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Abstract We study the facet defining inequalities of the convex hull of a
mixed-integer bilinear covering arising in trim-loss (or cutting stock) problem
under the framework of disjunctive cuts. We show that all of them can be
derived using a disjunctive procedure. Some of these are split cuts of rank one
for a convex mixed-integer relaxation of the covering set, while others have
rank at least two. For certain linear objective functions, the rank-one split
cuts are shown to be sufficient for finding the optimal value over the convex
hull of the covering set. A relaxation of the trim-loss problem has this property,
and our computational results show that these rank-one inequalities find the
lower bound quickly.

Keywords Mixed-Integer programming · global optimization · convex hull ·
disjunctive cut · split cut · split-rank.

1 Introduction

We study the facet defining inequalities of the convex hull of the mixed-integer
bilinear covering set

S =

{
(x, y) ∈ Zn+ × Rn+ :

n∑
i=1

xiyi ≥ r

}
,
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where r > 0. This set appears in real life applications like trim loss (or cutting
stock) problem [25,41]; see Section 9 for more details. The set S is a nonconvex
set, even the continuous relaxation R of S defined as

R =

{
(x, y) ∈ Rn+ × Rn+ :

n∑
i=1

xiyi ≥ r

}
,

is nonconvex for n ≥ 2. Tawarmalani et al. [39] noted that the bilinear con-
straint of R is composed of separable orthogonal terms that have the so-called
“convex extension property”. Based on this observation they obtained the
convex hull of R with the help of their orthogonal disjunctive procedure. This
convex hull, which we call R̂, can be described using only one nonlinear con-
straint:

R̂ = conv(R) =

{
(x, y) ∈ Rn+ × Rn+ :

n∑
i=1

√
xiyi
r
≥ 1

}
.

Tawarmalani et al. [39] also obtained the convex hull of S with the help
of the orthogonal disjunctive procedure. However, unlike R̂, the description of
conv(S) consists of countably infinite number of facet defining inequalities. We
study these inequalities using the framework of split disjunctions when applied
to R̂ in an attempt to find those which might be computationally more useful
and easy to obtain. Viewing these facet defining inequalities through the lens
of split disjunctions, we see that some of them have split-rank one, and can be
obtained easily. Further, when minimizing the objective function of trim-loss
problems, these rank-one inequalities give the same bound as conv(S). Some
other facet defining inequalities are seen to have split-rank more than one, but
can be obtained using other disjunctions. None of the remaining facet-defining
inequalities can be obtained by applying any disjunctive procedure on R̂, in
fact each of them cuts off an integer point from R̂. These inequalities cannot
be derived from R̂, but disjunctions can still be applied on the nonconvex set
R to derive them. We observe that all facet generating disjunctions have a
similar form.

The set S is a special case of a nonconvex set with integer constrained
variables. The problem of minimizing an objective function over such sets is
called Mixed-Integer Nonlinear Programming (MINLP). The decision version
of MINLP, in general, is undecidable [26], and consequently there is no al-
gorithm that can solve general MINLPs on current computer architectures.
Even specific cases of MINLP are NP-Hard [27]. The problem of optimizing a
linear function over the set R is solvable in polynomial time [36], but problems
like trim loss where such constraints appear along with other constraints are
NP-Hard [21]. In order to solve these problems, one can first obtain a convex
relaxation of the nonconvex set, which is more tractable. The optimal value
of the relaxation provides a lower bound on the optimal value of MINLP.
The tighter the relaxation, the closer is the bound to the optimal value, and
hence finding inequalities that describe the convex hull of the feasible region
is important.
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The problem of finding facet defining inequalities of a general nonconvex
mixed-integer set is difficult, and there are no general algorithms for finding
all facets of such sets. One has to exploit specific structures and properties of
the given set in order to find facets, like is done in the orthogonal disjunctive
procedure. A more common approach in these methods (see for example, [7,
29,37]) is to first find a suitable disjunction, and then obtain an inequality
that is valid for each subset of the disjunction.

The principle of obtaining disjunctive inequalities [4,5,15,35], in particu-
lar split inequalities, has been quite useful for the case of integer linear opti-
mization. Gomory Mixed Integer inequalities [23,24], Mixed-Integer Rounding
(MIR) [33,34] inequalities, lift-and-project inequalities [6] and several others
are all known to be special cases of split cuts [13]. While some of them are
equivalent theoretically, they still provide their own computational advantages
and insights.

The general approach of obtaining disjunctive inequalities for integer lin-
ear optimization has been extended to the class convex-MINLP consisting of
MINLPs whose continuous relaxation is convex. Several studies on theoretical
aspects of split inequalities [2,3,14,31,32] and on using them for solving con-
vex MINLPs [8,10,28,38] have been performed recently. Given the relatively
well established foundations of convex integer sets, it is tempting to exploit it
for nonconvex MINLPs as well. This is the main motivation for our work.

Unless otherwise mentioned, we use the following notations throughout this
article. For a give set A, we use conv(A) to denote the convex hull of the set A.
We use R,Z,N to denote the set of real numbers, the set of integers and the set
of positive integers respectively. Rn+ = [0,∞)n = {x ∈ Rn : x ≥ 0},Zn+ = {x ∈
Zn : x ≥ 0}. We use N for the set {1, 2, . . . , n}. For a point (x, y) ∈ Rn+ ×Rn+,
we write (x, y) in the form (x1, y1, x2, y2, . . . , xn, yn). We use L(i, xi, yi) to
denote the 2n dimensional point (0, 0, . . . , xi, yi, . . . , 0, 0), i.e., xj = 0, yj =
0,∀j ∈ N, j 6= i. The sign ∨ means “or” and ∧ means “and”. For an integer
vector µ ∈ Zn and an integer µ0, we use gcd(µ, µ0) = gcd(µ1, . . . , µn, µ0) to
denote the greatest common divisor of µ1, . . . , µn and µ0.

2 Some definitions and basic terminologies

We start our discussion with definitions. Consider the following convex mixed-
integer nonlinear program:

min
x,y

f(x, y)

s.t. gi(x, y) ≤ 0, i = 1, . . . ,m, (MINLPCV)

x ∈ Zn1 , y ∈ Rn2 .

where f, gi, i = 1, . . . ,m are convex functions. Let P ⊂ Zn1 × Rn2 be the
feasible set of (MINLPCV) and PC be the continuous relaxation of P . Clearly
PC is convex, and suppose that PC is closed.
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Definition 1 (Disjunction [5]) Let Dk = {(x, y) ∈ Rn1 × Rn2 : Akx ≤ bk}
for k ∈ K, where K is an index set (not necessarily finite). Define D =⋃
k∈K Dk. If Zn1 ×Rn2 ⊆ D, then we call D a disjunction (or a valid disjunc-

tion) and each Dk, k ∈ K is known as an atom of the disjunction D.

Definition 2 (Disjunctive Cut) A linear inequality is called a disjunctive
cut for P obtained from the disjunction D = ∪i∈KDk, if it is valid for PC ∩Dk

for all k ∈ K.

We say that a linear inequality is valid for the disjunction D if it is valid
for PC ∩Dk for all k ∈ K. For some positive integer m, let us define the set
notation:[
G1x ≤ h1, . . . , Gmx ≤ hm

]
=
{

(x, y) ∈ Rn1+n2 : G1x ≤ h1, . . . , Gmx ≤ hm
}
,

where Gi, i = 1, . . . ,m are rational matrices of suitable dimension and hi, i =
1, . . . ,m are rational numbers.

Split cuts are a special class of the disjunctive cuts which are obtained from
a split disjunction, a special type of disjunction with only two atoms.

Definition 3 (Split Disjunction) Given a non-zero integer vector π ∈ Zn1

and an integer π0, the disjunction
[
πTx ≤ π0

]
∨
[
πTx ≥ π0 + 1

]
is known as

Split Disjunction. In a simpler way we write this disjunction as (π, π0).

Note that any (x, y) ∈ Zn1×Rn2 satisfies either πTx ≤ π0 or πTx ≥ π0+1.
Without loss of generality we can assume gcd(π, π0) = 1. Let us define two
sets.

PL = PC ∩
[
πTx ≤ π0

]
, and PR = PC ∩

[
πTx ≥ π0 + 1

]
.

Clearly P ⊆ PL ∪ PR. Therefore, P ⊆ PL ∪ PR ⊆ conv (PL ∪ PR).

Definition 4 (Split Cut) An inequality cTx+dT y ≥ b that is valid for both
the sets PL and PR (or consequently valid for conv (PL ∪ PR)) is known as a
split cut.

