

www.cypress.com Document No. 001-76348 Rev. *E 1

AN76348

Differences in Implementation of EZ-USB® FX2LP™ and EZ-USB FX3™
Applications

Author: Rama Sai Krishna V
Associated Part Family: CY7C6801XA, CYUSB301X

Related Application Note`s: For a complete list of the application notes, click here.

With the release of the USB 3.0 specification, USB controller chips required rearchitecting to handle the ten-fold

increase in USB bandwidth over the USB 2.0 specification. Cypress offers USB controllers for applications based on

USB 2.0 (EZ-USB® FX2LP™) and USB 3.0 (EZ-USB FX3™). This application note describes the implementation

differences between the two controllers. Example applications highlight those differences at the architectural, hardware,

and firmware framework levels. While this application note emphasizes the new FX3 features, it provides links to FX2LP

background materials. For the complete list of SuperSpeed code examples, visit http://www.cypress.com/?rID=101781

and for the complete list of Hi-Speed code examples, visit http://www.cypress.com/?rID=101782.

Contents

1 Introduction .. 1
2 Architectural Differences ... 2
3 Serial Interfaces ... 3
4 GPIF Versus GPIF II .. 3
5 Hardware Differences .. 4

5.1 Power Supply Configurations and
Decoupling Capacitance 4

5.2 Booting Options .. 5
5.3 Crystal/Clock ... 6

6 Software Differences ... 7
6.1 Development Tools ... 7
6.2 USB Host-Side Applications................................ 7

7 Programmer’s View of FX3 .. 7
8 FX2LP and FX3 Firmware Framework Differences 8

8.1 FX2LP Firmware Framework 8
8.2 Bulkloop Example on FX2LP 8

8.3 FX3 Firmware Framework 9
8.4 Bulkloop Example on FX3 11

9 Slave FIFO Interfaces of FX2LP and FX3 17
9.1 Flag Usage ... 18

10 UVC Camera Designs Based on FX2LP and FX3 18
10.1 Image Sensor Interface..................................... 18
10.2 Implementation with FX2LP 19
10.3 Implementation with FX3 19
10.4 Use of an I2C Module in FX2LP and FX3 20
10.5 Debug FX2LP and FX3 Firmware

Using UART .. 20
11 Available Collateral .. 21
12 About the Author ... 21
Appendix A. Compiling FX2LP Project on Linux 22
Document History .. 23
Worldwide Sales and Design Support 24

1 Introduction

Cypress EZ-USB FX3 is a USB 3.0 peripheral controller with highly integrated and flexible features that add USB 3.0
functionality to any system.

FX3 has a fully configurable, parallel general programmable interface called GPIF II, which can connect to an external
processor, ASIC, or FPGA. The GPIF II is an enhanced version of the GPIF in FX2LP, Cypress’s flagship USB 2.0
product. GPIF II provides glueless connectivity to popular interfaces such as asynchronous SRAM, asynchronous and
synchronous address data multiplexed interface, and others. To accommodate the USB 3.0 SuperSpeed signaling
rates, FX3 offers architectural enhancements over FX2LP such as a RISC processor and DMA system. This application
note explains the architectural differences and introduces the FX3 RTOS-based firmware frameworks.

http://www.cypress.com/
http://www.cypress.com/?id=193
http://www.cypress.com/?id=3526&tabID=60939
http://www.cypress.com/?rID=101781
http://www.cypress.com/?rID=101782

 Differences in Implementation of EZ-USB® FX2LP™ and EZ-USB FX3™ Applications

www.cypress.com Document No. 001-76348 Rev. *E 2

EZ-USB FX2LP-based designs are not directly portable to FX3 due to the architectural differences. This application
note uses a simple LED blinking example to introduce the FX3 firmware frameworks. It then uses a simple example,
bulkloop, to explain the differences in the firmware frameworks and to provide guidelines on how an FX2LP application
can be modified to work on FX3. The bulkloop example loops data over two USB BULK endpoints under the control of
a Windows based application.

Note: This application note is intended for users who have experience working with the FX2LP device.

The following application notes can help you get started working with FX2LP or FX3:

▪ AN65209 – Getting Started with FX2LP™ gives you background information about USB 2.0 along with the
hardware, firmware, and software aspects of working with the FX2LP.

▪ AN75705 – Getting Started with EZ-USB® FX3™ contains background information about USB 3.0 and
comparisons with USB 2.0. It details the hardware, firmware, and software aspects of working with the FX3.

2 Architectural Differences

Figure 1 and Figure 2 show the FX2LP and FX3 block diagrams, respectively. Table 1 summarizes the feature
differences.

Figure 1. FX2LP Block Diagram

Figure 2. FX3 Block Diagram

http://www.cypress.com/
http://www.cypress.com/?rID=48371
http://www.cypress.com/?rID=59979

 Differences in Implementation of EZ-USB® FX2LP™ and EZ-USB FX3™ Applications

www.cypress.com Document No. 001-76348 Rev. *E 3

Table 1. Feature Differences Between FX2LP and FX3

Feature FX2LP FX3

Core 8051 ARM926EJ-S

CPU speed 48 MHz 200 MHz

RAM 16 KB 512 KB

Endpoints 7 32

Serial interfaces supported I2C, UART I2C, UART, I2S, SPI

Flexible programmable
interfaces

GPIF, 48 MHz, 8 – and
16-bit interface

GPIF II, 100 MHz, 8-, 16-, and 32-bit interface

USB USB 2.0 device
USB 3.0 device (includes USB 2.0 device support),
USB 2.0 OTG

Speeds supported High Speed, Full Speed SuperSpeed, High Speed, Full Speed

GPIOs Up to 40 Up to 60

JTAG debugger Not available Supported

Support for battery
charging spec 1.1

No Yes

Package options

56-pin QFN
(8 x 8 mm)

100-pin TQFP
(14 x 20 x 1.4 mm)

128-pin TQFP
(14 x 20 x 1.4 mm)

56-pin VFBGA
(5 x 5 x 1.0 mm)

56-pin SSOP

121-ball FBGA (10 x 10 x 1.2 mm)

3 Serial Interfaces

Table 2 lists the details on the serial interfaces supported by FX2LP and FX3.

Table 2. Serial Interfaces Supported by FX2LP and FX3

Serial
Interface

FX2LP FX3

I2C Master only at 100 and 400 kHz Master only at 100 kHz, 400 kHz and 1 MHz

UART Baud rates from 2.4 Kbps to 230.4 Kbps Range of baud rates from 300 bps to 4608 Kbps

I2S Not supported I2S master as transmitter only; sampling frequencies supported by the
I2S interface are 32 kHz, 44.1 kHz, and 48 kHz

SPI Not supported; SPI master interface can
be implemented by bit-banging GPIOs

SPI master; maximum frequency of operation is 33 MHz

4 GPIF Versus GPIF II

FX3 offers a high-performance general programmable interface, GPIF II. This interface enables functionality similar to
but more advanced than the FX2LP’s GPIF and Slave FIFO interfaces.

The GPIF II is a programmable state machine that enables a flexible interface that functions either as a master or a
slave in industry-standard or proprietary interfaces. Both parallel and serial interfaces can be implemented with GPIF
II.

The features of the GPIF II are as follows:

▪ Functions as master or slave.

http://www.cypress.com/
http://www.cypress.com/?rID=49544

 Differences in Implementation of EZ-USB® FX2LP™ and EZ-USB FX3™ Applications

www.cypress.com Document No. 001-76348 Rev. *E 4

▪ Provides 256 firmware programmable states.

▪ Supports 8-bit, 16-bit, 24–bit, and 32-bit parallel data bus.

▪ Enables interface frequencies up to 100 MHz

▪ Supports 14 configurable control pins when a 32-bit data bus is used. All control pins can be either input/output or
bidirectional.

▪ Supports 16 configurable control pins when a 16-bit or 8-bit data bus is used. All control pins can be either
input/output or bidirectional.

