
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

I2C Hardware Block Datasheet I2CHW V 2.00
001-13563 Rev. *MI2C Hardware Block

Copyright © 2003-2015 Cypress Semiconductor Corporation. All Rights Reserved.

For one or more fully configured, functional example projects that use this user module go to
www.cypress.com/psocexampleprojects.

Features and Overview
Industry standard Philips I2C bus compatible interface
Master and Slave operation, Multi Master capable
Only two pins (SDA and SCL) required to interface to I2C bus
Standard data rate of 100/400 kbps, also supports 50 kbps
High level API requires minimal user programming
7-bit addressing mode

The I2C Hardware User Module implements an I2C device in firmware. The I2C bus is an industry
standard, two-wire hardware interface developed by Philips®. The master initiates all communication on
the I2C bus and supplies the clock for all slave devices. The I2CHW User Module supports the standard
mode with speeds up to 400 kbps. No digital or analog user blocks are consumed with this module. The
I2CHW User Module is compatible with other slave devices on the same bus.

Resources

PSoC® Blocks API Memory (Bytes)
Pins (per

External I/O)Digital Analog CT Analog SC Flash RAM

CY8C29/27/24/22/21xxx, CY8C23x33, CY7C603xx, CY7C64215, CYWUSB6953, CY8CLED02/04/08/16,
CY8CLED0xD, CY8CLED0xG, CY8CTST110, CY8CTMG110, CY8CTST120, CY8CTMG120, CY8CTMA120,
CY8C21x45, CY8C22x45, CY8C28x45, CY8CPLC20, CY8CLED16P01, CY8C28xxx, CY8C21x12

Slave 0 0 0 374 - 591 6 - 11 2

Master 0 0 0 1031 - 1085 7 - 11 2

Multi Master Slave 0 0 0 1331 - 1944 14 - 22 2
Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 001-13563 Rev. *M Revised March 3, 2015

http://www.cypress.com/psocexampleprojects

I2C Hardware Block
Figure 1. I2C Block Diagram

Functional Description
This user module gives support for an I2C hardware resource. It is capable of transferring data at
50/100/400 kbps when the CPU clock is configured to run at 12 MHz. Faster or slower CPU clocks may be
used, but may result in more or less bus stalling during address or data processing. The I2C specification
allows the master to run at clock speeds from 100 kHz down to DC. There are two different selections for
SDA and SCL providing direct access to the hardware resource. Seven-bit address mode is supported in
the supplied APIs. This module does not require any analog or digital PSoC blocks to transfer data.

The I2C resource supports data transfer at a byte-by-byte level. At the end of each address or data
transmission/reception, status is reported or a dedicated interrupt may be triggered. Status reporting and
interrupt generation is dependent on the direction of data transfer and the condition of the I2C bus as
detected by the hardware. Interrupts may be configured to occur on byte-complete, bus-error detection
and arbitration loss.

Every I2C transaction consists of a Start, Address, R/W Direction, Data, and a Termination. The I2C
resource used for this user module is capable of operating as either an I2C Master or I2C Slave. For either
the Master or Slave operation, this user module gives an interrupt based buffered transfer mechanism.
Communication is initiated from a foreground function call. At the completion of each byte of the message,
an interrupt is triggered and the I2C bus is stalled, the interrupt service routine (ISR) given takes
appropriate action on the bus allowing communication to continue, depending on the initialization
performed by the user. A slave device which does not acknowledge an address is not interrupted again
until the next address is received. Slave devices must respond to each address either by acknowledging
or not-acknowledging.

Ignoring differences between a Master and Slave, two general cases exist, that of a receiver and that of a
transmitter. For an I2C receiver, an interrupt occurs after the 8th bit of incoming data. At this point a
receiving device must decide to acknowledge (ack) or not-acknowledge (nak) the incoming byte whether it
is an address or data. The receiving device then writes appropriate control bits to the I2C_SCR register,
informing the I2C resource of the ack/nak status. The write to the I2C_SCR register paces data flow on the
bus by uninstalling the bus, placing the ack/nak status on the bus and shifting the next data byte in. For the
Document Number: 001-13563 Rev. *M Page 2 of 54

I2C Hardware Block
second case of a transmitter, an interrupt occurs after an external receiving device has given an ack or
nak. The I2C_SCR may be read to determine the status of this bit.

For a transmitter, data would be loaded into the I2C_DR register and the I2C_SCR register is again written
to trigger the next portion of the transmission.

When using the buffered read and write routines (bWriteBytes(...), bWriteCBytes(...), fReadBytes(...)), it is
not necessary to use any of the buffer initialization functions (InitWrite(...), InitRamRead(...),
InitFlashRead(...)). These functions are called as part of the function call that initiates the buffered read or
write (bWriteBytes(...), bWriteCBytes(...), fReadBytes(...)).

In addition to the buffer based transactions supported, the I2C master User Module supports polled data
transfers on a byte by byte basis without using the interrupt or supplied ISR. All APIs are described in this
document.

Detailed descriptions of the I2C bus and the implementation of the resource here may be obtained by
referring to the complete I2C specification available on the internet, and by referring to the device
datasheet supplied with PSoC Designer.

I2C and Sleep
Special care must be taken when using I2C with a project that goes to a sleep state. Before the project
enters a sleep state, follow these steps need for proper sleep entry, and proper I2C handling:

1. Ensure that all I2C traffic is complete.
2. Disable the I2C by calling the Stop API.
3. Configure the I2C pins to a analog High-Z drive mode.

Follow these steps when the part wakes from sleep:

1. Ensure that there is no active I2C traffic.
2. Enable the I2C by calling the Start API.
3. Configure the I2C pins to Open-Drain Drives Low drive mode.
4. Enable Interrupts.

MultiMasterSlave Operation
MultiMasterSlave operation is an extension of both the Master and Slave and combines the two. As such
the implementation also uses the most code to implement the APIs and ISR. The features that the
MultiMasterSlave adds are:

1. Multiple Masters may reside on the same bus. If more than one Master attempts to talk on the bus, a
mechanism exists so that they do not conflict. This mechanism is called arbitration. It is completely
discussed in the Philips I2C specification.

2. Each Master may also operate as a slave with an associated slave address. Another Master may
address the ‘slave’ instance of any other master as if it were a slave. If a Master loses arbitration on an
address which is its own slave address it correctly responds as a slave for the duration of the I2C
transaction.
Document Number: 001-13563 Rev. *M Page 3 of 54

I2C Hardware Block
MultiMasterSlave APIs
Function calls for the MultiMasterSlave implementation are nearly identical to those used for the Master
and Slave. However, because the MultiMasterSlave implements a master and slave device, the names of
the function calls have been modified with the appropriate designation. For example: where the Slave (and
Master) use a function “InitWrite(...)”, the MultiMasterSlave gives two functions designated:
“InitMasterWrite(...)” and InitSlaveWrite(...)” The initialization functions should be used as they would for
the appropriate single Master or single Slave device. To further expand on this topic, when the Master
portion of the MultiMasterSlave is used for a buffered read/write, the appropriate Init function is called
internally from the bWrite() or fRead() function (and would not therefore be normally used directly by a
user). On the other hand, the InitSlave set of functions WOULD be used by a programmer to set up an
area of memory for a later access by an external master.:

Master operation and Slave operation of the MultiMasterSlave User Module are enabled separately. In
other words, both the EnableMaster() and EnableSlave() functions must be called to enable Slave and
Master functionality.

Design Considerations

Unlike the Software implementation of I2C, this implementation runs using internally generated clocks.
The main oscillator may be set to any clock speed. Data throughput may be affected by processor
speed but byte-by-byte data transfer functions at the specified I2C speed.
Slave devices maintain an internal count of the buffer space remaining for access by a Master. For the
MultiMasterSlave, the count variables are called UMNAME_SlaveWrite_Count and
UMNAME_SlaveRead_Count. The Slave(only) the variables are named UMNAME_Read_Count and
UMNAME_Write_Count. The variables are global and may be accessed from a users C or assembly
code by including an appropriate 'extern' declaration. A user may determine the number of bytes read
or written by a master by subtracting the current value of the count variable from the initial value of the
count variable. The initial size of the count variable is set by using the functions UMNAME_InitWrite,
UMNAME_InitRamRead, UMNAME_InitFlashRead in the case of the Slave (only) user module. The
function calls setting the count value for the optional slave used in the MultiMasterSlave User Module
are UMNAME_InitSlaveWrite, UMNAME_InitSlaveRamRead, and UMNAME_InitSlaveFlashRead.
Reading and writing data within the I2C slave is accomplished using buffers. The user must initialize
appropriate buffers before the I2C slave is enabled. After a read or a write has been initiated by the I2C
master, appropriate status bits are set in the I2CHW_Status byte. The foreground process in the slave
can then operate on data deposited in a write buffer or extracted from a read buffer. The slave data
transfer routine (ISR) does not allow buffers to be accessed beyond their defined length when the ISR
is entered. Reading and writing to buffers is handled as follows.

1. If the I2C master attempts to read more data than is contained in a buffer, the last byte is
retransmitted until the I2C master stops reading. (The I2C protocol does not define a method
for the I2C slave to stop a master from reading.)

2. When an I2C master is writing one or more data bytes to the I2C slave, upon receiving the last
byte for which storage is available, the slave generates a NAK. If the I2C master continues to
write data, the slave continues to NAK it. After the first NAK is generated (data is stored in the last
available location), further data is not stored.

3. For Slave read and write buffer transactions, an ‘error’ condition is set when the last byte of the buffer
is used. The reasoning behind this is that since the slave has no control over how many bytes a master
device reads or writes, once the last byte of a buffer is used there is no way to be assured that some
sort of over-run did NOT occur. For this reason, to avoid overflow conditions using (slave) read buffers,
Document Number: 001-13563 Rev. *M Page 4 of 54

I2C Hardware Block
and NAKs to the master during (slave) write operations, read and write buffers should be set to be one
byte longer than the maximum expected to be used by the master. For example, a one byte slave write
buffer always causes the slave to NAK the master when one byte is written. Writing one byte to a two
byte buffer results in an ACK to the master.

4. If a buffer is defined with zero length, data written to the I2C slave is NAK’ed and is not stored.

Enabling the ability to read data directly from flash also allows the use of either RAM or flash buffers.
Whether the data transfer ISR uses a read buffer located in flash/ROM or RAM, it can be configured using
supplied APIs.

Dynamic Reconfiguration
Incorporating the I2CHW resource into Dynamically loaded/unloaded overlays is not recommended. The
I2CHW resource should be placed as part of the base configuration only. Operation of the I2CHW block
may be modified as operational requirements dictate, but attempting to ‘remove’ the resource as part of
dynamic reconfiguration may result in adverse effects on external I2C devices.

I2C Addressing

I2C addresses are contained in the upper 7-bits of the first byte of a read or write transaction. This byte is
used by the I2C master to address the slave. Valid selections are from 0-127 decimal. The LSB of the byte
contains the R/~W bit. If this bit is 0, the address is written to. If the LSB is a 1, then the addressed slave
has data read from it.

Internally, the user module takes the input address, shifts it and combines it with a read/write bit to
construct a complete address byte.

Example
An address of 0x48 is passed as a parameter or defined as a slave address. A separate parameter is
passed containing read/write information. An I2C master would send a byte (8-bits) of 0x90 to write data to
the slave and the byte 0x91 to read data from the slave.

Since the slave module accepts decimal based numerical input for its address parameter, the 7-bit
address must also be entered in decimal (decimal 72).