Let us consider a linear inequality cTx+dT y ≥ b. In order to check whether
the inequality cTx+dT y ≥ b is valid for PR and PL, one can solve the following
two optimization problems

ζR = min
x,y

cTx+ dT y ζL = min
x,y

cTx+ dT y

s.t. (x, y) ∈ PR s.t. (x, y) ∈ PL.

Clearly the inequality cTx+ dT y ≥ b is valid for conv (PR ∩ PL) if and only if
ζR ≥ b and ζL ≥ b.

The subset of PC obtained by adding all possible split cuts to PC is known
as the first split closure or the elementary split closure of PC . Let us denote
it by P1. Clearly, P1 is closed since PC is closed. Similarly applying the split
closure procedure to the set P1 will give the second split closure P2. Let Pt be
the tth split closure. Cook et al. [12] showed that, if PC is a polyhedral set,
then Pt is also polyhedral, for all t ∈ N. More results on this can be found in
[14,16,17].
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Definition 5 (Split Rank) For a valid inequality cTx+ dT y ≥ b for the set
conv(P ), the split rank of the inequality is defined as the smallest integer t
such that the inequality is valid for Pt but not for Pt−1.

In general, the problem of determining the split-rank for a given linear
inequality is NP-hard. Even the simpler problem of checking whether a given
linear inequality for a given MILP has rank one is NP-complete [9]. Determin-
ing bounds on the split-rank is relatively easy. Split-rank of an inequality can
be finite or infinite [11]. A valid inequality having finite split-rank indicates
that the inequality can be obtained by recursively applying the split cuts finite
number of times.

3 Few properties of R̂ and R

It is easy to see that the set R̂ is a closed convex set in the positive orthant.
In this section we analyze few more properties of the sets R̂ and R that are
necessary for our further discussion.

Proposition 1 Consider the following optimization problem.

min c
n∑
i=1

xi + d

n∑
i=1

yi

s.t.

n∑
i=1

xi ≤ (≥)k, (P1)

n∑
i=1

√
xiyi
r
≥ 1,

x, y ≥ 0,

where c, d and k are given scalars. Suppose (P1) has an optimal solution. Then
there exists an optimal solution (x∗, y∗) to (P1) such that only one pair of its
component is non zero, i.e., there exists t ∈ N such that x∗i = 0, y∗i = 0 for all
i ∈ N \ {t}.

Proof Since the proof can be easily generalized for any positive integer n, we
prove our result for n = 2 only. Let (x̄, ȳ) ∈ R2

+ × R2
+ be an optimal solution

to the optimization problem. Therefore, we have

n∑
i=1

x̄i ≤ (≥)k, and (1)

√
x̄1ȳ1 +

√
x̄2ȳ2 ≥

√
r. (2)

The objective value at this point is c
∑2
i=1 x̄i + d

∑2
i=1 ȳi. Consider the

point (x∗, y∗) such that

x∗1 = x̄1 + x̄2, x
∗
2 = 0,

y∗1 = ȳ1 + ȳ2, y
∗
2 = 0.
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At this point the objective value is same as the optimal value. Therefore,
it is sufficient to show that (x∗, y∗) is feasible for (P1). Clearly, from (1) we
see that, the point (x∗, y∗) satisfies the first constraint. Then

x∗1y
∗
1 = (x̄1 + x̄2)(ȳ1 + ȳ2)

=
(√
x̄1ȳ1 +

√
x̄2ȳ2

)2
+
(√
x̄1ȳ2 −

√
x̄2ȳ1

)2
≥ r, using (2) and

(√
x̄1ȳ2 −

√
x̄2ȳ1

)2 ≥ 0

⇒
√
x∗1y
∗
1 ≥
√
r

This implies that (x∗, y∗) ∈ R̂, and thus, feasible for (P1). ut

A result similar to the above be found in [18], where it is used to find
tight conic relaxations of problems with multiple bilinear constraints. We, on
the other hand use this result to study the ranks of facets (which are linear
inequalities).

Proposition 2 Consider the following optimization problem,

z∗ = min akx1 + bky1

s.t.
√
x1y1 ≥

√
r,

x1, y1 ≥ 0.

where ak = 1
2k−1 , bk = k(k−1)

r(2k−1) , k ∈ N \ {1}. Then the unique optimal solution

of the above problem is (
√
k(k − 1), r/

√
k(k − 1) ), and 1

2 < z∗ < 1.

Proof Note that the above problem is a convex problem as the curve y1 = r
x1

is strictly convex. Therefore, by KKT conditions, we have that the unique
optimal solution is (

√
k(k − 1), r/

√
k(k − 1)). Therefore, the optimal value is√

k(k − 1)

2k − 1
+

k(k − 1)

r(2k − 1)

r√
k(k − 1)

=
2
√
k(k − 1)

2k − 1
=

√
4k2 − 4k

4k2 − 4k + 1
< 1.

The function

f(v) =
4v2 − 4v

4v2 − 4v + 1
, v ≥ 2

is continuously differentiable in the domain, and f ′(v) = 8v−4
(4v2−4v+1)2 > 0 for

v ≥ 2. Therefore, f and hence
√
f is strictly increasing for v ≥ 2. Also we have√

f(2) =
√

8/9 > 1/2. Thus, the result follows. ut

Corollary 1 Let us consider the following optimization problem

z∗ = min
(x,y)∈R̂

n∑
i=1

(akixi + bkiyi)

where n ∈ N, aki = 1
2ki−1 , bki = ki(ki−1)

r(2ki−1) , ki ∈ N \ {1}. Then z∗ < 1.
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Proof Note that the point (0, 0, · · · ,
√
ki(ki − 1), r/

√
ki(ki − 1), · · · , 0, 0) is

feasible for R̂. The objective value at this point is

√
ki(ki−1)
2ki−1 + ki(ki−1)

r(2ki−1)
r√

ki(ki−1)
which is less than one from the proof of Proposition 2. This implies z∗ < 1. ut
Proposition 3 Let n ≥ 2. Consider the set R along with some additional
linear constraints on the variables x. Let us call it RX . Let (x̄, ȳ) be an extreme
point of the set conv(RX). Then there exists t ∈ N such that x̄tȳt = r, yi =
0,∀i ∈ N, i 6= t, i.e., only one pair of (x̄i, ȳi), i = 1, . . . , n can have both the
non zero value.

Proof Let (x̄, ȳ) be an extreme point of conv(RX), then (x̄, ȳ) must lie on the
surface

∑n
i=1 xiyi = r. If this were not true, then since the additional linear

constraints are on x only, we will get by varying y alone, two feasible points
whose convex combination is the point (x̄, ȳ).

If possible, let there exist two pairs of components of (x̄, ȳ) that are strictly
greater than zero. Without loss of generality let (x̄1, ȳ1) and (x̄2, ȳ2) have all
their components greater than zero. Also let x̄1ȳ1 + x̄2ȳ2 = α. Without loss of
generality let us assume x̄1ȳ1 ≥ α

2 . Note that (x̄, ȳ) = 1
2χ1 + 1

2χ2, where

χ1 =

(
x̄1,

α

x̄1
, x̄2, 0, x̄3, ȳ3, . . . , x̄n, ȳn

)
and

χ2 =

(
x̄1, 2ȳ1 −

α

x̄1
, x̄2, 2ȳ2, x̄3, ȳ3, . . . , x̄n, ȳn

)
.

Clearly χ1, χ2 ∈ Rn+ ×Rn+. Since the x components of the points (x̄, ȳ), χ1

and χ2 are the same, the points χ1 and χ2 satisfy the additional linear con-
straints on x that are present in RX . It is easy to see that,

x̄1
α

x̄1
+ x̄20 + x̄3ȳ3 + . . .+ x̄nȳn = α+ x̄3ȳ3 + . . .+ x̄nȳn

= x̄1ȳ1 + x̄2ȳ2 + x̄3ȳ3 + . . .+ x̄nȳn ≥ r.

Again,

x̄1

(
2ȳ1 −

α

x̄1

)
+ x̄22ȳ2 + x̄3ȳ3 + . . .+ x̄nȳn

= 2(x̄1ȳ1 + x̄2ȳ2)− α+ x̄3ȳ3 + . . .+ x̄nȳn

= x̄1ȳ1 + x̄2ȳ2 + x̄3ȳ3 + . . .+ x̄nȳn ≥ r.

Thus, χ1 and χ2 lie in RX . This shows that (x̄, ȳ) cannot be an extreme
point of conv(RX). Therefore, our assumption must be wrong which proves
that x̄iȳi = 0 for all i ∈ N, i 6= t. We still have to show that ȳi = 0 for all
i ∈ N, i 6= t.