Table 3 lists the main difference between the FX2LP GPIF interface and the FX3 GPIF II interface.

Table 3. Differences Between GPIF and GPIF II

Feature GPIF GPIF II

Interface clock 48 MHz 100 MHz

Data bus width 8-bit and 16-bit 8-bit, 16-bit, 24-bit, and 32-bit

Address lines 9 32 when data bus is 8-bit

Control/status lines CTL[5:0] and RDY[5:0] 14 when 32-bit data bus is used

16 when 16- or 8-bit data bus is used

Number of states 8 (including IDLE) 256

Software tool GPIF designer GPIF II designer

5 Hardware Differences

The following application notes describes the hardware design guidelines for FX2LP and FX3, including the
recommended pad sizes.

▪ Hardware design guidelines for FX2LP: AN15456 – Guide to Successful EZ-USB® FX2LP™ Hardware Design

▪ Hardware design guidelines for FX3: AN70707 – EZ-USB® FX3™/FX3S™ Hardware Design Guidelines and
Schematic Checklist

5.1 Power Supply Configurations and Decoupling Capacitance

FX2LP requires a supply voltage of 3.3 V. FX3 requires multiple power supplies for its various internal blocks. Table 4
shows the different power domains and the voltage settings on each of these domains for FX3.

Table 4. FX3 Power Domains

Parameter Description Min (V) Max (V) Typical (V)

VDD Core voltage supply 1.15 1.25 1.2

AVDD Analog voltage supply 1.15 1.25 1.2

VIO1 GPIF II I/O power domain 1.7 3.6 1.8, 2.5, and 3.3

VIO2 IO2 power domain 1.7 3.6 1.8, 2.5, and 3.3

VIO3 IO3 power domain 1.7 3.6 1.8, 2.5, and 3.3

VIO4 UART/SPI/I2S power domain 1.7 3.6 1.8, 2.5, and 3.3

VIO5 I2C and JTAG supply domain 1.15 3.6 1.2, 1.8, 2.5, and 3.3

VBATT USB voltage supply 3.2 6 3.7

VBUS USB voltage supply 4.1 6 5

CVDDQ Clock voltage supply 1.7 3.6 1.8, 3.3

U3TXVDDQ USB 3.0 1.2-V supply 1.15 1.25 1.2

U3RXVDDQ USB 3.0 1.2-V supply 1.15 1.25 1.2

http://www.cypress.com/
http://www.cypress.com/?rID=14448
http://www.cypress.com/?rID=59628
http://www.cypress.com/?rID=12956
http://www.cypress.com/?rID=53203
http://www.cypress.com/?rID=53203

 Differences in Implementation of EZ-USB® FX2LP™ and EZ-USB FX3™ Applications

www.cypress.com Document No. 001-76348 Rev. *E 5

Table 5. shows the I/O voltage comparison for FX2LP and FX3.

Table 5. I/O Voltage Comparison

Parameter Description Min (V) Max (V) Conditions

FX2LP FX3 FX2LP FX3 FX2LP FX3

VIH Input HIGH voltage 2 0.625 x VCC 5.25 VCC + 0.3 –
2.0 V ≤ VCC ≤ 3.6

V*

VCC – 0.4 VCC + 0.3
1.7 V ≤ VCC ≤ 2.0

V*

VIL Input LOW voltage –0.5 –0.3 0.8 0.25x VCC – –

VOH Output HIGH voltage 2.4 0.9 x VCC – – IOUT = 4 mA IOH (max) = –100 μA

VOL Output LOW voltage – – 0.4 0.1 x VCC IOUT = –0.4mA IOH (min) = 100 μA

*Except the USB port; VCC is the corresponding I/O voltage supply.

Refer to the FX2LP and FX3 datasheets for more details on I/O voltages.

FX2LP designs require 0.1-μF ceramic decoupling capacitors on the device power pins. Table 6 shows FX3 power
supply decoupling recommendations.

Table 6. Power Domain Decoupling Requirements

Cap Value (µF) Number of Caps Pin Name

0.01, 0.1, 22 4 of 0.01 µF, 3 of
0.1 µF, 1 of 22 µF

VDD

0.1, 2.2 1 of each AVDD

0.1, 22 1 of each U3TXVDDQ

0.1, 22 1 of each U3RXVDDQ

0.1, 0.01 1 of each CVDDQ

0.1, 0.01 1 of each per supply VIO1-5

0.1 1 VBUS

5.2 Booting Options

FX2LP boots from USB or from an I2C EEPROM. FX3 can load boot images from various sources, selected by the
configuration of the PMODE pins. The boot options for FX3 are:

▪ Boot from USB

▪ Boot from I2C (ATMEL and Microchip EEPROMs are supported)

▪ Boot from SPI (SPI devices supported are M25P16 (16 Mb), M25P80 (8 Mb), M25P40 (4 Mb), and their equivalents

▪ Boot from GPIF II Async ADMUX mode

▪ Boot from GPIF II Sync ADMUX mode

▪ Boot from GPIF II Async SRAM mode

See AN50963 for more details on FX2LP boot options and AN76405 for more details on FX3 boot options.

http://www.cypress.com/
http://www.cypress.com/?rID=38801
http://www.cypress.com/?rID=50120
http://www.cypress.com/?rID=34253
http://www.cypress.com/?rID=63358

 Differences in Implementation of EZ-USB® FX2LP™ and EZ-USB FX3™ Applications

www.cypress.com Document No. 001-76348 Rev. *E 6

Table 7 shows the levels of the PMODE[2:0] signals required for the different booting options.

Table 7. PMODE Signals Setting

PMODE[2:0] Boot From

F00 Sync ADMUX (16-bit)

F01 Async ADMUX (16-bit)

F11 USB boot

F0F Async SRAM (16-bit)

F1F I2C, on Failure, USB boot

1FF I2C only

0F1 SPI, on Failure, USB boot

F = Float. The PMODE pin floats by leaving it unconnected.

If an external EEPROM is used on the I2C bus for firmware image booting, then the SCL and SDA lines should be
pulled high using 2 kΩ to VIO5 of FX3.

Cypress recommends adding pull-up and pull-down options on the PMODE [2:0] signals and loading the combination
needed for the preferred booting option. Adding the options gives the flexibility to debug the system during early
development.

5.3 Crystal/Clock

FX2LP and FX3 support an external clock input along with the crystal input. FX2LP has a CLKOUT pin that can supply
a 12-, 24-, or 48-MHz clock. FX3 does not have the ability to provide a system clock to the external world. This system
clock is different from the interface clock provided by GPIF or GPIF II.

Table 8 lists the details of the clock or crystal inputs that these two devices accept.

Table 8. Clock/Crystal Supported by FX2LP and FX3

 FX2LP FX3

External clock 24 MHz 19.2, 26, 38.4, and 52 MHz

Crystal 24 MHz 19.2 MHz

CLKOUT Available Not available

Three Frequency Select pins FSLC[2:0] determine FX3 clocking. These pins should be tied to ground or CVDDQ
through weak pull-up resistors (10 kΩ). Table 9 shows the values of FSLC[2:0] for different clocking options.

Table 9. Frequency Select Configuration

FSLC[2] FSLC[1] FSLC[0] Crystal/Clock

0 0 0 19.2-MHz crystal

1 0 0 19.2-MHz input clock

1 0 1 26-MHz input clock

1 1 0 38.4-MHz input clock

1 1 1 52-MHz input clock

http://www.cypress.com/

 Differences in Implementation of EZ-USB® FX2LP™ and EZ-USB FX3™ Applications

www.cypress.com Document No. 001-76348 Rev. *E 7

6 Software Differences

6.1 Development Tools

The FX2LP firmware framework used in the FX2LP Development Kit (DVK) uses the Keil µVision2 IDE and a firmware
framework based on an event loop.

Firmware development for FX2LP devices can also be done using Eclipse IDE and SDCC compiler on Linux and
Windows systems. Refer to Appendix. A Compiling FX2LP Project on Linux. Please note that Cypress uses Keil C51
C compiler for verifying all FX2LP examples and associated projects.