DC and AC Electrical Characteristics
As the block diagram illustrates, the I2C bus requires external pull-up resistors. The pull-up resistors (RP)
are determined by the supply voltage, clock speed, and bus capacitance. The minimum sink current for
any device (master or slave) should not be less than 3 mA at VOLmax = 0.4V for the output stage. This
limits the minimum pull-up resistor value for a 5-volt system to about 1.5 kΩ. The maximum value for RP is
dependent on the bus capacitance and the clock speed. For a 5V system with a bus capacitance of
150 pF, the pull-up resistors should be no larger than 6 kΩ. For more information on “The I2C-Bus
Specification”, see the Philips web site at www.philips.com.

One common design consideration with I2C is the size of the pull-up resistors. For most designs the pull-
up resistors are between 1.5k and 6k. The selected size of the resistors depends on the communication
frequency and the bus capacitance. A greater bus capacitance and pull-up resistor size causes greater
rise time on the clock and data lines. The I2C specification provides a maximum rise time. If the rise time
on the bus exceeds this maximum, I2C communication will not occur properly. The pull-up resistors must
Document Number: 001-13563 Rev. *M Page 5 of 54

I2C Hardware Block
be sized properly to prevent large rise times. The I2C specification offers the graph to determine the size
of the pull-up resistors. For more information please refer to the I2C specification.

Note Purchase of I2C components from Cypress or one of its sublicensed Associated Companies, con-
veys a license under the Philips I2C Patent Rights to use these components in an I2C system,
given that the system conforms to the I2C Standard Specification as defined by Philips.

Placement
The I2CHW User Module allows two choices of SCL and SDA P1[5]/P1[7] or P1[0]/P1[1] and does not
require any digital or analog PSoC blocks. There are no placement restrictions. Placement of multiple I2C
modules is not possible since the I2C module uses a dedicated PSoC resource block and interrupt.

Parameters and Resources
All buffer names are written to describe their use by an I2C master. For example, the I2Cs_pRead_Buf
refers to the location in RAM containing data to be read by the I2C master.

Slave_Addr
This is a Slave and MultiMasterSlave parameter. It selects the 7-bit slave address which is used by
the I2C master to address the slave or the MultiMasterSlave when it is in slave mode. Valid selections
are from 0-127(dec).

Auto_Addr_Check
Selects whether the hardware address feature is disable or enable. If set to disable then the hardware
address comparison feature is not available. Setting this option to enable allows I2C block does not
support the special system address definition.

This parameter is user configurable only for CY8C28045 device.

I2C_Clock
Specifies the desired clock speed at which to run the I2C interface. There are three possible clock
rates available:

50K Standard
100K Standard
400K Fast

Note The I2C clock is based off a SysClk of 24 MHz. If SysClk is less than 24 MHz the I2C clocks will
scale down. For example, if SysClk is 6 MHz the possible clock speeds are 12.5K, 25K, and 100K.
SysClk is separate from the CPU clock.

I2C_Pin
Selects the pins from Port 1 to be used for I2C signals. There is no need to select the proper drive
mode for these pins, PSoC Designer does this automatically.

Note Changing the default drive mode prevents the pin from being driven in the proper manner and
causes undesired operation on the bus.

Read_Buffer_Types
Selects what types of buffers are supported for data reads. Two selections are available: RAM ONLY
or RAM OR FLASH. Selection of RAM ONLY removes code and variables required to support direct
Document Number: 001-13563 Rev. *M Page 6 of 54

I2C Hardware Block
flash-ROM reads. Selection of RAM OR FLASH gives code and variable support for reading either
RAM buffers or flash-ROM buffers for data to be transmitted to the master. If RAM OR FLASH is
selected, API calls may be used to select whether a RAM or flash-read buffer is used.

Communication_Service_Type
This parameter allows the user to select between an Interrupt based data processing strategy or a
polled strategy. In the Interrupt based strategy, a transfer is initiated against a predefined buffer. Data
is then moved in or out of the buffer as quickly as possible in the background. An ISR routine is
included which handles data movement. When the Polled data processing strategy is selected, the
user is in control of when data movement takes place. To implement a polled strategy the user must
periodically call the function I2CHW_Poll() (see the I2C.h files for the exact instance name). Each time
the polling function is called a single byte is transferred. Other I2C functions are used identically. The
Polled communication strategy may be used in a situation where interrupt latency is critically impor-
tant (and asynchronous communication interrupts may cause problems). Another use might be when
the user desires absolute control of when data is transferred. A drawback of polling is that when the
I2C state machine is enabled, the bus is stalled automatically after each byte until the polling function
is called. The polling function is available only for the Slave and MultiMasterSlave implementations of
I2C. The Single Master implementation offers API functions to support byte-wise data transfers.

Interrupt Generation Control
There is an additional parameter that becomes available when the Enable interrupt generation control
check box in PSoC Designer is checked. This is available under Project > Settings > Chip Editor.
Interrupt Generation Control is important when multiple overlays are used with interrupts shared by
multiple user modules across overlays:

IntDispatchMode
The IntDispatchMode parameter is used to specify how an interrupt request is handled for interrupts
shared by multiple user modules existing in the same block but in different overlays. Selecting
ActiveStatus causes firmware to test which overlay is active before servicing the shared interrupt
request. This test occurs every time the shared interrupt is requested. This adds latency and also
produces a nondeterministic procedure of servicing shared interrupt requests, but does not require
any RAM. Selecting OffsetPreCalc causes firmware to calculate the source of a shared interrupt
request only when an overlay is initially loaded. This calculation decreases interrupt latency and
produces a deterministic procedure for servicing shared interrupt requests, but at the expense of a
byte of RAM.

Application Programming Interface
The Application Programming Interface (API) firmware gives high level commands that support sending
and receiving multibyte transfers. Read buffers may be set up in RAM or flash memory. Write buffers may
only be set up in RAM memory.
Note

In this, as in all user module APIs, the values of the A and X register may be altered by calling an API
function. It is the responsibility of the calling function to preserve the values of A and X before the call if
those values are required after the call. This “registers are volatile” policy was selected for efficiency
reasons and has been in force since version 1.0 of PSoC Designer. The C compiler automatically takes
care of this requirement. Assembly language programmers must ensure their code observes the policy,
too. Though some user module API function may leave A and X unchanged, there is no guarantee they
may do so in the future.
Document Number: 001-13563 Rev. *M Page 7 of 54

I2C Hardware Block
For Large Memory Model devices, it is also the caller's responsibility to preserve any value in the
CUR_PP, IDX_PP, MVR_PP, and MVW_PP registers. Even though some of these registers may not be
modified now, there is no guarantee that will remain the case in future releases.

Common Functions
The following functions are common to the Master, Slave, and the MultiMasterSlave versions of the
I2CHW User Module:

I2CHW_Start

Description:
Does Nothing. Given for interface consistency only.

C Prototype:
void I2CHW_Start(void);

Assembler:
lcall I2CHW_Start

Parameters:
None

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.

I2CHW_Stop

Description:
Disables the I2CHW by disabling the I2C interrupt.

C Prototype:
void I2CHW_Stop(void);

Assembler:
lcall I2CHW_Stop

Parameters:
None

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Document Number: 001-13563 Rev. *M Page 8 of 54

I2C Hardware Block
I2CHW_EnableInt

Description:
Enables I2C interrupt allowing start condition detection. Remember to call the global interrupt enable
function by using the macro: M8C_EnableGInt.

C Prototype:
void I2CHW_EnableInt(void);

Assembler:
lcall I2CHW_EnableInt

Parameters:
None

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.

I2CHW_DisableInt

Description:
Disables I2C’s slave by disabling the SDA interrupt. Performs the same action as I2Cs_Stop.

C Prototype:
void I2CHW_DisableInt(void);

Assembler:
lcall I2CHW_DisableInt

Parameters:
None

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.

I2CHW_Poll (available in Slave and MultiMasterSlave)

Description:
Used when the Communication_ Service_Type parameter is set to “Polled”. This function gives a user
controlled entry into the I/O processing routine. If Communication_Service_Type parameter is set to
“Interrupt”, the function does nothing.
Document Number: 001-13563 Rev. *M Page 9 of 54

I2C Hardware Block
Note: Calling I2CHW_Poll releases the I2C bus. This allows a master to possibly read or write data
before slave firmware has finished processing the previous request.

C Prototype:
void I2CHW_Poll(void);

Assembler:
lcall I2CHW_Poll

Parameters:
None

Return Value:
None

Side Effects:
One I2C event is processed each time this routine is called and status variables are updated. An event
constitutes either an error condition, an I/O byte, or, in certain cases, a stop condition. There are three
possible results from calling this routine:

1. No action if no data was available.
2. Reception or transmission of an address or data byte if one was available.
3. Processing of a stop event when an external master has completed its write operation. When a stop

state is processed at the end of a write operation, only status variables are updated. If an I2C byte is
pending when a stop state is processed, the I2CHW_Poll function must be called again to process it.

The I2CHW_Poll() function has no effect if Communication_Service_Type is set to Interrupt. When a
start/restart condition and an address is detected on the bus, the bus is stalled until the I2CHW_Poll()
function is called. If the address is NAK’ed, subsequent bytes transferred for that transaction are
ignored until another start/restart and address is detected, otherwise the I2C bus is stalled for each
data byte until the I2CHW_Poll() function is called. The I2C data is stalled by the I2C hardware until
this function is called if the Communication_Service_Type is set to Polled. For received data the bus
is stalled at the end of the byte and before an ACK/NAK is generated by holding the SCL (clock) line
low. For transmitted data the bus is stalled immediately after the ACK/NAK bit is generated externally.

I2CHW_ResumeInt

Description:
Re-enables I2C interrupt allowing start condition detection. This API enables the I2C interrupt in the
INT_MSK3 register and does not clear the I2C interrupt in the INT_CLR3 register. Remember to call
the global interrupt enable function by using the macro: M8C_EnableGInt.

C Prototype:
void I2CHW_ResumeInt(void);

Assembler:
lcall I2CHW_ResumeInt

Parameters:
None

Return Value:
None
Document Number: 001-13563 Rev. *M Page 10 of 54

I2C Hardware Block
Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.

I2CHW_ClearInt

Description:
Clears the I2C interrupt in the INT_CLR3 register. Remember to call the global interrupt enable func-
tion by using the macro: M8C_EnableGInt.

C Prototype:
void I2CHW_ClearInt(void);

Assembler:
lcall I2CHW_ ClearInt

Parameters:
None

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.

API Low Level Communication Functions (available in Master and MultiMasterSlave)
For most applications, the low level functions are not required. The low level functions give greater
flexibility for specialized applications. They do not use the ISR. In most cases if the I2C interrupt is enabled
a call to one of the low level routines explicitly disables it.

I2CHW_fSendStart

Description:
Generates an I2C bus start condition, sends the address and R/W bit, and then returns the ACK result.
The R/W bit is determined by the fRW parameter.

C Prototype:
BYTE I2CHW_fSendStart(BYTE bSlaveAddr, BYTE fRW);

Assembler:
mov A,0x68 ; Load slave address
mov X,I2CHW_WRITE ; Prepare for a write sequence
lcall I2CHW_fSendStart ; Return value in A

Parameters:
bSlaveAddr: 7-bit slave address. fRW: If set to I2CHW_READ, a read sequence is initiated. If set to
I2CHW_WRITE, a write sequence is initiated.
Document Number: 001-13563 Rev. *M Page 11 of 54

I2C Hardware Block
Return Value:
If the return value is nonzero, the slave acknowledged the address. If the return value is zero, the
slave did not acknowledge the address.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.
The I2CHW interrupt is disabled if previously enabled.

