
Developer manual 002A

AOSP-9.10.10

TAB10s

8:30

2

Legal no�ces
AOSP-9.10.10 (002A_en)

© 2020 Qeedji

Rights and Responsibili�es

All rights reserved. No part of this manual may be reproduced in any form or by any means whatsoever without the wri�en permission of the publisher. The products and services
men�oned in this document may be trademarks and/or trademarks of their respec�ve owners. The publisher and the author do not pretend to these brands.

Although every precau�on has been taken in the prepara�on of this document, the publisher and the author assumes no responsibility for errors or omissions, or for damages
resul�ng from the use of the informa�on contained in this document or the use of programs and source code who can accompany it. Under no circumstances can the publisher and
the author be held responsible for any loss of profits or any other commercial prejudice caused or that would have been caused directly or indirectly by this document.

Product informa�on
The concep�on and specifica�ons of the product may change without prior no�ce, and this applies to hardware, embedded so�ware and this guide. Consumable items accessories
may slightly differ than herein described as Qeedji is depending on the evolu�ons of its suppliers. This document contains confiden�al informa�on; it can’t be disclosed to any third
par�es without prior wri�en authoriza�on of Qeedji.

Safety instruc�ons
Please read carefully the following instruc�ons before switching the product on: - WARNING! Correct fi�ng and installa�on is of the utmost importance. Incorrect fi�ng and/or
installa�on may result in personal injury or loss. Qeedji disclaims all liability, of whatever kind, if the product is assembled, fi�ed and/or installed in an incorrect manner. - Do not use
the product near a water supply. - Do not pour anything on the product, like flammable liquids or material. - Do not expose the product to direct sun, near a hea�ng source or a dust
nor vibra�ons. - Do not obstruct holes, to be sure that air flows freely around the product. - Switch off the product during a storm. - Do not open the product in any circumstances.

Guarantee terms
Qeedji products are eligible for a warranty to cover genuine manufacturing defect for 3 years. Product failure occurring as the result of factors that do not cons�tute genuine
manufacturing defect are not covered under the terms of the warranty and any repairs of this nature would be chargeable. For example: Inappropriate maintenance ac�on, a non-
authorized modifica�on, a not specified environment u�liza�on (see ‘Safety instruc�ons’), or if the product has been damaged a�er an impact, a fall, a bad manipula�on or a storm
consequence, an insufficient protec�on against heat, moisture or frost. This warranty is not transferrable. In addi�on, any repairs carried out by non-authorized personnel will
invalidate the warranty.

WEEE Direc�ve

This symbol means that your end of life equipment must not be disposed of with household waste but must be deposited at a collec�on point for waste electrical and electronic
equipment or to your reseller. This will benefit the environment. In this context, a system for collec�ng and recycling has been implemented by the European Union

3

1.1
1.2
1.3

1.3.1
1.3.2
1.4

1.4.1
1.4.2
1.4.3
1.5
1.6

2.1

Table of content
Part I :
Introduc�on
APK Development
System App

APK Signing
Set App as System App

Qeedji System service
Installa�on by USB
Installa�on by WebDAV
AOSP device mode

Qeedji preferences
FAQ

Part II :
Contacts

4

1.1 Introduc�on
This documenta�on is intended for ISVs (Independent Software Vendors), wishing to develop AOSP APKs on Qeedji TAB10s devices.

◬ Android APK development skills are required to go ahead.

◬ It is recommended to read first the TAB10s user manual.

Demo Package Content

Items Descrip�on Quan�ty

TAB10s Qeedji tablet embedding AQS 9 1

Power supply USB Type-C 1

USB Type-C cable Cable - Assembly, Type-C Male to Type-A Male 1

USB hub USB Type-A (2.0), USB Type-C 1

http://www.qeedji.tech/en/support/index.php?TAB10s/AQS_firmware_and_documentations

5

1.2 APK Development
Prerequisite
The so�ware developer already knows how to develop an Android APK and how to generate/debug it with Android Studio .

AOSP Standard API
The standard API of AQS 9.10.10 is based on the AOSP SDK 28.
The AQS 9.10.10 embeds Chromium Web engine 83 .

The getDeviceId method of the TelephonyManager class allows to get the device iden�fica�on UUID value.
The getSerial method of the Build class allows to get the raw PSN.
The BASE_OS sta�c string of the Build.VERSION class allows to get the so�ware version.

Qeedji System Java API

The Qeedji github is hos�ng the tech-qeedji-system-lib-classes.jar Java library.

The tech-qeedji-system-lib-classes.jar Java library exposes an API for specific features.

 public class SurroundLight {
 public static final int OFF = 0;
 public static final int RED = 1;
 public static final int GREEN = 2;
 public static final int ORANGE = 3;

 public SurroundLight();
 public void setColor(int color);
 public int getColor();
 }

 public class Rfid125KHz {
 public Rfid125KHz(Context c);
 public void setEnabled(boolean value);
 }

 public class DipSwitch {
 public DipSwitch(Context c);
 public boolean camera();
 public boolean microphone();
 }

 public class SharedPreferenceAPI {
 public String getPreferenceAuthority();
 public Object[][] initPreferences();
 }

 public interface DeviceModeListener {
 public void onDeviceModeChanged(int oldDeviceMode, int newDeviceMode);
 }
 public class DeviceMode {
 public static final int INVALID = -1;
 public static final int NATIVE = 0;
 public static final int KIOSK = 1;

 public DeviceMode(Context c);
 public void setValue(int devicemode);
 public int getValue();
 public void registerListener(DeviceModeListener listener);
 public void unregisterListener(DeviceModeListener listener);
 }

