financial needs and priorities and requested
- the Standing Committee on Finance to produce a '2020 Needs Report' for presentation at COP26 in
- 29 2021 (UNFCCC 2019g).

30 14.3.2.9 Technology development and transfer

Technology development and transfer is the second of three means of implementation and support specified under the Paris Agreement to accomplish its objectives relating to mitigation (and adaptation)

- 33 (UNFCCC 2015a, Art. 14.1). This sub-section discusses the provision made in the Paris Agreement for
- 34 international cooperation on technology development and transfer. Section 14.4.2 below considers
- 35 broader cooperative efforts on technology development and transfer under the UNFCCC.
- 36 The importance of technology as a means of implementation for climate mitigation obligations under
- the Paris Agreement is evident from parties' NDCs. Of the 168 NDCs submitted as of June 2019, 109
- 38 were expressed as conditional upon support for technology development and transfer, with 70 parties
- requesting technological support for both mitigation and adaptation, and 37 parties for mitigation only
 (Pauw et al. 2020). Thirty-eight LDCs (79%) and 29 SIDS made their NDCs conditional on technology
- 40 (Pauw et al. 2020). Thirty-eight LDCs (79%) and 29 SIDS made their NDCs
 41 transfer, as did 50 middle-income countries (Pauw et al. 2020).
- 42 While technology is seen as a key means of implementation and support for Paris Agreement 43 commitments, the issue of technology development and the transfer of environmentally sound 44 technologies for climate mitigation was heavily contested between developed and developing countries
- 45 in the Paris negotiations, and these differences are likely to persist as the Paris Agreement is
- 46 implemented (Oh 2019). Contestations arising in negotiations for the Paris Rulebook include those over
- 47 the meaning of technological innovation, which actors should be supported, and how support should be
- 48 provided by the UNFCCC (Oh 2020a).

1 Article 10 of the Paris Agreement articulates a shared 'long-term vision on the importance of fully 2 realising technology development and transfer in order to improve resilience to climate change and to 3 reduce greenhouse gas emissions' (UNFCCC, 2015, Art. 10.1). All parties are required 'to strengthen 4 cooperative action on technology development and transfer' (UNFCCC, 2015, Art. 10.2). In addition, support, including financial support, 'shall be provided' to developing country parties for the 5 implementation of Article 10, 'including for strengthening cooperative action on technology 6 7 development and transfer at different stages of the technology cycle, with a view to achieving a balance 8 between support for mitigation and adaptation' (UNFCCC, 2015, Art. 10.6). Available information on 9 efforts related to support on technology development and transfer for developing country parties is also 10 one of the matters to be taken into account in the global stocktake (UNFCCC, 2015, Art. 10.6) (see 11 Section 14.3.2.5 above).

12 The Paris Agreement emphasises that efforts to accelerate, encourage and enable innovation are 'critical 13 for an effective long-term global response to climate change and promoting economic growth and 14 sustainable development' and urges that they be supported, as appropriate, by the Technology 15 Mechanism and Financial Mechanism of the UNFCCC (UNFCCC, 2015, Art. 10.5). This support 16 should be directed to developing country parties 'for collaborative approaches to research and development, and facilitating access to technology, in particular for early stages of the technology cycle' 17 18 (UNFCCC, 2015, Art. 10.5). Inadequate support for R&D has been identified in previous studies of 19 technology interventions by international institutions as a key technology innovation gap that might be 20 addressed by the Technology Mechanism (Coninck and Puig 2015).

21 In order to support parties' cooperative action, the Technology Mechanism, established in 2010 under

the UNFCCC (see further Section 14.4.2 below), will serve the Paris Agreement, subject to guidance

23 of a new 'technology framework' (UNFCCC, 2015, Art. 10.4). The latter was strongly advocated by

24 the African group in the negotiations for the Paris Agreement (Oh 2020a), and was adopted in 2018 as

- 25 part of the Paris Rulebook, with implementation entrusted to the component bodies of the Technology
- 26 Mechanism. The guiding principles of the framework are coherence, inclusiveness, a results-oriented 27 approach, a transformational approach and transparency. Its 'key themes' include innovation, implementation, enabling environment and capacity-building, collaboration and stakeholder 28 29 engagement, and support (UNFCCC 2019j, Annex). A number of 'actions and activities' are elaborated 30 for each thematic area. These include: enhancing engagement and collaboration with relevant 31 stakeholders, including local communities and authorities, national planners, the private sector and civil 32 society organisations, in the planning and implementation of Technology Mechanism activities; 33 facilitating parties undertaking, updating and implementing technology needs assessments (TNAs) and
- aligning these with NDCs; and enhancing the collaboration of the Technology Mechanism with the
- Financial Mechanism for enhanced support for technology development and transfer. As regards TNAs,
- 36 while some developing countries have already used the results of their TNA process in NDC
- 37 development, other countries might benefit from following the TNA process, including its stakeholder
- 38 involvement, and multi-criteria decision analysis methodology, to strengthen their NDCs (Hofman and
- 39 van der Gaast 2019).

40 14.3.2.10 Capacity-building

Together with finance, and technology development and transfer, capacity-building is the third 'means of implementation and support' specified under the Paris Agreement (see UNFCCC 2015a, Art. 14.1). Capacity-building has primarily been implemented through partnerships, collaboration and different cooperative activities, inside and outside the UNFCCC. This sub-section discusses the provision made in the Paris Agreement for international cooperation on capacity-building. Section 14.4.3 below considers broader cooperative efforts on capacity-building within the UNFCCC.

In its annual synthesis report for 2018, the UNFCCC secretariat stressed the importance of capacity-building for the implementation of the Paris Agreement and NDCs, with a focus on measures already

1 in place, regional and cooperative activities, and capacity-building needs for strengthening NDCs 2 (UNFCCC 2019h). Of the 168 NDCs submitted as of June 2019, capacity-building was the most 3 frequently requested type of support (113 of 136 conditional NDCs) (Pauw et al. 2020). The focus of 4 capacity-building activities is on enabling developing countries to take effective climate change action, 5 given that many developing countries continue to face significant capacity challenges, undermining their ability to effectively or fully carry out the climate actions they intend to pursue (Dagnet et al. 6 7 2016). Content analysis of NDCs shows that capacity-building for adaptation is prioritised over 8 mitigation for developing countries, with the element of capacity-building most indicated in NDCs 9 being research and technology (Khan et al. 2020). In addition, developing countries' needs for 10 education, training and awareness-raising for climate change mitigation and adaptation feature 11 prominently in NDCs, particularly those of LDCs (Khan et al. 2020). Differences are evident though 12 between capacity-building needs expressed in the NDCs of LDCs (noting that Khan et al's review was 13 limited to NDCs in English) compared with those of upper-middle income developing countries as 14 categorised by the World Bank; the latter have more focus on mitigation with an emphasis on 15 technology development and transfer (Khan et al. 2020).

16 The Paris Agreement urges all parties to cooperate to enhance the capacity of developing countries to

17 implement the Agreement (UNFCCC 2015a, Art. 11.3), with a particular focus on LDCs and SIDs

18 (UNFCCC 2015a, Art. 11.1). Developed country parties are specifically urged to enhance support for 19 capacity-building actions in developing country Parties (UNFCCC 2015a, Art. 11.3). Article 12 of the

capacity-building actions in developing country Parties (UNFCCC 2015a, Art. 11.3). Article 12 of the
 Paris Agreement addresses cooperative measures to enhance climate change education, training, public

awareness, public participation and public access to information, which can also be seen as elements of

22 capacity-building (Khan et al. 2020).

23 Under the Paris Agreement, capacity-building can take a range of forms, including: facilitating 24 technology development, dissemination and deployment; access to climate finance; education, training 25 and public awareness; and the transparent, timely and accurate communication of information 26 (UNFCCC 2015a, Art. 11.1). Principles guiding capacity-building support are that it should be: country-27 driven; based on and responsive to national needs; fostering country ownership of parties at multiple levels; guided by lessons learned; and an effective, iterative process that is participatory, cross-cutting 28 29 and gender-responsive (UNFCCC 2015a, Art. 11.2). Parties undertaking capacity-building for 30 developing country parties must 'regularly communicate on these actions or measures.' Developing 31 countries parties have a soft requirement ('should') to communicate progress made on implementing 32 capacity-building plans, policies, actions or measures to implement the Paris Agreement (UNFCCC 33 2015a, Art. 11.4).

34 Article 11.5 provides that capacity-building activities 'shall be enhanced through appropriate institutional arrangements to support the implementation of this Agreement, including the appropriate 35 institutional arrangements established under the Convention that serve this Agreement'. The COP 36 37 decision accompanying the Paris Agreement established the Paris Committee on Capacity-building, 38 with the aim to 'address gaps and needs, both current and emerging, in implementing capacity-building 39 in developing country Parties and further enhancing capacity-building efforts, including with regard to 40 coherence and coordination in capacity-building activities under the Convention' (UNFCCC 2016, 41 para. 71). The activities of the Committee are discussed further in Section 14.4.3 below. The relevant 42 COP decision also established the Capacity Building Initiative for Transparency (UNFCCC 2016, para. 43 84), which is managed by the GEF and designed to support developing country parties in meeting the reporting and transparency requirements under Article 13 of the Paris Agreement (Khan et al. 2018). 44

Studies on past capacity-building support for climate mitigation offer some lessons for ensuring
 effectiveness of arrangements under the Paris Agreement. For example, Umemiya et al (2020) suggest
 the need for a common monitoring system at the global level, and evaluation research at the project

48 level to achieve more effective capacity building support (Umemiya et al. 2020). Khan et al (2020)

articulate 'four key pillars' of a sustainable capacity-building system for implementation of NDCs in developing countries: universities in developing countries as institutional hubs; strengthened civil society networks and partnerships; long-term programmatic finance support; and consideration of a capacity-building mechanism under the UNFCCC – paralleling the Technology Mechanism – to marshal, coordinate and monitor capacity-building activities and resources (Khan et al. 2020).

6 *14.3.2.11 Implementation and compliance*

7 The Paris Agreement establishes a mechanism to facilitate implementation and promote compliance 8 under Article 15. This mechanism is to operate in a transparent, non-adversarial and non-punitive 9 manner (Voigt 2016; Campbell-Duruflé 2018b; Oberthür and Northrop 2018) that distinguishes it from 10 the more stringent compliance procedures of the Kyoto Protocol's Enforcement branch. The Paris 11 Rulebook elaborated the modalities and procedures for the implementation and compliance mechanism, specifying the nature and composition of the compliance committee, the situations triggering its 12 13 procedures, and the facilitative measures it can apply, which include a 'finding of fact' in limited 14 situations, dialogue, assistance and recommendations (UNFCCC 2019b). The compliance committee is 15 focused on ensuring compliance with a core set of binding procedural obligations (UNFCCC 2019b, 16 Annex, para 22). This compliance committee, characterised as 'one of a kind' and an 'an important 17 cornerstone' of the Agreement's legitimacy, effectiveness and longevity (Zihua, Voigt, & Werksman, 18 2019), is designed to facilitate compliance rather than penalise non-compliance.

19

20 **Box 14.1 Key features of the Paris Agreement relevant to mitigation**.

The Paris Agreement's overall aim is to strengthen the global response to the threat of climate change, in the context of sustainable development and efforts to eradicate poverty. This aim is explicitly linked to enhancing implementation of the UNFCCC, including its objective in Article 2 of stabilising greenhouse gas emissions at a level that would 'prevent dangerous anthropogenic interference with the climate system'. The Agreement sets three goals:

- *Temperature*: holding the global average temperature increase to well below 2°C above preindustrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels.
- 29
 2. Adaptation and climate resilience: increasing the ability to adapt to the adverse impacts of climate
 30 change and foster climate resilience and low greenhouse gas emissions development, in a manner
 31 that does not threaten food production.
- 32 3. *Finance*: making finance flows consistent with a pathway towards low greenhouse gas emissions
 33 and climate-resilient development.

34 In order to achieve the long-term temperature goal, parties aim to reach global peaking of emissions as 35 soon as possible, recognising that peaking will take longer for developing countries, and then to 36 undertake rapid reductions in accordance with the best available science. This is designed to reach 37 global net zero GHG emissions in the second half of the century, with the share of emissions reductions effort borne by different parties to be determined on the basis of equity and in the context of sustainable 38 39 development and efforts to eradicate poverty. In addition, implementation of the Agreement as a whole 40 is expected to reflect equity and parties' differentiated responsibilities and respective capabilities, in 41 light of different national circumstances.

The core mitigation commitments of parties under the Paris Agreement centre on preparing,
communicating and maintaining successive 'nationally determined contributions' (NDCs), the contents
of which countries determine for themselves. All parties must have NDCs and pursue domestic

mitigation measures with the aim of achieving the objectives of their NDCs, but parties NDCs are
 neither subject to a review of adequacy nor to legally binding obligations of result. The compliance
 mechanism is correspondingly facilitative.

The Paris Agreement establishes a global goal on adaptation, and recognises the importance of averting,
minimising and addressing loss and damage that arises where mitigation and adaptation efforts are
insufficient.

7 The efficacy of the Paris Agreement in achieving its goals is therefore dependent upon three additional8 elements:

- 9
 1. Voluntary ratcheting of NDCs: Parties must submit a new NDC every 5 years that is in line with
 10
 11
 12
 12
 13
 14
 15
 16
 17
 18
 19
 19
 10
 10
 10
 11
 12
 12
 12
 12
 12
 13
 14
 15
 16
 17
 18
 19
 19
 10
 10
 11
 12
 12
 12
 14
 15
 16
 17
 18
 19
 19
 10
 10
 10
 11
 12
 12
 12
 14
 15
 16
 17
 18
 19
 19
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 11
 12
 12
 12
 14
 15
 16
 17
 18
 18
 19
 19
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 <li
- *Enhanced transparency framework*: Parties' actions to implement their NDCs are subject to international transparency and review requirements, which will generate information that may also be used by domestic constituencies and peers to pressure governments to increase the ambition of their NDCs.
- 17 3. Collective global stocktake: The global stocktake undertaken every 5 years will review the collective progress of countries in achieving the Paris Agreement's objectives, in light of equity and best available science. The outcome of the global stocktake informs parties in updating and enhancing their subsequent NDCs.

These international processes establish an iterative ambition cycle for the preparation, communication,
 implementation and review of NDCs.

For developing countries, the Paris Agreement recognises that increasing mitigation ambition and realising long-term low-emissions development pathways depends upon the provision of financial resources, capacity building, and technology development and transfer. The Paris Agreement also permits voluntary cooperation between parties in the implementation of their NDCs to allow for higher ambition in their mitigation and adaptation actions and to promote sustainable development and environmental integrity.

29

30 14.3.3 Assessment of the Paris Agreement

This section assesses the Paris Agreement on the criteria identified in Section 14.2.2 (above). Given the comparatively recent conclusion of the Paris Agreement, evidence is still being gathered to assess the effectiveness of the Paris Agreement in practice, in particular, since its long-term effectiveness hinges on states communicating more ambitious national contributions in successive cycles over time. Assessments of the Paris Agreement on paper are necessarily speculative and limited by the lack of credible counterfactuals. Despite these limitations, numerous assessments exist of the potential for international cooperation under the Paris Agreement to advance climate change mitigation.

These assessments are mixed and reflect uncertainty over the outcomes the Paris Agreement will achieve (Keohane and Oppenheimer 2016; Young 2016; Christoff 2016; Clémençon 2016; Dimitrov et al. 2019). There is a divide between studies that reach a pessimistic conclusion and those that take an optimistic approach. Pessimistic studies base this assessment on factors such as: US non-cooperation under the Trump administration and the resulting gap in mitigation, finance and governance; a lack of 1 the temperature goal; extensive use of soft law provisions; limited incentives to avoid free-riding; and

the Agreement's weak enforcement provisions (Kemp 2018; Bang et al. 2016; Thompson 2017; Chai
et al. 2017; Lawrence and Wong 2017; Spash 2016; Barrett 2018; Tulkens 2016; Dimitrov et al. 2019).

et al. 2017; Lawrence and Wong 2017; Spash 2016; Barrett 2018; Tulkens 2016; Dimitrov et al. 2019).
Optimistic studies emphasise factors such as: the breadth of participation enabled by self-differentiated

5 NDCs; the 'logic' of domestic climate policies driving greater national ambition; the multiplicity of

- 6 actors engaged by the Paris Agreement's facilitative architecture; the falling cost of low-carbon
- 7 technologies; provision for financial, technology and capacity-building support to developing country
- 8 parties; possibilities for voluntary cooperation on mitigation under Article 6; and the potential for 9 progressive ratcheting up of parties' pledges over time fostered by transparency of reporting and
- 9 progressive ratcheting up of parties' pledges over time fostered by transparency of reporting and 10 international scrutiny of national justifications of the 'fairness' of contributions (Chan 2016a; Victor
- 11 2016; Caparrós 2016; Urpelainen and Van de Graaf 2018; Morgan and Northrop 2017; Falkner 2016b;

12 Tørstad 2020). Turning to the assessment criteria articulated in this chapter, the following preliminary

13 assessments of the Paris Agreement can be made.

In relation to the criterion of environmental effectiveness, the Paris Agreement potentially exceeds the 14 15 Kyoto Protocol in terms of coverage of GHGs and participation of states in mitigation actions. In terms 16 of coverage of GHGs, the Kyoto Protocol limits its coverage to a defined basket of gases identified in 17 its Annex A (Carbon dioxide (CO₂), Methane (CH₄), Nitrous oxide (N₂O), Hydrofluorocarbons (HFCs), Perfluorocarbons (PFCs) and Sulphur hexafluoride (SF₆)). The Paris Agreement does not specify the 18 19 coverage of gases, thus parties may cover the full spectrum of GHGs in their NDCs (and conversely 20 choose to exclude important mitigation sectors). Moreover, the Paris Agreement makes express 21 reference to Parties taking action to conserve and enhance 'sinks and reservoirs of greenhouse gases' 22 (Article 5). This allows for coverage of AFOLU emissions, both CO₂ and emissions of other Kyoto 23 Annex A gases. A few countries, particularly LDCs, include quantified non-CO₂ emissions reductions 24 from the agricultural sector in their NDCs, and many others include agriculture in their economy-wide 25 targets (Richards et al. 2018). Some studies find that agricultural development pathways with mitigation 26 co-benefits can deliver 21–40% of needed mitigation for the 'well below 2°C' limit, thus necessitating 27 'transformative technical and policy options' (Wollenberg et al. 2016). Other studies indicate that broader 'natural climate solutions', including forests, can provide 37% of the cost-effective CO₂ 28 29 mitigation needed through 2030 for a more than 66% chance of holding warming to below 2°C 30 (Griscom et al. 2017). As the estimates in Table 4.3 (Chapter 4) demonstrate, communicated 31 unconditional NDCs, if achieved, lead to a reduction of about 7% of world emissions by 2030 in relation 32 to the Kyoto GHGs, and conditional NDCs increase this reduction to about 12%. According to a survey 33 of existing studies (den Elzen et al. 2016), six G20 countries are on track to meet their unconditional 34 NDC, two need 'low' additional efforts and five need 'high' additional efforts to meet their targets for 35 2030, and there is not sufficient information for the remaining countries. There is also insufficient 36 information to determine whether countries are on track to meet their conditional targets. However, the 37 experience with the Cancun pledges has been positive, as countries will collectively meet their pledges 38 by 2020, and even individual pledges will be met in most cases, although arguably helped by the 39 COVID-19 pandemic (United Nations Environment Programme 2020). In any case, the main challenge 40 that remains is to close the emissions gap, the difference between what has been pledged and what is 41 needed to achieve by 2030 to reach a 1.5° C compatible path (respectively 2° C) (Roelfsema et al. 2020; 42 United Nations Environment Programme 2020, see also Cross-chapter Box 3 in Chapter 4). In terms 43 of participation of states in mitigation actions, the Paris Agreement performs better than the Kyoto 44 Protocol. The latter contains mitigation targets only for developed countries listed in its Annex B, while 45 the Paris Agreement extends binding procedural obligations in relation to mitigation contributions to 46 all states. 47

47 In relation to the criterion of *transformative potential*, there is, as yet, limited empirical data or 48 theoretical analysis on which to assess the Paris Agreement's transformative potential. The linking of 49 the UNFCCC financial apparatus, including the GCF, to the Paris Agreement, and the provisions on

1 technology support and capacity-building, provide potential avenues for promoting increased 2 investment flows into low-carbon technologies and development pathways (Labordena et al. 2017). 3 However, the extent of the 'investment signal' sent by the Agreement to business is unclear (Kemp 4 2018), and it is also unclear to what extent the Paris Agreement is fostering investment in break-through 5 technologies. US non-cooperation from 2017 to 2020 posed a significant threat to adequate investment 6 flows through the GCF (Urpelainen and Van de Graaf 2018; Chai et al. 2017). The IPCC's 1.5°C report 7 concluded that pathways limiting global warming to 1.5°C would require systems transitions that are 8 'unprecedented in terms of scale' (IPCC 2018b). There is limited evidence to suggest that this is 9 underway. Victor et al. (Victor et al. 2019) argue that international cooperation that enhances transformative potential needs to operate at the sectoral level, as the barriers to transformation are highly 10 11 specific to each sector (Labordena et al. 2017). The Paris Agreement's broad consensus around a clear 12 level of ambition sends a strong signal on what is needed in each sector, but on its own will do little 13 unless bolstered with sectoral-specific action (Victor et al. 2019). Similarly, Kern and Rogge (Kern and 14 Rogge 2016) argue that the Paris Agreement's global commitment towards complete decarbonisation 15 may play a critical role in accelerating underlying system transitions, by sending a strong signal as to the actions needed by national governments and other international support. Hence, while the Paris 16 17 Agreement may fail to directly support system transformations, its signalling function is stronger than

18 that of Kyoto, in particular since, unlike Kyoto, it expects mitigation measures from all countries.

19 In relation to the criterion of *distributive outcomes*, the Paris Agreement performs well in some respects 20 but worse in others, and its performance relative to the Kyoto Protocol is lower in respect of some 21 indicators such as industrialised country leadership, and differentiation in favour of developing 22 countries. The Kyoto Protocol implemented a multilaterally agreed burden sharing arrangement set out 23 in the UNFCCC and reflected in Annex-based differentiation in mitigation obligations, while the Paris 24 Agreement relies on NDCs, accompanied by self-assessments of the fairness of these contributions, 25 some of which do not accord with equitable principles of international environmental law. At present, mechanisms in the Paris Agreement for promoting equitable burden-sharing and evaluating the fairness 26 27 of parties' contributions are undefined, although numerous proposals have been developed in the 28 literature (Sheriff 2019; Herrala and Goel 2016; Alcaraz et al. 2019; Robiou du Pont et al. 2017; Ritchie 29 and Reay 2017) (discussed in Section 14.3.2.3, above). In relation to other indicators such as the 30 provision of support, the distributive outcomes of the Paris Agreement are heavily dependent on the 31 availability of support through mechanisms such as the GCF to meet the mitigation and adaptation 32 financing needs of developing countries (Chan et al. 2018; Antimiani et al. 2017). This is particularly 33 important given that the implementation of the emissions reduction objectives stated in the NDCs 34 implies trade-offs with poverty reduction efforts needed to achieve SDGs (Campagnolo and Davide 35 2019). In relation to the promotion of co-benefits the Paris Agreement has enhanced mechanisms for 36 promoting co-benefits (e.g. for biodiversity conservation through the endorsement of REDD+) and 37 linkages to sustainable development (e.g. through the SDM). Finally, the Paris Agreement also endorses 38 and incorporates human rights perspectives, creating a hook for further elaboration of procedural and 39 substantive human rights in relation to climate impacts, and response measures, in the regime.

40 On the criterion of economic performance, the Paris Agreement's performance is potentially enhanced 41 by the capacity for parties to link mitigation policies, therefore improving aggregate cost-effectiveness. 42 Voluntary cooperation under Article 6 of the Paris Agreement could facilitate such linkage of mitigation 43 policies (Chan et al. 2018). A combination of common accounting rules and the absence of restrictive 44 criteria and conditions on the use of ITMOs could accelerate linkage and increase the latitude of parties 45 to scale up the ambition of their NDCs. However, significant question marks remain over how the 46 environmental integrity of traded emissions reductions can be ensured (Mehling 2018). The ability of 47 Article 6 to contribute to the goal of the Paris Agreement will depend on the extent to which the rules 48 ensure environmental integrity and avoid double counting, while utilising the full potential of 49 cooperative efforts (Schneider et al. 2019; Michaelowa et al. 2019). Employing a synthetic control group design, Almer and Winkler (Almer and Winkler 2017) demonstrate that the Kyoto Protocol had
 no discernible effect on the emission levels of countries with emission-limiting obligations.

3 In relation to the criterion of *institutional strength*, the performance of the Paris Agreement is mixed.

4 The Paris Agreement has broad participation in relation to coverage of mitigation-related commitments

5 which compares favourably with the Kyoto Protocol. The Paris Agreement has 189 parties thus far, 188

6 of whom have submitted first NDCs, and three of whom have submitted their second NDCs. The

7 durability and future ambition of NDCs was temporarily threatened by the US withdrawal (Chan et al.

8 2018; Pickering et al. 2018), and it remains uncertain how effectively momentum can be rebuilt

9 following US reengagement with the Paris Agreement under the Biden administration. In addition, the

trade-off for securing broad participation in the Paris Agreement was greater discretion for parties, vagueness of obligations and a weak compliance system (Keohane and Oppenheimer 2016), elements

12 that reduce institutional strength.

13 The Paris Agreement's institutional strength in terms of its signalling and guidance function is, 14 however, arguably high. The Paris Agreement has the potential to interact with complementary 15 approaches to climate governance emerging beyond it (Held and Roger 2018). It may also be used by publics - organised and mobilised in many countries and transnationally - as a point of leverage in 16 17 domestic politics to encourage countries to take costly mitigation actions (Keohane and Oppenheimer 18 2016). More broadly, the Paris Agreement's architecture provides flexibility for decentralised forms of 19 governance (Victor 2016; Jordan et al. 2015) (see further Section 14.5 below). The Agreement has 20 served a catalytic and facilitative role in enabling and facilitating climate action from non-state and sub-21 state actors (Hale 2016; Chan et al. 2016, 2015; Kuyper et al. 2018b; Bäckstrand et al. 2017). Such 22 action could potentially 'bridge' the ambition gap created by insufficient NDCs from parties (Hsu et al. 23 2019b). The 2018 UNEP Gap Report estimates that if 'cooperative initiatives are scaled up to their 24 fullest potential', the impact of non-state and sub-state actors could be up to 15-23 GtCO₂eq yr⁻¹ by 25 2030 compared to current policy, which could bridge the gap. However, at present such a contribution 26 is limited (UN Environment Programme 2018; Michaelowa and Michaelowa 2017). Non-state actors 27 are also playing a role in enhancing the ambition of individual NDCs by challenging their adequacy in 28 national courts (see Chapter 13 and Section 14.5.3 below).

29 The Paris Agreement's institutional strength in terms of 'rules and standards to facilitate collective 30 action' is disputed given the current lack of clear reporting requirements and comparable information 31 in NDCs (Mayer 2019; Pauw et al. 2018; Zihua et al. 2019; Peters et al. 2017), and the extent to which 32 its language, as well as that of the Rulebook, strikes a balance in favour of discretion over 33 prescriptiveness (Rajamani and Bodansky 2019). Similarly, in terms of 'mechanisms to enhance 34 transparency and accountability', although detailed rules relating to transparency have been developed under the Paris Rulebook, these rules permit parties considerable self-determination in the extent and 35 36 manner of application (Rajamani and Bodansky 2019), and may not lead to further ambition (Weikmans 37 et al. 2020). Further the Paris Agreement's compliance committee is facilitative and designed to ensure 38 compliance with the procedural obligations in the Agreement, rather than with the NDCs themselves, 39 which are not subject to obligations of result. The Paris Agreement does, however, seek to support the 40 building of transparency-related capacity of developing countries, potentially triggering institutional 41 capacity-building at the national, sub-national and sectoral level (see 14.3.2.7).

Ultimately, the overall effectiveness of the Paris Agreement depends on its ability to lead to ratcheting up of collective climate action to meet the long-term global temperature goal (Bang et al. 2016; Christoff 2016; Dimitrov et al. 2019; Gupta and van Asselt 2019; Young 2016). The design of the Paris Agreement, with 'nationally determined' contributions at its centre, countenances an initial shortfall in collective ambition in relation to the long-term global temperature goal on the understanding and expectation that Parties will enhance the ambition of their NDCs over time (Article 4). This is essential given the current shortfall in ambition. The pathways reflecting current NDCs, according to various

1 estimates, imply global warming in the range of 3°C by 2100 (UN Environment Programme 2018; 2 UNFCCC 2016b). NDCs will need to be substantially scaled up if the temperature goal of the Paris 3 Agreement is to be met (Rogelj et al. 2016, 2018; Höhne et al. 2017; UN Environment Programme 4 2019; United Nations Environment Programme 2020). The Paris Agreement's 'ambition cycle' is 5 designed to trigger such enhanced ambition over time. Some studies find that like-minded climate 6 mitigation clubs can deliver substantial emission reductions (Hovi et al. 2017) and are reasonably stable 7 despite the departure of a major emitter such as the United States (Sprinz et al. 2018), other studies find 8 that conditional commitments in the context of a pledge and review mechanism are unlikely to 9 substantially increase countries' contributions to emissions reductions (Helland et al. 2017), and hence 10 need to be complemented by the adoption of instruments designed differently from the Paris Agreement 11 (Barrett and Dannenberg 2016). In any case, high (but not perfect) levels of mean compliance rates with 12 the Paris Agreement have to be assumed for reaching the 'well below 2°C' temperature goal(Sælen 13 2020; Håkon Sælen, Hovi, Jon, Detlef Sprinz 2020). This is by no means assured.

14 In conclusion, it remains to be seen whether the Paris Agreement-which represents a fundamental 15 shift in architecture from the Kyoto Protocol-will deliver the collective ambition necessary to meet 16 the temperature goal. While the Paris Agreement does not contain strong and stringent obligations of 17 result for major emitters, backed by a demanding compliance system, it establishes binding procedural 18 obligations, lays out a range of normative expectations, and creates mechanisms for regular review, 19 stock taking, and revision of NDCs. In combination with complementary approaches to climate 20 governance, engagement of a wide range of non-state and sub-state actors, and domestic enforcement 21 mechanisms, these have the potential to deliver the necessary collective ambition. Whether it will do

so, remains to be seen.

14.4 Supplementary means and mechanisms of implementation

As discussed above, the Paris Agreement sets in place a new framework for international climate policy. Whereas international governance had earlier assumed centre stage, the Paris Agreement recognises the salience of domestic politics in the governance of climate change (Kinley et al. 2020). The new architecture also provides more flexibility for recognising the benefits of working in diverse forms and groups and allows for more decentralised "polycentric" forms of governance (Victor 2016; Jordan et al. 2015). The next two sections address this complementarity between the Paris Agreement and other agreements and institutions.

- 31 The Paris Agreement identifies a number of pathways, or means of implementation, towards 32 accomplishing rapid mitigation and the achieving of its temperature goal: finance; capacity building; 33 technology and innovation; and, cooperative approaches and markets. In this section, we examine each 34 of these means and mechanisms of implementation, and the agreements and institutions lying outside 35 of the UNFCCC that contribute to each. In the following Section, 14.5, we examine the agreements and 36 institutions playing other governance roles: regulating activities in particular sectors; linking climate 37 mitigation with other activities such as adaptation; and, stimulating and coordinating the actions of non-38 state actors at a global scale.
- Figure 14.4 maps out the interlinkages described in the text of the two sections. It is an incomplete list, but illustrates clearly that across multiple types of governance, there are multiple instruments or organisations with activities connected to the different governance roles associated with the Paris Agreement and the UNFCCC more generally.

Туре	Instrument / Organization	Mitigation	Transparency	Sinks	Markets	Finance	Technology	Capacity building
Global treaties	Montreal Protocol CBD UNCCD Minimata Mercury Convention	14.5.1.1				145.1.1		
		14.5.1.1		14521				
				M521				14.6.2.1
		14.5.1.1						_
United Nations Programmes and Specialized Agencies	UN REDD+ programme UNEP	14.6.1.1		14521		14.5.2.1		14.43
		14.5.2.1	- 7		-		S	14.4.3
	UNDP							14.4.3
	UNIDO							1441.2
	UNOSSC				Ş			14.4.1.2
	FAO	CONTRACTOR OF		14521	a contractor			14.4.1.2
	IMO	14.5.2.3			14523		14.5.2.3	
	1222	14.5.2.3	14,5,2,3				14.5.2.9	
Other global	IEA					-	14.5.2.2	
organizations	MDBs			202200		14,5,2,2	14.5.2.2	145.22
		14.4.1.2	14.4.1.2	14.5.4	14.4.4	14.4.1.2		14.4.3
	LRTAP	14.6.1.1						
	MIGA					14.5.2.2	4	
Regional, multi-	PPCA	14.5.2.2				-		
and bilateral agreements	Regional trade agreements	14.5.1.2			14.5.1.3		14.5.1.3	
	Bilateral development programs				14.4.4	144.1.1	1641.1	14.4.3
	International science programmes				A 100 100 100 100	2009/04/Minut	14.4.2	AND SHOULD BE
	South South Cooperation			_		14.5.1.4	14.5.1.4	14.4.5
	Global city networks Environmental NGOs Climate social movements	1455		14.5.5		14.5.5	14.5.5	14.5.5
Non-state trans-		14.5.2.2	14.5.4	-		14.5.0		10000
national actors		14.5.3	ALC: NO	14.8.3		and the second		
	Business partnerships	14.5.4	14.5.4			14.5.4	14.5.4	14.5.4

1 2

3

4

Figure 14.4 Climate governance beyond the UNFCCC. The figure shows those relationships, marked in blue, between international governance activities, described in the text, that relate to activities of the UNFCCC and Paris Agreement.

5 14.4.1 Finance

6 International cooperation on climate finance is underpinned by Article 11.5 of the UNFCCC, which 7 states that the developed country Parties may also provide, and developing country Parties avail 8 themselves, of financial resources related to the implementation of the Convention through bilateral, 9 regional and other multilateral channels (UNFCCC 1992). This was further amplified through the commitment by developed countries in the Copenhagen Accord and the Cancun Agreements to mobilise 10 jointly \$100 billion yr⁻¹ by 2020 to meet the needs of the developing countries (UNFCCC 2010). This 11 12 commitment was made in the context of meaningful mitigation action and transparency of 13 implementation. As mentioned earlier in Section 14.3.2.8, in the Paris Agreement the binding 14 obligation on developed country parties to provide financial resources to assist developing country 15 parties applies to both mitigation and adaptation (UNFCCC 2015a, Art. 9.1). In 2018, climate finance 16 provided and mobilised by developed countries was in the order of \$78.9 billion, coming from different 17 channels including bilateral and multilateral channels, and also through mobilisation of the private 18 sector attributable to these channels (OECD 2020; UNFCCC 2018). A majority (70%) of these flows 19 targeted mitigation action exclusively (see Chapter 15). These estimates, however, have been criticised 20 on various grounds, including on whether or not they represent climate specific net assistance only; that 21 in grant equivalence terms the order of magnitude is lower; and the questionable extent of transparency 22 of information on mobilised private finance, as well as the direction of these flows (Carty et al. 2020). 23 On balance, such assessments need to be viewed in the context of the original commitment, the source 24 of the data and the evolving guidance, and modalities and procedures from the UNFCCC processes.

25 The multiplicity of actors providing financial support has resulted in a fragmented international climate

finance architecture as indicated in Section 14.3.2.8. It is also seen as a system which allows for speed,

27 flexibility and innovation (Pickering et al. 2017). However, the system is not yet delivering adequate

- 28 flows given the needs of developing countries (see Section 14.3.2.8). An early indication of these needs
- 29 is provided in the conditional NDCs. Of the 136 conditional NDCs submitted by June 2019, 110 are

1 conditioned on financing support for mitigation and 79 for mitigation support for adaptation (Pauw et

al. 2020). While the Paris Agreement did not explicitly countenance conditionality for actions in
developing countries, it is generally understood that the ambition and effectiveness of climate ambition

4 in these countries is dependent on financial support (Voigt and Ferreira 2016b).

5 14.4.1.1 Bilateral finance

- 6 Both the Paris Agreement and the SDGs reinforce the need to forge strong linkages between climate
- 7 and development by referring to the need to address the twin challenges of development and climate
- 8 change (Fay et al. 2015). This in turn has highlighted the urgent need for greater attention to the
- 9 relationship between development assistance and finance, and climate change (Steele 2015). The
- 10 literature on how these programs promote international cooperation is still limited.
- 11 The UNFCCC website cites some 20 bilateral development agencies providing support to climate 12 change programs in developing countries (UNFCCC 2020a). These agencies provide a mix of
- 13 development cooperation, policy advice and support and financing for climate change projects. Since
- 14 the year 2000, the OECD Development Assistance Committee has been tracking trends in climate-
- 15 related development finance and assistance. The amount of bilateral development finance allocated to
- climate change has increased exponentially since 2000 (OECD 2019a). Reportedly in 2018, it was \$32.1
 billion directly and \$2.1 billion through export credit agencies. Further, another \$29.6 billion of the
- billion directly and \$2.1 billion through export credit agencies. Further, another \$29.6 billion of the climate finance provided through multilateral channels is attributable to the developed countries (OECD)
- 2020). The OECD methodology has been critiqued as it uses Rio markers the limitations of which could
- 20 lead to erroneous reporting and assessment of finance provided as well as the mitigation outcome
- 21 (Michaelowa and Michaelowa 2011b; Weikmans and Roberts 2019). This issue is to be addressed
- through the modalities, procedures and guidance under the Enhanced Transparency Framework of the
- 23 Paris Agreement (see Section 14.3.2.4), through the mandate to Subsidiary Body for Scientific and
- 24 Technological Advice (SBSTA) to develop Common Tabular Formats (CTFs) for the reporting of
- 25 information on, *inter alia*, financial support provided, mobilised and received (UNFCCC 2019i). Until
- then, the Biennial Assessment Report prepared by the Standing Committee on Finance provides the
- 27 best available information on financial support.

28 14.4.1.2 Multilateral finance

- 29 Multilateral Development Banks (MDBs) play a key role in international cooperation at the global,
- 30 regional and sub-regional level because of their growing mandates and proximity to policymakers
- 31 (Prizzon and Engen 2018).¹ For many, climate change is a growing priority and for some, because of
- 32 the needs of the regions, or sub-regions in which they operate, climate change is embedded in many of
- 33 their operations.
- In 2015, twenty representative MDBs and members of the International Development Finance Club unveiled five voluntary principles to mainstream climate action in their investments, including

FOOTNOTE ¹ Six global development banks that include European Investment Bank (EIB), international Fund for Agricultural Development (IFAD), International Investment Bank (IIB), New Development Bank (NDB), OPEC Fund for International Development (OFID), World Bank Group; six regional development banks that include African Development Bank (AfDB), Asian Development Bank (AsDB), Asian Infrastructure Investment Bank (Asian Infrastructure Investment Bank (AIIB), European Bank for Reconstruction and Development (EBRD), Inter American Development Bank (IADB), and Islamic Development Bank (IsDB); and thirteen subregional development banks that include Arab Bank for Economic Development in Africa (BADEA), Arab Fund for Economic and Social Development (AFESD), Black Sea Trade and Development Bank (BSTDB), Caribbean Development Bank (CDB), Central American Bank for Economic Integration (CABEI), Development Bank of the Central African States (BDEAC), Development Bank of Latin America (CAF), East African Development Bank (EADB), Eastern and Southern African Trade and Development Bank (TDB), Economic Cooperation Organization Trade and Development Bank (ETDB), ECOWAS Bank for Investment and Development (EBID), Eurasian Development Bank EDB), West African Development Bank (BOAD).

commitment to climate strategies, managing climate risks, promoting climate smart objectives,
 improving climate performance and accounting for their own actions. The members subscribing to these

3 principles have since grown to 44 in January 2020 (World Bank 2015a; Institute for Climate Economics

4 2017). Arguably, it is only through closer linkages between climate and development that significant

5 inroads can be made in addressing climate change. MDBs can play a major role through the totality of

6 their portfolios (Larsen et al. 2018).

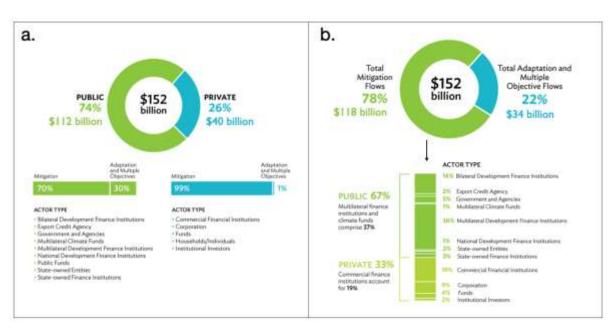
7 The multilateral development banks as a cohort have been collaborating and coordinating in reporting 8 on climate financing since 2012 following a commitment made in 2012 at the Rio +20 summit (MDB 9 2012). This has engendered other forms of collaboration among the MDBs, including: commitments to 10 collectively total at least USD 65 billion annually by 2025 in climate finance, with \$50 billion for low 11 and middle income economies; to mobilise a further \$40 billion annually by 2025 from private sector 12 investors, including through the increased provision of technical assistance, use of guarantees, and other 13 de-risking instruments; and to commit to helping clients deliver on the goals of the Paris Agreement; 14 building a transparency framework on impact of MDBs' activities and enabling clients to move away 15 from fossil fuels (Asian Development Bank 2019). While the share of multilateral development banks 16 in overall climate financing is insignificant, their role in influencing national development banks and 17 local financial institutions, and leveraging and crowding in private investments in financing sustainable 18 infrastructure, is widely recognised (New Climate Economy 2016). However, with this recognition 19 there is also an exhortation to do more to align with the goals of the Paris Agreement, including a comprehensive examination of their portfolios beyond investments that directly support climate action 20 21 to also enabling the long term net zero emissions trajectory (WRI 2018; Cochran and Pauthier 2019). 22 Further, a recent assessment has shown that MDBs perform relatively better in mobilising other public 23 finance than private co-financing (Thwaites 2020). In addition, the banks have launched or are members 24 of significant initiatives such as the Climate and Clean Air Coalition (CCAC) to reduce short lived 25 climate pollutants, the Carbon Pricing Leadership Coalition (CPLC), the Coalition for Climate Resilient 26 Investment (CCRI) and the Coalition of Finance Ministers for climate action. These help to spur action 27 at different levels, from economic analysis, to carbon financing and convenors of finance and 28 development ministers for climate action, with leadership of many of these initiatives led by the World 29 Bank.

30 The multilateral climate funds also have a role in the international climate finance architecture. This 31 includes, as mentioned in Section 14.3.2.8, those established under the UNFCCC's financial 32 mechanism, its operating entity the Global Environment Facility (GEF), which also manages two 33 special funds, the Special Climate Change Fund (SCCF) and the Least Developed Countries Fund 34 (LDCF); the Green Climate Fund (GCF) which in 2015, was given a special role in supporting the 35 Paris Agreement. GCF aims to provide funding at scale, balanced between mitigation and adaptation, 36 in the form of either grants, loans, equity, or guarantees to activities that are aligned with the priorities 37 of the countries compatible with the principle of country ownership (GCF 2011). The Green Climate 38 Fund faces many challenges. While some see the GCF as an opportunity to transform and rationalise 39 what is now a complex and fragmented climate finance architecture with insufficient resources and 40 overlapping remits (Smita, Nakhooda 2014), others see it as an opportunity to address the frequent 41 tensions which arise between mitigation-focused transformation and national priorities of countries. 42 This tension is at the heart of the principle of country ownership and the need for transformational 43 change (Winkler and Dubash 2016). Leveraging private funds and investments by the public sector is 44 another expressed aim of the GCF (Green Climate Fund).

45 The UN system is also supporting climate action through much needed technical assistance and capacity

46 building, which is complementary to the financial flows insofar as it enables countries with relevant

47 tools and methodologies to assess their needs, develop national climate finance roadmaps, establish


48 relevant institutional mechanisms to receive support and track it, enhance readiness to access financing,

- 1 and include climate action across relevant national financial planning and budgeting processes (UN
- 2 2017a). The United Nations Development Program (UNDP) is the largest implementer of climate action
- 3 among the UN Agencies, with others, such as the Food and Agriculture Organisation (FAO), United
- 4 Nations Environment Programme (UNEP), United Nations Industrial Development Organisation
- 5 (UNIDO), United Nations Office for South-South Cooperation (UNOSSC), providing relevant support.
- 6 The current architecture of climate finance is one that is primarily based on north-south, developed-
- 7 developing country dichotomies. The Paris Agreement, however, has clearly recognised the role of
- 8 climate finance flows across developing countries, thereby enhancing the scope of international
- 9 cooperation (Voigt and Ferreira 2016b). Estimates of such flows, though, are not readily available.

10 14.4.1.3 Private sector financing

- There is a growing recognition of the importance of mobilising private sector financing including for climate action (World Bank 2015b; Michaelowa et al. 2020). An early example of the mobilisation of
- the private sector in a cooperative mode for mitigation outcomes is evidenced from the Clean
- 14 Development Mechanism of the Kyoto Protocol and the linking with the European Union's Emissions
- 15 Trading Scheme, both triggered by relevant provisions in the Kyoto Protocol (see Section 14.4.4) and
- 16 lessons learnt from this are relevant for development of market mechanisms in the post Paris Agreement
- 17 period (Michaelowa, A., Shishlov, I.; Brescia 2019). In 2017/2018, public and private climate financing
- 18 was on the order of \$ 574 billion, of which \$ 274 billion originated from the private sector. However,
- as much as 76% of the finance stays in the country of origin (Macquarie et al. 2020). This trend holds
- 20 true also for private finance. Figure 14.5 depicts the international climate finance flows, totalling \$ 152
- 21 billion reported in 2018, of which 26% were private flows. For mitigation financing flow of \$ 118
- 22 billion, the share of private sources is estimated at 33%.

25 Figure 14.5 International Finance Flows. Total international climate financial flows for 2018 26 were \$152 billion. Part a. disaggregates these according to public and private sources, and 27 indicates the breakdown between mitigation and adaptation, as well as multiple actor types, 28 within each source. Part b. disaggregates these according to intended purpose, namely 29 mitigation or adaptation and multiple objectives, and for the mitigation total (\$118 billion) 30 disaggregates these according to source. By comparison, public sector bilateral and multilateral 31 finance in 2017 for fossil fuel development, including gas pipelines, was roughly \$4 billion. 32 Sources: CPI, OECD.

1

2 Foreign direct investments and its greening is seen as a channel for increasing cooperation. An 3 assessment of the greenfield foreign direct investment in different sectors shows the growing share of renewable energy at \$ 92.2 billion (12% of the volume and 38% of the number of projects) (FDI 4 5 Intelligence 2020). However, coal, oil and gas sectors maintain the top spot for capital investments 6 globally. Over the last decade there is growing issuance of green bonds with non-financial private sector 7 issuance gaining ground (Almeida 2020). While it is questionable if green bonds have a significant 8 impact on shifting capital from non-sustainable to sustainable investments, they do incentivise the 9 issuing organisations to enhance their green ambition and have led to an appreciation within capital 10 markets of green frameworks and guidelines and signalling new expectations (Maltais and Nykvist 11 2020). In parallel, institutional investors including pension funds are seeking investments that align with the Paris Agreement (IIGCC 2020). However, the readiness of institutional investors to make this 12 13 transition is arguable (OECD 2019b; Ameli et al. 2020). This evidence suggests that international 14 private financing could play an important role but this potential is yet to be actualised (see Chapter 15).