I2CHW_fSendRepeatStart

Description:
Generates an I2C bus repeat start condition, sends the address and R/W bit, and then returns the
ACK result. The R/W bit is determined by the fRW parameter.

C Prototype:
BYTE I2CHW_fSendRepeatStart(BYTE bSlaveAddr, BYTE fRW);

Assembler:
mov A,0x68 ; Load address
mov X,I2CHW_READ ; Prepare for a read sequence
lcall I2CHW_fSendRepeatStart ; Return value in A

Parameters:
bSlaveAddr: 7-Bit slave address. fRW: If set to I2CHW_READ, a read sequence is initiated. If set to
I2CHW_WRITE, a write sequence is initiated.

Return Value:
If the return value is nonzero, the slave acknowledged the address. If the return value is zero, the
slave did not acknowledge the address.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified. The I2CHW interrupt is disabled if
previously enabled.
Sets the RepStart flag in the bStatus byte. This prevents the polled the routine from hanging when
used with polling interface. Care should be taken mixing buffered commands with low level

Constant Value Description

I2CHW_WRITE 0x00 Start an I2C write sequence

I2CHW_READ 0x01 Start an I2C read sequence

I2CHW_ACKslave 0x01 ACK slave when reading a byte

I2CHW_NAKslave 0x00 NAK slave when writing a byte
Document Number: 001-13563 Rev. *M Page 12 of 54

I2C Hardware Block
commands. With the polled interface option in particular if this routine is entered without a ‘byte
complete’ flag set in the I2C_SCR register, it does not exit.

I2CHW_SendStop

Description:
Generates an I2C bus stop condition.

C Prototype:
void I2CHW_SendStop(void);

Assembler:
lcall I2CHW_SendStop ; Generate I2C stop condition

Parameters:
None

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.

I2CHW_fWrite

Description:
Sends a single-byte I2C bus write and ACK. This function does not generate a start or stop condition.
This routine should ONLY be called when a previous start and address has been generated on the
I2C bus. It should only be used when I2C_BYTE_COMPL is set in the I2C_SCR register.

C Prototype:
BYTE I2CHW_fWrite(BYTE bData);

Assembler:
mov A,[bRamData] ; Load data to send to slave
lcall I2CHW_fWrite ; Initiate I2C write

Parameters:
bData: Byte to be sent to slave.

Return Value:
The return value is nonzero, if the slave acknowledged the master. The return value is zero, if the
slave did not acknowledge the master. If the Slave failed to acknowledged the Master, the value of
bStatus is 0xff.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Document Number: 001-13563 Rev. *M Page 13 of 54

I2C Hardware Block
Currently, only the CUR_PP page pointer register is modified. The I2CHW interrupt is disabled if
previously enabled.

I2CHW_bRead

Description:
Initiates a single-byte I2C bus read and ACK phase. This function does not generate a start or stop
condition. The fACK flag determines whether the slave is acknowledged upon receiving the data. This
routine should ONLY be called when a previous start and address has been generated on the I2C
bus. It should only be used when I2C_BYTE_COMPL is set in the I2C_SCR register. If fACK is set, it
should be followed by next I2CHW_bRead call. To finish the read transaction Master should call this
function with I2CHW_NAKslave parameter.

C Prototype:
BYTE I2CHW_bRead(BYTE fACK);

Assembler:
mov A,I2CHW_ACKslave ; Set flag to ACK slave
lcall I2CHW_bRead ; Read single byte from slave

; Return data is in reg A

Parameters:
fACK: Set to I2CHW_ACKslave if master should ACK the slave after receiving the data; otherwise,
flag should be set to I2CHW_NAKslave. In general, the ACK from master means request for the next
data byte from the Slave. If set to I2CHW_ACKslave, the master after receiving current data byte and
ACKing will immediately clock in the next byte from the slave. This next byte will be returned the next
time I2CHW_bRead() is called. If set to I2CHW_NAKslave, the master will only NAK the current byte
and will not clock in a the next byte of data.

Return Value:
Byte received from slave.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified. The I2CHW interrupt is disabled if
previously enabled.

Slave Functions
The following functions are specific to the Slave version of the I2CHW User Module.

I2CHW_EnableSlave

Description:
Enable the I2C Slave function for the I2C HW block by setting the Enable Slave bit in the I2C_CFG
register.

C Prototype:
void I2CHW_EnableSlave(void);
Document Number: 001-13563 Rev. *M Page 14 of 54

I2C Hardware Block
Assembler:
lcall I2CHW_EnableSlave

Parameters:
None

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions. As
noted in the CY8C27xxxA datasheet, the I2C configuration registers should be written at 6 MHz CPU
clock speed. The routine implemented here does that. If writing directly to the configuration registers,
care should be taken to correctly perform the operation or I2C communication failures may occur.

I2CHW_DisableSlave

Description:
Disables the I2C Slave function by clearing the Enable Slave bit in the I2C_CFG register.

C Prototype:
void I2CHW_DisableSlave(void);

Assembler:
lcall I2CHW_DisableSlave

Parameters:
None

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions. As
noted in the CY8C27xxxA datasheet, the I2C configuration registers should be written at 6 MHz CPU
clock speed. The routine implemented here does that. If writing directly to the configuration registers,
care should be taken to correctly perform the operation or I2C communication failures may occur.

I2CHW_bReadI2CStatus

Description:
Returns the status bits in the Control/Status register.

C Prototype:
BYTE I2CHW_bReadI2CStatus(void);

Assembler:
lcall I2CHW_bReadI2CStatus ; Accumulator contains status
Document Number: 001-13563 Rev. *M Page 15 of 54

I2C Hardware Block
Parameters:
None

Return Value:
BYTE I2CHW_RsrcStatus

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.

I2CHW_ClrRdStatus

Description:
Clears the read status bits in the I2CHW_RsrcStatus register. No other bits are affected.

C Prototype:
void I2CHW_ClrRdStatus (void);

Assembler:
lcall I2CHW_ClrRdStatus

Parameters:
None

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.

Constant Value Description

 I2CHW_RD_NOERR 01h Data read by the master, normal ISR exit

 I2CHW_RD_OVERFLOW 02h More data bytes were read by the master than were available

 I2CHW_RD_COMPLETE 04h A read was initiated and is complete

 I2CHW_READFLASH 08h The next read is from a flash location

 I2CHW_WR_NOERR 10h Data was written successfully by the master

 I2CHW_WR_OVERFLOW 20h The master wrote too many bytes for the write buffer

I2CHW_WR_COMPLETE 40h A master write was completed by a new address or stop

 I2CHW_ISR_ACTIVE 80h The I2C ISR has not yet exited and is active
Document Number: 001-13563 Rev. *M Page 16 of 54

I2C Hardware Block
I2CHW_ClrWrStatus

Description:
Clears the write status bits in the I2CHW_RsrcStatus register. No other bits are affected.

C Prototype:
void I2CHW_ClrWrStatus (void);

Assembler:
lcall I2CHW_ClrWrStatus

Parameters:
None

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.

I2CHW_InitWrite

Description:
Initializes a data buffer pointer for the slave to use to deposit data, and initializes the value of a count
byte for the same buffer. Count is initialized to the maximum supplied buffer length. On the next
instance of a master write, data is placed at the address defined by this function.

C Prototype:
void I2CHW_InitWrite(BYTE * pWriteBuf, BYTE bBufLen);

Assembler:
AREA bss (RAM, REL)
abWriteBuf blk 10h

AREA text (ROM,REL)
 push X ; save registers
 push A
 add SP, 3
 mov X, SP
 dec X ; X points at data SP points at next

; empty stack location
 mov [X], <abWriteBuf ; place the buffer address

mov [X-1], >abWriteBuf ; (page 0)on the stack at [X]
 mov [X-2], 10 ; place the count at [x-2]
 ; don't care what [X-1] is
 ; the compiler would assign 0 as the
 ; MSB of the Ramtbl addr
 lcall I2CHW_InitWrite
 add SP, -3 ; restore the stack
 pop A ; restore registers
Document Number: 001-13563 Rev. *M Page 17 of 54

I2C Hardware Block
 pop X

Parameters:
pWriteBuf: Pointer to a RAM buffer location. buf_len: Length of write buffer.

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.

I2CHW_InitRamRead

Description:
Initializes a flash data buffer pointer from which the slave retrieves data, and initializes the value of a
count byte for the same buffer. Clears the I2CHW_SlaveStatus flag I2CHW_READFLASH to 0,
causing the next read to be attempted from a previously set buffer location in RAM.

C Prototype:
void I2CHW_InitRamRead(BYTE * pReadBuf, BYTE bBufLen);

Assembler:
AREA bss (RAM,REL)
abReadBuf: blk 10h

AREA text (ROM,REL)
 push X ; save registers
 push A
add SP, 3
 mov X, SP
 dec X ; X points at data SP points at next
 ; empty stack location
 mov [X], <abReadBuf ; place the read buffer address

mov [X-1], >abReadBuf ; (page0)on the stack at [X]
 mov [X-2], 10 ; place the count at [x-2]
 ; don't care what [X-1] is
 ; the compiler would assign 0 as
 ; the MSB of the Ramtbl addr
 lcall I2CHW_InitRamRead
 add SP, -3 ; back up the stack (subtract 3)
 pop A ; restore registers
 pop X

Parameters:
_ReadBuf: Pointer to a RAM buffer location. bBufLen: Length of read buffer.

Return Value:
None
Document Number: 001-13563 Rev. *M Page 18 of 54

I2C Hardware Block
Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.

I2CHW_InitFlashRead

Description:
Initializes a flash data buffer pointer for retrieval of data. Sets the I2CHW_SlaveStatus flag
I2CHW_READFLASH to 1, causing the next read to be attempted from a previously set buffer location
in flash.

C Prototype:
void I2CHW_InitFlashRead(const BYTE * pFlashBuf, WORD wBufLen);

Assembler:
area table(ROM,ABS)
org 0x1015

abFlashBuf:

 db 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88
 db 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff

area text(ROM,REL)

 push X ; save registers
 push A
 add SP, 4
 mov X, SP
 dec X ; X points at data SP points at next
 ; empty stack location
 mov [X], <abFlashBuf ; place the LSB of rom
 ; address on the stack at [X]
 mov [X-1], >abFlashBuf ; place the MSB of the rom address
 ; at [x-1] variable
 mov [X-2], 0x0F ; place the LSB of length
 ; at [x-2]
 mov [X-3], 0x00 ; place the MSB of length
 ; at [x-3]
 lcall I2CHW_InitFlashRead
 add SP, -4 ; adjust the stack (subtract 4)
 pop A ; restore registers
 pop X

Parameters:
pFlashBuf: Pointer to a flash/ROM buffer location. wBufLen: Length of buffer.

Return Value:
None
Document Number: 001-13563 Rev. *M Page 19 of 54

I2C Hardware Block
Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.

Master Functions
The following functions are specific to the Master version of the I2CHW User Module.
Note Two different methods of passing API parameters are supported within the given APIs. Early ver-

sions of the parameter passing method were obsolete with later C-compiler versions. The impact
of this change would only be felt by users using assembly code and the old API calling structure
with a small memory model device if they were upgrading their application to a large memory
model device. Newer applications may use the calling structures described in this section (new
style parameter passing) with assembly language implementations by adding an underscore to the
assembly call statement. No applications written in C are affected. This note applies only to Master
version of the I2CHW User Module. Routines that fit this description are: I2CHW_fReadBytes,
I2CHW_bWriteBytes, and I2CHW_bWriteCBytes.

