
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

THIS SPEC IS OBSOLETE

Spec No: 001-63620

Spec Title: CONFIGURING A XILINX SPARTAN-3E FPGA

OVER USB USING EZ-USB FX2LP(TM) -
AN63620

Replaced by: 001-61345

Configuring a Xilinx Spartan-3E FPGA Over USB
Using EZ-USB FX2LP™

February 18, 2016 Document No. 001-63620 Rev. *C 1

AN63620
Author: Prajith Cheerakkoda

Associated Project: Yes
Associated Part Family: CY7C68013A/CY7C68014A/CY7C68015A/CY7V68016A

Software Version: None
Associated Application Notes: AN61345, AN6077

Application Note Abstract
This application note demonstrates a technique for dynamically configuring a Xilinx Spartan-3E Field Programmable Gate

Array (FPGA) over USB using EZ-USB FX2LP
TM

, a high-speed USB peripheral controller. After the FPGA is configured,

FX2LP can act as a high-speed data path between the USB host and the FPGA. This capability of FX2LP enhances

FPGA-based USB applications such as logical analyzers, oscilloscopes, image processing, and high-speed data acquisition.

Introduction
FX2LP is an excellent solution for adding high-speed USB
functionality to FPGA-based solutions. AN61345
demonstrates the implementation of a high-speed
interface between FX2LP and a Xilinx Spartan-3E FPGA
with FX2LP acting in Slave FIFO mode and FPGA acting
as the master to it.

For an advanced FPGA-based application that requires
high-speed USB connectivity, configuring the FPGA over
USB using FX2LP eliminates the need for a dedicated
configuration chip (for example, a PROM or a processor)
for the FPGA. This method can also act as a replacement
for the popular JTAG configuration interface that requires
JTAG connectors on the board. Usage of this method
reduces cost and board space.

FX2LP can be interfaced to an external system in two
modes of operation: GPIF (General Programmable
Interface) mode and Slave FIFO mode.

 FX2LP acts as a master to the external system and
generates all the necessary control signals to read
and write data. This mode is known as General
Programmable Interface (GPIF).

 When the external system is intelligent enough to
generate the necessary read and write control
signals, it can act as the master of the interface and
FX2LP can act as the slave device. Here, we
configure FX2LP in the Slave FIFO mode.

This application note demonstrates the usage of GPIF
mode to load the configuration bitstream into FPGA. After
the configuration is performed successfully using GPIF,
the operation mode of FX2LP is switched to Slave FIFO
so that the FPGA can act as a master for the data transfer
phase.

The scripting capability of the Cypress generic driver
CyUSB.sys can be used for automatically downloading
firmware to FX2LP after it is plugged into the host

machine. This eliminates the need to store FX2LP
firmware on a large EEPROM, so that a smaller, less
expensive EEPROM which stores only the device VID/PID
can be used.
Hardware Connections
There are various options for configuring a Xilinx

®

Spartan
®
-3E FPGA. In this application note, the

configuration mode implemented using GPIF is the
Non-Continuous SelectMAP mode. The following diagram
illustrates the hardware connections required for
programming the FPGA using GPIF.

Figure 1. Hardware Connections Diagram

http://www.cypress.com/?rID=38801
http://www.cypress.com/?rID=43046
http://www.cypress.com/?rID=12946
http://www.cypress.com/?rID=43046
http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf
http://www.xilinx.com/support/documentation/user_guides/ug332.pdf

AN63620

February 18, 2016 Document No. 001-63620 Rev. *C 2

The following table defines the interface between FX2LP
and FPGA for the implementation of the SelectMAP
configuration mode.
Table 1. Assignment of FX2LP Pins to FPGA
Configuration Signals

FX2LP
Pin

Xilinx
Spartan-3E

FPGA signal
Description

IFCLK CCLK

IFCLK is connected to
configuration clock (CCLK).
The IFCLK output can be
configured to either 30 MHz
or 48 MHz.