15 **14.4.2 Science, technology and innovation**

Science, technology and innovation are essential for the design of effective measures to address climate 16 17 change and, more generally, for economic and social development (de Coninck and Sagar 2015a). The 18 OECD finds that single countries alone often cannot provide effective solutions to the global challenges 19 of today, as these cross national borders and affect different actors (OECD 2012). However, the capacity 20 for scientific and technological innovation is not evenly distributed, particularly across the developed 21 and the developing world. For this reason, many countries have introduced strategies and policies to 22 enhance international cooperation in science and technology, and have made this a priority (Chen et al. 23 2019). Partnerships and international cooperation can play a role in establishing domestic innovation 24 systems, which enable more effective science and technology innovation (de Coninck and Sagar 25 2015a,b).

26 International cooperation in science and technology occurs across different levels, with a growing 27 number of international cooperation initiatives aimed at research and collaborative action in technology 28 development. Weart (2012) finds that such global efforts are effective in advancing climate change 29 science due to the international nature of the challenge. Global research programmes and institutions 30 have also provided the scientific basis for major international environmental treaties. For example, the 31 Transboundary Air Pollution Convention and the Montreal Protocol were both informed by scientific 32 assessments based on collaboration and cooperation of scientists across several geographies (Andresen 33 et al. 2000). Furthermore, the Global Energy Assessment (GEA 2012) provided the scientific basis and 34 evidence for the 2030 Agenda for Sustainable Development, in particular SDG7 to ensure access to 35 affordable, reliable and sustainable modern energy for all. The GEA drew on the expertise of scientists 36 from over 60 countries and institutions. Several other platforms exist to provide scientists and 37 policymakers an opportunity for joint research and knowledge sharing, such as The World in 2050, an 38 initiative that brings together scientists from some 40 institutions from around the world to provide the 39 science for SDG and Paris Agreement implementation (TWI2050 2018).

40 Non-state actors are also increasingly collaborating internationally. Such collaborations, referred to as 41 international cooperative initiatives (ICIs), bring together multi-stakeholder groups across industry, 42 communities, and regions, and operate both within and outside the UNFCCC process. While a large 43 number of ICIs exist, Bakhriari (2018) finds that the impact on greenhouse gas reduction of these 44 initiatives is hindered due to a lack of coordination between ICIs, overlap with other activities conducted by the UNFCCC and governments, and a lack of monitoring system to measure impact. Increasing the 45 46 exchange of information between ICIs, enhancing monitoring systems, and increasing collaborative 47 research in science and technology would help address these issues (Boekholt et al. 2009; Bakhtiari 48 2018).

1 At the level of research institutes, there has been a major shift to a more structured and global type of

2 cooperation in research, building on the existing bottom-up, informal and regional (mostly European)

3 cooperation (Georghiou 1998). Wagner et al (2017) found that the number of scientific papers that are

4 co-authored internationally increased from 10% to 25%, and the amount of countries participating in 5 international research grew by 58 countries in the period 1990 to 2015. Although only a portion of these

scientific papers address the issue of climate change specifically, this growth of scientific collaboration

across borders provides a comprehensive view of the conducive environment in which climate science

8 collaboration has grown.

9 However, there are areas in which international cooperation can be strengthened. Both the Paris 10 Agreement and the 2030 Agenda for Sustainable Development call for more creative forms of 11 international cooperation in science that to help bridge the science and policy interface, and provide learning processes and places to deliberate on possible policy pathways across disciplines on a more 12 13 sustainable and long-lasting basis. Scientific assessments, such as the IPCC and IPBES offer this 14 possibility, but the processes need to be enriched for this to happen more effectively (Kowarsch et al. 15 2016) This is especially apparent in literature surrounding scenarios, where researchers are 16 collaborating to produce new families of scenarios that aim to be more comprehensive and inclusive of economic, social and environmental dimensions (Riahi et al. 2017; Ebi et al. 2014). These efforts 17 18 involve researchers and institutions globally, drawing expertise from individuals in both developed and 19 developing countries The IPCC Special Report on Emissions Scenarios (SRES) in 2000, the 20 Representative Concentration Pathways (RCPs) (van Vuuren et al. 2011), and the collaboration on 21 Shared Socioeconomic Pathways (SSPs) (Riahi et al. 2017; O'Neill et al. 2017) all relied on the 22 successful cooperation of scientists across borders.

Rapid advances in technology, major geopolitical changes, shifts in the way research is funded, and 23 24 more pressures for open access will all have significant impacts on international cooperation in science. 25 A report by Elsevier and Ipsos finds that these new developments have the potential, if well managed, 26 to bring positive impacts (Elsevier and IPSOS MORI 2019). Major advances in general purpose 27 technologies, such as digital technology, will have implications across sectors and have already been 28 disruptive in the energy sector (Skea et al. 2019). Big data, artificial intelligence, blockchain, and 29 augmented reality are opening not only new ways of sharing and accessing data and providing new 30 learning tools, but also changing the shape of science and technology (Elsevier and IPSOS MORI 2019). 31 Digital technologies, such as nanotechnologies and nanobiotechnology, genetic engineering, synthetic 32 biology, biometrics, and additive manufacturing, all have the potential to open new frontiers in the 33 complex fight against climate change. However, if not well managed, these developments might not be 34 realised by all countries, thus creating a new divide (TWI2050 2018). International cooperation that 35 strengthens institutional and policy frameworks in developing countries and builds their innovation 36 systems can aid technology transfer and knowledge to flow to their advantage (de Coninck and Sagar 37 2015a,b; Niosi 2018).

38 A particular locus for international cooperation on technology development and innovation is found 39 within institutions and mechanisms of the UN climate regime. The UNFCCC, in Article 4.1(c), calls on 40 'all parties' to 'promote and cooperate in the development, application and diffusion, including transfer, 41 of technologies, practices and processes that control, reduce or prevent anthropogenic emissions of 42 greenhouse gases' and places responsibility on developed country parties to 'take all practicable steps to promote, facilitate and finance, as appropriate, the transfer of, or access to environmentally sound 43 44 technologies and know-how to other parties, particularly developing country parties, to enable them to 45 implement the provisions of the Convention' (UNFCCC 1992, Art. 4.5). The issue of technology 46 development and transfer has continued to receive much attention in the international climate policy 47 domain since its initial inclusion in the UNFCCC in 1992 - albeit often overshadowed by dominant 48 discourses around market-based mechanisms - and its role in reducing greenhouse gas emissions and

1 adapting to the consequences of climate change 'is seen as becoming ever more critical' (de Coninck 2 and Sagar 2015a, 2). Milestones in the development of international cooperation on climate 3 technologies under the UNFCCC have included: (1) the development of a technology transfer 4 framework and establishment of the Expert Group on Technology Transfer (EGTT) under the 5 Subsidiary Body for Scientific and Technological Advice (SBSTA) in 2001; (2) recommendations for 6 enhancing the technology transfer framework put forward at the Bali Conference of the Parties in 2007 7 and creation of the Poznan strategic program on technology transfer under the Global Environmental 8 Facility (GEF); and (3) the establishment of the Technology Mechanism by the Conference of the 9 Parties in 2010 as part of the Cancun Agreements (UNFCCC 2010). The Technology Mechanism is presently the principal avenue within the UNFCCC for facilitating cooperation on the development and 10 11 transfer of climate technologies to developing countries (UNFCCC 2015b). As discussed in Section 12 14.3.2.9 above, the Paris Agreement tasks the Technology Mechanism also to serve the Paris Agreement

13 (UNFCCC 2015b, Art. 10.3).

14 The Technology Mechanism consists of the Technology Executive Committee (TEC) (replacing the 15 EGTT), as its policy arm, and the Climate Technology Centre and Network (CTCN), as its 16 implementation arm (UNFCCC 2015b). The TEC focuses on identifying and recommending policies that can support countries in enhancing and accelerating the development and transfer of climate 17 18 technologies (UNFCCC 2020b). The CTCN facilitates the transfer of technologies through three core 19 services: (1) providing technical assistance at the request of developing countries; (2) creating access 20 to information and knowledge on climate technologies; and (3) fostering collaboration and capacity-21 building (CTCN 2020a). The CTCN 'network' consists of a diverse set of climate technology 22 stakeholders from academic, finance, non-government, private sector, public sector, and research 23 entities, together with more than 150 National Designated Entities, which serve as CTCN national focal 24 points. Through its network, the CTCN seeks to mobilise policy and technical expertise to deliver 25 technology solutions, capacity-building and implementation advice to developing countries (CTCN 2020b). At the Katowice UNFCCC Conference of the Parties in 2018, the TEC and CTCN were 26 27 requested to incorporate the technology framework developed pursuant to Article 10 of the Paris 28 Agreement into their respective workplans and programmes of work (UNFCCC 2019j).

29 The Joint Annual Report of the TEC and CTCN for 2019 indicated that, as of July 2019, the CTCN had

engaged with 93 developing country parties regarding a total of 273 requests for technical assistance,
 including 11 multi-country requests. Nearly three-quarters (72.9%) of requests received by the CTCN
 had a mitigation component, with two-thirds of those mitigation requests related to either renewable
 energy or energy efficiency. Requests for decision-making or information tools are received most
 frequently (28% of requests), followed by requests for technology feasibility studies (20%) and

technology identification and prioritisation (18%) (TEC and CTCN 2019).

36 The CTCN is presently funded from 'various sources, ranging from the [UNFCCC] Financial 37 Mechanism to philanthropic and private sector sources, as well as by financial and in-kind contributions 38 from the co-hosts of the CTCN and from participants in the Network' (TEC and CTCN 2019, para. 97). 39 Oh (2020b) describes the institution as 'mainly financially dependent on bilateral donations from 40 developed countries and multilateral support'. Nevertheless, inadequate funding of the CTCN poses a 41 problem for its effectiveness and capacity to contribute to implementation of the Paris Agreement. A 42 2017 independent review of the CTCN identified 'limited availability of funding' as a key constraint on its ability to deliver services at the expected level and recommended that '[b]etter predictability and 43 44 security over financial resources will ensure that the CTCN can continue to successfully respond to its 45 COP mandate and the needs and expectations of developing countries' (Ernst & Young 2017, para. 84). 46 The 2019 Joint Report of the TEC and CTCN indicates that resource mobilisation for the Network

47 remains a challenge (TEC and CTCN 2019, pp. 23-24).

1 The importance of 'financial support' for strengthening cooperative action on technology development 2 and transfer was recognised in Article 10.6 of the Paris Agreement. The technology framework 3 established by the Paris Rulebook specifies actions and activities relating to the thematic area of 4 'support' as including: (a) enhancing the collaboration of the Technology Mechanism with the Financial 5 Mechanism; (b) identifying and promoting innovative finance and investment at different stages of the 6 technology cycle; (c) providing enhanced technical support to developing country parties, in a country-7 driven manner, and facilitating their access to financing for innovation, enabling environments and capacity-building, developing and implementing the results of TNAs, and engagement and 8 9 collaboration with stakeholders, including organisational and institutional support; and (d) enhancing the mobilisation of various types of support, including pro bono and in-kind support, from various 10 11 sources for the implementation of actions and activities under each key theme of the technology 12 framework.

13 Notwithstanding the technology framework's directive for enhanced collaboration of the Technology 14 and Financial Mechanisms of the UNFCCC, linkages between them, and particularly to the GCF, 15 continue to engender political contestation between developing and developed countries (Oh 2020b). 16 Developing countries sought to address concerns over the unsustainable funding status of the CTCN by 17 advocating linkage through a funding arrangement or financial linkage, whereas developed countries 18 favour the design of an institutional linkage maintaining the different and separate mandates of the 19 CTCN and the GCF (Oh 2020a,b). With no resolution reached, the UNFCCC COP requested the 20 Subsidiary Body for Implementation, at its fifty-third session, to take stock of progress in strengthening 21 the linkages between the Technology Mechanism and the Financial Mechanism with a view to 22 recommending a draft decision for consideration and adoption by the Glasgow COP, scheduled for 2021

23 (UNFCCC 2019k).

24 **14.4.3 Capacity Building**

International climate cooperation has long focused on supporting developing countries in building capacity to implement climate mitigation commitments. While there is no universally agreed definition of capacity-building and the UNFCCC does not define the term (Khan et al. 2020), elements of capacitybuilding can be discerned from the Convention's provisions on education and training programmes (UNFCCC 1992, Art. 6), as well as the reference in Article 9(2)(d) of the UNFCCC to the Subsidiary Body for Scientific and Technological Advice (SBSTA) providing support for 'endogenous capacity-

- 31 building in developing countries.'
- 32 Capacity-building is generally conceived as taking place at three levels: individual (focused on 33 knowledge, skills and training), organisational/institutional (focusing on organisational performance 34 and institutional cooperation) and systemic (creating enabling environments through regulatory and 35 economic policies (Khan et al. 2020; UNFCCC 2020c). In its annual synthesis report for 2018, the 36 UNFCCC secretariat compiled information submitted by parties on the implementation of capacity-37 building in developing countries, highlighting cooperative and regional activities on NDCs, including 38 projects to build capacity for implementation, workshops related to transparency under the Paris 39 Agreement and collaboration to provide coaching and training (UNFCCC 2019h). A number of 40 developing country Parties also highlighted their contributions to South-South cooperation (discussed 41 further in Section 14.5.1.4 below), and identified capacity-building projects undertaken with others (e.g. 42 capacity-building for risk management in Latin America and the Caribbean, improving capacity for 43 measurement, reporting and verification (MRV) through the Alliance of the Pacific and a climate action 44 package launched by Singapore).
- 45 Beyond the UNFCCC, other climate cooperation and partnership activities on capacity building include 46 those organised by the OECD, IFDD (Francophonie Institute for Sustainable Development), UNDP-
- 47 NCSP programme, UNEP and the World Bank. There are also a number of regional cooperative
- 48 structures with capacity-building components, including ClimaSouth, Euroclima+, the UN-REDD

1 Programme, the Caribbean Regional Strategic Programme for Resilience, the Caribbean Climate Online

2 Risk and Adaptation Tool, a project on accelerating low carbon and resilient society realisation in the

3 Southeast Asian region, the World Health Organisation's Global Salm-Surv network, the Red

- 4 Iberoamericana de Oficinas de Cambio Climático network and the Africa Adaptation Initiative. Many
- 5 climate-related capacity-building initiatives, including those coordinated or funded by international or 6 regional institutions, are implemented at the national and sub-national level, often with the involvement
- regional institutions, are implemented at the national and sub-national level, often with the n
 of universities, consultancy groups and civil society actors.

8 Despite a decades-long process of capacity-building efforts under many development and 9 environmental regimes, including the UNFCCC, progress has been uneven and largely unsuccessful in establishing institution-based capacity in developing countries (Khan et al. 2018). In an effort to 10 11 improve capacity-building efforts within the UNFCCC, in 2015, the Paris Committee on Capacitybuilding (PCCB) was established by the COP decision accompanying the Paris Agreement as the 12 13 primary body for enhancing capacity-building efforts, including by improving coherence and 14 coordination in capacity-building activities (UNFCCC 2016, para. 71). The activities of the Committee 15 include the provision of guidance and technical support on climate change training and capacity 16 building, raising awareness and sharing climate information and knowledge. During 2020, the PCCB was able, despite the Covid-19 situation, to hold its 4th meeting, implement and assess its 2017-2020 17 18 work plan, and develop and agree on its future roadmap (2021-2024) (UNFCCC Subsidiary Body for 19 Implementation 2020). Non-governmental organisations such as the Coalition on Paris Agreement

- 20 Capacity-building provide expert input to the PCCB.
- 21 Quantifying the contribution of capacity-building efforts to climate mitigation is acknowledged to be
- 'difficult, if not impossible' (Hsu et al. 2019a). Nonetheless, such activities 'may play a valuable role
 in building a foundation for future reductions' by providing 'necessary catalytic linkages between
- 24 actors' (Hsu et al. 2019a).

25 **14.4.4 Cooperative mechanisms and markets**

In theory, trading carbon assets can reduce the costs of global climate mitigation, by helping facilitate abatement of greenhouse gases at least-cost locations. This could help countries ratchet up their ambitions more than in a situation without such mechanisms (Mehling et al. 2018). Progress as to developing such mechanisms has however so far been moderate and uneven.

- 30 Of the three international market-based mechanisms under the 1997 Kyoto Protocol discussed in 31 Section 14.3.2.7, and in previous IPCC reports, only the CDM has a role to play under the Paris 32 Agreement, although the precise terms are yet to be decided.
- 33 Article 6, also discussed in Section 14.3.2.7, is the main mechanism to foster enhanced cooperation 34 within the Paris Agreement. Although there are some examples, such as the bilateral treaty signed under 35 the framework of Article 6 in October 2020 by Switzerland and Peru, the possibilities of bilateral 36 cooperation are yet to be explored and exploited. As discussed above, adequate accounting rules are 37 key to the success of Article 6. Sectoral agreements are also a promising cooperative mechanism, as 38 discussed in Section 14.5.2. In fact, both bilateral and sectoral agreements have the potential to enhance 39 the ambition of the parties involved and can eventually serve as building blocks towards more 40 comprehensive agreements (see the discussion in Section 14.2.2).
- A relevant and promising new development is the international linkage of existing regional or national emission trading systems. Several emission trading systems are now operational in different jurisdictions, including the EU, Switzerland, China, South Korea, New Zealand, and several US states and Canadian provinces (Wettestad, J. and Gulbrandsen 2018). More systems are in the pipeline, including Mexico and Thailand (ICAP 2019). The link between the EU and Switzerland entered into force in January 2020 and other linkages are being negotiated. Scholars analyse the potential benefits
- 47 of these multilateral linkages and demonstrate that these are significant (Doda and Taschini 2017; Doda

1 et al. 2019a). Over time, the linkages of these emission trading systems can be seen as building blocks

2 to a strategic enlargement of international cooperation (Mehling 2018; Caparrós and Péreau 2017). The

3 World Bank has emerged as an important lynchpin and facilitator of knowledge-building and sharing

4 of lessons about the design and linking of carbon markets, through initiatives such as the Partnership

for Market Readiness, Networked Carbon Markets and the Carbon Pricing Leadership Coalition
 (Wettestad, J.; Gulbrandsen, L.H.; Andresen 2020).

7 However, it is important to distinguish between theory and practice. The practice of ETS linking so far 8 demonstrates a few links and several processes breaking down due to shifts of governments and political 9 preferences (for instance the process between the EU and Australia, and Ontario withdrawing from the 10 WCI) (Bailey and Inderberg 2018). It is worth noting that the linking of carbon markets raises problems 11 of distribution of costs and loss of political control and hence does not offer a politically easy alternative 12 route to a truly international carbon market. Careful, piece-meal and incremental linking may be the 13 most feasible approach forward (Green et al. 2014; Gulbrandsen et al. 2019). It is premature for any 14 serious assessment of the practice of ETS linking to be conducted. Environmental effectiveness, 15 transformative potential, economic performance, institutional strength and even distributional outcomes 16 can potentially be significant and positive if linking is done carefully (Mehling et al. 2018; Doda and 17 Taschini 2017; Doda et al. 2019b), but are all marginal if one focuses on existing experiences (Spalding-Fecher, R., Achanta, A. N., Erickson, P., Haites, E., Lazarus, M., Pahuja, N., ... Tewari 2012; 18 19 Haites 2016; Schneider, I.; Lazarus, M.; van Asselt 2017; Schneider et al. 2019; La Hoz Theuer et al.

20 2019).

21 **14.4.5 International Governance of SRM and CDR**

22 While Solar Radiation Modification (SRM) and Carbon Dioxide Removal (CDR) were often referred 23 to as 'geoengineering' in earlier IPCC reports and in the literature, IPCC SR1.5 started to explore SRM 24 and CDR more thoroughly and to highlight the differences between – but also within – both approaches 25 more clearly. Therefore, as in SR1.5, ambiguous umbrella terms like 'geoengineering' or 'climate 26 engineering' are avoided in AR6. This section assesses the international governance of both SRM and 27 CDR. Chapter 12 of this report covers the emerging national, sub-national and non-state governance of 28 CDR. Chapters 4 and 5 of the WGI Report assess the physical climate system and biogeochemical 29 responses to different SRM and CDR methods. The Cross Working Group Box SRM (WGII, Chapter 30 16 and Cross-Working Group Box 4 in WGIII below) gives a brief overview of solar radiation

31 modification methods, risks, benefits, ethics and governance.

32 33

34

35

Cross-Working Group Box SRM: Solar Radiation Modification *Cross-Working Group Box in WGII and Cross-Working Group Box 4 in WGIII*

Christopher H. Trisos (Republic of South Africa), Oliver Geden (Germany), Sonia Seneviratne
(Switzerland), Masa Sugiyama (Japan), Maarten van Aalst (the Netherlands), Govindasamy Bala
(India), Katherine Mach (the United States of America), Veronika Ginzburg (the Russian Federation),
Heleen de Coninck (the Netherlands), Anthony Patt (Switzerland)

41 **Proposed Solar Radiation Modification Schemes**

Solar Radiation Modification refers to proposals to increase the reflection of shortwave radiation
(sunlight) back to space to counteract anthropogenic warming (Cross-Chapter Box 10 in IPCC SR15;
WGI AR6 Chapters 4 and 5). A number of SRM schemes have been proposed, including: Stratospheric
Aerosol Injections (SAI), Marine Cloud Brightening (MCB), Ground-Based Albedo Modifications
(GBAM), and Ocean Albedo Change (OAC). Although not strictly a form of SRM, Cirrus Cloud
Thinning (CCT) has been proposed to cool the planet by increasing the escape of longwave thermal
radiation to space and is included here for consistency with previous assessments (IPCC SR15).

These proposals differ in their projected climate impacts, and risks to people and ecosystems (Table 1). SRM schemes may be effective in alleviating climate warming either locally or globally, but these effects will be short-lived when compared to mitigation, and there is *high confidence* that SRM would not return the climate to a pre-industrial state (WGI AR6 Chapter 4). There is also *high confidence* that SRM cannot be the main policy response for addressing climate change risks and is, at best, a supplement to deep mitigation (Buck et al., 2020).

8 Which scenarios?

7

9 The choice of SRM deployment scenarios and counterfactual reference scenarios is crucial in 10 assessment of SRM risks (Keith and MacMartin, 2015). SAI is the approach most frequently addressed 11 in scenarios in the literature and the coverage of the potential scenario space is insufficient. Most climate 12 model simulations have used highly idealized deployment scenarios or high-emission scenarios with 13 large radiative forcing in order to enhance the signal-to-noise ratio of climate responses to SRM (Kravitz 14 et al., 2015; Sugiyama et al., 2018b; Tilmes et al., 2018; Krishna-Pillai et al., 2019). There are only a 15 few Integrated Assessment Model scenarios on SAI (Arino et al., 2016; Emmerling and Tavoni, 2018), which mostly focused on risks from SAI since the direct cost of SAI is deemed low (Moriyama et al., 16 17 2017; Smith and Wagner, 2018).

18 Numerous aspects of SRM scenarios fundamentally depend on societal choices about deployment, 19 including whether deployment happens at all (Sugiyama et al., 2018a). The plausibility of many SRM 20 scenarios is highly contested and not all scenarios are equally plausible because of socio-political 21 considerations (Talberg et al., 2018). Choice of scenarios should reflect a diverse set of societal values, 22 as depending on the focus of a limited climate model scenario, SRM could look grossly risky or highly 23 beneficial (Pereira et al. forthcoming). In terms of the Paris 2°C or 1.5°C limits, there are many potential 24 scenarios of SRM deployment. Each scenario will present different levels and distributions of SRM 25 benefits, side effects, and risks. The larger the SRM deployment, the more significant the uncertainty. 26 Relying on SRM alone to enable underlying GHG emissions to increase, while holding global average 27 temperature constant, poses very large risks. Indeed the majority of studies have examined scenarios 28 where SAI is deployed to hold average global temperature constant despite high emissions, with a subset 29 simulating the injection of sulphur particles to form a global stratospheric aerosol cloud. Only a few 30 studies have examined the use of SAI to reduce global average warming alongside ambitious 31 conventional mitigation, such as to achieve a temperature target 1.5°C in the context of emissions 32 scenarios that would otherwise constrain warming to below 2°C, finding the risks from SRM to be small 33 in relation to the anticipated benefits (MacMartin, Ricke, and Keith 2018; Keith and MacMartin 2015).

34	Table CWGB SRM.1: [PLACEHO	DLDER FOR FINAL DRAFT: ca	ption to be added]

SRM Proposal	SAI	MCB	OAC	GBAM	ССТ
Description	Injection of a gas into the stratosphere, which then converts to aerosols that reflect sunlight	Spraying sea salt or other particles in marine clouds, making them more reflective	Increase surface albedo of the ocean (e.g., by placing reflective foam on the surface)	Whitening roofs, changes in land use management (e.g., no-till farming), covering glaciers with reflective sheeting	Seeding to promote nucleation, reducing optical thickness and cloud lifetime to allow more outgoing longwave radiation to escape to space
Scale	Global	Regional or global	Regional or global	Regional	Uncertain

Climate impacts other than reduced warming	Changes in rainfall patterns, degrade ozone (if using sulphur particles)	Regional precipitation changes and sea salt deposition over land	Uncertain	Changes in regional precipitation pattern	Altered regional water cycle
Impacts on human and natural systems	Changes in crop yields, ecosystem productivity, acid rain, reduced risk of heat stress to corals, change in geography of infectious disease	Changes in regional ocean productivity, changes in crop yields, reduced heat stress for corals, changes in ecosystem productivity on land	Uncertain	Altered photosynthesis, carbon uptake and side effects on biodiversity	Uncertain
Termination effects	Sudden termination would result in rapid warming, "termination shock"	Halting would cause little to no termination risk	Uncertain	Urban roof whitening is reversible over a few years	Uncertain

SRM risks to human and natural systems

Since AR5, hundreds of studies have explored the effects of SRM on the climate (Kravitz et al., 2015; Tilmes et al., 2018) and large uncertainties exist for climate processes associated with SRM options (WGI AR5 Chapter 4). Many fewer studies have examined potential impacts of SRM for people, ecosystems, or impact-relevant climate indices (Curry et al., 2014; Irvine et al., 2017).

8 There is low confidence in projected impacts of SRM on crop yields. Because SRM does not reduce 9 CO₂ concentrations, the CO₂ fertilization effect on plant productivity is common to emissions scenarios 10 with and without SRM. Nevertheless, changes in climate due to SRM may have substantial impacts on 11 crop yields. Models suggest SAI cooling would reduce crop productivity at higher latitudes, but benefit crop productivity in lower latitudes by reducing heat stress (Pongratz et al., 2012; Xia et al., 2014; Zhan 12 13 et al., 2019). Crop productivity is also projected to be reduced where SAI reduces rainfall, including 14 scenarios indicating a drier Asian summer monsoon reducing groundnut yields, but these reductions 15 due to water stress might be moderated by CO_2 fertilization effects (Xia et al., 2014; Yang et al., 2016). 16 SAI will increase the fraction of diffuse sunlight, which is projected to increase photosynthesis, but will 17 reduce total available sunlight, which tends to reduce photosynthesis, with the result that any benefits to crops from avoided heat stress may be offset by reduced photosynthesis (Proctor et al., 2018). A 18 19 single study suggests MCB may reduce crop failure rates compared to climate change from a doubling 20 of CO₂ pre-industrial concentrations (Parkes et al., 2015).

21 Few studies have examined risk to human health or economies from SAI. Use of sulphur aerosols for 22 SAI would degrade the ozone layer, with changes in mortality from skin cancer due to UV-B exposure 23 projected to be relatively small (Eastham et al., 2018). Looking only at temperature, SAI may reduce 24 inter-country income inequality, because many tropical countries are projected to suffer severe 25 economic impacts of unmitigated warming (Harding et al., 2020). However, SAI would also shift 26 climate suitability for infectious diseases (Carlson and Trisos, 2018). SAI deployment could reduce 27 transmission suitability for malaria in highland East Africa, but exacerbate transmission risk for 28 hundreds of millions of people in West Africa and south Asia (Carlson et al., 2020). Taken together, these studies raise serious concerns about the distribution of SRM impacts across countries and
 vulnerable groups.

3 Few studies have assessed SRM risk to ecosystems. SAI and MCB may reduce risk of coral reef bleaching compared to global warming with no SAI (Latham et al., 2013; Kwiatkowski et al., 2015), 4 5 but risks to marine life from ocean acidification remain, because SRM proposals do not reduce 6 emissions. MCB could cause changes in marine net primary productivity by reducing light availability 7 in deployment regions, with important fishing regions off the west coast of South America showing 8 both large increases and decreases (Partanen et al., 2016; Keller, 2018). Regional precipitation change 9 and sea salt deposition over land from MCB could affect primary productivity in tropical rainforests 10 (Muri et al., 2015). On land, compared to a high CO₂ world without SRM, global-scale SRM will limit 11 plant growth at high latitudes due to cooling (Glienke et al., 2015); reduced heat stress in low latitudes would increase plant productivity, but there would be less Nitrogen mineralization which could decrease 12 13 plant productivity (Glienke et al., 2015; Duan et al., 2020). For the same amount of global mean cooling, 14 SAI, MCB, and CCT would have different effects on gross and net primary productivity because of 15 different spatial patterns of temperature, available sunlight, and hydrological cycle changes (Dagon and 16 Schrag, 2019; Duan et al., 2020). SAI may reduce high fire risk weather in Australia, Europe and parts of the Americas, compared to global warming without SAI (Burton et al., 2018). Yet SAI using sulphur 17 18 injection could shift the spatial distribution of acid-induced aluminium soil toxicity into relatively 19 undisturbed ecosystems in Europe and North America (Visioni et al., 2020).

Some studies have assessed the effects of SRM forcing on climate extremes (Curry et al., 2014; Seneviratne et al., 2018). They reveal disparate effects on regional scale, with simulations fully offsetting mean global warming leading to an overcompensation of regional climate change in some regions and minor effects in others. This creates novel climate characteristics, which do not reflect preindustrial conditions and which are fundamentally unstable in the case of SAI since they depend on the continuous injection of further sulfate aerosols.

Several studies find large and extremely rapid warming would occur within a decade if a sudden
termination of SAI occured (McCusker et al., 2014; Crook et al., 2015). The size of this "termination
shock" is proportional to the amount of radiative forcing being masked by SAI. A sudden termination
of SAI—even if SAI was used to only partly offset warming—could place thousands of species at risk
of extinction, because the resulting rapid warming would be too fast for species to track the changing
climate (Trisos et al., 2018).

Perceptions of SRM

32 33

34 Studies on the perception of SRM have used multiple methods: questionnaire surveys, workshops, and 35 focus group interviews (Burns et al., 2016; Cummings et al., 2017). Most studies have been limited to 36 Western societies with some exceptions. Studies have repeatedly found that respondents are largely 37 unaware of SRM (Merk et al., 2015), prefer Carbon dioxide removal (CDR) to SRM (Pidgeon et al., 38 2012), that publics are very cautious about SRM because of potential environmental side effects and 39 governance concerns, and that the public mostly reject deployment. Studies also suggest conditional 40 and reluctant support for research, including proposed field experiments, with conditions of proper 41 governance (Sugiyama et al., 2020). Limited studies for developing countries show a tendency for 42 respondents to be more open to SRM (Visschers et al., 2017; Sugiyama et al., 2020), perhaps because 43 they experience climate change more directly (Carr and Yung, 2018).

Ethics

44 45

46 There is broad literature on ethical considerations around SRM, mainly stemming from philosophy or
 47 political theory, and almost exclusively focused on SAI (Flegal et al., 2019). There is high agreement

1 that publicly debating, researching and potentially deploying SAI involves a 'moral hazard', highly 2 likely obstructing ongoing and future mitigation efforts (Morrow, 2014; Baatz, 2016; McLaren, 2016). 3 There is much less agreement whether research and outdoors experimentation will create a 'slippery 4 slope' toward eventual deployment or can be effectively regulated at a later stage to avoid undesirable outcomes (Hulme, 2014; Callies, 2019). Regarding potential deployment of SRM, procedural, 5 6 distributive and recognitional conceptions of justice are being explored, as are potential harm 7 compensation mechanisms (Svoboda and Irvine, 2014; Preston and Carr, 2018). With the SRM climate 8 modelling community's increasing focus on how SAI could help to minimize climate change, 9 proponents of SAI have started more explicitly addressing vulnerable countries and communities 10 (Horton and Keith, 2016; Flegal and Gupta, 2018).

11

12 *Governance of research and of deployment*

13 Currently, there is no dedicated SRM governance (see WGIII AR6 Chapter 14). Some multilateral 14 agreements—such as the UN Convention on Biological Diversity or the Vienna Convention on the 15 Protection of the Ozone Layer—cover parts, but none is comprehensive (Reynolds, 2019). While 16 governance rationales encompass a broad range from aiming to restrict to wanting to enable research 17 and potentially deployment (Sugiyama et al., 2018b; Gupta et al., 2020), there is broad agreement in 18 the literature that emerging and potentially disruptive SRM technologies should be governed in an 19 anticipatory manner. Accordingly, governance arrangements are, and should continue, co-evolving with 20 respective SRM technologies, aiming to be at least one step ahead of research, development, 21 demonstration, and—potentially—deployment (Rayner et al., 2013; Parson, 2014). This potential needs 22 to be realized already in outdoors research; for example, in developing robust governance for MCB and 23 OAC experiments on the Great Barrier Reef (McDonald et al., 2019). Co-evolution of governance and 24 SRM research would provide a chance for responsibly developing SRM technologies with broader 25 public participation and political legitimacy (Stilgoe, 2015).

Given that risks of SRM proposals differ substantially and their large-scale deployment is highly speculative, there is a wide array of concrete proposals for anticipatory or adaptive governance, from which four core principles can be distilled (Nicholson et al., 2018): (1) Guard against potential risks and harms; (2) Enable appropriate research and development of scientific knowledge; (3) Legitimize any future research or policy-making through active and informed public and expert community engagement; (4) ensure that SRM is considered only as a part of a broader portfolio of responses to climate change.

33

34 14.4.5.1 Global governance of solar radiation modification and associated risks

35 Solar Radiation Modification, in the literature also referred to as 'solar geoengineering', encompasses 36 proposals to increase the reflection of shortwave radiation (sunlight) back to space to counteract 37 anthropogenic warming. Several SRM schemes have been proposed, including Stratospheric Aerosol 38 Injection (SAI), Marine Cloud Brightening (MCB), Ground-Based Albedo Modifications, and Ocean 39 Albedo Change (OAC). SRM has been discussed as a potential response option within a broader climate 40 risk management strategy, as a supplement to emissions reduction, carbon dioxide removal and 41 adaptation (Crutzen 2006; Royal Society 2009; Caldeira and Bala 2017; Buck et al. 2020), for example 42 as a temporary measure to slow the rate of warming (Keith and MacMartin 2015) or address temperature 43 overshoot (MacMartin et al. 2018). SRM assessments of potential benefits and risks still primarily rely 44 on modelling efforts and their underlying scenario assumptions (Sugiyama et al. 2018a), for example 45 in the context of the Geoengineering Model Intercomparison Project GeoMIP6 (Kravitz et al. 2015). 46 Recently, small-scale MCB and OAC experiments started to take place on the Great Barrier Reef

47 (McDonald et al. 2019).

1 Stratospheric aerosol injection (SAI) - the most researched SRM method - poses significant 2 international governance challenges since it could potentially be deployed uni- or minilaterally and alter 3 the global mean temperature much faster than any other climate policy measure, at comparatively low 4 direct costs (Parson 2014; Nicholson et al. 2018; Smith and Wagner 2018; Sugiyama et al. 2018b; 5 Reynolds 2019). While being dependent on the design of deployment schemes, both geophysical benefits and adverse effects would potentially be unevenly distributed (WGI Chapter 4). Perceptions 6 7 could exacerbate geopolitical conflicts, not the least depending on which countries are part of a 8 deployment coalition (Maas and Scheffran 2012; Zürn and Schäfer 2013) but also because immediate 9 detection and attribution of SAI deployment would not be possible. Uncoordinated deployment triggered by perceived climate emergencies could create international tensions (Corry 2017; Lederer 10 11 and Kreuter 2018).

- 12 While there is room for national and even sub-national governance of SAI – for example on research 13 (Jinnah et al. 2018; Hubert 2020) and public engagement (Bellamy and Lezaun 2017; Flegal et al. 2019) 14 - international governance of SAI faces the challenge that comprehensive institutional architectures 15 designed too far in advance could prove either too restrictive or too permissive in light of subsequent 16 political, institutional, geophysical and technological developments. (Bodansky 2013; Sugiyama et al. 17 2018b; Reynolds 2019). While governance rationales encompass a broad range from aiming to restrict 18 to wanting to enable research and potentially deployment, there is broad agreement in the literature that 19 emerging and potentially disruptive SRM techniques should be governed in an anticipatory manner 20 (Gupta et al. 2020). Accordingly, governance arrangements would co-evolve with respective SRM 21 technologies, aiming to be at least one step ahead of research, development, demonstration, and-22 potentially-deployment (Rayner et al. 2013; Parson 2014). With the modelling community's 23 increasing focus on showing how SAI could help to minimise climate change impacts in the Global 24 South, considerations about equity and justice dimensions take a prominent role in the SRM governance
- 25 literature (Flegal and Gupta 2018; Hourdequin 2018; Horton and Keith 2016).

26 Given that risks of SRM proposals differ substantially and their large-scale deployment is highly 27 speculative, there is a wide array of concrete proposals for near-term anticipatory or adaptive 28 governance, from which four core principles can be distilled (Nicholson et al. 2018): (1) Guard against 29 potential risks and harms; (2) Enable appropriate research and development of scientific knowledge; 30 (3) Legitimise any future research or policymaking through active and informed public and expert 31 community engagement; (4) Ensure that SRM is considered only as a part of a broader, mitigation-32 centered portfolio of responses to climate change. Regarding international institutionalisation, options 33 range from formal integration into existing UN bodies like the UNFCCC (Nicholson et al. 2018) or the 34 Convention on Biological Diversity (CBD) (Bodle et al. 2014) to the creation of specific, but less 35 formalised global fora (Parson and Ernst 2013) to forms of club governance (Bodansky 2013; Lloyd 36 and Oppenheimer 2014). Recent years have also seen the emergence of transnational non-state actors 37 focusing on SRM governance, primarily expert networks and NGOs (Horton and Koremenos 2020).

- 38 Currently, there is no targeted international law relating to SRM, although some multilateral
- agreements—such as the Convention on Biological Diversity, the UN Convention on the Law of the
 Sea or the Vienna Convention on the Protection of the Ozone Layer and its Montreal Protocol—contain
- 41 provisions applicable to SRM (Bodansky 2013; Reynolds 2019; Jinnah and Nicholson 2019).

42 14.4.5.2 Carbon Dioxide removal

- 43 Carbon dioxide removal refers to a cluster of technologies, practices, and approaches that remove and
- 44 sequester carbon dioxide from the atmosphere and durably store it in geological, terrestrial, or ocean
- 45 reservoirs, or in products. CDR is needed to counterbalance residual GHG emissions that are hard to
- 46 abate (e.g., from industry, aviation or agriculture) in the context of reaching net zero emissions both
- 47 globally in the context of Article 4 of the Paris Agreement and nationally. CDR could also later be
- 48 used for returning from temporary overshoots of carbon budgets and temperature thresholds by

1 providing net negative emissions on the global level (Fuglestvedt et al. 2018; Bellamy and Geden 2019).

2 Despite the common feature of removing carbon dioxide, technologies like afforestation/reforestation,

soil carbon sequestration, bioenergy with carbon capture and storage (BECCS), direct air capture with
 carbon storage, enhanced weathering, ocean alkalinity enhancement or ocean fertilisation are very

5 different, as are the governance challenges.

6 CDR methods other than afforestation/reforestation and soil carbon sequestration have only played a 7 minor role in UNFCCC negotiations so far (Fridahl 2017; Rumpel et al. 2020). To accelerate CDR 8 globally, stringent rules and practices regarding emissions accounting, MRV and project-based market 9 mechanisms are needed (Honegger and Reiner 2018; Mace et al. 2018). Given their historic 10 responsibility, it can be expected that developed countries would carry the main burden of researching, 11 developing, demonstrating and deploying CDR, or finance such projects in other countries (Fyson et al.

12 2020; Pozo et al. 2020).

Specific regulations for those CDR options posing transboundary risks have so far only been developed in the context London Protocol, an international treaty that explicitly regulates ocean iron fertilisation and allows parties to govern other marine CDR methods like ocean alkalinity enhancement (GESAMP 2019; Burns and Corbett 2020). Instruments such as the London Dumping Convention and its 1996 Protocol, and the CBD have adopted a precautionary approach and imposed moratoria on ocean fertilisation, except for small-scale studies or legitimate scientific research (Sands & Peel, 2018). The

London Convention/Protocol has also developed an Assessment Framework for Scientific Research
 Involving Ocean Fertilisation (London Convention/Protocol 2010) and in 2013 adopted amendments

20 Involving Ocean Fertilisation (London Convention/Flotocol 2010) and in 2013 adopted amendments 21 (which are not yet in force) to regulate marine geoengineering activities, including ocean fertilisation.

22 14.5 Multi-level, multi-actor governance

23 The Paris Agreement sets in place a new framework for international climate policy (Paroussos et al. 24 2019), which some cite as evidence of 'hybrid multilateralism' (Bäckstrand et al. 2017; see also 25 Christoff 2016; Savaresi 2016). While a trend of widening involvement of non-state actors was evident prior to conclusion of the Paris Agreement, particularly at UNFCCC COPs, the 'new landscape of 26 27 international climate cooperation' features an 'intensified interplay between state and non-state actors,' 28 including civil society and social movements, business actors, and subnational or substate actors, such 29 as local governments and cities (Bäckstrand et al. 2017, p. 562). This involvement of other actors 30 beyond states in international climate cooperation is facilitated by the Paris Agreement's 'hybrid 31 climate policy architecture' (Bodansky et al. 2016) (Section 14.3.1.1 above), which acknowledges the 32 primacy of domestic politics in climate change and invites the mobilisation of international and 33 domestic pressure to make the Agreement effective (Falkner 2016b). In this landscape, there is greater 34 flexibility for more decentralised 'polycentric' forms of climate governance and recognition of the 35 benefits of working in diverse forms and groups to realise global climate mitigation goals (Jordan et al. 2015; Oberthur 2016). 36

37 In turn, this has encouraged increasing attention to the role of multi-level, multi-actor cooperation 38 among actors, groupings and agreements beyond the UNFCCC climate regime as potential 'building 39 blocks' towards enhanced international action on climate mitigation (Stewart et al. 2017; see also 40 Falkner 2016b; Potoski 2017; Caparrós and Péreau 2017). This can include agreements on emissions 41 and technologies at the regional or sub-global level; what scholars often refer to as climate 'clubs' 42 (Green 2017; Nordhaus 2015; Sprinz et al. 2018; Hovi et al. 2016). It also includes cooperation on 43 narrower sets of issues than are found within the Paris Agreement; for instance, other international 44 environmental agreements dealing with a particular subset of GHGs; linkages with, or leveraging of, 45 efforts or agreements in other spheres such as adaptation, human rights or trade; agreements within 46 particular economic sectors; or transnational initiatives involving global cooperative efforts by different 47 types of non-state actors. Cooperative efforts in each of these forums are reviewed in the following

- 1 sections of the chapter. Section 14.5.1 discusses international cooperation at multiple governance levels
- 2 (global, sub-global and regional); Section 14.5.2 discusses cooperation with international sectoral
- agreements and institutions such as in the forestry, energy and transportation sectors; and Section 14.5.3
 discusses transnational cooperation across civil society and social movements, business partnerships
- and investor coalitions, and between sub-national entities and cities.
- 6 A key idea underpinning this analysis is that decomposition of the larger challenge of climate mitigation
- 7 into 'smaller units' may facilitate more effective cooperation (Sabel and Victor 2017) and complement
- 8 cooperation in the UN climate regime (Stewart et al. 2017). However, it is recognised that significant
- 9 uncertainty remains over the feasibility and costs of these efforts (Sabel and Victor 2017), as well as
- whether they ultimately strengthen progress on climate mitigation in the multilateral climate arena (Falkner 2016a)
- 11 (Falkner 2016a).

12 **14.5.1 International cooperation at multiple governance levels**

13 14.5.1.1 Role of other environmental agreements

- 14 International cooperation on climate change mitigation takes place at multiple governance levels,
- 15 including under a range of multilateral environmental agreements (MEAs) beyond those of the
- 16 international climate regime.

17 The 1987 Montreal Ozone Protocol is the leading example of a non-climate MEA with significant 18 implications for mitigating climate change (Barrett 2008). The Montreal Protocol regulates a number 19 of substances that are both ozone depleting substances (ODS) and GHGs with a significant global 20 warming potential (GWP), including chlorofluorocarbons, halons and hydrochlorofluorocarbons 21 (HCFCs). As a result, implementation of phase-out requirements for these substances under the 22 Montreal Protocol has made a significant contribution to mitigating climate change (Molina et al. 2009). 23 Velders et al (2007) found that over the Kyoto Protocol period from 1990 to 2010, the reduction in GWP-weighted ODS emissions expected with compliance to the provisions of the Montreal Protocol 24 25 was 8 GtCO₂eq yr⁻¹, an amount substantially greater than the first commitment period Kyoto reduction

- target. This was estimated to have delayed resultant climate forcing by 7–12 years (Velders et al. 2007).
- 27 The 2016 Kigali Amendment to the Montreal Protocol applies to the production and consumption of 28 hydrofluorocarbons (HFCs). HFCs, which are widely used as refrigerants (Abas et al. 2018), have high 29 GWP values ranging from 53 to 14,800 for HFC-23 (Hoch et al. 2019). The Kigali Amendment 30 addresses the risk that the phase-out of HCFCs under the Montreal Protocol and their replacement with 31 HFCs could exacerbate global warming (Akanle 2010; Hurwitz et al. 2016), especially with the 32 predicted growth in HFC usage for applications like air conditioners (Velders et al. 2015). In this way 33 it creates a cooperative rather than a conflictual relationship between addressing ozone depletion and 34 the climate protection goals of the UNFCCC regime (Hoch et al. 2019). The Kigali Amendment requires 35 developed country parties to phase-down HFCs by 85% from 2011-2013 levels by 2036. Developing 36 country parties are permitted longer phase-down periods (out to 2045 and 2047), but must freeze 37 production and consumption between 2024 and 2028 (UN 2016; Ripley and Verkuijl 2016). A ban on 38 trade in HFCs with non-parties will come into effect from 1 January 2033. For HFC-23, which is a by-39 product of HCFC production rather than a ODS, parties are required to report production and 40 consumption data, and to destroy all emissions of HFC-23 occurring as part of HCFCs or HFCs to the 41 extent practicable from 2020 onwards using approved technologies (Ripley and Verkuijl 2016).
- 42 Full compliance with the Kigali Amendment is predicted to reduce HFC emissions by 61% of the global
- 43 baseline by 2050 (Höglund-Isaksson et al. 2017), with avoided global warming of up to 0.5° C this
- 44 century (Roberts 2017; Graziosi et al. 2017). Examining the interplay of the Kigali Amendment with
- the Paris Agreement, Hoch et al. (2019) show how the Article 6 mechanisms under the Paris Agreement
- 46 could generate financial incentives for HFC mitigation and related energy efficiency improvements.
- 47 Early action under Article 6 of the Paris Agreement could drive down baseline levels of HFCs for

1 developing countries (calculated in light of future production and consumption in the early and mid-

2 2020s) thus generating long-term mitigation benefits under the Kigali Amendment (Hoch et al. 2019).

3 However, achievement of the objectives of the Kigali Amendment is dependent on its ratification by

4 key developed countries, such as the United States, and the provision of funds by developed countries

through the Protocol's Multilateral Fund to meet developing countries' 'agreed incremental costs' of
 implementation (Roberts 2017). The Kigali Amendment came into force on 1 January 2019 and has

Implementation (Roberts 2017). The Rigan Amendment came into force on 1 January 2019 and na.
 been ratified by 112 of the 106 parties to the Montreal Protocol.

7 been ratified by 112 of the 196 parties to the Montreal Protocol.

