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Abstract
Dynamics of pantographic sheets presents exotic aspects that de-

serve investigation. In this paper, we focus the attention on some pos-
sible modalities of non-linear wave propagation in planar pantographic
sheets. We use a smaller length-scale lattice model, in which the beams
and pivots constituting the sheet are described by constrained Euler–
Bernoulli beams together with a meso-reduced-order model which be-
longs to the class of second-gradient elastic materials and with a macro
multi-field 1D continuum model, whose displacement is augmented by
a specific class of cross-section deformations. Such a three-step reduc-
tion process is developed to allow for fast computational analysis of
symmetric wave propagation patterns with respect to the longitudinal
axis of the sheet. It is conceived by using suitable kinematical hy-
potheses for the 1D continuum descriptors referring to pantographic
sheet sections which are inspired by the numerical evidence obtained
performing simulations based on the smaller scale lattice model. The
deformation energy of the pantographic sheet, successfully postulated
in [“Large deformations of planar extensible beams and pantographic
lattices: heuristic homogenization, experimental and numerical exam-
ples of equilibrium”, Proc. R. Soc. A 472: 20150790, 2016] for a
meso-reduced-order second gradient model, is pivotal in the whole
model reduction process: It allows for the determination of general-
ized 1D deformation energy in terms of the mechanical properties of
the micro-lattice model. Performed numerical simulations prove that
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several waveforms propagate in planar pantographic sheets with low
dispersion and motivate further investigations in the subject.
Keywords: nonlinear wave propagation, metamaterials, second gra-
dient materials, reduced order model

1 Introduction

In recent literature a great attention is being dedicated to the study of the
specific class of mechanical metamaterials [11, 17, 21, 52, 75, 78, 88, 89] called
“pantographic materials”.

A pantographic sheet is a structure composed of two layers, each consist-
ing of parallel fibers. These layers lie on top of each other and are oriented
such that the fibers intersect, in the top view, typically with an angle of
90 degrees (see, for some different geometries [39, 86]). At every intersec-
tion, the fibers of the upper and lower layers are connected either by perfect
cylindrical hinges or deformable pivots see Figure 1(a) and (b), respectively.

The pantographic sheet is a material that consists of three different
length scales. There is the length scale of the length of the fibers, the scale of
the distance between the fibers and the lowest scale, which is determined by
the thickness of the fibers and pivots. From a geometrical and kinetical point
of view, they bear a remarkable resemblance to the woven fabrics. Indeed,
many aspects of the modeling developed for these last can also be adapted
for pantographic sheets [79,80,92]. Its micro-architecture was conceived, at
first, (see [3]) in order to find the synthesis of a 1D continuum generalizing
Euler–Bernoulli beam model, whose deformation energy depends also on
the gradient of axial elongation. Subsequently, by introducing a multi-scale
micro-architecture, pantographic micro-structure was exploited to synthe-
size 1D continua whose deformation energy depends on the third gradient
of transverse displacement (see [69]) or to synthesize plates whose deforma-
tion energy depends on the second-gradient of displacements parallel to the
plate (see [5]). A rather complete list of the results obtained up to now
in the study of pantographic materials can be found in [26, 27, 47], where
all their understood exotic mechanical properties are analyzed and a set of
interesting open problems is displayed.

In fact, the mechanical behavior of pantographic sheets presents several
really exotic aspects and seems to deserve interest by it-self: pantographic
materials are extremely damage and failure resistant (see, e.g., [25]) and
could be of use in applications where material resilience must be coupled
with low weight. Moreover, due to the pantographic substructure, some
mode conversions from longitudinal to transverse waves and vice versa may
arise. Specifically, when the boundary excitation is purely longitudinal, it is
expected that both longitudinal and transverse waves will be generated in
the body. This aspect has some similarities with microstructured media of
granular motifs (see, e.g., [51, 54,55]).
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However, more generally, it has to be remarked that the pantographic
architecture may be considered as a kind of “fundamental brick” to be used
to synthesize a rather large class of metamaterials, (see, e.g., [6–8, 87]) and
therefore they play a relevant role in the framework of the more general
problem of metamaterials synthesis.

In the present paper, we continue the analysis of wave propagation in
planar pantographic sheets which was started in [23] and, by using appropri-
ate model reduction techniques and suitably designed numerical integration
schemes, we find that interesting waves propagate in non-linear regimes with
a slowly changing shape over time.

In our investigations an extensive parametric analysis is necessary: there-
fore, because of the geometrical and mechanical complexity of pantographic
sheets, it is not appropriate to use too detailed models in exploring para-
metrically the non-linear wave propagation phenomena occurring in them
using numerical methods. Therefore, we completely refrained to try to study
their dynamics by using those very small length-scale models in which the
beams and pivots constituting the sheet are described as 3D Cauchy con-
tinua whose reference configuration is the union of cylinders (i.e., elastic
pivots) and prisms (i.e., elastic beams) (see Figure 1(b)). Such a model-
ing choice would imply the solution of non-linear evolutionary problems in
which several millions of degrees of freedom are involved, as a detailed mesh
is required to account for the deformation of elastic pivots: it is, in fact,
well-know that (see [38]) in pantographic sheets a large amount of defor-
mation energy is concentrated in the small volume occupied by the elastic
pivots. Moreover, in presence of perfect pivots interconnecting the arrays of
beams constituting the sheet, the friction phenomena between the surfaces
in contact (Fig. 1(a)), would involve complex coding and the use of unilat-
eral constraints integration schemes: circumstance which may render very
difficult the computations with present computing tools, as in every perfect
pivot one would have to compute Lagrange multipliers related to constraints
represented by inequalities [53,63].