I2CHW_EnableMstr

Description:
Enables the I2C HW block as a Master by setting the Enable Master bit in the I2C_CFG register.

C Prototype:
void I2CHW_EnableMstr(void);

Assembler:
lcall I2CHW_EnableMstr

Parameters:
None

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
As noted in the CY8C27xxxA datasheet, the I2C configuration registers should be written at 6 MHz
CPU clock speed. The routine implemented here does that. If writing directly to the configuration
registers, care should be taken to correctly perform the operation or I2C communication failures may
occur.

I2CHW_DisableMstr

Description:
Disables the I2C Master function by clearing the Enable Master bit in the I2C_CFG register.
Document Number: 001-13563 Rev. *M Page 20 of 54

I2C Hardware Block
C Prototype:
void I2CHW_DisableMstr(void);

Assembler:
lcall I2CHW_DisableMstr

Parameters:
None

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions. As
noted in the CY8C27xxxA datasheet, the I2C configuration registers should be written at 6 MHz CPU
clock speed. The routine implemented here does that. If writing directly to the configuration registers,
care should be taken to correctly perform the operation or I2C communication failures may occur.

I2CHW_bReadI2CStatus

Description:
Returns the status bits in the Control/Status register.

C Prototype:
BYTE I2CHW_bReadI2CStatus(void);

Assembler:
lcall I2CHW_bReadI2CStatus ; Accumulator contains status

Parameters:
None

Return Value:
BYTE I2CHW_RsrcStatus

See Table.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.
Document Number: 001-13563 Rev. *M Page 21 of 54

I2C Hardware Block
I2CHW_ClrRdStatus

Description:
Clears the read status bits in the I2CHW_RsrcStatus register. No other bits are affected.

C Prototype:
void I2CHW_ClrRdStatus (void);

Assembler:
lcall I2CHW_ClrRdStatus

Parameters:
None

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.

I2CHW_ClrWrStatus

Description:
Clears the write status bits in the I2CHW_RsrcStatus register. No other bits are affected.

C Prototype:
void I2CHW_ClrWrStatus (void);

Assembler:
lcall I2CHW_ClrWrStatus

Constant Value Description

 I2CHW_RD_NOERR 01h Data read by the master, normal ISR exit

 I2CHW_RD_ OVERFLOW 02h More data bytes were read by the master than were available

 I2CHW_RD_ COMPLETE 04h A read was initiated but has not yet been completed

 I2CHW_READFLASH 08h The next read is from a flash location

 I2CHW_WR_NOERR 10h Data was written successfully by the master

 I2CHW_WR_OVERFLOW 20h The master wrote too many bytes for the write buffer

I2CHW_WR_COMPLETE 40h A master write was completed by a new address or stop

 I2CHW_ISR_ACTIVE 80h The I2C ISR has not yet exited and is active
Document Number: 001-13563 Rev. *M Page 22 of 54

I2C Hardware Block
Parameters:
None

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.

I2CHW_fReadBytes

Description:
This is a Master function. It initiates a Read transaction with an addressed slave. Reads one or more
bytes (bCnt) from the slave I2C device and writes data to the array pointed to by pbXferData. Once
this routine is called, the included ISR handles further data.

C Prototype:
void I2CHW_fReadBytes(BYTE bSlaveAddr, BYTE * pbXferData, BYTE bCnt, BYTE bMode);

Assembler:
mov A,I2CHW_CompleteXfer ; Pass complete transfer flag
push A
mov A,0x09 ; Pass the byte count
push A
mov A,>sData ; Load the MSB of the sData pointer
push A
mov A,<sData ; Load the LSB of the sData pointer
push A

mov A,0x68 ; Pass slave address 0x68
push A
lcall _I2CHW_fReadBytes ; lcall function to read data from slave
 ; Reg A contains return value.
add sp,-5 ; Restore the stack

Parameters:
bSlaveAddr: 7-bit slave address. pbXferData: Pointer to data array in RAM bCnt: Count of data to
read. bMode: Mode of operation. If mode is set to I2CHW_CompleteXfer, a complete transfer is
performed. If mode is set to I2CHW_RepStart, or if the mode is set to I2CHW_NoStop, a stop is not
generated. This allows an I2C bus combined transfer to be sent to the slave. Subsequent transfers
may then be initiated with a repeat start. See the table at the end of this section.

Return Value:
None.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.
Document Number: 001-13563 Rev. *M Page 23 of 54

I2C Hardware Block
I2CHW_bWriteBytes

Description:
This is a Master function. It initiates a Write transaction with an addressed slave. Writes one or more
bytes (bCnt) to the slave addressed by (bSlaveAddr) from the RAM array pointed to by pbXferData.
Once this routine is called, the included ISR handles further data.

C Prototype:
void I2CHW_bWriteBytes(BYTE bSlaveAddr, BYTE * pbXferData, BYTE bCnt, BYTE bMode);

Assembler:
mov A,I2CHW_CompleteXfer ; Pass complete transfer flag
push A
mov A,0x09 ; Pass the byte count
push A
mov A,>sData ; Load the MSB of the sData pointer
push A
mov A,<sData ; Load the LSB of the sData pointer
push A
mov A,0x68 ; Pass slave address 0x68
push A
lcall _I2CHW_bWriteBytes ; lcall function to write data to slave
 ; Reg A contains return value.
add sp,-5 ; Restore the stack

Parameters:
bSlaveAddr: 7-bit slave address. pbXferData: Pointer to data array in RAM. bCnt: Count of data to
write. bMode: Mode of operation. If mode is set to I2CHW_CompleteXfer, a complete transfer is
performed. If mode is set to I2CHW_RepStart, or if the mode is set to I2CHW_NoStop, a stop is not
generated. This allows an I2C bus combined transfer to be sent to the slave. Subsequent turnovers
may then be initiated with a repeat start. See the table at the end of this section.

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.

I2CHW_bWriteCBytes

Description:
This is a Master function. It initializes a Write transaction with an addressed slave. Writes one or more
bytes (bCnt) from a constant flash array (pbXferData) to the slave addressed by bSlaveAddr. Once
the data transfer is initiated by this routine, further data transfer is handled by the included ISR.

C Prototype:
void I2CHW_bWriteCBytes(BYTE bSlaveAddr, const BYTE * pbXferData, BYTE bCnt, BYTE
bMode);
Document Number: 001-13563 Rev. *M Page 24 of 54

I2C Hardware Block
Assembler:
mov A,I2CHW_CompleteXfer ; Pass complete transfer flag
push A
mov A,0x09 ; Pass the byte count
push A
mov A,>sData ; Load the MSB of the sData pointer
push A
mov A,<sData ; Load the LSB of the sData pointer
push A
mov A,0x68 ; Pass slave address 0x68
push A
lcall _I2CHW_bWriteCBytes ; lcall function to write data to slave
 ; A contains return value.
add sp,-5 ; Restore the stack

Parameters:
bSlaveAddr: 7-bit slave address. pbXferData: Pointer to “const” data array in flash. bCnt: Count of
data to write. bMode: Mode of operation. If mode is set to I2CHW_CompleteXfer, a complete transfer
is performed. If mode is set to I2CHW_RepStart, or if the mode is set to I2CHW_NoStop, a stop is not
generated. This allows an I2C bus combined transfer to be sent to the slave. Subsequent turnovers
may then be initiated with a repeat start. See the table at the end of this section.

Return Value:
None.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.

Note The bMode parameter may be used to perform an I2C bus combined format transfer. To execute a
combined transfer, first execute an I2CHW_bWriteBytes or I2CHW_bWriteCBytes command with
the bMode parameter set to I2CHW_NoStop (0x02). This performs a write without a stop. Next,
execute an I2CHW_fReadBytes command with the bMode parameter set to I2CHW_RepStart
(0x01).

Constant Value Description

I2CHW_CompleteXfer 0x00 Perform complete transfer from Start to Stop

I2CHW_RepStart 0x01 Send Repeat Start instead of Start

I2CHW_NoStop 0x02 Execute transfer without a Stop
Document Number: 001-13563 Rev. *M Page 25 of 54

I2C Hardware Block
I2CHW_bReadBusStatus

Description:
Read the current value of the I2CHW_bStatus byte. This is an internal status byte to the API functions
and ISR used for the I2CHW User Module. No facility is given to change the data in
theI2CHW_bStatus byte.

C Prototype:
BYTE I2CHW_bReadBusStatus (void);

Assembler:
lcall I2CHW_bReadBusStatus

Parameters:
None

Return Value:
BYTE I2CHW_bStatus

For detailed description see the following table. These definitions are reporting status variables, not
status/control bits.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.

Multimaster Slave Functions
The following functions are specific to the MultiMasterSlave version of the I2CHW User Module.

I2CHW_EnableSlave

Description:
Enable the I2C Slave function for the I2C HW block by setting the Enable Slave bit in the I2C_CFG
register.

C Prototype:
void I2CHW_EnableSlave(void);

Assembler:
lcall I2CHW_EnableSlave

Parameters:
None

Constant Value Description

 RepStart, NoStop 01h, 02h Reserved for transfer options CompleteXfer/RepStart/NoStop

 NAKnextWr 04h Flag to tell slave to NAK next byte from master
Document Number: 001-13563 Rev. *M Page 26 of 54

I2C Hardware Block
Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions. As
noted in the CY8C27xxxA datasheet, the I2C configuration registers should be written at 6 MHz CPU
clock speed. The routine implemented here does that. If writing directly to the configuration registers,
care should be taken to correctly perform the operation or I2C communication failures may occur.

I2CHW_DisableSlave

Description:
Disables the I2C Slave function by clearing the Enable Slave bit in the I2C_CFG register.

C Prototype:
void I2CHW_DisableSlave(void);

Assembler:
lcall I2CHW_DisableSlave

Parameters:
None

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions. As
noted in the CY8C27xxxA datasheet, the I2C configuration registers should be written at 6 MHz CPU
clock speed. The routine implemented here does that. If writing directly to the configuration registers,
care should be taken to correctly perform the operation or I2C communication failures may occur.

I2CHW_EnableMstr

Description:
Enables the I2C HW block as a Master by setting the Enable Master bit in the I2C_CFG register.

C Prototype:
void I2CHW_EnableMstr(void);

Assembler:
lcall I2CHW_EnableMstr

Parameters:
None

Return Value:
None
Document Number: 001-13563 Rev. *M Page 27 of 54

I2C Hardware Block
Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions. As
noted in the CY8C27xxxA datasheet, the I2C configuration registers should be written at 6 MHz CPU
clock speed. The routine implemented here does that. If writing directly to the configuration registers,
care should be taken to correctly perform the operation or I2C communication failures may occur.

I2CHW_DisableMstr

Description:
Disables the I2C Master function by clearing the Enable Master bit in the I2C_CFG register.

C Prototype:
void I2CHW_DisableMstr(void);

Assembler:
lcall I2CHW_DisableMstr

Parameters:
None

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions. As
noted in the CY8C27xxxA datasheet, the I2C configuration registers should be written at 6 MHz CPU
clock speed. The routine implemented here does that. If writing directly to the configuration registers,
care should be taken to correctly perform the operation or I2C communication failures may occur.

I2CHW_InitSlaveWrite

Description:
Initializes a data buffer pointer for the MultiMasterSlave to use in slave mode to deposit data, and
initializes the value of a count byte for the same buffer. Count is initialized to the maximum supplied
buffer length. On the next instance of a master write, data is placed at the address defined by this
function.