FX3 development tools include an Eclipse-based IDE and an RTOS called “ThreadX.” The IDE includes a compiler,
linker, assembler, and JTAG debugger. You can download the free FX3 Software Development Kit (SDK).

6.2 USB Host-Side Applications

Control Center: Cypress includes a PC-based Control Center application in the FX3 SDK. You can use this application

to program both FX2LP and FX3, either to download code into RAM or to program an external boot EEPROM.

Streamer: The streamer application for FX3 is similar to the one in FX2LP. Using this application, you measure the

throughput numbers for the ISO and BULK streams.

Bulkloop: The FX3 SDK includes a bulkloop application to test the bulkloop example. The application gives you the

option to send different types of data to run this bulkloop test.

You can find all these applications in the following path once you install the FX3 SDK in the default location:

C:\Program Files (x86)\Cypress\EZ-USB FX3 SDK\1.3\application\

Table 10 lists the differences in the software resources available for FX2LP and FX3.

Table 10. Software Resources for FX2LP and FX3

Software Tools FX2LP FX3

Compiler Keil C51 C Compiler Arm® GCC C Compiler

Assembler Keil A51 Assembler Arm GCC Assembler

IDE Keil Eclipse-based IDE

Driver CyUSB3.sys† or CyUSB.sys CyUSB3.sys

Applications Control Center Control Center

Tool to develop GPIF interface GPIF Designer GPIF II Designer*

† CyUSB3.sys is recommended for new designs. Cypress recommends that you migrate existing designs to use CyUSB3.sys. Cypress
no longer supports CyUSB.sys.

* FX3 GPIF II Designer is not compatible with FX2LP.

7 Programmer’s View of FX3

The FX3 comes with the easy-to-use EZ-USB tools, giving you a complete solution for fast application development
(see Figure 3). Use the FX3 device to:

▪ Configure and manage USB functionality, such as charger detection, USB device/host detection, and endpoint
configuration

▪ Connect to different master and slave peripherals on the GPIF interface

▪ Connect to serial peripherals (UART, SPI, GPIO, I2C, I2S)

▪ Set up, control, and monitor data flows between the peripherals (USB, GPIF, and serial peripherals)

▪ Perform necessary operations, such as data inspection, data modification, addition/deletion of packet header and
footer information.

http://www.cypress.com/
http://www.cypress.com/?rID=14321
http://www.cypress.com/?rID=57990
http://www.cypress.com/?rID=57990

 Differences in Implementation of EZ-USB® FX2LP™ and EZ-USB FX3™ Applications

www.cypress.com Document No. 001-76348 Rev. *E 8

Two other important entities are external to the FX3:

▪ USB host/device

 When the FX3 is connected to a USB host, it functions as a USB device. The FX3 enumerates as a
SuperSpeed, high-speed, or full-speed USB peripheral corresponding to the host type.

 When a USB device is connected, the FX3 plays the role of the corresponding high-speed,
full-speed, or low-speed USB host.

▪ GPIF II master/slave

 GPIF II is a fully configurable interface and can use any application-specific protocol. You can connect any
processor, ASIC, DSP, or FPGA to the FX3. The FX3 bootloader or firmware configures GPIF II to support the
corresponding interface.

Figure 3. Programming View of FX3

8 FX2LP and FX3 Firmware Framework Differences

8.1 FX2LP Firmware Framework

FX2LP code development uses a Cypress firmware framework that implements a control loop and low-level routines
to handle USB events. Cypress firmware examples are framework based, so the best way to start is to use one of the
examples as a reference and make the necessary modifications. These examples are available when you install the
FX2LP DVK.

You can understand the differences in the firmware framework for FX2LP and FX3 by studying the bulkloop example.

8.2 Bulkloop Example on FX2LP

The bulkloop example is in the directory Cypress\USB\Examples\FX2LP\Bulkloop after you install the FX2LP DVK.

If you look at the FX2LP firmware framework, you can see the following files, which interact as shown in Figure 4.

▪ fw.c: This is the main framework source file. It contains main(), the task dispatcher, and the SETUP command

handler. For most firmware projects, there is no need to modify this file. Four dispatcher functions are called in

main(): TD_Init(), TD_Poll(), TD_Suspend(), and TD_Resume().

TD_Init() is called once during the initialization of the framework. TD_Poll() is called repeatedly during device

operation. TD_Poll() contains the logic that implements your peripheral function.

▪ bulkloop.c: This source file contains initialization and task dispatch function definitions that are called from fw.c.
This is where you customize the frameworks for your specific device, in this case, bulkloop transfers.

▪ dscr.a51: This is the assembly file that contains your device’s custom descriptors.

▪ USBJmpTb.OBJ: This object code contains the ISR jump table for USB and GPIF interrupts.

http://www.cypress.com/
http://www.cypress.com/?rID=14321

 Differences in Implementation of EZ-USB® FX2LP™ and EZ-USB FX3™ Applications

www.cypress.com Document No. 001-76348 Rev. *E 9

8.2.1 FX2LP Firmware API Library

EZUSB.LIB: The EZ-USB library is an 8051 .LIB file that implements functions that are common to many firmware
projects. Typically, there is no reason to modify these functions, so they are provided in library form. However, the kit
includes the library source code if you need to modify a function or if you simply want to know how something is done.

The TD_Poll() function in bulkloop.c implements the bulkloop application code. Bulkloop is a simple application that

can be tested using the USB Control Center included in the FX2LP DVK. Using the USB Control Center, you download
the bulkloop code (a .hex file) into FX2LP RAM. Refer to AN50963 for the details on different ways of downloading
code into FX2LP. Then you can test the application using Control Center to send and receive BULK transfers over
FX2LP BULK endpoints. Data sent to EP2-OUT loops back over EP6-IN, and data sent to EP4-OUT loops back over
EP8-IN.

Figure 4. Structure of an FX2LP Application

main() {

TD_init();

Enable Interrupts

while(1)

 {

 if(GotSUD)

 TD_Poll();

 }}

fw.c

Descriptors

Handle

EP0

dscr.a51

GET_DESCRIPTOR

bulkloop.c

BOOL DR_SetConfiguration(void)

BOOL DR_GetConfiguration(void)

BOOL DR_Set_Interface(void)

BOOL DR_Get_Interface(void)

TD_Init()

{….}

TD_Poll()

{....}

void ISR_EP2inout(void)

void ISR_EP6inout(void)

void ISR_Sof(void)

8.3 FX3 Firmware Framework

FX3 firmware uses a different approach than the single event loop of FX2LP firmware. Instead, the FX3 development
tools use an RTOS, ThreadX, to launch and run concurrent application threads.

Before comparing the bulkloop example with the FX2LP implementation, a simple example that reads a push button
and blinks an LED illustrates the basic structure of the FX3 application code. Figure 5 shows this structure.

Figure 5. Structure of an FX3 Application

CyFxApplicationDefine

Create 2 threads

GpioOutputThread_EntryGpioInputThread_Entry

CyFxDebugInit

CyFxGpioInit

CyFxGpioIntrCb

Wait for Input Event

Print message

Input: post Event

Sleep 1 sec

LED ON

Sleep 1 sec

LED OFF

Interrupt

This simple application is provided in the FX3 SuperSpeed Explorer Kit webpage under the title “First FX3 App.” The
FX3 SuperSpeed Explorer Kit User Guide shows different ways to download and debug FX3 code:

http://www.cypress.com/
http://www.cypress.com/?rID=34253
http://www.cypress.com/documentation/development-kitsboards/cyusb3kit-003-ez-usb-fx3-superspeed-explorer-kit

 Differences in Implementation of EZ-USB® FX2LP™ and EZ-USB FX3™ Applications

www.cypress.com Document No. 001-76348 Rev. *E 10

▪ Download and run code

▪ Download and run code with serial debug

▪ Download and debug over JTAG

The CyFxApplicationDefine function creates two threads. Threads run concurrently on a time-shared basis as the

application executes. This example creates two threads, one for output (the LED) and the other for input (the push
button).