Instead, in order to perform a faster computational analysis of axisym-
metric waves, we propose a generalized 1D continuum model, in which the
list of kinematical descriptors include the axial displacement together with a
specific set of fields introduced to describe cross-section deformations. The
choice of these further kinematical descriptors is made with a judicious con-
jecture guided by the results obtained using a model where pantographic
sheets are described by two arrays of Euler–Bernoulli beams interconnected
by cylindrical elastic pivots (see Figure 1(b)), as done in [32]: this last model
has a characteristic length-scale greater than the one which is involved in
the previously mentioned model based on 3D Cauchy continua. Albeit the
computational complexity of this simplified model is smaller compared with
3D continua modeling, it still requires large computing resources and a long
computing time: the parametric analysis which we intend to carry out con-
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tinues not to be feasible. However, such a beam lattice model can be used
for further guiding our model reduction process: i) in allowing for the iden-
tification of the constitutive parameters of a second-gradient 2D continuum
model (see [1, 10, 59–61, 84, 90]) and ii) in providing the numerical evidence
needed to guide the final reduction from the obtained second-gradient 2D
continuum model to a 1D generalized continuum model, in which the pan-
tographic planar sheet is modeled as a generalized beam (in the same sense
as reported, e.g., in [57,81]).

In fact, the extra kinematical descriptors which are needed to comple-
ment the generalized beam displacement field must be able to describe in a
sufficiently detailed way the transverse section deformation (see Fig. 4) in the
considered axisymmetric waves so that the identification between the kine-
matics of the 1D generalized continuum and that of the 2D second-gradient
continuum can be obtained efficiently via a kind of Galerkin–Ritz repre-
sentation i.e, the kinematical micro-macro identification which consists in
assuming the existence of continuous macro-fields whose values in designated
points allows for the determination of the corresponding micro-kinematical
fields.

Once the choice of the kinematical descriptors, on the basis of the afore-
mentioned numerical evidence for the searched 1D generalized continuum
is made, then its deformation and kinetic energy are calculated by using
Galerkin–Ritz representation and the expression for deformation energy al-
ready obtained for the 2D second-gradient continuum model (see [24]). The
obtained deformation energy for the final 1D reduced model is used, to-
gether with the least action principle, to get an algorithm for calculating
numerically its evolution given suitable initial and boundary conditions.

The just described model reduction procedure for considered metamate-
rial structure is described in detail in the following sections. More precisely,
in sect. 2, the first considered model for pantographic sheets is shortly pre-
sented: we introduce two arrays of Euler–Bernoulli beams and assume that
they are interconnected by perfect cylindrical pivots behaving as constraints.
The kinetic energy for such model is postulated simply assuming that the
mass density is uniformly distributed along the beams. Some meaningful
images taken from numerical simulations are presented, which will suggest
the kinematical assumption made in sect. 4. In sect. 3, the intermediate
length scale model is introduced and the second-gradient model for panto-
graphic sheet, first introduced in [24], is shortly recalled, by adapting it to
the present analysis. In sect. 4, the 1D continuum model is introduced by
considering a set of kinematical descriptors suitable for describing axisym-
metric non-linear waves in pantographic sheets. In sect. 5, the results of a
parametric numerical study are presented. In sect. 6, concluding remarks
are formulated to motivate the need of deeper investigations in both theoret-
ical and numerical aspects of the considered problem. An urge for designing
experimental set-ups is also raised, giving some hints on how they should be
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a) b)

Figure 1: Pantograph with (a) and without (b) perfect pivots. In the second zoom (a), a
cutaway diagram of the pivot.

designed [5, 6, 34,35].

2 The planar beam lattice model for pantographic sheets

To eliminate the lowest scale, the pantographic sheet can be modeled as
an assembly of interconnected planar nonlinear beams, which are planar
curves with elastic resistance against stretching and flexure as well as a
homogeneous mass density per unit length. In the following, we briefly
describe the model that was introduced in [32].

The pantographic sheet with length L and height B is composed of
nrow rows and ncol columns of straight beams each of which has a ref-
erence length of l =

√
2B/nrow. In total there are nb = nrowncol in-

dividual beams. All beams are modeled as Euler–Bernoulli beams dis-
cretized with B-spline shape functions as discussed in [43]. Hence, the cen-
terline position of beam b ∈ {1, . . . , nb} is approximated by the function
r(s, qb(t)) = N(s)qb(t) ∈ R2, where s denotes the referential arc-length,
qb = qb(t) ∈ R2nc is the vector consisting of the coordinates of the ncp con-
trol points and N = N(s) ∈ R2×2ncp is the matrix of B-spline basis func-
tions. These interpolation functions characterize numerical codes based on
isogeometric analysis (see, e.g., [15,16,40–42,49,56,83,91] for more details).
Using a Bubnov–Galerkin approximation procedure of the Euler–Bernoulli
beam, the internal virtual work of an individual beam can be approximated
as

δW int,h
b = δqb(t)⊤f int

b (qb) ,

f int
b = −

∫ l

0

{1
g

N ′⊤
(

r′N − M

g
[2θ′r′ + r′′

⊥]
)

+ N ′′⊤r′
⊥

M

g2

}
ds ,

(1)

where prime denotes the derivative with respect to s, g = ∥r′∥, N , M , θ
and δqb are the axial stretch, the axial force, the bending couple, the incli-
nation angle, and the virtual displacements of the control point positions,
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Figure 2: Scheme of pantograph with perfect pivots in the reference configuration.

respectively. Moreover, we have made use of the mapping

⊥ : a = (a1, a2) 7→ a⊥ = (−a2, a1). (2)

The axial force and the bending couple are related to the axial stretch and
the change in inclination angle, i.e., the curvature, θ′ = (r′

⊥)⊤r′′g−2 by the
linear constitutive laws N = ke(g − 1) and M = kbθ′, where ke and kb are
the respective axial and bending stiffnesses. Neglecting the cross-section
inertia of the beam, only the mass concentrated on the centerline is taken
into account and leads after the discretization to the inertial virtual work
functional

δW dyn,h
b = −δqb(t)⊤Mbq̈b(t) , Mb =

∫ l

0
Aρ0N⊤Nds , (3)

where Mb is the constant, symmetric and positive definite mass matrix of
the discretized beam. The generalized coordinates q = (q1, . . . , qnb) of the
entire pantographic sheet are the position coordinates of the control points
of all individual beams. We introduce the Boolean matrix Cb in order to
extract the beam coordinates from q in agreement with qb = Cbq.