C Prototype:
void I2CHW_InitSlaveWrite(BYTE * pWriteBuf, BYTE bBufLen);

Assembler:
AREA bss (RAM, REL)
abWriteBuf blk 10h

AREA text (ROM,REL)
 push X ; save registers
 push A
 add SP, 3
Document Number: 001-13563 Rev. *M Page 28 of 54

I2C Hardware Block
 mov X, SP
 dec X ; X points at data SP points at next
 ; empty stack location
 mov [X], <abWriteBuf ; place the buffer address

mov [X-1], >abWriteBuf ; (page 0)on the stack at [X]
 mov [X-2], 10 ; place the count at [x-2]
 ; don't care what [X-1] is
 ; the compiler would assign 0 as the
 ; MSB of the Ramtbl addr
 lcall I2CHW_InitSlaveWrite
 add SP, -3 ; restore the stack
 pop A ; restore registers
 pop X

Parameters:
pWriteBuf: Pointer to a RAM buffer location. buf_len: Length of write buffer.

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.

I2CHW_InitSlaveRamRead

Description:
Initializes a ram data buffer pointer from which the MultiMasterSlave in slave mode retrieves data, and
initializes the value of a count byte for the same buffer. Clears the I2CHW_SlaveStatus flag
I2CHW_READFLASH to 0 (Read status bits only), causing the next read to be attempted from a previ-
ously set buffer location in RAM.

C Prototype:
void I2CHW_InitSlaveRamRead(BYTE * pReadBuf, BYTE bBufLen);

Assembler:
AREA bss (RAM,REL)
abReadBuf: blk 10h

AREA text (ROM,REL)
 push X ; save registers
 push A
add SP, 3
 mov X, SP
 dec X ; X points at data SP points at next
 ; empty stack location
 mov [X], <abReadBuf ; place the read buffer address

mov [X-1], >abReadBuf ; (page0)on the stack at [X]
 mov [X-2], 10 ; place the count at [x-2]
 ; don't care what [X-1] is
 ; the compiler would assign 0 as
 ; the MSB of the Ramtbl addr
Document Number: 001-13563 Rev. *M Page 29 of 54

I2C Hardware Block
 lcall I2CHW_InitRamRead
 add SP, -3 ; back up the stack (subtract 3)
 pop A ; restore registers
 pop X

Parameters:
_ReadBuf: Pointer to a RAM buffer location. bBufLen: Length of read buffer.

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.

I2CHW_InitSlaveFlashRead

Description:
Initializes a flash data buffer pointer for retrieval of data. Sets the I2CHW_SlaveStatus flag
I2CHW_READFLASH to 1, causing the next read to be attempted from a previously set buffer location
in flash.

C Prototype:
void I2Cs_InitSlaveFlashRead(const BYTE * pFlashBuf, WORD wBufLen);

Assembler:
area table(ROM,ABS)
org 0x1015

abFlashBuf:

 db 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88
 db 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff

area text(ROM,REL)

 push X ; save registers
 push A
 add SP, 4
 mov X, SP
 dec X ; X points at data SP points at next
 ; empty stack location
 mov [X], <abFlashBuf ; place the LSB of rom
 ; address on the stack at [X]
 mov [X-1], >abFlashBuf ; place the MSB of the rom address
 ; at [x-1] variable
 mov [X-2], 0x0F ; place the LSB of length
 ; at [x-2]
 mov [X-3], 0x00 ; place the MSB of length
 ; at [x-3]
Document Number: 001-13563 Rev. *M Page 30 of 54

I2C Hardware Block
 lcall I2CHW_InitSlaveFlashRead
 add SP, -4 ; adjust the stack (subtract 4)
 pop A ; restore registers
 pop X

Parameters:
pFlashBuf: Pointer to a flash/ROM buffer location. wBufLen: Length of buffer.

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.

I2CHW_fReadBytes

Description:
This function initializes a Read transaction with an addressed slave. Reads one or more bytes (bCnt)
from the slave I2C device and writes data to the array pointed to by pbXferData. Once this routine is
called, the included ISR handles further data.

C Prototype:
void I2CHW_fReadBytes(BYTE bSlaveAddr, BYTE * pbXferData, BYTE bCnt, BYTE bMode);

Assembler:
mov A,I2CHW_CompleteXfer ; Pass complete transfer flag
push A
mov A,0x09 ; Pass the byte count
push A
mov A,>sData ; Load the MSB of the sData pointer
push A
mov A,<sData ; Load the LSB of the sData pointer
push A
mov A,0x68 ; Pass slave address 0x68
push A
lcall I2CHW_fReadBytes ; lcall function to read data from slave
 ; Reg A contains return value.
add sp,-5 ; Restore the stack

Parameters:
bSlaveAddr: 7-bit slave address. pbXferData: Pointer to data array in RAM bCnt: Count of data to
read. bMode: Mode of operation. If mode is set to I2CHW_CompleteXfer, a complete transfer is
performed. If mode is set to I2CHW_RepStart, or if the mode is set to I2CHW_NoStop, a stop is not
generated. This allows an I2C bus combined transfer to be sent to the slave. Subsequent transfers
may then be initiated with a repeat start. See the table at the end of this section.

Return Value:
None.
Document Number: 001-13563 Rev. *M Page 31 of 54

I2C Hardware Block
Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.

I2CHW_bWriteBytes

Description:
This function initializes a Write transaction with an addressed slave. Writes one or more bytes (bCnt)
to the slave addressed by (bSlaveAddr) from the RAM array pointed to by pbXferData. Once this
routine is called, the included ISR handles further data.

C Prototype:
void I2CHW_bWriteBytes(BYTE bSlaveAddr, BYTE * pbXferData, BYTE bCnt, BYTE bMode);

Assembler:
mov A,I2CHW_CompleteXfer ; Pass complete transfer flag
push A
mov A,0x09 ; Pass the byte count
push A
mov A,>sData ; Load the MSB of the sData pointer
push A
mov A,<sData ; Load the LSB of the sData pointer
push A
mov A,0x68 ; Pass slave address 0x68
push A
lcall I2CHW_bWriteBytes ; lcall function to write data to slave
 ; Reg A contains return value.
add sp,-5 ; Restore the stack

Parameters:
bSlaveAddr: 7-bit slave address. pbXferData: Pointer to data array in RAM. bCnt: Count of data to
write. bMode: Mode of operation. If mode is set to I2CHW_CompleteXfer, a complete transfer is
performed. If mode is set to I2CHW_RepStart, or if the mode is set to I2CHW_NoStop, a stop is not
generated. This allows an I2C bus combined transfer to be sent to the slave. Subsequent transfers
may then be initiated with a repeat start. See the table at the end of this section.

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.
Document Number: 001-13563 Rev. *M Page 32 of 54

I2C Hardware Block
I2CHW_bWriteCBytes

Description:
This function initializes a Write transaction with an addressed slave. Writes one or more bytes (bCnt)
from a constant flash array (pbXferData) to the slave addressed by bSlaveAddr. Once the data
transfer is initiated by this routine, further data transfer is handled by the included ISR.

C Prototype:
void I2CHW_bWriteCBytes(BYTE bSlaveAddr, const BYTE * pbXferData, BYTE bCnt, BYTE
bMode);

Assembler:
mov A,I2CHW_CompleteXfer ; Pass complete transfer flag
push A
mov A,0x09 ; Pass the byte count
push A
mov A,>sData ; Load the MSB of the sData pointer
push A
mov A,<sData ; Load the LSB of the sData pointer
push A
mov A,0x68 ; Pass slave address 0x68
push A
lcall I2CHW_bWriteCBytes ; lcall function to write data to slave
 ; A contains return value.
add sp,-5 ; Restore the stack

Parameters:
bSlaveAddr: 7-bit slave address. pbXferData: Pointer to “const” data array in flash. bCnt: Count of
data to write. bMode: Mode of operation. If mode is set to I2CHW_CompleteXfer, a complete transfer
is performed. If mode is set to I2CHW_RepStart, or if the mode is set to I2CHW_NoStop, a stop is not
generated. This allows an I2C bus combined transfer to be sent to the slave. Subsequent transfers
may then be initiated with a repeat start. See the table at the end of this section.

Return Value:
None.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.

Note The bMode parameter may be used to perform an I2C bus combined format transfer. To execute a
combined transfer, first execute an I2CHW_bWriteBytes or I2CHW_bWriteCBytes command with
the bMode parameter set to I2CHW_NoStop (0x02). This performs a write without a stop. Next,
execute an I2CHW_fReadBytes command with the bMode parameter set to I2CHW_RepStart
(0x01).
Document Number: 001-13563 Rev. *M Page 33 of 54

I2C Hardware Block
I2CHW_bReadSlaveStatus

Description:
Returns the status bits in the Control/Status register.

C Prototype:
BYTE I2CHW_bReadSlaveStatus(void);

Assembler:
lcall I2CHW_bReadSlaveStatus ; Accumulator contains status

Parameters:
None

Return Value:
BYTE I2CHW_SlaveStatus

See Table.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.

Constant Value Description

I2CHW_CompleteXfer 0x00 Perform complete transfer from Start to Stop

I2CHW_RepStart 0x01 Send Repeat Start instead of Start

I2CHW_NoStop 0x02 Execute transfer without a Stop

Constant Value Description

 I2CHW_RD_NOERR 01h Data read by the master, normal ISR exit

 I2CHW_RD_ OVERFLOW 02h More data bytes were read by the master than were available

 I2CHW_RD_ COMPLETE 04h A read was initiated and has been completed

 I2CHW_READFLASH 08h The next read is from a flash location

 I2CHW_WR_NOERR 10h Data was written successfully by the master

 I2CHW_WR_OVERFLOW 20h The master wrote too many bytes for the write buffer

I2CHW_WR_COMPLETE 40h A master write was completed by a new address or stop

 I2CHW_ISR_ACTIVE 80h The I2C ISR has not yet exited and is active
Document Number: 001-13563 Rev. *M Page 34 of 54

I2C Hardware Block
I2CHW_ ClrSlaveRdStatus

Description:
Clears the read status bits in the I2CHW_SlaveStatus register. No other bits are affected.

C Prototype:
void I2CHW_ClrSlaveRdStatus (void);

Assembler:
lcall I2CHW_ClrSlaveRdStatus

Parameters:
None

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.

I2CHW_ ClrSlaveWrStatus

Description:
Clears the write status bits in the I2CHW_SlaveStatus register. No other bits are affected.

C Prototype:
void I2CHW_ClrSlaveWrStatus (void);

Assembler:
lcall I2CHW_ClrSlaveWStatus

Parameters:
None

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.

I2CHW_bReadMasterStatus

Description:
Returns the status bits in the Control/Status register.

C Prototype:
BYTE I2CHW_bReadMasterStatus(void);
Document Number: 001-13563 Rev. *M Page 35 of 54

I2C Hardware Block
Assembler:
lcall I2CHW_bReadMasterStatus ; Accumulator contains status

Parameters:
None

Return Value:
BYTE I2CHW_MasterStatus

See Table.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.

I2CHW_ ClrMasterRdStatus

Description:
Clears the read status bits in the I2CHW_MasterStatus register. No other bits are affected.

C Prototype:
void I2CHW_ClrMasterRdStatus (void);

Assembler:
lcall I2CHW_ClrMasterRdStatus

Parameters:
None

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.

