INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality $6^{\prime \prime} \times 9^{\prime \prime}$ black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

MIB ADSORPTION IN DRINKING WATER TREATMENT

BY
THOMAS EDWARD TOKUO GILLOGLY
B.S., Carnegie-Mellon University, 1993
M.S., University of Illinois at Urbana-Champaign, 1995

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
in Environmental Engineering in Civil Engineering
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1999

Urbana. Illinois

Copyright 1999 by Gillogly, Thomas Edward Tokuo All rights reserved.

UMI Microform 9921691

Copyright 1999, by UMI Company. All rights reserved.
This microform edition is protected against unauthorized copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN THE GRADUATE COLLEGE

November 13, 1998
(date)

WE HEREBY RECOMMEND THAT THE THESIS BY THOMAS EDWARD TOKUO GILLOGLY

MIB ADSORPTION IN DRINKING WATER TREATMENT
ENTITLED \qquad

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR DOCTOR OF PHILOSOPHY
THE DEGREE OF

Head of Department

Committee on Final Examination \dagger

\dagger Required for doctor's degree but not for master's.
0.517

Abstract
 MIB ADSORPTION IN DRINKING WATER TREATMENT

Thomas Edward Tokuo Gillogly, Ph.D. Department of Civil and Environmental Engineering University of Illinois at Urbana-Champaign. 1998
Vernon L. Snoeyink, Advisor

The objective of this research was to provide the tools necessary to determine the effectiveness of activated carbon, in the presence or absence of free chlorine, for the removal of 2-methylisoborneol (MIB) in a drinking water treatment plant.

An alternative approach to analyzing concentrations of (MIB) was developed for use in laboratory-scale experiments. MIB synthesized with radiolabeled- ${ }^{14} \mathrm{C}\left({ }^{(4} \mathrm{C}-\mathrm{MIB}\right)$, could be analyzed by liquid scintillation counting, a technique suitable for the rapid collection and analysis of radiolabeled compounds. Using this technique, a 2.5 mL sample aliquot containing ${ }^{14} \mathrm{C}$-MIB could be analyzed with a $3.0 \mathrm{ng} / \mathrm{L}$ limit of detection with greater than 89% confidence, without any sample concentration. This analysis could be used in the presence or absence of free chlorine.

The percent MIB removed by activated carbon, either powdered (PAC) or granular (GAC), was independent of the influent MIB concentration in natural water. It was determined that the adsorption of MIB was controlled by the quantity of natural organic matter adsorbed. Based on these experimental findings and supported by competitive adsorption theory, one protocol was developed to determine the minimum PAC dose required to reduce a known concentration of MIB to a desired level. A second protocol was also developed to determine the remaining GAC bed life for the mitigation of an MIB taste and odor episode. The results from these protocols indicated that adsorption
by activated carbon alone might not provide sufficient protection against taste and odor caused by MIB. It was suggested that an alternative or combination of technologies (ozone, advanced oxidation, biological reduction, adsorption) be investigated to determine which is the most effective.

It was observed that chlorine had a deleterious effect on the ability of both PAC and GAC to adsorb MIB. From this, it was encouraged to avoid contacting activated carbon with chlorine.
"It is better to deserve honors and not have them than to have them and not deserve them." (Mark Twain)

Dedication

To my grandfather:

May I one day be half the man you saw in me.
"Be anything you want to be; just be the best that you can be."
-Tokuo Yamamoto

"I am a part of all that I have met" (Lord Alfred Tenryson)

Acknowledgments

Looking back to see how I have gotten to where I am today, I am reminded of the countless people who have influenced my life. While it is impossible to address every one of them here, there are a select few who have played a pivotal role during the past few years. First and foremost is my advisor, Dr. Vernon L. Snoeyink. His sage insight and timeless patience has guided me through my development here at the University of Illinois. Without him, I might actually think that I understand something about adsorption.

My gratitude also goes out to the members of my committee, Dr. Richard Larson. Dr. Benito Mariñas and Dr. Roger Minear. Their endurance, support and insight have been mostly appreciated.

The "Snoeyink Research Group", both past and present, has been a source of inspiration, insight, and insanity. I have been fortunate enough to be a part of this fine collection of minds...and people. Those who have shared my office, and thus my life, deserve an additional thank you, and more than likely a couple of apologies. In particular, Carlos "Maestro" Campos has been a true friend, helping me though both my personal and professional careers. A special thank you goes to Joseph Elarde, who worked with me countless days, and nights, on this project and constantly provided a unique perspective on research and life.

The City of Chicago, Department of Water, has been kind enough to serve as the primary funding source for this project, without which, this thesis would not have been possible.

Last, but not least, my wife, Mai, and my family has been there every step of the way. Their encouragement, consolation, and patience have been without bounds; their understanding and forbearance, infinite.

Table of Contents

Introduction 1
A Musty Review 2
2-METHYLISOBORNEOL 3
Physical Properties 4
Odor Threshold5
Synthesis 6
Adsorption by Activated Carbon 6
Objectives 9
A Simplified Method to Determine the PAC Dose Required to Remove MIB 11
ABSTRACT 11
KEYWORDS 11
[NTRODUCTION 12
MATERIALS AND METHODS 13
2-Methylisoborneol 13
Activated Carbons 14
Waters 14
RESULTS AND DISCUSSION 14
CONCLUSIONS 19
Kinetic and Equilibrium Studies of ${ }^{14} \mathrm{C}$-MIB Adsorption on PAC in Natural Water 20
INTRODUCTION 20
OBJECTIVES AND APPROACH 21
MATERIALS AND METHODS 23
2-Methylisoborneol 23
Water 24
Activated Carbons 25
Equilibrium Isotherm Tests 25
Batch Kinetic Tests 26
Full-scale Treatment 27
RESULTS AND DISCUSSION 28
Adsorption Equilibria. 28
Adsorption Kinetics 31
CONCLUSIONS 42
ACKNOWLEDGMENTS 43
Effect of Chlorine on 2-Methylisoborneol Adsorption by Activated Carbon 44
INTRODUCTION 44
MATERIALS AND METHODS 45
2-Methylisoborneol 45
Water 46
Activated Carbon 47
Batch Kinetic Tests 48
RESULTS AND DISCUSSION 49
Effect of Chlorine on MIB Adsorption and the Time of Addition of Chlorine Relative to PAC 49
Cause of the Decrease in MIB Adsorption 53
Factors Affecting the Decrease in MIB Adsorption 54
CONCLUSIONS 58
Determining the Remaining GAC Bed Life for Taste and Odor Control 59
ABSTRACT 59
INTRODUCTION 60
Predicting Bed Life 60
MATERIALS AND METHODS 62
RESULTS AND DISCUSSION 67
Pilot-scale MIB Removal 67
Laboratory-Scale Column MIB Removal 69
Laboratory Column Design 74
Influent MIB Concentration 76
Natural Organic Matter Loading 78
Effect of Chlorine 79
SUMMARY AND CONCLUSIONS 82
ACKNOWLEDGMENT 84
Predicting GAC Performance 85
PSEUDO SINGLE-SOLUTE HOMOGENEOUS SURFACE DIFFUSION MODEL 85
PFHSDM Calibration and Use 86
ADSORPTION EQUILIBRIA RESULTS 88
Virgin GAC 88
Preloaded GAC 92
GAC PHYSICAL CHARACTERISTICS 94
ADSORPTION KINETICS RESULTS 95
GAC PERFORMANCE PREDICTIONS 97
DIFFUSION LIMITATIONS 100
CAPACITY LIMITATION 103
SUMMARY AND CONCLUSIONS 105
Activated Carbon Testing Protocols 106
POWDERED ACTIVATED CARBON 106
GRANULAR ACTIVATED CARBON 107
Summary and Conclusions 109
Future Research Needs. 110
References 112
Appendix A (Mathematical Modeling) 123
ADSORPTION EQUILIBRIA MODELING 123
HOMOGENEOUS SURFACE DIFFUSION FOR A BATCH SYSTEM 126
ADSORPTION THROUGH A GRANULAR ACTIVATED CARBON BED 129
Liquid-Phase 130
Solid-Phase 130
Appendix B (Raw Data) 132
SINGLE-SOLUTE PAC ISOTHERM DATA IN MILLI-Q WATER 132
SINGLE-SOLUTE GAC ISOTHERM DATA IN MILLI-Q WATER 132
COMPETATIVE GAC ISOTHERM DATA IN CHICAGO CRIB WATER 133
COMPETATIVE PAC ISOTHERM DATA IN CHICAGO CRIB WATER 134
COMPETATIVE PAC ISOTHERM DATA IN KANKAKEE RIVER WATER 135
BATCH KINETIC PAC DATA IN CHICAGO CRIB WATER 136
BATCH KINETIC PAC DATA WITH CHLORINE IN CHICAGO CRIB WATERI38
BATCH KINETIC PAC DATA WITH CHLORINE IN DEIONIZED-DISTILLED WATER 140
2-DAY PERCENT MIB BREAKTHROUGH IN CHICAGO CRIB WATER FOR LABORATORY- AND PILOT-SCALE GAC COLUMNS 141
2-DAY PERCENT MIB BREAKTHROUGH FOR A CONTINUOUSLY OPERATED DEIONIZED-DISTILLED WATER LABORATORY-SCALE GAC COLUMN (50 NG/L 2-DAY PULSES; 3.3 MIN EBCT) 141
2-DAY PERCENT MIB BREAKTHROUGH IN CHICAGO CRIB WATER FOR DIFFERENT GAC BED DIMENSIONS (I YEAR PRELOAD) 142
2-DAY PERCENT MIB BREAKTHROUGH IN CHICAGO CRIB WATER FOR DIFFERENT GAC PARTICLE SIZE FRACTIONS (2 YEAR PRELOAD) 142
2-DAY PERCENT MIB BREAKTHROUGH IN CHICAGO CRIB WATER FOR GAC PREREACTED WITH FREE CHLORINE 142
EFFLUENT MIB CONCENTRATION FROM A GAC COLUMN WITH A VARIABLE INFLUENT MIB CONCENTRATION IN CHICAGO CRIB WATER (I YEAR PRELOAD; 2.3 MIN EBCT) 143
EFFLUENT MIB CONCENTRATION FROM A GAC COLUMN WITH A VARIABLE INFLUENT MIB CONCENTRATION IN CHICAGO CRIB WATER (1 YEAR PRELOAD; 3.1 MIN EBCT) 145
KINETIC GAC DATA IN CHICAGO CRIB WATER 147
MIB SINGLE-SOLUTE FREUNDLICH PARAMETERS FROM GAC ISOTHERMS 149
EBC SINGLE-SOLUTE FREUNDLICH PARAMETERS FROM GAC ISOTHERMS 149
MIB PSEUDO SINGLE-SOLUTE FREUNDLICH PARAMETERS FOR GAC LABORATORY-SCALE COLUMNS 150
PHYSICAL CHARACTERISTICS OF GACs USED 150
COMPARISON OF CARBON BRANDS IN HOPE VALLEY RESERVOIR WATER 151
EFFECT OF INITIAL CONCENTRATION IN MYPONGA RESEVOIR WATER 151
GREELEY AND HANSEN PILOT STUDY MIB DATA 152
Appendix C (Input/Output Files) 153
EBC OUTPUT FILES 153
Watercarb PAC 153
Hydrodarco-B PAC 154
Calgon F-300 (virgin) 155
Calgon F-300 (1 year preload) 156
Calgon F-300 (2 year preload) 157
IAST OUTPUT FILES 159
Watercarb PAC 159
Hydrodarco-B PAC 160
Calgon F-300 (virgin) 161
Calgon F-300 (1 year preload) 162
Calgon F-300 (2 year preload) 164
HSDM INPUT/OUTPUT FILES 166
Watercarb PAC 166
Hydrodarco-B PAC 168
Nuchar SA-20 PAC 170
WPH PAC 172
Cecarbon PAC 174
FS MODEL INPUT 176
Calgon F-300 (virgin) 176
Calgon F-300 (1 year preload) 177
Calgon F-300 (2 year preload) 178
Appendix D (Computer Models) 180
EBC: EQUILIBRIUM PARAMETER SEARCH COMPUTER PROGRAM 180
IAST: EQUILIBRIUM EQUATION SOLVING COMPUTER PROGRAM 192
SEARCH: BATCH KINETIC PARAMETER SEARCH COMPUTER PROGRAM 199
HSDM: BATCH KINETIC EQUATION SOLVING COMPUTER PROGRAM 211
CSTR: EQUATION SOLVING COMPUTER PROGRAM 219
FS-SI: FIXED-BED ADSORPTION KINETIC PARAMETER SEARCH COMPUTER PROGRAM 223
FS: FIXED-BED ADSORPTION EQUATION SOLVING COMPUTER PROGRAM. 234
Vita 242

"Perplexity is the beginning of knowledge." (Kahlil Gibran)

Introduction

Most utilities considering employing an activated carbon system, as well as some utilities which have one installed, are perplexed. These utilities are not sure how effective their adsorptive systems will be. While many factors contribute to a particular systems effectiveness, answering two questions would go far to alleviate some of their confusion. These two questions are, "how much powdered activated carbon (PAC) will be necessary," and, "how long will granular activated carbon (GAC) adsorbers last?" For the treatment of organoleptic problems, determining how much PAC is necessary to mitigate predicted levels of earthy-musty contamination, generally indicates if powdered or granular activated carbon should be used. Should GAC be selected, due to large required doses of PAC, ascertaining how long a GAC adsorber would be effective typically indicates if the technology is economically feasible.

The occurrence of earthy-musty tastes and odors caused by compounds such as 2methylisoborneol (MIB) and geosmin, commonly encountered in surface waters, is a problem water utilities around the world must face. Activated carbon, both powdered and granular, has been widely used for the mitigation of these unacceptable organoleptic occurrences, but this technology has yielded mixed results. The wide variability in the effectiveness of activated carbon appears related to the magnitude and periodic nature of the influent concentration, the concentration and characteristics of the natural organic matter, and the presence or absence of free chlorine.

It is the purpose of this study to obtain the fundamental data necessary to determine the key factors that influence activated carbon performance and dosage requirements for earthy-musty taste and odor control in a water treatment plant using free chlorine as a disinfectant. This will be accomplished by investigating the influences of the influent MIB concentration, natural organic matter, and free chlorine on PAC and GAC.

"If you steal from one author, it's plagiarism. If you steal from two, it's research." (Wilson Mizner)

A Musty Review

Of the odors in water supplies, the earthy or musty descriptors are most frequently observed, though they are often masked by stronger odors (Mallevialle et al., 1987; McGuire et al., 1981). 2-Methylisoborneol (MIB) alias 1,2,7,7-tetramethhyl-exo-bicyclo(2.2.1.)heptan-2-ol alias 2-exo-hydroxy-2-methylbornane is frequently associated with the earthy-musty tastes and odors. While this compound is the focus of the paper, other causative agents of earthy-musty complaints exist.

The presence of MIB has been detected the world over. However, it has not been until relatively recently that this compound has been readily identifiable at the concentrations typically encountered in the environment. While the sensory analysis of water was initially more sensitive than chemical analysis, the variability inherent to sensory perception often cast doubts on the results.

People's perception of the odor in the water varies greatly between individuals. This range of sensitivities varies up to a factor of 10,000 or more (Cees et al., 1974). With this wide range of perception, questions of degree of treatment arose. Should the water be treated so that some of the people are satisfied? Most of the people? All of the people?

In 1925 the US Public Health Service's drinking water standards stated that the taste of drinking water be "generally acceptable". This was amended in 1946 to state that drinking water should be "not objectionable", and again in 1962 to "not offensive". In the early 1970s, the World Health Organization (WHO) wrote that the "absence of color and of any disagreeable taste or smell are of the utmost importance in public supplies of water." 1984 brought the draft of the WHO guidelines for drinking water quality stated that the drinking water "not be offensive for most of the consumers served." (Bartels et
al., 1989; Sano, 1988; Mallevialle et al., 1987). These descriptors, however publicly comforting, were still vague in determining to what absolute concentrations a water should be treated. Zoeteman et al. (1980) suggested that the water be treated to a level such that only five percent of the population could detect the compounds. The 1984 draft guidelines for drinking water by the WHO did suggest that the musty odor compounds be decreased to less than ten percent of the odor threshold concentration (OTC) (Sano, 1988). The OTC corresponds to a fifty percent detection by the population; ten percent of the OTC corresponds to approximately fifteen percent of the consumers still being able to detect the odor (Cees et al., 1974). This was later generalized by the final guidelines, stipulating that only the most sensitive (five percent) of the population are permitted to detect an offensive taste. To attain these goals, an extensive amount of information must be collected.

2-METHYLISOBORNEOL

The mid-1960s brought great developments in the arena of chemical analysis of tastes and odors. It was not until this time that the specific compounds that were possibly causing the offensive organoleptic qualities were isolated and analyzed. Gerber and Lechevalier (1965) were the first to isolate a "new" compound, which they named geosmin; "ge" from Greek, meaning earth, and "osmin" meaning odor. Later, Gerber (1968) was able to publish the structure of geosmin, but there was a musty compound that was showing up in their research that had yet to be identified. In 1969, Medsker et al. (1969) isolated and identified this other compound produced by actinomycetes as MIB (Figure 1). MIB was not a new compound, as it had been earlier synthesized by Zelinsky (1901). Collins et al. (1970) confirmed that Streptomyces odorifer, an actinomycete, produced both geosmin and MIB. At the same time of these developments, acrid odors (Henley et al., 1969; Gaines and Collins, 1963) and musty odors besides MIB were also being isolated and identified (Dougherty et al., 1967; Dougherty et al., 1966; Morris et al., 1963).

Figure 1-2-Methylisoborneol

Physical Properties

This research was important in identifying the problem. The structural properties of this compound and others account for their sensory activity (Veijanen, 1992; Mallevialle, 1987; Gerber, 1983; Gerber, 1968). While the structure is important, other physical and chemical properties are also critical to determine possible analytical and treatment methods, as well as understand how they persist in the environment.

Table 1 - Boiling Point of MIB

Boiling Point $\left({ }^{\circ} \mathrm{C}\right)$	Source
207	Wako (1994)
196.7	Pirbazari et al. (1992)
$208-209$	Zelinsky (1901)

Table 2 - MIB Melting Point

Melting Point $\left({ }^{\circ} \mathrm{C}\right)$	Source
$162-163$	Wako (1994)
$162.1-163.3$	Pribazari et al. (1992)
$158-160$	Medsker et al. (1969)

Table 3 - Physical Properties of MIB

Solubility (mg/L)	194.5
Vapor Pressure (atm)	6.68×10^{-5}
Henry's Law Constant (atm $\left.\mathrm{m}^{3} / \mathrm{mol}\right)$	5.76×10^{-5}
Log K O_{ow}	3.13
Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	0.929
Refractive Index	1.47

Odor Threshold

Table 4 shows some of the MIB OTCs reported in the literature. It should be noted that this concentration has systematically decreased over time. It is believed that this correlation is generally related to the analytical detection limits and not to population sensitization. While the results of sensory evaluation techniques typically vary from population to population, and between replicate analyses within a given population, an appropriate MIB OTC, based on the more recent studies would be $5 \mathrm{ng} / \mathrm{L}$.

Table 4 - Odor Threshold Concentration of MIB

Odor Threshold Concentration (ng/L)	Source
6.3	Young et al., 1996
5	Ito et al., 1988
4 (trained),	Sano, 1988
12 (untrained) ${ }^{1}$	
29	Amoore, 1986
20	Zoeteman et al., 1980
$30-40$	Persson, 1980
100	Wood and Snoeyink, 1977
100	Rosen et al., 1970
100	Medsker et al., 1969

While several technologies have been applied to remove MIB from drinking water, activated carbon has been the treatment most frequently utilized. In comparison to granular activated carbon (GAC), powdered activated carbon (PAC) has been more frequently applied (Gillogly et al., 1998; Huang et al., 1996; Wittmeyer et al., 1995; Simpson and MacLeod, 1991; Lalezary et al., 1986). However, GAC has also been regularly employed (Pirbazari et al., 1993; Lalezary et al., 1986; Chudyk et al., 1979; Herzing et al., 1977).

[^0]
Synthesis

Zelinski (1901) first reported the synthesis of 2-methylisoborneol. Since then, several researchers have performed similar syntheses by reacting methylmagnesium halides or methyllithium with camphor to produce MIB (Wood and Snoeyink, 1977).

Figure 2 - Synthesis of ${ }^{14} \mathrm{C}$-MIB from d-Camphor

Radiolabeled ${ }^{14} \mathrm{C}$-MIB was used extensively through the research presented in this thesis. This particular material, prepared by American Radiolabeled Chemical, Inc. (St. Louis, MO), was formed by reacting ${ }^{14} \mathrm{C}$-labeled methylmagnesium iodide with the d-camphor enantiomer. The d-camphor was selected after Wood and Snoeyink's (1977) determination that naturally occurring MIB exists in the R form. A radiochemical purity of 100 percent was determined by the manufacturer using high performance liquid chromatography (HPLC). The chemical purity was determined to be greater than 99% by gas chromatography at the University of Illinois. Gas chromatography-mass spectroscopy was used to verify that the compound received from American Radiolabeled Chemicals, Inc. was $2-{ }^{14}$ methylisoborneol.

Adsorption by Activated Carbon

For a given water and target organic micropollutant, activated carbons have displayed a wide range of capacities for the target compound; MIB is no exception (Gillogly et al.,

1997; Newcombe and Drikas, 1995). Currently the adsorption mechanism controlling the uptake of MIB by activated carbons has not been verified. However, it is believed that in addition to the physical size and chemical nature of MIB, the pore size distribution and the surface chemistry of the activated carbon plays a critical role in determining how MIB adsorbs.

Several researchers (Newcombe and Drikas, 1995; Chudyk et al., 1979; and Pendleton et al., 1997) have been able to show a strong correlation between the surface area/micropore volume of PAC (coal-, coconut-, lignite-, and peat-based) and MIB adsorption capacity. While the data collected from wood-based PACs did not fit this same trend, an increase in the surface area/micropore volume of the wood-based PACs still yielded higher adsorption capacities. It was concluded from additional analyses that the porosity of the carbon could not account for the differences observed with the wood-based carbon, indicating the differences were probably due to surface chemistry (Pendleton et al., 1997).

It has been proposed that surface oxides play a critical role in the adsorption of organic compounds by activated carbon. Boehm (Eley et al., 1966) developed a set of titrations to categorize the surface oxides into four groups: strongly acidic carboxyl, weakly acidic carboxyl, phenolic and carbonyl. Based upon these titrations, Snoeyink et al. (1974) and McGuire and Suffet (1984, 1980) correlated increases in concentrations of these functional groups to increasing reaction between free chlorine and activated carbon. The increasingly oxidized carbons were then correlated to decreasing adsorption quantities of phenol, para-nitrophenol, n-butanol, 1,4-dioxane, nitromethane, and methyl ethyl ketone.

Lalezary et al. (1988), and Lalezary-Craig et al. (1986) showed that PAC was less effective for MIB if it was applied together with chlorine. Gillogly et al. (1998b, submitted 1998) reacted varying amounts of free chlorine with activated carbon and found decreasing removals of MIB for increased amounts of free chlorine reacted. These findings are consistent with a study that reported a decrease in MIB adsorption capacity
with increasing hydrophilic sites, as determined by water adsorption isotherms (Pendleton et al. 1997).

Together these studies suggest that MIB adsorption by activated carbon probably occurs by hydrophobic interaction (sorption to non-polar hydrocarbon-like sites) with the carbon surface. As a result, free chlorine reacting with the surface of the carbon (forming $>\mathrm{C}=\mathrm{O}$, -OH and- COOH groups) increases the hydrophilicity of the carbon surface. For more hydrophilic surfaces, less MIB would be expected to adsorb, as it would be more difficult for the MIB to displace the adsorbed water molecules to reach the non-polar adsorption sites.
"The only limit to our realization of tomorrow will be our doubts of today. Let us move forward with strong and active faith. " (Franklin Delano Roosevelt)

Objectives

It was the hypothesis of the author that the methods currently used to determine how effective powdered and granular activated carbon are for the removal of naturally occurring episodes of MIB are too complex and often do not take into consideration how other treatment process affect the effectiveness of the carbon. Therefore, it was the objective of this research to develop simple tools to determine the effectiveness of activated carbon, in the presence or absence of free chlorine, for the removal of 2methylisoborneol in a drinking water treatment plant. Discussed in the next five chapters, this objective was met by collecting the fundamental data to realize the following goals:

- Demonstrate liquid scintillation counting of ${ }^{14} \mathrm{C}-\mathrm{MIB}$ is a technique suitable for rapid collection and analysis of low spiked concentrations of MIB in natural water environments that do not oxidize the MIB;
- Develop a method to determine the minimum powdered activated carbon dose required to reduce a given MIB concentration to a specific level in natural water;
- Confirm that the method to determine the minimum PAC dose required to mitigate an earthy-musty taste and odor episode is independent of the PAC's starting material, natural water source, or naturally occurring MIB concentration;
- Determine the effect of free chlorine on 2-methylisoborneol adsorption by powdered activated carbon;
- Verify that the removal efficiency of MIB by a GAC adsorber is unrelated to the concentration of MIB in natural water,
- Show that the GAC adsorber removal efficiency of MIB is dependent on the mass of chlorine reacted per mass of activated carbon and/or the amount of previously adsorbed background organic matter;
- Demonstrate that the immediate performance potential of GAC, as determined in laboratory scale columns, is independent of bed dimensions for a given EBCT.
- Postulate a protocol to assess the immediate performance potential of a GAC filter/adsorber based upon the elements of research that proved significant.
"I look on that man as happy, who, when there is a question of success, looks into his work for a reply." (Ralph Waldo Emerson)

A Simplified Method to Determine the PAC Dose Required to Remove MIB

by

Thomas E.T. Gillogly', Vernon L. Snoeyink', Gayle Newcombe", Joseph R. Elarde ${ }^{*}$

Abstract

Equilibrium data obtained from a natural water with several different initial concentrations of 2-methylisoborneol (MIB) plot as a single line on a percent remaining, $\mathrm{C}_{\mathrm{f}} / \mathrm{C}_{\mathrm{o}} \times 100 \%$, versus carbon dose, C_{c}, plot. This indicates that the percent removal of MIB is independent of its initial concentration in natural water for a given PAC dose. The relationship is specific for each type of PAC, and it is not valid at very high MIB concentrations, however. These data show that, predicting the minimum amount of carbon necessary to effectively mitigate any MIB episode, may be accomplished by analyzing a single bottle-point isotherm. The robustness of this approach was shown through the use of four water sources, fourteen different carbons, and MIB concentrations ranging from $45 \mathrm{ng} / \mathrm{L}$ to $178 \mu \mathrm{~g} / \mathrm{L}$.

KEYWORDS

${ }^{14} \mathrm{C}-\mathrm{MIB} ; 2$ 2-Methylisoborneol; Activated Carbon; Closed-Loop Stripping Analysis (CLSA); Scintillation Counting

[^1]
INTRODUCTION

The effective application of activated carbon up to this point has required either complex predictive mathematical modeling with its corresponding calibration experimentation, or extensive trial-and-error testing. Researchers have long been developing and modifying these theories and models to predict adsorbent material capacities for a variety of contaminants. Earthy-musty tastes and odors produced by geosmin and 2methylisoborneol (MIB) have recently gained considerable attention as two compounds responsible for consumer complaints the world over.

Accurately describing the competitive adsorption between the background organic matter and the compound of interest has made predictions difficult. One approach utilizes the Equivalent Background Compound (EBC) model, (Najm et al., 1991a; Najm et al., 1991b; Knappe et al., 1993; Qi, 1994; Gillogly et al., 1997) while another employs Fictive Components (FCs) (Frick and Sontheimer, 1983; Crittenden et al., 1985; Smith and Weber, 1990). Both have been applied successfully; however, they require several experiments for calibration, and confirmation, as well as an understanding of how to manipulate the models. This requires specially trained personnel and time, when time may be a critical factor. Other researchers have attempted to determine if a physical characteristic of the carbon could determine a priori, how effectively MIB could be removed (Chudyk et al., 1979). Unfortunately, it was determined that characteristics such as surface area and micropore volume could not be consistently used (Newcombe et al., 1994).

The carbon dose required to mitigate a particular organic contamination problem in a water supply generally depends on the adsorptive capacity of the carbon. Unfortunately, the adsorptive capacity is dependent upon the initial contaminant concentration, which can vary widely. Large data sets are required to fully characterize such systems, and
collection of these data for compounds that cause earthy-musty odor is complicated by an analysis procedure that is difficult and time consuming.

Fortunately, recent studies have shown that a single isotherm may be sufficient to yield the necessary information to determine a particular carbon's feasibility. The research contained herein follows a recent development of Knappe (1996). He showed that a unique relationship existed for adsorption of a trace compound such as atrazine in the presence of natural organic matter. If the initial concentration of the trace compound was less than a certain level, approximately $50 \mu \mathrm{~g} / \mathrm{L}$ for atrazine, its percent removal at equilibrium for a given carbon dose in a particular natural water is independent of the compounds initial concentration. Thus, for a given carbon dose, the amount of trace compound adsorbed is directly proportional to its initial concentration. The following study has investigated how this trend may be applied to MIB adsorption for a variety of activated carbons and waters.

MATERIALS AND METHODS

2-Methylisoborneol

The concentration of 2-methylisoborneol (MIB) was determined by one of two methods. Those experiments using the Kankakee River or Lake Michigan as its water source relied upon ${ }^{14} \mathrm{C}$ labeled MIB (${ }^{14} \mathrm{C}-\mathrm{MIB}$). These tests were analyzed by mixing 2.5 mL filtered sample aliquots with 18 mL of scintillation cocktail (Ecoscint, National Diagnostics, Manville, NJ) in scintillation vials. The resulting fluorescence was then measured in a liquid scintillation counter (Tri-Carb Model 1600CA, Packard Instrument Co., Downers Grove, IL). This method is described in greater detail in "Kinetic and Equilibrium Studies of ${ }^{14}$ C-MIB Adsorption on PAC in Natural Water" (Gillogly et al., 1997).

Experiments utilizing Hope Valley Reservoir and Myponga Reservoir water analyzed MIB as per Method 6040B "Closed-Loop Stripping, Gas Chromatographic/Mass

Spectrometric Analysis" (Standard Methods, 1995), with an additional modification to incorporate deuterated standards.

Activated Carbons

The activated carbons employed in this study were Cecarbon (Elf Atochem North America, Philadelphia, PA), F-400 (Calgon Carbon Corp., Pittsburgh, PA), WPL (Calgon Carbon Corp., Pittsburgh, PA), WPH (Calgon Carbon Corp., Pittsburgh, PA), prototype carbon (not commercially available), ASTM M325 (Haycarb Holdings, Victoria, Australia), Picatif PCO (PICA, Levallois, France), Picazine (PICA, Levallois, France), P1100 (PICA, Levallois, France), P1300 (PICA, Levallois, France), W20 (Norit Americas Inc., Atlanta, GA), Hydrodarco-B (Norit Americas Inc., Atlanta, GA), Watercarb (Acticarb, Dunnellon, FL), and Nuchar SA-20 (Westvaco Chemicals, Covington, VA). Granular activated carbon samples were ground so that $\geq 95 \%$ passed a \#325 U.S. Standard mesh ($44 \mu \mathrm{~m}$ diameter).

Waters

Several natural water sources were drawn upon in this study, including: Hope Valley Reservoir (South Australia, Australia; $5.0 \mathrm{mg} / \mathrm{L}$ DOC), Kankakee River (Illinois, USA; $4.0 \mathrm{mg} / \mathrm{L}$ DOC). Lake Michigan (Illinois, USA; $1.8 \mathrm{mg} / \mathrm{L}$ DOC), Myponga Reservoir (South Australia, Australia; $5.8 \mathrm{mg} / \mathrm{L}$ DOC). Prior to use, these waters were passed through a $1 \mu \mathrm{~m}$ filter for particulate removal. Any water not immediately used was stored in the dark at $4^{\circ} \mathrm{C}$ to limit biological activity.

RESULTS AND DISCUSSION

The difficulty in predicting the amount of an organic contaminant that can be removed for a particular carbon dose has been in describing the reduction of adsorptive capacity due to competing background organics. The familiar equilibrium solid-phase concentration of MIB, q_{e}, versus the MIB equilibrium solution concentration, C_{e}, plot, shows how the amount of MIB adsorbed per unit mass of activated carbon changes with the initial
concentration (see Figure 1). Typically several experiments are necessary to calibrate and verify a competitive adsorption model, so that the model can be used to predict the capacity of a particular carbon dose for an initial concentration of interest. This process can have many steps, take a considerable amount of time, and requires personnel knowledgeable of the model and its operation.

Figure 1 - Hydrodarco-B adsorption isotherms in Kankakee River water

Following a recent development of Knappe (1996), it has been shown that if the natural water equilibrium data are plotted as percent remaining, $\mathrm{C}_{\mathrm{e}} / \mathrm{C}_{0} \times 100 \%$, versus carbon dose, C_{c}, instead of q_{e} versus C_{e}, the data plot as a single line if the initial concentrations of the trace compound are sufficiently low. This behavior of the data is predicted from the Ideal Adsorbed Solutions Theory if the solid phase concentration of the competing background organic matter at a given carbon dose is not affected by trace levels of the target compound (Knappe, 1996). This behavior of the data indicates that the percent removal of a trace organic is independent of its initial concentration in natural water for a given PAC dose. From this type of plot, the minimum carbon dose required to achieve a desired removal can be quickly obtained for any reasonable initial concentration without the need for mathematical models. As shown in Figure 2, the Hydrodarco-B MIB
adsorption data in Kankakee River water for the initial concentrations of 131, 184 and $891 \mathrm{ng} / \mathrm{L}$, now fall on the same line. A similar trend is also seen with WPH PAC.

Figure 2 - PAC adsorption isotherms in Kankakee River water

Figure 3 - PAC adsorption isotherms in Lake Michigan water

Additional isotherms run in Lake Michigan water using Watercarb, Hydrodarco-B and WPH PAC also show that the adsorption data for each carbon plot as a single line (refer
to Figure 3). Critical information can be extracted from these plots quickly and easily. For example, if the MIB C_{0} is $100 \mathrm{ng} / \mathrm{L}$ and it must be reduced to $5 \mathrm{ng} / \mathrm{L}$, a removal of 95% is required $\left(C_{e} / C_{0} \times 100 \%=5 \%\right)$. Drawing upon the data in Figure 3, a carbon dose of $12.5 \mathrm{mg} / \mathrm{L}$ WPH would be required for a 95% removal. The data in Figure 2 and 3 can now be used to compare the minimum carbon doses required to remove 95% of the MIB from Kankakee River water and Lake Michigan water, as shown in Table 1. Substantially more competition between natural organic matter and MIB occurs in Kankakee River water than in Lake Michigan water.

Table 1 - PAC dose required to remove 95% of the MIB initially present

Water Source	WPH	Hydrodarco-B	Watercarb
Kankakee River	20.3	61	-
Lake Michigan	12.5	22	38

Figure 4 - Comparison of 10 carbons; $13.2 \mathrm{mg} / \mathrm{L}$ PAC in Hope Valley water

To show the differences which can exist between carbons, ten activated carbons made from a wide variety of starting materials (coal, coconut, wood, peat, lignite) were analyzed using two initial MIB concentrations and a PAC dose of $13.2 \mathrm{mg} / \mathrm{L}$ in water
from the Hope Valley Reservoir. As seen in Figure 4, the difference in percent remaining for the two initial concentrations was less than 7% for all carbons, with an average difference of 4%. The carbons removed from 13 to 85% of the MIB, however, showing a great variability in adsorptive capacity. This difference emphasizes the importance of evaluating carbons on a cost per unit MIB removed basis rather than on a cost per unit weight basis.

Figure 5 - MIB removed by $13.2 \mathrm{mg} / \mathrm{L}$ P1300 from Myponga Reservoir water

Figure 6 - MIB removed by $13.2 \mathrm{mg} / \mathrm{L}$ P1 100 from Myponga Reservoir water

Two final series of experiments were performed to show that the percent MIB removed by one carbon dose was constant over a wide range of initial MIB concentrations.

Myponga Reservoir water was spiked with MIB between $45 \mathrm{ng} / \mathrm{L}$ and $178 \mu \mathrm{~g} / \mathrm{L}$. To the spiked water, $13.2 \mathrm{mg} / \mathrm{L}$ of P 1300 or P1100 was added and allowed to come to equilibrium. While these MIB concentrations covered three to four orders of magnitude, the percent remaining showed an impressive consistency (see Figures 5 and 6). Over this wide range, the difference in the measured maximum and minimum percent remaining was less than 6.6% for P 1300 , with an average of 10.2% remaining. While a larger difference, 13.7%, was observed between the maximum and minimum percent remaining with P1100, average 21.6% remaining, the approach yields excellent reproducibility.

CONCLUSIONS

These data support a simplification in the procedure for determining the PAC dose required to remove a desired amount of MIB. It has been shown that for a given water/carbon system, a particular carbon dose a will remove a fixed percentage of the MIB initially present. This has been shown to hold true regardless of the activated carbon's starting material, brand of carbon, carbon dose, natural water source, or initial concentration of MIB. However, the relationship is specific for each natural water and type of PAC. The calculated dosage is a minimum dosage, and will be higher in a specific treatment plant if the method of PAC application does not result in the achievement of equilibrium.

This implies that predicting the minimum amount of carbon necessary to effectively mitigate any MIB episode may be accomplished by analyzing a single bottle-point isotherm. This test may also serve as a rapid method for comparing carbons, or for determining at what point another technology should be investigated for the control of earthy-musty taste and odor episodes.

"Nothing can have value without being an object of utility" (Karl Marx)

Kinetic and Equilibrium Studies of ${ }^{14} \mathrm{C}-\mathrm{MIB}$ Adsorption on PAC in Natural Water

by

Thomas E.T. Gillogly', Vernon L. Snoeyink', Joseph R. Elarde', Claude M. Wilson* ${ }^{*}$, Earl P. Royal**

INTRODUCTION

Anthropogenic and biogenic taste and odor problems have plagued water sources over the ages. In prehistoric times, people relied upon their senses to warn them of dangerously contaminated water. Even today we are influenced by our senses to determine if a particular food or drink has spoiled or become contaminated. Additionally, the awareness of pollutants in our environment has brought us to a state of hypersensitivity to offflavors and odors. These objectionable tastes and odors are often presumed to be due to toxic substances (Jensen et al, 1994). A study in The Netherlands showed a 45 percent decrease in water consumption due to people disliking the taste (Cees et al., 1974). Another survey of US consumers, showed that greater than 15 percent of the respondents used either bottled water or a home-treatment device. The majority of these people indicated that their action was due to bad smelling or tasting tap water (Manwaring et al., 1986). Earlier, the Gallup Poll showed the most common complaint with drinking water to be taste (Gallup, 1973).