The model is completed by the interaction between the individual beams
and the environment both of which are taken into account by adding perfect
bilateral constraints. The possibly time dependent constraint conditions
g(q, t) = 0 are determined from the following requirements and can be
found in detail in [32]. For a more general insight about this critical topic,
see [14].

(i) Within a single beam family, at the connection points, two adjacent
beams must agree on their position and inclination angle.

(ii) At the intersection of the two fiber families, the corresponding beams
must have the same position throughout the motion.

(iii) The chosen boundary conditions dictate the ex-coordinates of the
points at the left and right edge of the pantograph. Specifically, the
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ex-coordinates of the left boundary points are given by the excita-
tion function e(t), the ex-coordinates of the right boundary points are
blocked. Both the ey-coordinates of the left and right boundary are
allowed to move freely.

The total virtual work functional of the entire discretized pantograph is
then given by

δW tot = −δq⊤
(

Mq̈ − h(q) −
(∂g

∂q
(q, t)

)⊤
λ

)
, (4)

with the constant, symmetric, and positive definite mass matrix

M =
nb∑

b=1
C⊤

b MbCb , (5)

and the generalized forces of all nb beams

h(q) =
nb∑

b=1
C⊤

b f int
b (Cbq) . (6)

The Lagrange multipliers λ are the constraint forces that enforce the con-
straint conditions g(q, t) = 0. Since by the principle of virtual work, for each
time instant t, the virtual work must vanish, the discretized pantographic
sheet is described by the differential algebraic system of equations

Mq̈ − h(q) − W (q, t)λ = 0 ,

g(q, t) = 0 .
(7)

For the numerical time integration of (7), we used the generalized-α scheme
for constrained mechanical systems of index 3 proposed by [4].

As excitation functions, we chose

e1(t) = e0
2 tanh

[4(t − s1)
s1

]
+ e0

2 tanh(4) ,

e2(t) = e0 sin
(

nπ

2s1
t

)
[S1,[0,s1](t) − S1,[s1,2s1](t)] ,

(8)

where for the latter function the first smooth step function S1,I1 for the
interval I1 = [a, b] is required. This is defined as

S1,[a,b](t) =


0 t < a ,

−2
(

t−a
b−a

)3
+ 3

(
t−a
b−a

)2
a ≤ t ≤ b ,

1 b < t .

(9)

In Figure 3, the ey-displacements of a simulation with the parameters
from Table 1 are shown. The required simulation time was around 4 hours

7



Figure 3: Excitation with e = e2, s1 = 0.01 s and e0 = 0.025 m.

geometric properties kinetic properties
nrow 12 ke 500 N
ncol 300 kb 417 × 10−7 Nm2

B nrow × 0.01 m Aρ0 94 × 10−5 kgm−1

L ncol × 0.01 m
spatial discretization time discretization
# el./beam 1 te 8 × 10−2 s
polynomial degree 3 ∆t 2 × 10−5 s
# quadr. points/el. 5 ρ∞ 0.8

Table 1: Model and discretization parameters.

Figure 4: Close-up of longitudinal wave propagation from Figure 3. The transverse section
deformation is highlighted for j = {10, 20, 30} in blue, red and green.
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on a standard desktop computer with a numerical code implemented in
Python 3. For a reasonable parametric study a reduction by a factor of 100
or more would be desirable. There are two ways to achieve this. The first
non-mechanical solution is to implement the system dynamics in a faster
programming language like C++ or Fortran and to exploit possible paral-
lelization procedures. The second solution lies in a further scale reduction,
which requires further mechanical modeling. Aiming for a reduction that
captures the axisymmetric dynamic behavior of the pantographic sheet as
a one-dimensional generalized continuum, the main features of non-linear
waves revealed in the numerical analysis of the pantographic sheet in Fig-
ure 3 are:

(i) a concentration of the support of some propagating wave packages,
albeit their dispersion;

(ii) wave shapes that seem to have the tendency to change slowly during
propagation;

(iii) the presence of typical deformation patterns of the transverse sections
as highlighted in Figure 4.

3 Second-gradient planar continuum for pantographic sheet

The detailed model presented in the previous section could give us some
important information about the dynamic behavior of planar pantographic
sheets. However, its ability to give some rigorous qualitative results about
the possibility of observing some solitary-type waves propagating is re-
strained by a huge computational burden. A main conceptual effort in
order to construct a further reduced model seems demanded and it is the
matter of the present and the next sections. Following the procedure lead-
ing to the formal asymptotic expansion presented in [24] a second-gradient
continuum model for pantographic sheets can be obtained, whose proper-
ties have been extensively explored: such model has revealed a remarkable
predictive capacity when static deformation phenomena are considered (see
e.g. [19,22,26–29,31,76,77]). It is therefore reasonable to assume that, once
complemented with the kinetic energy associated to the motion of the in-
volved arrays of beams, the second gradient deformation energy deduced
there can give a reliable basis, via the least action principle, to describe the
motion at the chosen length-scale (some results available in the literature for
the dynamics regime on generalized continuum models could be found in,
e.g., [2, 9, 13, 30, 62, 68, 72, 74, 85]). This length-scale is greater than the dis-
tance between the closest interconnecting pivots, while the previous lattice
beam model has as characteristic length-scale the one of the beams sections
diameters.

9



We remark that a second gradient continuum model falls in the category
of materials characterized by non-local interactions, as may happen when
additional kinematical descriptors are added to the formulation with some
internal constraints [33,46,50,82]. Similar interactions are taken into account
in peridynamic models, where a long-range interaction within a horizon
radius is considered [20,36,45,58].

In the second-gradient model that we shortly describe here, the material
points in the reference configuration Ω ⊂ E3 are labelled by

X = X1E1 + X2E2 = ξ1D1 + ξ2D2 , (10)

where (X1, X2) ∈ R2 and (ξ1, ξ2) ∈ R2 are the Cartesian coordinates sharing
the same origin O and with orthonormal bases {E1, E2} and {D1, D2},
respectively (see Fig. 5).