Constant Value Description

 I2CHW_RD_NOERR 01h Data read by the master, normal ISR exit

 I2CHW_RD_ OVERFLOW 02h More data bytes were read by the master than were available

 I2CHW_RD_ COMPLETE 04h A read was initiated and has been completed

 I2CHW_READFLASH 08h The next read is from a flash location

 I2CHW_WR_NOERR 10h Data was written successfully by the master

 I2CHW_WR_OVERFLOW 20h The master wrote too many bytes for the write buffer

I2CHW_WR_COMPLETE 40h A master write was completed by a new address or stop

 I2CHW_ISR_ACTIVE 80h The I2C ISR has not yet exited and is active
Document Number: 001-13563 Rev. *M Page 36 of 54

I2C Hardware Block
I2CHW_ ClrMasterWrStatus

Description:
Clears the write status bits in the I2CHW_MasterStatus register. No other bits are affected.

C Prototype:
void I2CHW_ClrMasterWrStatus (void);

Assembler:
lcall I2CHW_ClrMasterWStatus

Parameters:
None

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.

I2CHW_bReadBusStatus

Description:
Read the current value of the I2CHW_bStatus byte. This is an internal status byte to the API functions
and ISR used for the I2CHW User Module. No facility is given to change the data in
theI2CHW_bStatus byte. This byte is used by all 3 versions of the I2CHW User Module but only to
given information to the MultiMasterSlave version because of the additional status information given
as a consequence of operation in a MultiMasterSlave environment.

C Prototype:
BYTE I2CHW_bReadBusStatus (void);

Assembler:
lcall I2CHW_bReadBusStatus

Parameters:
None

Return Value:
BYTE I2CHW_bStatus

For detailed description see table. Those definitions are reporting status variables, not status/control
bits.
Document Number: 001-13563 Rev. *M Page 37 of 54

I2C Hardware Block
Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.

I2CHW_fReadBytesNoStall

Description:
This function initializes a Read transaction with an addressed slave. Reads one or more bytes (bCnt)
from the slave I2C device and writes data to the array pointed to by pbXferData. Once this routine is
called, the included ISR handles further data as long as the bus is not busy servicing another master.

C Prototype:
BYTE I2CHW_fReadBytesNoStall(BYTE bSlaveAddr, BYTE * pbXferData, BYTE bCnt, BYTE
bMode);

Assembler:
mov A,I2CHW_CompleteXfer ; Pass complete transfer flag
push A
mov A,0x09 ; Pass the byte count
push A
mov A,>sData ; Load the MSB of the sData pointer
push A
mov A,<sData ; Load the LSB of the sData pointer
push A
mov A,0x68 ; Pass slave address 0x68
push A
lcall I2CHW_fReadBytesNoStall ; lcall function to read data from slave
; Reg A contains return value.
add sp,-5 ; Restore the stack

Parameters:
bSlaveAddr: 7-bit slave address.
pbXferData: Pointer to data array in RAM
bCnt: Count of data to read.

Constant Value Description

 RepStart, NoStop 01h, 02h Reserved for transfer options CompleteXfer/RepStart/NoStop

 BUS_BUSY 04h The bus is busy

 LOST_ARB 08h The master has lost arbitration

 BUS_ERROR 10h A bus error has occurred

 SLAVE_NAK 20h A slave has failed to respond

 ERROR 40h A requested operation failed

 ISR_ACTIVE 80h ISR is active and I2C operation
Document Number: 001-13563 Rev. *M Page 38 of 54

I2C Hardware Block
bMode: Mode of operation. If mode is set to I2CHW_CompleteXfer, a complete transfer is performed.
If mode is set to I2CHW_RepStart, or if the mode is set to I2CHW_NoStop, a stop is not generated.
This allows an I2C bus combined transfer to be sent to the slave. Subsequent transfers may then be
initiated with a repeat start. See the table at the end of this section.

Return Value:
BYTE I2CHW_MasterStatus if bus was not busy or 0xFF if the bus was busy.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.

I2CHW_bWriteBytesNoStall

Description:
This function initializes a Write transaction with an addressed slave. Writes one or more bytes (bCnt)
to the slave addressed by (bSlaveAddr) from the RAM array pointed to by pbXferData. Once this
routine is called, the included ISR handles further data as long as the bus is not busy servicing another
master.

C Prototype:
BYTE I2CHW_bWriteBytesNoStall(BYTE bSlaveAddr, BYTE * pbXferData, BYTE bCnt, BYTE
bMode);

Assembler:
mov A,I2CHW_CompleteXfer ; Pass complete transfer flag
push A
mov A,0x09 ; Pass the byte count
push A
mov A,>sData ; Load the MSB of the sData pointer
push A
mov A,<sData ; Load the LSB of the sData pointer
push A
mov A,0x68 ; Pass slave address 0x68
push A
lcall I2CHW_bWriteBytesNoStall ; lcall function to write data to slave
; Reg A contains return value.
add sp,-5 ; Restore the stack

Parameters:
bSlaveAddr: 7-bit slave address.
pbXferData: Pointer to data array in RAM.
bCnt: Count of data to write.
bMode: Mode of operation. If mode is set to I2CHW_CompleteXfer, a complete transfer is performed.
If mode is set to I2CHW_RepStart, or if the mode is set to I2CHW_NoStop, a stop is not generated.
This allows an I2C bus combined transfer to be sent to the slave. Subsequent transfers may then be
initiated with a repeat start. See the table at the end of this section.

Return Value:
BYTE I2CHW_MasterStatus if bus was not busy or 0xFF if the bus was busy.
Document Number: 001-13563 Rev. *M Page 39 of 54

I2C Hardware Block
Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.

I2CHW_bWriteCBytesNoStall

Description:
This function initializes a Write transaction with an addressed slave. Writes one or more bytes (bCnt)
from a constant flash array (pbXferData) to the slave addressed by bSlaveAddr. Once the data
transfer is initiated by this routine, further data transfer is handled by the included ISR as long as the
bus is not busy servicing another master.

C Prototype:
BYTE I2CHW_bWriteCBytesNoStall(BYTE bSlaveAddr, const BYTE * pbXferData, BYTE bCnt,
BYTE bMode);

Assembler:
mov A,I2CHW_CompleteXfer ; Pass complete transfer flag
push A
mov A,0x09 ; Pass the byte count
push A
mov A,>sData ; Load the MSB of the sData pointer
push A
mov A,<sData ; Load the LSB of the sData pointer
mov A,0x68 ; Pass slave address 0x68
push A
lcall I2CHW_ bWriteCBytesNoStall ; lcall function to write data to slave
; A contains return value.
add sp,-5 ; Restore the stack

Parameters:
bSlaveAddr: 7-bit slave address.
pbXferData: Pointer to “const” data array in flash.
bCnt: Count of data to write.
bMode: Mode of operation. If mode is set to I2CHW_CompleteXfer, a complete transfer is performed.
If mode is set to I2CHW_RepStart, or if the mode is set to I2CHW_NoStop, a stop is not generated.
This allows an I2C bus combined transfer to be sent to the slave. Subsequent transfers may then be
initiated with a repeat start. See the table at the end of this section.

Return Value:
BYTE I2CHW_MasterStatus if bus was not busy or 0xFF if the bus was busy.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Currently, only the CUR_PP page pointer register is modified.
Note The bMode parameter may be used to perform an I2C bus combined format transfer. To execute
a combined transfer, first execute an I2CHW_bWriteBytes or I2CHW_bWriteCBytes command with
Document Number: 001-13563 Rev. *M Page 40 of 54

I2C Hardware Block

.

the bMode parameter set to I2CHW_NoStop (0x02). This performs a write without a stop. Next,
execute an I2CHW_fReadBytes, or I2CHW_fReadBytesNoStall command if there are other masters
on the bus, with the bMode parameter set to I2CHW_RepStart (0x01).

I2CHW_ EnableHWAddrCheck

Description:
This function applies to only to the CY8C21x45 and CY8C22x45 device families. It enables the hard-
ware address comparison feature.

C Prototype:
void I2CHW_EnableHWAddrCheck (void);

Assembler:
lcall I2CHW_EnableHWAddrCheck

Parameters:
None

Return Value:
None

Side Effects:
Make sure that if the alternative slave address (flash registers) is enabled, the device does not
respond to it while the hardware address comparison feature is active. This is because the I2C slave
responds only to its primary address.

I2CHW_ DisableHWAddrCheck

Description:
This function applies to only to the CY8C21x45 and CY8C22x45 device families. It disables the hard-
ware address comparison feature.

C Prototype:
void I2CHW_DisableHWAddrCheck (void);

Constant Value Description

 I2CHW_RepStart 01h Internal status bit used to control stop/repeat start of Master

 I2CHW_NoStop 02h Internal status used to control stop/repeat start of Master

 I2CHW_BUS_BUSY 04h A flag indicating that the I2C bus is in use by this device

 I2CHW_LOST_ARB 08h Status flag to indicate the master lost arbitration to another master and did
NOT acquire control of the I2C bus

 I2CHW_BUS_ERROR 10h An illegal condition was detected on the I2C bus

 I2CHW_SLAVE_NAK 20h An external slave addressed by the this Master has NAK’ed it’s address

I2CHW_ERROR 40h This Master attempted an operation that was unsuccessful

 I2CHW_ISR_ACTIVE 80h Some sort of Master or Slave activity is currently in process for this device
Document Number: 001-13563 Rev. *M Page 41 of 54

I2C Hardware Block
Assembler:
lcall I2CHW_DisableHWAddrCheck

Parameters:
None

Return Value:
None

Side Effects:
Make sure that if the alternative slave address (flash registers) is enabled, the device does not
respond to it while the hardware address comparison feature is active. This is because the I2C slave
responds only to its primary address.

Sample Firmware Source Code
Here is an implementation of the I2CHW User Module configured as a slave:

/***/
/* Sample assembly code to commuinication with: */
/* C Master sample code. */
/* ASM Master sample code. */
/* */
/* This code writes and reads back echoed data from the slave. */
/* */
/* NOTE: 1. I2CHW does not depend on the CPU clock. */
/* 2. The instance name of the I2CHWs User Module is assumed to */
/* be I2CHW. */
/* 3. Device is assumed to be Large Memory Model. */
/***/
#include <m8c.h> // part specific constants and macros
#include "PSoCAPI.h" // PSoC API definitions for all User Modules

/* Define buffer size */
#define BUFFERSIZE 8
/* Setup a 8 byte buffer */
BYTE txRxBuffer[BUFFERSIZE];
BYTE status;

void I2C_poll(void)
{

status = I2CHW_bReadI2CStatus();
/* Wait to read data from the master */
if(status & I2CHW_WR_COMPLETE)
{

/* Data received - clear the Write status */
I2CHW_ClrWrStatus();
/* Reset the pointer for the next read data */
I2CHW_InitWrite(txRxBuffer,BUFFERSIZE);

}
/* wait until data is echoed */
if(status & I2CHW_RD_COMPLETE)
{

/* Data echoed - clear the read status */
Document Number: 001-13563 Rev. *M Page 42 of 54

I2C Hardware Block
I2CHW_ClrRdStatus();
/* Reset the pointer for the next data to echo */
I2CHW_InitRamRead(txRxBuffer,BUFFERSIZE);

}
}
void main(void)
{

/* Start the slave and wait for the master */
 I2CHW_Start();
 I2CHW_EnableSlave();
 /* Enable the global and local interrupts */
 M8C_EnableGInt;
 I2CHW_EnableInt();
 /* Setup the Read and Write Buffer - set to the same buffer */
 I2CHW_InitRamRead(txRxBuffer,BUFFERSIZE);
 I2CHW_InitWrite(txRxBuffer,BUFFERSIZE);
 /* Echo forever */
 while(1)
 {