CTL1 CSI_B

When CSI_B is asserted, the
FPGA samples the
configuration data on each
rising CCLK edge.

PE3 RDWR_B

The state RDWR_B pin
decides whether the FPGA
bus is being read or written
into. When RDWR_B is
asserted low, a write
operation is to be performed
to the FPGA. When it is high,
this indicates a read
operation. Because you are
writing into the FPGA, you
can permanently keep this
pin low to indicate a data
write condition.

FD[7:0] D[7:0]
Byte-wide configuration data
bus

PE4 PROG_B

Drive PROG_B low and
release to reprogram the
FPGA. Holding the PROG_B
pin low clears the
configuration memory of the
FPGA.

PA5 INIT_B

After the PROG_B signal is
de-asserted by FX2LP, it
should wait until the FPGA
asserts the INIT_B signal
high. This indicates that the
FPGA is ready to start the
configuration process. If the
FPGA drives the INIT_B
signal low at the end of the
configuration, it indicates a
configuration error.

PE1 DONE

This pin is low during
configuration and asserted
high by the FPGA once the
configuration is completed
successfully.

The 56-pin package can be chosen for this application
because the size of the included firmware does not
exceed the size of the on-chip RAM.

The following diagram demonstrates the timing diagram
for the slave SelectMAP method of configuration. At
instants 1, 2, and 3, a byte of configuration data each is
clocked into the FPGA. The configuration timing

specifications for each FPGA family can be found in the
respective family datasheet.

Figure 2. Timing Diagram for Slave SelectMAP Mode of
Operation

Usage of GPIF Designer to Create the
Configuration Waveform

GPIF Designer is a graphical user interface from Cypress
to help developers in the creation of GPIF waveforms.
Familiarity with the General Programmable Interface
chapter of the EZ-USB Technical Reference Manual is
necessary. Extensive documentation of the general GPIF
functionality and waveform programming is also available
in the Help menu of the GPIF Designer tool. After the
block diagram is specified and waveforms are correctly
configured, the GPIF Designer is ready to generate the
GPIF waveform descriptors. The utility performs the
generation of the data structures when the user selects
the Export to GPIF.c function in the Tools menu.

The state diagram for the configuration waveform is
illustrated in the following figure. In s0, CSI_B is asserted
and a byte of configuration data is placed on the data bus.
In state S1, CSI_B is de-asserted and the data bus stays
inactive.

Figure 3. State Diagram for Waveform Creation

The block diagram should be modified to indicate that
CTL1 is the only control line to be used in the design and it
is named as CS. There are no ready lines used for this
design. After the waveform is triggered, the waveform
terminates only when the transaction count (TC) expires.
GPIF checks the transaction count each time the
waveform passes through the idle state.

http://www.cypress.com/?rID=14448
http://www.cypress.com/?rID=38232

AN63620

February 18, 2016 Document No. 001-63620 Rev. *C 3

The following figure shows the block diagram view of the design in GPIF Designer. The IFCLK is inverted so that the setup
time requirement for the FPGA configuration data is easily met.

Figure 4. GPIF Designer Block Diagram View

Figure 5. FIFO Write Waveform

The decision point at S1 unconditionally branches the state-machine to idle state. The waveform is terminated only when the
transaction count expires.

AN63620

February 18, 2016 Document No. 001-63620 Rev. *C 4

The following figure shows a logic analyzer trace of the generated gpif waveform.