[^2]Of the odors in water supplies, the earthy or musty descriptors are most frequently observed, though they are often masked by stronger odors (Mallevialle and Suffet, 1987; McGuire et al., 1981). The two compounds most frequently associated with earthymusty odors are MIB and geosmin. These compounds are problematic due to their odor threshold concentrations in the low nanogram/L levels and resistance to chemical oxidation. Chlorine and potassium permanganate by themselves are generally considered ineffective. As a result, many utilities have used granular activated carbon (GAC) and powdered activated carbon (PAC). Recently, Suffet et al. (1996) reported that utilities responding to a survey considered activated carbon to be the most effective taste and odor control process. Of those utilities, PAC was used more than six times as often as GAC.

Because MIB is frequently present, and more weakly adsorbed than other common earthy or musty compounds, including geosmin, it is reasonable to use it as the target compound in laboratory studies (Lalezary et al., 1986). The analysis of MIB has often handicapped the development of solutions to the taste and odor problem. Although it has been successfully used by many, the Closed Loop Stripping Analysis (CLSA) procedure is inefficient, laborious and time consuming due to requirements of large sample sizes. the need for prolonged stripping of the sample, and extended time for chromatographic analysis (Standard, 1992). This method often yields low reproducibility at low MIB concentrations, creating special problems in adsorption studies.

OBJECTIVES AND APPROACH

The objective of this study was to develop a method which could be easily employed to determine the necessary amount of PAC required to mitigate earthy-musty taste and odor episodes. This study shows that radiolabeled MIB can be used to circumvent most analytical problems discussed above. It has also been shown that both kinetics of MIB adsorption and capacity in the presence of natural organics are important factors in determining the performance of a PAC in a water treatment plant. In order to achieve the
objective, five commercially available PACs were studied in Lake Michigan water. Laboratory kinetic data were analyzed using the pseudo single-solute homogeneous surface diffusion model (HSDM) (Traegner and Suidan, 1989; Qi et al., 1994). The equilibrium results were analyzed using a new approach that involves a percent adsorbate remaining at equilibrium versus carbon dose plot. The results from this research were compared to those obtained by Huang et al. (1996) using the traditional CLSA analysis.

The HSDM model assumes instantaneous equilibrium between the adsorbent and adsorbate at the outer surface of the particle, and that the intraparticle migration of the adsorbate is controlled by surface diffusion. Determination of the kinetic parameters (liquid film mass transfer coefficient - k_{f}, surface diffusion coefficient - D_{5}) for the batch system is accomplished by minimizing the difference between the concentration versus time data collected in a batch test, and that predicted by the HSDM. This comparison between the model prediction and data requires inputs of parameters which can be determined directly (initial MIB concentration - C_{o}, carbon concentration - C_{c}, particle diameter $-d_{p}$, particle density $-p_{p}$) and experimentally (Freundlich coefficients $-K, 1 / n$). Once the model is calibrated it can be used to predict adsorption as a function of time in different types of reactors, such as plug flow and continuous stirred tank reactors.

The experimentally determined parameters are calculated using the Freundlich isotherm equation (Freundlich, 1906):

$$
\begin{equation*}
q_{e}=K C_{e}^{1 / n} \tag{1}
\end{equation*}
$$

where $q_{e}=$ Solid phase concentration of MIB in equilibrium with C_{e};
$\mathrm{K}=$ Freundlich isotherm constant;
$C_{e}=$ Equilibrium liquid phase concentration of MIB;
$1 / n=$ Freundlich isotherm constant.

A new method for interpreting both kinetic and equilibrium data for trace compounds in natural waters follows the recent development of Knappe (1996). He showed that a unique relationship existed for adsorption of a trace compound such as atrazine in the presence of natural organic matter. If the initial concentration of the trace compound was less than a certain level, approximately $50 \mu \mathrm{~g} / \mathrm{L}$ in the case of atrazine, the trace compound percent removal at equilibrium for a given carbon dose in natural water is independent of its initial concentration (Knappe et al., 1996). Thus, for a given carbon dose, the amount of trace compound adsorbed is directly proportional to its initial concentration. Additionally, the data in this study have demonstrated that the percent removal at any given time for a given carbon dose in natural water, is independent of the MIB initial concentration. Therefore, by plotting the percent of trace compound remaining versus carbon dose for a given contact time, the minimum amount of carbon required to reduce the trace compound to a desired concentration, may be quickly obtained without the need for mathematical models. In order to use this plot, it is important to establish that the range of initial concentrations of interest is less than the value above which this relationship is no longer valid.

MATERIALS AND METHODS

2-Methylisoborneol

The ${ }^{14} \mathrm{C}$-labeled 2-methylisoborneol (${ }^{14} \mathrm{C}$-MIB) (American Radiolabeled Chemicals, St. Louis, MO) was selected due to ease of analysis and small sample size requirements. Analysis of ${ }^{14} \mathrm{C}$-MIB samples was accomplished by mixing 2.5 mL aliquots with 18 mL of scintillation cocktail (Ecoscint, National Diagnostics, Manville, NJ) in scintillation vials. The resulting fluorescence was then measured in a liquid scintillation counter (TriCarb Model 1600CA, Packard Instrument Co., Downers Grove, IL). The specific activity ($55 \mathrm{mCi} / \mathrm{mmol}$) of the ${ }^{14} \mathrm{C}-\mathrm{MIB}$ yielded a detection limit, with a confidence level greater than or equal to 89%, of $4.5 \mathrm{ng} / \mathrm{L}$ without the use of a concentration step (Skoog and Leary, 1992).

The compound was received predissolved in purge and trap grade methanol at a concentration approximately $18.3 \mu \mathrm{~g} / \mu \mathrm{L}$ (chemical purity $\geq 99 \%$ confirmed by GC-MS analysis, 100% radiochemical purity confirmed by HPLC). Stock solutions of $100 \mathrm{ng} / \mu \mathrm{L}$ were subsequently prepared by spiking $5.4 \mu \mathrm{~L}$ of the received solution into 1 mL of purge and trap grade methanol. The compound and all solutions were stored at $4^{\circ} \mathrm{C}$.

Water

Natural Water. Lake Michigan water (see Table 1 for composition) was used as the natural water source to study competitive effects between background organic material and MIB. Water was collected from a line running from the South Water Production Plant (Chicago, IL) crib to the shore plant. The water was shipped to the University of Illinois in 208 L (55 gal) stainless steel drums, where it was stored at $4^{\circ} \mathrm{C}$ in the dark to limit biological activity. (The crib is located two miles off shore in water 32 to 35 feet deep; the water is drawn near the bottom.)
Table 1. Characteristics of Lake Michigan Water

pH	8.2				
Alkalinity	$117 \mathrm{mg} / \mathrm{L} \mathrm{as} \mathrm{CaCO}$	$	$	Conductivity	$281 \mu \mathrm{mhos}$
:---:	:---:				
Turbidity	$1.88 \mathrm{~N} . \mathrm{T} . \mathrm{U}$.				
Nitrogen, Total Kjeldahl	$0.37 \mathrm{mg} / \mathrm{L}$				
Phosphate, Total	$0.021 \mathrm{mg} / \mathrm{L}$				
Dissolved Organic Carbon	$1.8 \mathrm{mg} / \mathrm{L}$				

Organic-free Water. Organic-free water for the single-solute isotherms was obtained by passing deionized Urbana, IL, tap water through a Milli-Q water system (Millipore Corp., Bedford, MA) which has three cartridges (activated carbon, ion exchange, ion exchange) and a $0.45 \mu \mathrm{~m}$ filter. The water had a resistivity ≥ 18 megohm- cm and a dissolved organic carbon (DOC) content of $0.1-0.3 \mathrm{mg} / \mathrm{L}$.

Activated Carbons

The PACs evaluated in this study were Cecarbon (Elf Atochem North America, Philadelphia, PA), WPH (Calgon Carbon Corp., Pittsburgh, PA), Hydrodarco-B (Norit Americas Inc., Atlanta, GA), Watercarb (Acticarb, Dunnellon, FL), and Nuchar SA-20 (Westvaco Chemicals, Covington, VA). (See Table 2.) Samples of these carbons were obtained from the inventory of the City of Chicago Department of Water, but were not collected in a fashion to assure that they were fully representative of the inventory. The PAC samples were stored in polyethylene bottles until used.

Table 2. Powdered Activated Carbon Properties

PAC	Starting Material	Iodine No. (mg/g)
Cecarbon	Bituminous Coal	1020
WPH	Bituminous Coal	800
Hydrodarco-B	Lignite	550
Watercarb	Wood	550
Nuchar SA-20	Wood	1000

Prior to use, samples were dried overnight in a $110^{\circ} \mathrm{C}$ oven, to remove excess water, and subsequently were cooled in a desiccator. Once cooled, the desired amount of carbon, not less than 2 mg , was weighed out on a 4-point scale (LIBROR AEU-210, Shimazdu Corp., Kyoto, Japan).

For experiments which required carbon slurries, a slurry of $10 \mathrm{mg} / \mathrm{mL}$ was used. These slurries were prepared by mixing 10 g of the particular carbon, prepared as above, in 1 L of organic-free water. The slurry was mixed with a magnetic stirring bar only when an aliquot was to be drawn. For the remaining time the slurry bottle was quiescent. This was to prevent grinding of the carbon between the storage vessel bottom and magnetic stirring bar, as the kinetics of adsorption is sensitive to particle diameter. ${ }^{17.18}$

Equilibrium Isotherm Tests

Adsorption isotherms of ${ }^{14} \mathrm{C}$-MIB on PAC were obtained in the laboratory using the bottle-point technique (Randtke and Snoeyink, 1983). Into $1 \mathrm{~L}, 500 \mathrm{~mL}, 250 \mathrm{~mL}$, or 120
mL acid washed/baked $300^{\circ} \mathrm{C}$ bottles, a known mass of the oven dried carbon was added, along with a known volume of glass beads. Three of the bottles had no carbon, and were used to determine the initial concentration of ${ }^{14} \mathrm{C}-\mathrm{MIB}$. These bottles were then filled headspace free with the sample water using a 100 mL dispensing pipette (Brinkmann, Westbury, NY). The 120 mL bottles were then covered with a teflon faced silicone septum (Wheaton, Millville, NJ) and an aluminum crimp cap while the $1 \mathrm{~L}, 500 \mathrm{~mL}$ and 250 mL bottles were covered with teflon tape (Fisher, Pittsburgh, PA) and a screw cap. These bottles were then agitated on a shaker table in the dark for 4 days. After the four days, samples were collected using a stainless steel needle (Aldrich Chemical Co., Milwaukee, WI) connected to a gas-tight, luer lock syringe (Hamilton Co., Reno, NV). The aliquot was then passed though a $0.22 \mu \mathrm{~m}$ conditioned nylon membrane syringe (Magna, Westboro, MA) supported in a syringe filter holder (Swinney Holder, Gelman Sciences, Ann Arbor, MI). To condition the filter, 5 mL of the sample was filtered and wasted prior to the collection of 2.5 mL into the scintillation vial. The glass beads were used to ensure adequate mixing in the headspace free bottles.

Isotherm solutions were prepared in a floating head delivery vessel (custom manufacture, University of Illinois, IL). For isotherms in natural water, the floating head delivery vessel was filled with Lake Michigan water. The water was chlorinated to $2.5 \mathrm{mg} / \mathrm{L}$ as Cl_{2} and stirred for 6 to 8 hours. This killed most of the microorganisms, and allowed the water to come to room temperature. After stirring, the free chlorine was measured and subsequently dechlorinated with a stoichiometric amount of sulfurous acid (Fisher Scientific Co., Pittsburgh, PA). The pH of the solution was adjusted as needed back to 8.2 ± 0.1, with 1 M HCl or NaOH . The dechlorinated water was then spiked with a predetermined amount of ${ }^{14} \mathrm{C}$-MIB and allowed to mix for 1 hour prior to filling the isotherm bottles.

Batch Kinetic Tests

The device used for the batch kinetic experiments was a jar test apparatus (Six Paddle Stirrer Model 7790-400, Phipps \& Bird, Richmond, VA) and modified square jars (B-
$K^{2}{ }^{2}$, Phipps \& Bird, Richmond, VA). Clear acrylic lids were manufactured for each individual jar to prevent loss of MIB through volatilization. These lids allowed for the experiments to be visually monitored and run with only a small fraction of the solution surface exposed to the atmosphere. In the jars, 2.6 L of Lake Michigan water ($\mathrm{pH}=8.2$) was brought to room temperature and spiked with ${ }^{14} \mathrm{C}$-MIB to the desired initial concentration. The solutions were then stirred at 125 pm for 5 minutes before the addition of carbon. Carbon was either added by aliquots of a carbon slurry, or by a weighed mass of oven dried, prewetted carbon. (To properly wet the carbon prior to the test, weighed carbon was soaked overnight in a small aliquot of organic-free water.) Samples were then withdrawn at predetermined time intervals up to 240 minutes. The samples were collected in the same fashion as described above in the equilibrium tests. To maintain the jars headspace free, unspiked Lake Michigan water was added to make up volume used in sampling. The resulting measurements were then adjusted for the amount of water added to the system.

Full-scale Treatment

During 1995, the City of Chicago, Department of Water, proactively started the application of approximately $2.4 \mathrm{mg} / \mathrm{L}$ of PAC in May, prior to the expected beginning of the taste and odor season. It was not until mid-July that analyses of the influent showed MIB. With the initial detection of MIB, carbon doses were continually increased to a maximum of $11 \mathrm{mg} / \mathrm{L}$ at the height of the taste and odor season. The PAC doses decreased along with the MIB, until a residual level of $1.2 \mathrm{mg} / \mathrm{L}$ PAC had been applied for approximately one month beyond the last detection of MIB. The effluent concentrations of MIB corresponding to a known dosage of PAC were not collected, therefore, direct comparison between the field data and laboratory predictions was not possible.

RESULTS AND DISCUSSION

Adsorption Equilibria

Watercarb PAC. The results from the four day isotherms are shown in the familiar equilibrium solid-phase concentration of MIB, q_{e}, versus the MIB equilibrium solution concentration, C_{e}, plot in Figure 1. This figure shows the effect of the background organics competing with the MIB. The adsorption capacity is much less in natural water than organic-free water, and decreases as the initial concentration of MIB used in the isotherm test decreases. Note that the isotherms in organic-free water ($C_{0} 149 \mathrm{ng} / \mathrm{L}$ and $0.374 \mathrm{mg} / \mathrm{L}$) yielded the same Freundlich parameters, indicating that they are not a function of initial MIB concentration. The background organic matter reduces the amount of MIB that can be adsorbed by occupying adsorption sites on the PAC. The capacity of PAC for MIB can be predicted through the use of competitive adsorption models, one of which is the Equivalent Background Compound (EBC) model (Najm et al., 1991; Knappe et al., 1993; Qi, 1992).

Figure 1. Effect of Initial MIB Concentration on the MIB Capacity of Watercarb PAC in Lake Michigan Water

Within the EBC model the complex mixture of the background organic matter is represented as a single "equivalent background compound". This allows the competition between the background organics and the target compound to be calculated by the ideal adsorbed solution theory (LAST). The parameters for the EBC (Freundlich - $\mathrm{K}_{\mathrm{EBC}}, 1 / \mathrm{n}_{\mathrm{EBC}}$, $\mathrm{C}_{\mathrm{o}, \mathrm{EBC}}$) are determined by calculating the parameters for a single compound which would produce the same amount of competition observed between a single-solute and naturalwater isotherms, for the target compound. The EBC model then uses these Freundlich EBC and the single-solute MIB Freundlich parameters, along with the IAST program to calculate isotherms for different initial concentrations of MIB in that particular natural water.

Figure 2. Percent MIB Remaining as a Function of Watercarb PAC Dose

It has been previously shown that if the natural water equilibrium data are plotted as percent remaining, $C_{e} / C_{0} \times 100 \%$, versus carbon dose, C_{c}, instead of q_{e} versus C_{e}, the data converge to a single line if the initial concentrations of the trace compound are sufficiently low (Knappe, 1996). This indicates that the percent removal of a trace
organic is independent of its initial concentration in natural water for a given PAC dose. From this type of plot, the minimum carbon dose required to achieve a desired removal can be quickly obtained for any reasonable initial concentration without the need for mathematical models. As shown in Figure 2, the MIB data for initial concentrations of 150 and $1245 \mathrm{ng} / \mathrm{L}$, almost an order of magnitude in difference, fall on the same line. A best fit line is also displayed on this figure. Calculations with the EBC model for this PAC-natural water system show that if MIB initial concentration, C_{0}, equals $4,000 \mathrm{ng} / \mathrm{L}$, the PAC dose to remove 95% of the MIB is only 10% larger than the minimum dose calculated from the line of convergence, and it becomes progressively less as C_{o} decreases. Based on these data, we have assumed that equilibrium data for initial concentrations less than $150 \mathrm{ng} / \mathrm{L}$ will similarly produce a single line on a $\mathrm{C}_{\mathrm{e}} / \mathrm{C}_{\mathrm{a}} \mathrm{x}$ 100% versus C_{e} plot.

Figure 3. Percent MIB Remaining as a Function of Hydrodarco-B PAC Dose

Extracting critical information from these plots can be done quickly and easily. For example, if the MIB C_{0} is $40 \mathrm{ng} / \mathrm{L}$ and it must be reduced to $4 \mathrm{ng} / \mathrm{L}$, a removal of 90% is
required $\left(C_{e} / C_{0} \times 100 \%=10 \%\right)$. The figure shows that a carbon dose, of $31 \mathrm{mg} / \mathrm{L}$ of Watercarb PAC would be required. Similarly, $21.5 \mathrm{mg} / \mathrm{L}$ PAC would be required for 80\% removal.

Hydrodarco-B PAC. The percent remaining versus carbon dose plot for Hydrodarco-B PAC is shown in Figure 3. The data in this plot show the minimum carbon dose for a given percent remaining, at equilibrium, of the initial MIB concentration. EBC model calculations for the PAC-natural water system show that if the MIB $C_{0}=200,000 \mathrm{ng} / \mathrm{L}$, the PAC dose to remove 95% of the MIB is only 10% more than the minimum dose. Thus, the $\mathrm{C}_{\mathrm{c}} / \mathrm{C}_{\mathrm{o}} \times 100 \%$ versus C_{c} plots are independent of the initial MIB concentrations used in this study, as well as any concentration expected in natural water. These findings are consistent with the theoretical development of Knappe (1996) and his observation that the PAC dose required to remove a given percentage of atrazine converged to a minimum for $\mathrm{C}_{\mathrm{o}}<50 \mu \mathrm{~g} / \mathrm{L}$ (Knappe et al., 1996).

Adsorption Kinetics

Watercarb PAC. Headspace free batch kinetic tests at a pH of 8.2 were used to evaluate the MIB adsorption rate. Watercarb PAC was the first of the five PACs to be analyzed. Figure 4 shows the experimental data collected for a four hour batch kinetic test, with an MIB initial concentration of $175 \mathrm{ng} / \mathrm{L}$ and a $11.5 \mathrm{mg} / \mathrm{L}$ PAC dose. In order to analyze the data using the HSDM, the Freundlich parameters, K and $1 / \mathrm{n}$, corresponding to the C_{o} and carbon dose of the kinetic test need to be known. A K value of $2.37(\mathrm{ng} / \mathrm{mg})(\mathrm{L} / \mathrm{ng})^{1 / n}$ and a $1 / n$ of 0.303 were calculated for this initial concentration from the $C_{d} / C_{0} \times 100 \%$ versus C_{c} plot. This was accomplished by generating a q_{e} versus C_{e} isotherm for this initial concentration by determining the $\mathrm{C}_{\mathrm{e}} / \mathrm{C}_{\mathrm{o}}$ values corresponding to several carbon doses. The C_{e} / C_{o} value for each carbon dose was then used to calculate q_{e}, the surface concentration, as a function of C_{e}, using: $q_{e}=\left(C_{0}-C_{e}\right) / C_{c}$. The q_{e} versus C_{e} data were plotted on a log-log plot; the slope of the linear portion of the isotherm was used as the $1 / \mathrm{n}$ value. The $\mathrm{q}_{\mathrm{e}}(\mathrm{mg} / \mathrm{g}$) for the carbon dose of interest ($11.5 \mathrm{mg} / \mathrm{L}$) and the $1 / \mathrm{n}$ value were used in the Freundlich equation (see equation 1) to calculate K . The input of these

Freundlich values along with the batch kinetic data into the HSDM model yielded a surface diffusion coefficient, D_{s}, equal to $0.110 \times 10^{-9} \mathrm{~cm}^{2} / \mathrm{min}$, as determined by the Levenberg-Marquardt algorithm, a nonlinear least squares optimization routine (International, 1991).

The HSDM fit to the data is also shown in Figure 4. Once the surface diffusion coefficient was determined, the HSDM was used to predict the percent removal of MIB as a function of time for a PAC dose of $34.6 \mathrm{mg} / \mathrm{L}$. (See Figure 5.) The prediction is in acceptable agreement with the experimental data. Therefore, this approach to calibrating the HSDM can be used to give reasonable results.

Figure 4. Batch Kinetic Test Data for MIB Adsorption with Watercarb PAC

The HSDM was able to give a better fit and prediction of the data in the Figures 4 and 5 if it was assumed that equilibrium was reached in 4 hours rather than 4 days. Using the 4hour plateau values from the kinetic data for 3 to 4 different carbon doses, a $C_{4-\text { hour }} / C_{0} x$ 100% versus C_{c} plot was generated. (Refer to Figure 13.) From this plot and the procedure described above with the $\mathrm{C}_{\mathrm{C}} / \mathrm{C}_{\mathrm{o}} \times 100 \%$ versus C_{c} plot, K and $1 / \mathrm{n}$ values were
generated. (See Table 3 for values.) By using these new values, a much better fit of the first 4 hours of data was obtained. (See Figure 6) A similar approach was employed by Huang et al. (1996). Its application was able to successfully simulate field data for the adsorption of MIB from Niagara River water.

Figure 5. Comparison of the HSDM Prediction to Batch Kinetic Test Data for MIB Adsorption with Watercarb PAC

The difference in the agreement between measured and predicted values is a result of the difference between the pseudo-equilibrium reached within 4 hours and true equilibrium at 4 days. The slow increase in capacity after 4 hours is not consistent with a mechanism of uptake that can be characterized by a single surface diffusion coefficient for the entire kinetic curve. This "second step" may be another surface or pore diffusion controlled step in which MIB must pass through pores partially blocked by background organic matter. Using the approach that emphasizes the first 4 hours of data is most important if only short contact times are used for PAC in the full scale plant, but the true equilibrium data should be used i the PAC is to be used with very long contact times.

Figure 6. HSDM Fit and Prediction of Batch Kinetic Test Data for MIB Adsorption with Watercarb PAC, Based Upon 4-Hour Kinetic Test Plateau Values ($\mathrm{D}_{\mathrm{s}}=3.69 \times 10^{-10} \mathrm{~cm}^{2} / \mathrm{min}$)

Table 3. 4 Hour Freundlich Isotherm Constants

PAC (mg/L)	K (ng/mg)(L/ng) ${ }^{1 / \mathrm{n}}$	$1 / \mathrm{n}$
	4.13	0.396
WPH	3.52	0.359
Nuchar SA-20	2.20	0.418
Hydrodarco-B	2.49	0.341
Watercarb	2.50	0.216

Hydrodarco-B PAC. The kinetic experiments were repeated using Hydrodarco-B. The fit and prediction of the first 4 hours of data, using true equilibrium data to calibrate the HSDM, was similar to that obtained with Watercarb PAC and are not shown here. However, a better fit and prediction of the first 4 hours of kinetic data was again obtained using 4-hour plateau values to obtain the Freundlich parameters for the HSDM. (See Figure 7.)

Additional batch kinetic tests were performed with $11.5 \mathrm{mg} / \mathrm{L}$ Hydrodarco-B to determine what effect changes in the initial concentration of MIB would have on the observed percent removal over time. Figure 8 shows the percent removal at any given time for a particular carbon dose, is not a function of the initial concentration of MIB. This is an important finding because it shows that the diffusion coefficient is not a function of initial concentration. Therefore, percent removal versus time predictions is valid for any MIB concentration typically encountered in natural water. Based upon this information, the percent remaining at equilibrium, $\mathrm{C}_{e} / \mathrm{C}_{\mathrm{o}} \times 100 \%$, versus C_{c} plot described above may be expanded to a percent remaining at a fixed time, $\mathrm{C}_{\mathrm{l}} / \mathrm{C}_{\mathrm{o}} \times 100 \%$, versus C_{c} plot, which will not change as C_{0} changes. (See Figure 9) This family of curves was developed using the HSDM that was calibrated with the data in Figure 7. From this new plot, the amount of Hydrodarco-B required to reduce various episodes to the threshold odor concentration, given different amounts of contact time in an ideal reactor, may be quickly determined. (See Table 4.)

Figure 7. HSDM Fit and Prediction of Batch Kinetic Test Data for MIB Adsorption with Hydrodarco-B PAC, Based Upon Kinetic Test Plateau Values ($\mathrm{D}_{\mathrm{s}}=3.80 \times 10^{-10} \mathrm{~cm}^{2} / \mathrm{min}$)

Other Powdered Carbons. Kinetic tests were run with the remaining three carbons in order to observe trends between carbons, without doing the extensive equilibrium tests previously done with Watercarb and Hydrodarco-B. Initial MIB concentrations varied from 170 to $175 \mathrm{ng} / \mathrm{L}$, and a pH of 8.2 ± 0.1 was used in these evaluations.

For each carbon, batch kinetic tests with two different carbon doses were performed. A 4-hour response to an additional two carbons doses was also obtained, though the full kinetic response for these doses was not developed. Figures 10 through 12 show the first 4 hours of kinetic data for Nuchar SA-20, WPH, and Cecarbon, respectively. These figures also show the HSDM fit and prediction of the kinetic data based upon the available 4-hour data shown in Figure 13. The Freundlich parameters that were obtained from the data in Figure 13 are given in Table 4.

Figure 8 Effect of Initial MIB Concentration on Percent Removal versus Time for Hydrodarco-B PAC

Figure 9 Percent MIB Remaining as a Function of Contact Time versus Hydrodarco-B Dose

Figure 10. HSDM Fit and Prediction of Batch Kinetic Test Data for MIB Adsorption with Nuchar SA-20 PAC, Based Upon Kinetic Test Plateau Values ($\mathrm{D}_{\mathrm{s}}=3.55 \times 10^{-10} \mathrm{~cm}^{2} / \mathrm{min}$)

Figure 11. HSDM Fit and Prediction of Batch Kinetic Test Data for MIB Adsorption with WPH PAC, Based Upon Kinetic Test Plateau Values

$$
\left(\mathrm{D}_{\mathrm{s}}=2.08 \times 10^{-10} \mathrm{~cm}^{2} / \mathrm{min}\right)
$$

Figure 12. HSDM Fit and Prediction of Batch Kinetic Test Data for MIB Adsorption with Cecarbon PAC, Based Upon Kinetic Test Plateau Values

$$
\left(\mathrm{D}_{\mathrm{s}}=1.73 \times 10^{-10} \mathrm{~cm}^{2} / \mathrm{min}\right)
$$

Figure 13. Percent MIB Remaining After 4 Hours of Contact for All Five PACs

Table 4. Required Hydrodarco-B Dose (mg / L) to Reduce the MIB Concentration to $5 \mathrm{ng} / \mathrm{L}$ for Different MIB Episodes and Contact Times ${ }^{\circ}$

Contact Time	Initial Concentration		
	$100 \mathrm{ng} / \mathrm{L}$	$50 \mathrm{ng} / \mathrm{L}$	$25 \mathrm{ng} / \mathrm{L}$
7.5 min	77	61	44
15 min	58	44	32
30 min	44	34	25
1 hour	36	28	21
4 hours	32	23	17

These doses have been calculated assuming contact takes place in an ideal reactor.

From Figure 13, the minimum required dose for each PAC, with 4 hours of contact, can quickly be determined for any initial concentration. Table 5, gives an example of reducing initial concentrations of 100,50 and $20 \mathrm{ng} / \mathrm{L}$ down to $5 \mathrm{ng} / \mathrm{L}(95 \%, 90 \%, 80 \%$ removal, respectively) in 4 hours.

Table 5. Required PAC Dose to Reduce the MIB Concentration to $5 \mathrm{ng} / \mathrm{L}$ for Different MIB Episodes and 4 Hours of Contact Time ${ }^{\bullet}$

Carbon mg / L		Initial Concentration		
	$100 \mathrm{ng} / \mathrm{L}$	$50 \mathrm{ng} / \mathrm{L}$	$25 \mathrm{ng} / \mathrm{L}$	
Cecarbon	18	13	8	
WPH	24	18	12	
Nuchar SA-20	30	22	15	
Hydrodarco-B	32	23	17	
Watercarb	38	33	27	

These doses have been calculated assuming contact takes place in an ideal reactor.

The data for the higher carbon doses of each PAC were compared to the results obtained in Niagara River water, another Great Lakes water, by Huang et al. (1996). For a PAC dose of $30 \mathrm{mg} / \mathrm{L}$ in Niagara River water ($\mathrm{pH}=8.3$; $\mathrm{TOC} \approx 2.5 \mathrm{mg} / \mathrm{L}$), the percent MIB remaining after 1.5 hours depended on the brand of carbon used. Watercarb and Nuchar SA-20 were found to remove 83 and 95% of the MIB, respectively. For the same dose and amount of time in Lake Michigan water ($\mathrm{pH}=8.2$; $\mathrm{TOC} \approx 1.8 \mathrm{mg} / \mathrm{L}$), Watercarb and Nuchar SA-20 were predicted to remove 81 and 94%, respectively.

Using the maximum possible PAC dosage for the Chicago water treatment plants (12 mg / L PAC), a comparison of all five powdered activated carbons is shown in Figure 14. Each curve represents the HSDM model prediction for that PAC under plug flow conditions. At 4 hours, the predicted percent MIB remaining for the carbons ranges from 10 to more than 40 percent. Modeling the system as a completely mixed reactor to account for an exponential residence time distribution of PAC, decreases the percent remaining to 6 to more than 35 percent. An actual water treatment plant would probably have conditions somewhere between plug flow and completely mixed. More importantly, these wide range of percent removals imply that the selection of a particular PAC should not be based solely upon cost per weight, but should instead be founded upon a cost per unit MIB removal.

Figure 14. Comparison of HSDM Predictions for All Five PACs, Based Upon Kinetic Test Plateau Values of MIB Adsorption

A comparison of Figure 13 to Figures 2 and 3 shows, that there can be significant differences between the amount of PAC required for 4 hours versus 4 days of contact. For a 90% removal, increasing the dose of Watercarb PAC by 7%, or $2 \mathrm{mg} / \mathrm{L}$, would be required if the contact time was decreased from 4 days to 4 hours. This difference is larger with Hydrodarco-B PAC, which would require increasing the dose 45%, or 7.5 mg / L, for this same decrease in contact time. This emphasizes the importance of having an extended contact time to minimize the carbon dose. Increased contact time may be available if PAC is applied directly to a filter, or in a solids contact clarifier.

The methodologies presented here can be utilized to choose the most cost effective PAC. It must be remembered that conditions in the full-scale plant may lead to results that vary somewhat from laboratory experiments. Specifically, if the PAC is very dense, more of it may settle out early in a sedimentation basin, thus shortening the effective contact time for that carbon and reducing the amount adsorbed. Further, a difference in the particle size distribution of the PAC relative to the sample of PAC used in the laboratory tests
may affect kinetics. Some interaction with treatment chemicals used at the plant, although probably unavoidable, may also affect performance, as may hydraulic short circuiting. These issues make it necessary to obtain full-scale plant data on MIB removal to compare to the predicted performance in order to assess the importance of these factors. The data presented here are also specific to Lake Michigan water. Different results would be expected if another water source were to be used.

CONCLUSIONS

The use of ${ }^{14} \mathrm{C}$-MIB allows for reproducible, accurate, and timely data collection. The protocol for data collection and analysis developed above is a viable tool to investigate the effects of alternative waters, carbons and types of natural organic matter, on the kinetics of MIB adsorption and the equilibrium capacity. Using this material, and a scintillation counter to determine concentration, it was found that:

- For a given PAC dose in natural water, the percent MIB adsorbed at equilibrium is independent of the initial MIB concentration. This is supported in theory by a competitive adsorption model (EBC) and confirmed by both kinetic and equilibrium batch experiments.
- For any given PAC dose in natural water, and any fixed time of contact, the percent MIB adsorbed in an ideal reactor is independent of the initial MIB concentration. Thus for any contact time of interest, the PAC dose required to mitigate any MIB episode for any contact time of interest, may be quickly determined from a $C_{/} / C_{0} x$ 100% versus C_{c} plot.

ACKNOWLEDGMENTS

The studies described in this paper were funded primarily by the City of Chicago, Department of Water. The authors would also like to thank Karen A. Marley and Thomas S. Gittelman for their helpful advice.
"Men love to wonder and that is the seed of our science." (Ralph Waldo Emerson)

Effect of Chlorine on 2-Methylisoborneol Adsorption by Activated Carbon

by
Thomas E.T. Gillogly', Vemon L. Snoeyink', Andrea Holthouse ${ }^{*}$, Claude M. Wilson ${ }^{* *}$, Earl P. Royal ${ }^{* *}$

INTRODUCTION

Musty or earthy odors, generally attributed to 2-methylisoborneol (MIB) and geosmin, are the most frequently observed odors in water supplies (Mallevialle and Suffet, 1981). Surveys of utilities have found that the use of activated carbon seems to be one of the most effective methods for the control of tastes and odors (Suffet et al., 1996; Sigworth, 1957). However, the activated carbon is often applied without a full understanding as to how other treatment chemicals may affect adsorption.

The application of chlirine as a part of the water treatment process is still a common practice for disinfection, taste and odor control and ammonia removal. As a result, chlorine is one of the chemicals that often comes into contact with activated carbon. When free chlorine, monochloramine and dichloramine contact activated carbon, they oxidize its surface and in the process are converted primarily to Cl^{-}and other products (Snoeyink and Suidan, 1975). Oxidation of the surface of activated carbon results in a

[^3]decrease in adsorptive capacity for a variety of organic compounds (Snoeyink and Suidan, 1975; McGuire and Suffet, 1984; McGuire and Suffet, 1980; Snoeyink et al., 1974; Coughlin, 1970; Coughlin and Ezra, 1968). Also, activated carbon catalyzes many types of reactions with aqueous chlorine (McGuire and Suffet, 1984; Hwang et al., 1990, Jackson et al., 1987; Voudrais et al., 1985; McCreary et al., 1982; Snoeyink et al., 1981, McCreary and Snoeyink, 1981). MIB, however, is very difficult to oxidize and is not directly affected by chlorine (Glaze et al., 1990;Lalezary et al., 1986). The purpose of this article is to show the effect of reacting a range of amounts of free chlorine with a unit mass of PAC on the ability of the PAC to adsorb MIB. Previous research of Lalezary et al. (1988), and Lalezary-Craig et al. (1986), showed that PAC is less effective for MIB if it is applied together with chlorine, and the findings reported herein expand on this research to show the effect on kinetics and equilibria, and the impact of allowing a short time of PAC contact before chlorine is added.

MATERIALS AND METHODS

2-Methylisoborneol

Concentration Determination. The ${ }^{14} \mathrm{C}$-labeled 2-methylisoborneol (${ }^{14} \mathrm{C}$-MIB) (American Radiolabeled Chemicals, St. Louis, MO) was selected due to ease of analysis and small sample size requirements. Analysis of ${ }^{14} \mathrm{C}-\mathrm{MIB}$ samples was accomplished by mixing 2.5 mL aliquots with 18 mL of scintillation cocktail (Ecoscint, National Diagnostics, Manville, NJ) in scintillation vials. The resulting fluorescence was then measured in a liquid scintillation counter (Tri-Carb Model 1600CA, Packard Instrument Co., Downers Grove, IL). The specific activity ($55 \mathrm{mCi} / \mathrm{mmol}$) of the ${ }^{14} \mathrm{C}-\mathrm{MIB}$ yielded a detection limit of $4.5 \mathrm{ng} / \mathrm{L}$, with a confidence level greater than or equal to 89%, without the use of a concentration step (Skoog and Leary, 1992).

Degradation Analysis. While the use of scintillation counting to determine the concentration of ${ }^{14} \mathrm{C}$-MIB has been previously documented, its use is only valid if the

MIB is not oxidized to other compounds. To validate that MIB was not oxidized, selected samples were analyzed by gas chromatography-mass spectroscopy (5890 Series II Gas Chromatograph with a 5971 Series Mass Selective Detector, Hewlett-Packard Co., Palo Alto, CA) to determine if there were any breakdown products. Prior to GC-MS analysis, the organic compounds in the selected samples were concentrated using solid phase extraction (3M Empore C_{18} Extraction Disks for Environmental Analysis, St. Paul, MN) using the procedure recommended by the manufacturer.

Stock Solution. The compound was received predissolved in purge and trap grade methanol at a concentration of approximately $18.3 \mu \mathrm{~g} / \mu \mathrm{L}$ (chemical purity $\geq 99 \%$ confirmed by GC-MS analysis, 100% radiochemical purity confirmed by high performance liquid chromatography (HPLC)). Stock solutions of $100 \mathrm{ng} / \mu \mathrm{L}$ were subsequently prepared by spiking $5.4 \mu \mathrm{~L}$ of the received solution into 1 mL of purge and trap grade methanol. The compound and all solutions were stored at $4^{\circ} \mathrm{C}$.

Water

Natural Water. Lake Michigan water (see Table 1 for composition) was used as the natural water source to study competitive effects between background organic material and MIB. Water was collected from a line running from the South Water Production Plant (Chicago, IL) crib to the shore plant. The water was shipped to the University of Illinois in 208 L (55 gal) stainless steel drums, where it was stored at $4^{\circ} \mathrm{C}$ in the dark to limit biological activity. (The crib is located two miles off shore in water 32 to 35 feet deep; the water is drawn near the bottom.)

Table 1. Characteristics of Lake Michigan Water

pH	8.2
Alkalinity	$117 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
Conductivity	$281 \mu \mathrm{mhos}$
Turbidity	$1.88 \mathrm{~N} . \mathrm{T} . \mathrm{U}$.
Nitrogen, Total Kjeldahl	$0.37 \mathrm{mg} / \mathrm{L}$
Phosphate, Total	$0.021 \mathrm{mg} / \mathrm{L}$
Dissolved Organic Carbon	$1.8 \mathrm{mg} / \mathrm{L}$

Organic-free Water. Organic-free water for the single-solute isotherms was obtained by passing deionized Urbana, IL, tap water through a Milli-Q water system (Millipore Corp., Bedford, MA) which has three cartridges (activated carbon, ion exchange, ion exchange) and a $0.45 \mu \mathrm{~m}$ filter. The water had a resistivity ≥ 18 megohm- cm and a dissolved organic carbon (DOC) content of $0.1-0.3 \mathrm{mg} / \mathrm{L}$.

Activated Carbon

The PAC evaluated in this study was Hydrodarco-B (Norit Americas Inc., Atlanta, GA). A grab sample of this carbon was obtained from the inventory of the City of Chicago Department of Water. The PAC was stored in polyethylene bottles until used. Prior to use, samples were dried overnight in a $110^{\circ} \mathrm{C}$ oven to remove excess water, and subsequently were cooled in a desiccator. Once cooled, the desired amount of carbon, not less than 2 mg , was weighed out on a 4 -point scale (LIBROR AEU-210, Shimazdu Corp., Kyoto, Japan).