While the Ei-basis corresponds with the direction of the edges of the
pantographic sheet where we search for some propagating non-linear waves,
the Di-basis, which is rotated with respect to Ei by π/4 in clockwise di-
rection, gives the two pantographic fiber directions of the sheet, see Fig. 5.
Accordingly, for α ∈ {1, 2}, the two associated Cartesian coordinates are
related by the relationship:

X1(ξ1, ξ2) =
√

2
2 ξ1 +

√
2

2 ξ2 , X2(ξ1, ξ2) = −
√

2
2 ξ1 +

√
2

2 ξ2 . (11)

For coinciding current and referential base vectors, i.e., ei = Ei, we
will look for waves for which the motion of the pantographic sheet is more
suitably expressed in X-coordinates as follows:

χ = χ(X1, X2, t) = χ1(X1, X2, t)E1 + χ2(X1, X2, t)E2 .

In what follows, when this will not cause misunderstandings, we will
mostly omit the explicit indication of the t dependence. Instead, to formu-
late in terms of placement field the strain energy density, it is convenient to
represent the motion also in the ξ-coordinates, as follows:

χ̃(ξ1, ξ2) = χ(X1(ξ1, ξ2), X2(ξ1, ξ2)) . (12)

Figure 5: Reference configuration of the pantographic sheet.
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Let us consider a position P ≡ (X1, X2) in the reference configuration
and the two functions

χ̃1 = χ̃(·, ξ2) = χ(X1(·, ξ2), X2(·, ξ2))
χ̃2 = χ̃(ξ1, ·) = χ(X1(ξ1, ·), X2(ξ1, ·)) (13)

where χ̃1 and χ̃2 are the shapes under χ̃ of the coordinate lines passing
through P and parallel to D1 and D2, respectively.

Figure 6: Shape of a fiber trough P along D2 in the reference and present configuration.

With reference to χ̃2 (see Fig. 6) we can define: i) the unit tangent field;
ii) the unit normal field; iii) the curvature field. The tangent to χ̃(C) at P
is

t2 = ∂χ̃2
∂ξ2

(14)

while its length is
ρ2 = ∥t2∥ =

∥∥∥∥∂χ̃2
∂ξ2

∥∥∥∥ (15)

The vector t2 can be written as (see Fig. 6)

t2 = ρ2(cos ϑ2E1 + sin ϑ2E2) (16)

where
ϑ2 = arctan (t2)2

(t2)1
(17)

The unit tangent vector reads

t̃2 = t2
∥t2∥

= cos ϑ2E1 + sin ϑ2E2 (18)
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and the normal vector is

n2 = t̃2
∂ξ2

= (− sin ϑ2E1 + cos ϑ2E2)∂ϑ2
∂ξ2

(19)

From (19) can easily be seen that the unit normal vector and the curvature
are

ñ2 = − sin ϑ2E1 + cos ϑ2E2

c2 = ∂ϑ2
∂ξ2

(20)

respectively.
Note that analogous expressions can be written for χ̃1 and both can be

summarized by the following expressions.
Using the chain rule, the derivative with respect to ξα can be written as

tα = ∂χ̃

∂ξα
= ∂χ

∂X1
(X1(·), X2(·))∂X1

∂ξα
+ ∂χ

∂X2
(X1(·), X2(·))∂X2

∂ξα

=
√

2
2

(
∂χ

∂X1
(X1(·), X2(·)) + (−1)α ∂χ

∂X2
(X1(·), X2(·))

)
.

(21)

Similarly, the derivative of tα with respect to ξα can be easily calculated as
follows:

∂tα

∂ξ2
= ∂2χ̃

∂ξ2
α

=
√

2
2

(
∂2χ

∂X2
1

(X1(·), X2(·))∂X1
∂ξα

+ ∂2χ

∂X1∂X2
(X1(·), X2(·))∂X2

∂ξα
+

+(−1)α ∂2χ

∂X2∂X1
(X1(·), X2(·))∂X1

∂ξα
+ (−1)α ∂2χ

∂X2
2

(X1(·), X2(·))∂X2
∂ξα

)

= 1
2

(
∂2χ

∂X2
1

+ 2(−1)α ∂2χ

∂X1∂X2
+ ∂2χ

∂X2
2

)
(X1(·), X2(·)) .

(22)
On the other hand, eqn. (21) can be written as

tα = ∂χ̃

∂ξα
= ρα(cos(ϑα)E1 + sin(ϑα)E2) . (23)

where

ρα = ∥tα∥ =
∥∥∥∥∂χ̃α

∂ξα

∥∥∥∥
ϑα = arctan

(
tα2
tα1

)
= arctan

 ∂χ̃
∂ξα

· E2
∂χ̃
∂ξα

· E1

 (24)

ρα and ϑα being the fiber stretch and the fiber inclination angle, respectively.
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The following fields can be easily derived

t̃α = cos ϑαE1 + sin ϑαE2

nα = t̃α

∂ξα
= (− sin ϑαE1 + cos ϑαE2)∂ϑα

∂ξα

ñα = − sin ϑαE1 + cos ϑαE2

tα⊥ = ραñα = ρα(− sin ϑαE1 + cos ϑαE2) (25)

where t̃α is the unit tangent vector, nα and ñα are the normal and unit
normal vectors, and tα⊥ is obtained by eqn. (2).

