

# Intel® Server Board S2600ST Product Family

# **Technical Product Specification**

An overview of product features, functions, architecture, and support specifications.

**Rev. 2.5** 

September 2021

<This page is left intentionally blank>

# **Document Revision History**

| Date           | Revision | Changes                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| June 2017      | 1.0      | Production release.                                                                                                                                                                                                                                                                                                                                                                                      |
| August 2017    | 1.01     | Added Design and Environmental Specifications Section                                                                                                                                                                                                                                                                                                                                                    |
| February 2018  | 1.02     | <ul> <li>Corrected post codes on Appendix B (Tables: 40, 41 and 42)</li> <li>Corrected thermal Configuration Tables on Appendix E (Tables: 49, 50, 51 and 52)</li> <li>Corrected the Maximum TDP from 165W to 205W</li> <li>Added section 10.5.4 Chassis Intrusion header Pin-out</li> <li>Added reference to the Chassis Intrusion Header on Figure 2</li> <li>Added a note on section 4.6.2</li> </ul> |
| March 2018     | 1.03     | <ul> <li>Fixed a part on section 5.3.1 where DIMM population suggested was not accurate</li> <li>Added documents to the Reference documents table</li> </ul>                                                                                                                                                                                                                                             |
| April 2018     | 1.04     | Fixed the image reference on the POST error codes 0x99 and 0x9C                                                                                                                                                                                                                                                                                                                                          |
| March 2019     | 2.0      | <ul> <li>Added 2<sup>nd</sup> Gen Intel® Xeon® processor Scalable family support information</li> <li>Updated Appendix E</li> </ul>                                                                                                                                                                                                                                                                      |
| August 2019    | 2.1      | <ul> <li>Corrected # of pins on TPM</li> <li>Added BMC beep codes</li> <li>Fixed color coding on POST Hex codes</li> <li>Added Appendix E.4 with airflow information on the P4000 family chassis</li> </ul>                                                                                                                                                                                              |
| October 2019   | 2.2      | <ul> <li>Removed 100Mbps support from Table 12</li> <li>Added sensor information on Field Replaceable Unit (FRU) and Sensor Data Record (SDR) Data section as well as one image and one table</li> </ul>                                                                                                                                                                                                 |
| January 2020   | 2.3      | <ul> <li>Updated Table and Figure numbering</li> <li>Updated Appendix E to include Product Regulatory Information, including EU LOT 9 product collateral support links</li> <li>Replaced all reference of Intel RSTe to Intel VROC (SATA RAID) 6.0</li> </ul>                                                                                                                                            |
| March 2020     | 2.4      | Added EU Lot 9 Support Summary content to Appendix E                                                                                                                                                                                                                                                                                                                                                     |
| September 2021 | 2.5      | <ul> <li>Updated Section 5.3 to add the "Intel DDR4 DIMM Support Disclaimer"</li> <li>Updated Appendix F, "Glossary" to add BUF_N</li> <li>Minor edits throughout for clarity</li> </ul>                                                                                                                                                                                                                 |

# **Disclaimers**

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software, or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Intel, the Intel logo, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.

\*Other names and brands may be claimed as the property of others.

© Intel Corporation

# **Table of Contents**

| 1. Introdu | ıction                                                                                      | 11 |
|------------|---------------------------------------------------------------------------------------------|----|
| 1.1        | Product Errata                                                                              | 11 |
| 1.2        | Chapter Outline                                                                             | 12 |
| 1.3        | Intel® Server Board Use Disclaimer                                                          | 12 |
| 2. Server  | Board Family Overview                                                                       | 13 |
| 2.1        | Server Board Feature Set                                                                    | 14 |
| 2.2        | Server Board Component / Feature Identification                                             | 15 |
| 2.3        | Server Board Mechanical Drawings                                                            | 19 |
| 2.4        | Product Architecture Overview                                                               | 26 |
| 2.5        | System Software Stack                                                                       | 26 |
| 2.5.1      | Hot Keys Supported During Power-On Self-Test (POST)                                         | 27 |
| 2.5.2      | BIOS Update Capability                                                                      | 28 |
| 2.5.3      | BIOS Recovery                                                                               | 28 |
| 2.5.4      | Field Replaceable Unit (FRU) and Sensor Data Record (SDR) Data                              | 29 |
| 3. Proces  | sor Support                                                                                 | 32 |
| 3.1        | Processor Heat Sink Module (PHM) and Processor Socket Assembly                              | 32 |
| 3.2        | Processor Thermal Design Power (TDP) Support                                                | 34 |
| 3.3        | Intel® Xeon® Processor Scalable Family Overview                                             | 35 |
| 3.3.1      | Intel® 64 Instruction Set Architecture (ISA)                                                | 37 |
| 3.3.2      | Intel® Hyper-Threading Technology                                                           | 37 |
| 3.3.3      | Enhanced Intel SpeedStep® Technology                                                        | 37 |
| 3.3.4      | Intel® Turbo Boost Technology 2.0                                                           | 37 |
| 3.3.5      | Intel® Virtualization Technology for IA-32, Intel® 64 and Intel® Architecture (Intel® VT-x) | 37 |
| 3.3.6      | Intel® Virtualization Technology for Directed I/O (Intel® VT-d)                             | 37 |
| 3.3.7      | Execute Disable Bit                                                                         |    |
| 3.3.8      | Intel® Trusted Execution Technology (Intel® TXT) for Servers                                | 38 |
| 3.3.9      | Intel® Adavanced Vector Extension 512 (Intel® AVX-512)                                      | 38 |
| 3.3.10     | Intel® Advanced Encryption Standard New Instructions (Intel® AES-NI)                        | 38 |
| 3.3.11     | Intel® Node Manager (Intel® NM) 4.0                                                         | 38 |
| 3.3.12     | Intel® Deep Learning Boost                                                                  | 39 |
| 3.3.13     | Intel® Speed Select Technology                                                              | 39 |
| 3.3.14     | Intel® Resource Director Technology                                                         | 39 |
| 3.4        | Processor Population Rules                                                                  | 40 |
| 3.5        | Processor Initialization Error Summary                                                      | 40 |
| 4. PCI Exp | oress (PCIe*) Support                                                                       | 43 |
| 4.1.1      | PCIe* Enumeration and Allocation                                                            | 43 |
| 4.1.2      | Non-Transparent Bridge                                                                      | 43 |
| 5. Memor   | y Support                                                                                   | 45 |
| 5.1        | Memory Subsystem Architecture                                                               |    |
| 5.2        | Supported Memory                                                                            | 45 |

| 5.3       | General Support Rules for Memory                            | 46 |
|-----------|-------------------------------------------------------------|----|
| 5.3.1     | DIMM Population Guidelines for Best Performance             | 49 |
| 5.4       | Memory RAS Features                                         | 50 |
| 5.4.1     | DIMM Populations Rules and BIOS Setup for Memory RAS        | 51 |
| 6. Systen | m I/O                                                       | 52 |
| 6.1       | Intel® QuickAssist Technology Support                       | 52 |
| 6.2       | PCIe* Add-in Card Support                                   | 53 |
| 6.2.1     | Riser Card Support                                          | 54 |
| 6.3       | Onboard Storage Subsystem                                   | 54 |
| 6.3.1     | M.2 Storage Device Support                                  | 55 |
| 6.3.2     | Onboard PCIe* OCuLink Connectors                            | 56 |
| 6.3.3     | Intel® Volume Management Device (Intel® VMD) for NVMe* SSDs | 56 |
| 6.3.4     | Intel® VROC (VMD NVMe RAID) 6.0                             | 59 |
| 6.3.5     | Onboard SATA Support                                        | 60 |
| 6.3.6     | Embedded Software RAID Support                              | 62 |
| 6.4       | Network Interface                                           | 64 |
| 6.4.1     | Onboard Ethernet Ports                                      | 64 |
| 6.4.2     | SFP+ LAN Riser Option                                       | 65 |
| 7. Systen | n Security                                                  | 67 |
| 7.1       | BIOS Setup Utility Security Option Configuration            | 67 |
| 7.2       | BIOS Password Protection                                    | 67 |
| 7.3       | Trusted Platform Module (TPM) Support                       | 68 |
| 7.3.1     | TPM Security BIOS                                           | 69 |
| 7.3.2     | Physical Presence                                           | 70 |
| 7.3.3     | TPM Security Setup Options                                  | 70 |
| 7.4       | Intel® Trusted Execution Technology                         | 71 |
| 8. Platfo | rm Management                                               | 72 |
| 8.1       | Management Feature Set Overview                             | 72 |
| 8.1.1     | IPMI 2.0 Features Overview                                  | 72 |
| 8.1.2     | Non-IPMI Features Overview                                  | 73 |
| 8.2       | Platform Management Features and Functions                  | 74 |
| 8.2.1     | Power Subsystem                                             | 74 |
| 8.2.2     | Advanced Configuration and Power Interface (ACPI)           | 74 |
| 8.2.3     | Watchdog Timer                                              | 75 |
| 8.2.4     | System Event Log (SEL)                                      | 75 |
| 8.3       | Sensor Monitoring                                           | 76 |
| 8.3.1     | Sensor Re-arm Behavior                                      | 76 |
| 8.3.2     | Thermal Monitoring                                          | 76 |
| 8.4       | Standard Fan Management                                     | 77 |
| 8.4.1     | Hot-Swap Fans                                               | 77 |
| 8.4.2     | Fan Domains                                                 | 78 |
| 8.4.3     | Thermal and Acoustic Management                             | 78 |

| 8.4.4       | Thermal Sensor Input to Fan Speed Control                 | 78  |
|-------------|-----------------------------------------------------------|-----|
| 8.5         | Memory Thermal Management                                 | 79  |
| 8.6         | Power Management Bus (PMBus*)                             | 80  |
| 8.6.1       | Component Fault LED Control                               | 80  |
| 9. Standa   | rd and Advanced Server Management Features                | 82  |
| 9.1         | Dedicated Management Port                                 | 83  |
| 9.2         | Embedded Web Server                                       | 84  |
| 9.3         | Advanced Management Feature Support (Intel® RMM4 Lite)    | 85  |
| 9.3.1       | Keyboard, Video, and Mouse (KVM) Redirection              | 85  |
| 9.3.2       | Media Redirection                                         | 86  |
| 9.3.3       | Remote Console                                            | 87  |
| 9.3.4       | Performance                                               | 88  |
| 10. Onboai  | rd Connector/Header Overview                              | 89  |
| 10.1        | Power Connectors                                          | 89  |
| 10.1.1      | Main Power                                                | 89  |
| 10.1.2      | CPU Power Connectors                                      | 89  |
| 10.1.3      | Supplemental 12-V Power-In Connector                      | 90  |
| 10.2        | Front Panel Headers and Connectors                        | 90  |
| 10.2.1      | Front Panel Header                                        | 90  |
| 10.2.2      | Front Panel USB Connector                                 | 91  |
| 10.3        | Onboard Storage Connectors                                | 91  |
| 10.3.1      | SATA 6 Gbps Connectors                                    | 91  |
| 10.3.2      | M.2 Connectors                                            | 93  |
| 10.4        | Fan Connectors                                            | 94  |
| 10.4.1      | System Fan Connectors                                     | 94  |
| 10.4.2      | CPU Fan Connectors                                        | 94  |
| 10.5        | Other Headers and Connectors                              | 94  |
| 10.5.1      | HSBP Inter-Integrated Circuit (I <sup>2</sup> C) Headers  | 95  |
| 10.5.2      | Serial Port Connector                                     | 95  |
| 10.5.3      | PMBUS Connector                                           | 95  |
| 10.5.4      | Chassis Intrusion Header                                  | 95  |
| 11. Reset a | nd Recovery Jumpers                                       | 96  |
| 11.1        | BIOS Default Jumper Block                                 | 97  |
| 11.2        | Password Clear Jumper Block                               | 97  |
| 11.3        | Management Engine (ME) Firmware Force Update Jumper Block | 98  |
| 11.4        | BMC Force Update Jumper Block                             | 98  |
| 11.5        | BIOS Recovery Jumper Block                                | 99  |
| 12. Light G | uided Diagnostics                                         | 101 |
| 12.1        | DIMM Fault LEDs                                           | 101 |
| 12.2        | System LEDs                                               | 102 |
| 12.2.1      | System ID LED                                             | 102 |
| 12.2.2      | System Status LED                                         | 102 |

# Intel® Server Board S2600ST Product Family Technical Product Specification

| 12.3      | Post Code Diagnostic LEDs                             | 103 |
|-----------|-------------------------------------------------------|-----|
| 12.4      | CPU Fault LEDs                                        | 104 |
| 12.5      | BMC Boot/Reset Status LED Indicators                  | 104 |
| 13. Desig | gn and Environmental Specifications                   | 105 |
| 13.1      | Intel® Server Board S2600ST Design Specifications     | 105 |
| Appendi   | x A. Integration and Usage Tips                       | 106 |
| Appendi   | x B. POST Code Diagnostic LED Decoder                 | 107 |
| B.1.      | Early POST Memory Initialization MRC Diagnostic Codes | 108 |
| B.2.      | BIOS POST Progress Codes                              |     |
| Appendi   | x C. POST Code Errors                                 | 116 |
| C.1.      | POST Error Beep Codes                                 | 122 |
| Appendi   | x D. Statement of Volatility                          | 124 |
| Appendi   | x E. Supported Intel Server Chassis                   | 126 |
| E.1.      | Hot-Swap Backplane (Optional)                         | 129 |
| E.2.      | System Level Environmental Limits                     | 130 |
| E.3.      | Thermal Configuration Tables                          | 131 |
| E.4.      | System volumetric airflow                             | 147 |
| E.5.      | Product Regulatory Informationx F. Glossary           | 149 |
| Appendi   | x F. Glossary                                         | 154 |

# **List of Figures**

| Figure 1. Intel® Server Board S2600STB(R)                                                     | 13 |
|-----------------------------------------------------------------------------------------------|----|
| Figure 2. Server board component / feature identification                                     | 15 |
| Figure 3. Intel® Server Board S2600ST product family external I/O connector layout            | 16 |
| Figure 4. Intel® Light Guided Diagnostics - DIMM fault LEDs                                   | 16 |
| Figure 5. Intel® Light Guided Diagnostics – LED identification                                | 17 |
| Figure 6. Jumper block identification                                                         | 18 |
| Figure 7. Primary side keep out zone and component height restrictions                        | 19 |
| Figure 8. Secondary side keep out zone                                                        | 20 |
| Figure 9. Mounting holes                                                                      | 21 |
| Figure 10. Mounting holes continued                                                           | 22 |
| Figure 11. Major components and connectors (1 of 3)                                           | 23 |
| Figure 12. Major components and connectors (2 of 3)                                           | 24 |
| Figure 13. Major components and connectors (3 of 3)                                           | 25 |
| Figure 14. Intel® Server Board S2600ST product family block diagram                           | 26 |
| Figure 15. Intel® Server S2600ST product family sensor positions                              | 30 |
| Figure 16. Processor socket assembly                                                          |    |
| Figure 17. Processor socket assembly and protective dust cover                                | 32 |
| Figure 18. Processor heat sink module (PHM) components and processor socket reference diagram | 33 |
| Figure 19. Processor heat sink module (PHM) sub-assembly                                      |    |
| Figure 20. Fully assembled processor heat sink module (PHM)                                   |    |
| Figure 21. Intel® Xeon® Processor Scalable Identification                                     | 35 |
| Figure 22. Intel® Speed Select Technology comparison                                          | 39 |
| Figure 23. Two systems connected through PCIe* Non-Transparent Bridge (NTB)                   |    |
| Figure 24. Memory subsystem architecture                                                      |    |
| Figure 25. Intel® Server Board S2600ST product family memory slot layout                      |    |
| Figure 26. Optional Intel® QuickAssist Technology bridge cable installed                      | 53 |
| Figure 27. Intel® QuickAssist Technology bridge cable – iPC AXXSTCBLQAT                       | 53 |
| Figure 28. PCIe* slots                                                                        |    |
| Figure 29. M.2 connectors                                                                     |    |
| Figure 30. Onboard OCuLink connectors                                                         |    |
| Figure 31. Intel® Volume Management Device (Intel® VMD) for NVMe* SSDs                        |    |
| Figure 32. VMD support disabled in BIOS setup                                                 |    |
| Figure 33. VMD support enabled in BIOS setup                                                  |    |
| Figure 34. Intel® VROC basic architecture overview                                            |    |
| Figure 35. Intel® VROC upgrade key                                                            |    |
| Figure 36. SATA RAID 5 upgrade key                                                            |    |
| Figure 37. Network interface connectors                                                       |    |
| Figure 38. External RJ45 network interface controller (NIC) port LED definition               |    |
| Figure 39. SFP+ LAN Riser Option                                                              |    |
| Figure 40. SFP+ LAN Riser Option Support                                                      | 66 |

# Intel® Server Board S2600ST Product Family Technical Product Specification

| Figure 41. BIOS setup security options                                     | 67  |
|----------------------------------------------------------------------------|-----|
| Figure 42. Onboard TPM Connector                                           | 69  |
| Figure 43. High-level fan speed control process                            | 79  |
| Figure 44. Intel® RMM4 Lite placement                                      | 83  |
| Figure 45. Dedicated Management Port                                       |     |
| Figure 46. Jumper block locations and pins                                 | 96  |
| Figure 47. DIMM fault LEDs                                                 | 101 |
| Figure 48. System status LED and ID LED identification                     | 102 |
| Figure 49. POST diagnostic LED location and definition                     | 107 |
| Figure 50. Intel® Server Chassis P4304XXMFEN2 feature overview             | 126 |
| Figure 51. Intel® Server Chassis P4304XXMUXX feature overview              | 127 |
| Figure 52. Chassis-only building block (no front drive bay configuration)  | 127 |
| Figure 53. Intel® Server Chassis P4304XXMFEN2/P4304XXMUXX front panelpanel |     |
| Figure 54. P4304XXMFEN2 back panel                                         | 128 |
| Figure 55. Intel® Server Chassis P4304XXMUXX back panel                    | 128 |
| Figure 56. Drive tray LED identification                                   |     |
| Figure 57. 2.5" and 3.5" storage configurations                            | 147 |
| Figure 58. 3.5" and 2.5" Performance configurations                        | 148 |

# **List of Tables**

| Table 1. Reference Documents                                                                                           | 11 |
|------------------------------------------------------------------------------------------------------------------------|----|
| Table 2. Intel® Server Board S2600ST product family common feature set                                                 | 14 |
| Table 3. POST hot keys                                                                                                 | 27 |
| Table 4. S2600ST Product Family Sensor List                                                                            | 31 |
| Table 5. 1 <sup>st</sup> Gen Intel® Xeon® Processor Scalable Family Feature Comparison                                 | 35 |
| Table 6. 2 <sup>nd</sup> Gen Intel® Xeon® Processor Scalable Family Feature Comparison                                 | 36 |
| Table 7. Mixed processor configurations error summary                                                                  | 41 |
| Table 8. CPU – PCIe* port routing                                                                                      | 43 |
| Table 9. 1 <sup>st</sup> Gen Intel® Xeon® Processor Scalable Family Traditional DDR4 SDRAM DIMM Support<br>Guidelines  | 45 |
| Table 10. 2 <sup>nd</sup> Gen Intel® Xeon® Processor Scalable Family Traditional DDR4 SDRAM DIMM Support<br>Guidelines | 46 |
| Table 11. Maximum Supported Traditional SDRAM DIMM Speeds by SKU Level in MT/s (Mega<br>Transfers/second)              | 46 |
| Table 12. DDR4 DIMM Attributes Table for "Identical" and "Like" DIMMs                                                  | 48 |
| Table 13. Memory RAS Features                                                                                          | 50 |
| Table 14. Intel® VROC (VMD NVMe RAID) upgrade key options                                                              | 60 |
| Table 15. SATA and sSATA Controller Feature Support                                                                    | 60 |
| Table 16. SATA and sSATA controller BIOS utility setup options                                                         | 61 |
| Table 17. Onboard Network interface controller (NIC) LED Definition                                                    | 65 |
| Table 18. SFP+ LAN Riser LED Definition                                                                                | 66 |
| Table 19. BIOS security configuration TPM states                                                                       | 70 |
| Table 20. BIOS security configuration TPM administrative controls                                                      | 71 |
| Table 21. Power control sources                                                                                        | 74 |
| Table 22. ACPI power states                                                                                            | 74 |
| Table 23. Component fault LEDs                                                                                         | 81 |
| Table 24. Intel® Remote Management Module 4 (Intel® RMM4) options                                                      | 82 |
| Table 25. Standard and advanced server management features                                                             | 82 |
| Table 26. Main Power Connector Pin-out ("MAIN_PWR_CONN")                                                               | 89 |
| Table 27. CPU1 Power Connector Pin-out ("CPU_1_PWR")                                                                   | 89 |
| Table 28. CPU2 Power Connector Pin-out ("CPU_2_PWR")                                                                   | 90 |
| Table 29. Auxiliary Power-in Connector Pin-out ("AUX_PWR_IN")                                                          | 90 |
| Table 30. Front Panel Header Pin-out                                                                                   | 90 |
| Table 31. Front Panel USB 3.0 Connector Pin-out                                                                        | 91 |
| Table 32. SATA 6 Gbps Connector Pin-out                                                                                | 91 |
| Table 33. Mini-SAS HD Connectors for SATA 6 Gbps Pin-out                                                               | 92 |
| Table 34. M.2 Connector Pin-outs (for SATA & PCIe* modules)                                                            | 93 |
| Table 35. 6-Pin System Fan Connector Pin-out                                                                           | 94 |
| Table 36. 4-pin System Fan Connector Pin-out                                                                           | 94 |
| Table 37. CPU Fan Connector Pin-out                                                                                    | 94 |

# Intel® Server Board S2600ST Product Family Technical Product Specification

| Table 38. I <sup>2</sup> C Header B Pin-out ("HSBP_I2C_B")                                                | 95  |
|-----------------------------------------------------------------------------------------------------------|-----|
| Table 39. Serial Port A Connector Pin-out                                                                 | 95  |
| Table 40. PMBUS Connector Pin-out                                                                         | 95  |
| Table 41. Chassis Intrusion Header Pin-out                                                                | 95  |
| Table 42. System status LED state detail                                                                  | 103 |
| Table 43. BMC Boot/Reset Status LED Indicators                                                            | 104 |
| Table 44. Server Board Environmental Limits                                                               | 105 |
| Table 45. POST progress code LED example                                                                  | 107 |
| Table 46. MRC progress codes                                                                              | 108 |
| Table 47. MRC Fatal Error Codes                                                                           | 109 |
| Table 48. POST progress codes                                                                             | 110 |
| Table 49. POST error codes and messages                                                                   | 117 |
| Table 50. POST error beep codes                                                                           | 122 |
| Table 51. Integrated BMC beep codes                                                                       | 123 |
| Table 52. Volatile and non-volatile components on the Intel $^{ m e}$ Server Board S2600ST product family | 124 |
| Table 53. Volatile and non-volatile components on the LAN riser                                           | 124 |
| Table 54. Drive status LED states                                                                         | 129 |
| Table 55. Drive activity LED states                                                                       | 129 |
| Table 56. PCIe* SSD drive status LED states                                                               | 129 |
| Table 57. Environmental Limits                                                                            | 130 |
| Table 58. System in "Normal" Operating Mode for Systems with Fan Redundancy                               | 132 |
| Table 59. System in "Fan Fail" Operating Mode for Systems with Fan Redundancy                             | 138 |
| Table 60. System in "Normal" Operating Mode for Systems without Fan Redundancy                            | 143 |
| Table 61. System in "Throttling" Operating Mode for Systems with Fan Redundancy                           | 146 |
| Table 62 Airflow by PCIe slot with BIOS system acoustic configuration (in LFM)                            | 147 |
| Table 63 Airflow by PCIe slot with BIOS system performance configuration (in LFM)                         | 147 |
| Table 64 Airflow by PCIe slot with BIOS system acoustic configuration (in LFM)                            | 148 |
| Table 65 Airflow by PCIe slot with BIOS system performance configuration (in LFM)                         | 148 |

# 1. Introduction

This Technical Product Specification (TPS) provides a high-level overview of the features, functions, and architecture of the Intel® Server Board S2600ST product family.

Throughout this document, the Intel® Server Board S2600STB(R) and S2600STQ(R) will be collectively referred to as the Intel® Server Board S2600ST.

For more in-depth technical information, refer to the documents listed in Table 1.

**Note**: Some of the documents listed in the following table are classified as "Intel Confidential". These documents are made available under a Non-Disclosure Agreement (NDA) with Intel and must be ordered through your local Intel representative.

**Table 1. Reference Documents** 

| Document Title                                                                                                                                                            | Document Classification |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Intel® Server System BMC Firmware External Product Specification for Intel® Xeon® processor Scalable family                                                               | Intel Confidential      |
| Intel® Server System BIOS External Product Specification for Intel® Xeon® processor Scalable family                                                                       | Intel Confidential      |
| Intel® C620 Series Chipset Platform Controller Hub External Design Specification                                                                                          | Intel Confidential      |
| Intel® Xeon® processor Scalable Family Server Processor External Design Specification Volume 1,<br>Volume 2 Part A, Volume 2 Part B, Volume 3                             | Intel Confidential      |
| Advanced Configuration and Power Interface Specification. Revision 3.0 (2004) http://www.acpi.info/                                                                       | Public                  |
| Intelligent Platform Management Interface Specification, v2.0 (2004)                                                                                                      | Public                  |
| Intelligent Platform Management Bus Communications Protocol Specification, v1.0 (1998)                                                                                    | Public                  |
| Platform Support for Serial-over-LAN (SOL), TMode, and Terminal Mode External Architecture Specification, Version 1.1 (2002)                                              | Public                  |
| Intel® Remote Management Module User Guide                                                                                                                                | Public                  |
| Alert Standard Format (ASF) Specification, Version 2.0 (2003), ©2000-2003, Distributed Management Task Force, Inc., <a href="http://www.dmtf.org">http://www.dmtf.org</a> | Public                  |
| SmaRT & CLST Architecture on Intel Systems and Power Supplies Specification                                                                                               | Public                  |
| Intel® Remote Management Module 4 Technical Product Specification                                                                                                         | Public                  |
| Intel® Remote Management Module 4 and Integrated BMC Web Console User Guide                                                                                               | Public                  |

Additional product information can be found at the following Intel website:

https://www.intel.com/content/www/us/en/support/products/93168/server-products/server-boards/intel-server-board-s2600st-family.html

#### 1.1 Product Errata

The product that is currently shipping may have features or functionality that deviate from published specifications. These deviations are generally discovered after the product has gone into formal production. Intel terms these deviations as product errata. Known product errata are published in the Specification Update for the given product family that can be downloaded from <a href="http://www.intel.com/support">http://www.intel.com/support</a>.

#### 1.2 Chapter Outline

This document is divided into the following chapters:

- Chapter 1 Introduction
- Chapter 2 Server Board Overview
- Chapter 3 Processor Support
- Chapter 4 PCI Express\* (PCIe\*) Support
- Chapter 5 Memory Support
- Chapter 6 System I/O
- Chapter 7 System Security
- Chapter 8 Platform Management
- Chapter 9 Standard and Advanced Server Management Features
- Chapter 10 Onboard Connector and Header Overview
- Chapter 11 Reset and Recovery Jumpers
- Chapter 12 Light-Guided Diagnostics
- Chapter 13 Design and Environmental Specificaitons
- Appendix A Integration and Usage Tips
- Appendix B Post Code Diagnostic LED Decoder
- Appendix C Post Code Errors
- Appendix D Statement of Volatility
- Appendix E Supported Intel Server Chassis
- Appendix F Glossary

#### 1.3 Intel® Server Board Use Disclaimer

Intel® Server Boards support add-in peripherals and contain a number of high-density very large-scale integration (VLSI) and power delivery components that need adequate airflow to cool. Intel ensures through its own chassis development and testing that when Intel server building blocks are used together, the fully integrated system will meet the intended thermal requirements of these components. It is the responsibility of the system integrator who chooses not to use Intel developed server building blocks to consult vendor datasheets and operating parameters to determine the amount of airflow required for their specific application and environmental conditions. Intel Corporation cannot be held responsible if components fail or the server board does not operate correctly when used outside any of its published operating or non-operating limits.

# 2. Server Board Family Overview

The Intel® Server Board S2600ST product family is a monolithic printed circuit board assembly with features that are intended for flexibility in scalable performance environments. This server board is designed to support the 1<sup>st</sup> or 2<sup>nd</sup> Gen Intel® Xeon® processor Scalable family. Previous generation Intel® Xeon® processors are not supported.

**Note:** In 2019, Intel released the 2<sup>nd</sup> Gen Intel® Xeon® processor Scalable family. To enable support for the new processor family, Intel created an updated system software stack, which includes the System BIOS and other system firmware.

In support of the 2<sup>nd</sup> Gen Intel® Xeon® processor Scalable family, Intel began pre-loading the supporting system software stack onto all server boards and systems that define the Intel® Server S2600ST product family. All server boards with a pre-loaded system software stack compatible with the 2<sup>nd</sup> Gen Intel® Xeon® processor Scalable family can be identified by a product order code ending in an 'R'.

Existing server boards and systems that define the Intel® Server S2600ST product family with product codes that do NOT end in an 'R' can be made to support the 2<sup>nd</sup> Gen Intel® Xeon® processor Scalable family by updating the system software stack to one that supports this processor family. A System Update Package (SUP) with the latest system software stack can be downloaded from the following Intel website:

https://www.intel.com/content/www/us/en/support/products/93168/server-products/server-boards/intel-server-board-s2600st-family.html

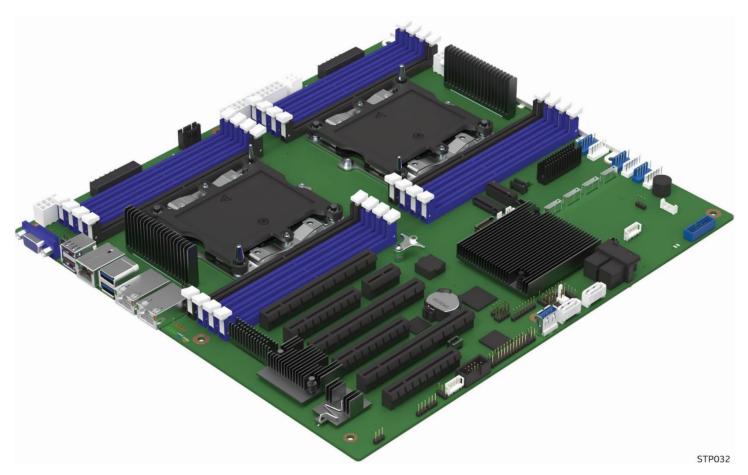



Figure 1. Intel® Server Board S2600STB(R)

# 2.1 Server Board Feature Set

Table 2. Intel® Server Board S2600ST product family common feature set

| Intel® Server Board Feature   | iPC – S2600STB(R)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iPC -S2600STQ(R)                                                                                                                             |  |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
|                               | <ul> <li>2 – LGA3647-0 (Socket P) processor socket</li> <li>Supports (1) or (2) processors from the 1<sup>st</sup> family (Platinum, Gold, Silver, and Bronze).</li> </ul>                                                                                                                                                                                                                                                                                                    | ts<br>and 2 <sup>nd</sup> Gen Intel® Xeon® processor Scalable                                                                                |  |
| Processor                     | Note: Previous generation Intel® Xeon® processors are not supported.                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                              |  |
|                               | Maximum supported Thermal Design Power                                                                                                                                                                                                                                                                                                                                                                                                                                        | er (TDP) of up to 205 W (board only)                                                                                                         |  |
|                               | <b>Note:</b> Intel® Server Systems based on this server board family may support a lower maximum Thermal Design Power (TDP).                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                              |  |
| Memory                        | <ul> <li>16 DIMM Slots (8 per CPU)</li> <li>DDR4 RDIMM/LRDIMM, Up to 2933 MT/s, 1.2V</li> <li>Note: The maximum memory speed supported is dependent on the installed processor SKU and population configuration.</li> </ul>                                                                                                                                                                                                                                                   |                                                                                                                                              |  |
| Intel® C62x Series Chipset    | Intel® C624 Chipset                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Intel® C628 Chipset                                                                                                                          |  |
| Intel® QuickAssist Technology | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes                                                                                                                                          |  |
| Local Area Network (LAN)      | Dual port RJ45 10 GbE on board<br>Optional riser aligned to Slot 5 with two 10 Gb                                                                                                                                                                                                                                                                                                                                                                                             | SFP+ connectors                                                                                                                              |  |
| Onboard PCIe* NVMe*           | <ul> <li>(4) – OCuLink connectors</li> <li>Intel® VMD support</li> <li>Intel® VROC (VMD NVMe RAID) support<br/>(accessory option)</li> </ul>                                                                                                                                                                                                                                                                                                                                  | <ul> <li>(2) – OCuLink connectors</li> <li>Intel® VMD support</li> <li>Intel® VROC (VMD NVMe RAID) support<br/>(accessory option)</li> </ul> |  |
| Onboard SATA                  | <ul> <li>12 x SATA 6 Gbps ports (6 Gb/s, 3 Gb/s and 1.5 Gb/s transfer rates are supported)</li> <li>(2) – single port 7-pin SATA connectors</li> <li>(2) – M.2 connectors – SATA / PCIe*</li> <li>(2) – 4-port mini- SAS high density (HD) (SFF-8643) connectors</li> <li>Embedded SATA software RAID</li> <li>Intel® VROC (SATA RAID) 6.0</li> <li>Intel® Embedded Server RAID Technology 2 1.60 with optional RAID 5 key support (see section 6.3.6 for details)</li> </ul> |                                                                                                                                              |  |
| PCIe* Add-in Card Slots       | <ul> <li>Slot 1: PCIe* 3.0 x8 slot (x8 electrical) handled by CPU2</li> <li>Slot 2: PCIe* 3.0 x16 slot (x16 electrical) handled by CPU2 (riser capable)</li> <li>Slot 3: PCIe* 3.0 x8 slot (x8 electrical) handled by CPU2</li> <li>Slot 4: PCIe* 3.0 x16 slot (x16 electrical) handled by CPU2</li> <li>Slot 5: PCIe* 3.0 x8 slot (x8 electrical) handled by CPU1</li> <li>Slot 6: PCIe* 3.0 x16 slot (x16 electrical) handled by CPU1 (riser capable)</li> </ul>            |                                                                                                                                              |  |
| Video                         | <ul> <li>Integrated 2D video controller</li> <li>16 MB of DDR4 video memory</li> <li>(1) – DB-15 external connector</li> </ul>                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              |  |
| USB                           | <ul> <li>(2) – external USB 2.0 ports</li> <li>(2) – external USB 3.0 ports</li> <li>(1) – internal USB 3.0 type A connector</li> <li>(1) – 2x10 pin connector providing front panel support for (2) USB 2.0 / 3.0 ports</li> </ul>                                                                                                                                                                                                                                           |                                                                                                                                              |  |
| Serial Port                   | (1) – internal DH-10 serial port A connector                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                              |  |
| Server Management             | <ul> <li>Integrated baseboard management controller, IPMI 2.0 compliant</li> <li>Support for Intel® Server Management software</li> <li>Dedicated onboard RJ45 management port</li> <li>Advanced server management via Intel® RMM4 Lite (accessory option)</li> </ul>                                                                                                                                                                                                         |                                                                                                                                              |  |
| Security                      | Trusted platform module 2.0 (Rest of World) – iPC- <b>AXXTPMENC8</b> (accessory option) Trusted platform module 2.0 (China Version) – iPC- <b>AXXTPME8</b> (accessory option)                                                                                                                                                                                                                                                                                                 |                                                                                                                                              |  |
| System Fan Support            | <ul> <li>(2) – 4-pin processor fan headers</li> <li>(6) – 6-pin front system fan headers</li> <li>(1) – 4-pin rear system fan header</li> </ul>                                                                                                                                                                                                                                                                                                                               |                                                                                                                                              |  |

# 2.2 Server Board Component / Feature Identification

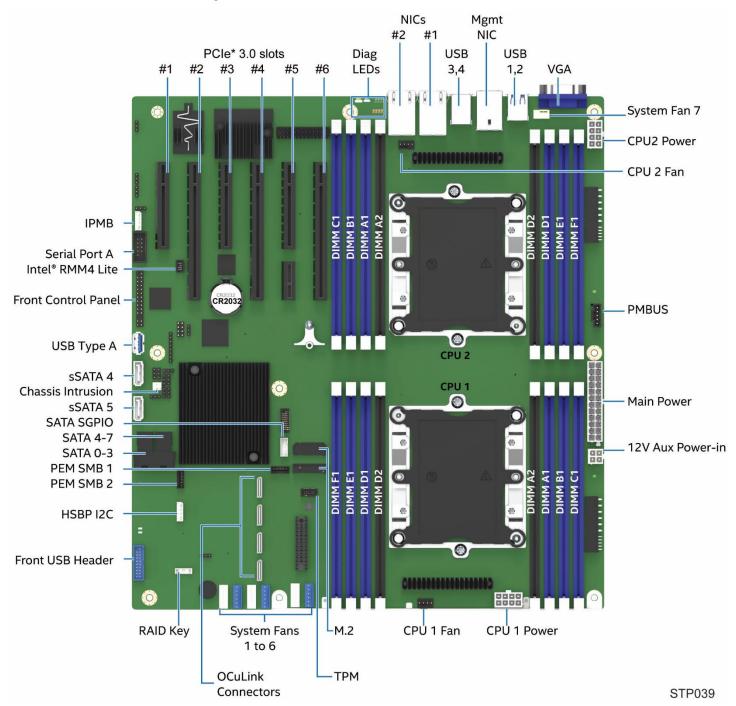



Figure 2. Server board component / feature identification

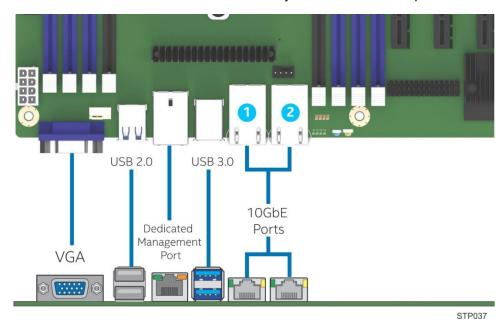



Figure 3. Intel® Server Board S2600ST product family external I/O connector layout

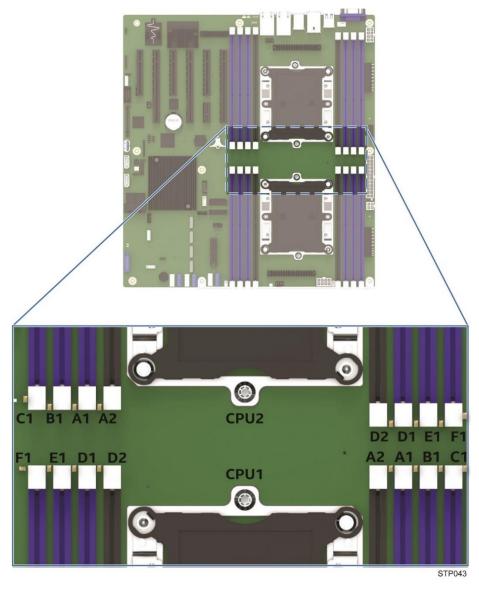



Figure 4. Intel® Light Guided Diagnostics - DIMM fault LEDs

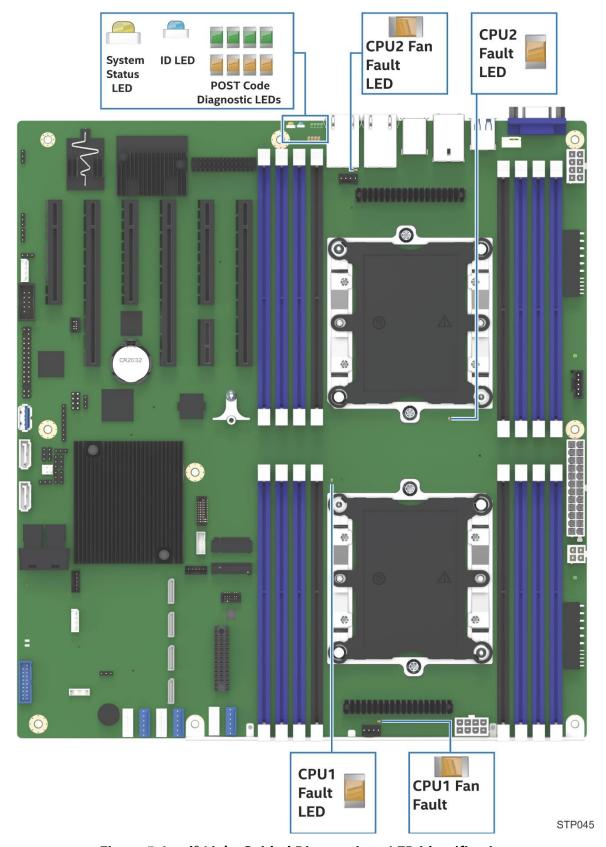



Figure 5. Intel® Light Guided Diagnostics – LED identification

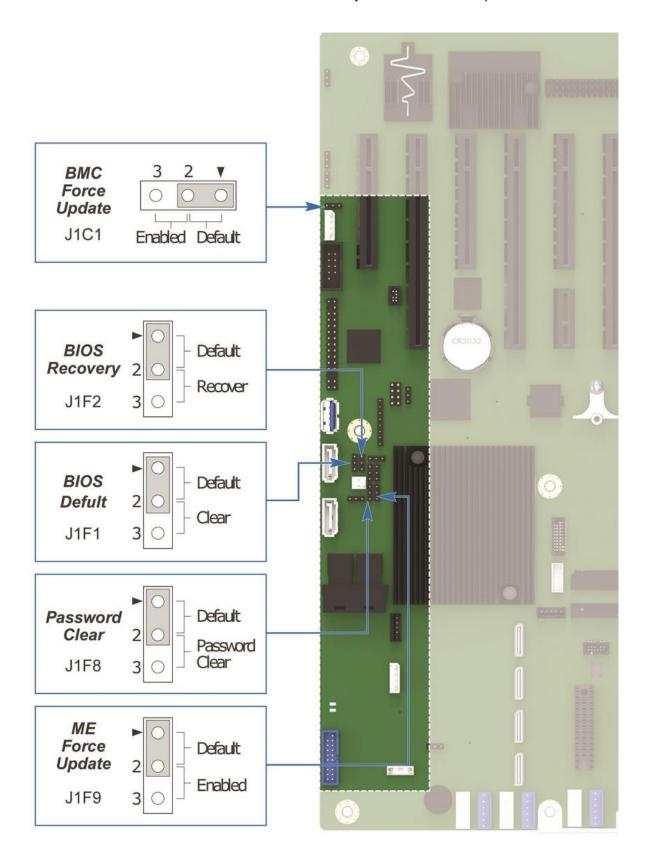



Figure 6. Jumper block identification

See Chapter 11 for additional details on reset and recovery jumpers.