For experiments that required carbon slurries, a slurry of $10 \mathrm{mg} / \mathrm{mL}$ was used. These slurries were prepared by mixing 10 g of the carbon, prepared as above, in 1 L of organicfree water. The slurry was mixed with a magnetic stirring bar only when an aliquot was to be drawn. For the remaining time the slurry bottle was quiescent. This was to prevent grinding of the carbon between the storage vessel bottom and magnetic stirring bar, as the kinetics of adsorption is sensitive to particle diameter (Najm et al. 1990; Mathews and Zayas, 1989).

The PAC was prepared in large batches for experiments that utilized carbon that had been oxidized prior to the experiment. $\mathrm{Ca}\left(\mathrm{OCl}_{2}\right.$ was added to 20 L of Milli-Q water to make up a $10 \mathrm{mg} / \mathrm{L}$ as Cl_{2} solution. To the chlorine solution, dried PAC was added to give the desired mass ratio of chlorine to PAC. The mixture was allowed to mix for 2 days in the dark, or until all the chlorine had reacted, whichever was longer. The carbon was then filtered out of the mixture and dried overnight in a $110^{\circ} \mathrm{C}$ oven to remove excess water,
and then cooled in a desiccator. For an experiment using the preoxidized carbon, a portion of the desired carbon was weighed out and wetted in 10 mL of Milli-Q water for 24 hours prior to its use.

Batch Kinetic Tests

The apparatus used for the batch kinetic experiments was a jar test apparatus with modified B-KER ${ }^{2}$ square jars (Six Paddle Stirrer Model 7790-400, Phipps \& Bird, Richmond, VA). Clear acrylic lids were manufactured for each individual jar to prevent loss of MIB through volatilization. These lids allowed for the experiments to be visually monitored and run headspace free. In the jars, 2.6 L of Lake Michigan water ($\mathrm{pH}=8.2$) was brought to room temperature and spiked with ${ }^{14} \mathrm{C}-\mathrm{MIB}$ to the desired initial concentration. The solutions were then stirred at 125 rpm for 5 minutes before the addition of carbon. Carbon was either added as an aliquot of a carbon slurry, or as a weighed mass of oven dried, prewetted carbon. (To properly wet the carbon prior to the test, weighed carbon was soaked overnight in a small aliquot of organic-free water.) Samples were then withdrawn at predetermined time intervals up to 240 minutes. The samples were collected using a stainless steel needle (Aldrich Chemical Co., Milwaukee, WI) connected to a gas-tight, luer lock syringe (Hamilton Co., Reno, NV). The aliquot was then passed though a $0.22 \mu \mathrm{~m}$ conditioned nylon membrane syringe (Magna, Westboro, MA) supported in a syringe filter holder (Swinney Holder, Gelman Sciences, Ann Arbor, MI). To condition the filter, 5 mL of the sample was filtered and wasted prior to the collection of 2.5 mL into the scintillation vial. To maintain the jars headspace free, unspiked distilled deionized water was added to make up volume used in sampling. The resulting measurements were then adjusted for the amount of water added to the system.

RESULTS AND DISCUSSION

Effect of Chlorine on MIB Adsorption and the Time of Addition of Chlorine Relative to PAC

Figure 1 - Effect of Free Chlorine on MIB Adsorption

A series of experiments was carried out to show the effect of the presence of aqueous chlorine on the ability of PAC to adsorb MIB from Lake Michigan water, the effect of the initial chlorine concentration, and the effect of delaying the chlorine addition until after PAC had been added to simulate the effect of using an alternative point of chlorine addition. Application of chlorine at the same time that PAC was added dramatically reduced the amount of MIB adsorbed by activated carbon. The data shown in Figure 1 were obtained from two batch tests. The control, represented by the open circles, was performed by adding $11.5 \mathrm{mg} / \mathrm{L}$ Hydrodarco-B PAC to pH 7.4 Lake Michigan water spiked with ${ }^{14} \mathrm{C}-\mathrm{MIB}$. The other batch test was spiked with chlorine ($3 \mathrm{mg} / \mathrm{L}$ as Cl_{2}) at the time of the addition of $11.5 \mathrm{mg} / \mathrm{L}$ Hydrodarco- B . The chlorine caused the percent MIB removed in 4 hours to be reduced from 68% to 26%, a 60% loss of capacity. A similar trend has been reported for Calgon WPH, by Lalezary-Craig et al. (1988). In

Weymouth plant influent water, $10 \mathrm{mg} / \mathrm{L}$ WPH PAC adsorbed 73% of the MIB in 4 hours. However, if $2 \mathrm{mg} / \mathrm{L}$ of chlorine was simultaneously dosed with the WPH, only 56% of the MIB was removed.

The simultaneous addition of $3 \mathrm{mg} / \mathrm{L}$ chlorine and $11.5 \mathrm{mg} / \mathrm{L}$ PAC to Lake Michigan water was repeated in another batch test. This time, however, the concentration of chlorine was monitored. Within 9 minutes more than 90% of the free chlorine had reacted, and by 90 minutes none was detectable. An additional $0.11 \mathrm{mg} / \mathrm{L}$ of combined chlorine as Cl_{2} was measured at 9 minutes. This concentration slowly decreased to 0.03 mg / L as Cl_{2}, measured at 4 hours.

Figure 2 - Effect of Time of Chlorine Addition on MIB Adsorption

Experiments were then conducted to show the effect of adding chlorine a short time after the addition of PAC. Figure 2 compares the results obtained from adding $3 \mathrm{mg} / \mathrm{L}$ chlorine 12 minutes after the application of $11.5 \mathrm{mg} / \mathrm{L}$ PAC, to those collected from the first experiment with ($3 \mathrm{mg} / \mathrm{L}$ of chlorine simultaneously with PAC) and without chlorine. From this figure it can be seen that delaying the time of addition of chlorine by 12 minutes was beneficial (46 percent removal versus 26 percent removal) even though
there was a release of the previously adsorbed MIB as a result of the application of chlorine. While delaying the addition of chlorine improved MIB removal to 46 percent after 4 hours, removal was still far short of the 68 percent achieved when no chlorine was present. Two significant conclusions can be made from this experiment: 1) chlorine can oxidize adsorption sites containing MIB, thereby releasing the MIB back into the aqueous phase; 2) the later that chlorine is applied with respect to the addition of PAC, the greater the expected MIB removals

Several additional experiments were conducted to show the effect of chlorine doses of 0 , 3 and $5 \mathrm{mg} / \mathrm{L}$ as Cl_{2} on the MIB removal that could be achieved by several PAC doses. To this end, headspace free reactors containing pH 7.4 Lake Michigan water and MIB were dosed simultaneously with chlorine and PAC. The resulting MIB concentrations were monitored over time. The percent of MIB remaining at 4 hours as a function of PAC dose is shown in Figure 3. It has been previously shown that for a given PAC dose in natural water, and any fixed time of contact, the percent MIB adsorbed in an ideal reactor is independent of the initial MIB concentration (Mathews and Zayas, 1989). From this graph, the necessary amount of PAC necessary to remove any initial concentration of MIB down to threshold odor levels may be quickly determined when reasonable levels of chlorine and PAC are added simultaneously. Table 3 gives the amount of Hydrodarco-B required to reduce MIB to threshold odor levels ($5 \mathrm{ng} / \mathrm{L}$) for several different initial concentrations, given 4 hours of contact in an ideal reactor and initial chlorine concentrations of 0,3 and $5 \mathrm{mg} / \mathrm{L}$ as Cl_{2}.

It can be observed that as the concentration of PAC increased, the lines in Figure 3 converged for the different initial concentrations of chlorine. This can be explained by looking at the mass of chlorine reacted per mass of PAC. (See Table 4) For a fixed initial concentration of chlorine, the amount of chlorine reacted per mass of PAC decreases as the carbon concentration increases. It would appear that below a given ratio of chlorine to carbon, the effect is negligible. Further research is necessary to determine if this ratio is specific to a given water or carbon.

Figure 3 - Effect of a Fixed Initial Concentration of Chlorine on the 4-Hour MIB Adsorption Capacity: Percent Remaining Versus PAC Dose

Table 3 - Required PAC Dose (mg / L) to Reduce MIB Concentration
To $5 \mathrm{ng} / L$ with 4 Hours of Contact Time

Initial Chlorine Concentration	Initial MIB Concentration		
	$20 \mathrm{ng} / \mathrm{L}$	$50 \mathrm{ng} / \mathrm{L}$	$100 \mathrm{ng} / \mathrm{L}$
$0 \mathrm{mg} / \mathrm{L}$	15	24	32
$3 \mathrm{mg} / \mathrm{L}$	22	30	34
$5 \mathrm{mg} / \mathrm{L}$	29	36	38

Table 4 - Milligrams of Chlorine Reacted within 4 Hours per Milligram of PAC ${ }^{2}$

PAC $(\mathrm{mg} / \mathrm{L})$	Initial Chlorine Concentration	
	$3 \mathrm{mg} / \mathrm{L}$	$5 \mathrm{mg} / \mathrm{L}$
3.85	0.73	1.18
11.5	0.26	0.43
23.1	0.13	0.22
34.6	0.09	0.14
46.2	0.06	0.11

[^4]
Cause of the Decrease in MIB Adsorption

There were several possible reasons for the observed decrease in MIB capacity caused by chlorine. Because it has been shown through many studies that activated carbon may catalyze many types of reactions with chlorine, it was important to establish that the radiolabeled MIB was not being catalytically degraded on the PAC (Hwang et al., 1990, Jackson et al., 1987; Voudrais et al., 1985; McCreary et al., 1982; Snoeyink et al., 1981, McCreary and Snoeyink, 1981, Glaze et al. 1990). The experiment with addition of 3 mg / L of chlorine 12 minutes after the PAC was repeated and a solution sample was collected at 22 minutes, the time of maximum MIB release. Analysis of the sample by GC-MS showed no additional compounds that might have come from a chlorine-MIB reaction on the PAC surface indicating activated carbon does not catalyze a reaction between MIB and chlorine.

Figure 4 - Effect of Disinfection By Products on the Adsorption of MIB

An additional experiment was performed to verify that the observed chlorine effect was not attributable to increased competition for adsorption sites by disinfection-by-products (DBPs). Lake Michigan water was chlorinated with $5 \mathrm{mg} / \mathrm{L}$ as Cl_{2} and allowed to react in
the dark for 24 hours. The remaining free chlorine was dechlorinated by adding sulfite, after which the water was spiked with MIB and $11.5 \mathrm{mg} / \mathrm{L}$ PAC. The kinetic curves for MIB adsorption in the presence of DBPs (shown in Figure 4) indicated that they did not influence adsorption.

The most probable reason for the observed decrease in MIB capacity was the buildup of surface oxides. Previous studies have shown that increasing the amount of chlorine reacted per mass of activated carbon increased the concentration of surface oxides on the carbon, and correspondingly decreased the capacity of F-400 activated carbon to adsorb phenol and p-nitrophenol (PNP) (Snoeyink et al. 1974). However, the impact observed on the ability of Hydrodarco-B PAC to adsorb MIB was much greater than for phenol and p-nitrophenol, as shown in Table 5.

Table 5 - Single Solute Percent Capacity Reduction as a Function of Chlorine Reacted ${ }^{3}$

Compound / Carbon	Free Chlorine Reacted (mg Cl2/mg carbon)	
	0.5	1
PNP / F-400	29%	35%
Phenol / F-40024	54%	62%
MIB / Hydrodarco-B*	-75%	-92%

Factors Affecting the Decrease in MIB Adsorption

Experiments were conducted to determine the importance of the initial chlorine concentration versus the mass of chlorine reacted per gram of PAC for the decrease in MIB adsorption. (See Figure 5) In deionized-distilled water, chlorine was reacted with Hydrodarco-B in the absence of MIB. In one group of tests 5 mg of chlorine as Cl_{2} was reacted with 11.5 mg PAC, with the chlorine applied in three different ways. First, 5 mg / L chlorine was reacted with $11.5 \mathrm{mg} / \mathrm{L}$ PAC; second, the chlorine was reacted with $11.5 \mathrm{mg} / \mathrm{L}$ PAC in two consecutive steps of $2.5 \mathrm{mg} /$ L chlorine in each step; and third. the chlorine was applied to $11.5 \mathrm{mg} / \mathrm{L}$ PAC in 5 dosings of $1 \mathrm{mg} / \mathrm{L}$ chlorine each. For each test, subsequent additions of chlorine were not added until all of the previously dosed

[^5]chlorine had reacted. After all the chlorine had reacted, each of the three reactors were spiked with ${ }^{14} \mathrm{C}$-MIB and monitored over time. Each means of application resulted in a 4hour MIB removal about 23 percent, or a reduction in capacity of 75%, showing that initial chlorine concentration was not an important factor. Another group of tests looked at a total of $10 \mathrm{mg} / \mathrm{L}$ of chlorine reacted with $11.5 \mathrm{mg} / \mathrm{L}$ Hydrodarco-B. For this group $10 \mathrm{mg} / \mathrm{L}$ of chlorine added all at once, and $10 \mathrm{mg} / \mathrm{L}$ added in 5 additions of $2 \mathrm{mg} / \mathrm{L}$ was investigated. Both application methods resulted in an MIB removal of 8 percent, or a 92% reduction in MIB capacity, further substantiating that it is the amount of chlorine reacted, not its initial concentration, which determines the magnitude of the chlorine effect.

Figure 5 - Effect of Total Chlorine Dosed and Initial Concentration

Once it was determined that the mass of chlorine reacted per mass of activated carbon governed the decrease in capacity, additional experiments were run to determine how great of an effect could be expected for different ratios of chlorine reacted to PAC. Hydrodarco-B was preoxidized in DDI water with chlorine to PAC mass ratios of 0.5:1, 1:1 and 2:1, and subsequently dried. The adsorption of MIB in Lake Michigan water by
these oxidized carbons was then monitored over time. With $11.5 \mathrm{mg} / \mathrm{L}$ Hydrodarco-B 68% of the MIB initially present was adsorbed in 4 hours. As the chlorine reacted to PAC ratio increased from 0.5 , to 1.0 to $2.0, \mathrm{MIB}$ removals of 49 percent, 31 percent, and 15 percent were observed, as shown in Figure 6. The trend observed in this figure further supports the hypothesis that the formation of surface oxides is reducing the capacity of the PAC for MIB.

Figure 6 - Dependence of MIB Removal on Mass Chlorine Reacted Per Mass PAC

It was noticed that the percent removal for the PAC which had been preoxidized to a $1: 1$ chlorine to PAC mass ratio gave similar percent removals to the experiment with a simultaneous addition of $3 \mathrm{mg} / \mathrm{L}$ of chlorine with $11.5 \mathrm{mg} / \mathrm{L}$ of unoxidized PAC (0.26:1 chlorine to PAC mass ratio). It was determined that the drying step of the preoxidation process recovered some of the capacity that was lost during the oxidation process. Figure 7 shows the results from an experiment carried out in DDI water. In the first reactor, 5.8 mg / L PAC and $5.8 \mathrm{mg} / \mathrm{L}$ chlorine were allowed to react until all the chlorine had been reduced, prior to the addition of the MIB. This gave a $1: 1$ chlorine to PAC mass ratio carbon which had not been dried. The second reactor contained $5.8 \mathrm{mg} / \mathrm{L}$ of $1: 1$ chlorine to PAC mass ratio preoxidized carbon, which had been dried. The third reactor contained
$5.8 \mathrm{mg} / \mathrm{L}$ of unoxidized PAC. The response of these three reactors to MIB was markedly different. The oxidized carbon which had not been dried removed only 11% of the MIB initially present, as compared to an 86% removal by the unoxidized PAC. This reduction in the 4 -hour capacity due to oxidation, constitutes a 87% reduction in capacity. However, if the oxidized carbon is dried some of the capacity is recovered. In 4 hours the dried oxidized carbon is able to remove 38% of the MIB, a 56% loss of capacity.

Figure 7 - Stability of Oxidized Adsorption Sites

It is believed that the drying process volatilized some of the weakly bound surface oxides. These easily volatilizable oxides may be surface carboxyl groups. It has been previously reported that the dechlorination capacity of activated carbon may be restored by heating to $500-700^{\circ} \mathrm{C}$ in an inert environment. During this heating primarily CO_{2} was evolved, which can be derived from carboxyl groups. ${ }^{7}$

CONCLUSIONS

The conclusions are as follows:

- Activated carbon's adsorptive capacity for MBB is significantly reduced by free chlorine. While certain levels of chlorine must be added to satisfy federal disinfection regulations, the best efficiency will be achieved if contact between PAC and chlorine is minimized or eliminated. For reasonable concentrations of chlorine, the amount of chlorine reacted per unit mass of activated carbon determines the extent of reduction in MIB adsorption capacity.
- Chlorine can oxidize adsorption sites containing MIB. A release of MIB back into the aqueous phase was observed immediately after an addition of chlorine to a system in which activated carbon had previously adsorbed MIB.
- The later that chlorine is applied with respect to the addition of PAC, the greater the expected MIB removals. In Lake Michigan water, $11.5 \mathrm{mg} / \mathrm{L}$ of Hydrodarco-B was able to remove 68% of the MIB in 4 hours. If chlorine ($3 \mathrm{mg} / \mathrm{L}$ as Cl_{2}) was simultaneously added with the PAC, only 26% of the MIB was removed in 4 hours. However, if the chlorine addition was delayed by 12 minutes 54% of the MIB was adsorbed in the same amount of time.
- Drying an oxidized carbon recovers a large portion of the lost MIB capacity. In deionized-distilled water $5.8 \mathrm{mg} / \mathrm{L}$ of unoxidized Hydrodarco-B removed 86% of the MIB initially present in 4 hours. If the carbon had been oxidized to a $1: 1$ chlorine to PAC mass ratio removed only 11% of the MIB in 4 hours. However, when this carbon had been reacted to the same chlorine to PAC mass ratio and was dried prior to MIB adsorption 38% of the MIB was adsorbed.
"Few enterprises of great labor or hazard would be undertaken if we had not the power of magnifying the advantages we expect from them. " (Samuel Johnson)

Determining the Remaining GAC Bed Life for Taste and Odor Control

by

Thomas E.T. Gillogly', Vernon L. Snoeyink', John C. Vogel ${ }^{* *}$, Claude M. Wilson ${ }^{\cdots}$, Earl P. Royal ${ }^{* *}$

Abstract

This study has developed an alternative approach to rapidly and effectively evaluate the remaining life of a GAC bed for the mitigation of taste and odor episodes. Using laboratory-scale columns packed with GAC taken from full-scale operating adsorbers, the approach was shown to simulate the performance of pilot-scale columns very well. It was concluded from this study that the maximum attenuation of a transient MIB load by GAC, reported as percent removal, was independent of the influent MIB concentration but dependent on the amount of natural organic matter adsorbed on its surface. It was also discovered that adsorption alone might be insufficient to provide full protection against typical MIB episodes.

[^6]
INTRODUCTION

One of the questions most frequently asked while using granular activated carbon (GAC) adsorbers is, "how much longer will it last?" Heilker (1979) indicated that taste and odor substances from algal blooms exhausted a biologically active bed after a four month run. Newcombe et al. (1994) concluded that even for a GAC filter exposed to periodic low nanogram per liter concentrations of 2-methylisoborneol (MIB) with an empty bed contact time (EBCT) of 20 minutes, 18 months was the longest that the filter could be expected to reduce MIB concentrations to below the odor threshold concentration. Additionally, GAC filter beds treating the same water with EBCTs of 6.5 and 13 minutes were expected to be exhausted within 10 months. After only seven weeks, geosmin, at periodic influent concentrations of hundreds of nanograms per liter, was observed in the effluent of a GAC system that had chlorine in the influent water (CH2M, 1987). In contrast, others have reported bed lives on the order of years for the removal of MIB and geosmin (Yagi et al. 1988; Suffet, 1980; Schulhof, 1979).

Predicting Bed Life

While not a simple task, many researchers have attempted the challenge of predicting the effective service life of GAC adsorbers. The most obvious first step was to determine the GAC capacity for the particular adsorbate of interest in batch systems. It was determined that GAC particle size had no noticeable effect on the equilibrium adsorption capacity (Najm et al. 1990; Weber and Wang, 1987; Thacker et al. 1983; Randtke and Snoeyink, 1983; Lee et al. 1981). While it was expected that carbons with higher adsorption capacities would have longer bed lives, it was found that adsorption kinetics had a dramatic impact on bed life and would often shift the expected order of breakthrough (Weber and Wang, 1987; Lee et al. 1981).

While equilibrium theory alone has been used to predict pilot- and full-scale column performance, the use of fixed bed mass transfer models that incorporate both kinetics and equilibrium is much more common. Mass transfer models have been used to develop equations that relate the operation of large-scale adsorbers and small-scale predictive columns (Crittenden et al. 1987; Crittenden et al. 1991). The test procedure, including the application of the scaling equations, is commonly referred to as the rapid small-scale column test (RSSCT). The RSSCT takes particle size, hydraulic loading, and empty bed contact time (EBCT) into account.

The hydraulic loading of the RSSCT is selected by assuming that intraparticle diffusion is either independent (constant diffusivity; CD-RSSCT) or proportional (proportional diffusivity; PD-RSSCT) to particle size. Unfortunately, it cannot be determined a priori whether proportional or constant diffusivity should be used. While both CD-RSSCT (Crittenden et al. 1987; Vidic et al. 1992; McGuire et al. 1991; Crittenden et al. 1986) and PD-RSSCT (Crittenden et al. 1991; Summers; et al. 1989) have been able to successfully predict breakthrough in known and unknown mixtures, there are many times when predictions have not been accurate (Crittenden et al. 1986; Summers et al. 1989; Speth and Miltner, 1981).

An alternative approach has recently been taken in applying the RSSCT. Using virgin GAC, Matsui et al. (1994) observed that the removal efficiency of intermittently applied pesticides (simazine, napropamid, bentazon, asulum, hymexazol) in natural water was not related to the concentration of the pesticide itself. Similarly, Namuduri and Summers (1991) found that the percent breakthrough of chloroform, 1,2-dichloroethene and 1,2dichloropropane was generally insensitive to the input pulse concentration. These findings support and expand upon the results of other researchers who showed that the percent removal of a micropollutant from natural water by powdered activated carbon was independent of the micropollutant's initial concentration (Knappe et al. 1998, Gillogly et al. 1998, Gillogly et al. 1997; Graham et al. 1997).

Matsui et al. (1994) also found that the breakthrough curves for both intermittently and continuously applied pesticides were nearly identical. The effluent pesticide concentration was determined by the amount of background organic matter adsorbed on the GAC and not by the amount of pesticide adsorbed. Comparing columns exposed to intermittently and continuously applied pesticides, a difference in the percent pesticide removal was only found when the mass loading of pesticide was greater than about 50 percent of the loading at complete saturation of the GAC.

The RSSCT has proven useful for defining the behavior of fresh GAC but has not been used to determine the remaining life of an existing GAC adsorber due to particle size restrictions. RSSCTs typically use particles with geometric mean diameters less than 250 $\mu \mathrm{m}$. While grinding fresh GAC to obtain the appropriate particle size does not alter its capacity, grinding partially saturated GAC will change its adsorptive properties because adsorption sites that were blocked by previously adsorbed compounds are now accessible.

Considering the inapplicability of the RSSCT, it was the objective of the authors to develop an alternative tool to rapidly and effectively evaluate the remaining life of GAC for mitigation of a taste and odor episode. The test should determine how effluent concentrations of taste and odor causing compounds change as influent concentrations change, without grinding the carbon. This test should also provide the information necessary to determine if the GAC is currently effective and if it will last through an impending taste and odor season, or if it is sufficiently spent to require regeneration or replacement.

MATERIALS AND METHODS

Pilot-Scale MIB Analysis. MIB and geosmin concentrations for the pilot-plant study were determined by Montgomery Watson Laboratories using Standard Method 6040B "Closed-Loop Stripping, Gas Chromatographic/Mass Spectrometric Analysis" (Standard, 1995). The detection limits were 3.0 and $5.0 \mathrm{ng} / \mathrm{L}$ for geosmin and MIB, respectively.

Laboratory-Scale MIB Analysis. Due to ease of analysis and small sample size requirements, ${ }^{14} \mathrm{C}$-labeled 2-methylisoborneol $\left({ }^{14} \mathrm{C}-\mathrm{MIB}\right)$ (American Radiolabeled Chemicals, St. Louis, MO) was utilized. Analysis of ${ }^{14} \mathrm{C}-\mathrm{MIB}$ samples was accomplished by mixing sample aliquots with 18 mL of scintillation cocktail (Ecoscint, National Diagnostics, Manville, NJ) in scintillation vials. The resulting fluorescence was measured in a liquid scintillation counter (Tri-Carb Model 1600CA, Packard Instrument Co., Downers Grove, IL). It was not necessary to concentrate the sample for analysis. The compound was received predissolved in purge and trap grade methanol at an approximate concentration of $18.3 \mu \mathrm{~g} / \mu \mathrm{L}$ (chemical purity $\geq 99 \%$ confirmed by GC-MS analysis, 100% radiochemical purity confirmed by high performance liquid chromatography - HPLC). Stock solutions of $100 \mathrm{ng} / \mu \mathrm{L}$ were subsequently prepared by spiking $5.4 \mu \mathrm{~L}$ of the received solution into 1 mL of purge and trap grade methanol. The compound and all solutions were stored at $4^{\circ} \mathrm{C}$. The limit of detection for this analysis is $3.0 \mathrm{ng} / \mathrm{L}$ with greater than 89% confidence.

Virgin GAC. The virgin granular activated carbon used in this study was F-300 (Calgon Carbon Corp., Pittsburgh, PA).

Table 1 - Physical Characteristics of the Granular Activated Carbons

	Virgin	1 Years in Service	2 Years in Service
Effective size, mm	1.0	1.0	0.8
Uniformity coefficient	1.8	1.7	2.2

Preloaded GAC. When the pilot testing begun, the Hammond, Indiana and Michigan City, Indiana water treatment plants had been using F-300 GAC over sand in dual media filter-adsorbers for approximately 1 and 2 years, respectively. Both of these plants use Lake Michigan as their raw water source and are relatively near the Chicago, Illinois water treatment plants. Therefore, the concentration of the soluble organics in their raw waters should be similar (see Table 2). From each water treatment plant, representative
samples of the entire GAC bed depth were collected for use in the studies. The samples were used immediately in the pilot study, and stored in 5 gallon sealed polyethylene containers until their use in the laboratory-scale experiments.

Additional preloaded GAC samples were collected from the Hammond, Indiana, Michigan City, Indiana, and Lake County, Illinois water treatment plants for laboratory experimentation. After collection, these samples were immediately used in the laboratory-scale experiments. GAC that had been in service for 0.2 and 3 years was collected from the Hammond, Indiana water treatment plant. Carbon from the Michigan City, Indiana water treatment plant was withdrawn after 4 years in service. The Lake County, Illinois water treatment plant also uses Lake Michigan water and was the source of GAC that had been in service for approximately 6 years.

Table 2 - Total Organic Carbon (TOC) in Water Treatment Plant Influent

Location	TOC
Chicago, Illinois	$1.8-2.0$
Hammond, Indiana	$1.5-2.0$
Michigan City, Indiana	$1.5-2.5$

Table 3 - Characteristics of Lake Michigan Water

pH	8.2
Alkalinity	$117 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
Turbidity	2 NTU
Conductivity	$281 \mu \mathrm{mhos}$

Water. The water used in both the pilot- and laboratory-scale experiments was drawn from a line running from the South Water Production Plant (Chicago, Illinois) crib to the shore plant. For the laboratory experiments, this untreated water was shipped to the University of Illinois in 208 L (55 gal) stainless steel drums, where it was stored at $4^{\circ} \mathrm{C}$ in the dark to limit biological activity. It was verified that the water collected for laboratory experiments did not contain a detectable concentration of MIB. (The crib is located 3.2
km [2 mi] offshore in water $9.6-10.5 \mathrm{~m}$ [32-35 ft] deep; the water is drawn near the bottom of the crib.)

Pilot-Scale GAC Columns. The pilot-scale columns consisted of 15.2 cm (6 inch) diameter columns, 53.3 cm (21 inches) of the selected GAC and 30.5 cm (12 inches) of sand (effective size -0.5 mm ; uniformity coefficient -1.3). Each column was equipped with a slotted underdrain nozzle and a surface wash spray nozzle. The influent flow to the facility was equally distributed to the pilot filters through the use of a constant head box and flow splitting boxes.

A short distance downstream of the raw water pump, sodium hypochlorite was added to the raw water via a peristaltic pump. The chlorinated raw water then flowed through approximately 274 m of pipe to the test facility. A chlorine analyzer was used to monitor the chlorine residual of the raw water as it entered the test facility. The output of the peristaltic pump was adjusted to keep residuals in the desired range.

Laboratory-Scale GAC Columns. For the laboratory-scale experiments, GAC was packed into glass columns (Kontes, Vineland, New Jersey) with an inside diameter of 1.0 cm and a length of 30 cm . Each end was sealed with a threaded PTFE fitting equipped with 20 $\mu \mathrm{m}$ filters. The GAC was contained within a bed of glass beads by two 316 stainless steel, number 20 U.S. Standard mesh size (0.841 mm) screens. The glass beads were used to insure uniform flow through the GAC. The GAC beds were approximately 1 cm deep. A $12 x 14$ U.S. Standard mesh (1.41 to 1.68 mm) size fraction of GAC particles was selected for use in the laboratory columns, because it was determined that these particles accounted for the largest fraction of the external surface area in the filters of the three water treatment plants. By using a representative size fraction rather than the same particle size distribution as the distribution in the full-scale plants, it was possible to more easily and rapidly obtain a laboratory column representative of the full-scale plant. The equivalency of performance was established using both approaches. Uniform packing of both glass beads and GAC particles was obtained through the use of a vibratory
engraving tool (Vibro-Graver; Burgess, Chadwicks, New York) to vibrate the column as the column was being filled. A double plunger HPLC pump (Model 6000A; Waters Corporation, Milford, MA) was used to maintain constant low flow rates through the columns.

Feed solutions were prepared by filtering raw Lake Michigan water through a $0.45 \mu \mathrm{~m}$ membrane filter. Filtration of the water served to remove particulate and colloidal material that could otherwise plug or foul the laboratory columns. A taste and odor episode at the laboratory-scale was simulated by changing from this filtered Lake Michigan water to an influent solution of filtered Lake Michigan water spiked with ${ }^{14} \mathrm{C}$ MIB to the desired influent MIB concentration. Feeding this spiked filtrate continued until the end of the episode, whereupon the influent was changed back to the unspiked filtrate.

Reaction of Chlorine with GAC. The reaction between chlorine and GAC was carried out prior to packing the carbon in the laboratory-scale columns. To react the chlorine with the GAC, a known mass of 12×14 U.S. Standard mesh size fraction GAC was placed in a steel mesh basket made from number 20 U.S. Standard mesh, 316 stainless steel (custom manufacture; University of Illinois, Urbana, Illinois). The basket, positioned towards the side of a $13-\mathrm{L}$ glass carboy covered with aluminum foil, revolved at 20 rotations per minute. An overhead 3-blade teflon turbine rotating at 1550 rotations per minute ensured that a constant flow of the well mixed chlorine solution passed through the stainless steel basket. The rotation of the basket kept the GAC particles mixed, so that the reaction between the chlorine and the carbon particles was evenly distributed. A 13 L chlorine solution was prepared using calcium hypochlorite and 1.0 mM phosphate (buffered to pH 8.2). The pH was adjusted as needed with 0.5 N NaOH or HCl .

An initial concentration of approximately $10 \mathrm{mg} / \mathrm{L}$ free chlorine as Cl_{2} was used to react with the carbon. Another setup identical to the first was operated in the absence of carbon to serve as a control. The chlorine residual of both vessels was monitored using Standard Method 4500-Cl F, "DPD Ferrous Titrimetric Method" (Standard, 1995). The
amount of chlorine reacted with the carbon was adjusted according to the rate of chlorine decay in the control. If the residual reached $2 \mathrm{mg} / \mathrm{L}$ as Cl_{2}, and the desired chlorine reacted to carbon mass ratio had not yet been reached, the chlorine concentration was increased to approximately $7 \mathrm{mg} / \mathrm{L}$ as Cl_{2}. Once the desired amount of reaction had occurred, the basket was removed from the solution and rinsed with deionized-distilled water. The reacted GAC was then transferred to a column and packed as previously described.

RESULTS AND DISCUSSION

Pilot-scale MIB Removal

During the summer of 1996, Greeley and Hansen operated pilot-scale filters at the City of Chicago South Water Purification Plant to evaluate the effectiveness of GAC for the removal of MIB and geosmin. The naturally occurring MIB and geosmin concentrations in Lake Michigan were used to compare virgin and preloaded (1 year, 2 year) GAC. The one-year preloaded GAC was collected from Hammond, Indiana, and the two-year preloaded GAC was obtained from Michigan City, Indiana. Over the course of the threemonth evaluation, influent geosmin concentrations were typically below the $3 \mathrm{ng} / \mathrm{L}$ detection limit. Thus, only MIB removal could be evaluated.

The influent MIB concentrations varied widely from day to day (see Figure 1). This natural variability increased the difficulty of using conventional predictive methods to determine the effectiveness of GAC. The data were analyzed by determining the percent MIB removed across each filter every time a sample was taken. These removals were then averaged for each filtration rate investigated. Filtration rates of 3,4 , and 5 gallons per square foot per minute (gfm) were used, corresponding to an EBCT (i.e. the volume of GAC bed/flow rate of applied water) of 4.4, 3.3 and 2.6 minutes, respectively. These
rates were selected to span the projected range of filtration rates expected during the high water demand of the summer months.

Figure 1 - MIB Removal by GAC: South Water Purification Plant Pilot Study

For the purpose of data analysis, the effluent samples in which MIB was not detected were assigned an MIB concentration of $2.5 \mathrm{ng} / \mathrm{L}$ (0.5 times the limit of detection). Table 4 shows the average percent removals obtained from the pilot study. The initial concentration range was 8 to $64 \mathrm{ng} / \mathrm{L}$ for the 4.4 minute EBCT, 12 to $38 \mathrm{ng} / \mathrm{L}$ for the 3.3 minute EBCT, and non-detectable to $28 \mathrm{ng} / \mathrm{L}$ for the 2.6 minute EBCT.

Table 4 - Summary of South Water Production Plant Pilot Study, Percent MIB Removal

Filtration Rate (gfm)	EBCT (min)	Average Percent Removals		
		Virgin	1 yr preload	2 yr preload
3	4.4	83%	38%	39%
4	3.3	72%	37%	32%
5	2.6	34%	-24%	-45%

Average of daily percent removals (less than detection limit effluents set to 0.5 times the limit of detection)
${ }^{+}$EBCT: empty bed contact time (volume of GAC/flow rate)

* gfm: gallons per square foot per minute

It can be observed in Figure 1 that the changes in filtration rates seemed to coincidentally correspond to the natural fluctuation in the influent MIB concentration. As discussed later, it is believed that decreased removal efficiencies will be observed with decreasing influent concentrations. This is attributed to the desorption of a portion of the MIB adsorbed during periods of high influent concentration. For this reason, the dramatically reduced and negative removals observed with the 2.6 minute EBCT were not unexpected.

Laboratory-Scale Column MIB Removal

Pilot-plant studies give excellent data on GAC performance for a given history of MIB influent concentrations, but it is difficult to use these tests to accurately determine the effect of influent concentration because of it is highly variable in the influent water. Additionally, due to the cost and time for analysis of these earthy-musty compounds, samples were only collected twice per week. The goal of the laboratory-scale experiments was to develop a tool that would simulate the performance of the pilot-scale filters, yet not be encumbered by the difficulties often faced with larger scale experiments. The results discussed below indicate that pilot-scale performance may be reproduced using small-scale laboratory tests.

Effect of Service Time. The results of the pilot study were compared to the performance of the small-scale laboratory columns for a range of GAC preloading times. This was to determine if the laboratory columns could simulate the performance of the larger scale system, while simultaneously studying how the length of time that the GAC had been in use affects GAC performance. Each of these laboratory-scale (1.0 cm diameter) columns were prepared with a 12×14 US Standard mesh (1.41 to 1.68 mm) size fraction of GAC that had been in service from 0 to 6 years. A sieve analysis of the representative GAC samples from each of the three water treatment plants showed that the largest fraction of external surface area was in the 12×14 mesh size range; thus, the performance of this size range was likely to be the same as the full-scale adsorber. Each bed of GAC was approximately 1 cm deep.

Fresh GAC was first tested in these laboratory-scale columns at a 3.3 minute EBCT. Lake Michigan water spiked to $50 \mathrm{ng} / \mathrm{L}$ MIB was applied to the column for more than two days (>873 bed volumes). After this period the influent was switched to unspiked Lake Michigan water. The effluent MIB concentration was monitored during the entire experiment. From these data (Figure 2) it can be seen that once the spiked influent was applied, the effluent concentration reached a pseudo-steady state within 6 hours (110 bed volumes). After this pseudo-steady state, or plateau, was reached, the effluent MIB concentration was essentially constant for the remainder of the two-day MIB application. While the effluent MIB concentration would be expected to slowly increase with a continued input of MIB and natural organic matter (NOM), it was felt that this initial plateau was representative of the ability of this GAC to remove the suddenly-appearing MIB during a taste and odor episode. After the influent was switched to Lake Michigan water without MIB, the effluent MIB concentration quickly dropped below the limit of detection. Less than three percent of the adsorbed MIB desorbed back into the aqueous phase, consistent with the fact that the surface coverage of the GAC with MIB was very low. Based upon these data, the remainder of the laboratory-scale GAC columns were evaluated at a two-day effluent plateau value.

Figure 2 - Laboratory Column Two-Day Response to MIB (virgin GAC; 3.3 min EBCT)

Following this test with the virgin GAC, columns prepared with the carbons that had been collected from the different full-scale filters were evaluated at a 3.3 minute EBCT. The data show an increase in the percent MIB passing through the column with increasing service time (Figure 3). This figure also shows that the laboratory column data were in excellent agreement with the pilot study results.

Figure 3 - Effect of Service Time on Percent MIB Breakthrough (3.3 Minute EBCT)

The observed increase in the effluent MIB concentration could have been attributed to several possible factors: 1) MIB adsorption, 2) NOM adsorption, 3) impact of treatment chemicals. The earthy-musty taste and odor problems in Lake Michigan are generally limited to the summer and early fall months. Even during this problematic time the MIB concentration rarely exceeds $50 \mathrm{ng} / \mathrm{L}$. As a result, the amount of MB adsorbed during the course of one year is a small fraction of the virgin capacity and is not expected to be the primary reason for the decreased effectiveness of the GAC. Based upon work presented later and the findings of other researchers, adsorption of NOM plays a major role in controlling the adsorption of MIB (Matsui et al. 1994; Knappe et al. 1998). In addition to NOM adsorption, the Hammond and Michigan City, Indiana water treatment plants allowed free chlorine onto their GAC beds. The deleterious effect of chlorine on the adsorptive capacity of activated carbon is well documented. Additional work
specifically for MIB adsorption by GAC, presented later in this paper, confirms that the free chlorine should be considered a factor in the decrease of the GAC's effectiveness with increasing service time.