The Output thread initializes the serial debugger and creates an interrupt callback link to the function
CyFxGpioIntrCb. Then it runs a continuous loop that blinks the LED. Timing is accomplished by telling the thread to

sleep for a programmed number of milliseconds, 1000 ms in this example. Putting threads to sleep until work is a good
way to save power and maximize CPU utilization.

Part of the GPIO initialization is to cause an interrupt on any change of the push button state. A state change calls the
CyFxGpioIntrCb ISR. Serial debug messages cannot be printed from the GPIO callback as it runs in the interrupt

context. All interrupts compete for CPU attention, and there may be more important tasks at hand. ThreadX handles
this by providing a messaging system whereby the ISR posts a message for another noninterrupt function to execute.

The Input thread is the recipient of the message to print a debug message. It runs a continuous loop that checks for
the message posted by the ISR and prints the debug message over the serial port.

You can build powerful and flexible applications using FX3 firmware examples and API libraries provided with the FX3
SDK installation. The firmware (or application) framework contains the startup and initialization code. The firmware
library contains the individual drivers for the USB, GPIF II, and serial interface blocks. The framework does the following:

▪ Defines the program entry point

▪ Performs the stack setup

▪ Performs kernel initialization

▪ Provides placeholders for application thread startup code

8.3.1 Firmware API Library

The FX3 API library provides a comprehensive set of APIs to control and communicate with the FX3 hardware. These
APIs provide a complete programmatic view of the FX3 hardware.

8.3.2 cyfxapi .a , cyu3lpp.a , cyu3threadx.a

The FX3 SDK includes a full-fledged API library. This API library is similar to EZUSB.LIB in the FX2LP toolset. You

need to manually link these libraries to your project.

The API library and the corresponding header files provide all the APIs required for programming the different blocks
of FX3. The APIs provide for the following:

▪ Programming each of the individual blocks of the FX3 device: GPIF II, USB, and serial interfaces

▪ Programming the DMA engine and setting up data flows between these blocks

▪ The overall framework for application development, including system boot and initialization, OS entry, and
application initialization.

▪ ThreadX OS calls as required by the application

▪ Power management features

▪ Logging capability for debug support

8.3.3 Embedded Real-T ime OS

Because the FX3 firmware framework is based on an RTOS, the drivers for various peripheral blocks in the platform
are typically implemented as separate threads. Standard OS services such as semaphores, message queues, mutexes,
and timers are used for interthread communication and task synchronization and are available through the library.

The framework provides hooks for the application logic to configure the device behavior and to perform data transfers
through it. The application logic can be implemented across multiple threads and use all the OS services that are used
by the Cypress provided drivers.

http://www.cypress.com/
http://www.cypress.com/?rID=57990

 Differences in Implementation of EZ-USB® FX2LP™ and EZ-USB FX3™ Applications

www.cypress.com Document No. 001-76348 Rev. *E 11

The embedded RTOS in the FX3 device uses the ThreadX operating system from Express Logic. The application logic
makes available for use all the functionality supported by the ThreadX OS. Some constraints on their use help ensure
smooth functioning of all the drivers.

The ThreadX services are not directly exposed by the firmware framework. This is to ensure that the application logic
is independent of the OS used and need not be changed to accommodate any future changes in the embedded OS.
The OS services are made available through a set of platform-specific wrappers.

8.4 Bulkloop Example on FX3

This section revisits the bulkloop application to compare FX3 development with that of FX2LP.

When the FX3 SDK is downloaded and installed, the bulkloop example is located in the following directory:

C:\Program Files (x86)\Cypress\EZ-USB FX3 SDK\1.3\firmware\dma_examples\cyfxbulklpauto

The bulkloop example consists of these files:

▪ cyfx_gcc_startup.S: This file contains the FX3 startup code.

▪ cyfxbulklpauto.h: This file contains the defines used in cyfxbulklpdscr.c.

▪ cyfxbulklpdscr.c: This file contains the USB descriptors. It is similar to dscr.a51 in the FX2LP toolset.

▪ cyfxtx.c: This file defines the porting required for the ThreadX RTOS. It is provided in source form and must be
compiled with the application source code.

▪ cyfxbulklpauto.c: This file contains the main application logic of the bulkloop example.

8.4.1 Firmware Entry

The entry point for the FX3 firmware is the CyU3PFirmwareEntry() function. This function is defined in the FX3 API

library and is not visible to the user. As part of the linker options, the entry point is specified as the
CyU3PFirmwareEntry() function.

Note: Refer to FX3APIGuide.pdf located at C:\Program Files (x86)\Cypress\EZ-USB FX3 SDK\1.3\doc to learn the
definition of FX3 APIs.

The firmware entry function performs these actions:

▪ Invalidates the caches (which were used by the bootloader)

▪ Initialize the memory management unit (MMU) and the caches

▪ Initializes the SYS, FIQ, IRQ, and SVC stack modes

▪ Transfers execution to the tool chain initialization (CyU3PToolChainInit()) function.

8.4.2 Tool Chain Ini t ia l iza t ion

The next step in the initialization sequence is a tool-specific initialization of the stacks and C library. Since all required
stack initialization is performed by the firmware entry function, the tool chain initialization is overridden, so the stacks
are not reinitialized.

The tool chain initialization function is written for the GNU GCC compiler for Arm processors. You can find this part of
code in cyfx_gcc_startup.S. There is no need to modify this file.

In this function, only two actions are performed:

▪ The BSS area (a part of the data segment containing statically-allocated variables) is cleared.

▪ Control is transferred to the main().

http://www.cypress.com/

 Differences in Implementation of EZ-USB® FX2LP™ and EZ-USB FX3™ Applications

www.cypress.com Document No. 001-76348 Rev. *E 12

8.4.3 Device In i t ia l iza t ion

The function main() is the C programming language entry for the FX3 firmware. This function performs the following

consecutive actions.

1. Device initialization: This is the first step in the main().

status = CyU3PDeviceInit (NULL);

As part of the device initialization, The CPU clock is set up. A NULL is passed as an argument for

CyU3PDeviceInit() to select the default clock configuration.

2. Device cache configuration: The second step configures the device caches. FX3 has an 8-KB data cache and an
8-KB instruction cache. In this example instruction & data cache are enabled.

status = CyU3PDeviceCacheControl (CyTrue, CyTrue, CyTrue);

3. I/O matrix configuration: The third step configures the required I/Os. This includes the GPIF II and the serial
interfaces (SPI, I2C, I2S, GPIO, and UART).

io_cfg.isDQ32Bit = CyFalse;

io_cfg.useUart = CyTrue;

io_cfg.useI2C = CyFalse;

io_cfg.useI2S = CyFalse;

io_cfg.useSpi = CyFalse;

io_cfg.lppMode = CY_U3P_IO_MATRIX_LPP_UART_ONLY;

/* No GPIOs are enabled. */

io_cfg.gpioSimpleEn[0] = 0;

io_cfg.gpioSimpleEn[1] = 0;

io_cfg.gpioComplexEn[0] = 0;

io_cfg.gpioComplexEn[1] = 0;

status = CyU3PDeviceConfigureIOMatrix (&io_cfg);

In this bulkloop example:

a. GPIF II interface is not used

b. GPIO, I2C, I2S, and SPI interfaces are not used

c. Only the UART interface is used

The I/O matrix configuration data structure is initialized and the CyU3PDeviceConfigureIOMatrix function (in

the library) is invoked.

4. The final step in the main() invokes the OS scheduler by issuing a call to the CyU3PKernelEntry() function.

This function is defined in the library and is a nonreturning call. It is a wrapper to the actual ThreadX OS entry call.
This function:

a. Initializes the OS

b. Sets up the OS timer used for scheduling

http://www.cypress.com/

 Differences in Implementation of EZ-USB® FX2LP™ and EZ-USB FX3™ Applications

www.cypress.com Document No. 001-76348 Rev. *E 13

8.4.4 Appl icat ion Defin i t ion

The FX3 library calls the function CyFxApplicationDefine()after the OS is invoked. In this function, you create

application-specific threads. This function is similar to the TD_Init() function in FX2LP firmware, since it is called

only once.