# 2.3 Server Board Mechanical Drawings

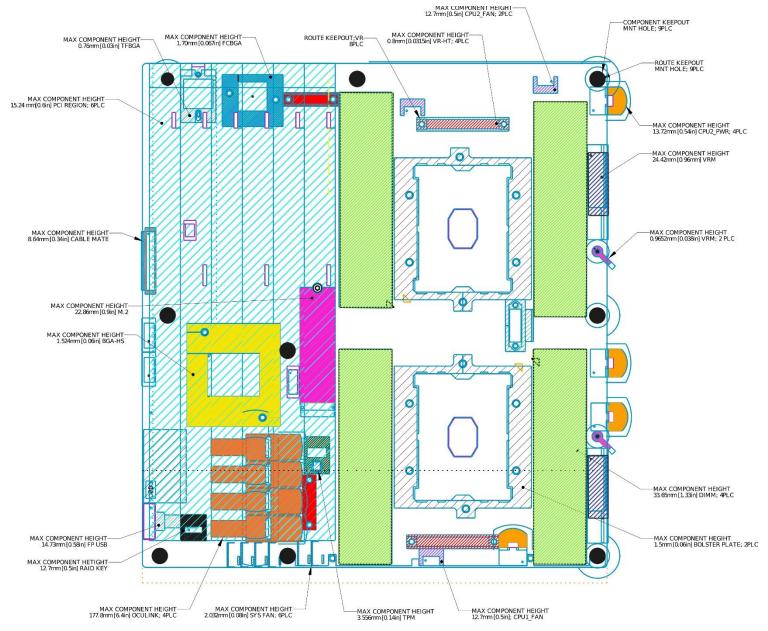



Figure 7. Primary side keep out zone and component height restrictions

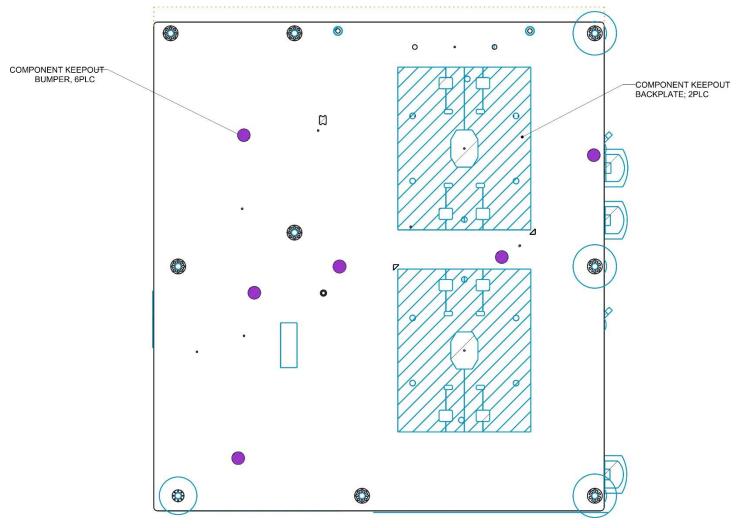



Figure 8. Secondary side keep out zone

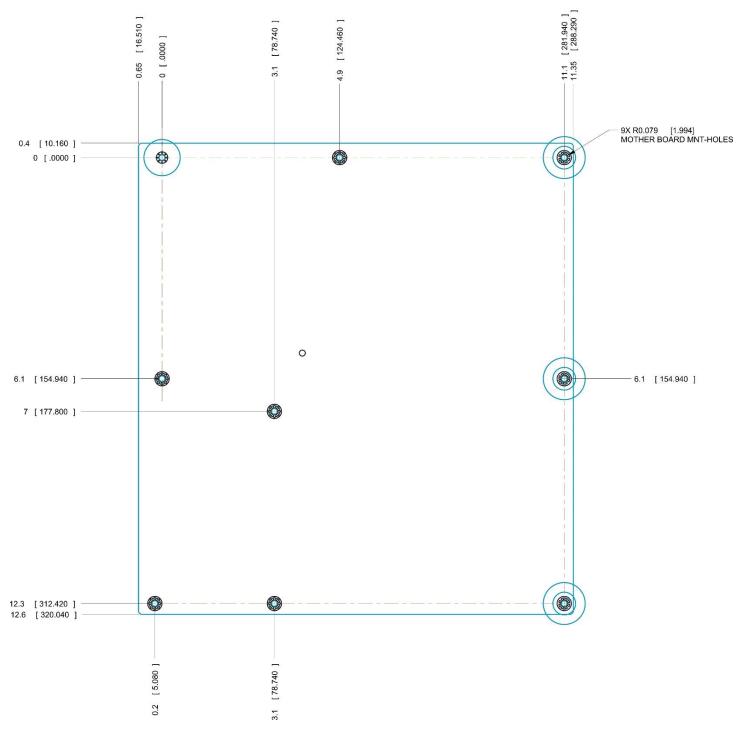



Figure 9. Mounting holes

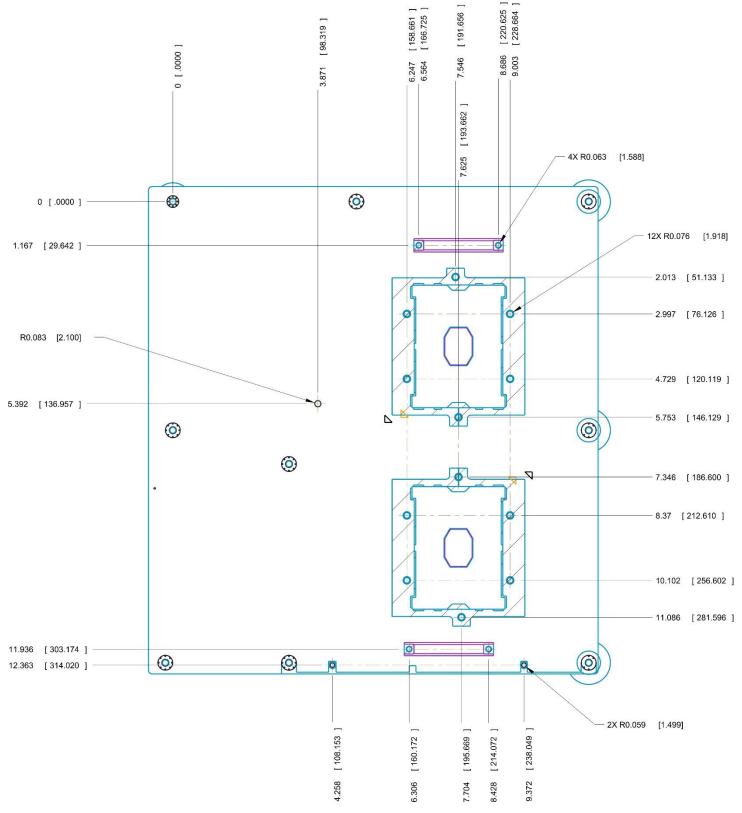



Figure 10. Mounting holes continued



Figure 11. Major components and connectors (1 of 3)

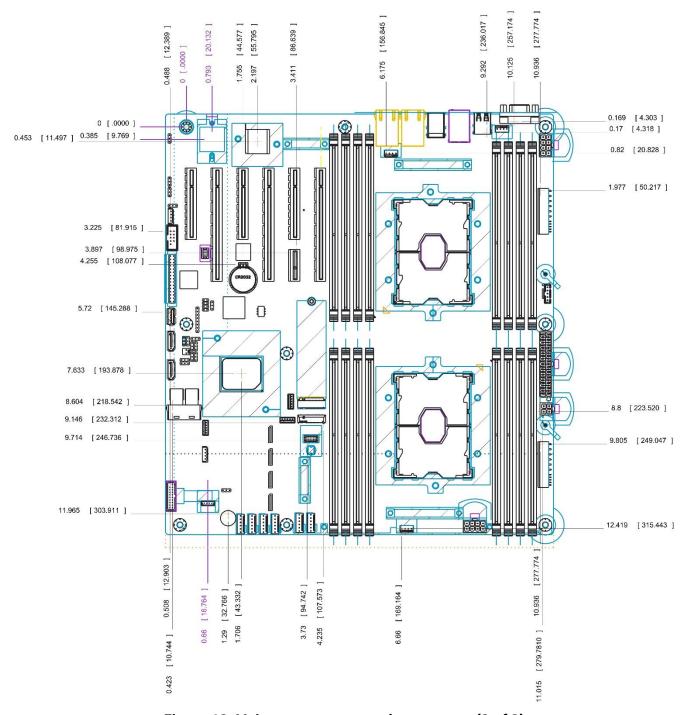



Figure 12. Major components and connectors (2 of 3)

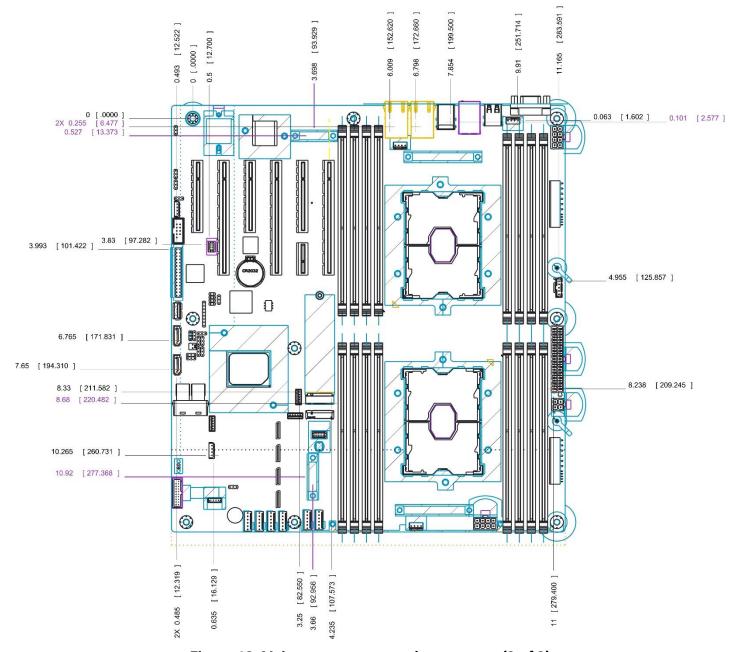



Figure 13. Major components and connectors (3 of 3)

#### 2.4 Product Architecture Overview

The architecture of the Intel® Server Board S2600ST product family is developed around the integrated features and functions of the Intel® Xeon® processor Scalable family, the Intel® C624 and C628 chipsets, and the Aspeed\* AST2500 Baseboard Management Controller (BMC).

The following diagram provides an overview of the server board architecture, showing the features and interconnects of each of the major subsystem components.

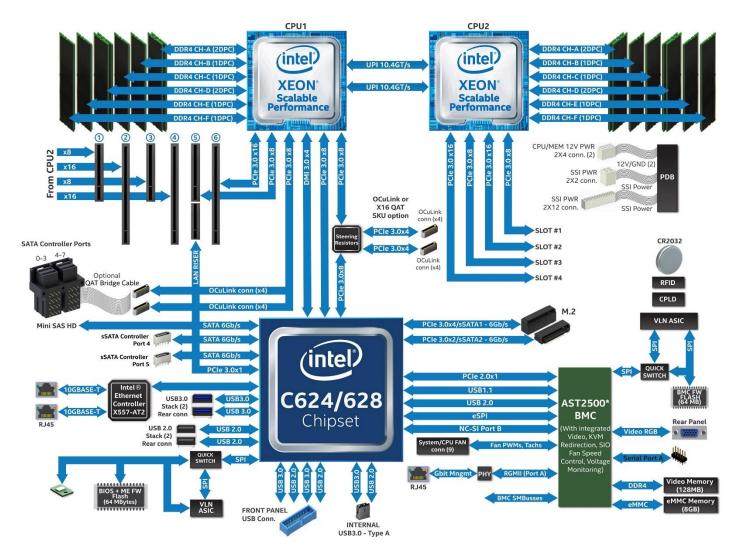



Figure 14. Intel® Server Board S2600ST product family block diagram

# 2.5 System Software Stack

System software is pre-programmed by Intel on the server board during the board assembly process, making the server board functional at first power on after system integration. However, to ensure the most reliable system operation, it is highly recommended to visit <a href="http://downloadcenter.intel.com">http://downloadcenter.intel.com</a> for the latest available system updates.

System updates can be performed in a number of operating environments, including the embedded Unified Extensible Firmware Interface (UEFI) shell using the UEFI only System Update Package (SUP), or under Intel supported operating systems using the Intel® One Boot Flash Update (Intel® OFU) utility.

As part of the initial system integration process, system integrators must program system configuration data onto the server board using the Field Replaceable Unit / Sensor Data Record (FRUSDR) utility to ensure the embedded platform management subsystem is able to provide the best performance and cooling for the final system configuration. The FRUSDR utility is included in the uEFI SUP and Intel OFU packages. Refer to the following Intel documents for more in-depth information about the system software stack and their functions:

- Intel® Server System BMC Firmware External Product Specification for Intel® Xeon® Processor Scalable Family Intel NDA Required
- Intel® Server System BIOS External Product Specification for Intel® Xeon® processor Scalable family –
   Intel NDA Required

#### 2.5.1 Hot Keys Supported During Power-On Self-Test (POST)

Certain hot keys are recognized during power-on self-test (POST). A hot key is a key or key combination that is recognized as an unprompted command input by the system operator. In most cases, hot keys are recognized even while other processing is in progress.

The Basic Input/Output System (BIOS) supported hot keys are only recognized by the BIOS during the system boot time POST process. BIOS supported hot keys are no longer recognized once the POST process has completed and the operating system boot process has begun.

Table 3 provides a list of BIOS supported hot keys.

| Hot Key         | Function                                     |
|-----------------|----------------------------------------------|
| <f2></f2>       | Enter the BIOS setup utility                 |
| <f6></f6>       | Pop-up BIOS boot menu                        |
| <f12></f12>     | Network boot                                 |
| <esc></esc>     | Switch from logo screen to diagnostic screen |
| <pause></pause> | Stop POST temporarily                        |

Table 3. POST hot keys

#### 2.5.1.1 POST Logo and Diagnostic Screens

With the BIOS Setup Utility set to Quiet Boot (default), the BIOS will display a splash screen to the display monitor during the POST process. Pressing the <ESC> key will close the splash screen and open a POST Diagnostic / Information screen in its place.

The factory default splash screen is that of an Intel Logo. A custom OEM splash screen can be installed to a designated flash memory location to over-ride the factory default.

If a splash screen is not present in the BIOS flash memory space, or if Quiet Boot is disabled in BIOS Setup, the POST diagnostic screen is displayed during POST with a summary of the system configuration information. The POST diagnostic screen is purely a text mode screen, as opposed to the graphics mode logo screen.

If console redirection is enabled in the BIOS setup utility, the quiet boot setting is disregarded and the text mode diagnostic screen is displayed unconditionally. This is due to the limitations of console redirection, which transfers data in a mode that is not graphics-compatible.

#### 2.5.1.2 BIOS Boot Pop-Up Menu

The BIOS Boot Specification (BBS) provides a boot pop-up menu that can be invoked by pressing the **<F6>** key during POST. The BBS pop-up menu displays all available boot devices. The boot order in the pop-up menu is not the same as the boot order in the BIOS setup utility. The pop-up menu simply lists all of the available devices from which the system can be booted and allows a manual selection of the desired boot device.

When an Administrator password is installed in the BIOS setup utility, the Administrator password is required to access the boot pop-up menu. If a User password is entered, the user is taken directly to the boot manager in the BIOS setup utility only allowing the system to boot in the order previously defined by the administrator.

#### 2.5.1.3 Entering BIOS Setup

To enter the BIOS setup utility using a keyboard (or emulated keyboard), press the **<F2>** function key during boot time when the OEM or Intel logo screen or the POST diagnostic screen is displayed.

The following instructional message is displayed on the diagnostic screen or under the quiet boot logo screen:

Press <F2> to enter setup, <F6> Boot Menu, <F12> Network Boot

**Note**: With a USB keyboard, it is important to wait until the BIOS discovers the keyboard and beeps; until the USB controller has been initialized and the keyboard activated, key presses are not read by the system.

When the BIOS setup utility is entered, the main screen is displayed initially. However, if a serious error occurs during POST, the system enters the BIOS setup utility and displays the error manager screen instead of the main screen.

Refer to the following Intel document for additional BIOS setup utility information:

Intel® Server System BIOS External Product Specification for Intel® Xeon® processor Scalable family –
 Intel NDA Required

#### 2.5.2 BIOS Update Capability

To bring BIOS fixes or new features into the system, it is necessary to replace the current installed BIOS image with an updated one. The BIOS image can be updated using a standalone IFLASH32 utility in the UEFI shell or using the OFU utility program under a supported operating system. Full BIOS update instructions are provided with update packages downloaded from the Intel website.

#### 2.5.3 BIOS Recovery

If a system is unable to boot successfully to an OS, hangs during POST, or even hangs and fails to start executing POST, it may be necessary to perform a BIOS recovery procedure to replace a defective copy of the primary BIOS

The BIOS provides three mechanisms to start the BIOS recovery process, which is called recovery mode:

- The recovery mode jumper causes the BIOS to boot in recovery mode. See Figure 6 for jumper location.
- At power on, if the BIOS boot block detects a partial BIOS update was performed, the BIOS automatically boots in recovery mode.
- The baseboard management controller (BMC) asserts the recovery mode general purpose input/output (GPIO) in case of partial BIOS update and FRB2 timeout.

The BIOS recovery takes place without any external media or mass storage device as it uses a backup BIOS image inside the BIOS flash in recovery mode.

**Note**: The recovery procedure is included here for general reference. However, if in conflict, the instructions in the BIOS release notes are the definitive version.

When the BIOS recovery jumper is set, the BIOS begins by logging a recovery start event to the System Event Log (SEL). It then loads and boots with a backup BIOS image residing in the BIOS flash device. This process takes place before any video or console is available. The system boots to the embedded UEFI shell, and a recovery complete event is logged to the SEL. From the UEFI shell, the BIOS can then be updated using a standard BIOS update procedure defined in update instructions provided with the system update package downloaded from the Intel website. Once the update has completed, switch the recovery jumper back to its default position and power cycle the system.

If the BIOS detects a partial BIOS update or the BMC asserts recovery mode GPIO, the BIOS boots in recovery mode. The difference is that the BIOS boots up to the error manager page in the BIOS setup utility. In the BIOS Setup utility, a boot device, shell or Linux for example, could be selected to perform the BIOS update procedure under shell or OS environment.

**Note**: Prior to performing a recovery boot, be sure to check the BIOS release notes and verify the recovery procedure shown in the release notes. This process needs to be followed step by step to ensure the stability of the system once it is completed.

#### 2.5.4 Field Replaceable Unit (FRU) and Sensor Data Record (SDR) Data

As part of the initial system integration process, the server board/system must have the proper Field Replaceable Unit (FRU) and Sensor Data Record (SDR) data loaded. This ensures that the embedded platform management system is able to monitor the appropriate sensor data and operate the system with best cooling and performance. The BMC supports automatic configuration of the manageability subsystem after changes have been made to the system's hardware configuration. Once the system integrator has performed an initial FRU/SDR package update, subsequent auto-configuration occurs without the need to perform additional SDR updates or provide other user input to the system when any of the following components are added or removed.

- Processors
- Intel Add-in cards / modules
- Power supplies
- Fans
- Fan options (for example, upgrade from non-redundant cooling to redundant cooling)
- Intel® Xeon Phi™ coprocessor cards
- Hot swap backplane
- Front panel

**Note**: The system may not operate with best performance or best/appropriate cooling if the proper FRU and SDR data is not installed. The system fans may operate at full speed 100% all the time if the FRUSDR utility is not run after the initial board integration and system configuration.

The FRU and SDR data can be updated using a standalone FRUSDR utility in the UEFI shell or using the OFU utility program under a supported operating system. Full FRU and SDR update instructions are provided with the appropriate system update package (SUP) or OFU utility which can be downloaded from the Intel website. The FRU and SDR files included in the SUP or OFU utility describe the sensors in the board, chassis and peripherals as shown in Figure 15 and Table 4.

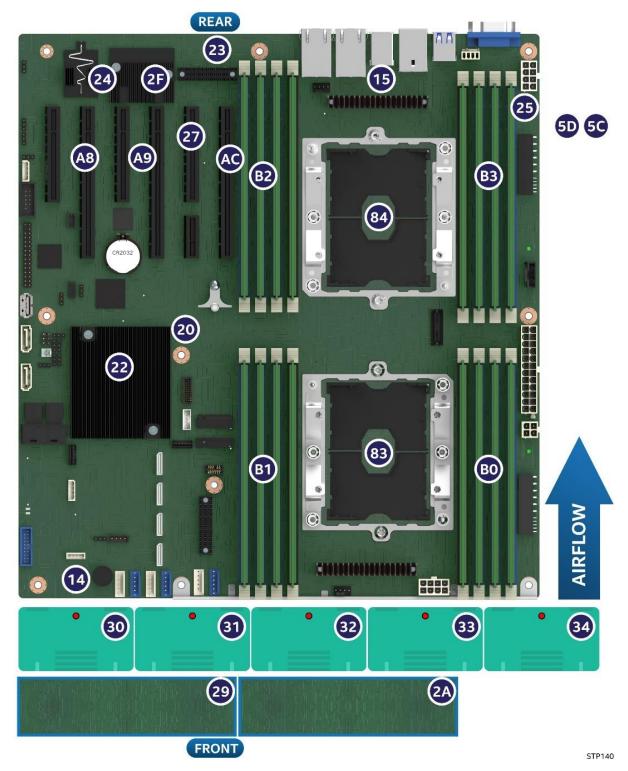



Figure 15. Intel® Server S2600ST product family sensor positions

Table 4. S2600ST Product Family Sensor List

| Sensor Number | Sensor Name      | Sensor Number | Sensor Name     |
|---------------|------------------|---------------|-----------------|
| 30h           | System Fan 1     | 22h           | SSB Temp        |
| 31h           | System Fan 2     | 2Fh           | LAN NIC Temp    |
| 32h           | System Fan 3     | 2Eh           | Exit Air Temp   |
| 33h           | System Fan 4     | 11h           | System Airflow  |
| 34h           | System Fan 5     | A8h           | MIC 1 Margin    |
| 83h           | P1 DTS Therm Mgn | A9h           | MIC 2 Margin    |
| 84h           | P2 DTS Therm Mgn | ACh           | MIC 3 Margin    |
| B0h           | DIMM Thrm Mrgn 1 | 27h           | LAN Riser Card  |
| B1h           | DIMM Thrm Mrgn 2 | 78h           | P1 Therm Ctrl % |
| B2h           | DIMM Thrm Mrgn 3 | 79h           | P2 Therm Ctrl % |
| B3h           | DIMM Thrm Mrgn 4 | 04h           | Physical Scrty  |
| C8h           | Agg Therm Mgn 1  | 54h           | PS1 Power In    |
| C8h           | Agg Thrm Mgn 1   | 58h           | PS1 Curr Out %  |
| 20h           | BB M.2 Temp      | 5Ch           | PS1 Temperature |
| 23h           | BB Mem VR Temp   | A0h           | PS1 Fan Fail 1  |
| 24h           | BB BMC Temp      | 55h           | PS2 Power In    |
| 25h           | BB Mem VRM Temp  | 59h           | PS2 Curr Out %  |
| 14h           | BB Ambient Temp  | 5Dh           | PS2 Temperature |
| 15h           | BB P2 VR Temp    | A4h           | PS2 Fan Fail 1  |
| 21h           | Front Panel Temp | A1h           | PS1 Fan Fail 2  |
| 29h           | HSBP 1 Temp      | A5h           | PS2 Fan Fail 2  |
| 2Ah           | HSBP 2 Temp      |               |                 |

# 3. Processor Support

The server board includes two Socket-P0 LGA3647-0 processor sockets compatible with the Intel® Xeon® processor Scalable family with a maximum Thermal Design Power (TDP) of 205 W. Visit <a href="http://ark.intel.com/">http://ark.intel.com/</a> for a complete list of supported processors.

**Note**: Previous generation Intel® Xeon® processors are not supported on the Intel® Server Boards described in this document.

#### 3.1 Processor Heat Sink Module (PHM) and Processor Socket Assembly

Each processor socket of the server board is pre-assembled and includes a back plate, LGA3647-0 processor socket, and a bolster plate assembly. The illustration in Figure 16 identifies each sub-assembly component.

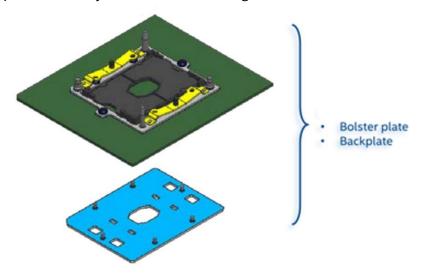



Figure 16. Processor socket assembly

Server boards with no processors installed have a plastic protective dust cover installed over each processor socket assembly. The protective covers must be carefully removed before processor installation, as shown in Figure 17.



Figure 17. Processor socket assembly and protective dust cover

This generation server board introduces the concept of the Processor Heat Sink Module (PHM) shown in Figure 18, Figure 19, and Figure 20.

Processor installation requires that the processor be attached to the processor heat sink prior to installation onto the server board.

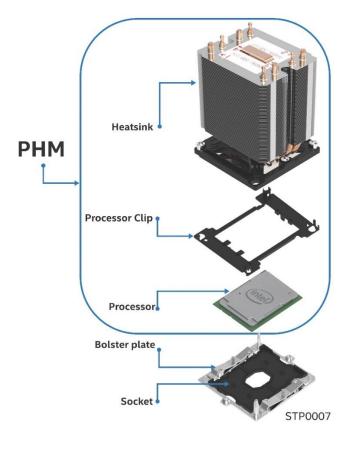



Figure 18. Processor heat sink module (PHM) components and processor socket reference diagram

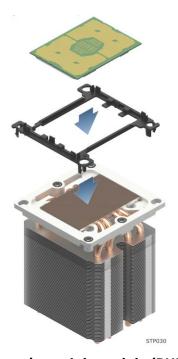



Figure 19. Processor heat sink module (PHM) sub-assembly

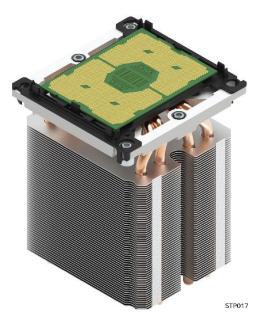



Figure 20. Fully assembled processor heat sink module (PHM)

#### 3.2 Processor Thermal Design Power (TDP) Support

To allow for optimal operation and provide for best long-term reliability of Intel processor-based systems, the processor must remain within the defined minimum and maximum case temperature (TCASE) specifications. Thermal solutions not designed to provide sufficient thermal capability may affect the long-term reliability of the processor and system. The server board described in this document is designed to support the Intel® Xeon® processor Scalable family TDP guidelines up to and including 205 W.

**Disclaimer Note**: Intel® Server Boards contain a number of high-density very large scale integration (VLSI) and power delivery components that need adequate airflow to cool. Intel ensures, through its own chassis development and testing, that when Intel server building blocks are used together, the fully integrated system meets the intended thermal requirements of these components. It is the responsibility of system integrators who choose not to use Intel developed server building blocks to consult vendor datasheets and operating parameters to determine the amount of airflow required for their specific applications and environmental conditions. Intel Corporation cannot be held responsible if components fail or the server board does not operate correctly when used outside any of its published operating or non-operating limits.

# 3.3 Intel® Xeon® Processor Scalable Family Overview

The Intel® Server Board S2600ST product family has support for the 1st or 2nd Gen Intel® Xeon® processor Scalable family, identified as illustrated below:

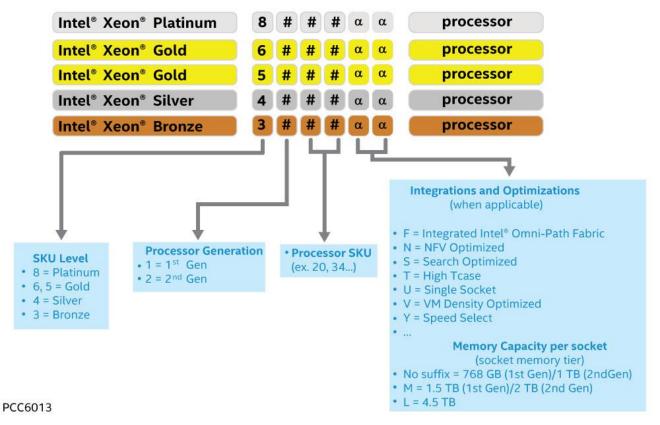



Figure 21. Intel® Xeon® Processor Scalable Identification

Table 5. 1st Gen Intel® Xeon® Processor Scalable Family Feature Comparison

| Feature                                 | Platinum 81xx                                       | Gold 61xx                                | Gold 51xx                    | Silver 41xx | Bronze 31xx |
|-----------------------------------------|-----------------------------------------------------|------------------------------------------|------------------------------|-------------|-------------|
| # of Intel® UPI Links                   | 3                                                   | 3                                        | 2                            | 2           | 2           |
| Intel UPI Speed                         | 10.4 GT/s                                           | 10.4 GT/s                                | 10.4 GT/s                    | 9.6 GT/s    | 9.6 GT/s    |
| Supported Topologies                    | 2S-2UPI<br>2S-3UPI<br>4S-2UPI<br>4S-3UPI<br>8S-3UPI | 2S-2UPI<br>2S-3UPI<br>4S-2UPI<br>4S-3UPI | 2S-2UPI<br>4S-2UPI           | 2S-2UPI     | 2S-2UPI     |
| Node Controller Support                 | Yes                                                 | Yes                                      | No                           | No          | No          |
| # of Memory Channels                    | 6                                                   | 6                                        | 6                            | 6           | 6           |
| Max DDR4 Speed                          | 2666                                                | 2666                                     | 2400                         | 2400        | 2133        |
| Memory Capacity                         | 768GB<br>1.5TB (select SKUs)                        | 768GB<br>1.5TB (select SKUs)             | 768GB<br>1.5TB (select SKUs) | 768 GB      | 768 GB      |
| RAS Capability                          | Advanced                                            | Advanced                                 | Advanced                     | Standard    | Standard    |
| Intel® Turbo Boost<br>Technology        | Yes                                                 | Yes                                      | Yes                          | Yes         | No          |
| Intel® HT Technology                    | Yes                                                 | Yes                                      | Yes                          | Yes         | No          |
| Intel® AVX-512 ISA Support              | Yes                                                 | Yes                                      | Yes                          | Yes         | Yes         |
| Intel® AVX-512 - # of 512b<br>FMA Units | 2                                                   | 2                                        | 1                            | 1           | 1           |
| # of PCIe* Lanes                        | 48                                                  | 48                                       | 48                           | 48          | 48          |

Table 6. 2nd Gen Intel® Xeon® Processor Scalable Family Feature Comparison

| Feature                                 | 82xx<br>Platinum                                    | 62xx<br>Gold                              | 52xx<br>Gold                              | 42xx<br>Silver | 32xx<br>Bronze |
|-----------------------------------------|-----------------------------------------------------|-------------------------------------------|-------------------------------------------|----------------|----------------|
| # of Intel® UPI Links                   | 3                                                   | 3                                         | 2                                         | 2              | 2              |
| UPI Speed                               | 10.4 GT/s                                           | 10.4 GT/s                                 | 10.4 GT/s                                 | 9.6 GT/s       | 9.6 GT/s       |
| Supported Topologies                    | 2S-2UPI<br>2S-3UPI<br>4S-2UPI<br>4S-3UPI<br>8S-3UPI | 2S-2UPI<br>2S-3UPI<br>4S-2UPI<br>4S-3UPI  | 2S-2UPI<br>4S-2UPI                        | 2S-2UPI        | 2S-2UPI        |
| Node Controller<br>Support              | Yes                                                 | Yes                                       | No                                        | No             | No             |
| # of Memory Channels                    | 6                                                   | 6                                         | 6                                         | 6              | 6              |
| Max DDR4 Speed 1DPC                     | 2933                                                | 2933                                      | 2666                                      | 2400           | 2133           |
| Max DDR4 Speed 2DPC                     | 2666                                                | 2666                                      | 2666                                      | 2400           | 2133           |
| Memory Capacity                         | 1TB<br>2TB (select SKUs)<br>4.5TB (select SKUs)     | 1TB 2TB (select SKUs) 4.5TB (select SKUs) | 1TB 2TB (select SKUs) 4.5TB (select SKUs) | 1TB            | 1TB            |
| RAS Capability                          | Advanced                                            | Advanced                                  | Advanced                                  | Standard       | Standard       |
| Intel® Turbo Boost<br>Technology        | Yes                                                 | Yes                                       | Yes                                       | Yes            | No             |
| Intel® Hyper-Threading<br>Technology    | Yes                                                 | Yes                                       | Yes                                       | Yes            | No             |
| Intel® AVX-512 ISA<br>support           | Yes                                                 | Yes                                       | Yes                                       | Yes            | Yes            |
| Intel® AVX-512 – # of<br>512b FMA units | 2                                                   | 2                                         | 1                                         | 1              | 1              |
| VNNI                                    | Yes                                                 | Yes                                       | Yes                                       | Yes            | Yes            |
| # of PCIe Lanes                         | 48                                                  | 48                                        | 48                                        | 48             | 48             |

The 1<sup>st</sup> and 2<sup>nd</sup> Gen Intel® Xeon® processor Scalable families combine several key system components into a single processor package, including the CPU cores, Integrated Memory Controller (IMC), and Integrated IO Module (IIO). The processor includes many core and uncore features and technologies described in the following sections.

#### **Core features:**

- Intel® Ultra Path Interconnect (Intel® UPI) up to 10.4 GT/s
- Intel® Speed Shift Technology
- Intel® 64 architecture
- Enhanced Intel SpeedStep® Technology
- Intel® Turbo Boost Technology 2.0
- Intel® Hyper-Threading Technology (Intel® HT Technology)
- Intel® Virtualization Technology for IA-32, Intel® 64 and Intel® Architecture (Intel® VT-x)
- Intel® Virtualization Technology for Directed I/O (Intel® VT-d)
- Execute Disable Bit
- Intel® Trusted Execution Technology (Intel® TXT)
- Intel® Advanced Vector Extensions 512 (Intel® AVX-512)
- Intel® Advanced Encryption Standard New Instructions (Intel® AES-NI)

## Additional Core Features on 2<sup>nd</sup> Gen Intel® Xeon® processor Scalable families:

- Intel® Deep Learning Boost through VNNI
- Intel® Speed Select Technology (select SKUs)
- Intel® Resource Director Technology

#### **Uncore features:**

- Up to 48 PCIe\* 3.0 lanes per CPU 79GB/s bi-directional pipeline
- 6 DDR4 memory channels supported per CPU
- DMI3/PCIe 3.0 interface with a peak transfer rate of 8.0 GT/s.
- Non-Transparent Bridge (NTB) enhancements three full duplex NTBs and 32 MSI-X vectors
- Intel® Volume Management Device (Intel® VMD) manages CPU attached NVM Express\* (NVMe\*) solid state drives (SSDs)
- Intel® Quick Data Technology
- Support for Intel® Node Manager 4.0

## 3.3.1 Intel® 64 Instruction Set Architecture (ISA)

Intel® 64 architecture is a 64-bit memory extension to the IA-32 architecture. Further details on Intel 64 architecture and programming model can be found at <a href="http://developer.intel.com/technology/intel64/">http://developer.intel.com/technology/intel64/</a>.

# 3.3.2 Intel® Hyper-Threading Technology

The processor supports Intel® Hyper-Threading Technology (Intel® HT Technology), which allows an execution core to function as two logical processors. While some execution resources such as caches, execution units, and buses are shared, each logical processor has its own architectural state with its own set of general-purpose registers and control registers. This feature must be enabled via the BIOS and requires operating system support.

# 3.3.3 Enhanced Intel SpeedStep® Technology

Processors in the 1<sup>st</sup> and 2<sup>nd</sup> Gen Intel® Xeon® processor Scalable family support Enhanced Intel SpeedStep® Technology. The processors support multiple performance states, which allows the system to dynamically adjust processor voltage and core frequency as needed to enable decreased power consumption and decreased heat production. All controls for transitioning between states are centralized within the processor, allowing for an increased frequency of transitions for more effective operation.

The Enhanced Intel SpeedStep Technology feature may be enabled and disabled by an option on the processor configuration setup screen. By default Enhanced Intel SpeedStep Technology is enabled. If disabled, the processor speed is set to the processor's max TDP core frequency (nominal rated frequency).

## 3.3.4 Intel® Turbo Boost Technology 2.0

Intel® Turbo Boost Technology is featured on all processors in the 1<sup>st</sup> and 2<sup>nd</sup> Gen Intel® Xeon® processor Scalable family. Intel Turbo Boost Technology opportunistically and automatically allows the processor to run faster than the marked frequency if the processor is operating below power, temperature, and current limits. This results in increased performance for both multi-threaded and single-threaded workloads.

## 3.3.5 Intel® Virtualization Technology for IA-32, Intel® 64 and Intel® Architecture (Intel® VT-x)

Intel® Virtualization Technology for IA-32, Intel® 64 and Intel® Architecture (Intel® VT-x) provides hardware support in the core to improve performance and robustness for virtualization. Intel VT-x specifications and functional descriptions are included in the Intel® 64 and IA-32 Architectures Software Developer's Manual.

## 3.3.6 Intel® Virtualization Technology for Directed I/O (Intel® VT-d)

Intel® Virtualization Technology for Directed I/O (Intel® VT-d) provides hardware support in the core and uncore implementations to support and improve I/O virtualization performance and robustness.

#### 3.3.7 Execute Disable Bit

Intel's Execute Disable Bit functionality can help prevent certain classes of malicious buffer overflow attacks when combined with a supporting operating system. This allows the processor to classify areas in memory by where application code can execute and where it cannot. When malicious code attempts to insert code in the buffer, the processor disables code execution, preventing damage and further propagation.

## 3.3.8 Intel® Trusted Execution Technology (Intel® TXT) for Servers

Intel® Trusted Execution Technology (Intel® TXT) defines platform-level enhancements that provide the building blocks for creating trusted platforms. The Intel TXT platform helps to provide the authenticity of the controlling environment such that those wishing to rely on the platform can make an appropriate trust decision. The Intel TXT platform determines the identity of the controlling environment by accurately measuring and verifying the controlling software.

## 3.3.9 Intel® Adavanced Vector Extension 512 (Intel® AVX-512)

The base of the 512-bit SIMD instruction extensions are referred to as Intel® Advanced Vector Extension 512 (Intel® AVX-512) foundation instructions. They include extensions of the Intel AVX family of SIMD instructions but are encoded using a new encoding scheme with support for 512-bit vector registers, up to 32 vector registers in 64-bit mode, and conditional processing using opmask registers.

# 3.3.10 Intel® Advanced Encryption Standard New Instructions (Intel® AES-NI)

Intel® Advanced Encryption Standard New Instructions (Intel® AES-NI) is a set of instructions implemented in all processors in the 1<sup>st</sup> and 2<sup>nd</sup> Gen Intel® Xeon® processor Scalable family. This feature adds instructions to accelerate encryption and decryption operations used in the Advanced Encryption Standard (AES). The Intel AES-NI feature includes six additional Single Instruction Multiple Data (SIMD) instructions in the Intel® Streaming SIMD Extensions instruction set.

The BIOS is responsible in POST to detect whether the processor has the Intel AES-NI instructions available. Some processors may be manufactured without Intel AES-NI instructions.

The Intel AES-NI instructions may be enabled or disabled by the BIOS. Intel AES-NI instructions are in an enabled state unless the BIOS has explicitly disabled them.

## 3.3.11 Intel® Node Manager (Intel® NM) 4.0

The Intel® C620 series chipset Intel® Management Engine (Intel® ME) supports Intel® Node Manager (Intel® NM) technology. The Intel ME and Intel NM combination is a power and thermal control capability on the platform, which exposes external interfaces that allow IT (through external management software) to query the Intel ME about platform power capability and consumption, thermal characteristics, and specify policy directives (that is, set a platform power budget). The Intel ME enforces these policy directives by controlling the power consumption of underlying subsystems using available control mechanisms (such as processor P/T states). The determination of the policy directive is done outside of the Intel ME either by intelligent management software or by the IT operator.

Below are some of the applications of Intel® Intelligent Power Node Manager technology.

- Platform power monitoring and limiting: The Intel ME/ Intel NM monitors platform power consumption and holds average power over duration. It can be queried to return actual power at any given instance. The power limiting capability is to allow external management software to address key IT issues by setting a power budget for each server.
- Inlet air temperature monitoring: The Intel ME / Intel NM monitors server inlet air temperatures periodically. If there is an alert threshold in effect, then Intel ME / Intel NM issues an alert when the inlet (room) temperature exceeds the specified value. The threshold value can be set by policy.
- **Memory subsystem power limiting**: The Intel ME / Intel NM monitors memory power consumption. Memory power consumption is estimated using average bandwidth utilization information.
- Processor power monitoring and limiting: The Intel ME / Intel NM monitors processor or socket
  power consumption and holds average power over duration. It can be queried to return actual power
  at any given instant. The monitoring process of the Intel ME will be used to limit the processor power
  consumption through processor P-states and dynamic core allocation.

- Core allocation at boot time: Restrict the number of cores for OS/Virtual Machine Manager (VMM) use by limiting how many cores are active at boot time. After the cores are turned off, the CPU limits how many working cores are visible to the BIOS and OS/VMM. The cores that are turned off cannot be turned on dynamically after the OS has started. It can be changed only at the next system reboot.
- Core allocation at runtime: This particular use case provides a higher level processor power control mechanism to a user at runtime, after booting. An external agent can dynamically use or not use cores in the processor subsystem by requesting Intel ME / Intel NM to control them, specifying the number of cores to use or not use.

For additional information on Intel Intelligent Power Node Manager support, see Chapter 9.

# 3.3.12 Intel® Deep Learning Boost

Intel® Deep Learning Boost on the 2<sup>nd</sup> Gen Intel® Xeon® processor Scalable family is designed to deliver more efficient Deep Learning (Inference) acceleration by expanding the capabilities of Intel® AVX-512 through Intel® Vector Neural Network Instructions (VNNI) dedicated to Deep Learning tasks. Consult the Intel® 64 and IA-32 Architectures Software Developer's Manual for details.

# 3.3.13 Intel® Speed Select Technology

Intel® Speed Select Technology, available on select 2<sup>nd</sup> Gen Intel® Xeon® processor Scalable family SKUs, offers three distinct operating voltage-frequency points for guaranteed base frequency (P1). This frequency is based on the number of active cores within the SKU only when thermal requirements are met. Intel® Speed Select Technology allows either a higher active core count with lower base frequency or a lower active core count with higher base frequency, providing multiple CPU personalities based on workload/VM needs.

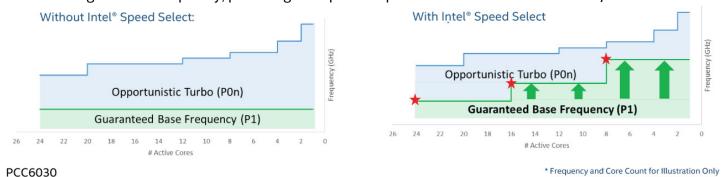



Figure 22. Intel® Speed Select Technology comparison

## 3.3.14 Intel® Resource Director Technology

Intel® Resource Director Technology, available on the 2<sup>nd</sup> Gen Intel® Xeon® processor Scalable family, mitigates execution contention when several applications, containers, or virtual machines are sharing platform resources. Software threads are able to have memory bandwidth according to their priority, not just CPU time, and is achieved with the following features:

- Cache Monitoring Technology (CMT): monitors LLC (L3 cache) usage by each software thread, through Resource Monitoring ID (RMID).
- Code Data Prioritization (CPD): provides the capability to separate code from data in LLC using masks.
- **Memory Bandwidth Monitoring (MBM):** gives the OS/VMM the abilities of assigning RMID to software threads and read the memory bandwidth utilization for a given RMID.
- Memory Bandwidth Allocation (MAD): MBA is a new feature introduced in 2<sup>nd</sup> Gen Intel® Xeon® processor Scalable family that enables software to control the amount of memory bandwidth a thread or core can consume based on credits.

# 3.4 Processor Population Rules

**Note**: The server board may support dual-processor configurations consisting of different processors that meet the defined criteria; however, Intel does not perform validation testing of this configuration. In addition, Intel does not guarantee that a server system configured with unmatched processors will operate reliably. The system BIOS does attempt to operate with processors, which are not matched but are generally compatible. For optimal system performance in dual-processor configurations, Intel recommends that identical processors be installed.

When using a single processor configuration, the processor must be installed into the processor socket labeled "CPU\_1".

**Note**: Some board features may not be functional without a second processor installed. See Figure 14. Intel® Server Board S2600ST product family block diagram.

When two processors are installed, the following population rules apply:

- Both processors must have the same number of cores
- Both processors must have the same cache sizes for all levels of processor cache memory
- Both processors must support identical DDR4 frequencies
- Both processors must have identical extended family, extended model, processor type, family code, and model number

Processors with different core frequencies can be mixed in a system, given the prior rules are met. If this condition is detected, all processor core frequencies are set to the lowest common denominator (highest common speed) and an error is reported.

Processor stepping within a common processor family can be mixed as long as it is listed in the processor specification updates published by Intel Corporation. Mixing of processors with a different stepping revision is only validated and supported between processors that are plus or minus one stepping from each other.

# 3.5 Processor Initialization Error Summary

Table 7 describes mixed processor conditions and recommended actions for all Intel® Server Boards and Intel® Server Systems designed around the Intel® Xeon® processor Scalable family and Intel® C620 series chipset architecture. The errors can be one of three severities:

Fatal: If the system cannot boot, POST halts and display the following message:

```
Unrecoverable fatal error found. System will not boot until the error is
  resolved
Press <F2> to enter setup
```

When the <F2> key on the keyboard is pressed, the error message is displayed on the error manager screen and an error is logged to the system event log (SEL) with the POST error code.

The "POST Error Pause" option setting in the BIOS setup does not have any effect on this error. If the system is not able to boot, the system generates a beep code consisting of three long beeps and one short beep. The system cannot boot unless the error is resolved. The faulty component must be replaced.

The system status LED is set to a steady amber color for all fatal errors that are detected during processor initialization. A steady amber system status LED indicates that an unrecoverable system failure condition has occurred.

- Major: An error message is displayed to the error manager screen and an error is logged to the SEL. If the BIOS setup option "Post Error Pause" is enabled, operator intervention is required to continue booting the system. If the BIOS setup option "POST Error Pause" is disabled, the system continues to boot.
- Minor: An error message may be displayed to the screen or to the BIOS setup error manager and the
  POST error code is logged to the SEL. The system continues booting in a degraded state. The user may
  want to replace the erroneous unit. The "POST Error Pause" option setting in the BIOS setup does not
  have any effect on this error.

Table 7. Mixed processor configurations error summary

| Error                                                        | Severity | System Action when BIOS Detects the Error Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Processor family not identical                               | Fatal    | <ul> <li>Halts at POST code 0xE6.</li> <li>Halts with three long beeps and one short beep.</li> <li>Takes fatal error action (see above) and does not boot until the fault condition is remedied.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Processor model<br>not identical                             | Fatal    | <ul> <li>Logs the POST error code into the SEL.</li> <li>Alerts the BMC to set the system status LED to steady amber.</li> <li>Displays 0196: Processor model mismatch detected message in the error manager.</li> <li>Takes fatal error action (see above) and does not boot until the fault condition is remedied.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Processor<br>cores/threads not<br>identical                  | Fatal    | <ul> <li>Halts at POST code 0xE5.</li> <li>Halts with three long beeps and one short beep.</li> <li>Takes fatal error action (see above) and does not boot until the fault condition is remedied.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Processor cache or home agent not identical                  | Fatal    | <ul> <li>Halts at POST code 0xE5.</li> <li>Halts with three long beeps and one short beep.</li> <li>Takes fatal error action (see above) and does not boot until the fault condition is remedied.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Processor<br>frequency (speed)<br>not identical              | Fatal    | <ul> <li>If the frequencies for all processors can be adjusted to be the same:</li> <li>Adjusts all processor frequencies to the highest common frequency.</li> <li>Does not generate an error – this is not an error condition.</li> <li>Continues to boot the system successfully.</li> <li>If the frequencies for all processors cannot be adjusted to be the same:</li> <li>Logs the POST error code into the SEL.</li> <li>Alerts the BMC to set the system status LED to steady amber.</li> <li>Does not disable the processor.</li> <li>Displays 0197: Processor speeds unable to synchronize message in the error manager.</li> <li>Takes fatal error action (see above) and does not boot until the fault condition is remedied</li> </ul>                   |
| Processor<br>Intel® UPI link<br>frequencies not<br>identical | Fatal    | If the link frequencies for all Intel® Ultra Path Interconnect (Intel® UPI) links can be adjusted to be the same:  • Adjusts all Intel UPI interconnect link frequencies to highest common frequency.  • Does not generate an error – this is not an error condition.  • Continues to boot the system successfully.  If the link frequencies for all Intel UPI links cannot be adjusted to be the same:  • Logs the POST error code into the SEL.  • Alerts the BMC to set the system status LED to steady amber.  • Does not disable the processor.  • Displays 0195: Processor Intel (R) UPII link frequencies unable to synchronize message in the error manager.  • Takes fatal error action (see above) and does not boot until the fault condition is remedied. |
| Processor<br>microcode update<br>failed                      | Major    | <ul> <li>Logs the POST error code into the SEL.</li> <li>Displays 816x: Processor 0x unable to apply microcode update message in the error manager or on the screen.</li> <li>Takes major error action. The system may continue to boot in a degraded state, depending on the "POST Error Pause" setting in setup, or may halt with the POST error code in the error manager waiting for operator intervention.</li> </ul>                                                                                                                                                                                                                                                                                                                                            |

# Intel® Server Board S2600ST Product Family Technical Product Specification

| Error                                    | Severity | System Action when BIOS Detects the Error Condition                                                                                                                                                                                                                                         |
|------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Processor<br>microcode update<br>missing | Minor    | <ul> <li>Logs the POST error code into the SEL.</li> <li>Displays 818x: Processor 0x microcode update not found message in the error manager or on the screen.</li> <li>The system continues to boot in a degraded state, regardless of the "POST Error Pause" setting in setup.</li> </ul> |

# 4. PCI Express (PCIe\*) Support

The PCI Express (PCIe\*) interface of the Intel® Server Board S2600ST product family is fully compliant with the *PCI Express Base Specification Revision 3.0* supporting the following PCIe bit rates: Gen 3.0 (8.0 GT/s), Gen 2.0 (5.0 GT/s), and Gen 1.0 (2.5 GT/s).

