CoolSiC[™] MOSFET new product additions in 1200 V M1H technology Peter Friedrichs, Vice President Silicon Carbide 13 April 2022 #### Agenda #### Agenda #### What is behind Infineon's new M1H portfolio New package features implemented for discrete devices with enhanced thermal performance The new technology derivate come with extended operating conditions without compromising the excellent reliability With the roll out of M1H the portfolio sees an significant extension for both, discrete and modules **Extended spectrum of reference boards rolled out** with PCIM in May to demonstrate the implementation in real systems- stay tuned! The basic device concept is unchanged, the cell layout and the cell dimensions are not touched → no new generation ## The latest CoolSiC[™] base technology advancements give you full freedom in choosing the gate voltage #### Previous gate voltage recommendation area #### New gate voltage recommendation area Ease of use with maximum negative gate-source voltage down to -10 V ^{*}Assuming 10 years of continuous operation. For more details see Application Note AN2018-09 #### Gate-source voltage – more detailed scope covered by datsheet | Gate-source voltage, max.
transient voltage | V _{GS} | <i>D</i> <0.01 | -10/23 | V | |--|-----------------|----------------|--------|---| | Gate-source voltage, max.
static voltage | V _{GS} | | -7/20 | V | #### Table 4 Recommended values | Parameter | Symbol | Note or test condition | Values | Unit | |------------------------|----------------------|------------------------|--------|------| | On-state gate voltage | V _{GS(on)} | | 15 18 | V | | Off-state gate voltage | V _{GS(off)} | | 05 | V | ## CoolSiCTM MOSFET 1200 V M1H series – Static performance improvement # CoolSiCTM **MOSFET** 1200 V #### R_{DS on} improvement ~12% better at same chip size and application relevant temperatures #### Agenda ### CoolSiCTM MOSFET 1200 V M1H series for Easy modules #### CoolSiCTM MOSFET 1200 V M1H series for Easy modules #### Roll-out of new chip sizes maximum flexibility which guarantees broadest industrial portfolio Maximum junction temperature T_{vj,op} of 175 °C overload capability to cover failure events and for higher power density > Operation at a temperature of T_{viop}=175°C under overload condition: ## M1 vs. M1H – small adoption of internal R_G for modules, switching behavior slightly optimized #### M1 vs. M1H – switching behavior #### New Easy module CoolSiCTM MOSFET M1H portfolio B68 = Booster one string | $R_{DS,on}$ [m Ω] | 1200 V half-bı | ridge | 1200 V H-Bridge | 1200 V SixPACK / PIM | 1200 V Booster | 1200 V 3-level | |---|---|--|---|---|--|--| | 55 | FF55MR12W1M1H
FF55MR12W1M1 | | | FS55MR12W1M1H(P)_B11
FS55MR12W1M1H_B70 | | | | 33 | FF33MR12W1M1F
FF33MR12W1M | · /— | F4-33MR12W1M1H(P)_B76
F4-33MR12W1M1H_B70 | FS33MR12W1M1H(P)_B11
FS33MR12W1M1H_B70 | | | | 28 | | | | FS28MR12W1M1H(P)_B11
FS28MR12W1M1H_B70 | | | | 17 | FF17MR12W1M1H
FF17MR12W1M1H
FF17MR12W1M1H | H(P)_B17 | F4-17MR12W1M1H(P)_B76
F4-17MR12W1M1H_B70 | FP17MR12W2M1H_B11 | DF17MR12W1M1HF_B67
DF17MR12W1M1HF_B68 | | | 13/14 | | | | FS13MR12W2M1H(P)_B11
FS13MR12W2M1H_B70 | DF14MR12W1M1HF_B67 | | | 11 | FF11MR12W2M1 | HP_B11 | F4-11MR12W2M1H(P)_B76
F4-11MR12W2M1H_B70 | | DF11MR12W1M1HF_B67 | F3L11MR12W2M1(P)_B74
F3L11MR12W2M1H(P)_B19 | | 8 | FF8MR12W1M1H
FF8MR12W1M1H | · /— | F4-8MR12W2M1H(P)_B76
F4-8MR12W2M1H_B70 | | DF8MR12W1M1HF_B67 | F3L8MR12W2M1H(P)_B11 | | 6 | FF6MR12W2M1H
FF6MR12W2M1H | · /— | F4-6MR12W2M1H(P)_B11
F4-6MR12W2M1H_B70 | | | the state of s | | 4 | FF4MR12W2M1H
FF4MR12W2M1H | · /— | | | | | | 2 | FF2MR12W3M1 | H_B11 | | - Hally by | d laterate to a construction of the constructi | | | orderable, register
n development
roduct Idea | able and available now | B17 = commor
B19 = full SiC
B76 = open so