8 MEAs dealing with transboundary air pollution, such as the Convention on Long-Range Transboundary 9 Air Pollution (CLRTAP) and its implementing protocols, which regulate non-GHGs like particulates, 10 nitrogen oxides and ground-level ozone, can also have potential benefits for climate change mitigation 11 (Erickson 2017). Studies have indicated that rigorous air quality controls targeting short-lived climate forcers, like methane, ozone and black carbon, could slow global mean temperature rise by about 0.5°C 12 13 by mid-century (Schmale et al. 2014). Steps in this direction were taken with 2012 amendments to the 14 CLRTAP Gothenburg Protocol (initially adopted back in 1999) to include black carbon, which is an 15 important driver of climate change in the Arctic region (Yamineva and Kulovesi 2018). The amended 16 Protocol, which has 28 parties including the US and EU, entered into force in October 2019. However, its limits on black carbon have been criticised as insufficiently ambitious in light of scientific 17 18 assessments (Khan and Kulovesi 2018).

- 19 Another MEA that may play a role in aiding climate change mitigation is the 2013 Minamata Mercury 20 Convention, which came into force on 16 August 2017. Coal burning for electricity generation 21 represents the second largest source (behind artisanal and small-scale gold mining) of anthropogenic 22 mercury emissions to air (UNEP 2013). Efforts to control and reduce atmospheric emissions of mercury from coal-fired power generation under the Minamata Convention may reduce GHG emissions from 23 24 this source (Eriksen and Perrez 2014; Selin 2014). For instance, Giang et al (2015) have modelled the 25 implications of the Minamata Convention for mercury emissions from coal-fired power generation in 26 India and China, concluding that reducing mercury emissions from present-day levels in these countries 27 is likely to require 'avoiding coal consumption and transitioning toward less carbon-intensive energy 28 sources' (Giang et al. 2015). Parties to the Minamata Convention include five of the six top global CO₂ 29 emitters – China, the United States, the EU, India and Japan (Russia has not ratified the Convention). 30 The Minamata Convention also establishes an Implementation and Compliance Committee to review
- 31 compliance with its provisions on a 'facilitative' basis (Eriksen and Perrez 2014).
- 32 MEAs that require state parties to conserve habitat (such as the Convention on Biological Diversity) or 33 to protect certain ecosystems like wetlands (such as the Ramsar Wetlands Convention) may also have
- to protect certain ecosystems like wetlands (such as the Ramsar Wetlands Convention) may also have
- 34 co-benefits for climate change mitigation through the adoption of well-planned conservation policies
- 35 (Phelps et al. 2012; Gilroy et al. 2014). At a theoretical level, REDD+ activities have been identified as
- 36 a particular opportunity for achieving climate mitigation objectives while also conserving tropical forest
- biodiversity and ecosystem services. Elements of REDD+ that promise greatest effectiveness for
- 38 climate change mitigation (e.g. greater finance combined with reference levels which reduce leakage 39 by promoting broad participation across countries with both high and low historical deforestation rates)
- by promoting broad participation across countries with both high and low historical deforestation rates)
 also offer the greatest benefits for biodiversity conservation (Busch et al. 2011). However, actual
- 41 biodiversity and ecosystem service co-benefits are dependent on the design and implementation of
- 42 REDD+ programs (Ehara et al. 2014; Panfil and Harvey 2016), with limited empirical evidence to date
- 43 of emissions reductions from these programs (Newton et al. 2016; Johnson et al. 2019).

44 14.5.1.2 Linkages with sustainable development, adaptation, loss and damage, and human rights

45 As discussed in Chapter 1, the emerging framing for the issue of climate mitigation is that it is no longer

- to be considered in isolation but rather in the context of its linkages with other areas. Adaptation, loss
- 47 and damage, human rights and sustainable development are all areas where there are clear or potential
- 48 overlaps, synergies, and conflicts with the cooperation underway in relation to mitigation.

1 The IPCC defines adaptation as: 'in human systems, the process of adjustment to actual or expected

climate and its effects, in order to moderate harm or exploit beneficial opportunities. In natural systems,
 the process of adjustment to actual climate and its effect; human intervention may facilitate adjustment

4 to expected climate and its effects' (See Annex A: Glossary).

5 Adaptation involves actions to lessen the harm associated with climate change, or take advantage of 6 potential gains (Smit and Wandel 2006). It can seek to reduce present and future exposure to specific 7 climate risks (Adger et al. 2003), mainstream climate information into existing planning efforts (Gupta 8 et al. 2010; van der Voorn et al. 2012, 2017), and reduce vulnerability (or increase resilience) of people 9 or communities to the effects of climate change (Kasperson and Kasperson 2001). There is a body of 10 literature highlighting potential synergies and conflicts between adaptation actions – in any of the three 11 areas above - and mitigation actions - and potential strategies for resolving them (Watkiss et al. 2015; Casado-Asensio and Steurer 2014; Suckall et al. 2015; Locatelli et al. 2011; Duguma et al. 2014; van 12 13 der Voorn et al. 2020). In a strategic context, this issue has been analyzed in Bayramoglu et al. (2018), 14 Eisenack and Kähler (2016) and Ingham et al. (2013), among others. Bayramoglu et al. (2018) analyze 15 the strategic interaction between mitigation, as a public good, and adaptation, essentially a private good, 16 showing that the fear that adaptation will reduce the incentives to mitigate carbon emissions may not 17 be justified. On the contrary, adaptation can reduce free-rider incentives (lead to larger self-enforcing 18 agreements), yielding higher global mitigation levels and welfare, if adaptation efforts cause mitigation 19 levels between different countries to be complements instead of strategic substitutes (on the conditions

20 for adaptation and mitigation to be substitutes or complements, see Ingham et al. 2013).

21 Distinct from project or programmatic level activities, however, international cooperation for adaptation

22 operates to provide finance and technical assistance (Bouwer and Aerts 2006). In most cases it involves

transboundary actions, such as in the case of transboundary watershed management (Milman et al. 2013;

24 Wilder et al. 2010; van der Voorn et al. 2017). In others it involves the mainstreaming of climate change

- 25 projections into existing treaties, such as for the protection of migratory species (Trouwborst et al.
- 26 2012).

27 International cooperation in mitigation and adaptation share many of the same challenges, including the 28 need for effective institutions. The UNFCCC, for example, addresses international financial support for 29 adaptation and for mitigation in the same general category, and subjects them to the same sets of 30 institutional constraints (Peterson and Skovgaard 2019). Sovacool and Linnér (2016) argue that the 31 history of the UNFCCC and its sub-agreements has been shaped by an implicit bargain that developing 32 countries participate in global mitigation policy in return for receiving financial and technical assistance 33 for adaptation and development from industrialised countries and international green funds. Khan and 34 Roberts (2013) contend that this played out poorly under the Kyoto framework: the Protocol's basic 35 architecture, oriented around legally binding commitments, was not amenable to merging the issues of 36 adaptation and mitigation. Kuyper et al. (2018a) argue that the movement from Kyoto to Paris represents 37 a shift in this regard; Paris was designed not primarily as a mitigation policy instrument, but rather one 38 encompassing mitigation, adaptation, and development concerns. While this argument suggests that the 39 Paris architecture, involving voluntary mitigation actions and a greater attention to issues of financial 40 support and transparency, functions better to leverage adaptation support into meaningful mitigation 41 actions, there are only few papers that examine this issue. Stua (2017a,b) explores the relevance of the 42 so-called 'share of proceeds' included in Article 6 of the Paris Agreement as a key tool for leveraging 43 adaptation though mitigation actions.

There are recognised limits to adaptation (Dow et al. 2013), and exceeding these limits results in loss and damage, a topic that is gathering salience in the policy discourse. UNEP (2014) focused on 'loss and damage', essentially those climate change impacts which cannot be avoided through adaptation.

- The Paris Agreement contains a free-standing article on loss and damage (UNFCCC 2015a, Art 8),
- 48 focused on cooperation and facilitation, under which parties have established a clearing house on risk

1 transfer, and a task force on displacement (UNFCCC 2016a, paras 48 and 49). The COP decision 2 accompanying the Paris Agreement specifies that 'Article 8 does not involve or provide a basis for any 3 liability or compensation' (UNFCCC 2016a, para 51). There is a range of views on the treatment of 4 loss and damage in the Paris Agreement, how responsibility for loss and damage should be allocated 5 (Lees 2017; McNamara and Jackson 2019), and how it could be financed (Roberts et al. 2017; 6 Gewirtzman et al. 2018). Some scholars argue that there are continuing options to pursue compensation 7 and liability in the climate change regime (Mace and Verheyen 2016; Gsottbauer et al. 2018). There 8 have also been efforts to establish accountability of companies-particularly 'carbon majors' (Frumhoff 9 et al. 2015)—for climate damage in domestic courts (Ganguly et al. 2018). In this context is important also the literature on contributions by countries to warming (Skeie et al. 2017; Otto et al. 2017). In any 10 11 case, states that have suffered loss and damage can pursue 'state responsibility' claims under general 12 international law and international human rights law (Wewerinke-Singh 2018; Wewerinke-Singh and 13 Salili 2020).

Some have argued that climate impacts are 'incremental violence structurally over-determined by international relations of power and control' that affect most those who have contributed the least to GHG emissions. Calls for compensation or reparation for loss and damage are therefore a demand for climate justice (Dehm 2020). Many small island states entered declarations on acceptance of the UNFCCC and Paris Agreement that they continue to have rights under international law regarding state responsibility for the adverse effects of climate change, and that no provision in these treaties can be interpreted as derogating from any claims or rights concerning compensation and liability due to the adverse effects of climate change

21 adverse effects of climate change.

22 The adoption in 2013 of the Warsaw International Mechanism on Loss and Damage as part of the United 23 Nations Framework Convention on Climate Change (UNFCCC) occurred despite the historic 24 opposition of the United States to this policy. Vanhala and Hestbaek (2016) examine the roles of frame 25 contestation and ambiguity in accounting for the evolution and institutionalisation of the loss and 26 damage norm within the UNFCCC. However, there is little international agreement on the scope of loss 27 and damage programmes, and especially how they would be funded and by whom (Gewirtzman et al. 28 2018). Moreover, non-economic loss and damage (NELD) forms a distinct theme that refers to the 29 climate-related losses of items both material and non-material that are not commonly traded in the 30 market, but whose loss is still experienced as such by those affected. Examples of NELD include loss 31 of cultural identity, sacred places, human health and lives (Serdeczny 2019). The Santiago Network 32 is part of the Warsaw International Mechanism, to catalyse the technical assistance of relevant 33 organisations, bodies, networks and experts, for the implementation of relevant approaches to avert, 34 minimise and address loss and damage at the local, national and regional level, in developing countries 35 that are particularly vulnerable to the adverse effects of climate change (UNFCCC 2020d).

There are direct links between climate mitigation efforts, adaptation and loss and damage - the higher the collective mitigation ambition and the likelihood of achieving it, the lower the scale of adaptation ultimately needed and the lower the scale of loss and damage anticipated. The liability of states, either individually or collectively, for loss and damage is contested, and no litigation has yet been successfully launched to pursue such claims. The science of attribution, however, is developing (Marjanac and Patton 2018), and while it has the potential to address the thorny issue of causation, and thus compensation, it could also be used to develop strategies for climate resilience (James et al. 2014).

There are also direct links between mitigation and sustainable development. The international agendas for mitigation and for sustainable development have shaped each other, around concepts such as common but differentiated responsibilities and respective capabilities, as well as the distinction – in the UNFCCC and later the Kyoto Protocol – between Annex I and non-Annex I countries (Patt 2015, Victor 2011). The same implicit bargain that developing countries would support mitigation efforts in return for assistance with respect to adaptation also applies to support for development (Sovacool and Linnér

1 2016). That linkage between mitigation and sustainable development has become even more specific 2 with the Paris Agreement and the 2030 Agenda for Sustainable Development, each of which explicitly 3 pursues a set of goals that encompass both mitigation and development (Schmieg et al. 2017), reflecting 4 the recognition that achieving sustainable development and climate mitigation goals are mutually 5 dependent (Gomez-Echeverri 2018). It is well-accepted that the long-term effects of climate mitigation 6 will benefit sustainable development. A more contested finding is whether the mitigation actions 7 themselves promote or hinder short-term poverty alleviation. One study, analysing the economic effects 8 of developing countries' NDCs, finds that mitigation actions slow down poverty reduction efforts 9 (Campagnolo and Davide 2019). Other studies suggest possible synergies between low-carbon 10 development and economic development (Hanger et al. 2016; Labordena et al. 2017; Dzebo et al. 2019). 11 These studies typically converge on the fact that financial assistance flowing from developed to 12 developing countries enhances any possible synergies or lessens the conflicts. However mitigation 13 measures can also have negative impacts on gender equality, and peace and justice (Dzebo, Janetschek,

14 Brandi, Iacobuta 2019).

15 The literature also identifies institutional synergies at the international level, related to the importance 16 of addressing climate change and development in an integrated, coordinated and comprehensive manner 17 across constituencies, sectors and administrative and geographical boundaries (Le Blanc 2015). The 18 literature also stresses the important role that robust institutions have in making this happen, including 19 in international cooperation in key sectors for climate action as well for development (Waage et al. 20 2015). Since the publication of AR5, which emphasised the need for a type of development that 21 combines both mitigation and adaptation as a way to strengthen resilience, much of the literature has 22 focused on ways to address these linkages and the role institutions play in key sectors that are often the 23 subject of international cooperation – for example, environmental and soil degradation, climate, energy, 24 water resources, forestry (Hogl et al. 2016). An assessment of thematic policy coherence between the 25 voluntary domestic contributions regarding the Paris Agreement and the 2030 Agenda should be 26 integrated in national policy cycles for sustainable and climate policy-making to identify overlaps, gaps, 27 mutual benefits and trade-offs in national policies (Brandi et al. 2019).

28 It is only relatively recently that the relationship between climate change and human rights has become 29 a sustained focus of international law and policy making (Hallt and Weiss 2012). The issue of human 30 rights-climate change linkages was first taken up by the UN Human Rights Council (HRC) in 2008 31 (Peel and Osofsky 2018). Climate change effects and related disasters have the potential to affect human 32 rights broadly, for instance, by giving rise to deaths, disease or malnutrition (right to life, right to health), 33 threatening food security or livelihoods (right to food), impacting upon water supplies and 34 compromising access to safe drinking water (right to water), destroying coastal settlements through storm surge (right to adequate housing), and in some cases forcing relocation as traditional territories 35 36 become uninhabitable (right to self-harm and threats to international peace and security) (OHCHR 37 2009). As a result, groups of citizens are starting to increasingly lose trust in their respective executive 38 and legislative branches and by means of protest, climate advocates have now turned to courts invoking 39 State responsibility for a failure to mitigate polluting activities. Often-times representing the public 40 interest. This choice of adjudicatory dispute settlement has grown out to be a popular trend throughout 41 the past few years and the number of cases on courts' dockets continue to grow quickly (De-Bruijn 42 2020).

Some argue that there is an increased use of human rights arguments by litigants and a growing receptivity of courts towards such arguments in climate change cases (Peel and Osofsky 2018). In the landmark *Urgenda* climate case the Dutch Supreme Court adopted a human rights-based approach and ordered, on the obligations under the UNFCCC regime and climate science, the state to mitigate greenhouse gas emissions by 25% by end-2020 compared to 1990. There are dozens of cases in national and regional courts, increasingly based on human rights claims. and this trend is only likely to grow. 1 Studies have found that it is not only the impacts of climate change but also mitigation responses to 2 climate change that affect human rights (Shi, X., Chen, Y., Liu 2017).

3 14.5.1.3 Trade agreements and regional economic communities

4 As discussed in AR5, policies to open up trade can have a range of effects on GHG emissions, just as

5 mitigation policies can influence trade flows among countries. Trade rules may impede mitigation

6 action by limiting countries' discretion in adopting trade-related climate policies, but they also have the

7 potential to stimulate the international adoption and diffusion of mitigation technologies and policies

8 (Droege et al. 2017).

9 The mitigation impacts of trade agreements are difficult to ascertain, and the limited evidence is mixed.

10 Examining the effects of three free trade agreements (FTAs) – Mercosur, the North American Free

11 Trade Agreement (NAFTA) and the Australia-United States Free Trade Agreement – on GHG 12 emissions, (Nemati et al. 2019) find that these effects depend on the relative income levels of the

countries involved, and that FTAs between developed and developing countries may increase emissions

14 in the long run. However, studies also suggest that FTAs incorporating specific environmental or

- 15 climate-related provisions can help reduce GHG emissions (Baghdadi et al. 2013; Sorgho and Tharakan
- 16 2020).

17 Investment agreements, which are often integrated in FTAs, seek to encourage the flow of foreign 18 investment through investment protection. These agreements have tended to protect investor rights,

19 constraining the latitude of host countries in adopting environmental policies (Miles 2019). Moreover,

20 international investment agreements may lead to 'regulatory chill', which may lead to countries

21 refraining from or delaying the adoption of mitigation policies (Tienhaara 2018). More contemporary

22 investment agreements seek to better balance the rights and obligations of investors and host states, and

in theory offer greater regulatory space to host states (UNCTAD 2019), although it is unclear to what
 extent this will hold true in practice.

25 In their NDCs, parties mention various trade-related mitigation measures, including import bans, 26 standards and labelling schemes, border carbon adjustments (BCAs; see also Chapter 13), renewable 27 energy support measures, fossil fuel subsidy reform, and the use of international market mechanisms 28 (Brandi 2017). Some of these 'response measures' (Chan 2016b) may raise questions concerning their 29 consistency with trade agreements of the World Trade Organisation (WTO). Non-discrimination is one 30 of the foundational rules of the WTO. This means, among others, that 'like' imported and domestic 31 products are not treated differently ('national treatment') and that a WTO member should not 32 discriminate between other members ('most-favoured-nation treatment'). These principles are 33 elaborated in a set of agreements on the trade in goods and services, including the General Agreement 34 on Tariffs and Trade (GATT), the General Agreement on Trade in Services (GATS), the Agreement on 35 Technical Barriers to Trade (TBT), and the Agreement on Subsidies and Countervailing Measures 36 (ASCM).

37 Some measures that can be adopted as part of carbon pricing instruments have been examined in the 38 light of WTO rules. Specifically, the free allocation of emissions allowances under an ETS could in 39 some cases be considered a subsidy inconsistent with the ASCM (Rubini and Jegou 2012). The WTO 40 compatibility of another measure that countries could adopt to address the problem of carbon leakage, 41 namely BCAs, has been widely discussed (Ismer and Neuhoff 2007; Tamiotti 2011; Pauwelyn 2013; 42 Holzer 2014; Cosbey et al. 2019; Mehling et al. 2019; Porterfield 2019). These analyses gained new 43 currency following the initiative to introduce a 'carbon border adjustment mechanism' in the EU 44 (European Commission 2019). BCAs can in principle be designed and implemented in accordance with 45 international trade law, but the details matter. To increase the likelihood that a BCA will be compatible 46 with international trade and climate change agreements, studies suggest that it should: have a clear 47 environmental rationale (i.e. reduce carbon leakage); apply to imports and exclude exports; account for

the mitigation efforts by other countries; and provide for fairness and due process in the design and
 implementation (Pauwelyn 2013; Cosbey et al. 2019; Mehling et al. 2019).

3 Like BCAs, other regulatory measures may also target the GHG emissions associated with the

4 production of goods (Dobson 2018). These measures include emissions standards for the production

5 process of imported goods, and carbon footprint labels. The compatibility of such measures with trade

6 agreements remains subject to debate, though non-discriminatory measures targeting the emissions

- 7 from a product itself (e.g. fuel efficiency standards for cars) are more likely to be allowed than measures
- targeting the production process of a good (Green 2005). Mayr et al. (2020) suggest that sustainability
 standards targeting the emissions from indirect land-use change associated with the production of
- biofuels may be inconsistent with the TBT Agreement. Importantly, trade rules express a strong
- preference for the international harmonisation of standards over unilateral measures (Delimatsis 2016).
- 12 Renewable energy support measures may be at odds with the ASCM, the GATT, and the WTO

Agreement on Trade-Related Investment Measures. In WTO disputes, measures adopted in Canada, India, and the United States to support clean energy generation were found to be inconsistent with WTO

15 law due to the use of discriminatory local content requirements, such as the requirement to use

16 domestically produced goods in the production of renewable energy (Cosbey and Mavroidis 2014;

Kulovesi 2014; Lewis 2014; Wu and Salzman 2014; Charnovitz and Fischer 2015; Shadikhodjaev 2015;

18 Espa and Marín Durán 2018).

19 Some measures may both lower trade barriers and potentially bring about GHG emission reductions.

20 An example is the liberalisation of trade in environmental goods (Hu et al. 2020). In 2012, the APEC

- 21 economies agreed to reduce tariffs for a list of 54 environmental goods (including e.g. solar cells; but
- 22 excluding e.g. biofuels or batteries for electric vehicles). However, negotiations on an Environmental
- 23 Goods Agreement under the WTO stalled in 2016 due in part to disagreement over which goods to
- 24 include (de Melo and Solleder 2020). Another example is fossil fuel subsidy reform, which may reduce
- 25 GHG emissions (Jewell et al. 2018; Erickson et al. 2020) and lower trade distortions (Burniaux et al. 2020) H
- 26 2011; Moerenhout and Irschlinger 2020). However, fossil fuel subsidies have largely remained 27 unchallenged before the WTO due to legal and political hurdles (Asmelash 2015; De Bièvre et al. 2017;
- 28 Meyer 2017; Steenblik et al. 2018; Verkuijl et al. 2019).
- 29 With limited progress in the multilateral trading system, some studies suggest that regional FTAs hold 30 potential for strengthening climate governance. In some cases, climate-related provisions in such FTAs 31 can go beyond provisions in the Kyoto Protocol and Paris Agreement, addressing for instance 32 cooperation on carbon markets or electric vehicles (Gehring et al. 2013; van Asselt 2017; Morin and 33 Jinnah 2018; Gehring and Morison 2020). However, Morin and Jinnah (2018) find that these provisions 34 are at times vaguely formulated, not subject to third-party dispute settlement, and without sanctions or 35 remedy in case of violations. Moreover, such provisions are not widely used in FTAs, and they are not 36 adopted by the largest GHG emitters. For instance, the 2019 United States-Mexico-Canada Agreement, 37 NAFTA's successor, does not include any specific provisions on climate change, although it could 38 implement cooperative mitigation actions through its Commission for Environmental Cooperation
- 39 (Laurens et al. 2019).
- A trend in international economic governance has been the adoption of 'mega-regional' trade
 agreements involving nations responsible for a substantial share of world trade, such as the
 Comprehensive and Progressive Agreement for Trans-Pacific Partnership (CPTPP), the EU-Canada
 Comprehensive Economic and Trade Agreement (CETA), and the Regional Comprehensive Economic
- 44 Partnership (RCEP) in East Asia. Given the size of the markets covered by these agreements, they hold
- 45 potential to diffuse climate mitigation standards (Meltzer 2013; Holzer and Cottier 2015). However,
- 46 although CETA includes climate-related provisions and parties have made a broad commitment to
- 47 implement the Paris Agreement (Laurens et al. 2019), RCEP and CPTPP do not include provisions
- 48 specifically about climate change.

Studies have discussed various options to minimise conflicts, and strengthen the role of trade agreements in climate action. Some of these options require multilateral action, including: (1) the amendment of WTO agreements to accommodate climate action; (2) the adoption of a 'climate waiver' that temporarily relieves WTO members from their obligations; (3) a 'peace clause' through which members commit to refraining from challenging each other's measures; (4) an 'authoritative

6 interpretation' by WTO members of ambiguous WTO provisions; (5) improved transparency of the 7 climate impacts of trade measures; (6) the inclusion of climate expertise in WTO disputes; and (7)

- climate impacts of trade measures; (6) the inclusion of climate expertise in WTO disputes; and (7)
 intensified institutional coordination between the WTO and UNFCCC (Hufbauer et al. 2009; Epps and
- Green 2010; Bacchus 2016; Droege et al. 2017; Das et al. 2019). In addition, issue-specific suggestions
- 10 have been put forward, such as reinstating an exception for environmentally motivated subsidies under
- 11 the ASCM (Horlick and Clarke 2017).

12 Options can also be pursued at the plurilateral and regional level. Several studies suggest that climate 13 clubs (see Section 14.2.2) could employ trade measures, such as lower tariffs for climate-related goods 14 and services, or BCAs, to attract club members (Keohane et al. 2017; Nordhaus 2015; Brewer et al. 15 2016; Stua 2017b; Banks and Fitzgerald 2020). Another option is to negotiate a new agreement 16 addressing both climate change and trade. Negotiations between six countries (Costa Rica, Fiji, Iceland, 17 New Zealand, Norway, Switzerland) were launched in 2019 on a new Agreement on Climate Change, 18 Trade and Sustainability (ACCTS), which, if successfully concluded, would liberalise trade in 19 environmental goods and services, create new rules to remove fossil fuel subsidies, and develop 20 guidelines for voluntary eco-labels (Steenblik and Droege 2019). At the regional level, countries could 21 further opt for the inclusion of climate provisions in the (re)negotiation of FTAs (Yamaguchi 2020a; 22 Morin and Jinnah 2018). Moreover, the conduct of climate impact assessments of FTAs could help 23 identify options to achieve both climate and trade objectives (Porterfield et al. 2017). In their assessment 24 of various options for reform, (Das et al. 2019) find that the near-term feasibility of options that require 25 consensus at the multilateral level (notably amendments of WTO agreements) is low. By contrast, 26 options involving a smaller number of parties, as well as options that can be implemented by WTO 27 members on a voluntary basis, face fewer constraints.

For international investment agreements, various other suggestions have been put forward to accommodate climate change concerns. These include incorporating climate change through ongoing reform processes, such as reform of investor-state dispute settlement under the UN Commission on International Trade Law (UNCITRAL); modernisation of the Energy Charter Treaty; the (re)negotiation of international investment agreements; and the adoption of a specific treaty to promote investment in climate action (Yamaguchi 2020b; Brauch et al. 2019; Tienhaara and Cotula 2020).

34 14.5.1.4 South-South cooperation

- South-South (SSC) and triangular (TrC) cooperation are bold, innovative, and rapidly developing means
 of strengthening cooperation for the achievement of the SDGs (FAO 2018). SSC is gaining momentum
 in achieving sustainable development and climate actions in developing countries (UN 2017b). Through
- SSC, countries are able to map their capacity needs and knowledge gaps and find sustainable, cost-
- effective, long-lasting and economically viable solutions (FAO 2019).
- There has been a recent resurgence of South-South cooperation. Gray and Gills (2016), signalled inter alia by the South-South Cooperation Action Plan adopted by the UN as a substantive pillar to support the implementation of the UN Climate Change Engagement Strategy 2017 (UNOSC 2017). Liu et al. (2017a) explored prospects for South–South cooperation for large-scale ecological restoration, which is an important solution to mitigate climate change. Emphasis is given to experience and expertise sharing, co-financing, and co-development of new knowledge and know-how for more effective policy and practice worldwide, especially in developing and newly industrialised countries.
- Janus, Klingebiel and Hahn (2014) explore evolving development cooperation and its future governance
 architecture based on The Global Partnership for Effective Development Cooperation (GPEDC) and

1 The United Nations (UN) Development Cooperation Forum (DCF). Drawing on evidence from the 2 hydropower, solar and wind energy industry in China, Urban (2018) introduces the concept of 3 'geographies of transfer and cooperation' and challenges the North-South technology transfer and 4 cooperation paradigm for low carbon innovation and climate change mitigation. While North-South 5 technology transfer and cooperation (NSTT) for low carbon energy technology has been implemented 6 for decades, South-South technology transfer and cooperation (SSTT) and South-North technology 7 transfer and cooperation (SNTT) have only recently emerged. Kirchher and Urban (2018) provide a 8 meta-synthesis of the scholarly writings on NSTT, SSTT and SNTT from the past 30 years. The 9 discussion focuses on core drivers and inhibitors of technology transfer and cooperation, outcomes as 10 well as outcome determinants. A case study of transfer of low-carbon energy innovation and its 11 opportunities and barriers, based on first large Chinese-funded and Chinese-built dam in Cambodia is 12 presented by Urban et al. (2015a).

- 13 Urban, Zhou, Nordensward and Narain (2015b) explore the role that technology transfer/cooperation 14 from Europe played in shaping firm level wind energy technologies in China and India and discuss the
- 15 recent technology cooperation between the Chinese, Indian, and European wind firms. The research
- 16 finds that firm-level technology transfer/cooperation shaped the leading wind energy technologies in
- 17 China and to a lesser extent in India. Thus, the technology cooperation between China, India, and
- 18 Europe has become multi-faceted and increasingly Southern-led.
- 19 Rampa, Bilal and Sidiropoulos (2012) focus on the manner in which African states understand and
- 20 approach new opportunities for cooperation with emerging powers, especially China, India and Brazil,
- 21 including the crucial issue of whether they seek joint development initiatives with both traditional
- 22 partners and emerging powers. UN (2018) presents and analyses case studies of SSTT in Asia-Pacific
- and Latin America and Caribbean regions. Illustrative case studies on TrC can be consulted in Shimoda
- and Nagasawa (2012), and specific cases on biofuel SSC and TrC in UNCTAD (2012).

25 The central argument in the majority of these case studies is that South-South cooperation, which is 26 value-neutral, is contributing to sustainable development and capacity building (Rampa et al. 2012; 27 Shimoda and Nakazawa 2012; UN 2018). An important new development in SSC is that in relation to 28 some technologies the cooperation is increasingly led by Southern countries (for instance, wind energy 29 between Europe, India and China), challenging the classical North-South technology cooperation 30 paradigm. More broadly, parties should ensure the sustainability of cooperation, rather than focusing 31 on short-term goals (Eyben 2013). The Belt and Road Initiative (BRI) is a classic example of a recent 32 SSC Initiative led by China. According to a joint study by Tsinghua University and Vivid Economics 33 the 126 countries in the BRI region, excluding China, currently account for about 28% of global GHG 34 emissions, but this proportion may increase to around 66% by 2050 if the carbon intensity of these 35 economies only decreases slowly (according to historical patterns shown by developing countries). In this context it is important to highlight that China has already outlined a vision for a green BRI, and 36 37 recently increased its commitment through the Green Investment Principles (GIP) initiative, announcing 38 a new international coalition to improve sustainability and promote green infrastructure (Jun and Zadek 39 2019).

40 Information on triangular cooperation is more readily available than on South-South cooperation though 41 some UN organisations such as UNDP and FAO have established platforms for the latter which also 42 includes climate projects. Further, although there are many South-South cooperation initiatives 43 involving the development and transfer of climate technologies the understanding of the motivations, 44 approaches and designs is limited and not easily accessible. There is no dedicated platform for South-45 South and triangular cooperation on climate technologies. Hence, it is still too early to fully assess the achievements in the field of climate action (UNFCCC and UNOSSC 2018). In order to maximise its 46 47 unique contribution to Agenda 2030, southern providers recognise the benefits of measuring and 48 monitoring South-South cooperation, and there is a clear demand for better information from partner

1 countries. Di Ciommo (2017) argues that better data could support monitoring and evaluation, improve

- effectiveness, explore synergies with other resources, and ensure accountability to a diverse set ofstakeholders.
- 4 The global landscape of development cooperation has changed dramatically in recent years, with 5 countries of the South engaging in collaborative learning models to share innovative, adaptable and 6 cost-efficient solutions to their development and socio-economic-environmental challenges, ranging 7 from poverty and education to climate change. The proliferation of new actors and cross-regional 8 modalities had enriched the understanding and practice of development cooperation and generated 9 important changes in the global development architecture towards a more inclusive, effective, and 10 horizontal development agenda. South-South cooperation will grow in the future. However, there are 11 knowledge gaps in relation to the precise volume, impact, effectiveness and quality of development cooperation from emerging development partners. This gap needs to be plugged, and evidence on such 12 13 cooperation strengthened.

14 **14.5.2 International sectoral agreements and institutions**

Sectors refer to distinct areas of economic activity, often subject to their own governance regimes;
 examples include energy production, mobility, and manufacturing. A sectoral agreement could include

- 17 virtually any type commitment with implications for mitigation. It could establish sectoral emission
- 18 targets, on either an absolute or an indexed basis. It could also require states (or particular groups of
- 19 states, if commitments are differentiated) to adopt uniform or harmonised policies and measures for a
- 20 sector, such as technology-based standards, taxes, or best-practice standards, as well as providing for
- 21 cooperation on technology research or deployment.

22 14.5.2.1 Forestry, land-use and REDD+

23 Since 2008, several, often overlapping, voluntary and non-binding international efforts and agreements 24 have been adopted to reduce net emissions from the forestry sector. These initiatives have varying levels 25 of private sector involvement and different objectives, targets, and timelines. Some efforts focus on 26 reducing emissions from deforestation and degradation, while other focus on negative emissions 27 through restoration of cleared or degraded landscapes. These initiatives do not elaborate specific 28 policies, procedures, or implementation mechanisms. They merely set targets, frameworks, and 29 milestones, aiming to catalyse further action, investment, and transparency in conservation and 30 consolidate individual country efforts.

- 31 After the admittedly ineffective UN-sponsored Tropical Forestry Action Plan (Seymour and Busch 32 2016; Winterbottom 2015), the longest standing program in the forestry sector is the UN REDD+ 33 Programme, initiated in 2008, which aims to reduce forest emissions and enhance carbon stocks in 34 forests while contributing to national sustainable development in developing countries, after the 2007 35 COP13 in Bali formally adopted REDD+ in the UNFCCC decisions and incorporated it in the Bali Plan 36 of Action. As discussed above, Article 5 of the Paris Agreement encourages parties to take action to 37 implement and support REDD+. These efforts tend to focus on reducing emissions through the creation 38 of protected areas, payments for ecosystem services, and/or land tenure reform (Pirard et al. 2019). The 39 programme supports national REDD+ efforts, inclusion of stakeholders in relevant dialogues, and 40 capacity building toward REDD+ readiness in partner countries. The Forest Carbon Partnership Facility 41 is a related initiative that helps facilitate funding for REDD+ readiness and specific projects. To date 42 the conservation and emissions impacts of REDD+ remain poorly understood (Pirard et al. 2019), but 43 existing evidence suggests that reductions in deforestation from subnational REDD+ initiatives have
- 44 been minimal (Bos et al. 2017).
- The shift in the REDD+ focus from mere ecosystem service payment to domestic policy realignments and incentive structure has changed the way REDD+ was developed and implemented (Brockhaus et
- 47 al. 2017). Large-scale market resources have not fully materialised due to the failure to establish a

global carbon market system that explicitly integrates REDD+ (Angelsen 2017). Public funding for REDD+ is also limited. Leading up to the adoption of the Paris Agreement, the governments of Germany, Norway, and the United Kingdom formed a partnership in 2014 called 'GNU' to support results-based financing for REDD+, with Norway emerging as one of, if not the single largest major donor for REDD+ through its 2007 pledge in 2007 of some \$3 billion annually. Norway pledged \$1

billion for Brazil in 2008 and the same for Indonesis in 2010 (Schroeder et al. 2020)

6 billion for Brazil in 2008 and the same for Indonesia in 2010 (Schroeder et al. 2020).

7 In addition to Brazil, Indonesia has attracted significant interest as a host country for REDD+. Indonesia 8 ranks second, after Brazil, as the largest producer of deforestation-related greenhouse gas emissions 9 (Zarin et al. 2016), but it commits to a large reduction of deforestation in its conditional NDC 10 (Government of Indonesia 2016). Norway, Germany, the United Kingdom, and Australia have 11 collaborated on scientific research and emission reduction monitoring (Tacconi 2017). It took a while, however, before emission reductions were witnessed (Meehan et al. 2019). The expansion of 12 commodity plantations, however, conflict with the reduction ambitions (Anderson et al. 2016; Irawan 13 14 et al. 2019). In addition to implementation at the site and jurisdictional levels, legal enforcement 15 (Tacconi et al. 2019) as well as policy and regulatory reforms (Ekawati et al. 2019) appears to be needed.

Another relevant initiative is one under the 2015 United Nations Convention to Combat Desertification 16 17 (UNCCD), which targets land degradation neutrality i.e., 'a state whereby the amount and quality of 18 land resources, necessary to support ecosystem functions and services and enhance food security, 19 remains stable or increases within specified temporal and spatial scales and ecosystems' (Orr et al. 20 2017). This overarching goal was recognised as also being critical to reaching the more specific avoided 21 deforestation and degradation and restoration goals of the UNFCCC and UNCBD. The Land 22 Degradation Neutrality (LDN) initiative from UNCCD includes target setting programmes (TSP) that 23 assist countries by providing practical tools and guidance for the establishment of the voluntary targets 24 and formulate associated measures to achieve LDN and accelerate implementation of projects (Chasek 25 et al. 2019). Today, 124 countries have committed to their LDN national targets (UNCCD 2015). The 26 LDN Fund is an investment vehicle launched in UNCCD COP 13 in 2017, which exists to provide long-27 term financing for private projects and programmes for countries to achieve their LDN targets. 28 According to the UNCCD, most of the funds will be invested in developing countries.

29 Recent efforts toward reduced emissions from the forestry sector have the overarching goal of reaching 30 zero gross deforestation globally (no more clearing of natural forests). The New York Declaration on 31 Forests was the first international pledge to call for a halving of 'natural forest' loss by 2020 and the 32 elimination of natural forest loss by 2030 (Climate Focus 2016). It was endorsed at the United Nations 33 Climate Summit in September 2014. By September 2019 the list of NYDF supporters included over 34 200 actors: national governments, sub-national governments, multi-national companies, groups 35 representing indigenous communities, and non-government organisations. These endorsers have committed to doing their part to achieve the NYDF's ten goals, which include ending deforestation for 36 37 agricultural expansion by 2020, reducing deforestation from other sectors, restoring forests, and 38 providing financing for forest action (Forest Declaration 2019).

39 The effectiveness of these agreements, which lack binding rules, can only be judged by the 40 supplementary actions they have catalysed. The NYDF contributed to the development of several other 41 zero-deforestation pledges, including the Amsterdam Declarations by seven European nations to 42 achieve fully sustainable and deforestation-free agro-commodity supply chains in Europe by 2020 and 43 over 150 individual company commitments to not source products associated with deforestation 44 (Lambin et al. 2018; Donofrio et al. 2017). Recent studies indicate that these efforts currently lack the 45 potential to achieve wide-scale reductions in clearing and associated emissions due to weak implementation (Garrett et al. 2019). The NYDF may have triggered small additional reductions in 46 47 deforestation in some areas, particularly for soy, and to a lesser extent cattle, in the Brazilian Amazon 48 (Lambin et al. 2018), but these effects were temporary, as efforts are being actively reversed and

- 1 deforestation has increased again significantly. Deforestation rates have escalated in Brazil, with the
- 2 rate in June 2019 (the first dry-season month in the new administration) up 88% over the 2018 rate in
- 3 the same month (INPE 2019). Curtis et al (2018) find global targets are clearly not being met
- 4 In 2010, the parties to the CBD adopted the Strategic Plan for Biodiversity 2011–2020 which included
- 5 20 targets known as the Aichi Biodiversity targets (Marques et al. 2014). Of relevance to the forestry
- 6 sector, Aichi Target 15 sets the goal of enhancing ecosystem resilience and the contribution of
- 7 biodiversity to carbon stocks though conservation and restoration, including 'restoration of at least 15%
- 8 of degraded ecosystems' (UNCBD 2010). The plan elaborates milestones, including the development
- 9 of national plans for potential restoration levels and contributions to biodiversity protection, carbon 10 sequestration, and climate adaptation to be integrated into other national strategies, including REDD+.
- 11 Recent efforts toward negative emissions through restoration include the Bonn Challenge, the African
- 12 Forest Landscape Restoration Initiative (AFR 100) and Initiative 20X20. The Bonn Challenge, initiated
- 13 in 2011 by the Government of Germany and the IUCN, is intended to catalyse the existing international
- 14 AFOLU commitments. It aims to bring 150 million hectares (Mha) of the world's deforested and
- degraded land into restoration by 2020, and 350 Mha by 2030. AFR has the goal of restoring 100 Mha
- specifically in Africa (Nhlapho 2019), while 20X20 aims to restore 20 Mha in Latin America and the Caribbean (Peimbert 2019). Increasing commitments for restoration have created momentum for
- 17 Caribbean (Peimbert 2019). Increasing commitments for restoration have created momentum for 18 restoration interventions (Chazdon et al. 2017; Mansourian et al. 2017; Djenontin et al. 2018). To date
- 19 97 Mha has been pledged in INDCs. Yet only a small part of this goal has been achieved. The Bonn
- 20 Challenge Barometer a progress-tracking framework and tool to support pledgers indicates that 27
- 20 Channelige Darohieter a progress-racking framework and tool to support predgets $^{-1}$ indicates that 2721 Mha (InfoFLR 2018) are currently being restored, equivalent to 1.379 billion tonnes CO₂eq sequestered
- 22 (Dave et al. 2019). A key challenge in scaling up restoration has been to mobilise sufficient financing
- 23 (FAO and UNCCD 2015; Djenontin et al. 2018). This underscores the importance of building
- international financing for restoration (equivalent to the Forest Carbon Partnership Facility focused on
- 25 avoided deforestation and degradation).
- In sum, existing international agreements have had a small impact on reducing emissions from the AFOLU sector and some success in achieving negative emissions through restoration. However, these
- 27 AFOLO sector and some success in achieving negative emissions through restoration. However, these 28 outcomes are nowhere near levels required to meet the Paris Agreement goals –which would require
- turning land use and forests globally 'from a net anthropogenic source during 1990-2010 (1.3 ± 1.1
- 30 GtCO₂eq yr⁻¹) to a net sink of carbon by 2030 (up to -1.1 ± 0.5 GtCO₂eq yr⁻¹), and providing a quarter
- 31 of emission reductions planned by countries' (Grassi et al. 2017). The AFOLU sector continues to be a
- 32 large source of emissions that is not close to being offset by existing restoration initiatives.

33 14.5.2.2 Energy sector

34 International cooperation on issues of energy supply and security has a long and complicated history. 35 There exists a plethora of institutions, organisations, and agreements concerned with managing the 36 sector. There have been efforts to map the relevant actors, with authors identifying in one case six 37 primary organisations (Kérébel and Keppler 2009), in another sixteen (Lesage et al. 2010), and in a 38 third fifty (Sovacool and Florini 2012). At the same time, very little of that history has had climate 39 mitigation as its core focus. As Van de Graaf and Colgan (Van de Graaf and Colgan 2016) document, 40 global energy governance has encompassed five broad goals – security of energy supply and demand, 41 economic development, international security, environmental sustainability, and domestic good governance - and as only one of these provides an entry point for climate mitigation, effort in this 42 43 direction has often been lost. To take one example, during the 1980s and 1990s a combination of 44 bilateral development support and lending practices from multilateral development banks pushed 45 developing countries to adopt power market reforms consistent with the Washington Consensus: towards liberalised power markets and away from state-owned monopolies. The goals of these reforms 46 47 did not include an environmental component, and among the results was new investment in fossil-fired 48 thermal power generation (Foster and Rana 2020).

1 As Goldthau and Witte (2010) document, the majority of governance effort, outside of oil and gas 2 producing states, was oriented towards ensuring reliable and affordable access to oil and gas imports.

3 For example, the original rationale for creation of the International Energy Agency (IEA), during the

4 oil crisis of 1973-74, was to manage a mechanism to ensure importing countries access to oil (Van de

5 Graaf and Lesage 2009). On the other side of the aisle, oil exporting countries created the international

6 institution of OPEC to enable them to influence oil output, thereby stabilising prices and revenues for

7 exporting countries (Fattouh and Mahadeva 2013). For years, energy governance was seen as a zero-

8 sum game between these poles (Goldthau and Witte 2010). The only international governance agency

9 focusing on low carbon energy sources was the International Atomic Energy Agency, with a dual

10 mission of promoting nuclear energy and nuclear weapons non-proliferation (Scheinman 1987).

11 More recently, however, new institutions have emerged, and existing institutions have realigned their 12 missions, in order to promote capacity building and global investment in low carbon energy 13 technologies. Collectively, these developments may support the emergence of a nascent field of global 14 sustainable energy governance, in which a broad range of global, regional, national, sub-national and 15 non-state actors, in aggregate, shape, direct and implement the low carbon transition through climate 16 change mitigation activities, which produce concomitant societal benefits (Bruce 2018). Beginning in the 1990s, for example, the IEA began to broaden its mission from one concerned primarily with 17 18 security of oil supplies, which encompassed conservation of energy resources, to one also concerned 19 with the sustainability of energy use, including work programs on energy efficiency and clean energy 20 technologies and scenarios (Van de Graaf and Lesage 2009). Scholars have suggested that it was the 21 widespread perception that the IEA was primarily interested in promoting the continued use of fossil 22 fuels, and underplaying the potential role of renewable technologies, that led a number of IEA member 23 states to successfully push for the creation of a parallel organisation, the International Renewable 24 Energy Agency (IRENA), which was then established in 2009 (Van de Graaf 2013). An assessment of 25 IRENA's activities in 2015 suggested that the agency has a positive effect related to three core activities: 26 offering advisory services to member states regarding renewable energy technologies and systems; 27 serving as a focal point for data and analysis for renewable energy; and, mobilising other international 28 institutions, such as multilateral development banks, promoting renewable energy (Urpelainen and Van 29 de Graaf 2015). The United Nations, including its various agencies such as the Committee on 30 Sustainable Energy within the United Nations Economic Commission for Europe, has also played a role 31 in the realignment of global energy governance towards mitigation efforts. As a precursor to SDG 7, 32 the United Nations initiated in 2011 the Sustainable Energy for All initiative, which in addition to 33 aiming for universal access to modern energy services, included the goals of doubling the rate of 34 improvement in energy efficiency, and doubling by 2030 the share of renewable energy in the global 35 energy mix (Bruce 2018).

36 Sub-global agreements have also started to emerge, examples of issue-specific climate clubs. In 2015,

37 seventy solar-rich countries signed a framework agreement dedicated towards promoting solar energy

development (International Solar Alliance 2015). In 2017 the Powering Past Coal Alliance was formed,

39 uniting a set of states, businesses, and non-governmental organisations around the goal of eliminating

40 coal-fired power generation by 2050 (Blondeel et al. 2020). Chapter 6 of this report, on energy systems,

41 notes the importance of regional cooperation on electric grid development, seen as necessary to enable 42 higher shares of solar and wind power penetration (RGI 2011). Finally, a number of transportional

42 higher shares of solar and wind power penetration (RGI 2011). Finally, a number of transnational 43 organisations and activities have emerged, such as *REN21*, a global community of renewable energy

43 organisations and activities have emerged, such as *REN21*, a global community of renewable energy 44 experts (REN21 2019), and *RE100*, an NGO led initiative to enlist multilateral companies to shift

45 towards 100% renewable energy in their value chains (RE100 2019).

46 Whether a result of the above activities or not, multilateral development banks' lending practices have

47 shifted in the direction of renewable energy (Delina 2017), a point also raised in Chapter 15 of this

48 Assessment Report. Activities include new sources of project finance, concessional loans, as well as

1 loan guarantees, the latter through the Multilateral Investment Guarantee Agency (MIGA 2019). This

appears to matter. For example, Frisari and Stadelmann (2015) find concessional lending by multilateral
 development banks to solar energy projects in Morocco and India to have reduced overall project costs,

4 due to more attractive financing conditions from additional lenders, as well as reducing the costs to

5 local governments. Labordena et al. (2017) projected these results into the future, and found that with

6 the drop in financing costs, renewable energy projects serving all major demand centres in sub-Saharan

7 Africa could reach cost parity with fossil fuels by 2025, whereas without the drop in financing costs

8 associated with concessional lending, this would not be the case. Similarly, Creutzig et al. (2017)

9 suggest that greater international attention to finance could be instrumental in the full development of

10 solar energy.