For specific board features and functions supported by the PCIe subsystem, see Chapter 6. Table 8 provides the PCIe port routing information from each processor.

Table 8. CPU – PCIe\* port routing

|                 | CPU 1                                                     |                 | CPU 2          |
|-----------------|-----------------------------------------------------------|-----------------|----------------|
| PCI Ports       | Onboard device                                            | PCI Ports       | Onboard device |
| Port DMI 3 - x4 | Chipset                                                   | Port DMI 3 - x4 | Not used       |
| Port 1A - x4    | Intel® QuickAssist Technology engine uplink               | Port 1A - x4    | Slot #2        |
| Port 1B - x4    | Intel® QuickAssist Technology engine uplink               | Port 1B - x4    | Slot #2        |
| Port 1C – x4    | Opt1: Chipset (PCH) x16 uplink <sup>1</sup>               | Port 1C - x4    | Slot #2        |
| Port 1D – x4    | Opt2: 2x OCulink connectors (for PCIe_SSD2 and PCIe_SSD3) | Port 1D – x4    | Slot #2        |
| Port 2A - x4    | Slot #6                                                   | Port 2A - x4    | Slot #4        |
| Port 2B - x4    | Slot #6                                                   | Port 2B - x4    | Slot #4        |
| Port 2C - x4    | Slot #6                                                   | Port 2C - x4    | Slot #4        |
| Port 2D - x4    | Slot #6                                                   | Port 2D - x4    | Slot #4        |
| Port 3A - x4    | OCuLink PCIe_SSD0                                         | Port 3A - x4    | Slot #1        |
| Port 3B - x4    | OCuLink PCIe_SSD1                                         | Port 3B - x4    | Slot #1        |
| Port 3C - x4    | Slot #5                                                   | Port 3C - x4    | Slot #3        |
| Port 3D -x4     | Slot #5                                                   | Port 3D -x4     | Slot #3        |

<sup>&</sup>lt;sup>1</sup> See section 6.1 for more details on the chipset / platform controller hub (PCH) uplink usage.

#### 4.1.1 PCIe\* Enumeration and Allocation

The BIOS assigns PCI bus numbers in a depth-first hierarchy, in accordance with the *PCI Local Bus Specification Revision 3.0*. The bus number is incremented when the BIOS encounters a PCI-PCI bridge device.

Scanning continues on the secondary side of the bridge until all subordinate buses are assigned numbers. PCI bus number assignments may vary from boot to boot with varying presence of PCI devices with PCI-PCI bridges.

If a bridge device with a single bus behind it is inserted into a PCI bus, all subsequent PCI bus numbers below the current bus are increased by one. The bus assignments occur once, early in the BIOS boot process, and never change during the pre-boot phase.

## 4.1.2 Non-Transparent Bridge

The PCIe Non-Transparent Bridge (NTB) acts as a gateway that enables high performance, low latency communication between two PCIe Hierarchies, such as a local and remote system. The NTB allows a local processor to independently configure and control the local system and provides isolation of the local host memory domain from the remote host memory domain, while enabling status and data exchange between

the two domains. The NTB is discovered by the local processor as a Root Complex Integrated Endpoint (RCiEP).

Figure 23 shows two systems connected through an NTB. Each system is a completely independent PCIe hierarchy. The width of the NTB link can be x16, x8, or x4 at the expense of other PCIe root ports. Only port A can be configured as an NTB port.

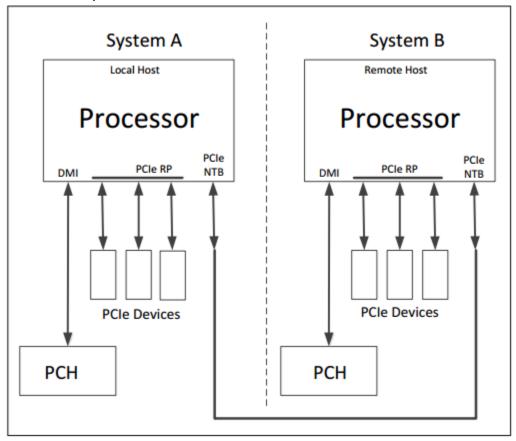



Figure 23. Two systems connected through PCIe\* Non-Transparent Bridge (NTB)

The specified processor family supports one NTB configuration/connection model:

- NTB port attached to another NTB port of the same component type and generation.
- Direct address translation between the two PCIe hierarchies through two separate regions in memory space. Accesses targeting these memory addresses are allowed to pass through the NTB to the remote system. This mechanism enables the following transaction flows through the NTB:
  - o Both posted mem writes and non-posted mem read transactions across the NTB.
  - o Peer-to-peer mem read and write transactions to and from the NTB.

In addition, the NTB provides the ability to interrupt a processor in the remote system through a set of doorbell registers. A write to a doorbell register in the local side of the NTB generates an interrupt to the remote processor. Since the NTB is designed to be symmetric, the converse is also true.

For additional information, refer to the processor family external design specification (EDS).

# 5. Memory Support

This chapter describes the architecture that drives the memory subsystem, supported memory types, memory population rules, and supported memory reliability, availability, and serviceability (RAS) features.

# 5.1 Memory Subsystem Architecture

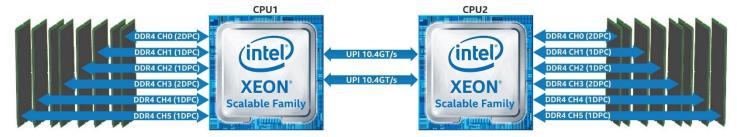



Figure 24. Memory subsystem architecture

Note: The Intel® Server Board S2600ST product family only supports DDR4 memory.

Each installed processor includes an Integrated Memory Controller (IMC) capable of supporting up to six DDR4 memory channels that can accommodate up to two DIMM slots per channel. On the Intel® Server Board S2600ST product family, a total of 16 DIMM slots is provided (eight DIMMs per processor) – 1x DDR4 DIMM slots per memory channel on four channels, and 2x DDR4 DIMM slots on two channels (2-1-1 topology).

The server board supports the following:

- Only DDR4 DIMMs are supported.
- Only RDIMMs and LRDIMMs with thermal sensor on-DIMM (TSOD) are supported.
- Only Error Correction Code (ECC) enabled RDIMMs and LRDIMMs are supported.
- Traditional SDRAM DIMMs organized as Single Rank (SR), Dual Rank (DR), or Quad Rank (QR)

# **5.2** Supported Memory

The following tables list the detailed DIMM support guidelines:

Table 9. 1st Gen Intel® Xeon® Processor Scalable Family Traditional DDR4 SDRAM DIMM Support Guidelines

|             | Danka nas                  | DIMM Canacity (GP) |                    | Max Speed (MT/s); Voltage (V); Slots per Channel (SPC) & DIMMs per Channel (DPC) |                     |       |            |            |
|-------------|----------------------------|--------------------|--------------------|----------------------------------------------------------------------------------|---------------------|-------|------------|------------|
| Туре        | Ranks per<br>DIMM and Data | DIMM Cap           | DIMM Capacity (GB) |                                                                                  | Dirin Capacity (GB) |       | 2 Slots pe | er Channel |
|             | Width                      | DRAM               | Density            | 1DPC                                                                             | 1DPC                | 2DPC  |            |            |
|             |                            | 4 Gb               | 8 Gb               | 1.2 V                                                                            | 1.2 V               | 1.2 V |            |            |
|             | SRx8                       | 4 GB               | 8 GB               |                                                                                  |                     |       |            |            |
| RDIMM       | SRx4                       | 8 GB               | 16 GB              |                                                                                  |                     |       |            |            |
| KUIMM       | DRx8                       | 8 GB               | 16 GB              |                                                                                  |                     |       |            |            |
|             | DRx4                       | 16 GB              | 32 GB              | ]                                                                                |                     |       |            |            |
| RDIMM 3DS   | QRx4                       | N/A                | 2H-64 GB           | 2666                                                                             | 2666                | 2666  |            |            |
| 3ט3 אוויועא | 8Rx4                       | N/A                | 4H-128 GB          |                                                                                  |                     |       |            |            |
| LRDIMM      | QRx4                       | 32 GB              | 64 GB              |                                                                                  |                     |       |            |            |
| LRDIMM 3DS  | QRx4                       | N/A                | 2H-64 GB           |                                                                                  |                     |       |            |            |
| LKUIMM 3DS  | 8Rx4                       | N/A                | 4H-128 GB          |                                                                                  |                     |       |            |            |

Table 10. 2nd Gen Intel® Xeon® Processor Scalable Family Traditional DDR4 SDRAM DIMM Support Guidelines

|                 | Danila nan            |                   | DIMM Conscitu (CP) |           |                       | MT/s); Voltage (<br>) & DIMMs per ( | •          |
|-----------------|-----------------------|-------------------|--------------------|-----------|-----------------------|-------------------------------------|------------|
| Туре            | Ranks per<br>DIMM and |                   | DIMM Capacity (GB) |           | 1 Slot per<br>Channel | 2 Slots pe                          | er Channel |
|                 | Data Width            |                   | DRAM Density       |           | 1DPC                  | 1DPC                                | 2DPC       |
|                 |                       | 4 Gb <sup>1</sup> | 8 Gb               | 16 Gb     | 1.2 V                 | 1.2 V                               | 1.2 V      |
|                 | SRx8                  | 4 GB              | 8 GB               | 16 GB     |                       |                                     |            |
| RDIMM           | SRx4                  | 8 GB              | 16 GB              | 32 GB     |                       |                                     |            |
| KDIMM           | DRx8                  | 8 GB              | 16 GB              | 32 GB     |                       |                                     |            |
|                 | DRx4                  | 16 GB             | 32 GB              | 64 GB     |                       |                                     |            |
| RDIMM 3DS       | QRx4                  | N/A               | 2H-64 GB           | 2H-128 GB | 2933                  | 2933                                | 2666       |
| מסג וייוועא     | 8Rx4                  | N/A               | 4H-128 GB          | 4H-256 GB |                       |                                     |            |
| LRDIMM          | QRx4                  | 32 GB             | 64 GB              | 128 GB    |                       |                                     |            |
| LRDIMM 3DS      | QRx4                  | N/A               | 2H-64 GB           | 2H-128 GB |                       |                                     |            |
| בעטווייוויש 3D2 | 8Rx4                  | N/A               | 4H-128 GB          | 4H-256 GB |                       |                                     |            |

Table 11. Maximum Supported Traditional SDRAM DIMM Speeds by SKU Level in MT/s (Mega Transfers/second)

|                                                            | Platinum 8xxx | Gold 6xxx         | Gold 5xxx | Silver 4xxx | Bronze 3xxx |
|------------------------------------------------------------|---------------|-------------------|-----------|-------------|-------------|
| 1st Gen Intel® Xeon® processor Scalable family             | 2666          | 2666              | 2400      | 2400        | 2133        |
| 2 <sup>nd</sup> Gen Intel® Xeon® processor Scalable family | 2933²         | 2933 <sup>2</sup> | 2666      | 2400        | 2133        |

#### Notes:

- 1. 4 Gb DRAM density is only supported on speeds up to 2666 MT/s.
- 2. Maximum speed only in 1DPC configuration.

# 5.3 General Support Rules for Memory

**Note**: Although mixed DIMM configurations may be functional, Intel only supports and performs platform validation on systems that are configured with identical DIMMs installed.

Each installed processor provides six memory channels. On the Intel® Server Board S2600ST product family, memory channels for each processor are labeled A through F. Channels A and D on each processor support two DIMM slots. All other memory channels have one DIMM slot. On the server board, each DIMM slot is labeled by CPU #, memory channel, and slot # as shown in the following examples: CPU1\_DIMM\_A2; CPU2\_DIMM\_A2.

DIMM population rules require that channels that support more than one DIMM be populated starting with the blue DIMM slot or the DIMM slot farthest from the processor in a "fill-farthest" approach. In addition, when populating a quad-rank DIMM with a single- or dual-rank DIMM in the same channel, the quad-rank DIMM must be populated farthest from the processor. The memory slots associated with a given processor are unavailable if the corresponding processor socket is not populated.

A processor may be installed without populating the associated memory slots, provided a second processor is installed with associated memory. In this case, the memory is shared by the processors; however, the platform suffers performance degradation and latency.

Processor sockets are self-contained and autonomous. However, all memory subsystem support (such as memory RAS or error management) in the BIOS setup utility are applied commonly across processor sockets.

On the Intel® Server Board S2600ST product family, a total of 16 DIMM slots is provided – 1x DDR4 DIMM slots per memory channel on four channels, and 2x on two channels (2-1-1 topology). The nomenclature for memory slots is detailed in Figure 25.

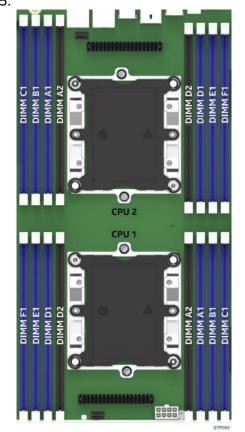



Figure 25. Intel® Server Board S2600ST product family memory slot layout

The DIMM population requirements are listed below.

- For multiple DIMMs per channel:
  - o For RDIMM, LRDIMM, 3DS RDIMM, or 3DS LRDIMM, always populate DIMMs with higher electrical loading in the first slot of a channel (blue slot) followed by the second slot.
- When only one DIMM is used in the channels A or D, it must be populated in the BLUE DIMM slot.
  - A maximum of 8 logical ranks can be used on any one channel, as well as a maximum of 10 physical ranks loaded on a channel.
- Mixing of DDR4 DIMM Types (RDIMM, LRDIMM, 3DS-RDIMM, 3DS-LRDIMM, NVDIMM) within channel or socket or across sockets is not supported. This is a Fatal Error Halt in Memory Initialization.
- Mixing DIMMs of different frequencies and latencies is not supported within or across processor sockets. If a mixed configuration is encountered, the BIOS attempts to operate at the highest common frequency and the lowest latency possible.
- LRDIMM Rank Multiplication Mode and Direct Map Mode must not be mixed within or across processor sockets. This is a Fatal Error Halt in Memory Initialization.
- In order to install 3 QR LRDIMMs on the same channel, they must be operated with Rank Multiplication as RM = 2. This will make each LRDIMM appear as a DR DIMM with ranks twice as large.
- RAS Modes Rank Sparing, and Mirroring are mutually exclusive in this BIOS. Only one operating mode may be selected, and it will be applied to the entire system.
- If a RAS Mode has been configured, and the memory population will not support it during boot, the system will fall back to Independent Channel Mode and log and display errors.
- Rank Sparing Mode is only possible when all channels that are populated with memory meet the
  requirement of having at least 2 SR or DR DIMM installed, or at least one QR DIMM installed, on each
  populated channel.

• Mirroring Modes require that for any channel pair that is populated with memory, the memory population on both channels of the pair must be identically sized. Refer to the Intel Xeon processor Scalable family BIOS EPS for details on pairing nomenclature.

## **Intel DDR4 DIMM Support Disclaimer:**

Intel validates and will only provide support for system configurations where all installed DDR4 DIMMs have matching "Identical" or "Like" attributes. See Table 12. A system configured concurrently with DDR4 DIMMs from different vendors will be supported by Intel if all other DDR4 "Like" DIMM attributes match.

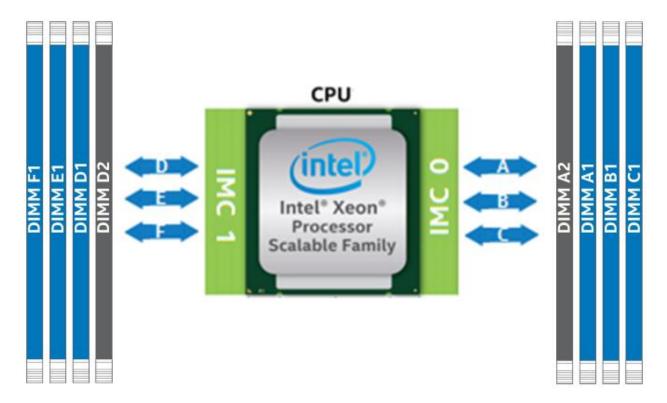
Intel does not perform system validation testing nor will it provide support for system configurations where all populated DDR4 DIMMs do not have matching "Like" DIMM attributes as listed in Table 12.

Intel will only provide support for Intel server systems configured with DDR4 DIMMs that have been validated by Intel and are listed on Intel's Tested Memory list for the given Intel server product family.

Intel configures and ships pre-integrated L9 server systems. All DDR4 DIMMs within a given L9 server system as shipped by Intel will be identical. All installed DIMMs will have matching attributes as those listed in the "Identical" DDR4 DIMM4 Attributes column in Table 12.

When purchasing more than one integrated L9 server system with the same configuration from Intel, Intel reserves the right to use "Like" DIMMs between server systems. At a minimum "Like" DIMMS will have matching DIMM attributes as listed in the table below. However, the DIMM model #, revision #, or vendor may be different.

For warranty replacement, Intel will make every effort to ship back an exact match to the one returned. However, Intel may ship back a validated "Like" DIMM. A "Like" DIMM may be from the same vendor but may not be the same revision # or model #, or it may be an Intel validated DIMM from a different vendor. At a minimum, all "Like" DIMMs shipped from Intel will match attributes of the original part according to the definition of "Like" DIMMs in the following table.


Table 12. DDR4 DIMM Attributes Table for "Identical" and "Like" DIMMs

- DDR4 DIMMs are considered "Identical" when ALL listed attributes between the DIMMs match
- Two or more DDR4 DIMMs are considered "Like" DIMMs when all attributes minus the Vendor, and/or DIMM Part # and/or DIMM Revision#, are the same.

| Attribute       | "Identical" DDR4 DIMM Attributes | "Like" DDR4 DIMM Attributes | Possible DDR4 Attribute Values             |
|-----------------|----------------------------------|-----------------------------|--------------------------------------------|
| Vendor          | Match                            | Maybe Different             | Memory Vendor Name                         |
| DIMM Part #     | Match                            | Maybe Different             | Memory Vendor Part #                       |
| DIMM Revision # | Match                            | Maybe Different             | Memory Vendor Part Revision #              |
| SDRAM Type      | Match                            | Match                       | DDR4                                       |
| DIMM Type       | Match                            | Match                       | RDIMM, LRDIMM                              |
| Speed (MHz)     | Match                            | Match                       | 2666, 2933, 3200                           |
| Voltage         | Match                            | Match                       | 1.2V                                       |
| DIMM Size (GB)  | Match                            | Match                       | 8GB, 16GB, 32GB, 64GB, 128GB, 256GB        |
| Organization    | Match                            | Match                       | 1Gx72; 2Gx72; 4Gx72; 8Gx72; 16Gx72; 32Gx72 |
| DIMM Rank       | Match                            | Match                       | 1R, 2R, 4R, 8R                             |
| DRAM Width      | Match                            | Match                       | x4, x8                                     |
| DRAM Density    | Match                            | Match                       | 8Gb, 16Gb                                  |

## **5.3.1 DIMM Population Guidelines for Best Performance**

Processors within the Intel® Xeon® processor Scalable family include two integrated memory controllers (IMC), each supporting three memory channels.



For best performance, DIMMs should be populated using the following guidelines:

- Each installed processor should have matching DIMM configurations
- The following DIMM population guidelines should be followed for each installed processor
  - 1 DIMM to 3 DIMM Configurations DIMMs should be populated to DIMM Slot 1 (Blue Slots) of Channels A thru C
  - 4 DIMM Configurations DIMMs should be populated to DIMM Slot 1 (Blue Slots) of Channels A,
     B, D, and E
  - o **5 DIMM Configurations NOT Recommended**. This is an unbalanced configuration which will yield less than optimal performance
  - o 6 DIMM Configurations DIMMs should be populated to DIMM Slot1 (Blue Slots) of all Channels
  - o **7 DIMM Configurations NOT Recommended**. This is an unbalanced configuration, which will yield less than optimal performance
  - o 8 DIMM Configurations DIMMs are populated to ALL DIMM Slots

# 5.4 Memory RAS Features

Supported memory RAS features are dependent on the level of processor installed. Each processor level within the Intel® Xeon® processor Scalable family has support for either standard or advanced memory RAS features as defined in Table 13.

**Table 13. Memory RAS Features** 

| RASM Feature                                                 | Description                                                                                                                                                                                                                                                                                                                                                                    | Standard | Advanced |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
|                                                              | x8 Single Device Data Correction (SDDC) via static virtual lockstep (applicable to x8 DRAM DIMMs).                                                                                                                                                                                                                                                                             | √        | <b>√</b> |
| Device Data Correction                                       | ADDDC (SR) (applicable to x4 DRAM DIMMs).                                                                                                                                                                                                                                                                                                                                      | √        | √        |
| Device Data Correction                                       | x8 Single Device Data Correction + 1 bit (SDDC+1) (applicable to x8 DRAM DIMMs).                                                                                                                                                                                                                                                                                               |          | ✓        |
|                                                              | SDDC + 1, and ADDDC (MR) + 1 (applicable to x4 DRAM DIMMs).                                                                                                                                                                                                                                                                                                                    |          | √        |
| DDR4 Command/Address<br>(CMD/ADDR) Parity Check and<br>Retry | DDR4 technology based CMD/ADDR parity check and retry with CMD/ADDR parity error "address" logging and CMD/ADDR retry.                                                                                                                                                                                                                                                         | ✓        | √        |
| DDR4 Write Data CRC<br>Protection                            | Detects DDR4 data bus faults during write operation.                                                                                                                                                                                                                                                                                                                           | √        | √        |
| Memory Demand and Patrol<br>Scrubbing                        | Demand scrubbing is the ability to write corrected data back to the memory once a correctable error is detected on a read transaction. Patrol scrubbing proactively searches the system memory, repairing correctable errors. Prevents accumulation of single-bit errors.                                                                                                      | V        | <b>V</b> |
| Memory Mirroring                                             | Full memory mirroring: An intra-IMC method of keeping a duplicate (secondary or mirrored) copy of the contents of memory as a redundant backup for use if the primary memory fails. The mirrored copy of the memory is stored in memory of the same processor socket's IMC. Dynamic (without reboot) failover to the mirrored DIMMs is transparent to the OS and applications. | V        | V        |
|                                                              | Address range/partial memory mirroring: Provides further intra socket granularity to mirroring of memory by allowing the firmware or OS to determine a range of memory addresses to be mirrored, leaving the rest of the memory in the socket in non-mirror mode.                                                                                                              |          | <b>√</b> |
| Sparing<br>Rank Level Memory Sparing                         | Dynamic fail-over of failing ranks to spare ranks behind the same memory controller DDR ranks.                                                                                                                                                                                                                                                                                 | √        | √        |
| Multi-rank Level Memory<br>Sparing                           | With multi rank, up to two ranks out of a maximum of eight ranks can be assigned as spare ranks.                                                                                                                                                                                                                                                                               | ✓        | ✓        |
| iMC's Corrupt Data<br>Containment                            | Process of signaling error along with the detected UC data. iMC's patrol scrubber and sparing engine have the ability to poison the UC data.                                                                                                                                                                                                                                   | √        | √        |
| Failed DIMM Isolation                                        | Ability to identify a specific failing DIMM thereby enabling the user to replace only the failed DIMM(s). In case of uncorrected error and lockstep mode, only DIMM-pair level isolation granularity is supported.                                                                                                                                                             | <b>√</b> | <b>√</b> |
| Memory Disable and Map Out for Fault Resilient Boot (FRB)    | Allows memory initialization and booting to OS even when memory fault occurs.                                                                                                                                                                                                                                                                                                  | √        | √        |
| Post Package Repair (PPR)                                    | Starting with DDR4 technology, there is an additional capability available known as Post Package Repair (PPR). PPR offers additional spare capacity within the DDR4 DRAM that can be used to replace faulty cell areas detected during system boot time.                                                                                                                       | <b>√</b> | <b>√</b> |

Note: Memory RAS features may not be supported on all SKUs of a processor type.

## 5.4.1 DIMM Populations Rules and BIOS Setup for Memory RAS

The following rules apply when enabling RAS features:

- Memory sparing and memory mirroring options are enabled in BIOS Setup. Memory sparing and memory mirroring options are mutually exclusive; only one operating mode may be selected in BIOS Setup.
- If a RAS mode has been enabled and the memory configuration is not able to support it during boot, the system falls back to independent channel mode and log and display errors.
- Rank sparing mode is only possible when all channels that are populated with memory meet the requirement of having at least two SR or DR DIMMs installed or at least one QR DIMM installed on each populated channel.
- Memory mirroring mode requires that for any channel pair that is populated with memory, the memory population on both channels of the pair must be identically sized.

# 6. System I/O

# 6.1 Intel® QuickAssist Technology Support

This section provides a high level overview for Intel® QuickAssist Technology and its support on the Intel® Server Board S2600ST product family. For more in depth information about this technology, visit

http://www.intel.com/content/www/us/en/embedded/technology/guickassist/overview.html

**Note** – For the Intel® Server Board S2600ST product family, Intel® QuickAssist Technology (Intel® QAT) is only supported on the **S2600STQ** SKU.

Intel® QuickAssist Technology (Intel® QAT) provides security and compression acceleration capabilities used to improve performance and efficiency across the data center.

Intel® QuickAssist Technology supports the following:

- Cryptographic capabilities: 100 Gb/s IPSec & SSL
  - Symmetric ciphers: (AES, AES-XTS, 3DES/DES, RC4, Kasumi, Snow3G, ZUC)
  - Message digest/hash (MD5, SHA1, SHA2, SHA3)
  - Authentication (HMAC, AES-XCBC)
  - Authenticated encryption (AES-GCM, AES-CCM)
- Asymmetric (public key) cryptographic capabilities
  - o Modular exponentiation for Diffie-Hellman (DH)
  - RSA key generation, encryption/decryption and digital signature generation/verification. RSA (2K Keys) up to 100K Ops/sec
  - o DSA parameter generation and digital signature generation/verification
  - o Elliptic curve cryptography: ECDSA, ECDH
- Compression/decompression (deflate) up to 100Gb/s

On the Intel® Server Board **\$2600\$TQ**, there are three Intel® QAT engines incorporated into the Intel® C628 Chipset with a dedicated x16 PCIe\* 3.0 link that allows for up to 100 Gbps aggregated bandwidth.

Intel® QAT bandwidth can be increased to 150 Gbps with the addition of an optional Intel® QAT bridge cable (iPC - **AXXSTCBLQAT**) connected between the onboard mini-SAS HD connectors for SATA Ports 0–3 and 4–7, and two of the onboard PCIe x4 OCuLink connectors as shown in Figure 26.

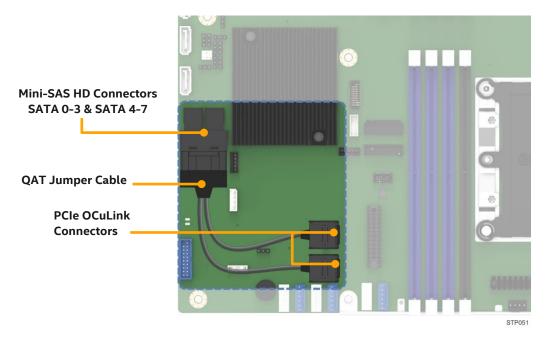



Figure 26. Optional Intel® QuickAssist Technology bridge cable installed

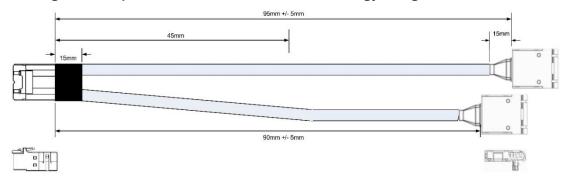



Figure 27. Intel® QuickAssist Technology bridge cable – iPC AXXSTCBLQAT

When the PCH detects the link, it uses the additional x4 PCIe\* 3.0 uplink from each of the two OCuLink onboard connectors.

Intel® QAT support requires that a driver be loaded for the installed operating system. Visit <a href="http://downloadcenter.intel.com">http://downloadcenter.intel.com</a> to download the latest available drivers.

# 6.2 PCIe\* Add-in Card Support

The server board includes features for concurrent support of several add-in card types including PCIe\* add-in cards on slots 1 through 6 and a dedicated LAN riser aligned to slot 5. In addition, slots 2 and 6 are riser capable. PCIe\* add-in card slots and their properties are described below.

- Slot 1: PCIe\* 3.0 x8 (x8 electrical) handled by CPU2
- Slot 2: PCIe\* 3.0 x16 (x16 electrical) handled by CPU2 (riser capable)
- Slot 3: PCIe\* 3.0 x8 (x8 electrical) handled by CPU2
- Slot 4: PCIe\* 3.0 x16 (x16 electrical) handled by CPU2
- Slot 5: PCIe\* 3.0 x8 (x8 electrical) handled by CPU1
- Slot 6: PCIe\* 3.0 x16 (x16 electrical) handled by CPU1 (riser capable)

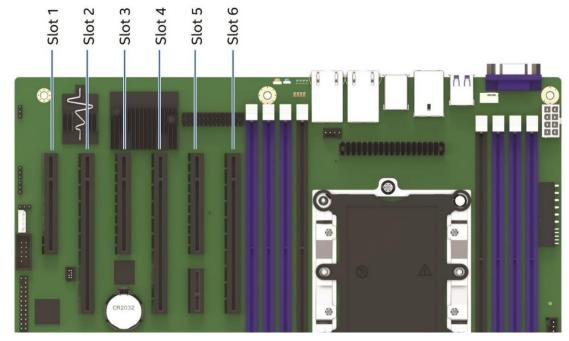



Figure 28. PCIe\* slots

This slot configuration allows for installation of up to 3 double wide, full length add-in cards. Optional supplemental power is also provided for this case. See section 10.1.3 for details on supplemental power options.

## 6.2.1 Riser Card Support

PCIe\* slots 2 and 6 are both capable of supporting riser cards. Each x16 riser slot supports standard x16 PCIe\* connector Pin-outs, and they also include two 100-Mhz clocks and Riser\_ID bits (to provide link width information to the system BIOS). Each of the designated riser slots can support riser cards with the following PCIe\* add-in card slot configurations:

- x16 riser with two x4 PCIe\* slots
- x16 riser with one x4 PCIe\* slot and one x8 PCIe\* slot
- x16 riser with two x8 PCIe\* slots
- x16 riser with one x16 PCle\* slot

# 6.3 Onboard Storage Subsystem

The Intel® Server Board S2600ST product family includes support for many storage related technologies and onboard features to support a wide variety of storage options. These include:

- (2) M.2 PCIe\* / Serial ATA (SATA)
- (4) PCle\* OCuLink\*
- Intel® Volume Management Device (Intel® VMD) for NVMe\* SSDs
- Intel® VROC (VMD NVMe RAID)
- (2) 7-pin single port SATA
- (2) Mini-SAS HD (SFF-8643) 4-port SATA
- Onboard SATA redundant array of independent disks (RAID) options
  - o Intel® VROC (SATA RAID) 6.0
  - Intel® Embedded Server RAID Technology 2 v1.60 for SATA

The following sections provide an overview of each option.

## 6.3.1 M.2 Storage Device Support

The server board supports two PCIe\*/SATA 2280 M.2 devices in a stacked configuration. Each M.2 connector can support PCIe or SATA modules that conform to a 2280 (22mm wide, 80mm long) form factor. PCIe bus lanes for each connector are routed from the chipset and can be supported in both single and dual processor configurations.

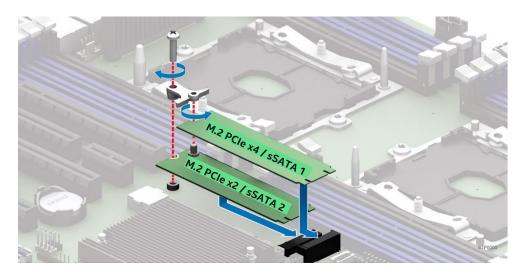



Figure 29. M.2 connectors

The PCH provides the following support for each M.2 connector:

- Top Connector PCle x4 / sSATA port 1
- Bottom Connector PCle x2 / sSATA port 2

Where sSATA is the specific PCH embedded SATA controller from which SATA ports are routed. See section 10.3.2 for details on the M.2 connector Pin-out.

**Note:** PCIe\* M.2 devices will be detected and visible by BIOS only when boot mode is setup to uEFI. SATA M.2 devices are detected and visible by BIOS in both legacy and uEFI boot modes.

#### 6.3.1.1 Embedded RAID Support

RAID support from embedded RAID options for server board mounted M.2 SSDs is defined as follows:

• Neither Intel® Embedded Server RAID Technology 2 (Intel® ESRT2) nor Intel® VROC (SATA RAID) have RAID support for PCIe M.2 SSDs when installed to the M.2 connectors on the server board.

**Note**: RAID support for NVMe\* SSDs using Intel® VROC (VMD NVMe RAID) requires that the PCIe bus lanes be routed directly from the CPU. On this server board, the PCIe bus lanes routed to the onboard M.2 connectors are routed from the Intel chipset (PCH).

The Intel® ESRT2 onboard RAID option does not support PCIe devices.

- Both Intel® ESRT2 and Intel® VROC (SATA RAID) provide RAID support for SATA devices (see section 6.3.6).
- Neither embedded RAID option supports mixing of SATA SSDs and SATA hard drives within a single RAID volume.

Note: Mixing both SATA and PCIe NVMe SSDs within a single RAID volume is not supported.

• Open source compliance – binary driver (includes partial source files) or open source using MDRAID layer in Linux\*.

#### 6.3.2 Onboard PCIe\* OCuLink Connectors

The server board includes four PCIe\* OCuLink connectors to provide the PCIe\* interface for up to four PCIe\* NVMe SSDs. PCIe\* signals for OCuLink connectors are routed directly from CPU\_1.

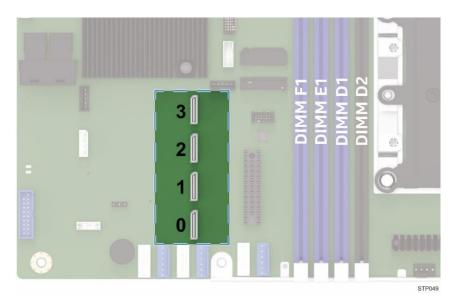
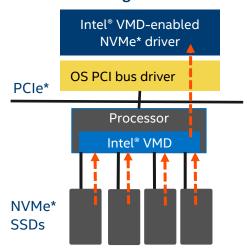



Figure 30. Onboard OCuLink connectors


## 6.3.3 Intel® Volume Management Device (Intel® VMD) for NVMe\* SSDs

Intel® Volume Management Device (Intel® VMD) is hardware logic inside the processor root complex to help manage PCIe\* NVMe\* SSDs. It provides robust hot plug support and status LED management. This allows servicing of storage system NVMe SSDs without fear of system crashes or hangs when ejecting or inserting NVMe SSD devices on the PCIe\* bus.

# NVMe\* Support w/o Intel® VMD NVMe\* driver OS PCI bus driver PCIe\* NVMe\* SSDs Storage bus event/error handled by

BIOS or OS.

## **NVMe\* Storage with Intel® VMD**



Storage bus event/error handled by storage driver.

Figure 31. Intel® Volume Management Device (Intel® VMD) for NVMe\* SSDs

Intel® VMD handles the physical management of NVMe SSDs as a standalone function but can be enhanced when Intel® VROC support options are enabled to implement RAID based storage systems. See section 6.3.3.1 for more information.

The following is a list of features of the Intel® VMD technology:

- Hardware is integrated inside the processor PCIe\* root complex.
- Entire PCle\* trees are mapped into their own address spaces (domains).
- Each domain manages x16 PCIe\* lanes.
- Can be enabled/disabled in BIOS Setup at x4 lane granularity.
- Driver sets up and manages the domain, performing device enumeration and event/error handling, through a fast I/O path.
- May load an additional child device driver that is Intel VMD aware.
- Hot plug support hot insert array of PCIe\* SSDs.
- Support for PCIe\* SSDs and switches only (no network interface controllers (NICs), graphics cards, and so on)
- Maximum of 128 PCle\* bus numbers per domain.
- Support for MCTP over SMBus only.
- Support for MMIO only (no port-mapped I/O).
- Does not support NTB, Quick Data Tech, Intel® Omni-Path Architecture, or SR-IOV.
- Correctable errors do not bring down the system.
- Intel® VMD only manages devices on PCIe\* lanes routed directly from the processor. Intel® VMD
  cannot provide device management on PCI lanes routed from the chipset (PCH) (see Figure 14).
- When Intel VMD is enabled, the BIOS does not enumerate devices that are behind Intel VMD. The
  Intel VMD-enabled driver is responsible for enumerating these devices and exposing them to the
  host.
- Intel® VMD supports hot-plug PCIe\* SSDs connected to switch downstream ports. Intel® VMD does not support hot-plug of the switch itself.

## 6.3.3.1 Enabling Intel® VMD support

For installed NVMe\* SSDs to utilize the Intel® VMD features of the server board, Intel VMD must be enabled on the appropriate CPU PCIe\* root ports in BIOS Setup. By default, Intel VMD support is disabled on all CPU PCIe\* root ports in BIOS Setup.

See Table 8, to determine which specific CPU PCIe\* root ports are used to supply the PCIe\* bus lanes for onboard OCuLink connectors.

In BIOS Setup, the Intel VMD support menu can be found under the following menu options:

Advanced -> PCI Configuration -> Volume Management Device

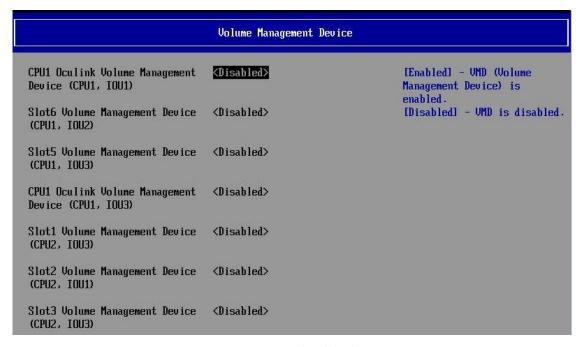



Figure 32. VMD support disabled in BIOS Setup

|                                                       | Volume Management Dev | ice                                    |
|-------------------------------------------------------|-----------------------|----------------------------------------|
| CPU1 Oculink Volume Management<br>Device (CPU1, IOU1) | <enabled></enabled>   | Enable/Disable UMD on this port.       |
| UMD Port 1C (PCIe SSDO)                               | <disabled></disabled> | ************************************** |
| UMD Port 1D (PCIe SSD1)                               | <disabled></disabled> |                                        |
| Slot6 Volume Management Device<br>(CPU1, IOU2)        | <disabled></disabled> |                                        |
| Slot5 Volume Management Device<br>(CPU1, IOU3)        | <disabled></disabled> |                                        |
| CPU1 Oculink Volume Management<br>Device (CPU1, IOU3) | <enabled></enabled>   |                                        |
| VMD Port 3A (PCIe SSD2)                               | <disabled></disabled> |                                        |
| VMD Port 3B (PCIe SSD3)                               | <disabled></disabled> |                                        |
| Slot1 Volume Management Device<br>(CPU2, IOU3)        | <disabled></disabled> |                                        |
| Slot2 Volume Management Device<br>(CPU2, IOU1)        | <disabled></disabled> |                                        |
|                                                       |                       | 4                                      |

Figure 33. VMD support enabled in BIOS Setup

## 6.3.4 Intel® VROC (VMD NVMe RAID) 6.0

Intel® VROC (VMD NVMe RAID) enables NVMe boot on RAID and volume management.

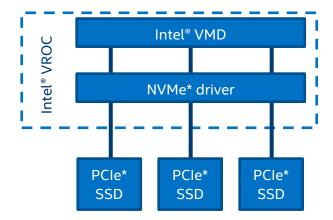



Figure 34. Intel® VROC basic architecture overview

Intel® VROC (VMD NVMe RAID) supports the following:

- I/O processor with controller (ROC) and DRAM.
- No need for battery backup / RAID maintenance free backup unit.
- Protected write back cache software and hardware that allows recovery from a double fault.
- Isolated storage devices from OS for error handling.
- Protected R5 data from OS crash.
- Boot from RAID volumes based on NVMe SSDs within a single Intel VMD domain.
- NVMe SSD hot plug and surprise removal on CPU PCIe\* lanes.
- LED management for CPU PCIe attached storage.
- RAID / storage management using representational state transfer (RESTful) application programming interfaces (APIs).
- Graphical user interface (GUI) for Linux\*.
- 4K native NVme SSD support.

Enabling Intel VROC support requires installation of an optional upgrade key on to the server board as shown in Figure 35. Table 14 identifies available Intel VROC upgrade key options.

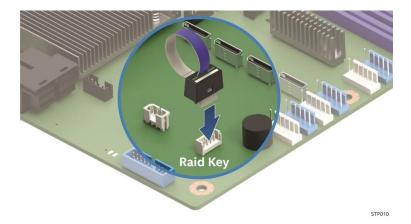



Figure 35. Intel® VROC upgrade key

**Note**: The onboard connector used to support the Intel® VROC (VMD NVMe RAID) upgrade key options is also used to support the Intel® ESRT2 SATA RAID-5 upgrade key.

Table 14. Intel® VROC (VMD NVMe RAID) upgrade key options

| NVMe* RAID Major Features                                                                     | Standard Intel® VROC (iPC VROCSTANMOD) | Premium Intel® VROC (iPC VROCPREMMOD) |
|-----------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------|
| CPU attached NVMe SSD – high perf.                                                            | √                                      | √                                     |
| Boot on RAID volume                                                                           | √                                      | √                                     |
| Third party vendor SSD support                                                                | √                                      | V                                     |
| RAID 0/1/10                                                                                   | √                                      | V                                     |
| RAID 0/1/5/10                                                                                 | -                                      | V                                     |
| RAID write hole closed (BBU replacement)                                                      | -                                      | V                                     |
| Hot plug/ surprise removal (2.5" SSD form factor only; Add-in card form factor not supported) | √                                      | V                                     |
| Enclosure LED management                                                                      | √                                      | √                                     |

**Note**: Intel® VROC Upgrade Keys referenced in the above table are used for PCIe\* NVMe\* SSDs only. For SATA RAID support, see section 6.3.6.

# 6.3.5 Onboard SATA Support

The server board utilizes two Advanced Host Controller Interface (AHCI) SATA controllers embedded within the PCH, identified as SATA and sSATA, providing for up to 12 SATA ports with a data transfer rate of up to 6 Gb/sec.

The AHCI SATA controller supports eight SATA ports:

- Four ports from the Mini-SAS HD (SFF-8643) connector labeled "SATA Ports 0-3"
- Four ports from the Mini-SAS HD (SFF-8643) connector labeled "SATA Ports 4-7"

The AHCI sSATA controller supports up to four SATA ports:

- Two ports routed to the M.2 SSD connectors labeled "M2\_2X\_PCIE\_SSATA\_1" and "M2\_4X\_PCIE\_SSATA\_2"
- Two ports accessed via two white single port 7-pin connectors labeled "sSATA-4" and "sSATA-5"

See section 6.3.1 for details on M.2 SSD support and functionality.

**Note**: The onboard SATA controllers are not compatible with and cannot be used with SAS expander cards.

Table 15. SATA and sSATA Controller Feature Support

| Feature                       | Description                                                                                                                                     | AHCI / RAID<br>Disabled | AHCI / RAID<br>Enabled |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------|
| Native Command Queuing (NCQ)  | Allows the device to reorder commands for more efficient data transfers.                                                                        | N/A                     | Supported              |
| Auto Activate for DMA         | Collapses a DMA setup then DMA activate sequence into a DMA setup only.                                                                         | N/A                     | Supported              |
| Hot Plug Support <sup>1</sup> | Allows for device detection without power being applied and ability to connect and disconnect devices without prior notification to the system. | N/A                     | Supported              |
| Asynchronous Signal Recovery  | Provides a recovery from a loss of signal or establishing communication after hot plug.                                                         | N/A                     | Supported              |
| 6 Gb/s Transfer Rate          | Capable of data transfers up to 6 Gb/s.                                                                                                         | Supported               | Supported              |

| Feature                                                                               | Description                                                                                                                                                | AHCI / RAID<br>Disabled | AHCI / RAID<br>Enabled |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------|
| Advance Technology Attachment with Packet Interface (ATAPI) Asynchronous Notification | A mechanism for a device to send a notification to the host that the device requires attention.                                                            | N/A                     | Supported              |
| Host and Link Initiated Power<br>Management                                           | Capability for the host controller or device to request partial and slumber interface power states.                                                        | N/A                     | Supported              |
| Staggered Spin-Up                                                                     | Enables the host the ability to spin up hard drives sequentially to prevent power load problems on boot.                                                   | Supported               | Supported              |
| Command Completion Coalescing                                                         | Reduces interrupt and completion overhead by allowing a specified number of commands to complete and then generating an interrupt to process the commands. | N/A                     | N/A                    |

<sup>&</sup>lt;sup>1</sup> There is a risk of data loss if a drive that is not part of a fault tolerant RAID is removed.

The SATA controller and the sSATA controller can be independently enabled, disabled, and configured through the BIOS Setup utility under the "Mass Storage Controller Configuration" menu screen. The following table identifies supported setup options.

Table 16. SATA and sSATA controller BIOS utility setup options

| SATA Controller State                   | sSATA Controller State                  | Supported               |
|-----------------------------------------|-----------------------------------------|-------------------------|
| AHCI                                    | AHCI                                    | Yes                     |
| AHCI                                    | Enhanced                                | Yes                     |
| AHCI                                    | Disabled                                | Yes                     |
| AHCI                                    | Intel® VROC (SATA RAID)                 | Yes                     |
| AHCI                                    | Intel Embedded Server RAID Technology 2 | No                      |
| Enhanced                                | AHCI                                    | Yes                     |
| Enhanced                                | Enhanced                                | Yes                     |
| Enhanced                                | Disabled                                | Yes                     |
| Enhanced                                | Intel® VROC (SATA RAID)                 | Yes                     |
| Enhanced                                | Intel Embedded Server RAID Technology 2 | No                      |
| Disabled                                | AHCI                                    | Yes                     |
| Disabled                                | Enhanced                                | Yes                     |
| Disabled                                | Disabled                                | Yes                     |
| Disabled                                | Intel® VROC (SATA RAID)                 | Yes                     |
| Disabled                                | Intel Embedded Server RAID Technology 2 | No                      |
| Intel® VROC (SATA RAID)                 | AHCI                                    | Yes                     |
| Intel® VROC (SATA RAID)                 | Enhanced                                | Yes                     |
| Intel® VROC (SATA RAID)                 | Disabled                                | Yes                     |
| Intel® VROC (SATA RAID)                 | Intel® VROC (SATA RAID)                 | Yes                     |
| Intel® VROC (SATA RAID)                 | Intel Embedded Server RAID Technology 2 | No                      |
| Intel Embedded Server RAID Technology 2 | AHCI                                    | Microsoft Windows* only |
| Intel Embedded Server RAID Technology 2 | Enhanced                                | Yes                     |
| Intel Embedded Server RAID Technology 2 | Disabled                                | Yes                     |
| Intel Embedded Server RAID Technology 2 | Intel® VROC (SATA RAID)                 | No                      |
| Intel Embedded Server RAID Technology 2 | Intel Embedded Server RAID Technology 2 | No                      |

Note: The onboard SATA controllers are not compatible with and cannot be used with SAS expander cards.