Let x̄tȳt = r. If possible, let there exist j ∈ N, j 6= t such that ȳj > 0.
Therefore, using the above arguments, x̄j = 0. Let ε > 0 be such that ȳj−ε > 0.
Then (x̄, ȳ) lies in the middle of two points χ3 and χ4 such that χ3 and χ4

have the same components as (x̄, ȳ) except the jth component of the variable
y, and the jth component of χ3 and χ4 are ȳj− ε and ȳj + ε respectively. Since
χ3, χ4 ∈ S, this contradicts the extremality of (x̄, ȳ). ut
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4 The facet defining inequalities of conv(S)

The facet defining inequalities of the set conv(S) have been obtained by Tawar-
malani et al. [39] using its orthogonally restricted subsets (known as orthogonal
disjunctive subsets) Si of S that are defined as

Si = {L(i, xi, yi) ∈ Zn+ × Rn+ : xiyi ≥ r}.

Since the function yi = r
xi

is convex in the non-negative orthant, the continu-
ous relaxation of the set Si is convex. The description of conv(Si) can be given
as following.

conv (Si) = {L(i, xi, yi) ∈ Rn+ × Rn+ : ajxi + bjyi ≥ 1,∀j ∈ N}

where aj = 1
2j−1 and bj = j(j−1)

r(2j−1) , j ∈ N. Note that the coefficients aj , bj , j ∈ N
are independent of i ∈ N .

Unless otherwise mentioned, in our further discussion, without loss of gen-
erality we assume that the right hand side of each facet defining inequality
of conv(Si) is scaled to one. Note that there are countably infinite number
of facet defining inequalities in the description of conv(Si), and consequently
conv(Si) is not a polyhedral set. The following figure illustrates the facets
geometrically within a bounded region.

xi

yi

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

Fig. 1: Convex hull of Si for r = 8 (in the restricted domain x ≤ 12, y ≤ 10)

Let us consider the following collection of columns (M). The entries in
column i of (M) are the linear functions that can be used to define the facet
defining inequalities of conv(Si).
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x1 x2 x3 . . . xn

a2x1 + b2y1 a2x2 + b2y2 a2x3 + b2y3 . . . a2xn + b2yn
. . . . . . . . . . . . . . .

akx1 + bky1 akx2 + bky2 akx3 + bky3 . . . akxn + bkyn
. . . . . . . . . . . . . . .

 (M)

In the above (M), aj = 1
2j−1 and bj = j(j−1)

r(2j−1) , j ∈ N as defined earlier. Note

that (M) is not a matrix, but just an illustration useful for expressing all facets
of conv(S). To construct the facet defining inequalities for conv(S), we select
n terms from (M) taking one from each column and constrain their sum to be
greater than or equal to one [39]. For example, one may take the first term of
each column to get the facet

n∑
i=1

xi ≥ 1.

The general form of the facet defining inequalities of conv(S) is∑
i∈J1

(aj1xi + bj1yi) +
∑
i∈J2

(aj2xi + bj2yi) + . . .+
∑
i∈Jp

(ajpxi + bjpyi) ≥ 1, (IG)

where j1, j2, . . . , jp are different row numbers of (M) for some p ∈ N. With-
out loss of generality we can assume j1 < j2 < . . . < jp. The index sets
J1, J2, . . . , Jp define a partition on the set N . Note that, for any such par-
tition, we get one facet defining inequality of conv(S) and vice versa. Since
there are countably infinite terms in each column of (M), there are infinitely
many (but countable) facet defining inequalities. Also known [39] is the fact
that these facet defining inequalities along with the nonnegativity constraints
x ≥ 0, y ≥ 0 describe conv(S) completely.

5 Split-rank of the facet defining inequalities of conv(S)

In this section, we derive the ranks of the facet defining inequalities of conv(S).
We first analyze the simpler cases for n = 1, and then generalize it for any
positive integer n.

5.1 The case n = 1

For n = 1, we have the set S = {(x1, y1) ∈ Z+ × R+ : x1y1 ≥ r}. In this case
the convex hull of S can be written as

conv(S) = {(x1, y1) ∈ R+ × R+ : x1 ≥ 1, ajx1 + bjy1 ≥ 1,∀j ∈ N \ {1}},

where, ajxi + bjyi = 1 is the straight line joining the two points (xi, yi) =
(j − 1, r/(j − 1)) and (j, r/j),∀j ∈ N \ {1}. Moreover, in this case we have
R̂ = R.
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Lemma 1 Let n = 1. Consider a point (u, v) on the boundary of R̂(= R),
i.e., uv = r. Then the point (u, v) is cut off by the facet defining inequality

ajx1 + bjy1 = x1

2j−1 + y1j(j−1)
r(2j−1) ≥ 1 of conv(S) if and only if u ∈ (j − 1, j). In

other words, the optimal value of the optimization problem

min
(x1,y1)∈R(=R̂)

ajx1 + bjy1

is less than one if and only if u ∈ (j − 1, j).

Proof For j = 1, we have the facet defining inequality x1 ≥ 1 and therefore,
the proof is straightforward. For j ≥ 2, since the facet defining inequality
x1

2j−1 + y1j(j−1)
r(2j−1) ≥ 1 is constructed by joining the points (j − 1, r/(j − 1)) and

(j, r/j), and since the curve y1 = r
x1

is strictly convex in the positive orthant,
the result follows. ut

In our further discussion, we consider the following convex mixed-integer
relaxation Ŝ of S obtained by adding integer constraints to R̂.

Ŝ =

{
(x, y) ∈ Zn+ × Rn+ :

n∑
i=1

√
xiyi
r
≥ 1

}
.

We study the facet defining inequalities of conv(S) as split cuts for Ŝ and
determine their split-ranks.

Theorem 1 For n = 1, every facet defining inequality of conv(S) is a rank-
one split inequality for Ŝ.

Proof Consider the facet defining inequality x1 ≥ 1 of conv(S). The point
( 1
2 , 2r) lies in R̂ and it is cut off by this facet defining inequality of conv(S).

Therefore, it cannot have split-rank zero. Clearly, the inequality x1 ≥ 1 is valid
for both the sets R̂∩ [x1 ≤ 0](= φ) and R̂∩ [x1 ≥ 1], i.e., the inequality x ≥ 1
is valid for the disjunction [x1 ≤ 0]∨ [x1 ≥ 1]. Therefore, the split-rank of this
inequality is one.

Next consider a facet defining inequality ajx1 + bjy1 = x1

2j−1 + y1
r(2j−1) ≥

1, j ∈ N, j 6= 1 of conv(S). Since 1
2 (2j − 1) ∈ (j − 1, j), by Lemma 1, the point

((2j−1)/2, 2r/(2j−1)) ∈ R̂ is cut off by this inequality. Therefore, it has split-
rank at least one. Since the facet ajx1 + bjy1 = 1 is constructed by joining the
two points (j− 1, r/(j− 1)) and (j, r/j) and the curve y1 = r

x1
is concave, the

inequality ajx1 + bjy1 ≥ 1 is valid for both the sets R̂ ∩ [x1 ≤ j − 1] and R̂ ∩
[x1 ≥ j], and consequently it is valid for the disjucntion [x1 ≤ j − 1]∨ [x1 ≥ j],
and its split-rank is one. The following figure illustrates this geometrically. ut
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x1

y1

0 1 2 3 4 5 6
0

1

2

3

4

5

6

x1 ≤ 2 x1 ≥ 3

x
15

+
3y

120

≥
1

Fig. 2: The split disjunction [x ≤ 2] ∨ [x1 ≥ 3] and the split cut x1

5 + 3y1
20 ≥

1, r = 8

5.2 Split-ranks for higher dimension

In this section we discuss about the split ranks for general positive integer n.

Proposition 4 Any facet defining inequality of conv(S) that is constructed
using exactly one row of (M), i.e., of the form aj

∑n
i=1 xi+ bj

∑n
i=1 yi ≥ 1 for

any j ∈ N is a rank-one split inequality for Ŝ.

Proof The point (x, y) = ((2j − 1)/2, 2r/(2j − 1), 0, 0, . . . , 0, 0) lies in R̂ but
violates the given inequality for any j ∈ N. Therefore, this inequality has split-
rank at least one. Consider the disjunction [

∑n
i=1 xi ≤ j − 1] ∨ [

∑n
i=1 xi ≥ j]

and the following two optimization problems.

min
(x,y)∈R̂

aj

n∑
i=1

xi + bj

n∑
i=1

yi min
(x,y)∈R̂

aj

n∑
i=1

xi + bj

n∑
i=1

yi

s.t.

n∑
i=1

xi ≥ j, s.t.

n∑
i=1

xi ≤ j − 1.