Despite improvements in the international governance of energy, it still appears that a great deal of this is still concerned with promoting further development of fossil fuels. One aspect of this is the

development of international legal norms. A large number of bilateral and multilateral agreements,

14 including the 2015 Energy Charter Treaty, include provisions for using a system of investor-state 15 dispute settlement (ISDS) designed to protect the interacts of investors in a system of investor-state

dispute settlement (ISDS), designed to protect the interests of investors in energy projects from national

policies that could lead their assets to be stranded. Numerous scholars have pointed to ISDS being able

17 to be used by fossil-fuel companies to block national legislation aimed at phasing out the use of their

assets (Bos and Gupta 2019; Tienhaara 2018). Another aspect is finance; Gallagher et al. (2018)

19 examine the role of national development finance systems, focusing in particular on China. They find

20 the majority of finance devoted to projects associated either with fossil fuel extraction or with fossil

fuel-fired power generation. Ascensão et al. (2018) similarly suggest that activities associated with the Belt and Road Initiative could play a role in slowing down mitigation efforts in developing countries.

ben and Koad initiative could play a role in slowing down mitigation efforts in developing countries.

23 Given the complexity of global energy governance, it is impossible to make a definitive statement about

its overall contribution to mitigation efforts. Three statements, do however, appear to be robust. First, prior to the emergence of climate change on the global political agenda, international cooperation in the

area of energy was primarily aimed at expanding and protecting the use of fossil energy, and these goals

were entrenched in a number of multilateral organisations. Second, since the 1990s, international

cooperation has gradually taken climate mitigation on board as one of its goals, seeing a realignment of

29 many pre-existing organisations priorities, and the formation of a number of new international

30 arrangements oriented towards the development renewable energy resources. Third, the realignment is

31 far from complete, and there are still examples of international cooperation having a chilling effect on

32 climate mitigation, particularly through financing and investment practices, including legal norms

33 designed to protect the interests of owners of fossil assets.

34 14.5.2.3 Transportation

The transportation sector has been a particular focus of cooperative efforts on climate mitigation that extend beyond the sphere of the UN climate regime. A number of these cooperative efforts involve transnational public-private partnerships, such as the European-based Transport Decarbonisation Alliance, which brings together countries, regions, cities and companies working towards the goal of a 'net-zero emission mobility system before 2050' (Transportation Decarbonisation Alliance 2019). Other efforts are centred in international institutions, such as the International Civil Aviation Organisation (ICAO) and the International Maritime Organisation (IMO).

42 Regulations introduced by the ICAO and IMO have addressed emissions from international shipping

43 and aviation. Emissions from these parts of the transportation sector are generally excluded from

44 national emissions reduction policies and NDCs because the 'international' location of emissions 45 release makes allocation to individual nations difficult (Rows Larkin 2015; Lyde 2018; Head et al.

release makes allocation to individual nations difficult (Bows-Larkin 2015; Lyle 2018; Hoch et al. 2019). Aviation emissions currently account for 2-2.5% of global CO₂ emissions (Grote et al. 2014;

47 Larsson et al. 2019), with total shipping emissions contributing 2.6% global CO₂ emissions (Olmer et

- 1 al. 2017). Notably, however, the contribution of CO_2 emissions is estimated to represent only 36-51% 2 of the total aviation-related radiative forcing of climate (Terrenoire et al. 2019).
- 3 Despite increasing efficiency, emissions from aviation and shipping are predicted to grow substantially
- 4 with increasing demand (Bows-Larkin 2015; Gençsü and Hino 2015). For international aviation,
- 5 Climate Action Tracker's projections are for a 220-290% increase in CO₂ emissions between 2015 and
- 6 2050, even taking into account the near-term adverse impact of the COVID-19 pandemic on air travel
- 7 (Climate Action Tracker 2020a). In the case of international shipping, the impact of COVID-19 on trade
- 8 and tourist arrivals is estimated to have reduced shipping emissions in 2020 by 18-35% from 2019
- 9 levels. However, by 2030 it is expected that shipping emissions growth may have returned to its pre-
- 10 COVID levels or have experienced a reduction of around 13% compared to pre-COVID projections,
- equating to about 2019 emissions levels (Climate Action Tracker 2020b). Increases in trans-Arctic shipping and tourism activities with sea ice loss are also forecast to have strong regional effects due to
- 13 ships' gas and particulate emissions (Stephenson et al. 2018).
- 14 The Kyoto Protocol required Annex I (developed country) parties to pursue emissions reductions from 15 aviation and marine bunker fuels by working through IMO and ICAO (UNFCCC 1997, Art. 2.2). Limited progress was made by these organisations on emissions controls in the ensuing decades (Liu 16 17 2012), but greater action was prompted by conclusion of the SDGs and Paris Agreement (Martinez 18 Romera 2016), together with unilateral action, such as the EU's inclusion of aviation emissions in its 19 Emissions Trading Scheme (ETS) (Dobson 2020). The Paris Agreement neither explicitly addresses 20 emissions from international aviation and shipping, nor repeats the Kyoto Protocol's provision requiring 21 parties to work through ICAO/IMO to address these emissions (Hoch et al. 2019). This leaves unclear 22 the status of the Kyoto Protocol's article 2.2 directive after 2020 (Dobson 2020; Martinez Romera 23 2016), potentially opening up scope for more attention to aviation and shipping emissions under the 24 Paris Agreement (Doelle and Chircop 2019). In the case of shipping emissions, Doelle and Chircop 25 note there is nothing in the Paris Agreement to prevent a party from voluntarily reporting on such 26 emissions, or from including international shipping in some form in its NDC (Doelle and Chircop 2019). 27 Given provision for a five-yearly global stocktake under the Paris Agreement to monitor progress in 28 emissions reduction (see Section 14.3.2.5 above), there is likely to be increased pressure on parties who 29 are also IMO or ICAO member states to act in the case of inadequate progress in these international 30 institutions on transportation emissions (Doelle and Chircop 2019).
- 31 ICAO has adopted a 'basket' of mitigation measures for the aviation sector consisting of technical and 32 operational measures, measures on sustainable alternative fuels and a market-based measure, known as 33 the Carbon Offset and Reduction Scheme for International Aviation (CORSIA) introduced in 2016 34 (ICAO 2016). CORSIA is intended to be the main international measure for meeting the ICAO's 35 aspirational goal of 'carbon neutral growth from 2020' (ICAO 2016). CORSIA will commence in 2021 36 with a voluntary phase, becoming mandatory from 2027 onwards for states whose share in the total 37 international revenue tonnes per kilometre (RTK) is above a certain threshold (Hoch et al. 2019). Under 38 CORSIA, overall aviation emissions are not capped but rather compensated through use of 'offset units' 39 from emissions reduction projects in other industries (Erling 2018). However, it is unclear whether the 40 goal of carbon neutrality and further CO₂ emissions reduction in the sector will be possible solely 41 through the use of such offsets without additional constraints on demand (Lyle 2018). Likely non-42 participation in CORSIA by countries such as China, as well as Brazil, India and Russia, could 43 significantly undermine its capacity to deliver substantial emissions reductions by limiting coverage of 44 the scheme to less than 50% of international aviation CO_2 emissions in the period 2021-2035 (Climate 45 Action Tracker 2020a; Hoch et al. 2019). In addition, a wider range of offsets can be used in CORSIA 46 than are contemplated under the Paris Agreement Article 6 mechanism and ICAO does not apply quality 47 standards to offsets, which may raise questions over their integrity (Hoch et al. 2019). Further 48 limitations on the scheme's effectiveness are likely as a result of the ICAO Council's decision setting

1 2019 as the baseline year for at least the first three years of CORSIA, despite significant reductions (45-

2 60%) in aviation CO_2 emissions in 2020 compared with 2019 (Climate Action Tracker 2020a). Other

3 measures adopted by ICAO include an aircraft CO_2 emissions standard that applies to new aircraft type

designs from 2020, and to aircraft type designs already in production as of 2023 (Smith and Ahmad
 2018). Overall, CORSIA and applicable regional measures, such as the EU ETS, are estimated to reduce

aviation carbon emissions by only 0.8% per year from 2017-2030 (noting, however, that if non-

7 CO₂ emissions are included in the analysis, then emissions will increase) (Larsson et al. 2019).

- 8 Accordingly, pathways consistent with the temperature goal of the Paris Agreement are likely to require
- 9 more stringent international measures for the aviation sector (Larsson et al. 2019).

10 The IMO has also considered a range of measures to monitor and reduce shipping emissions. In 2016,

11 the IMO's Marine Environment Protection Committee (MEPC) approved an amendment to the

12 MARPOL Convention Annex VI for the introduction of a Mandatory Global Data Collection scheme

for CO₂ emissions (Dobson 2020). Other IMO measures have focused on energy efficiency (Martinez

Romera 2016). The IMO's Energy Efficiency Design Index (EEDI), which is mandatory for new ships, is intended, over a ten-year period, to improve energy efficiency by up to 30% in several categories of

ships propelled by diesel engines (Smith and Ahmad 2018). In May 2019, the MEPC approved draft

amendments to the MARPOL Convention Annex VI, which if adopted, will bring forward the entry

into force of the third phase of the EEDI requirements to 2022 instead of 2025 (IMO 2019; Joung et al.

19 2020).

20 However, it is unlikely that the EEDI and other IMO technical and operational measures will be 21 sufficient to produce necessary emissions reduction because of the future growth in international 22 seaborne trade and world population (Shi and Gullett 2018). Consequently, in 2018, the IMO adopted an initial strategy on reduction of GHG emissions from ships (IMO 2018). This includes a goal for 23 24 declining carbon intensity of the sector by reducing CO₂ emissions per transport work, as an average 25 across international shipping, by at least 40% by 2030, and pursuing efforts towards 70% by 2050, 26 compared to 2008 levels (IMO 2018, para. 3.1). The strategy also aims for peaking of total annual GHG 27 emissions from international shipping as soon as possible and a reduction by at least 50% by 2050 28 compared to 2008 levels, whilst pursuing efforts towards phasing them out 'as soon as possible in this 29 century' as a point 'on a pathway of CO_2 emissions reduction consistent with the Paris Agreement temperature goals' (IMO 2018, para. 2, 3.1). The shipping industry is on track to overachieve the 2030 30 31 carbon intensity target but not its 2050 target (Climate Action Tracker 2020b). The initial IMO strategy 32 is to be kept under review by the MEPC with a view to adoption of a revised strategy in 2023.

33 The IMO's initial strategy identifies a series of candidate short-term (2018-2023), medium-term (2023-

2030) and long-term (beyond 2030) measures for achieving its emissions reduction goals, including

35 possible market-based measures in the medium-to-long term (IMO 2018, paras. 4.7-4.9). Further

36 progress on market-based measures faces difficulty in light of conflicts between the CBDR principle of the elimete regime and the traditional new discrimination engages that has guided next **IMO** regulation

the climate regime and the traditional non-discrimination approach that has guided past IMO regulation
 (Zhang 2016). Both the CBDR and non-discrimination principles are designated as 'principles guiding

the initial strategy' (IMO 2018, para. 3.2). While the IMO strategy is viewed as a reasonable first step

that is ambitious for the industry, there is a the need for the next iteration in 2023 to specify concrete

41 implementation measures and to strengthen targets in order to achieve the 'vision' of alignment with

the temperature goals of the Paris Agreement (Doelle and Chircop 2019; Climate Action Tracker
2020b).

44 **14.5.3** Civil society and social movements

Transnationally-organised civil society actors have had long-standing involvement in international climate policy. The term 'civil society' generally denotes 'the voluntary association of individuals in the public sphere beyond the realms of the state, the market and the family' (de Bakker et al. 2013, p.

48 575). Whereas civil society organisations are usually involved in lobbying or advocacy activities in a

1 public arena, social movements focus on mobilisation and action for social change (Daniel and Neubert 2 2019). Examples of civil society groups involved in international climate policy include non-3 governmental organisations (NGOs) such as Greenpeace International, the World Wildlife Fund, the 4 Environmental Defence Fund, the World Resources Institute, Friends of the Earth and Earthjustice 5 among many others, as well as NGO networks such as the Climate Action Network (CAN), which has 6 over 1300 NGO members in more than 130 countries, working to promote government and individual 7 action to limit human-induced climate change to ecologically sustainable levels (Climate Action 8 Network International 2020). The influence of civil society engagement in global climate governance 9 is well-acknowledged, with these organisations' globally dispersed constituencies and non-state status offering perspectives that differ in significant ways from those of many negotiating states (Derman 10 11 2014).

12 Historically, the issue of climate change did not give rise to intense, organised transnational protest 13 characteristic of social movements (McAdam 2017). During the 1990s and early 2000s, the activities 14 of the global climate movement were concentrated in developed countries and largely sought to exercise 15 influence through participation in UNFCCC COPs and side events (Almeida 2019). The mid-2000s 16 onwards, however, saw the beginnings of use of more non-institutionalised tactics, such as simultaneous 17 demonstrations across several countries, focusing on a grassroots call for climate justice that grew out 18 of previous environmental justice movements (Almeida 2019). Climate justice has been variously 19 defined, but centres on addressing the disproportionate impacts of climate change on the most 20 vulnerable populations and calls for community sovereignty and functioning (Schlosberg and Collins 21 2014; Tramel 2016). Contemporary climate justice groups mobilise multiple strands of environmental 22 justice movements from the Global North and South, as well as from indigenous and peasant rights 23 movements, and are organised as a decentralised network of semiautonomous, coordinated units 24 (Tormos-Aponte and García-López 2018; Claeys and Delgado Pugley 2017). The climate justice 25 movement held global days of protest in most of the world's countries in 2014 and 2015, and mobilised another large campaign in 2018 (Almeida 2019). The polycentric arrangement of the global climate 26 27 movement allows simultaneous influence on multiple sites of climate governance, from the local to the 28 global levels (Tormos-Aponte and García-López 2018).

29 Prominent examples of new climate social movements that operate transnationally are Extinction 30 Rebellion and Fridays for Future, which collectively held hundreds of coordinated protests across the 31 globe in 2019, marking out 'the transnational climate justice movement as one of the most extensive 32 social movements on the planet' (Almeida 2019). Fridays for Future is a children's and youth movement 33 that began in August 2018, inspired by the actions of then 15-year old Greta Thunberg who pledged to 34 strike in front of the Swedish parliament every Friday to protest against a lack of action on climate 35 change in line with the Paris Agreement targets (Fridays for Future 2019). Fridays for Future events 36 worldwide encompass more than 200 countries and close to 10 million strikers. The movement is 37 unusual for its focus on children and the rights of future generations, with children's resistance having 38 received little previous attention in the literature. Fridays for the Future is regarded as a progressive 39 resistance movement that has quickly achieved global prominence (for example, Thunberg was invited 40 to address governments at the UN Climate Summit in New York in September 2019) and is credited 41 with helping to support the discourse about the responsibility of humanity as a whole for climate change 42 (Holmberg and Alvinius 2019). Whereas Fridays for Future has focused on periodic protest action, 43 Extinction Rebellion has pursued a campaign based on sustained non-violent direct citizen action that 44 is focused on three key demands: declaration of a 'climate emergency', acting now to halt biodiversity 45 loss and reduce greenhouse gas emissions to net zero by 2025, and creation of a citizen's assembly on 46 climate and ecological justice (Extinction Rebellion 2019; Booth 2019). The movement first arose in 47 the United Kingdom (UK) - where it claimed credit for adoption of a climate emergency declaration 48 by the UK government - but now has a presence in 45 countries with some 650 groups having formed 49 globally (Gunningham 2019).

1 Transnational civil society organisations advocating for climate justice in global governance have 2 articulated policy positions around rights protections, responsibility-based approaches to climate 3 finance, and the need for transparency and accountability (Derman 2014). Another recent area of 4 activity, which overlaps with that of emerging investor alliances (discussed further in Section 14.5.3.2), 5 is the sustainability of capital investment in fossil fuel assets. Efforts to shift away from fossil fuels led by civil society include the Beyond Coal Campaign (in the US and Europe) and the organisation for a 6 7 Fossil Fuel Non-proliferation Treaty. 350.org has supported mobilisation of youth and university 8 students around a campaign of divestment that has grown into a global movement (Gunningham 2019). 9 As of November 2020, more than 1,200 institutional investors managing over \$14 trillion of assets around the world have committed to divest some or all of their fossil fuel holdings (Mormann 2020). 10 11 Studies suggest that the direct impacts of the divestment movement have so far been small, given a 12 failure to differentiate between different types of fossil fuel companies, a lack of engagement with retail 13 investors, and a lack of guidance for investors on clean energy re-investment (Mormann 2020; Osofsky 14 et al. 2019). The movement has had a more significant impact on public discourse by raising the profile 15 of climate change as a financial risk for investors (Bergman 2018). Blondeel et al (2019) also find that broader appeal of the divestment norm was achieved when moral arguments were linked to financial 16 17 ones, through the advocacy of economic actors, such as Bank of England's governor, Mark Carney.

18 Climate justice campaigns by transnational civil society organisations increasingly embrace action 19 through the courts. Chapter 13 discusses the growth and policy impact of such 'climate litigation' 20 brought by civil society actors in domestic courts, which is attracting increasing attention in the 21 literature (Setzer and Vanhala 2019; Peel and Osofsky 2020). Transnational and international court 22 actions focused on climate change, by contrast, have been relatively few in number (Peel and Lin 2019). 23 This reflects—at least in part—the procedural hurdles to bringing such claims, as in many international 24 courts and tribunals (outside of the area of human rights or investor-state arbitration) litigation can only 25 be brought by states (Bruce 2017). However, there have been active discussions about seeking an 26 advisory opinion from the International Court of Justice on states' international obligations regarding 27 the reduction of greenhouse gas emissions (Sands 2016; Wewerinke-Singh and Salili 2020), or bringing 28 a case to the International Tribunal for the Law of the Sea on marine pollution harms caused by climate 29 change (Boyle 2019). The aim of climate litigation is generally to supplement other regulatory efforts 30 by filling gaps and ensuring that interpretations of laws and policies are aligned with climate mitigation 31 goals (Osofsky 2010).

32 The overall impact of transnationally-organised civil society action and social movements for 33 international cooperation on climate change mitigation has not been comprehensively evaluated in the 34 literature. This may reflect the polycentric organisation of the movement, which poses challenges for 35 coordinating between groups operating in different contexts, acting with different strategies and around 36 multiple issues, and lobbying multiple decision-making bodies at various levels of government in a 37 sustainable way (Tormos-Aponte and García-López 2018). Influence may be enhanced through taking 38 advantage of 'movement spillover' (the involvement of activists in more than one movement) (Hadden 39 2014) and coordination of activities with a range of 'non-state governors,' including cities, sub-national 40 governments, and investor groups (Gunningham 2019). Studies of societal change suggest that once 41 3.5% of the population are mobilised on an issue, far-reaching change becomes possible (Gladwell 42 2002; Chenoweth and Belgioioso 2019) – a tipping point that may be approaching in the case of climate 43 change (Gunningham 2019).

44 **14.5.4** Transnational business and public-private partnerships and initiatives

An important feature of the evolving international climate policy landscape of the recent years is the entrepreneurship of UN agencies such as UNEP and UNDP, as well as international organisations such as the World Bank in initiating public-private partnerships (PPPs). Andonova (2017) calls this 'governance entrepreneurship'. Such partnerships can be defined as 'voluntary agreements between public actors (IOs, states, or sub-state public authorities) and non-state actors (non-governmental organisations (NGOs), companies, foundations, etc.) on a set of governance objectives and norms, rules, practices, and/or implementation procedures and their attainment across multiple jurisdictions and

4 levels of governance' (Andonova 2017). Partnerships may carry out different main functions: first,

policy development; establishing new agreements on norms, rules, or standards among a broader set of

powery aevelopment, establishing new agreements on norms, rules, or standards among a broader set of
 governmental and non-governmental actors; second, *enabling implementation and delivery of services*,

7 by combining resources from governmental and non-governmental actors; and, third, *knowledge*

8 *production and dissemination*, to e.g. the evolution of relevant public policies.

9 An example of a prominent PPP in the area of climate mitigation is the Renewable Energy Network 10 (REN21), which is a global multi-stakeholder network focused on promoting renewable energy policies 11 in support of the transition to renewable energy through knowledge. It includes members from industry, NGOs, intergovernmental organisations, and science and academia (established 2004). Another 12 13 example is the Green Economy Coalition founded in 2009 to bring to bear the perspectives of workers, 14 business, poor people, the environment community, and academics in the transition to greener and more 15 sustainable economy. More recently, the UNFCCC 'Race to Zero' initiative led by High-level Climate 16 Champions Nigel Topping and Gonzalo Muñoz seeks to mobilise actors beyond national governments 17 to join the Climate Ambition Alliance and pursue net zero CO₂ targets. Its membership includes 454 18 cities, 23 regions, 1,391 businesses, 74 of the biggest investors, and 569 universities.

19 PPPs may also be developed to assist with implementation and support of states' climate mitigation 20 commitments. For instance, UNEP has initiated a number of PPPs for climate change finance. These 21 are designed to increase financing for the purposes of disseminating low-carbon technologies to tackle 22 climate change and promote clean energy in many parts of developing countries (Charlery and Traerup

23 2019) (UNEP/CPR/142/4 2018).

24 In 2010 FAO delivered the Framework for Assessing and Monitoring Forest Governance. The 25 Framework draws on several approaches currently in use or under development in major forest 26 governance-related processes and initiatives, including the World Bank's Framework for Forest 27 Governance Reform. The Framework builds on the understanding that governance is both the context 28 and the product of the interaction of a range of actors and stakeholders with diverse interests (FAO 29 2010). For example, UNFCCC and UN-REDD program focus on REDD+ and UNEP focus on TEEB 30 institutional mechanisms have been conceptualised as a 'win-win-win' for mitigating climate, 31 protecting biodiversity and conserving indigenous culture by institutionalising payments on carbon 32 sequestration and biodiversity conservation values of ecosystems services from global to local 33 communities. These mechanisms include public-private partnership, and non-governmental 34 organisation participation. REDD+ and TEEB allocation policies will be interventions in a highly 35 complex system, and will inevitably involve trade-offs; therefore, it is important to question the 'win-36 win-win' discourse (Zia and Kauffman 2018; Goulder et al. 2019). The initial investment and the longer 37 periods of recovery of investment are sometimes barriers to private investment. In this sense, it is 38 important to have government incentives and encourage public-private investment (Ivanova and Lopez 39 2013).

40 The World Bank has also established several partnerships since 2010, mainly in the field of carbon 41 pricing. Prominent examples are the Networked Carbon Markets initiative (established 2013; spanning 42 both governmental actors and experts; now entering a phase II) and the Carbon Pricing Leadership 43 Coalition (established 2015; spanning a wide range of governmental and non-governmental actors, not least within business) (World Bank 2018, 2019; Wettestad, J.; Gulbrandsen, L.H.; Andresen 2020). 44 45 These partnerships deal with knowledge production and dissemination and seek to enable implementation of carbon pricing policies. The leadership role of the international 'heavyweight' World 46 47 Bank gives these partnerships additional comparative political weight, meaning also a potentially

greater involvement of powerful finance ministries/ministers generally involved in Bank matters and
 meetings.

3 PPPs for cooperation on climate mitigation goals have emerged at multiple levels of governance beyond the realm of international organisations. For example, PPP funding for cities expanded rapidly in the 4 5 1990s and outpaced official external assistance almost tenfold. Most of the PPP infrastructure 6 investment has been aimed at telecommunications, followed by energy. However, with the exception 7 of the telecommunications sector, PPP investments have generally bypassed low-income countries (Ivanova 2017). It is therefore not surprising that PPPs have added relatively little to the financing of 8 9 urban capital in developing countries over the past two decades (Bahl and Linn 2014). Liu and Waibel 10 (2010) argue that the inherent risk of urban investment is the main obstacle to increasing the flow of 11 private capital. Nevertheless, there have been cases where PPP investments have exceeded official external aid flows even for water and sanitation, and highly visible projects have been funded with PPPs 12 13 in selected metropolitan areas of developing countries, including urban rail projects in Bangkok, Kuala 14 Lumpur, and Manila (Liu and Waibel 2010).

15 Local governments are also creating cross-sector social partnerships (CSSPs) at the sub-national level;

entities created for addressing social, economic, and/or environmental issues with partner organisations
 from the public, private and civil society sectors (Crane and Seitanidi 2014). In particular, with support

from international networks such as ICLEI Local Governments for Sustainability, C40, Compact of

19 Mayors, and Global 100% Renewable Energy, local governments around the world are committing to

aggressive carbon reduction targets for their cities (Ivanova et al. 2015; Clarke and Ordonez-Ponce

21 2017). Research on CSSPs implementing community sustainability plans shows that climate change is

22 one of the four most common issues, after waste, energy and water (which are also highly relevant to

23 climate mitigation) (MacDonald et al. 2017).

24 Community climate action plans consider all GHGs emitted within the local geographic boundaries, 25 including from industry, home heating, burning fuel in vehicles, etc. It is these community plans that 26 require large multi-stakeholder partnerships to be successful. Partners in these partnerships generally 27 include the local government departments, other government departments, utilities, large businesses, 28 Chamber of Commerce, some small and medium sized enterprises, universities, schools, and local civil 29 society groups (Clarke and MacDonald 2016). Research shows that the partnership's structural features 30 enable the achievement of plan outcomes, such as reducing GHG emissions, while also generating value 31 for the partners (Austin and Seitanidi 2012; Clarke and MacDonald 2016; Clarke and Ordonez-Ponce 32 2017). Stua (2017c) explores the Mitigation Alliances (MAs) on the national level. The internal 33 governance model of MAs consists of overarching authorities mandated to harmonise the overall 34 organisational structure These authorities guarantee an effective, equitable and transparent functioning 35 of the MA's pillars (the demand, supply, and exchange of mitigation outcomes), in line with the principles and criteria of the Paris Agreement. This hybrid governance model relies upon its unique 36

37 links with international climate institutions (Stua 2017aw).

38 Transnational business partnerships are a growing feature of the landscape of multi-level, multi-actor 39 governance of climate change. A leading example is the World Business Council on Sustainable 40 Development (WBCSD), a global, CEO-led organisation of over 200 leading businesses working 41 together to accelerate the transition to a sustainable world. Member companies come from all business 42 sectors and all major economies, representing a combined revenue of more than USD 8.5 trillion and 43 with 19 million employees. The WBCSD aims to enhance 'the business case for sustainability through tools, services, models and experiences'. It includes a Global Network of almost 70 national business 44 45 councils across the globe. The overall vision is to create a world where more than 9 billion people are all living well and within the boundaries of our planet, by 2050. Vision 2050, released in 2010, explored 46 47 what a sustainable world would look like 2050, how such a world could be realised, and the role that 48 business can play in making that vision a reality. A few years later, Action2020 took that Vision and 1 translated it into a roadmap of necessary business actions and solutions (WBCSD 2019). WBCSD 2 focuses on those areas where business operates and can make an impact. They identify six 3 transformation systems that are critical in this regard: Circular Economy, Climate and Energy, Cities 4 and Mobility, Food and Nature, People and Redefining Value. All have an impact on climate. An 5 important initiative launched in September of 2008 – the 'natural climate solutions', has the objective of leveraging business investment to capture carbon out of the atmosphere. This initiative has built 6 7 strong cross-sectoral partnerships and is intended to tap into this immense emissions reduction solution 8 potential through natural methods with the help of private investment.

9 Another potentially influential type of transnational business partnership is investor coalitions or 10 alliances formed for the purpose of pushing investee companies to adopt stronger measures for stranded 11 asset management and climate change mitigation. MacLeod & Park (2011, p. 55) argue that these transnational groups 'attempt to re-orient and "regulate" the behaviour of business by holding 12 13 corporations accountable via mechanisms of information sharing, monitoring of environmental impacts, 14 and disclosure of activities related to the corporate climate footprint'. This favours a theory of active 15 ownership (investor engagement with corporate boards) over capital divestment as the optimal pathway 16 to shape the behaviour of corporate actors on climate risk (Kruitwagen et al. 2017; Krueger et al. 2018).

17 Transnational cooperative action by investors on climate mitigation has been facilitated by international 18 standard-setting on issues of climate risk and disclosure. For example, in 2017 the Financial Stability 19 Board's Taskforce on Climate-related Financial Disclosures (TCFD) adopted international 20 recommendations for climate risk disclosure (TCFD 2017). These recommendations, which apply to all 21 financial-sector organisations, including banks, insurance companies, asset managers, and asset owners, 22 have received strong support from investor coalitions globally, including Climate Action 100+ (with 300 investors with more than USD 33 trillion in assets under management), the Global Investor 23 24 Coalition on Climate Change (a coalition of regional investor groups across Asia, Australia, Europe and 25 North America) and the Institutional Investors Group on Climate Change (IIGCC). One of the key 26 recommendations of the TCFD calls for stress-testing of investment portfolios taking into consideration 27 different climate-related scenarios, including a 2°C or lower scenario. Broad adoption of the TCFD 28 recommendations could provide a basis for decisions by investors to shift assets away from climate-29 risk exposed assets such as fossil fuel extraction projects (Osofsky et al. 2019). There is strong evidence 30 showing the urgent need for scaling-up climate finance to mitigate greenhouse gases in line with pursuit 31 of limiting the temperature increase to 1.5°C above pre-industrial levels, and to support adaptation to 32 safeguard the international community from the consequences of a changing climate. While public 33 actors have a responsibility to deploy climate finance, it is clear that the contribution from the private 34 sector needs to be significant (Gardiner et al. 2016).

35 As most of these partnerships are of recent vintage an assessment of their effectiveness is premature. 36 Instead, partnerships can be assessed on the basis of the three main functions introduced earlier. Starting 37 with policy development, i.e. establishing new agreements on norms, rules, or standards among a 38 broader set of governmental and non-governmental actors, this is not the most prominent aspect of 39 partnerships so far, although both the cities' networks and risk disclosure recommendations include 40 some elements of this. The second element, enabling implementation and delivery of services, by 41 combining resources from governmental and non-governmental actors, seems to be a more prominent 42 part of the partnerships. Both UNEP financing, the World Business Council on Sustainable 43 Development (WBCSD), the REDD+ and TEEB mechanisms, and PPP funding for cities are examples 44 here. Finally, the third element, knowledge production and dissemination, for example, contributing to 45 the evolution of relevant public policies, is the most prominent part of these partnerships, with the 46 majority including such activities.

There is a relatively large volume of literature that assesses PPPs in general. Much of this applies to partnerships which, either by design or not, advance climate goals. This literature provides a good 1 starting point for assessing these partnerships as they become operational. These can help assess

2 whether such partnerships are worth the effort in terms of their performance and effectiveness (Liu et 3 al. 2015), their economic and social value added (Quelin, B.V, Kivleniece, i., Larazzaini 2017), their

4 efficiency (Estache, Antonio, Saussier 2014) and the possible risks associated with them (Grimsey and

5 Lewis 2002).

6 What is less common, but gradually growing, is an important and more relevant literature on criteria to 7 assess sustainability and impact on climate and development goals. Michaelowa and Michaelowa 8 (2017) assess 109 trans-national partnerships and alliances based on four design criteria: existence of 9 mitigation targets; incentives for mitigation; definition of a baseline; and existence of a monitoring, reporting, and verification procedure. About half of the initiatives do not meet any of these criteria, and 10 11 not even 15% satisfy three or more. A recent study using a systematic review of business and public administration literature on PPPs concludes that research in the past rarely incorporates sustainability 12 13 concepts. The authors propose a research agenda and a series of success factors that, if appropriately 14 managed can contribute to sustainable development, and in so doing contribute to a more solid scientific 15 evaluation of PPPs (Pinz et al. 2018). There is evidence that with the adoption of the Sustainable 16 Development Goals (SDGs), many of which are directly linked to climate goals, PPPs will become even 17 more prominent as they will be called upon to provide resources, knowledge, expertise, and 18 implementation support in a very ambitious agenda. PPT in the developing world needs to take into 19 account different cultural and social decision making processes, language differences, and unfamiliar 20 bureaucracy (Gardiner et al. 2016). Having more evidence on what norms and standards in relation to 21 sustainability are used and their governance is essential (Axel 2019). Some recent studies aim to provide 22 systems to assess the impact of PPPs beyond the much-used notion of value for money. One of these 23 recent studies proposes a conceptual model that addresses six dimensions relevant to economic, social 24 and environmental progress. These include resilience and environment, access of services to the 25 population, scalability and replicability, economic impact, inclusiveness, and finally, degree of engagement of stakeholders (Pacual 2019). These systems will most likely continue to evolve. 26

27 **14.5.5** International co-operation at the sub-national and city levels

28 Local and regional governments have an important role to play in global climate action, something 29 recognised by the Paris Agreement, and also assessed in Sections 13.3.2 and 13.3.4 of this report. There 30 are several ways they can be useful. First, subnational governments can contribute insights and 31 experience that provide valuable lessons to national governments, as well as offering needed 32 implementation capacity (GIZ 2017; Leffel 2018). A great deal of policymaking has occurred at the 33 level of city governments in particular. Cities have been responsible for more than 70% of global 34 greenhouse gas (GHG) emissions and generate over 80% of global income (World Bank 2010), and 35 many of them have started to take their own initiative in enacting and developing mitigation policies 36 (CDP 2015). Most of these activities aim at the reduction of GHG emissions in the sectors of energy, 37 transportation, urban land use and waste (Bulkeley 2010; Xuemei 2007), and are motivated by concerns 38 not only over climate, but also a consideration of local co-benefits (Rashidi et al. 2017, 2019). Second, 39 sub-national governments can fill the void in policy leadership in cases where national governments are 40 ineffectual, even to the point of claiming leadership and authority with respect to foreign affairs (Leffel 41 2018). International cooperation plays a role in such action. Several international networks, such as 42 C40, ICLEI, Mayors for Climate Protection, and the Covenant of Mayors have played an important role 43 in defining and developing climate-policy initiatives at the city level (Fünfgeld 2015). While the 44 networks differ from each other, they generally are voluntary and non-hierarchical, intended to support the horizontal diffusion of innovative climate policies (Kern and Bulkeley 2009). The literature has 45 46 addressed the questions of why cities join the networks (Betsill and Bulkeley 2004; Pitt 2010), what 47 recognition benefits cities can expect (Buis 2009; Kern and Bulkeley 2009), and how memberships can 48 provide visibility to leverage international funding (Betsill and Bulkeley 2004; Heinrichs et al., 2013).

- Membership in the networks has been found to be a significant predictor of cities' adoption of mitigation
 policies, even when controlling for national-level policies that may be in place (Rashidi and Patt 2018).
- 3 With respect to their role in formal international cooperation, however, it is unclear what authority, as a non-state actor, they actually have. Cities, for example, are members of transnational initiatives aimed 4 5 at non-state actors, such as Global Climate Action, originally the Non-state Actor Zone for Climate 6 Action, under the UNFCCC. While there is reason to believe that such membership can add value to 7 mitigation efforts, the effects have yet to be reliably quantified (Hsu et al. 2019a). Michaelowa and 8 Michaelowa (2017) suggest that few such networks fulfil governance criteria, and hence challenge their 9 effectiveness. Several researchers suggest that their role is important in informal ways, given issues 10 about the legitimacy of non-state actors (Chan et al. 2016; Nasiritousi et al. 2016). Bäckstrand et al. 11 (2017) advance the concept of 'hybrid multilateralism' as a heuristic to capture this intensified interplay between state and non-state actors in the new landscape of international climate cooperation. The 12 13 effectiveness of such non-state government actors should be measured not only by their contribution 14 to mitigation, but also by their success to enhance the accountability, transparency and deliberative 15 quality of the UNFCCC and the Paris Agreement (Hale et al. 2016; Chan et al. 2015; Busby 2016). In 16 the post-Paris era, effectiveness also revolves around how to align non-state and intergovernmental 17 action in a comprehensive framework that can help achieve low carbon futures (Chan et al. 2016). Stua 18 (2017c) suggests that networks involving non-state actors can play an important role in enhancing 19 transparency. Such effectiveness has to be complemented also by *normative questions*, applying a set 20 of democratic values: participation, deliberation, accountability, and transparency (Bäckstrand and 21 Kuyper 2017). Such concepts of polycentric governance offer new opportunities for climate action, 22 but it has been argued that it is too early to judge its importance and effects (Jordan et al. 2015).

23 **14.6 Synthesis**

24 **14.6.1** Changing nature of international cooperation

25 The main development since AR5 in terms of international climate cooperation has been the negotiation 26 and subsequent operationalisation of the Paris Agreement (Section 14.3). As noted earlier, the Paris 27 Agreement is tailored to the evolving understanding of the climate mitigation challenge as well as 28 shifting political imperatives and constraints. Whether the Paris Agreement will in fact be effective in 29 supporting global action sufficient to achieve its objectives is contested, with competing arguments 30 supporting different views. The strongest critique of the Paris Agreement is that the NDCs themselves 31 fail by a wide margin to add up to the level of aggregate emissions reductions necessary to achieve the 32 objectives of holding global average warming well below 2°C, much less 1.5°C(see Section 14.3.3 and 33 Figure 14.3). Arguments in support of Paris are that it puts in place the processes, and generates 34 normative expectations, that nudge NDCs to become progressively more ambitious over time. The 35 collective quantified goal from a floor of USD100 billion a year in transfers to developing countries, 36 the Green Climate Fund and other provisions on finance in the Paris Agreement have also been 37 recognised as key to cooperation (Sections 14.3.2.8 and 14.4.1). But then these arguments are met with 38 counter arguments, that even with Paris processes in place, given the logic of iterative, rising levels of 39 ambition over time, this is unlikely to happen within the narrow window of opportunity that exists to 40 avert dangerous levels of global warming (Section 14.3.3). The degree to which countries are willing 41 to increase the ambition of their NDCs over time will be an important indicator of the success of the 42 Paris Agreement; evidence of this was expected by the end of 2020, but the COVID-19 pandemic has 43 delayed the process of updating NDCs.

An increasing role is also played by other cooperative agreements, in particular (potentially) under Article 6 (Sections 14.3.2.10 and 14.4.4), trans-national partnerships, and the institutions that support them. This fits both a transitions narrative that cooperation at the sub-global and sectoral levels is

47 necessary to enable specific system transformations, and a recent emphasis in the public goods literature

1 on club goods and a gradual approach to cooperation, also referred to as building blocks or incremental 2 approach (Sections 14.2 and 14.5.1.4). There has been little analysis of whether these other agreements 3 are of sufficient scale and scope to ensure that transformations happen quickly enough. This chapter 4 appraising them together, concludes that they are not. First, many agreements, such as those related to 5 trade, may stand in the way of bottom-up mitigation efforts (Section 14.5.1.3). Second, many sectoral 6 agreements aimed at decarbonisation - such as within the air travel sector - have not yet adopted targets 7 comparable in scale, scope or legal character to those adopted under the Paris Agreement (Section 8 14.5.2.3). Third, there are many sectors for which there are no agreements in place. At the same time, 9 there are some important bright spots, many in the area of trans-national partnerships. A growing 10 number of cities have committed themselves to adopting urban policies that will place them on a path 11 to rapid decarbonisation, while learning from each other how to implement successful policies to realise 12 climate goals (Section 14.5.5). An increasing number of large corporations have committed to 13 decarbonising their industrial processes and supply chains (Section 14.5.4). And, an ever-increasing 14 number of non-state actors are adopting goals and initiating mitigation actions (Section 14.5.3). These goals and actions, some argue, could bridge the mitigation gap created by inadequate NDCs, although 15 there is literature challenging this as unlikely as there is less transparency and limited accountability for 16 17 such actions, and mitigation targets and incentives are also not clear (Sections 14.3.3 and 14.5).

18 **14.6.2** Overall assessment of international cooperation

19 This section provides an overall assessment of international cooperation, taking into account the 20 combined effects of cooperation within the UNFCCC process, other global agreements, as well as 21 regional, sectoral, and transnational processes. Recent literature highlights that cooperation can be 22 particularly effective when it addresses issues on a sector-by-sector basis (Victor et al. 2019). Table 23 14.5 below summarises the effects of international cooperation on mitigation efforts in each of the 24 sectoral areas covered in Chapter 5 - 12 of this Assessment Report. As it indicates, there are some 25 strong areas of sectoral-specific cooperation, but also some important weaknesses. Formal agreements and programs, both multilateral and bilateral, are advancing mitigation efforts in energy, AFOLU, and 26 27 transportation, while transnational networks and partnerships are addressing issues in urban systems 28 and industry. The one sector lacking current international cooperative action is buildings, although 29 many of the concerns relevant for buildings may be embedded in the energy sector with respect to their 30 operation, and the industrial sector with respect to their materials. Several of the sectors have very little 31 formal cooperation at the international level, and a common theme across many of them is a need for 32 increased financial flows to achieve particular objectives.

- 33
- 34

Table 14.5 Effects of international cooperation on sectoral mitigation efforts

Sector	Key strengths	Key gaps and weaknesses		
Demand, services, social aspects	Adoption of SDGs addressing social inequities and sustainable development in the context of mitigation.	Little international attention to demand-side mitigation issues.		
Energy	Greater incorporation of climate goals into sectoral agreements and institutions; formation of new specialised agencies (e.g. IRENA, SE4All) devoted to climate- compatible energy.	Need for enhanced financial support to place renewable energy on an equal footing with fossil fuel energy in developing countries; investor-state dispute settlement mechanisms designed to protect the interests of fossil fuel companies from national policies; ensuring just transition; and, addressing stranded assets		

AFOLU	Inclusion of support for REDD+ in Paris Agreement mechanisms; transnational partnerships disincentivising use of products from degraded lands.	Need for increased global finance for forest restoration projects; failure of national governments to meet internationally agreed upon targets with respect to deforestation and restoration; no cooperative mechanisms in place to address agricultural emissions
Urban systems	Transnational partnerships enhancing the capacity of municipal governments to design and implement effective policies.	Need for increased financial support for climate compatible urban infrastructure development.
Buildings	None identified.	Limited evidence of international cooperation to enhance mitigation activities in buildings.
Transport	Sectoral agreements in aviation and shipping begin to address climate concerns.	Need to raise the level of ambition in sectoral agreements consistent with the Paris Agreement and complete decarbonisation, especially as emissions from international aviation and shipping continue to grow, often unaccounted for in NDCs.
Industry	Transnational partnerships and networks encouraging the adoption of zero emission supply chain targets.	No formal multilateral or bilateral cooperation to address issues of decarbonisation in industry.
Cross- sectoral, including CDR and SRM	International agreements addressing risks of ocean-based CDR	Lack of cooperative mechanisms addressing risks and benefits of SRM; lack of cooperative mechanisms addressing financial and governance aspects of land- and technology-based CDR.

1

2 Table 14.6 below provides examples of mechanisms addressing each of the assessment criteria identified in Section 14.2.3. The effects of different forms of international cooperation are separated 3 4 out, including not only UNFCCC and other multilateral processes, but also sub-global and sectoral 5 agreements. Several points stand out. First, the Paris Agreement has the potential to significantly 6 advance the UN climate regime's transformative potential. Second, there has been only limited 7 replacement for the market-based mechanisms of the Kyoto Protocol; the Paris Agreement addresses 8 economic effectiveness only through the more limited Article 6, and only one sectoral agreement, the 9 CORSIA operating for international aviation, makes use of offsetting. Third, there is a lack of attention 10 to both distributive outcomes and institutional support within sectoral agreements, representing a 11 serious gap in efforts to harmonise mitigation with equity and sustainable development. Fourth, there 12 are transnational partnerships and initiatives, representing the actions of non-state actors, addressing 13 each of the assessment criteria, with the exception of economic effectiveness.

14

15

Table 14.6 Illustrative examples of multi-level governance addressing criteria of effectiveness

	Environmental effectiveness	Transformative potential	Distributive Outcomes	Economic effectiveness	Institutional strength
UNFCCC	Stabilisation goal, and quasi- targets for	Financial mechanism; provisions for	Financial mechanism, transfers from		Reporting requirements

	industrialised countries	technology transfer, and capacity building	developed to developing; stabilisation targets restricted to industrialised countries		
Kyoto Protocol	Binding national targets for industrialised countries		Adaptation Fund; targets restricted to industrialised countries	Market-based mechanisms	Emissions accounting and reporting requirements, institutional capacity building
Paris Agreement	NDCs and the global stocktake	Mechanisms for capacity building and technology transfer	Furthering financial commitments under the UNFCCC, including enhanced transparency on finance	Voluntary cooperation	Mechanism for enhanced transparency
Other multilateral agreements (Montreal protocol, and SDG 7, etc)	Phase out of Ozone depleting substances (ODS) with high global warming potential - significant effects on GHG mitigation	Ozone Fund, technology transfer; development and sharing of knowledge and expertise	SDGs embedding mitigation in sustainable development		Processes for adjustment and amendment, reporting requirements
Multilateral and regional economic agreements and institutions	Positive effect from harmonised lending practices of MDBs; potential positive effect from liberalisation of trade in climate-friendly goods and services; negative effect from regulatory chill		Concessional financing agreements		Potentially negative results from dispute settlement processes

Sectoral agreements and institutions	Climate mitigation targets and actions in AFOLU, and energy	Institutions devoted to developing and deploying zero- carbon energy technologies (e.g. IRENA).		Use of carbon offsets to reduce growth in emissions from aviation	
Transnational networks and partnerships	Youth climate movement raising mitigation and fossil fuel divestment on political agendas and in financial sector	Non-state actor commitments to reaching net zero emissions	Climate justice legal initiatives		City networks providing information exchange and technical support

1

2 14.7 Gaps in Knowledge and Data

Any assessment of the effectiveness of international cooperation is limited by the methodological challenge of observing sufficient variance in cooperation in order to support inference on effects. There is little in the way of cross-sectional variance, given that most of the governance mechanisms assessed here are global in their geographical coverage. Time series analysis is also of little value, given the other determinants of climate mitigation, including technology costs and the effects of national and subnational level policies, are rapidly evolving. Thus this chapter reviews scholarship that compares observations with theory-based counter-factual scenarios.

10 Many of the international agreements and institutions discussed in this chapter, in particular the Paris Agreement, are new. The logic and architecture of the Paris Agreement, in particular, is a break from 11 12 the past, and there is limited prior experience to draw on. Such instruments have evolved in response to 13 geo-political and other drivers, that are changing rapidly, and will continue to shape the nature of 14 international cooperation under it and triggered by it. The Paris Agreement is also, in common with 15 other multilateral agreements, a 'living instrument' evolving through interpretative and operationalising 16 rules, and forms of implementation, that parties continue to negotiate at conferences year on year. It is 17 a constant 'work in progress' and thus challenging to assess at any given point in time. The Paris 18 Agreement also engages a larger set of variables – given its privileging of national autonomy and 19 politics, integration with the sustainable development agenda, and its engagement with actions and 20 actors at multiple levels - than earlier international agreements, which further complicates the task of 21 tracing causality between observed effects and international cooperation through the Paris Agreement. 22 Understanding of the effectiveness of international agreements and institutions is driven entirely by

23 theory driven prediction of how the world will evolve, both with these agreements in place and without 24 them. The former predictions in particular are problematic, because governance regimes are complex adaptive systems, making it impossible to predict how they will evolve over time, and hence what their 25 26 effects will be. Time will cure this in part, as it will generate observations of the world with the new 27 regime in place, which we can compare to the counterfactual situation of the new regime's being absent, 28 which may be a simpler situation to model. But even here our modelling capacity is limited: it may 29 simply never be possible to know with a high degree of confidence whether international cooperation, 30 such as that embodied in the Paris Agreement, is having a significant effect, no matter how much data 31 is accumulated.

1 Given the importance of theory for guiding assessments of the past and likely future impacts of policies,

2 it is important to note that among the alternative theoretical frameworks for analysis, some have been

3 much more extensively developed in the literature than others. This chapter has noted in particular the 4 partial dichotomy between a global-commons framing of climate change and a transitions framing.

partial dichotomy between a global-commons framing of climate change and a transitions framing,
 which include different criteria for assessment. The latter framing is particularly under-developed.