I2C_poll();

// Place user code here to update and read structure data.
 // Please note that the I2C_poll() should be called often enough to properly

//serve I2C transactions.
 // Thus if user code is large call the I2C_poll() multiple times during main

//loop execution.
}

} //end of main

Implementation of the I2CHW User Module configured as a master:
/***/
/* Sample assembly code to commuinication with: */
/* C Slave sample code. */
/* ASM Slave sample code. */
/* */
/* This sample code will transmit data to a slave and then will read */
/* back from the slave. */
/* */
/* NOTE: 1. I2CHW does not depend on the CPU clock. */
/* 2. The instance name of the I2CHWm User Module is assumed to */
/* be I2CHW. */
/* 3. Device is assumed to be Large Memory Model. */
/***/
#include <m8c.h> // part specific constants and macros
#include "PSoCAPI.h" // PSoC API definitions for all User Modules

/* Define slave address */
#define SLAVE_ADDRESS 0x55
/* Define buffer size */
#define BUFFER_SIZE 0x08

/* Setup buffers */
BYTE txBuffer[BUFFER_SIZE];
BYTE rxBuffer[BUFFER_SIZE];
Document Number: 001-13563 Rev. *M Page 43 of 54

I2C Hardware Block
BYTE status;

void main(void)
{
 /* Start the master */
 I2CHW_Start();
 I2CHW_EnableMstr();
 /* Enable the global and local interrupts */
 M8C_EnableGInt;
 I2CHW_EnableInt();

/* Send and Receive forever*/
while(1)
 {
 /* Send the contents of the data in txBuffer */;
 I2CHW_bWriteBytes(SLAVE_ADDRESS, txBuffer, BUFFER_SIZE, I2CHW_CompleteXfer);
 /* Wait until the data is transferred */
 while(!(I2CHW_bReadI2CStatus() & I2CHW_WR_COMPLETE));
 /* Clear Write Complete Status bit */
 I2CHW_ClrWrStatus();

/* Read from the slave and place in rxBuffer */;
 I2CHW_fReadBytes(SLAVE_ADDRESS, rxBuffer, BUFFER_SIZE, I2CHW_CompleteXfer);
 /* Wait until the data is read */
 while(!(I2CHW_bReadI2CStatus() & I2CHW_RD_COMPLETE));
 /* Clear Read Complete Status bit */
 I2CHW_ClrRdStatus();

/* Increment 1st byte in txBuffer so the data changes each loop */
 txBuffer[0]++;
 }
} //end of main

Implementation of the I2CHW User Module configured as a MultiMasterSlave:
/***/
/* This sample code will receive data from Muster and */
/* transmit data to a Slave. */
/* */
/* The instance name of the I2CHWs User Module is assumed */
/* to be I2CHW. */
/* */
/* NOTE: 1. I2CHW does not depend on the CPU clock. */
/* 2. The instance name of the I2CHWm User Module is assumed to */
/* be I2CHW. */
/* 3. Device is assumed to be Large Memory Model. */
/***/
#include <m8c.h> // part specific constants and macros
#include "PSoCAPI.h" // PSoC API definitions for all User Modules

/* Define Slave address */
#define SLAVEADDRESS 0x7

/* Define buffer size */
#define BUFFERSIZE 0x10
Document Number: 001-13563 Rev. *M Page 44 of 54

I2C Hardware Block
void main(void)
{
 /* Setup buffer */
 BYTE TxRxBuffer[BUFFERSIZE];

/* Start the slave and master */
 I2CHW_Start();
 I2CHW_EnableSlave();
 I2CHW_EnableMstr();

/* Setup the read and write buffers */
 I2CHW_InitSlaveRamRead(TxRxBuffer,BUFFERSIZE);
 I2CHW_InitSlaveWrite(TxRxBuffer,BUFFERSIZE);

/* Enable the local and global interrupts */
 I2CHW_EnableInt();
 M8C_EnableGInt;

/* Loop forever */
 while(1)
 {
 /* Look for data write from master */
 if (I2CHW_bReadSlaveStatus() & I2CHW_WR_COMPLETE)
 {
 /* Data received - clear the Write status */
 I2CHW_ClrSlaveWrStatus();

/* Reset the pointer for the next write data */
 I2CHW_InitSlaveWrite(TxRxBuffer,BUFFERSIZE);

 /* Master sends the content of the data in Buffer to the Slave */
 I2CHW_bWriteBytes(SLAVEADDRESS, TxRxBuffer, BUFFERSIZE, I2CHW_CompleteXfer);

 /* Wait until the data is transferred */
 while(!(I2CHW_bReadMasterStatus() & I2CHW_WR_COMPLETE));

 /* Clear Write Complete Status bit */
 I2CHW_ClrMasterWrStatus();
 }

 /* If any Master has read data, it is necessary to reset the read pointer
 and clear the Read Complete Status bit for the correct next read of data */
 if (I2CHW_bReadSlaveStatus() & I2CHW_RD_COMPLETE)
 {
 /* Clear Read Complete Status bit */
 I2CHW_ClrSlaveRdStatus();

/* Reset the Read pointer */
 I2CHW_InitSlaveRamRead(TxRxBuffer,BUFFERSIZE);
 }

/* uncomment this code for Errors handling */
 // if (I2CHW_SlaveStatus & (I2CHW_WR_OVERFLOW | I2CHW_RD_OVERFLOW))
 //{
Document Number: 001-13563 Rev. *M Page 45 of 54

I2C Hardware Block
 // I2CHW_ClrSlaveWrStatus();
 // I2CHW_ClrSlaveRdStatus();
 // I2CHW_InitSlaveRamRead(buf_wr,2);
 // I2CHW_InitSlaveWrite(buf_wr,2);
 //}
 }
}

Implementation of the I2CHW User Module configured as a slave written in assembly code:
;***
;* Sample assembly code to commuinication with: *
;* C Master sample code. *
;* ASM Master sample code. *
;* *
;* This code writes and reads back echoed data from the slave. *
;* *
;* NOTE: 1. I2CHW does not depend on the CPU clock. *
;* 2. The instance name of the I2CHWm User Module is assumed to *
;* be I2CHW. *
;* 3. Device is assumed to be Large Memory Model. *
;***
include "m8c.inc" ; part specific constants and macros
include "memory.inc" ; Constants & macros for SMM/LMM and Compiler
include "PSoCAPI.inc" ; PSoC API definitions for all User Modules

BUFFERSIZE: equ 8

export txRxBuffer

area bss(RAM)

txRxBuffer: blk BUFFERSIZE

area text(ROM, REL)

export _main

_main:
 ; Initialize I2CHW
 lcall I2CHW_Start
 lcall I2CHW_EnableSlave
 ; Enable the global and local interrupts
 M8C_EnableGInt
 ; Enable the I2CHW as an ISR based process
 lcall I2CHW_EnableInt

; Set the Read Buffer
 mov A, BUFFERSIZE ; Pass the byte count
 push A
 mov A,>txRxBuffer ; Load the MSB of the rxBuffer pointer
 push A
 mov A,<txRxBuffer ; Load the LSB of the rxBuffer pointer
 push A
 lcall I2CHW_InitRamRead
Document Number: 001-13563 Rev. *M Page 46 of 54

I2C Hardware Block
 add SP, -3 ; Restore the stack

; Set the Write Buffer
 mov A, BUFFERSIZE ; Pass the byte count
 push A
 mov A,>txRxBuffer ; Load the MSB of the rxBuffer pointer
 push A
 mov A,<txRxBuffer ; Load the LSB of the rxBuffer pointer
 push A
 lcall I2CHW_InitWrite
 add SP,-3 ; Restore the stack

 ; Echo forever
 ; Wait until some data is transferred
 CheckI2CStatus:
 lcall I2CHW_bReadI2CStatus ; Accumulator contains status
 push A ; Preserve a copy of A for RD comparison

; Look for data read from master
 and A,I2CHW_RD_COMPLETE
 jnz ReadHappened
 ; Look for data write from master
pop A ; Retrieve preserved copy of A
 and A,I2CHW_WR_COMPLETE
 jnz WriteHappened

jmp CheckI2CStatus

 ReadHappened:
 ; Clears the read status bits in the I2CHW_RsrcStatus register
 lcall I2CHW_ClrRdStatus
 ;Reset the pointer for the next data to echo
 mov A,BUFFERSIZE ; Pass the byte count
 push A
 mov A,>txRxBuffer ; Load the MSB of the rxBuffer pointer
 push A
 mov A,<txRxBuffer ; Load the LSB of the rxBuffer pointer
 push A
 lcall I2CHW_InitRamRead
 add SP,-4 ; Restore the stack
jmp CheckI2CStatus

 WriteHappened:
 ; Clears the write status bits in the I2CHW_RsrcStatus register
 lcall I2CHW_ClrWrStatus
 ;Reset the pointer for the next data write
 mov A,BUFFERSIZE ; Pass the byte count
 push A
 mov A,>txRxBuffer ; Load the MSB of the rxBuffer pointer
 push A
 mov A,<txRxBuffer ; Load the LSB of the rxBuffer pointer
 push A
 lcall I2CHW_InitWrite
 add SP,-3 ; Restore the stack
 jmp CheckI2CStatus
Document Number: 001-13563 Rev. *M Page 47 of 54

I2C Hardware Block
;end _main

Implementation of the I2CHW User Module configured as a master written in assembly code:

;***
;* Sample assembly code to commuinication with: *
;* C Slave sample code. *
;* ASM Slave sample code. *
;* *
;* This sample code will transmit data to a slave and then will read *
;* back from the slave. *
;* *
;* NOTE: 1. I2CHW does not depend on the CPU clock. *
;* 2. The instance name of the I2CHWm User Module is assumed to *
;* be I2CHW. *
;* 3. Device is assumed to be Large Memory Model. *
;***
include "m8c.inc" ; part specific constants and macros
include "memory.inc" ; Constants & macros for SMM/LMM and Compiler
include "PSoCAPI.inc" ; PSoC API definitions for all User Modules

BUFFERSIZE: equ 0x08 ; Define buffer size
SLAVEADDRESS: equ 0x55 ; Define slave address

export txBuffer
export rxBuffer

area bss(RAM)

txBuffer: blk BUFFERSIZE
rxBuffer: blk BUFFERSIZE

area text(ROM, REL)

export _main

_main:
 ; Initialize I2CHW
 lcall I2CHW_Start
 lcall I2CHW_EnableMstr
 ; Enable the global and local interrupts
 M8C_EnableGInt
 ; Enable the I2CHW as an ISR based process
 lcall I2CHW_EnableInt

 ; Send the contents of the data in txBuffer
 WriteTXBuffer:
 mov A,I2CHW_CompleteXfer ; Pass complete transfer flag
 push A
 mov A,BUFFERSIZE ; Pass the byte count
 push A
 mov A,>txBuffer ; Load the MSB of the txBuffer pointer
 push A
 mov A,<txBuffer ; Load the LSB of the txBuffer pointer
Document Number: 001-13563 Rev. *M Page 48 of 54

I2C Hardware Block
 push A
 mov A,SLAVEADDRESS ; Pass slave address SLAVEADDRESS
 push A
 ; Call function to write data to slave
 lcall _I2CHW_bWriteBytes
 ; Reg A contains return value.
 add SP,-5 ; Restore the stack
 jmp CheckI2CStatus