In the bulkloop example, only one thread is created in the application define function.

/* Allocate the memory for the threads */

 ptr = CyU3PMemAlloc (CY_FX_BULKLP_THREAD_STACK);

/* Create the thread for the application */

 retThrdCreate = CyU3PThreadCreate (&BulkLpAppThread, /* Bulk

loop App Thread structure */

 "21:Bulk_loop_AUTO",

/* Thread ID and Thread name */

 BulkLpAppThread_Entry,

/* Bulk loop App Thread Entry function */

 0, /* No input parameter to thread */

 ptr, /* Pointer to the allocated thread

stack */

 CY_FX_BULKLP_THREAD_STACK, /* Bulk loop

App Thread stack size */

 CY_FX_BULKLP_THREAD_PRIORITY, /* Bulk loop App

Thread priority */

 CY_FX_BULKLP_THREAD_PRIORITY, /* Bulk loop

App Thread priority */

 CYU3P_NO_TIME_SLICE, /* No time slice for

the application thread */

CYU3P_AUTO_START /* Start the Thread immediately */

);

Note that more threads (as required by the user application) can be created in the application define function. All other
FX3 specific programming must be done only in the user threads.

8.4.5 Appl icat ion Code

In the bulkloop example, one Auto DMA channel is created after setting up the Producer (OUT) and Consumer (IN)
endpoints. This DMA channel connects the two sockets of the USB port. Two endpoints, 1 IN and 1 OUT, are configured
as bulk endpoints. The endpoint maxPacketSize is updated based on the speed.

CyU3PUSBSpeed_t usbSpeed = CyU3PUsbGetSpeed();

/* First identify the usb speed. Once that is identified, create a DMA channel and

start the transfer on this. */

/* Based on the Bus Speed configure the endpoint packet size */

switch (usbSpeed)

 {

 case CY_U3P_FULL_SPEED:

 size = 64;

 break;

 case CY_U3P_HIGH_SPEED:

 size = 512;

 break;

 case CY_U3P_SUPER_SPEED:

 size = 1024;

 break;

 }

CyU3PMemSet ((uint8_t *)&epCfg, 0, sizeof (epCfg));

epCfg.enable = CyTrue;

http://www.cypress.com/

 Differences in Implementation of EZ-USB® FX2LP™ and EZ-USB FX3™ Applications

www.cypress.com Document No. 001-76348 Rev. *E 14

epCfg.epType = CY_U3P_USB_EP_BULK;

epCfg.burstLen = 1;

epCfg.streams = 0;

epCfg.pcktSize = size;

/* Producer endpoint configuration */

apiRetStatus = CyU3PSetEpConfig(CY_FX_EP_PRODUCER, &epCfg);

/* Consumer endpoint configuration */

apiRetStatus = CyU3PSetEpConfig(CY_FX_EP_CONSUMER, &epCfg);

/* Create a DMA Auto Channel between two sockets of the U port.

 * DMA size is set based on the USB speed. */

 dmaCfg.size = size;

 dmaCfg.count = CY_FX_BULKLP_DMA_BUF_COUNT;

 dmaCfg.prodSckId = CY_FX_EP_PRODUCER_SOCKET;

 dmaCfg.consSckId = CY_FX_EP_CONSUMER_SOCKET;

 dmaCfg.dmaMode = CY_U3P_DMA_MODE_BYTE;

 dmaCfg.notification = 0;

 dmaCfg.cb = NULL;

 dmaCfg.prodHeader = 0;

 dmaCfg.prodFooter = 0;

 dmaCfg.consHeader = 0;

 dmaCfg.prodAvailCount = 0;

apiRetStatus = CyU3PDmaChannelCreate (&glChHandleBulkLp,

 CY_U3P_DMA_TYPE_AUTO, &dmaCfg);

8.4.6 Appl icat ion Thread

The Application entry point for the bulkloop example is the BulkLpAppThread_Entry () function. This function is

similar to TD_Poll () in the FX2LP firmware, where you write the application logic.

/* Entry function for the BulkLpAppThread. */

void

BulkLpAppThread_Entry (uint32_t input)

{

 /* Initialize the debug module */

 CyFxBulkLpApplnDebugInit();

 /* Initialize the bulk loop application */

 CyFxBulkLpApplnInit();

 for (;;)

 {

 CyU3PThreadSleep (1000);

 }

}

The main actions performed in this thread are the following:

1. Initialize the debug mechanism.

2. Initialize the main bulkloop application.

The following sections explain these steps.

http://www.cypress.com/

 Differences in Implementation of EZ-USB® FX2LP™ and EZ-USB FX3™ Applications

www.cypress.com Document No. 001-76348 Rev. *E 15

8.4.7 Debug In i t ia l izat ion

The debug module uses the FX3 UART to output debug messages. The UART must be configured before the debug
mechanism is initialized. This is done by invoking the UART init function.

/* Initialize the UART for printing debug messages */

apiRetStatus = CyU3PUartInit();

The next step is to configure the UART. The UART data structure is first filled in and then passed to the UART
configuration function.

/* Set UART Configuration */

uartConfig.baudRate = CY_U3P_UART_BAUDRATE_115200;

uartConfig.stopBit = CY_U3P_UART_ONE_STOP_BIT;

uartConfig.parity = CY_U3P_UART_NO_PARITY;

uartConfig.txEnable = CyTrue;

uartConfig.rxEnable = CyFalse;

uartConfig.flowCtrl = CyFalse;

uartConfig.isDma = CyTrue;

apiRetStatus = CyU3PUartSetConfig (&uartConfig, NULL);

The UART transfer size is set to maximum so debug messages are not size-limited.

/* Set the UART transfer */

apiRetStatus = CyU3PUartTxSetBlockXfer (0xFFFFFFFF);

Finally, the debug module is initialized. The two main parameters are as follows:

▪ The destination for debug prints, which is the UART socket

▪ The verbosity of the debug that is set to level 8, so all debug prints that are below this level (0 to 7) will be printed

/* Initialize the Debug application */

apiRetStatus = CyU3PDebugInit

(CY_U3P_LPP_SOCKET_UART_CONS, 8);

8.4.8 Appl icat ion Ini t ia l izat ion

The application initialization consists of these steps.

USB Initialization

1. The USB stack in the FX3 library is initialized. The initialization is done by invoking the USB Start function.

/* Start the USB functionality */

apiRetStatus = CyU3PUsbStart();

2. The next step is to register for callbacks. In this example, callbacks are registered for USB setup requests and
USB events.

CyU3PUsbRegisterSetupCallback(CyFxBulkLpApplnUSBSetupCB, CyTrue);

 /* Setup the callback to handle the USB events. */

 CyU3PUsbRegisterEventCallback(CyFxBulkLpApplnUSBEventCB);

The callback functions and the callback handling are described in the later sections: USB Setup Callback and USB
Event Callback.

3. The USB descriptors are set by invoking the USB Set Descriptor call for each descriptor.

/* Set the USB Enumeration descriptors */

/* Device Descriptor */

apiRetStatus = CyU3PUsbSetDesc(CY_U3P_USB_SET_HS_DEVICE_DESCR, NULL,

(uint8_t *)CyFxUSB20DeviceDscr);

http://www.cypress.com/

 Differences in Implementation of EZ-USB® FX2LP™ and EZ-USB FX3™ Applications

www.cypress.com Document No. 001-76348 Rev. *E 16

The previous code snippet is for setting the Device Descriptor. The other descriptors set in the example are Device
Qualifier, Other Speed, Configuration, BOS (for SuperSpeed), and String Descriptors.

4. The FX3 USB pins are connected to the bus. The FX3 USB device is visible to the host only after calling the

CyU3PConnectState API.