Accordingly, the first variation of the stretch is equal to

δρα = 1
ρα

∂δχ̃

∂ξα
· ∂χ̃

∂ξα
. (26)

Now, using (23), (22) can be written in the form

∂tα

∂ξα
= ∂2χ̃

∂ξ2
α

= ∂ρα

∂ξα
[cos(ϑα)E1 + sin(ϑα)E2] + ∂ϑα

∂ξα
ρα [− sin(ϑα)E1 + cos(ϑα)E2]

= ∂ρα

∂ξα
t̃α + ∂ϑα

∂ξα
ραñα (27)

It readily follows that the curvature of the α-fiber is obtained as

∂ϑα

∂ξα
= 1

ρ2
α

(
∂χ̃

∂ξα

)
⊥

· ∂2χ̃

∂ξ2
α

= 1
ρ2

α

∂tα

∂ξα
· tα⊥ (28)

By using (24)2 , we can compute the virtual rotation as

δϑα = 1
ρ2

α

tα⊥ · δtα (29)

The first variation of the curvature of the α-fiber, and using the relation
a⊥ · b = −a · b⊥ as well as (26) and (28), we obtain

δ

(
∂ϑα

∂ξα

)
= −2ρ−1

α δρα
1

ρ2
α

(
∂χ̃

∂ξα

)
⊥

· ∂2χ̃

∂ξ2
α

+

+ 1
ρ2

α

[(
∂δχ̃

∂ξα

)
⊥

· ∂2χ̃

∂ξ2
α

+
(

∂χ̃

∂ξα

)
⊥

· ∂2δχ̃

∂ξ2
α

]
= 1

ρ2
α

{(
∂χ̃

∂ξα

)
⊥

· ∂2δχ̃

∂ξ2
α

− ∂δχ̃

∂ξα
·
[
2∂ϑα

∂ξα

∂χ̃

∂ξα
+
(

∂2χ̃

∂ξ2
α

)
⊥

]}

= 1
ρ2

α

{
tα⊥ · ∂δtα

∂ξα
− δtα ·

[
2∂ϑα

∂ξα
tα +

(
∂tα

∂ξα

)
⊥

]}
(30)
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The strain energy of the pantographic sheet without shear rigidity (pivots
as perfect hinges) is defined as

Πint(χ) =
∫ H

−H

∫ L

0

2∑
α=1

[
1
2ke(ρα − 1)2 + 1

2kb

(
∂ϑα

∂ξα

)2]
dX1dX2 . (31)

By putting Nα = ke(ρα −1) and Mα = kb∂ϑα/∂ξα, the internal virtual work
is the negative of the strain energies variation, which is

δW int = −δΠint = −
∫ H

−H

∫ L

0

2∑
α=1

[
δραNα + δ

(
∂ϑα

∂ξα

)
Mα

]
dX1dX2 . (32)

Inserting (26) and (30), the internal virtual work can be expressed in terms
of the motion as

δW int = −
∫ H

−H

∫ L

0

2∑
α=1

{
∂δχ̃

∂ξα
· 1

ρα

(
∂χ̃

∂ξα
Nα − Mα

ρα

[
2∂ϑα

∂ξα

∂χ̃

∂ξα
+
(

∂2χ̃

∂ξ2
α

)
⊥

])

+∂2δχ̃

∂ξ2
α

·
(

∂χ̃

∂ξα

)
⊥

Mα

ρ2
α

}
dX1dX2

= −
∫ H

−H

∫ L

0

2∑
α=1

{
∂δχ̃

∂ξα
· pα + ∂2δχ̃

∂ξ2
α

· mα

}
dX1dX2 .

(33)
where we have introduced

pα = 1
ρα

(
∂χ̃

∂ξα
Nα − Mα

ρα

[
2∂ϑα

∂ξα

∂χ̃

∂ξα
+
(

∂2χ̃

∂ξ2
α

)
⊥

])
, (34)

mα =
(

∂χ̃

∂ξα

)
⊥

Mα

ρ2
α

. (35)

The kinetic energy of the pantographic sheet can be assumed at the first
approximation as

KE(χ̇) =
∫ H

−H

∫ L

0

1
2ϱA χ̇ · χ̇ dX1dX2 (36)

ϱA being the mass density per unit area, assumed in this case uniformly dis-
tributed, and neglecting the micro-inertia of the pantographic sub-structure
(see for more details [73]).

The response of pantographic sheets presents a hysteretic behavior due
to dissipative phenomena [18, 70]; however, in this paper, we neglect this
aspect that will be addressed in future works. As a matter of fact, this
behavior is rather complex and can derive from diverse sources, such as
friction in the case of the perfect pivots, structural dissipation due to the
poor quality of 3D printing [64,71], and some plasticity involved.
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4 Generalized 1D continuum model

In order to capture the complex behavior of the pantographic sheet, we make
the following reduction Ansatz which is valid for axisymmetric placements

χ(X1, X2) = r(X1)E1 +
k∑

i=1
ai(X1)X2i

2 E1 +
l∑

j=1
bj(X1)X2j−1

2 E2 (37)

The three addends can be interpreted respectively as the placement of the
centerline of the introduced 1D continuum, as well as the warping and con-
traction of its cross sections. The undeformed configuration is obtained for

r(X1) = X1 , ai(X1) = 0 for i = 1, . . . , k ,

b1(X1) = 1 , bj(X1) = 0 for j = 2, . . . , l .
(38)

For the computation of the stretch and the curvatures, the derivatives
up to second order with respect to X1 and X2 are required. Denoting with
a prime the X1-derivatives, they are

∂χ

∂X1
=
(
r′ +

k∑
i=1

a′
iX

2i
2
)
E1 +

l∑
j=1

b′
jX2j−1

2 E2

∂χ

∂X2
=

k∑
i=1

2iaiX
2i−1
2 E1 +

l∑
j=1

(2j − 1)bjX2j−2
2 E2

∂2χ

∂X2
1

=
(
r′′ +

k∑
i=1

a′′
i X2i

2
)
E1 +

l∑
j=1

b′′
j X2j−1

2 E2

∂2χ

∂X2
2

=
k∑

i=1
2i(2i − 1)aiX

2i−2
2 E1 +

l∑
j=1

(2j − 1)(2j − 2)bjX2j−3
2 E2

∂2χ

∂X1∂X2
=

k∑
i=1

2ia′
iX

2i−1
2 E1 +

l∑
j=1

(2j − 1)b′
jX2j−2

2 E2

(39)

The first fiber derivative for the restricted kinematics can be computed by
(21) as

∂χ̃

∂ξα
=

√
2

2

(
r′ +

k∑
i=1

[
a′

iX
2i
2 + (−1)α2iaiX

2i−1
2

])
E1

+
√

2
2

 l∑
j=1

[
b′

jX2j−1
2 + (−1)α(2j − 1)bjX2j−2

2
]E2 ,

(40)
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which using eqn. (2) leads to

(
∂χ̃

∂ξα

)
⊥

= −
√

2
2

 l∑
j=1

[
b′

jX2j−1
2 + (−1)α(2j − 1)bjX2j−2

2
]E1

+
√

2
2

(
r′ +

k∑
i=1

[
a′

iX
2i
2 + (−1)α2iaiX

2i−1
2

])
E2 .