## 6.3.5.1 Staggered Disk Spin-Up

Because of the high number of drives that can be attached to the embedded AHCI SATA controllers, the combined startup power demand surge for all drives can be much higher than the normal running power requirements and could require a much larger power supply for startup than for normal operations.

In order to mitigate this and lessen the peak power demand during system startup, both the AHCI SATA controller and the sSATA controller implement a staggered spin-up capability for the attached drives. This allows for the drives to be powered up independently from each other with a delay between each.

The onboard SATA Staggered Disk Spin-up option is configured using the <F2> BIOS Setup Utility. The setup option is identified as "AHCI HDD Staggered Spin-Up" and is found in the "Setup Mass Storage Controller Configuration" screen.

# 6.3.6 Embedded Software RAID Support

The server board has embedded support for two software RAID options:

- Intel® VROC (SATA RAID) 6.0
- Intel® Embedded Server RAID Technology 2 (Intel® ESRT2) 1.60 based on LSI\* MegaRAID software RAID technology

Using the <F2> BIOS Setup utility, accessed during system POST, options are available to enable or disable software RAID, and select which embedded software RAID option to use.

**Note**: The Intel® Server Board S2600ST product family incorporates SATA and sSATA embedded storage. Intel Embedded Server RAID Technology is only supported on the embedded SATA controller.

#### 6.3.6.1 Intel® VROC (SATA RAID) 6.0

Intel® VROC (SATA RAID) 6.0 offers several options for RAID to meet the needs of the given operating environment. AHCI support provides higher performance and alleviates disk bottlenecks by taking advantage of the independent DMA engines that each SATA port offers in the chipset.

- RAID Level 0 provides non-redundant striping of drive volumes with performance scaling of up to six drives, enabling higher throughput for data intensive applications such as video editing.
- RAID Level 1 performs mirroring using two drives of the same capacity and format, which provides
  data security. When using hard drives with different disk revolutions per minute (RPM), functionality is
  not affected.
- RAID Level 5 provides highly efficient storage while maintaining fault-tolerance on three or more drives. By striping parity, and rotating it across all disks, fault tolerance of any single drive is achieved while only consuming one drive worth of capacity. That is, a three drive RAID 5 has the capacity of two drives, or a four drive RAID 5 has the capacity of three drives. RAID 5 has high read transaction rates, with a medium write rate. RAID 5 is well suited for applications that require high amounts of storage while maintaining fault tolerance.
- RAID Level 10 provides high levels of storage performance with data protection, combining the fault-tolerance of RAID Level 1 with the performance of RAID Level 0. By striping RAID Level 1 segments, high I/O rates can be achieved on systems that require both performance and fault-tolerance. RAID Level 10 requires four hard drives and provides the capacity of two drives.

Note: RAID configurations cannot span across the two embedded AHCI SATA controllers.

By using Intel® VROC (SATA RAID), there is no loss of PCI resources (request/grant pair) or add-in card slot. Intel® VROC (SATA RAID) functionality must meet the following requirements.

- The software RAID option must be enabled in BIOS Setup
- The Intel® VROC (SATA RAID) option must be selected in BIOS Setup
- Intel® VROC (SATA RAID) drivers must be loaded for the installed operating system
- At least two SATA drives are needed to support RAID levels 0 or 1
- At least three SATA drives are needed to support RAID level 5
- At least four SATA drives are needed to support RAID level 10

With Intel® VROC (SATA RAID) software RAID enabled, the following features are made available:

- A boot-time, pre-operating system environment, text mode user interface that allows the user to manage the RAID configuration on the system. Its feature set is kept simple to keep size to a minimum, but allows the user to create and delete RAID volumes and select recovery options when problems occur. The user interface can be accessed by pressing <CTRL-I> during system POST.
- Boot support when using a RAID volume as a boot disk. It does this by providing Int13 services when
  a RAID volume needs to be accessed by MS-DOS applications (such as NT loader (NTLDR)) and by
  exporting the RAID volumes to the system BIOS for selection in the boot order.
- At each boot up, a status of the RAID volumes provided to the user.

## 6.3.6.2 Intel® Embedded Server RAID Technology 2 (Intel® ESRT2) 1.60

Intel® Embedded Server RAID Technology 2 is based on the LSI\* MegaRAID software stack and utilizes the system memory and CPU.

Intel® ESRT2 supports the following RAID levels.

- **RAID Level 0** provides non-redundant striping of drive volumes with performance scaling up to six drives, enabling higher throughput for data intensive applications such as video editing.
- RAID Level 1 performs mirroring using two drives of the same capacity and format, which provides
  data security. When using hard drives with different disk revolutions per minute (RPM), functionality is
  not affected.
- RAID Level 10 provides high levels of storage performance with data protection, combining the fault-tolerance of RAID Level 1 with the performance of RAID Level 0. By striping RAID Level 1 segments, high I/O rates can be achieved on systems that require both performance and fault-tolerance. RAID Level 10 requires four hard drives and provides the capacity of two drives.

Optional support for RAID Level 5 can be enabled with the addition of a RAID 5 upgrade key (iPN - RKSATA4R5).

RAID Level 5 provides highly efficient storage while maintaining fault-tolerance on three or more
drives. By striping parity, and rotating it across all disks, fault tolerance of any single drive is achieved
while only consuming one drive worth of capacity. That is, a three-drive RAID 5 has the capacity of
two drives, or a four-drive RAID 5 has the capacity of three drives. RAID 5 has high read transaction
rates, with a medium write rate. RAID 5 is well suited for applications that require high amounts of
storage while maintaining fault tolerance.

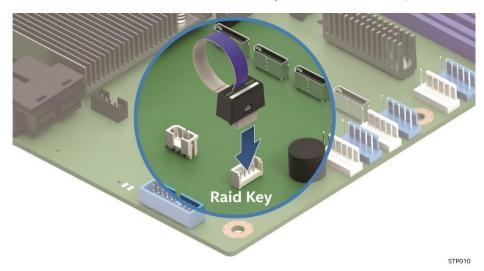



Figure 36. SATA RAID 5 upgrade key

**Note**: The onboard connector used to provide support for the Intel® ESRT2 SATA RAID-5 upgrade key is also used to support the Intel® VROC (VMD NVMe RAID) upgrade key options.

Note: RAID configurations cannot span across the two embedded AHCI SATA controllers.

Intel Embedded Server RAID Technology 2 on this server board supports a maximum of six drives, which is the maximum onboard SATA port support.

The binary driver includes partial source files. The driver is fully open source using an MDRAID layer in Linux\*.

## 6.4 Network Interface

The Intel® Server Board S2600ST product family is offered with two onboard Ethernet ports. In addition, an optional LAN riser accessory card can be installed to support two SFP+ ports. All onboard Ethernet ports are managed by the Intel® Ethernet Connection 722 controller. This section describes both interfaces.

## 6.4.1 Onboard Ethernet Ports

On the back edge of the server board are two 10 Gbit Ethernet ports. They are identified as ports 1 and 2 in the BIOS Setup utility.

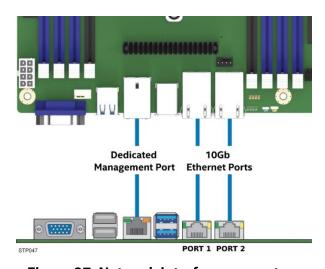



Figure 37. Network interface connectors

Each Ethernet port has two LEDs as shown in Figure 38. The LED at the left of the connector is the link/activity LED and indicates network connection when on, and transmit/receive activity when blinking. The LED at the right of the connector indicates link speed as described in Table 17.

Link/Activity Speed LED

Figure 38. External RJ45 network interface controller (NIC) port LED definition

Table 17. Onboard Network interface controller (NIC) LED Definition

| LED                  | LED State      | NIC State                               |
|----------------------|----------------|-----------------------------------------|
|                      | Off            | LAN link is not established.            |
| Link/Activity (left) | Solid green    | LAN link is established.                |
|                      | Blinking green | Transmit or receive activity.           |
| Link Speed (right)   | Solid amber    | Mid-range supported data rate (1 Gbps). |
|                      | Solid green    | Highest supported data rate (10 Gbps).  |

## 6.4.2 SFP+ LAN Riser Option

The Intel® Server Board S2600ST product family offers SFP+ 10Gbps connectivity, through an optional LAN riser accessory card. The network controller is integrated into the Platform Controller Hub (PCH) and the riser accessory card provides the physical interface.

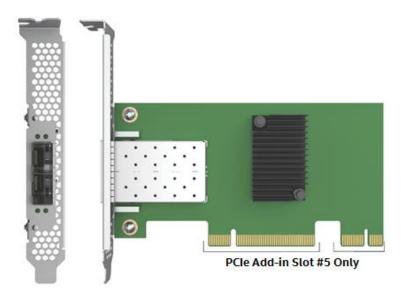



Figure 39. SFP+ LAN Riser Option

The SFP+ LAN Riser option is only supported when installed into PCIe add-in slot #5 on the server board, which includes an expansion connector allowing for communication to the onboard PCH and BMC. The SFP+ LAN Riser option can be used in single or dual processor configurations.

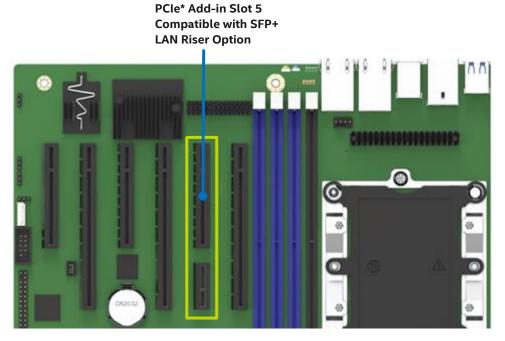



Figure 40. SFP+ LAN Riser Option Support

When the system is powered on, BIOS detects the presence of the SFP+ LAN riser, enables the network controller in the PCH, and assigns LAN ports 3 and 4 to the riser SFP+ connectors.

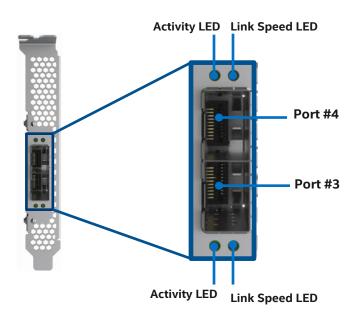



Table 18. SFP+ LAN Riser LED Definition

| LED                  | LED State      | NIC State                           |
|----------------------|----------------|-------------------------------------|
|                      | Off            | LAN link is not established.        |
| Link/Activity (left) | Solid green    | LAN link is established.            |
|                      | Blinking green | Transmit or receive activity.       |
| Link Speed (right)   | Solid amber    | Low supported data rate (1 Gbps).   |
|                      | Solid green    | High supported data rate (10 Gbps). |

**Important:** BIOS settings always display 4 Ethernet ports. In order to enable ports 3 and 4, the LAN riser is required to be installed

# 7. System Security

The server board supports a variety of system security options designed to prevent unauthorized system access or tampering of server settings. System security options supported include:

- Password protection
- Front panel lockout
- Trusted Platform Module (TPM) support
- Intel® Trusted Execution Technology (Intel® TXT)

# 7.1 BIOS Setup Utility Security Option Configuration

The <F2> BIOS Setup utility, accessed during POST, includes a "Security" tab to configure passwords, front panel lockout, and TPM settings.

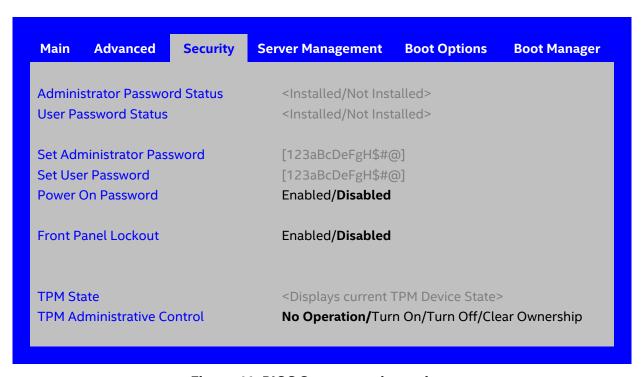



Figure 41. BIOS Setup security options

## 7.2 BIOS Password Protection

The BIOS uses passwords to prevent unauthorized tampering with the server setup. Passwords can restrict entry to BIOS Setup, restrict use of the boot pop-up menu, and suppress automatic USB device reordering. There is also an option to require a power on password to boot the system. If the "Power On Password" function is enabled in BIOS Setup, the BIOS halts early in POST to request a password before continuing. Both administrator and user passwords are supported by the BIOS. An administrator password must be installed before setting the user password. The maximum length of a password is 14 characters. A password can have alphanumeric (a-z, A-Z, 0-9) characters and is case sensitive. Certain special characters are also allowed, from the following set:

```
! @ # $ % ^ & * ( ) - + = ?
```

The administrator and user passwords must be different from each other. An error message is displayed if there is an attempt to enter the same password for one as for the other. The use of strong passwords is encouraged, but not required. A strong password is at least eight characters in length, and must include at

least one each of alphabetic, numeric, and special characters. If a weak password is entered, a popup warning message is displayed before the weak password is accepted.

Once set, a password can be cleared by changing it to a null string. This requires the administrator password, and must be done through BIOS Setup or other explicit means of changing the passwords. Clearing the administrator password also clears the user password.

If necessary, the passwords can be cleared by using the password clear jumper (see Chapter 10.5.3). Resetting the BIOS configuration settings to the default values (by any method) has no effect on the administrator or user passwords.

Entering the user password allows the user to modify only the system time and system date in the BIOS Setup main screen. Other fields can be modified only if the administrator password has been entered. If any password is set, a password is required to enter BIOS Setup.

The administrator has control over all fields in BIOS Setup, including the ability to clear the user password and the administrator password.

It is strongly recommended to set at least an administrator password to prevent everyone who boots the system the equivalent of administrative access. Unless an administrator password is installed, any user can go into BIOS Setup and change the BIOS settings at will.

In addition to restricting access to most fields to viewing only when a user password is entered, defining a user password imposes restrictions on booting the system. To simply boot in the defined boot order, no password is required. However, the boot pop-up menu, accessed by entering **<F6>** during POST, requires the administrator password. Refer to section 2.5.1.2 for more information on the boot pop-up menu.

Also, a user password does not allow USB reordering when a new USB boot device is attached to the system. A user is restricted from booting in anything other than the boot order defined in BIOS Setup by an administrator.

As a security measure, if a user or administrator enters an incorrect password three times in a row during the boot sequence, the system is placed into a halt state. A system reset is required to exit out of the halt state. This feature makes it more difficult to guess or break a password.

In addition, on the next successful reboot, the error manager displays major error code 0048 and logs an SEL event to alert the authorized user or administrator that a password access failure has occurred.

# 7.3 Trusted Platform Module (TPM) Support

The Trusted Platform Module (TPM) option is a hardware-based security device that addresses the growing concern on boot process integrity and offers better data protection. TPM protects the system start-up process by ensuring it is tamper-free before releasing system control to the operating system. A TPM device provides secured storage to store data, such as security keys and passwords. In addition, a TPM device has encryption and hash functions. The server board implements TPM as per *TPM Main Specification Level 2 Version 1.2* by the Trusted Computing Group (TCG).

A TPM device is optionally installed onto a high density 12-pin connector labeled "TPM" on the server board, and is secured from external software attacks and physical theft.

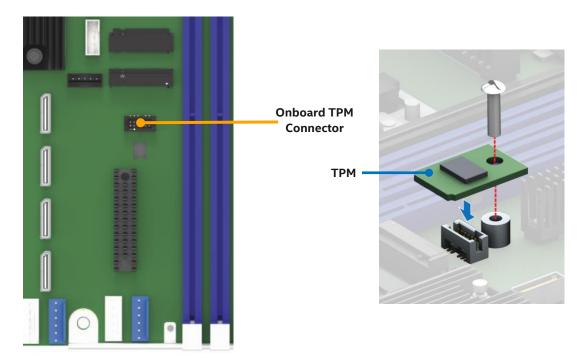



Figure 42. Onboard TPM Connector

A pre-boot environment, such as the BIOS and operating system loader, uses the TPM to collect and store unique measurements from multiple factors within the boot process to create a system fingerprint. This unique fingerprint remains the same unless the pre-boot environment is tampered with. Therefore, it is used to compare to future measurements to verify the integrity of the boot process.

After the system BIOS completes the measurement of its boot process, it hands off control to the operating system loader and, in turn, to the operating system. If the operating system is TPM-enabled, it compares the BIOS TPM measurements to those of previous boots to make sure the system was not tampered with before continuing the operating system boot process. Once the operating system is in operation, it optionally uses TPM to provide additional system and data security. (For example, Enterprise versions of Windows Vista\* and later support Windows\* BitLocker\* Drive Encryption.)

#### 7.3.1 TPM Security BIOS

The BIOS TPM support conforms to the TPM PC Client Specific Implementation Specification for Conventional BIOS, the PC Client Specific TPM Interface Specification, and the Microsoft Windows\* BitLocker\* Requirements. The role of the BIOS for TPM security includes the following features.

- Measures and stores the boot process in the TPM microcontroller to allow a TPM-enabled operating system to verify system boot integrity.
- Produces extensible firmware interface (EFI) and legacy interfaces to a TPM-enabled operating system for using TPM.
- Produces Advanced Configuration and Power Interface (ACPI) TPM device and methods to allow a TPM-enabled operating system to send TPM administrative command requests to the BIOS.
- Verifies operator physical presence. Confirms and executes operating system TPM administrative command requests.
- Provides BIOS Setup options to change TPM security states and to clear TPM ownership.

For additional details, refer to the TCG PC Client Specific Implementation Specification for Conventional BIOS, the TCG PC Client Platform Physical Presence Interface Specification, and the Microsoft Windows\* BitLocker\* Requirements documents.

## 7.3.2 Physical Presence

Administrative operations to the TPM require TPM ownership or physical presence indication by the operator to confirm the execution of administrative operations. The BIOS implements the operator presence indication by verifying the BIOS Setup administrator password.

A TPM administrative sequence invoked from the operating system proceeds as follows:

- 1. A user makes a TPM administrative request through the operating system's security software.
- 2. The operating system requests the BIOS to execute the TPM administrative command through TPM ACPI methods and then resets the system.
- 3. The BIOS verifies the physical presence and confirms the command with the operator.
- 4. The BIOS executes TPM administrative command, inhibits BIOS Setup entry, and boots directly to the operating system, which requested the TPM command.

## 7.3.3 TPM Security Setup Options

BIOS TPM setup allows the operator to view the current TPM state and to carry out rudimentary TPM administrative operations. Performing TPM administrative options through BIOS Setup requires TPM physical presence verification.

BIOS TPM setup displays the current state of the TPM, as described in Table 19. Note that while using TPM, a TPM-enabled operating system or application may change the TPM state independently of BIOS Setup. When an operating system modifies the TPM state, BIOS Setup displays the updated TPM state.

| TPM State                | Description                                                                                                                                                                                                  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Enabled and Activated    | An enabled and activated TPM device executes all commands that use TPM functions. TPM security operations are available.                                                                                     |  |
| Enabled and Deactivated  | An enabled and deactivated TPM device does not execute commands that use TPM functions. TPM security operations are not available, except setting of TPM ownership, which is allowed if not present already. |  |
| Disabled and Activated   | A disabled TPM device does not execute commands that use TPM functions. TPM security operations are not available.                                                                                           |  |
| Disabled and Deactivated | A disabled TPM device does not execute commands that use TPM functions. TPM security operations are not available.                                                                                           |  |

Table 19. BIOS security configuration TPM states

Using BIOS TPM setup, the operator can turn TPM functionality on and off and clear the TPM ownership contents. After the requested TPM BIOS Setup operation is carried out, the option reverts to **No Operation**. The BIOS Setup TPM **Clear Ownership** option allows the operator to clear the TPM ownership key and allows the operator to take control of the system with TPM. Use this option to clear security settings for a newly initialized system or to clear a system for which the TPM ownership security key was lost.

The TPM administrative control options are described in Table 20.

Table 20. BIOS security configuration TPM administrative controls

| TPM Administrative Control | Description                                                                                                                |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------|--|
| No Operation               | No changes to the current state. Note that the BIOS setting returns to <b>No Operation</b> on every boot cycle by default. |  |
| Turn On                    | Enables and activates TPM.                                                                                                 |  |
| Turn Off                   | Disables and deactivates TPM.                                                                                              |  |
| Clear Ownership            | Removes the TPM ownership authentication and returns the TPM to a factory default states.                                  |  |

# 7.4 Intel® Trusted Execution Technology (Intel® TXT)

The Intel® Xeon® processor Scalable family supports Intel® Trusted Execution Technology (Intel® TXT), which is a robust security environment. Designed to help protect against software-based attacks, Intel TXT integrates new security features and capabilities into the processor, chipset, and other platform components. When used in conjunction with Intel® Virtualization Technology, Intel TXT provides hardware-rooted trust for your virtual applications.

This hardware-rooted security provides a general-purpose, safer computing environment capable of running a wide variety of operating systems and applications to increase the confidentiality and integrity of sensitive information without compromising the usability of the platform.

Intel TXT requires a computer system with Intel Virtualization Technology enabled (both Intel VT-x and Intel VT-d), an Intel TXT-enabled processor, chipset, and BIOS, Authenticated Code Modules, and an Intel TXT compatible measured launched environment (MLE). The MLE could consist of a virtual machine monitor, an OS, or an application. In addition, Intel TXT requires the system to include a TPM v1.2, as defined by the *Trusted Computing Group TPM Main Specification, Level 2 Revision 1.2*.

When available, Intel TXT can be enabled or disabled in the processor with a BIOS Setup option. For general information about Intel TXT, visit <a href="http://www.intel.com/technology/security/">http://www.intel.com/technology/security/</a>.

# 8. Platform Management

Platform management is supported by several hardware and software components integrated on the server board that work together to:

- Control system functions power system, ACPI, system reset control, system initialization, front panel interface, system event log.
- Monitor various board and system sensors and regulate platform thermals and performance to maintain (when possible) server functionality in the event of component failure and/or environmentally stressed conditions.
- Monitor and report system health.
- Provide an interface for Intel® Server Management software applications.

This chapter provides a high level overview of the platform management features and functionality implemented on the server board.

The Intel® Server System *BMC Firmware External Product Specification (EPS)* and the Intel® Server System *BIOS External Product Specification (EPS)* for Intel® Server Products based on Intel® Xeon® processor Scalable family should be referenced for more in-depth and design-level platform management information.

# 8.1 Management Feature Set Overview

The following sections outline features that the integrated BMC firmware can support. Support and utilization for some features is dependent on the server platform in which the server board is integrated and any additional system level components and options that may be installed.

## 8.1.1 IPMI 2.0 Features Overview

The baseboard management controller (BMC) supports the following IPMI 2.0 features:

- IPMI watchdog timer.
- Messaging support, including command bridging and user/session support.
- Chassis device functionality, including power/reset control and BIOS boot flags support.
- Event receiver device to receive and process events from other platform subsystems.
- Access to system Field Replaceable Unit (FRU) devices using IPMI FRU commands.
- System Event Log (SEL) device functionality including SEL Severity Tracking and Extended SEL.
- Storage of and access to system Sensor Data Records (SDRs).
- Sensor device management and polling to monitor and report system health.
- IPMI interfaces
  - Host interfaces including system management software (SMS) with receive message queue support and server management mode (SMM)
  - o Intelligent platform management bus (IPMB) interface
  - LAN interface that supports the IPMI-over-LAN protocol (RMCP, RMCP+)
- Serial-over-LAN (SOL)
- ACPI state synchronization to state changes provided by the BIOS.
- Initialization and runtime self-tests including making results available to external entities.

See also the Intelligent Platform Management Interface Specification Second Generation v2.0.

## 8.1.2 Non-IPMI Features Overview

The BMC supports the following non-IPMI features.

- In-circuit BMC firmware update.
- Fault resilient booting (FRB) including FRB2 supported by the watchdog timer functionality.
- Chassis intrusion detection (dependent on platform support).
- Fan speed control with SDR, fan redundancy monitoring, and support.
- Enhancements to fan speed control.
- Power supply redundancy monitoring and support.
- Hot-swap fan support.
- Acoustic management and support for multiple fan profiles.
- Test commands for setting and getting platform signal states.
- Diagnostic beep codes for fault conditions.
- System globally unique identifier (GUID) storage and retrieval.
- Front panel management including system status LED and chassis ID LED (turned on using a front panel button or command), secure lockout of certain front panel functionality, and button press monitoring.
- Power state retention.
- Power fault analysis.
- Intel<sup>®</sup> Light-Guided Diagnostics.
- Power unit management including support for power unit sensor and handling of power-good dropout conditions.
- DIMM temperature monitoring facilitating new sensors and improved acoustic management using closed-loop fan control algorithm taking into account DIMM temperature readings.
- Sending and responding to Address Resolution Protocols (ARPs) (supported on embedded NICs).
- Dynamic Host Configuration Protocol (DHCP) (supported on embedded NICs).
- Platform environment control interface (PECI) thermal management support.
- · Email alerting.
- Support for embedded web server UI in Basic Manageability feature set.
- Enhancements to embedded web server.
  - o Human-readable SEL.
  - o Additional system configurability.
  - o Additional system monitoring capability.
  - Enhanced online help.
- Integrated keyboard, video, and mouse (KVM).
- Enhancements to KVM redirection.
  - Support for higher resolution.
- Integrated Remote Media Redirection.
- Lightweight Directory Access Protocol (LDAP) support.
- Intel® Intelligent Power Node Manager support.
- Embedded platform debug feature, which allows capture of detailed data for later analysis.
- Provisioning and inventory enhancements.
  - o Inventory data/system information export (partial SMBIOS table).
- DCMI 1.5 compliance (product SKU specific).
- Management support for Power Management Bus (PMBus\*) 1.2 compliant power supplies.
- BMC data repository (managed data region feature).
- System airflow monitoring.
- Exit air temperature monitoring.
- Ethernet controller thermal monitoring.
- Global aggregate temperature margin sensor.
- Memory thermal management.

- Power supply fan sensors.
- ENERGY STAR\* server support.
- Smart ride through (SmaRT) / closed-loop system throttling (CLST).
- Power supply cold redundancy.
- Power supply firmware update.
- Power supply compatibility check.
- BMC firmware reliability enhancements:
- Redundant BMC boot blocks to avoid possibility of a corrupted boot block resulting in a scenario that prevents a user from updating the BMC.
- BMC system management health monitoring.

# 8.2 Platform Management Features and Functions

# 8.2.1 Power Subsystem

The server board supports several power control sources, which can initiate power-up or power-down activity as detailed in Table 21.

Table 21. Power control sources

| Source External Signal Name or Internal Subsystem                |                                  | Capability                            |
|------------------------------------------------------------------|----------------------------------|---------------------------------------|
| Power button                                                     | Front panel power button         | Turns power on or off                 |
| BMC watchdog timer                                               | Internal BMC timer               | Turns power off, or power cycle       |
| BMC chassis control<br>Commands                                  | Routed through command processor | Turns power on or off, or power cycle |
| Power state retention Implemented by means of BMC internal logic |                                  | Turns power on when AC power returns  |
| Chipset Sleep S4/S5 signal (same as POWER_ON)                    |                                  | Turns power on or off                 |
| CPU Thermal                                                      | Processor Thermtrip              | Turns power off                       |
| PCH Thermal                                                      | PCH Thermtrip                    | Turns power off                       |
| WOL (Wake On LAN)                                                | LAN                              | Turns power on                        |

## 8.2.2 Advanced Configuration and Power Interface (ACPI)

The server board has support for Advanced Configuration and Power Interface (ACPI) states as detailed in Table 22.

Table 22. ACPI power states

| State      | Supported | Description                                                                                                                                                                                                        |  |
|------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <b>S</b> 0 | Yes       | <ul> <li>Working.</li> <li>Front panel power LED is on (not controlled by the BMC).</li> <li>Fans spin at the normal speed, as determined by sensor inputs.</li> <li>Front panel buttons work normally.</li> </ul> |  |
| <b>S</b> 1 | No        | Not supported.                                                                                                                                                                                                     |  |
| S2         | No        | Not supported.                                                                                                                                                                                                     |  |
| <b>S</b> 3 | No        | Supported only on workstation platforms. See appropriate platform specific Information for more information.                                                                                                       |  |
| <b>S4</b>  | No        | Not supported.                                                                                                                                                                                                     |  |
| <b>S</b> 5 | Yes       | Soft off.  Front panel buttons are not locked.  Fans are stopped.  Power-up process goes through the normal boot process.  Power, reset, front panel non-maskable interrupt (NMI), and ID buttons are unlocked.    |  |

During system initialization, both the BIOS and the BMC initialize the features detailed in the following sections.

## 8.2.2.1 Processor Tcontrol Setting

Processors used with this chipset implement a feature called Tcontrol, which provides a processor-specific value that can be used to adjust the fan-control behavior to achieve optimum cooling and acoustics. The BMC reads these from the CPU through a PECI proxy mechanism provided by the Intel® Management Engine (Intel® ME). The BMC uses these values as part of the fan-speed-control algorithm.

## 8.2.2.2 Fault Resilient Booting (FRB)

Fault resilient booting (FRB) is a set of BIOS and BMC algorithms and hardware support that allow a multiprocessor system to boot even if the bootstrap processor (BSP) fails. Only FRB2 is supported using watchdog timer commands.

FRB2 refers to the FRB algorithm that detects system failures during POST. The BIOS uses the BMC watchdog timer to back up its operation during POST. The BIOS configures the watchdog timer to indicate that the BIOS is using the timer for the FRB2 phase of the boot operation.

After the BIOS has identified and saved the BSP information, it sets the FRB2 timer use bit and loads the watchdog timer with the new timeout interval.

If the watchdog timer expires while the watchdog use bit is set to FRB2, the BMC (if so configured) logs a watchdog expiration event showing the FRB2 timeout in the event data bytes. The BMC then hard resets the system, assuming the BIOS-selected reset as the watchdog timeout action.

The BIOS is responsible for disabling the FRB2 timeout before initiating the option ROM scan and before displaying a request for a boot password. If the processor fails and causes an FRB2 timeout, the BMC resets the system.

The BIOS gets the watchdog expiration status from the BMC. If the status shows an expired FRB2 timer, the BIOS enters the failure in the system event log (SEL). In the OEM bytes entry in the SEL, the last POST code generated during the previous boot attempt is written. FRB2 failure is not reflected in the processor status sensor value.

The FRB2 failure does not affect the front panel LEDs.

## 8.2.2.3 Post Code Display

The BMC, upon receiving standby power, initializes internal hardware to monitor port 80h (POST code) writes. Data written to port 80h is output to the system POST LEDs.

The BMC will deactivate POST LEDs after POST completes.

#### 8.2.3 Watchdog Timer

The BMC implements a fully IPMI 2.0 compatible watchdog timer. For details, see the *Intelligent Platform Management Interface Specification Second Generation v2.0*. The NMI/diagnostic interrupt for an IPMI 2.0 watchdog timer is associated with an NMI. A watchdog pre-timeout SMI or equivalent signal assertion is not supported.

## 8.2.4 System Event Log (SEL)

The BMC implements the system event log as specified in the *Intelligent Platform Management Interface Specification, Version 2.0.* The SEL is accessible regardless of the system power state through the BMC's inband and out-of-band interfaces.

The BMC allocates 95,231 bytes (approximately 93 KB) of non-volatile storage space to store system events. The SEL timestamps may not be in order. Up to 3,639 SEL records can be stored at a time. Because the SEL is circular, any command that results in an overflow of the SEL beyond the allocated space overwrites the oldest entries in the SEL, while setting the overflow flag.

# 8.3 Sensor Monitoring

The BMC monitors system hardware and reports system health. The information gathered from physical sensors is translated into IPMI sensors as part of the IPMI sensor model. The BMC also reports various system state changes by maintaining virtual sensors that are not specifically tied to physical hardware. This section describes general aspects of BMC sensor management as well as describing how specific sensor types are modeled. Unless otherwise specified, the term sensor refers to the IPMI sensor model definition of a sensor.

- Sensor scanning
- BIOS event-only sensors
- Margin sensors
- IPMI watchdog sensor
- BMC watchdog sensor
- BMC system management health monitoring
- VR watchdog timer
- System airflow monitoring sensors valid for Intel® Server Chassis only
- Fan monitoring sensors
- Thermal monitoring sensors
- Voltage monitoring sensors
- CATERR sensor
- LAN leash event monitoring
- CMOS battery monitoring
- NMI (diagnostic interrupt) sensor

#### 8.3.1 Sensor Re-arm Behavior

Sensors can be either manual or automatic re-arm sensors. An automatic re-arm sensor re-arms (clears) the assertion event state for a threshold or offset if that threshold or offset is de-asserted after having been asserted. This allows a subsequent assertion of the threshold or an offset to generate a new event and associated side-effect. An example side-effect is boosting fans due to an upper critical threshold crossing of a temperature sensor. The event state and the input state (value) of the sensor track each other. Most sensors are auto re-arm.

A manual re-arm sensor does not clear the assertion state even when the threshold or offset becomes deasserted. In this case, the event state and the input state (value) of the sensor do not track each other. The event assertion state is sticky. The following methods can be used to re-arm a sensor:

- Automatic re-arm Only applies to sensors that are designated as auto re-arm.
- IPMI command Re-arm sensor event.
- BMC internal method The BMC may re-arm certain sensors due to a trigger condition. For example, some sensors may be re-armed due to a system reset. A BMC reset re-arms all sensors.
- System reset or DC power cycle re-arms all system fan sensors.

# 8.3.2 Thermal Monitoring

The BMC provides monitoring of component and board temperature sensing devices. This monitoring capability is instantiated in the form of IPMI analog/threshold or discrete sensors, depending on the nature of the measurement.

For analog/threshold sensors, except for processor temperature sensors, critical and non-critical thresholds (upper and lower) are set through SDRs and event generation enabled for both assertion and de-assertion events.

For discrete sensors, both assertion and de-assertion event generation are enabled.

Mandatory monitoring of platform thermal sensors includes:

- Inlet temperature (physical sensor is typically on system front panel or hard disk drive (HDD) backplane)
- Board ambient thermal sensors
- Processor temperature
- · Memory (DIMM) temperature
- CPU Voltage Regulator-Down (VRD) hot monitoring
- Power supply unit (PSU) inlet temperature (only supported for PMBus\*-compliant PSUs)

Additionally, the BMC firmware may create virtual sensors that are based on a combination or aggregation of multiple physical thermal sensors and applications of a mathematical formula to thermal or power sensor readings.

# 8.4 Standard Fan Management

The BMC controls and monitors the system fans. Each fan is associated with a fan speed sensor that detects fan failure and may also be associated with a fan presence sensor for hot-swap support. For redundant fan configurations, the fan failure and presence status determines the fan redundancy sensor state.

The system fans are divided into fan domains, each of which has a separate fan speed control signal and a separate configurable fan control policy. A fan domain can have a set of temperature and fan sensors associated with it. These are used to determine the current fan domain state.

A fan domain has three states: sleep, boost, and nominal. The sleep and boost states have fixed (but configurable through OEM SDRs) fan speeds associated with them. The nominal state has a variable speed determined by the fan domain policy. An OEM SDR record is used to configure the fan domain policy. The fan domain state is controlled by several factors. The factors for the boost state are listed below in order of precedence, high to low.

- An associated fan is in a critical state or missing. The SDR describes which fan domains are boosted in response to a fan failure or removal in each domain. If a fan is removed when the system is in fans-off mode, it is not detected and there is not any fan boost until the system comes out of fans-off mode.
- Any associated temperature sensor is in a critical state. The SDR describes which temperature-threshold violations cause fan boost for each fan domain.
- The BMC is in firmware update mode, or the operational firmware is corrupted.

If any of the above conditions apply, the fans are set to a fixed boost state speed.

A fan domain's nominal fan speed can be configured as static (fixed value) or controlled by the state of one or more associated temperature sensors.

## 8.4.1 Hot-Swap Fans

Hot-swap fans, which can be removed and replaced while the system is powered on and operating, are supported. The BMC implements fan presence sensors for each hot-swappable fan.

When a fan is not present, the associated fan speed sensor is put into the reading/unavailable state, and any associated fan domains are put into the boost state. The fans may already be boosted due to a previous fan failure or fan removal.

When a removed fan is replaced, the associated fan speed sensor is re-armed. If there are no other critical conditions causing a fan boost condition, the fan speed returns to the nominal state. Power cycling or resetting the system re-arms the fan speed sensors and clears fan failure conditions. If the failure condition is still present, the boost state returns once the sensor has re-initialized and the threshold violation is detected again.

#### 8.4.1.1 Fan Redundancy Detection

The BMC supports redundant fan monitoring and implements a fan redundancy sensor. A fan redundancy sensor generates events when its associated set of fans transitions between redundant and non-redundant states, as determined by the number and health of the fans. The definition of fan redundancy is configuration dependent. The BMC allows redundancy to be configured on a per fan redundancy sensor basis through OEM SDR records.

A fan failure or removal of hot-swap fans up to the number of redundant fans specified in the SDR in a fan configuration is a non-critical failure and is reflected in the front panel status. A fan failure or removal that exceeds the number of redundant fans is a non-fatal, insufficient-resources condition and is reflected in the front panel status as a non-fatal error.

Redundancy is checked only when the system is in the DC-on state. Fan redundancy changes that occur when the system is DC-off or when AC is removed are not logged until the system is turned on.

#### 8.4.2 Fan Domains

System fan speeds are controlled through Pulse Width Modulation (PWM) signals, which are driven separately for each domain by integrated PWM hardware. Fan speed is changed by adjusting the duty cycle, which is the percentage of time the signal is driven high in each pulse.

The BMC controls the average duty cycle of each PWM signal through direct manipulation of the integrated PWM control registers. The same device may drive multiple PWM signals.

## 8.4.3 Thermal and Acoustic Management

This feature refers to enhanced fan management to keep the system optimally cooled while reducing the amount of noise generated by the system fans. Aggressive acoustics standards might require a trade-off between fan speed and system performance parameters that contribute to the cooling requirements, primarily memory bandwidth. The BIOS, BMC, and SDRs work together to provide control over how this trade-off is determined.

This capability requires the BMC to access temperature sensors on the individual memory DIMMs. Additionally, closed-loop thermal throttling is only supported for DIMMs with temperature sensors.

## 8.4.4 Thermal Sensor Input to Fan Speed Control

The BMC uses various IPMI sensors as an input to the fan speed control. Some of the sensors are IPMI models of actual physical sensors whereas some are virtual sensors whose values are derived from physical sensors using calculations and/or tabular information.

The following IPMI thermal sensors are used as the input to the fan speed control:

- Baseboard temperature sensors,
- CPU digital thermal sensor (DTS)-spec margin sensors,
- DIMM thermal margin sensors,
- Exit air temperature sensor,
- PCH temperature sensor,
- Global aggregate thermal margin sensors,
- SSB (Intel® C620 Series Chipset) temperature sensor,
- Onboard Ethernet controller temperature sensors (support for this is specific to the Ethernet controller being used),
- Onboard SAS controller temperature sensors (when available),
- CPU VR temperature sensor,

- DIMM VR temperature sensor,
- BMC temperature sensor, and
- DIMM VRM temperature sensor.

Figure 43 shows a high-level representation of the fan speed control structure that determines fan speed.

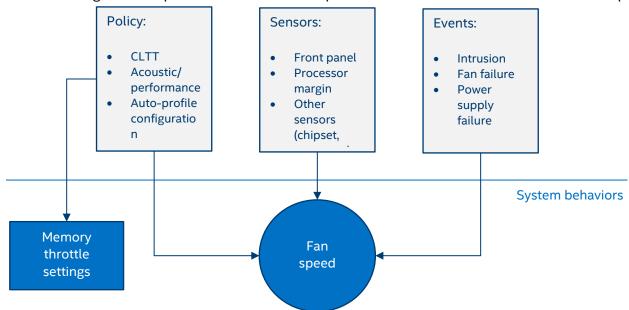



Figure 43. High-level fan speed control process

#### 8.4.4.1 Fan Boosting Due to Fan Failures

Each fan failure is able to define a unique response from all other fan domains. An OEM SDR table defines the response of each fan domain based on a failure of any fan, including both system and power supply fans (for PMBus\*-compliant power supplies only). This means that if a system has six fans, there are six different fan fail reactions.

# 8.5 Memory Thermal Management

The system memory is the most complex subsystem to thermally manage, as it requires substantial interactions between the BMC, BIOS, and the embedded memory controller hardware. This section provides an overview of this management capability from a BMC perspective.

#### 8.5.1.1 Memory Thermal Throttling

The system only supports thermal management through closed-loop thermal throttling (CLTT). Throttling levels are changed dynamically to cap throttling based on memory and system thermal conditions as determined by the system and DIMM power and thermal parameters. The BMC fan speed control functionality is related to the memory throttling mechanism used.

The following terminology is used for the various memory throttling options:

- Static Closed-Loop Thermal Throttling (Static-CLTT): CLTT control registers are configured by the BIOS Memory Reference Code (MRC) during POST. The memory throttling is run as a closed-loop system with the DIMM temperature sensors as the control input. Otherwise, the system does not change any of the throttling control registers in the embedded memory controller during runtime.
- Dynamic Closed-Loop Thermal Throttling (Dynamic-CLTT): CLTT control registers are configured by BIOS MRC during POST. The memory throttling is run as a closed-loop system with the DIMM temperature sensors as the control input. Adjustments are made to the throttling during runtime based on changes in system cooling (fan speed).

Intel® Server Systems supporting the Intel® Xeon® processor Scalable family support a type of CLTT, called Hybrid-CLTT, for which the integrated memory controller estimates the DRAM temperature in between actual reads of the TSODs. Hybrid-CLTT is used on all Intel® Server Systems supporting the Intel® Xeon® processor Scalable family that have DIMMs with thermal sensors. Therefore, the terms Dynamic-CLTT and Static-CLTT are really referring to this "hybrid" mode. Note that if the IMC's polling of the TSODs is interrupted, the temperature readings that the BMC gets from the IMC are these estimated values.

## 8.5.1.2 Dynamic (Hybrid) CLTT

The system will support dynamic (memory) CLTT for which the BMC firmware dynamically modifies thermal offset registers in the IMC during runtime based on changes in system cooling (fan speed). For static CLTT, a fixed offset value is applied to the TSOD reading to get the die temperature; however this does not provide as accurate results as when the offset takes into account the current airflow over the DIMM, as is done with dynamic CLTT.

In order to support this feature, the BMC firmware derives the air velocity for each fan domain based on the PWM value being driven for the domain. Since this relationship is dependent on the chassis configuration, a method must be used which supports this dependency (for example, through OEM SDR) that establishes a lookup table providing this relationship.

The BIOS will have an embedded lookup table that provides thermal offset values for each DIMM type, altitude setting, and air velocity range (three ranges of air velocity are supported). During system boot the BIOS will provide three offset values (corresponding to the three air velocity ranges) to the BMC for each enabled DIMM. Using this data the BMC firmware constructs a table that maps the offset value corresponding to a given air velocity range for each DIMM. During runtime the BMC applies an averaging algorithm to determine the target offset value corresponding to the current air velocity and then the BMC writes this new offset value into the IMC thermal offset register for the DIMM.

# 8.6 Power Management Bus (PMBus\*)

The Power Management Bus (PMBus\*) is an open standard protocol that is built on the SMBus\* 2.0 transport. It defines a means of communicating with power conversion and other devices using SMBus\*-based commands. A system must have PMBus\*-compliant power supplies installed for the BMC or Intel® ME to monitor them for status and/or power metering purposes.

For more information on PMBus\*, visit the System Management Interface Forum Website at <a href="http://www.powersig.org/">http://www.powersig.org/</a>.

## 8.6.1 Component Fault LED Control

Several sets of component fault LEDs are supported on the server board. See Figure 4 and Figure 5 for Intel® Light Guided Diagnostics. Some LEDs are owned by the BMC and some by the BIOS.

- DIMM fault LEDs The BMC owns the hardware control for the DIMM fault LEDs. These LEDs reflect the state of BIOS-owned event-only sensors. When the BIOS detects a DIMM fault condition, it sends an IPMI OEM command (set fault indication) to the BMC to instruct the BMC to turn on the associated DIMM fault LED. These LEDs are only active when the system is in the on state. The BMC does not activate or change the state of the LEDs unless instructed by the BIOS.
- HDD status LEDs The HSBP PSoC\* of a supported Intel and third party chassis owns the hardware
  control for these LEDs, if present, and detection of the fault/status conditions that the LEDs reflect.
- **CPU fault LEDs** The server board provides a fault LED, controlled by the BMC, for each processor socket. An LED is lit if there is an MSID mismatch, where the CPU power rating is incompatible with the board.

# Intel® Server Board S2600ST Product Family Technical Product Specification

# Table 23. Component fault LEDs

| Component      | Owner                 | State          | Description                           |
|----------------|-----------------------|----------------|---------------------------------------|
| DIMM Fault LED | ВМС                   | Solid amber    | Memory failure – detected by the BIOS |
| DIMM FAULL LED | DIVIC .               | Off            | DIMM working correctly                |
|                | HSBP PSoC*  B C S BMC | Solid amber    | HDD fault                             |
| HDD Fault LED  |                       | Blinking amber | Predictive failure, rebuild, identify |
|                |                       | Off            | Ok (no errors)                        |
|                |                       | Solid amber    | MSID mismatch                         |
| CPU Fault LEDs |                       | Off            | Ok (no errors)                        |

# 9. Standard and Advanced Server Management Features

The integrated BMC has support for standard and advanced server management features. Standard management features are available by default. Advanced management features are enabled with the addition of an optionally installed Intel® Remote Management Module 4 Lite (Intel® RMM4 Lite) key.

Table 24. Intel® Remote Management Module 4 (Intel® RMM4) options

| Intel Product<br>Code (iPC) | Description                               | Kit Contents                       | Benefits                                                       |
|-----------------------------|-------------------------------------------|------------------------------------|----------------------------------------------------------------|
| AXXRMM4LITE2                | Intel® Remote Management Module 4<br>Lite | Intel® RMM4 Lite<br>Activation Key | Enables keyboard, video, and mouse (KVM) and media redirection |

When the BMC firmware initializes, it attempts to access the Intel® RMM4 Lite. If the attempt to access the Intel® RMM4 Lite is successful, then the BMC activates the advanced features.

