

Dual Gate MOSFET 48 V switch board Quick introduction

IFAG ATV MOS 25.01.2024

SOA and RDSON comparison Dualgate trench vs. Standard trench vs. Planar

	IAUTN08S5N012L Dual Gate 80 V OptiMOS™ 5 Trench technology	IAUT300N08S5N011 Standard 80 V OptiMOS™ 5 Trench technology	IPB80N08S2-07 Standard 80 V OptiMOS™ Planar technology
SOA 1 ms at max V_{DS} , $T_C = 25^{\circ}C$	14 A (Linear MOSFET)	1.7 A	14 A
R_{DSON} at V_{GS} = 10 V, T_{J} = 25°C	1.15 m Ω (Linear and On MOSFET)	1.10 mΩ	7.1 mΩ
Package footprint	TOLL (10x12x2.3 mm ³)	TOLL (10x12x2.3 mm ³)	D2PAK (15x11x4.4 mm ³)

Combining the best of 2 worlds with Dual Gate

Reaching levels of Planar MOSFET SOA, maintain low R_{DSON} and small solution size of trench technology

SOA comparison Standard OptiMOS[™] 5 vs. Dualgate Linear FET OptiMOS[™] 5

Dual Gate (Linear FET) OptiMOS[™] 5

Dual Gate (Linear FET) SOA significantly larger at high V_{DS}

Enabling new applications as e.g. in-rush current limitation, short circuit clamping and slow switching

Transfercharacteristics comparison Standard OptiMOS[™] 5 vs. Dualgate Linear FET OptiMOS[™] 5

Standard OptiMOS[™] 5

Dual Gate (Linear FET) OptiMOS[™] 5

Dual Gate (Linear FET) improved current accuracy due to low transconductance and process variation

Enabling paralleling in linear mode operation

Dual Gate MOSFET 80 V Application examples

Capacitor charging

- LINFET current limited via V_{GS} adjustment according to transfer-characteristics.
- Pulsed capacitor charging to limit self-heating.
- Flexible control of PWM and switching speed.
- ONFET can be turned on to minimize steady state losses after capacitor is fully charged.

Short circuit clamping

- D_C limits the V_{DS} voltage to avoid avalanche (no hot carrier injection). Instead the MOSFET operates in linear mode to dissipate inductor energy.
- LINFET allows higher currents in linear mode and gives more flexibility for clamping circuit design.
- ONFET can be turned on to minimize steady state losses during normal operation.

Dual Gate MOSFET 80 V Capacitor pre-charging with power resistor vs. Dual Gate MOSFET

Reduction of system cost (no pre-charge circuit needed) and acceleration of capacitor charging

Dual Gate MOSFET 80 V 48 V switch board (uni-directional)

Dual Gate 48 V switch board (uni-directional)

Perfect fit for 48 V disconnect switch applications

- Power distribution
- Battery management
- Electrically heated catalyst

Used Infineon components

- Dual Gate MOSFETs IAUTN08S5N012L: 80 V, max. R_{DS(on)} 1.15 mΩ
- Freewheeling MOSFET: IAUT300N08S5N012
- 48 V high-side driver: 2ED4820-EM

- System advantages

- Supports fast pulsed capacitor charging with Dual Gate MOSFET to minimize system costs (no separate pre-charging path needed).
- Active clamping capable to dissipate inductive energy from cable harness. Dual Gate MOSFET operates in linear mode instead of avalanche to increase short circuit robustness and increase drain-source voltage clamp accuracy.

Evaluation Board (available for purchase) Part number: DG_48V_SWITCH_KIT

Contact your Infineon salesperson for support

Check out infineon.com for more information Click here

Dual Gate MOSFET 80 V 48 V switch board (uni-directional) overview

Main Board

Adapter Board

Board description 48 V Dual Gate MOSFET disconnect switch board with µC control

Simplified schematic Dual Gate 48V switch board

Clamping circuit

- Zener diode $\rm D_{C}$ to limit $\rm V_{\rm DS}$ to 68 V
- BJT circuit for optimized clamping speed and high V_{DS} clamp accuracy: V_{DS,clamp} ≈ V_{DC}
- Reverse diode D_R to avoid reverse currents

Capacitor charging circuit

- Gate voltage limited by Zener diode
 D_{GC} 5.6 V to limit in-rush current
- 22 nF for slow switching
- 100 Ω resistance to decouple the capacitor charging circuit from the clamping circuit

Capacitor charging setup – simplified schematic

Capacitor charging setup

Capacitor charging – waveforms, first three pulses

Capacitor charging – waveforms, all pulses

Short-circuit clamping setup – simplified schematic

Short-circuit clamping setup

Short-circuit clamping setup – waveforms

OneEye control suite – Dual Gate MOSFET part 1

lain DriverSettings									
125 ¹⁵⁰ 175 100 75 Alve 250 50 25 0 Min rec	crocontroller retve status						VBAT+ [V] VLD+ [V] Current [1]	47.95 0.07 -0.04	
Faults									
Vbat.UV	Vbat OV Vdd UV	Chip Temp	VDS OV A	VGSUVA	VDSOVB	VGS UV B	OVCURR	Cpump UV	SAF EN
- Warnings				Monitorin	£			-	
			OVERTEMP	MEMFAIL S	PLADD NAVA	SOURCE OVA			Cpump RDY
annel A (ONFET)		Channel B (LINFET)							
	CHA ON/OFF		CHB ON/OFF				Current offset correction	Cle OneEye config version 01.00	ear faults MCU software version: (
ulse pattern									
ode	B Fixed duty cycle		Period [us]	1000	5	C	Start pu	lse pattern	
To set number values press ENTER. Please use channel B only for capacitor cha	arging.		Start duty cycle [96]	5					
Start duty cycle defines the time of the firs End duty cycle defines the time of the last	t pulse. pulse.		End duty cycle[%]	0			Stop pi	lse nattern	
E.g. 5% at a period of 1 ms means 50 μs or	n-time.		Cycles	1					
				Setup CAN Interface	2				

OneEye control suite – Dual Gate MOSFET part 2

File Options view Help						
1ain DriverSettings						
General						
Channel cross control	OFF		Current sense highsid or lowside	Current sense highsid or lowside		
VBAT undervoltage auto-restart time	nrt time		Current sense amplifier gain G_DIFF		35 V/V	
	,	1		Overcurrent detection thresholds		
VBAT overvoltage auto-restart time	10 µs	<u>*</u>	Current sense amplifier output capacitor		Output load > 100 pF	
Channel						
Channel A			Channel B			
)rain-source overvoltage threshold	250 mV	250 mV 💌			250 mV	
/DS safe state	Disabled		VDS safe state		Disabled	
4OS voltage blank time	10 µs	10 μs Υ		MOS voltage blank time MOS voltage filter time		
4OS voltage filter time	2 µs					
Read driver register		Set driv	er register	Microcontroller receive status		
		Setup CA	AN Interface			
box						
box zin (naded: C2)Infineon/Tools/OneEye/2.58.2.202308041657/bin/bin/oluvin	v/PCom Core-dil					

Disclaimer

- The information given in this presentation is given as a hint for the implementation of the Infineon Technologies components only and shall not be regarded as any description or warranty of a certain functionality, conditions or quality of the Infineon Technologies component(s)
- The statements contained in this communication, including any recommendation or suggestion or methodology, are to be verified by the user before implementation, as operating conditions and environmental factors may differ. The recipient of this presentation must verify any function described herein in the real application
- Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this presentation