Figure 6. GPIF Waveform

Exporting GPIF Waveforms

To export the waveforms to a C file and include it in the firmware project, follow these steps:

1. Select Tools > Export to gpif.c File.

2. Save the file as gpif.c .

Firmware Implementation

Cypress provides a Firmware FrameWorks that implements 8051 code for EZ-USB chip initialization, USB standard device
request handling, and USB suspend power management services for the user. The user only has to provide a USB descriptor
table, and code to implement the peripheral function. The FrameWorks provide function hooks and example code to help with
this process. The FrameWorks as well as the basic code examples are included in the FX2LP Development Kit CY3684. You
can download the kit contents here. You can also find a number of code examples after installing the CY3684 DVK in location
C:\Cypress\USB\Examples\FX2LP. The Firmware FrameWorks files can be found in location
C:\Cypress\USB\Target\Fw\LP. The CY3684 DVK User guide contains an overview of the Firmware FrameWorks and how to
go about using the same for developing application firmware. The user is expected to go through the same for ease of
understanding this section.

The TD_Init() section configures the endpoint FIFOs for byte-wide auto mode operation. In auto mode of operation, all the
packets received by the FIFO from the host are automatically committed to the peripheral domain without any CPU
intervention. AN6077 explains in detail about the auto and manual modes of operation of the EZ-USB FIFOs.

void TD_Init(void) // Called once at startup

{

 CPUCS = 0x10; // CLKSPD[1:0]=10, for 48MHz operation

 SYNCDELAY; // CLKOE=0, don't drive CLKOUT

 GpifInit(); // init GPIF engine via GPIFTool output file

 SYNCDELAY;

 EP2CFG = 0xA0; // EP2OUT, bulk, size 512, 4x buffered

 SYNCDELAY;

 EP6CFG = 0xE0; // EP6IN, bulk, size 512, 4x buffered

 SYNCDELAY;

 FIFORESET = 0x80; // set NAKALL bit to NAK all transfers from host

 SYNCDELAY;

 FIFORESET = 0x02; // reset EP2 FIFO

 SYNCDELAY;

 FIFORESET = 0x06; // reset EP6 FIFO

 SYNCDELAY;

http://www.cypress.com/?rID=14321
http://www.cypress.com/?rID=12946

AN63620

February 18, 2016 Document No. 001-63620 Rev. *C 5

 FIFORESET = 0x00; // clear NAKALL bit to resume normal operation

 SYNCDELAY;

 EP2FIFOCFG = 0x00; // allow core to see zero to one transition of auto out bit

 SYNCDELAY;

 EP2FIFOCFG = 0x10; // auto out mode, disable PKTEND zero length send, byte operation

 SYNCDELAY;

 EP6FIFOCFG = 0x08; // auto in mode, disable PKTEND zero length send, byte operation

 SYNCDELAY;

 EP2GPIFFLGSEL = 0x01; // For EP2OUT, GPIF uses emtpy flag

 SYNCDELAY;

 PORTECFG = 0x00; //Do not enable any of the alternate configurations of PORTE

 PORTACFG = 0x00; //Do not enable any of the alternate configurations of PORTA

 OEA = 0xC0; //PORTA_5(INIT) is set as input

 OEE |= 0x18; //PORTE_1(DONE) is input, PORTE_4(PROG_B) and PORTE_3(RDWR_B) are outputs

 IOE = 0xFE; // initialize PORTE_4 and PORTE_3 as high

 }

The configuration process is triggered when FX2LP receives a vendor command 0xB2 from the host. After the vendor
command is received successfully, the configuration process starts after the host sends the configuration bitstream data to
endpoint FIFO 2. The vendor command handler for command 0xB2 is as follows:

case StartConfig: //vendor command 0xb2

 {

 EP0CS |= bmHSNAK; // Acknowledge handshake phase of device request

 GpifInit();

 FIFORESET = 0x80; // set NAKALL bit to NAK all transfers from host

 SYNCDELAY;

 FIFORESET = 0x02; // reset EP2 FIFO

 SYNCDELAY;

 FIFORESET = 0x06; // reset EP6 FIFO

 SYNCDELAY;

 FIFORESET = 0x00; // clear NAKALL bit to resume normal operation

 SYNCDELAY;

 EP2FIFOCFG = 0x00; // allow core to see zero to one transition of auto out bit

 SYNCDELAY;