- 6 Greater development of theories resting in social science disciplines such as economic geography,
- sociology, and psychology could potentially provide us with a more complete picture of the nature and
- 8 effectiveness of international cooperation.
- 9

10 Frequently Asked Questions

FAQ 14.1: Now that the Paris Agreement has entered into force, and it requires countries to develop their own nationally determined emissions reduction contributions, does this mean that international cooperation no longer plays a useful role in achieving long-term climate goals?

14 Continued international cooperation remains critically important. The Paris Agreement has changed the 15 framework for international cooperation, from one built on multilaterally negotiated emissions 16 reduction targets, backed by a compliance mechanism with an enforcement branch and penalties for 17 non-compliance, to one relying on nationally determined contributions (NDCs) that are subject to an 18 international oversight system, and bolstered through international support. The international oversight 19 system is designed to generate transparency and accountability for individual emission reduction 20 contributions, and regular moments for stock-taking of these efforts towards global goals. Such 21 enhanced transparency may instil confidence and trust, and foster solidarity among nations. It can also 22 influence domestic politics in these countries, with theory-based arguments that this will lead to greater 23 levels of ambition. Further, for most developing countries, international cooperation and support is 24 important for their mitigation efforts. Such support includes bilateral and multilateral cooperation on 25 low-carbon finance, technology support, capacity building, and enhanced South-South cooperation. It 26 can take place through the implementation of the Paris Agreement, and through a large number of sub-27 global and sectoral agreements, as well as the actions of transnational organisations (high confidence).

28 FAQ 14.2: Is international cooperation working?

29 Countries' emissions were in line with their internationally agreed targets – the collective Greenhouse 30 Gas (GHG) mitigation stabilisation target for Annex I countries in the UNFCCC for 2000, and their 31 individual target in the Kyoto Protocol for 2008-12. Neither of these required transformational policy 32 changes, whereas meeting the long-term goals of the Paris Agreement will. International support of the 33 kinds that the Paris Agreement advances are yet to be fully implemented, as well as those embodied in 34 other cooperative agreements at the sub-global and sectoral levels, play an important role in making 35 political, economic, and social conditions more favourable to ambitious mitigation efforts in the context 36 of sustainable development and efforts to eradicate poverty. The degree to which countries are willing 37 to increase the ambition of their NDCs over time, which has yet to be observed, will be an important 38 indicator of the success of the Paris Agreement.

FAQ 14.3: Are there any important gaps in international cooperation, which will need to be filled in order for countries to achieve the objectives of the Paris Agreement, such as holding temperature increase to 'well below 2°C' and pursuing efforts towards '1.5°C' above preindustrial levels?

43 While international cooperation is contributing to global mitigation efforts, its effects are far from 44 uniform. Cooperation has made a contribution to falling CO_2 emissions in the Agriculture, Forestry,

45 and Other Land Use (AFOLU) sector, although these gains are not immune to backsliding in some 46 countries. Likewise, international cooperation is leading to rapid reduction in emissions of many non1 CO₂ greenhouse gases, such as those covered under the Kigali Amendment to the Montreal Protocol,

and it may influence institutional factors that are vital for achieving the objectives of the Paris
 Agreement, such as with respect to administrative capacity (including on accounting, and reporting of

4 emissions). In most other respects, further strengthening of international cooperation is necessary to

5 improve the likelihood of achieving the Paris Agreement's long-term global goals. Finalising the rules

6 to pursue voluntary cooperation in the implementation of NDCs, without compromising environmental

reprint of the second se

8 there appears to be a large potential role for international cooperation addressing sectoral-specific

9 technical and infrastructure challenges to eliminating emissions quickly, as well as those associated

10 with managing Carbon Dioxide Removal (CDR) and Solar Radiation Management (SRM).

1 **References**

- Aakre, S., S. Kallbekken, R. Van Dingenen, and D. G. Victor, 2018: Incentives for small clubs of Arctic
 countries to limit black carbon and methane emissions. *Nat. Clim. Chang.*, 8, 85–90,
 https://doi.org/10.1038/s41558-017-0030-8.
- Abas, N., A. R. Kalair, N. Khan, A. Haider, Z. Saleem, and M. S. Saleem, 2018: Natural and synthetic
 refrigerants, global warming: A review. *Renew. Sustain. Energy Rev.*, 90, 557–569, https://doi.org/10.1016/J.RSER.2018.03.099.
- Abate, R., and A. Greenlee, 2010: Sowing Seeds Uncertain: Ocean Iron Fertilization, Climate Change,
 and the International Environmental Law Framework. *Pace Environ. Law Rev.*, 27, 555.
- Acemoglu, D., P. Aghion, L. Bursztyn, and D. Hemous, 2012: The Environment and Directed Technical
 Change. *Am. Econ. Rev.*, **102**, 131–166.
- 12 _____, ____, and D. Hémous, 2014: The environment and directed technical change in a North-South 13 model. *Oxford Rev. Econ. Policy*, **30**, 513–530, https://doi.org/10.1093/oxrep/gru031.
- Adelman, S., 2018: Human Rights in the Paris Agreement: Too Little, Too Late? *Transnatl. Environ. Law*, 7, 17–36, https://doi.org/10.1017/S2047102517000280.
- Adger, W. N., S. Huq, K. Brown, and M. Hulme, 2003: Adaptation to climate change in the developing
 world. *Prog. Dev. Stud.*, 3, 179–195.
- Aghion, P., P. Antràs, and E. Helpman, 2007: Negotiating free trade. J. Int. Econ., 73, 1–30, https://doi.org/10.1016/j.jinteco.2006.12.003.
- 20 —, C. Hepburn, A. Teytelboym, and D. Zenghelis, 2014: Path dependence, innovation and the
 21 economics of climate change, Working Paper, Centre for Climate Change Economics and
 22 Policy/Grantham Research Institute on Climate Change and the Environment Policy Paper &
 23 Contributing paper to New Climate Economy.
- Agueda Corneloup, I. de, and A. P. J. Mol, 2014: Small island developing states and international
 climate change negotiations: the power of moral ''leadership'' 14,
 281–297.
- Akanle, T., 2010: Impact of Ozone Layer Protection on the Avoidance of Climate Change: Legal Issues
 and Proposals to Address the Problem. *Rev. Eur. Community Int. Environ. Law*, **19**, 239–249,
 https://doi.org/10.1111/j.1467-9388.2010.00680.x.
- Alcaraz, O., P. Buenestado, B. Escribano, B. Sureda, A. Turon, and J. Xercavins, 2019: The global
 carbon budget and the Paris agreement. *Int. J. Clim. Chang. Strateg. Manag.*, 11, 310–325,
 https://doi.org/10.1108/IJCCSM-06-2017-0127.
- Aldy, J. E., W. A. Pizer, and K. Akimoto, 2017: Comparing emissions mitigation efforts across
 countries. *Clim. Policy*, 17, 501–515, https://doi.org/10.1080/14693062.2015.1119098.
- Alexander Pinz, N. R. & J. T., 2018: Public–private partnerships as instruments to achieve
 sustainability-related objectives: the state of the art and a research agenda. *Public Manag. Rev.*, 20, 1–
 22, https://doi.org/10.1080/14719037.2017.1293143.
- 38 Almeida, М., 2020: Global Green Bond State of the Market 2019. 39 https://www.climatebonds.net/system/tdf/reports/cbi_sotm_2019_vol1_04d.pdf?file=1&type=node&i 40 d=47577&force=0 (Accessed December 9, 2020).
- Almeida, P., 2019: Climate justice and sustained transnational mobilization. *Globalizations*, 16, 973–
 979, https://doi.org/10.1080/14747731.2019.1651518.
- Almer, C., and R. Winkler, 2017: Analyzing the effectiveness of international environmental policies:
 The case of the Kyoto Protocol. *J. Environ. Econ. Manage.*, **82**, 125–151.
- 45 Ameli, N., P. Drummond, A. Bisaro, M. Grubb, and H. Chenet, 2020: Climate finance and disclosure

- 1 for institutional investors: why transparency is not enough. *Clim. Change*, **160**, 565–589, 2 https://doi.org/10.1007/s10584-019-02542-2.
- Anderson, Z. R., K. Kusters, J. McCarthy, and K. Obidzinski, 2016: Green growth rhetoric versus reality: Insights from Indonesia. *Glob. Environ. Chang.*,
- 5 https://doi.org/10.1016/j.gloenvcha.2016.02.008.
- Andonova, L. B., 2017: Governance Entrepreneurs International Organizations and the Rise of
 Global Public-Private Partnerships. Cambridge University Press,.
- 8 Andresen, S., 2014: Exclusive Approaches to Climate Governance: More Effective than the UNFCCC?
- 9 *Toward A New Climate Agreement: Conflict, Resolution and Governance*, T. Cherry, J. Hovi, and D.M.
- 10 McEvoy, Eds., Routledge, 167–181.
- 11 —, T. Skodvin, A. Underdal, and J. Wettestad, 2000: *Science and Politics in International Environmental Regimes.* S. Andresen, T. Skodvin, A. Underdal, and J. Wettestad, Eds. Manchester
 13 University Press,.
- Angelsen, A., 2017: REDD+ as Result-based Aid: General Lessons and Bilateral Agreements of
 Norway. *Rev. Dev. Econ.*, 21, 237–264.
- Anouliès, L., 2015: The Strategic and Effective Dimensions of the Border Tax Adjustment. J. Public
 Econ. Theory, **17**, 824–847, https://doi.org/10.1111/jpet.12131.
- 18 Antimiani, A., V. Costantini, A. Markandya, E. Paglialunga, and G. Sforna, 2017: The Green Climate
- Fund as an effective compensatory mechanism in global climate negotiations. *Environ. Sci. Policy*, 77,
 49–68, https://doi.org/10.1016/J.ENVSCI.2017.07.015.
- Arthur, W. B., 1989: Competing technologies, increasing returns, and lock-in by historical events. *Econ. J.*, 99, 116–131.
- 23 Ascensão, F., L. Fahrig, A. P. Clevenger, R. T. Corlett, J. A. G. Jaeger, W. F. Laurance, and H. M.
- 24 Pereira, 2018: Environmental challenges for the Belt and Road Initiative. *Nat. Sustain.*, **1**, 206–209,
- 25 https://doi.org/10.1038/s41893-018-0059-3.
- Asheim, G. B., C. B. Froyn, J. Hovi, and F. C. Menz, 2006: Regional versus global cooperation for climate control. *J. Environ. Econ. Manage.*, **51**, 93–109, https://doi.org/10.1016/j.jeem.2005.04.004.
- 28 Asian Development Bank, 2019: High Level MDB Statement For Publication at the UNSG Climate
- 29 *Action Summit, 22 September 2019.* https://www.adb.org/sites/default/files/page/41117/climate-30 change-finance-joint-mdb-statement-2019-09-23.pdf (Accessed December 8, 2020).
- Asmelash, H. B., 2015: Energy Subsidies and WTO Dispute Settlement: Why Only Renewable Energy
 Subsidies Are Challenged. J. Int. Econ. Law, 18, 261–285, https://doi.org/10.1093/jiel/jgv024.
- van Asselt, H., 2017: Climate Change and Trade Policy Interaction: Implications of Regionalism.
 https://doi.org/https://doi.org/10.1787/c1bb521e-en.
- Van Asselt, H., 2016: The Role of Non-State Actors in Reviewing Ambition, Implementation, and
 Compliance under the Paris Agreement. *Clim. Law*, https://doi.org/10.1163/18786561-00601006.
- Austin, J. E., and M. M. Seitanidi, 2012: Collaborative Value Creation. *Nonprofit Volunt. Sect. Q.*, 41,
 726–758, https://doi.org/10.1177/0899764012450777.
- Axel, M., 2019: Public-Private Partnerships for Sustainable Development: Exploring their design and
 Impact on Effectiveness. *Sustainability*, **11**, https://doi.org/10.3390/su11041087.
- 41 Bacchus, J., 2016: Global Rules for Mutually Supportive and Reinforcing Trade and Climate Regimes.
- 42 https://e15initiative.org/publications/global-rules-mutually-supportive-reinforcing-trade-climate-43 regimes/.
- 44 Bäckstrand, K., and O. Elgström, 2013: The EU's role in climate change negotiations: from leader to 45 'leadiator.' *J. Eur. Public Policy*, **20**, 1369–1386, https://doi.org/10.1080/13501763.2013.781781.
- 46 —, and J. W. Kuyper, 2017: The democratic legitimacy of orchestration: the UNFCCC, non-state

- 1 actors, and transnational climate governance. *Env. Polit.*, **26**, 764–788, 2 https://doi.org/10.1080/09644016.2017.1323579.
- 3 _____, ____, B.-O. Linnér, and E. Lövbrand, 2017: Non-state actors in global climate governance: from
- 4 Copenhagen to Paris and beyond. *Env. Polit.*, **26**, 561–579, 5 https://doi.org/10.1080/09644016.2017.1327485.

Baghdadi, L., I. Martinez-Zarzoso, and H. Zitouna, 2013: Are RTA agreements with environmental provisions reducing emissions? *J. Int. Econ.*, 90, 378–390, https://doi.org/10.1016/j.jinteco.2013.04.001.

- 9 Bahl, R. W., and J. F. Linn, 2014: *Governing and Financing Cities in the Developing World*. 1–60 pp.
- 10 Bailey, I.; Inderberg, T. H. J., 2018: Australia: domestic politics, diffusion and emissions trading design
- 11 as a technical and political project. The Evolution of Carbon Markets: Design and Diffusion, L.H.
- 12 Wettestad, J.; Gulbrandsen, Ed., 124–144.
- 13Bakhtiari, F., 2018: International cooperative initiatives and the United Nations Framework Convention14onClimateChange.Clim.Policy,18,655–663,15https://doi.org/https://doi.org/10.1080/14693062.2017.1321522.
- 16 de Bakker, F. G. A., F. den Hond, B. King, and K. Weber, 2013: Social Movements, Civil Society and
- 17 Corporations: Taking Stock and Looking Ahead. Organ. Stud.,
- 18 https://doi.org/10.1177/0170840613479222.
- Baldwin, E., Y. Cai, and K. Kuralbayeva, 2019: To build or not to build? Capital stocks and climate
 policy. J. Environ. Econ. Manage., In press, https://doi.org/10.1016/j.jeem.2019.05.001.
- Bang, G., J. Hovi, and T. Skodvin, 2016: The Paris Agreement: Short-Term and Long-Term
 Effectiveness. *Polit. Gov.*, 4, 209–218, https://doi.org/10.17645/pag.v4i3.640.
- Banks, G. D., and T. Fitzgerald, 2020: A sectoral approach allows an artful merger of climate and trade
 policy. *Clim. Change*, 162, 165–173, https://doi.org/10.1007/s10584-020-02822-2.
- Barrett, S., 1994: Self-Enforcing International Environmental Agreements. Oxf. Econ. Pap., 46, 878–
 894.
- 27 —, 2008: Climate treaties and the imperative of enforcement. *Oxford Rev. Econ. Policy*, 24, 239–
 28 258, https://doi.org/10.1093/oxrep/grn015.
- 29 —, 2013: Climate treaties and approaching catastrophes. *J. Environ. Econ. Manage.*, 66, 235–250,
 30 https://doi.org/10.1016/j.jeem.2012.12.004.
- 31 —, 2018: Choices in the climate commons. *Science* (80-.)., **362**, 1217 LP 1217, 32 https://doi.org/10.1126/science.aaw2116.
- , and A. Dannenberg, 2016: An experimental investigation into 'pledge and review' in climate
 negotiations. *Clim. Change*, 138, 339–351, https://doi.org/10.1007/s10584-016-1711-4.
- Battaglini, M., and B. Harstad, 2016: Participation and Duration of Environmental Agreements. *J. Polit. Econ.*, **124**, 160–204, https://doi.org/10.1086/684478.
- Bauer, M. W., C. Knill, and S. Eckhard, 2017: *International Bureaucracy: Challenges and Lessons for Public Administration Research*. Palgrave Macmillan UK,.
- Bayramoglu, B., M. Finus, and J.-F. Jacques, 2018: Climate agreements in a mitigation-adaptation game. *J. Public Econ.*, **165**, 101–113, https://doi.org/10.1016/J.JPUBECO.2018.07.005.
- Bellamy, R., and J. Lezaun, 2017: Crafting a public for geoengineering. *Public Underst. Sci.*,
 https://doi.org/10.1177/0963662515600965.
- 43 —, and O. Geden, 2019: Govern CO2 removal from the ground up. *Nat. Geosci.*, 44 https://doi.org/10.1038/s41561-019-0475-7.
- 45 Benveniste, H., O. Boucher, C. Guivarch, H. Le Treut, and P. Criqui, 2018: Impacts of nationally

- 1 determined contributions on 2030 global greenhouse gas emissions: Uncertainty analysis and 2 distribution of emissions. *Environ. Res. Lett.*, **13**, https://doi.org/10.1088/1748-9326/aaa0b9.
- 3 van den Bergh, J. C. J. M., and Coauthors, 2020: A dual-track transition to global carbon pricing. *Clim.*
- 4 *Policy*, **20**, 1057–1069, https://doi.org/10.1080/14693062.2020.1797618.
- Bergman, N., 2018: Impacts of the Fossil Fuel Divestment Movement: Effects on Finance, Policy and
 Public Discourse. *Sustainability*, 10, 2529, https://doi.org/10.3390/su10072529.
- 7 Betsill, M. M., and H. Bulkeley, 2004: Transnational Networks and Global Environmental Governance:
- 8 The Cities for Climate Protection Program. Int. Stud. Q., 48, 471–493, https://doi.org/10.1111/j.0020-
- 9 8833.2004.00310.x.
- Biermann, F., and B. Siebenhüner, 2009: *Managers of Global Change: The Influence of International Environmental Bureaucracies.* MIT Press,.
- 12 De Bièvre, D., I. Espa, and A. Poletti, 2017: No iceberg in sight: on the absence of WTO disputes 13 challenging fossil fuel subsidies. *Int. Environ. Agreements Polit. Law Econ.*, **17**, 411–425, 14 https://doi.org/10.1007/s10784-017-9362-0.
- Le Blanc, D., 2015: Towards Integration at Last? The Sustainable Development Goals as a Network of Targets. *Sustain. Dev.*, **23**, 176–187, https://doi.org/10.1002/sd,1582.
- Blondeel, M., J. Colgan, and T. Van de Graaf, 2019: What drives norm success? Evidence from antifossil fuel campaigns. *Glob. Environ. Polit.*, https://doi.org/10.1162/glep_a_00528.
- 19 —, T. Van de Graaf, and T. Haesebrouck, 2020: Moving beyond coal: Exploring and explaining the
 20 Powering Past Coal Alliance. *Energy Res. Soc. Sci.*, 59, 101304,
 21 https://doi.org/10.1016/J.ERSS.2019.101304.
- Bodansky, D., 2013: The who, what, and wherefore of geoengineering governance. *Clim. Change*, 121,
 539–551, https://doi.org/10.1007/s10584-013-0759-7.
- 24 —, 2015: Legally binding versus non-legally binding instruments Daniel. Geneva Reports on the
 25 World Economy.
- 26 —, 2016: The legal character of the Paris agreement. *Rev. Eur. Comp. Int. Environ. Law*, **25**, 142– 27 150, https://doi.org/10.1111/reel.12154.
- 28 —, and L. Rajamani, 2016: The Evolution & Governance Architecture of the Climate Change
 29 Regime. *International Relations & Global Climate Change*, D. Sprinz and U. Luterbacher, Eds.
- 30 —, J. Brunnée, and L. Rajamani, 2017a: Introduction to International Climate Change Law.
 31 *International Climate Change Law.*
- 32 _____, ____, and _____, 2017b: International Climate Change Law. Oxford University Press,.
- Bodansky, D. M., S. A. Hoedl, G. E. Metcalf, and R. N. Stavins, 2016: Facilitating linkage of climate
 policies through the Paris outcome. *Clim. Policy*, https://doi.org/10.1080/14693062.2015.1069175.
- Bodle, R., and S. Oberthür, 2014: Options and Proposals for the International Governance of
 Geoengineering. *Clim. Chang.*,.
- Boekholt, P., J. Edler, P. Cunningham, and K. Flanagan, 2009: *Drivers of International Collaboration in Research F.* www.technopolis-group.com (Accessed July 10, 2019).
- Böhringer, C., A. Müller, and J. Schneider, 2015: Carbon tariffs revisited. J. Assoc. Environ. Resour.
 Econ., 2, 629–672, https://doi.org/10.1086/683607.
- Booth, E., 2019: Extinction Rebellion: social work, climate change and solidarity. *Crit. Radic. Soc. Work*, 7, 257–261, https://doi.org/10.1332/204986019x15623302985296.
- 43 Bos, A. B., and Coauthors, 2017: Comparing methods for assessing the effectiveness of subnational 44 REDD+ initiatives. *Environ. Res. Lett.*, **12**, 74007, https://doi.org/10.1088/1748-9326/aa7032.
- 45 Bos, K., and J. Gupta, 2019: Stranded assets and stranded resources: Implications for climate change

- mitigation and global sustainable development. Energy Res. Soc. Sci., 56, 101215, https://doi.org/10.1016/J.ERSS.2019.05.025.
- Bouwer, L. M., and J. C. J. H. Aerts, 2006: Financing climate change adaptation. Disasters, 30, 49–63,
 https://doi.org/10.1111/j.1467-9523.2006.00306.x.
- Bows-Larkin, A., 2015: All adrift: aviation, shipping, and climate change policy. Clim. Policy, 15, 681–
 702, https://doi.org/10.1080/14693062.2014.965125.
- Boykoff, M., and O. Pearman, 2019: Now or Never: How Media Coverage of the IPCC Special Report
 on 1.5°C Shaped Climate-Action Deadlines. One Earth, 1, 285–288,
 https://doi.org/10.1016/J.ONEEAR.2019.10.026.
- Boyle, A., 2018: Climate Change, the Paris Agreement and Human Rights. Int. Comp. Law Q.,
 https://doi.org/10.1017/S0020589318000222.
- Boyle, A., 2019: Litigating climate change under Part XII of the LOSC. Int. J. Mar. Coast. Law, 34,
 458–481, https://doi.org/10.1163/15718085-13431097.
- 14 Brandi, C., 2017: Trade Elements in Countries' Climate Contributions under the Paris Agreement.
- 15 https://ictsd.iisd.org/sites/default/files/research/trade_elements_in_countries_climate_contributions.pd 16 f.
- 17 —, D. Blümer, and J.-F. Morin, 2019: When Do International Treaties Matter for Domestic
 18 Environmental Legislation? Glob. Environ. Polit., 19, 14–44.
- Brauch, M. D., and Coauthors, 2019: Treaty on Sustainable Investment for Climate Change Mitigationand Adaptation: Aligning International Investment Law with the Urgent Need for Climate Change
- 21 Action. J. Int. Arbitr., 7–35.
- Brechin, S. R., and M. I. Espinoza, 2017: A case for further refinement of the Green Climate Fund's 50:50 ratio climate change mitigation and adaptation allocation framework: toward a more targeted
- approach. Clim. Change, 142, 311–320, https://doi.org/10.1007/s10584-017-1938-8.
- Brenton, A., 2013: "Great Powers" in climate politics. Clim. policy, 13, 541–546,
 https://doi.org/10.1080/14693062.2013.774632.
- Bretschger, L., 2017: Equity and the convergence of nationally determined climate policies. Environ.
 Econ. Policy Stud., 19, 1–14, https://doi.org/10.1007/s10018-016-0161-6.
- Brewer, T. L., H. Derwent, A. Błachowicz, and M. Grubb, 2016: Carbon Market Clubs and the New
 Paris Regime. http://hdl.handle.net/10986/25768.
- Brockhaus, M., and Coauthors, 2017: REDD+, transformational change and the promise of
 performance-based payments: a qualitative comparative analysis". Clim. Policy, 17, 708–730.
- Bruce, S., 2017: The Project for an International Environmental Court. Concilitation in International
 Law, C. Tomuschat, R.P. Mazzeschi, and D. Thürer, Eds., Brill Nijhoff, 133–170.
- 35 —, 2018: Global Energy Governance and International Institutions. SSRN Electron. J.,
 36 https://doi.org/10.2139/ssrn.3402057.
- Buck, H. J., and Coauthors, 2020: Evaluating the efficacy and equity of environmental stopgap
 measures. Nat. Sustain., https://doi.org/10.1038/s41893-020-0497-6.
- Buis, H., 2009: The role of local government associations in increasing the effectiveness of city-to-city cooperation. Habitat Int., 33, 190–194, https://doi.org/10.1016/j.habitatint.2008.10.017.
- Bulkeley, H., 2010: Cities and the governing of climate change. Annu. Rev. Environ. Resour., 35, 229–
 253.
- Burniaux, J.-M., J. Château, and J. Sauvage, 2011: The Trade Effects of Phasing Out Fossil-Fuel
 Consumption Subsidies. https://doi.org/https://doi.org/https://doi.org/10.1787/5kg6lql8wk7b-en.
- 45 Burns, W., and C. R. Corbett, 2020: Antacids for the Sea? Artificial Ocean Alkalinization and Climate

- 1 Change. One Earth, 3, 154–156, https://doi.org/10.1016/j.oneear.2020.07.016.
- 2 Busby, J., 2016: After Paris: good enough climate governance. Curr. Hist., 3–9.
- 3 —, and J. Urpelainen, 2020: Following the Leaders? How to Restore Progress in Global Climate
- 4 Governance. Glob. Environ. Polit., 20, 99–121.
- 5 Busch, J., F. Godoy, W. R. Turner, and C. A. Harvey, 2011: Biodiversity co-benefits of reducing
- 6 emissions from deforestation under alternative reference levels and levels of finance. Conserv. Lett., 4,
- 7 101–116, https://doi.org/10.1111/j.1755-263X.2010.00150.x.
- 8 Caldeira, K., and G. Bala, 2017: Reflecting on 50 years of geoengineering research. Earth's Futur.,
 9 https://doi.org/10.1002/2016EF000454.
- 10 Calzadilla, P. V., 2018: Human Rights and the New Sustainable Mechanism of the Paris Agreement: A
- 11 New Opportunity to Promote Climate Justice. Potchefstroom Electron. Law J., 21, 1-39,
- 12 https://doi.org/10.17159/1727.
- 13 Campagnolo, L., and M. Davide, 2019: Can the Paris deal boost SDGs achievement? An assessment of
- climate mitigation co-benefits or side-effects on poverty and inequality. World Dev., 122, 96–109,
 https://doi.org/10.1016/J.WORLDDEV.2019.05.015.
- Campbell-Duruflé, C., 2018a: Clouds or Sunshine in Katowice? Transparency in the Paris Agreement
 Rulebook. Carbon Clim. Law Rev., 12, 209–217.
- ..., 2018b: Accountability or Accounting? Elaboration of the Paris Agreement's Implementation and
 Compliance Committee at cop 23. Clim. Law, 8, 1–38, https://doi.org/10.1163/18786561-00801001.
- Caney, S., 2011: Climate change, energy rights, and equality. The Ethics of Global Climate Change,
 D.G. Arnold, Ed., Cambridge University Press (CUP), 77–103.
- Caparrós, A., 2016: The Paris Agreement as a step backward to gain momentum: Lessons from and for
 theory. Rev. Econ. Polit., 126, 347, https://doi.org/10.3917/redp.263.0347.
- 24 —, and J. C. Péreau, 2017: Multilateral versus sequential negotiations over climate change. Oxf.
 25 Econ. Pap., 69, 365–387, https://doi.org/10.1093/oep/gpw075.
- 26 —, R. E. Just, and D. Zilberman, 2015: Dynamic Relative Standards versus Emission Taxes in a
 27 Putty-Clay Model. J. Assoc. Environ. Resour. Econ., 2, 277–308, https://doi.org/10.1086/681599.
- Carazo, M. P., 2017: Part II Analysis of the Provisions of the Agreement, 6 Contextual Provisions
 (Preamble and Article 1). Paris Agreem. Clim. Chang. Anal. Comment.,.
- 30 Carraro, C., 2016: A Bottom-Up, Non-Cooperative Approach to Climate Change Control: Assessment
- and Comparison of Nationally Determined Contributions (NDCs). J. Sustain. Dev., 9, 175,
 https://doi.org/10.5539/jsd.v9n5p175.
- Carty, T., J. Kowalzig, and B. Zagema, 2020: Climate Finance Shadow Report 2020: Assessing
 progress towards the \$100 billion commitment.
- Casado-Asensio, J., and R. Steurer, 2014: Integrated strategies on sustainable development, climate change mitigation and adaptation in Western Europe: communication rather than coordination. J. Public
- 37 Policy, 34, 437–473, https://doi.org/10.1017/S0143814X13000287.
- 38 CDP, 2015: CDP cities 2015.
- CESCR, 1991: General comment No. 4: The right to adequate housing. Committee on Economic, Social
 and Cultural Rights Sixth session, E/1992/23.
- 41 —, 2002: General Comment No. 15: The right to water. Substantive Issues Arising in the 42 Implementation of the International Covenant on Economic, Social and Cultural Rights, 43 E/C.12/2002/11.
- 44 —, 2010: Statement on the Right to Sanitation. Committee on Economic, Social and Cultural Rights
 45 Forty-fifth session, E-C-12-2010-1.

- 1 Chai, Q., S. Fu, H. Xu, W. Li, and Y. Zhong, 2017: The gap report of global climate change mitigation,
- 2 finance, and governance after the United States declared its withdrawal from the Paris Agreement.
- 3 Chinese J. Popul. Resour. Environ., 15, 196–208, https://doi.org/10.1080/10042857.2017.1365450.
- Chan, G., R. Stavins, and Z. Ji, 2018: International Climate Change Policy. Annu. Rev. Resour. Econ.,
 10, 335–360, https://doi.org/10.1146/annurev-resource-100517-023321.
- 6 Chan, N., 2016a: Climate Contributions and the Paris Agreement: Fairness and Equity in a Bottom-Up
 7 Architecture. Ethics Int. Aff., 30, 291–301, https://doi.org/10.1017/S0892679416000228.
- 8 —, 2016b: The 'New' Impacts of the Implementation of Climate Change Response Measures. Rev.
 9 Eur. Comp. Int. Environ. Law, 25, 228–237, https://doi.org/https://doi.org/10.1111/reel.12161.
- Chan, S., and Coauthors, 2015: Reinvigorating International Climate Policy: A Comprehensive
 Framework for Effective Nonstate Action. Glob. Policy, 6, 466–473, https://doi.org/10.1111/17585899.12294.
- —, C. Brandi, and S. Bauer, 2016: Aligning Transnational Climate Action with International Climate
 Governance: The Road from Paris. Rev. Eur. Comp. Int. Environ. Law, 25, 238–247,
 https://doi.org/10.1111/reel.12168.
- Chander, P., 2017: Subgame-perfect cooperative agreements in a dynamic game of climate change. J.
 Environ. Econ. Manage., 84, 173–188, https://doi.org/10.1016/j.jeem.2017.03.001.
- Charlery, L., and S. L. M. Traerup, 2019: The nexus between nationally determined contributions and
 technology needs assessments: a global analysis. Clim. POLICY, 19, 189–205,
 https://doi.org/10.1080/14693062.2018.1479957
- Charnovitz, S., and C. Fischer, 2015: Canada–Renewable Energy: Implications for WTO Law on Green
 and Not-So-Green Subsidies. World Trade Rev., 14, 177–210, https://doi.org/DOI:
 10.1017/S1474745615000063.
- Chasek, P., M. Akhtar-Schuster, B. J. Orr, A. Luise, H. Rakoto Ratsimba, and U. Safriel, 2019: Land
 degradation neutrality: The science-policy interface from the UNCCD to national implementation.
 Environ. Sci. Policy, https://doi.org/10.1016/j.envsci.2018.11.017.
- Chazdon, R. L., P. H. S. Brancalion, D. Lamb, L. Laestadius, M. Calmon, and C. Kumar, 2017: A
 Policy-Driven Knowledge Agenda for Global Forest and Landscape Restoration: A policy-driven
 agenda for restoration. Conserv. Lett., 10, 125–132, https://doi.org/10.1111/conl.12220.
- Chen, K., Y. Zhang, and X. Fu, 2019: International research collaboration: An emerging domain of innovation studies? Res. Policy, 48, 149–168, https://doi.org/10.1016/J.RESPOL.2018.08.005.
- Chenoweth, E., and M. Belgioioso, 2019: The physics of dissent and the effects of movement momentum. Nat. Hum. Behav., 3, 1088–1095, https://doi.org/10.1038/s41562-019-0665-8.
- 34 Christensen, J., and A. Olhoff, 2019: Lessons from a decade of emissions gap assessments. 1–14 pp.
- Christoff, P., 2016: The promissory note: COP 21 and the Paris Climate Agreement. Env. Polit., 25,
 765–787, https://doi.org/10.1080/09644016.2016.1191818.
- Di Ciommo, M., 2017: Approaches to measuring and monitoring South-South cooperation. Dev.
 Initiat., 2–3.
- 39 Ciplet, D., Roberts J. T., Khan, M.R., 2015: Power In A Warming WorldThe New Global Politics of
- 40 Climate Change and the Remaking of Environmental Inequality\$ Users without a subscription are not
- 41 able to see the full content. Power In A Warming World: The New Global Politics of Climate Change
- 42 and the. MIT Press,.
- Ciplet, D., and J. Roberts, 2017: Splintering South: Ecologically Unequal Exchange Theory in a
 Fragmented Global Climate. J. World Syst. Res., 23, 372–398,
 https://doi.org/10.5195/JWSR.2017.669.
- 46 —, K. M. Adams, R. Weikmans, and J. T. Roberts, 2018: The Transformative Capability of

- Transparency in Global Environmental Governance. Glob. Environ. Polit., 18, 130–150, https://doi.org/10.1162/glep_a_00472.
- Claeys, P., and D. Delgado Pugley, 2017: Peasant and indigenous transnational social movements
 engaging with climate justice. Can. J. Dev. Stud., 38, 325–340,
 https://doi.org/10.1080/02255189.2016.1235018.
- 6 Clarke, A., and A. MacDonald, 2016: Outcomes to Partners in Multi-Stakeholder Cross-Sector
- 7 Partnerships: A Resource-Based View. Bus. Soc., 58, 298–332, 8 https://doi.org/10.1177/0007650316660534.
- 9 —, and E. Ordonez-Ponce, 2017: City scale: Cross-sector partnerships for implementing local climate mitigation plans. Public Adm. Rev.,.
- Clémençon, R., 2016: The Two Sides of the Paris Climate Agreement: Dismal Failure or Historic
 Breakthrough? J. Environ. Dev., 25, 3–24, https://doi.org/10.1177/1070496516631362.
- 13 Climate Action Network International, 2020: About CAN.
- 14 Climate Action Tracker, 2020a: International Aviation.
- 15 —, 2020b: International Shipping.
- Climate Focus, 2016: Progress on the New York Declaration on Forests: Eliminating Deforestation
 from the Production of Agricultural Commodities Goal 2 Assessment Report.
 https://climatefocus.com/sites/default/files/2016-NYDF-Goal-2-Assessment-Report.pdf.
- 19 Cochran, I., and A. Pauthier, 2019: A framework for Aligning with Paris Agreement. The Why, What 20 and how for financial institutions.
- Coninck, H. de, and D. Puig, 2015: Assessing climate change mitigation technology interventions by
 international institutions. Clim. Change, 131, 417–433.
- de Coninck, H., and A. Sagar, 2015a: Making sense of policy for climate technology development and
 transfer. Clim. Policy, 15, 1–11, https://doi.org/https://doi.org/10.1080/14693062.2014.953909.
- 25 _____, and _____, 2015b: Technology in the 2015 Paris Climate Agreement and beyond. 31 pp.
 26 https://www.ru.nl/publish/pages/749373/2015_-
- 27 _technology_in_the_2015_paris_climate_agreement_and_beyond_-_ictsd_issue_paper_no_42.pdf.
- Corry, O., 2017: The international politics of geoengineering: The feasibility of Plan B for tackling
 climate change. Secur. Dialogue, 48, 297–315, https://doi.org/10.1177/0967010617704142.
- 30 Cosbey, A., and P. C. Mavroidis, 2014: A Turquoise Mess: Green Subsidies, Blue Industrial Policy and
- Renewable Energy: The Case for Redrafting the Subsidies Agreement of the WTO. J. Int. Econ. Law,
 17, 11–47, https://doi.org/10.1093/jiel/jgu003.
- 33 —, S. Droege, C. Fischer, and C. Munnings, 2019: Developing Guidance for Implementing Border
 34 Carbon Adjustments: Lessons, Cautions, and Research Needs from the Literature. Rev. Environ. Econ.
- 35 Policy, 13, 3–22, https://doi.org/10.1093/reep/rey020.
- 36 Crane, A., and M. M. Seitanidi, 2014: Social partnerships and responsible business: What, why and37 how? 40 pp.
- Creutzig, F., P. Agoston, J. C. Goldschmidt, G. Luderer, G. Nemet, and R. C. Pietzcker, 2017: The
 underestimated potential of solar energy to mitigate climate change. Nat. Energy, 2, 17140.
- 40 Crutzen, P. J., 2006: Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to 41 Resolve a Policy Dilemma? Clim. Change, 77, 211–220, https://doi.org/10.1007/s10584-006-9101-y.
- 42 CTCN, 2020a: About the Climate Technology Centre and Network (CTCN). Connect. Ctries. to Clim.
 43 Technol. Solut., https://www.ctc-n.org/about-ctcn (Accessed June 4, 2020).
- 44 —, 2020b: Network. Connect. Ctries. to Clim. Technol. Solut.,.
- 45 Curtis, P. G., C. M. Slay, N. L. Harris, A. Tyukavina, and M. C. Hansen, 2018: Classifying drivers of

- 1 global forest loss. Science (80-.)., 361, 1108–1111, https://doi.org/10.1126/science.aau3445.
- Dagnet, Y., and Coauthors, 2016: Staying on Track from Paris: Advancing the Key Issues of the Paris
 Agreement. https://www.wri.org/publication/staying-track-paris.
- 4 Daniel, A., and D. Neubert, 2019: Civil society and social movements: conceptual insights and 5 challenges in African contexts. Crit. African Stud., https://doi.org/10.1080/21681392.2019.1613902.

6 Darrin, Grimsey and Mervyn, L., 2002: Evaluating the risks of public private partnerships for 7 infrastructure project. Internatioanal J. Public Manag., 20, 107–118, 8 https://doi.org/10.1016/S0263/D0263-7863(00)00040-5.

- Das, K., H. van Asselt, S. Droege, and M. Mehling, 2019: Making the International Trade System Work
 for the Paris Agreement: Assessing the Options. Environ. Law Report., 49, 10553–10580.
- Data-Driven EnviroLab; NewClimate Institute, 2020: Accelerating Net Zero: Exploring Cities,
 Regions, and Companies' Pledges to Decarbonise.
- Dave, R., and Coauthors, 2019: Second Bonn Challenge progress report: application of the Barometer
 in 2018. IUCN, International Union for Conservation of Nature,.
- 15 De-Bruijn, K. C., 2020: A paradigm shift from voluntary to courtordered climate change mitigation?
- 16 The potentials and challenges of a human rights based approach. FACULTY OF LAW Lund University,
- 17 http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=9026624&fileOId=9026626.
- Dehm, J., 2020: Climate change, 'slow violence' and the indefinite deferral of responsibility for 'loss
 and damage.' Griffith Law Rev., 1–33, https://doi.org/10.1080/10383441.2020.1790101.
- Delimatsis, P., 2016: Sustainable Standard-setting, Climate Change and the TBT Agreement. Edward
 Elgar Publishing.
- 22 Delina, L., 2017: Multilateral development banking in a fragmented climate system: shifting priorities
- in energy finance at the Asian Development Bank. Int. Environ. Agreements Polit. Law Econ., 17, 73–
 88, https://doi.org/10.1007/s10784-016-9344-7.
- Depledge, J., 2017: The legal and policy framework of the United Nations Climate Change Regime.
 The Paris Agreement on climate change: Analysis and commentary, A. Carazo, P., Doelle, M., Bulmer,
 J., and Higham, Ed., OXFORD UNIV PRESS.
- Derman, B. B., 2014: Climate governance, justice, and transnational civil society. Clim. Policy,
 https://doi.org/10.1080/14693062.2014.849492.
- 30 Dimitrov, R., J. Hovi, D. F. Sprinz, H. Sælen, and A. Underdal, 2019: Institutional and Environmental
- 31 Effectiveness: Will the Paris Agreement Work? WIREs Clim. Chang., 2019, 32 https://doi.org/10.1002/wcc.583.
- Djenontin, I., S. Foli, and L. Zulu, 2018: Revisiting the Factors Shaping Outcomes for Forest and
 Landscape Restoration in Sub-Saharan Africa: A Way Forward for Policy, Practice and Research.
 Sustainability, 10, 906, https://doi.org/10.3390/su10040906.
- Dobson, N. L., 2018: The EU's conditioning of the 'extraterritorial' carbon footprint: A call for an
 integrated approach in trade law discourse. Rev. Eur. Comp. Int. Environ. Law, 27, 75–89,
 https://doi.org/https://doi.org/10.1111/reel.12226.
- 39 —, 2020: Competing Climate Change Responses: Reflections on EU Unilateral Regulation of
 40 International Transport Emissions in Light of Multilateral Developments. Netherlands Int. Law Rev.,
 41 67, 183–210, https://doi.org/10.1007/s40802-020-00167-2.
- Doda, B., and L. Taschini, 2017: Carbon Dating: When Is It Beneficial to Link ETSs? J. Assoc. Environ.
 Resour. Econ., 4, 701–730, https://doi.org/10.2139/ssrn.2610076.
- 44 ——, S. Quemin, and L. Taschini, 2019: Linking Permit Markets Multilaterally.
- 45 Doelle, M., 2016: The Paris Agreement: Historic Breakthrough or High Stakes Experiment? Clim. Law,
- 46 6, 1–20, https://doi.org/10.1163/18786561-00601001.

- 1 —, 2019: The Heart of the Paris Rulebook: Communicating NDCs and Accounting for Their 2 Implementation. Clim. Law, 9, 3–20.
- 3 —, and A. Chircop, 2019: Decarbonizing international shipping: An appraisal of the IMO's Initial
- 4 Strategy. Rev. Eur. Comp. Int. Environ. Law, 28, 268–277, https://doi.org/10.1111/reel.12302.
- 5 Dong, Y.; Holm Olsen, K., 2017: Stakeholder participation in CDM and new climate mitigation 6 mechanisms. Clim. Policy, 17, 171–188.
- Donofrio, S., P. Rothrock, and J. Leonard, 2017: Supply-change: Tracking Corporate Commitments to
 Deforestation-free Supply Chain. Forest Trends,.
- 9 Dow, K., F. Berkhout, B. L. Preston, R. J. T. Klein, G. Midgley, and M. R. Shaw, 2013: Limits to 10 adaptation. Nat. Clim. Chang., 3, 305–307, https://doi.org/10.1038/nclimate1847.
- Downs, G. W., D. M. Rocke, P. N. Barsoom, and S. 1996, 1996: Is the Good News About Compliance
 Good News About Cooperation? Int. Organ., 50, 379–406.
- Droege, S., H. van Asselt, K. Das, and M. Mehling, 2017: The Trade System and Climate Action: Ways
 Forward under the Paris Agreement. South Carolina J. Int. Law Bus., 13, 195–276.
- 15 Duguma, L. A., P. A. Minang, and M. van Noordwijk, 2014: Climate Change Mitigation and Adaptation
- in the Land Use Sector: From Complementarity to Synergy. Environ. Manage., 54, 420–432,
 https://doi.org/10.1007/s00267-014-0331-x.
- Duyck, S., 2015: The Paris Climate Agreement and the Protection of Human Rights in a Changing
 Climate. Yearb. Int. Environ. Law, 26, 3–45, https://doi.org/10.1093/yiel/yvx011.
- 20 —, 2019: Delivering on the Paris Promises? Review of the Paris Agreement's Implementing
 21 Guidelines from a Human Rights Perspective. Clim. Law, 9, 202–223.
- 22 Duyck, S., E. Lennon, W. Obergassel, A. Savaresi, S. Duyck, E. Lennon, W. Obergassel, and A.
- Savaresi, 2018: Human Rights and the Paris Agreement's Implementation Guidelines: Opportunities to
 Develop a Rights-based Approach. Carbon Clim. Law Rev., https://doi.org/10.21552/cclr/2018/3/5.
- Dzebo, A. Janetschek, H. Brandi, C. Iacobuta, G., 2019: Connections between the Paris Agreement and
 the 2030 Agenda The case for policy coherence. 38 pp. https://www.sei.org/wp content/uploads/2019/08/connections-between-the-paris-agreement-and-the-2030-agenda.pdf.
- Ebi, K. L., and Coauthors, 2014: A new scenario framework for climate change research: background,
 process, and future directions. Clim. Change, 122, 363–372, https://doi.org/10.1007/s10584-013-09123.
- Ehara, M., K. Hyakumura, and Y. Yokota, 2014: REDD+ initiatives for safeguarding biodiversity and
 ecosystem services: harmonizing sets of standards for national application. J. For. Res.,
 https://doi.org/10.1007/s10310-013-0429-7.
- H. Samejima, M. Yamanoshita, Y. Asada, Y. Shogaki, M. Yano, and K. Hyakumura, 2019:
 REDD+ engagement types preferred by Japanese private firms: The challenges and opportunities in
 relation to private sector participation. For. Policy Econ., https://doi.org/10.1016/j.forpol.2019.06.002.
- Eisenack, K., and L. Kähler, 2016: Adaptation to climate change can support unilateral emission
 reductions. Oxf. Econ. Pap., 68, 258–278, https://doi.org/10.1093/oep/gpv057.
- Ekawati, S., Subarudi, K. Budiningsih, G. K. Sari, and M. Z. Muttaqin, 2019: Policies affecting the implementation of REDD+ in Indonesia (cases in Papua, Riau and Central Kalimantan). For. Policy
- 41 Econ., https://doi.org/10.1016/j.forpol.2019.05.025.
- 42 El-Sayed, A., and S. J. Rubio, 2014: Sharing R and D investments in cleaner technologies to mitigate 43 climate change. Resour. Energy Econ., 38, 168–180, https://doi.org/10.1016/j.reseneeco.2014.07.003.
- 44 Elsevier, and IPSOS MORI, 2019: Research futures: Drivers and scenarios for the next decade |.
- 45 https://www.ipsos.com/ipsos-mori/en-uk/research-futures-drivers-and-scenarios-next-decade
- 46 (Accessed July 10, 2019).