 public class DisplayOutputMode {
 public DisplayOutputMode(String label, long width, long height, long refresh_rate);
 public String getLabel();
 public long getWidth();
 public long getHeight();
 public long getRefreshRate();
 public boolean equals(DisplayOutputMode aMode);
 }

 public class DisplayOutput {
 public static final int TYPE_UNKNOWN = 0;
 public static final int TYPE_INTERNAL = 1;
 public static final int TYPE_EXTERNAL = 2;

 public static final long PORT_TYPE_UNKNOWN = 0
 public static final long PORT_TYPE_HDMI = 8;
 public static final long PORT_TYPE_MIPI = 10;
 public static final long PORT_TYPE_USBC = 11;

 public DisplayOutput(Context context);
 public int getType();
 public boolean getAutoPortType();
 public void setAutoPortType(boolean enable);
 public long[] getPortTypes();
 public long getPortType();
 public void setPortType(long portType);
 public String getLabelOfPort(long portType);
 public long getPortTypeFromLabel(String label);
 public boolean getAutoDisplayMode();
 public void setAutoDisplayMode(boolean enable);
 public DisplayOutputMode[] getDisplayModes();
 public DisplayOutputMode getDisplayMode();
 public void setDisplayMode(String labelMode);
 public long[] getRotations();
 public long getRotation();
 public void setRotation(long rotation);
 public boolean getDpmsPowerModeEnabled();
 public void setDpmsPowerModeEnabled(boolean enable);
 }

Qeedji System Javascript API

The Qeedji github is hos�ng the tech-qeedji-host-webview.aar Android library.

The tech-qeedji-host-webview.aar Android library exposes an Javascript API for specific func�onali�es in a WebView.

The tech-qeedji-host-webview.aar Android library embeds the tech-qeedji-system-lib-classes.jar library.

https://developer.android.com/reference/android/telephony/TelephonyManager#getDeviceId()
https://developer.android.com/reference/android/telephony/TelephonyManager
https://developer.android.com/reference/android/os/Build#getSerial()
https://developer.android.com/reference/android/os/Build
https://developer.android.com/reference/android/os/Build.VERSION#BASE_OS
https://developer.android.com/reference/android/os/Build.VERSION
https://github.com/Qeedji/aosp-TAB10s-sdk/blob/master/libs/tech-qeedji-system-lib-classes.jar
https://github.com/Qeedji/aosp-TAB10s-sdk/blob/master/libs/tech-qeedji-system-lib-classes.jar
https://github.com/Qeedji/aosp-TAB10s-sdk/blob/master/libs/tech-qeedji-host-webview.aar
https://github.com/Qeedji/aosp-TAB10s-sdk/blob/master/libs/tech-qeedji-host-webview.aar
https://developer.android.com/reference/android/webkit/WebView
https://github.com/Qeedji/aosp-TAB10s-sdk/blob/master/libs/tech-qeedji-host-webview.aar
https://github.com/Qeedji/aosp-TAB10s-sdk/blob/master/libs/tech-qeedji-system-lib-classes.jar

6

 String Host.Bluetooth().getHardwareAddress();

 String Host.Device().getModel();
 String Host.Device().getManufacturer();
 String Host.Device().getSerial();
 String Host.Device().getPsn();
 String Host.Device().getSoftwareVersion();
 String Host.Device().getDeviceName();
 String Host.Device().getUUID();
 String Host.Device().getHostname();
 String Host.Device().getMacId();
 String Host.Device().getField1();
 String Host.Device().getField2();
 String Host.Device().getField3();
 String Host.Device().getField4();
 String Host.Device().getField5();

 boolean Host.DipSwitch().getCamera();
 boolean Host.DipSwitch().getMicrophone();

 int Host.NetworkInterfaces().length();
 NetworkInterface Host.NetworkInterfaces().get(int index);
 String NetworkInterface.getName();
 String NetworkInterface.getHardwareAddress();
 boolean NetworkInterface.isUp();

 void Host.NFC().start();
 void Host.NFC().stop();
 // parameter type is unused
 callback : void onHostNFCReading(String type, String id);

 void Host.PowerManager().goToSleep();
 void Host.PowerManager().wakeUp();
 void Host.PowerManager().reboot();

 void Host.ProximitySensor().start();
 void Host.ProximitySensor().stop();
 callback : void onHostProximitySensorReading(float distance);

 void Host.Rfid125KHz().start();
 void Host.Rfid125KHz().stop();

 int Host.SurroundLight().OFF();
 int Host.SurroundLight().RED();
 int Host.SurroundLight().GREEN();
 int Host.SurroundLight().ORANGE();
 void Host.SurroundLight().setColor(int color);
 int Host.SurroundLight().getColor();

 void Host.SystemButton().start();
 void Host.SystemButton().stop();
 callback : void onHostSystemButtonReading(int count);

7

APK shared preferences handling with configura�on script
An APK can be designed to share some preferences which can be then read or wri�en by the Qeedji System service:

either through the configura�on script,
or through the device configura�on Web interface.

The APK must link the tech-qeedji-system-lib-classes.jar Java library.