Using the same approach, the GAC was evaluated at a 4.4 minute EBCT. The two-day effluent concentration plateau values were used to calculate the percent MIB breakthrough for each of the carbons, and the results are shown in Figure 4. Comparing the data collected in the pilot study to the laboratory data, good agreement was again observed, except for the one-year service time. There is no apparent explanation for this difference.

Figure 4 - Effect of Service Time on Percent MIB Breakthrough (4.4 Minute EBCT)

The 2.3 minute EBCT was the final contact time tested in this series of experiments, and the laboratory- and pilot-scale data are compared in Figure 5. There is poor agreement between the two sets of data. Evaluation of the pilot data shows that due to the natural fluctuations in the concentration of MIB in Lake Michigan, the majority of the data for this EBCT was obtained when the influent concentration was decreasing. As a result, it was very likely that desorption of previously adsorbed MIB was contributing to the MIB measured in the effluent. This effect should be considered when using these laboratory
columns to evaluate the effectiveness of a given GAC. If a carbon sample is collected during or soon after the GAC is exposed to MIB the results could be biased by desorption, especially if the influent concentration is much lower than that of the previous exposure.

Figure 5 - Effect of Service Time on Percent MIB Breakthrough (2.3 Minute EBCT)

The EBCTs evaluated here $(2.6,3.3,4.3)$ are typical of the contact times encountered with GAC filter caps in filter-adsorbers. These data suggest, however, that $28 \mathrm{ng} / \mathrm{L}$ was the maximum influent MIB concentration that fresh GAC with a 4.3 minute EBCT could reduce to threshold odor concentrations. This maximum concentration was lowered to less than $13 \mathrm{ng} / \mathrm{L}$ if a 2.6 minute EBCT was used. This indicates that adsorption alone may be insufficient to control MIB, and additional treatment technologies, such as ozone, advanced oxidation processes and biological oxidation, may be necessary to protect the consumer from unacceptable levels of tastes and odors. (Note: An additional laboratoryscale column, prepared with GAC that had been in service for 1 year, was operated at $4^{\circ} \mathrm{C}$ with a 3.3 minute EBCT. The percent MIB breakthrough was identical to the column operated at $25^{\circ} \mathrm{C}$ indicating biodegradation was not contributing to the observed removals.)

Laboratory Column Design

The excellent agreement between the pilot-plant results and the laboratory column data showed that short term lab tests can be used to effectively predict the results of largescale systems. However, several questions about the design and methods of operation needed to be answered so that the laboratory column test could be used with confidence. Therefore, specific questions concerning the effect of the GAC column design (bed depth, column diameter and GAC particle size) on column performance were addressed. Also, the role of biological activity, influent MIB concentration and the concentration of chlorine were carefully examined.

Bed Depth. To determine if the bed depth affected GAC performance, four 1.0 cm diameter columns were packed with 12×14 GAC to depths between 0.8 and 3.3 cm . and each was operated with a different flow rate but the same EBCT. A solution containing approximately $50 \mathrm{ng} / \mathrm{L}$ MIB was applied to each column. The resulting MIB removal efficiency was calculated for each column using the two-day effluent concentration plateau. From the data presented in Figure 6, it can be seen that even the shortest GAC bed $(0.8 \mathrm{~cm})$ removed the same fraction of MIB as a bed approximately four times deeper $(3.3 \mathrm{~cm})$ when the columns were operated at the same EBCT. This means that this approach was not dependent on the bed depth or flow rate.

Column Diameter. The column diameter to particle diameter ratio can also affect column performance; short circuiting, and thus higher effluent concentrations, can result if this ratio is too small. In order to examine this effect, four 1.0 cm diameter columns and one 2.5 cm diameter column were packed with the same 12×14 GAC (1.41 to 1.68 mm particle diameter) that had been in service for one year. As seen in Figure 6, even though the 1.0 cm diameter columns had an average particle to column diameter ratio of only 6.5 , they yielded the same removal as the larger column with a ratio of approximately 16.2. These data indicate that through proper packing of the GAC and the use of glass beads, low particle to column diameter ratios may be used.

Figure 6 - Effect of GAC Bed Dimensions on Percent MIB Breakthrough (1 year service time)

Figure 7 - Comparison of Sieved and Unsieved GAC (2 year service time)

It is interesting to note that even at contact times more typical of adsorbers, 10 to 15 minutes, approximately 85% of the MIB was removed for this carbon. This means that if threshold odor levels of approximately $5 \mathrm{ng} / \mathrm{L}$ MBB or less were desired, the GAC that had been in service for just one year could only be expected to control episodes less than approximately $30 \mathrm{ng} / \mathrm{L}$ MIB with ten minutes of contact.

GAC Particle Size. Ideally, a particle size distribution identical to the pilot- or full-scale adsorber would be used in these laboratory columns. However, by using a representative size fraction in the laboratory columns rather than the same particle size distribution as the full-scale plants, it was possible to more easily and rapidly obtain a laboratory column that could simulate a larger scale system. To test if the 12×14 mesh size fraction would yield results representative of the entire particle size distribution, two columns were prepared with GAC that had been in service for two years. The first column held an unsieved sample with the same particle size distribution as the full-scale filter. The second column was prepared with a 12×14 mesh size fraction of the same carbon. Both columns were fed an influent of Lake Michigan water spiked to approximately $50 \mathrm{ng} / \mathrm{L}$ MIB and monitored over time. The two-day effluent concentration plateau was used to calculate the percent MIB breakthrough at each EBCT evaluated. The close agreement between the results of the two columns indicated that the use of the 12×14 mesh size fraction was appropriate (see Figure 7).

Influent MIB Concentration

The issue of which influent MIB concentration to use is closely related to the question of the dependence of percent MIB breakthrough on influent concentration. If the percent breakthrough is independent of the concentration used, the influent concentration can be selected to provide easy-to-analyze sample concentrations. To test the dependence on influent concentration, the GAC that had been in service for one year was exposed to increasing influent concentrations of MIB. For approximately 2 days each, $25 \mathrm{ng} / \mathrm{L}, 51$ ng / L and $100 \mathrm{ng} / \mathrm{L}$ MIB in Lake Michigan water were applied to the column with an EBCT of 3.1 minutes. The percent MIB passing through the GAC bed at each of the influent concentrations approached the same plateau value, approximately 55%.

The results of Figure 8 were encouraging because they demonstrated the independence of percent MIB breakthrough on the influent MIB concentration. However, the experiment only simulated step increases in taste and odor intensity. Figure 1 clearly shows through
a taste and odor season, there may be several periods of alternating high and low concentrations of taste and odor causing compounds. As previously discussed, the data from the pilot study seemed to indicate that desorption might influence the effluent concentration.

Figure 8 - Effect of Increasing Influent Concentration on Percent MIB Breakthrough (1 year service time; 3.1 min EBCT)

An additional experiment tested a variable influent MIB concentration on the GAC that had been in service for one year. The column was sequentially fed an influent of $52 \mathrm{ng} / \mathrm{L}$, $25 \mathrm{ng} / \mathrm{L}$ and $100 \mathrm{ng} / \mathrm{L}$ MIB in Lake Michigan water, each for approximately two days. The resulting percent breakthroughs for the 2.3 minute EBCT were 66 percent, 77 percent and 68 percent, respectively (Figure 9). These data indicated that when the carbon experienced a decrease in the influent MIB concentration, desorbing MIB elevated the effluent concentration above that which would normally occur had the carbon not been pre-exposed to a higher influent concentration. This suggests that if a GAC sample is collected during or soon after it has been exposed to MIB, the minimum percent breakthrough could be biased by desorption if the laboratory column influent concentration is lower than that of the previous exposure.

Natural Organic Matter Loading

As previously stated, several researchers have reported that the loading of organic matter on activated carbon controls the adsorption of micropollutants. To support this hypothesis, specifically for the adsorption of MIB by GAC, an additional experiment was performed. A laboratory column was packed with 12×14 mesh virgin GAC. Deionizeddistilled (DDI) water was continuously applied to the column with a 3.3 minute EBCT, periodically switching the influent to a batch of DDI water containing $50 \mathrm{ng} / \mathrm{L}$ MIB, for two days. The effluent MIB concentration was continuously monitored to determine what percentage of MIB in each simulated episode passed through the GAC. The percent MIB breakthrough for each application was approximately 9 percent

Figure 9 - Effect of Variable Influent MIB Concentrations on Percent MIB Breakthrough (1 year service time; 2.3 min EBCT)

Figure 10 compares the data collected during this experiment to the results previously obtained while evaluating the effect of service time on the percent MIB breakthrough. Starting with fresh carbon, twice as much MIB passed through the GAC in natural water than in DDI water. As the length of service time increased and additional NOM was adsorbed in the natural water system, the percent MIB passing through the column
increased. No such increase was observed in the DDI system. The initial increase in the percent MIB breakthrough in the natural water system could not be attributed to the loading of MIB. Assuming the complete adsorption of a constant $50 \mathrm{ng} / \mathrm{L}$ MIB influent for 0.25 years with a 3.3 minute EBCT, a conservative estimate based on the data displayed in Figure 1, only 2.3 percent of the maximum MIB surface loading would have been utilized. As a result, a portion of the decrease in the MIB removal efficiency was attributed to the adsorption of NOM. It is likely that the reaction of chlorine with the GAC contributed to this decrease in MIB removal efficiency. The effect of chlorine on the ability of GAC to remove MIB is discussed below. [Note: The maximum MIB surface loading was determined from DDI water isotherms prepared with an unground 30×40 U.S. Standard mesh (0.420 to 0.595 mm diameter) size fraction of virgin GAC. The resulting Freundlich parameters for these single-solute isotherms were 8.738 ($\mathrm{ng} / \mathrm{mg}$) $(\mathrm{ng} / \mathrm{L})^{-1 / \mathrm{n}}$ and 0.746 for K and $1 / \mathrm{n}$, respectively.]

Figure 10 - Effect of Natural Organic Matter on MIB Breakthrough (3.3 min EBCT)

Effect of Chlorine

Many treatment plants with GAC beds that use free chlorine as a disinfectant have chlorine entering the activated carbon bed. When running the laboratory experiments, an
important decision to be made is whether to include chlorine in the influent water to simulate field conditions. Several researchers have shown that chlorine reduces the adsorption capacity of activated carbon for numerous organic compounds (McGuire and Suffet, 1984; Snoeyink and Suidan, 1975; Snoeyink et al. 1974; Coughlin, 1970; Coughlin and Ezra, 1968). Lalezary et al. (1988) and Gillogly et al. (1998) have shown this specifically for powdered activated carbon and MIB. Based upon these results, a similar reduction in removal efficiency was expected between GAC and MIB once chlorine was allowed to react with the carbon.

To test this hypothesis, virgin GAC was reacted with chlorine [chlorine (as Cl_{2}) mass reacted to carbon mass ratio of 0.15 and 0.30] in a batch system before being transferred to a column. This allowed for uniform reaction of the chlorine with all carbon particles. As a result, these laboratory-scale columns are not representative of the entire depth of a GAC bed. However, these columns may simulate the performance of the top fraction of GAC in a full-scale system because most of the free chlorine entering such an adsorption system reacts with the GAC in the upper layer. Filtered Lake Michigan water was fed to these laboratory GAC beds, periodically switching to a $50 \mathrm{ng} / \mathrm{L}$ MIB Lake Michigan water solution for two-day intervals. The resulting breakthrough of each MIB episode is shown in Figure 11. [Note: A chlorine (as Cl_{2}) mass reacted to carbon mass ratio of 0.15 or 0.30 is equivalent to a water treatment plant with a 3.3 min GAC EBCT and $1.0 \mathrm{mg} / \mathrm{L}$ of chlorine as Cl_{2} completely reacting with the carbon for 0.5 or 1.0 years, respectively.]

In a full-scale system, the chlorine would have reacted with aqueous and adsorbed NOM in addition to the GAC, so the approach used in this experiment does not exactly simulate a full-scale system reacting with chlorine. However, the laboratory results indicated the reaction of chlorine with GAC can significantly reduce the MIB adsorption efficiency, and thus the exposure of GAC to chlorine should be avoided if possible.

Figure 11 - Effect of Chlorine on MIB Removal Efficiency (3.3 min EBCT)

Biological Activity

It needed to be verified that the MIB removal observed in the laboratory-scale columns was not influenced by biological activity (i.e. no biodegradation of MIB). Several steps were taken to minimize the potential of a biological influence. All of the natural water used in the experiments was filtered through a $0.45 \mu \mathrm{~m}$ membrane filter. In addition to removing particulate and colloidal material that could otherwise plug or foul the laboratory columns, this filtration had the added benefit of removing potentially MIB degrading microorganisms present in the water. While this was probably sufficient for the limited time that the virgin GAC columns were operated, the preloaded GACs could themselves introduce attached microorganisms. However, the preloaded GAC samples were all collected before to the taste and odor season began. By collecting the samples at this time, the GAC and potentially attached microorganisms had not been exposed to MIB for 6 to 8 months. This meant that if an acclimation time were necessary for the MIB degrading microorganisms, the organisms would not already be acclimated when they were introduced into the experiment.

Figure 12 - Effect of Temperature on Percent MIB Breakthrough (1 year service time; 2.3 min EBCT)

To verify that biological activity was not influencing the observed percent MIB breakthroughs, two columns were prepared with GAC that had been in service for 1 year. These laboratory-scale columns were operated at 4 and $25^{\circ} \mathrm{C}$. If biological MIB degradation was present, it was expected that the column run in the $4^{\circ} \mathrm{C}$ temperature controlled cold room would have different results from the column operated at room temperature $\left(25^{\circ} \mathrm{C}\right)$. Based on this assumption, Figure 12 indicates that biological activity was not influencing the observed percent MIB breakthroughs. Additional work, presented in the following chapter, shows that all of the trends observed in these laboratory-scale columns were predicted using competitive adsorption models, further indicating the percent MIB breakthroughs were not influenced by biological activity.

SUMMARY AND CONCLUSIONS

A test was developed to rapidly and effectively evaluate the remaining life of a GAC bed for the mitigation of a taste and odor episode. The results showed that adsorption alone may be insufficient to control MIB episodes. The need for additional treatments, such as
ozone, advanced oxidation processes, or biological oxidation is evident, and additional research is necessary to determine which combination of these technologies can most effectively be used. Specific conclusions of this study are:

- Laboratory-scale columns simulated the performance of a pilot-plant very well. The test used a representative GAC size fraction (12×14 U.S. Standard mesh -1.41 to 1.68 mm diameter) packed in a small laboratory column (1.0 cm diameter). The percent removal of MIB pulse-loadings was essentially the same in the laboratory columns as it was in the pilot-plant. These laboratory columns were also able to show the impact of variable influent MBB concentrations, the accumulation of natural organic matter and the reaction of GAC with free chlorine.
- Adsorption by GAC alone, will often provide insufficient protection against MIB taste and odor episodes. The laboratory- and pilot-scale experiments often showed that GAC would not reduce MB to threshold odor concentrations. For short contact times (~ 4 minute EBCT), virgin GAC could only be expected to control episodes less than approximately $30 \mathrm{ng} / \mathrm{L}$ MIB. Even with longer contact times (~ 10 minute EBCT), a $30 \mathrm{ng} / \mathrm{L}$ MIB episode was the most MIB a GAC that had been in service for one year could reduce to acceptable levels.
- The maximum attenuation of a transient MIB load by granular activated carbon, reported as percent removal, was independent of the influent concentration but dependent on the surface loading of natural organic matter. The percent MIB removed by a bed of granular activated carbon was independent of the influent MIB concentration, for increasing influent concentrations. However, when the GAC had been exposed to higher influent concentrations, a subsequent and lower concentration episode was not removed at the same efficiency due to desorption and redistribution of MIB from the previous loading. Based upon these results, if a GAC sample was collected during or soon after it has been exposed to MIB, the minimum percent
breakthrough observed in these laboratory-scale columns could be biased if the influent concentration selected for the test was too low.
- In natural water, MIB removal was controlled by the adsorption of the other adsorbable organic matter. In deionized-distilled water, a constant percent removal was observed for a series of simulated MIB episodes. However, for a natural water system, a significant decrease in MIB removal efficiency was observed and attributed to the adsorption of natural organic matter from Lake Michigan water. This indicated that for limited amounts of MIB accumulation, the breakthrough of continuous and intermittent MIB loadings would be similar, since the background organic matter was primarily controlling the removal efficiency.
- Chlorine has a deleterious effect on the ability of granular activated carbon to remove MIB. The greater the amount of chlorine allowed to react with the GAC, the lower the percent removals. Thus, the application of chlorine to GAC should be avoided if possible.

ACKNOWLEDGMENT

The authors would like to thank Gary Williams, Randy Russell and William Soucie for providing samples of GAC, and Kathryn Force for her assistance with the pilot-study.

"Doing [research] without [publishing] is like winking at a girl in the dark You know what you are doing, but nobody else does." (Steuart H. Britt)

Predicting GAC Performance

The water industry has long been attracted to predicting the performance of granular activated carbon. If the performance of GAC can be predicted, the technical and economic feasibility of activated carbon for a particular application can be decided. To obtain a prediction two general approaches have been utilized. The first approach uses laboratory-scale columns to simulate the performance of large-scale systems, as discussed in the previous chapter. The second approach utilizes the physical and adsorptive characteristics of an activated carbon, obtained from laboratory experiments, to initialize a predictive mathematical model. The use of one such model, "FS", will be discussed here.

PSEUDO SINGLE-SOLUTE HOMOGENEOUS SURFACE DIFFUSION MODEL

The program "FS", written by Yuasa (1982), has been used with some success (Knappe, 1996). By assuming axial dispersion through a GAC filter/adsorber was negligible (Weber and Liu, 1980), the program solves a system of equations for plug flow pseudosingle solute homogeneous surface diffusion (PFHSDM) through a fixed bed adsorber to model the adsorption rate of the target compound from natural water onto GAC. Pseudo single-solute homogeneous surface diffusion assumes that the rate at which the target compound is adsorbed from natural water by activated carbon can be modeled as if the target compound was the only compound present. To solve the PFHSDM, equilibrium [$\left.K\left(C_{\text {inf }}\right), 1 / n\right]$ and kinetic $\left(D_{s}, k_{f}\right)$ parameters are needed. The pseudo single-solute $K\left(C_{\text {inf }}\right)$ and $1 / n$ can be determined using the equivalent background compound (EBC) method (Qi et al., 1992). Once these parameters have been calculated the D_{s} and k_{f} can be determined from a short bed adsorber test.

PFHSDM Calibration and Use

Pseudo Single-Solute Capacity. The pseudo single-solute equilibrium capacity is determined by the EBC method. Initially it is assumed that a single hypothetical compound, the equivalent background compound, can represent the natural organic matter (NOM) in the water, besides the target compound. This allows competitive adsorption to be described by a bi-solute version of the ideal adsorbed solution theory (IAST). The bi-solute IAST may then be used to predict the equilibrium surface capacity of the target compound that a specific mass of activated carbon will adsorb for any given initial concentration of the target compound. This competitive capacity is equivalent to the pseudo single-solute equilibrium capacity for the particular system predicted. This approach is outlined in greater detail in the chapter discussing "Kinetic and Equilibrium Studies of ${ }^{14} \mathrm{C}$-MIB Adsorption on PAC in Natural Water".

Critical to predicting a pseudo single-solute capacity, is precisely determining the singlesolute and competitive adsorption equilibrium capacity of activated carbon for the target compound. Several researchers have reported that particle size had no noticeable affect on the equilibrium adsorption capacity of either ground or unground virgin GAC, for both single-solute and competitive systems (Najm et al., 1990; Weber and Wang, 1987; Thacker et al., 1983; Randtke and Snoeyink, 1983; Lee et al., 1981). The time required to reach equilibrium, however, depends on particle size (Najm et al., 1990). Therefore, the smallest attainable particle size should be used in the isotherms to minimize the time required for experimentation.

Other researchers studying atrazine (Knappe, 1996) and trichloroethene adsorption (Carter et al., 1992) have found that grinding preloaded GAC can significantly alter its capacity. They agreed that this process increases the Freundlich K value by opening up adsorption sites previously blocked by preloaded natural organic matter. The researchers also observed a decrease in the slopes of the isotherms ($1 / \mathrm{n}$) with grinding, indicating an
increase in site energy heterogeneity. For these reasons it was felt that grinding preloaded carbon would not yield adsorptive capacity parameters descriptive of the unground GAC.

Unfortunately, the role of particle size in preloading has not been completely characterized. Summers et al. (1990) determined that after 1 week of preloading, the capacity for cis-1,2-dichloroethene was independent of particle size. Carter et al. (1992) observed a convergence of trichloroethene capacity within 4 weeks of preloading for $30 / 40$ and $80 / 100$ size fractions of activated carbon. These studies seem to indicate that the influence of GAC particle size on the degree of preloading diminishes over time. but further study is needed.

Rate of Adsorption. Once the pseudo single-solute equilibrium capacity parameters had been calculated, the kinetic parameters could be determined from a short bed adsorber (SBA) test. The SBA test was designed such that immediate but not complete breakthrough was observed (i.e., the mass transfer zone of the target compound was longer than the depth of the GAC bed). Using the data collected from the SBA and the program " $\mathrm{FS}-\mathrm{SI}$ ", the D_{s} and k_{f} are calculated by performing a nonlinear least-squares optimization technique that minimizes the error between the experimental data and the model prediction from the pseudo single-solute PFHSDM (see Appendix D: FS-SI).

Model Prediction. Once the parameters describing the adsorption of the target compound by activated carbon have been determined, the program "FS" can then be used to predict the performance of a GAC bed. The model uses a moving-grid finite difference method to numerically solve the PFHSDM (see Appendix D: FS)

GAC Preparation. Prior to use, the virgin GAC was washed with deionized-distilled water to remove the fines. The carbon was then dried to remove the water and sieved to collect the desired size fractions (20×25 U.S. Standard mesh -0.707 to 0.841 mm diameter, and 30×40 U.S. Standard mesh -0.420 to 0.595 mm diameter). The sized
virgin GAC was then rinsed again with deionized-distilled water to remove any fines generated during sieving, dried at $105^{\circ} \mathrm{C}$ to remove the water, and stored in a desiccator until use.

The preloaded carbons collected from the water treatment plants were initially washed with deionized-distilled water to remove the fines. The washed carbon was then wetsieved to obtain the size fractions of interest (12×14 U.S. Standard mesh -1.14 to 1.68 mm diameter, 16×18 U.S. Standard mesh -1.00 to 1.19 mm diameter, and 20×25 U.S. Standard mesh -0.707 to 0.841 mm diameter). The 20×25 mesh fraction was the smallest size fraction of the preloaded GACs that could be collected that did not have a significant amount of sand. The wet-sieved GAC particles were then blotted to remove the excess water and immediately weighed out for use. Additional portions of the preloaded sized GAC were weighted out and dried to determine their moisture content. The weighed mass(es) of preloaded GAC were then adjusted by the corresponding moisture content to determine the dry mass of activated carbon used in the experiment.

ADSORPTION EQUILIBRIA RESULTS

Virgin GAC

The adsorption capacity of GAC for MIB was first evaluated for the virgin GAC. While these Freundlich K and $1 / \mathrm{n}$ were being determined using the bottle-point isotherm technique described in previous chapters, it was felt that the independence of capacity on GAC particle size should be verified for MIB. While additional information about the relationship between particle size and preloading was also necessary, this could only be evaluated with the preloaded GAC. Without considering the influence of these factors, there would be insufficient confidence in the results obtained.

Headspace-free deionized-distilled water bottle-point isotherms were prepared with 30×40 (0.420 to 0.595 mm diameter) and 20×25 (0.707 to 0.841 mm diameter) U.S.

Standard mesh GAC particles. After 25 days of agitation, a select number of the bottles were sampled and topped-off with deionized-distilled water. Once a total of 125 days had passed, the MIB concentration in all of the bottles was analyzed. The concentration of MIB from the bottles that had been previously sampled at 25 days was adjusted to account for the addition of the small volume of deionized-distilled water to keep the bottles headspace-free.

The data (Figure l) show a difference in the MIB surface loading between the two GAC particle sizes after 25 days of agitation. An additional agitation of 100 days showed a significant increase in the MIB surface loading, indicating, 25 days was not long enough to reach equilibrium. The data after 125 days of agitation show the capacities of the two GAC size fractions converging. This convergence suggests that the virgin GAC's capacity for MIB was independent of particle size and the particles were in equilibrium with the aqueous MIB concentration. The corresponding Freundlich parameters for the virgin GAC single-solute isotherms at 125 days were $8.738(\mathrm{ng} / \mathrm{mg})(\mathrm{ng} / \mathrm{L})^{-1 / \mathrm{n}}$ and 0.746 for K and $1 / \mathrm{n}$, respectively.

Figure 1 - Effect of Time and Particle Size on MIB Surface Loading (virgin GAC)

These isotherms draw attention to a potential problem with the use of mathematical models. Even when using a 30×40 mesh fraction of particles, 25 days was an insufficient amount of time to reach equilibrium. Should the Freundlich K and $1 / n$ be determined prior to equilibrium, the parameters assumed for equilibrium could be significantly different than the true values. This low value would affect all subsequent parameter determinations, ultimately affecting the final GAC performance prediction.

Using the 20×25 mesh size fraction of virgin GAC an additional isotherm was prepared with Lake Michigan water. Again a difference was noted between the 25 and 125 day MIB surface loading (Figure 2). The data collected at 125 days were used for the EBC method.

Figure 2 - Effect of Time on MIB Surface Loading (virgin 20x25 GAC; C ${ }_{0}=341 \mathrm{ng} / \mathrm{L}$)

Table 1 lists the Freundlich parameters and initial concentration of the EBC as determined by the EBC method. Applying these EBC and single-solute parameters to the bi-solute version of the IAST, an isotherm was predicted for an initial MIB concentration of $53.3 \mathrm{ng} / \mathrm{L}$ (Figure 3). At complete saturation, the carbon in a fixed bed of GAC should come to equilibrium with the influent MIB concentration. To determine the competitive adsorption parameters for this condition, the MIB surface loading (q_{e}) at the initial MIB
concentration of the isotherm ($\mathrm{C}_{\mathrm{e}} \approx \mathrm{C}_{\mathrm{o}}$) predicted by the IAST was obtained by extrapolating from the MIB surface loadings corresponding to low carbon doses (100, 50 and $5 \mu \mathrm{~g} / \mathrm{L}$). Applying these values to the Freundlich equation, with $1 / \mathrm{n}$ equivalent to the slope of the single-solute isotherms, the competitive capacity Freundlich K was determined for this initial concentration. Table 2 lists these predicted competitive capacity Freundlich parameters.

Table 1 - Equivalent Background Compound Freundlich Parameters

GAC	Virgin	1 Year Preload	2 Year Preload
$\mathrm{K},(\mathrm{mmol} / \mathrm{g})(\mu \mathrm{mol} / \mathrm{L})^{-1 / \mathrm{n}}$	2.64×10^{-2}	2.74×10^{-2}	1.78×10^{-3}
$1 / \mathrm{n}$	0.0171	0.796	0.841
$\mathrm{C}_{0}, \mu \mathrm{~mol} / \mathrm{L}$	4.53×10^{-4}	6.90×10^{-3}	7.89×10^{-2}

Figure 3 - IAST Fit and Prediction (virgin GAC)

Table 2 - Natural Water Freundlich Parameters

GAC	Virgin	1 Year Preload	2 Year Preload
$\mathrm{C}_{\mathrm{e}}, \mathrm{ng} / \mathrm{L}\left(\approx \mathrm{C}_{\mathrm{inf}}\right)$	53.3	51.7	51.7
$\mathrm{~K},(\mathrm{ng} / \mathrm{mg})(\mathrm{ng} / \mathrm{L})^{-1 / \mathrm{n}}$	0.0191	0.1215	0.1945
l / n	0.7459	0.6471	0.5882

Preloaded GAC

While the same general approach was used to determine the competitive adsorption Freundlich parameters for the preloaded GACs, additional tests were necessary to obtain information about the relationship between particle size and degree of preloading. If the degree of preloading were dependent on size of the particles, the equilibrium MIB capacity would be dependent on particle size. Should a particle size/MB capacity dependence exist, further experimentation would be necessary to determine which size fraction of particles would yield an MIB capacity representative of the entire distribution of particle sizes.

Figure 4 - Effect of Time and Particle Size on Surface MIB Loading (1 year service time)

For both the 1 and 2 year preloaded GACs, 25 and 125 day single-solute and natural water isotherms were analyzed (Figure 4 and 5, respectively). As expected for both activated carbons, the initial 25 days of agitation was insufficient to reach equilibrium. There was no significant difference between the MIB surface loadings of the 12×14, 16×18 or 20×25 mesh GAC size fractions after 125 days of agitation. This suggests that for these carbons the degree of preloading is independent of particle size. Based upon the
available data, this conclusion cannot be substantiated for preloading times less than one year.

The single-solute Freundlich parameters were obtained from the 125 -day isotherms. A K and $1 / \mathrm{n}$ of $0.4126(\mathrm{ng} / \mathrm{mg})(\mathrm{ng} / \mathrm{L})^{-1 / \mathrm{n}}$ and 0.6471 , respectively, were recorded for the 1 year preloaded GAC. Slight differences were observed for the 2 year preloaded GAC (K = $0.4602(\mathrm{ng} / \mathrm{mg})(\mathrm{ng} / \mathrm{L})^{-1 / n}$ and $\left.\mathrm{l} / \mathrm{n}=0.5882\right)$. The EBC method was then applied to the 125-day natural water isotherms. The resulting Freundlich EBC parameters and predicted competitive MIB equilibrium capacities are listed in Tables I and 2, respectively.

Figure 5 - Effect of Time and Particle Size on MIB Surface Loading (2 year service time)

It is interesting to note that after 25 days of agitation there was no observable competition. Focusing on the 1 year preload GAC (see Figure 6), the single-solute and natural water MIB isotherms could be characterized by a single set of Freundlich parameters. Knappe (1996) saw similar results with atrazine. The natural water and single-solute atrazine isotherms were compared after 28 days of agitation, from which it was concluded that there was no competition with the preloaded GACs tested. Isotherms of longer duration were not tested to verify that equilibrium had been reached.

It is understandable that for preloaded GAC isotherms of "short" contact times, competition might not be readily apparent. In both the single-solute and natural water isotherms the NOM already adsorbed, or preloaded, onto the GAC would be present. The additional adsorbable organic matter contributed by a short contact time in the natural water isotherm is likely to be small in comparison to the quantity of previously adsorbed NOM. Finally, based upon the results obtained in previous chapters, concluding that the quantity of NOM adsorbed controls the adsorption of MIB, the amount of MIB adsorbed and its corresponding competition would be characterized by comparing a small or undetectable difference in two large quantities of adsorbed NOM.

Figure 6 -Adsorptive Competition at 25 days (1 year preload, 20×25 mesh GAC)

GAC PHYSICAL CHARACTERISTICS

Some of the physical properties of the GAC and GAC beds needed to be determined before the adsorption kinetics could be characterized. The skeletal density and particle porosity of the carbons were determined through mercury intrusion porosimitry (Autopore \#9220; Micrometrics, Norcross, Georgia). A comparative skeletal density was determined by helium pycnometry (Accupyc 1330; Micrometrics, Norcross, Georgia). The skeletal density and particle porosity were used to calculate the GAC particle density
used in the FS model. Table 3 lists the values obtained for the characterization of the GAC particles.

Some researchers have combined helium pycnometry with mercury intrusion porosimitry to determine the particle density. Table 3 indicates that this may lead to results different than if mercury intrusion porosimitry was used alone. It is expected that helium would be able to access pores smaller than mercury, leading to larger skeletal densities and particle porosities. While the "functional" porosity and skeletal density should be based only on the pores accessible to NOM and MIB would produce kinetic parameters most descriptive of the system, a technique to determine this was not readily available. For the work presented here only the data obtained by mercury intrusion porosimitry was considered.

Table 3-GAC Particle Characteristics

GAC	Hg Intrusion Porosimitry			He Pycnometry
	Skeletal Density $(\mathrm{g} / \mathrm{mL})$	Particle Porosity	Particle Density $(\mathrm{g} / \mathrm{mL})$	Skeletal Density $(\mathrm{g} / \mathrm{mL})$
Virgin	1.30	0.392	0.791	2.01
1 Year Preload	1.59	0.381	0.983	1.67
2 Year Preload	1.55	0.395	0.938	1.73

Additional information (GAC bed depth, bulk density) was required about the GAC beds used to determine the kinetic parameters, as well as the GAC beds to be predicted. The GAC bed depth was measured directly through the glass column; if variations in the depth were noted, an average was used. The bulk density of the GAC was calculated by the dividing the mass of GAC used to prepare the bed, by the volume of the bed.

ADSORPTION KINETICS RESULTS

To obtain the kinetic parameters D_{s} and k_{f}, a short bed adsorber was prepared for the virgin GAC. The preparation of the SBA was identical to the laboratory test columns
discussed at length in the previous chapter. Since the PFHSDM assumes that the rate at which MIB was adsorbed from natural water by the GAC could be modeled as if the MIB was the only compound present, the competitive adsorptive capacity predicted for the influent MIB concentrations of the laboratory-scale columns was used as a pseudo singlesolute adsorption capacity. Figure 7 shows the breakthrough curve obtained from this SBA test. While the film mass transfer coefficient ($\mathrm{k}_{\mathrm{f}}=2.40 \times 10^{-3} \mathrm{~cm} / \mathrm{s}$) calculated from this SBA was in the general range expected, the surface diffusion coefficient $\left(D_{s}=\right.$ $1.63 \times 10^{-6} \mathrm{~cm}^{2} / \mathrm{s}$) was several orders of magnitude larger than expected, based on the kinetics for MIB adsorption onto PAC (see the chapter discussing "Kinetic and Equilibrium Studies of ${ }^{14} \mathrm{C}$-MIB Adsorption on PAC in Natural Water'). The reason for this higher than expected surface diffusion coefficient was explored and is discussed later. These kinetic parameters were subsequently used to predict the performance of the laboratory scale results obtained in the previous chapter.

Figure 7 - Kinetic Parameters Determined with Laboratory Column (virgin GAC)

Similar fits were obtained for the preloaded GACs. The film mass transfer and surface diffusion coefficients obtained for the virgin and preloaded GAC are listed in Table 4.
(Note: the "SBA test" is actually one of the two-day spikes applied to the laboratoryscale columns. It was felt that the kinetic parameters obtained directly from these systems would be the most appropriate.)

Table 4-MBB Adsorption Kinetic Coefficients

GAC	Virgin	1 Year Preload	2 Year Preload
$\mathrm{D}_{\mathrm{s}} \mathrm{cm}^{2} / \mathrm{s}$	1.63×10^{-6}	9.21×10^{-12}	7.86×10^{-12}
$\mathrm{k}_{\mathrm{f}}, \mathrm{cm} / \mathrm{s}$	3.90×10^{-4}	3.44×10^{-4}	2.23×10^{-4}

It can be seen from this table that the film mass transfer coefficient is generally independent of the preloading time. This is consistent with k_{f} being dependent only on the flow rate of the system and the diameter of the GAC particles. The surface diffusion coefficient, however, dramatically changed after preloading. These data may indicate that the previously adsorbed NOM hinders the transport of MIB into the GAC particle. However, this will be discussed further later in the chapter.

GAC PERFORMANCE PREDICTIONS

Using the equilibrium and kinetic MIB adsorption parameters along with the GAC bed characteristics and experimental flow conditions, the performance of the laboratory-scale columns described in the previous chapter were predicted. Figure 8 shows the predicted percent MIB breakthrough for a virgin GAC bed exposed to a 2.6 or 4.5 min EBCT. The PFHSDM closely simulated the percent MIB breakthrough at two days (2880 minutes). The two-day percent MIB breakthrough value was used to characterize the GAC performance in the laboratory-scale columns used in the previous chapter, "Determining the Remaining GAC Bed Life for Taste and Odor Control".

Similar PFHSDM predictions were performed for the preloaded GAC. Figure 9 shows the PFHSDM fit and prediction of the GAC preloaded for 2 years. Similar fit and predictions of the 1 year preloaded GAC were also obtained. Additional predictions of
the performance of the 1 year preloaded carbon were made for a range of EBCTs, between 2.3 and 13.5 minutes, and for two different column diameters (1.0 and 2.5 cm). Figure 10 shows that the PFHSDM was able to predict well the two-day percent MIB breakthrough of a wide variety of EBCTs and two different column diameters. Even at EBCTs over four times longer than what the model was calibrated at, there was only a 10 percent difference between the percent MIB breakthrough of the laboratory-scale column and the PFHSDM prediction.

Figure 8 - PFHSDM Predictions of Virgin GAC Performance

A final set of predictions were made for the 1 year preloaded carbon to determine if the PFHSDM would predict that the percent MIB breakthrough was independent of the influent MIB concentration. Figure 11 clearly shows that the PFHSDM predicted the same percent MIB breakthrough for MIB influent concentrations of 25, 52 and $100 \mathrm{ng} / \mathrm{L}$. It should be noted that this was based upon the 125 -day isotherms. When the 25 -day isotherm data were used, and no competition was evident, the PFHSDM did not predict the same percent MIB breakthrough, as expected.

Figure 9 - PFHSDM Prediction of Preloaded GAC (2 year preload)

Figure 10 - The Influence of Bed Dimensions and EBCT on PFHSDM Predictions (l year service time)

Figure 11 - Effect of the MIB Influent Concentration on PFHSDM Predictions (1 year service time)

DIFFUSION LIMITATIONS

While the model was able to closely fit and predict the laboratory-scale column conditions presented in the preceding chapter, the modeling approach yielded some coefficients that did not seem to be physically realistic. The first question arose with the surface diffusion coefficient $\left(D_{s}=1.63 \times 10^{-6} \mathrm{~cm}^{2} / \mathrm{s}\right)$ obtained for the virgin GAC. As this value was considerably higher than expected, a sensitivity analysis was performed. Figure 12 indicated that if all of the other parameters were held constant, the fit obtained was generally insensitive to the surface diffusion coefficient. It was not until D_{s} had been decreased several orders of magnitude did the shape of the breakthrough curve change significantly. This implied that the model presented the film diffusion coefficient $\mathrm{k}_{\mathrm{f}}=$ $3.90 \times 10^{-4} \mathrm{~cm} / \mathrm{s}$) as the rate limiting step of adsorption. This was verified by increasing k_{f} to $1 \times 10^{-1} \mathrm{~cm} / \mathrm{s}$ and varying the surface diffusion coefficient (Figure 13).