Therefore, it is important to complete all USB setup before connecting the USB pins.

/* Connect the USB Pins */

/* Enable Super Speed operation */

apiRetStatus = CyU3PConnectState(CyTrue, CyTrue);

8.4.9 USB Setup Cal lback

USB Standard requests are handled by the firmware library, and the vendor- and class-specific requests need to be
serviced by the application. On successful processing of control requests, this function shall return true otherwise return
false.

/* Callback to handle the USB setup requests. */

CyBool_t

CyFxBulkLpApplnUSBSetupCB (

 uint32_t setupdat0, /* SETUP Data 0 */

 uint32_t setupdat1 /* SETUP Data 1 */

)

{

/* Only class and vendor requests are received by this function. */

 return CyFalse;

}

8.4.10 USB Event Cal lback

The USB events of interest are Set Configuration, Reset, and Disconnect. The bulkloop application starts on receiving
a SETCONF event and stops with a USB reset or USB disconnect.

/* This is the callback function to handle the USB events. */

void

CyFxBulkLpApplnUSBEventCB (

 CyU3PUsbEventType_t evtype, /* Event type */

 uint16_t evdata /* Event data */

)

{

 switch (evtype)

 {

 case CY_U3P_USB_EVENT_SETCONF:

 /* Stop the application before re-starting. */

 if (glIsApplnActive)

 {

 CyFxBulkLpApplnStop ();

 }

 /* Start the loop back function. */

 CyFxBulkLpApplnStart ();

 break;

case CY_U3P_USB_EVENT_RESET:

case CY_U3P_USB_EVENT_DISCONNECT:

/* Stop the loop back function. */

if (glIsApplnActive)

 {

 CyFxBulkLpApplnStop ();

 }

break;

http://www.cypress.com/

 Differences in Implementation of EZ-USB® FX2LP™ and EZ-USB FX3™ Applications

www.cypress.com Document No. 001-76348 Rev. *E 17

default:

break;

 }

}

DMA Setup

The DMA channel transfer is enabled using the following piece of code.

/* Set DMA Channel transfer size */

apiRetStatus = CyU3PDmaChannelSetXfer (&glChHandleBulkLp, CY_FX_BULKLP_DMA_TX_SIZE);

Refer to AN75705 to learn the steps for importing and building an FX3 firmware project.

You can download and test the code by loading the code image USBBulkLoopAuto.img into FX3 using the USB Control

Center. Refer to AN75705 for the steps.

For more details on the FX3 SDK, see the documents available in the path C:\Program Files (x86)\Cypress\EZ-USB

FX3 SDK\1.3\doc. (1.3 in this path is the version of the SDK, which may change in future).

9 Slave FIFO Interfaces of FX2LP and FX3

This section explains the differences between the synchronous Slave FIFO interfaces in FX2LP and FX3.

The synchronous Slave FIFO interface is suitable for applications in which an external processor or device needs to
perform data read/write accesses to FX2LP or FX3 internal FIFO buffers. Register accesses are not done over the
Slave FIFO interface.

The following two application notes provide details on the FX2LP and FX3 Slave FIFO interfaces.

▪ AN61345 – Describes the FX2LP Synchronous Slave FIFO interface. A sample design demonstrates an FPGA
interface.

▪ AN65974 – Describes the FX3 Synchronous Slave FIFO interface. A design example demonstrates an FPGA
interface.

Table 11 lists the differences in synchronous Slave FIFO interface signals available for FX2LP and FX3.

Table 11. Synchronous Slave FIFO Interface Signals

Signal Name Signal Description

FX2LP FX3

SLCS# SLCS# The chip select signal for the Slave FIFO interface, which needs to be asserted to perform any
access to the Slave FIFO interface.

SLWR# SLWR# The write strobe for the Slave FIFO interface. It must be asserted for performing write transfers to
the Slave FIFO.

SLRD# SLRD# The read strobe for the Slave FIFO interface. It must be asserted for performing read transfers from
the Slave FIFO.

SLOE# SLOE# The output enable signal. It causes the data bus of the Slave FIFO interface to be driven by FX2LP
or FX3. It must be asserted for performing read transfers from the Slave FIFO.

PKTEND# PKTEND# The PKTEND# signal is asserted to write a short packet or a zero-length packet to the Slave FIFO

FIFOADR[1:0] A[1:0] 2-bit address lines to select one of the four (EP2, EP4, EP6, EP8) endpoints in FX2LP. For FX3,
these two bit address lines are used to address four sockets.*

FD[15:0] DQ[31:0] Data bus of the Slave FIFO interface. Data bus width supported by FX2LP is 8-bit or 16-bit. Data
bus width supported by FX3 is 8-bit or 16-bit, or 24-bit or 32-bit.

IFCLK PCLK The Slave FIFO interface clock. The maximum FX2LP frequency is 48 MHz. The maximum FX3
frequency is 100 MHz.

*Refer to AN75705 and AN65974 for more details on FX3 sockets.

http://www.cypress.com/
http://www.cypress.com/?rID=59979
http://www.cypress.com/?rID=59979
http://www.cypress.com/?rID=43046
http://www.cypress.com/?rID=51581
http://www.cypress.com/?rID=59979
http://www.cypress.com/?rID=51581

 Differences in Implementation of EZ-USB® FX2LP™ and EZ-USB FX3™ Applications

www.cypress.com Document No. 001-76348 Rev. *E 18

9.1 Flag Usage

The external processor monitors the FLAG signals for flow control. Four flags (Flag A, Flag B, Flag C, Flag D) report
the status of the FX2LP FIFOs. The FLAGA, FLAGB, and FLAGC pins can operate in either of two modes: Indexed
(selected by pins) or Fixed, as selected by the PINFLAGSAB and PINFLAGSCD registers. The FLAGD pin operates in
Fixed mode only. The FLAGA-FLAGC pins can be configured independently; Some pins can be in Fixed mode while
others are in Indexed mode. Flag pins configured for Indexed mode report the status of the FIFO currently selected by
the FIFOADR[1:0] pins. Refer to the “Slave FIFOs” chapter of the EZ-USB® Technical Reference Manual.

The FX3 Slave FIFO interface is more flexible than the FX2LP Slave FIFO interface. The FX3 Slave FIFO interface is
developed by configuring GPIF II to act as a slave and with the help of a state diagram. Cypress provides a library of
common GPIF II interfaces, including synchronous and asynchronous FIFOs. It can be customized by using a graphical
entry tool called GPIF II Designer, if needed. In the standard implementation, two flags are configured to show
empty/full/partial status for a dedicated thread or the current thread being addressed. Refer to AN65974 for more
details. More flags can be added if needed.

10 UVC Camera Designs Based on FX2LP and FX3

This section compares FX2LP and FX3 designs for a UVC (USB video class) camera.

UVC is a USB standard class that allows a video streaming device to be connected to a USB host to stream video. A
typical application is a webcam, which can be installed and used without a custom driver.

10.1 Image Sensor Interface

The various signals associated with image transfer are as follows. These are unidirectional signals from the image
sensor to the FX3 interface.

▪ FV: Frame Valid (indicates the start and stop of a frame)

▪ LV: Line Valid (indicates start and stop of a line)

▪ PCLK: Pixel Clock (the data output of the image sensor is synchronized with the pixel clock)

▪ Data: 8- to 32-bit data lines of image data

Figure 6 shows a timing diagram of the FV, LV, PCLK and data signals. The FV signal is asserted to indicate the start
of a frame. Then the image data is transferred line by line. The LV signal asserts during each line transfer while the
image sensor provides data. Image sensors transfer with bus widths of 8 bits to 32 bits.

Figure 6. Image Sensor Interface Timing Diagram

FV

LV

LV

PCLK

DATA

Zoomed in

Line 1 Line 2 Line RLine R-1

D0 D1 D2 Dc

Horizontal Blanking

Vertical Blanking

Active Frame

Active Line

http://www.cypress.com/
http://www.cypress.com/?rID=38232
http://www.cypress.com/?rID=59628
http://www.cypress.com/?rID=51581

 Differences in Implementation of EZ-USB® FX2LP™ and EZ-USB FX3™ Applications

www.cypress.com Document No. 001-76348 Rev. *E 19

Figure 7 shows a system-level diagram of a USB camera.