Table 25 identifies both standard and advanced server management features.

Table 25. Standard and advanced server management features

| Feature                                                                                | Standard | Advanced |
|----------------------------------------------------------------------------------------|----------|----------|
| IPMI 2.0 Feature Support                                                               | Х        | Х        |
| In-circuit BMC firmware update                                                         | X        | X        |
| FRB2                                                                                   | Х        | Х        |
| Chassis intrusion detection                                                            | X        | X        |
| Fan redundancy monitoring                                                              | X        | X        |
| Hot-swap fan support                                                                   | X        | X        |
| Acoustic management                                                                    | X        | X        |
| Diagnostic beep code support                                                           | X        | X        |
| Power state retention                                                                  | X        | X        |
| Address resolution protocol (ARP) / dynamic host configuration protocol (DHCP) support | X        | X        |
| PECI thermal management support                                                        | X        | X        |
| Email alerting                                                                         | X        | X        |
| Embedded web server                                                                    | X        | X        |
| Secure shell (SSH) support                                                             | Х        | Х        |
| Integrated keyboard, video, and mouse (KVM)                                            |          | Х        |
| Integrated Remote Media Redirection                                                    |          | Х        |
| Lightweight Directory Access Protocol (LDAP)                                           | Х        | Х        |
| Intel® Intelligent Power Node Manager support                                          | Х        | Х        |

On the server board, the Intel® RMM4 Lite key is installed at the location shown in Figure 44.

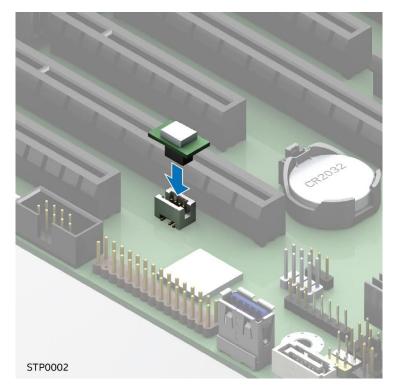



Figure 44. Intel® RMM4 Lite placement

# 9.1 Dedicated Management Port

The server board includes a dedicated 1Gb RJ45 management port. The management port is active with or without the Intel® RMM4 Lite key installed.

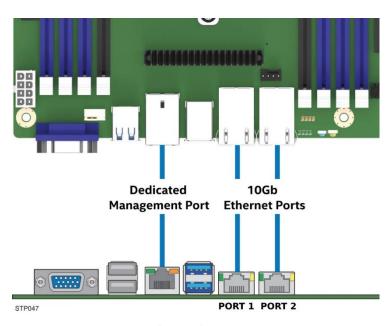



Figure 45. Dedicated Management Port

## 9.2 Embedded Web Server

BMC standard manageability provides an embedded web server and an OEM-customizable web GUI, which exposes the manageability features of the BMC base feature set. It is supported over all onboard NICs that have management connectivity to the BMC, as well as the onboard dedicated management port. At least two concurrent web sessions from up to two different users is supported. The embedded web user interface supports the following client web browsers:

- Microsoft Edge\*
- Microsoft Internet Explorer\*
- Mozilla Firefox\*
- Mozilla Firefox\*
- Google Chrome\*
- Safari\*

The embedded web user interface supports strong security – authentication, encryption, and firewall support – since it enables remote server configuration and control. Encryption using up to 256-bit secure sockets layer (SSL) is supported. User authentication is based on user ID and password.

The interface presented by the embedded web server authenticates the user before allowing a web session to be initiated. It presents all functions to all users but grays out functions that the user does not have privilege to execute. For example, if a user does not have privilege to power control, then the item is disabled and displayed in gray font in that user's display. The web interface also provides a launch point for some of the advanced features, such as keyboard, video, and mouse (KVM) and media redirection. These features are grayed out unless the system has been updated to support these advanced features. The embedded web server only displays US English and Chinese language output.

Additionally, the web interface can:

- Present all the standard features to the users.
- Power on, power off, and reset the server and view current power state.
- Display BIOS, BMC, ME and SDR version information
- Display overall system health.
- Configure various IPMI over LAN parameters for both IPV4 and IPV6
- Configure alerting (SNMP and SMTP)
- Display system asset information for the product, board, and chassis.
- Display BMC-owned sensors (name, status, current reading, enabled thresholds), including color-code status of sensors.
- Provide ability to filter sensors based on sensor type (voltage, temperature, fan, and power supply related).
- Refresh sensor data automatically with a configurable refresh rate.
- Provide online help
- Display/clear SEL (display is in easily understandable human readable format).
- Support major industry-standard browsers (Microsoft Internet Explorer\* and Mozilla Firefox\*).
- Automatically time out GUI session after a user-configurable inactivity period. By default, this inactivity period is 30 minutes.
- Provide embedded platform debug feature, allowing the user to initiate a "debug dump" to a file that can be sent to Intel® for debug purposes.
- Provide a virtual front panel with the same functionality as the local front panel. The displayed LEDs match the current state of the local panel LEDs. The displayed buttons (for example, power button) can be used in the same manner as the local buttons.

- Display ME sensor data. Only sensors that have associated SDRs loaded are displayed.
- Save the SEL to a file
- Force HTTPS connectivity for greater security. This is provided through a configuration option in the user interface.
- Display of processor and memory information that is available over IPMI over LAN.
- Get and set Intel® Node Manager (Intel® NM) power policies
- Display the power consumed by the server.
- View and configure VLAN settings.
- Warn user the reconfiguration of IP address causes disconnect.
- Block logins for a period of time after several consecutive failed login attempts. The lock-out period and the number of failed logins that initiates the lock-out period are configurable by the user.
- Force into BIOS Setup on a reset (server power control).
- Provide the system's Power-On Self Test (POST) sequence for the previous two boot cycles, including timestamps. The timestamps may be displayed as a time relative to the start of POST or the previous POST code.
- Provide the ability to customize the port numbers used for SMASH, http, https, KVM, secure KVM, remote media, and secure remote media.

# 9.3 Advanced Management Feature Support (Intel® RMM4 Lite)

The integrated baseboard management controller has support for advanced management features, which are enabled when an optional Intel® Remote Management Module 4 Lite (Intel® RMM4 Lite) is installed. The Intel RMM4 Lite add-on offers convenient, remote keyboard, video, and mouse (KVM) access and control through LAN and internet. It captures, digitizes, and compresses video and transmits it with keyboard and mouse signals to and from a remote computer. Remote access and control software runs in the integrated baseboard management controller, utilizing expanded capabilities enabled by the Intel RMM4 Lite hardware.

Key features of the Intel RMM4 Lite add-on include:

- KVM redirection from either the dedicated management NIC or the server board NICs used for management traffic and up to two KVM sessions. KVM automatically senses video resolution for best possible screen capture, high performance mouse tracking, and synchronization. It allows remote viewing and configuration in pre-boot POST and BIOS Setup.
- **Media redirection** intended to allow system administrators or users to mount a remote IDE or USB CDROM, floppy drive, or a USB flash disk as a remote device to the server. Once mounted, the remote device appears to the server just like a local device, allowing system administrators or users to install software (including operating systems), copy files, update BIOS, or boot the server from this device.

## 9.3.1 Keyboard, Video, and Mouse (KVM) Redirection

The BMC firmware supports keyboard, video, and mouse (KVM) redirection over LAN. This feature is available remotely from the embedded web server as a Java\* applet. This feature is only enabled when the Intel® RMM4 Lite is present. The client system must have Java Runtime Environment (JRE) version 6.0 or later to run the KVM or media redirection applets.

The BMC supports an embedded KVM application (Remote Console) that can be launched from the embedded web server from a remote console. USB1.1 or USB 2.0 based mouse and keyboard redirection are supported. It is also possible to use the KVM redirection session concurrently with media redirection. This feature allows a user to interactively use the keyboard, video, and mouse functions of the remote server as if the user were physically at the managed server.

KVM redirection includes a soft keyboard function used to simulate an entire keyboard that is connected to the remote system. The soft keyboard function supports the following layouts: English, Dutch, French, German, Italian, Russian, and Spanish.

The KVM redirection feature automatically senses video resolution for best possible screen capture and provides high-performance mouse tracking and synchronization. It allows remote viewing and configuration in pre-boot POST and BIOS Setup, once BIOS has initialized video. Other attributes of KVM redirection include

- Encryption of the redirected screen, keyboard, and mouse,
- Compression of the redirected screen,
- Ability to select a mouse configuration based on the OS type, and
- Support for user definable keyboard macros.

The KVM redirection feature supports the following resolutions and refresh rates:

- 640x480 at 60 Hz, 72 Hz, 75 Hz, 85 Hz, 100 Hz
- 800x600 at 60 Hz, 72 Hz, 75 Hz, 85 Hz
- 1024x768 at 60 Hz, 72 Hz, 75 Hz, 85 Hz
- 1280x960 at 60 Hz
- 1280x1024 at 60 Hz
- 1600x1200 at 60 Hz
- 1650x1080 (WSXGA+) at 60 Hz
- 1920x1080 (1080p) at 60 Hz
- 1920x1200 (WUXGA) at 60 Hz

#### 9.3.1.1 Availability

The remote KVM session is available even when the server is powered off (in stand-by mode). No restart of the remote KVM session is required during a server reset or power on/off. A BMC reset – for example, due to a BMC watchdog initiated reset or BMC reset after BMC firmware update – does require the session to be reestablished. KVM sessions persist across system reset, but not across an AC power loss.

## 9.3.1.2 **Security**

The KVM redirection feature supports multiple encryption algorithms, including RC4 and AES. The actual algorithm that is used is negotiated with the client based on the client's capabilities.

#### 9.3.1.3 Usage

As the server is powered up, the remote KVM session displays the complete BIOS boot process. The user is able to interact with BIOS Setup, change and save settings, and enter and interact with option ROM configuration screens.

## 9.3.1.4 Force-enter BIOS Setup

KVM redirection can present an option to force-enter BIOS Setup. This enables the system to enter BIOS Setup while booting, which is often missed by the time the remote console redirects the video.

#### 9.3.2 Media Redirection

The embedded web server provides a Java applet to enable remote media redirection. This may be used in conjunction with the remote KVM feature or as a standalone applet.

The media redirection feature is intended to allow system administrators or users to mount a remote IDE or USB CD-ROM, floppy drive, or a USB flash disk as a remote device to the server. Once mounted, the remote device appears to the server just like a local device, allowing system administrators or users to install software (including operating systems), copy files, update BIOS, or boot the server from this device.

The following list describes additional media redirection capabilities and features.

- The operation of remotely mounted devices is independent of the local devices on the server. Both remote and local devices are usable in parallel.
- Either IDE (CD-ROM, floppy) or USB devices can be mounted as a remote device to the server.
- It is possible to boot all supported operating systems from the remotely mounted device and to boot from disk IMAGE (\*.IMG) and CD-ROM or DVD-ROM ISO files. See the tested/supported operating system list for more information.
- Media redirection supports redirection for both a virtual CD device and a virtual floppy/USB device concurrently. The CD device may be either a local CD drive or else an ISO image file; the Floppy/USB device may be either a local Floppy drive, a local USB device, or else a disk image file.
- The media redirection feature supports multiple encryption algorithms, including RC4 and AES. The actual algorithm that is used is negotiated with the client based on the client's capabilities.
- A remote media session is maintained even when the server is powered off (in standby mode). No restart of the remote media session is required during a server reset or power on/off. A BMC reset (for example, due to a BMC reset after BMC FW update) requires the session to be re-established
- The mounted device is visible to (and usable by) managed system's OS and BIOS in both pre-boot and post-boot states.
- The mounted device shows up in the BIOS boot order and it is possible to change the BIOS boot order to boot from this remote device.
- It is possible to install an operating system on a bare metal server (no OS present) using the remotely mounted device. This may also require the use of KVM-r to configure the OS during install.

USB storage devices appear as floppy disks over media redirection. This allows for the installation of device drivers during OS installation.

If either a virtual IDE or virtual floppy device is remotely attached during system boot, both the virtual IDE and virtual floppy are presented as bootable devices. It is not possible to present only a single-mounted device type to the system BIOS.

## 9.3.2.1 Availability

The default inactivity timeout is 30 minutes and is not user-configurable. Media redirection sessions persist across system reset but not across an AC power loss or BMC reset.

#### 9.3.3 Remote Console

The remote console is the redirected screen, keyboard, and mouse of the remote host system. To use the remote console window of the managed host system, the browser must include a Java\* Runtime Environment (JRE) plug-in. If the browser has no Java support, such as with a small handheld device, the user can maintain the remote host system using the administration forms displayed by the browser.

The remote console window is a Java applet that establishes TCP connections to the BMC. The protocol that is run over these connections is a unique KVM protocol and not HTTP or HTTPS. This protocol uses ports #7578 for KVM, #5120 for CD-ROM media redirection, and #5123 for floppy and USB media redirection. When encryption is enabled, the protocol uses ports #7582 for KVM, #5124 for CD-ROM media redirection, and #5127 for floppy and USB media redirection. The local network environment must permit these connections to be made; that is the firewall and, in case of a private internal network, the Network Address Translation (NAT) settings have to be configured accordingly.

For additional information, reference the Intel® Remote Management Module 4 and Integrated BMC Web Console User Guide.

## 9.3.4 Performance

The remote display accurately represents the local display. The feature adapts to changes in the video resolution of the local display and continues to work smoothly when the system transitions from graphics to text or vice versa. The responsiveness may be slightly delayed depending on the bandwidth and latency of the network.

Enabling KVM and/or media encryption does degrade performance. Enabling video compression provides the fastest response while disabling compression provides better video quality. For the best possible KVM performance, a 2 Mbps link or higher is recommended. The redirection of KVM over IP is performed in parallel with the local KVM without affecting the local KVM operation.

# 10. Onboard Connector/Header Overview

This section identifies the locations and Pin-outs for onboard connectors and headers of the server board that provide an interface to system options and features, onboard platform management, or other user accessible options or features. See Figure 2 for details on the location of the connectors in this chapter.

#### 10.1 Power Connectors

The server board includes several power connectors that are used to provide DC power to various devices.

#### 10.1.1 Main Power

Main server board power is supplied by one 24-pin power connector. The connector is labeled as "MAIN\_PWR\_CONN" on the left bottom of the server board. Table 26 provides the pin-out for the main power connector.

Table 26. Main Power Connector Pin-out ("MAIN PWR CONN")

| Pin | Signal Name           | Pin | Signal Name     |
|-----|-----------------------|-----|-----------------|
| 1   | P3V3                  | 13  | P3V3            |
| 2   | P3V3                  | 14  | N12V            |
| 3   | GND                   | 15  | GND             |
| 4   | P5V                   | 16  | FM_PS_EN_PSU_ON |
| 5   | GND                   | 17  | GND             |
| 6   | P5V                   | 18  | GND             |
| 7   | GND                   | 19  | GND             |
| 8   | PWRGD_PS_PWROK_PSU_R1 | 20  | NC_PS_RES_TP    |
| 9   | P5V_STBY_PSU          | 21  | P5V             |
| 10  | P12V                  | 22  | P5V             |
| 11  | P12V                  | 23  | P5V             |
| 12  | P3V3                  | 24  | GND             |

## 10.1.2 CPU Power Connectors

**Note**: Because the BMC monitors presence of the power signals in the server board, both CPU1 and CPU2 power need to be supplied even if CPU2 is not installed. If the presence signals are not detected, the server board will not boot.

On the server board are two white 8-pin CPU power connectors labeled "CPU\_1\_PWR" and "CPU\_2\_PWR". The following tables provide the Pin-out for each connector.

Table 27. CPU1 Power Connector Pin-out ("CPU\_1\_PWR")

| Pin | Signal Name | Pin | Signal Name |
|-----|-------------|-----|-------------|
| 1   | GND         | 5   | P12V1       |
| 2   | GND         | 6   | P12V1       |
| 3   | GND         | 7   | P12V3A      |
| 4   | GND         | 8   | P12V3A      |

Table 28. CPU2 Power Connector Pin-out ("CPU 2 PWR")

| Pin | Signal Name | Pin | Signal Name |
|-----|-------------|-----|-------------|
| 1   | GND         | 5   | P12V2       |
| 2   | GND         | 6   | P12V2       |
| 3   | GND         | 7   | P12V3B      |
| 4   | GND         | 8   | P12V3B      |

# 10.1.3 Supplemental 12-V Power-In Connector

By default, the server board can provide up to 180 W of total power to the six PCIe\* add-in card slots. To support power requirements above this limit, the server board includes one white 2x2-pin power-in connector that can be used to deliver up to 216 W of additional power to the server board. In an Intel chassis, this connector is cabled to a matching 2x2 connector on a power distribution board. A power budget for the complete system should be performed to determine how much supplemental power is available to support any high-power add-in cards.

Table 29. Auxiliary Power-in Connector Pin-out ("AUX PWR IN")

| Pin# | Signal Name | Pin# | Signal Name |
|------|-------------|------|-------------|
| 1    | GND         | 3    | P12V        |
| 2    | GND         | 4    | P12V        |

**Note**: In compliance with the PCIe\* specification, the maximum power supported directly from a x8 PCIe\* add-in card slot = 25W. The maximum power supported directly from a x16 PCIe\* add-in card slot = 75W.

## 10.2 Front Panel Headers and Connectors

The server board includes several connectors that provide various possible front panel options. This section provides a functional description and Pin-out for each connector.

#### 10.2.1 Front Panel Header

Included on the left edge of the server board is a 30-pin SSI-compatible front panel header, which provides various front panel features including buttons – a power/sleep button, a system ID button, and an NMI button – and LEDs – NIC activity LEDs, hard drive activity LEDs, a system status LED, and a system ID LED.

Table 30. Front Panel Header Pin-out

| Pin | Signal Name           | Pin | Signal Name               |
|-----|-----------------------|-----|---------------------------|
| 1   | P3V3_AUX              | 2   | P3V3_AUX                  |
| 3   | Key                   | 4   | P5V_STBY                  |
| 5   | FP_PWR_LED_BUF_N      | 6   | FP_ID_LED_BUF_N           |
| 7   | P3V3                  | 8   | FP_LED_STATUS_GREEN_BUF_N |
| 9   | LED_HDD_ACTIVITY_N    | 10  | FP_LED_STATUS_AMBER_BUF_N |
| 11  | FP_PWR_BTN_N          | 12  | LED_NIC_LINK1_ACT_BUF_N   |
| 13  | GND                   | 14  | LED_NIC_LINK1_LNKUP_BUF_N |
| 15  | FP_RST_BTN_N          | 16  | SMB_SENSOR_3V3STBY_DATA   |
| 17  | GND                   | 18  | SMB_SENSOR_3V3STBY_CLK    |
| 19  | FP_ID_BTN_N           | 20  | FP_CHASSIS_INTRUSION      |
| 21  | PU_FM_SIO_TEMP_SENSOR | 22  | LED_NIC_LINK2_ACT_BUF_N   |
| 23  | FP_NMI_BTN_N          | 24  | LED_NIC_LINK2_LNKUP_BUF_N |
| 25  | Not used              | 26  | Not Used                  |

Intel® Server Board S2600ST Product Family Technical Product Specification

| Pin | Signal Name             | Pin | Signal Name             |
|-----|-------------------------|-----|-------------------------|
| 27  | PU_NIC3_LED_N           | 28  | PU_NIC4_LED_N           |
| 29  | FP_LNK_ACT_NIC3_LED_B_N | 30  | FP_LNK_ACT_NIC4_LED_B_N |

#### 10.2.2 Front Panel USB Connector

The server board includes a 20-pin connector, which, when cabled, can provide up to two USB 3.0 ports to a front panel. The following table provides the connector pin-out.

Table 31. Front Panel USB 3.0 Connector Pin-out

| Pin | Signal Name         | Pin | Signal Name         |
|-----|---------------------|-----|---------------------|
| 1   | P5V_AUX_USB_FP_USB3 | key | KEY                 |
| 2   | USB3_01_FB_RX_DN    | 19  | P5V_AUX_USB_FP_USB3 |
| 3   | USB3_01_FB_RX_DP    | 18  | USB3_00_FB_RX_DN    |
| 4   | GND                 | 17  | USB3_00_FB_RX_DP    |
| 5   | USB3_01_FB_TX_DN    | 16  | GND                 |
| 6   | USB3_01_FB_TX_DP    | 15  | USB3_00_FB_TX_DN    |
| 7   | GND                 | 14  | USB3_00_FB_TX_DP    |
| 8   | USB2_13_FB_DN       | 13  | GND                 |
| 9   | USB2_13_FB_DP       | 12  | USB2_8_FB_DN        |
| 10  | TP_FM_OC5_FP_R_N    | 11  | USB2_8_FB_DP        |

# **10.3 Onboard Storage Connectors**

The server board provides connectors for support of several storage device options. This section provides a functional overview and pin-out of each connector.

## 10.3.1 SATA 6 Gbps Connectors

The server board includes two 7-pin SATA connectors capable of transfer rates of up to 6Gbps. Table 32 provides the pin-out for both connectors.

**Table 32. SATA 6 Gbps Connector Pin-out** 

| Pin | Signal Name | Pin | Signal Name |
|-----|-------------|-----|-------------|
| 1   | GND         | 5   | SATA_RX_N   |
| 2   | SATA_TX_P   | 6   | SATA_RX_P   |
| 3   | SATA_TX_N   | 7   | GND         |
| 4   | GND         | -   | -           |

The Intel® Server Board S2600ST product family also includes two mini-SAS HD ports. In the S2600STB and S2600STS variants, they support up to eight SATA 6 Gbps drives. In the S2600STQ variant, besides supporting up to eight SATA 6 Gbps drives, they can be used to enhance the performance of the Intel® QuickAssist Technology functionality. Table 33 provides the pin-out for both connectors.

Table 33. Mini-SAS HD Connectors for SATA 6 Gbps Pin-out

| PIN | Signal Name              | PIN | Signal Name              |
|-----|--------------------------|-----|--------------------------|
| 1A1 | FM_QAT_ENABLE_N          | 2A1 | FM_QAT_ENABLE_N          |
| 1B1 | GND                      | 2B1 | GND                      |
| 1C1 | SGPIO_SATA_DATAO_R       | 2C1 | SGPIO_SATA_DATA1_R       |
| 1D1 | PU_DATAIN1_SATA_0        | 2D1 | PU_DATAIN1_SATA_1        |
| 1A2 | SGPIO_SATA_CLOCK_R       | 2A2 | SGPIO_SATA_CLOCK_R       |
| 1B2 | SGPIO_SATA_LOAD_R        | 2B2 | SGPIO_SATA_LOAD_R        |
| 1C2 | GND                      | 2C2 | GND                      |
| 1D2 | PD_SATA0_CONTROLLER_TYPE | 2D2 | PD_SATA1_CONTROLLER_TYPE |
| 1A3 | GND                      | 2A3 | GND                      |
| 1B3 | GND                      | 2B3 | GND                      |
| 1C3 | GND                      | 2C3 | GND                      |
| 1D3 | GND                      | 2D3 | GND                      |
| 1A4 | SATA6G_P1_RX_C_DP        | 2A4 | SATA6G_P5_RX_C_DP        |
| 1B4 | SATA6G_P0_RX_C_DP        | 2B4 | SATA6G_P4_RX_C_DP        |
| 1C4 | SATA6G_P1_TX_C_DP        | 2C4 | SATA6G_P5_TX_C_DP        |
| 1D4 | SATA6G_P0_TX_C_DP        | 2D4 | SATA6G_P4_TX_C_DP        |
| 1A5 | SATA6G_P1_RX_C_DN        | 2A5 | SATA6G_P5_RX_C_DN        |
| 1B5 | SATA6G_P0_RX_C_DN        | 2B5 | SATA6G_P4_RX_C_DN        |
| 1C5 | SATA6G_P1_TX_C_DN        | 2C5 | SATA6G_P5_TX_C_DN        |
| 1D5 | SATA6G_P0_TX_C_DN        | 2D5 | SATA6G_P4_TX_C_DN        |
| 1A6 | GND                      | 2A6 | GND                      |
| 1B6 | GND                      | 2B6 | GND                      |
| 1C6 | GND                      | 2C6 | GND                      |
| 1D6 | GND                      | 2D6 | GND                      |
| 1A7 | SATA6G_P3_RX_C_DP        | 2A7 | SATA6G_P7_RX_C_DP        |
| 1B7 | SATA6G_P2_RX_C_DP        | 2B7 | SATA6G_P6_RX_C_DP        |
| 1C7 | SATA6G_P3_TX_C_DP        | 2C7 | SATA6G_P7_TX_C_DP        |
| 1D7 | SATA6G_P2_TX_C_DP        | 2D7 | SATA6G_P6_TX_C_DP        |
| 1A8 | SATA6G_P3_RX_C_DN        | 2A8 | SATA6G_P7_RX_C_DN        |
| 1B8 | SATA6G_P2_RX_C_DN        | 2B8 | SATA6G_P6_RX_C_DN        |
| 1C8 | SATA6G_P3_TX_C_DN        | 2C8 | SATA6G_P7_TX_C_DN        |
| 1D8 | SATA6G_P2_TX_C_DN        | 2D8 | SATA6G_P6_TX_C_DN        |
| 1A9 | GND                      | 2A9 | GND                      |
| 1B9 | GND                      | 2B9 | GND                      |
| 1C9 | GND                      | 2C9 | GND                      |
| 1D9 | GND                      | 2D9 | GND                      |

## 10.3.2 M.2 Connectors

Table 34 shows the Pin-outs for the M.2 connectors on the board. The 4 columns to the left show the signals when a SATA device is present, and the 4 columns to the right show the signals when a PCIe\* device is present.

Table 34. M.2 Connector Pin-outs (for SATA & PCIe\* modules)

| PIN | Signal       | PIN | Signal                    | Р  | IN | Signal       | PIN | Signal                    |
|-----|--------------|-----|---------------------------|----|----|--------------|-----|---------------------------|
| 1   | CONFIG_3=GND | 2   | 3.3V                      | 1  |    | CONFIG_3=GND | 2   | 3.3V                      |
| 3   | GND          | 4   | 3.3V                      | 3  |    | GND          | 4   | 3.3V                      |
| 5   | N/C          | 6   | N/C                       | 5  |    | N/C          | 6   | N/C                       |
| 7   | N/C          | 8   | N/C                       | 7  | ,  | N/C          | 8   | N/C                       |
| 9   | N/C          | 10  | DAS/DSS (I/O)             | 9  |    | N/C          | 10  | LED1#                     |
| 11  | N/C          | 12  | Module Key                | 1  | 1  | N/C          | 12  | Module Key                |
| 13  | Module Key   | 14  | Module Key                | 1  | 3  | Module Key   | 14  | Module Key                |
| 15  | Module Key   | 16  | Module Key                | 1. | 5  | Module Key   | 16  | Module Key                |
| 17  | Module Key   | 18  | Module Key                | 1  | 7  | Module Key   | 18  | Module Key                |
| 19  | Module Key   | 20  | N/C                       | 1: | 9  | Module Key   | 20  | N/C                       |
| 21  | CONFIG_0=GND | 22  | N/C                       | 2  | 1  | CONFIG_0=GND | 22  | N/C                       |
| 23  | N/C          | 24  | N/C                       | 2  | 3  | N/C          | 24  | N/C                       |
| 25  | N/C          | 26  | N/C                       | 2. | 5  | N/C          | 26  | N/C                       |
| 27  | GND          | 28  | N/C                       | 2  | 7  | GND          | 28  | N/C                       |
| 29  | N/C          | 30  | N/C                       | 2  | 9  | PETn1        | 30  | N/C                       |
| 31  | N/C          | 32  | N/C                       | 3  | 1  | PETp1        | 32  | N/C                       |
| 33  | GND          | 34  | N/C                       | 3  | 3  | GND          | 34  | N/C                       |
| 35  | N/C          | 36  | N/C                       | 3  | 5  | PERn1        | 36  | N/C                       |
| 37  | N/C          | 38  | DEVSLP(I)80/3.3V)         | 3  | 7  | PERp1        | 38  | N/C                       |
| 39  | GND          | 40  | SMB_CLK (I/O)             | 3: | 9  | GND          | 40  | SMB_CLK (I/O)             |
| 41  | SATA-B+      | 42  | SMB_DATA                  | 4  | 1  | PETn0        | 42  | SMB_DATA                  |
| 43  | SATA-B-      | 44  | ALERT#(0)                 | 4  | 3  | PETp0        | 44  | ALERT#(0)                 |
| 45  | GND          | 46  | N/C                       | 4  | 5  | GND          | 46  | N/C                       |
| 47  | SATA-A+      | 48  | N/C                       | 4  | 7  | PERn0        | 48  | N/C                       |
| 49  | SATA-A-      | 50  | N/C                       | 4  | 9  | PERp0        | 50  | PERST# (I)(0/3.3V)        |
| 51  | GND          | 52  | N/C                       | 5  | 1  | GND          | 52  | CLKREQ# (I/O)(0/3.3V)     |
| 53  | N/C          | 54  | N/C                       | 5  | 3  | REFCLKn      | 54  | PEWAKE# (I/O)(0/3.3V)     |
| 55  | N/C          | 56  | Reserved for MFG_DATA     | 5  | 5  | REFCLKp      | 56  | Reserved for MFG_DATA     |
| 57  | GND          | 58  | Reserved for MFG_CLOCK    | 5  | 7  | GND          | 58  | Reserved for MFG_CLOCK    |
| 59  | Module Key   | 60  | Module Key                | 5  | 9  | Module Key   | 60  | Module Key                |
| 61  | Module Key   | 62  | Module Key                | 6  | 1  | Module Key   | 62  | Module Key                |
| 63  | Module Key   | 64  | Module Key                | 6  | 3  | Module Key   | 64  | Module Key                |
| 65  | Module Key   | 66  | Module Key                | 6  | 5  | Module Key   | 66  | Module Key                |
| 67  | N/C          | 68  | SUSCLK(32KHz) (I)(0/3.3V) | 6  | 7  | N/C          | 68  | SUSCLK(32KHz) (I)(0/3.3V) |
| 69  | CONFIG_1=GND | 70  | 3.3V                      | 6  | 9  | CONFIG_1=NC  | 70  | 3.3V                      |
| 71  | GND          | 72  | 3.3V                      | 7  | 1  | GND          | 72  | 3.3V                      |
| 73  | GND          | 74  | 3.3V                      | 7. | 3  | GND          | 74  | 3.3V                      |
| 75  | CONFIG_2=GND |     |                           | 7. | 5  | CONFIG_2=GND |     |                           |

## 10.4 Fan Connectors

The server board provides support for nine fans. Seven are intended to support system cooling fans, and two are intended to support CPU fans.

## 10.4.1 System Fan Connectors

The server board includes six 6-pin system fan connectors on the front edge of the board labeled SYS\_FAN\_# (1-6) and one 4-pin fan connector located near the back edge of the board labeled SYS\_FAN\_7. The following tables provide the Pin-out for each connector type.

Table 35. 6-Pin System Fan Connector Pin-out

| Pin | Signal Name | Pin | Signal Name |
|-----|-------------|-----|-------------|
| 1   | GND         | 4   | PWM         |
| 2   | 12V         | 5   | PRSNT       |
| 3   | TACH        | 6   | FAULT       |

Table 36. 4-pin System Fan Connector Pin-out

| Pin | Signal Name |
|-----|-------------|
| 1   | GND         |
| 2   | 12V         |
| 3   | TACH        |
| 4   | PWM         |

#### 10.4.2 CPU Fan Connectors

The server board includes two 4-pin CPU Fan connectors labeled as CPU\_1\_Fan and CPU\_2\_Fan. The following table provides the Pin-out for each.

Table 37. CPU Fan Connector Pin-out

| Pin | Signal Name |
|-----|-------------|
| 1   | GND         |
| 2   | 12V         |
| 3   | TACH        |
| 4   | PWM         |

## 10.5 Other Headers and Connectors

The server board provides several I/O connectors for different interfaces used for communication between BMC and peripherals for monitoring, and also for user interaction.

# 10.5.1 HSBP Inter-Integrated Circuit (I<sup>2</sup>C) Headers

The Intel® Server Board S2600ST product family includes an inter-integrated circuit (I<sup>2</sup>C) header labeled "HSBP\_I2C" to communicate with hot-swap backplanes. The following table shows the Pin-out.

Table 38. I<sup>2</sup>C Header B Pin-out ("HSBP\_I2C\_B")

| Pin | Signal Name           |
|-----|-----------------------|
| 1   | SMB_HSBP_3V3STBY_DATA |
| 2   | GND                   |
| 3   | SMB_HSBP_3V3STBY_CLK  |
| 4   | RST_PCIE_SSD_PERST_N  |

#### 10.5.2 Serial Port Connector

The server board includes one internal DH-10 serial port connector.

Table 39. Serial Port A Connector Pin-out

| Pin | Signal Name | Pin | Signal Name |
|-----|-------------|-----|-------------|
| 1   | SPA_DCD     | 2   | SPA_DSR     |
| 3   | SPA_SIN     | 4   | SPA_RTS     |
| 5   | SPA_SOUT_N  | 6   | SPA_CTS     |
| 7   | SPA_DTR     | 8   | SPA_RI      |
| 9   | GND         |     |             |

## 10.5.3 PMBUS Connector

The server board provides a power management bus in order for the BMC to monitor and communicate with the installed power supplies. The Pin-out for this connector is shown in the following table.

Table 40. PMBUS Connector Pin-out

| Pin | Signal Name                 |
|-----|-----------------------------|
| 1   | SMB_PMB1_SML1_STBY_LVC3_SCL |
| 2   | SMB_PMB1_SML1_STBY_LVC3_SDA |
| 3   | IRQ_SML1_PMBUS_ALERT_RC_N   |
| 4   | GND                         |
| 5   | P3V3                        |

### 10.5.4 Chassis Intrusion Header

The server board includes a 2-pin chassis intrusion header, which can be used when the chassis is configured with a chassis intrusion switch. The header has the following pin-out.

Table 41. Chassis Intrusion Header Pin-out

| Header State        | Signal                           | Description              |
|---------------------|----------------------------------|--------------------------|
| Pins 1 and 2 Closed | FM_INTRUDER_HDR_N is pulled HIGH | Chassis Cover is Closed  |
| Pins 1 and 2 Open   | FM_INTRUDER_HDR_N is pulled LOW. | Chassis cover is removed |

# 11. Reset and Recovery Jumpers

The Intel® Server Board S2600ST product family has several three-pin jumper blocks that can be used to configure, protect, or recover specific features of the server board.

The symbol ▼ identifies Pin 1 on each jumper block.




Figure 46. Jumper block locations and pins

# 11.1 BIOS Default Jumper Block

This jumper resets BIOS options, configured using the <F2> BIOS Setup Utility, back to their original de-fault factory settings.

**Note**: This jumper does not reset Administrator or User passwords. In order to reset passwords, the Password Clear jumper must be used.

- 1. Power down the server and unplug the power cord(s).
- 2. Remove the system top cover and move the "BIOS DFLT" jumper from pins 1–2 (default) to pins 2–3 (Set BIOS Defaults).
- 3. Wait 5 seconds then move the jumper back to pins 1–2.
- 4. Re-install the system top cover.
- 5. Re-Install system power cords.
- 6. During POST, access the <F2> BIOS Setup utility to configure and save desired BIOS options.

#### Notes:

- The system will automatically power on after AC is applied to the system.
- The system time and date may need to be reset.
- After resetting BIOS options using the BIOS Default jumper, the Error Manager Screen in the <F2> BIOS Setup Utility will display two errors:
  - 0012 System RTC date/time not set
  - 5220 BIOS Settings reset to default settings

# 11.2 Password Clear Jumper Block

This jumper causes both the User password and the Administrator password to be cleared if they were set. The operator should be aware that this creates a security gap until passwords have been installed again through the <F2> BIOS Setup utility. This is the only method by which the Administrator and User passwords can be cleared unconditionally. Other than this jumper, passwords can only be set or cleared by changing them explicitly in BIOS Setup or by similar means. No method of resetting BIOS configuration settings to default values will affect either the Administrator or User passwords.

- 1. Power down the server. For safety, unplug the power cord(s).
- 2. Remove the system top cover.
- 3. Move the "Password Clear" jumper from pins 1–2 (default) to pins 2–3 (password clear position).
- 4. Re-install the system top cover and re-attach the power cords.
- 5. Power up the server and access the <F2> BIOS Setup utility.
- 6. Verify the password clear operation was successful by viewing the Error Manager screen. Two errors should be logged:
  - 5221 Passwords cleared by jumper
  - 5224 Password clear jumper is set
- 7. Exit the BIOS Setup utility and power down the server. For safety, remove the AC power cords.
- 8. Remove the system top cover and move the "Password Clear" jumper back to pins 1–2 (default).
- 9. Re-install the system top cover and reattach the AC power cords.
- 10. Power up the server.
- 11. Strongly recommended: Boot into <F2> BIOS Setup immediately, go to the Security tab and set the Administrator and User passwords if you intend to use BIOS password protection.

# 11.3 Management Engine (ME) Firmware Force Update Jumper Block

When the ME Firmware Force Update jumper is moved from its default position, the ME is forced to operate in a reduced minimal operating capacity. This jumper should only be used if the ME firmware has gotten corrupted and requires re-installation. Use the procedure below.

**Note**: System Update files are included in the System Update Packages (SUP) posted to Intel's Download Center website, http://downloadcenter.intel.com.

- 1. Turn off the system.
- 2. Remove the AC power cords.

**Note:** If the ME FRC UPD jumper is moved with AC power applied to the system, the ME will not operate properly.

- 3. Remove the system top cover.
- 4. Move the "ME FRC UPD" Jumper from pins 1–2 (default) to pins 2–3 (Force Update position).
- 5. Re-install the system top cover and re-attach the AC power cords.
- 6. Power on the system.
- 7. Boot to the EFI shell.
- 8. Change directories to the folder containing the update files.
- 9. Update the ME firmware using the following command:

iflash32 /u /ni <version#>\_ME.cap

- 10. When the update has completed successfully, power off the system.
- 11. Remove the AC power cords.
- 12. Remove the system top cover.
- 13. Move the "ME FRC UPD" jumper back to pins 1–2 (default).
- 14. Re-attach the AC power cords.
- 15. Power on the system.

# 11.4 BMC Force Update Jumper Block

The BMC Force Update jumper is used to put the BMC in Boot Recovery mode for a low-level update. It causes the BMC to abort its normal boot process and stay in the boot loader without executing any Linux code.

This jumper should only be used if the BMC firmware has gotten corrupted and requires re-installation. Do the following:

**Note**: System Update files are included in the System Update Packages (SUP) posted to Intel's Download Center website, <a href="http://downloadcenter.intel.com">http://downloadcenter.intel.com</a>

- 1. Turn off the system.
- 2. Remove the AC power cords.

**Note:** If the BMC FRC UPD jumper is moved with AC power applied to the system, the BMC will not operate properly.

- 3. Remove the system top cover.
- 4. Move the "BMC FRC UPD" Jumper from pins 1-2 (default) to pins 2-3 (Force Update position).
- 5. Re-install the system top cover and re-attach the AC power cords.
- 6. Power on the system.
- 7. Boot to the EFI shell.
- 8. Change directories to the folder containing the update files.
- 9. Update the BMC firmware using the following command:

FWPIAUPD -u -bin -ni -b -o -pia -if=usb <file name.BIN>

- 10. When the update has successfully completed, power off the system.
- 11. Remove the AC power cords.
- 12. Remove the system top cover.
- 13. Move the "BMC FRC UPD" jumper back to pins 1-2 (default).
- 14. Re-attach the AC power cords.
- 15. Power on system.
- 16. Boot to the EFI shell.
- 17. Change directories to the folder containing the update files.
- 18. Re-install the board/system SDR data by running the FRUSDR utility.
- 19. After the SDRs have been loaded, reboot the server.

# 11.5 BIOS Recovery Jumper Block

When the BIOS Recovery jumper block is moved from its default pin position (pins 1–2), the system will boot using a backup BIOS image to the uEFI shell, where a standard BIOS update can be performed. See the BIOS update instructions that are included with System Update Packages (SUP) downloaded from Intel's download center website. This jumper is used when the system BIOS has become corrupted and is non-functional, requiring a new BIOS image to be loaded on to the server board.

**Note:** The BIOS Recovery jumper is ONLY used to re-install a BIOS image in the event the BIOS has become corrupted. This jumper is NOT used when the BIOS is operating normally and you need to update the BIOS from one version to another.

The following procedure should be followed.

**Note**: System Update Packages (SUP) can be downloaded from Intel's download center website, <a href="http://downloadcenter.intel.com">http://downloadcenter.intel.com</a>

- 1. Turn off the system.
- 2. For safety, remove the AC power cords.
- 3. Remove the system top cover.
- 4. Move the "BIOS Recovery" jumper from pins 1–2 (default) to pins 2–3 (BIOS Recovery position).
- 5. Re-install the system top cover and re-attach the AC power cords.
- 6. Power on the system.
- 7. The system will automatically boot to the EFI shell. Update the BIOS using the standard BIOS update instructions provided with the system update package.
- 8. After the BIOS update has successfully completed, power off the system. For safety, remove the AC power cords from the system.
- 9. Remove the system top cover.

- 10. Move the BIOS Recovery jumper back to pins 1–2 (default).
- 11. Re-install the system top cover and re-attach the AC power cords.
- 12. Power on the system and access the <F2> BIOS Setup utility.
- 13. Configure desired BIOS settings.
- 14. Hit the <F10> key to save and exit the utility.

# 12. Light Guided Diagnostics

The Intel® Server Board S2600ST product family includes several onboard LED indicators to aid in troubleshooting various board level faults.

## 12.1 DIMM Fault LEDs

The server board includes a memory fault LED for each DIMM slot. When the BIOS detects a memory fault condition, it sends an IPMI OEM command (set fault indication) to the BMC to instruct the BMC to turn on the associated memory slot fault LED. These LEDs are only active when the system is in the on state. The BMC does not activate or change the state of the LEDs unless instructed by the BIOS.

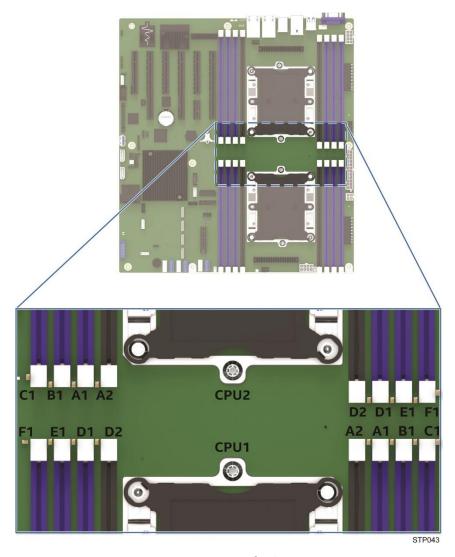



Figure 47. DIMM fault LEDs

# 12.2 System LEDs

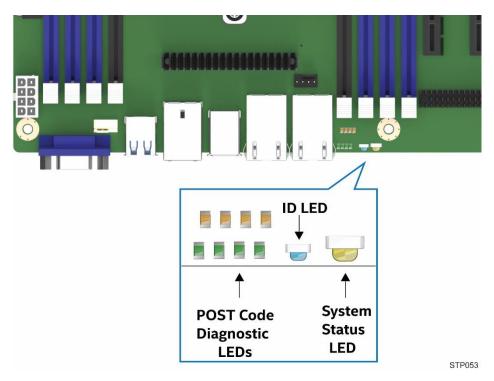



Figure 48. System status LED and ID LED identification

# 12.2.1 System ID LED

The server board includes a blue system ID LED, which is used to visually identify a specific server installed among many other similar servers. There are two options available for illuminating the system ID LED.

- Push the front panel ID LED button, which causes the LED to illuminate to a solid on state until the button is pushed again.
- Remotely enter an IPMI chassis identify command, which causes the LED to blink.

The system ID LED on the server board is tied directly to the system ID LED on system front panel, if present.

## 12.2.2 System Status LED

The server board includes a bi-color system status LED. The system status LED on the server board is tied directly to the system status LED on the front panel, if present. This LED indicates the current health of the server. Possible LED states include solid green, blinking green, solid amber, and blinking amber.

When the server is powered down (transitions to the DC-off state or S5), the BMC is still on standby power and retains the sensor and front panel status LED state established before the power-down event.

When AC power is first applied to the system, the status LED turns solid amber and then immediately changes to blinking green to indicate that the BMC is booting. If the BMC boot process completes with no errors, the status LED changes to solid green. All of the system status LED states are detailed in Table 42.

Table 42. System status LED state detail

| Color | State       | System<br>Status | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------|-------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Green | Solid on    | Ok               | <ul> <li>Indicates that the System Status is 'Healthy'. The system is not exhibiting any errors. AC power is present and BMC has booted and manageability functionality is up and running.</li> <li>1. After a BMC reset, and in conjunction with the Chassis ID solid ON, the BMC is booting Linux*. Control has been passed from BMC uBoot to BMC Linux* itself. It will be in this state for ~10-~20 seconds.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Green | ~1 Hz blink | Degraded         | <ol> <li>Redundancy loss such as power-supply or fan. Applies only if the associated platform subsystem has redundancy capabilities.</li> <li>Fan warning or failure when the number of fully operational fans is more than minimum number needed to cool the system.</li> <li>Non-critical threshold crossed – Temperature (including HSBP temp), voltage, input power to power supply, output current for main power rail from power supply and Processor Thermal Control</li> <li>(Therm Ctrl) sensors.</li> <li>Power supply predictive failure occurred while redundant power supply configuration was present.</li> <li>Unable to use all of the installed memory (more than 1 DIMM installed) 1.</li> <li>Correctable Errors over a threshold and migrating to a spare DIMM (memory sparing). This indicates that the user no longer has spared DIMMs indicating a redundancy lost condition. Corresponding DIMM LED lit.</li> <li>In mirrored configuration, when memory mirroring takes place and system loses memory redundancy.</li> <li>Battery failure.</li> <li>BMC executing in uBoot. (Indicated by Chassis ID blinking at 3Hz).</li> <li>System in degraded state (no manageability). BMC uBoot is running but has not transferred control to BMC Linux*. Server will be in this state 6–8 seconds after BMC reset while it pulls the Linux* image into flash.</li> <li>BMC Watchdog has reset the BMC.</li> <li>Power Unit sensor offset for configuration error is asserted.</li> <li>HDD HSC is off-line or degraded.</li> <li>Hard drive fault</li> </ol> |
| Amber | ~1 Hz blink | Warning          | <ol> <li>Warning alarm – system is likely to fail:</li> <li>Critical threshold crossed – Voltage, temperature (including HSBP temp), input power to power supply, output current for main power rail from power supply and PROCHOT (Therm Ctrl) sensors.</li> <li>VRD Hot asserted.</li> <li>Minimum number of fans to cool the system not present or failed</li> <li>Power Unit Redundancy sensor – Insufficient resources offset</li> <li>(indicates not enough power supplies present)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

# 12.3 Post Code Diagnostic LEDs

Two banks of four POST code diagnostic LEDs (one bank of green LEDs and one bank of amber LEDs) are located on the back edge of the server next to the onboard Ethernet connectors. During the system boot process, the BIOS executes a number of platform configuration processes, each of which is assigned a specific hexadecimal POST code number. As each configuration routine is started, the BIOS displays the given POST code to the POST code diagnostic LEDs. The purpose of these LEDs is to assist in troubleshooting a system hang condition during the POST process. The diagnostic LEDs can be used to identify the last POST process to be executed. See Appendix B for a complete description of how these LEDs are read and for a list of all supported POST codes

## 12.4 CPU Fault LEDs

The server board includes a CPU fault LED for each CPU socket. The CPU fault LED is lit if an MSID mismatch error is detected (that is, CPU power rating is incompatible with the board).