Figure 13 shows that the breakthrough of MIB for a virgin GAC system with less film resistance ($\mathrm{k}_{\mathrm{f}}=1 \times 10^{-4} \mathrm{~cm} / \mathrm{s}$) than originally proposed by the model ($\mathrm{k}_{\mathrm{f}}=3.90 \times 10^{-4} \mathrm{~cm} / \mathrm{s}$) was sensitive to surface diffusion when $D_{s} \geq 1 \times 10^{-12} \mathrm{~cm}^{2} / \mathrm{s}$. This was supported by using
a D_{s} of $1 \times 10^{-12} \mathrm{~cm}^{2} / \mathrm{s}$ and varying the film diffusion coefficient (Figure 14). For this D_{s}, $1 \times 10^{-12} \mathrm{~cm}^{2} / \mathrm{s}$, the convergence of the MIB breakthroughs indicated that at these film diffusion coefficients, $\mathrm{k}_{\mathrm{f}} \geq 1 \times 10^{-3} \mathrm{~cm} / \mathrm{s}$, the surface diffusion was the rate limiting step. Based upon the range of surface diffusions tested and assuming the mass transfer zone is longer than the bed depth a film resistance coefficient between 10^{-4} and $10^{-3} \mathrm{~cm} / \mathrm{s}$ would be required to match the laboratory-scale columns. This correlates well with the 3.9×10^{-4} cm / s determined by the optimization routine for this model.

Figure 12 - Sensitivity of Percent MIB Breakthrough to the Surface Diffusion Coefficient

Figure 13 - MIB Breakthrough Sensitivity to Internal Diffusion with Less External Resistance

Figure 14 - Determining the Role of Film Resistance With Low Internal Diffusion

Figure 15 - Large Approach Velocity PFHSDM Fit

At such low approach velocities ($0.361 \mathrm{~cm} / \mathrm{min}$) it is not unreasonable to expect film diffusion to have a significant effect on the breakthrough of MIB. The larger systems, however, operate at much higher velocities. This significant difference in flows was concerning. Assuming that the laboratory-scale columns do simulate the performance of larger-scale systems the model was initialized so that the model was trying to characterize a 1 m deep bed with the same contact time (approach velocity $=301 \mathrm{~cm} / \mathrm{min}$). With k_{f}
and D_{s} equal to $4.03 \times 10^{-4} \mathrm{~cm} / \mathrm{s}$ and $1.55 \times 10^{-7} \mathrm{~cm}^{2} / \mathrm{s}$, respectively, the model again assumes that film resistance is a limiting factor (Figure 15). All of these modeling results consistently indicate that MIB adsorption in GAC is a film diffusion controlled process.

CAPACITY LIMITATION

The data in Figures 3-5 indicate that the GAC capacity decreases with preloading time. The laboratory-scale column capacities predicted by the IAST, however, did not show the same trend (Table 5). The reason for this is due to the predicted effects of competition at equilibrium capacities close to the initial or influent MIB concentration. Assuming reversible adsorption, it is shown in Figure 3 that the MIB capacity dramatically decreases as the influent concentration is approached.

Table 5-GAC Pseudo Single-Solute MIB Capacity
Virgin $=\mathrm{Ce}(\mathrm{ng} / \mathrm{L})$ $\mathrm{K}(\mathrm{mg} / \mathrm{g})(\mathrm{L} / \mathrm{ug})^{\wedge}(\mathrm{l} / \mathrm{n})$ 1 yr preload 53.29 0.003 2 yr preload 51.67 0.011

It is believed that this dramatic decrease of capacity is due to the presence of a strongly adsorbing competing fraction of NOM that could displace previously adsorbed MIB. Figure 16 shows that the IAST prediction for the 1 year preloaded GAC did not show the same decrease of capacity at equilibrium concentrations close to the initial concentration. A similar IAST fit and prediction were obtained for the 2 year preloaded carbon. The IAST results of the preloaded carbons indicated that adsorbing an incremental amount of additional NOM to the preloaded carbons did not affect MIB adsorption as dramatically as with the virgin GAC. This resulted in the unexpected trend in the IAST predictions shown in Table 5. For the purpose of consistency, the IAST predictions presented in Table 5 were the capacity values used in the PFHSDM.

Figure 16 - IAST Fit and Prediction (1 year preload GAC)

Figure 17 - Sensitivity of Percent MIB Breakthrough to the GAC Capacity

Instead of using the IAST predicted capacity determined at the influent concentration, and a capacity was determined from the portion of the isotherm parallel to the single solute for the virgin GAC a Freundlich K of $0.26(\mathrm{mg} / \mathrm{g})(\mathrm{L} / \mu \mathrm{g})^{1 / n}$ could be obtained. If the film diffusion remained at $3.90 \times 10^{-4} \mathrm{~cm} / \mathrm{s}$, a lower surface diffusion coefficient was selected ($D_{s}=1 \times 10^{-12} \mathrm{~cm}^{2} / \mathrm{s}$), and the Freundlich K was increased to 0.26 , it can be seen that a reasonable fit can be obtained (Figure 17). It can be proposed that while the system
is still primarily controlled by film diffusion, a more realistic surface diffusion can be obtained with a Freundlich K that is more physically reasonable.

SUMMARY AND CONCLUSIONS

Based on carefully collected equilibrium and kinetic MIB adsorption data, the plug flow pseudo single-solute homogeneous surface diffusion model was used to predict the twoday percent MIB breakthrough of laboratory-scale fixed bed GAC adsorbers. The model used the isotherm parameters from a batch test and determined the mass transfer parameters D_{s} and k_{f} by fitting the data from a laboratory-scale column test. Performance predictions were then made of the effect of changing EBCT and initial concentration. These model predictions closely matched the performance of the laboratory-scale columns at EBCTs close to the EBCT at which the model was calibrated. Even at EBCTs more than four times longer than the calibration EBCT, only a 10 percent difference was observed between the predicted and actual percent MIB breakthrough values. Additionally, the model was able to predict the performance of a larger diameter (2.5 cm) laboratory-scale column.

During the evaluation of the PFHSDM it was determined that poor predictions may be reached if sufficient time is not given for determining the equilibrium MIB adsorption parameters. It was also discovered that while satisfactory predictions were obtained the adsorptive parameters describing the system were not necessarily physically realistic. The model did indicate, however, that the adsorption of MIB in a fixed bed of GAC is controlled by film diffusion. Finally, the PFHSDM supported the findings reported in the previous chapter, which concluded, the percent MIB breakthrough was independent of the influent MIB concentration.

"I like work; it fascinates me. I can sit and look at it for hours." (Jerome K. Jerome)

Activated Carbon Testing Protocols

Developed from the work discussed in the previous chapters, protocols evaluating the use of powdered and granular activated carbon for MIB removal are described below.

POWDERED ACTIVATED CARBON

The protocol outlined here should provide the user with a method to assist in the selection of different PACs. The approach should also indicate the minimum PAC dose required to remove a desired fraction of MIB.

1. Obtain a representative sample of the natural water and powdered activated carbon(s) of interest;
2. Based upon the user's limit of MIB detection, select an initial concentration of MIB so that two to three logs of removal may be observed (the lower the concentration the better, however, make sure that at least 2 logs of removal can be analyzed);
3. Prepare a natural water isotherm with a range of carbon doses wide enough to remove the MIB to the analytical detection limit (PAC doses between 2.0 and $150 \mathrm{mg} / \mathrm{L}$ are often used; isotherms should be prepared headspace free to minimize losses due to volatilization; glass beads should be used in headspace free isotherms to insure proper mixing;);
4. Analyze the isotherm at a time representative of the PAC contact time expected in the water treatment facility;
5. Plot the results of the isotherm as percent MIB remaining ($\mathrm{C}_{1} / \mathrm{C}_{0}{ }^{*} 100 \%$) versus PAC dose on a log-log scale, and draw a line of best fit through the data;
6. Determine the influent and desired effluent MIB concentration to calculate the corresponding percent MIB remaining;
7. On the plot of the isotherm data, read horizontally across at the calculated percent MIB remaining until the line of best fit is intersected. At this point move vertically down to determine which PAC dose this corresponds.
8. The corresponding PAC dose read from the plot should indicate the minimum PAC dose required to reduce the concentration of MIB to the level selected in step \#6.
(Note: the PAC dose determined from the graph is a minimum. Higher doses may be required due to interactions with other treatment chemicals, poor mixing conditions or shorter than expected contact times.)

GRANULAR ACTIVATED CARBON

This procedure can assist in determining the minimum amount of MIB expected to pass through a GAC filter/adsorber. This should indicate to the operator whether or not the activated carbon needs to be regenerated/replaced to serve as an effective barrier against tastes and odors.

1. Dewater the filter/adsorber of interest;
2. Collect a representative core sample;
3. Perform a sieve analysis to determine the GAC fraction which accounts for the largest fraction of the filter's external surface area (the carbon should be rinsed free of particulates if the filter was not backwashed prior to sampling);
4. Calculate the empty bed contact time (EBCT = bed volume/flow rate) of the large scale filter;
5. Select the flow rate to be used in the laboratory scale column (selection is often based on the pump used or the analytical sample volume requirements);
6. Using the information in \#4 \& 5, calculate the bed volume of the laboratory scale column to have the same EBCT as the large scale system;
7. Assuming an apparent bed density, and moisture content of the wet GAC, calculate the mass of wet GAC that should be weighed for the laboratory scale column (apparent bed density ~ 0.5 to 0.6 ; wet GAC moisture content $\sim 30 \%$);
8. Weigh the appropriate amount of the size fraction determined in step \#3;
9. Prepare the laboratory column with the GAC centered in a bed of glass beads (make sure that the beads and GAC are well packed and do not have any air bubbles trapped between particles) and measure the actual bed dimensions;
10. Spike the influent natural water to the desired MIB concentration (note: the carbon's history may influence MIB removals; the influent concentration should be high enough so that desorption from previous exposure does not occur, however, it should not be so high that it significantly increases the carbons surface MIB concentration);
11. Set the flow rate for the actual bed dimensions determined in step \#9 to obtain the EBCT determined for the larger scale system, and pass the spiked influent through the column at this flow rate for approximately two days to determine the effluent plateau concentration;
12. Normalizing this plateau value to the influent concentration will yield the minimum percent of MIB expected to pass through the larger scale column for any influent concentration (note: higher percentages of MIB may appear to pass through the larger scale column due to short circuiting, other treatment chemicals or previous loadings of MIB).

"In everything we ought to look to the end." (Jean de La Fontaine)

Summary and Conclusions

The work presented here has addressed the goals outlined for this study. To determine the effectiveness of activated carbon, in the presence or absence of free chlorine, for the removal of MIB in a drinking water treatment plant, two protocols were developed. One protocol was developed to determine the minimum FAC dose required to reduce a given MIB influent concentration to a specific level in natural water. The second protocol was used to determine the remaining life of an existing GAC bed for taste and odor control.

Through the development of these protocols it was found that:

- Liquid scintillation counting of ${ }^{14} \mathrm{C}-\mathrm{MIB}$ was a technique suitable for the rapid collection and analysis of low concentrations of MIB in the presence and absence of free chlorine;
- The percent MIB removed by activated carbon, either powdered or granular, is independent of the influent MIB concentration, but dependent on the natural organic matter adsorbed;
- Chlorine has a deleterious effect on the ability of activated carbon, both powdered and granular, to adsorb MIB, and thus the contact of chlorine with activated carbon should be avoided;
- Adsorption by activated carbon alone does not appear to provide sufficient protection against taste and odor caused by MIB.

"My interest is in the future because I am going to spend the rest of my life there." (Charles F. Kettering)

Future Research Needs

The results presented in this study have shown that adsorption by activated carbon alone does not appear to provide a sufficient barrier against taste and odor problems caused by MIB. Additional work is necessary to determine the best, or combination of, technologies that will mitigate the earthy-musty organoleptic problems caused by this compound. Circumstantial evidence from water treatment plants, such as the Lake County, Illinois WTP, indicates that MIB is "controlled" in advanced water treatment processes such as ozone followed by biologically active GAC filtration. In this particular case the GAC has been in place for over six years. Through this example, and others, it appears that determining where is the "removal" actually occurring, and what are the respective roles of, 1) adsorption, 2) biodegradation, 3) oxidation/advanced oxidation, is very important.

Assuming biodegradation is important, the following questions arise:

- While many organisms have been shown to degrade MIB, which organisms are responsible for its degradation to the low concentrations necessary to produce palatable water?
- What conditions are necessary to stimulate the growth of these desirable organisms? (e.g. water quality parameters, post ox/AOP DOC characteristics)
- Do these organisms require time to acclimate before they start degrading the seasonal occurrences of MIB? If so, how long do these organisms require to acclimate, and can this amount of time be reduced or eliminated so that the organisms have been "triggered" to degrade MIB as soon as it appears in the influent?
- Is the adsorbent capacity of the GAC required, beneficial or even necessary? (i.e. can an alternative/cheaper support media be used with an equal or superior effectiveness?)

Providing answers to these questions would help to determine the most effective approach to controlling MIB related taste and odor problems. Since the consumers' confidence in the quality and safety of their drinking water is directly connected to its aesthetics, these answers would also give the water treatment plants information critical to the production of water acceptable to the population they service.
"Only those things are beautiful which are inspired by madness and written by reason" (André Gide)

References

Alben, K., E. Shpirt, L. Mathevet, J. Kaczmarczyk, G.-S. Wang, S. Bhuvendralingam, J. Crittenden. 1991. Predicting Capacities for SOCs in GAC Pilot Columns. In Proceedings of AWWA Annual Conference - Philadelphia, PA. Denver, Colorado.

Amoore, J.E. 1986. The Chemistry and Physiology of Odor Sensitivity. Journal American Water Works Association, 78:3:70.

Andrews, R.C., P.M. Huck, J.C. Crittenden, E. Knettig, L.C. Gammie, D.T. Williams. 1987. In Proceedings AWWA Annual Conference - Kansas City, MO, Denver, Colorado.

Bartels, J.H.M., B.M. Brady, I.H. Suffet (ed). 1989. Taste and Odor in Drinking Water Supplies - Phases I \& II. American Water Works Association Research Foundation, Denver, Colorado.
D.D. Eley et al., eds. Advances in Catalysis. Academic Press, New York, 1966.

Butler, J.A. and C. Ockrent. Journal of Physical Chemistry, 34:2841 (1930).
Carter, M.C., W.J Weber, K.P. Olmstead. 1991. Evaluation of the Effects of Background DOM on the Adsorption of Trichloroethylene by GAC. In Proceedings of AWWA Annual Conference - Philadelphia, PA. Denver, Colorado.

Carter, M.C., W.J Weber, K.P. Olmstead. 1992. Effects of Background Dissolved Organic Matter on TCE Adsorption by GAC. Journal American Water Works Association, 84:8:81.

Cees, B., J. Zoeteman, G.J. Piet. 1974. Cause and Identification of Taste and Odour Compounds in Water. The Science of the Total Environment, 3:103.

CH2M Hill. 1987. Process Development Report: Buffalo Pound Water Treatment Plant Expansion Taste and Odour Control Facilities.

Chudyk, W.A., V.L. Snoeyink, D. Beckmann, T.J. Temperly. 1979. Activated Carbon Versus Resin Adsorption of 2-Methylisoborneol and Chloroform. Journal American Water Works Association, 71:9:529.

Collins, R.P., L.E. Knaak, J.W. Soboslai. 1970. Production of Geosmin and 2-Exo-Hydroxy-2-Methylbomane by Streptomyces odorifer. Lloydia, 33:1:199.

Coughlin, R.W. Effect of Surface Groups on Adsorption of Pollutants. EPA Program \#17020 6/70, June, 1970

Coughlin, R.W. \& F.S. Ezra. Role of Surface Acidity in the Adsorption of Organic Pollutants on the Surface of Carbon. Envir. Sci. \& Technol. 2:4:291 (1968).

Crittenden, J.C., J.K. Berrigan, D.W. Hand. 1986. Design of Rapid Small-Scale Adsorption Tests for a Constant Diffusivity. Journal Water Pollution Control Federation, 58:4:312.

Crittenden, J.C., J.K. Berrigan, D.W. Hand, B. Lykins. 1987. Design of Rapid FixedBed Adsorption Tests for Nonconstant Diffusivities. ACSE - Journal of Environmental Engineering, 113:2:243.

Crittenden, J.C., P. Luft and D.W. Hand. Prediction of Multicomponent Adsorption Equilibria in Background Mixtures of Unknown Composition. Water Research, 19:12:1537 (1985).

Crittenden, J.C., P. Luft, D.W. Hand, J.L. Oravitz, S.W. Loper, M. Ari. 1985. Prediction of Multicomponent Adsorption Equilibria Using Ideal Adsorbed Solution Theory. Environmental Science and Technology, 19:11:1037.

Crittenden, J.C., P.S. Reddy, H. Arora, J. Trynoski, D.W. Hand, D.L. Perram, R.S. Summers. 1991. Predicting GAC Performance with Rapid Small-Scale Column Tests. Journal American Water Works Association, 83:1:77.

Dougherty, J.D., R.D. Campbell, R.L. Morris. 1966. Actinomycete: Isolation and Identification of Agent Responsible for Musty Odors. Science, 152:1372.

Dougherty, J.D., R.L. Morris. 1967. Studies on the Removal of Actinomycete Musty Tastes and Odors in Water Supplies. Journal American Water Works Association, 59:1320.

Freundlich, H. Über die Adsorption in Lösungen. Zeitschrift für physikalische Chemie. 57:385, 1906.

Frick, B.R. \& H. Sontheimer (1983). Treatment of Water by Granular Activated Carbon. American Chemical Society Books, Washington D.C.

Gaines, H.D., R.P. Collins. 1963. Volatile Substances Produced by Streptomyces odorifer. Lloydia, 26:4:247.

Gallup Poll, Water Quality and Public Opinion. Jour. AWWA, 65:8:513 (1973).
Gerber, N.N. 1983. Volatile Substances From Actinomycetes: Their Role in the Odor Pollution of Water. Water Science and Technology, 15:115.

Gerber, N.N. 1968. Geosmin, From Microorganisms, is Trans-1,10-Dimethyl-Trans-9Decalol. Tetrahedron Letters, 25:2971.

Gerber, N.N., H.A. Lechevalier. 1965. Geosmin, an Earthy-Smelling Substance Isolated from Actinomycetes. Applied Microbiology, 13:6:935.

Gillogly, T.E.T, V.L. Snoeyink, J.R. Elarde, C.M. Wilson \& E.P. Royal. Kinetic and Equilibrium Studies of ${ }^{14} \mathrm{C}-\mathrm{MIB}$ Adsorption on PAC in Natural Water. Journal American Water Works Association, 90:1:98 (1998).

Gillogly, T.E.T, V.L. Snoeyink, A. Holthouse, C.M. Wilson \& E.P. Royal. Effect of Chlorine on 2-Methylisoborneol Adsorption by Activated Carbon. Journal American Water Works Association, 90:2:107 (1998).

Gillogly, T.E.T, V.L. Snoeyink, J.C. Vogel, C.M. Wilson \& E.P. Royal. Determining Remaining GAC Bed Life for Taste and Odor Control. Submitted Journal American Water Works Association, Nov. 1998.

Gillogly, T.E.T., V.L. Snoeyink, J.R. Elarde, G. Newcombe. (1997) A Simplified Method to Determine the PAC Dose Required to Remove MIB. In Proceedings of LAWQ - Fifth International Symposium on Off-Flavours in the Aquatic Environment Paris, France.

Glaze, W.H., R. Schep, W. Chauncey, E.C. Ruth, J.J. Zarnoch, E. M. Aieta, C.H. Tate \& M.J. McGuire. Evaluating Oxidants for the Removal of Model Taste and Odor Compounds From a Municipal Water Supply. JAWWA, 82:5:79 (1990).

Halsey, G. and H.S. Taylor. J. Chem. Phys, 40:624 (1947).
Heilker, E. 1979. The Mülheim Process for Treating Ruhr River Water. Journal American Water Works Association, 11:11:623.

Henley, D.E., W.H.Glaze, J.K.G. Silvey. 1969. Isolation and Identification of an Odor Compound Produced by a Selected Aquatic Actinomycete. Environmental Science and Technology, 3:3:268.

Herzing, D.R., V.L. Snoeyink, N.F. Wood. 1977. Activated Carbon Adsorption of the Odorous Compounds 2-Methylisoborneol and Geosmin. Journal American Water Works Association, 69:4:223.

Huang, C., J.E. VanBenschoten, J.N. Jensen. 1996. Adsorption Kinetics of MIB and Geosmin. Journal American Water Works Association, 88:4:16.

Hwang, S.-C., R.A. Larson \& V.L. Snoeyink. Reactions of Free Chlorine with Substituted Anilines in Aqueous Solution and on Granular Activated Carbon. Wat. Res. 24:4:427 (1990).

International Mathematics and Statistical Library (IMSL). Math/Library 2.0. Houston, Texas: IMSL. (1991).

Ito, T., T. Okumura, M. Yamamoto. 1988. Water Science and Technology, 20:8/9:11.
Jackson, D.E., R.A. Larson \& V.L. Snoeyink. Reactions of Chlorine and Chlorine Dioxide with Resorcinol in Aqueous Solution and Adsorbed on Granular Activated Carbon. Wat. Res. 21:7:849 (1987).

Jain, J.S. and V.L. Snoeyink. Adsorption from Bisolute Systems on Active Carbon. Journal of the Water Pollution Control Federation, 45:12:2463 (1973).

Jensen, S.E., C.L. Anders, L.J. Goatcher, T. Perley, S. Kenefick \& S.E. Hrudey. Actinomycetes as a Factor in Odour Problems Affecting Drinking Water From the North Saskatchewan River. Wat. Res., 28:6:1393 (1994).

Knappe, Detlef, R.U. (1996). Predicting the Removal of Atrazine by Powdered and Granular Activated Carbon. Ph.D. Dissertation, University of Illinois.

Knappe, Detlef, R.U., V.L. Snoeyink, M.J. Prados, M.M. Bourbigot and G. Dagois. Adsorption of Atrazine by Powdered Activated Carbon (1993). In Proceeding of the American Water Works Association Annual Conference. Denver, Co. American Water Works Association.

Knappe, D.R.U., V.L. Snoeyink, M.J. Prados, M.-M. Bourbigot, G. Dagois. 1994. Determining the Remaining Life of a Granular Activated Carbon (GAC) Filter for Pesticides. In Proceedings of IWSA Specialized Conference: Activated Carbon in Drinking Water Treatment.

Knappe, D.R.U., B.E. Green, V.L. Snoeyink \& F.W. Pogge. Predicting the Adsorption Capacity of Powdered Activated Carbon for Atrazine at Trace Levels in Missouri River Water. Proc. AWWA, WQTC, Boston, Nov. 17-20, 1996.
Lalezary, S., M. Pirbazari \& M.J. McGuire. Oxidation of Five Earthy-Must Taste and Odor Compounds. JAWWA, 78:3:62 (1986).

Lalezary-Craig, S., M. Pirbazari, M.S. Dale, T.S. Tanaka \& M.J. McGuire. Optimizing the Removal of Geosmin and 2-Methylisoborneol by Powdered Activated Carbon. $J A W W A, ~ 80: 3: 73$ (1988).

Lalezary, S., M. Pirbazari, M.J. McGuire. 1986. Evaluating Activated Carbons for Removing Low Concentrations of Taste- and Odor-Producing Organics. Journal American Water Works Association, 78:11:76.
Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica, and Platinum. Journal of the American Chemical Society, 40:8:1361 (1918).
Lee, M.C., V.L. Snoeyink, J.C. Crittenden. 1981. Activated Carbon Adsorption of Humic Substances. Journal American Water Works Association, 73:8:440.

Mallevialle, J., I.H. Suffet (ed). 1987 Identification and Treatment of Tastes and Odors in Drinking Water. American Water Works Association Research Foundation. Denver, Colorado.
Manwaring, J.F., S.M. Zdep \& I.M. Sayre. Public Attitudes Toward Water Utilities. Jour. AWWA, 78:6:34 (1986).
Mathews, Alexander P. \& I. Zayas. Particle Size and Shape Effects on Adsorption Rate Parameters. Jour. Envir. Eng., 115:1:41 (1989).

Matsui, Y. Unpublished Work. 1994
Matsui, Y., T. Kamei, E. Kawase, V.L. Snoeyink, N. Tambo. 1994. GAC Adsorption of Intermittently Loaded Pesticides. Journal American Water Works Association, 86:9:91.

McCreary, J.J. \& V.L. Snoeyink. Reaction of Free Chlorine with Humic Substances Before and After Adsorption on Activated Carbon. Env. Sci. Tech. 15:2:193 (1981)
McCreary, J.J., V.L. Snoeyink \& R.A. Larson. Comparison of the Reaction of Aqueous Free Chlorine with Phenolic Acids in Solution and Adsorbed Granular Activated Carbon. Env. Sci. Tech. 16:6:339 (1982).

McGuire, M.J. \& I.H. Suffet. Aqueous Chlorine/Activated Carbon Interactions. Jour. Env. Eng., 110:3:629 (1984).

McGuire, M.J. \& I.H. Suffet (eds), Activated Carbon Adsorption of Organics from the Aqueous Phase Volume 2. Ann Arbor Press, Ann Arbor, Michigan (1980).

McGuire, M.J., M.K. Davis, C.H. Tate, E.M. Aieta, E.W. Howe, J.C. Crittenden. 1991. Evaluating GAC for Trihalomethane Control. Journal American Water Works Association, 83:1:38.

McGuire, M.J., S.W. Krasner, C.J. Hwang, G. Izaguirre. 1981. Closed-Loop Stripping Analysis as a Tool for Solving Taste and Odor Problems. Journal American Water Works Association, 73:10:530.

McGuire, M.J. \& I.H. Suffet. Aqueous Chlorine/Activated Carbon Interactions. Jour. Envir. Eng., 110:3:629 (1984).

Medsker, L.L., D. Jenkins, J.F. Thomas, C. Koch. 1969. Odourous Compounds in Natural Waters 2-Exo-Hydroxy-2-Methylbornane, the Major Odorous Compound Produced by Several Actinomycetes. Environmental Science and Technology, 3:5:477.

Meilgaard, M., G.V. Civille, B.T. Carr. 1991. Sensory Evaluation Techniques. CRC Press, Inc. Bocca Raton, Florida.

Morris, R.L., J.D. Dougherty, G.W. Ronald. 1963. Chemical Aspects of Actinomycete Metabolites as Contributors of Taste and Odor. Journal American Water Works Association, 55:1380.

Müller, U., F. Hess, E. Worch. 1996. Impact of Organic Matter Adsorbability on Micropollutant Removal by Activated Carbon. Journal of Water Supply and Research Technology - Aqua, 45:6:273.

Myers, A.L. and J.M. Prausnitz. Thermodynamics of Mixed-Gas Adsorption. Journal of the American Institute of Chemical Engineering, 11:1:121 (1965).

Najm, I.N., V.L. Snoeyink, M.T. Suidan, C.H. Lee., Y. Richard. 1990. Effect of Particle Size and Background Natural Organics on the Adsorption Efficiency of PAC. Journal American Water Works Association, 82:1:65.

Najm, Issam N., V.L. Snoeyink, T.L. Galvin \& Y. Richard (1991a). Control of Organic Compounds with Powdered Activated Carbon. American Water Works Association Research Foundation, Colorado.

Najm, Issam N., V.L. Snoeyink, \& Y. Richard (1991b). Effect of Initial Concentration of a SOC in Natural Water on Its Adsorption by Activated Carbon. Journal American Water Works Association, 83:8:57.

Najm, I.N., V.L. Snoeyink, J.W. Lykins Jr. \& J.Q. Adams. Using Powdered Activated Carbon: A Critical Review. Journal American Water Works Association, 83:1:65 (1991).

Namuduri, P., R.S. Summers. 1991. Attenuation of Shock Loadings by Granular Activated Carbon Adsorbers; Modeling and the Impact of Pulse Size, Preloading and Adsorbability. In Proceedings of AWWA Annual Conference - Philadelphia, PA. Denver, Colorado.

Newcombe, G., A. Collett, M. Drikas, B. Roberts. 1994. Granular Activated Carbon Pilot Plant Studies: An Australian Perspective. Poster Presented at the IWSA Specialized Conference on Activated Carbon in Drinking Water Treatment, Amsterdam.

Newcombe, Gayle, C. Donati, M. Drikas and R. Hayes (1994). Adsorption onto Activated Carbon: Electrostatic and Non-Electrostatic Interactions. Water Supply, 14:129.

Newcombe, G., and M. Drikas. The Removal of 2-Methylisoborneol and Geosmin Using Powdered Activated Carbon. Australian Water and Wastewater Association $16^{\text {th }}$ Federal Convention - Sydney, Australia. 1995.

Pendleton, P., S.H. Wong, R. Schumann, G. Levay, R. Denoyel, and J. Rouquerol. Properties of Activated Carbon Controlling 2-Methylisoborneol Adsorption. Carbon, 35:8:1141 (1997).

Persson, P.-E. 1980. Sensory Properties and Analysis of Two Muddy Odour Compounds, Geosmin and 2-Methylisoborneol, in Water and Fish. Water Research, 14:1113.

Pirbazari, M., V. Ravindran, B.N. Badriyha, S. Craig, M.J. McGuire. GAC Adsorber Design Protocol for the Removal of Off-Flavors. Water Research, 27:7:1153.

Qi, Shaoying. Evaluation of Activated Carbon Adsorption for Removal of SOCs from Natural Water. Ph.D. Thesis, University of Illinois, Urbana, IL. 1992.

Qi, S., V.L. Snoeyink, E.A. Beck, W.E. Koffskey, B.W. Lykins. 1991. The Use of Isotherms to Predict GAC Performance for Synthetic Organic Chemical Removal at Jefferson Parish, LA. In Proceedings of AWWA Annual Conference - Philadelphia, PA. Denver, Colorado.

Qi, S., V.L. Snoeyink, E.A. Beck, W.E. Koffiskey and B.W. Lykins Jr. Using Isotherms to Predict GAC's Capacity for Synthetic Organics. Journal American Water Works Associaion, 84:9:113 (1992).

Qi, Shaoying, S. Adham, V.L. Snoeyink, \& B.W. Lykins (1994). Prediction and Verification of Atrazine Adsorption by PAC. ASCE - Journal of Environmental Engineering, 120:1:202.

Radke, C.J. and J.M. Prausnitz. Thermodynamics of Multi-Solute Adsorption from Dilute Liquid Solutions. Journal of the American Institute of Chemical Engineering, 18:4:761 (1972).

Randtke, S.J, V.L. Snoeyink. 1983. Evaluating GAC Adsorptive Capacity. Journal American Water Works Association, 75:8:406.

Rosen, A.A., C.I. Mashni, R.S. Safferman. 1970. Recent Developments in the Chemistry of Odour in Water: The Cause of Earthy/Musty Odour. Water Treatment Examiner, 19:106.

Sano, H. 1988. The Detection of Taste and Odor in Osaka's Drinking Water. Water Science and Technology, 20:8/9:37.

Schmidt, K.J. Prediction of GAC Column Performance Using Bench Scale Techniques. M.S. Thesis, University of Illinois, Urbana, Illinois. 1994

Schulhof, P. 1979. An Evolutionary Approach to Activated Carbon Treatment. Journal American Water Works Association, 71:11:648.

Sigworth, E.A. 1957. Control of Odor and Taste in Water Supplies. Journal American Water Works Association, 49:12:1507.

Simpson, M.R., B.W. MacLeod. 1991. Comparison of Various Powder Activated Carbons for the Removal of Geosmin and 2-Methylisobornoel in Selected Water

Conditions. In Proceedings of American Water Works Association Annual Conference - Philadelphia, PA. Denver, CO.

Skoog, D.A. \& J.J. Leary. Principles of Instrumental Analysis, $4^{\text {th }}$ ed. Saunder College Publishing, Orlando, FL. 1992.

Smith, E.H. Modified Solution of Homogeneous Surface Diffusion Model for Adsorption. ASCE - Journal of Environmental Engineering, 117:3:320 (1991).
Smith, E.H., W.J. Weber. 1989. Evaluation of Mass Transfer Parameters for Adsorption of Organic Compounds from Complex Organic Matrices. Environmental Science and Technology, 23:713.
Smith, E.H. \& W.J. Weber, Jr. (1990). Comparative Assessment of Chemical and Adsorptive Characteristics of Leachates From a Municipal and an Industrial Landfill. Water, Air and Soil Pollution, 53:279.

Snoeyink, V.L., R.R. Clark, J.J. McCreary \& W.F. McHie. Organic Compounds Produced by the Aqueous Free-Chlorine-Activated Carbon Reaction. Env. Sci. Tech. 15:2:188 (1981).
Snoeyink, V.L., H.T. Lai \& J.F. Young, Chemistry of Water Supply, Treatment \& Distribution, Chapter 11. Ann Arbor Science Production, Ann Arbor, Michigan (1974).

Snoeyink, V.L. \& M.T. Suidan. Disinfection: Water and Wastewater (J.D. Johnson. ed) Dechlorination by Activated Carbon and Other Reducing Agents, Ann Arbor Science Publishers, Arn Arbor, Michigan (1975).
Speth, T.F. 1991. Evaluating Capacities of GAC Preloaded with Natural Water. ASCE Journal of Environmental Engineering, 117:1:66.
Speth, T.F., R.J. Miltner. 1981. Effect of Preloading on the Scale-up of GAC Microcolumns. Journal American Water Works Association, 81:4:141.
Standard Methods for the Examination of Water and Wastewater, $19^{\text {di }}$ edition (1995). American Public Health Association.

Suffet, I.H. 1980. An Evaluation of Activated Carbon for Drinking Water Treatment: A National Academy of Science Report. Journal American Water Works Association, 72:1:41.

Suffet, I.H., A. Corado, D. Chou, M.J. McGuire \& S. Butterworth. AWWA Taste and Odor Survey. Jour. AWWA, 88:4:168 (1996).

Summers, R.S., D. DiCarlo, S. Palepu. 1990. GAC Adsorption in the Presence of Background Organic Matter: Pretreatment Approaches and Attenuation of Shock Loadings. In Proceedings AWWA Annual Conference - Cincinnati, OH. Denver Colorado.

Summers, R.S., B. Haist, J. Koehler, J. Ritz, G. Zimmer, H. Sontheimer. 1989. The Influence of Background Organic Matter on GAC Adsorption. Journal American Water Works Association, 81:5:66.

Thacker, W.E., V.L. Snoeyink, J.C. Crittenden. 1983. Desorption of Compounds During Operation of GAC Adsorption Systems. Journal American Water Works Association, 75:3:144.

Traegner, U.K. and M.T. Suidan. Parameter Estimation for Carbon Adsorption. Journal Environmental Engineering - ASCE, 115:1:109 (1988).

Traegner, U.K. and M.T. Suidan. Parameter Evaluation for Activated Carbon. Jour. Envir. Eng., 115:1:109 (1989).
Traegner, U.K. and M.T. Suidan. Steady State Performance of Activated Carbon Contactors. Water Science and Technology, 23:1677 (1991).

Veijanen, A., E. Kolehmainen, R. Kauppinen, M. Lahiperä, J. Paasivirta. 1992. Methods for the Identification of Tainting Terpenoids and Other Compounds From Algae. Water Science and Technology, 25:2:165.

Vidic, R.D., G.A. Sorial, S.P. Papadimas, M.T. Suidan, T.F. Speth. 1992. Effect of Molecular Oxygen on the Scaleup of GAC Adsorbers. Journal American Water Works Association, 84:8:98.

Voudrias, E.A., R.A. Larson \& V.L. Snoeyink. Effects of Activated Carbon on the Reactions of Free Chlorine with Phenols. Env. Sci. Tech. 19:5:441 (1985).

Weber, W.J., C.K. Wang. 1987. A Microscale System for Estimation of Model Parameters for Fixed-Bed Adsorbers. Environmental Science and Technology, 21:1096.

Wittmeyer, S., R. Cap, C. Lange, S. Carder, D.W. Fredricksen. 1995. Investigations Into the Sources and Removal of Taste and Odor Causing Compounds at Two Water

Treatment Facilities on Eastern Lake Erie and The Niagara River." In Proceedings of American Water Works Association WQTC - New Orleans. LA. Denver, Colorado

Wood, N.F., V.L. Snoeyink. 1977. 2-Methylisoborneol, Improved Synthesis and a Quantitative Gas Chromatographic Method for Trace Concentrations Producing Odor in Water. Journal of Chromatography, 132:405.

Yagi, M., S. Nakashima, S. Muramoto. 1988. Biological Degradation of Musty Odor Compounds, 2-Methylisoborneol and Geosmin, in a Bio-Activated Carbon Filter. Water Science and Technology, 20:8/9:255.

Young, W.F., H. Horth, R. Crane, T. Ogden, M. Arnott. 1996. Taste and Odour Threshold Concentrations of Potential Potable Water Contaminants. Water Research, 30:2:331.

Yuasa, A. 1982. A Kinetic Study of Activated Carbon Adsorption Processes. Ph.D. Thesis, Hokkaido University, Sapporo, Japan.

Zelinsky, N. 1901. Ueber Eine Synthese der Cyclischen Tertiären Alkohole mit Hülfe von Magnesiumhalogenalkylen (Vorläufige Mittheilung). Berichte der Deutschen Chemischen Gesellschaft, 34:2877.

Zimmer, G., B. Haist, H. Sontheimer. 1987. The Influence of Preadsorption of Organic Matter on the Adsorption Behavior of Chlorinated Hydrocarbons. In Proceeding of the AWWA Annual Conference - Kansas City, MO. Denver, Colorado.

Zoeteman, B.C.J., G.J. Piet, L. Postma. 1980. Taste as an Indicator for Drinking Water Quality. Journal American Water Works Association, 72:9:537.
"It is surprising what a man can do when he has to, and how little most men will do when he don't have to." (Walter Linn)

Appendix A (Mathematical Modeling)

A number of theories and formulations have been applied to the mathematical modeling of adsorption processes. This research has only relied upon the use of the Freundlich and Ideal Adsorbed Solution Theory (IAST) equilibrium models and two-resistance, homogeneous surface diffusion kinetic models. As a result, only these will be focused upon here.

ADSORPTION EQUILIBRIA MODELING

The use of the Langmuir (1918) isotherm has been used extensively in the representation of single-solute adsorption equilibria. The expression was later extended to a multicomponent system by Butler and Ockrent (1930). Jain and Snoeyink (1973) also modified the Langmuir isotherm for a bi-solute system. However, an underlying assumption of the Langmuir expression is a constant adsorption site energy, which does not typically correlate well with adsorption into activated carbon. For highly heterogeneous surfaces, the Freundlich (1906) expression is generally more applicable, though the equation does not reduce to Henry's Law as the concentration approach zero.

$$
\begin{equation*}
q=K C^{1 / n} \tag{A.l}
\end{equation*}
$$

where $\mathrm{q}=$ equilibrium solid phase concentration, ng adsorbate/mg adsorbent; $\mathrm{C}=$ equilibrium liquid phase concentration, ng / L;
$\mathrm{K}=$ Freundlich constant, (ng/mg)(L/ng) $)^{1 / n}$;
$1 / \mathrm{n}=$ Freundlich constant, dimensionless.