- 1 den Elzen, M., A. Admiraal, M. Roelfsema, H. van Soest, A. F. Hof, and N. Forsell, 2016: Contribution
- 2 of the G20 economies to the global impact of the Paris agreement climate proposals. Clim. Change,
- 3 137, 655–665, https://doi.org/10.1007/s10584-016-1700-7.
- 4 Emmerling, J., U. Kornek, V. Bosetti, and K. Lessmann, 2020: Climate thresholds and heterogeneous
- regions: Implications for coalition formation. Rev. Int. Organ., 1–24, https://doi.org/10.1007/s11558019-09370-0.
- 7 Epps, T., and A. Green, 2010: Reconciling Trade and ClimateHow the WTO Can Help Address Climate
 8 Change. Edward Elgar Publishing,.
- 9 Erickson, L. E., 2017: Reducing greenhouse gas emissions and improving air quality: Two global 10 challenges. Environ. Prog. Sustain. Energy, 36, 982–988, https://doi.org/10.1002/ep.12665.
- Erickson, P., H. van Asselt, D. Koplow, M. Lazarus, P. Newell, N. Oreskes, and G. Supran, 2020: Why fossil fuel producer subsidies matter. Nature, 578, https://doi.org/10.1038/s41586-019-1920-x.
- Eriksen, H. H., and F. X. Perrez, 2014: The Minamata Convention: A Comprehensive Response to a Global Problem. Rev. Eur. Comp. Int. Environ. Law, 23, 195–210, https://doi.org/10.1111/reel.12079.
- 15 Erling, U. M., 2018: How to Reconcile the European Union Emissions Trading System (EU ETS) for
- 16 Aviation with the Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA)? Air
- 17 Sp. Law, 371–386.
- Ernst & Young, 2017: Report on the independent review of the effective implementation of the ClimateTechnology Centre and Network. 72 pp.
- 20 Espa, I., and G. Marín Durán, 2018: Renewable Energy Subsidies and WTO Law: Time to Rethink the
- Case for Reform Beyond Canada Renewable Energy/Fit Program. J. Int. Econ. Law, 21, 621–653,
 https://doi.org/10.1093/jiel/jgy031.
- Estache, Antonio, Saussier, S., 2014: Public-Private Partnerships and Efficiency: A short assessment.
 CESifo DICE Rep., 12, 8–13.
- 27 01aa75ed71a1.0002.02/DOC_1&format=PDF.
- European Court of Human Rights, A. N. 39371/20, 2020: Duarte Agostinho and Others v. Portugal and
 Others.
- Extinction Rebellion, 2019: Our Demands. Extinction Rebellion webpage,. https://rebellion.earth/
 (Accessed December 17, 2019).
- Eyben, R., 2013: Building Relationships in Development Cooperation: Traditional Donors and the
 Rising Powers. IDS Policy Brief.,.
- Eyland, T., and G. Zaccour, 2012: Strategic effects of a border tax adjustment. Int. Game Theory Rev.,
 14(3), 1–22, https://doi.org/10.1142/S0219198912500168.
- Falkner, R., 2016a: A Minilateral Solution for Global Climate Change? On Bargaining Efficiency, Club
 Benefits, and International Legitimacy. Perspect. Polit., https://doi.org/10.1017/s1537592715003242.
- 38 —, 2016b: The Paris agreement and the new logic of international climate politics. Int. Aff., 92,
 39 1107–1125, https://doi.org/10.1111/1468-2346.12708.
- 40 Falkner, R., 2019: The unavoidability of justice and order in international climate politics: From 41 Kyoto to Paris and beyond. Br. J. Polit. Int. RELATIONS, 21, 270–278,
- 41 Kyoto to Paris and beyond. Br. J. Polit. Int. 42 https://doi.org/10.1177/1369148118819069
- 43 FAO, 2010: Managing forests for climate change.
- 44 —, 2018: FAO's south-south and triangular cooperation to achieve the sustainable development 45 goals. Fostering partnership among the global South. 16.

- ____, 2019: South-South and Triangular Cooperation in FAO Strengthening partnerships to achieve
 the SGDs.
- 3 —, and G. M. of the UNCCD, 2015: Sustainable financing for forest and landscape restoration:
 4 Opportunities, challenges and the way forward. 131 pp.
- Fattouh, B., and L. Mahadeva, 2013: OPEC: What Difference Has It Made? Annu. Rev. Resour. Econ.,
 5, 427–443, https://doi.org/10.1146/annurev-resource-091912-151901.
- Fay, M., and Coauthors, 2015: Getting the Finance Flowing. Decarbonizing Development: Three Steps
 to a Zero-Carbon Future, The World Bank, 119–136.
- FDI Intelligence, 2020: *The fDi report 2020. Global greenfield investment trends.* 1–24 pp.
 http://report.fdiintelligence.com/#:~:text=The fDi Report 2020 reveals,declined 5%25 to 2.2
 million.
- Finus, M., and A. Caparrós, 2015: Game Theory and International Environmental Cooperation:
 Essential Readings. Edward Elgar, 934 pp.
- 14 —, and M. McGinty, 2019: The anti-paradox of cooperation: Diversity may pay! J. Econ. Behav.
 15 Organ., 157, 541–559, https://doi.org/10.1016/j.jebo.2018.10.015.
- Flegal, J. A., and A. Gupta, 2018: Evoking equity as a rationale for solar geoengineering research?
 Scrutinizing emerging expert visions of equity. Int. Environ. Agreements Polit. Law Econ.,
- 18 https://doi.org/10.1007/s10784-017-9377-6.
- 19 —, A. M. Hubert, D. R. Morrow, and J. B. Moreno-Cruz, 2019: Solar Geoengineering: Social
 20 Science, Legal, Ethical, and Economic Frameworks. Annu. Rev. Environ. Resour.,
 21 https://doi.org/10.1146/annurev-environ-102017-030032.
- 22 Forest Declaration, 2019: New York Declaration on Forests Progress Assessment.
- 23 Forsell, N., O. Turkovska, M. Gusti, M. Obersteiner, M. den Elzen, and P. Havlik, 2016: Assessing the
- 24 INDCs' land use, land use change, and forest emission projections. Carbon Balance Manag., 11, 26,
- 25 https://doi.org/10.1186/s13021-016-0068-3.
- 26 Foster, V., and A. Rana, 2020: Rethinking Power Sector Reform in the Developing World.
- Freestone, D., 2010: From Copenhagen to Cancun: Train Wreck or Paradigm Shift? Environ. Law Rev.,
 12, 87–93, https://doi.org/10.1350/enlr.2010.12.2.081.
- Fridahl, M., 2017: Socio-political prioritization of bioenergy with carbon capture and storage. Energy
 Policy, https://doi.org/10.1016/j.enpol.2017.01.050.
- Fridays for Future, 2019: About Fridays for Future. https://www.fridaysforfuture.org/about (Accessed
 December 17, 2019).
- Frisari, G., and M. Stadelmann, 2015: De-risking concentrated solar power in emerging markets: The
 role of policies and international finance institutions. Energy Policy, 82, 12–22,
 https://doi.org/https://doi.org/10.1016/j.enpol.2015.02.011.
- Froyn, C. B., and J. Hovi, 2008: A climate agreement with full participation. Econ. Lett., 99, 317–319,
 https://doi.org/10.1016/j.econlet.2007.07.013.
- Frumhoff, P. C., R. Heede, and N. Oreskes, 2015: The climate responsibilities of industrial carbon
 producers. Clim. Change, https://doi.org/10.1007/s10584-015-1472-5.
- Fuglestvedt, J., and Coauthors, 2018: Implications of possible interpretations of greenhouse gas
 balance' in the Paris Agreement. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.,
 https://doi.org/10.1098/rsta.2016.0445.
- 43 Fujimori, S., and Coauthors, 2016: Will international emissions trading help achieve the objectives of
- 44 the Paris Agreement? Environ. Res. Lett., 11, 104001, https://doi.org/10.1088/1748-
- 45 9326/11/10/104001.

- Fünfgeld, H., 2015: Facilitating local climate change adaptation through transnational municipal
 networks. Curr. Opin. Environ. Sustain.,.
- Fyson, C. L., and M. L. Jeffery, 2019: Ambiguity in the Land Use Component of Mitigation
 Contributions Toward the Paris Agreement Goals. Earth's Futur., 7, 873–891,
 https://doi.org/10.1029/2019EF001190.
- 6 Fyson, C. L., S. Baur, M. Gidden, and C.-F. Schleussner, 2020: Fair-share carbon dioxide removal
- increases major emitter responsibility. Nat. Clim. Chang., 10, 836–841, https://doi.org/10.1038/s41558020-0857-2.
- Gajevic Sayegh, A., 2017: Climate justice after Paris: a normative framework. J. Glob. Ethics, 13, 344–
 365, https://doi.org/10.1080/17449626.2018.1425217.
- 11 Gallagher, K. P., R. Kamal, J. Jin, Y. Chen, and X. Ma, 2018: Energizing development finance? The
- benefits and risks of China's development finance in the global energy sector. Energy Policy, 122, 313–
 321, https://doi.org/https://doi.org/10.1016/j.enpol.2018.06.009.
- Gampfer, R., 2016: Minilateralism or the UNFCCC? The Political Feasibility of Climate Clubs. Glob.
 Environ. Polit., 16, 62–88, https://doi.org/10.1162/GLEP_a_00366.
- 16 Gandenberger, C.; Bodenheimer, C.; Schleich, J.; Orzama, R.; Macht, L., 2015: Factors driving
- 17 international technology transfer: Empirical insights from a CDM project survey. Clim. Policy, 16,
- 18 1065–1084.
- Ganguly, G., J. Setzer, and V. Heyvaert, 2018: If at First You Don't Succeed: Suing Corporations for
 Climate Change. Oxf. J. Leg. Stud., 38, 841–868, https://doi.org/10.1093/ojls/gqy029.
- Gao, S., M. Smits, A. P. J. Mol, and C. Wang, 2016: New market mechanism and its implication for carbon reduction in China. Energy Policy, 98, 221–231, https://doi.org/10.1016/J.ENPOL.2016.08.036.
- Gardiner, A., M. Bardout, F. Grossi, and S. Dixson-Declève, 2016: Public-Private Partnerships for
 Climate Finance. Nordic Council of Ministers,.
- Garrett, R. D., and Coauthors, 2019: Criteria for effective zero-deforestation commitments. Glob.
 Environ. Chang., https://doi.org/10.1016/j.gloenvcha.2018.11.003.
- GCF, 2011: Governing Instrument for the Green Climate Fund.
 https://www.greenclimate.fund/sites/default/files/document/governing-instrument.pdf (Accessed
 December 11, 2020).
- 30 GEA, 2012: Global Energy Assessment Toward a Sustainable Future. Cambridge University Press,
- 31 http://www.iiasa.ac.at/web/home/research/Flagship-Projects/Global-Energy-Assessment/GEA-
- 32 Summary-web.pdf (Accessed July 10, 2019).
- Geden, O., 2016a: An actionable climate target. Nat. Geosci., 9, 340–342,
 https://doi.org/10.1038/ngeo2699.
- 35 —, 2016b: The Paris Agreement and the inherent inconsistency of climate policymaking. WIREs
 36 Clim. Chang., 7, 790–797, https://doi.org/https://doi.org/10.1002/wcc.427.
- Geels, F., 2002: Technological transitions as evolutionary reconfiguration processes: a multi-level
 perspective and a case-study. Res. Policy, 31, 1257–1274.
- 39 —, B. K. Sovacool, T. Schwanen, and S. Sorrell, 2017: Sociotechnical transitions for deep 40 decarbonization. Science (80-.)., 357, 1242, https://doi.org/10.1126/science.aao3760.
- 41 _____, S. Sharpe, and D. Victor, 2019: Accelerating the low carbon transition. 99 pp.
- 42 Gehring, M. W., and E. Morison, 2020: Climate and Energy Provisions in Trade Agreements with 43 Relevance to the Commonwealth. https://doi.org/https://doi.org/https://doi.org/10.14217/f8ebf31e-en.
- 44 —, M.-C. Cordonier Segger, F. de Andrade Correa, P. Reynaud, A. Harrington, and R. Mella, 2013:
- 44 ——, M.-C. Cordonner Segger, F. de Andrade Correa, F. Reynaud, A. Harrington, and R. Mena, 2015.
 45 Climate Change and Sustainable Energy Measures in Regional Trade Agreements (RTAs): An
 46 Overview.

- https://seors.unfccc.int/applications/seors/attachments/get_attachment?code=LQ2JCEUQ0WAAGYG
 XY8I7019FEHFGIVI9.
- 3 Gençsü, I., and M. Hino, 2015: Raising Ambition to Reduce International Aviation and Maritime
- 4 Emissions. Contributing paper for Seizing the Global Opportunity: Partnerships for Better Growth and
- 5 a Better Climate. http://newclimateeconomy.report/misc/working-papers.
- 6 Georghiou, L., 1998: Global cooperation in research. Res. Policy, 27, 611–626, 7 https://doi.org/10.1016/S0048-7333(98)00054-7.
- Gerlagh, R., and T. O. Michielsen, 2015: Moving targets—cost-effective climate policy under scientific
 uncertainty. Clim. Change, 132, 519–529, https://doi.org/10.1007/s10584-015-1447-6.
- 10 Germain, M., P. Toint, H. Tulkens, and A. de Zeeuw, 2003: Transfers to sustain dynamic core-theoretic
- 11 cooperation in international stock pollutant control. J. Econ. Dyn. Control, 28, 79-99,
- 12 https://doi.org/10.1016/S0165-1889(02)00107-0.
- GESAMP, 2019: High level review of a wide range of proposed marine geoengineering techniques.
 International Maritime Organization (IMO), 144 pp.
- 15 Gewirtzman, J., S. Natson, J. A. Richards, V. Hoffmeister, A. Durand, R. Weikmans, S. Huq, and J. T.
- 16 Roberts, 2018: Financing loss and damage: reviewing options under the Warsaw International
- 17 Mechanism. Clim. Policy, 18, 1076–1086, https://doi.org/10.1080/14693062.2018.1450724.
- 18 Giang, A., L. C. Stokes, D. G. Streets, E. S. Corbitt, and N. E. Selin, 2015: Impacts of the Minamata
- 19 Convention on Mercury Emissions and Global Deposition from Coal-Fired Power Generation in Asia.
- 20 Environ. Sci. Technol., 49, 5326–5335, https://doi.org/10.1021/acs.est.5b00074.
- 21 Gilroy, J. J., P. Woodcock, F. A. Edwards, C. Wheeler, B. L. G. Baptiste, C. A. Medina Uribe, T.
- Haugaasen, and D. P. Edwards, 2014: Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nat. Clim. Chang., 4, 503–507,
- 24 https://doi.org/10.1038/nclimate2200.
- 25 GIZ, 2017: Enabling subnational climate action through multi-level governance.
- 26 Gladwell, M., 2002: The Tipping Point: How little things can make a big difference. 2000.
- Goldthau, A., and J. Witte, eds., 2010: Global energy governance: The new rules of the game. Brookings
 Institution Press,.
- 29 Gollier, C., and J. Tirole, 2015: Negotiating effective institutions against climate change. Econ. Energy
- 30 Environ. Policy, 4, 5–28, https://doi.org/10.5547/2160-5890.4.2.cgol.
- 31 Gomez-Echeverri, L., 2018: Climate and development: enhancing impact through stronger linkages in
- 32 the implementation of the Paris Agreement and the Sustainable Development Goals (SDGs). Philos.
- 33 Trans. R. Soc. A Math. Eng. Sci., 376, 20160444, https://doi.org/10.1098/rsta.2016.0444.
- Gordon, H. S., 1954: The Economic Theory of a Common-Property Resource : The Fishery. J. Polit.
 Econ., 62, 124–142.
- Goulder, L., M. A. Hafstead, G. Kim, and X. Long, 2018: Impacts of a Carbon Tax across USHousehold Income Groups: What Are the Equity-Efficiency Trade-Offs?
- 38 Gouvernance Mondiale De L'énergie, L., 2009: Gouvernance européenne et géopolitique de l'énergie
 39 Sous la direction de Cécile Kérébel et JanHorst Keppler.
- Government of Indonesia, 2016: First Nationally Determined Contribution. Republic Of Indonesia. 1–
 18. https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Indonesia First/First NDC
 Indonesia_submitted to UNFCCC Set_November 2016.pdf (Accessed January 9, 2021).
- 43 Van de Graaf, T., 2013: Fragmentation in Global Energy Governance: Explaining the Creation of
 44 IRENA. Glob. Environ. Polit., 13, 14–33.
- Van de Graaf, T., and D. Lesage, 2009: The International Energy Agency after 35 years: Reform needs and institutional adaptability. Rev. Int. Organ., 4, 293–317, https://doi.org/10.1007/s11558-009-9063-

1 8.

- 2 —, and J. Colgan, 2016: Global energy governance: a review and research agenda. Palgrave 3 Commun., 2, 15047, https://doi.org/10.1057/palcomms.2015.47.
- 4 Grassi, G., J. House, F. Dentener, S. Federici, M. den Elzen, and J. Penman, 2017: The key role of

forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Chang., 7, 220–
226, https://doi.org/10.1038/nclimate3227.

- Gray, K., and B. K. Gills, 2016: South–South cooperation and the rise of the Global South. Third World
 Q., 37, 557–574, https://doi.org/10.1080/01436597.2015.1128817.
- 9 Graziosi, F., and Coauthors, 2017: European emissions of the powerful greenhouse gases
- 10 hydrofluorocarbons inferred from atmospheric measurements and their comparison with annual 11 national reports to UNFCCC. Atmos. Environ., 158, 85–97.
- 11nationalreportstoUNFCCC.Atmos.Environ.,12https://doi.org/10.1016/J.ATMOSENV.2017.03.029.
- Green, J., Sterner, T., & Wagner, G., 2014: A balance of "bottom–up" and "top–down" in linking climate policies. Nat. Clim. Chang., 12, 1064–1067.
- Green, A., 2005: Climate Change, Regulatory Policy and the WTO: How Constraining Are Trade Rules? J. Int. Econ. Law, 8, 143–189, https://doi.org/10.1093/jielaw/jgi008.
- Green, B. A., 2009: Lessons from the Montreal Protocol: Guidance for the next international climate
 change agreement. Environ. Law, 39, 253–283, https://doi.org/10.1525/sp.2007.54.1.23.
- 19 Green Climate Fund, Green Climate Fund. https://www.greenclimate.fund.
- Green, J. F., 2017: The strength of weakness: pseudo-clubs in the climate regime. Clim. Change, 144,
 41–52, https://doi.org/10.1007/s10584-015-1481-4.
- Griscom, B. W., and Coauthors, 2017: Natural climate solutions. Proc. Natl. Acad. Sci. U. S. A., 114,
 11645–11650, https://doi.org/10.1073/pnas.1710465114.
- Grote, M., I. Williams, and J. Preston, 2014: Direct carbon dioxide emissions from civil aircraft. Atmos.
 Environ., 95, 214–224, https://doi.org/10.1016/J.ATMOSENV.2014.06.042.
- Grubb, M., 2014: Planetary economics: energy, climate change and the three domains of sustainable
 development. Earthscan,.
- Gsottbauer, E., R. Gampfer, E. Bernold, and A. M. Delas, 2018: Broadening the scope of loss and
 damage to legal liability: an experiment. Clim. Policy, 18, 600–611,
 https://doi.org/10.1080/14693062.2017.1317628.
- Gulbrandsen, L.H., Wettestad, J., Victor, D. G. and U. A., 2019: The Political Roots of Diverging
 Carbon Market Design: implications for linking. Clim. Policy, 19, 427–438.
- Gunningham, N., 2019: Averting Climate Catastrophe: Environmental Activism, Extinction Rebellion
 and coalitions of Influence. King's Law J., 30, 194–202,
 https://doi.org/10.1080/09615768.2019.1645424.
- Gupta, A., and H. van Asselt, 2019: Transparency in multilateral climate politics: Furthering (or
 distracting from) accountability? Regul. Gov., https://doi.org/10.1111/rego.12159.
- Jinnah, P. Kashwan, V. Mathur, D. R. Morrow, and S. Nicholson,
 Anticipatory governance of solar geoengineering: conflicting visions of the future and their links
 to governance proposals. Curr. Opin. Environ. Sustain., https://doi.org/10.1016/j.cosust.2020.06.004.
- 41 Gupta, H., and L. C. Dube, 2018: Addressing biodiversity in climate change discourse: Paris 42 mechanisms hold more promise. Int. For. Rev., 20, 104–114, 43 https://doi.org/10.1505/146554818822824282.
- Gupta, J., and Coauthors, 2010: Mainstreaming climate change in development cooperation policy:
 conditions for success. Making climate change work for us, M. Hulme and H. Neufeldt, Eds.,
 Cambridge University Press, 319–339.

- 1 Hadden, J., 2014: Explaining Variation in Transnational Climate Change Activism: The Role of Inter-
- 2 Movement Spillover. Glob. Environ. Polit., 14, 7–25, https://doi.org/10.1162/GLEP_a_00225.
- Haites, E., 2015: Experience with linking greenhouse gas emissions trading systems. WIREs Energy
 Environ., 5, 246–260.
- Håkon Sælen, Hovi, Jon, Detlef Sprinz, A. U., 2020: How US Withdrawal Might Influence Cooperation
 under the Paris Climate Agreement. 209701, 1–13.
- Hale, T., 2016: "All Hands on Deck": The Paris Agreement and Nonstate Climate Action. Glob.
 Environ. Polit., 16, 12–22, https://doi.org/10.1162/GLEP_a_00362.
- 9 —, and Coauthors, 2016: Exploring links between national climate strategies and non-state and 10 subnational climate action in nationally determined contributions (NDCs). Clim. Policy, 6, 1–15, 11 https://doi.org/10.1080/14693062.2019.1624252.
- 12 Hales, R., and B. Mackey, 2017: Carbon budgeting post-COP21: The need for an equitable strategy for
- meeting CO2e targets. Pathways to a Sustainable Economy: Bridging the Gap between Paris Climate
 Change Commitments and Net Zero Emissions.
- Hallt, M. J., and D. C. Weiss, 2012: Avoiding Adaptation Apartheid: Climate Change Adaptation and
 Human Rights Law. Yale J. Int. Law,.
- 17 Hanger, S., N. Komendantova, B. Schinke, D. Zejli, A. Ihlal, and A. Patt, 2016: Community acceptance
- 18 of large-scale solar energy installations in developing countries: Evidence from Morocco. Energy Res.
- 19 Soc. Sci., 14, https://doi.org/10.1016/j.erss.2016.01.010.
- 20 Hardin, G., 1968: The Tragedy of the Commons. Science (80-.)., 162, 1243–1248.
- Hein, J., A. Guarin, E. Frommé, and P. Pauw, 2018: Deforestation and the Paris climate agreement: An
 assessment of REDD + in the national climate action plans. For. Policy Econ., 90, 7–11,
 https://doi.org/10.1016/J.FORPOL.2018.01.005.
- Heinrichs, D., K. Krellenberg, and M. Fragkias, 2013: Urban Responses to Climate Change: Theories
 and Governance Practice in Cities of the Global South. Int. J. Urban Reg. Res., 37, 1865–1878,
 https://doi.org/10.1111/1468-2427.12031.
- Held, D., and C. Roger, 2018: Three Models of Global Climate Governance: From Kyoto to Paris and
 Beyond. Glob. Policy, 9, 527–537, https://doi.org/10.1111/1758-5899.12617.
- Helland, L., J. Hovi, and H. Sælen, 2017: Climate leadership by conditional commitments. Oxf. Econ.
 Pap., 70, 417–442, https://doi.org/10.1093/oep/gpx045.
- Helm, C., and D. F. Sprinz, 2000: Measuring the Effectiveness of International Environmental Regimes.
 J. Conflict Resolut., 45, 630–652.
- 33 Henderson, I., J. Coello, R. Fischer, I. Mulder, and T. Christophersen, 2013: The Role of the Private 34 REDD+: Case Sector in the for Engagement and Options for Intervention. 35 https://www.unredd.net/documents/redd-papers-and-publications-90/un-redd-publications-
- 36 1191/policy-brief-series-3154/10509-private-sector-engagement-policy-brief-en-final-version-low-
- 37 res-10509.html.
- Hermwille, L., A. Siemons, H. Förster, and L. Jeffery, 2019: Catalyzing mitigation ambition under the
 Paris Agreement: elements for an effective Global Stocktake. Clim. Policy, 19, 988–1001,
 https://doi.org/10.1080/14693062.2019.1624494.
- Herrala, R., and R. K. Goel, 2016: Sharing the emission reduction burden in an uneven world. Energy
 Policy, 94, 29–39, https://doi.org/10.1016/J.ENPOL.2016.03.028.
- 43 Hoch, S., A. Michaelowa, A. Espelage, and A. K. Weber, 2019: Governing complexity: How can the
- 44 interplay of multilateral environmental agreements be harnessed for effective international market-
- 45 based climate policy instruments? Int. Environ. Agreements Polit. Law Econ., 19, 595-613,
- 46 https://doi.org/10.1007/s10784-019-09455-6.

- Hochstetler, K., and M. Milkoreit, 2013: Emerging Powers in the Climate Negotiations: Shifting
 Identity Conceptions. Polit. Res. Q., 67, 224–235, https://doi.org/10.1177/1065912913510609.
- Hofman, E., and W. van der Gaast, 2019: Enhancing ambition levels in nationally determined
 contributions-Learning from Technology Needs Assessments. WILEY Interdiscip. Rev. Environ., 8,
 https://doi.org/10.1002/wene.311
- Hogl, K., D. Kleinschmit, and J. Rayner, 2016: Achieving policy integration across fragmented policy
 domains: Forests, agriculture, climate and energy. Environ. Plan. C Gov. Policy, 34, 399–414,
 https://doi.org/10.1177/0263774X16644815.
- Höglund-Isaksson, L., P. Purohit, M. Amann, I. Bertok, P. Rafaj, W. Schöpp, and J. Borken-Kleefeld,
 2017: Cost estimates of the Kigali Amendment to phase-down hydrofluorocarbons. Environ. Sci.
 Policy, 75, 138–147, https://doi.org/10.1016/J.ENVSCI.2017.05.006.
- Höhne, N., and Coauthors, 2017: The Paris Agreement: resolving the inconsistency between global
 goals and national contributions. Clim. Policy, https://doi.org/10.1080/14693062.2016.1218320.
- H. Fekete, M. G. J. den Elzen, A. F. Hof, and T. Kuramochi, 2018: Assessing the ambition of
 post-2020 climate targets: a comprehensive framework. Clim. Policy, 18, 425–441,
 https://doi.org/10.1080/14693062.2017.1294046.
- Holmberg, A., and A. Alvinius, 2019: Children's protest in relation to the climate emergency: A
 qualitative study on a new form of resistance promoting political and social change. Childhood,
 0907568219879970, https://doi.org/10.1177/0907568219879970.
- 20 Holzer, K., 2014: Carbon-related Border Adjustment and WTO Law. Edward Elgar Publishing,.
- 21 —, and T. Cottier, 2015: Addressing climate change under preferential trade agreements: Towards
 22 alignment of carbon standards under the Transatlantic Trade and Investment Partnership. Glob.
 23 Environ. Chang., 35, 514–522, https://doi.org/10.1016/j.gloenvcha.2015.06.006.
- Honegger, M., and D. Reiner, 2018: The political economy of negative emissions technologies:
 consequences for international policy design. Clim. Policy, 18, 306–321,
 https://doi.org/10.1080/14693062.2017.1413322.
- Horlick, G., and P. A. Clarke, 2017: Rethinking Subsidy Disciplines for the Future: Policy Options for
 Reform. J. Int. Econ. Law, 20, 673–703, https://doi.org/10.1093/jiel/jgx022.
- Horton, J., and D. Keith, 2016: Solar geoengineering and obligations to the global poor. Climate justice
 and geoengineering: Ethics and policy in the atmospheric anthropocene, C. Preston, Ed., Rowman
 Littlefield, 79–92.
- Horton, J. B., and B. Koremenos, 2020: Steering and influence in transnational climate governance:
 nonstate engagement in solar geoengineering research. Glob. Environ. Polit.,
 https://doi.org/10.1162/glep a 00572.
- Hourdequin, M., 2018: Climate Change, Climate Engineering, and the 'Global Poor': What Does
 Justice Require? Ethics, Policy Environ., https://doi.org/10.1080/21550085.2018.1562525.
- Hovi, J., D. F. Sprinz, H. Sælen, and A. Underdal, 2019: The Club Approach: A Gateway to Effective
 Climate Co-operation? *Br. J. Polit. Sci.*, 49, 1071–1096, doi:10.1017/S0007123416000788.
 https://www.cambridge.org/core/product/identifier/S0007123416000788/type/journal_article.
- Hovi, J., D. F. Sprinz, H. Sælen, and A. Underdal, 2016: Climate change mitigation: A role for climate
 clubs? Palgrave Commun., 2, 1–9, https://doi.org/10.1057/palcomms.2016.20.
- 42 —, D. F. Sprinz, H. Sælen, and A. Underdal, 2017: The Club Approach: A Gateway to Effective 43 Climate Co-operation? Br. J. Polit. Sci., 49, 1071–1096, 44 https://doi.org/https://doi.org/10.1017/S0007122416000788
- 44 https://doi.org/https://doi.org/10.1017/S0007123416000788.
- Howard, A., 2017: Voluntary Cooperation (Article 6). The Paris Agreement on climate change:
 Analysis and commentary, D. Klein, M. Pía Carazo, M. Doelle, J. Bulmer, and A. Higham, Eds., p. 178.

- 1 La Hoz Theuer, S., L. Schneider, and D. Broekhoff, 2019: When less is more: limits to international 2 transfers under Article 6 of the Paris Agreement. Clim. Policy, 19, 401–413,
- 3 https://doi.org/10.1080/14693062.2018.1540341.
- Hsu, A., and Coauthors, 2019a: A research roadmap for quantifying non-state and subnational climate
 mitigation action. Nat. Clim. Chang., 9, 11–17, https://doi.org/10.1038/s41558-018-0338-z.
- 6 —, J. Brandt, O. Widerberg, S. Chan, and A. Weinfurter, 2019b: Exploring links between national climate strategies and non-state and subnational climate action in nationally determined contributions
 8 (NDCs). Clim. Policy, 0, 1–15, https://doi.org/10.1080/14693062.2019.1624252.
- Hu, X., H. Pollitt, J. Pirie, J.-F. Mercure, J. Liu, J. Meng, and S. Tao, 2020: The impacts of the trade
 liberalization of environmental goods on power system and CO2 emissions. Energy Policy, 140,
- 11 111173, https://doi.org/https://doi.org/10.1016/j.enpol.2019.111173.
- Huang, J., 2018: What Can the Paris Agreement's Global Stocktake Learn from the SustainableDevelopment Goals? Carbon Clim. Law Rev., 12, 218–228.
- Hubert, A. M., 2020: A Code of Conduct for Responsible Geoengineering Research. Glob. Policy,
 https://doi.org/10.1111/1758-5899.12845.
- Hufbauer, G. C., J. Kim, and S. Charnovitz, 2009: Global Warming and the World Trading System.
 Peterson Institute for International Economics,.
- Huggins, A., and M. S. Karim, 2016: Shifting Traction: Differential Treatment and Substantive and
 Procedural Regard in the International Climate Change Regime. Transnatl. Environ. Law, 5, 427–448,
- 20 https://doi.org/10.1017/S2047102516000170.
- Hurrell, A., and S. Sengupta, 2012: Emerging powers, North–South relations and global climate politics. Int. Aff., 88, 463–484, https://doi.org/https://doi.org/10.1111/j.1468-2346.2012.01084.x.
- Hurwitz, M. M., E. L. Fleming, P. A. Newman, F. Li, and Q. Liang, 2016: Early action on HFCs
 mitigates future atmospheric change. Environ. Res. Lett., 11, 114019, https://doi.org/10.1088/17489326/11/11/114019.
- ICAO, 2016: Resolution A39-3: Consolidated statement of continuing ICAO policies and practices
 related to environmental protection Global Market-based Measure (MBM) scheme.
- 28 ICAP, 2019: Emissions Trading Worldwide.
- 29 ICSU ISSC, 2015: Review of Targets for the Sustainable Development Goals: the science perspective.
- 30 IIGCC, 2020: Paris Aligned Investment Initiative: Net Zero Investment Framework for Consultation.
- 31 https://www.iigcc.org/download/net-zero-investment-framework-
- 32 consultation/?wpdmdl=3602&masterkey=5f270ef146677 (Accessed December 9, 2020).
- 33 IMO, 2018: Res. MEPC.304(72): Initial IMO Strategy on Reduction of GHG Emissions from Ships.
- 34 —, 2019: UN agency pushes forward on shipping emissions reduction.
- 35 InfoFLR, 2018: The Bonn Challenge Barometer. Int. Union Conserv. Nat.,.
- 36 Ingham, A., J. Ma, and A. M. Ulph, 2013: Can adaptation and mitigation be complements? Clim.
- 37 Change, 120, 39–53, https://doi.org/10.1007/s10584-013-0815-3.
- INPE, 2019: Monitoramento dos Focos Ativos por País Programa Queimadas INPE.
 http://queimadas.dgi.inpe.br/queimadas/portal-static/estatisticas_paises/ (Accessed December 22, 2020).
- Institute for Climate Economics, 2017: THE INITIATIVE Climate Action in Financial Institutions.
 https://www.mainstreamingclimate.org/initiative/ (Accessed December 8, 2020).
- International Solar Alliance, 2015: Framework Agreement on the establishment of the InternationalSolar Alliance.
- 45 IPCC, 2014: Climate-Resilient Pathways: Adaptation, Mitigation, and Sustainable Development.

- Climate Change 2014 Impacts, Adaptation, and Vulnerability, C.B. Field, V.R. Barros, D.J. Dokken,
 K.J. Mach, and M.D. Mastrandrea, Eds., Cambridge University Press, 1101–1131.
- 3 _____, 2018a: Global Warming of 1.5 °C an IPCC special report on the impacts of global warming of
 4 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context
- 5 of strengthening the global response to the threat of climate change.
- 6 —, 2018b: IPCC Special Report 1.5 Summary for Policymakers. Global warming of 1.5°C. An 7 IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related 8 global greenhouse gas emission pathways, in the context of strengthening the global response to the
- 9 threat of climate change,
- -----, 2019: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, Summary for
 Policy Makers.
- 12 —, 2020: Climate Change and Land. 1–15 pp.
- 13 Irawan, S., T. Widiastomo, L. Tacconi, J. D. Watts, and B. Steni, 2019: Exploring the design of
- jurisdictional REDD+: The case of Central Kalimantan, Indonesia. For. Policy Econ.,
 https://doi.org/10.1016/j.forpol.2018.12.009.
- Ismer, R., and K. Neuhoff, 2007: Border tax adjustment: a feasible way to support stringent emission
 trading. Eur. J. Law Econ., 24, 137–164, https://doi.org/10.1007/s10657-007-9032-8.
- 18 Ivanova, A., 2017: Green financing for cities: current options and future challenges. Climate Change-
- Sensitive Cities: Building capacities for urban resilience, sustainability, and equity, G.C. Delgado, Ed.,
 PINCC-UNAM, 283–306.
- 21 —, and C. Lopez, 2013: The energy crisis and the policies for implementation of renewable energies.
 22 Strategies towards a sustainable development in front of the three crisis, UAM-Iztapalapa & Miguel
 23 Angel Porrúa, 267–282.
- A. Bermudez, and A. Martinez, 2015: Climate action plan for the city of La Paz, Baja California
 Sur, Mexico: a tool for sustainability. The Sustainable City X, Vol. 1 of, 439–449.
- 26 Iyer, G., C. Ledna, L. Clarke, J. Edmonds, H. McJeon, P. Kyle, and J. H. Williams, 2017: Measuring
- progress from nationally determined contributions to mid-century strategies. Nat. Clim. Chang., 7, 871–
- 28 874, https://doi.org/10.1038/s41558-017-0005-9.
- Jachnik, R., M. Mirabile, and A. Dobrinevski, 2019: Tracking finance flows towards assessing their
 consistency with climate objectives.
- Jacquet, J., and D. Jamieson, 2016: Soft but significant power in the Paris Agreement. Nat. Clim.
 Chang., 6, 643–646.
- Jaffe, A. B., R. G. Newell, and R. N. Stavins, 2005: A tale of two market failures: Technology and
 environmental policy. Ecol. Econ., https://doi.org/10.1016/j.ecolecon.2004.12.027.
- 35 James, R., F. Otto, H. Parker, E. Boyd, R. Cornforth, D. Mitchell, and M. Allen, 2014: Characterizing 36 and damage from climate change. Nat. Clim. 938–939, loss Chang., 4, 37 https://doi.org/10.1038/nclimate2411.
- Janus, H., S. Klingebiel, and T. C. Mahn, 2014: How to Shape Development Cooperation? The Global
 Partnership and the Development Cooperation Forum. SSRN Electron. J.,
 https://doi.org/10.2139/ssrn.2408384.
- 41 Jeffery, M. L., J. Gütschow, M. R. Rocha, and R. Gieseke, 2018: Measuring Success: Improving
- Assessments of Aggregate Greenhouse Gas Emissions Reduction Goals. Earth's Futur., 6, 1260–1274,
 https://doi.org/10.1029/2018EF000865.
- 44 Jernnas, M., and B. O. Linner, 2019: A discursive cartography of nationally determined contributions
- 45 to the Paris climate agreement. Glob. Environ. Chang. POLICY Dimens., 55, 73–83,
- 46 https://doi.org/10.1016/j.gloenvcha.2019.01.006 Correspondence Address bjom-ola.linner@liu.se.

- Jewell, J., and Coauthors, 2018: Limited emission reductions from fuel subsidy removal except in
 energy-exporting regions. Nature, 554, 229–233, https://doi.org/10.1038/nature25467.
- Jinnah, S., and S. Nicholson, 2019: The hidden politics of climate engineering. Nat. Geosci., 12, 876– 4 879, https://doi.org/10.1038/s41561-019-0483-7.

5 —, —, and J. Flegal, 2018: Toward Legitimate Governance of Solar Geoengineering Research: A 6 Role for Sub-State Actors. Ethics, Policy Environ., https://doi.org/10.1080/21550085.2018.1562526.

- 7 Johnson, B. A., R. Dasgupta, A. D. Mader, and H. Scheyvens, 2019: Understanding national 8 biodiversity targets in a REDD+ context. Environ. Sci. Policy,
- 8 biodiversity targets in a REDD+ context. Environ. Sci.
 9 https://doi.org/10.1016/j.envsci.2018.11.007.
- Jordan, A. J., and Coauthors, 2015: Emergence of polycentric climate governance and its future prospects. Nat. Clim. Chang., 5, 977–982, https://doi.org/10.1038/nclimate2725.
- 12 Joung, T.-H., S.-G. Kang, J.-K. Lee, and J. Ahn, 2020: The IMO initial strategy for reducing 13 Greenhouse Gas(GHG) emissions, and its follow-up actions towards 2050. J. Int. Marit. Safety,
- 14 Environ. Aff. Shipp., https://doi.org/10.1080/25725084.2019.1707938.
- 15 Jun, M., and S. Zadek, 2019: Decarbonizing the Road and Belt. A Green Finance Roadmap.
- 16 Junxiao, Liu., et al, 2015: A new framework for evaluating public-private partnerships.
- Karlas, J., 2017: States, coalitions, and the legalization of the global climate regime: negotiations on
 the post-2020 architecture. Env. Polit., 26, 1–22, https://doi.org/10.1080/09644016.2017.1324754.
- 19 Karlsson-Vinkhuyzen, S. I., M. Groff, P. A. Tamás, A. L. Dahl, M. Harder, and G. Hassall, 2018: Entry
- into force and then? The Paris agreement and state accountability. Clim. Policy, 18, 593–599,
- 21 https://doi.org/10.1080/14693062.2017.1331904.
- Karlsson, C., M. Hjerpe, C. Parker, and B.-O. Linnér, 2012: The Legitimacy of Leadership in
 International Climate Change Negotiations. Ambio, 41, 46–55, https://doi.org/10.1007/s13280-011-
- 24 0240-7.
- Kartha, S., and Coauthors, 2018: Cascading biases against poorer countries. Nat. Clim. Chang., 8, 348–
 349, https://doi.org/10.1038/s41558-018-0152-7.
- 27 Kasperson, R., and J. X. Kasperson, 2001: Climate change, vulnerability, and social justice.
- Keith, D. W., and D. G. MacMartin, 2015: A temporary, moderate and responsive scenario for solar
 geoengineering. Nat. Clim. Chang., https://doi.org/10.1038/nclimate2493.
- Kemp, L., 2018: A Systems Critique of the 2015 Paris Agreement on Climate. Pathways to a Sustainable
 Economy, Springer International Publishing, 25–41.
- Keohane, N., A. Petsonk, and A. Hanafi, 2017: Toward a club of carbon markets. Clim. Change, 144,
 81–95, https://doi.org/10.1007/s10584-015-1506-z.
- Keohane, R. O., and M. Oppenheimer, 2016: Paris: Beyond the Climate Dead End through Pledge and
 Review? Polit. Gov., 4, 142, https://doi.org/10.17645/pag.v4i3.634.
- 36 Kern, F., and K. S. Rogge, 2016: The pace of governed energy transitions: Agency, international
- 37 dynamics and the global Paris agreement accelerating decarbonisation processes? ENERGY Res. Soc.
- 38Sci.,22,13-17Fundingdetails-ResearchCouncilsUKResea,39https://doi.org/10.1016/j.erss.2016.08.016
- 40 Kern, K., and H. Bulkeley, 2009: Cities, Europeanization and Multi-level Governance: Governing
- 41 Climate Change through Transnational Municipal Networks. JCMS J. Common Mark. Stud., 47, 309–
- 42 332, https://doi.org/10.1111/j.1468-5965.2009.00806.x.
- 43 Khan, M., D. Mfitumukiza, and S. Huq, 2020: Capacity building for implementation of nationally
- 44 determined contributions under the Paris Agreement. Clim. Policy, 20, 499–510,
- 45 https://doi.org/10.1080/14693062.2019.1675577.

- Khan, M. R., and J. T. Roberts, 2013: Adaptation and international climate policy. Wiley Interdiscip.
 Rev. Clim. Chang., 4, 171–189, https://doi.org/10.1002/wcc.212.
- 3 —, J. Timmons Roberts, S. Huq, V. Hoffmeister, and S.-A. Robinson, 2018: Capacity building and 4 transparency under Paris. The Paris Framework for Climate Change Capacity Building, 203–222.
- 5 Khan, S. A., and K. Kulovesi, 2018: Black carbon and the Arctic: Global problem-solving through the 6 nexus of science, law and space. Rev. Eur. Comp. Int. Environ. Law, 27, 5–14, 7 https://doi.org/10.1111/reel.12245.
- Al Khourdajie, A., and M. Finus, 2020: Measures to enhance the effectiveness of international climate
 agreements: The case of border carbon adjustments. Eur. Econ. Rev., 124, 1–18,
 https://doi.org/10.1016/j.euroecorev.2020.103405.
- 11 Kinley, R., M. Z. Cutajar, Y. de Boer, and C. Figueres, 2020: Beyond good intentions, to urgent action:
- Former UNFCCC leaders take stock of thirty years of international climate change negotiations. Clim.
- 13 Policy, 1–11, https://doi.org/10.1080/14693062.2020.1860567.
- 14 Kirchherr, J., and F. Urban, 2018: Technology transfer and cooperation for low carbon energy 15 technology: Analysing 30 years of scholarship and proposing a research agenda. Energy Policy, 119, 16 600, 600, https://doi.org/10.1016/j.engol.2018.05.001
- 16 600–609, https://doi.org/10.1016/j.enpol.2018.05.001.
- 17 Kissinger, G., A. Gupta, I. Mulder, and N. Unterstell, 2019: Climate financing needs in the land sector
- 18 under the Paris Agreement: An assessment of developing country perspectives. Land use policy, 83,
- 19 256–269, https://doi.org/10.1016/J.LANDUSEPOL.2019.02.007.
- Klein, D., M. Pia Carazo, M. Doelle, J. Bulmer, and A. Higham, 2017: The Paris agreement on climate
 change: analysis and commentary. Oxford University Press,.
- Klinsky, S., and Coauthors, 2017: Why equity is fundamental in climate change policy research. Glob.
 Environ. Chang., 44, 170–173, https://doi.org/10.1016/j.gloenvcha.2016.08.002.
- Knox, J. H., 2016: Report of the Special Rapporteur on the issue of human rights obligations relating
 to the enjoyment of a safe, clean, healthy and sustainable environment. UN Human Rights Council, 31st
 Sess., Agenda Item pp.
- 27 —, 2019: The Paris Agreement as a Human Rights Treaty. Human Rights and the 21st Century
 28 Challenges: Poverty, Conflict and the Environment.
- Kowarsch, M., J. Garard, P. Riousset, D. Lenzi, M. J. Dorsch, B. Knopf, J.-A. Harrs, and O. Edenhofer,
 2016: Scientific assessments to facilitate deliberative policy learning. Palgrave Commun., 2, 16092,
 https://doi.org/10.1057/palcomms.2016.92.
- Kravitz, B., and Coauthors, 2015: The Geoengineering Model Intercomparison Project Phase 6
 (GeoMIP6): simulation design and preliminary results. Geosci. Model Dev., 8, 3379–3392, https://doi.org/10.5194/gmd-8-3379-2015.
- Kreibich, N., 2018: Raising Ambition through Cooperation Using Article 6 to bolsterclimate changemitigation.
- Krueger, P., Z. Sautner, and L. T. Starks, 2018: The Importance of Climate Risks for InstitutionalInvestors.
- 39 Krugman, P., 2011: History Versus Expectations. Q. J. Econ., 106, 651–667.
- 40 Kruitwagen, L., K. Madani, B. Caldecott, and M. H. W. Workman, 2017: Game theory and corporate
- 41 governance: conditions for effective stewardship of companies exposed to climate change risks. J.
- 42 Sustain. Financ. Invest., 7, 14–36, https://doi.org/10.1080/20430795.2016.1188537.
- 43 Kulovesi, K., 2014: International Trade Disputes on Renewable Energy: Testing Ground for the Mutual
- 44 Supportiveness of WTO Law and Climate Change Law. Rev. Eur. Comp. Int. Environ. Law, 23, 342–
- 45 353, https://doi.org/https://doi.org/10.1111/reel.12092.
- 46 Kuyper, J., H. Schroeder, and B.-O. Linnér, 2018a: The Evolution of the UNFCCC. Annu. Rev.

- 1 Environ. Resour., 43, 343–368, https://doi.org/10.1146/annurev-environ-102017-030119.
- Kuyper, J. W., B. O. Linnér, and H. Schroeder, 2018b: Non-state actors in hybrid global climate
 governance: justice, legitimacy, and effectiveness in a post-Paris era. Wiley Interdiscip. Rev. Clim.
- 4 Chang., 9, 1–18, https://doi.org/10.1002/wcc.497.
- Kverndokk, S., 2018: Climate Policies, Distributional Effects and Transfers Between Rich and Poor
 Countries. Int. Rev. Environ. Resour. Econ., 12, 129–176, https://doi.org/10.1561/101.00000100.
- 7 Labordena, M., A. Patt, M. Bazilian, M. Howells, and J. Lilliestam, 2017: Impact of political and
- 8 economic barriers for concentrating solar power in Sub-Saharan Africa. Energy Policy, 102, 52–72,
- 9 https://doi.org/10.1016/j.enpol.2016.12.008.
- Lambin, E. F., and Coauthors, 2018: The role of supply-chain initiatives in reducing deforestation. Nat.
 Clim. Chang., https://doi.org/10.1038/s41558-017-0061-1.
- Larsen, G., C. Smith, N. Krishan, and et al, 2018: Towards Paris Alignment: How the Multilateral
 Development Banks Can Better Support the Paris Agreement.
- Larsson, J., A. Elofsson, T. Sterner, and J. Åkerman, 2019: International and national climate policies
 for aviation: a review. Clim. Policy, https://doi.org/10.1080/14693062.2018.1562871.
- Laurens, N., Z. Dove, J.-F. Morin, and S. Jinnah, 2019: NAFTA 2.0: The Greenest Trade Agreement
 Ever? World Trade Rev., 18, 659–677, https://doi.org/DOI: 10.1017/S1474745619000351.
- Lawrence, P., and D. Wong, 2017: Soft law in the paris climate agreement: Strength or weakness? Rev.
 Eur. Comp. Int. Environ. Law, 26, 276–286, https://doi.org/10.1111/reel.12210.
- 20 —, and M. Reder, 2019: Equity and the Paris agreement: Legal and philosophical perspectives. J.
 21 Environ. Law, 31, 511–531, https://doi.org/10.1093/jel/eqz017.
- Lederer, M., and J. Kreuter, 2018: Organising the unthinkable in times of crises: Will climate engineering become the weapon of last resort in the Anthropocene? Organization, 25, 472–490, https://doi.org/10.1177/1350508418759186.
- Lees, E., 2017: Responsibility and liability for climate loss and damage after Paris. Clim. Policy, 17,
 59–70, https://doi.org/10.1080/14693062.2016.1197095.
- 27 Leffel, B., 2018: Subnational Diplomacy, Climate Governance & Californian Global Leadership.
- Lesage, D., T. Van de Graaf, and K. Westphal, 2010: Global Energy Governance in a Multipolar World
 Dries Lesage, Thijs Van de Graaf Google Books.
- Lessmann, K., and Coauthors, 2015: The Stability and Effectiveness of Climate Coalitions: A
 Comparative Analysis of Multiple Integrated Assessment Models. Environ. Resour. Econ., 62, 811–
 836, https://doi.org/10.1007/s10640-015-9886-0.
- Lewis, J. I., 2014: The Rise of Renewable Energy Protectionism: Emerging Trade Conflicts and
 Implications for Low Carbon Development. Glob. Environ. Polit., 14, 10–35,
 https://doi.org/10.1162/GLEP_a_00255.
- Lilliestam, J., A. Battaglini, C. Finlay, D. Fürstenwerth, A. Patt, G. Schellekens, and P. Schmidt, 2012:
 An alternative to a global climate deal may be unfolding before our eyes. Clim. Dev., 4, 1–4, https://doi.org/10.1080/17565529.2012.658273.
- Lindberg, M. B., J. Markard, and A. D. Andersen, 2018: Policies, actors and sustainability transition
 pathways: A study of the EU's energy policy mix. Res. Policy, 103668,
 https://doi.org/10.1016/J.RESPOL.2018.09.003.
- 42 Liu, J., 2011: The Cancun Agreements. Environ. Law Rev., 13, 43–49, 43 https://doi.org/10.1350/enlr.2011.13.1.112.
- 44 —, 2012: The Role of ICAO in Regulating the Greenhouse Gas Emissions of Aircraft. Carbon & amp;
 45 Clim. Law Rev., 5, 417–431.

restoration.