 EP2FIFOCFG = 0x10; // auto out mode, byte-wide

 SYNCDELAY;

 EP6FIFOCFG = 0x08; // auto in mode, byte-wide

 SYNCDELAY;

 prg_enable = TRUE;

 IOE = IOE & 0xEF; //PROG_B signal low

 EZUSB_Delay1ms(); //PROG_B signal kept asserted for 1 ms

 IOE = IOE | 0x10; //PROG_B signal high

 SYNCDELAY;

AN63620

February 18, 2016 Document No. 001-63620 Rev. *C 6

 IOE = IOE & 0xF7; //Assert RDWR_B low

 SYNCDELAY;

 break;

 }

The GPIF waveform is triggered by writing into the GPIFTRIG register in TD_Poll(). The transaction count register is written
with the length of the configuration bitstream.

void TD_Poll(void)

{

 // Handle OUT data...

if(prg_enable)

{

 if(GPIFTRIG & 0x80) // if GPIF interface IDLE

 {

 if (! (EP24FIFOFLGS & 0x02)) // if there's a packet in the peripheral domain for EP2

 {

 if (INIT) // if the FPGA is ready

 {

 SYNCDELAY;

 GPIFTCB2 = 0x04;

 SYNCDELAY;

 GPIFTCB1 = 0x54; //setup transaction count. The bitstream

 SYNCDELAY; //size is constant for each family of FPGA.

 GPIFTCB0 = 0x8A; //this can be changed by host using a

 //vendor command

 SYNCDELAY;

 GPIFTRIG = GPIFTRIGWR | GPIF_EP2; //launch GPIF FIFO WRITE Transaction from EP2 FIFO

 SYNCDELAY;

 while(!(GPIFTRIG & 0x80)) // poll GPIFTRIG.7 GPIF Done bit

 {

 ;

 }

 SYNCDELAY;

 prg_enable= FALSE; //end of configuration

 }

 }

 }

 }

}

After the successful configuration, a vendor command 0xB3 is sent from the host to switch the mode of operation from GPIF to
Slave FIFO. The vendor command handler for command 0xB3 is as follows:

case StartXfer:

{

 EP0CS |= bmHSNAK;

 prg_enable = FALSE;

 PINFLAGSAB = 0x08; // FLAGA - EP6FF

 SYNCDELAY;

 PINFLAGSCD = 0xE0; // FLAGD - EP2EF

 SYNCDELAY;

 PORTACFG |= 0x80;

 IFCONFIG = 0xE3;

 SYNCDELAY;

AN63620

February 18, 2016 Document No. 001-63620 Rev. *C 7

 FIFORESET = 0x80; // activate NAK-ALL to avoid race conditions

 SYNCDELAY; // see TRM section 15.14

 FIFORESET = 0x02; // reset, FIFO 2

 SYNCDELAY; //

 FIFORESET = 0x04; // reset, FIFO 4

 SYNCDELAY; //

 FIFORESET = 0x06; // reset, FIFO 6

 SYNCDELAY; //

 FIFORESET = 0x08; // reset, FIFO 8

 SYNCDELAY; //

 FIFORESET = 0x00; // deactivate NAK-ALL

 // handle the case where we were already in AUTO mode...

 // ...for example: back to back firmware downloads...

 SYNCDELAY; //

 EP2FIFOCFG = 0x00; // AUTOOUT=0, WORDWIDE=0

 // core needs to see AUTOOUT=0 to AUTOOUT=1 switch to arm endp's

 SYNCDELAY; //

 EP2FIFOCFG = 0x10; // AUTOOUT=1, WORDWIDE=0

 SYNCDELAY; //

 EP6FIFOCFG = 0x4C; // AUTOIN=1, ZEROLENIN=1, WORDWIDE=0

 SYNCDELAY;

 break;

 }

AN63620

February 18, 2016 Document No. 001-63620 Rev. *C 8

FPGA Configuration Utility

An example host application, FPGA Configuration Utility,
created for configuring the FPGA, is included in the
design. The application was developed in Visual C# 2008
Express Edition using the Cypress Application
Development Library CyUSB.Net DLL which is included in
SuiteUSB 3.4. The device has to be bound to CyUSB.sys,
a general purpose driver developed by Cypress. This
application helps as a reference for developing your own
host applications for FPGA configuration. This provides
the flexibility to select the bitstream file for configuration.
The following figure displays the FPGA Configuration
Utility.