Consider the first optimization problem. From Proposition 1, there exists
an optimal solution say (x̄, ȳ) and an index t ∈ N such that xi = 0, yi = 0 for
all i ∈ N \{t}. Because of symmetry, we assume t = 1. Therefore, the problem
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reduces to the following optimization problem

min
(x1,y1)∈R2

+

ajx1 + bjy1√
x1y1
r
≥ 1,

s.t. x1 ≥ j.

From Lemma 1 the optimal value of this optimization problem is at least
one. In fact the optimal value is exactly one as (j, rj ) is a feasible point with

objective value one. Thus, the inequality aj
∑n
i=1 xi + bj

∑n
i=1 yi ≥ 1 is valid

for R̂ ∩ [
∑n
i=1 xi ≥ j].

Similarly we can show that the inequality aj
∑n
i=1 xi + bj

∑n
i=1 yi ≥ 1 is

valid for R̂∩ [
∑n
i=1 xi ≤ j − 1]. Consequently it is rank-one split inequality for

Ŝ. ut

The following results give us a lower bound on the split-ranks for rest of
the facet defining inequalities.

Theorem 2 Consider a facet defining inequality of conv(S) that is constructed
using two or more rows of (M). For any such inequality, there does not exist
any split disjunction (π, π0) ∈ Zn+1, π 6= 0 of Ŝ for which it is valid.

Proof Without loss of generality we assume that two different rows of (M)
are used for the variables with the first two indices, i.e., we consider the facet
defining inequality

ajx1 + bjy1 + akx2 + bky2 +

n∑
i=3

(apixi + bpiyi) ≥ 1 (IS)

of conv(S) where j 6= k. Since the set R̂ lies entirely in the positive orthant,
it is sufficient to consider π0 ≥ 0 and those π that have at least one positive
component. Consider the two optimization problems:

min
(x,y)∈R̂

[
ajx1 + bjy1 + akx2 + bky2 +

n∑
i=3

(akixi + bkiyi)

]
s.t. πTx ≤ π0, (Q≤)

and

min
(x,y)∈R̂

[
ajx1 + bjy1 + akx2 + bky2 +

n∑
i=3

(akixi + bkiyi)

]
s.t. πTx ≥ π0 + 1. (Q≥)

We show that at least one of the above problems has optimal value strictly
less than one. We consider the following cases.
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Case A: When π1 ≤ 0, the point ((2j − 1)/2, 2r/(2j − 1), 0, 0, . . . , 0, 0) is
feasible for (Q≤) with objective value aj

2j−1
2 + bj

2r
2j−1 . Since 2j−1

2 ∈ (j−1, j),
by Lemma 1, the objective value is strictly less than one, and so is the optimal
value of (Q≤).

Case B: When π2 ≤ 0, we can similarly show that (Q≤) has optimal value
less than one.

Therefore, the inequality (IS) is not valid for (Q≤) for both the above cases.
Case C: The remaining case is when π1 and π2 are both positive integers.

Suppose that one of the following relations holds true.

π1
√
j(j − 1) ≤ π0, (3)

π2
√
k(k − 1) ≤ π0, (4)

π1
√
j(j − 1) ≥ π0 + 1, (5)

π2
√
k(k − 1) ≥ π0 + 1. (6)

If (3) is true then clearly the point (
√
j(j − 1), r/

√
j(j − 1), 0, 0, . . . , 0, 0)

is feasible for (Q≤) and by Proposition 2 and its corollary, the objective value
at this point is strictly less than one. Again, if (4) is true then by the same
arguments, (Q≤) has optimal value less than one. Similarly, using the same
arguments, the optimal value of (Q≥) is less than one when (5) or (6) hold.

Finally, suppose none of the above four relations hold. Therefore we have,

π0 < π1
√
j(j − 1) < π0 + 1, and

π0 < π2
√
k(k − 1) < π0 + 1.

Therefore both the values of π1 and π2 cannot be one from Proposition 10
in Appendix. By Proposition 11 in Appendix we have,

j − 1 <
π0 + 1

π1
≤ j (7)

k − 1 <
π0 + 1

π2
≤ k (8)

j − 1 ≤ π0
π1

< j (9)

k − 1 ≤ π0
π2

< k (10)

Since, π1, π2 ∈ N, not both equal to one, at least one of the values of
π0+1
π1

, π0+1
π2

, π0

π1
and π0

π2
must be non-integral.

If π0

π1
is non-integral, then we have j − 1 < π0

π1
< j form (9). Clearly,

the point L(1, π0

π1
, rπ1

π0
) = (π0

π1
, rπ1

π0
, 0, 0, . . . , 0, 0) is feasible for the optimization

problem (Q≤). Since at this point exactly one pair of components is positive,
Lemma 1 is applicable, and the objective value at this point is strictly less than
one. Similarly, the point L(2, π0

π2
, rπ2

π0
) = (0, 0, π0

π2
, rπ2

π0
, 0, 0, . . . , 0, 0) is feasible

for the optimization problem (Q≤) with objective value strictly less than one
if π0

π2
is non-integral.
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Similarly, if π0+1
π1

(or π0+1
π2

) is non-integral, from (7) (or (8)) and Lemma 1,
we can say that the optimization problem (Q≥) has optimal value strictly less
than one.

Therefore, for all the possible cases there does not exist any split disjunction
(π, π0) for which the facet defining inequality (IS) is valid. ut

Corollary 2 Any facet defining inequality of conv(S) that is constructed using
two or more number of rows of (M) is not a rank-one split cut for Ŝ.

Proof Since a facet defining inequality for conv(S) cannot be expressed as a
linear combination of any other valid inequalities for conv(S), it follows from
Theorem 2 that its split-rank is at least two. ut

6 Disjunctions for the facet defining inequalities

In the proof of Theorem 2, we showed that there does not exist any split
disjunction for a class of inequalities that are valid. In this section we show
that there exist facet defining inequalities of conv(S) that can be derived using
some other more general disjunctions on the set Ŝ. Furthermore, no other facet
defining inequality, besides the above two types can be derived by disjunctive
procedure on Ŝ. Then we derive a closed convex relaxation from which any
given facet defining inequality of conv(S) can be derived by the disjunctive
procedure.

Proposition 5 A facet defining inequality of conv(S) that is constructed us-
ing two rows of (M), one of which is the first row, is a disjunctive cut for
Ŝ.

Proof Such a facet defining inequalities of conv(S) is of the following form:∑
i∈J

xi +
∑
i∈K

(akxi + bkyi) ≥ 1 (ID)

for some k ∈ N, k 6= 1, where J∪K = N, J∩K = φ, J 6= φ andK 6= φ. We show
that (ID) is valid for the disjunction

[∑
i∈J xi ≥ 1

]
∨
[∑

i∈J xi ≤ 0,
∑
i∈K xi ≥ k

]
∨[∑

i∈J xi ≤ 0,
∑
i∈K xi ≤ k − 1

]
applied to Ŝ.

Clearly the disjunction is valid. Like Proposition 4, we consider each atom
separately. Consider the optimization problem:

min
(x,y)∈R̂

∑
i∈J

xi +
∑
i∈K

(akxi + bkyi)

s.t.
∑
i∈J

xi ≥ 1.

Since
∑
i∈J xi ≥ 1 is a constraint, the optimal value has to be at least

one. Therefore, the inequality (ID) is valid for R̂ ∩
[∑

i∈J xi ≥ 1
]
. Consider
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the following optimization problem:

min
(x,y)∈R̂

∑
i∈J

xi +
∑
i∈K

(akxi + bkyi)

s.t.
∑
i∈J

xi ≤ 0,∑
i∈K

xi ≥ k.

Clearly xi = 0 for all i ∈ J . Using the same logic as in the proof of
Proposition 4 (treating it as n = |K|) it is clear that for any i ∈ K,L(i, k, rk )
is an optimal solution with optimal value one, and consequently (ID) is valid
for R̂ ∩

[∑
i∈J xi ≤ 0,

∑
i∈K xi ≥ k

]
.

Finally, using the proof of Proposition 4 again, we can show that (ID) is
valid for R̂ ∩

[∑
i∈J xi ≤ 0,

∑
i∈K xi ≤ k − 1

]
. ut

The following result shows that there exist facet defining inequalities of
conv(S) that cannot be derived by any disjunctive procedure on Ŝ. In fact we
show that many of the facet defining inequalities of conv(S) are not valid for
Ŝ.

Proposition 6 Let (I) be a facet defining inequality of conv(S) constructed
form a set of rows Γ from (M). If there exist two distinct j, k ∈ Γ and j 6=
1, k 6= 1, then (I) is not valid for Ŝ.