Restor.

Ecol.,

25,

27-32.

- 1 Liu, J., M. Calmon, A. Clewell, J. Liu, B. Denjean, V. L. Engel, and J. Aronson, 2017a: South-south
- 2 cooperation for large-scale ecological
- 3 https://doi.org/10.1111/rec.12462.
- Liu, J. Y., S. Fujimori, and T. Masui, 2017b: Temporal and spatial distribution of global mitigation
 cost: INDCs and equity. Post-2020 Climate Action: Global and Asian Perspectives.
- Liu, L., and M. Waibel, 2010: Managing Subnational Credit and Default Risks. Sovereign Debt and the
 Financial Crisis, 273–293.
- Lloyd, I. D., and M. Oppenheimer, 2014: On the Design of an International Governance Framework for
 Geoengineering. Glob. Environ. Polit., 14, 45–63, https://doi.org/10.1162/GLEP_a_00228.
- Locatelli, B., V. Evans, A. Wardell, A. Andrade, and R. Vignola, 2011: Forests and Climate Change in
 Latin America: Linking Adaptation and Mitigation. Forests, 2, 431–450,
 https://doi.org/10.3390/f2010431.
- London Convention/Protocol, 2010: Resolution LC-LP.2 on the assessment framework for scientific
 research involving ocean fertilization.
- LSE Grantham Research Institute on Climate Change and the Environment, Climate Laws of the World.
 https://climate-laws.org/ (Accessed December 14, 2020).
- Lyle, C., 2018: Beyond the icao's corsia: Towards a More Climatically Effective Strategy for Mitigation
 of Civil-Aviation Emissions. Clim. Law, 8, 104–127, https://doi.org/https://doi.org/10.1163/18786561-
- 19 00801004.
- Maas, A., and J. Scheffran, 2012: Climate Conflicts 2.0? Climate Engineering as a Challenge for
 International Peace and Security. Sicherheit und Frieden / Secur. Peace, 30, 193–200,
 https://doi.org/10.2307/24233201.
- 23 MacDonald, A., A. Clarke, L. Huang, M. Roseland, and M. M. Seitanidi, 2017: Multi-stakeholder
- Partnerships (SDG #17) as a Means of Achieving Sustainable Communities and Cities (SDG #11).
 World Sustainability Series, 193–209.
- Mace, M. J., 2016: Mitigation Commitments under the Paris Agreement and the Way Forward. Clim.
 Law, 6, 21–39, https://doi.org/10.1163/18786561-00601002.
- ____, and R. Verheyen, 2016: Loss, damage and responsibility after COP21: All options open for the
 Paris agreement. Rev. Eur. Comp. Int. Environ. Law, 25, 197–214, https://doi.org/10.1111/reel.12172.
- 30 —, C. L. Fyson, M. Schaeffer, and W. L. Hare, 2018: Governing large-scale carbon dioxide removal:
 31 are we ready? 46 pp.
- 32 MacLeod, M., and J. Park, 2011: Financial Activism and Global Climate Change: The Rise of Investor-
- 33DrivenGovernanceNetworks.Glob.Environ.Polit.,11,54–74,34https://doi.org/10.1162/GLEP_a_00055.
- MacMartin, D. G., K. L. Ricke, and D. W. Keith, 2018: Solar geoengineering as part of an overall
 strategy for meeting the 1.5°C Paris target. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 376,
 20160454, https://doi.org/10.1098/rsta.2016.0454.
- Macquarie, R., B. Naran, P. Rosane, M. Solomon, and C. Wetherbee, 2020: Updated view on the Global
 Landscape of Climate Finance 2019. Climate Policy Initiative, CPI London.,.
- 40 Maljean-Dubois, S., 2016: The paris agreement: A new step in the gradual evolution of differential 41 treatment in the climate regime? Rev. Eur. Comp. Int. Environ. Law,
- 42 https://doi.org/10.1111/reel.12162.
- 43 —, and M. Wemaëre, 2016: The Paris Agreement: A Starting Point towards Achieving Climate
 44 Neutrality? Carbon Clim. Law Rev. CCLR,.
- 45 Maltais, A., and B. Nykvist, 2020: Understanding the role of green bonds in advancing sustainability.
- 46 J. Sustain. Financ. Invest., 1–20, https://doi.org/10.1080/20430795.2020.1724864.

- Mansourian, S., N. Dudley, and D. Vallauri, 2017: Forest Landscape Restoration: Progress in the Last
 Decade and Remaining Challenges. Ecol. Restor., 35, 281–288, https://doi.org/10.3368/er.35.4.281.
- 3 Marcu, A., 2016: Carbon Market Provisions in the Paris Agreement (Article 6). 26 pp.
- 4 Marjanac, S., and L. Patton, 2018: Extreme weather event attribution science and climate change

5 litigation: An essential step in the causal chain? J. Energy Nat. Resour. Law, 36, 6 https://doi.org/10.1080/02646811.2018.1451020.

- Marques, A., and Coauthors, 2014: A framework to identify enabling and urgent actions for the 2020
 Aichi Targets. Basic Appl. Ecol., 15, 633–638, https://doi.org/10.1016/j.baae.2014.09.004.
- Martinez Romera, B., 2016: The Paris Agreement and the Regulation of International Bunker Fuels.
 Rev. Eur. Comp. Int. Environ. Law, 25, 215–227, https://doi.org/10.1111/reel.12170.
- Mayer, B., 2016: Human Rights in the Paris Agreement. Clim. Law, https://doi.org/10.1163/18786561 00601007.
- —, 2018: International Law Obligations Arising in relation to Nationally Determined Contributions.
 Transnatl. Environ. Law, 7, 251–275, https://doi.org/10.1017/s2047102518000110.

15 —, 2019: Transparency Under the Paris Rulebook: Is the Transparency Framework Truly Enhanced?
 16 Clim. Law, 9, 40–64.

- Mayer, B., and F. Crépeau, 2016: 1. Introduction. Research Handbook on Climate Change, Migration
 and the Law, B. Mayer and F. Crépeau, Eds., Elgar, 1–26.
- Mayr, S., B. Hollaus, and V. Madner, 2020: Palm Oil, the RED II and WTO Law: EU Sustainable
 Biofuel Policy Tangled up in Green? Rev. Eur. Comp. Int. Environ. Law,.
- Mazzucato, M., 2016: From market fixing to market-creating: a new framework for innovation policy.
 Ind. Innov., 23, 140–156, https://doi.org/10.1080/13662716.2016.1146124.
- McAdam, D., 2017: Social Movement Theory and the Prospects for Climate Change Activism in the
 United States. Annu. Rev. Polit. Sci., https://doi.org/10.1146/annurev-polisci-052615-025801.
- 25 Mcadam, J., 2016: Climate Change-related Displacement of Persons. The Oxford Handbook of
- International Climate Change Law, K.R. Gray, R. Tarasofsky, and C. Carlarne, Eds., Oxford University
 Press, p. 519.
- McDonald, J., J. McGee, K. Brent, and W. Burns, 2019: Governing geoengineering research for the
 Great Barrier Reef. Clim. Policy, https://doi.org/10.1080/14693062.2019.1592742.
- McNamara, K. E., and G. Jackson, 2019: Loss and damage: A review of the literature and directions for future research. Wiley Interdiscip. Rev. Clim. Chang., 10, 1–16, https://doi.org/10.1002/wcc.564.
- 32MDB,2012:MDBJointStatementforRio+20.2012.33https://www.iadb.org/en/news/announcements/2012-06-19/mdb-joint-statement-for-
- 34 rio20%2C10032.html.
- Meehan, F., L. Tacconi, and K. Budiningsih, 2019: Are national commitments to reducing emissions
 from forests effective? Lessons from Indonesia. For. Policy Econ.,
 https://doi.org/10.1016/j.forpol.2019.101968.
- 38 Mehling, M. A., 2018: Governing Cooperative Approaches under the Paris Agreement.
- 39 https://www.belfercenter.org/sites/default/files/files/publication/mehling-paris-cooperative-40 approaches-nov-19-2018.pdf.
- 41 —, G. E. Metcalf, and R. N. Stavins, 2018: Linking climate policies to advance global mitigation.
 42 Science (80-.)., 359, Issue, 997–998.
- 43 —, H. Van Asselt, K. Das, S. Droege, and C. Verkuijl, 2019: Designing Border Carbon Adjustments
 44 for Enhanced Climate Action. Am. J. Int. Law, 113, https://doi.org/10.1017/ajil.2019.22.
- 45 de Melo, J., and J.-M. Solleder, 2020: Barriers to trade in environmental goods: How important they

- are and what should developing countries expect from their removal. World Dev., 130, 104910,
 https://doi.org/https://doi.org/10.1016/j.worlddev.2020.104910.
- Meltzer, J. P., 2013: The Trans-Pacific Partnership Agreement, the environment and climate change.
 Edward Elgar Publishing.
- Meyer, T., 2017: Explaining energy disputes at the World Trade Organization. Int. Environ.
 Agreements Polit. Law Econ., 17, 391–410, https://doi.org/10.1007/s10784-017-9356-y.
- Michaelowa, A., Shishlov, I.; Brescia, D., 2019: Evolution of international carbon markets: lessons for
 the Paris Agreement. WIREs Clim. Chang.,.
- 9 Michaelowa, A. and Michaelowa, K., 2011a: Climate business for poverty reduction. Rev. Int. Organ.,
 10 6, 259–286.
- Michaelowa, A., and K. Michaelowa, 2011b: Coding Error or Statistical Embellishment? The Political
 Economy of Reporting Climate Aid. World Dev., 39, 2010–2020.
- 13 —, L. Hermwille, W. Obergassel, and S. Butzengeiger, 2019: Additionality revisited: guarding the
 integrity of market mechanisms under the Paris Agreement. Clim. Policy, 19, 1211–1224,
 https://doi.org/10.1080/14693062.2019.1628695.
- ----, S. Hoch, A. K. Weber, R. Kassaye, and T. Hailu, 2020: Mobilising private climate finance for
 sustainable energy access and climate change mitigation in Sub-Saharan Africa. Clim. Policy,
 https://doi.org/10.1080/14693062.2020.1796568.
- Michaelowa, K., and A. Michaelowa, 2017: Transnational Climate Governance Initiatives: Designed
 for Effective Climate Change Mitigation? Int. Interact., 43, 129–155,
 https://doi.org/10.1080/03050629.2017.1256110.
- 22 MIGA, 2019: About MIGA. 2019,.
- 23 Miles, K., 2019: Research Handbook on Environment and Investment Law. Edward Elgar Publishing,.
- Milkoreit, M., and K. Haapala, 2019: The global stocktake: design lessons for a new review and
 ambition mechanism in the international climate regime. Int. Environ. Agreements Polit. Law Econ.,
 19, 89–106, https://doi.org/10.1007/s10784-018-9425-x.
- Milman, A., L. Bunclark, D. Conway, and W. N. Adger, 2013: Assessment of institutional capacity to
 adapt to climate change in transboundary river basins. Clim. Change, 121, 755–770,
 https://doi.org/10.1007/s10584-013-0917-y.
- Moerenhout, T. S. H., and T. Irschlinger, 2020: Exploring the Trade Impacts of Fossil Fuel Subsidies.
 https://www.iisd.org/system/files/publications/trade-impacts-fossil-fuel-subsidies.pdf.
- 32 Molina, M., D. Zaelke, K. M. Sarma, S. O. Andersen, V. Ramanathan, and D. Kaniaru, 2009: Reducing
- abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts
- in CO<sub>2</sub> emissions. Proc. Natl. Acad. Sci., 106, 20616 LP 20621,
 https://doi.org/10.1073/pnas.0902568106.
- Morgan, J., and E. Northrop, 2017: Will the Paris Agreement accelerate the pace of change? Wiley Interdiscip. Rev. Clim. Chang., 8, e471, https://doi.org/10.1002/wcc.471.
- Morin, J.-F., and S. Jinnah, 2018: The untapped potential of preferential trade agreements for climate governance. Env. Polit., 27, 541–565, https://doi.org/10.1080/09644016.2017.1421399.
- 40 Mormann, F., 2020: Why the divestment movement is missing the mark. Nat. Clim. Chang., 41 https://doi.org/10.1038/s41558-020-00950-2, https://doi.org/10.1038/s41558-020-00950-2.
- 42 Müller, B., and A. Michaelowa, 2019: How to operationalize accounting under Article 6 market 43 mechanisms of the Paris Agreement. Clim. Policy, 19, 812–819, 44 https://doi.org/10.1080/14603062.2010.1500803
- 44 https://doi.org/10.1080/14693062.2019.1599803.
- 45 Murata, A.; Jiang, J.; Eto, R.; Tokimatsu, K.; Okajima, K.; Uchiyama, Y., 2016: Environmental co-46 benefits of the promotion of renewable power generation in China and India through lean development

- 1 mechanisms. Renew. Energy, 87, 120–129.
- 2 Nasiritousi, N., M. Hjerpe, and B.-O. Linnér, 2016: The roles of non-state actors in climate change
- 3 governance: understanding agency through governance profiles. Int. Environ. Agreements Polit. Law
- 4 Econ., 16, 109–126, https://doi.org/10.1007/s10784-014-9243-8.
- Nemati, M., W. Hu, and M. Reed, 2019: Are free trade agreements good for the environment? A panel
 data analysis. Rev. Dev. Econ., 23, 435–453, https://doi.org/https://doi.org/10.1111/rode.12554.
- New Climate Economy, 2016: The Sustainable Infrastructure Imperative, Financing for better growthand development. The 2016 New Climate Economy Report.
- 9 Newton, P., J. A Oldekop, G. Brodnig, B. K. Karna, and A. Agrawal, 2016: Carbon, biodiversity, and
- 10 livelihoods in forest commons: synergies, trade-offs, and implications for REDD+. Environ. Res. Lett.,
- 11 11, 44017, https://doi.org/10.1088/1748-9326/11/4/044017.
- 12 Nhlapho, T., 2019: African Forest Landscape Restoration Initiative. AFRICAN UNION Dev.13 AGENCY-NEPAD,.
- Nicholson, S., S. Jinnah, and A. Gillespie, 2018: Solar radiation management: a proposal for immediate polycentric governance. Clim. Policy, 18, 322–334, https://doi.org/10.1080/14693062.2017.1400944.
- Nilsson, Mans, Griggs, Dave, Visbek, M., 2016: Map the interactions between sustainable development
 goals. Nature, 534, 320–322.
- Niosi, J., 2018: National Systems of Innovation in developing countries. Innovation Systems, Policy
 and Management, Cambridge University Press, 149–177.
- Nordhaus, W., 2015: Climate Clubs: Overcoming Free-Riding in International Climate Policy. Am.
 Econ. Rev., 105, 1339–1370, https://doi.org/10.1257/aer.15000001.
- Norton, A., 2020: What does the Biden win mean for climate action? Climate Change Policy andPlanning, IIED, November.
- O'Neill, B. C., and Coauthors, 2017: The roads ahead: Narratives for shared socioeconomic pathways
 describing world futures in the 21st century. Glob. Environ. Chang., 42, 169–180,
 https://doi.org/10.1016/J.GLOENVCHA.2015.01.004.
- Obergassel, W., F. Mersmann, and H. Wang-Helmreich, 2017a: Two for One: Integrating the
 Sustainable Development Agenda with International Climate Policy. GAIA-ECOLOGICAL Perspect.
 Sci. Soc., 26, 249–253, https://doi.org/10.14512/gaia.26.3.8
- 30 Obergassel, W., L. Peterson, F. Mersmann, J. Schade, J. A. Hofbauer, and M. Mayrhofer, 2017b:
- Human rights and the clean development mechanism: lessons learned from three case studies. J. Hum.
- 32 Rights Environ., https://doi.org/10.4337/jhre.2017.01.03.
- Oberthur, S., 2016: Reflections on Global Climate Politics Post Paris: Power, Interests and
 Polycentricity. Int. Spect., 51, 80–94, https://doi.org/10.1080/03932729.2016.1242256
- Oberthür, S., and R. Bodle, 2016: Legal Form and Nature of the Paris Outcome. Clim. Law, 6, 40–57,
 https://doi.org/10.1163/18786561-00601003.
- 37 —, and E. Northrop, 2018: Towards an Effective Mechanism to Facilitate Implementation and
 38 Promote Compliance under the Paris Agreement. Clim. Law, 8, 39 References-www.wri.org/our 39 work/project/proj, https://doi.org/10.1163/18786561-00801002.
- 40 —, and Coauthors, 2017: COP21: Results and Implications for Pathways and Policies for Low
 41 Emissions European Societies. 129 pp.
- 42 OECD, 2012: Meeting global challenges through better governance: international co-operation in 43 science, technology and innovation.
- 44 —, 2019a: Climate Change: OECD DAC External Development Finance Statistics OECD.
- 45 http://www.oecd.org/dac/financing-sustainable-development/development-finance-topics/climate-
- 46 change.htm (Accessed December 11, 2019).

- 1 —, 2019b: Annual survey of large pension funds and public pension reserve funds. 2 www.oecd.org/finance/survey-large-pension-funds.htm (Accessed December 9, 2020).
- 3 —, 2020: Climate Finance Provided and Mobilised by Developed Countries in 2013-17. 48 pp.
 4 https://doi.org/10.1787/39faf4a7-en.

Oh, C., 2019: Political Economy of International Policy on the Transfer of Environmentally Sound
Technologies in Global Climate Change Regime. New Polit. Econ., 24, 22–36,
https://doi.org/10.1080/13563467.2017.1417361.

- 8 —, 2020a: Discursive Contestation on Technological Innovation and the Institutional Design of the
 9 UNFCCC in the New Climate Change Regime. New Polit. Econ., 25, 660–674.
- 10 —, 2020b: Contestations over the financial linkages between the UNFCCC's Technology and
 11 Financial Mechanism: using the lens of institutional interaction. Int. Environ. Agreements,
 12 https://doi.org/10.1007/s10784-020-09474-8.
- OHCHR, 2009: Report of the Office of the United Nations High Commissioner for Human Rights on
 the Relationship Between Climate Change and Human Rights (U.N. Doc. A/HRC/10/61). 32.
- 15 Öko-Institut, 2016: How additional is the Clean Development Mechanism? Analysis of the application16 of current tools and proposed alternatives.
- Olmer, N., B. Comer, B. Roy, X. Mao, and D. Rutherford, 2017: Greenhouse Gas Emissions fromGlobal Shipping, 2013–2015.
- Olmstead, S. M., and R. N. Stavins, 2012: Three Key Elements of a Post-2012 International Climate
 Policy Architecture. Rev. Environ. Econ. Policy, 6, 65–85, https://doi.org/10.1093/reep/rer018.
- Olsen, K. H., C. Arens, and F. Mersmann, 2018: Learning from CDM SD tool experience for Article
 6.4 of the Paris Agreement. Clim. Policy, 18, 383–395,
 https://doi.org/10.1080/14693062.2016.1277686.
- 24 Orr, B. J., and Coauthors, 2017: Scientific Conceptual Framework for Land Degradation Neutrality.
- 25 Osofsky, H., J. Peel, B. McDonnell, and A. Foerster, 2019: Energy re-investment. Indiana Law J., 94.
- 26 Osofsky, H. M., 2010: The continuing importance of climate change litigation. Clim. Law, 1, 3–29.
- Ostrom, E., 2010: Polycentric systems for coping with collective action and global environmental
 change. Glob. Environ. Chang., 20, 550–557, https://doi.org/10.1016/j.gloenvcha.2010.07.004.
- Otto, F. E. L., R. B. Skeie, J. S. Fuglestvedt, T. Berntsen, and M. R. Allen, 2017: Assigning historic
 responsibility for extreme weather events. Nat. Clim. Chang., 7, 757–759,
 https://doi.org/10.1038/nclimate3419.
- 32 Ourbak, T., and A. K. Magnan, 2018: The Paris Agreement and climate change negotiations: Small
- Islands, big players. Reg. Environ. Chang., 18, 2201–2207, https://doi.org/10.1007/s10113-017-12479.
- Pacual, et al, 2019: An evaluation Model for public private partnerships contributing to sustainable
 development. Sustainability, 11, https://doi.org/10.339/su11082339.
- Panfil, S. N., and C. A. Harvey, 2016: REDD+ and Biodiversity Conservation: A Review of the
 Biodiversity Goals, Monitoring Methods, and Impacts of 80 REDD+ Projects. Conserv. Lett., 9, 143–
 150, https://doi.org/10.1111/conl.12188.
- Park, M. S., E. S. Choi, and Y.-C. Youn, 2013: REDD+ as an international cooperation strategy under
 the global climate change regime. Forest Sci. Technol., 9, 213–224,
 https://doi.org/10.1080/21580103.2013.846875.
- 43 Parker, C., and C. Streck, 2012: Financing REDD+. Analysing REDD+: Challenges and choices.
- 44 Parker, C. F., C. Karlsson, and M. Hjerpe, 2014: Climate change leaders and followers: Leadership 45 recognition and selection in the UNFCCC negotiations. Int. Relations, 29, 434–454,

- 1 https://doi.org/10.1177/0047117814552143.
- 2 Paroussos, L., A. Mandel, K. Fragkiadakis, P. Fragkos, J. Hinkel, and Z. Vrontisi, 2019: Climate clubs
- and the macro-economic benefits of international cooperation on climate policy. Nat. Clim. Chang., 9,
- 4 542–546, https://doi.org/10.1038/s41558-019-0501-1.
- Parson, E. A., 2014: Climate Engineering in Global Climate Governance: Implications for Participation
 and Linkage. Transnatl. Environ. Law, 3, 89–110, https://doi.org/10.1017/S2047102513000496.
- 7 —, and L. N. Ernst, 2013: International Governance of Climate Engineering. Theor. Inq. Law, 14,
 8 307–338, https://doi.org/10.1515/til-2013-015.
- Patt, A., 2015: Transforming energy: solving climate change with technology policy. Cambridge
 University Press,.
- 11 —, 2017: Beyond the tragedy of the commons: Reframing effective climate change governance.
 12 Energy Res. Soc. Sci., 34, 1–3, https://doi.org/10.1016/j.erss.2017.05.023.
- 13 —, and J. Lilliestam, 2018: The Case against Carbon Prices. Joule, 2, 2494–2498, 14 https://doi.org/10.1016/J.JOULE.2018.11.018.
- 15 Pauw, W. P., R. J. T. Klein, K. Mbeva, A. Dzebo, D. Cassanmagnago, and A. Rudloff, 2018: Beyond
- headline mitigation numbers: we need more transparent and comparable NDCs to achieve the Paris
 Agreement on climate change. Clim. Change, 147, 23–29, https://doi.org/10.1007/s10584-017-2122-x.
- 18 —, P. Castro, J. Pickering, and S. Bhasin, 2020: Conditional nationally determined contributions in
 19 the Paris Agreement: foothold for equity or Achilles heel? Clim. Policy, 20, 468–484.
- Pauwelyn, J., 2013: Carbon leakage measures and border tax adjustments under WTO law. Edward
 Elgar Publishing.
- Pavlova, Y., and A. De Zeeuw, 2013: Asymmetries in international environmental agreements. Environ.
 Dev. Econ., 18, 51–68, https://doi.org/10.1017/S1355770X12000289.
- Peake, S., and P. Ekins, 2017: Exploring the financial and investment implications of the Paris Agreement. Clim. Policy, 17, 832–852, https://doi.org/10.1080/14693062.2016.1258633.
- Pearse, R., 2017: Gender and climate change. Wiley Interdiscip. Rev. Clim. Chang., 8,
 https://doi.org/10.1002/wcc.451.
- Peel, J., and H. M. Osofsky, 2018: A Rights Turn in Climate Change Litigation? Transnatl. Environ.
 LAW, 7, 37–67, https://doi.org/10.1017/S2047102517000292
- Peel, J., and J. Lin, 2019: Transnational Climate Litigation: The Contribution of the Global South. Am.
 J. Int. Law, 113, 679–726, https://doi.org/10.1017/ajil.2019.48.
- 32 —, and H. M. Osofsky, 2020: Climate Change Litigation. Annu. Rev. Law Soc. Sci., 16, 21–38,
 33 https://doi.org/10.1146/annurev-lawsocsci-022420-122936.
- 34 Peimbert, N., 2019: About Initiative 20X20. Initiat. 20X20,.
- 35 Peters, G. P., R. M. Andrew, J. G. Canadell, S. Fuss, R. B. Jackson, J. I. Korsbakken, C. Le Quéré, and
- 36 N. Nakicenovic, 2017: Key indicators to track current progress and future ambition of the Paris
- 37 Agreement. Nat. Clim. Chang., 7, 118–122, https://doi.org/10.1038/nclimate3202.
- Peterson, L., and J. Skovgaard, 2019: Bureaucratic politics and the allocation of climate finance. World
 Dev., 117, 72–97, https://doi.org/10.1016/J.WORLDDEV.2018.12.011.
- Phelps, J., E. L. Webb, and W. M. Adams, 2012: Biodiversity co-benefits of policies to reduce forestcarbon emissions. Nat. Clim. Chang., 2, 497–503, https://doi.org/10.1038/nclimate1462.
- Phillips, J. . N. P. ., 2013: The governance of clean energy in India: The clean development mechanism
 (CDM) and domestic politics. Energy Policy, 59, 654–662.
- 44 Pickering, J., F. Jotzo, and P. J. Wood, 2015: Sharing the Global Climate Finance Effort Fairly with
- 45 Limited Coordination. Glob. Environ. Polit., 15, 39–62, https://doi.org/10.1162/GLEP_a_00325.

_____, C. Betzold, and J. Skovgaard, 2017: Special issue: managing fragmentation and complexity in
 the emerging system of international climate finance. Int. Environ. Agreements Polit. Law Econ.,
 https://doi.org/10.1007/s10784-016-9349-2.

4 —, J. S. McGee, T. Stephens, and S. I. Karlsson-Vinkhuyzen, 2018: The impact of the US retreat 5 from the Paris Agreement: Kyoto revisited? Clim. Policy, 18, 818–827, 6 https://doi.org/10.1080/14693062.2017.1412934.

7 —, J. S. McGee, S. I. Karlsson-Vinkhuyzen, and J. Wenta, 2019: Global climate governance between
8 hard and soft law: Can the Paris agreement's "Crème Brûleé" approach enhance ecological reflexivity?
9 J. Environ. Law, https://doi.org/10.1093/jel/eqy018.

- Pirard, R., S. Wunder, A. E. Duchelle, J. Puri, S. Asfaw, M. Bulusu, H. Petit, and M. Vedoveto, 2019:
 Effectiveness of forest conservation interventions: An evidence gap map. IEU Learn. Pap. no. 02, 57.
- Pistorius, T., and L. Kiff, 2015: The Politics of German Finance for REDD+ SSRN Electron. J.,
 https://doi.org/10.2139/ssrn.2622776.
- Pitt, D., 2010: The impact of internal and external characteristics on the adoption of climate mitigation
 policies by US municipalities. Environ. Plann. C. Gov. Policy, 28, 851–871.
- Porterfield, M., 2019: Border Adjustments for Carbon Taxes, PPMs, and the WTO. Univ. Pennsylvania
 J. Int. Law, 41, 1–42.
- 18 —, K. P. Gallagher, and J. C. Schachter, 2017: Assessing the Climate Impacts of U.S. Trade
 19 Agreements. Michigan J. Environ. Adm. Law, 7, 51–81.
- Potoski, M., 2017: Green clubs in building block climate change regimes. Clim. Change, 144, 53–63,
 https://doi.org/10.1007/s10584-015-1517-9.
- 22 _____, and A. Prakash, 2013: Green Clubs: Collective Action and Voluntary Environmental Programs.
 23 Annu. Rev. Polit. Sci., 16, 399–419, https://doi.org/10.1146/annurev-polisci-032211-211224.
- Pozo, C., Á. Galán-Martín, D. M. Reiner, N. Mac Dowell, and G. Guillén-Gosálbez, 2020: Equity in
 allocating carbon dioxide removal quotas. Nat. Clim. Chang., https://doi.org/10.1038/s41558-0200802-4.
- Preston, B. J., 2020: The Influence of the Paris Agreement on Climate Litigation: Legal Obligations
 and Norms (Part I)*. J. Environ. Law, https://doi.org/10.1093/jel/eqaa020.
- 29 Prizzon, A., and L. Engen, 2018: A guide to multilateral development banks.
- Quelin, B.V, Kivleniece, i., Larazzaini, S., 2017: Public-Private Collaboration, Hybridity and Social
 Value. J. Manag. Stud., 763–792.
- 32 Rajamani, L., Jeffrey, L., Hohne, N., Hans, F., Glass, A., National "fair shares" in GHG emissions
- reductions within the principled framework of international environmental law. Clim. Policy (submitted, under Rev.,.
- Rajamani, L., 2010: The making and unmaking of the Copenhagen accord. Int. Comp. Law Q., 59, 824–
 843, https://doi.org/10.1017/S0020589310000400.
- ..., 2015: The Devilish Details: Key Legal Issues in the 2015 Climate Negotiations. Mod. Law Rev.,
 https://doi.org/10.1111/1468-2230.12145.
- 39 —, 2016a: Ambition and Differentiation in the Paris Agreement: Interpretative Possibilities and
 40 Underlying Politics. Int. Comp. Law Q., 65, 493–514, https://doi.org/10.1017/s0020589316000130.
- 41 —, 2016b: The 2015 Paris Agreement: Interplay between hard, soft and non-obligations. J. Environ.
 42 Law, 28, 337–358, https://doi.org/10.1093/jel/eqw015.
- 43 _____, 2017: India's approach to international law in the climate change regime. Indian J. Int. Law, 57,
 44 1–23, https://doi.org/10.1007/s40901-018-0072-0.
- 45 _____, 2018: Human Rights in the Climate Change Regime: From Rio to Paris and Beyond. Hum. Right

- 1 to a Heal. Environ., 2015, 236–251.
- 2 —, 2019: Integrating Human Rights in the Paris Climate Architecture: Contest, Context, and
 3 Consequence. Clim. Law, 9, 180–201.

4 —, and J. Werksman, 2018: The legal character and operational relevance of the Paris Agreement's 5 goal. Philos. Trans. R. Soc. Math. temperature А Phys. Eng. Sci.. 376. 6 https://doi.org/10.1098/rsta.2016.0458.

- 7 —, and D. Bodansky, 2019: The Paris Rulebook: Balancing Prescriptiveness with National
 8 Discretion. Int. Comp. Law Q., 68, 1023–1040, https://doi.org/10.1017/S0020589319000320.
- Rampa, F., S. Bilal, and E. Sidiropoulos, 2012: Leveraging South–South cooperation for Africa's
 development. South African J. Int. Aff., 19, 247–269, https://doi.org/10.1080/10220461.2012.709400.
- Rashidi, K., and A. Patt, 2018: Subsistence over symbolism: the role of transnational municipal
 networks on cities' climate policy innovation and adoption. Mitig. Adapt. Strateg. Glob. Chang., 23,
 507–523, https://doi.org/10.1007/s11027-017-9747-y.

M. Stadelmann, and A. Patt, 2017: Valuing co-benefits to make low-carbon investments in cities
 bankable: The case of waste and transportation projects. Sustain. Cities Soc., 34, 69–78,
 https://doi.org/10.1016/J.SCS.2017.06.003.

- 17 _____, ____, and _____, 2019: Creditworthiness and climate: Identifying a hidden financial co-benefit of
 18 municipal climate adaptation and mitigation policies. Energy Res. Soc. Sci., 48, 131–138,
 19 https://doi.org/10.1016/J.ERSS.2018.09.021.
- Rayner, S., C. Heyward, T. Kruger, N. Pidgeon, C. Redgwell, and J. Savulescu, 2013: The Oxford
 Principles. Clim. Change, 121, 499–512, https://doi.org/10.1007/s10584-012-0675-2.
- 22 RE100, 2019: RE100 Overview. http://there100.org/re100 (Accessed December 18, 2019).
- REN21, 2019: No TitleREN21: Renewables Now! https://www.ren21.net/about-us/who-we-are/
 (Accessed December 18, 2019).
- Reynolds, J. L., 2019: The governance of solar geoengineering: managing climate change in theAnthropocene. 268 pp.
- RGI, 2011: European Grid Declaration On Electricity Network Development and Nature Conservationin Europe.
- Riahi, K., and Coauthors, 2017: The Shared Socioeconomic Pathways and their energy, land use, and
 greenhouse gas emissions implications: An overview. Glob. Environ. Chang., 42, 153–168,
 https://doi.org/10.1016/J.GLOENVCHA.2016.05.009.
- Richards, M. B., E. Wollenberg, and D. van Vuuren, 2018: National contributions to climate change
 mitigation from agriculture: allocating a global target. Clim. Policy, 18, 1271–1285,
 https://doi.org/10.1080/14693062.2018.1430018.
- Ripley, K., and C. Verkuijl, 2016: "Ozone Family" Delivers Landmark Deal for the Climate. Environ.
 Policy Law, 46, 371–376.
- Ritchie, H., and D. S. Reay, 2017: Delivering the two degree global climate change target using a
 flexible ratchet framework. Clim. Policy, 17, 1031–1045,
 https://doi.org/10.1080/14693062.2016.1222260.
- Roberts, J. T., and R. Weikmans, 2017: Postface: fragmentation, failing trust and enduring tensions
 over what counts as climate finance. Int. Environ. Agreements Polit. Law Econ., 17, 129–137,
 https://doi.org/10.1007/s10784-016-9347-4.
- 43 —, S. Natson, V. Hoffmeister, A. Durand, R. Weikmans, J. Gewirtzman, and S. Huq, 2017: How
 44 Will We Pay for Loss and Damage? Ethics, Policy Environ., 20, 208–226,
 45 https://doi.org/10.1080/21550085.2017.1342963.
- 46 Roberts, M. W., 2017: Finishing the job: The Montreal Protocol moves to phase down

- 1 hydrofluorocarbons. Rev. Eur. Comp. Int. Environ. Law, 26, 220–230, 2 https://doi.org/10.1111/reel.12225.
- Robiou du Pont, Y., and M. Meinshausen, 2018: Warming assessment of the bottom-up Paris
 Agreement emissions pledges. Nat. Commun., 9, 4810, https://doi.org/10.1038/s41467-018-07223-9.
- 5 —, M. L. Jeffery, J. Gütschow, J. Rogelj, P. Christoff, and M. Meinshausen, 2017: Equitable 6 mitigation to achieve the Paris Agreement goals. Nat. Clim. Chang., 7, 38–43, 7 https://doi.org/10.1038/nclimate3186.
- Roelfsema, M., and Coauthors, 2020: Taking stock of national climate policies to evaluate
 implementation of the Paris Agreement. Nat. Commun., 11, 2096, https://doi.org/10.1038/s41467-02015414-6.
- Rogelj, J., and Coauthors, 2010: Analysis of the Copenhagen Accord pledges and its global climatic
 impacts—a snapshot of dissonant ambitions. Environ. Res. Lett., 5, 034013,
 https://doi.org/10.1088/1748-9326/5/3/034013.
- ..., G. Luderer, R. C. Pietzcker, E. Kriegler, M. Schaeffer, V. Krey, and K. Riahi, 2015: Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat. Clim. Chang., 5, 519–527.
- , and Coauthors, 2016: Paris Agreement climate proposals need a boost to keep warming well
 below 2 °c. Nature, 534, 631–639, https://doi.org/10.1038/nature18307.
- Rogelj, J., O. Fricko, M. Meinshausen, V. Krey, J. J. J. Zilliacus, and K. Riahi, 2017: Understanding
 the origin of Paris Agreement emission uncertainties. Nat. Commun., 8,
 https://doi.org/10.1038/ncomms15748
- 22 —, and Coauthors, 2018: Mitigation pathways compatible with 1.5°C in the context of sustainable
- development. Global Warming of 1.5 °C an IPCC special report on the impacts of global warming of
 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context
- 25 of strengthening the global response to the threat of climate change.
- 26 Royal Society, 2009: Geoengineering the climate: Science, governance and uncertainty. 84 pp.
- Rubini, L., and I. Jegou, 2012: Who'll Stop the Rain? Allocating Emissions Allowances for Free:
 Environmental Policy, Economics, and WTO Subsidy Law. Transnatl. Environ. Law, 1, 325–354,
 https://doi.org/DOI: 10.1017/S2047102512000143.
- Rubio, S. J., 2017: Sharing R & D investments in breakthrough technologies to control climate change.
 Oxf. Econ. Pap., 69, 496–521, https://doi.org/10.1093/oep/gpw067.
- 32 Rumpel, C., and Coauthors, 2020: The 4p1000 initiative: Opportunities, limitations and challenges for
- implementing soil organic carbon sequestration as a sustainable development strategy. Ambio,
 https://doi.org/10.1007/s13280-019-01165-2.
- Sabel, C. F., and D. G. Victor, 2017: Governing global problems under uncertainty: making bottom-up
 climate policy work. Clim. Change, 144, 15–27, https://doi.org/10.1007/s10584-015-1507-y.
- 37 Sælen, H., 2020: Under What Conditions Will the Paris Process Produce a Cycle of Increasing Ambition 38 Sufficient Reach the 2°C Goal? Glob. Environ. Polit., 20, 83–104, to 39 https://doi.org/https://doi.org/10.1162/glep_a_00548.
- 40 —, J. Hovi, D. F. Sprinz, and A. Underdal, 2020: How US Withdrawal Might Influence Cooperation
 41 Under the Paris Climate Agreement. Environ. Sci. Policy, 108, 121–132,
 42 https://doi.org/https://doi.org/10.1016/j.envsci.2020.03.011.
- Sands, P. Q. C., 2016: Climate change and the rule of law: Adjudicating the future in international law.
 J. Environ. Law, 28, 19–35, https://doi.org/10.1093/jel/eqw005.
- 45 —, and J. Peel, 2018: Principles of International Environmental Law. 4th ed. Cambridge University
 46 Press,.

- Savaresi, A., 2016: The Paris agreement: A new beginning? J. Energy Nat. Resour. Law, 34, 16–26, https://doi.org/10.1080/02646811.2016.1133983.
- 3 —, 2018: Climate change and human rights: Fragmentation, interplay, and institutional linkages.
 4 Routledge Handbook of Human Rights and Climate Governance.
- Scheinman, L., 1987: The International Atomic Energy Agrncy and the World Nuclear Order.
 Resources for the Future,.
- Schleussner, C. F., and Coauthors, 2016: Science and policy characteristics of the Paris Agreement
 temperature goal. Nat. Clim. Chang., 6, 827–835, https://doi.org/10.1038/nclimate3096.
- 9 Schlosberg, D., and L. B. Collins, 2014: From environmental to climate justice: Climate change and the
- 10 discourse of environmental justice. Wiley Interdiscip. Rev. Clim. Chang., 5, 359–374, 11 https://doi.org/10.1002/wcc.275.
- Schmale, J., D. Shindell, E. Von Schneidemesser, I. Chabay, and M. Lawrence, 2014: Air pollution:
 Clean up our skies. Nature, 515, 335–337, https://doi.org/10.1038/515335a.
- 14 Schmieg, G., and Coauthors, 2017: Modeling normativity in sustainability: a comparison of the
- 15 sustainable development goals, the Paris agreement, and the papal encyclical. Sustain. Sci., 13,
- 16 https://doi.org/10.1007/s11625-017-0504-7.
- Schneider, I.; Lazarus, M.; van Asselt, H., 2017: Restricted linking of emissions trading systems:
 options, benefits and challenges. Int. Environ. Agreements, 17, 883–898.
- Schneider, L., and S. La Hoz Theuer, 2019: Environmental integrity of international carbon market
 mechanisms under the Paris Agreement. Clim. Policy, 19, 386–400,
 https://doi.org/10.1080/14693062.2018.1521332.
- 22 _____, and Coauthors, 2019: Double counting and the Paris Agreement rulebook. Science (80-.)., 366,
 23 180–183, https://doi.org/10.1126/science.aay8750.
- Schroeder, H., M. Di Gregorio, M. Brockhaus, and T. T. Pham, 2020: Policy Learning in REDD+ Donor
 Countries: Norway, Germany, and the UK. Glob. Environ. Chang., 63, 102106.
- Selin, H., 2014: Global Environmental Law and Treaty-Making on Hazardous Substances: The
 Minamata Convention and Mercury Abatement. Glob. Environ. Polit., 14, 1–19,
 https://doi.org/10.1162/GLEP_a_00208.
- Serdeczny, O., 2019: Non-economic Loss and Damage and the Warsaw International Mechanism. 205–
 220.
- Setzer, J., and L. C. Vanhala, 2019: Climate change litigation: A review of research on courts and
 litigants in climate governance. Wiley Interdiscip. Rev. Clim. Chang., 10, e580,
 https://doi.org/10.1002/wcc.580.
- Seymour, F., and J. Busch, 2016: Why Forests? Why Now?: The Science, Economics, and Politics of
 Tropical Forests and Climate Change.
- Shadikhodjaev, S., 2015: Renewable Energy and Government Support: Time to 'Green' the SCM
 Agreement? World Trade Rev., 14, 479–506, https://doi.org/DOI: 10.1017/S1474745614000317.
- Sheriff, G., 2019: Burden Sharing under the Paris Climate Agreement. J. Assoc. Environ. Resour. Econ.,
 6, 275–318, https://doi.org/10.1086/701469.
- Shi, X., Chen, Y., Liu, H., 2017: The Negative Impact of Cimate Change Mitigation Measures on
 Human Rights and the Countermeasures. CNKI,.
- Shi, Y., and W. Gullett, 2018: International Regulation on Low-Carbon Shipping for Climate Change
 Mitigation: Development, Challenges, and Prospects. Ocean Dev. Int. Law, 49, 134–156,
- 44 https://doi.org/10.1080/00908320.2018.1442178.
- Shimoda, Y., and S. Nakazawa, 2012: Flexible Cooperation for Indonesia's Multi-dimensional
 Challenges for South-South Cooperation Under A Shared Vision. 149–172 pp.

- 1 Shishlov, I., R. Morel, and V. Bellassen, 2016: Compliance of the Parties to the Kyoto Protocol in the 2 first commitment period. Clim. Policy, 16, 768–782, https://doi.org/10.1080/14693062.2016.1164658.
- 3 Sindico, F., 2016: Paris, Climate Change, and Sustainable Development. Clim. Law, 6, 130–141.
- Skea, J., R. Van Diemen, M. Hannon, E. Gazis, and A. Rhodes, 2019: Energy innovation for the twenty first century: Accelerating the energy revolution. Edward Elgar Publishing,.
- 6 Skeie, R. B., J. Fuglestvedt, T. Berntsen, G. P. Peters, R. Andrew, M. Allen, and S. Kallbekken, 2017:
- Perspective has a strong effect on the calculation of historical contributions to global warming. Environ.
 Res. Lett., 12, 024022, https://doi.org/10.1088/1748-9326/aa5b0a.
- 9 Skjærseth, J. B., O. S. Stokke, and J. Wettestad, 2006: Soft law, hard law, and effective implementation
 10 of international environmental norms. Glob. Environ. Polit., 6, 104–120,
 11 https://doi.org/10.1162/glep.2006.6.3.104.
- Smit, B., and J. Wandel, 2006: Adaptation, adaptive capacity and vulnerability. Glob. Environ. Chang.,
 16, 282–292, https://doi.org/10.1016/j.gloenvcha.2006.03.008.
- Smita, Nakhooda, et al, 2014: Climate Finance Is it making a difference: A review of the effectivenessof multilateral climate funds.
- Smith, J. J., and M. T. Ahmad, 2018: Globalization's Vehicle: The Evolution and Future of Emission
 Regulation in the icao and imo in Comparative Assessment. Clim. Law, 8, 70–103,
 https://doi.org/https://doi.org/10.1163/18786561-00801003.
- Smith, W., and G. Wagner, 2018: Stratospheric aerosol injection tactics and costs in the first 15 years
 of deployment. Environ. Res. Lett., https://doi.org/10.1088/1748-9326/aae98d.
- Sorgho, Z., and J. Tharakan, 2020: Do PTAs with Environmental Provisions Reduce Emissions?
 Assessing the Effectiveness of Climate-related Provisions? https://ferdi.fr/dl/df nJ7WgYnTDp6qA2SGjnT25Y9F/ferdi-p274-do-ptas-with-environmental-provisions-reduce-
- 24 emissions-assessing.pdf.
- Sovacool, B. K., and A. Florini, 2012: Examining the Complications of Global Energy Governance. J.
 Energy Nat. Resour. Law, 30, 235–263, https://doi.org/10.1080/02646811.2012.11435295.
- 27 Sovacool, B. K., and B.-O. Linnér, 2016: The Perils of Climate Diplomacy: The Political Economy of
- the UNFCCC. The Political Economy of Climate Change Adaptation, Palgrave Macmillan UK, 110–
 135.
- Spalding-Fecher, R., Achanta, A. N., Erickson, P., Haites, E., Lazarus, M., Pahuja, N., ... Tewari, R.,
 2012: Suppressed demand in the clean development mechanism: Conceptual and practical issues.
- Spash, C. L., 2016: This Changes Nothing: The Paris Agreement to Ignore Reality. Globalizations, 13,
 928–933, https://doi.org/10.1080/14747731.2016.1161119.
- Sprinz, D. F., H. Sælen, A. Underdal, and J. Hovi, 2018: The Effectiveness of Climate Clubs under
 Donald Trump. Clim. Policy, 18, 828–838,
 https://doi.org/https://doi.org/10.1080/14693062.2017.1410090
- 36 https://doi.org/https://doi.org/10.1080/14693062.2017.1410090.
- 37 Stavins, R., and Coauthors, 2014: International Cooperation: Agreements and Instruments. Climate
- 38 Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth
- 39 Assessment of the Intergovernmental Panel on Climate Change, O.R. Edenhofer et al., Eds., Cambridge
- 40 University Press, 1001–1082.
- 41 Steele, P., 2015: Development finance and climate finance: Achieving zero poverty and zero emissions.
- 42 IIED, 1–31 pp. https://pubs.iied.org/pdfs/16587IIED.pdf.
- 43 Steenblik, R., J. Sauvage, and C. Timiliotis, 2018: Fossil Fuel Subsidies and the Global Trade Regime.
- 44 The Politics of Fossil Fuel Subsidies and their Reform, H. Van Asselt and J. Skovgaard, Eds.,
- 45 Cambridge University Press, 121–139.
- 46 Stephenson, S. R., W. Wang, C. S. Zender, H. Wang, S. J. Davis, and P. J. Rasch, 2018: Climatic

- 1 Responses to Future Trans-Arctic Shipping. Geophys. Res. Lett., 45, 9898–9908, 2 https://doi.org/10.1029/2018GL078969.
- 3 —, N. Oculi, A. Bauer, and S. Carhuayano, 2019: Convergence and Divergence of UNFCCC
 4 Nationally Determined Contributions. Ann. Am. Assoc. Geogr., 109, 1240–1261, 5 https://doi.org/10.1080/24694452.2018.1536533.
- 6 Stewart, R. B., M. Oppenheimer, and B. Rudyk, 2013a: A new strategy for global climate protection.
 7 Clim. Change, 120, 1–12, https://doi.org/10.1007/s10584-013-0790-8.
- 8 _____, ____, and _____, 2013b: Building Blocks for Global Climate Protection. Stanford Environ. Law
 9 J., 32, 341–392.
- 10 _____, ____, and _____, 2017: Building blocks: a strategy for near-term action within the new global climate framework. Clim. Change, 144, 1–13, https://doi.org/10.1007/s10584-017-1932-1.
- Streck, C., and M. Terhalle, 2013: The changing geopolitics of climate change. Clim. Policy, 13, 533–
 537, https://doi.org/10.1080/14693062.2013.823809.
- 14 Stua, M., 2017a: From the Paris Agreement to a Low-Carbon Bretton Woods. Springer,.
- 15 —, 2017b: A single mechanism for the certification of mitigation outcomes. From Paris Agreem. to
- a Low-Carbon Brett. Woods Ration. Establ. a Mitig. Alliance, 85 References-Aggarwal, A., How
 sustainable are, https://doi.org/10.1007/978-3-319-54699-5_6.
- 18 —, 2017c: From the Paris agreement to a low-carbon bretton woods: Rationale for the establishment
 19 of a mitigation alliance.
- 20 Suckall, N., L. C. Stringer, and E. L. Tompkins, 2015: Presenting Triple-Wins? Assessing Projects That
- Deliver Adaptation, Mitigation and Development Co-benefits in Rural Sub-Saharan Africa. Ambio, 44,
 34–41, https://doi.org/10.1007/s13280-014-0520-0.
- Sugiyama, M., Y. Arino, T. Kosugi, A. Kurosawa, and S. Watanabe, 2018a: Next steps in
 geoengineering scenario research: limited deployment scenarios and beyond. Clim. Policy,
 https://doi.org/10.1080/14693062.2017.1323721.
- 26 —, A. Ishii, S. Asayama, and T. Kosugi, 2018b: Solar Geoengineering Governance. Oxford
 27 University Press,.
- Supreme Court of the Netherlands, Civil Division, N. 19/00135, 2019: *The State of the Netherlands v. Stichting Urgenda Foundation.*
- Tacconi, L., 2017: Strengthening policy research and development through foreign aid_ the case of
 reducing deforestation and forest degradation in Indonesia. Aust. For.,
 https://doi.org/10.1080/00049158.2017.1335579.
- Tacconi, L., R. J. Rodrigues, and A. Maryudi, 2019: Law enforcement and deforestation: Lessons for
 Indonesia from Brazil. For. Policy Econ., https://doi.org/10.1016/j.forpol.2019.05.029.
- Tamiotti, L., 2011: The legal interface between carbon border measures and trade rules. Clim. Policy,
 11, 1202–1211, https://doi.org/10.1080/14693062.2011.592672.
- 37 TCFD, 2017: Final Report: Recommendations of the Task Force on Climate-related Financial38 Disclosures.
- TEC, and CTCN, 2019: Joint annual report of the Technology Executive Committee and the ClimateTechnology Centre and Network for 2019.
- Terhalle, M., and J. Depledge, 2013: Great-power politics, order transition, and climate governance:
 insights from international relations theory. Clim. policy, 13, 572–588,
 https://doi.org/10.1080/14693062.2013.818849.
- 44 Terrenoire, E., D. A. Hauglustaine, T. Gasser, and O. Penanhoat, 2019: The contribution of carbon
- 44 Tenenone, E., D. A. Haugustane, T. Gasser, and O. Penamoat, 2019. The contribution of carbon 45 dioxide emissions from the aviation sector to future climate change. Environ. Res. Lett., 46 https://doi.org/10.1088/1748-9326/ab3086.