While the Freundlich equation (see equation A.1) was originally empirically obtained, theory was later developed to explain it based on a heterogeneous adsorbent (Halsey and

Taylor, 1947). This equation has been typically used to describe single-solute systems and has been used in this fashion for all single-solute systems in this research. However, Crittenden et al. (1985) has incorporated the Freundlich equation into the ideal adsorbed solution theory (IAST) to model multisolute systems. The application of the IAST to a system with N components could then characterize that multisolute system by:

$$
\begin{equation*}
C_{i}=\frac{q_{i}}{\sum_{k=1}^{N} q_{k}}\left[\frac{\sum_{k=1}^{N} n_{k} q_{k}}{n_{i} K_{i}}\right]^{n_{i}} \tag{A.2}
\end{equation*}
$$

where $C_{i}=$ equilibrium liquid phase concentration of component i; $q_{i} \quad=\quad$ equilibrium solid phase concentration of component i;
n_{i} and $K_{i}=\quad$ single solute Freundlich isotherm constants of component i.

The IAST was originally developed for the adsorption of gaseous mixtures (Myers and Prausnitz, 1965). Radke and Prausnitz (1972) later adapted it to dilute aqueous systems. Since the application of the Freundlich expression to the IAST, it has been extensively and successfully employed (Knappe, 1996; Crittenden et al., 1985; Najm et al., 1991; Schmidt, 1994; Qi et al., 1994).

The application of the IAST to natural water systems has been limited by the unknown composition of the background organic matter. Two main approaches have been employed to deal with this problem. One approach as been to describe the background organics as a mixture of fictive components

Another approach has been to characterize the background organic matter as a single compound - the equivalent background compound (EBC). Using this method, natural water isotherms are performed for the target compound of interest. These are compared to the single-solute isotherm for that compound. The characteristics of the EBC are then assigned such that they yield the same amount of competition

Reduction of equation A. 2 into a bi-solute system yields:

$$
\begin{align*}
& c_{1}=\frac{q_{1}}{q_{1}+q_{2}}\left[\frac{n_{1} q_{1}+n_{2} q_{2}}{n_{1} K_{1}}\right]^{n_{1}} \tag{A.3}\\
& c_{2}=\frac{q_{2}}{q_{1}+q_{2}}\left[\frac{n_{1} q_{1}+n_{2} q_{2}}{n_{2} K_{2}}\right]^{n_{2}} \tag{A.4}
\end{align*}
$$

An isotherm bottle, a batch adsorption system, can be described by a mass balance equation:

$$
\begin{equation*}
q_{i}=\frac{C_{i, 0}-C_{i}}{C_{c}} \tag{A.5}
\end{equation*}
$$

solving for C_{i} :

$$
\begin{equation*}
C_{i}=C_{i, 0}-q_{i} C_{c} \tag{A.6}
\end{equation*}
$$

where $C_{i .0}=$ initial concentration of compound i;
$\mathrm{C}_{\mathrm{c}}=$ carbon concentration in the isotherm bottle.

Using equation A. 6 equations A. 3 and A. 4 can be rewritten for a bi-solute batch adsorption system as:

$$
\begin{align*}
& C_{1,0}-q_{1} C_{c}-\frac{q_{1}}{q_{1}+q_{2}}\left[\frac{n_{1} q_{1}+n_{2} q_{2}}{n_{1} K_{1}}\right]^{n_{1}}=0 \tag{A.7}\\
& C_{2,0}-q_{2} C_{c}-\frac{q_{2}}{q_{1}+q_{2}}\left[\frac{n_{1} q_{1}+n_{2} q_{2}}{n_{2} K_{2}}\right]^{n_{2}}=0 \tag{A.8}
\end{align*}
$$

A method by Najam et al. (1991) groups all of the background organic matter (BOM) into a hypothetical compound called the equivalent background compound (EBC) so that a complex organic system can now be modeled as the bi-solute system described above. While the initial concentration and Freundlich parameters for the EBC are unknown they may be determined by the following procedure:

1. Determine Freundlich parameters, K_{1} and $1 / n_{1}$, for the target compound. by performing a single-solute isotherm (i.e., a MIB isotherm in organic-free water);
2. Collect isotherm data, q_{1} versus C_{c}, for the target compound in natural water at two different initial concentrations that are low enough to observe competition;
3. Utilize the EBC program (Knappe et al., 1993; Matsui, 1994) to solve for the EBC Freundlich parameters $\left(K_{2}, 1 / n_{2}, C_{2.0}\right)$ (see Appendix D).

With the EBC Freundlich parameters determined, adsorbent capacity predictions for the target compound with any given initial concentration is possible. For these predictions we used a computer program of the IAST equations written by Qi (1992) and modified by Matsui (1994) (see Appendix D).

HOMOGENEOUS SURFACE DIFFUSION FOR A BATCH SYSTEM

The batch reactor adsorption of a target compound from natural water onto PAC may be described by a pseudo single-solute homogeneous surface diffusion model (HSDM). The basic assumptions made when applying the pseudo single-solute HSDM to this system are:

1. Intraparticle surface diffusion is the only rate limiting mechanism;
2. The surface diffusion coefficient is not a function of C_{c} or $C_{1.0}$ (i.e., BOM's effect on the adsorption rate of the target compound is constant).
3. Competitive effects are assumed to be fully accounted for by multi-solute equilibrium expressions (i.e., there are no multi-component diffusion interactions).

Figure 15. Adsorbate Transport Mechanisms Through an Activated Carbon Particle

This system of equations may be summarized as below:

$$
\begin{gathered}
\frac{\partial \mathrm{q}}{\partial \mathrm{t}}=\mathrm{D}_{\mathrm{s}}\left(\frac{\partial^{2} \mathrm{q}}{\partial \mathrm{r}^{2}}+\frac{2}{\mathrm{r}} \frac{\partial \mathrm{q}}{\partial \mathrm{r}}\right) \\
\text { at } \mathrm{t}=0,0 \leq \mathrm{r} \leq \mathrm{R}: \mathrm{q}=0 \\
\text { at } \mathrm{r}=0, \mathrm{t} \geq 0: \frac{\partial \mathrm{q}}{\partial \mathrm{r}}=0 \\
\text { at } \mathrm{t} \geq 0: \frac{d C_{1}}{d t}=\frac{3 C_{c}}{R^{3}} \frac{\partial}{\partial \mathrm{t}} \int_{0}^{R} \mathrm{qr}^{2} \mathrm{dr} \\
\text { at } \mathrm{t} \geq 0, \mathrm{r}=\mathrm{R}: C_{s}=C_{t} \\
\text { at } t=0: C_{t}=C_{t, 0} \\
127
\end{gathered}
$$

where, $\quad D_{s}=$ surface diffusion coefficient;
$r=$ radial distance;
$\mathrm{t}=$ time;
$\mathrm{R}=$ particle radius;
$C_{1}=$ bulk liquid phase concentration of the target compound;
$C s=$ liquid phase concentration at the external surface of the particle.
D_{s} was determined by a fit to the batch kinetic data, by a computer search program, "SEARCH" (see Appendix D). The search program consisted of the LevenbergMarquardt unconstrained optimization algorithm and the numerical solution of the HSDM (International, 1991; Matsui, 1994).

In order to solve this system of equations, a relationship between the liquid phase concentration, C_{s}, and the solid phase concentration at the external surface, q_{s}, was needed. Equation A. 15 was used for this purpose:

$$
\begin{equation*}
q_{s}=K\left(C_{1,0}, C_{c}\right) C_{s}^{1 / n} \tag{A.15}
\end{equation*}
$$

where, $K\left(C_{1.0}, C_{c}\right)=$ the capacity parameter which is a function of initial concentration, $\mathrm{C}_{1.0}$, and carbon dose, C_{c};
1/n $\quad=\quad$ assumed to be the single-solute Freundlich constant.
$K\left(C_{1.0}, C_{c}\right)$ was determined by:

1. Determining the Freundlich parameters for the EBC with respect to the target compound, as outlined in the previous section;
2. Finding the solid and liquid phase concentrations of the target compound at equilibrium by the IAST. This is dependent on the carbon dose, initial concentration, and Freundlich parameters of both the target compound and EBC;
3. Calculating $K\left(C_{1.0}, C_{c}\right)$ using equation $A .15$ and the solid and liquid phase concentrations determined in Step 2.

Once $K\left(C_{1.0}, C_{c}\right), 1 / n, D_{s}$ and k_{f} have been determined, the "HSDM" program can be used to solve for the liquid phase concentration for plug flow systems (Traegner and Suidan, 1988) (see Appendix D).

For applications where it is desired to model the system as a CSTR (e.g., rapid mix, flocculation basin), the single-solute HSDM assumptions previously used, can be incorporated into the mass balance of a CSTR. Additional assumptions including a nonrate limiting film mass transfer and an exponential age distribution of PAC in the reactor allow for the resulting equation:

$$
\begin{equation*}
C_{i n}-C_{e f f}-C_{c} K\left(C_{i n}, C_{c}\right) C_{e f f}^{\text {L/f }}\left[1-\frac{6}{\pi^{2}} \sum_{i=1}^{\infty} \frac{1}{i^{2}} \frac{1}{1+i^{2} \pi^{2} \frac{D_{s}}{R^{2}} \tau}\right]=0 \tag{A.16}
\end{equation*}
$$

where, $C_{\text {in }}=$ influent concentration;
$\mathrm{C}_{\text {eff }}=$ effluent concentration;
$\mathrm{K}\left(\mathrm{C}_{\mathrm{in}}, \mathrm{C}_{\mathrm{c}}\right)=$ capacity parameter as a function of the influent concentration, C_{i}, and the carbon concentration, C_{c}. This is equivalent to $\mathrm{K}\left(\mathrm{C}_{1.0}, \mathrm{C}_{\mathrm{c}}\right)$ as previously described;
$t \quad=$ average PAC residence time.
$\tau \quad=$ hydraulic retention time of CSTR

This non-linear equation is solved in the computer program "CSTR" written by Traegner and Suidan (1991) (see Appendix D).

ADSORPTION THROUGH A GRANULAR ACTIVATED CARBON BED

Adsorption through a bed of GAC has also been modeled using the pseudo single-solute HSDM. The fundamental nondimensional equations for a fixed bed, assuming negligible longitudinal dispersion, are (Knappe, 1996; Smith 1991; Crittenden et al., 1986):

Liquid-Phase (Smith 1991)

$$
\begin{align*}
& \frac{\partial \bar{c}(\bar{z}, \bar{t})}{\partial \bar{t}}=-\frac{D_{\mathrm{g}}}{\varepsilon} \frac{\partial \bar{c}(\overline{\mathrm{z}}, \overline{\mathrm{t}})}{\partial \overline{\mathrm{z}}}-\mathrm{D}_{\mathrm{g}} \frac{\partial \overline{\mathrm{q}}_{\mathrm{avg}}(\overline{\mathrm{z}}, \overline{\mathrm{t}})}{\partial \overline{\mathrm{t}}} \tag{A.17}\\
& \text { at } \overline{\mathrm{z}}=0, \overline{\mathrm{c}}(\overline{\mathrm{z}}, \overline{\mathrm{t}})=\mathrm{c}_{\mathrm{o}}(\mathrm{t}) \tag{A.18}\\
& \text { at } \overline{\mathrm{t}}=0, \overline{\mathrm{c}}(\overline{\mathrm{z}}, \overline{\mathrm{t}})=0 \tag{A.19}
\end{align*}
$$

where, $\overline{\mathbf{c}}(\overline{\mathrm{z}}, \overline{\mathrm{t}})=$ nondimensional liquid-phase MIB concentration: $\mathrm{c}(\mathrm{z}, \mathrm{t}) / \mathrm{c}_{0}$:
$\overline{\mathbf{z}} \quad=\quad$ dimensionless axial distance;
$\overline{\mathbf{t}} \quad=\quad$ dimensionless time: $\mathrm{t}\left(\tau \mathrm{D}_{\mathrm{g}}\right)$;
$\mathrm{c}_{0}(\mathrm{t})=$ influent concentration;
$\mathrm{D}_{\mathrm{g}} \quad=\quad \mathrm{MIB}$ distribution parameter: $\mathrm{Mq}_{\mathrm{e}} / \mathrm{V} \mathrm{\varepsilon} \mathrm{C}_{\mathrm{o}} ;[\mathrm{M}=(1-\varepsilon) \mathrm{V} \rho]$ $\overline{\mathrm{q}}_{\text {avg }}(\overline{\mathrm{z}}, \overline{\mathrm{t}})=$ average MIB concentration within the GAC particles evaluated at the bed step:

$$
\begin{equation*}
\overline{\mathrm{q}}_{\text {avg }}(\overline{\mathrm{z}}, \overline{\mathrm{t}})=3 \int \overline{\mathrm{q}}(\overline{\mathrm{r}}, \overline{\mathrm{z}}, \overline{\mathrm{t}}) \overline{\mathrm{r}}^{2} \mathrm{~d} \overline{\mathrm{r}} \tag{A.20}
\end{equation*}
$$

where, $\bar{q}(\bar{r}, \bar{z}, \overline{\mathbf{t}})=$ solid-phase concentration of solute as a function of dimensionless radial distance from the center of GAC particle, $\overline{\mathrm{r}}$, length and time.

Solid-Phase (Smith 1991)

$$
\begin{gathered}
\frac{\partial \overline{\mathrm{q}}(\overline{\mathrm{r}}, \overline{\mathrm{z}}, \overline{\mathrm{t}})}{\partial \overline{\mathrm{t}}}=\frac{2 \mathrm{E}_{\mathrm{d}}}{\overline{\mathrm{r}}} \frac{\partial \overline{\mathrm{q}}(\overline{\mathrm{r}}, \overline{\mathrm{z}}, \overline{\mathrm{t}})}{\partial \mathrm{r}}+\mathrm{E}_{\mathrm{d}} \frac{\partial^{2} \overline{\mathrm{q}}(\overline{\mathrm{r}}, \overline{\mathrm{z}}, \overline{\mathrm{t}})}{\partial \mathrm{r}^{2}} \\
\text { at } \overline{\mathrm{r}}=0, \frac{\partial \overline{\mathrm{q}}(\overline{\mathrm{r}}, \overline{\mathrm{z}}, \overline{\mathrm{t}})}{\partial \mathrm{r}}=0 \\
\text { at } \overline{\mathrm{r}}=1, \frac{\partial \overline{\mathrm{q}}(\overline{\mathrm{r}}, \overline{\mathrm{z}}, \overline{\mathrm{t}})}{\overline{\partial \mathrm{r}}}=\operatorname{Sh}\left[\overline{\mathrm{c}}(\overline{\mathrm{z}}, \overline{\mathrm{t}})-\overline{\mathrm{c}}_{\mathrm{s}}(\overline{\mathrm{z}}, \overline{\mathrm{t}})\right] \\
\operatorname{St}\left[\overline{\mathrm{c}}(\overline{\mathrm{z}}, \overline{\mathrm{t}})-\overline{\mathrm{c}}_{\mathrm{s}}(\overline{\mathrm{z}}, \overline{\mathrm{t}})\right]=\frac{\partial^{1}}{\partial \mathrm{t}} \int_{0}^{1} \overline{\mathrm{q}}(\overline{\mathrm{r}}, \overline{\mathrm{z}}, \overline{\mathrm{t}})^{2} \mathrm{~d} \overline{\mathrm{r}} \\
130
\end{gathered}
$$

$$
\begin{equation*}
\text { at } \overline{\mathrm{t}}=0, \overline{\mathrm{q}}(\overline{\mathrm{r}}, \overline{\mathrm{z}}, \overline{\mathrm{t}})=0 \tag{A.25}
\end{equation*}
$$

where, $E_{d}=$ surface diffusion modulus: $\frac{\mathrm{D}_{\mathrm{s}} \mathrm{D}_{\mathrm{g}} \tau}{\mathrm{R}^{2}}$;

$$
\begin{array}{ll}
\mathrm{Sh}= & \text { Sherwood number (ratio of film to surface diffusion): } \frac{\mathrm{k}_{\mathrm{f}} \mathrm{R}}{\mathrm{D}_{\mathrm{s}}} ; \\
\mathrm{St}= & \text { modified Stanton number (ratio of mass transport through the } \\
& \text { film to advection): } \frac{\mathrm{k}_{\mathrm{f}}}{\alpha \mathrm{R}}\left(\frac{1-\varepsilon}{\varepsilon}\right) ; \\
\tau= & \text { hydraulic retention time; } \\
\overline{\mathrm{c}}(\overline{\mathrm{z}}, \overline{\mathrm{t}})= & \text { bulk liquid-phase MIB concentration for a given bed step; } \\
\overline{\mathrm{c}}_{\mathrm{s}}(\overline{\mathrm{z}}, \overline{\mathrm{t}})= & \text { liquid-phase MIB concentration at the surface of the GAC } \\
\alpha & \text { particle for a given bed step; } \\
\alpha= & \text { mole fraction ratio of solid- to liquid-phase MIB }
\end{array}
$$

A similar system of equations are solved in the computer program "FS" written by Yuasa (1982) (see Appendix D).

Appendix B (Raw Data)

SINGLE-SOLUTE PAC ISOTHERM DATA IN MILLI-Q WATER

Watercarb $(\mathrm{mg} / \mathrm{L})$	MIB (ng/L)	HDB (mg/L)	MIB (ng/L)
8.3	3.7	495.8	609.1
3.9	12.2	464.2	641.7
2.0	37.4	417.5	718.8
0	149.11	387.5	743.1
0	149.29	343.3	877.7
		304.2	914.4
		268.3	1093.6
HDB (mg/L)	MIB (ng/L)	210.8	1159.3
43.8	2.3	152.5	1492.3
20.1	1.1	98.3	3213.7
10.2	2.2	55.8	8846.0
4.4	7.3	22.5	65698.0
2.2	14.8	0.0	365854.7
0	149.11	0.0	384502.9
0	149.29	0.0	373115.8

SINGLE-SOLUTE GAC ISOTHERM DATA IN MILLI-Q WATER

Virgin GAC (mg/L) MIB (ng/L)
20×25 25-day 125-day
$51.5 \quad 11.6 \quad 1.1$
$33.4 \quad 14.1 \quad 2.5$
$\begin{array}{lll}15.7 & 27.7 & 8.9\end{array}$
$\begin{array}{lll}12.2 & 33.6 & 10.4\end{array}$
$\begin{array}{lll}7.5 & 39.4 & 11.6\end{array}$
$\begin{array}{lll}0.0 & 522.8 & 517.7\end{array}$

COMPETATIVE GAC ISOTHERM DATA IN CHICAGO CRIB WATER
Virgin GAC (mg/L) MIB (ng/L)
$20 \times 25 \quad 25$-day 125-day
$\begin{array}{lll}0.0 & 343.9 & 339.7\end{array}$
$\begin{array}{lll}2.1 & 282.0 & 262.4\end{array}$
$\begin{array}{lll}6.0 & 231.0 & 185.2\end{array}$
$\begin{array}{lll}7.5 & 247.4 & 185.6\end{array}$
$\begin{array}{lll}13.4 & 171.3 & 109.0\end{array}$
$\begin{array}{lll}18.9 & 96.6 & 49.5\end{array}$
$24.0 \quad 75.7 \quad 29.3$
$\begin{array}{lll}34.6 & 33.9 & 13.1\end{array}$

Hammond GAC (mg/L) 20×25	MIB (ng/L)		
25 -day	125 -day		
	0.0	343.9	339.7
3.6	324.57	325.1	
	6.0	315.78	276.7
	10.8	294.40	244.4
	15.8	268.41	212.6
	19.0	242.37	164.9
27.9	235.14	152.5	
	37.1	207.14	117.5

Michigan GAC (mg/L) MIB (ng/L)			
City	25-day 125-day		
$20 \times 25 \quad 0.0$	343.9339 .7		
2.3	334.7		
3.5	325.4247 .0		
4.8	325.4309 .5		
5.8	314.4284 .5		
9.2	$305.0 \quad 261.6$		
16.9	289.3218 .4		
36.2	234.5146 .7		
COMPETATIVE PAC ISOTHERM DATA IN CHICAGO CRIB WATER			
Watercarb (mg/L)	MIB (ng/L)	HDB (mg/L)	MIB (ng/L)
60.3	1.8	39.4	1.6
40.2	6.2	13.8	18.7
14.6	39.3	3.9	100.6
4.0	113.8	2.1	121.3
2.1	130.3	0	145.8
0	145.8	0	149.8
0	149.8	0	151.8
0	151.8		
		HDB (mg/L)	MIB (ng/L)
Watercarb (mg/L)	MIB (ng/L)	43.4	3.1
30.7	14.2	28.8	6.4
4.6	123.6	15.0	17.0
2.2	141.0	7.9	54.3
0.0	165.0	4.3	90.3
		1.9	124.2
		0.0	165.0
Watercarb (mg/L)	MIB (ng/L)		
45.7	49.1		
32.4	134.0	WPH (mg/L)	MIB (ng/L)
9.9	677.3	43.3	0.9
4.1	1017.9	28.5	2.1
2.2	1143.1	15.3	6.3
0.0	1245.2	8.0	18.3
		4.0	45.2
		2.3	82.8
		0.0	165.0

COMPETATIVE PAC ISOTHERM DATA IN CHICAGO CRIB WATER

Watercarb (mg/L) MIB (ng / L)

$60.3 \quad 1.8$
$40.2 \quad 6.2$
14.6
39.3
4.0
113.8
2.1

0
0
0
151.8

Watercarb (mg/L) MIB (ng/L)

4.6
123.6
141.0
$0.0 \quad 165.0$

Watercarb (mg/L) MIB (ng/L)
45.7
32.4
9.9
677.3
4.1
2.2
1143.1
1245.2

WPH $(\mathrm{mg} / \mathrm{L})$	MIB (ng/L)
88.8	1.8
72.5	2.9
62.3	3.8
54.6	5.1
43.5	5.0
27.3	14.8
28.2	14.7
16.2	38.8
8.1	110.1
13.3	58.3
6.5	175.8
4.5	247.2
2.1	548.5
0.0	965.0

COMPETATIVE PAC ISOTHERM DATA IN KANKAKEE RIVER WATER

Hydrodarco-B (mg/L)MIB (ng/L)
$0.0 \quad 184.0$
2.1
5.2
8.8
11.2
16.7
20.3
25.1
31.1
170.3
149.7
118.8
107.0
74.6
60.5
46.1
33.8

Hydrodarco-B (mg/L)MIB (ng/L)
0.0
131.0
2.0
4.0
7.3
10.0
16.7
20.7
25.9
31.9
121.1
107.5
94.1
80.2
51.9
47.3
31.3
22.5

Hydrodarco-B (mg/L)MIB (ng/L)
$0.0 \quad 891.0$
$17.9 \quad 354.5$
$35.8 \quad 137.5$
54.6
57.1
74.2
27.4
98.1
12.1
$116.1 \quad 8.4$
132.3
6.1
$154.5 \quad 3.9$

WPH (mg/L) MIB (ng/L)
$0.0 \quad 134.4$
$2.2 \quad 90.8$
$3.9 \quad 65.6$
$7.6 \quad 33.1$
$9.8 \quad 24.9$
$14.1 \quad 14.9$

WPH $(\mathrm{mg} / \mathrm{L})$	$\mathrm{MIB}(\mathrm{ng} / \mathrm{L})$
0.0	891.3
10.8	155.8
14.0	96.6
19.9	53.0
21.3	38.9
25.6	27.9
33.3	14.9
38.4	10.7
45.2	6.4
64.9	3.1

BATCH KINETIC PAC DATA IN CHICAGO CRIB WATER

HDB $(\mathrm{mg} / \mathrm{L})$	Time (min)	$\mathrm{MIB}(\mathrm{ng} / \mathrm{L})$
0.00	0	174.5
11.54	15	103.7
11.54	30	90.5
11.54	45	85.7
11.54	60	77.7
11.54	90	69.1
11.54	120	65.4
11.54	180	60.5
11.54	240	57.9
23.08	240	0.0
3.85	240	125.3
34.62	0	
34.62	15	29.1
34.62	30	19.6
34.62	45	15.1
34.62	60	11.9
34.62	90	10.3
34.62	120	9.5
34.62	180	7.7
34.62	240	7.1

Watercarb $(\mathrm{mg} / \mathrm{L})$ Time (min)	MIB $(\mathrm{ng} / \mathrm{L})$	
11.54	0.00	175.1
11.54	0.00	174.2
11.54	1.42	159.9
11.54	4.08	148.2
11.54	7.08	144.6
11.54	13.52	130.3
11.54	16.37	133.9
11.54	30.00	126.3
11.54	45.00	114.6
11.54	59.50	119.5
11.54	90.00	109.8
11.54	120.00	103.9
11.54	186.12	99.6
11.54	240.00	98.4
0.00	240.00	173.0
3.85	240.00	143.1
23.08	240.00	46.7
34.62	0.00	166.4
34.62	0.00	172.9
34.62	2.05	113.2
34.62	4.47	98.8
34.62	7.18	86.9
34.62	12.60	72.9
34.62	17.47	62.0
34.62	28.33	49.9
34.62	44.38	38.3
34.62	58.20	35.3
34.62	89.72	26.5
34.62	124.50	25.4
34.62	183.00	16.4
34.62	235.53	14.3

Nuchar (mg/L) Time (min)	MIB (ng/L)	
9.0	0.00	175.09
9.0	2.00	145.95
9.0	4.25	137.58
9.0	6.53	124.06
9.0	8.77	118.41
9.0	10.90	114.44
9.0	13.62	112.42
9.0	28.67	96.72
9.0	43.17	91.00
9.0	61.02	81.33
9.0	89.92	75.71
9.0	120.10	75.97
9.0	180.90	65.79
9.0	240.00	61.62
24.0	0.00	172.70
24.0	0.00	174.59
24.0	1.50	103.47
24.0	3.50	88.49
24.0	5.30	73.61
24.0	9.37	62.65
24.0	11.40	55.22
24.0	14.48	50.96
24.0	28.48	35.76
24.0	46.55	28.09
24.0	60.00	22.71
24.0	93.70	19.91
24.0	118.97	26.87
24.0	186.00	16.68
24.0	240.00	14.27
0.0	240.00	177.60
0.0	240.00	175.46
3.0	240.00	125.96
18.0	240.00	25.14

WPH $(\mathrm{mg} / \mathrm{L})$	Time (min)	MIB (ng/L)
11.54	0.00	169.8
11.54	1.08	134.9
11.54	3.25	123.9
11.54	5.58	120.4
11.54	8.55	111.5
11.54	11.88	103.0
11.54	18.07	89.7
11.54	30.00	80.8
11.54	45.00	72.2
11.54	59.00	62.0
11.54	89.00	49.4
11.54	119.00	47.1
11.54	178.50	37.1
11.54	240.00	32.2
34.62	0.00	177.8
34.62	1.12	95.6
34.62	3.22	74.7
34.62	5.95	54.3
34.62	8.92	44.7
34.62	11.37	33.9
34.62	15.42	27.9
34.62	29.50	14.7
34.62	44.50	9.8
34.62	59.83	6.8
34.62	89.75	6.1
34.62	120.00	3.5
34.62	180.00	2.9
34.62	240.00	2.9
0.00	240.00	174.8
0.00	240.00	169.1
3.85	240.00	103.5
23.08	240.00	6.5

Cecarbon (mg/L) Time (min) MIB (ng/L)		
11.54	0.00	170.2
11.54	1.00	128.5
11.54	3.12	116.9
11.54	5.57	103.1
11.54	9.22	92.7
11.54	14.07	81.1
11.54	19.97	70.4
11.54	30.00	57.8
11.54	45.00	49.0
11.54	60.00	41.7
11.54	90.00	32.7
11.54	120.00	30.2
11.54	180.00	22.2
11.54	240.00	19.0
34.62	0.00	177.6
34.62	1.70	81.2
34.62	3.75	53.8
34.62	6.95	36.1
34.62	10.37	23.6
34.62	13.85	18.4
34.62	17.83	13.7
34.62	29.55	7.7
34.62	45.00	6.2
34.62	60.00	3.9
34.62	90.00	2.4
34.62	120.00	2.7
34.62	180.00	2.5
34.62	240.00	0.6
0.00	240.00	164.5
3.85	240.00	84.9
23.08	240.00	4.4

BATCH KINETIC PAC DATA WITH CHLORINE IN CHICAGO CRIB WATER

Hydrodarco- B ($11.5 \mathrm{mg} / \mathrm{L}$)
No Cl_{2} added
Time (min) MIB (ng/L)
$0.0 \quad 247.8$
$1.2 \quad 203.9$
$3.7 \quad 186.9$
$7.7 \quad 168.6$
$28.0 \quad 129.8$
$59.5 \quad 107.9$
$118.0 \quad 89.3$
$180.0 \quad 82.6$
$237.0 \quad 80.3$

Hydrodarco-B ($11.5 \mathrm{mg} / \mathrm{L}$)
$\mathrm{Cl}_{2}(3 \mathrm{mg} / \mathrm{L})$ added at $\mathrm{t}=0$
Time (min) MIB (ng/L)
$0.0 \quad 250.5$
$1.5 \quad 227.5$
$5.6 \quad 213.9$
$10.4 \quad 202.7$
$23.4 \quad 197.1$
$56.3 \quad 193.4$
$105.0 \quad 186.1$
$238.5 \quad 182.1$
$470.0 \quad 152.5$

Hydrodarco-B ($11.5 \mathrm{mg} / \mathrm{L}$)			Hydrodarco-B ($11.5 \mathrm{mg} / \mathrm{L}$)	
$\mathrm{Cl}_{2}(3 \mathrm{mg} / \mathrm{L})$ added at $\mathrm{t}=12$			pre- $\mathrm{Cl}_{2}(5 \mathrm{mg} / \mathrm{L})$ added	
Time (min)	MIB (ng/L)		dechlor after 24 hours	
0.0	255.4		then added	PAC ad MIB
1.6	193.6		Time (min)	MIB (ng/L)
4.0	175.5		0.0	246.3
8.4	154.8		1.5	192.9
13.4	159.2		4.1	180.2
15.6	162.5		10.0	155.2
21.7	168.5		35.0	123.6
30.3	164.2		65.0	107.3
44.5	159.0		122.5	87.8
66.3	157.6		160.0	84.0
117.2	149.9		230.0	82.3
254.5	138.1			
483.0	120.6			
		ial Cl_{2}	(ng / L) wit centrations	
	Hydrodarco-B	No Cl_{2}	($3 \mathrm{mg} / \mathrm{L}$) Cl^{2}	(mg/L)
	0	252.1	252.1	252.1
	3.8	183.5	223.0	232.6
	11.5	83.7	146.1	185.7
	23.1	29.4	47.6	
	26.9			83.4
	34.6	10.3	16.9	27.0
	42.6	4.0	4.0	

4-hour MIB concentration (ng/L) with varied initial Cl_{2} concentrations Hydrodarco- $\mathrm{B}(\mathrm{mg} / \mathrm{L})$ No $\mathrm{Cl}_{2} \mathrm{Cl}_{2}(3 \mathrm{mg} / \mathrm{L}) \mathrm{Cl}_{2}(5 \mathrm{mg} / \mathrm{L})$23.1 29.4 47.6

BATCH KINETIC PAC DATA WITH CHLORINE IN DEIONIZED-DISTILLED WATER

Hydrodarco-B (11.5 mg/L)	
No Cl $_{2}$ pre-reacted	
Time (min)	MIB $(\mathrm{ng} / \mathrm{L})$
0.0	244.5
3.0	109.0
3.6	72.1
10.0	36.4
30.0	17.8
66.0	14.3
120.2	13.2
244.5	7.5

Hydrodarco-B ($11.5 \mathrm{mg} / \mathrm{L}$)
$\mathrm{Cl}_{2}(1 \times 10 \mathrm{mg} / \mathrm{L})$ pre-reacted Time (min) MIB (ng/L)
0.0 255.4
1.7
251.8
6.8
248.9
19.3
245.9
$28.9 \quad 244.6$
$55.9 \quad 241.0$
$122.0 \quad 233.8$
$218.0 \quad 234.6$
Hydrodarco-B ($11.5 \mathrm{mg} / \mathrm{L}$)
Cl_{2} ($5 \times 2 \mathrm{mg} / \mathrm{L}$) pre-reacted
Time (min) $\quad \mathrm{MTB}(\mathrm{ng} / \mathrm{L})$
$0.0 \quad 255.4$
2.3
6.6
13.1
19.5
35.3
251.0
247.7
250.5
66.0
240.2
141.3
215.0
232.5
229.3

Hydrodarco-B ($11.5 \mathrm{mg} / \mathrm{L}$)
$\mathrm{Cl}_{2}(1 \times 5 \mathrm{mg} / \mathrm{L})$ pre-reacted
Time (min) MIB (ng/L)
$0.0 \quad 255.4$
$3.8 \quad 247.4$
$8.7 \quad 239.1$
$21.1 \quad 240.6$
$30.8 \quad 232.2$
$58.2 \quad 223.1$
$125.0 \quad 205.0$
$230.0 \quad 196.2$
Hydrodarco-B ($11.5 \mathrm{mg} / \mathrm{L}$)
$\mathrm{l}_{2}(2 \times 2.5 \mathrm{mg} / \mathrm{L})$ pre-reacted Time (min) MIB (ng/L)
$0.0 \quad 255.4$
$2.7 \quad 248.1$
$12.0 \quad 241.7$
$21.9 \quad 223.8$
$49.5 \quad 220.1$
$116.5 \quad 211.2$
$211.0 \quad 185.7$
Hydrodarco-B ($11.5 \mathrm{mg} / \mathrm{L}$)
$\mathrm{Cl}_{2}(5 \times 1 \mathrm{mg} / \mathrm{L})$ pre-reacted
Time (min) MIB (ng/L)
$0.0 \quad 255.4$
$4.6 \quad 241.3$
$13.7 \quad 241.7$
$24.3 \quad 235.1$
$51.7 \quad 226.8$
$119.0 \quad 207.3$
$214.0 \quad 192.6$

2-DAY PERCENT MIB BREAKTHROUGH IN CHICAGO CRIB WATER FOR LABORATORY- AND PILOT-SCALE GAC COLUMNS

	2.26 min EBCT			4.36 min EBCT	
	Years in Service Ceff/Cinf		Years in Service Ceff/Cinf		

2-DAY PERCENT MIB BREAKTHROUGH FOR A CONTINUOUSLY OPERATED DEIONIZED-DISTILLED WATER LABORATORY-SCALE GAC COLUMN (50 NG/L 2-DAY PULSES; 3.3 MIN EBCT)

Bed Vol	Ceff/Cinf
4962	0.080
8174	0.088
13876	0.082
18079	0.090

2-DAY PERCENT MIB BREAKTHROUGH IN CHICAGO CRIB WATER FOR DIFFERENT GAC BED DIMENSIONS (1 YEAR PRELOAD)

Col Dia	Bed Depth (cm)	EBCT (cm)	Ceff/Cinf (min)
l	0.88	2.35	0.67
	0.88	3.50	0.56
	0.84	2.29	0.64
	1.15	3.13	0.57
	3.3	8.69	0.22
	3.3	13.15	0.10
	3.3	2.59	0.63
2.5	1.9	13.56	0.13
	1.9	7.49	0.29
	1.9	4.51	0.45

2-DAY PERCENT MIB BREAKTHROUGH IN CHICAGO CRIB WATER FOR DIFFERENT GAC PARTICLE SIZE FRACTIONS (2 YEAR PRELOAD)

GAC size	EBCT	Ceff/Cinf
12×14	4.3	0.47
	2.7	0.62
	2.0	0.77
Unsieved	4.3	0.53
	2.9	0.65
	2.0	0.78

2-DAY PERCENT MIB BREAKTHROUGH IN CHICAGO CRIB WATER FOR GAC PREREACTED WITH FREE CHLORINE

Cl2:GAC	Ceff/Cinf
$0: 1$	0.19
$0.15: 1$	0.36
$0.3: 1$	0.59

EFFLUENT MIB CONCENTRATION FROM A GAC COLUMN WITH A VARIABLE INFLUENT MIB CONCENTRATION IN CHICAGO CRIB WATER (1 YEAR PRELOAD; 2.3 MIN EBCT)

$\operatorname{Cinf}(\mathrm{ng} / \mathrm{L})$	Time	Bed Vol	I MIB (ng/L)	24.7	5/6/98 9:24	1225.3	27.1
51.2	5/4/98 10:40	0.0	0.0		5/6/98 9:32	1228.8	26.6
	5/4/98 10:48	3.5	0.7		5/6/98 9:40	1232.4	23.5
	5/4/98 10:56	7.0	1.7		5/6/98 9:44	1234.1	25.2
	5/4/98 11:04	10.6	1.6		5/6/98 9:56	1239.4	23.5
	5/4/98 11:12	14.1	10.7		5/6/98 10:04	1242.9	21.4
	5/4/98 11:20	17.6	17.4		5/6/98 10:12	1246.4	23.5
	5/4/98 11:28	21.1	18.8		5/6/98 11:11	1272.4	19.8
	5/4/98 11:36	24.6	19.0		5/6/98 12:00	1294.0	19.2
	5/4/98 11:44	28.1	18.0		5/6/98 13:00	1320.4	17.9
	5/4/98 11:52	31.7	19.5		5/6/98 15:30	1386.4	18.5
	5/4/98 12:37	51.4	20.0		5/6/98 16:45	1419.4	18.5
	5/4/98 14:30	101.1	24.3		5/6/98 20:20	1514.0	17.0
	5/4/98 16:30	153.9	25.5		5/7/98 5:00	1742.8	17.2
	5/4/98 18:00	193.5	24.5		5/7/98 6:20	1778.0	17.5
	5/4/98 21:00	272.6	26.6		5/7/98 7:00	1795.6	18.0
	5/5/98 4:00	457.3	28.8		5/7/98 8:30	1835.3	17.6
	5/5/98 8:00	562.7	30.2		5/7/98 9:30	1861.7	18.2
	5/5/98 9:00	589.1	31.7		5/7/98 11:00	1901.3	18.3
	5/5/98 10:00	615.4	30.8		5/7/98 12:15	1934.4	18.5
	5/5/98 11:20	650.5	30.7		5/7/98 15:30	2020.3	17.6
	5/5/98 12:00	668.1	30.1		5/7/98 17:30	2073.1	18.9
	5/5/98 15:00	747.2	29.7		5/7/98 23:30	2231.7	18.5
	5/5/98 16:30	786.7	30.9		5/8/98 7:00	2429.9	18.4
	5/5/98 17:30	813.1	33.0		5/8/98 8:20	2464.9	18.9
	5/5/98 22:30	944.8	32.2		5/8/98 8:30	2469.2	17.9
	5/6/98 3:30	1076.6	34.0		5/8/98 9:13	2488.0	18.9
	5/6/98 7:00	1164.5	34.3				
	5/6/98 7:05	1166.6	34.4				
	5/6/98 7:30	1177.1	32.6				
	5/6/98 8:10	1193.8	34.2				
	5/6/98 8:20	1198.0	32.8				
	5/6/98 9:00	1214.8	32.5				
	5/6/98 9:16	1221.8	33.0				