The APK must also implement a child class of the SharedPreferenceAPI class supported in the tech-qeedji-system-lib-classes.jar Java library.

package tech.qeedji.test1;

import tech.qeedji.system.lib.SharedPreferenceAPI;

public class MySharedPreferenceAPI extends SharedPreferenceAPI {

 @Override
 public String getPreferenceAuthority() {
 return BuildConfig.APPLICATION_ID;
 }

 @Override
 public Object[][] initPreferences() {
 Object[][] preferences = {
 // filename, key, access, type, default_value
 {"test1", "test1Integer", "rw", int.class, 1},
 {"test1", "test1Long", "rw", long.class, 10000000L},
 {"test1", "test1Float", "rw", float.class, 0.897546F},
 {"test1", "test1Boolean", "rw", boolean.class, true},
 {"test1", "test1String", "rw", String.class, "test1StringValue"},
 {"test1", "test1StringSet", "rw", String[].class, new String[]{"http://Val0", "http://Val1", "http://Val2"}},
 };
 return preferences;
 }
}

The APK must declare a provider in its manifest.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="tech.qeedji.test1">

 <application
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:theme="@style/AppTheme">
 <activity android:name=".MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <provider android:name="tech.qeedji.test1.MySharedPreferenceAPI"
 android:authorities="tech.qeedji.test1"
 android:multiprocess="false"
 android:exported="true"
 android:singleUser="false"
 android:initOrder="100"
 android:visibleToInstantApps="true"/>
 </application>
</manifest>

Extract example from a configura�on script:

Android.Preferences("SharedPreferences", "tech.qeedji.test1", "test1").setInt("test1Integer", 8);
Android.Preferences("SharedPreferences", "tech.qeedji.test1", "test1").setLong("test1Long", 99999999);
Android.Preferences("SharedPreferences", "tech.qeedji.test1", "test1").setFloat("test1Float", 0.123456);
Android.Preferences("SharedPreferences", "tech.qeedji.test1", "test1").setBoolean("test1Boolean", false);
Android.Preferences("SharedPreferences", "tech.qeedji.test1", "test1").setString("test1String", "Newtest1StringValue");
Android.Preferences("SharedPreferences", "tech.qeedji.test1", "test1").setStringArray("test1StringSet", ["http://NewVal0", "http://NewVal1", "http://NewVal2"]);

https://github.com/Qeedji/aosp-TAB10s-sdk/blob/master/libs/tech-qeedji-system-lib-classes.jar
https://github.com/Qeedji/aosp-TAB10s-sdk/blob/master/libs/tech-qeedji-system-lib-classes.jar

8

Examples
The Qeedji github for TAB10s is hos�ng APK examples using the AOSP SDK for TAB10s:

proximity_sensor APK: displays a message Hello Qeedji when a person is detected, or displays a message Nobody detected when no one is detected.

This APK uses the SensorManager API with a default sensor of type Sensor.TYPE_PROXIMITY.

rfid_tag_reader APK: detects NFC tags or RFID 125KHz tags and print their values (type and ID).

This APK uses the NfcAdapter API for NFC tags and the KeyEvent.Callback for RFID 125KHz tags.
The NFC permission and the android.hardware.nfc feature API are required.
This APK requires user system access rights to be executed.

surround_light APK: allows to set the surround light color and state with steady/green, steady/orange, steady/red, off.

This APK uses the SurroundLight class described in the specific API.
This APK requires user system access rights to be executed.

autorestart APK: is launched automa�cally a�er a device reboot. It is relaunched also automa�cally a�er it crashes.

This APK uses the BroadcastReceiver and Thread.UncaughtExcep�onHandler APIs.
The RECEIVE_BOOT_COMPLETED permission is required.

https://github.com/Qeedji/aosp-TAB10s-sdk/tree/master/examples
https://github.com/Qeedji/aosp-TAB10s-SDK/tree/master/examples/proximity_sensor
https://developer.android.com/reference/android/hardware/SensorManager
https://developer.android.com/reference/android/hardware/Sensor#TYPE_PROXIMITY
https://github.com/Qeedji/aosp-TAB10s-SDK/tree/master/examples/rfid_tag_reader
https://developer.android.com/reference/android/nfc/NfcAdapter
https://developer.android.com/reference/android/view/KeyEvent.Callback
https://developer.android.com/reference/android/Manifest.permission#NFC
https://developer.android.com/guide/topics/manifest/uses-feature-element#nfc-hw-features
https://github.com/Qeedji/aosp-TAB10s-SDK/tree/master/examples/surround_light
https://github.com/Qeedji/aosp-TAB10s-SDK/tree/master/examples/autorestart
https://developer.android.com/reference/android/content/BroadcastReceiver
https://developer.android.com/reference/java/lang/Thread.UncaughtExceptionHandler
https://developer.android.com/reference/android/Manifest.permission#RECEIVE_BOOT_COMPLETED
https://github.com/Qeedji/aosp-TAB10s-SDK/tree/master/examples/device_power_standby

9

Device Power Standby: allows to go into (or exit from) Android sleep mode (display off, touch screen off).

This APK uses the PowerManager API.
The DEVICE_POWER and WAKE_LOCK permissions are required.
This APK requires user system access rights to be executed.

System Bu�on: print a no�fica�on message when a short press on the system bu�on, lower than two seconds, is detected.

This APK uses the BroadcastReceiver API.
This APK requires user system access rights to be executed.

URL Launcher: load an URL.

This APK uses the WebView API and the tech-qeedji-host-webview.aar Android library for Qeedji.
The RECEIVE_BOOT_COMPLETED and INTERNET permissions are required.
This APK has user system access rights.
A specific 000000000000.js configura�on script allows to configure the URL launcher APK (set URL, set login creden�als, ...).
Several websites examples are available on Qeedji github for TAB10s.