Proof We show there are integer points in Ŝ that are not in conv(S). Thus,
some of the valid inequalities for conv(S) are not valid for Ŝ. The proof consid-
ers a valid inequality of conv(S) of the above form and constructs a point in Ŝ
that is violated by this inequality. We consider the case when the inequality is
constructed taking the jth entry from the first column and the kth entry from
the second column with j, k ≥ 2, j 6= k. Without loss of generality we assume
j < k. The proof for the general case is similar. Now we have the inequality:

ajx1 + bjy1 + akx2 + bky2 +

n∑
i=3

(apixi + bpiyi) ≥ 1, (I)

where aj = 1
2j−1 , bj = j(j−1)

r(2j−1) , ak = 1
2k−1 , bk = k(k−1)

r(2k−1) , api = 1
2pi−1 , bpi =

pi(pi−1)
r(2pi−1) . Consider the following point:

(x̄, ȳ) =

(
j − 1,

r(j − 1)b2k
((j − 1)bk + bj)

2 , 1,
rb2j

((j − 1)bk + bj)
2 , 0, 0, . . . , 0, 0

)

Clearly the point (x̄, ȳ) lies in Ŝ. Therefore it cannot be cut off by applying
any disjunctive procedure on Ŝ. We will be done if we can show that the
inequality (I) cuts off (x̄, ȳ), i.e., if

j − 1

2j − 1
+

rbjb
2
k(j − 1)

((j − 1)bk + bj)
2 +

1

2k − 1
+

rbkb
2
j

((j − 1)bk + bj)
2 < 1.
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LHS =
j − 1

2j − 1
+
rbkbj

(
(j − 1)bk + b2j

)
((j − 1)bk + bj)

2 +
1

2k − 1

=
j − 1

2j − 1
+

r
j−1
bj

+ 1
bk

+
1

2k − 1

=
j − 1

2j − 1
+

1
2j−1
j + 2k−1

k(k−1)
+

1

2k − 1

= 1− 1

2− 1
j

+
1

2− 1
j + 2k−1

k(k−1)
+

1

2k − 1

= 1−
2k−1
k(k−1)(

2− 1
j

)(
2− 1

j + 2k−1
k(k−1)

) +
1

2k − 1

< 1 +
1

2k − 1
−

2k−1
k(k−1)(

2− 1
k

) (
2− 1

k + 2k−1
k(k−1)

) , since j < k

= 1.

ut

Thus, applying disjunctive inequalities (or any other valid inequalities) of
Ŝ is not sufficient to obtain all the facet defining inequalities of conv(S). In
order to obtain the facet defining inequalities as disjunctive inequalities, we use
the following approach. Recall the form (IG) of the facet defining inequalities
of conv(S).

Theorem 3 The facet defining inequality (IG) of conv(S) is valid for the
following disjunction on the nonconvex set R.[∑

i∈J1 xi ≥ j1
]
∨
[∑

i∈J1 xi ≤ j1 − 1,
∑
i∈J2 xi ≥ j2

]
∨ · · · ∨[∑

i∈J1 xi ≤ j1 − 1,
∑
i∈Jp xi ≥ jp

]
∨[∑

i∈J1 xi ≤ j1 − 1,
∑
i∈J2 xi ≤ j2 − 1, . . . ,

∑
i∈Jp xi ≤ jp − 1

]
.

Proof Clearly the disjunction in the statement of the theorem is valid. We
prove our result for n = 2. It can be easily generalized to any n ≥ 2. For
n = 2, the inequality (IG) can be given as:

ajx1 + bjy1 + akx2 + bky2 ≥ 1 (11)

where j, k ∈ N, j < k (assuming j1 = j and j2 = k). We have to show that the
inequality is valid for the following disjunction:

[x1 ≥ j] ∨ [x1 ≤ j − 1, x2 ≥ k] ∨ [x1 ≤ j − 1, x2 ≤ k − 1] .
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Case 1: Suppose j = 1. Therefore aj = 1 and bj = 0. Consider the global
optimization problem:

min
x,y

x1 + akx2 + bky2

s.t. x1y1 + x2y2 ≥ r,
x1 ≥ 1, xi, yi ≥ 0, i = 1, 2.

Since we have x1 ≥ 1, (1, r, 0, 0) is an optimal solution with optimal value 1.
Next consider the global optimization problem:

min
x,y

x1 + akx2 + bky2

s.t. x1y1 + x2y2 ≥ r,
x1 ≤ 0,

x2 ≥ k,
xi, yi ≥ 0, i = 1, 2.

Since x1 = 0, the problem reduces the n = 1 case. It is clear to see that
(0, 0, k, rk ) is an optimal solution with optimal value 1. In an exactly similar
way we can show that the optimal value is 1 for R ∩ [x1 ≤ 0, x2 ≤ k − 1] also.
Thus, the inequality (11) is valid for all the three atoms.
Case 2: When j ≥ 2. We consider the global optimization problem:

min
x,y

ajx1 + bjy1 + akx2 + bky2

s.t. x1y1 + x2y2 ≥ r,
x1 ≥ j,
xi, yi ≥ 0, i = 1, 2.

The point (j, rj , 0, 0) is feasible with objective value one. Since the objective
function is linear, it is equivalent to optimize over the convex hull of the
feasible region of the above problem. Let (x̄, ȳ) be an an extreme point optimal
solution. Therefore either x̄1ȳ1 = r or x̄2ȳ2 = r by Proposition 3. Suppose
x̄1ȳ1 = r. Then x̄1 cannot be more than j because the value of aj x̄1 + bj ȳ1
will be strictly greater than one (Lemma 1).

If x̄2ȳ2 = r, then by Theorem 3 we have y1 = 0. At this point the objective
value is t

2t−1 + akx̄2 + bkȳ2 for some t ≥ j. Since we are minimizing the
objective function, from Proposition 2 and its corollary, the minimum value
of akx2 + bky2 subject to the given constraints will be more than 1

2 as k ≥ 2.
Also t

2t−1 >
1
2 , since t ≥ j ≥ 2. Therefore, the objective value is more than

one. Therefore, the optimal value of the above optimization problem is one
and the inequality (11) is valid for R ∩ [x1 ≥ j].

We can show similarly that the inequality is valid for R ∩ [x2 ≥ k] and
consequently for its subsets. Since [x1 ≤ j − 1, x2 ≥ k] is a subset of [x2 ≥ k],
the inequality is valid for the set R ∩ [x1 ≤ j − 1, x2 ≥ k].



18 Hamidur Rahman, Ashutosh Mahajan

Finally, consider the global optimization problem:

min
x,y

ajx1 + bjy1 + akx2 + bky2

s.t. x1y1 + x2y2 ≥ r,
x1 ≤ j − 1,

x2 ≤ k − 1,

xi, yi ≥ 0, i = 1, 2.

Let (x̄, ȳ) be an extreme point optimal solution of the convex hull of the
feasible region. Therefore, either x̄1ȳ1 = r or x̄2ȳ2 = r (by Proposition 3).
Suppose x̄1ȳ1 = r. If x̄1 < j − 1, then by Lemma 1, the value of aj x̄1 + bj ȳ1
is strictly greater than one, and therefore, the point (j − 1, r

j−1 , 0, 0) gives the
least objective value with objective value one. If x̄2ȳ2 = r, then by the same
logic the point (0, 0, k − 1, r

k−1 ) gives the least objective value with objective
value one. Therefore, the optimal solution of the above optimization problem
is one. Thus, the inequality (11) is valid for all the nonconvex atoms. ut

Let P = {J1, . . . , Jp} be any partition of N = {1, . . . , n}, with p = |P |,
and let j1, . . . , jp be distinct positive integers (not necessarily sorted) as-
sociated with each element of P . Then we have a facet defining inequal-
ity (IG) of conv(S) corresponding to each (P, j1, . . . , jp). Let us define the
set S(P, j1, . . . , jp) to be the closure of the convex hull of the unions of the
atoms of Theorem 3, i.e., let

S(P, j1, . . . , jp) = cl

(
conv

(
p+1⋃
q=1

SJq

))
,

where SJq =


R ∩

[∑
i∈Jt xi ≥ jt

]
, if q = t,

R ∩
[∑

i∈Jq xi ≥ jq,
∑
i∈Jt xi ≤ jt − 1

]
, q = 1, . . . , p, q 6= t,

R ∩
[∑

i∈J1 xi ≤ j1 − 1, . . . ,
∑
i∈Jp xi ≤ jp − 1

]
, q = p+ 1,

where t ∈ {1, . . . , p} : jt ≤ jq, q = 1, . . . , p. Then, we have the following results.