P = TIM | B74 = ANPC | 55 mΩ | Drain-source on resista | ance | Infineon Proprietary ### CoolSiCTM MOSFET 1200 V M1H series for discrete packages ### CoolSiC[™] discrete portfolio 1200 V and 1700 V MOSFETs lineup | CoolSiC™ | $R_{DS(on)}$ $[m\Omega]$ | TO-247-3 | TO-247-4
*Optimized
Pin-out | D ² PAK-7L
SMD | D ² PAK-7L
SMD *high
creepage | |--------------|--------------------------|---------------|-----------------------------------|------------------------------|--| | | 7 | IMW120R007M1H | IMZA120R007M1H* | | | | | 14 | IMW120R014M1H | IMZA120R014M1H* | | | | | 20 | IMW120R020M1H | IMZA120R020M1H* | | | | | 30 | IMW120R030M1H | IMZ120R030M1H | IMBG120R030M1H | | | > 0 | 40/45 | IMW120R040M1H | IMZA120R040M1H* | IMBG120R045M1H | | | 1200 V | 60 | IMW120R060M1H | IMZ120R060M1H | IMBG120R060M1H | | | | 90 | IMW120R90M1H | IMZ120R090M1H | IMBG120R090M1H | | | | 140 | IMW120R140M1H | IMZ120R140M1H | IMBG120R140M1H | | | | 220 | IMW120R220M1H | IMZ120R220M1H | IMBG120R220M1H | | | | 350 | IMW120R350M1H | IMZ120R350M1H | IMBG120R350M1H | | | > | 450 | | | | IMBF170R450M1 | | 1700 V | 650 | | | | IMBF170R650M1 | | - | 1000 | | | | IMBF170R1K0M1 | #### 1200 V CoolSiC™ MOSFET #### Higher single device power with the new low-ohmic range | | AC-DC stage
with
B6 bridge | DC-DC stage:
with
LLC, CLLC | DC-DC stage:
with
DAB | | | | |----------------------------|----------------------------------|-----------------------------------|-----------------------------|--|--|--| | | Uni- | Uni-directional or bi-directional | | | | | | $R_{DS(on)}$ [m Ω] | Ty | Typical device power [kW] | | | | | | 7 | ~30 | | | | | | | 14 | | 15~22 | | | | | | 20 | 10,322 | | | | | | | 30 | | 11~15 | | | | | | 40 | | 11~10 | | | | | # tineon #### New low-ohmic range 7, 14, 20 and 40 m Ω #### **New features** | 1 | Lowest R_{DS(on)} in TO247 for highest power density | |---|---| | 2 | Easy to design with maximum gate-source voltage lowered to -10 V | | 3 | Flexible turn-off gate voltage selection -5V~0V | | 4 | .XT interconnection technology improves on thermal dissipation capability up to 30% | | 5 | Enhanced robustness features with avalanche and short-circuit protection | #### **Portfolio** | ${\sf R_{DS(on)}} \ [{\sf m}\Omega]$ | TO-247-3 | TO-247-4 | |--------------------------------------|---------------|----------------| | 7 | IMW120R007M1H | IMZA120R007M1H | | 14 | IMW120R014M1H | IMZA120R014M1H | | 20 | IMW120R020M1H | IMZA120R020M1H | | 40 | IMW120R040M1H | IMZA120R040M1H | #### **Applications** and more # 1200 V CoolSiC™ MOSFET Solar Application – PV Boost #### More power, less weight | Part number | CoolSiC
MOSFET | Example:
PV boost power | |----------------|-------------------|----------------------------| | IMZA120R030M1H | 30 mΩ | ~15 kW | | IMZA120R020M1H | 20 mΩ | ~20 kW | | IMZA120R014M1H | 14 mΩ | ~25 kW | | IMZA120R007M1H | 7 mΩ | ~30 kW | | Power board | Single part | Paralleling parts | |----------------------------|-------------|-------------------| | System size | /// | | | Thermal interface material | /// | | | Power density | /// | | ## 1200 V CoolSiC™ MOSFET #### Significant improvement of thermal capabilities by .XT interconnection #### .XT technology benefits - Enhances the thermal dissipation capabilities with >15% improvement on thermal conductivity. - >25% reduction on junction-to-case thermal resistance (R_{thic}) - >45% reduction on junction-to-case thermal impedance (Z_{thic}) - Reduce thermo-mechanical stress; increase power cycling capabilities. #### 1200 V CoolSiC™ MOSFET ## infineon #### .XT enhances optimization potential even further for SiC based designs #### Agenda Introduction of a new 1200 V SiC MOSFET chip upgrade called M1H with added features and wide range of control possibilities Extended chip & package portfolio for highest flexibility and power density > Product introduction of Easy 3B using 1200 V CoolSiC[™] MOSFET and .XT in low-ohmic TO247 portfolio Infineon has the right solution for every fast switching application! Part of your life. Part of tomorrow.