 ; Read from the slave and place in rxBuffer
 ReadRXBuffer:
 mov A,I2CHW_CompleteXfer ; Pass complete transfer flag
 push A
 mov A,BUFFERSIZE ; Pass the byte count
 push A
 mov A,>rxBuffer ; Load the MSB of the rxBuffer pointer
 push A
 mov A,<rxBuffer ; Load the LSB of the rxBuffer pointer
 push A
 mov A,SLAVEADDRESS ; Pass slave address SLAVEADDRESS
 push A
 ; Call function to read data from slave
 lcall _I2CHW_fReadBytes
 ; Reg A contains return value.
 add SP,-5 ; Restore the stack
 jmp CheckI2CStatus ; Poll I2C status

 ; Wait until the data is transferred
 CheckI2CStatus:
 lcall I2CHW_bReadI2CStatus ; Accumulator contains status
 push A ; Preserve a copy of A for RD comparison
 and A, I2CHW_WR_COMPLETE
 jnz WriteHappened
 pop A ; Retrieve preserved copy of A
 and A, I2CHW_RD_COMPLETE
 jnz ReadHappened
 jmp CheckI2CStatus

 ReadHappened:
 ; Clears the read status bits in the I2CHW_RsrcStatus register
 lcall I2CHW_ClrRdStatus
 ; Do something after read
 ; Increment 1st byte in txBuffer so the data changes each loop
 inc [txBuffer+0]
 jmp WriteTXBuffer

 WriteHappened:
 ; Clears the write status bits in the I2CHW_RsrcStatus register
 lcall I2CHW_ClrWrStatus
 ; Do something with the data
 jmp ReadRXBuffer

;end _main

Implementation of the I2CHW User Module configured as a MultiMasterSlave written in assembly code:
Document Number: 001-13563 Rev. *M Page 49 of 54

I2C Hardware Block
;***
;* This sample code will receive data from Muster and *
;* transmit data to a slave. *
;* *
;* NOTE: 1. I2CHW does not depend on the CPU clock. *
;* 2. The instance name of the I2CHWm User Module is assumed to *
;* be I2CHW. *
;* 3. Device is assumed to be Large Memory Model. *
;***
include "m8c.inc" ; part specific constants and macros
include "memory.inc" ; Constants & macros for SMM/LMM and Compiler
include "PSoCAPI.inc" ; PSoC API definitions for all User Modules

; Define slave address
SLAVEADDRESS: equ 0x7

; Define buffer size
BUFFERSIZE: equ 0x10

area bss(RAM)

; Setup buffer
TxRxBuffer: blk BUFFERSIZE

area text(ROM, REL)

export _main

_main:
 ; Start the slave and master
 lcall I2CHW_Start
 lcall I2CHW_EnableSlave
 lcall I2CHW_EnableMstr

 ; Setup the read and write buffers of the Slave
 ; Set the read buffer
 mov A, BUFFERSIZE ; Pass the byte count
 push A
 mov A, >TxRxBuffer ; Load the MSB of the TxRxBuffer pointer
 push A
 mov A, <TxRxBuffer ; Load the LSB of the TxRxBuffer pointer
 push A
 lcall I2CHW_InitSlaveRamRead
 add SP, -3 ; Restore the stack

 ; Set the write buffer
 mov A, BUFFERSIZE ; Pass the byte count
 push A
 mov A,>TxRxBuffer ; Load the MSB of the TxRxBuffer pointer
 push A
 mov A,<TxRxBuffer ; Load the LSB of the TxRxBuffer pointer
 push A
 lcall I2CHW_InitSlaveWrite
 add SP,-3 ; Restore the stack
Document Number: 001-13563 Rev. *M Page 50 of 54

I2C Hardware Block
 ; Enable the local and global interrupts
 lcall I2CHW_EnableInt
 M8C_EnableGInt

; loop forever
loop:

 ; Look for data write from master
 lcall I2CHW_bReadSlaveStatus ; Accumulator contains status
 push A ; Preserve a copy of A for RD comparison
 and A, I2CHW_WR_COMPLETE
 jz ReadHappened

; Data received - clear the write status
lcall I2CHW_ClrSlaveWrStatus

; Reset the write pointer for the next write data
mov A, BUFFERSIZE ; Pass the byte count
 push A
 mov A,>TxRxBuffer ; Load the MSB of the TxRxBuffer pointer
 push A
 mov A, <TxRxBuffer ; Load the LSB of the TxRxBuffer pointer
 push A
 lcall I2CHW_InitSlaveWrite
 add SP,-3 ; Restore the stack

; Master sends the content of the data in Buffer to the Slave
mov A, I2CHW_CompleteXfer ; Pass complete transfer flag
 push A
 mov A,BUFFERSIZE ; Pass the byte count
 push A
 mov A,>TxRxBuffer ; Load the MSB of the TxRxBuffer pointer
 push A
 mov A, <TxRxBuffer ; Load the LSB of the TxRxBuffer pointer
 push A
 mov A,SLAVEADDRESS ; Pass slave address SLAVEADDRESS
 push A
 lcall _I2CHW_bWriteBytes; Reg A contains return value
 add SP,-5 ; Restore the stack

; Wait until the data is transferred
CheckI2CStatus:
 lcall I2CHW_bReadMasterStatus ; Accumulator contains status
 and A, I2CHW_WR_COMPLETE
 jz CheckI2CStatus

 ; Clear Write Complete Status bit
lcall I2CHW_ClrMasterWrStatus

; If any Master has read data, it is necessary to reset the read pointer
; and clear the Read Complete Status bit for the correct next read of data
ReadHappened:
 pop A ; Retrieve preserved copy of A
 and A,I2CHW_RD_COMPLETE
 jz ErrorHappened
Document Number: 001-13563 Rev. *M Page 51 of 54

I2C Hardware Block

; Clear Read Complete Status bit
lcall I2CHW_ClrSlaveRdStatus

; Reset the Read pointer
 mov A, BUFFERSIZE ; Pass the byte count
 push A
 mov A, >TxRxBuffer ; Load the MSB of the TxRxBuffer pointer
 push A
 mov A, <TxRxBuffer ; Load the LSB of the TxRxBuffer pointer
 push A
 lcall I2CHW_InitSlaveRamRead
 add SP, -3 ; Restore the stack

ErrorHappened:
 ;insert here code for Errors handling

jmp loop

Configuration Registers
This section describes the PSoC Resource Registers used or modified by the I2C HW User Module.
Table 1. Resource I2C_CFG: Bank 0 reg[D6] Configuration Register

Pin Select: Selects either SCL and SDA as P1[5]/P1[7] or P1[0]/P1[1].

Bus Error Interrupt Enable: Enable I2C interrupt generation on a Bus Error.

Stop Error Interrupt Enable: Enable an I2C interrupt on an I2C Stop condition.

Clock Rate[1,0]: Select among 3 valid Clock rates 50- 100- 400 kbps.

Enable Master: Enable the I2C HW block as a bus Master.

Enable Slave: Enable the I2C HW block as a bus Slave.
Table 2. Resource I2C_SCR: Bank 0 reg[D7] Status Control Register

Bus Error: Indicates a Bus Error condition has been detected.

Lost Arbitration: In MultiMaster mode indicates loss of arbitration for this device, (device does not control
bus).

Stop Status: An I2C stop condition has been detected.

Bit
 7 6 5 4 3 2 1 0

Value Reserved PinSelect Bus Error
IE

Stop IE Clock
Rate[1]

Clock
Rate[0]

Enable
Master

Enable
Slave

Bit 7 6 5 4 3 2 1 0

Value Bus Error Lost Arb Stop Status ACK out Address Transmit Last Recd
Bit (LRB)

Byte
Complete
Document Number: 001-13563 Rev. *M Page 52 of 54

I2C Hardware Block
ACK out: direct the I2C block to Acknowledge (1) or Not Acknowledge (0) a received byte.

Address: Received or transmitted byte is an address.

Transmit: Transmit bit is set by the firmware to define the direction of the byte transfer. Any Start detect or
write to the Start or Restart bit, when operating in Master mode will clear this bit. 0-Receive Mode, 1-
Transmit Mode.

Last Received Bit (LRB): Value of last received bit (bit 9) in a transmit sequence, status of Ack/Nak from
destination device.

Byte Complete: 8 data bits have been received. For Receive Mode, the bus is stalled waiting for an
Ack/Nak. For Transmit Mode Ack Nak has also been received (see LRB) and the bus is stalled for the next
action to be taken
Table 3. Resource I2C_DR: Bank 0 reg[D8] Data Register

Received or Transmitted data. To transmit data, this register must be loaded before a write to the
I2C_SCR register. Received data is read from this register. It may contain an address or data.
Table 4. Resource I2C_MSCR: Bank 0 reg[D9] Master Status Control Register

Bus Busy: Master Only, set when any bus Start condition is detected, cleared when a Stop condition is
detected.

Master Mode: Indicates the device is currently operating as a bus Master.

Restart Gen: Master only, may be set to generate a repeat start for the I2C bus.

Start Gen: Master Only, When bus becomes idle, generate an I2C bus start and transmit an I2C address
using data in the data register (I2C_DR).

Bit 7 6 5 4 3 2 1 0

Value Data

Bit 7 6 5 4 3 2 1 0

Value Reserved Reserved Reserved Reserved Bus Busy Master
Mode

Restart
Gen

Start Gen
Document Number: 001-13563 Rev. *M Page 53 of 54

I2C Hardware Block
Version History

Note PSoC Designer 5.1 introduces a Version History in all user module datasheets. This section docu-
ments high level descriptions of the differences between the current and previous user module ver-
sions.

Version Originator Description

1.6 DHA Added Version History.

1.7 DHA The following changes were done to the Start function:
1. Changed Initial Open-Drain Low drive mode of user module pins to HI-Z analog.
2. Enabled the I2C block.
3. Gave delay 5 nop instructions.
4. Restored the Initial I2C pin drive mode.

1.80 DHA Added I2CHW_bReadBusStatus() function for Master configuration.

Synchronized API function definitions in header files with datasheet.

Reorganized precompiler directives in .inc and .asm files.

1.80.b DHA Comment style changed from ':' to '//'.

1.90 DHA Updated the variable name "@INSTANCE_NAME`_DoBufferRepeatStart" to support two
I2C user module instances on the CY8C28X45 device.

1.90.b DHA 1. Added a note to the I2C Clock parameter description in this user module datasheet
about Clock Dependency on SYSCLK.

2. Updated the DC and AC Electrical Characteristics section in this user module datasheet.

1.90.c DHA Updated Sample firmware code slave mode in the user module datasheet.

2.00 MYKZ 1. Corrected method of clearing posted interrupts.

2. Added support of hardware address detection on the CY8C2xx45 family.
Document Number: 001-13563 Rev. *M Revised March 3, 2015 Page 54 of 54
Copyright © 2003-2015 Cypress Semiconductor Corporation. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility
for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended
to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products
in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

PSoC Designer™ and Programmable System-on-Chip™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works
of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with
a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is
prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems
where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer
assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

	Features and Overview
	Functional Description
	I2C and Sleep
	MultiMasterSlave Operation
	MultiMasterSlave APIs
	Design Considerations
	Dynamic Reconfiguration
	I2C Addressing
	Example

	DC and AC Electrical Characteristics
	Placement
	Parameters and Resources
	Interrupt Generation Control

	Application Programming Interface
	Common Functions
	Slave Functions
	Master Functions
	Multimaster Slave Functions

	Sample Firmware Source Code
	Configuration Registers
	Version History