(41)

The variation of (40) is then

∂δχ̃

∂ξα
=

√
2

2

(
δr′ +

k∑
i=1

[
δa′

iX
2i
2 + (−1)α2iδaiX

2i−1
2

])
E1

+
√

2
2

 l∑
j=1

[
δb′

jX2j−1
2 + (−1)α(2j − 1)δbjX2j−2

2
]E2 ,

(42)

The second derivative in fiber direction is computed in accordance with
(22) as

∂2χ̃

∂ξ2
α

= 1
2

(
r′′ +

k∑
i=1

[
a′′

i X2i
2 + 2(−1)α2ia′

iX
2i−1
2 + 2i(2i − 1)aiX

2i−2
2

])
E1

+ 1
2

 l∑
j=1

[
b′′

j X2j−1
2 + 2(−1)α(2j − 1)b′

jX2j−2
2 + (2j − 1)(2j − 2)bjX2j−3

2
]E2 .

(43)
and(

∂2χ̃

∂ξ2
α

)
⊥

= −1
2

 l∑
j=1

[
b′′

j X2j−1
2 + 2(−1)α(2j − 1)b′

jX2j−2
2 + (2j − 1)(2j − 2)bjX2j−3

2
]E1

+ 1
2

(
r′′ +

k∑
i=1

[
a′′

i X2i
2 + 2(−1)α2ia′

iX
2i−1
2 + 2i(2i − 1)aiX

2i−2
2

])
E2 .

(44)
The variation of (43) is straight forward

∂2δχ̃

∂ξ2
α

= 1
2

(
δr′′ +

k∑
i=1

[
δa′′

i X2i
2 + 2(−1)α2iδa′

iX
2i−1
2 + 2i(2i − 1)δaiX

2i−2
2

])
E1

+ 1
2

 l∑
j=1

[
δb′′

j X2j−1
2 + 2(−1)α(2j − 1)δb′

jX2j−2
2 + (2j − 1)(2j − 2)δbjX2j−3

2
]E2 .

(45)
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The square of the stretch thus takes the form

ρ2
α = 1

2

(
r′ +

k∑
i=1

[
a′

iX
2i
2 + (−1)α2iaiX

2i−1
2

])2

+ 1
2

 l∑
j=1

[
b′

jX2j−1
2 + (−1)α(2j − 1)bjX2j−2

2
]2

.

(46)

The curvature of the α-fiber is

∂ϑα

∂ξα
= −

√
2

4ρ2
α

 l∑
j=1

[
b′

jX2j−1
2 + (−1)α(2j − 1)bjX2j−2

2
]×

×
(

r′′ +
k∑

i=1

[
a′′

i X2i
2 + 2(−1)α2ia′

iX
2i−1
2 + 2i(2i − 1)aiX

2i−2
2

])

+
√

2
4ρ2

α

(
r′ +

k∑
i=1

[
a′

iX
2i
2 + (−1)α2iaiX

2i−1
2

])
×

×

 l∑
j=1

[
b′′

j X2j−1
2 + 2(−1)α(2j − 1)b′

jX2j−2
2 + (2j − 1)(2j − 2)bjX2j−3

2
] .

(47)
With the reduced kinematics, we can rewrite the internal virtual work
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as

δW int = −
∫ L

0

∫ H

−H

2∑
α=1

{
∂δχ

∂ξα
· (p1

αe1 + p2
αe2) + ∂2δχ

∂ξ2
α

· (m1
αe1 + m2

αe2)
}

dX2dX1

= −
∫ L

0

∫ H

−H

2∑
α=1

{√
2

2

(
δr′ +

k∑
i=1

[
δa′

iX
2i
2 + (−1)α2iδaiX

2i−1
2

])
p1

α

+
√

2
2

( l∑
j=1

[
δb′

jX2j−1
2 + (−1)α(2j − 1)δbjX2j−2

2
])

p2
α

+ 1
2

(
δr′′ +

k∑
i=1

[
δa′′

i X2i
2 + 2(−1)α2iδa′

iX
2i−1
2 + 2i(2i − 1)δaiX

2i−2
2

])
m1

α

+ 1
2

( l∑
j=1

[
δb′′

j X2j−1
2 + 2(−1)α(2j − 1)δb′

jX2j−2
2

+ (2j − 1)(2j − 2)δbjX2j−3
2

])
m2

αdX2dX1

= −
∫ L

0
{δr′n(1) + δr′′n(2) +

k∑
i=1

(δaif
(0)
i + δa′

if
(1)
i + δa′′

i f
(2)
i )

+
l∑

j=1
(δbjk

(0)
j + δb′

jk
(1)
j + δb′′

j k
(2)
j )}dX1 .