Corollary 3 The facet defining inequality (IG) of conv(S) can be constructed
using disjunctive procedure on the closed convex set S(P, j1, . . . , jp).

Corollary 4 Let a set SCC be defined as:

SCC =
⋂

P,j1,...,jp

S(P, j1, . . . , jp).

Then SCC = conv(S).

Proof Since each set S(P, j1, . . . , jp) is a convex relaxation of S, therefore SCC
is also a convex relaxation of S. The set SCC is constructed by intersecting
S(P, j1, . . . , jp) over all possible partitions of the index set N and distinct
(j1, . . . , jp). Thus, every facet defining inequality of conv(S) is valid for the
set SCC , and therefore, conv(S) = SCC . ut
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7 The gap between rank-one facet defining inequalities of Ŝ and
conv(S)

Let S1 be the set of points that satisfy all the facet defining inequalities of
conv(S) that have split-rank one for Ŝ. Therefore,

S1 =

{
(x, y) ∈ Rn+ × Rn+ :

1

2k − 1

n∑
i=1

xi +
k(k − 1)

r(2k − 1)

n∑
i=1

yi ≥ 1, k ∈ N

}
.

In this section we study the “gap” between the set S1 and conv(S). Here, by
the “gap” we mean the difference between the optimal objective values of a
linear objective function cTx+ dT y over S1 and conv(S). Since both the sets
S1 and conv(S) are unbounded, we cannot compare them in terms of their
volumes. Let

Z = min
(x,y)∈conv(S)

cTx+ dT y, and

Z1 = min
(x,y)∈S1

cTx+ dT y.

Note that S1 may not be the first split closure of Ŝ because S1 is con-
structed from a few facets of conv(S). First split closure of Ŝ may have other
facets that are valid inequalities for conv(S), but they may not be facets of
conv(S). We leave this subject for future research, and derive some conditions
for which the gap between S1 and conv(S) is zero. We also give an example
with an arbitrarily large gap.

Proposition 7 Consider the optimization problem min(x,y)∈S1 cTx+dT y. Let
λ, µ ∈ N be such that cλ ≤ ci for all i ∈ N and dµ ≤ di for all i ∈ N . Then this
optimization problem has the same optimal value as the optimization problem
min(xλ,yµ)∈Q cλxλ + dµyµ, where

Q =

{
(xλ, yµ) ∈ R+ × R+ :

xλ
2k − 1

+
k(k − 1)yµ
r(2k − 1)

≥ 1, k ∈ N
}
.

Proof We see that if (xλ, yµ) ∈ Q then L(1, xλ, yµ) = (xλ, yµ, 0, 0, . . . , 0, 0) ∈
S1. Again, if (x, y) ∈ S1 then we have (

∑n
i=1 xi,

∑n
i=1 yi) ∈ Q. Therefore, the

two sets S1 and Q are feasibility wise equivalent in the sense that if one has
a feasible solution, we can construct a feasible solution to the other with the
same objective value and vice versa. Note that the set Q is the convex hull of
the two dimensional mixed-integer bilinear covering set {(xλ, yµ) ∈ Z+×R+ :
xλyµ ≥ r}. We consider the following cases.

Case 1: One of the values of cλ and dµ is negative. Then clearly both the
optimization problems are unbounded.

Case 2: When cλ = 0. Then for both the optimization problems, the
optimal value of the objective function is cλ if dµ = 0, and infimum is zero if
dµ > 0 [36].
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Case 3: When cλ > 0 and dµ = 0, then for both the optimization problems
the optimal value is cλ [36].

Case 4: cλ > 0 and dµ > 0. We see that the constraints in the descriptions
of S1 are symmetric about the indices of the variables x and y, i.e., inter-
changing the variables xi with xj (or yi with yj) for any i, j ∈ N is not going
to affect the feasibility of S1. Again since we are minimizing cTx + dT y over
S1 which lies in the positive orthant, we can always chose an optimal solution
(x̄, ȳ) such that x̄λ > 0, x̄i = 0 for all in N, i 6= λ and ȳµ > 0, ȳi = 0 for all in
N, i 6= µ. It is now clear that (x̄λ, ȳµ) is an optimal solution to the problem
min(xλ,yµ)∈Q cλxλ + dµyµ. ut

Note that Z1 = min(xλ,yµ)∈Q cλxλ + dµyµ from the above proposition.
Z is also unbounded when mini∈N{ci, di} < 0, just like Z1. Therefore, we
consider c ≥ 0, d ≥ 0. In our previous work [36], the algorithm to derive the
values of Z and Z1 are described with closed form solutions for both and they
are as follows. It is also described in [36] that there exist q ∈ N such that
Z = minL(q,xq,yq)∈Sq cqxq + dqyq, where Sq is an orthogonal disjunctive subset
of S which is defined in the earlier section of this article.

Z1 =


min

cλ
⌊√

rdµ
cλ

⌋
+

rdµ⌊√
rdµ
cλ

⌋ , cλ
⌈√

rdµ
cλ

⌉
+

rdµ⌈√
rdµ
cλ

⌉
when cλ > 0, dµ > 0,

cλ,when cλ ≥ 0, dµ = 0,

0 (actually infimum value), when cλ = 0, dµ > 0.

Z = min
i∈N

Zi, where

Zi =


min

{
ci

⌊√
rdi
ci

⌋
+ rdi⌊√

rdi
ci

⌋ , ci ⌈√ rdi
ci

⌉
+ rdi⌈√

rdi
ci

⌉
}

when ci > 0, di > 0,

ci,when ci ≥ 0, di = 0,

0 (actually infimum value), when ci = 0, di > 0.

We assume 1⌊√
rdi
ci

⌋ and 1⌊√
rdµ
cλ

⌋ are infinite if
⌊√

rdi
ci

⌋
and

⌊√
rdµ
cλ

⌋
are

zeros respectively with ci > 0, di > 0, cλ > 0 and dµ > 0.

7.1 When the gap is zero

It can be seen clearly that Z1 ≤ Z as S1 is a relaxation of conv(S). The
following result gives us a characterization for Z1 = Z.

Proposition 8 Let Λ,∆ be two subsets of N such that cλ = ci for all i ∈ Λ
and dµ = di for all i ∈ ∆. Then Z1 = Z if and only if Λ ∩∆ is non empty.
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Proof Let p ∈ Λ ∩∆. Then by Proposition 7, there exists an optimal solution
(x̄, ȳ) of the form L(p, x̄p, ȳp) to the problem min(x,y)∈S1 cTx+dT y. Therefore,
(x̄p, ȳp) satisfies

x̄p
2k − 1

+
k(k − 1)ȳp
r(2k − 1)

≥ 1, k ∈ N.

If we show (x̄, ȳ) ∈ conv(S), we will have Z = Z1. We know that

conv (Sp) =

{
L(p, xp, yp) ∈ Rn+ × Rn+ :

xp
2k − 1

+
k(k − 1)yp
r(2k − 1)

≥ 1, k ∈ N
}

where, Sp = {L(p, xp, yp) ∈ Zn+ × Rn+ : xpyp ≥ r} is an orthogonal dis-
junctive subset of S. This implies that L(p, x̄p, ȳp) ∈ conv(Sp). Again, since
conv(S) is closed and satisfies the convex extension property, i.e., conv(S) =
conv(

⋃n
i=1 Si) [39], where Si, i ∈ N are orthogonal disjunctive subsets of S,

the point L(p, x̄p, ȳp) ∈ conv(S). Therefore, we have a point in conv(S) with
objective value Z1, consequently Z1 = Z.

Conversely, let Λ ∩ ∆ be empty. We know that there exists q ∈ N such
that ZCV = minL(q,xq,yq)∈Sq cqxq + dqyq = minL(q,xq,yq)∈conv(Sq) cqxq + dqyq
[36]. Since Λ ∩∆ = φ, cλ ≤ cq, dµ ≤ dq with cλ < cq or dµ < dq. Again, since
the two sets conv(Sq) and Q (defined in Proposition 7) are feasibility wise
equivalent, we have Z1 < Z. ut

7.2 When the gap is arbitrary large : An example

Let n = 2, r = 16 and consider the objective function x1 + η2y1 + η2x2 + y2
where η is a positive integer.

We see that cλ = c1 = 1 and dµ = d2 = 1. Therefore, Z1 = 8 with optimal
solution (4, 0, 0, 4) which is not feasible for conv(S). Clearly, if we increase the
value of η, the value of Z1 is not going to change.