# 12.5 BMC Boot/Reset Status LED Indicators

During the BMC boot or BMC reset process, the System Status LED and System ID LED are used to indicate BMC boot process transitions and states. A BMC boot will occur when the AC power is first applied. (DC power on/off will not reset BMC.) BMC reset will occur after a BMC firmware update, on receiving a BMC cold reset command, and following a reset initiated by the BMC Watchdog. The following table defines the LED states during the BMC Boot/Reset process.

Table 43. BMC Boot/Reset Status LED Indicators

|                                               | Chassis               | Status                |                                                                                                                                                                                                                                                         |  |
|-----------------------------------------------|-----------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| BMC Boot/Reset State                          | ID LED                | LED                   | Comment                                                                                                                                                                                                                                                 |  |
| BMC/Video memory test failed                  | Solid                 | Solid                 | Non-recoverable condition. Contact your Intel® representative for                                                                                                                                                                                       |  |
| BMC/ video memory test faited                 | Blue                  | Amber                 | information on replacing this motherboard.                                                                                                                                                                                                              |  |
| Both Universal Bootloader (u-Boot) images bad | Blink<br>Blue 6<br>Hz | Solid<br>Amber        | Non-recoverable condition. Contact your Intel® representative for information on replacing this motherboard.                                                                                                                                            |  |
| BMC in u-Boot                                 | Blink<br>Blue 3<br>Hz | Blink<br>Green<br>1Hz | Blinking green indicates degraded state (no manageability), blinking blue indicates u-Boot is running but has not transferred control to BMC Linux. Server will be in this state 6–8 seconds after BMC reset while it pulls the Linux image into flash. |  |
| BMC Booting Linux                             | Solid<br>Blue         | Solid<br>Green        | Solid green with solid blue after an AC cycle/BMC reset, indicates that the control has been passed from u-Boot to BMC Linux itself. It will be in this state for ~10-~20 seconds.                                                                      |  |
| End of BMC boot/reset process.                | Off Solid             |                       | Indicates BMC Linux has booted and manageability functionality is                                                                                                                                                                                       |  |
| Normal system operation                       | Oii                   | Green                 | up and running. Fault/Status LEDs operate as per usual.                                                                                                                                                                                                 |  |

# 13. Design and Environmental Specifications

# 13.1 Intel® Server Board S2600ST Design Specifications

The following table defines the Intel® Server Board S2600ST operating and non-operating environmental limits. Operation of the Intel® Server Board S2600ST at conditions beyond those shown in the following table may permanently damage the system. Exposure to absolute maximum rating conditions for extended periods may affect system reliability.

Table 44. Server Board Environmental Limits

| Parameter                 | Limits                                     |                  |
|---------------------------|--------------------------------------------|------------------|
| Operating Temperature     | 0–55 °C (32–131 º F)                       |                  |
| Non-Operating Temperature | -40–70 °C (-40–158 º F)                    |                  |
| Voltage                   | DC Voltage: ±5% of all nominal voltages    |                  |
| Shock, Unpackaged         | Trapezoidal, 25 g, 40-79 lbs. – 205 in/sec |                  |
| Shock, Packaged           | Product Weight                             | Free Fall Height |
|                           | < 20 lbs.                                  | 36 inches        |
|                           | ≥ 20 lbs. to < 40 lbs.                     | 30 inches        |
|                           | ≥ 40 lbs. to < 80 lbs.                     | 24 inches        |
|                           | ≥ 80 lbs. to < 100 lbs.                    | 18 inches        |
|                           | ≥ 100 lbs. to < 120 lbs.                   | 12 inches        |
|                           | ≥ 120 lbs.                                 | 9 inches         |
| Vibration, unpackaged     | 5–500 Hz, 3.13 g RMS random                |                  |

#### Note:

**Disclaimer Note**: Through its own chassis development and system testing, Intel ensures the unpackaged server board and system meet the shock requirement mentioned above. It is the responsibility of the system integrator to determine the proper shock level of the board and system if the system integrator chooses different system configuration or different chassis. Intel Corporation cannot be held responsible if components fail or the server board does not operate correctly when used outside any of its published operating or non-operating limits.

<sup>1.</sup> Shock, Unpackaged values mentioned above are the passing g-force test values for the S2600ST Family, and is less than the Intel® Boards and Systems Environmental Standard for the board of. 50g – 170in/sec.

# Appendix A. Integration and Usage Tips

- When adding or removing components or peripherals from the server board, power cords must be disconnected from the server. With power applied to the server, standby voltages are still present even though the server board is powered off.
- This server board supports the Intel® Xeon® processor Scalable family with a thermal design power (TDP) of up to and including 205 Watts. Previous generations of the Intel® Xeon® processors are not supported. Server systems using this server board may or may not meet the TDP design limits of the server board. Validate the TDP limits of the server system before selecting a processor.
- Processors must be installed in order. CPU 1 must be populated for the server board to operate.
- For the best performance, the number of DDR4 DIMMs installed should be balanced across both processor sockets and memory channels.
- On the back edge of the server board are eight diagnostic LEDs that display a sequence of amber and
  green POST codes during the boot process. If the server board hangs during POST, the LEDs display the
  last POST event run before the hang.
- The system status LED is set to solid amber for all fatal errors that are detected during processor initialization. A solid amber system status LED indicates that an unrecoverable system failure condition has occurred
- RAID partitions created using Intel® VROC (SATA RAID) cannot span across the two embedded SATA controllers. Only drives attached to a common SATA controller can be included in a RAID partition.

# Appendix B. POST Code Diagnostic LED Decoder

As an aid in troubleshooting a system hang that occurs during a system POST process, the server board includes a bank of eight POST code diagnostic LEDs on the back edge of the server board. During the system boot process, Memory Reference Code (MRC) and system BIOS execute a number of memory initialization and platform configuration processes, each of which is assigned a hexadecimal POST code number. As each routine is started, the assigned hexadecimal POST code ID is displayed in binary to the bank of 8 POST code diagnostic LEDs on the back edge of the server board.

During a POST system hang, the displayed post code can be used to identify the last POST routine that was run prior to the error occurring, helping to isolate the possible cause of the hang condition.

Each POST code is represented by eight LEDs, four green and four amber. The POST codes are divided into two nibbles, an upper nibble and a lower nibble. The upper nibble bits are represented by amber LEDs and the lower nibble bits are represented by green LEDs. For each set of nibble bits, LED 0 represents the least significant bit (LSB) and LED 3 represents the most significant bit (MSB) as shown in Figure 49

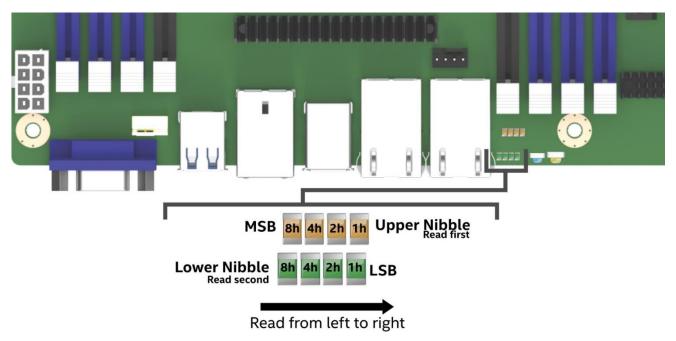



Figure 49. POST diagnostic LED location and definition

**Note**: Diagnostic LEDs are best read and decoded when viewing the LEDs from the back of the system.

In the following example, the BIOS sends a hexadecimal value of AC to the diagnostic LED decoder. The LEDs are decoded as shown in Table 45, where the upper nibble bits represented by the amber LEDs equal  $1010_b$  or  $A_h$  and the lower nibble bits represented by the green LEDs equal  $1100_b$  or  $C_h$ . The two are concatenated as  $AC_h$ .

| Nibble | 8h (MSB) | 4h  | 2h  | 1h (LSB) | Binary Code | Hexadecimal Code |
|--------|----------|-----|-----|----------|-------------|------------------|
| Upper  | ON       | off | ON  | off      | 1010        | А                |
| Lower  | ON       | ON  | off | off      | 1100        | С                |

Table 45. POST progress code LED example

## B.1. Early POST Memory Initialization MRC Diagnostic Codes

Memory initialization at the beginning of POST includes multiple functions: discovery, channel training, validation that the DIMM population is acceptable and functional, initialization of the IMC and other hardware settings, and initialization of applicable RAS configurations.

The MRC progress codes are displayed to the diagnostic LEDs that show the execution point in the MRC operational path at each step.

Table 46. MRC progress codes

| Post Code<br>(Hex) | Nibble | 8h<br>(MSB) | 4h | 2h | 1h<br>(LSB) | Description                                                  |
|--------------------|--------|-------------|----|----|-------------|--------------------------------------------------------------|
| MRC Progress       |        |             |    | l  | ( - )       | , P                                                          |
|                    | Upper  | 1           | 0  | 1  | 1           | 5 50.44                                                      |
| ВО                 | Lower  | 0           | 0  | 0  | 0           | Detect DIMM population                                       |
| D4                 | Upper  | 1           | 0  | 1  | 1           | C.I. DDDA (                                                  |
| B1                 | Lower  | 0           | 0  | 0  | 1           | Set DDR4 frequency                                           |
| D.                 | Upper  | 1           | 0  | 1  | 1           | Cathor remaining Carial Processes Datastics (CDD) data       |
| B2                 | Lower  | 0           | 0  | 1  | 0           | Gather remaining Serial Presence Detection (SPD) data        |
| В3                 | Upper  | 1           | 0  | 1  | 1           | Dragram registers on the mamory controller level             |
| Б3                 | Lower  | 0           | 0  | 1  | 1           | Program registers on the memory controller level             |
| B4                 | Upper  | 1           | 0  | 1  | 1           | Evaluate RAS modes and save rank information                 |
| D4                 | Lower  | 0           | 1  | 0  | 0           | Evaluate RAS modes and save fails imornation                 |
| B5                 | Upper  | 1           | 0  | 1  | 1           | Program registers on the channel level                       |
|                    | Lower  | 0           | 1  | 0  | 1           | Program registers on the channel level                       |
| В6                 | Upper  | 1           | 0  | 1  | 1           | Perform the JEDEC defined initialization sequence            |
|                    | Lower  | 0           | 1  | 1  | 0           | renorm the JEDEC defined initiatization sequence             |
| В7                 | Upper  | 1           | 0  | 1  | 1           | Train DDR4 ranks                                             |
| <i>D7</i>          | Lower  | 0           | 1  | 1  | 1           | Trail DDN4 railes                                            |
| B8                 | Upper  | 1           | 0  | 1  | 1           | Initialize closed-loop thermal throttling (CLTT) / open-loop |
|                    | Lower  | 1           | 0  | 0  | 0           | thermal throttling (OLTT)                                    |
| В9                 | Upper  | 1           | 0  | 1  | 1           | Hardware memory test and initialization                      |
|                    | Lower  | 1           | 0  | 0  | 1           | That aware memory test and midulization                      |
| ВА                 | Upper  | 1           | 0  | 1  | 1           | Execute software memory initialization                       |
|                    | Lower  | 1           | 0  | 1  | 0           | Execute sortman memory minute and in                         |
| ВВ                 | Upper  | 1           | 0  | 1  | 1           | Program memory map and interleaving                          |
|                    | Lower  | 1           | 0  | 1  | 1           |                                                              |
| ВС                 | Upper  | 1           | 0  | 1  | 1           | Program RAS configuration                                    |
|                    | Lower  | 1           | 1  | 0  | 0           |                                                              |
|                    |        |             |    |    |             |                                                              |
| BF                 | Upper  | 1           | 0  | 1  | 1           | MRC is done                                                  |
|                    | Lower  | 1           | 1  | 1  | 1           |                                                              |

Should a major memory initialization error occur, preventing the system from booting with data integrity, a beep code is generated, the MRC displays a fatal error code on the diagnostic LEDs, and a system halt command is executed. Fatal MRC error halts do NOT change the state of the system status LED and they do NOT get logged as SEL events. Table 47 lists all MRC fatal errors that are displayed to the diagnostic LEDs.

**Note**: Fatal MRC errors display POST error codes that may be the same as BIOS POST progress codes displayed later in the POST process. The fatal MRC codes can be distinguished from the BIOS POST progress codes by the accompanying memory failure beep code of three short beeps as identified in Table 50.

**Table 47. MRC Fatal Error Codes** 

| Post Code<br>(Hex) | Nibble    | 8h<br>(MSB) | 4h | 2h | 1h<br>(LSB) | Description                                                                                                                                                                   |
|--------------------|-----------|-------------|----|----|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MRC Fatal Er       | ror Codes |             |    |    |             |                                                                                                                                                                               |
| E8                 | Upper     | 1           | 1  | 1  | 0           | No Usable Memory Error:<br>01h = No memory was detected via SPD read, or invalid config<br>that causes no operable memory.                                                    |
|                    | Lower     | 1           | 0  | 0  | 0           | <ul><li>02h = Memory DIMMs on all channels of all sockets are disabled due to hardware memtest error.</li><li>03h = No memory installed. All channels are disabled.</li></ul> |
| E9                 | Upper     | 1           | 1  | 1  | 0           | Memory is locked by Intel® TXT and is inaccessible                                                                                                                            |
|                    | Lower     | 1           | 0  | 0  | 1           | Plemory is tocked by inter-TAT and is inaccessible                                                                                                                            |
| EA                 | Upper     | 1           | 1  | 1  | 0           | DDR4 channel training error 01h = Error on read DQ/DQS (Data/Data Strobe) initialization 02h = Error on receive enable                                                        |
|                    | Lower     | 1           | 0  | 1  | 0           | 03h = Error on write leveling<br>04h = Error on write DQ/DQS (Data/Data Strobe)                                                                                               |
| ED                 | Upper     | 1           | 1  | 1  | 0           | Memory test failure                                                                                                                                                           |
| ЕВ                 | Lower     | 1           | 0  | 1  | 1           | 01h = Software mem-test failure.<br>02h = Hardware mem-test failed.                                                                                                           |
|                    | Upper     | 1           | 1  | 1  | 0           | DIMM configuration population error 01h = Different DIMM types (UDIMM, RDIMM, LRDIMM) are installed in the system. 02h = Violation of DIMM population rules.                  |
| ED                 | Lower     | 1           | 1  | 0  | 1           | O3h = The third DIMM slot cannot be populated when QR DIMMs are installed. O4h = UDIMMs are not supported in the third DIMM slot. O5h = Unsupported DIMM voltage.             |
| EF                 | Upper     | 1           | 1  | 1  | 0           | Indicates a CLTT table structure error                                                                                                                                        |
| EF                 | Lower     | 1           | 1  | 1  | 1           | mulcales a CLTT lable structure error                                                                                                                                         |

# **B.2. BIOS POST Progress Codes**

Table 48 provides a list of all POST progress codes.

Table 48. POST progress codes

| Post Code<br>(Hex) | Nibble       | LED 3<br>(MSB) | LED 2       | LED 1      | LED 0<br>(LSB) | Description                                            |
|--------------------|--------------|----------------|-------------|------------|----------------|--------------------------------------------------------|
| SEC Phase          |              |                |             |            |                |                                                        |
| 01                 | Upper        | 0              | 0           | 0          | 0              | First POST code after CPU reset                        |
| U1                 | Lower        | 0              | 0           | 0          | 1              | First POST code after CPU reset                        |
| 02                 | Upper        | 0              | 0           | 0          | 0              | Missandalandharin                                      |
| 02                 | Lower        | 0              | 0           | 1          | 0              | Microcode load begin                                   |
| 02                 | Upper        | 0              | 0           | 0          | 0              | CDAM in this line tion bearing                         |
| 03                 | Lower        | 0              | 0           | 1          | 1              | CRAM initialization begin                              |
| 0.4                | Upper        | 0              | 0           | 0          | 0              | DEL control dischilor                                  |
| 04                 | Lower        | 0              | 1           | 0          | 0              | PEI cache when disabled                                |
| 05                 | Upper        | 0              | 0           | 0          | 0              | CEC and at a supplied to the size                      |
| 05                 | Lower        | 0              | 1           | 0          | 1              | SEC core at power on begin                             |
| 0.5                | Upper        | 0              | 0           | 0          | 0              | Ford CDUITATION of the CEC alone                       |
| 06                 | Lower        | 0              | 1           | 1          | 0              | Early CPU initialization during SEC phase.             |
| Intel® Ultra I     | Path Interco | nnect (Inte    | el® UPI) RC | (Fully lev | verage wit     | :hout platform change)                                 |
| A1                 | Upper        | 1              | 0           | 1          | 0              | Collectinfo such as CBCD heat made reset time ats      |
| AI                 | Lower        | 0              | 0           | 0          | 1              | Collect info such as SBSP, boot mode, reset type, etc. |
| А3                 | Upper        | 1              | 0           | 1          | 0              | Cotup minimum noth between CDCD and other cockets      |
| AS                 | Lower        | 0              | 0           | 1          | 1              | Setup minimum path between SBSP and other sockets      |
| <b>A</b> 7         | Upper        | 1              | 0           | 1          | 0              | Tanalogy discovery and route calculation               |
| A7                 | Lower        | 0              | 1           | 1          | 1              | Topology discovery and route calculation               |
| A8                 | Upper        | 1              | 0           | 1          | 0              | Program final route                                    |
| Ao                 | Lower        | 1              | 0           | 0          | 0              | Program imacroute                                      |
| 40                 | Upper        | 1              | 0           | 1          | 0              | Drogram final IO SAD setting                           |
| А9                 | Lower        | 1              | 0           | 0          | 1              | Program final IO SAD setting                           |
| AA                 | Upper        | 1              | 0           | 1          | 0              | Protocol layer and other uncore settings               |
| AA                 | Lower        | 1              | 0           | 1          | 0              | Protocol layer and other uncore settings               |
| AD                 | Upper        | 1              | 0           | 1          | 0              | Transition links to full speed operation               |
| AB                 | Lower        | 1              | 0           | 1          | 1              | Transition links to full speed operation               |

## Intel® Server Board S2600ST Product Family Technical Product Specification

| Post Code<br>(Hex) | Nibble   | LED 3<br>(MSB) | LED 2 | LED 1 | LED 0<br>(LSB) | Description                          |
|--------------------|----------|----------------|-------|-------|----------------|--------------------------------------|
| AE                 | Upper    | 1              | 0     | 1     | 0              | Cohoroney cottings                   |
| AE                 | Lower    | 1              | 1     | 1     | 0              | Coherency settings                   |
| AF                 | Upper    | 1              | 0     | 1     | 0              | Intel UPI initialization done        |
| AF                 | Lower    | 1              | 1     | 1     | 1              | intel OPI initialization done        |
| PEI Phase          |          |                |       |       |                |                                      |
| 10                 | Upper    | 0              | 0     | 0     | 1              | DELegge                              |
| 10                 | Lower    | 0              | 0     | 0     | 0              | PEI core                             |
|                    | Upper    | 0              | 0     | 0     | 1              | CDU DEIM                             |
| 11                 | Lower    | 0              | 0     | 0     | 1              | CPU PEIM                             |
| 4.5                | Upper    | 0              | 0     | 0     | 1              | Platform to a total to a to          |
| 15                 | Lower    | 0              | 1     | 0     | 1              | Platform type initialization         |
| 40                 | Upper    | 0              | 0     | 0     | 1              | Platform PEIM Introduction           |
| 19                 | Lower    | 1              | 0     | 0     | 1              | Platform PEIM Initialization         |
| MRC Progres        | ss Codes |                |       |       |                |                                      |
| 31                 | Upper    | 0              | 0     | 1     | 1              | Marsary installed                    |
| 31                 | Lower    | 0              | 0     | 0     | 1              | Memory installed                     |
| 32                 | Upper    | 0              | 0     | 1     | 1              | CDLL DEIM (CDLL initial institution) |
| 32                 | Lower    | 0              | 0     | 1     | 0              | CPU PEIM (CPU initialization)        |
| 22                 | Upper    | 0              | 0     | 1     | 1              | CDU DEIM (see he initialization)     |
| 33                 | Lower    | 0              | 0     | 1     | 1              | CPU PEIM (cache initialization)      |
| 45                 | Upper    | 0              | 1     | 0     | 0              | DVE IDLANGED                         |
| 4F                 | Lower    | 1              | 1     | 1     | 1              | DXE IPL started                      |
| DXE Phase          |          |                |       | ,     |                |                                      |
| 60                 | Upper    | 0              | 1     | 1     | 0              | DVF some storted                     |
| 60                 | Lower    | 0              | 0     | 0     | 0              | DXE core started                     |
| 63                 | Upper    | 0              | 1     | 1     | 0              | DVF cotus initialization             |
| 62                 | Lower    | 0              | 0     | 1     | 0              | DXE setup initialization             |
| 60                 | Upper    | 0              | 1     | 1     | 0              | DVF DCI host bridge initialization   |
| 68                 | Lower    | 1              | 0     | 0     | 0              | DXE PCI host bridge initialization   |
| 60                 | Upper    | 0              | 1     | 1     | 0              | DXE NB initialization                |
| 69                 | Lower    | 1              | 0     | 0     | 1              | DAE IND IIIIIIduzduoii               |

| Post Code<br>(Hex) | Nibble | LED 3<br>(MSB) | LED 2 | LED 1 | LED 0<br>(LSB) | Description                     |
|--------------------|--------|----------------|-------|-------|----------------|---------------------------------|
| 6A                 | Upper  | 0              | 1     | 1     | 0              | DXE NB SMM initialization       |
| бА                 | Lower  | 1              | 0     | 1     | 0              | DAE NB SMM Initiatization       |
| 70                 | Upper  | 0              | 1     | 1     | 1              | DXE SB initialization           |
| 70                 | Lower  | 0              | 0     | 0     | 0              | DAE 36 IIIIIduzduon             |
| 71                 | Upper  | 0              | 1     | 1     | 1              | DXE SB SMM initialization       |
| 71                 | Lower  | 0              | 0     | 0     | 1              | DAE 36 3MM IIIIttatization      |
| 72                 | Upper  | 0              | 1     | 1     | 1              | DXE SB devices initialization   |
| 12                 | Lower  | 0              | 0     | 1     | 0              | DAE 3B devices illitiatization  |
| 78                 | Upper  | 0              | 1     | 1     | 1              | DXE ACPI initialization         |
| 76                 | Lower  | 1              | 0     | 0     | 0              | DAE ACFI IIIttiatization        |
| 79                 | Upper  | 0              | 1     | 1     | 1              | DXE CSM initialization          |
| 79                 | Lower  | 1              | 0     | 0     | 1              | DAE CSM IIIIIdiization          |
| 90                 | Upper  | 1              | 0     | 0     | 1              | DXE BDS started                 |
| 90                 | Lower  | 0              | 0     | 0     | 0              | DAE BD3 Started                 |
| 91                 | Upper  | 1              | 0     | 0     | 1              | DXE BDS connect drivers         |
| 91                 | Lower  | 0              | 0     | 0     | 1              | DAE BD3 Connect drivers         |
| 92                 | Upper  | 1              | 0     | 0     | 1              | DXE PCI bus begin               |
| 92                 | Lower  | 0              | 0     | 1     | 0              | DAE PCI bus begin               |
| 93                 | Upper  | 1              | 0     | 0     | 1              | DXE PCI bus HPC initialization  |
| 93                 | Lower  | 0              | 0     | 1     | 1              | DAE PCI DUS APC IIIIIIaiization |
| 94                 | Upper  | 1              | 0     | 0     | 1              | DXE PCI bus enumeration         |
| 94                 | Lower  | 0              | 1     | 0     | 0              | DAE PCI bus enumeration         |
| 95                 | Upper  | 1              | 0     | 0     | 1              | DXE PCI bus resource requested  |
| 95                 | Lower  | 0              | 1     | 0     | 1              | DAE PCI dus resource requesteu  |
| 96                 | Upper  | 1              | 0     | 0     | 1              | DXE PCI bus assign resource     |
| 90                 | Lower  | 0              | 1     | 1     | 0              | DAE PCI bus assign resource     |
| 97                 | Upper  | 1              | 0     | 0     | 1              | DXE CON_OUT connect             |
| <i>31</i>          | Lower  | 0              | 1     | 1     | 1              | DAL CON_OUT CONNECT             |
| 98                 | Upper  | 1              | 0     | 0     | 1              | DXE CON_IN connect              |
| <del>30</del>      | Lower  | 1              | 0     | 0     | 0              | DAL CON_IN COINIECT             |
| 99                 | Upper  | 1              | 0     | 0     | 1              | DXE SIO initialization          |
|                    | Lower  | 1              | 0     | 0     | 1              |                                 |
| 9A                 | Upper  | 1              | 0     | 0     | 1              | DXE USB start                   |
| <i>3</i> A         | Lower  | 1              | 0     | 1     | 0              | DAL OSD Start                   |
| 9B                 | Upper  | 1              | 0     | 0     | 1              | DXE USB reset                   |
| <b>3</b> D         | Lower  | 1              | 0     | 1     | 1              | DVF 03D Leser                   |
| 9C                 | Upper  | 1              | 0     | 0     | 1              | DXE USB detect                  |
| <b></b>            | Lower  | 1              | 1     | 0     | 0              | DAL 03D detect                  |

| Post Code<br>(Hex) | Nibble | LED 3<br>(MSB) | LED 2 | LED 1 | LED 0<br>(LSB) | Description                          |
|--------------------|--------|----------------|-------|-------|----------------|--------------------------------------|
| 9D                 | Upper  | 1              | 0     | 0     | 1              | DXE USB enable                       |
| 90                 | Lower  | 1              | 1     | 0     | 1              | DAE OSB enable                       |
| A1                 | Upper  | 1              | 0     | 1     | 0              | DVE IDE bagin                        |
| AI                 | Lower  | 0              | 0     | 0     | 1              | DXE IDE begin                        |
| A2                 | Upper  | 1              | 0     | 1     | 0              | DXE IDE reset                        |
| AZ                 | Lower  | 0              | 0     | 1     | 0              | DAE IDE leset                        |
| А3                 | Upper  | 1              | 0     | 0     | 0              | DXE IDE detect                       |
| AS                 | Lower  | 0              | 0     | 1     | 1              | DAE IDE detect                       |
| A4                 | Upper  | 1              | 0     | 1     | 0              | DXE IDE enable                       |
| A4                 | Lower  | 0              | 1     | 0     | 0              | DAE IDE eliable                      |
| <b>A</b> 5         | Upper  | 1              | 0     | 1     | 0              | DXE SCSI begin                       |
| AS                 | Lower  | 0              | 1     | 0     | 1              | DAE 3C3I Degili                      |
| <b>A6</b>          | Upper  | 1              | 0     | 1     | 0              | DXE SCSI reset                       |
| Au                 | Lower  | 0              | 1     | 1     | 0              | DAE SCSITESEL                        |
| <b>A</b> 7         | Upper  | 1              | 0     | 1     | 0              | DXE SCSI detect                      |
| A7                 | Lower  | 0              | 1     | 1     | 1              | DAE SCSI detect                      |
| A8                 | Upper  | 1              | 0     | 1     | 0              | DXE SCSI enable                      |
| Ao                 | Lower  | 1              | 0     | 0     | 0              | DAE SCSI ellable                     |
| АВ                 | Upper  | 1              | 0     | 1     | 0              | DXE setup start                      |
| Ab                 | Lower  | 1              | 0     | 1     | 1              | DAL Setup start                      |
| AC                 | Upper  | 1              | 0     | 1     | 0              | DXE setup input wait                 |
| AC                 | Lower  | 1              | 1     | 0     | О              | DAL Setup input wait                 |
| AD                 | Upper  | 1              | 0     | 1     | 0              | DXE ready to boot                    |
| Αυ                 | Lower  | 1              | 1     | 0     | 1              | DAL ready to boot                    |
| AE                 | Upper  | 1              | 0     | 1     | 0              | DXE legacy boot                      |
| AL                 | Lower  | 1              | 1     | 1     | 0              | DAL legacy boot                      |
| AF                 | Upper  | 1              | 0     | 1     | 0              | DXE exit boot services               |
| Δι                 | Lower  | 1              | 1     | 1     | 1              | DAE CAR DOOL SCI VICES               |
| ВО                 | Upper  | 1              | 0     | 1     | 1              | RT set virtual address map begin     |
| 50                 | Lower  | 0              | 0     | 0     | 0              | TO SEC VII COURT DEGITI              |
| В2                 | Upper  | 1              | 0     | 1     | 1              | DXE legacy option ROM initialization |
| <i>DL</i>          | Lower  | 0              | 0     | 1     | 0              | DAL tegacy option Northindutzation   |
| В3                 | Upper  | 1              | 0     | 1     | 1              | DXE reset system                     |
|                    | Lower  | 0              | 0     | 1     | 1              | DAL Teset system                     |
| В4                 | Upper  | 1              | 0     | 1     | 1              | DXE USB hot plug                     |
| U-T                | Lower  | 0              | 1     | 0     | 0              | DAE 03D Hot plug                     |
| В5                 | Upper  | 1              | 0     | 1     | 1              | DXE PCI BUS hot plug                 |
|                    | Lower  | 0              | 1     | 0     | 1              | DALT G. BOS Hot plug                 |

| Post Code<br>(Hex) | Nibble | LED 3<br>(MSB) | LED 2 | LED 1 | LED 0<br>(LSB) | Description                                   |
|--------------------|--------|----------------|-------|-------|----------------|-----------------------------------------------|
| CO                 | Upper  | 1              | 1     | 0     | 0              | End of DXE                                    |
| CO                 | Lower  | 0              | 0     | 0     | 0              | ENG OF DAE                                    |
| <b>C</b> 7         | Upper  | 1              | 1     | 0     | 0              | DXE ACPI enable                               |
| <b>C</b> /         | Lower  | 0              | 1     | 1     | 1              | DAE ACFI eliable                              |
| 00                 | Upper  | 0              | 0     | 0     | 0              | Clear POST code                               |
| 00                 | Lower  | 0              | 0     | 0     | 0              | Clear FOST code                               |
| S3 Resume          |        |                |       |       |                |                                               |
| EO                 | Upper  | 1              | 1     | 1     | 0              | S3 resume PEIM (S3 started)                   |
| EU                 | Lower  | 0              | 0     | 0     | 0              | 33 resume PEIM (33 started)                   |
| E1                 | Upper  | 1              | 1     | 1     | 0              | C2 veering DEIM (C2 head seriet)              |
| EI                 | Lower  | 0              | 0     | 0     | 1              | S3 resume PEIM (S3 boot script)               |
| E2                 | Upper  | 1              | 1     | 1     | 0              | C2 vegume DEIM (C2 video vegost)              |
| EZ                 | Lower  | 0              | 0     | 1     | 0              | S3 resume PEIM (S3 video repost)              |
| F2                 | Upper  | 1              | 1     | 1     | 0              | C2 requires DEIM (C2 OC wells)                |
| E3                 | Lower  | 0              | 0     | 1     | 1              | S3 resume PEIM (S3 OS wake)                   |
| BIOS Recove        | ery    |                |       | _     |                |                                               |
| F0                 | Upper  | 1              | 1     | 1     | 1              | DCIMhigh detected forward upon our division   |
| F0                 | Lower  | 0              | 0     | 0     | 0              | PEIM which detected forced recovery condition |
| F1                 | Upper  | 1              | 1     | 1     | 1              | DCIM which detected was recovery condition    |
| FI                 | Lower  | 0              | 0     | 0     | 1              | PEIM which detected user recovery condition   |
| F2                 | Upper  | 1              | 1     | 1     | 1              | Decovery DEIM (recovery storted)              |
| F2                 | Lower  | 0              | 0     | 1     | 0              | Recovery PEIM (recovery started)              |
| F2                 | Upper  | 1              | 1     | 1     | 1              | December DEIM (companie formel)               |
| F3                 | Lower  | 0              | 0     | 1     | 1              | Recovery PEIM (capsule found)                 |
| F4                 | Upper  | 1              | 1     | 1     | 1              | Decovery DEIM (consula landad)                |
| F <del>4</del>     | Lower  | 0              | 1     | 0     | 0              | Recovery PEIM (capsule loaded)                |
| E8                 | Upper  | 1              | 1     | 1     | 0              | No usable memory error                        |
| Eö                 | Lower  | 1              | 0     | 0     | 0              | No usable memory error                        |
| ΕΛ                 | Upper  | 1              | 1     | 1     | 0              | DDP4 channel training arror                   |
| EA                 | Lower  | 1              | 0     | 1     | 0              | DDR4 channel training error                   |
| ED                 | Upper  | 1              | 1     | 1     | 0              | Manageritaatfailura                           |
| ЕВ                 | Lower  | 1              | 0     | 1     | 1              | Memory test failure                           |
|                    | Upper  | 1              | 1     | 1     | 0              | DIMM configuration to a latter of             |
| ED                 | Lower  | 1              | 1     | 0     | 1              | DIMM configuration/population error           |
|                    | Upper  | 1              | 1     | 1     | 0              | Indicates a CLTT table at a state of          |
| EF                 | Lower  | 1              | 1     | 1     | 1              | Indicates a CLTT table structure error        |
| DO.                | Upper  | 1              | 0     | 1     | 1              | Detect DIMM regulation                        |
| ВО                 | Lower  | 0              | 0     | 0     | 0              | Detect DIMM population                        |

Intel® Server Board S2600ST Product Family Technical Product Specification

| Post Code<br>(Hex) | Nibble | LED 3<br>(MSB) | LED 2 | LED 1 | LED 0<br>(LSB) | Description                                       |
|--------------------|--------|----------------|-------|-------|----------------|---------------------------------------------------|
| B1                 | Upper  | 1              | 0     | 1     | 1              | Set DDR4 frequency                                |
| БІ                 | Lower  | 0              | 0     | 0     | 1              | Set DDR4 frequency                                |
| B2                 | Upper  | 1              | 0     | 1     | 1              | Gather remaining SPD data                         |
| DZ                 | Lower  | 0              | 0     | 1     | 0              | Gather remaining SPD data                         |
| В3                 | Upper  | 1              | 0     | 1     | 1              | Program registers on the memory controller level  |
|                    | Lower  | О              | 0     | 1     | 1              | Program registers on the memory controller level  |
| B4                 | Upper  | 1              | 0     | 1     | 1              | Evaluate RAS modes and save rank information      |
| D4                 | Lower  | 0              | 1     | 0     | 0              | Evaluate RAS filodes and save falls illiornation  |
| B5                 | Upper  | 1              | 0     | 1     | 1              | Program registers on the channel level            |
|                    | Lower  | 0              | 1     | 0     | 1              | Program registers on the channel level            |
| В6                 | Upper  | 1              | 0     | 1     | 1              | Perform the JEDEC defined initialization sequence |
| ВО                 | Lower  | 0              | 1     | 1     | 0              | Perform the JEDEC defined initialization sequence |
| B7                 | Upper  | 1              | 0     | 1     | 1              | Train DDR4 ranks                                  |
| Б/                 | Lower  | 0              | 1     | 1     | 1              | Halli DDR4 Faliks                                 |
| B8                 | Upper  | 1              | 0     | 1     | 1              | Initialize CLTT/OLTT                              |
| Во                 | Lower  | 1              | 0     | 0     | О              | initiatize CETT/OETT                              |
| В9                 | Upper  | 1              | 0     | 1     | 1              | Hardware memory test and initialization           |
|                    | Lower  | 1              | 0     | 0     | 1              | nardware memory test and midalization             |
| ВА                 | Upper  | 1              | 0     | 1     | 1              | Execute software memory initialization            |
| DA .               | Lower  | 1              | 0     | 1     | 0              | Execute software memory initialization            |
| ВВ                 | Upper  | 1              | 0     | 1     | 1              | Program memory map and interleaving               |
| DB                 | Lower  | 1              | 0     | 1     | 1              | 1 Togram memory map and interteaving              |
| ВС                 | Upper  | 1              | 0     | 1     | 1              | Program RAS configuration                         |
|                    | Lower  | 1              | 1     | 0     | 0              | Flogram KAS Comiguration                          |
| BF                 | Upper  | 1              | 0     | 1     | 1              | MRC is done                                       |
| DF                 | Lower  | 1              | 1     | 1     | 1              | PINC IS GOITE                                     |

# Appendix C. POST Code Errors

Most error conditions encountered during POST are reported using POST error codes. These codes represent specific failures, warnings, or information. POST error codes may be displayed in the error manager display screen and are always logged to the System Event Log (SEL). Logged events are available to system management applications, including remote and Out of Band (OOB) management.

There are exception cases in early initialization where system resources are not adequately initialized for handling POST error code reporting. These cases are primarily fatal error conditions resulting from initialization of processors and memory, and they are handed by a diagnostic LED display with a system halt.

The following table lists the supported POST error codes. Each error code is assigned an error type, which determines the action the BIOS takes when the error is encountered. Error types include minor, major, and fatal. The BIOS action for each is defined as follows:

• Fatal: If the system cannot boot, POST halts and display the following message:

Unrecoverable fatal error found. System will not boot until the error is
 resolved
Press <F2> to enter setup

When the **<F2>** key on the keyboard is pressed, the error message is displayed on the error manager screen and an error is logged to the system event log (SEL) with the POST error code.

The "POST Error Pause" option setting in the BIOS Setup does not have any effect on this error. If the system is not able to boot, the system generates a beep code consisting of three long beeps and one short beep. The system cannot boot unless the error is resolved. The faulty component must be replaced.

The system status LED is set to a steady amber color for all fatal errors that are detected during processor initialization. A steady amber system status LED indicates that an unrecoverable system failure condition has occurred.

Major: An error message is displayed to the error manager screen and an error is logged to the SEL. If
the BIOS Setup option "Post Error Pause" is enabled, operator intervention is required to continue
booting the system. If the BIOS Setup option "POST Error Pause" is disabled, the system continues to
boot.

**Note**: For 0048 "Password check failed", the system halts and then, after the next reset/reboot, displays the error code on the error manager screen.

Minor: An error message may be displayed to the screen or to the BIOS Setup error manager and the
POST error code is logged to the SEL. The system continues booting in a degraded state. The user
may want to replace the erroneous unit. The "POST Error Pause" option setting in the BIOS Setup
does not have any effect on this error.

**Note**: The POST error codes in Table 49 are common to all current generation Intel® Server Platforms. Features present on a given server board/system will determine which of the listed error codes are supported.

# Table 49. POST error codes and messages

| Error<br>Code | Error Message                                                     | Action Message                                                                                                                  | Error<br>Type |
|---------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------|
| 0012          | System RTC date/time not set                                      |                                                                                                                                 | Major         |
| 0048          | Password check failed                                             | Please put right password.                                                                                                      | Major         |
| 0140          | PCI component encountered a PERR error                            |                                                                                                                                 | Major         |
| 0141          | PCI resource conflict                                             |                                                                                                                                 | Major         |
| 0146          | PCI out of resources error                                        | Please enable Memory<br>Mapped I/O above 4 GB item at SETUP to use 64bit<br>MMIO.                                               | Major         |
| 0191          | Processor core/thread count mismatch detected                     | Please use identical CPU type.                                                                                                  | Fatal         |
| 0192          | Processor cache size mismatch detected                            | Please use identical CPU type.                                                                                                  | Fatal         |
| 0194          | Processor family mismatch detected                                | Please use identical CPU type.                                                                                                  | Fatal         |
| 0195          | Processor Intel(R) UPI link frequencies unable to synchronize     |                                                                                                                                 | Fatal         |
| 0196          | Processor model mismatch detected                                 | Please use identical CPU type.                                                                                                  | Fatal         |
| 0197          | Processor frequencies unable to synchronize                       | Please use identical CPU type.                                                                                                  | Fatal         |
| 5220          | BIOS Settings reset to default settings                           |                                                                                                                                 | Major         |
| 5221          | Passwords cleared by jumper                                       |                                                                                                                                 | Major         |
| 5224          | Password clear jumper is Set                                      | Recommend to remind user to install BIOS password as BIOS admin password is the master keys for several BIOS security features. | Major         |
| 8130          | Processor 01 disabled                                             |                                                                                                                                 | Major         |
| 8131          | Processor 02 disabled                                             |                                                                                                                                 | Major         |
| 8160          | Processor 01 unable to apply microcode update                     |                                                                                                                                 | Major         |
| 8161          | Processor 02 unable to apply microcode update                     |                                                                                                                                 | Major         |
| 8170          | Processor 01 failed self-test (BIST)                              |                                                                                                                                 | Major         |
| 8171          | Processor 02 failed self-test (BIST)                              |                                                                                                                                 | Major         |
| 8180          | Processor 01 microcode update not found                           |                                                                                                                                 | Minor         |
| 8181          | Processor 02 microcode update not found                           |                                                                                                                                 | Minor         |
| 8190          | Watchdog timer failed on last boot                                |                                                                                                                                 | Major         |
| 8198          | OS boot watchdog timer failure                                    |                                                                                                                                 | Major         |
| 8300          | Baseboard management controller failed self-<br>test              |                                                                                                                                 | Major         |
| 8305          | Hot Swap Controller failure                                       |                                                                                                                                 | Major         |
| 83A0          | Intel ME failed self-test                                         |                                                                                                                                 | Major         |
| 83A1          | Intel ME failed to respond                                        |                                                                                                                                 | Major         |
| 84F2          | Baseboard management controller failed to respond                 |                                                                                                                                 | Major         |
| 84F3          | Baseboard management controller in update mode                    |                                                                                                                                 | Major         |
| 84F4          | Sensor data record empty                                          | Please update right SDR.                                                                                                        | Major         |
| 84FF          | System event log full                                             | Please clear SEL through EWS or SELVIEW utility.                                                                                | Minor         |
| 8500          | Memory component could not be configured in the selected RAS mode |                                                                                                                                 | Major         |
| 8501          | DIMM population error                                             | Please plug DIMM at right population.                                                                                           | Major         |
| 8520          | CPU1_DIMM_A1 failed test/initialization                           | Please remove the disabled DIMM.                                                                                                | Major         |

| Error<br>Code           | Error Message                           | Action Message                   | Error<br>Type |
|-------------------------|-----------------------------------------|----------------------------------|---------------|
| 8521                    | CPU1_DIMM_A2 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 8522                    | CPU1_DIMM_A3 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 8523                    | CPU1_DIMM_B1 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 8524                    | CPU1_DIMM_B2 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 8525                    | CPU1_DIMM_B3 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 8526                    | CPU1_DIMM_C1 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 8527                    | CPU1_DIMM_C2 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 8528                    | CPU1_DIMM_C3 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 8529                    | CPU1_DIMM_D1 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 852A                    | CPU1_DIMM_D2 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 852B                    | CPU1_DIMM_D3 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 852C                    | CPU1_DIMM_E1 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 852D                    | CPU1_DIMM_E2 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 852E                    | CPU1_DIMM_E3 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 852F                    | CPU1_DIMM_F1 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 8530                    | CPU1_DIMM_F2 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 8531                    | CPU1_DIMM_F3 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 8532                    | CPU1_DIMM_G1 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 8533                    | CPU1_DIMM_G2 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 8534                    | CPU1_DIMM_G3 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 8535                    | CPU1_DIMM_H1 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 8536                    | CPU1_DIMM_H2 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 8537                    | CPU1_DIMM_H3 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 8538                    | CPU2_DIMM_A1 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 8539                    | CPU2_DIMM_A2 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 853A                    | CPU2_DIMM_A3 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 853B                    | CPU2_DIMM_B1 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 853C                    | CPU2_DIMM_B2 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 853D                    | CPU2_DIMM_B3 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 853E                    | CPU2_DIMM_C1 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 853F<br>(Go to<br>85C0) | CPU2_DIMM_C2 failed test/initialization | Please remove the disabled DIMM. | Major         |
| 8540                    | CPU1_DIMM_A1 disabled                   | Please remove the disabled DIMM. | Major         |
| 8541                    | CPU1_DIMM_A2 disabled                   | Please remove the disabled DIMM. | Major         |
| 8542                    | CPU1_DIMM_A3 disabled                   | Please remove the disabled DIMM. | Major         |
| 8543                    | CPU1_DIMM_B1 disabled                   | Please remove the disabled DIMM. | Major         |
| 8544                    | CPU1_DIMM_B2 disabled                   | Please remove the disabled DIMM. | Major         |
| 8545                    | CPU1_DIMM_B3 disabled                   | Please remove the disabled DIMM. | Major         |
| 8546                    | CPU1_DIMM_C1 disabled                   | Please remove the disabled DIMM. | Major         |
| 8547                    | CPU1_DIMM_C2 disabled                   | Please remove the disabled DIMM. | Major         |
| 8548                    | CPU1_DIMM_C3 disabled                   | Please remove the disabled DIMM. | Major         |
| 8549                    | CPU1_DIMM_D1 disabled                   | Please remove the disabled DIMM. | Major         |
| 854A                    | CPU1_DIMM_D2 disabled                   | Please remove the disabled DIMM. | Major         |
| 854B                    | CPU1_DIMM_D3 disabled                   | Please remove the disabled DIMM. | Major         |
| 854C                    | CPU1_DIMM_E1 disabled                   | Please remove the disabled DIMM. | Major         |