(48)
with the following generalized forces

n(1) =
∫ H

−H

2∑
α=1

√
2

2 p1
αdX2 , n(2) =

∫ H

−H

2∑
α=1

1
2m1

αdX2 (49)

and

f
(0)
i =

∫ H

−H

2∑
α=1

[√
2(−1)αiX2i−1

2 p1
α + i(2i − 1)X2i−2

2 m1
α

]
dX2

f
(1)
i =

∫ H

−H

2∑
α=1

[√2
2 X2i

2 p1
α + (−1)α2iX2i−1

2 m1
α

]
dX2

f
(2)
i =

∫ H

−H

2∑
α=1

1
2X2i

2 m1
αdX2

(50)

and
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k
(0)
j =

∫ H

−H

2∑
α=1

[√2
2 (−1)α(2j − 1)X2j−2

2 p2
α + (2j − 1)(2j − 2)X2j−3

2 m2
α

]
dX2

k
(1)
j =

∫ H

−H

2∑
α=1

[√2
2 X2j−1

2 p2
α + (−1)α(2j − 1)X2j−2

2 m2
α

]
dX2

k
(2)
j =

∫ H

−H

2∑
α=1

1
2X2j−1

2 m2
αdX2 .

(51)
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Figure 7: Longitudinal displacement u1 in the highlighted red vertical segments. The solid
lines stand for the 2D model, the dotted-dashed ones for the 1D model.
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Figure 8: Transversal displacement u2 in the highlighted red vertical segments. The solid
lines stand for the 2D model, the dotted-dashed ones for the 1D model.

To illustrate the goodness of the kinematical assumptions, we performed
a numerical simulation of a bias extension test using both formulations,
namely the bi-dimensional and the reduced 1D. The test was conducted in a
static regime on a rectangular sample with one short edge fixed and applying
a uniform displacement at the opposite edge in the long-side direction with
an amplitude which is half of the short edge. The k-index has been taken
equal to 3, while the l-index has been set to 4. Besides, the integration
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Figure 9: Longitudinal displacement u1 in the highlighted red line. The solid line stands
for the 2D model, the dotted-dashed one for the 1D model.
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Figure 10: Outer deformed shape of the sample, i.e., χ2 placement component in the
highlighted red line. The solid line stands for the 2D model, the dotted-dashed one for
the 1D model.

over the variable X2 has been made numerically with the Gauss–Legendre
quadrature using 5 points. The sample has side lengths of 0.21 × 0.07 m,
stretching stiffness ke = 5.17 × 105 N/m, and bending stiffness kb = 0.1103
N m. Figures 7, 8, 9, and 10 show a comparison between the two models
considered in the test.

In order to derive the equation of motion of the pantographic general-
ized 1D continuum model also the kinetic energy must be reduced to a 1D
functional. Therefore, starting from the assumed velocity field

χ̇(X1, X2, t) =
[
ṙ(X1, t) +

k∑
i=1

ȧi(X1, t)X2i
2

]
e1 +

l∑
j=1

ḃj(X1, t)X2j−1
2 e2 (52)

and denoting with a dot the time-derivative, the kinetic energy takes the
form:

KE(χ̇) =
∫ H

−H

∫ L

0

1
2ϱA

(ṙ +
k∑

i=1
ȧiX

2i
2

)2

+

 l∑
j=1

ḃjX2j−1
2

2
 dX1dX2

(53)
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and after some algebraic manipulations, it becomes

KE(χ̇) =
∫ H

−H

∫ L

0

1
2ϱA

ṙ2 + 2ṙ
k∑

i=1
ȧiX

2i
2 +

k∑
i=1

k∑
j=1

ȧiȧjX
2(i+j)
2

+
l∑

i=1

l∑
j=1

ḃiḃjX
2(i+j−1)
2

 dX1dX2 (54)

Eventually, after the integration over the X2 variable, we obtain

KE(χ̇) =
∫ L

0
ϱA

Hṙ2 + 2ṙ
k∑

i=1

H2i+1

2i + 1 ȧi +
k∑

i=1

k∑
j=1

H2(i+j)+1

2(i + j) + 1 ȧiȧj

+
l∑

i=1

l∑
j=1

H2(i+j)−1

2(i + j) − 1 ḃiḃj

 dX1 (55)

In accordance with the principle of least action, the virtual work of the
inertial actions can be deduced from the kinetic energy as

δW ine = −
∫ L

0
ϱA

[
2Hr̈δr + 2

k∑
i=1

H2i+1

2i + 1 (r̈δai + äiδr)

+
k∑

i=1

k∑
j=1

H2(i+j)+1

2(i + j) + 1 (äiδaj + äjδai)

+
l∑

i=1

l∑
j=1

H2(i+j)−1

2(i + j) − 1
(
b̈iδbj + b̈jδbi

) dX1 (56)

5 Results of parametric numerical studies

In this section, we show the results obtained by performing numerical simu-
lations based on the reduced 1D continuum model shortly described in the
previous section.

To corroborate the hypotheses made to build the 1D model, it has been
used to solve a test problem and results obtained have been compared to
the ones given by the lattice beam model (see Fig. 11). In Fig. 11, some
current configurations of the pantographic sheet in given time instants are
provided for the two models. In order to compare the responses of the two
models, we reconstructed the profile of the pantographic strip from the 1D
model using the Eq. (37). The considered boundary conditions consist of an
imposed displacement parallel to E1 and shaped with the signal e = e1 on
the left short edge, while on the right side, the same component is fixed. The
components in E2-direction are instead kept free on both sides. The input
data of the lattice beam model are the same mentioned in the sect. 2. The
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parameters used for the 1D model are: ke = 3.53×104 N/m; kb = 2.95×10−3

N m; ϱA = 0.263 kg/m2.
Finally, we can say that the results obtained show a very good agreement.

Besides, it must be stressed that while for the lattice model the computa-
tional time was about four hours, for the continuum model only about four
minutes were needed.

5.1 Axisymmetric non-linear waves induced by a class of im-
posed displacements to sheet short side

As announced, the three-step reduction process made feasible a parametric
study of the axisymmetric non-linear waves along the E1 direction of long
pantographic sheets induced by imposed displacements at one short end of
the sheet.

The imposed displacement is assumed to be axisymmetric and the algo-
rithm based on the 1D model described in the previous section can produce
axisymmetric solutions only. The performed numerical simulations are char-
acterized by a longitudinal excitation. In particular, the boundary points
of the left edge are excited in E1-direction with e(t) and can move freely in
E2-direction. The points of the right edge are blocked in E1-direction but
can move freely in E2-direction.