Figure 7. FPGA Configuration Utility

Click Select Bitstream to select the required configuration
file and click Configure to perform the configuration

process. ‘Configuration Successful’ message displays
after the completion of the process.

Testing the Project

 You can either download firmware to FX2LP using a

host application or write a script file to download the

firmware automatically when the device is plugged in.

AN50963 explains the implementation of scripting for

automatic firmware download.

 For testing purposes, you can follow these steps to

manually download the firmware to FX2LP using

CyConsole, a development host application included

in the SuiteUSB3.4 SDK.

 Connect the board to the PC. It enumerates with
the default internal descriptors.

 Use the CyUSB.inf file inside the Drivers folder to
bind with the device. For help on binding the
driver, refer to MatchingDriverToUSBDevice.htm
inside the Drivers folder. AN61465 contains
detailed explanations on the generation of an .inf
file.

 Start the CyConsole host application. In the
Options menu, select EZ-USB Interface. The

following window is displayed

 Click the Download button and navigate to
master.hex file in the associate project folder.
Wait for the firmware to re-enumerate and
reconnect as a Cypress EZ-USB device.

 A window is displayed prompting you to bind the
driver. Use the appropriate CyUSB.inf file inside
the Drivers folder to bind.

 Now, you can open the FPGA Configuration
Utility from the associated project folder.

 After the firmware download and enumeration of the

device with VID/PID 0x04B4/1002, open the FPGA

configuration utility. Click Select Bitstream to select

the bitstream file loopback.bin that is included in the

project source folder. This is the byte-swapped

http://www.cypress.com/?rID=34870
http://www.cypress.com/?rID=34253
http://www.cypress.com/?rID=43539

AN63620

February 18, 2016 Document No. 001-63620 Rev. *C 9

bitstream file generated by the iMPACT GUI included

in Xilinx ISE. Loopback.bin corresponds to the Data

Loopback example explained in AN61345. The

example implements a loopback on endpoints

EP2OUT and EP6IN. Data sent from host to EP2 is

read by the FPGA, increment and written to the EP6

endpoint FIFO.

 Click Configure to perform the configuration process.

‘Configuration Successful’ message displays after the

completion of the process.

 Verify the loopback operation is being performed

successfully using the Cypress CyConsole application

included in SuiteUSB 3.4.2.

Summary
This application note implements a method for configuring
an FPGA over USB using the GPIF controller of FX2LP.
For an FPGA design that needs high-speed USB
functionality, usage of FX2LP for configuring the FPGA
with high-speed USB connectivity helps in reducing
component cost and board space.

About the Author
Name: Prajith Cheerakkoda

Title: Applications Engineer.

http://www.cypress.com/?rID=43046

AN63620

February 18, 2016 Document No. 001-63620 Rev. *C 10

Document History
Document Title: Configuring a Xilinx Spartan-3E FPGA Over USB Using EZ-USB FX2LP™

Document Number: 001-63620

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 3008686 HRID 08/17/2010 New application note

*A 3164512 HRID 03/04/2011
Modified title, abstract, and introduction, added more description to section on
testing the product, included description of Firmware FrameWorks.

*B 4118977 PRJI 10/9/2013 Completing sunset review

*C 5142682 GAYA 02/18/2016 Obsoleting the document.

EZ-USB FX2LP is a trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the property of
their respective owners.

 Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com/

© Cypress Semiconductor Corporation, 2010–2016. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

http://www.cypress.com/