- 1 Thompson, R., 2017: Whither climate change post-Paris? Anthr. Rev., 4, 62–69, 2 https://doi.org/10.1177/2053019616676607.
- 3 Thorgeirsson, H., 2017: Part II Analysis of the Provisions of the Agreement , A . General Overview.
- 4 The Paris Agreement on climate change: Analysis and commentary.
- 5 Thwaites, J., 2020: The Good, the bad and the urgent in MDB Climate Finance 2019.
- 6 Tienhaara, K., 2018: Regulatory Chill in a Warming World: The Threat to Climate Policy Posed by
- 7 Investor-State Dispute Settlement. Transnatl. Environ. Law, 7, 229–250, https://doi.org/DOI:
- 8 10.1017/S2047102517000309.
- 9 —, and L. Cotula, 2020: Raising the Cost of Climate Action? Investor-State Dispute Settlement and
 10 Compensation for Stranded Fossil Fuel Assets. https://pubs.iied.org/pdfs/17660IIED.pdf.
- Tormos-Aponte, F., and G. A. García-López, 2018: Polycentric struggles: The experience of the global
 climate justice movement. Environ. Policy Gov., 28, 284–294, https://doi.org/10.1002/eet.1815.
- Tørstad, V. H., 2020: Participation, ambition and compliance: can the Paris Agreement solve the effectiveness trilemma? Env. Polit., 29, 761–780, https://doi.org/10.1080/09644016.2019.1710322.
- Tramel, S., 2016: The Road Through Paris: Climate Change, Carbon, and the Political Dynamics of Convergence. Globalizations, 13, 960–969, https://doi.org/10.1080/14747731.2016.1173376.
- 17 Transportation Decarbonisation Alliance, 2019: Flyer. 4 pp.
- 18 Trouwborst, A., Trouwborst, and Arie, 2012: Transboundary Wildlife Conservation in A Changing
- 19 Climate: Adaptation of the Bonn Convention on Migratory Species and Its Daughter Instruments to
- 20 Climate Change. Diversity, 4, 258–300, https://doi.org/10.3390/d4030258.
- Tulkens, H., 2016: COP 21 and economic theory: Taking stock. Rev. Econ. Polit., 126(4):471-486,
 https://doi.org/10.3917/redp.264.0471.
- 23 Turnhout, E., A. Gupta, J. Weatherley-Singh, M. J. Vijge, J. de Koning, I. J. Visseren-Hamakers, M.
- Herold, and M. Lederer, 2017: Envisioning REDD+ in a post-Paris era: between evolving expectations
- and current practice. Wiley Interdiscip. Rev. Clim. Chang., 8, e425, https://doi.org/10.1002/wcc.425.
- TWI2050, 2018: Transformations to achieve the Sustainable Development Goals. Report prepared by
 the World in 2050 initiative.
- Umemiya, C., M. Ikeda, and M. K. White, 2020: Lessons learned for future transparency capacity
 building under the Paris Agreement: A review of greenhouse gas inventory capacity building projects
 in Viet Nam and Cambodia. J. Clean. Prod., 245, 118881,
- 31 https://doi.org/10.1016/j.jclepro.2019.118881.
- 32 UN, 2016: Montreal Protocol, Kigali Amendment.
- 33 —, 2017a: UN System Strategic Approach on Climate Change Action. Report of the High Level
 34 Committee on Programmes, Chief Executives Board for Coordination.
 35 https://unsceb.org/sites/default/files/CEB_2017_4_Add1.pdf.
- 36 —, 2017b: Catalyzing the Implementation of Nationally Determined Contributions in the Context of
 37 the 2030 Agenda through South-South Cooperation. 68 pp.
 38 http://www.indiaenvironmentportal.org.in/files/file/ssc_ndc_report.pdf.
- 39 —, 2018: South-South and Triangular Cooperation on Climate Technologies. 76 pp.
 40 http://www.iai.int/admin/site/sites/default/files/2018 SouthSouth and Triangular Climate Tech.pdf.
- 41UNEnvironmentProgramme,2018:EmissionsGapReport2018.42https://www.unenvironment.org/resources/emissions-gap-report-2018.
- 43 —, 2019: Emissions Gap Report 2019. 108 pp.
- 44 UNCCD, 2015: Land Degradation Neutrality: The Target Setting Programme. Glob. Mech. UNCCD,.
- 45 https://www.unccd.int/actions/ldn-target-setting-programme (Accessed December 19, 2020).

- 1 UNCTAD, 2012: State of South-South and Triangular Cooperation in the Production, Use and Trade 2 of Sustainable Biofuels. United Nations.
- 3 https://unctad.org/en/PublicationsLibrary/ditcted2011d10_en.pdf.
- 4 —, 2019: Taking Stock of IIA Reform: Recent Developments. 5 https://unctad.org/system/files/official-document/diaepcbinf2019d5_en.pdf.
- 6 UNEP/CPR/142/4, 2018: Report by the Secretariat on UN Environment Programme's Private Sector
- 7 Engagement. 142nd meeting of the Committee of Permanent Representatives to the United Nations
- 8 Environment Programme.
- 9 UNEP, 2013: Global Mercury Assessment.
- 10 —, 2014: Loss and Damage: When adaptation is not enough. Environ. Dev., 11, 219–227, 11 https://doi.org/10.1016/j.envdev.2014.05.001.
- 12 UNFCCC, 1992: United Nations Framework Convention on Climate Change.
 13 https://unfccc.int/resource/docs/convkp/conveng.pdf (Accessed December 10, 2020).
- 14 —, 1997: Kyoto Protocol.

15 —, 2010: Decision 1/CP.16 The Cancun Agreements: Outcome of the work of the Ad Hoc Working

- Group on Long-term Cooperative Action under the Convention. Report of the Conference of the Partieson its sixteenth session, held in Cancun from 29 November to 10 December 2010.
- —, 2012: Report of the Conference of the Parties on its seventeenth session, held in Durban from 28
 November to 11 December 2011. Conference of the Parties, Durban, UNFCCC, 2.
- 20 ____, 2015a: Paris Agreement.
- 21 _____, 2015b: Technology Mechanism: Enhancing climate technology development and transfer. 8 pp.
- 22 —, 2016a: Decision 1/CP.21 Adoption of the Paris Agreement. Report of the Conference of the
 23 Parties on its twenty-first session, held in Paris from 30 November to 13 December 2015,
 24 FCCC/CP/2015/10/Add.1.
- 25 _____, 2016b: Aggregate effect of the intended nationally determined contributions: an update.
- 26 —, 2018: UNFCCC Standing Committee on Finance. 2018 Biennial Assessment and Overview of
 27 Climate Finance Flows. Technical Report. http://unfccc.int/6877http://unfccc.int/8034. (Accessed
- 28 December 11, 2020).
- 29 —, 2019a: Dec. 4/CMA.1 Further guidance in relation to the mitigation section of decision 1/CP.21.
 30 Report of the Conference of the Parties serving as the meeting of the Parties to the Paris Agreement on
 31 the third part of its first session, held in Katowice from 2 to 15 December 2018. Addendum 1. Part two:
 32 Action taken by the Conference of the Parties s, 6.
- 2019b: Decisions adopted by the Conference of the Parties serving as the meeting of the Parties
 to the Paris Agreement ('Paris Rulebook'). Report of the Conference of the Parties serving as the
 meeting of the Parties to the Paris Agreement on the third part of its first session, held in Katowice from
 2 to 15 December 2018, FCCC/PA/CMA/2018/3/Add.1.
- 2019c: Dec. 18/CMA.1 Modalities, procedures and guidelines for the transparency framework
 for action and support referred to in Article 13 of the Paris Agreement. Report of the Conference of the
 Parties serving as the meeting of the Parties to the Paris Agreement on the third part of its first session,
 held in Katowice from 2 to 15 December 2018, FCCC/PA/CMA/2018/3/Add.2.
- 41 —, 2019d: Dec. 19/CMA.1 Matters relating to Article 14 of the Paris Agreement and paragraphs 99–
 42 101 of decision 1/CP.21. Report of the Conference of the Parties serving as the meeting of the Parties
 43 to the Paris Agreement on the third part of its first session, held in Katowice from 2 to 15 December
 44 2018, FCCC/PA/CMA/2018/3/Add.2.
- 45 _____, 2019e: Dec. 13/CMA.1 Matters relating to the Adaptation Fund. Report of the Conference of the 46 Parties serving as the meeting of the Parties to the Paris Agreement on the third part of its first session,

- 1 held in Katowice from 2 to 15 December 2018, 2.
- 2 _____, 2019f: Dec. 14/CMA.1 Setting a new collective quantified goal on finance in accordance with
- decision 1/CP.21, paragraph 53. Report of the Conference of the Parties serving as the meeting of the
 Parties to the Paris Agreement on the third part of its first session, held in Katowice from 2 to 15
- 4 Parties to the Paris5 December 2018, 3.
- 6 —, 2019g: Dec. 4/CP.24 Report of the Standing Committee on Finance. Report of the Conference of
 7 the Parties on its twenty-fourth session, held in Katowice from 2 to 15 December 2018 Addendum Part
 8 two: Action taken by the Conference of the Parties at its twentyfourth session, 14.
- 9 —, 2019h: Implementation of the framework for capacity-building in developing countries. Synthesis 10 report by the secretariat. 22 pp.
- 11 —, 2019i: Common tabular formats for the electronic reporting of the information on financial, technology development and transfer and capacity-building support provided and mobilized, as well as 12 Articles needed and received. under 13 support 9–11 of the Paris Agreeme. https://unfccc.int/sites/default/files/resource/SBSTA51.IN_.i11c.pdf. 14
- —, 2019j: Decision 15/CMA.1 Technology framework under Article 10, paragraph 4, of the Paris
 Agreement. FCCC/PA/CMA/2018/3 Add.2. *Report of the Conference of the Parties serving as the meeting of the Parties to the Paris Agreement on the third part of its first session, held in Katowice from 2 to 15 December 2018 Addendum Part two: Action taken by the Conference of the Parties servi*,
 UNFCCC 2019, 4–10.
- 20 —, 2019k: Decision 14/CP.24 Linkages between the Technology Mechanism and the Financial
 21 Mechanism of the Convention. Report of the Conference of the Parties on its twenty-fourth session,
 22 held in Katowice from 2 to 15 December 2018, 13.
- 23 —, 2020a: Bilateral and Multilateral Funding | UNFCCC. https://unfccc.int/topics/climate-24 finance/resources/multilateral-and-bilateral-funding-sources (Accessed December 8, 2020).
- 25 —, 2020b: Technology Executive Committee: Strengthening climate technology policies. TT Clear,.
 26 https://unfccc.int/ttclear/tec (Accessed June 4, 2020).
- 27 ____, 2020c: Building capacity in the UNFCCC process. Big Pict.,.
- 28 _____, 2020d: Developing the Santiago Network for Loss and Damage.
- 29 —, and UNOSSC, 2018: Potential of South South Cooperation and Triangular Cooperation on climate
 30 technologies for advancing the implementation of nationally determined contributions and national
 31 adaptation plans.
- 32 UNFCCC Decision 2/ CP. 15, Copenhagen Accord.
- UNFCCC Subsidiary Body for Implementation, 2020: Annual technical progress report of the Paris
 Committee on Capacity-building. FCCC/SBI/2020/13, 34.
- UNCBD, 2010: Decision X/2. The Strategic Plan for Biodiversity 2011-2020 and the Aichi Biodiversity
 Targets. UNEP/CBD/COP/DEC/X/2. 1–13.
- 37 UNGA, 1948: The Universal Declaration of Human Rights.
- 38 —, 1966a: International Covenant on Civil and Political Rights.
- 39 —, 1966b: international Covenant on Economic, Social and Cultural Rights.
- 40 United Nations Environment Programme, 2020: Emissions Gap Report 2020.
- 41 UNOSC, 2017: United Nations Action Plan on South-South Climate Cooperation (2017-2021).
- Urban, F., 2018: China's rise: Challenging the North-South technology transfer paradigm for climate
 change mitigation and low carbon energy. Energy Policy, 113, 320–330,
 https://doi.org/10.1016/j.enpol.2017.11.007.
- 45 —, G. Siciliano, K. Sour, P. D. Lonn, M. Tan-Mullins, and G. Mang, 2015a: South-South Technology

14-121

- Transfer of Low-Carbon Innovation: Large Chinese Hydropower Dams in Cambodia. Sustain. Dev.,
 23, 232–244, https://doi.org/10.1002/sd.1590.
- Y. Zhou, J. Nordensvard, and A. Narain, 2015b: Firm-level technology transfer and technology
 cooperation for wind energy between Europe, China and India: From North–South to South–North
 cooperation? Energy Sustain. Dev., 28, 29–40, https://doi.org/10.1016/j.esd.2015.06.004.
- Urpelainen, J., 2011: Can Unilateral Leadership Promote International Environmental Cooperation? Int.
 Interact., 37, 320–339, https://doi.org/10.1080/03050629.2011.596018.
- 8 —, and T. Van de Graaf, 2015: The International Renewable Energy Agency: a success story in 9 institutional innovation? Int. Environ. Agreements Polit. Law Econ., 15, 159–177, 10 https://doi.org/10.1007/s10784-013-9226-1.
- _____, and _____, 2018: United States non-cooperation and the Paris agreement. Clim. Policy, 18, 839–
 851, https://doi.org/10.1080/14693062.2017.1406843.
- 13 Vanhala, L., and C. Hestbaek, 2016: Framing Climate Change Loss and Damage in UNFCCC
- Negotiations. Glob. Environ. Polit., 16, 111 References-Actionaid, 2010, LOSS DAM CLIM C,
 https://doi.org/10.1162/GLEP_a_00379.
- 16 Velders, G. J. M., S. O. Andersen, J. S. Daniel, D. W. Fahey, and M. McFarland, 2007: The importance
- of the Montreal Protocol in protecting climate. Proc. Natl. Acad. Sci. U. S. A., 104, 4814–4819,
 https://doi.org/10.1073/pnas.0610328104.
- 19 —, D. W. Fahey, J. S. Daniel, S. O. Andersen, and M. McFarland, 2015: Future atmospheric
 20 abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC)
 21 emissions. Atmos. Environ., 123, 200–209, https://doi.org/10.1016/J.ATMOSENV.2015.10.071.
- Verkuijl, C., H. van Asselt, T. Moerenhout, L. Casier, and P. Wooders, 2019: Tackling Fossil Fuel
 Subsidies Through International Trade Agreements: Taking Stock, Looking Forward. VA. J. Int. Law,
 58, 309–368.
- Victor, D. G., 2011: Global Warming Gridlock: Creating More Effective Strategies for Protecting the
 Planet. Cambridge University Press, 392 pp.
- 27 _____, 2016: What the Framework Convention on Climate Change Teaches Us About Cooperation on
 28 Climate Change. Polit. Gov., 4, 133, https://doi.org/10.17645/pag.v4i3.657.
- 29 —, K. Raustiala, and E. B. Skolnikoff, 1998: The Implementation and Effectiveness of International
 30 Environmental Commitments: Theory and Practice. D.G. Victor, K. Raustiala, and E.B. Skolnikoff,
 31 Eds. MIT Press,.
- F. W. Geels, and S. Sharpe, 2019: Accelerating the low carbon transition: The case for stronger,
 more targeted and coordinated international action. 71.
- Vihma, A., Y. Mulugetta, and S. Karlsson-Vinkhuyzen, 2011: Negotiating solidarity? The G77 through
 the prism of climate change negotiations. Glob. Chang. Peace Secur., 23, 315–334,
 https://doi.org/10.1080/14781158.2011.601853.
- Voigt, C., 2016: The compliance and implementation mechanism of the Paris agreement. Rev. Eur.
 Comp. Int. Environ. Law, 25, 161–173, https://doi.org/10.1111/reel.12155.
- 39 —, and F. Ferreira, 2015: The Warsaw Framework for REDD+: Implications for National
 40 Implementation and Access to Results-Based Finance. Carbon Clim. Law Rev., 2, 113.
- 41 —, and —, 2016a: 'Dynamic Differentiation': The Principles of CBDR-RC, Progression and 42 Highest Possible Ambition in the Paris Agreement. Transnatl. Environ. Law, 5, 285–303, 43 https://doi.org/10.1017/s2047102516000212.
- 44 —, and —, 2016b: Differentiation in the Paris Agreement. Clim. Law, 6, 58–74, 45 https://doi.org/10.1163/18786561-00601004.
- 46 van der Voorn, T., C. Pahl-Wostl, and J. Quist, 2012: Combining backcasting and adaptive management

- for climate adaptation in coastal regions: A methodology and a South African case study. Futures, 44,
 346–364, https://doi.org/10.1016/j.futures.2011.11.003.
- 3 —, J. Quist, C. Pahl-Wostl, and M. Haasnoot, 2017: Envisioning robust climate change adaptation
- 4 futures for coastal regions: a comparative evaluation of cases in three continents. Mitig. Adapt. Strateg.
- 5 Glob. Chang., 22, 519–546, https://doi.org/10.1007/s11027-015-9686-4.
- 6 —, Å. Svenfelt, K. E. Björnberg, E. Fauré, and R. Milestad, 2020: Envisioning carbon-free land use 7 futures for Sweden: a scenario study on conflicts and synergies between environmental policy goals.
- Reg. Environ. Chang., 20, 35, https://doi.org/10.1007/s10113-020-01618-5.
- van Vuuren, D. P., J. A. Edmonds, M. Kainuma, K. Riahi, and J. Weyant, 2011: A special issue on the
 RCPs. Clim. Change, 109, 1–4, https://doi.org/10.1007/s10584-011-0157-y.
- Waage, J., and Coauthors, 2015: Governing Sustainable Development Goals: interactions,
 infrastructures, and institutions. Thinking Beyond Sectors for Sustainable Development, Ubiquity
 Press, 79–88.
- Wagner, C. S., T. A. Whetsell, and L. Leydesdorff, 2017: Growth of international collaboration in
 science: revisiting six specialties. Scientometrics, 110, 1633–1652, https://doi.org/10.1007/s11192 016-2230-9.
- Watkiss, P., M. Benzie, and R. J. T. Klein, 2015: The complementarity and comparability of climate
 change adaptation and mitigation. Wiley Interdiscip. Rev. Clim. Chang., 6, 541–557,
 https://doi.org/10.1002/wcc.368.
- Watts, J., and J. Depledge, 2018: Latin America in the climate change negotiations: Exploring the
 AILAC and ALBA coalitions. Wiley Interdiscip. Rev. Clim. Chang., 9,
 https://doi.org/10.1002/wcc.533.
- WBCSD, 2019: About us. https://www.wbcsd.org/Overview/About-us%0D (Accessed December 12, 2019).
- Weart, S. R., 2012: The evolution of international cooperation in climate science. J. Int. Organ. Stud.,
 3, 41–59.
- Weikmans, R., and J. T. Roberts, 2019: The international climate finance accounting muddle: is there
 hope on the horizon? Clim. Dev., 11, 97–111, https://doi.org/10.1080/17565529.2017.1410087.
- 29 —, H. van Asselt, and J. T. Roberts, 2019: Transparency requirements under the Paris Agreement
 30 and their (un)likely impact on strengthening the ambition of nationally determined contributions
 31 (NDCs). Clim. Policy, 0, 1–16, https://doi.org/10.1080/14693062.2019.1695571.
- 32 _____, ____, and J. T. Roberts, 2020: Transparency requirements under the Paris Agreement and their
 33 (un)likely impact on strengthening the ambition of nationally determined contributions (NDCs). Clim.
 34 Policy, 20, 511–526, https://doi.org/10.1080/14693062.2019.1695571.
- Weischer, L., J. Morgan, and M. Patel, 2012: Climate Clubs: Can Small Groups of Countries make a
 Big Difference in Addressing Climate Change? Rev. Eur. Community Int. Environ. Law, 21, 177–192,
 https://doi.org/https://doi.org/10.1111/reel.12007.
- Weiss, E. B., and H. K. Jacobson, 1998: Engaging Countries: Strengthening Compliance with
 International Environmental Accords. MIT Press,.
- 40 Weitz, N., H. Carlsen, M. Nilsson, and K. Skånberg, 2018: Towards systemic and contextual priority
- setting for implementing the 2030 Agenda. Sustain. Sci., 13, 531–548, https://doi.org/10.1007/s11625-
- 42 017-0470-0.
- Werksman, J., 2010: Legal symmetry and legal differentiation under a future deal on climate. Clim.
 Policy, 10, 672–677, https://doi.org/10.3763/cpol.2010.0150.
- 45 Wettestad, J.; Gulbrandsen, L.H.; Andresen, S., 2020: Calling in the heavyweights: Why the World
- Wettestad, J., Gulorandsen, L.H., Andresen, S., 2020. Cannig in the neavyweights. Why the world
 Bank established the Carbon Pricing Leadership Coalition, and what it might achieve. Int. Stud.
 Perspect.,.

- Wettestad, J. and Gulbrandsen, L. H., 2018: The Evolution of Carbon Markets: Design and Diffusion.
 Routledge,.
- Wewerinke-Singh, M., 2018: State Responsibility, Climate Change and Human Rights Under
 International Law. Hart Publishing,.
- 5 —, and D. H. Salili, 2020: Between negotiations and litigation: Vanuatu's perspective on loss and 6 damage from climate change. Clim. Policy, 20, 681–692, 7 https://doi.org/10.1080/14693062.2019.1623166.
- 8 Whitehouse, 2014: US-China Joint Announcements on Climate Change. Whitehouse Press Briefings,.
- 9 https://obamawhitehouse.archives.gov/the-press-office/2014/11/11/us-china-joint-announcement 10 climate-change.
- Wilder, M., C. A. Scott, N. P. Pablos, R. G. Varady, G. M. Garfin, and J. McEvoy, 2010: Adapting
 Across Boundaries: Climate Change, Social Learning, and Resilience in the U.S.–Mexico Border
- 13 Region. Ann. Assoc. Am. Geogr., 100, 917–928, https://doi.org/10.1080/00045608.2010.500235.
- Winkler, H., 2019: Putting equity into practice in the global stocktake under the Paris Agreement. Clim.
 Policy, 0, 1–9, https://doi.org/10.1080/14693062.2019.1680337.
- 16 —, and N. K. Dubash, 2016: Who determines transformational change in development and climate
 17 finance? Clim. Policy, 16, 783–791.
- 18 —, B. Mantlana, and T. Letete, 2017: Transparency of action and support in the Paris Agreement.
 19 Clim. Policy, 17, 853–872, https://doi.org/10.1080/14693062.2017.1302918.
- 20 _____, N. Höhne, G. Cunliffe, T. Kuramochi, A. April, and M. J. de Villafranca Casas, 2018: Countries
 21 start to explain how their climate contributions are fair: More rigour needed. Int. Environ. Agreements
- 22 Polit. Law Econ., https://doi.org/10.1007/s10784-017-9381-x.
- 23 Winterbottom, R., 2015: Taking Stock The Tropical Forestry Action Plan After Five Years.
- Wolf, S., C. Jaeger, J. Mielke, F. Schuetze, and R. Rosen, 2019: Framing 1.5°C Turning an Investment
 Challenge into a Green Growth Opportunity. SSRN Electron. J., https://doi.org/10.2139/ssrn.3324509.
- Wollenberg, E., and Coauthors, 2016: Reducing emissions from agriculture to meet the 2 °C target.
 Glob. Chang. Biol., 22, 3859–3864, https://doi.org/10.1111/gcb.13340.
- 28 World Bank, 2010: Cities and Climate Change: An Urgent Agenda. World Bank Gr.,.
- 29 —, 2015a: Joint Statement by the Multilateral Development Banks at Paris, COP21 Delivering Commitment 30 Change Action Scale: Our Implementation. Climate at to 31 https://www.worldbank.org/content/dam/Worldbank/document/Climate/Joint MDB Statement 32 Climate_NOV 28_final.pdf (Accessed December 8, 2020).
- 33 —, 2015b: Development Committee (Joint Ministerial Committee of the Boards of Governors of the
 34 Bank and the Fund on the Transfer of Real Resources to Developing Countries).
 35 http://pubdocs.worldbank.org/en/622841485963735448/DC2015-0002-E-
- 36 FinancingforDevelopment.pdf (Accessed December 9, 2020).
- 37 _____, 2018: Carbon Markets for Greenhouse Gas Emission Reduction in a Warming World.
- 38 —, 2019: State and Trends of Carbon Pricing.
 39 http://documents.worldbank.org/curated/en/191801559846379845/State-and-Trends-of-Carbon 40 Pricing-2019.
- WRI, 2018: Towards Paris Alignment, How the Multilateral Development Banks Can Better Support
 the Paris Agreement.
- Wu, M., and J. Salzman, 2014: The Next Generation of Trade and Environment Conflicts: The Rise of
 Green Industrial Policy. Northwest. Univ. Law Rev., 108, 401–474.
- 45 Wurzel, R. K. W., D. Liefferink, and D. Torney, 2019: Pioneers, leaders and followers in multilevel 46 and polycentric climate governance. Env. Polit., 28, 1–21,

- 1 https://doi.org/10.1080/09644016.2019.1522033.
- 2 Xu, Y., Z. Dong, and Y. Wang, 2016: Establishing a measurement, reporting, and verification system
- fra, 1, 2. Doing, and 1. Wang, 2010. Establishing a measurement, reporting, and verification system
 for climate finance in post-Paris agreement period. Chinese J. Popul. Resour. Environ., 14, 235–244,
 https://doi.org/10.1080/10042857.2016.1258802.
- 5 Xuemei, B., 2007: Integrating Global Environmental Concerns into Urban Management. J. Ind. Ecol.,
 6 11, 15–29.
- Yamaguchi, S., 2020a: Greening Regional Trade Agreements: Subsidies Related to Energy and
 Environmental Goods. https://doi.org/https://doi.org/https://doi.org/10.1787/7e1fe8ed-en.
- 9 —, 2020b: Greening Regional Trade Agreements on Investment. 10 https://doi.org/https://doi.org/10.1787/4452a09d-en.
- 11 Yamineva, Y., 2016: Climate Finance in the Paris Outcome: Why Do Today What You Can Put Off
- 12 Till Tomorrow? Rev. Eur. Comp. Int. Environ. Law, 25, 174–185, https://doi.org/10.1111/reel.12160.
- _____, and K. Kulovesi, 2018: Keeping the Arctic White: The Legal and Governance Landscape for
 Reducing Short-Lived Climate Pollutants in the Arctic Region. Transnatl. Environ. Law, 7, 201–227,
 https://doi.org/10.1017/S2047102517000401.
- Young, O. R., 2016: The Paris Agreement: Destined to Succeed or Doomed to Fail? Polit. Gov., 4, 124–
 132, https://doi.org/10.17645/pag.v4i3.635.
- Zahar, A., 2019: Collective Progress in the Light of Equity Under the Global Stocktake. Clim. Law, 9,
 101–121, https://doi.org/10.1163/18786561-00901006.
- Zarin, D. J., and Coauthors, 2016: Can carbon emissions from tropical deforestation drop by 50% in 5
 years? Glob. Chang. Biol., https://doi.org/10.1111/gcb.13153.
- Zhang, H., 2016: Towards global green shipping: the development of international regulations on
 reduction of GHG emissions from ships. Int. Environ. Agreements Polit. Law Econ., 16, 561–577.
- Zhang, H., 2019: Implementing Provisions on Climate Finance Under the Paris Agreement. Clim. Law,
 9, 21–39.
- Zhang, W., and X. Pan, 2016: Study on the demand of climate finance for developing countries based
 on submitted INDC. Adv. Clim. Chang. Res., 7, 99–104,
 https://doi.org/10.1016/J.ACCRE.2016.05.002.
- 29 Zia, A., and S. Kauffman, 2018: The Limits of Predictability in Predefining Phase Spaces of Dynamic
- 30 Social–Ecological Systems: "Command and Control" Versus "Complex Systems"-Based Policy Design
- 31 Approaches to Conserve Tropical Forests. J. Policy Complex Syst., 4, 32 https://doi.org/10.18278/jpcs.4.2.9.
- Zihua, G., C. Voigt, and J. Werksman, 2019: Facilitating Implementation and Promoting Compliance
 With the Paris Agreement Under Article 15: Conceptual Challenges and Pragmatic Choices. Clim. Law,
 9, 65–100.
- Zürn, M., and S. Schäfer, 2013: The Paradox of Climate Engineering. Glob. Policy, 4, n/a-n/a,
 https://doi.org/10.1111/gpol.12004.
- 38

39 References for Cross-Working Group Box 4

- Arino, Y. et al., 2016: Estimating option values of solar radiation management assuming that climate
 sensitivity is uncertain. Proc. Natl. Acad. Sci. U. S. A., 113 (21), 5886-5891,
 doi:10.1073/pnas.1520795113.
- 43 Baatz, C., 2016: Can We Have It Both Ways? On Potential Trade-Offs Between Mitigation and Solar
- 44 Radiation Management. Environ. Values, 25 (1), 29-49, doi:10.3197/096327115X14497392134847.
- 45

- 1 Buck, H. J., et al., 2020: Evaluating the efficacy and equity of environmental stopgap measures. Nat.
- 2 Sustain., 3, 499–504, https://doi.org/10.1038/s41893-020-0497-6.
- 3 Burns, E. T. et al., 2016: What do people think when they think about solar geoengineering? A review
- 4 of empirical social science literature, and prospects for future research. Earth's Future, 4 (11), 536-542.
- 5 Burton, C., R. A. Betts, C. D. Jones, and K. Williams, 2018: Will Fire Danger Be Reduced by Using
- 6 Solar Radiation Management to Limit Global Warming to 1.5 °C Compared to 2.0 °C? Geophys. Res.
- 7 Lett., 45, 3644–3652, https://doi.org/10.1002/2018GL077848.
- 8 Callies, D. E., 2019: The Slippery Slope Argument against Geoengineering Research. J. Appl. Philos.,
 9 36 (4), 675-687, doi:10.1111/japp.12345.
- Carlson, C. J. and C. H. Trisos, 2018: Climate engineering needs a clean bill of health. Nat. Clim.
 Chang., 8 (10), 843-845, doi:10.1038/s41558-018-0294-7.
- Carlson, C. J. et al., 2020: Solar geoengineering could redistribute malaria risk in developing countries.
 medRxiv.
- Carlson, C. J., and C. H. Trisos, 2018: Climate engineering needs a clean bill of health. Nat. Clim.
 Chang., 8, 843–845, https://doi.org/10.1038/s41558-018-0294-7.
- 16 Crook, J. A., L. S. Jackson, S. M. Osprey and P. M. Forster, 2015: A comparison of temperature and
- 17 precipitation responses to different Earth radiation management geoengineering schemes. J. Geophys.
- 18 Res. D: Atmos., 120 (18), 9352-9373, doi:10.1002/2015JD023269.
- Cummings, C. L., S. H. Lin and B. D. Trump, 2017: Public perceptions of climate geoengineering: a
 systematic review of the literature. Clim. Res., 73 (3), 247-264, doi:10.3354/cr01475.
- Curry, C. L. et al., 2014: A multimodel examination of climate extremes in an idealized geoengineering
 experiment. J. Geophys. Res. D: Atmos., 119 (7), 3900-3923, doi:10.1002/2013JD020648.
- Dagon, K. and D. P. Schrag, 2019: Quantifying the effects of solar geoengineering on vegetation. Clim.
 Change, 153 (1-2), 235-251.
- Duan, L., L. Cao, G. Bala and K. Caldeira, 2020: A Model-Based Investigation of Terrestrial Plant
 Carbon Uptake Response to Four Radiation Modification Approaches. J. Geophys. Res. D: Atmos., 125
 (9), 413, doi:10.1029/2019JD031883.
- 28 Eastham, S. D., D. K. Weisenstein, D. W. Keith, and S. R. H. Barrett, 2018: Quantifying the impact of
- 28 Easthain, S. D., D. K. weisenstein, D. w. Keith, and S. K. H. Barrett, 2018: Quantifying the impact of
 29 sulfate geoengineering on mortality from air quality and UV-B exposure. Atmos. Environ., 187, 424–
 30 434, <u>https://doi.org/10.1016/j.atmosenv.2018.05.047</u>.
- 31 Emmerling, J. and M. Tavoni, 2018: Exploration of the interactions between mitigation and solar
- radiation management in cooperative and non-cooperative international governance settings. Glob.
 Environ. Change, 53, 244-251, doi:10.1016/j.gloenvcha.2018.10.006.
- 34 Flegal, J. A. and A. Gupta, 2018: Evoking equity as a rationale for solar geoengineering research?
- Scrutinizing emerging expert visions of equity. International Environmental Agreements: Politics, Law
 and Economics, 18 (1), 45-61, doi:10.1007/s10784-017-9377-6.
- Flegal, A. M. Hubert, D. R. Morrow, and J. B. Moreno-Cruz, 2019: Solar Geoengineering: Social
 Science, Legal, Ethical, and Economic Frameworks. Annu. Rev. Environ. Resour.,
 https://doi.org/10.114/(arruneu.arriver.102017.020022
- 39 https://doi.org/10.1146/annurev-environ-102017-030032.
- 40

- 1 Flegal, J. A., and A. Gupta, 2018: Evoking equity as a rationale for solar geoengineering research?
- Scrutinizing emerging expert visions of equity. Int. Environ. Agreements Polit. Law Econ.,
 https://doi.org/10.1007/s10784-017-9377-6.
- 4 Glienke, S., P. J. Irvine, and M. G. Lawrence, 2015: The impact of geoengineering on vegetation in 5 experiment G1 of the GeoMIP. J. Geophys. Res. Atmos., 120, https://doi.org/10.1002/2015JD024202.
- 6 Gupta, A. et al., 2020: Anticipatory governance of solar geoengineering: conflicting visions of the future
- 7 and their links to governance proposals. Curr Opin Environ Sustain, 45, 10-19,
- 8 doi:10.1016/j.cosust.2020.06.004.
- 9 Gupta, A., I. Möller, F. Biermann, S. Jinnah, P. Kashwan, V. Mathur, D. R. Morrow, and S. Nicholson,
- 10 2020: Anticipatory governance of solar geoengineering: conflicting visions of the future and their links
- 11 to governance proposals. Curr. Opin. Environ. Sustain., https://doi.org/10.1016/j.cosust.2020.06.004.
- Harding, A. R. et al., 2020: Climate econometric models indicate solar geoengineering would reduce
 inter-country income inequality. Nat. Commun., 11 (1), 227, doi:10.1038/s41467-019-13957-x.
- 14 Horton, J., and D. Keith, 2016: Solar geoengineering and obligations to the global poor. Climate justice
- 15 and geoengineering: Ethics and policy in the atmospheric anthropocene, C. Preston, Ed., Rowman
- 16 Littlefield, 79–92.
- Hulme, M., 2014: Can Science Fix Climate Change?: A Case Against Climate Engineering. John Wiley& Sons, 144 pp.
- Irvine, P. J. et al., 2017: Towards a comprehensive climate impacts assessment of solar geoengineering.
 Earth's Future, 5 (1), 93-106.
- Keith, D. W. and D. G. MacMartin, 2015: A temporary, moderate and responsive scenario for solar
 geoengineering. Nat. Clim. Chang., 5 (3), 201-206, doi:10.1038/nclimate2493.
- Keller, D. P., 2018: Marine Climate Engineering. In: Handbook on Marine Environment Protection :
 Science, Impacts and Sustainable Management [Salomon, M. and T. Markus (eds.)]. Springer
- 25 International Publishing, Cham, 261-276.
- Kravitz, B., et al., 2015: The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6):
 simulation design and preliminary results. Geosci. Model Dev., 8, 3379–3392,
 https://doi.org/10.5194/gmd-8-3379-2015.
- Krishna-Pillai, S.-P. K. et al., 2019: Climate system response to stratospheric sulfate aerosols:
 sensitivity to altitude of aerosol layer. Earth System Dynamics, 10 (4), 885-900.
- Kwiatkowski, L. et al., 2015: Coral bleaching under unconventional scenarios of climate warming and
 ocean acidification. Nat. Clim. Chang., 5 (8), 777-781, doi:10.1038/nclimate2655.
- Latham, J. et al., 2013: Can marine cloud brightening reduce coral bleaching? Atmos. Sci. Lett., 14 (4),
 214-219, doi:10.1002/asl2.442.
- 35 MacMartin, Douglas G., Katharine L. Ricke, and David W. Keith. 2018. "Solar Geoengineering as Part
- of an Overall Strategy for Meeting the 1.5°C Paris Target." Philosophical Transactions of the Royal
 Society A: Mathematical, Physical and Engineering Sciences 376 (2119): 20160454.
 https://doi.org/10.1098/rsta.2016.0454.
- McCusker, K. E., K. C. Armour, C. M. Bitz and D. S. Battisti, 2014: Rapid and extensive warming
 following cessation of solar radiation management. Environ. Res. Lett., 9 (2), 024005,
 doi:10.1088/1748-9326/9/2/024005.
- McDonald, J., J. McGee, K. Brent, and W. Burns, 2019: Governing geoengineering research for the
 Great Barrier Reef. Clim. Policy, https://doi.org/10.1080/14693062.2019.1592742.

- 1 McLaren, D., 2016: Mitigation deterrence and the "moral hazard" of solar radiation management.
- 2 Earth's Future, 4 (12), 596-602.
- 3
- 4 Merk, C., G. Pönitzsch, C. Kniebes, K. Rehdanz, and U. Schmidt, 2015: Exploring public perceptions
- of stratospheric sulfate injection. Clim. Change, 130, 299–312, https://doi.org/10.1007/s10584-0141317-7.
- Moriyama, R. et al., 2017: The cost of stratospheric climate engineering revisited. MITIGATION AND
 ADAPTATION STRATEGIES FOR GLOBAL CHANGE, 22 (8), 1207-1228.
- 9 Morrow, D. R., 2014: Ethical aspects of the mitigation obstruction argument against climate 10 engineering research. Philos. Trans. A Math. Phys. Eng. Sci., 372 (2031), doi:10.1098/rsta.2014.0062.
- Muri, H., U. Niemeier, and J. E. Kristjánsson, 2015: Tropical rainforest response to marine sky
 brightening climate engineering. Geophys. Res. Lett., 42, 2951–2960,
 https://doi.org/10.1002/2015GL063363.
- Nicholson, S., S. Jinnah, and A. Gillespie, 2018: Solar radiation management: a proposal for immediate
 polycentric governance. Clim. Policy, 18, 322–334, https://doi.org/10.1080/14693062.2017.1400944.
- Parkes, B., A. Challinor, and K. Nicklin, 2015: Crop failure rates in a geoengineered climate: impact of
 climate change and marine cloud brightening. Environ. Res. Lett., 10, 084003,
 https://doi.org/10.1088/1748-9326/10/8/084003.
- Parson, E. A., 2014: Climate Engineering in Global Climate Governance: Implications for Participation
 and Linkage. Transnatl. Environ. Law, 3, 89–110, https://doi.org/10.1017/S2047102513000496.
- Partanen, A.-I., D. P. Keller, H. Korhonen and H. D. Matthews, 2016: Impacts of sea spray
 geoengineering on ocean biogeochemistry. Geophys. Res. Lett., 43 (14), 7600-7608.
- Pidgeon, N., A. Corner, K. Parkhill, A. Spence, C. Butler, and W. Poortinga, 2012: Exploring early
 public responses to geoengineering. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 370, 4176–4196,
 https://doi.org/10.1098/rsta.2012.0099.
- Pongratz, J., D. B. Lobell, L. Cao and K. Caldeira, 2012: Crop yields in a geoengineered climate. Nat.
 Clim. Chang., 2 (2), 101-105, doi:10.1038/nclimate1373.
- Preston, C. and W. Carr, 2018: Recognitional Justice, Climate Engineering, and the Care Approach.
 Ethics, Policy & Environment, 21 (3), 308-323, doi:10.1080/21550085.2018.1562527.
- Proctor, J. et al., 2018: Estimating global agricultural effects of geoengineering using volcanic
 eruptions. Nature, 560 (7719), 480-483, doi:10.1038/s41586-018-0417-3.
- Rayner, S. et al., 2013: The oxford principles. Clim. Change, 121 (3), 499-512.
- Reynolds, J. L., 2019: The governance of solar geoengineering: managing climate change in theAnthropocene. 268 pp.
- Seneviratne, S. I. et al., 2018: Land radiative management as contributor to regional-scale climate adaptation and mitigation. Nat. Geosci., 11 (2), 88-96, doi:10.1038/s41561-017-0057-5.
- Smith, W. and G. Wagner, 2018: Stratospheric aerosol injection tactics and costs in the first 15 years
 of deployment. Environ. Res. Lett., 13 (12), 124001, doi:10.1088/1748-9326/aae98d.
- 39 Stilgoe, J., 2015: Experiment Earth: Responsible innovation in geoengineering. Routledge, 240 pp.
- 40 Sugiyama, M. et al., 2018a: Next steps in geoengineering scenario research: limited deployment
- 41 scenarios and beyond. Clim. Policy, 18 (6), 681-689, doi:10.1080/14693062.2017.1323721.

- 1 Sugiyama, M., A. Ishii, S. Asayama and T. Kosugi, 2018b: Solar Geoengineering Governance. In:
- 2 Oxford Research Encyclopedia of Climate Science. oxfordre.com.
- 3
- 4 Sugiyama, M., S. Asayama, and T. Kosugi, 2020: The North–South Divide on Public Perceptions of
- 5 Stratospheric Aerosol Geoengineering?: A Survey in Six Asia-Pacific Countries. Environ. Commun.,
- 6 14, 641–656, https://doi.org/10.1080/17524032.2019.1699137.
- Svoboda, T. and P. Irvine, 2014: Ethical and Technical Challenges in Compensating for Harm Due to
 Solar Radiation Management Geoengineering. Ethics, Policy & Environment, 17 (2), 157-174,
- 9 doi:10.1080/21550085.2014.927962.
- 10 Talberg, A., S. Thomas, P. Christoff, and D. Karoly, 2018: How geoengineering scenarios frame
- assumptions and create expectations. Sustain. Sci., 13, 1093–1104, https://doi.org/10.1007/s11625-0180527-8.
- Tilmes, S. et al., 2018: CESM1 (WACCM) stratospheric aerosol geoengineering large ensemble
 project. Bull. Am. Meteorol. Soc., 99 (11), 2361-2371.
- Trisos, C. H. et al., 2018: Potentially dangerous consequences for biodiversity of solar geoengineering
 implementation and termination. Nat Ecol Evol, 2 (3), 475-482, doi:10.1038/s41559-017-0431-0.
- 17 Visioni, D., E. Slessarev, D. G. MacMartin, N. M. Mahowald, C. L. Goodale, and L. Xia, 2020: What
- 18 goes up must come down: impacts of deposition in a sulfate geoengineering scenario. Environ. Res.
- 19 Lett., 15, 094063, https://doi.org/10.1088/1748-9326/ab94eb.
- Visschers, V. H. M., J. Shi, M. Siegrist and J. Arvai, 2017: Beliefs and values explain international
 differences in perception of solar radiation management: insights from a cross-country survey. Clim.
 Change, 142 (3-4), 531-544.
- 23 Xia, L. et al., 2014: Solar radiation management impacts on agriculture in China: A case study in the
- Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. D: Atmos., 119 (14), 8695-8711, doi:10.1002/2013JD020630.
- Yang, H. et al., 2016: Potential negative consequences of geoengineering on crop production: A study
 of Indian groundnut. Geophys. Res. Lett., 43 (22), 11786-11795, doi:10.1002/2016GL071209.
- Zhan, P. et al., 2019: Impacts of Sulfate Geoengineering on Rice Yield in China: Results From a
 Multimodel Ensemble. Earth's Future, 7 (4), 395-410, doi:10.1029/2018EF001094.

30