Figure 7. USB Camera Block Diagram

Image sensors typically use an I2C interface to allow a controller to configure the image sensor registers. The I2C block
of FX2LP or FX3 can act as an I2C master to configure the image sensor with the correct parameters.

10.2 Implementation with FX2LP

An image sensor can connect to FX2LP using two interfaces: Slave FIFO or GPIF. The FX2LP FIFO operates as a
slave, and its GPIF operates as a master. The simplest image sensor interface uses the FX2LP Slave FIFO.

The block diagram in Figure 8 shows how to connect an image sensor to FX2LP.

Figure 8. UVC Camera Design Using FX2LP

FX2LP provides a master clock (CLKOUT pin) to the image sensor that eliminates the requirement for an extra crystal
if the image sensor can use a 12-, 24-, or 48-MHz clock.

FX2LP is configured in synchronous Slave FIFO mode. FX2LP supplies a 12-MHz clock to the image sensor. The
image sensor is configured using the FX2LP I2C module. Once the image sensor is configured, it outputs image data
using a 6-MHz Pixel Clock (PCLK). The Frame Valid signal connects to the FX2LP SLCS# pin, and the Line Valid signal
connects to the FX2LP SLWR# pin of the Slave FIFO interface. The FX2LP firmware adds the required UVC header
to each video frame.

For better performance, using an FPGA is suggested for designing a USB2.0 Camera Interface. See this Knowledge
Base Article.

Using FX3 device can provide a better performance without an FPGA. See Implementation with FX3 for for details on
USB Camera Interface using FX3 .

A standard host application such as AMCap or VLC Media Player communicates through the UVC driver to configure
the image sensor over a video control interface and to receive video data over the video streaming interface.

10.3 Implementation with FX3

FX2LP contains separate interfaces for master or slave operation, whereas FX3 contains a unified GPIF II that can act
as either master or slave. The image sensor interface is created using GPIF II Designer. This tool accepts state machine
entry to create code that is included into an FX3 Eclipse project. Figure 9 shows the system level block diagram of UVC
camera design using FX3.

http://www.cypress.com/
https://community.cypress.com/docs/DOC-14406
https://community.cypress.com/docs/DOC-14406

 Differences in Implementation of EZ-USB® FX2LP™ and EZ-USB FX3™ Applications

www.cypress.com Document No. 001-76348 Rev. *E 20

Figure 9. UVC Camera Implementation Using FX3

Image Sensor
PCLK

Frame Valid

Line Valid

Data bus

Reset#

I2C control
V
id

eo
 D

at
a

V
ideo C

ontrol

USB Host

Application

(AMCap)

UVC

Driver

USB

Host

Controller
GPIO

GPIF

II

I2C

Master

USB3

FX3

DMA

Channel

USB

Bulk

IN EP

USB

EP0

Firmware

Video

Data

Data

The image sensor is configured using the FX3 I2C module. The FX3 DMA channel streams data from the image sensor
to internal buffers, where the Arm MCU adds a UVC header to the image data. This video data is then sent to the video
streaming endpoint. AN75779 includes more details on designing GPIF II state machine and application firmware. The
FX3 design can also operate in USB 2.0 mode. The application detects the connection speed and reduces video
bandwidth if operating at high speed.

Even though FX3 is a SuperSpeed device, there are advantages to using an FX3 design for USB 2.0 high-speed
operation:

▪ The image sensor interface can operate with 24-bit or 32-bit image sensors. FX2LP maximum bus width is 16 bits.

▪ The UVC header can be added to every frame of data more efficiently using the ARM processor.

▪ FX3 can also act as a SPI master if the image sensor needs to be configured over the SPI interface.

▪ The FX2LP GPIF interface clock is limited to 48 MHz, whereas the GPIF II clock runs up to 100 MHz.

▪ The FX2LP maximum endpoint memory is 4 KB, while FX3 can use 512-KB program memory for endpoints.

10.4 Use of an I2C Module in FX2LP and FX3

Image sensor registers are configured through the I2C interface. FX2LP and FX3 both have an I2C module, which can
act as master. Standard API functions are provided to perform read and write operations over the I2C interface.

The EZUSB_WriteI2C() and EZUSB_ReadI2C() functions are used to write and read image sensor registers using

the FX2LP I2C module. These two functions are part of EZUSB.LIB.

The CyU3PI2cTransmitBytes() and CyU3PI2cReceiveBytes() functions are used to write and read image

sensor registers using the FX3 I2C module. These two functions are part of the cyu3lpp.a library. Refer to the project

attached to the application note AN75779 for more details.

10.5 Debug FX2LP and FX3 Firmware Using UART

Serial port debugging makes it possible to print debug messages and the real-time values of variables to a standard
terminal program such as TeraTerm or HyperTerminal. In the UVC camera application, register values can be verified
by reading them back over the I2C interface and printing them on a terminal program.

AN58009 discusses the code to add debugging to an FX2LP firmware project. Com port settings are 38400 baud, no
parity, one stop bit (38400, N, 8, 1). Refer to AN58009 for more details.

To enable this debug feature on FX3, initialize and configure the UART as described in the Debug Initialization section.
The com port settings needed are 115200 baud, no parity, one stop bit (115200, N, 8, 1). Refer to the project attached
to the application note AN75779 for more details.

http://www.cypress.com/
http://www.cypress.com/?rID=62824
http://www.cypress.com/?rID=62824
http://www.cypress.com/?rID=39786
http://www.cypress.com/?rID=39786
http://www.cypress.com/?rID=62824

 Differences in Implementation of EZ-USB® FX2LP™ and EZ-USB FX3™ Applications

www.cypress.com Document No. 001-76348 Rev. *E 21

11 Available Collateral

11.1.1 FX2LP Development Kit

▪ CY3684 EZ-USB FX2LP Development Kit

11.1.2 FX3 Development Ki t

▪ CYUSB3KIT-003 EZ-USB® FX3™ SuperSpeed Explorer Kit

▪ CYUSB3KIT-001 EZ-USB® FX3™ Development Kit

FX2LP Datasheet

▪ CY7C68013A, CY7C68014A, CY7C68015A, CY7C68016A: EZ-USB® FX2LP™ USB Microcontroller High-Speed
USB Peripheral Controller

11.1.3 FX3 Datasheet

▪ CYUSB301X

11.1.4 FX3 SDK

▪ EZ-USB FX3 Software Development Kit

11.1.5 FX2LP GPIF Designer

▪ GPIF Designer

11.1.6 FX3 GPIF I I Designer

▪ GPIF™ II Designer

11.1.7 Appl icat ion Notes

▪ AN75705 – Getting Started with EZ-USB® FX3™

▪ AN65209 – Getting Started with FX2LP™

▪ AN68829 – Slave FIFO Interface for EZ-USB® FX3™: 5-Bit Address Mode

▪ AN65974 – Designing with the EZ-USB® FX3 Slave FIFO Interface

▪ AN63787– EZ-USB® FX2LP™ GPIF and Slave FIFO Configuration Examples Using an 8-Bit Asynchronous
Interface

▪ AN70707 – EZ-USB® FX3™/FX3S™ Hardware Design Guidelines and Schematic Checklist

▪ AN15456 – Guide to Successful EZ-USB® FX2LP™ Hardware Design

▪ AN76405 – EZ-USB® FX3 Boot Options

▪ AN50963 – EZ-USB® FX1™/FX2LP™ Boot Options

▪ AN75779 – How to Implement an Image Sensor with EZ-USB® FX3™ in a USB Video Class (UVC) Framework