◬ Designing an APK, requiring system user access rights to be executed, requires for ISV to either sign its APK with a Java Keystore having a certificate signed by
 Qeedji or set its APK as system App . For further informa�on, refer respec�vely to the chapter § APK Signing or to the chapter § Set App as System App.

https://github.com/Qeedji/aosp-TAB10s-SDK/tree/master/examples/device_power_standby
https://developer.android.com/reference/android/os/PowerManager
https://developer.android.com/reference/android/Manifest.permission#WAKE_LOCK
https://github.com/Qeedji/aosp-TAB10s-sdk/tree/master/examples/system_button
https://developer.android.com/reference/android/content/BroadcastReceiver
https://github.com/Qeedji/aosp-TAB10s-sdk/tree/master/examples/url_launcher
https://developer.android.com/reference/android/webkit/WebView
https://github.com/Qeedji/aosp-TAB10s-sdk/blob/master/examples/url_launcher/app/libs/tech-qeedji-host-webview.aar
https://developer.android.com/reference/android/Manifest.permission#RECEIVE_BOOT_COMPLETED
https://developer.android.com/reference/android/Manifest.permission#INTERNET
https://github.com/Qeedji/aosp-TAB10s-sdk/blob/master/examples/url_launcher/config/000000000000.js
https://github.com/Qeedji/aosp-TAB10s-sdk/tree/master/examples/url_launcher/websites
file:///C:/Users/frede/AppData/Local/Temp/calibre_87zz4sgf/3prmt9y2_pdf_out/apk-signing.md

10

APK debug
The AQS Opera�ng system for the TAB10s device is compa�ble with Android Studio and Android Debug Bridge (ADB)² so�ware development suite.

²ADB is included in the Android SDK Pla�orm-Tools package.

You can debug with ADB using:

 USB ,
 WLAN ,
 LAN ³.

³ Debugging with the LAN interface of the your computer requires to have an USB hub with an Ethernet to USB bridge.

USB debug

Connect a cable between the USB-C connector of the TAB10s device and the USB 2.0 connector of your computer. Then wait for the TAB10s device is boo�ng up.
Unlike an Android Mobile tablet, the TAB10s device has no ba�ery and is completely powered by the USB-C connector. Before supply the TAB10s device with the USB
connector of your computer, check with your computer's manufacturer that its USB connectors are protected against over-intensity to warranty that its USB output will be
never damaged. Check also that the USB output is able to deliver a sufficient power else the TAB10s device may not stop reboo�ng.

WLAN debug

Connect the power cable of your USB-C wall plug to the USB-C connector of the TAB10s device. Then wait for the TAB10s device is boo�ng up. Then go in the Settings
applica�on and configure the WLAN.

LAN debug

Prerequisite: have a suitable Ethernet to USB (USB-C or POGO type connector) bridge which is connected to the LAN network.
Connect the Ethernet to USB bridge to on the TAB10s device (USB-C or POGO type connector).

Debug mode se�ng

Launch the Settings applica�on:

press on the About tablet menu,
press 5 �mes on the bu�on Build number (9.yy.zz release keys) . The message You are now a developer should appear showing that the debug mode is ac�vated,
go in the Advanced item of the System menu. The Developer options menu is now available,
ac�vate Network debugging or USB debugging according to your needs.

☛To ac�vate the debug mode on the TAB10s device, download the configura�on script available on the Qeedji github, and uncomment the line enableAllowDeveloperOptions(); .
To inac�vate the debug mode, comment the previous line, and uncomment the line disableAllowDeveloperOptions(); . Then to inject this .js configura�on script, refer to the
chapter § Installa�on by USB or to the chapter § Installa�on by WebDAV.

Network access permissions

To access the network, an APK needs to declare INTERNET and ACCESS_NETWORK_STATE permissions in its manifest:

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

https://developer.android.com/studio
https://developer.android.com/studio/command-line/adb
https://github.com/Qeedji/aosp-TAB10s-sdk/blob/master/config/000000000000.js
file:///C:/Users/frede/AppData/Local/Temp/calibre_87zz4sgf/3prmt9y2_pdf_out/qeedji-system-service-usb-installation.md
https://developer.android.com/reference/android/Manifest.permission#INTERNET
https://developer.android.com/reference/android/Manifest.permission#ACCESS_NETWORK_STATE

11

1.3 System App
A System App is an Android no�on telling that the APK requires system user execu�on rights to be executed.

An APK developped by an ISV becomes System App as soon as this APK uses some specific AOSP features or some specific AQS features requiring system user execu�on
rights.

☛ If the ISV designs its APKs to not use these specific AQS features requiring system user execu�on rights, no specific signing procedure with Qeedji CSR is required.

In this AQS version, this is the exhaus�ve list of AQS features requiring automa�cally system user execu�on rights:

Surround Light: feature allowing to command the surround light ,
Rfid 125KHz: feature allowing to get a badge ID when a badging is done with a RFID 125KHz badge,
Dip Switch: feature allowing to get the current configura�on for the micro and camera Dip switch ,
Device Mode: feature allowing to set dynamically the device mode of the AQS into kiosk mode or into native mode,
System Bu�on: feature allowing to be no�fied when the system bu�on is pushed (short push, long push),
Pptx: feature allowing an app using a Android System WebView to play MS-PowerPoint medias (.ppsx and .pptx),
Pd�s: feature allowing an app using a Android System WebView to play PDF medias (.pdf),
setAppAsSystemApp: feature gran�ng system user execu�on rights for a list of app.

In this AQS version, some na�ve AOSP features require automa�cally system user execu�on rights. The list of features is not exhaus�ve.

Device Power Standby: feature allowing to put the connected display device into standby or to wake up the connected display device,
Reboot: feature allowing to launch a device reboot,

This is the exhaus�ve AOSP features that do not require system user execu�on rights.

NFC: feature allowing to be no�fy and to get the badge ID when a badging is done with a NFC badge,
Proximity Sensor: feature allowing to be no�fied of the presence detection distance,
SharedPreferenceAPI: feature allowing to make shared some preferences,
Autorestart: feature allowing to autostart the APK a�er the device has reboot.

To be able to execute APK requiring system user execu�on rights:

the ISV must first create a public certificate key (.pk12) with a CSR ,
then the ISV has two ways to finalize the procedure:

either signing its APK by using its System Java Keystore (.jks) with its public certificate key (.pk12),
or declare a list of APK to be granted to System App , stored in a .xml file signed with its public certificate key (.pk12) with the AQS-setAppAsSystemApp PowerShell
tool.