100.3	5/8/98 9:21	2491.5	20.8
	5/8/98 9:29	2495.1	30.0
	5/8/98 9:37	2498.6	40.2
	5/8/98 9:45	2502.1	44.7
	5/8/98 9:53	2505.6	48.9
	5/8/98 10:37	2524.9	54.8
	5/8/98 11:30	2548.2	53.5
	5/8/98 13:30	2601.0	61.4
	5/8/98 14:20	2622.9	60.9
	5/8/98 15:00	2640.5	56.8
	5/8/98 16:00	2666.9	60.7
	5/8/98 22:30	2838.2	64.5
	5/9/98 8:30	3101.9	66.3
	5/9/98 9:40	3132.6	67.5
	5/9/98 11:00	3167.8	66.4
	5/9/98 12:10	3198.6	63.2
	5/9/98 14:30	3260.1	67.8
	5/10/98 0:00	3510.8	67.1
	5/10/98 10:00	3774.3	70.1
	5/10/98 10:45	3794.1	67.2
	5/10/98 11:00	3800.7	67.7
	5/10/98 12:00	3827.0	67.8
	5/10/98 12:08	3830.5	66.0

EFFLUENT MIB CONCENTRATION FROM A GAC COLUMN WITH A VARIABLE INFLUENT MIB CONCENTRATION $\mathbb{I N}$ CHICAGO CRIB WATER (1 YEAR PRELOAD; 3.1 MIN EBCT)

$\begin{gathered} \inf (n g / L) \\ 25.1 \end{gathered}$	Time	Bed Vol MIB (ng / L)			6/3/98 9:20	840.2	13.2
	6/1/98 13:26	0.0	0.0		6/3/98 10:00	852.9	13.7
	6/1/98 13:30	1.3	3.6		6/3/98 10:30	862.5	13.4
	6/1/98 13:38	3.8	2.3		6/3/98 12:30	900.8	13.0
	6/1/98 13:46	6.4	2.2		6/3/98 13:26	918.6	14.7
	6/1/98 13:54	8.9	2.3		6/3/98 13:34	921.2	14.6
	6/1/98 14:02	11.5	3.5	51.2	6/3/98 13:42	923.7	16.2
	6/1/98 14:10	14.0	4.3		6/3/98 13:50	926.3	18.4
	6/1/98 16:00	49.1	8.3		6/3/98 13:58	928.9	19.1
	6/1/98 16:08	51.7	9.1		6/3/98 15:45	963.0	21.4
	6/1/98 16:30	58.7	6.8		6/3/98 15:53	965.5	22.5
	6/1/98 17:00	68.3	9.0		6/3/98 16:01	968.1	22.6
	6/1/98 23:52	199.7	10.5		6/3/98 16:45	982.1	21.4
	6/2/98 0:00	202.2	9.3		6/3/98 18:00	1006.0	23.4
	6/2/98 0:30	211.8	11.0		6/3/98 20:00	1044.3	24.3
	6/2/98 1:00	221.4	14.1		6/4/98 0:15	1125.7	24.5
	6/2/98 8:30	364.9	10.2		6/4/98 1:00	1140.0	23.9
	6/2/98 9:30	384.0	11.1		6/4/98 2:00	1159.2	24.5
	6/2/98 10:00	393.6	11.3		6/4/98 8:45	1288.4	25.8
	6/2/98 12:30	441.5	11.5		6/4/98 10:00	1312.3	26.3
	6/2/98 13:50	467.0	11.0		6/4/98 15:20	1414.4	25.2
	6/2/98 14:30	479.7	12.1		6/4/98 15:45	1422.4	25.7
	6/2/98 15:00	489.3	12.6		6/4/98 17:30	1455.9	26.6
	6/2/98 16:00	508.4	12.5		6/4/98 18:30	1475.0	24.4
	6/2/98 16:30	518.0	12.7		6/4/98 23:30	1570.8	26.6
	6/2/98 22:45	637.6	11.6		6/4/98 23:38	1573.3	27.4
	6/2/98 23:00	642.4	11.8		6/5/98 0:30	1589.9	25.5
	6/2/98 23:30	652.0	13.5		6/5/98 7:30	1723.9	26.0
	6/3/98 0:30	671.1	13.4		6/5/98 9:30	1762.2	28.1
	6/3/98 0:45	675.9	12.0		6/5/98 10:30	1781.4	26.6
	6/3/98 1:00	680.7	12.5		6/5/98 12:00	1810.2	27.2
	6/3/98 8:30	824.2	12.4		6/5/98 12:15	1815.0	26.7
	6/3/98 8:38	826.8	12.6		6/5/98 12:30	1819.8	26.1
	6/3/98 8:50	830.6	13.9		6/5/98 13:26	1837.7	28.9

100.5 6/5/98 13:34 1840.2 32.2
6/5/98 13:42 1842.8 35.9
6/5/98 13:50 1845.4 39.7
6/5/98 13:58 1847.9 42.3
6/5/98 15:45 1882.0 44.0
6/5/98 15:53 1884.6 44.4
6/5/98 16:01 1887.1 44.6
6/5/98 16:45 1901.2 46.3
6/5/98 18:00 1925.1 48.0
6/5/98 20:00 1963.4 49.7
6/6/98 0:15 2044.7 55.7
6/6/98 1:00 2059.1 52.5
6/6/98 2:00 2078.2 48.5
6/6/98 8:45 2207.4 53.6
6/6/98 10:00 2231.3 53.3
6/6/98 12:00 2269.6 53.9
6/6/98 15:20 2333.4 56.4
6/6/98 15:45 2341.4 54.4
6/6/98 17:30 2374.8 55.1
6/6/98 18:30 2394.0 54.9
6/6/98 23:30 2489.7 55.5
6/6/98 23:38 2492.2 55.4
6/7/98 4:30 2585.4 55.8
6/7/98 7:30 2642.8 56.3
6/7/98 9:30 2681.1 55.7
6/7/98 10:30 2700.2 57.0
6/7/98 13:00 2748.0 55.6
6/7/98 14:00 2767.2 47.7
6/7/98 15:00 2786.3 56.5
6/7/98 16:00 2805.5 55.8
6/7/98 16:40 2818.2 57.2

SBA	ime (min)	IB (ng / L)		285.0	45.1
	0.2	2.0		285.3	45.4
Virgin	0.5	2.8		315.0	51.1
30x40	0.8	2.2		315.3	47.8
(596.8 mg)	1.2	2.8		345.0	53.8
	1.5	5.3		345.3	49.5
Flow rate	1.8	7.6		375.0	53.4
$7.76 \mathrm{~mL} / \mathrm{min}$	2.2	9.9		375.3	52.9
	2.5	13.2		405.0	55.4
Cinf	2.8	10.6		405.3	52.5
$110.2 \mathrm{ng} / \mathrm{L}$	3.2	12.0		435.0	52.2
	3.5	13.3		435.3	54.6
	3.8	12.9		465.0	55.9
	4.2	11.5		465.3	52.5
	4.5	11.8		495.0	55.0
	4.8	15.1		495.3	54.2
	10.0	15.8		525.0	55.5
	20.0	16.5		525.3	58.6
	30.0	21.9		555.0	59.2
	40.0	21.9		555.3	55.2
	50.0	24.5		585.0	59.6
	60.0	25.4		585.3	57.6
	75.0	27.1		595.0	61.6
	75.3	28.5		595.3	60.3
	90.0	31.3	Batch		
	90.3	30.2			219.8
	105.0	32.1		5.0	214.8
	105.3	33.1	Virgin	15.0	214.8
	120.0	32.9	(268.5 mg)	29.9	198.0
	120.3	33.8		29.9 44.8	198.0
	145.0	37.0		63.8	188.5
	145.3	38.0	$219.8 \mathrm{ng} / \mathrm{L}$	63.7	181.6
	210.0	42.4		123.5	164.5
	210.3	43.7		178.0	15.7
	240.0	45.3		235.0	140.7
	240.3	44.8		295.0	131.5
	270.0	45.3		360.0	121.8
	270.3	46.0		441.0	117.2
				515.0	106.5

SBA	ime (min)	IB (ng / L)
	0.0	0.9
Virgin	5.0	3.9
20×25	10.0	4.0
(501.7 mg)	15.0	2.1
	20.0	2.2
Flow rate	25.0	6.0
. $28 \mathrm{~mL} / \mathrm{min}$	30.0	3.0
	35.0	4.3
Cinf	40.0	5.6
$53.3 \mathrm{ng} / \mathrm{L}$	45.0	4.7
	50.0	7.0
	55.0	6.2
	60.0	7.4
	65.0	6.6
	73.0	6.0
	80.0	6.9
	85.0	6.2
	90.0	5.2
	270.0	7.7
	342.0	8.8
	462.0	8.8
	707.0	9.4
	952.0	8.5
	959.0	9.7
	964.0	8.6
	1062.0	8.9
	1187.0	9.7
	1427.0	8.1
	1507.0	9.3
	1795.0	8.2
	1800.0	8.6
	1842.0	10.7
	2174.0	9.6
	2534.0	8.8
	2539.0	10.2
	2546.0	10.1
	2683.0	8.0
	2688.0	9.9
	3027.0	9.7
	3032.0	8.0
	3086.0	8.4
	3091.0	8.7

MIB SINGLE-SOLUTE FREUNDLICH PARAMETERS FROM GAC ISOTHERMS

25 day
GAC $K(\mathrm{ng} / \mathrm{mg})(\mathrm{L} / \mathrm{ng})^{\wedge}(\mathrm{l} / \mathrm{n})$ $1 / \mathrm{n}$ Virgin 2.8072 0.8228 Hammond -1 yr 0.23118 0.5365 Michigan City -2 yr 0.0099 1.0352 125 day GAC K (ng/mg)(L/ng) $(\mathrm{l} / \mathrm{n})$ $1 / \mathrm{n}$ Virgin 8.7383 0.7459 Hammond -1 yr 0.4126 0.6471 Michigan City -2 yr 0.4602 0.5882 $.$\begin{tabular}{l}
\end{tabular} |

EBC SINGLE-SOLUTE FREUNDLICH PARAMETERS FROM GAC ISOTHERMS

Based on 125 day

EBC	Virgin	1 yr	2 yr
$\mathrm{K}(\mathrm{mg} / \mathrm{g})(\mathrm{L} / \mathrm{ug})^{\wedge}(1 / \mathrm{n})$	23.48857	0.11181225	0.005322366
l / n	0.01710	0.7963007	0.84143995
$\mathrm{Co}(\mathrm{ug} / \mathrm{L})$	0.45270	6.9036	78.920173
$\mathrm{~K}(\mathrm{mmol} / \mathrm{g})(\mathrm{L} / \mathrm{umol})^{\wedge}(1 / \mathrm{q}$	0.026433217	0.027377355	0.001780019
l / n	0.01710	0.79630	0.84144
$\mathrm{Co}(\mathrm{umol} / \mathrm{L})$	0.000452697	0.0069036	0.078920173

Based on 25 day	
EBC	Virgin
$\mathrm{K}(\mathrm{mg} / \mathrm{g})(\mathrm{L} / \mathrm{ug})^{\wedge}(\mathrm{l} / \mathrm{n})$	0.01495
l / n	0.00664
$\mathrm{Co}(\mathrm{ug} / \mathrm{L})$	0.10589
$\mathrm{~K}(\mathrm{mmol} / \mathrm{g})(\mathrm{L} / \mathrm{umol})^{\wedge}(\mathrm{l} / \mathrm{q}$	$1.56544 \mathrm{E}-05$
l / n	0.00664
$\mathrm{Co}(\mathrm{umol} / \mathrm{L})$	0.000105886

IAST	$\mathrm{Cc}(\mathrm{mg})$	$\mathrm{Ce}(\mathrm{ng} / \mathrm{L})$	$q \mathrm{qe}(\mathrm{ng} / \mathrm{mg})$	$(\mathrm{ng} / \mathrm{mg})(\mathrm{L} / \mathrm{ng})^{\wedge}(\mathrm{l} / \mathrm{n})$	$(\mathrm{mg} / \mathrm{g})(\mathrm{L} / \mathrm{ug})^{\wedge}(\mathrm{l} / \mathrm{n})$
Virgin - 125	0	53.29	0.37	0.0191	0.00330
	501.7	0.29	0.11	0.2769	0.04787
Virgin - 25	0	53.29	0.53	0.0201	0.00592
	501.7	1.32	0.1	0.0796	0.02340
1 yr -125	0	51.67	1.56	0.1215	0.01061
	356.3	0.80	0.14	0.1617	0.01413
$1 \mathrm{yr}-125$	0	25.09	0.76	0.0944	0.00825
	356.3	0.38	0.07	0.1309	0.01144
$1 \mathrm{yr}-125$	0	100.47	3.01	0.1524	0.01332
	356.3	1.61	0.28	0.2057	0.01797
$2 \mathrm{yr}-125$	0	51.67	1.98	0.1945	0.01131
	419.5	1.82	0.12	0.0844	0.00491

PHYSICAL CHARACTERISTICS OF GACs USED

Hg Porisimitry	keletal Density $(\mathrm{g} / \mathrm{mL}$	article Porosity	Particle Density
Virgin	1.3004	0.3916	0.79116336
1 yr	1.5886	0.3814	0.98270796
2 yr	1.5492	0.3947	0.93773076
He Pycnometry	keletal Density $(\mathrm{g} / \mathrm{mL})$		
Virgin	2.012		
1 yr	1.66516		
2 yr	1.7271		

COMPARISON OF CARBON BRANDS IN HOPE VALLEY RESERVOIR WATER (DATA PROVIDED BY GAYLE NEWCOMBE)

Activated Carbon Brand \quad(13.3 mg/L) Cecarbon	$\mathrm{Ce}(\mathrm{ng} / \mathrm{L})$ $[\mathrm{Co}=98 \mathrm{ng} / \mathrm{L}]$	$\mathrm{Ce}(\mathrm{ng} / \mathrm{L})$ $[\mathrm{Co}=39 \mathrm{ng} / \mathrm{L}]$
Calgon WPL	50	19
Australian Prototype	25	9
ASTM M325 from Haycarb	22	7
Picatif PCO	34	15
picazine	38	12
Nuchar SA, Westvaco	76	27
Norit W20	54	18
Calgon F400	83	34
Hydrodarco	18	6
	67	24

EFFECT OF INTTIAL CONCENTRATION IN MYPONGA RESEVOIR WATER (DATA PROVIDED BY GAYLE NEWCOMBE)

P1100
MIB
($13.3 \mathrm{mg} / \mathrm{L}$) $\mathrm{Co}(\mathrm{ng} / \mathrm{L}) \mathrm{Ce}(\mathrm{ng} / \mathrm{L})$
$45.0 \quad 10.8$
$205.0 \quad 32.8$
$971.0 \quad 174.8$
1925.0442 .8
1679.0284
$3366.8 \quad 590$
$5196.4 \quad 972$
$8406.0 \quad 1576$
10021.32020
$10780.3 \quad 2450$
13370.13000
16299.43850
25763.85300
$33120.0 \quad 6800$
43997.212400
65999.519650
99013.025818

P1300
MIB
($13.3 \mathrm{mg} / \mathrm{L}$) $\mathrm{Co}(\mathrm{ng} / \mathrm{L}) \mathrm{Ce}(\mathrm{ng} / \mathrm{L})$
$45.0 \quad 3.2$
$206.0 \quad 16.5$
$970.0 \quad 77.6$
$1917.0 \quad 172.5$
$3163.9 \quad 295$
$4572.4 \quad 506$
$6330.3 \quad 632$
7743.2900
$10908.9 \quad 1210$
14333.71200
$18586.9 \quad 1650$
$22824.3 \quad 2400$
$33125.9 \quad 2700$
40482.23700
47841.24400
$44008.8 \quad 5700$
$66006.6 \quad 8550$
88009.611300
$139722.2 \quad 17400$
177829.824200

GREELEY AND HANSEN PILOT STUDY MIB DATA

MIB Concentration (ng/L)					
Started 6/20/96 Raw Virgin 1 yr old 2 yr old EBCT (min)					
7/1/96					4.36
$7 / 3 / 96$					4.36
$7 / 8 / 96$					3.27
$7 / 10 / 96$					3.27
$7 / 15 / 96$	8.6		7.5	5.1	2.62
$7 / 17 / 96$	7.0				2.62
$7 / 22 / 96$	8.3		9.7	6.8	4.36
$7 / 24 / 96$	12.0		8.7	8.8	4.36
$7 / 29 / 96$	12.0		6.1	8.8	3.27
$7 / 31 / 96$	17.0		5.3	6.6	3.27
$8 / 5 / 96$			10.0	15.0	2.62
$8 / 7 / 96$	14.0	5.3	5.8	8.3	2.62
$8 / 12 / 96$	42.0		17.0	21.0	4.36
$8 / 14 / 96$	52.0	7.1	22.0	26.0	4.36
$8 / 19 / 96$	27.0	10.0	24.0	26.0	3.27
$8 / 21 / 96$	29.0	7.9	19.0	18.0	3.27
$8 / 26 / 96$	16.0	9.8	18.0	15.0	2.62
$8 / 28 / 96$	13.0	8.5	11.0	11.0	2.62
$9 / 3 / 96$	31.0	6.5	21.0	22.0	4.36
$9 / 4 / 96$	64.0	7.4	19.0	26.0	4.36
$9 / 9 / 96$	26.0	6.1	17.0	15.0	3.27
$9 / 11 / 96$	38.0	17.0	28.0	31.0	3.27
$9 / 16 / 96$	28.0	15.0	24.0	29.0	2.62
$9 / 18 / 96$	19.0	27.0	27.0	24.0	2.62

Appendix C (Input/Output Files)

EBC OUTPUT FILES

Watercarb PAC

PARAMETER \# $\quad 1=\mathrm{K}$; IG: 100.000000000000000
PARAMETER \# $\quad 2=1 / \mathrm{n}$; IG: 1.000000000000000
PARAMETER \# $3=$ Co ; IG: 10000.000000000000000
310

EBC
$\mathrm{K}=.33178046 \mathrm{E}+04(\mathrm{mg} / \mathrm{g})(\mathrm{ug} / \mathrm{L})^{\wedge}-\mathrm{l} / \mathrm{n}$
$1 / \mathrm{n}=.49304968 \mathrm{E}+00$
$\mathrm{C} 0=.34048691 \mathrm{E}+02 \mathrm{ug} / \mathrm{L}$
$\mathrm{MW}=.10000000 \mathrm{E}+04 \mathrm{~g} / \mathrm{mol}$
TARGET COMPOUND
$\mathrm{K}=.28652000 \mathrm{E}+00(\mathrm{mg} / \mathrm{g})(\mathrm{ug} / \mathrm{L})^{\wedge}-1 / \mathrm{n}$
$1 / \mathrm{n}=.49220000 \mathrm{E}+00$
$\mathrm{C} 0=.15000000 \mathrm{E}+00 \mathrm{ug} / \mathrm{L}$
$\mathrm{C} 0=.12452000 \mathrm{E}+01 \mathrm{ug} / \mathrm{L}$
$\mathrm{MW}=.16800000 \mathrm{E}+03 \mathrm{~g} / \mathrm{mol}$
h2o-lo.dat $\mathrm{Co}=149.1 \mathrm{ng} / \mathrm{L}$
h2o-hi.dat $\mathrm{Co}=1245.2 \mathrm{ng} / \mathrm{L}$
no, Q-obs Q-cal C-obs C-cal AC-dose
$\mathrm{Q}(\mathrm{l})=.2458 \mathrm{E}-02.2441 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .1800 \mathrm{E}-02.2787 \mathrm{E}-02 \mathrm{ug} / \mathrm{l} .6030 \mathrm{E}+02 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}(2)=.3577 \mathrm{E}-02.3577 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .6200 \mathrm{E}-02.6200 \mathrm{E}-02 \mathrm{ug} / \mathrm{l} .4020 \mathrm{E}+02 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}(3)=.7582 \mathrm{E}-02.7692 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .3930 \mathrm{E}-01.3770 \mathrm{E}-01 \mathrm{ug} / \mathrm{l} .1460 \mathrm{E}+02 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}(4)=.9050 \mathrm{E}-02.6710 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .1138 \mathrm{E}+00.1232 \mathrm{E}+00 \mathrm{ug} / \mathrm{l} .4000 \mathrm{E}+01 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}(5)=.9381 \mathrm{E}-02.3983 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .1303 \mathrm{E}+00.1416 \mathrm{E}+00 \mathrm{ug} / \mathrm{l} .2100 \mathrm{E}+01 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}(1)=.2617 \mathrm{E}-01.2621 \mathrm{E}-01 \mathrm{mg} / \mathrm{g} .4910 \mathrm{E}-01.4723 \mathrm{E}-01 \mathrm{ug} / \mathrm{l} .4570 \mathrm{E}+02 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}(2)=.3430 \mathrm{E}-01.3563 \mathrm{E}-01 \mathrm{mg} / \mathrm{g} .1340 \mathrm{E}+00.9094 \mathrm{E}-01 \mathrm{ug} / \mathrm{l} .3240 \mathrm{E}+02 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}(3)=.5736 \mathrm{E}-01.6932 \mathrm{E}-01 \mathrm{mg} / \mathrm{g} .6773 \mathrm{E}+00.5589 \mathrm{E}+00 \mathrm{ug} / \mathrm{l} .9900 \mathrm{E}+01 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}(4)=.5544 \mathrm{E}-01.5501 \mathrm{E}-01 \mathrm{mg} / \mathrm{g} .1018 \mathrm{E}+01.1020 \mathrm{E}+01 \mathrm{ug} / \mathrm{l} .4100 \mathrm{E}+01 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}(5)=.4641 \mathrm{E}-01.3411 \mathrm{E}-01 \mathrm{mg} / \mathrm{g} .1143 \mathrm{E}+01.1170 \mathrm{E}+01 \mathrm{ug} / \mathrm{l} .2200 \mathrm{E}+01 \mathrm{mg} / \mathrm{l}$
$F(1)=.74240 \mathrm{E}+00$
$F(2)=.16470 \mathrm{E}-03$
$F(3)=.21359 E+00$
$F(4)=.33242 \mathrm{E}+00$
$F(5)=.34817 \mathrm{E}+00$
$F(6)=.20891 E+00$
$F(7)=.67183 E+00$
$F(8)=.72938 \mathrm{E}+00$
$F(9)=.83444 \mathrm{E}-01$
$F(10)=.32458 \mathrm{E}+00$
Error sum of squares $=.19678 \mathrm{E}+00$

Hydrodarco-B PAC

PARAMETER \# $\quad 1=\mathrm{K}$; IG: 100.000000000000000
PARAMETER \# $\quad 2=\mathrm{l} / \mathrm{n}$; IG: 1.000000000000000
PARAMETER \# $3=$ Co ; IG: 10000.000000000000000 310
EBC
$K=.14737048 \mathrm{E}+04(\mathrm{mg} / \mathrm{g})(\mathrm{ug} / \mathrm{L})^{\wedge}-\mathrm{l} / \mathrm{n}$
$1 / \mathrm{n}=.61053013 \mathrm{E}+00$
$\mathrm{C} 0=.41283323 \mathrm{E}+03 \mathrm{ug} / \mathrm{L}$
$\mathrm{MW}=.10000000 \mathrm{E}+04 \mathrm{~g} / \mathrm{mol}$
TARGET COMPOUND
$\mathrm{K}=.12231800 \mathrm{E}+01(\mathrm{mg} / \mathrm{g})(\mathrm{ug} / \mathrm{L})^{\wedge}-\mathrm{l} / \mathrm{n}$
$\mathrm{l} / \mathrm{n}=.72110000 \mathrm{E}+00$
$\mathrm{CO}=.14920000 \mathrm{E}+00 \mathrm{ug} / \mathrm{L}$
C0 $=.16500000 \mathrm{E}+00 \mathrm{ug} / \mathrm{L}$
$\mathrm{MW}=.16800000 \mathrm{E}+03 \mathrm{~g} / \mathrm{mol}$
149.2
165.0
no, Q-obs Q-cal C-obs C-cal AC-dose
$\mathrm{Q}(\mathrm{l})=.3746 \mathrm{E}-02.3676 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .1600 \mathrm{E}-02.4360 \mathrm{E}-02 \mathrm{ug} / \mathrm{l} .3940 \mathrm{E}+02 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}(2)=.9457 \mathrm{E}-02.9577 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .1870 \mathrm{E}-01.1704 \mathrm{E}-01 \mathrm{ug} / \mathrm{l} .1380 \mathrm{E}+02 \mathrm{mg} / \mathrm{l}$
$Q(3)=.1246 \mathrm{E}-01.2194 \mathrm{E}-01 \mathrm{mg} / \mathrm{g} .1006 \mathrm{E}+00.6364 \mathrm{E}-01 \mathrm{ug} / \mathrm{l} .3900 \mathrm{E}+01 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}(4)=.1329 \mathrm{E}-01.2579 \mathrm{E}-01 \mathrm{mg} / \mathrm{g} .1213 \mathrm{E}+00.9504 \mathrm{E}-01 \mathrm{ug} / \mathrm{l} .2100 \mathrm{E}+01 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}(\mathrm{I})=.3730 \mathrm{E}-02.3704 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .3100 \mathrm{E}-02.4232 \mathrm{E}-02 \mathrm{ug} / 1.4340 \mathrm{E}+02 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}(2)=.5507 \mathrm{E}-02.5475 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .6400 \mathrm{E}-02.7330 \mathrm{E}-02 \mathrm{ug} / 1.2880 \mathrm{E}+02 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}(3)=.9867 \mathrm{E}-02.9867 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .1700 \mathrm{E}-01.1700 \mathrm{E}-01 \mathrm{ug} / 1.1500 \mathrm{E}+02 \mathrm{mg} / \mathrm{l}$ $\mathrm{Q}(4)=.1401 \mathrm{E}-01.1632 \mathrm{E}-01 \mathrm{mg} / \mathrm{g} .5430 \mathrm{E}-01.3604 \mathrm{E}-01 \mathrm{ug} / 1.7900 \mathrm{E}+01 \mathrm{mg} / \mathrm{l}$ $\mathrm{Q}(5)=.1737 \mathrm{E}-01.2326 \mathrm{E}-01 \mathrm{mg} / \mathrm{g} .9030 \mathrm{E}-01.6497 \mathrm{E}-01 \mathrm{ug} / 1.4300 \mathrm{E}+01 \mathrm{mg} / \mathrm{l}$ $Q(6)=.2147 \mathrm{E}-01.2879 \mathrm{E}-01 \mathrm{mg} / \mathrm{g} .1242 \mathrm{E}+00.1103 \mathrm{E}+00 \mathrm{ug} / 1.1900 \mathrm{E}+01 \mathrm{mg} / \mathrm{l}$ $F(1)=.13327 E+01$
$F(2)=.34584 \mathrm{E}+00$
$F(3)=.10272 E+01$
$F(4)=.83971 E+00$
$F(5)=.62147 \mathrm{E}+00$
$F(6)=.40315 E+00$
$F(7)=.11427 E-03$
$F(8)=.82219 \mathrm{E}+00$
$F(9)=.86698 \mathrm{E}+00$
$F(10)=.60892 \mathrm{E}+00$
Error sum of squares $=.60032 \mathrm{E}+00$

Calgon F-300 (virgin)

$\mathrm{F}(13)=.55089 \mathrm{E}+00$
$F(14)=.90071 \mathrm{E}+00$
Error sum of squares $=.39583 \mathrm{E}+00$

Calgon F-300 (1 year preload)

PARAMETER \# $1=\mathrm{K}$; IG: 1.000000000000000
PARAMETER \# $\quad 2=1 / n ;$ IG: $3.000000000000000 \mathrm{E}-001$
PARAMETER \# $3=$ Co ; IG: 100.000000000000000

314

EBC
$\mathrm{K}=.11181225 \mathrm{E}+00(\mathrm{mg} / \mathrm{g})(\mathrm{ug} / \mathrm{L})^{\wedge}-1 / \mathrm{n}$
$1 / \mathrm{n}=.79630070 \mathrm{E}+00$
$\mathrm{C} 0=.69036052 \mathrm{E}+01 \mathrm{ug} / \mathrm{L}$
$\mathrm{MW}=.10000000 \mathrm{E}+04 \mathrm{~g} / \mathrm{mol}$
TARGET COMPOUND
$\mathrm{K}=.36040000 \mathrm{E}-01(\mathrm{mg} / \mathrm{g})(\mathrm{ug} / \mathrm{L})^{\wedge}-1 / \mathrm{n}$
$\mathrm{l} / \mathrm{n}=.64710000 \mathrm{E}+00$
$\mathrm{C} 0=.33974000 \mathrm{E}+00 \mathrm{ug} / \mathrm{L}$
$\mathrm{C} 0=.33974000 \mathrm{E}+00 \mathrm{ug} / \mathrm{L}$
$\mathrm{MW}=.16800000 \mathrm{E}+03 \mathrm{~g} / \mathrm{mol}$
ham125.dat
ham125.dak
no, Q-obs Q-cal C-obs C-cal AC-dose
$\mathrm{Q}(\mathrm{l})=.4061 \mathrm{E}-02.9535 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .3251 \mathrm{E}+00.3054 \mathrm{E}+00 \mathrm{ug} / \mathrm{l} .3600 \mathrm{E}+0 \mathrm{lmg} / \mathrm{l}$
$\mathrm{Q}(2)=.1050 \mathrm{E}-01.9340 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .2767 \mathrm{E}+00.2837 \mathrm{E}+00 \mathrm{ug} / \mathrm{l} .6000 \mathrm{E}+01 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}(3)=.8830 \mathrm{E}-02.8830 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .2444 \mathrm{E}+00.2444 \mathrm{E}+00 \mathrm{ug} / \mathrm{l} .1080 \mathrm{E}+02 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}(4)=.8046 \mathrm{E}-02.8231 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .2126 \mathrm{E}+00.2097 \mathrm{E}+00 \mathrm{ug} / \mathrm{l} .1580 \mathrm{E}+02 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}(5)=.9204 \mathrm{E}-02.7847 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .1649 \mathrm{E}+00.1906 \mathrm{E}+00 \mathrm{ug} / \mathrm{l} .1900 \mathrm{E}+02 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}(6)=.6711 \mathrm{E}-02.6855 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .1525 \mathrm{E}+00.1485 \mathrm{E}+00 \mathrm{ug} / \mathrm{l} .2790 \mathrm{E}+02 \mathrm{mg} / \mathrm{l}$
$Q(7)=.5991 \mathrm{E}-02.5991 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .1175 \mathrm{E}+00.1175 \mathrm{E}+00 \mathrm{ug} / \mathrm{l} .3710 \mathrm{E}+02 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}(1)=.4061 \mathrm{E}-02.9535 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .3251 \mathrm{E}+00.3054 \mathrm{E}+00 \mathrm{ug} / \mathrm{l} .3600 \mathrm{E}+01 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}(2)=.1050 \mathrm{E}-01.9340 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .2767 \mathrm{E}+00.2837 \mathrm{E}+00 \mathrm{ug} / \mathrm{l} .6000 \mathrm{E}+01 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}(3)=.8830 \mathrm{E}-02.8830 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .2444 \mathrm{E}+00.2444 \mathrm{E}+00 \mathrm{ug} / \mathrm{l} .1080 \mathrm{E}+02 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}(4)=.8046 \mathrm{E}-02.8231 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .2126 \mathrm{E}+00.2097 \mathrm{E}+00 \mathrm{ug} / \mathrm{l} .1580 \mathrm{E}+02 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}(5)=.9204 \mathrm{E}-02.7847 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .1649 \mathrm{E}+00.1906 \mathrm{E}+00 \mathrm{ug} / \mathrm{l} .1900 \mathrm{E}+02 \mathrm{mg} / \mathrm{l}$
$Q(6)=.6711 \mathrm{E}-02.6855 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .1525 \mathrm{E}+00.1485 \mathrm{E}+00 \mathrm{ug} / \mathrm{l} .2790 \mathrm{E}+02 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}(7)=.5991 \mathrm{E}-02.5991 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .1175 \mathrm{E}+00.1175 \mathrm{E}+00 \mathrm{ug} / \mathrm{l} .3710 \mathrm{E}+02 \mathrm{mg} / \mathrm{l}$
$F(1)=.39109 E+00$
$F(2)=.24055 E+00$
$F(3)=.15030 \mathrm{E}-04$
$F(4)=.16605 E+00$
$F(5)=.52636 E+00$
$F(6)=.21254 \mathrm{E}+00$
$\mathrm{F}(7)=.82628 \mathrm{E}-04$
$F(8)=.39109 E+00$
$F(9)=.24055 E+00$
$F(10)=.15030 \mathrm{E}-04$
$F(11)=.16605 E+00$
$F(12)=.52636 E+00$
$F(13)=.21254 \mathrm{E}+00$
$\mathrm{F}(14)=.82628 \mathrm{E}-04$
Error sum of squares $=\quad .80087 \mathrm{E}-01$

Calgon F-300 (2 year preload)

PARAMETER \# $\quad \mathrm{l}=\mathrm{K}$; IG: 1.000000000000000
PARAMETER \# $\quad 2=1 / n$; IG: $3.000000000000000 \mathrm{E}-001$
PARAMETER \# $3=$ Co ; IG: 100.000000000000000
312

EBC
$\mathrm{K}=.53223659 \mathrm{E}-02(\mathrm{mg} / \mathrm{g})(\mathrm{ug} / \mathrm{L})^{\wedge}-1 / \mathrm{n}$
$1 / \mathrm{n}=.84143995 \mathrm{E}+00$
$\mathrm{C} 0=.78920173 \mathrm{E}+02 \mathrm{ug} / \mathrm{L}$
$\mathrm{MW}=.10000000 \mathrm{E}+04 \mathrm{~g} / \mathrm{mol}$
TARGET COMPOUND
$\mathrm{K}=.26760000 \mathrm{E}-01(\mathrm{mg} / \mathrm{g})(\mathrm{ug} / \mathrm{L})^{\wedge}-1 / \mathrm{n}$
$1 / \mathrm{n}=.58820000 \mathrm{E}+00$
$\mathrm{C} 0=.33974000 \mathrm{E}+00 \mathrm{ug} / \mathrm{L}$
$\mathrm{C} 0=.33974000 \mathrm{E}+00 \mathrm{ug} / \mathrm{L}$
$\mathrm{MW}=.16800000 \mathrm{E}+03 \mathrm{~g} / \mathrm{mol}$
mich125.dat
mich125.dak
no, Q-obs Q-cal C-obs C-cal AC-dose
$\mathrm{Q}(1)=.2650 \mathrm{E}-01.9608 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .2470 \mathrm{E}+00.3061 \mathrm{E}+00 \mathrm{ug} / \mathrm{l} .3500 \mathrm{E}+01 \mathrm{mg} / \mathrm{l}$ $\mathrm{Q}(2)=.6304 \mathrm{E}-02.9333 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .3095 \mathrm{E}+00.2949 \mathrm{E}+00 \mathrm{ug} / \mathrm{l} .4800 \mathrm{E}+0 \mathrm{l} \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}(3)=.2676 \mathrm{E}-01.9129 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .1845 \mathrm{E}+00.2868 \mathrm{E}+00 \mathrm{ug} / \mathrm{l} .5800 \mathrm{E}+01 \mathrm{mg} / 1$
$\mathrm{Q}(4)=.8491 \mathrm{E}-02.8491 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .2616 \mathrm{E}+00.2616 \mathrm{E}+00 \mathrm{ug} / 1.9200 \mathrm{E}+01 \mathrm{mg} / \mathrm{I}$
$\mathrm{Q}(5)=.7178 \mathrm{E}-02.7300 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .2184 \mathrm{E}+00.2164 \mathrm{E}+00 \mathrm{ug} / \mathrm{l} .1690 \mathrm{E}+02 \mathrm{mg} / 1$
$\mathrm{Q}(6)=.5332 \mathrm{E}-02.5332 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .1467 \mathrm{E}+00.1467 \mathrm{E}+00 \mathrm{ug} / 1.3620 \mathrm{E}+02 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}(1)=.2650 \mathrm{E}-01.9608 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .2470 \mathrm{E}+00.3061 \mathrm{E}+00 \mathrm{ug} / 1.3500 \mathrm{E}+01 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}(2)=.6304 \mathrm{E}-02.9333 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .3095 \mathrm{E}+00.2949 \mathrm{E}+00 \mathrm{ug} / \mathrm{l} .4800 \mathrm{E}+01 \mathrm{mg} / \mathrm{l}$
$\mathrm{Q}(3)=.2676 \mathrm{E}-01.9129 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .1845 \mathrm{E}+00.2868 \mathrm{E}+00 \mathrm{ug} / \mathrm{l} .5800 \mathrm{E}+01 \mathrm{mg} / 1$ $\mathrm{Q}(4)=.8491 \mathrm{E}-02.8491 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .2616 \mathrm{E}+00.2616 \mathrm{E}+00 \mathrm{ug} / \mathrm{l} .9200 \mathrm{E}+01 \mathrm{mg} / \mathrm{l}$ $Q(5)=.7178 \mathrm{E}-02.7300 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .2184 \mathrm{E}+00.2164 \mathrm{E}+00 \mathrm{ug} / \mathrm{l} .1690 \mathrm{E}+02 \mathrm{mg} / 1$ $\mathrm{Q}(6)=.5332 \mathrm{E}-02.5332 \mathrm{E}-02 \mathrm{mg} / \mathrm{g} .1467 \mathrm{E}+00.1467 \mathrm{E}+00 \mathrm{ug} / \mathrm{l} .3620 \mathrm{E}+02 \mathrm{mg} / \mathrm{l}$
$F(1)=.70626 E+00$
$F(2)=.33278 E+00$
$F(3)=.10014 E+01$
$F(4)=.70650 \mathrm{E}-04$
$F(5)=.13602 \mathrm{E}+00$
$F(6)=.30580 E-04$
$F(7)=.70626 E+00$
$F(8)=.33278 \mathrm{E}+00$
$F(9)=.10014 \mathrm{E}+01$
$F(10)=.70650 \mathrm{E}-04$
$F(11)=.13602 \mathrm{E}+00$
$F(12)=.30580 \mathrm{E}-04$
Error sum of squares $=.27180 \mathrm{E}+00$

IAST OUTPUT FILES

Watercarb PAC

PROPERTIES of COMPONENTS

| COMPONENT | $\mathrm{K}(\mathrm{mg} / \mathrm{g})(\mathrm{ug} / \mathrm{L})^{* *}-\mathrm{l} / \mathrm{n}$ | I / n | $\mathrm{CO}(\mathrm{ug} / \mathrm{l})$ | MW (dalton) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| EBC | 3.1985 | .37386 | 21.004 | 1000.000 |
| MIB | .28652 | .49220 | 1.2452 | 168.000 |

IAST PREDICTION

DOSAGE EBC MIB
(mg/l) \quad Cug/l \quad q mg/g \quad Cug/l $\quad q \mathrm{mg} / \mathrm{g}$