▪ Visit www.cypress.com to download the latest version of the product collateral

12 About the Author

Name: Rama Sai Krishna V

Title: Applications Engineer Staff

Background: Rama Sai Krishna holds an M.Tech in Systems and Control Engg. from IIT Bombay. He is
currently working on Cypress USB peripherals.

http://www.cypress.com/
http://www.cypress.com/?rID=14321
http://www.cypress.com/?rID=99916
http://www.cypress.com/?rID=58321
http://www.cypress.com/?rID=38801
http://www.cypress.com/?rID=38801
http://www.cypress.com/?rID=50120
http://www.cypress.com/?rID=57990
http://www.cypress.com/?rID=14448
http://www.cypress.com/?rID=59628
http://www.cypress.com/?rID=59979
http://www.cypress.com/?rID=48371
http://www.cypress.com/?rID=59936
http://www.cypress.com/?rID=51581
http://www.cypress.com/?rID=45850
http://www.cypress.com/?rID=45850
http://www.cypress.com/?rID=53203
http://www.cypress.com/?rID=12956
http://www.cypress.com/?rID=63358
http://www.cypress.com/?rID=34253
http://www.cypress.com/?rID=62824
file:///C:/RSKV/Work_proj/Application%20notes/Q214/Application%20notes/AN76348/www.cypress.com

 Differences in Implementation of EZ-USB® FX2LP™ and EZ-USB FX3™ Applications

www.cypress.com Document No. 001-76348 Rev. *E 22

Appendix A. Compiling FX2LP Project on Linux

Note: Creating a New FX2LP project is not in the scope of this section.

Binary for FX2LP devices can be generated, using Eclipse IDE & SDCC (Small Device C Compiler) on Linux Host
Machines. Follow the below instructions for setting the build environment & using generated FX2LP binary. The
versions referred in below are based on FX3 SDK v1.3.3 for Linux.

1. Download EZ-USB FX3 SDK for Linux.

2. Download the FX3_SDK_Linux_Support.pdf. Follow the steps provided in the SDK Installation.

3. Open a Linux terminal and run the below command to install latest Small Device C Compiler (SDCC).

apt-get install SDCC

4. Now, run the ezUsbSuite application which is available in the eclipse folder and choose a workspace folder for the
EZ USB Suite application.

5. From Eclipse IDE, select File > New > Project. Choose the FX2LP project in the Cypress folder and click Next.

6. Provide a project name and the template Bulkloop_SDCC and click Finish.

fi

The Bulk loop example for FX2LP device will be shown in the Eclipse IDE.

7. Select Project > Build Project.

8. The IDE uses SDCC for compiling and generating the hex file. After the build is finished the Release folder
inside the chosen workspace folder shall contain a hex file with the given project name. Refer to the EZ-USB
Development Kit for information on preparing the DVK Kit.

9. Refer to the cyusb_linux_user_guide.pdf available in the cyusb_linux_1.0.4 folder for information about how
to use the cyusb_linux Host application for downloading the firmware and running it.

http://www.cypress.com/
http://www.cypress.com/documentation/software-and-drivers/ez-usb-fx3-software-development-kit
http://www.cypress.com/documentation/software-and-drivers/ez-usb-fx3-software-development-kit
http://www.cypress.com/documentation/development-kitsboards/cy3684-ez-usb-fx2lp-development-kit
http://www.cypress.com/documentation/development-kitsboards/cy3684-ez-usb-fx2lp-development-kit

 Differences in Implementation of EZ-USB® FX2LP™ and EZ-USB FX3™ Applications

www.cypress.com Document No. 001-76348 Rev. *E 23

Document History

Document Title: AN76348 - Differences in Implementation of EZ-USB® FX2LP™ and EZ-USB FX3™ Applications

Document Number: 001-76348

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 3565979 RSKV 03/30/2012 New application note

*A 3943464 RSKV 03/26/2013 Updated Document Title to read as “Differences in Implementation of EZ-USB®
FX2LP™ and EZ-USB FX3 Applications - AN76348”

Updated Architectural Differences (Added Figure 1 and Figure 2, updated
Table 1)

Updated

GPIF Versus GPIF II (Added Table 3)

Updated Hardware Differences (Added references to hardware guidelines
application notes, added reference to FX3 and FX2LP boot options application
notes, updated Crystal/Clock (Updated Table 8.), updated Power Supply
Configurations and Decoupling Capacitance

Added Table 5. , updated Table 6.

Updated Software Differences (Updated USB Host-Side Applications (Added
Table 10).

Added Slave FIFO Interfaces of FX2LP and FX3

Added UVC Camera Designs Based on FX2LP and FX3

*B 4383784 RSKV 05/19/2014 Updated the “FX3 Firmware Framework” section

Modified the abstract

Restructured the “Hardware Differences” section

Updated the paths related to the FX3 SDK

*C 4651404 GAYA 02/05/2015 Updated Table 8 and Table 10

Updated list of FX3 Development Kit under Available Collateral

Updated template

Sunset review

*D 5699825 AESATP12 04/20/2017 Updated logo and copyright.

*E 6176678 SUDH 05/16/2018 Updated Development Tools

Updated FX3 Firmware Framework

Updated Device Initialization

Updated USB Setup Callback

Updated Flag Usage

Updated Implementation with FX2LP

Added New Section Appendix. A Compiling FX2LP Project on Linux

http://www.cypress.com/

 Differences in Implementation of EZ-USB® FX2LP™ and EZ-USB FX3™ Applications

www.cypress.com Document No. 001-76348 Rev. *E 24

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.

Products

Arm® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Videos | Blogs | Training |
Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court

 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2012-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress
under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and
treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual
property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing
the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its
copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware
products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly
through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed
by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products.
Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security
measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as
unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known
as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit
described in this document. Any information provided in this document, including any sample design information or programming code, is provided only
for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any
application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components
in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical
devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses
where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety
or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising
from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages,
and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wireless-connectivity
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/32-bit-arm-cortex-m3-psoc-5lp
http://cypress.com/psoc6
http://www.cypress.com/cdc
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	1 Introduction
	2 Architectural Differences
	3 Serial Interfaces
	4 GPIF Versus GPIF II
	5 Hardware Differences
	5.1 Power Supply Configurations and Decoupling Capacitance
	5.2 Booting Options
	5.3 Crystal/Clock

	6 Software Differences
	6.1 Development Tools
	6.2 USB Host-Side Applications

	7 Programmer’s View of FX3
	8 FX2LP and FX3 Firmware Framework Differences
	8.1 FX2LP Firmware Framework
	8.2 Bulkloop Example on FX2LP
	8.2.1 FX2LP Firmware API Library

	8.3 FX3 Firmware Framework
	8.3.1 Firmware API Library
	8.3.2 cyfxapi.a, cyu3lpp.a, cyu3threadx.a
	8.3.3 Embedded Real-Time OS

	8.4 Bulkloop Example on FX3
	8.4.1 Firmware Entry
	8.4.2 Tool Chain Initialization
	8.4.3 Device Initialization
	8.4.4 Application Definition
	8.4.5 Application Code
	8.4.6 Application Thread
	8.4.7 Debug Initialization
	8.4.8 Application Initialization
	8.4.9 USB Setup Callback
	8.4.10 USB Event Callback

	9 Slave FIFO Interfaces of FX2LP and FX3
	9.1 Flag Usage

	10 UVC Camera Designs Based on FX2LP and FX3
	10.1 Image Sensor Interface
	10.2 Implementation with FX2LP
	10.3 Implementation with FX3
	10.4 Use of an I2C Module in FX2LP and FX3
	10.5 Debug FX2LP and FX3 Firmware Using UART

	11 Available Collateral
	11.1.1 FX2LP Development Kit
	11.1.2 FX3 Development Kit
	11.1.3 FX3 Datasheet
	11.1.4 FX3 SDK
	11.1.5 FX2LP GPIF Designer
	11.1.6 FX3 GPIF II Designer
	11.1.7 Application Notes

	12 About the Author
	Appendix A. Compiling FX2LP Project on Linux
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