Procedure to create a public cer�ficate key (.pk12) with a CSR
☛ In the example, it is considered that the company name is Contoso. ISD means IT Service Department. In the procedure, it is required to use the generic email of the Chief
Informa�on Security Officer (CISO) of the company, for example ciso@contoso.com .

◬ In the following procedure, the following example values have been used.

Label type Label value examples

C US

ST California

L San-Francisco

O Contoso

OU Contoso_ISD

CN CISO

E ciso@contoso.com

Passphrase 1234

Java_keystore basename file contoso_qeedji_java_keystore

Java_keystore password 567890

Friendly_name / name / key_alias qeedji_aosp_key

1 . GENERATE YOUR PRIVATE KEY

◬ You are responsible for your private key storing which has to be never communicated to a third party.
Generate your private key with a length of 2048 bits with the RSA 2048 Bits key type.
For example:
openssl genrsa -f4 2048 > contoso_private_key_for_android.key

12

2 . GENERATE YOUR OWN CSR (CERTIFICATE SIGNING REQUEST)

Generate your own .csr cer�ficate signing request thanks to your private key and some applicant iden�fica�on used to digitally sign the request. Thanks to match the
filename pa�ern by replacing contoso by your own organiza�on name.
For example:
openssl req -new -key contoso_private_key_for_android.key -subj '/C=US/ST=California/L=San-
Francisco/O=Contoso/OU=Contoso_ISD/CN=CISO/emailAddress=ciso@contoso.com' > contoso-for_qeedji_aosp.csr

3 . SEND YOUR CSR TO QEEDJI

Once generated, send a email to the csr@qeedji.tech with your CSR (contoso-for_qeedji_aosp.csr file for example) in a�achment.

4 . WAIT FOR THE QEEDJI ANSWER

 Qeedji should then return an answer within 7 days.
◬ Qeedji will send its answer to the email defined into the CSR file (ciso@contoso.com for example), which may be not the same email used to send the CSR to Qeedji.
 Qeedji sends 2 files: the signed cer�ficate (extension .crt) and the CA file (extension .pem).
For example:

 contoso-qeedji_aosp-certificate-001A.crt ,
 contoso-qeedji_aosp-certificate_authority-001A.pem

5 . GENERATE YOUR PUBLIC CERTIFICATE KEY

You have first to generate your public cer�ficate key. For example:
openssl pkcs12 -export -in contoso-qeedji_aosp-cer�ficate-001A.crt -inkey contoso_private_key_for_android.key -out
contoso_cer�ficate_and_key_for_qeedji_aosp.pk12 -password pass:1234 -name qeedji_aosp_key -chain -CAfile contoso-qeedji_aosp-cer�ficate_authority-001A.pem

◬ In case the security or commercial condi�ons are not fully filled, Qeedji keeps the rights to revocate a ISV cer�ficate.

Now your public cer�ficate key is generated. You can go to the next signing step.

13

1.3.1 APK Signing
With this signing procedure, the system Java Keystore (.jks) must be generated by the ISV with its public cer�ficate key (.pk12).

Prerequisite: the steps to generate a public certificate key (.pk12) have been done once by the ISV .

6 . GENERATE THE JAVA KEYSTORE

Generate then a Java Keystore from your public cer�ficate key with the keytool ¹ toolbox.
The Java Keystore system is now usable in Android Studio .
For example:
keytool -importkeystore -deststorepass 567890 -destkeystore contoso_qeedji_java_keystore.jks -srckeystore contoso_cer�ficate_and_key_for_qeedji_aosp.pk12 -
srcstoretype PKCS12 -srcstorepass 1234

¹ Keytool is a toolbox to handle cer�ficates for Java products. It is provided by default in the JDK since version 1.1.

☛ The ISV must use its own Java Keystore for all its APK requiring system user execu�on rights and the same cer�ficate for all the ISV TAB10s devices. When signing
is required for your APK , the ISV must follow, at least once per APK , this procedure to create its system Java Keystore.

7 . MODIFY THE MANIFEST

Modify the APK manifest by adding this string: android:sharedUserId="android.uid.system"
Sample manifest (AndroidManifest.xml file):

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="tech.qeedji.reboot"
 android:sharedUserId="android.uid.system">
 <uses-permission android:name="android.permission.REBOOT" />
 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/AppTheme">
 <activity android:name=".MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

8 . SIGN THE APPLICATION WITH YOUR SYSTEM JAVA KEYSTORE

When crea�ng the APK, sign the APK with your own System Java Keystore (.jks).

With the previous example, you would have to use the following parameters values:

Key store password = 567890
Key password = 1234

The signing procedure is over. Your APK requiring system user execu�on rights can now run on AQS devices.

14

1.3.2 Set App as System App
This procedure allows to declare a list of APK to be granted as System App , stored in a .xml file signed with the ISV public certificate key (.pk12) with the AQS-
setAppAsSystemApp PowerShell tool.

☛ With this procedure, there is no need to use your System Java Keystore .

Prerequisite: the steps to generate a public certificate key (.pk12) have been done once by the ISV .

6 . GET YOUR APK APPLICATION ID

This is an example to get the applicationId of APK generated with the Gradle plugin for Android Studio: h�ps://github.com/Qeedji/aosp-TAB10s-
sdk/blob/master/examples/surround_light/app/build.gradle.

android {
 compileSdkVersion 29
 buildToolsVersion "29.0.3"
 defaultConfig {
 applicationId "tech.qeedji.tablet.surround_light"
 minSdkVersion 28
 targetSdkVersion 29
 versionCode 2
 versionName "1.10.12"
 testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
 }
 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
 }
 }
}

This is an example to get the applicationId of APK delivered on the Google Play store. For example, for the NFC tools applica�on, the URL is
h�ps://play.google.com/store/apps/details?id=com.wakdev.wdnfc. The applica�onId is the suffix of the URL behind id= (in the example com.wakdev.wdnfc .