| Error<br>Code   | Error Message                                                         | Action Message                   | Error<br>Type |
|-----------------|-----------------------------------------------------------------------|----------------------------------|---------------|
| 854D            | CPU1_DIMM_E2 disabled                                                 | Please remove the disabled DIMM. | Major         |
| 854E            | CPU1DIMM_E3 disabled                                                  | Please remove the disabled DIMM. | Major         |
| 854F            | CPU1DIMM_F1 disabled                                                  | Please remove the disabled DIMM. | Major         |
| 8550            | CPU1DIMM_F2 disabled                                                  | Please remove the disabled DIMM. | Major         |
| 8551            | CPU1DIMM_F3 disabled                                                  | Please remove the disabled DIMM. | Major         |
| 8552            | CPU1DIMM_G1 disabled                                                  | Please remove the disabled DIMM. | Major         |
| 8553            | CPU1DIMM_G2 disabled                                                  | Please remove the disabled DIMM. | Major         |
| 8554            | CPU1DIMM_G3 disabled                                                  | Please remove the disabled DIMM. | Major         |
| 8555            | CPU1DIMM_H1 disabled                                                  | Please remove the disabled DIMM. | Major         |
| 8556            | CPU1DIMM_H2 disabled                                                  | Please remove the disabled DIMM. | Major         |
| 8557            | CPU1DIMM_H3 disabled                                                  | Please remove the disabled DIMM. | Major         |
| 8558            | CPU2_DIMM_A1 disabled                                                 | Please remove the disabled DIMM. | Major         |
| 8559            | CPU2_DIMM_A2 disabled                                                 | Please remove the disabled DIMM. | Major         |
| 855A            | CPU2_DIMM_A3 disabled                                                 | Please remove the disabled DIMM. | Major         |
| 855B            | CPU2_DIMM_B1 disabled                                                 | Please remove the disabled DIMM. | Major         |
| 855C            | CPU2 DIMM B2 disabled                                                 | Please remove the disabled DIMM. | Major         |
| 855D            | CPU2_DIMM_B3 disabled                                                 | Please remove the disabled DIMM. | Major         |
| 855E            | CPU2_DIMM_C1 disabled                                                 | Please remove the disabled DIMM. | Major         |
| 855F            |                                                                       |                                  |               |
| (Go to<br>85D0) | CPU2_DIMM_C2 disabled                                                 | Please remove the disabled DIMM. | Major         |
| 8560            | CPU1_DIMM_A1 encountered a Serial Presence<br>Detection (SPD) failure |                                  | Major         |
| 8561            | CPU1_DIMM_A2 encountered a Serial Presence<br>Detection (SPD) failure |                                  | Major         |
| 8562            | CPU1_DIMM_A3 encountered a Serial Presence<br>Detection (SPD) failure |                                  | Major         |
| 8563            | CPU1_DIMM_B1 encountered a Serial Presence<br>Detection (SPD) failure |                                  | Major         |
| 8564            | CPU1_DIMM_B2 encountered a Serial Presence<br>Detection (SPD) failure |                                  | Major         |
| 8565            | CPU1_DIMM_B3 encountered a Serial Presence<br>Detection (SPD) failure |                                  | Major         |
| 8566            | CPU1_DIMM_C1 encountered a Serial Presence<br>Detection (SPD) failure |                                  | Major         |
| 8567            | CPU1_DIMM_C2 encountered a Serial Presence<br>Detection (SPD) failure |                                  | Major         |
| 8568            | CPU1_DIMM_C3 encountered a Serial Presence<br>Detection (SPD) failure |                                  | Major         |
| 8569            | CPU1_DIMM_D1 encountered a Serial Presence<br>Detection (SPD) failure |                                  | Major         |
| 856A            | CPU1_DIMM_D2 encountered a Serial Presence<br>Detection (SPD) failure |                                  | Major         |
| 856B            | CPU1_DIMM_D3 encountered a Serial Presence<br>Detection (SPD) failure |                                  | Major         |
| 856C            | CPU1_DIMM_E1 encountered a Serial Presence<br>Detection (SPD) failure |                                  | Major         |
| 856D            | CPU1_DIMM_E2 encountered a Serial Presence<br>Detection (SPD) failure |                                  | Major         |

| Error<br>Code           | Error Message                                                                   | Action Message                                                     | Error<br>Type |
|-------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------|
| 856E                    | CPU1_DIMM_E3 encountered a Serial Presence<br>Detection (SPD) failure           |                                                                    | Major         |
| 856F                    | CPU1_DIMM_F1 encountered a Serial Presence<br>Detection (SPD) failure           |                                                                    | Major         |
| 8570                    | CPU1_DIMM_F2 encountered a Serial Presence<br>Detection (SPD) failure           |                                                                    | Major         |
| 8571                    | CPU1_DIMM_F3 encountered a Serial Presence<br>Detection (SPD) failure           |                                                                    | Major         |
| 8572                    | CPU1_DIMM_G1 encountered a Serial Presence<br>Detection (SPD) failure           |                                                                    | Major         |
| 8573                    | CPU1_DIMM_G2 encountered a Serial Presence<br>Detection (SPD) failure           |                                                                    | Major         |
| 8574                    | CPU1_DIMM_G3 encountered a Serial Presence<br>Detection (SPD) failure           |                                                                    | Major         |
| 8575                    | CPU1_DIMM_H1 encountered a Serial<br>Presence Detection (SPD) failure           |                                                                    | Major         |
| 8576                    | CPU1_DIMM_H2 encountered a Serial<br>Presence Detection (SPD) failure           |                                                                    | Major         |
| 8577                    | CPU1_DIMM_H3 encountered a Serial<br>Presence Detection (SPD) failure           |                                                                    | Major         |
| 8578                    | CPU2_DIMM_A1 encountered a Serial Presence<br>Detection (SPD) failure           |                                                                    | Major         |
| 8579                    | CPU2_DIMM_A2 encountered a Serial Presence<br>Detection (SPD) failure           |                                                                    | Major         |
| 857A                    | CPU2_DIMM_A3 encountered a Serial Presence<br>Detection (SPD) failure           |                                                                    | Major         |
| 857B                    | CPU2_DIMM_B1 encountered a Serial Presence<br>Detection (SPD) failure           |                                                                    | Major         |
| 857C                    | CPU2_DIMM_B2 encountered a Serial Presence<br>Detection (SPD) failure           |                                                                    | Major         |
| 857D                    | CPU2_DIMM_B3 encountered a Serial Presence<br>Detection (SPD) failure           |                                                                    | Major         |
| 857E                    | CPU2_DIMM_C1 encountered a Serial Presence<br>Detection (SPD) failure           |                                                                    | Major         |
| 857F<br>(Go to<br>85E0) | CPU2_DIMM_C2 encountered a Serial Presence<br>Detection (SPD) failure           |                                                                    | Major         |
| 85C0                    | CPU2_DIMM_C3 failed test/initialization                                         | Please remove the disabled DIMM.                                   | Major         |
| 85C1                    | CPU2_DIMM_D1 failed test/initialization                                         | Please remove the disabled DIMM.                                   | Major         |
| 85C2                    | CPU2_DIMM_D2 failed test/initialization                                         | Please remove the disabled DIMM.                                   | Major         |
| 85C3                    | CPU2_DIMM_D3 failed test/initialization                                         | Please remove the disabled DIMM.                                   | Major         |
| 85C4                    | CPU2_DIMM_E1 failed test/initialization                                         | Please remove the disabled DIMM.                                   | Major         |
| 85C5                    | CPU2_DIMM_E2 failed test/initialization                                         | Please remove the disabled DIMM.                                   | Major         |
| 85C6                    | CPU2_DIMM_E3failed test/initialization                                          | Please remove the disabled DIMM.                                   | Major         |
| 85C7                    | CPU2_DIMM_F1 failed test/initialization                                         | Please remove the disabled DIMM.                                   | Major         |
| 85C8                    | CPU2_DIMM_F2 failed test/initialization                                         | Please remove the disabled DIMM.                                   | Major         |
| 85C9<br>85CA            | CPU2_DIMM_F3 failed test/initialization                                         | Please remove the disabled DIMM.  Please remove the disabled DIMM. | Major         |
|                         | CPU2_DIMM_G1 failed test/initialization CPU2_DIMM_G2 failed test/initialization | Please remove the disabled DIMM.  Please remove the disabled DIMM. | Major         |
| 85CB                    |                                                                                 |                                                                    | Major         |
| 85CC                    | CPU2_DIMM_G3 failed test/initialization                                         | Please remove the disabled DIMM.                                   | Major         |

| Error<br>Code | Error Message                                                         | Action Message                   | Error<br>Type |
|---------------|-----------------------------------------------------------------------|----------------------------------|---------------|
| 85CD          | CPU2_DIMM_H1 failed test/initialization                               | Please remove the disabled DIMM. | Major         |
| 85CE          | CPU2_DIMM_H2 failed test/initialization                               | Please remove the disabled DIMM. | Major         |
| 85CF          | CPU2_DIMM_H3 failed test/initialization                               | Please remove the disabled DIMM. | Major         |
| 85D0          | CPU2_DIMM_C3 disabled                                                 | Please remove the disabled DIMM. | Major         |
| 85D1          | CPU2_DIMM_D1 disabled                                                 | Please remove the disabled DIMM. | Major         |
| 85D2          | CPU2_DIMM_D2 disabled                                                 | Please remove the disabled DIMM. | Major         |
| 85D3          | CPU2_DIMM_D3 disabled                                                 | Please remove the disabled DIMM. | Major         |
| 85D4          | CPU2_DIMM_E1 disabled                                                 | Please remove the disabled DIMM. | Major         |
| 85D5          | CPU2_DIMM_E2 disabled                                                 | Please remove the disabled DIMM. | Major         |
| 85D6          | CPU2_DIMM_E3 disabled                                                 | Please remove the disabled DIMM. | Major         |
| 85D7          | CPU2_DIMM_F1 disabled                                                 | Please remove the disabled DIMM. | Major         |
| 85D8          | CPU2_DIMM_F2 disabled                                                 | Please remove the disabled DIMM. | Major         |
| 85D9          | CPU2_DIMM_F3 disabled                                                 | Please remove the disabled DIMM. | Major         |
| 85DA          | CPU2_DIMM_G1 disabled                                                 | Please remove the disabled DIMM. | Major         |
| 85DB          | CPU2_DIMM_G2 disabled                                                 | Please remove the disabled DIMM. | Major         |
| 85DC          | CPU2_DIMM_G3 disabled                                                 | Please remove the disabled DIMM. | Major         |
| 85DD          | CPU2_DIMM_H1 disabled                                                 | Please remove the disabled DIMM. | Major         |
| 85DE          | CPU2_DIMM_H2 disabled                                                 | Please remove the disabled DIMM. | Major         |
| 85DF          | CPU2_DIMM_H3 disabled                                                 | Please remove the disabled DIMM. | Major         |
| 85E0          | CPU2_DIMM_C3 encountered a Serial Presence Detection (SPD) failure    |                                  | Major         |
| 85E1          | CPU2_DIMM_D1 encountered a Serial Presence Detection (SPD) failure    |                                  | Major         |
| 85E2          | CPU2_DIMM_D2 encountered a Serial Presence<br>Detection (SPD) failure |                                  | Major         |
| 85E3          | CPU2_DIMM_D3 encountered a Serial Presence Detection (SPD) failure    |                                  | Major         |
| 85E4          | CPU2_DIMM_E1 encountered a Serial Presence<br>Detection (SPD) failure |                                  | Major         |
| 85E5          | CPU2_DIMM_E2 encountered a Serial Presence Detection (SPD) failure    |                                  | Major         |
| 85E6          | CPU2_DIMM_E3 encountered a Serial Presence Detection (SPD) failure    |                                  | Major         |
| 85E7          | CPU2_DIMM_F1 encountered a Serial Presence Detection (SPD) failure    |                                  | Major         |
| 85E8          | CPU2_DIMM_F2 encountered a Serial Presence Detection (SPD) failure    |                                  | Major         |
| 85E9          | CPU2_DIMM_F3 encountered a Serial Presence Detection (SPD) failure    |                                  | Major         |
| 85EA          | CPU2_DIMM_G1 encountered a Serial Presence Detection (SPD) failure    |                                  | Major         |
| 85EB          | CPU2_DIMM_G2 encountered a Serial Presence Detection (SPD) failure    |                                  | Major         |
| 85EC          | CPU2_DIMM_G3 encountered a Serial Presence<br>Detection (SPD) failure |                                  | Major         |
| 85ED          | CPU2_DIMM_H1 encountered a Serial Presence Detection (SPD) failure    |                                  | Major         |
| 85EE          | CPU2_DIMM_H2 encountered a Serial Presence Detection (SPD) failure    |                                  | Major         |

| Error<br>Code | Error Message                                                                        | Action Message                                                                                               | Error<br>Type |
|---------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------|
| 85EF          | CPU2_DIMM_H3 encountered a Serial Presence Detection (SPD) failure                   |                                                                                                              | Major         |
| 8604          | POST Reclaim of non-critical NVRAM variables                                         |                                                                                                              | Minor         |
| 8605          | BIOS Settings are corrupted                                                          |                                                                                                              | Major         |
| 8606          | NVRAM variable space was corrupted and has been reinitialized                        |                                                                                                              | Major         |
| 8607          | Recovery boot has been initiated.                                                    | Note: The Primary BIOS image may be corrupted or the system may hang during POST. A BIOS update is required. | Fatal         |
| 92A3          | Serial port component was not detected                                               |                                                                                                              | Major         |
| 92A9          | Serial port component encountered a resource conflict error                          |                                                                                                              | Major         |
| A000          | TPM device not detected.                                                             |                                                                                                              | Minor         |
| A001          | TPM device missing or not responding.                                                |                                                                                                              | Minor         |
| A002          | TPM device failure.                                                                  |                                                                                                              | Minor         |
| A003          | TPM device failed self-test.                                                         |                                                                                                              | Minor         |
| A100          | BIOS ACM Error                                                                       |                                                                                                              | Major         |
| A421          | PCI component encountered a SERR error                                               |                                                                                                              | Fatal         |
| A5A0          | PCI Express component encountered a PERR error                                       |                                                                                                              | Minor         |
| A5A1          | PCI Express component encountered an SERR error                                      |                                                                                                              | Fatal         |
| A6A0          | DXE Boot Services driver: Not enough memory available to shadow a Legacy Option ROM. | Please disable OpRom at SETUP to save runtime memory.                                                        | Minor         |

## **C.1.** POST Error Beep Codes

Table 50 lists the POST error beep codes. Prior to system video initialization, the BIOS uses these beep codes to inform the user of error conditions. The beep code is followed by a user-visible code on the POST progress LEDs.

Table 50. POST error beep codes

| Beeps                    | Error Message                 | POST Progress Code | Description                                                                                                             |
|--------------------------|-------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------|
| 1 short                  | USB device action             | N/A                | Short beep sounded whenever USB device is discovered in POST, or inserted or removed during runtime.                    |
| 1 long                   | Intel® TXT security violation | AE, AF             | System halted because Intel® Trusted Execution Technology detected a potential violation of system security.            |
| 3 short                  | Memory error                  | Multiple           | System halted because a fatal error related to the memory was detected.                                                 |
| 3 long<br>and 1<br>short | CPU mismatch error            | E5, E6             | System halted because a fatal error related to the CPU family/core/cache mismatch was detected.                         |
| 2 short                  | BIOS recovery started         | N/A                | Recovery boot has been initiated.                                                                                       |
| 4 short                  | BIOS recovery failed          | N/A                | Recovery has failed. This typically happens so quickly after recovery is initiated that it sounds like a 2-4 beep code. |

The integrated BMC may generate beep codes upon detection of failure conditions. Beep codes are sounded each time the problem is discovered, such as on each power-up attempt, but are not sounded continuously. Codes that are common across all Intel® Server Systems that use same generation chipset are listed in Table 51. Each digit in the code is represented by a sequence of beeps whose count is equal to the digit.

## Intel® Server Board S2600ST Product Family Technical Product Specification

# Table 51. Integrated BMC beep codes

| Code    | Associated Sensors                                  | Reason for Beep                                                                                                                                                           |
|---------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1-5-2-1 | No CPUs installed or first CPU socket is empty.     | CPU1 socket is empty, or sockets are populated incorrectly. CPU1 must be populated before CPU2.                                                                           |
| 1-5-2-2 | CPU CAT Error (IERR) assertion                      | CPU encountered an error while initializing.                                                                                                                              |
| 1-5-2-3 | CPU ERR2 timeout assertion                          | CPU Failed to initialize in the specified time for the system.                                                                                                            |
| 1-5-2-4 | MSID mismatch.                                      | MSID mismatch occurs if a processor is installed into a system board that has incompatible power capabilities.                                                            |
| 1-5-2-5 | CPU population error                                | CPU1 socket is empty, or sockets are populated incorrectly. CPU1 must be populated before CPU2.                                                                           |
| 1-5-4-2 | Power fault.                                        | DC power unexpectedly lost (power good dropout) – power unit sensors report power unit failure offset.                                                                    |
| 1-5-4-4 | Power control fault (power good assertion timeout). | Power good assertion timeout – power unit sensors report soft power control failure offset.                                                                               |
| 1-5-1-2 | VR watchdog timer sensor assertion.                 | VR controller DC power on sequence was not completed in time.                                                                                                             |
| 1-5-1-4 | Power supply status.                                | The system does not power on or unexpectedly powers off and a Power Supply Unit (PSU) is present that is an incompatible model with one or more other PSUs in the system. |

# Appendix D. Statement of Volatility

This appendix describes the volatile and non-volatile data storage components on the Intel® Server Board S2600ST product family. Table 52 and Table 53 list these components. A description of the table columns is given below the tables.

**Note**: This section does not include any components not directly on the listed Intel® Server Boards, such as the chassis components, processors, memory, hard drives, or add-in cards.

Table 52. Volatile and non-volatile components on the Intel® Server Board S2600ST product family

| Component Type Size                         |        | Board Location | Board Location User Data |                  |  |
|---------------------------------------------|--------|----------------|--------------------------|------------------|--|
| Non-Volatile 32 MB / 64 MB for security SKU |        | U1D2           | No                       | BMC FW flash ROM |  |
| Non-Volatile 32 MB / 64 MB for security SKU |        | U3E1           | No                       | BIOS flash ROM   |  |
| Non-Volatile 4 MBit                         |        | U8L1           | No                       | X557-AT2 EEROM   |  |
| Volatile                                    | 512 MB | U1A2           | No                       | BMC FW SDRAM     |  |

Table 53. Volatile and non-volatile components on the LAN riser

| Component Type Size |        | Board Location | User Data | Name              |
|---------------------|--------|----------------|-----------|-------------------|
| Non-Volatile        | 512 KB | EU2A1          | No        | Inphi* PHY EEPROM |
| Non-Volatile        | 2 Kbit | EU3A1          | No        | LAN Riser FRU     |

- Component Type: Three types of components are on an Intel® Server Board:
  - Non-volatile: Non-volatile memory is persistent, and is not cleared when power is removed from the system. Non-Volatile memory must be erased to clear data. The exact method of clearing these areas varies by the specific component. Some areas are required for normal operation of the server, and clearing these areas may render the server board inoperable
  - o Volatile: Volatile memory is cleared automatically when power is removed from the system.
  - Battery powered RAM: Battery powered RAM is similar to volatile memory, but is powered by a battery on the server board. Data in battery powered RAM is persistent until the battery is removed from the server board.
- Size: Size of each component in bits, Kbits, Mbits, bytes, kilobytes (KB), or megabytes (MB).
- **Board Location**: Board location is the physical location of each component corresponding to information on the server board silkscreen.
- **User Data**: The flash components on the server boards do not store user data from the operating system. No operating system level data is retained in any listed components after AC power is removed. The persistence of information written to each component is determined by its type as described in the table.

Each component stores data specific to its function. Some components may contain passwords that provide access to that device's configuration or functionality. These passwords are specific to the device and are unique and unrelated to operating system passwords. The specific components that may contain password data are:

- BIOS: The server board BIOS provides the capability to prevent unauthorized users from configuring BIOS settings when a BIOS password is set. This password is stored in BIOS flash, and is only used to set BIOS configuration access restrictions.
- o **BMC**: The server boards support an Intelligent Platform Management Interface (IPMI) 2.0 conformant baseboard management controller (BMC). The BMC provides health monitoring, alerting and remote power control capabilities for the Intel® Server Board. The BMC does not have access to operating system level data.

The BMC supports the capability for remote software to connect over the network and perform health monitoring and power control. This access can be configured to require authentication by a password. If configured, the BMC maintains user passwords to control this access. These passwords are stored in the BMC flash.

# Appendix E. Supported Intel Server Chassis

The Intel® Server Board S2600ST Product Family supports the following Intel® Server Chassis.

- Intel® Server Chassis P4304XXMFEN2 (discontinued)
- Intel® Server Chassis P4304XXMUXX

This appendix provides a high-level overview of the Intel® Server Chassis P4304XXMFEN2/P4304XXMUXX product family. It provides illustrations and diagrams showing the location of important components, features, and connections found throughout the server chassis. Refer to the Intel® Server Chassis P4304XXMFEN2/P4304XXMUXX Technical Product Specification for more information.



Figure 50. Intel® Server Chassis P4304XXMFEN2 feature overview



Figure 51. Intel® Server Chassis P4304XXMUXX feature overview



Figure 52. Chassis-only building block (no front drive bay configuration)

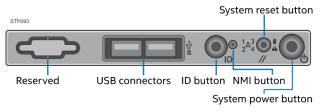



Figure 53. Intel® Server Chassis P4304XXMFEN2/P4304XXMUXX front panel

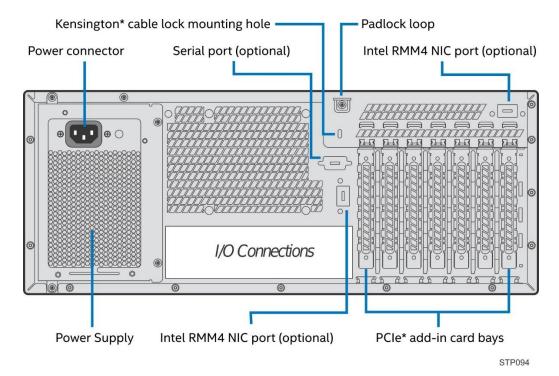



Figure 54. P4304XXMFEN2 back panel

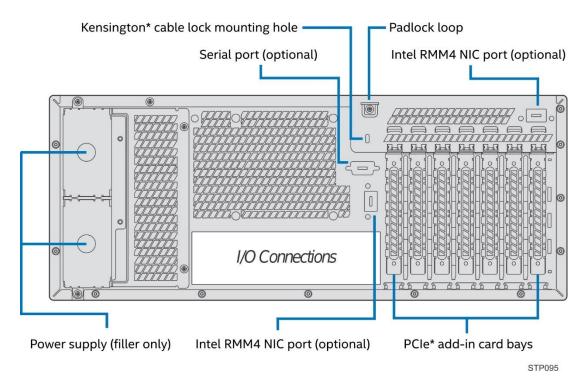



Figure 55. Intel® Server Chassis P4304XXMUXX back panel

### E.1. Hot-Swap Backplane (Optional)

The fixed storage drive trays can be upgraded with hot-swap drive cages including 4x3.5" hot-swap backplane, 8x2.5" hot-swap backplane, and 8x2.5" SAS/NVMe combo backplane. Each SAS/SATA/NVMe drive that interfaces with a backplane is mounted to a hot swap drive carrier, and each drive carrier includes separate LED indicators for drive activity and drive status. Light pipes integrated into the drive carrier assembly direct light emitted from LEDs mounted next to each drive connector on the backplane to the drive carrier faceplate, making them visible from the front of the system.



Figure 56. Drive tray LED identification

Table 54. Drive status LED states

|       | LED State     | Drive Status                  |
|-------|---------------|-------------------------------|
|       | Off           | No access and no fault        |
| Amber | Solid on      | Hard drive fault has occurred |
|       | 1 Hz blinking | RAID rebuild in progress      |
|       | 2 Hz blinking | Locate (identify)             |

**Table 55. Drive activity LED states** 

|       | Condition                       | Drive Type | LED Behavior                             |
|-------|---------------------------------|------------|------------------------------------------|
|       | Dower on with no drive activity | SAS/NVMe*  | LED stays on                             |
|       | Power on with no drive activity | SATA       | LED stays off                            |
| Green | Power on with drive activity    | SAS/NVMe*  | LED blinks off when processing a command |
|       |                                 | SATA       | LED blinks on when processing a command  |
|       | Daywar and drive server daywar  | SAS/NVMe*  | LED stays off                            |
|       | Power on and drive spun down    | SATA       | LED stays off                            |
|       | Davis and drive enimals and     | SAS/NVMe*  | LED blinks                               |
|       | Power on and drive spinning up  | SATA       | LED stays off                            |

Table 56. PCIe\* SSD drive status LED states

|       | LED State     | Drive Status      |
|-------|---------------|-------------------|
|       | Off           | No fault, OK      |
| Amber | 4 Hz blinking | Locate (identify) |
|       | Solid on      | Fault/fail        |
|       | 1 Hz blinking | Rebuild           |

**Note**: The drive activity LED is driven by signals coming from the drive itself. Drive vendors may choose to operate the activity LED different from what is described in the table above. Should the activity LED on a given drive type behave differently than what is described, customers should reference the drive vendor specifications for the specific drive model to determine the expected drive activity LED operation.

# **E.2.** System Level Environmental Limits

The following table defines the system level operating and non-operating environmental limits when the server board is installed on the Intel® server chassis P4304XXMFEN2 or P4304XXMUXX.

**Table 57. Environmental Limits** 

| Parameter       |                                                 | Limits                                                                                                                                                              |  |  |  |  |
|-----------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Temperature     | Operating                                       | ASHRAE Class A2 – Continuous Operation. $10^{\circ}$ C to $35^{\circ}$ C ( $50-95^{\circ}$ F) with the maximum rate of change not to exceed $10^{\circ}$ C per hour |  |  |  |  |
|                 | Shipping                                        | -40–70 ° C (-40–158 ° F)                                                                                                                                            |  |  |  |  |
| Altitude        | Operating                                       | Support operation up to 3050m with ASHRAE class de-ratings.                                                                                                         |  |  |  |  |
| Humidity        | Shipping                                        | 50–90%, non-condensing with a maximum wet bulb of 28° C (at temperatures from 25–35° C)                                                                             |  |  |  |  |
|                 | Operating                                       | Half sine, 2g, 11 mSec                                                                                                                                              |  |  |  |  |
| Shock           | Unpackaged                                      | Trapezoidal, 25 g, velocity change is based on packaged weight                                                                                                      |  |  |  |  |
|                 | Packaged                                        | ISTA (International Safe Transit Association) Test Procedure 3A 2008                                                                                                |  |  |  |  |
| Vibration       | Unpackaged                                      | 5–500 Hz 2.20 g RMS random                                                                                                                                          |  |  |  |  |
| Vibration       | Packaged                                        | ISTA (International Safe Transit Association) Test Procedure 3A 2008                                                                                                |  |  |  |  |
|                 | Voltage                                         | 90 Hz to 132 V and 180 V to 264 V                                                                                                                                   |  |  |  |  |
|                 | Frequency                                       | 47–63 Hz                                                                                                                                                            |  |  |  |  |
|                 | Source Interrupt                                | No loss of data for power line drop-out of 12 mSec                                                                                                                  |  |  |  |  |
| AC-DC           | Surge Non-operating and operating               | Unidirectional                                                                                                                                                      |  |  |  |  |
|                 |                                                 | AC Leads 2.0 kV                                                                                                                                                     |  |  |  |  |
|                 | Line to earth Only                              | I/O Leads 1.0 kV                                                                                                                                                    |  |  |  |  |
|                 |                                                 | DC Leads 0.5 kV                                                                                                                                                     |  |  |  |  |
| ESD             | Air Discharged                                  | 12.0 kV                                                                                                                                                             |  |  |  |  |
| ESD             | Contact Discharge                               | 8.0 kV                                                                                                                                                              |  |  |  |  |
| Acoustics Sound | Power in Watts                                  | <300 W ≥300 W ≥600 W ≥1000 W                                                                                                                                        |  |  |  |  |
| Power Measured  | Servers/Rack Mount Sound<br>Power Level (in BA) | 7.0 7.0 7.0                                                                                                                                                         |  |  |  |  |

### E.3. Thermal Configuration Tables

Thermal configuration tables communicate support criteria associated with specific configurations. Each relevant note to a configuration is identified by a reference number in the following manner.

"•" = Full Support without limitation.

(Blank) = Not supported.

(Cell with number) = Conditional support with limitation, explained in the Notes.

#### Notes:

- 1. The 27°C configuration alone is limited to elevations of 900m or less. Altitudes higher than 900m need to be de-rated to ASHRAE Class 2 levels.
- 2. To support system fan redundancy, the system must be configured with two power supplies to maintain sufficient cooling. Concurrent system and power supply fan failures is not supported.
- 3. This configuration is only supported with only one CPU populated.
- 4. Processor and/or DIMM throttling may occur which may impact system performance. CPU reliability is not impacted.
- 5. When identifying memory in the table, only Rank and Width are required. Capacity is not required.
- 6. Able to provide sufficient cooling for any PCIe card powered solely from PCIe bus (no external power) that satisfies the 55C-200LFM boundary condition requirement.
- 7. Intel® RAID Maintenance Free Backup Units (AXXRMFBU4, AXXRMFBU6, and AXXRMFBU7) can support a case temperature of up to 45°C with the system operating in normal mode and up to 55°C with the system operating in a fan fail mode. Excursions over these specs may result in a reliability impact.
- 8. AIC FF PCIe SSD requires 300LFM for cooling, must be placed in PCI slot 3, 4, 5 or 6; and performance mode in BIOS must be enabled.
- 9. To support full performance for Intel S3500 M.2 device, BIOS performance mode is required to be enabled.
- 10. Only up to 4 NVMe drives are supported on this chassis, all other SAS/SATA/SSD are fully supported.
- 11. System performance might be impacted during ambient air excursions beyond ASHRAE Class 2 conditions (higher temperatures or altitudes than specified).
- 12. Intel® Xeon Phi™ or non-Intel GPGPU cards may have performance impact.
- 13. System cooling capability testing was carried out in environmental lab controlled conditions according to ASHRAE standard.
- 14. Performance depends on data center environmental temperature and relative humidity levels controls provided by end user.
- 15. It is responsibility of the system integrator to both consider the thermal configuration matrix and power budget tool documents in order to arrange end use configuration.

Table 58. System in "Normal" Operating Mode for Systems with Fan Redundancy

| Configuration #1: P4304XXMUXX chassis with up to four 3.5" fixed hard drive storage Configuration #2: P4304XXMUXX chassis with upgrade option of ONE 4x3.5" (or 8x2.5") hot-swap drive cage (See note 10) Configuration #3: P4304XXMUXX chassis with upgrade option of TWO 4x3.5" (or 8x2.5") hot-swap drive cages (See note 10) |                   |                                          | Configuration<br>#1 |     | Configuration<br>#2 |     | Configuration<br>#3 |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------|---------------------|-----|---------------------|-----|---------------------|-----|
| ASHRA                                                                                                                                                                                                                                                                                                                            | E Classifica      | tion (See note 1)                        | A1                  | A2  | A1                  | A2  | A1                  | A2  |
| Max                                                                                                                                                                                                                                                                                                                              | x Ambient         | Геmperature                              | 27C                 | 35C | 27C                 | 35C | 27C                 | 35C |
| DCII                                                                                                                                                                                                                                                                                                                             | Redundant 750W AC |                                          | •                   | •   | •                   | •   | •                   | •   |
| PSU Redundant 1600W AC                                                                                                                                                                                                                                                                                                           |                   | •                                        | •                   | •   | •                   | •   | •                   |     |
|                                                                                                                                                                                                                                                                                                                                  |                   | Intel® Xeon® Platinum 8280L_28C          | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                   | Intel® Xeon® Platinum 8280M_28C          | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                   | Intel® Xeon® Platinum 8280_28C           | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | 205 W             | Intel® Xeon® Platinum 8180_28C           | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                   | Intel® Xeon® Platinum 8270_26C           | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                   | Intel® Xeon® Platinum 8268_24C           | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                   | Intel® Xeon® Platinum 8168_24C           | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                   | Intel® Xeon® Gold 6254_18C               | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | 200 W             | Intel® Xeon® Gold 6154_18C               | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                   | Intel® Xeon® Platinum 8276L_28C          | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                   | Intel® Xeon® Platinum 8276M_28C          | •                   | •   | •                   | •   | •                   | •   |
| CPU TDP / Core Count                                                                                                                                                                                                                                                                                                             |                   | Intel® Xeon® Platinum 8276_28C           | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                   | Intel® Xeon® Platinum 8176_28C           | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | 165 W             | Intel® Xeon® Platinum 8170_26C           | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | 103 **            | Intel® Xeon® Platinum 8260L_24C          | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                   | Intel® Xeon® Platinum 8260M_24C          | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                   | Intel® Xeon® Platinum 8260_24C           | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                   | Intel® Xeon® Platinum<br>8260Y_24/20/16C | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                   | Intel® Xeon® Gold 6212U_24C              | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                   | Intel® Xeon® Gold 6150_16C               | •                   | •   | •                   | •   | •                   | •   |

| Configuration #1: P4304XXMUXX chassis with up to four 3.5" fixed hard drive storage Configuration #2: P4304XXMUXX chassis with upgrade option of ONE 4x3.5" (or 8x2.5") hot-swap drive cage (See note 10) Configuration #3: P4304XXMUXX chassis with upgrade option of TWO 4x3.5" (or 8x2.5") hot-swap drive cages (See note 10) |                      | Configuration<br>#1                 |     | Configuration<br>#2 |     | Configuration<br>#3 |     |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------|-----|---------------------|-----|---------------------|-----|-----|
| ASHRAE                                                                                                                                                                                                                                                                                                                           | Classifica           | tion (See note 1)                   | A1  | A2                  | A1  | A2                  | A1  | A2  |
| Max                                                                                                                                                                                                                                                                                                                              | Ambient <sup>-</sup> | Геmperature                         | 27C | 35C                 | 27C | 35C                 | 27C | 35C |
|                                                                                                                                                                                                                                                                                                                                  | 165 W                | Intel® Xeon® Gold 6146_12C          | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                      | Intel® Xeon® Platinum 8164_26C      | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                      | Intel® Xeon® Platinum 8160_24C      | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                      | Intel® Xeon® Gold 6252_24C          | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                      | Intel® Xeon® Gold<br>6252N_24/16/8C | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                      | Intel® Xeon® Gold 6248_20C          | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                      | Intel® Xeon® Gold 6210U_20C         | •   | •                   | •   | •                   | •   | •   |
| CPU TDP / Core Count                                                                                                                                                                                                                                                                                                             |                      | Intel® Xeon® Gold 6248_20C          | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  | 150 W                | Intel® Xeon® Gold 6148_20C          | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  | 150 W                | Intel® Xeon® Gold 6240_18C          | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                      | Intel® Xeon® Gold 6240Y_18/14/8C    | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                      | Intel® Xeon® Gold 6242_16C          | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                      | Intel® Xeon® Gold 6142_16C          | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                      | Intel® Xeon® Platinum 8158_12C      | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                      | Intel® Xeon® Gold 6136_12C          | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                      | Intel® Xeon® Gold 6244_8C           | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                      | Intel® Xeon® Gold 6144_8C           | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                      | Intel® Xeon® Gold 6152_8C           | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  | 440.55               | Intel® Xeon® Gold 6140_22C          | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  | 140 W                | Intel® Xeon® Gold 6238_22C          | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                      | Intel® Xeon® Gold 6132_14C          | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  | 135 W                | Intel® Xeon® Gold 6262V_24C         | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  | 130 W                | Intel® Xeon® Gold 6234_8C           | •   | •                   | •   | •                   | •   | •   |

| drive storage  Configuration #2: P4304XXMUXX chassis with upgrade option of ONE  4x3.5" (or 8x2.5") hot-swap drive cage (See note 10)  Configuration #3: P4304XXMUXX chassis with upgrade option of TWO  4x3.5" (or 8x2.5") hot-swap drive cages (See note 10) |          | _                                   | uration<br>1 | Configuration<br>#2 |     | Configuration<br>#3 |     |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------|--------------|---------------------|-----|---------------------|-----|-----|
| ASHRAE Classification (See note 1)                                                                                                                                                                                                                             |          |                                     | A1           | A2                  | A1  | A2                  | A1  | A2  |
| Max Ar                                                                                                                                                                                                                                                         | nbient T | emperature                          | 27C          | 35C                 | 27C | 35C                 | 27C | 35C |
|                                                                                                                                                                                                                                                                | 130 W    | Intel® Xeon® Gold 6134_8C           | •            | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                |          | Intel® Xeon® Gold 6238T_22C         | •            | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                |          | Intel® Xeon® Gold 6230T_22C         | •            | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                |          | Intel® Xeon® Gold 6230_20C          | •            | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                |          | Intel® Xeon® Gold<br>6230N_20/14/6C | •            | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                |          | Intel® Xeon® Gold 6209U_20C         | •            | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                |          | Intel® Xeon® Gold 6138_20C          | •            | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                |          | Intel® Xeon® Gold 5220_18C          | •            | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                | 125 W    | Intel® Xeon® Gold 5220S_18C         | •            | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                |          | Intel® Xeon® Platinum 8253_16C      | •            | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                |          | Intel® Xeon® Platinum 8153_16C      | •            | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                |          | Intel® Xeon® Gold 5218_16C          | •            | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                |          | Intel® Xeon® Gold 5218B_16C         | •            | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                |          | Intel® Xeon® Gold 6130_16C          | •            | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                |          | Intel® Xeon® Gold 6226_12C          | •            | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                |          | Intel® Xeon® Gold 6126_12C          | •            | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                |          | Intel® Xeon® Gold 6222V_20C         | •            | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                | 115 W    | Intel® Xeon® Gold 5217_8C           | •            | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                |          | Intel® Xeon® Gold 6128_6C           | •            | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                |          | Intel® Xeon® Gold 5220T_18C         | •            | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                | 105 W    | Intel® Xeon® Gold<br>5218N_16/12/4C | •            | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                |          | Intel® Xeon® Gold 5218T_16C         | •            | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                |          | Intel® Xeon® Gold 5120_14C          | •            | •                   | •   | •                   | •   | •   |

| Configuration #1: P4304XXMUXX chassis with up to four 3.5" fixed hard drive storage Configuration #2: P4304XXMUXX chassis with upgrade option of ONE 4x3.5" (or 8x2.5") hot-swap drive cage (See note 10) Configuration #3: P4304XXMUXX chassis with upgrade option of TWO 4x3.5" (or 8x2.5") hot-swap drive cages (See note 10) |                                       | Configuration<br>#1 |     | Configuration<br>#2 |     | Configuration<br>#3 |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------|-----|---------------------|-----|---------------------|-----|
| ASHRAE Classif                                                                                                                                                                                                                                                                                                                   | ASHRAE Classification (See note 1)    |                     |     | A1                  | A2  | A1                  | A2  |
| Max Ambie                                                                                                                                                                                                                                                                                                                        | t Temperature                         | 27C                 | 35C | 27C                 | 35C | 27C                 | 35C |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Gold 5118_12C            | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Platinum 8256_4C         | •                   | •   | •                   | •   | •                   | •   |
| 105 \                                                                                                                                                                                                                                                                                                                            | Intel® Xeon® Platinum 8156_4C         | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Gold 5222_4C             | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Gold 5122_4C             | •                   | •   | •                   | •   | •                   | •   |
| 100 \                                                                                                                                                                                                                                                                                                                            | / Intel® Xeon® Silver 4216_16C        | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Silver 4116_12C          | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Silver 4214_12C          | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Silver<br>4214Y_12/10/8C | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Gold 5215_10C            | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Gold 5115_10C            | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Silver 4210_10C          | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Silver 4114_10C          | •                   | •   | •                   | •   | •                   | •   |
| 85 V                                                                                                                                                                                                                                                                                                                             | Intel® Xeon® Silver 4215_8C           | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Silver 4110_8C           | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Silver 4208_8C           | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Silver 4108_8C           | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Bronze 3106_8C           | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Bronze 3204_6C           | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Bronze 3104_6C           | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Silver 4112_4C           | •                   | •   | •                   | •   | •                   | •   |
| 70 V                                                                                                                                                                                                                                                                                                                             | Intel® Xeon® Silver 4209T_8C          | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | RDIMM-2Rx8, 1Rx4, 1Rx8                | •                   | •   | •                   | •   | •                   | •   |

## Intel® Server Board S2600ST Product Family Technical Product Specification

| Configuration #1: P4304XXMUXX chassis with up to four 3.5" fixed hard drive storage Configuration #2: P4304XXMUXX chassis with upgrade option of ONE 4x3.5" (or 8x2.5") hot-swap drive cage (See note 10) Configuration #3: P4304XXMUXX chassis with upgrade option of TWO 4x3.5" (or 8x2.5") hot-swap drive cages (See note 10) |                                     |   | uration<br>1 | Configuration<br>#2 |     | Configuration<br>#3 |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---|--------------|---------------------|-----|---------------------|-----|
| ASHRAE Classification (See note 1)                                                                                                                                                                                                                                                                                               |                                     |   | A2           | A1                  | A2  | A1                  | A2  |
| Max Ambient Temperature                                                                                                                                                                                                                                                                                                          |                                     |   | 35C          | 27C                 | 35C | 27C                 | 35C |
| Memory Type                                                                                                                                                                                                                                                                                                                      | RDIMM-DRx4                          | • | •            | •                   | •   | •                   | •   |
| (See note 5)                                                                                                                                                                                                                                                                                                                     | LRDIMM-QRx4 DDP                     | • | •            | •                   | •   | •                   | •   |
| Add-in Cards (See note 6)                                                                                                                                                                                                                                                                                                        | PCI Cards                           | • | •            | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | BBU (rated to 45C)                  | • | •            | •                   | •   | •                   | •   |
| Battery Backup<br>(See note 7)                                                                                                                                                                                                                                                                                                   | Supercap (rated to 45C)             | • | •            | •                   | •   | •                   | •   |
| (000 11010 / /                                                                                                                                                                                                                                                                                                                   | Cache Offload Module (rated to 55C) | • | •            | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                                     |   |              |                     |     |                     |     |

| Configuration #1: P4304XXMUXX chassis with up to four 3.5" fixed hard drive storage Configuration #2: P4304XXMUXX chassis with upgrade option of ONE 4x3.5" (or 8x2.5") hot-swap drive cage (See note 10) Configuration #3: P4304XXMUXX chassis with upgrade option of TWO 4x3.5" (or 8x2.5") hot-swap drive cages (See note 10) |                           |   | Configuration Configuration #1 #2 |     |     | Configuration<br>#3 |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---|-----------------------------------|-----|-----|---------------------|-----|
| ASHRAE Classification (See note 1)                                                                                                                                                                                                                                                                                               |                           |   | A2                                | A1  | A2  | A1                  | A2  |
| Max Ambient Temperature                                                                                                                                                                                                                                                                                                          |                           |   | 35C                               | 27C | 35C | 27C                 | 35C |
|                                                                                                                                                                                                                                                                                                                                  | 1600 GB/ 2TB              | • | •                                 | •   | •   | •                   | •   |
| PCIe SSD AIC FF                                                                                                                                                                                                                                                                                                                  | 800 GB                    | • | •                                 | •   | •   | •                   | •   |
| (DC 3700/P3500)                                                                                                                                                                                                                                                                                                                  | 500 GB                    | • | •                                 | •   | •   | •                   | •   |
| (See note 8)                                                                                                                                                                                                                                                                                                                     | 400 GB                    | • | •                                 | •   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | 200 GB                    | • | •                                 | •   | •   | •                   | •   |
| M.2                                                                                                                                                                                                                                                                                                                              | 340 G                     | • | •                                 | •   | •   | •                   | •   |
| (DC S3500)<br>(See note 9)                                                                                                                                                                                                                                                                                                       | 120 G/80 G                | • | •                                 | •   | •   | •                   | •   |
| Intel® Xeon Phi™                                                                                                                                                                                                                                                                                                                 | Active Cooling up to 300W | • | •                                 | •   | •   |                     |     |