On the other hand, we see that Z = ηZ1. Since for any value of η ≥ 1,
the value of Z1 is constant, the value of Z increases by a factor of η with Z1,
therefore, the gap between the values of Z and Z1 can be arbitrary large.

7.3 Empirical study of gap for general n

We perform an empirical study of the gap between Z and Z1 when n is larger
than two. For a selected value of n, we randomly generate instances of the
form

min
x,y

cTx+ dT y

s.t.

n∑
i=1

xiyi ≥ r,

x, y ≥ 0,

x ∈ Zn,
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n = 100 n = 500

n = 1000 n = 1500

Fig. 3: Histograms of relative gap observed in randomly generated instances.

with r, c, d as parameters. If r ≤ 0, then the constraint is redundant and the
problem is trivial, so we assume r > 0. Further, if any component of c, d is
negative, the optimal value is unbounded, so we assume c, d ≥ 0. Also, the
bilinear constraint can be scaled so that we get an equivalent problem with
right-hand side one. This scaling can be done by letting a new variable, say
w = y/r and letting d̂ = rd. This transformation yields: min cTx+d̂Tw subject
to
∑n
i=1 xiwi ≥ 1. Thus, we can focus only on changing c, d.

We performed computational experiments in which components of vectors
c, d are generated uniformly randomly in the range [0, 100] while r is fixed to
20. 20,000 random instances are generated in this way and the values of Z,Z1

evaluated for each of them in the manner described above. The relative gap
(Z − Z1)/Z1 is measured for each of the random instance and a histogram is
produced as in Figure 3. The experiment is repeated for n = 100, 500, 1000
and 1500.

The X-axis in Figure 3 represents the relative gap as defined above, and
the Y-axis represents the fraction of instances on which a certain relative gap
was observed. We observe that both, mean relative gap and the variance of
the relative gap increase as we increase n. Smaller the value of n, better is
the approximation by rank-one facets to the convex hull. For a fixed n, the
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fraction of instances with very high gaps is relatively small, but this fraction
keeps increasing with n.

8 Separation of facet defining inequalities of conv(S) and S1

A linear-time separation algorithm for the facet defining inequalities for conv(S)
is described in [36]. Broadly speaking, the algorithm works as follows. Let
(x̄, ȳ) ∈ Rn+ ×Rn+ be a given point that we want to separate. For each column
of (M) the term that gives the minimum value at (x̄, ȳ) is found. If the sum
of these n values (one from each column) is greater than or equal to one, then
(x̄, ȳ) is feasible to conv(S). Otherwise, the inequality constructed using these
n terms cuts off (x̄, ȳ). The minimum term from each column is obtained in
the following manner. We find

ξi = min

{
x̄i

2w − 1
+
ȳiw(w − 1)

r(2w − 1)
, w ∈ N

}
, i = 1, . . . , n.

Clearly,
∑n
i=1 ξi ≥ 1 if and only if (x̄, ȳ) ∈ conv(S). Let us now define the

following functions

fi(w) =
x̄i

2w − 1
+
ȳiw(w − 1)

r(2w − 1)
, w ≥ 1, i = 1, . . . , n. (12)

Our goal is to find a ŵi ∈ N that minimizes fi, for each i ∈ N . The following
three cases arise:
Case 1 When x̄i = 0, then clearly ξi = 0, ŵi = 1.
Case 2 When ȳi = 0, then inf fi(w) = 0. So, ξi can be taken as 0. A sufficiently
large ŵi in this case can be found. See [36] for details.
Case 3 When x̄i, ȳi > 0, then, clearly fi is strictly convex if 4x̄ir−ȳi > 0. Then
1
2 + 1

2

√
4x̄ir/ȳi − 1 = w̄ (say) is the unique minimizer of fi. If 4x̄ir− ȳi ≤ 0, fi

is concave. A boundary point must then be a minimizer, and 1 is the only
boundary point of the domain. Therefore, we have the following

ŵi =


1, when 4x̄ir − ȳi > 0 and w̄ ≤ 1,

dw̄e, when 4x̄ir − ȳi > 0, w̄ > 1 and f (dw̄e) ≤ f (bw̄c) ,
bw̄c, when 4x̄ir − ȳi > 0, w̄ > 1 and f (dw̄e) ≥ f (bw̄c) ,
1, when 4x̄ir − ȳi ≤ 0.

Separating inequalities for S1 can be found by modifying the above ap-
proach. In order to separate a given point (x̄, ȳ) we consider the separation
problem

min
k∈N

1

2k − 1

n∑
i=1

x̄i +
k(k − 1)

r(2k − 1)

n∑
i=1

ȳi.

If the optimal value to the above problem is one or more, then (x̄, ȳ) ∈ S1.
Any k ∈ N for which the above function has value less than one gives us a
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separating inequality. This function is similar to fi(k) (12), only (x̄i, ȳi) are
replaced by (

∑n
i=1 x̄i,

∑n
i=1 ȳi). Thus the function is independent of i in this

case. The approach used for minimizing fi above gives us the optimal value of
k, and thus the separating inequality.

9 Rank-one facets and the cutting stock problem

We now study the gap between the bounds that are obtained using the in-
equalities of S1 and the inequalities for conv(S) performing computational
experiments on some cutting stock problem instances of the following form.

min

n∑
i=1

yi∑
i∈N

xijyi ≥ dj , j ∈ F, (CS)∑
j∈F

ljxij ≤ L, i ∈ N,

xij ∈ Z+, yi ∈ Z+,∀i ∈ N, j ∈ F,

where N = {1, . . . , n} is the index set for different cutting patterns that are
used, and F is the index set of different sizes of the finals that are to be cut.
Here, L is the size of each large roll and lj , j ∈ F are the lengths of the finals
with respective demands dj , j ∈ F which are known. Let xij be the number of
final j cut according in the pattern i, i ∈ N, j ∈ F , and yi be the number of
rolls cut with cutting pattern i, i ∈ N . The first set of constraints are demand
satisfaction constraints which are |F | in number and bilinear. The second set
of constraints are knapsack constraints which are for the feasibility of the

patterns. These knapsack constraints imply xij ≤
⌊
L
lj

⌋
,∀i ∈ N, j ∈ F . The

problem naturally has |F | bilinear covering sets whose facets can be used as
valid inequalities. These inequalities may not define facets for the cutting stock
formulation as each bilinear set is considered separately and variables y are
relaxed to allow continuous values. Extending the facets of bilinear covering
sets to those for the cutting stock problem is a direction for future work.

Proposition 9 Consider the problem (CS) without the knapsack constraints.
Then the lower bound obtained by considering all the facet defining inequalities
of each bilinear constraint is equal to the lower bound obtained by considering
only the rank-one facet defining inequalities for each bilinear constraint.

Proof Let (x̄, ȳ) be an optimal solution when we consider only the rank-one
facet defining inequalities of each bilinear constraint. Therefore, we have∑

i∈N

x̄ij
2k − 1

+
∑
i∈N

ȳik(k − 1)

dj(2k − 1)
≥ 1, for all j ∈ F, k ∈ N, (13)
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and the optimal objective value at this point is
∑
i∈N ȳi. If we can show that

there exists a point satisfying all the facet defining inequalities of each bilinear
constraint with objective value

∑
i∈N ȳi, we will be done. Consider the point

(x∗, y∗) defined as:

x∗ij =

{∑
i∈N x̄ij , if i = 1

0, if i 6= 1, i ∈ N
for j ∈ F

y∗i =

{∑
i∈N ȳi, if i = 1

0, if i 6= 1, i ∈ N.

Therefore, from relation (13) we see that for each bilinear inequality of
(CS), at the point (x∗, y∗), the value of each entry in the first column of (M)
is greater than or equal to 1. Again, since each facet defining inequality of
a given bilinear constraint of (CS) is constructed by adding n elements from
(M) taken one from each column. This implies that the point (x∗, y∗) satisfies
all the facet defining inequalities of each bilinear constraint, and the objective
value at this point is

∑
i∈N ȳi. ut

In order to check whether the result also holds when the knapsack con-
straints are present, we performed a computational experiment on benchmark
problems selected from [40] (Fiber-xx-xxx), CUTGEN [22] generated instances
(CutGen-xx-xx), nine instances are taken from [1] and five randomly gener-
ated instances (Rand-xx). The random instances (Rand-xx) were generated
by fixing L to 1030 and selecting specifc problem size n (denoted as ‘xx’ in the
name). The final lengths lj were generated randomly between 75 and 600, and
dj between 300 and 5000. We compare the bounds obtained using the above
two approaches and the number of steps taken. For each instance, in either case
we start the iterations with the facet defining inequalities

∑
i∈N xij ≥ 1, j ∈ F ,

the bound constraints xij ≤
⌊
L
lj

⌋
,∀i ∈ N, j ∈ F and the knapsack constraints,

i.e., the following LP.

min

n∑
i=1

yi

s.t.

n∑
i=1

xij ≥ 1,∀j ∈ F,

0 ≤ xij ≤
⌊
L

lj

⌋
,∀i ∈ N, j ∈ F (ILP)∑

j∈F
ljxij ≤ L, i ∈ N,

y ≥ 0.