In order to analyze the wave propagation stemmed from the considered
excitations, we introduced the centers of the distribution of the squared
displacement in the transverse direction (E2) on the free long edges defines
as

XGt
1 (t) =

∫ L
0 X1[u2(X1, H)]2dX1∫ L

0 [u2(X1, H)]2dX1
(57)

and of the squared longitudinal displacement (in E1 direction) on the axis
of the pantographic sheet

XGl
1 (t) =

∫ L
0 X1[u1(X1, 0)]2dX1∫ L

0 [u1(X1, 0)]2dX1
(58)

where u1 and u2 are the components of the displacement in the basis {E1, E2}.
With these two quantities, we have a rough idea of how the perturbation
advances in the medium.

Similarly, introducing the variances for the squared transverse displace-
ment

σ2
Gt(t) =

∫ L
0 (X1 − XGt

1 )2[u2(X1, H)]2dX1∫ L
0 [u2(X1, H)]2dX1

(59)

and the squared longitudinal displacement

σ2
Gl(t) =

∫ L
0 (X1 − XGl

1 )2[u1(X1, 0)]2dX1∫ L
0 [u1(X1, 0)]2dX1

, (60)
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it is possible to deduce some features about the dispersive properties of the
considered material.

Therefore, in Figs. 12 and 13, these overall quantities of the nonlinear
wave propagation are displayed for the excitation e = e1 varying e0 and
s1, respectively. We recall that these two parameters define, in the given
order, the space and time amplitude of the excitation. From these pictures,
it appears that the propagation velocities are different in the two examined
paths, being the longitudinal propagation slower. Besides, the nonlinear
behavior of the wave is most apparent in this last propagation.

In Figs. 14, 15, 17, 18, 20, and 21, we report the centers and the variances
of the perturbations for the excitation e = e2 varying e0 and s1 and changing
n from 1 to 3. In all these pictures, we can see that the behavior of the
propagation is particularly complex, and its features, namely the velocity
and the variance, do not change monotonically with the parameters e0 and
s1, in some cases, making it difficult to predict them.

Figs. 16, 19, and 22 represent a typical process of propagation for the
excitation e = e2 and for n equal to 1, 2, and 3, respectively.

Finally, the case of point excitation is also performed (see [32] for more
details). The boundary conditions are applied on the top and bottom left
corner of the pantographic sheet. These points are excited by e(t) = e2
with n = 2 in E2-direction, the left and right edge points of the sheet
are blocked in E1-direction but can move freely in E2-direction. Since the
excitation is axisymmetric, it is possible to simulate this ulterior case with
the newly introduced 1D continuum model. Figure 23 shows some current
configurations obtained with the 1D reduced model in this case with point
excitation.

We remark that the computing time in all these numerical simulations
was about four minutes, as in the case of the test problem.

6 Conclusions and motivations for future investigations

A 1D continuum model endowed with a micro-structure suitable for de-
scribing the wave motion in a slender planar pantographic sheet, has been
introduced. A number of parametric analyses of wave propagation origi-
nated by excitations applied to one end of the body have been done. The
time needed to perform each one of the numerical simulations resulted to
be of about four minutes. It is dramatically shorter than the one needed
to perform analogous computations by means of both the lattice model and
the 2D continuum model described in Sect. 3. The great saving of comput-
ing time did allow us to get remarkable information about the considered
phenomenon. The results show that some non-linear waves propagates in
a way suggesting that some solitary waves may arise in such a waveguide.
This strongly motivates further studies in both theoretical and experimental
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directions. To this aim, a generalization of the mathematical results pre-
sented in [12, 37, 44, 48, 65–67] seems necessary to give a solid ground and a
logical motivation to the numerical results obtained. On the other hand, as
the 1D model allows for easy and fast computation, it can help to design an
experimental set-up which can prove that in pantographic sheets with suffi-
ciently perfect pivots, waves having bounded support can propagate without
relevant dispersion and attenuation for relatively long times.
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Figure 11: Comparison between the planar beam lattice model (top) and the 1D reduced
continuum model (bottom). Excitation with e = e1, e0 = 0.025 m and s1 = 0.01625 s.
Colors indicate the transverse displacement.
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Figure 12: Excitation with e = e1, s1 = 0.01 s and varying e0: XGt
1 a); XGl

1 b); σ2
Gt c);

σ2
Gl d).
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Figure 13: Excitation with e = e1, e0 = 0.025 m and varying s1: XGt
1 a); XGl
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Figure 14: Excitation with e = e2, n = 1, s1 = 0.01 s and varying e0: XGt
1 a); XGl

1 b);
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Gt c); σ2
Gl d).
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Figure 15: Excitation with e = e2, n = 1, e0 = 0.025 m and varying s1: XGt
1 a); XGl

1 b);
σ2

Gt c); σ2
Gl d).
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Figure 16: Excitation with e = e2, n = 1, e0 = 0.055625 m and s1 = 0.01 s.
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Figure 17: Excitation with e = e2, n = 2, s1 = 0.01 s and varying e0: XGt
1 a); XGl

1 b);
σ2

Gt c); σ2
Gl d).
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Figure 18: Excitation with e = e2, n = 2, e0 = 0.025 m and varying s1: XGt
1 a); XGl

1 b);
σ2

Gt c); σ2
Gl d).

Figure 19: Excitation with e = e2, n = 2, e0 = 0.03 m and s1 = 0.01 s.
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Figure 20: Excitation with e = e2, n = 3, s1 = 0.01 s and varying e0: XGt
1 a); XGl

1 b);
σ2

Gt c); σ2
Gl d).
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Figure 21: Excitation with e = e2, n = 3, e0 = 0.025 m and varying s1: XGt
1 a); XGl

1 b);
σ2

Gt c); σ2
Gl d).
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Figure 22: Excitation with e = e2, n = 3, e0 = 0.025 m and s1 = 0.014063 s.

Figure 23: Point excitation with e = e2, n = 2, e0 = 0.075 m and s1 = 0.01 s.
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