If you are not the developer of the APK , if the APK is not available on the Google Play store, it may be required to request to the APK developer to provide the
 applicationId of the APK .

7 . CONFIGURE THE POWERSHELL SCRIPT BY ADDING YOUR APK APPLICATION ID

Download the AQS-setAppAsSystemApp~001B.zip archive from the Qeedji Website.
Extract the archive in your favorite folder (for example C:\Powershell-Script\AQS-setAppAsSystemApp\) and open the folder. The folder contains two files:

 app-list.xml ,
 AQS-setAppAsSystemApp.ps1 .

Edit the app-list.xml file and enter the respec�ve applicationId of your different APKs between the <AppId> and </AppId> tags. The example is given for three fake
 applicationId . Remove the unconsistent lines.

<?xml version="1.0"?>
<AppList>
 <AppId>tech.qeedji.app1</AppId>
 <AppId>tech.qeedji.app2</AppId>
 <AppId>tech.qeedji.app3</AppId>
</AppList>

8 . COPY THE PUBLIC CERTIFICATION KEY (PK12 FILE) INTO THE POWERSHELL FOLDER

Copy and paste your public cer�ficate key (.pk12) (in the example: contoso_cer�ficate_and_key_for_qeedji_aosp.pk12) in the PowerShell folder (in the example:
 C:\Powershell-Script\AQS-setAppAsSystemApp\)

9 . EXECUTE THE POWERSHELL SCRIPT

Open a PowerShell command window and go into your PowerShell folder (in the example: C:\Powershell-Script\AQS-setAppAsSystemApp\). Execute the PowerShell
script with the name of your own public cer�ficate key (.pk12`) file, and the name of the xml files, as arguments. For example, with
contoso_cer�ficate_and_key_for_qeedji_aosp.pk12:

.\AQS-setAppAsSystemApp.ps1 -pk12File .\contoso_cer�ficate_and_key_for_qeedji_aosp.pk12 -xmlFile .\app-list.xml -outputFile .\app-list-signed.xml

When asked, enter the password for your public cer�ficate key (.pk12).

10 . EDIT THE FILE GENERATED WITH THE POWERSHELL SCRIPT AND COPY THE CONTENT

Edit the generated app-list-signed.xml file and copy the en�re file content.

11 . CONFIGURE A CONFIGURATION SCRIPT FOR THE DEVICE

Open the configura�on script example on the Qeedji Website. Uncomment the 2 lines below and replace the value <?xml version="1.0"?><AppList>... of the
 xmlSignedFileData variable by the en�re file content of the generated app-list-signed.xml file.

let xmlSignedFileData = `<?xml version="1.0"?><AppList><AppId>...`;
setAppAsSystemApp(xmlSignedFileData);

☛ The configura�on script must be V1.10.17 (or above).

12 . INJECT THE CONFIGURATION SCRIPT IN THE DEVICE

Copy the configura�on script in the .configuration WebDAV directory of the device or copy the configura�on script on a USB storage device and inject it on a USB hub
connected to the device. A�er the automa�c device reboot, your APK requiring system user execu�on rights, whose applicationId is declared in the app-list-
signed.xml file, should be executed properly on the device.

◬ A�er configura�on script installa�on, if an APK concerned by the list was already installed on the device, it will lose all its user parameters. This is also the case when an APK is
removed from the list. Qeedji advises you to install the configura�on script first, and a�er, install the APK which, will have consequently the system user execu�on rights granted.

☛ To return to a configura�on which do not grant system user execu�on rights for APK anymore, the app-list-signed.xml must be generated with an empty app-list-
signed.xml content like shown below.

<?xml version="1.0"?>
<AppList>
</AppList>

https://github.com/Qeedji/aosp-TAB10s-sdk/blob/master/examples/surround_light/app/build.gradle
https://play.google.com/store/apps/details?id=com.wakdev.wdnfc
http://www.qeedji.tech/en/support/index.php?TAB10s/Application_notes_and_related_tools/AQS-setAppAsSystemApp_PowerShell_script
http://www.innes.pro/en/support/index.php?TAB10s/Application_notes_and_related_tools/Configuration_by_script

15

1.4 Qeedji System service
The TAB10s device embeds the Qeedji System service. The Qeedji System service is defined as a privileged applica�on of the AQS device.

This service allows to:

install one or more APK on the TAB10s device:

by uploading an APK with the device Web user interface,
by pushing one APK on the .apps/ directory of the WebDAV server with a WebDAV client,
by inser�ng an USB storage device containing .apk files,

update the AQS opera�on system of the TAB10s device:

by uploading a .fqs firmware with the device Web user interface,
by pushing a .fqs firmware on the .software/ directory of the WebDAV server with a WebDAV client,
by inser�ng an USB storage device containing an .fqs file,

configure the TAB10s device thanks to a suitable .js configura�on script:

by pushing a suitable .js configura�on script on the .configuration/ directory of the WebDAV server with a WebDAV client,
by inser�ng an USB storage device containing an .fqs file,
by ge�ng .js configura�on script hosted on a TFTP server (DHCP , code 66),

push your data on the .data/ directory of the WebDAV server with a WebDAV client.

This service allows also to configure the AQS device mode as soon as the device has started.