Table 59. System in "Fan Fail" Operating Mode for Systems with Fan Redundancy

| Configuration #1: P4304XXMUXX chassis with up to four 3.5" fixed hard drive storage Configuration #2: P4304XXMUXX chassis with upgrade option of ONE 4x3.5" (or 8x2.5") hot-swap drive cage (See note 10) Configuration #3: P4304XXMUXX chassis with upgrade option of TWO 4x3.5" (or 8x2.5") hot-swap drive cages (See note 10) |               |                                          | Configuration<br>#1 |     | Configuration<br>#2 |     | Configuration<br>#3 |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------|---------------------|-----|---------------------|-----|---------------------|-----|
| ASHF                                                                                                                                                                                                                                                                                                                             | RAE Classific | cation (See note 1)                      | A1                  | A2  | A1                  | A2  | A1                  | A2  |
| N                                                                                                                                                                                                                                                                                                                                | 1ax Ambien    | t Temperature                            | 27C                 | 35C | 27C                 | 35C | 27C                 | 35C |
| PSU                                                                                                                                                                                                                                                                                                                              |               | Redundant 750W AC                        | •                   | •   | •                   | •   | •                   | •   |
| P50                                                                                                                                                                                                                                                                                                                              |               | Redundant 1600W AC                       | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |               | Intel® Xeon® Platinum 8280L_28C          | •                   | 4   | •                   | 4   | •                   | 4   |
|                                                                                                                                                                                                                                                                                                                                  |               | Intel® Xeon® Platinum 8280M_28C          | •                   | 4   | •                   | 4   | •                   | 4   |
|                                                                                                                                                                                                                                                                                                                                  | 205 W         | Intel® Xeon® Platinum 8280_28C           | •                   | 4   | •                   | 4   | •                   | 4   |
|                                                                                                                                                                                                                                                                                                                                  |               | Intel® Xeon® Platinum 8180_28C           | •                   | •   | •                   | 4   | •                   | 4   |
|                                                                                                                                                                                                                                                                                                                                  |               | Intel® Xeon® Platinum 8270_26C           | •                   | 4   | •                   | 4   | •                   | 4   |
|                                                                                                                                                                                                                                                                                                                                  |               | Intel® Xeon® Platinum 8268_24C           | •                   | 4   | •                   | 4   | •                   | 4   |
|                                                                                                                                                                                                                                                                                                                                  |               | Intel® Xeon® Platinum 8168_24C           | •                   | •   | •                   | 4   | •                   | 4   |
| TDP/ Core Count                                                                                                                                                                                                                                                                                                                  | 200 W         | Intel® Xeon® Gold 6254_18C               | •                   | 4   | •                   | 4   | •                   | 4   |
|                                                                                                                                                                                                                                                                                                                                  |               | Intel® Xeon® Gold 6154_18C               | •                   | •   | •                   | 4   | •                   | 4   |
|                                                                                                                                                                                                                                                                                                                                  |               | Intel® Xeon® Platinum 8276L_28C          | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |               | Intel® Xeon® Platinum 8276M_28C          | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |               | Intel® Xeon® Platinum 8276_28C           | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |               | Intel® Xeon® Platinum 8176_28C           | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | 165 W         | Intel® Xeon® Platinum 8170_26C           | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | 100 **        | Intel® Xeon® Platinum 8260L_24C          | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |               | Intel® Xeon® Platinum 8260M_24C          | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |               | Intel® Xeon® Platinum 8260_24C           | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |               | Intel® Xeon® Platinum<br>8260Y_24/20/16C | •                   | •   | •                   | 4   | •                   | 4   |
|                                                                                                                                                                                                                                                                                                                                  |               | Intel® Xeon® Gold 6212U_24C              | •                   | •   | •                   | 4   | •                   | 4   |
|                                                                                                                                                                                                                                                                                                                                  |               | Intel® Xeon® Gold 6150_18C               | •                   | •   | •                   | •   | •                   | •   |

| Configuration #1: P4304XXMUXX chassis with up to four 3.5" fixed hard drive storage Configuration #2: P4304XXMUXX chassis with upgrade option of ONE 4x3.5" (or 8x2.5") hot-swap drive cage (See note 10) Configuration #3: P4304XXMUXX chassis with upgrade option of TWO 4x3.5" (or 8x2.5") hot-swap drive cages (See note 10) |              | Configuration<br>#1              |     | Configuration<br>#2 |     | Configuration<br>#3 |     |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------|-----|---------------------|-----|---------------------|-----|-----|
| ASHR                                                                                                                                                                                                                                                                                                                             | AE Classific | cation (See note 1)              | A1  | A2                  | A1  | A2                  | A1  | A2  |
| M                                                                                                                                                                                                                                                                                                                                | ax Ambien    | t Temperature                    | 27C | 35C                 | 27C | 35C                 | 27C | 35C |
|                                                                                                                                                                                                                                                                                                                                  | 165 W        | Intel® Xeon® Gold 6146_12C       | •   | •                   | •   | 4                   | •   | 4   |
|                                                                                                                                                                                                                                                                                                                                  |              | Intel® Xeon® Platinum 8164_26C   | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  |              | Intel® Xeon® Platinum 8160_24C   | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  |              | Intel® Xeon® Gold 6252_24C       | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  |              | Intel® Xeon® Gold 6252N_24/16/8C | •   | •                   | •   | 4                   | •   | 4   |
| CDU TDD / C                                                                                                                                                                                                                                                                                                                      |              | Intel® Xeon® Gold 6248_20C       | •   | •                   | •   | •                   | •   | •   |
| CPU TDP / Core Count                                                                                                                                                                                                                                                                                                             |              | Intel® Xeon® Gold 6210U_20C      | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  |              | Intel® Xeon® Gold 6248_20C       | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  | 150 W        | Intel® Xeon® Gold 6148_20C       | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  |              | Intel® Xeon® Gold 6240_18C       | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  |              | Intel® Xeon® Gold 6240Y_18/14/8C | •   | •                   | •   | 4                   | •   | 4   |
|                                                                                                                                                                                                                                                                                                                                  |              | Intel® Xeon® Gold 6242_16C       | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  |              | Intel® Xeon® Gold 6142_16C       | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  |              | Intel® Xeon® Platinum 8158_12C   | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  |              | Intel® Xeon® Gold 6136_12C       | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  |              | Intel® Xeon® Gold 6244_8C        | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  |              | Intel® Xeon® Gold 6144_8C        | •   | •                   | •   | •                   | •   | 4   |
|                                                                                                                                                                                                                                                                                                                                  |              | Intel® Xeon® Gold 6152_22C       | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  |              | Intel® Xeon® Gold 6140_18C       | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  | 140 W        | Intel® Xeon® Gold 6238_22C       | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  |              | Intel® Xeon® Gold 6132_14C       | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                  | 135 W        | Intel® Xeon® Gold 6262V_24C      | •   | •                   | •   | •                   | •   | •   |

| Configuration #1: P4304XXMUXX chassis with up to four 3.5" fixed hard drive storage Configuration #2: P4304XXMUXX chassis with upgrade option of ONE 4x3.5" (or 8x2.5") hot-swap drive cage (See note 10) Configuration #3: P4304XXMUXX chassis with upgrade option of TWO 4x3.5" (or 8x2.5") hot-swap drive cages (See note 10) |                                    | Configuration<br>#1 |     | Configuration<br>#2 |     | Configuration<br>#3 |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------|-----|---------------------|-----|---------------------|-----|
| ASHRAE Class                                                                                                                                                                                                                                                                                                                     | fication (See note 1)              | A1                  | A2  | A1                  | A2  | A1                  | A2  |
| Max Ambi                                                                                                                                                                                                                                                                                                                         | ent Temperature                    | 27C                 | 35C | 27C                 | 35C | 27C                 | 35C |
| 130 V                                                                                                                                                                                                                                                                                                                            | 130 W Intel® Xeon® Gold 6134_8C    |                     | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Gold 6238T_22C        | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Gold 6230T_22C        | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Gold 6230_20C         | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Gold 6230N_20/14/6C   | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Gold 6209U_20C        | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Gold 6138_20C         | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Gold 5220_18C         | •                   | •   | •                   | •   | •                   | •   |
| 125 V                                                                                                                                                                                                                                                                                                                            | Intel® Xeon® Gold 5220S_18C        | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Platinum 8253_16C     | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Platinum 8153_16C     | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Gold 5218_16C         | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Gold 5218B_16C        | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Gold 6130_16C         | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Gold 6226_12C         | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Gold 6126_12C         | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Gold 6222V_20C        | •                   | •   | •                   | •   | •                   | •   |
| 115 V                                                                                                                                                                                                                                                                                                                            | Intel® Xeon® Gold 5217_8C          | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Gold 6128_6C          | •                   | •   | •                   | •   | •                   | 4   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Gold 5220T_18C        | •                   | •   | •                   | •   | •                   | •   |
| 105 V                                                                                                                                                                                                                                                                                                                            | / Intel® Xeon® Gold 5218N_16/12/4C | •                   | •   | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | Intel® Xeon® Gold 5218T_16C        | •                   | •   | •                   | •   | •                   | •   |

| Configuration #1: P4304XXMUXX chassis with up to four 3.5" fixed hard drive storage Configuration #2: P4304XXMUXX chassis with upgrade option of ONE 4x3.5" (or 8x2.5") hot-swap drive cage (See note 10) Configuration #3: P4304XXMUXX chassis with upgrade option of TWO 4x3.5" (or 8x2.5") hot-swap drive cages (See note 10) |                                    |                                    | Config<br># | uration<br>1 | Configuration<br>#2 |     | Configuration<br>#3 |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|-------------|--------------|---------------------|-----|---------------------|-----|
| ASHRAE C                                                                                                                                                                                                                                                                                                                         | ASHRAE Classification (See note 1) |                                    | A1          | A2           | A1                  | A2  | A1                  | A2  |
| Max A                                                                                                                                                                                                                                                                                                                            | mbient                             | t Temperature                      | 27C         | 35C          | 27C                 | 35C | 27C                 | 35C |
|                                                                                                                                                                                                                                                                                                                                  |                                    | Intel® Xeon® Gold 5120_14C         | •           | •            | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                                    | Intel® Xeon® Gold 5118_12C         | •           | •            | •                   | •   | •                   | •   |
| 11                                                                                                                                                                                                                                                                                                                               | 05 W                               | Intel® Xeon® Platinum 8256_4C      | •           | •            | •                   | •   | •                   | •   |
| ''                                                                                                                                                                                                                                                                                                                               | 05 W                               | Intel® Xeon® Platinum 8156_4C      | •           | •            | •                   | •   | •                   | 4   |
|                                                                                                                                                                                                                                                                                                                                  |                                    | Intel® Xeon® Gold 5222_4C          | •           | •            | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                                    | Intel® Xeon® Gold 5122_4C          | •           | •            | •                   | •   | •                   | 4   |
| 10                                                                                                                                                                                                                                                                                                                               | 00 W                               | Intel® Xeon® Silver 4216_16C       | •           | •            | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                                    | Intel® Xeon® Silver 4116_12C       | •           | •            | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                                    | Intel® Xeon® Silver 4214_12C       | •           | •            | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                                    | Intel® Xeon® Silver 4214Y_12/10/8C | •           | •            | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                                    | Intel® Xeon® Gold 5215_10C         | •           | •            | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                                    | Intel® Xeon® Gold 5115_10C         | •           | •            | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                                    | Intel® Xeon® Silver 4210_10C       | •           | •            | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                                    | Intel® Xeon® Silver 4114_10C       | •           | •            | •                   | •   | •                   | •   |
| 8                                                                                                                                                                                                                                                                                                                                | 85 W                               | Intel® Xeon® Silver 4215_8C        | •           | •            | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                                    | Intel® Xeon® Silver 4110_8C        | •           | •            | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                                    | Intel® Xeon® Silver 4208_8C        | •           | •            | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                                    | Intel® Xeon® Silver 4108_8C        | •           | •            | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  | In                                 | Intel® Xeon® Bronze 3106_8C        | •           | •            | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                                    | Intel® Xeon® Bronze 3204_6C        | •           | •            | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                                    | Intel® Xeon® Bronze 3104_6C        | •           | •            | •                   | •   | •                   | •   |
|                                                                                                                                                                                                                                                                                                                                  |                                    | Intel® Xeon® Silver 4112_4C        | •           | •            | •                   | •   | •                   | •   |

| Configuration #1: P4304XXMUXX chassis with up to four 3.5" fixed hard drive storage Configuration #2: P4304XXMUXX chassis with upgrade option of ONE 4x3.5" (or 8x2.5") hot-swap drive cage (See note 10) Configuration #3: P4304XXMUXX chassis with upgrade option of TWO 4x3.5" (or 8x2.5") hot-swap drive cages (See note 10) |                         | _                                   | Configuration<br>#1 |     | Configuration<br>#2 |     | uration<br>3 |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------|---------------------|-----|---------------------|-----|--------------|----|
| ASHR                                                                                                                                                                                                                                                                                                                             | AE Classifi             | cation (See note 1)                 | A1                  | A2  | A1                  | A2  | A1           | A2 |
| Max Ambient Temperature                                                                                                                                                                                                                                                                                                          |                         | 27C                                 | 35C                 | 27C | 35C                 | 27C | 35C          |    |
| 70 W Intel® Xeon® Silver 4209T_8C                                                                                                                                                                                                                                                                                                |                         |                                     |                     | •   | •                   | •   | •            | •  |
|                                                                                                                                                                                                                                                                                                                                  |                         | RDIMM-2Rx8, 1Rx4, 1Rx8              | •                   | 4   | •                   | 4   | •            | 4  |
| Memory Type<br>(See note 5)                                                                                                                                                                                                                                                                                                      |                         | RDIMM-DRx4                          | •                   | 4   | •                   | 4   | •            | 4  |
|                                                                                                                                                                                                                                                                                                                                  |                         | LRDIMM-QRx4 DDP                     | •                   | 4   | •                   | 4   | •            | 4  |
| Add-in Cards<br>(See note 6)                                                                                                                                                                                                                                                                                                     |                         | PCI Cards                           | •                   | •   | •                   | •   | •            | •  |
|                                                                                                                                                                                                                                                                                                                                  | BBU (rated to 45C)      |                                     | •                   | •   | •                   | •   | •            | •  |
| Battery Backup<br>(See note 7)                                                                                                                                                                                                                                                                                                   | Supercap (rated to 45C) |                                     | •                   | •   | •                   | •   | •            | •  |
|                                                                                                                                                                                                                                                                                                                                  | Cac                     | Cache Offload Module (rated to 55C) |                     | •   | •                   | •   | •            | •  |
|                                                                                                                                                                                                                                                                                                                                  |                         | 1600 GB/ 2TB                        | •                   | 4   | •                   | 4   | •            | 4  |
| DCI- CCD AIC FF                                                                                                                                                                                                                                                                                                                  |                         | 800 GB                              | •                   | •   | •                   | •   | •            | •  |
| PCIe SSD AIC FF<br>(DC 3700/P3500)                                                                                                                                                                                                                                                                                               |                         | 500 GB                              | •                   | •   | •                   | •   | •            | •  |
| (See note 8)                                                                                                                                                                                                                                                                                                                     |                         | 400 GB                              | •                   | •   | •                   | •   | •            | •  |
|                                                                                                                                                                                                                                                                                                                                  |                         | 200 GB                              |                     | •   | •                   | •   | •            | •  |
| M.2                                                                                                                                                                                                                                                                                                                              |                         | 340 G                               | •                   | •   | •                   | •   | •            | •  |
| (DC S3500)<br>(See note 9)                                                                                                                                                                                                                                                                                                       |                         | 120 G/80 G                          | •                   | •   | •                   | •   | •            | •  |
| Intel® Xeon Phi™                                                                                                                                                                                                                                                                                                                 |                         | Active Cooling up to 300W           | 12                  | 12  | 12                  | 12  |              |    |

Table 60. System in "Normal" Operating Mode for Systems without Fan Redundancy

| Configuration #1: P4304XXMFEN2 chassis with up to four 3.5" fixed hard drive storage.  Configuration #2: P4304XXMFEN2 chassis with upgrade option of ONE 4x3.5" (or 8x2.5") hot-swap drive cage (See note 10)  Configuration #3: P4304XXMFEN2 chassis with upgrade option of TWO 4x3.5" (or 8x2.5") hot-swap drive cages (See note 10) |             |         | Configuration<br>#1        |     | Configuration<br>#2 |     | Configuration<br>#3 |     |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|----------------------------|-----|---------------------|-----|---------------------|-----|-----|
| ASHR                                                                                                                                                                                                                                                                                                                                   | RAE Classif | ication | (See note 1)               | A1  | A2                  | A1  | A2                  | A1  | A2  |
| M                                                                                                                                                                                                                                                                                                                                      | 1ax Ambie   | nt Temp | perature                   | 27C | 35C                 | 27C | 35C                 | 27C | 35C |
| PSU                                                                                                                                                                                                                                                                                                                                    |             | Non-    | Redundant 550W AC          | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                        | 205 W       | 28C     | Intel® Xeon Platinum 8180  | 3   | 3                   | 3   | 3                   | 3   | 3   |
|                                                                                                                                                                                                                                                                                                                                        | 200 W       | 24C     | Intel® Xeon® Platinum 8168 | 3   | 3                   | 3   | 3                   | 3   | 3   |
|                                                                                                                                                                                                                                                                                                                                        |             | 18C     | Intel® Xeon® Gold 6154     | 3   | 3                   | 3   | 3                   | 3   | 3   |
|                                                                                                                                                                                                                                                                                                                                        | 165 W       | 28C     | Intel® Xeon® Platinum 8176 | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                        |             | 26C     | Intel® Xeon® Platinum 8170 | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                        |             | 18C     | Intel® Xeon® Gold 6150     | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                        |             | 12C     | Intel® Xeon® Gold 6146     | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                        |             | 26C     | Intel® Xeon® Platinum 8164 | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                        |             | 24C     | Intel® Xeon® Platinum 8160 | •   | •                   | •   | •                   | •   | •   |
| CPU TDP/ Core Count                                                                                                                                                                                                                                                                                                                    |             | 20C     | Intel® Xeon® Gold 6148     | •   | •                   | •   | •                   | •   | •   |
| er o rary core count                                                                                                                                                                                                                                                                                                                   | 150 W       | 16C     | Intel® Xeon® Gold 6142     | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                        |             | 12C     | Intel® Xeon® Platinum 8158 | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                        |             | 12C     | Intel® Xeon® Gold 6136     | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                        |             | 8C      | Intel® Xeon® Gold 6144     | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                        |             | 22C     | Intel® Xeon® Gold 6152     | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                        | 140 W       | 18C     | Intel® Xeon® Gold 6140     | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                        |             | 14C     | Intel® Xeon® Gold 6132     | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                        | 130 W       | 8C      | Intel® Xeon® Gold 6134     | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                        |             | 20C     | Intel® Xeon® Gold 6138     | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                        | 125 W       | 16C     | Intel® Xeon® Platinum 8153 | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                        |             | 16C     | Intel® Xeon® Gold 6130     | •   | •                   | •   | •                   | •   | •   |

| Configuration #1: P4304XXMFEN2 chassis with up to four 3.5" fixed hard drive storage.  Configuration #2: P4304XXMFEN2 chassis with upgrade option of ONE 4x3.5" (or 8x2.5") hot-swap drive cage (See note 10)  Configuration #3: P4304XXMFEN2 chassis with upgrade option of TWO 4x3.5" (or 8x2.5") hot-swap drive cages (See note 10) |            |           | Configuration<br>#1        |     | Configuration<br>#2 |     | Configuration<br>#3 |     |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|----------------------------|-----|---------------------|-----|---------------------|-----|-----|
| ASHRAE Classification (See note 1)                                                                                                                                                                                                                                                                                                     |            |           | A1                         | A2  | A1                  | A2  | A1                  | A2  |     |
| M                                                                                                                                                                                                                                                                                                                                      | lax Ambieı | nt Temp   | perature                   | 27C | 35C                 | 27C | 35C                 | 27C | 35C |
|                                                                                                                                                                                                                                                                                                                                        |            | 12C       | Intel® Xeon® Gold 6126     | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                        | 115 W      | 6C        | Intel® Xeon® Gold 6128     | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                        | 105 W      | 14C       | Intel® Xeon® Gold 5120     | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                        |            | 12C       | Intel® Xeon® Gold 5118     | •   | •                   | •   | •                   | •   | •   |
| CPU TDP / Core Count                                                                                                                                                                                                                                                                                                                   |            | 4C        | Intel® Xeon® Platinum 8156 | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                        |            | 4C        | Intel® Xeon® Gold 5122     | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                        | 85 W       | 12C       | Intel® Xeon® Silver 4116   | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                        |            | 10C       | Intel® Xeon® Gold 5115     | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                        |            | 10C       | Intel® Xeon® Silver 4114   | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                        |            | 8C        | Intel® Xeon® Silver 4110   | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                        |            | 8C        | Intel® Xeon® Silver 4108   | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                        |            | 8C        | Intel® Xeon® Bronze 3106   | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                        |            | 6C        | Intel® Xeon® Bronze 3104   | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                        |            | 4C        | Intel® Xeon® Silver 4112   | •   | •                   | •   | •                   | •   | •   |
|                                                                                                                                                                                                                                                                                                                                        |            | RDIM      | IM-2Rx8, 1Rx4, 1Rx8        | •   | •                   | •   | •                   | •   | •   |
| Memory Type<br>(See note 5)                                                                                                                                                                                                                                                                                                            |            |           | RDIMM-DRx4                 | •   | •                   | •   | •                   | •   | •   |
| (550 11510 5)                                                                                                                                                                                                                                                                                                                          |            | LF        | RDIMM-QRx4 DDP             | •   | •                   | •   | •                   | •   | •   |
| Add-in Cards<br>(See note 6)                                                                                                                                                                                                                                                                                                           |            | PCI Cards |                            |     | •                   | •   | •                   | •   | •   |
| (See Hote o)                                                                                                                                                                                                                                                                                                                           |            | В         | BU (rated to 45C)          | •   | •                   | •   | •                   | •   | •   |
| Battery Backup<br>(See note 7)                                                                                                                                                                                                                                                                                                         |            | Sup       | ercap (rated to 45C)       | •   | •                   | •   | •                   | •   | •   |
| (366 11016 /)                                                                                                                                                                                                                                                                                                                          | Cad        | he Offl   | oad Module (rated to 55C)  | •   | •                   | •   | •                   | •   | •   |

| Configuration #1: P4304XXMFEN2 chassis with up to four 3.5" fixed hard drive storage.  Configuration #2: P4304XXMFEN2 chassis with upgrade option of ONE 4x3.5" (or 8x2.5") hot-swap drive cage (See note 10)  Configuration #3: P4304XXMFEN2 chassis with upgrade option of TWO 4x3.5" (or 8x2.5") hot-swap drive cages (See note 10) |                           |     | Configuration<br>#1 |     | Configuration<br>#2 |     | Configuration<br>#3 |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----|---------------------|-----|---------------------|-----|---------------------|--|
| ASHRAE Classification (See note 1)                                                                                                                                                                                                                                                                                                     |                           |     | A2                  | A1  | A2                  | A1  | A2                  |  |
| M                                                                                                                                                                                                                                                                                                                                      | lax Ambient Temperature   | 27C | 35C                 | 27C | 35C                 | 27C | 35C                 |  |
|                                                                                                                                                                                                                                                                                                                                        | 1600 GB/ 2TB              | •   | •                   | •   | •                   | •   | •                   |  |
| PCIe SSD AIC FF                                                                                                                                                                                                                                                                                                                        | 800 GB                    | •   | •                   | •   | •                   | •   | •                   |  |
| (DC 3700/P3500)                                                                                                                                                                                                                                                                                                                        | 500 GB                    | •   | •                   | •   | •                   | •   | •                   |  |
| (See note 8)                                                                                                                                                                                                                                                                                                                           | 400 GB                    | •   | •                   | •   | •                   | •   | •                   |  |
|                                                                                                                                                                                                                                                                                                                                        | 200 GB                    | •   | •                   | •   | •                   | •   | •                   |  |
| M.2                                                                                                                                                                                                                                                                                                                                    | 340 G                     | •   | •                   | •   | •                   | •   | •                   |  |
| (DC S3500)<br>(See note 9)                                                                                                                                                                                                                                                                                                             | 120 G/80 G                | •   | •                   | •   | •                   | •   | •                   |  |
| Intel® Xeon Phi™                                                                                                                                                                                                                                                                                                                       | Active Cooling up to 300W |     |                     |     |                     |     |                     |  |

Table 61. System in "Throttling" Operating Mode for Systems with Fan Redundancy

"•" = No throttling.

"P#" = P-state entered (TDP on throttling CPU).

(Blank)=Not supported.

| Configuration #1: P4304XXMUXX chassis with up to four 3.5" fixed hard drive storage Configuration #2: P4304XXMUXX chassis with upgrade option of ONE 4x3.5" (or 8x2.5") hot-swap drive cage (See note 10) Configuration #3: P4304XXMUXX chassis with upgrade option of TWO 4x3.5" (or 8x2.5") hot-swap drive cages (See note 10) |             |           | Configuration<br>#1        |     | Configuration<br>#2 |     | Configuration<br>#3 |     |              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|----------------------------|-----|---------------------|-----|---------------------|-----|--------------|
| ASHR                                                                                                                                                                                                                                                                                                                             | AE Classifi | ication ( | See note 1)                | A1  | A2                  | A1  | A2                  | A1  | A2           |
| М                                                                                                                                                                                                                                                                                                                                | ax Ambier   | nt Temp   | erature                    | 27C | 35C                 | 27C | 35C                 | 27C | 35C          |
|                                                                                                                                                                                                                                                                                                                                  | 205.14      | 28C       | Intel® Xeon® Platinum 8180 | •   | •                   | •   | P2<br>(201W)        | •   | P6<br>(169W) |
|                                                                                                                                                                                                                                                                                                                                  | 205 W       | 24C       | Intel® Xeon® Platinum 8168 | •   | •                   | •   | P2<br>(202W)        | •   | P6<br>(172W) |
|                                                                                                                                                                                                                                                                                                                                  | 200 W       | 18C       | Intel® Xeon® Gold 6154     | •   | •                   | •   | P3<br>(191W)        | •   | P5<br>(169W) |
| CPU TDP / Core Count                                                                                                                                                                                                                                                                                                             | 165 W       | 12C       | Intel® Xeon® Gold 6146     | •   | •                   | •   | P3<br>(158W)        | •   | P7<br>(136W) |
| CFO TDF / Core Count                                                                                                                                                                                                                                                                                                             | 150 W       | 8C        | Intel® Xeon® Gold 6144     | •   | •                   | •   | •                   | •   | P6<br>(127W) |
|                                                                                                                                                                                                                                                                                                                                  | 115 W       | 6C        | Intel® Xeon® Gold 6128     | •   | •                   | •   | •                   | •   | P2<br>(110W) |
| 105.11                                                                                                                                                                                                                                                                                                                           |             | 4C        | Intel® Xeon® Platinum 8156 | •   | •                   | •   | •                   | •   | P2<br>(102W) |
|                                                                                                                                                                                                                                                                                                                                  | 105 W       | 4C        | Intel® Xeon® Gold 5122     | •   | •                   | •   | •                   | •   | P2<br>(102W) |

## E.4. System volumetric airflow

The fully integrated system is designed to operate at external ambient temperatures of between 10 °C and 35 °C with limited excursion-based operation up to 45 °C, as specified in Table 57. Working with integrated platform management, several features within the system are designed to move air in a front to back direction, through the system and over critical components to prevent them from overheating and allow the system to operate with best performance. The following tables provide airflow data associated with the P4303XXMUXX and P4304XXMFEN2 chassis and are provided for reference purposes only. The data was derived from actual wind tunnel test methods and measurements using fully configured (worst case), and half configured (Performance setting) system configurations. Lesser system configurations may produce slightly different data results. In addition, the CFM data provided using server management utilities that utilize platform sensor data may vary slightly from the data listed in the tables.



Figure 57. 2.5" and 3.5" storage configurations

#### Table 62 Airflow by PCIe slot with BIOS system acoustic configuration (in LFM)

|              | Slot 1 | Slot 2 | Slot 3 | Slot 4 | Slot 5 | Slot 6 |
|--------------|--------|--------|--------|--------|--------|--------|
| P4304XXMUXX  | 200    | 200    | 200    | 200    | 250    | 250    |
| P4304XXMFEN2 | 100    | 150    | 150    | 150    | 100    | 100    |

Table 63 Airflow by PCIe slot with BIOS system performance configuration (in LFM)

|              | Slot 1 | Slot 2 | Slot 3 | Slot 4 | Slot 5 | Slot 6 |
|--------------|--------|--------|--------|--------|--------|--------|
| P4304XXMUXX  | 250    | 300    | 300    | 350    | 350    | 350    |
| P4304XXMFEN2 | 150    | 200    | 200    | 200    | 150    | 150    |

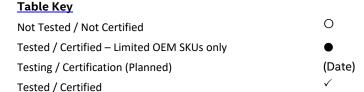


Figure 58. 3.5" and 2.5" Performance configurations

# Table 64 Airflow by PCIe slot with BIOS system acoustic configuration (in LFM)

|              | Slot 1 | Slot 2 | Slot 3 | Slot 4 | Slot 5 | Slot 6 |
|--------------|--------|--------|--------|--------|--------|--------|
| P4304XXMUXX  | 250    | 300    | 300    | 350    | 350    | 350    |
| P4304XXMFEN2 | 150    | 200    | 200    | 200    | 150    | 150    |

# Table 65 Airflow by PCIe slot with BIOS system performance configuration (in LFM)


|              | Slot 1 | Slot 2 | Slot 3 | Slot 4 | Slot 5 | Slot 6 |
|--------------|--------|--------|--------|--------|--------|--------|
| P4304XXMUXX  | 300    | 350    | 350    | 400    | 400    | 400    |
| P4304XXMFEN2 | 200    | 300    | 300    | 300    | 200    | 200    |

## E.5. Product Regulatory Information

This product has been evaluated and certified as Information Technology Equipment (ITE), which may be installed in offices, schools, computer rooms, and similar commercial type locations. The suitability of this product for other product certification categories and/or environments (such as: medical, industrial, telecommunications, NEBS, residential, alarm systems, test equipment, etc.), other than an ITE application, will require further evaluation and may require additional regulatory approvals.

Intel has verified that all L3, L6, and L9 products<sup>1</sup> **as configured and sold by Intel to its customers** comply with the requirements for all regulatory certifications defined in the following table. It is the Intel customer's responsibility to ensure their final server system configurations are tested and certified to meet the regulatory requirements for the countries to which they plan to ship and or deploy server systems into.

|                                                                                                  | Intel® Server   | S2600ST Family                   | NOTES                                      |
|--------------------------------------------------------------------------------------------------|-----------------|----------------------------------|--------------------------------------------|
|                                                                                                  | "Sawtooth Pass" | "Sawtooth Pass" + P4000M Chassis | Intel Project Code Name                    |
|                                                                                                  | L3 Board Only   | L6/L9 - System                   | Product Integration Level                  |
|                                                                                                  | S2600ST         | Pr4000                           | Product family identified on certification |
| Regulatory Certification                                                                         |                 |                                  |                                            |
| RCM DoC Australia & New Zealand                                                                  | ✓               | ✓                                |                                            |
| CB Certification & Report (International - report to include all CB country national deviations) | ✓               | ✓                                |                                            |
| China CCC Certification                                                                          | 0               | 0                                |                                            |
| CU Certification (Russia/Belarus/Kazakhstan)                                                     | 0               | ✓                                |                                            |
| Europe CE Declaration of Conformity                                                              | ✓               | ✓                                |                                            |
| FCC Part 15 Emissions Verification (USA & Canada)                                                | ✓               | <b>√</b>                         |                                            |
| Germany GS Certification                                                                         | 0               | ✓                                |                                            |
| India BIS Certification                                                                          | 0               | 0                                |                                            |
| International Compliance – CISPR32 & CISPR24                                                     | ✓               | ✓                                |                                            |
| Japan VCCI Certification                                                                         | 0               | ✓                                |                                            |
| Korea KC Certification                                                                           | ✓               | ✓                                |                                            |
| Mexico Certification                                                                             | 0               | Q1 2020                          |                                            |
| NRTL Certification (USA & Canada)                                                                | ✓               | <b>√</b>                         |                                            |
| South Africa Certification                                                                       | 0               | 0                                |                                            |
| Taiwan BSMI Certification                                                                        | √ (DOC)         | ✓                                |                                            |
| Ukraine Certification                                                                            | 0               | <b>√</b>                         |                                            |



<sup>&</sup>lt;sup>1</sup> An L9 product is a power-on ready server system with NO operating system installed. An L6 product requires additional components to be installed in order to make it power-on ready. L3 products are component building block options that require integration into a chassis to create a functional server system

# **EU Directive 2019/424 (Lot 9)**

Beginning on March 1, 2020, an additional component of the European Union (EU) regulatory CE marking scheme, identified as EU Directive 2019/424 (Lot 9), will go into effect. After this date, all new server systems shipped into or deployed within the EU must meet the full CE marking requirements including those defined by the additional EU Lot 9 regulations.

Intel has verified that all L3, L6, and L9 server products<sup>2</sup> <u>as configured and sold by Intel</u> to its customers comply with the full CE regulatory requirements necessary for the given product type, including those defined by EU Lot 9. <u>It is the Intel customer's responsibility to ensure their final server system configurations</u> are SPEC<sup>®</sup> SERT<sup>™</sup> tested and meet the new CE regulatory requirements.

Visit the following website for additional EU Directive 2019/424 (Lot9) information: <a href="https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32019R0424">https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32019R0424</a>

In compliance with the EU Directive 2019/424 (Lot 9) materials efficiency requirements, Intel makes available all necessary product collaterals as identified below:

#### • Product Serviceability Instructions

- Intel® Server Chassis P4304XXMFEN2/P4304XXMUXX Product Family System Integration and Service Guide
- o <a href="https://www.intel.com/content/www/us/en/support/products/93168/server-products/server-boards/intel-server-board-s2600st-family.html">https://www.intel.com/content/www/us/en/support/products/93168/server-products/server-boards/intel-server-board-s2600st-family.html</a>

#### Product Specifications

- Intel® Server Board S2600ST Product Family Technical Product Specification (TPS) This document
- o <a href="https://www.intel.com/content/www/us/en/support/products/93168/server-products/server-boards/intel-server-board-s2600st-family.html">https://www.intel.com/content/www/us/en/support/products/93168/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products/server-products

#### System BIOS/Firmware and Security Updates – Intel® Server Board S2600ST family

- System Update Package (SUP) uEFI only
- o Intel® One Boot Flash Update (OFU) Various OS Support
- o <a href="https://www.intel.com/content/www/us/en/support/topics/server-bios-firmware.html">https://www.intel.com/content/www/us/en/support/topics/server-bios-firmware.html</a>

#### • Intel Solid State Drive (SSD) Secure Data Deletion and Firmware Updates

- Note: for system configurations that may be configured with an Intel SSD
- Intel<sup>®</sup> Solid State Drive Toolbox
- o https://downloadcenter.intel.com/download/29205?v=t

#### Intel® RAID Controller Firmware Updates and other support collaterals

- o Note: for system configurations that may be configured with an Intel® RAID Controller
- o <a href="https://www.intel.com/content/www/us/en/support/products/43732/server-products/raid-products.html">https://www.intel.com/content/www/us/en/support/products/43732/server-products/raid-products.html</a>

<sup>&</sup>lt;sup>2</sup> An L9 system configuration is a power-on ready server system with NO operating system installed. An L6 system configuration requires additional components to be installed in order to make it power-on ready. L3 are component building block options that require integration into a chassis to create a functional server system

# EU Directive 2019/424 (Lot 9) – Support Summary Pr4000 – Intel® Server System P4000 Family (Sawtooth Pass)

A template to report information needed for (EU) 2019/424 (Lot 9) server conformity assessment. The information provided herein does not represent any final shipping server system test results, and customer's actual test results for shipping server configurations may differ from this list. Use of this information is at the sole risk of the user, and Intel assumes no responsibility for customers server system level regulation compliance to EU 2019/424 (Lot 9).

| Product Info.                                                                                                                                             |                                          |             |             |          |        |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------|-------------|----------|--------|--|--|
| Product Type                                                                                                                                              | Server                                   |             |             |          |        |  |  |
| Manufacturer Name                                                                                                                                         | Intel Corporat                           | on          |             |          |        |  |  |
| Registered trade name and address                                                                                                                         | Intel<br>2200 Mission<br>Santa Clara, C. | _           |             |          |        |  |  |
| Product model number and model numbers for low end performance and high-end performance configure if applicable                                           | Pr4000                                   |             |             |          |        |  |  |
| Product Launch Year                                                                                                                                       | 2017                                     |             |             |          |        |  |  |
|                                                                                                                                                           | FXX1600PCRI                              | PS – 1600V  | V AC – 80+  | Platinum |        |  |  |
|                                                                                                                                                           | Loading                                  | 100%        | 50%         | 20%      | 10%    |  |  |
|                                                                                                                                                           | Minimum<br>Efficiency                    | 92.3%       | 94.12%      | 92.7%    | 88.96% |  |  |
| PSU efficiency at 10%, 20%, 50% and 100% of rated output power                                                                                            | FXX750PCRP                               | 5 – 750W A  | C – 80+ Pla | atinum   |        |  |  |
|                                                                                                                                                           | Loading                                  | 100%        | 50%         | 20%      | 10%    |  |  |
|                                                                                                                                                           | Minimum<br>Efficiency                    | 92.5%       | 94.09%      | 92.3%    | 88.37% |  |  |
| PSU factor at 50% of rated load level                                                                                                                     | FXX1600PCRF<br>FXX750PCRPS               |             | AC: 0.98    |          |        |  |  |
| PSU Rated Power Output<br>(Server Only)                                                                                                                   | FXX1600PCRF<br>FXX750PCRPS               |             | AC          |          |        |  |  |
| Idle state power (Watts) – Server only                                                                                                                    | Refer to the fo                          | llowing tab | ole         |          |        |  |  |
| List of all components for additional idle power allowances (server only)                                                                                 | Refer to the fo                          | llowing tab | ole         |          |        |  |  |
| Maximum power (Server only)                                                                                                                               | Refer to the fo                          | llowing tab | ole         |          |        |  |  |
| Declared operating condition class                                                                                                                        | ASHRAE Class<br>°F) with the ma          |             |             |          |        |  |  |
| Idle State Power (watts) at the higher boundary temp<br>(Server Only)                                                                                     | Refer to the fo                          | llowing tab | ole         |          |        |  |  |
| the active state efficiency and the performance in active state of the server (server only)                                                               | Refer to the following table             |             |             |          |        |  |  |
| Information on the secure data deletion functionality                                                                                                     | Refer to the following table             |             |             |          |        |  |  |
| for blade server, a list of recommended combinations with compatible chassis (Server only)                                                                | Not Applicable                           | 9           |             |          |        |  |  |
| If Product Model Is Part Of A Server Product Family, a list of all model configurations that are represented by the model shall be supplied (Server only) | Not Applicable                           | 2           |             |          |        |  |  |

# Energy Efficiency Data of Pr4000 – 1 (Single) CPU Installed Configurations

|             | •                            | Configuration                              |                                       |                                        |  |  |
|-------------|------------------------------|--------------------------------------------|---------------------------------------|----------------------------------------|--|--|
|             |                              |                                            | 1-CPU Low-end<br>Config.              | 1-CPU High-end<br>Config.              |  |  |
|             | Chassis                      | Model                                      | P4304XXMUXX                           | P4304XXMUXX                            |  |  |
|             | Node /                       | # of nodes or MBs installed in system      | 1                                     | 1                                      |  |  |
|             | Motherboard<br>(MB)          | Model                                      | S2600STBR                             | S2600STBR                              |  |  |
|             |                              | # of Processors per node / MB              | 1                                     | 1                                      |  |  |
|             | Processor                    | Processor Model                            | Intel® Xeon® Scalable<br>Gold 5122    | Intel® Xeon® Scalable<br>Platinum 8280 |  |  |
| Details     | Mamari                       | # of DIMMs installed per node / MB         | 6<br>(1 DIMM / Mem. Channel)          | <b>6</b><br>(1 DIMM / Mem. Channel)    |  |  |
|             | Memory                       | Capacity per DIMM (GB)                     | 32 GB                                 | 64 GB                                  |  |  |
|             |                              | Total Memory (GB) per node / MB            | 192 GB                                | 384 GB                                 |  |  |
|             | SSD                          | Total # of SSDs installed                  | 2                                     | 2                                      |  |  |
|             | Power                        | Total # of PSU installed                   | 2                                     | 2                                      |  |  |
|             | Supply (PSU)                 | Model                                      | FXX1600PCRPS 1600W AC                 | FXX1600PCRPS 1600W AC                  |  |  |
|             | System Softwa                | are Revisions installed to each Node or MB | BIOS R1009<br>BMC 2.22<br>FRUSDR 1.76 | BIOS R1009<br>BMC 2.22<br>FRUSDR 1.76  |  |  |
|             |                              | Data Summary                               |                                       |                                        |  |  |
|             | P Base                       |                                            | 25                                    | 25                                     |  |  |
| Measured    | Additional CPL               |                                            | 17.22                                 | 84.95                                  |  |  |
| and         | Additional Pov               | • • •                                      | 10                                    | 10                                     |  |  |
| Calculated  | Storage Device               |                                            | 10                                    | 10                                     |  |  |
| Server      | Additional Mer               |                                            | 33.84                                 | 68.40                                  |  |  |
| Allowance   |                              | Device (10Gx 15W/2Port on MB)              | 30                                    | 30                                     |  |  |
|             | Perf <sub>cpu</sub>          |                                            | 1.722                                 | 8.495                                  |  |  |
|             | Idle power allo              |                                            | 126.06                                | 228.35                                 |  |  |
| Limits/     | <u>'</u>                     | ted (W) Per node                           | 84.2                                  | 88.7                                   |  |  |
| Results     | Minimum Eff <sub>AC</sub>    |                                            | 9                                     | 9                                      |  |  |
|             | Eff <sub>ACTIVE</sub> tested |                                            | 12.4                                  | 31.0                                   |  |  |
| Other       |                              | ligher Temp. (per Node) @ 35 degree C      | 92.6                                  | 93.2                                   |  |  |
| test result | Max Power (Pe                | r Node)                                    | 245                                   | 386.7                                  |  |  |

# Energy Efficiency Data of Pr4000 – 2 (Dual) CPUs Installed Configurations

|            | •                            | Configuration                              |                                           |                                           |
|------------|------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|
|            |                              |                                            | 2-CPU Low-end<br>Config.                  | 2-CPU High-end<br>Config.                 |
|            | Chassis                      | Model                                      | P4304XXMUXX                               | P4304XXMUXX                               |
|            | Node /                       | # of nodes or MBs installed in system      | 1                                         | 1                                         |
|            | Motherboard<br>(MB)          | Model                                      | S2600STBR                                 | S2600STBR                                 |
|            |                              | # of Processors per node / MB              | 2                                         | 2                                         |
|            | Processor                    | Processor Model                            | Intel® Xeon® Scalable<br>Gold 5122        | Intel® Xeon® Scalable<br>Platinum 8280    |
|            |                              | # of DIMMs installed per node / MB         | 12 = 6 per CPU<br>(1 DIMM / Mem. Channel) | 12 = 6 per CPU<br>(1 DIMM / Mem. Channel) |
| Details    | Memory                       | Capacity per DIMM (GB)                     | 32 GB                                     | 64 GB                                     |
|            |                              | Total Memory (GB) per node / MB            | 384 GB                                    | 768 GB                                    |
|            | SSD                          | Total # of SSDs installed                  | 2                                         | 2                                         |
|            | Power                        | Total # of PSU installed                   | 2                                         | 2                                         |
|            | Supply (PSU)<br>Chassis      | Model                                      | FXX1600PCRPS 1600W AC                     | FXX1600PCRPS 1600W AC                     |
|            |                              |                                            | BIOS R1009                                | BIOS R1009                                |
|            | System Softwa                | are Revisions installed to each Node or MB | BMC 2.22                                  | BMC 2.22                                  |
|            |                              |                                            | FRUSDR 1.76                               | FRUSDR 1.76                               |
|            |                              | Data Summary                               |                                           |                                           |
|            | P Base                       |                                            | 38                                        | 38                                        |
| Measured   | Additional CPI               | J                                          | 23.41                                     | 119.91                                    |
| and        | Additional Pov               |                                            | 10                                        | 10                                        |
| Calculated | Storage Device               |                                            | 10                                        | 10                                        |
| Server     | Additional Me                | <u> </u>                                   | 68.4                                      | 137.52                                    |
| Allowance  |                              | Device (10Gx 15W/2Port on MB)              | 30                                        | 30                                        |
|            | Perf <sub>cpu</sub>          |                                            |                                           | 8.495                                     |
|            | Idle power allo              |                                            | 179.81                                    | 345.43                                    |
| Limits/    |                              | ted (W) Per node                           | 104.4                                     | 111.4                                     |
| Results    | Minimum Eff <sub>AC</sub>    |                                            | 9.5                                       | 9.5                                       |
|            | Eff <sub>ACTIVE</sub> tested |                                            | 14.1                                      | 33.6                                      |
| Other test |                              | Higher Temp. (per Node) @ 35 degree C      | 109.2                                     | 118.1                                     |
| result     | Max Power (Pe                | er Node)                                   | 397.2                                     | 762.2                                     |

# **Other Information:**

## **Chemical Declaration**

- Neodymium Not Applicable. (No HDD offered by Intel)
- Cobalt Not Applicable. (No BBUs. Coin battery is out of scope)

# Appendix F. Glossary

| Term             | Definition                                    |
|------------------|-----------------------------------------------|
| GT/s             | Giga Transfers per second                     |
| GUI              | Graphical User Interface                      |
| GUID             | Globally Unique Identifier                    |
| HDD              | Hard Disk Drive                               |
| I <sup>2</sup> C | Inter-Integrated Circuit                      |
| IDE              | Integrated Drive Electronics                  |
| IIO              | Integrated IO Module                          |
| IMC              | Integrated Memory Controller                  |
| iPC              | Intel Product Code                            |
| IPMB             | Intelligent Platform Management Bus           |
| IPMI             | Intelligent Platform Management Interface     |
| JRE              | Java* Runtime Environment                     |
| KVM              | Keyboard, Video and Mouse                     |
| LAN              | Local Area Network                            |
| LDAP             | Lightweight Directory Access Protocol         |
| LRDIMM           | Load Reduced DIMM                             |
| LSB              | Least Significant Bit                         |
| MDRAID           | Linux Software Raid                           |
| Intel® ME        | Intel® Management Engine                      |
| MLE              | Measured Launched Environment                 |
| MRC<br>MSB       | Memory Reference Code  Most Significant Bit   |
| NDA              | Most Significant Bit Non-Disclosure Agreement |
| Intel® NM        | Intel® Node Manager                           |
| NMI              | Non-Maskable Interrupt                        |
| NTB              | PCI Express Non-Transparent Bridge            |
| NTLDR            | NT loader                                     |
| NVDIMM           | Non-Volatile Dual Inline Memory Module        |
| OCuLink          | Optical Copper Link                           |
| OEM              | Original Equipment Manufacturer               |
| Intel® OFU       | Intel® One Boot Flash Update Utility          |
| OLTT             | Open-Loop Thermal Throttling                  |
| os               | Operating System                              |
| PCH              | Platform Controller Hub (chipset)             |
| PCI              | Peripheral Component Interconnect             |
| PCle*            | PCI Express*                                  |
| PECI             | Platform Environmental Control Interface      |
| РНМ              | Processor Heat Sink Module                    |
| PMBus*           | Power Management Bus                          |
| POST             | Power-On Self-Test                            |
| PPR              | Post Package Repair                           |
| PSU              | Power Supply Unit                             |
| PWM              | Pulse Width Modulation                        |
| QR               | Quad Rank                                     |
| RAID             | Redundant Array of Independent Disks          |
| RAS              | Reliability, availability, and serviceability |

| Term             | Definition                                      |
|------------------|-------------------------------------------------|
| RESTful          | Representational State Transfer                 |
| RCiEP            | Root Complex Integrated Endpoint                |
| RDIMM            | Registered DIMM                                 |
| Intel® RMM4 Lite | Intel® Remote Management Module 4 Lite          |
| ROC              | Raid-on-Chip                                    |
| SAS              | Serial Attached SCSI                            |
| SATA             | Serial ATA                                      |
| SCSI             | Small Computer System Interface                 |
| SDDC             | Single Device Data Correction                   |
| SDR              | Sensor Data Record                              |
| SEL              | System Event Log                                |
| SFP+             | Small Form Pluggable Plus                       |
| SIMD             | Single Instruction Multiple Data                |
| SKU              | Stock Keeping Unit                              |
| SmaRT            | Smart Ride Through                              |
| SMM              | Server Management Mode                          |
| SMS              | System Management Software                      |
| SOL              | Serial Over LAN                                 |
| SPD              | Serial Presence Detection                       |
| SR               | Single Rank                                     |
| sSATA            | Secondary SATA                                  |
| SSB              | Server South Bridge                             |
| SSD              | Solid State Drive                               |
| Intel® SSE       | Intel® Streaming SIMD Extensions                |
| SSH              | Secure Shell                                    |
| SSL              | Secure Sockets Layer                            |
| SUP              | System Update Package                           |
| TCG              | Trusted Computing Group                         |
| TDP              | Thermal Design Power                            |
| ТРМ              | Trusted Platform Module                         |
| TPS              | Technical Product Specification                 |
| Intel® TXT       | Intel® Trusted Execution Technology for servers |
| UEFI             | Unified Extensible Firmware Interface           |
| Intel® UPI       | Intel® Ultra Path Interconnect                  |
| USB              | Universal Serial Bus                            |
| VGA              | Video Graphics Array                            |
| VLSI             | Very Large Scale Integration                    |
| Intel® VMD       | Intel® Volume Management Device                 |
| VMM              | Virtual Machine Manager                         |
| VR               | Voltage Regulator                               |
| Intel® VROC      | Intel® Virtual RAID on CPU                      |
| VRD              | Voltage Regulator-Down                          |
| Intel® VT        | Intel® Virtualization Technology                |