We use separation algorithms of Section 8 to separate the facet defining
inequalities for conv(S) and the inequalities of S1. Therefore, we add at most
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|F | cuts in each iteration for both the cases (i.e., at the kth iteration we solve an
LP with k|F | number of linear inequalities in addition to those in the starting
LP). We stop when either of two conditions hold: (a) we cannot find any more
violated inequalities, or (b) the time limit of 3600 seconds exceeds (we write
“3600*” for such cases in Table 1).

We have used Python based PuLP 1.6.9 [30] to model the problem and CBC
2.10 [19] (which uses CLP 1.17 [20] LP solver) to solve the linear programs. The
experiment was performed on a system having Intel(R) Xeon(R) CPU E5-2643
0 @ 3.30GHz processor, 12 GB of RAM and Linux (Ubuntu 18.04) operating
system. We have used a single core for each run. The results are compiled
in Table 1. The results show that the optimization over S1 does not give a
worse bound than the convex hull, even though it is a relaxation of the convex
hull. We also observe that rank-one facets improve the bounds in much fewer
iterations and in less time for all input problems. One possible explanation for
the somewhat unexpected results is that the separation procedure only finds
the ‘most violated’ inequality. It does not find the most distant inequality
or the one that pushes the bound by the most. Thus many higher ranked
inequalities are added when we run the algorithm for all facets, but they do
not improve the bound as much.

To further explore the matter, we performed one more experiment on the
14 instances that hit the time limit for conv(S). In this experiment, we first
generated only rank-one facets. Once we had optimized over S1, we switched
to separation algorithm for conv(S) and let it run for 3600s. In this exper-
iment also all instances hit time limit without any improvement in bounds.
Further investigation is required to ascertain whether the two bounds are al-
ways equal for this class of problems or there are some instances where they
can be different.

10 Concluding Remarks

We showed that all facet defining inequalities of conv(S) can be viewed as dis-
junctive cuts derived from disjunctions specified in the discussion above. Some
of them have split-rank one for a convex mixed-integer relaxation of S. These
cuts are sufficient to find the optimal value over conv(S) for certain objective
functions like those in trimloss problems. Finding strong valid inequalities for
the convex hull of the feasible region of trimloss problems is still open and can
be taken up in the future.

Appendix : Additional Proofs

Proposition 10 Let j, k ∈ N with j 6= k, then the following two relations

π0 <
√
j(j − 1) < π0 + 1 and

π0 <
√
k(k − 1) < π0 + 1
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Instances n
Using inequalities for conv(S) Using inequalities for S1 only

Iter Cuts LB Time Iter Cuts LB Time
Fiber-10-5180 10 226 1917 6.88 47.33 5 37 6.88 0.21
Fiber-10-9080 10 223 2045 3.85 45.57 6 42 3.85 0.26
Fiber-11-5180 11 288 2673 6.10 93.52 4 35 6.10 0.19
Fiber-11-9080 11 335 2946 3.40 130.58 5 45 3.40 0.25
Fiber-14-5180 14 473 5417 3.34 529.18 5 57 3.34 0.31
Fiber-14-9080 14 476 6211 1.90 537.12 5 57 1.90 0.33
Fiber-15-5180 15 560 7219 3.74 1321.66 6 65 3.74 0.42
Fiber-15-9080 15 1052 11311 2.09 3600* 6 72 2.11 0.44
Fiber-16-5180 16 756 9763 5.17 2797.61 5 63 5.17 0.41
Fiber-16-9080 16 723 10330 2.93 2268.56 6 78 2.93 0.48
CutGen-01-01 10 252 2244 1.24 61.00 5 43 1.24 0.21
CutGen-01-02 10 270 2443 0.97 70.32 5 40 0.97 0.22
CutGen-01-25 10 246 2157 0.99 55.32 5 39 0.99 0.20
CutGen-01-100 10 244 2131 1.25 56.31 5 41 1.25 0.21
CutGen-02-40 10 262 2272 10.41 64.23 4 33 10.41 0.17
CutGen-02-60 10 275 2480 10.10 78.57 5 40 10.10 0.22

Rand-10 10 185 1601 697.22 31.87 4 33 697.22 0.17
Rand-15 15 728 8242 576.69 3600* 4 53 576.69 0.31
Rand-16 16 719 8395 686.27 3600* 4 55 686.27 0.34
Rand-20 20 611 11637 631.02 3600* 5 75 631.02 0.56
Rand-25 25 485 12150 459.75 3600* 6 100 529.74 0.93
gau3 50 199 10000 0.82 3600* 5 176 22.31 3.53

m50-100-01 50 215 10800 0.40 3600* 5 169 17.24 3.09
m50-100-02 50 217 10900 0.58 3600* 5 176 18.58 3.19
10-20-01 40 371 14880 5.45 3600* 4 117 28.25 1.57
10-20-02 40 385 15440 4.36 3600* 4 111 25.70 1.54
250-80 40 207 8320 37.90 3600* 6 177 144.6 2.39

Falkenauer-t60-00 50 238 11950 0.02 3600* 5 167 0.413 3.23
Falkenauer-t60-01 56 236 13272 0.01 3600* 5 228 0.366 4.94
Falkenauer-u120-00 58 207 12064 0.01 3600* 4 190 0.846 4.18

Table 1: Comparison of iterations and time taken to optimize using the in-
equalities for S1 only and the convex hull.

cannot hold simultaneously for any non-negative integer π0.

Proof Without loss of generality let k > j. Note that, it is equivalent to prove
that

√
k(k − 1)−

√
j(j − 1) ≥ 1. This is because, if

√
k(k − 1)−

√
j(j − 1) ≥ 1

holds, then both the values
√
k(k − 1) and

√
j(j − 1) cannot lie between two

consecutive integers.

Also note that, since the function f(j) =
√
j(j − 1) is strictly increasing

for j ∈ N, it is sufficient to prove the result when k = j + 1, i.e., we show that√
j(j + 1)−

√
j(j − 1) ≥ 1. Since we are dealing with positive numbers only,

in our following steps of proof, we consider only the positive roots. For any
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j ∈ N,

4j2 − 4j + 1 > 4j2 − 4j

⇒ (2j − 1)2 > 4j(j − 1)

⇒ 2j − 1 > 2
√
j(j − 1)

⇒ j2 + j > 1 + 2
√
j(j − 1) + j2 − j

⇒ j(j + 1) > 1 + 2
√
j(j − 1) + j(j − 1)

⇒ j(j + 1) >
(

1 +
√
j(j − 1)

)2
⇒
√
j(j + 1)−

√
j(j − 1) > 1.

This completes the proof. ut

Proposition 11 Let k ∈ N with k ≥ 2. Consider the positive integers µ0, µ
with µ ≥ 1. If µ0 < µ

√
k(k − 1) < µ0 + 1 then k − 1 < µ0+1

µ ≤ k and

k − 1 ≤ µ0

µ < k.

Proof Since µ0 < µ
√
k(k − 1) < µ0 + 1, then µ0+1

µ
√
k(k−1)

> 1. Again since√
k−1
k < 1, we have

µ0 + 1

µ
√
k(k − 1)

>

√
k − 1

k

⇒µ0 + 1

µ
> k − 1

We show the other side of the desired inequality next. From the given
condition we have,

µ
√
k(k − 1) > µ0

⇒µ
⌈√

k(k − 1)
⌉
> µ0

⇒µ
⌈√

k(k − 1)
⌉
≥ µ0 + 1 (since the left hand side is integral)

⇒µk ≥ µ0 + 1
(

since k ≥
⌈√

k(k − 1)
⌉)

⇒k ≥ µ0 + 1

µ

Therefore, we have k − 1 < µ0+1
µ ≤ k.
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Since µ0+1
µ ≤ k, we have µ0

µ < k. It remains to show k− 1 ≤ µ0

µ . From the
given relation we have

µ0 + 1 > µ
√
k(k − 1)

⇒µ0 + 1 > µ(k − 1)
(

since
√
k(k − 1) > k − 1

)
⇒µ0 ≥ µ(k − 1) (since both sides are integral)

⇒µ0

µ
≥ k − 1

Therefore, we get k − 1 ≤ µ0

µ < k. ut
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