16

1.4.1 Installa�on by USB
Refer to the TAB10s user manual to install with an USB storage device:

a new APK (.apk),
a new AQS firmware (.fqs),
a new configura�on script (.js).

http://www.innes.pro/en/support/index.php?TAB10s/AQS_firmware_and_documentations

17

1.4.2 Installa�on by WebDAV
The available WebDAV directories are:

 .apps ,
 .software ,
 .configuration ,
 .data .

Refer to the TAB10s user manual to install with a WebDAV client:

a new APK (.apk),
a new AQS firmware (.fqs),
a new configura�on script (.js).

Data
To push user data with a WebDAV client, drop them in the .data/ directory of the WebDAV server.

☛ On the file system of the device, the .data/ directory is /storage/emulated/0/Android/data/tech.qeedji.system/files/.data . This directory is available by apps with
READ_EXTERNAL_STORAGE and WRITE_EXTERNAL_STORAGE permissions.

http://www.innes.pro/en/support/index.php?TAB10s/AQS_firmware_and_documentations
https://developer.android.com/reference/android/Manifest.permission#READ_EXTERNAL_STORAGE
https://developer.android.com/reference/android/Manifest.permission#WRITE_EXTERNAL_STORAGE

18

1.4.3 AOSP device mode
The Qeedji System service allows to configure the AOSP device mode dynamically. It is handled thanks to the persist.sys.device_mode system property, used by the SystemUI
and Launcher3 AOSP services.

Two values are possible for the persist.sys.device_mode system property:

 native (default value): thanks to AOSP menu, the user can, whenever he wants, stops the APK, returns to the AOSP home screen, launches another APK, access to AOSP
func�ons like, for example, the Back bu�on or the Se�ngs applica�on.
 kiosk : all the AOSP user interfaces are unavailable. However the AOSP virtual keyboard remains available.

☛ Note for developers: if the persist.sys.device_mode system property value is invalid or if it does not exist, the default AOSP device mode is native . If the
 persist.sys.device_mode system property value is kiosk , the SystemUI service inhibits the system bars and the Launcher3 service hides the AllApps view and the
Op�onsPopupView dialog box.

The persist.sys.device_mode system property can be changed by using the configura�on script:

 native :

setDeviceModeNative(); /* default mode */
//setDeviceModeKiosk();

 kiosk :

//setDeviceModeNative(); /* default mode */
setDeviceModeKiosk();

For further informa�on, refer to the TAB10s user manual.

¹ To be launched automa�cally in kiosk mode, the applica�on requires a subscrip�on to the event ACTION_BOOT_COMPLETED. In this case, it is recommended to have only one APK
with this subscrip�on. For further informa�on, refer to h�ps://developer.android.com/reference/android/content/Intent#ACTION_BOOT_COMPLETED. In case no APK has
subscribed to the event ACTION_BOOT_COMPLETED, the Qeedji wallpaper ² is displayed.

² A next release will allow to load a custom wallpaper.

https://www.qeedji.tech/en/support/index.php?TAB10s/AQS_firmware_and_documentations
https://developer.android.com/reference/android/content/Intent#ACTION_BOOT_COMPLETED

19

1.5 Qeedji preferences
AOSP system proper�es added by Qeedji

Name Type R/W Default value Values Descrip�on

 persist.sys.delivery-software-version String RO 9.10.10_beta11
 <x>.<y>.<z>
<software-
extraversion>

Save the version of the last AQS
firmware upgrade.

 persist.sys.device_mode String RW native native ,
 kiosk

Handle the AOSP device mode.

 persist.sys.rfid125khz.enable Boolean RW true true , false Handle the RFID 125KHz.

 persist.sys.rfid125khz.keyboard_wedge.key_interval String RW 0 0 to 1000 Define the key interval of RFID
125KHz keyboard edge.

 persist.sys.rfid125khz.keyboard_wedge.key_press_duration String RW 0 0 to 1000 Define the key press dura�on of
RFID 125KHz keyboard edge.

 persist.sys.proximity_sensor.type String RW ir ir Define the proximity sensor.

 persist.sys.proximity_sensor.max_distance String RW 200

 50 100 150
 200 250
 300 350
 400 450
 500 550
 600

Define the max distance in cm
of the proximity sensor.

 persist.sys.hostname String RW TAB10s For example
 TAB10s-00001

Define the hostname. If the
hostname is empty, the network
hostname corresponds to the
canonized device name. Else,
the network hostname
corresponds to the canonized
hostname.

 persist.sys.webserver.http.port Integer RW 80 1 to 65535 Define the port of the h�p
server.

 persist.sys.webserver.webdav.credential String RW default Define the creden�al ID for the
 WebDAV profile.

 persist.sys.webserver.webuiappli.credential String RW default Define the creden�al ID for the
webuiappli profile.

 persist.sys.webserver.webuiadmin.credential String RW default Define the creden�al ID for the
webuiadmin profile.

 persist.sys.webserver.webservice.credential String RW default Define the creden�al ID for the
webservice profile.

 persist.sys.webserver.credential.default.type String RW native native Define the default creden�al
type.

 persist.sys.webserver.credential.default.username String RW admin admin Define the default creden�al
username.

 persist.sys.webserver.credential.default.password String RW admin admin Define the default creden�al
password.

 persist.sys.webserver.credential.<credential_ID>.type String RW native Define the creden�al type.

 persist.sys.webserver.credential.
<credential_ID>.username String RW Define the creden�al username

for the na�ve type.

 persist.sys.webserver.credential.
<credential_ID>.password String RW Define the creden�al password

for the na�ve type.

 persist.sys.device_info.field1 String RW Custom device field1 variable.

 persist.sys.device_info.field2 String RW Custom device field2 variable.

 persist.sys.device_info.field3 String RW Custom device field3 variable.

 persist.sys.device_info.field4 String RW Custom device field4 variable.

 persist.sys.device_info.field5 String RW Custom device field5 variable.

20

Se�ngs preferences added by Qeedji

Name Namespace Type R/W Default
value Values Descrip�on

 developer_options_allowed secure Integer RW 0 0 , 1 When the preference value is 1 , the debug mode is
allowed.

 adb_tcp_enabled global Integer RW 0 0 , 1 When the preference value is 1 , adb over network is
ac�vated.

 adb_tcp_port global Integer RW 5555 0 to
 64738

Allows to define the TCP port for adb.

 ptp_allowed global Integer RW 0 0 , 1 Allows the PTP (Picture Transfer Protocol).

Shared preferences for Qeedji System service

Name Type R/W Default
value Values Descrip�on

 externalstorage.copy.apk.enabled Boolean RW true true ,
 false

When the preference value is true ,
the APK installa�on from the root of the USB storage is
authorized.

Shared preferences for the URL Launcher APK
The shared preferences for URL Launcher APK is stored in the tech.qeedji.url_launcher.prefs.xml file. In case login creden�als are required to connect to the URL, an addi�onal
shared preferences tech.qeedji.url_launcher.credential.<credential_label>.prefs.xml file is required.

◬ The shared preferences files for URL launcher APK must be created and updated with the specific 000000000000.js configura�on script.

 tech.qeedji.url_launcher.prefs.xml Type R/W Default
value Values Descrip�on

 start_after_boot_completed Boolean RW true true , false
When the preference value is true ,
The URL launcher APK is automa�cally
started a�er the AOSP has started.

 autorefresh_url_enabled Boolean RW false true , false
When the preference value is true ,
The URL launcher APK relaunches
periodically the URL.

 autorefresh_url_interval Long RW 60 1 to 86400 Defines the reload period in seconds for the
URL launcher APK .

 url String RW for example:
 https://www.demo.contoso.com/

Defines the URL to launch.

 credential String RW

for example:
If <credential_label> worths
 native ,
the value is native

Defines the subpart of the expected filename
for the addi�onal file required
when login creden�als are needed
to connect to the URL.

☛ The <credential_label> subpart of the filename is defined in the tech.qeedji.url_launcher.prefs.xml file above.

 tech.qeedji.url_launcher.credential.<credential_label>.prefs Type R/W Default value Values Descrip�on

 type String RW native native ¹ Define the creden�al type.

 username String RW Define the URL creden�al username.

 password String WO Define the URL creden�al password.

¹ In this version, only the native value is possible.

https://github.com/Qeedji/aosp-TAB10s-sdk/blob/master/examples/url_launcher/config/000000000000.js

21

1.6 FAQ
Do you have special adapters ?
Several PoE adapters can be ordered to Qeedji.

Commercial reference Device model Informa�on

 EXC.ETH.POGO NAPOE109kt Ethernet PoE Krone to TAB10s built-in adapter

 EXC.ETH.USBC NAPOE109ku Ethernet PoE Krone to USB-C built-in adapter

Is it possible to change the brightness of the surround light?

No, the surround light can only be:

Green,
Red,
Orange,
Off

How to deploy the APK in produc�on mode without an USB hub?
To deploy your APK in produc�on for the first �me, there is several ways:

either drop your APK in the /.apps/ directory of the WebDAV server,
or, if the TAB10s device is installed on a EXC.ETH.POGO adapter:

put your .apk files at the root directory of the USB-C storage device,
plug the USB-C storage device on the free USB-C connector of the TAB10s device.

or, if the debug mode is enabled:
use the Android tool named adb (adb install -g <apk_file>).

Once your APK is installed:

you can use a method described above,
your APK can install .apk files with the API PackageInstaller.

How to deploy the .apk files in produc�on mode with an USB hub?

plug on the TAB10s device an USB hub suppor�ng an USB-C connector for power delivery,
put your .apk files at the root directory of the USB storage device,
plug the USB storage device on the USB hub.

How to launch an app in kiosk device mode?

Explain in the paragraph AOSP device mode. Qeedji implements an APK example named url_launcher. Look at the two files below:

AndroidManifest.xml,
StartAc�vityAtBootReceiver.java.

Is it possible to download a configura�on script and .apk files from a remote server?
No, but you can develop your own APK .

https://developer.android.com/reference/android/content/pm/PackageInstaller
file:///C:/Users/frede/AppData/Local/Temp/calibre_87zz4sgf/3prmt9y2_pdf_out/qeedji-system-service-device-mode.md#L24
https://github.com/Qeedji/aosp-TAB10s-sdk/tree/master/examples/url_launcher
https://github.com/Qeedji/aosp-TAB10s-sdk/blob/master/examples/url_launcher/app/src/main/AndroidManifest.xml
https://github.com/Qeedji/aosp-TAB10s-sdk/blob/master/examples/url_launcher/app/src/main/java/tech/qeedji/url_launcher/StartActivityAtBootReceiver.java

22

2.1 Contacts
For further informa�on, please contact us by e-mail:

Technical support: support@qeedji.tech,
Sales department: sales@qeedji.tech.

Refer to the Qeedji Website for FAQ, applica�on notes, and so�ware downloads:

h�ps://www.qeedji.tech/

Qeedji FRANCE
INNES SA
5A rue Pierre Joseph Colin
35700 RENNES

Tel: +33 (0)2 23 20 01 62
Fax: +33 (0)2 23 20 22 59

mailto:support@qeedji.tech
mailto:sales@qeedji.tech
https://www.qeedji.tech/en

	Developer manual 002ATable of content
	Introduction
	APK Development
	System App
	APK Signing
	Set App as System App
	Qeedji System service
	Installation by USB
	Installation by WebDAV
	AOSP device mode
	Qeedji preferences
	FAQ
	Contacts