.00	21.0	9.91	1.24520	.03286
.05	20.5	9.82	1.24354	.03312
.10	20.0	9.73	1.24186	.03338
.15	19.6	9.64	1.24015	.03364
.20	19.1	9.56	1.23842	.03390
.25	18.6	9.47	1.23666	.03417
.30	18.2	9.38	1.23487	.03444
.40	17.3	9.21	1.23120	.03499
.50	16.5	9.04	1.22743	.03555
.60	15.7	8.87	1.22353	.03612
.80	14.2	8.53	1.21537	.03729
1.00	12.8	8.21	1.20669	.03851
1.20	11.5	7.89	1.19749	.03976
1.50	9.86	7.43	1.18265	.04170
1.70	8.87	7.14	1.17205	.04303
2.00	7.57	6.72	1.15510	.04505
2.20	6.82	6.45	1.14310	.04641
2.40	6.14	6.19	1.13055	.04777
2.70	5.25	5.83	1.11074	.04980
3.00	4.51	5.50	1.08983	.05179
3.50	3.52	5.00	1.05283	.05496
4.00	2.78	4.56	1.01368	.05788
5.00	1.80	3.84	.93160	.06272
6.00	1.22	3.30	.84857	.06611
8.00	.637	2.55	.69322	.06900
10.00	.375	2.06	.56236	.06828
12.50	.218	1.66	.43498	.06482
15.00	.138	1.39	.34090	.06029

20.00	$.667 \mathrm{E}-01$	1.05	.21982	.05127
30.00	$.233 \mathrm{E}-01$.699	.10875	.03788
50.00	$.605 \mathrm{E}-02$.420	.04122	.02408
70.00	$.247 \mathrm{E}-02$.300	.02121	.01749
100.00	$.955 \mathrm{E}-03$.210	.01038	.01235
200.00	$.150 \mathrm{E}-03$.105	.00256	.00621

Hydrodarco-B PAC

PROPERTIES of COMPONENTS

| COMPONENT | $\mathrm{K}(\mathrm{mg} / \mathrm{g})(\mathrm{ug} / \mathrm{L})^{* *}-\mathrm{l} / \mathrm{n}$ | I / n | $\mathrm{CO}(\mathrm{ug} / \mathrm{l})$ | MW (dalton) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| EBC | 1473.7 | .61053 | 412.83 | 1000.000 |
| MIB | 1.2232 | .72110 | 1.0000 | 168.000 |

IAST PREDICTION
DOSAGE EBC MIB

| $(\mathrm{mg} / \mathrm{l})$ | $\mathrm{Cug} / \mathrm{l}$ | $\mathrm{qmg} / \mathrm{g}$ | $\mathrm{Cug} / \mathrm{l}$ | $\mathrm{qmg} / \mathrm{g}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |
| .00 | 413. | $.583 \mathrm{E}+05$ | 1.00000 | .03003 |
| .05 | 15.8 | $.794 \mathrm{E}+04$ | .99677 | .06471 |
| .10 | 5.29 | $.408 \mathrm{E}+04$ | .99167 | .08332 |
| .15 | 2.75 | $.273 \mathrm{E}+04$ | .98551 | .09663 |
| .20 | 1.72 | $.206 \mathrm{E}+04$ | .97857 | .10714 |
| .25 | 1.20 | $.165 \mathrm{E}+04$ | .97104 | .11584 |
| .30 | .891 | $.137 \mathrm{E}+04$ | .96303 | .12324 |
| .40 | .557 | $.103 \mathrm{E}+04$ | .94590 | .13524 |
| .50 | .387 | 825. | .92772 | .14457 |
| .60 | .287 | 688. | .90883 | .15195 |
| .80 | .179 | 516. | .86997 | .16254 |
| 1.00 | .124 | 413. | .83081 | .16919 |
| 1.20 | $.924 \mathrm{E}-01$ | 344. | .79227 | .17311 |
| 1.50 | $.641 \mathrm{E}-01$ | 275. | .73680 | .17547 |
| 1.70 | $.522 \mathrm{E}-01$ | 243. | .70181 | .17541 |
| 2.00 | $.400 \mathrm{E}-01$ | 206. | .65264 | .17368 |
| 2.20 | $.343 \mathrm{E}-01$ | 188. | .62213 | .17176 |
| 2.40 | $.297 \mathrm{E}-01$ | 172. | .59339 | .16942 |
| 2.70 | $.245 \mathrm{E}-01$ | 153. | .55348 | .16538 |
| 3.00 | $.206 \mathrm{E}-01$ | 138. | .51718 | .16094 |
| 3.50 | $.160 \mathrm{E}-01$ | 118. | .46384 | .15319 |
| 4.00 | $.129 \mathrm{E}-01$ | 103. | .41825 | .14544 |

5.00	$.894 \mathrm{E}-02$	82.6	.34542	.13092
6.00	$.664 \mathrm{E}-02$	68.8	.29072	.11821
8.00	$.414 \mathrm{E}-02$	51.6	.21574	.09803
10.00	$.288 \mathrm{E}-02$	41.3	.16798	.08320
12.50	$.200 \mathrm{E}-02$	33.0	.12905	.06968
15.00	$.148 \mathrm{E}-02$	27.5	.10320	.05979
20.00	$.925 \mathrm{E}-03$	20.6	.07169	.04642
30.00	$.476 \mathrm{E}-03$	13.8	.04216	.03193
50.00	$.206 \mathrm{E}-03$	8.26	.02122	.01958
70.00	$.119 \mathrm{E}-03$	5.90	.01341	.01409
100.00	$.663 \mathrm{E}-04$	4.13	.00822	.00992
200.00	$.213 \mathrm{E}-04$	2.06	.00316	.00498

Calgon F-300 (virgin)

PROPERTIES of COMPONENTS

COMPONENT K (mg/g)(ug/L)**-1/n $1 / n \quad C O(u g / l) \quad M W(d a l t o n)$

EBC	23.489	$.17098 \mathrm{E}-01$.45270	1000.000
MIB	I .5105	.74590	$.53290 \mathrm{E}-01$	168.000

IAST PREDICTION

DOSAGE	EBC	MIB		
$(\mathrm{mg} / \mathrm{l})$	$\mathrm{Cug} / \mathrm{l}$	$\mathrm{q} \mathrm{mg} / \mathrm{g}$	$\mathrm{Cug} / \mathrm{l}$	$\mathrm{q} \mathrm{mg} / \mathrm{g}$
.00	.453	23.2	.05329	.00037
.05	$.610 \mathrm{E}-24$	9.05	.05326	.00051
.10	$.151 \mathrm{E}-41$	4.53	.05323	.00064
.15	$.759 \mathrm{E}-52$	3.02	.05318	.00074
.20	$.374 \mathrm{E}-59$	2.26	.05313	.00081
.25	$.803 \mathrm{E}-65$	1.81	.05307	.00088
.30	$.188 \mathrm{E}-69$	1.51	.05301	.00093
.40	$.927 \mathrm{E}-77$	1.13	.05288	.00103
.50	$.199 \mathrm{E}-82$.905	.05273	.00111
.60	$.466 \mathrm{E}-87$.754	.05258	.00118
.80	$.230 \mathrm{E}-94$.566	.05225	.00130
1.00	$.495-100$.453	.05189	.00140

1.20	$.116-104$.377	.05151	.00148
1.50	$.250-110$.302	.05090	.00159
1.70	$.166-113$.266	.05047	.00166
2.00	$.124-117$.226	.04980	.00174
2.20	$.471-120$.206	.04934	.00180
2.40	$.291-122$.189	.04887	.00184
2.70	$.298-125$.168	.04815	.00191
3.00	$.629-128$.151	.04740	.00196
3.50	$.770-132$.129	.04614	.00204
4.00	$.315-135$.113	.04485	.00211
5.00	$.686-141$	$.905 \mathrm{E}-01$.04225	.00221
6.00	$.163-145$	$.754 \mathrm{E}-01$.03968	.00227
8.00	$.830-153$	$.566 \mathrm{E}-01$.03481	.00231
10.00	$.184-158$	$.453 \mathrm{E}-01$.03050	.00228
12.50	$.409-164$	$.362 \mathrm{E}-01$.02597	.00219
15.00	$.985-169$	$.302 \mathrm{E}-01$.02231	.00207
20.00	$.507-176$	$.226 \mathrm{E}-01$.01697	.00182
30.00	$.269-186$	$.151 \mathrm{E}-01$.01093	.00141
50.00	$.298-199$	$.905 \mathrm{E}-02$.00593	.00095
70.00	$.862-208$	$.647 \mathrm{E}-02$.00388	.00071
100.00	$.761-217$	$.453 \mathrm{E}-02$.00245	.00051
200.00	$.191-234$	$.226 \mathrm{E}-02$.00098	.00026
268.50	$.633-242$	$.169 \mathrm{E}-02$.00066	.00020
500.10	$.101-257$	$.905 \mathrm{E}-03$.00029	.00011
500.40	$.976-258$	$.905 \mathrm{E}-03$.00029	.00011
501.00	$.910-258$	$.904 \mathrm{E}-03$.00029	.00011
501.70	$.839-258$	$.902 \mathrm{E}-03$.00029	.00011
593.90	$.435-262$	$.762 \mathrm{E}-03$.00023	.00009
596.80	$.327-262$	$.759 \mathrm{E}-03$.00023	.00009
786.40	$.322-269$	$.576 \mathrm{E}-03$.00016	.00007

Calgon F-300 (1 year preload)

PROPERTIES of COMPONENTS

COMPONENT $\mathrm{K}(\mathrm{mg} / \mathrm{g})(\mathrm{ug} / \mathrm{L})^{* *}-\mathrm{l} / \mathrm{n} \quad \mathrm{l} / \mathrm{n} \quad \mathrm{CO}(\mathrm{ug} / \mathrm{l}) \mathrm{MW}($ dalton $)$

EBC . 11181 . 796306.90361000 .000

IAST PREDICTION

DOSAGE EBC MIB

(mg/l)	$\mathrm{Cug} / \mathrm{l}$	$\mathrm{q} \mathrm{mg} / \mathrm{g}$	$\mathrm{Cug} / \mathrm{l}$	$\mathrm{q} \mathrm{mg} / \mathrm{g}$
.00	6.90	.517	.05167	.00156
.05	6.88	.515	.05159	.00156
.10	6.85	.514	.05151	.00156
.15	6.83	.512	.05144	.00156
.20	6.80	.511	.05136	.00156
.25	6.78	.509	.05128	.00156
.30	6.75	.508	.05120	.00156
.40	6.70	.505	.05104	.00156
.50	6.65	.502	.05089	.00156
.60	6.60	.499	.05073	.00156
.80	6.51	.493	.05042	.00156
1.00	6.42	.487	.05011	.00156
1.20	6.33	.482	.04979	.00156
1.50	6.19	.474	.04933	.00156
1.70	6.11	.468	.04901	.00156
2.00	5.98	.461	.04855	.00156
2.20	5.90	.456	.04824	.00156
2.40	5.82	.451	.04793	.00156
2.70	5.71	.443	.04747	.00156
3.00	5.59	.436	.04700	.00156
3.50	5.42	.425	.04624	.00155
4.00	5.25	.415	.04548	.00155
5.00	4.93	.394	.04399	.00154
6.00	4.65	.376	.04254	.00152
8.00	4.15	.344	.03974	.00149
10.00	3.74	.316	.03711	.00146
12.50	3.32	.287	.03408	.00141
15.00	2.97	.262	.03132	.00136
20.00	2.43	.224	.02659	.00125
30.00	1.75	.172	.01966	.00107
50.00	1.08	.117	.01190	.00080
70.00	.755	$.878 \mathrm{E}-01$.00801	.00062
100.00	.507	$.640 \mathrm{E}-01$.00504	.00047
200.00	.224	$.334 \mathrm{E}-01$.00189	.00025
268.50	.157	$.251 \mathrm{E}-01$.00122	.00019
356.30	.111	$.191 \mathrm{E}-01$.00080	.00014
500.10	$.730 \mathrm{E}-01$	$.137 \mathrm{E}-01$.00048	
500.40	$.730 \mathrm{E}-01$	$.137 \mathrm{E}-01$.00048	.00010
501.00	$.729 \mathrm{E}-01$	$.136 \mathrm{E}-01$.00048	.00010

501.70	$.727 \mathrm{E}-01$	$.136 \mathrm{E}-01$.00047	.00010
593.90	$.590 \mathrm{E}-01$	$.115 \mathrm{E}-01$.00037	.00009
596.80	$.586 \mathrm{E}-01$	$.115 \mathrm{E}-01$.00036	.00009
786.40	$.416 \mathrm{E}-01$	$.873 \mathrm{E}-02$.00024	.00007

Calgon F-300 (2 year preload)

PROPERTIES of COMPONENTS

COMPONENT $\quad \mathrm{K}(\mathrm{mg} / \mathrm{g})(\mathrm{ug} / \mathrm{L})^{* *}-1 / \mathrm{n} \quad 1 / \mathrm{n} \quad \mathrm{CO}(\mathrm{ug} / \mathrm{l}) \quad \mathrm{MW}($ dalton $)$

EBC .53224E-02.84144 $78.920 \quad 1000.000$

MIB .26760E-01.58820 .51670E-01 168.000

IAST PREDICTION

DOSAGE EBC MIB

| $(\mathrm{mg} / \mathrm{l})$ | $\mathrm{Cug} / \mathrm{l}$ | $\mathrm{q} \mathrm{mg} / \mathrm{g}$ | $\mathrm{Cug} / \mathrm{l}$ | $\mathrm{qmg} / \mathrm{g}$ | $\mathrm{Cug} / \mathrm{l}$ | $\mathrm{qmg} / \mathrm{g}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |
| .00 | 78.9 | .203 | .05167 | .00198 | | |
| .05 | 78.9 | .203 | .05157 | .00198 | | |
| .10 | 78.9 | .203 | .05147 | .00197 | | |
| .15 | 78.9 | .203 | .05137 | .00197 | | |
| .20 | 78.9 | .203 | .05128 | .00196 | | |
| .25 | 78.9 | .203 | .05118 | .00196 | | |
| .30 | 78.9 | .203 | .05108 | .00196 | | |
| .40 | 78.8 | .203 | .05089 | .00195 | | |
| .50 | 78.8 | .203 | .05070 | .00194 | | |
| .60 | 78.8 | .203 | .05051 | .00194 | | |
| .80 | 78.8 | .203 | .05013 | .00192 | | |
| 1.00 | 78.7 | .203 | .04976 | .00191 | | |
| 1.20 | 78.7 | .203 | .04939 | .00190 | | |
| 1.50 | 78.6 | .203 | .04885 | .00188 | | |
| 1.70 | 78.6 | .203 | .04850 | .00187 | | |
| 2.00 | 78.5 | .203 | .04797 | .00185 | | |
| 2.20 | 78.5 | .203 | .04763 | .00184 | | |

2.40	78.4	.203	.04729	.00182
2.70	78.4	.203	.04679	.00181
3.00	78.3	.203	.04630	.00179
3.50	78.2	.203	.04550	.00176
4.00	78.1	.202	.04473	.00173
5.00	77.9	.202	.04326	.00168
6.00	77.7	.202	.04187	.00163
8.00	77.3	.201	.03933	.00154
10.00	76.9	.201	.03706	.00146
12.50	76.4	.200	.03454	.00137
15.00	75.9	.199	.03233	.00129
20.00	75.0	.197	.02860	.00115
30.00	73.1	.194	.02312	.00095
50.00	69.6	.187	.01649	.00070
70.00	66.3	.180	.01265	.00056
100.00	61.9	.170	.00922	.00042
200.00	50.3	.143	.00451	.00024
268.50	44.4	.129	.00320	.00018
356.30	38.3	.114	.00225	.00014
419.50	34.8	.105	.00182	.00012
500.10	31.1	$.956 \mathrm{E}-01$.00144	.00010
500.40	31.1	$.956 \mathrm{E}-01$.00144	.00010
501.00	31.1	$.955 \mathrm{E}-01$.00144	.00010
501.70	31.0	$.955 \mathrm{E}-01$.00144	.00010
593.90	27.6	$.864 \mathrm{E}-01$.00114	.00009
596.80	27.5	$.862 \mathrm{E}-01$.00113	.00008
786.40	22.2	$.721 \mathrm{E}-01$.00076	.00006

Watercarb PAC

IN:
011 /IPRC,IPRI,IPRO (do not change)
1.7512D-04 /C0 (initial concentration in mg/L)
11.5385D-03 /CCONC (carbon concentration in g/l)
$0.369030 \mathrm{D}-09$ /DS (surface diffusion coefficient in $\mathrm{cm} 2 / \mathrm{min}$)
$1.000000 \mathrm{D}+13 / \mathrm{XKF}$ (film mass transfer coefficient in $\mathrm{cm} / \mathrm{min}$)
1.1146733D-2 /XK (Freundlich K value in (mg/g)(ug/l)^-1/n)
$0.2162 \quad / \mathrm{XN}$ (Freundlich $1 / \mathrm{n}$)
5.0D-04 /RADP (particle radius in cm)
0.74 D 0 /RHOP (particle density in $\mathrm{g} / \mathrm{cm} 3$) (do not change for PAC) 10 NCP (do not change)
0.1D-04 22 /TOL,METH,MTER (do not change)
1.0D-50 /DTINIT (do not change)
1.5D0 /DTOUT (time increment in min)
240.000D0 TFFNAL (final time in min)

10000 /ITMAX (do not change)

Out:

$\mathrm{C} 0=.175120 \mathrm{E}-03$	TFINAL	27.00	. 734666
CCONC $=.115385 \mathrm{E}-$. $240000 \mathrm{E}+03$	28.50	. 729375
01	NULL	30.00	. 724317
$C D=.503930 \mathrm{E}+00$. 001.000000	31.50	. 719472
	1.50 . 924126	33.00	. 714826
$\mathrm{DS}=.36903 \mathrm{E}-09$	3.00 .895187	34.50	. 710364
$\mathrm{XKF}=.10000 \mathrm{E}+14$	4.50 . 873973	36.00	. 706075
$\mathrm{BIOT}=.41923 \mathrm{E}+15$	6.00 . 856734	37.50	. 701947
RADP $=.50000 \mathrm{E}-03$	7.50 . 842029	39.00	. 697970
RHOP $=.74000 \mathrm{E}+00$	9.00 . 829123	40.50	. 694136
$\mathrm{XK}=.49630 \mathrm{E}-01$	10.50 . 817574	42.00	. 690437
$\mathrm{XN}=.21620 \mathrm{E}+00$	12.00 . 807098	43.50	. 686864
$\mathrm{TFAC}=.14761 \mathrm{E}-02$	13.50 . 797498	45.00	. 683411
NTOT = 11	15.00 .788627	46.50	. 680071
TOL $=.100000 \mathrm{E}-04$	16.50 . 780378	48.00	. 676840
METH $=2$	18.00 .772667	49.50	. 673711
MITER $=2$	19.50 . 765426	51.00	. 670680
DTINT $=.100000 \mathrm{E}-$	21.00 .758600	52.50	. 667743
49	22.50 . 752146	54.00	. 664895
DTOUT =	24.00 .746026	55.50	. 662132
. $150000 \mathrm{E}+01$	25.50 . 740208	57.00	. 659451

58.50	. 656848	120.00	. 593010	181.50	. 569894
60.00	. 654320	121.50	. 592132	183.00	. 569567
61.50	. 651865	123.00	. 591275	184.50	. 569248
63.00	. 649479	124.50	. 590439	186.00	. 568937
64.50	. 647159	126.00	. 589623	187.50	. 568633
66.00	. 644904	127.50	. 588826	189.00	. 568336
67.50	. 642711	129.00	. 588049	190.50	. 568046
69.00	. 640577	130.50	. 587290	192.00	. 567764
70.50	. 638501	132.00	. 586549	193.50	. 567487
72.00	. 636480	133.50	. 5858826	195.00	. 567218
73.50	. 634513	135.00	. 585121	196.50	. 566955
75.00	. 632598	136.50	. 584432	198.00	. 566698
76.50	. 630734	138.00	. 583759	199.50	. 566447
78.00	. 628918	139.50	. 583103	201.00	. 566202
79.50	. 627149	141.00	. 582462	202.50	. 565962
81.00	. 625426	142.50	. 581837	204.00	. 565729
82.50	. 623747	144.00	. 581226	205.50	. 565501
84.00	. 622111	145.50	. 580630	207.00	. 565278
85.50	. 620517	147.00	. 580048	208.50	. 565061
87.00	. 618963	148.50	. 579480	210.00	. 564849
88.50	. 617448	150.00	. 578926	211.50	. 564641
90.00	. 615971	151.50	. 578384	213.00	. 564439
91.50	. 614532	153.00	. 577856	214.50	. 564242
93.00	. 613128	154.50	. 577340	216.00	. 564049
94.50	. 611759	156.00	. 576837	217.50	. 563861
96.00	. 610424	157.50	. 576345	219.00	. 563677
97.50	. 609122	159.00	. 575865	220.50	. 563497
99.00	. 607853	160.50	. 575397	222.00	. 563322
100.50	. 606614	162.00	. 574939	223.50	. 563151
102.00	. 605406	163.50	. 574493	225.00	. 562984
103.50	. 604228	165.00	. 574057	226.50	. 562821
105.00	. 603078	166.50	. 573631	228.00	. 562662
106.50	. 601956	168.00	. 573216	229.50	. 562507
108.00	. 600862	169.50	. 572810	231.00	. 562355
109.50	. 599794	171.00	. 572414	232.50	. 562207
111.00	. 598752	172.50	. 572028	234.00	. 562062
112.50	. 597736	174.00	. 571651	235.50	. 561921
114.00	. 596744	175.50	. 571282	237.00	. 561783
115.50	. 595776	177.00	. 570923	238.50	. 561649
117.00	. 594831	178.50	. 570571	240.00	. 561517
118.50	. 593910	180.00	. 570229		

Hydrodarco-B PAC

In:
011 /IPRC,IPRI,IPRO (do not change)
1.7445D-04 /C0 (initial concentration in mg/L)
11.5385D-03 /CCONC (carbon concentration in g/l)
$0.380000 \mathrm{D}-09 / \mathrm{DS}$ (surface diffusion coefficient in $\mathrm{cm} 2 / \mathrm{min}$)
$1.000000 \mathrm{D}+13 / \mathrm{XKF}$ (film mass transfer coefficient in $\mathrm{cm} / \mathrm{min}$)
$2.62498017 \mathrm{D}-2 / \mathrm{XK}$ (Freundlich K value in (mg / g) $\left.(\mathrm{ug} / \mathrm{l})^{\wedge}-1 / \mathrm{n}\right)$
0.3409 /XN (Freundlich 1/n)
5.0D-04 /RADP (particle radius in cm)
0.74D0 /RHOP (particle density in g/cm3) (do not change for PAC)
10 NCP (do not change)
0.1D-04 22 /TOL,METH,MITER (do not change)
1.0D-50 /DTINIT (do not change)
1.5D0 /DTOUT (time increment in min)
240.000D0 TFINAL (final time in min)
10000 /ITMAX (do not change)

Out:

$\mathrm{C} 0=.174450 \mathrm{E}-03$	NULL	33.00	. 516881
CCONC $=.115385 \mathrm{E}-$. 001.000000	34.50	. 510619
01	$1.50 \quad .857824$	36.00	. 504647
$\mathrm{CD}=.957393 \mathrm{E}+00$	3.00 .805903	37.50	. 498944
	4.50 . 768709	39.00	. 493491
DS $=.38000 \mathrm{E}-09$	6.00 .739048	40.50	. 488274
$\mathrm{XKF}=.10000 \mathrm{E}+14$	7.50 .714167	42.00	. 483275
BIOT $=.21430 \mathrm{E}+15$	9.00 .692651	43.50	. 478484
RADP $=.50000 \mathrm{E}-03$	10.50 . 673665	45.00	. 473887
RHOP $=.74000 \mathrm{E}+00$	12.00 .656664	46.50	. 469473
$\mathrm{XK}=.27658 \mathrm{E}+00$	13.50 . 641272	48.00	. 465231
$\mathrm{XN}=.34090 \mathrm{E}+00$	15.00 .627216	49.50	. 461154
TFAC $=.15200 \mathrm{E}-02$	16.50 . 614291	51.00	. 457231
NTOT = 11	18.00 .602335	52.50	. 453455
$\mathrm{TOL}=.100000 \mathrm{E}-04$	19.50 . 591224	54.00	. 449818
METH $=2$	21.00 .580855	55.50	. 446313
MITER $=2$	22.50 . 571146	57.00	. 442934
DTINIT $=.100000 \mathrm{E}-$	24.00 . 562025	58.50	. 439676
49	25.50 . 553433	60.00	. 436532
DTOUT	27.00 . 545320	61.50	. 433496
.150000E+01	28.50 . 537643	63.00	. 430566
TFINAL =	30.00 . 530365	64.50	. 427736
. $240000 \mathrm{E}+03$	31.50 . 523454	66.00	. 425001

67.50	. 422358	126.00	. 364389
69.00	. 419803	127.50	. 363629
70.50	. 417333	129.00	. 362891
72.00	. 414943	130.50	. 362176
73.50	. 412632	132.00	. 361481
75.00	. 410395	133.50	. 360807
76.50	. 408230	135.00	. 360152
78.00	. 406134	136.50	. 359517
79.50	. 404105	138.00	. 358900
81.00	. 402140	139.50	. 358301
82.50	. 400237	141.00	. 357720
84.00	. 398393	142.50	. 357156
85.50	. 396607	144.00	. 356608
87.00	. 394877	145.50	. 356077
88.50	. 393200	147.00	. 355560
90.00	. 391575	148.50	. 355059
91.50	. 390000	150.00	. 354573
93.00	. 388473	151.50	. 354101
94.50	. 386993	153.00	. 353642
96.00	. 385558	154.50	. 353197
97.50	. 384166	156.00	. 352765
99.00	. 382817	157.50	. 352345
100.50	. 381509	159.00	. 351938
102.00	. 380239	160.50	. 351543
103.50	. 379008	162.00	. 351159
105.00	. 377814	163.50	. 350786
106.50	. 376656	165.00	. 350424
108.00	. 375532	166.50	. 350073
109.50	. 374442	168.00	. 349732
111.00	. 373384	169.50	. 349401
112.50	. 372358	171.00	. 349079
114.00	. 371362	172.50	. 348767
115.50	. 370396	174.00	. 348464
117.00	. 369459	175.50	. 348170
118.50	. 368549	177.00	. 347885
120.00	. 367666	178.50	. 347607
121.50	. 366810	180.00	. 347338
123.00	. 365978	181.50	. 347077
124.50	. 365172	183.00	. 346823

184.50 .346576
186.00 . 345337
187.50 . 346105
189.00 . 345879
190.50 . 345660
192.00 .345448
193.50 . 345241
195.00 . 345041
196.50 . 344846
198.00 . 344657
199.50 . 344473
201.00 . 344295
202.50 . 344122
204.00 . 343954
205.50 . 343791
207.00 . 343632
208.50 . 343479
210.00 . 343329
211.50 . 343184
213.00 . 343043
214.50 . 342906
216.00 . 342774
$217.50 \quad .342645$
219.00 . 342519
220.50 . 342398
222.00 . 342280
223.50 . 342165
225.00 . 342054
226.50 . 341946
228.00 . 341841
229.50 . 341739
231.00 . 341640
232.50 . 341544
234.00 . 341450
235.50 . 341360
237.00 . 341272
238.50 . 341186
240.00 . 341103

In:

Out:

$\mathrm{CO}=.175090 \mathrm{E}-03$	NULL	33.00	. 534285
CCONC $=.900000 \mathrm{E}-$. 001.000000	34.50	. 528364
02	1.50 . 860750	36.00	. 522718
$\mathrm{CD}=.976598 \mathrm{E}+00$	3.00 .810360	37.50	. 517326
	4.50 .774429	39.00	. 512170
$\mathrm{DS}=.35513 \mathrm{E}-09$	6.00 .745869	40.50	. 507237
$\mathrm{XKF}=.10000 \mathrm{E}+14$	7.50 .721974	42.00	. 502511
BIOT $=.17534 \mathrm{E}+15$	9.00 .701356	43.50	. 497979
RADP $=.50000 \mathrm{E}-03$	10.50 . 683197	45.00	. 493630
RHOP $=.74000 \mathrm{E}+00$	12.00 .666963	46.50	. 489454
$\mathrm{XK}=.70396 \mathrm{E}+00$	13.50 . 652286	48.00	. 485440
$\mathrm{XN}=.41760 \mathrm{E}+00$	15.00 .638901	49.50	. 481580
$\mathrm{TFAC}=.14205 \mathrm{E}-02$	16.50 . 626605	51.00	. 477865
NTOT = 11	18.00 .615244	52.50	. 474288
$\mathrm{TOL}=.100000 \mathrm{E}-04$	19.50 . 604693	54.00	. 470841
METH $=2$	21.00 .594856	55.50	. 467518
MITER $=2$	22.50 . 585650	57.00	. 464313
DTINTT $=.100000 \mathrm{E}-$	24.00 .577007	58.50	. 461220
49	25.50 . 568869	60.00	. 458235
DTOUT =	27.00 .561189	61.50	. 455352
.150000E+01	28.50 . 553924	63.00	. 452565
TFINAL =	30.00 .547038	64.50	. 449873
.240000E+03	31.50 . 540501	66.00	. 447270

67.50	. 444752	126.00	. 388671	184.50	. 370574
69.00	. 442317	127.50	. 387915	186.00	. 370323
70.50	. 439960	129.00	. 387180	187.50	. 370079
72.00	. 437679	130.50	. 386466	189.00	. 369841
73.50	. 435470	132.00	. 385772	190.50	. 369610
75.00	. 433331	133.50	. 385097	192.00	. 369386
76.50	. 431259	135.00	. 384442	193.50	. 369167
78.00	. 429252	136.50	. 383805	195.00	. 368955
79.50	. 427307	138.00	. 383185	196.50	. 368749
81.00	. 425421	139.50	. 382583	198.00	. 368548
82.50	. 423593	141.00	. 381998	199.50	. 368353
84.00	. 421821	142.50	. 381429	201.00	. 368163
85.50	. 420102	144.00	. 380876	202.50	. 367978
87.00	. 418435	145.50	. 380339	204.00	. 367799
88.50	. 416818	147.00	. 379816	205.50	. 367624
90.00	. 415250	148.50	. 379308	207.00	. 367455
91.50	. 413728	150.00	. 378815	208.50	. 367290
93.00	. 412251	151.50	. 378334	210.00	. 367129
94.50	. 410817	153.00	. 377868	211.50	. 366973
96.00	. 409426	154.50	. 377414	213.00	. 366821
97.50	. 408076	156.00	. 376973	214.50	. 366674
99.00	. 406765	157.50	. 376544	216.00	. 366530
100.50	. 405492	159.00	. 376127	217.50	. 366391
102.00	. 404256	160.50	. 375722	219.00	. 366255
103.50	. 403056	162.00	. 375328	220.50	. 366123
105.00	. 401890	163.50	. 374945	222.00	. 365995
106.50	. 400758	165.00	. 374572	223.50	. 365870
108.00	. 399659	166.50	. 374210	225.00	. 365749
109.50	. 398591	168.00	. 373858	226.50	. 365631
111.00	. 397554	169.50	. 373516	228.00	. 365516
112.50	. 396546	171.00	. 373183	229.50	. 365405
114.00	. 395567	172.50	. 372860	231.00	. 365297
115.50	. 394615	174.00	. 372545	232.50	. 365191
117.00	. 393691	175.50	. 372239	234.00	. 365089
118.50	. 392793	177.00	. 371942	235.50	. 364989
120.00	. 391920	178.50	. 371653	237.00	. 364892
121.50	. 391073	180.00	. 371372	238.50	. 364798
123.00	. 390249	181.50	. 371098	240.00	. 364706
124.50	. 389448	183.00	. 370833	241.50	. 364617

WPH PAC

In:

011 /IPRC,IPRI,IPRO (do not change)	
$1.7411 \mathrm{D}-04$	$04 / \mathrm{C} 0$ (initial concentration in mg / L)
11.5385D-03 /CCONC (carbon concentration in g/l)	
$0.20778 \mathrm{D}-09$ /DS (surface diffusion coefficient in $\mathrm{cm} 2 / \mathrm{min}$)	
$1.000000 \mathrm{D}+13 / \mathrm{XKF}$ (film mass transfer coefficient in $\mathrm{cm} / \mathrm{min}$)	
$4.2080508 \mathrm{D}-2 / \mathrm{XK}$ (Freundlich K value in (mg/g)(ug/l)^-1/n)	
0.3592	/XN (Freundlich 1/n)
5.0D-04	/RADP (particle radius in cm)
0.74D0	/RHOP (particle density in g/cm3) (do not change for PAC)
10	NCP (do not change)
0.1D-04 2	22 TOOL,METH,MITER (do not change)
1.0D-50	/DTINIT (do not change)
1.5D0	/DTOUT (time increment in min)
240.000D0	0 /TFINAL (final time in min)
10000	/ITMAX (do not change)

Out:

$\mathrm{C} 0=.174110 \mathrm{E}-03$	NULL	33.00	. 438869
CCONC $=.115385 \mathrm{E}-$. 001.000000	34.50	. 431434
01	1.50 . 836167	36.00	. 424331
$C D=.148837 \mathrm{E}+01$	3.00 .776214	37.50	. 417538
	4.50 .733108	39.00	. 411032
DS $=.20778 \mathrm{E}-09$	6.00 .698727	40.50	. 404795
$\mathrm{XKF}=.10000 \mathrm{E}+14$	7.50 . 669845	42.00	. 398809
$\mathrm{BIOT}=.25210 \mathrm{E}+15$	9.00 .644837	43.50	. 393060
RADP $=.50000 \mathrm{E}-03$	10.50 . 622742	45.00	. 387531
RHOP $=.74000 \mathrm{E}+00$	12.00 .602937	46.50	. 382212
$\mathrm{XK}=.50313 \mathrm{E}+00$	13.50 . 584986	48.00	. 377089
$\mathrm{XN}=.35920 \mathrm{E}+00$	15.00 .568575	49.50	. 372152
TFAC $=.83112 \mathrm{E}-03$	16.50 . 553467	51.00	. 367392
NTOT $=11$	18.00 .539479	52.50	. 362798
TOL $=.100000 \mathrm{E}-04$	19.50 . 526464	54.00	. 358362
METH $=2$	21.00 .514303	55.50	. 354078
MITER $=2$	22.50 .502901	57.00	. 349935
DTINTT $=.100000 \mathrm{E}-$	24.00 .492178	58.50	. 345929
49	25.50 . 482064	60.00	. 342052
DTOUT =	27.00 .472503	61.50	. 338299
. $150000 \mathrm{E}+01$	28.50 . 463444	63.00	. 334664
TFINAL =	30.00 . 454843	64.50	. 331141
. $240000 \mathrm{E}+03$	31.50 . 446662	66.00	. 327726

67.50	. 324414	126.00	. 245713	184.50	. 213744
69.00	. 321200	127.50	. 244517	186.00	. 213216
70.50	. 318081	129.00	. 243348	187.50	. 212698
72.00	. 315053	130.50	. 242204	189.00	. 212190
73.50	. 312111	132.00	. 241085	190.50	. 211693
75.00	. 309253	133.50	. 239990	192.00	. 211205
76.50	. 306476	135.00	. 238919	193.50	. 210727
78.00	. 303776	136.50	. 237872	195.00	. 210259
79.50	. 301151	138.00	. 236846	196.50	. 209799
81.00	. 298597	139.50	. 235843	198.00	. 209349
82.50	. 296112	141.00	. 234861	199.50	. 208907
84.00	. 293694	142.50	. 233900	201.00	. 208474
85.50	. 291340	144.00	. 232959	202.50	. 208050
87.00	. 289048	145.50	. 232038	204.00	. 207633
88.50	. 286815	147.00	. 231137	205.50	. 207225
90.00	. 284641	148.50	. 230254	207.00	. 206825
91.50	. 282521	150.00	. 229390	208.50	. 206433
93.00	. 280456	151.50	. 228544	210.00	. 206048
94.50	. 278443	153.00	. 227715	211.50	. 205671
96.00	. 276480	154.50	. 226904	213.00	. 205301
97.50	. 274566	156.00	. 226109	214.50	. 204938
99.00	. 272699	157.50	. 225331	216.00	. 204583
100.50	. 270877	159.00	. 224569	217.50	. 204234
102.00	. 269100	160.50	. 223822	219.00	. 203892
103.50	. 267365	162.00	. 223091	220.50	. 203557
105.00	. 265672	163.50	. 222375	222.00	. 203228
106.50	. 264020	165.00	. 221673	223.50	. 202906
108.00	. 262406	166.50	. 220986	225.00	. 202589
109.50	. 260830	168.00	. 220313	226.50	. 202279
111.00	. 259291	169.50	. 219653	228.00	. 201975
112.50	. 257788	171.00	. 219007	229.50	. 201677
114.00	. 256320	172.50	. 218374	231.00	. 201384
115.50	. 254886	174.00	. 217753	232.50	. 201097
117.00	. 253484	175.50	. 217145	234.00	. 200816
118.50	. 252114	177.00	. 216549	235.50	. 200540
120.00	. 250775	178.50	. 215965	237.00	. 200269
121.50	. 249466	180.00	. 215393	238.50	. 200004
123.00	. 248187	181.50	. 214832	240.00	. 199744
124.50	. 246937	183.00	. 214283		

Cecarbon PAC

In:
011 IPRC,IPRI,IPRO (do not change)
1.7024D-04 /C0 (initial concentration in mg / L)
11.5385D-03 /CCONC (carbon concentration in g/l)
$0.172720 \mathrm{D}-09 \mathrm{DS}$ (surface diffusion coefficient in $\mathrm{cm} 2 / \mathrm{min}$)
1.000000D+13 XKF (film mass transfer coefficient in $\mathrm{cm} / \mathrm{min}$)
6.3553424D-2 XK (Freundlich K value in $\left.(\mathrm{mg} / \mathrm{g})(\mathrm{ug} / \mathrm{l})^{\wedge}-1 / \mathrm{n}\right)$
0.3956 /XN (Freundlich 1/n)
5.0D-04 /RADP (particle radius in cm)
0.74D0 RHOP (particle density in $\mathrm{g} / \mathrm{cm} 3$) (do not change for PAC)

10 NCP (do not change)
0.1D-04 22 /TOL,METH,MITER (do not change)
1.0D-50 /DTINT (do not change)
1.5D0 /DTOUT (time increment in min)
240.000D0 TFINAL (final time in min) 10000 ЛTMAX (do not change)

Out:

$\mathrm{C} 0=.170240 \mathrm{E}-03$	NULL	33.00	. 331793
CCONC $=.115385 \mathrm{E}-$. 001.000000	34.50	. 324288
01	$1.50 \quad .789472$	36.00	. 317168
$C D=.213813 \mathrm{E}+01$	$3.00 \quad .715149$	37.50	. 310402
	4.50 .662451	39.00	. 303966
DS $=.17272 \mathrm{E}-09$	6.00 .621069	40.50	. 297836
$\mathrm{XKF}=.10000 \mathrm{E}+14$	7.50 . 586787	42.00	. 291990
$\mathrm{BIOT}=.21111 \mathrm{E}+15$	9.00 . 557465	43.50	. 286410
RADP $=.50000 \mathrm{E}-03$	10.50 . 531856	45.00	. 281078
RHOP $=.74000 \mathrm{E}+00$	12.00 .509146	46.50	. 275979
$\mathrm{XK}=.97710 \mathrm{E}+00$	13.50 . 488779	48.00	. 271097
$\mathrm{XN}=.39560 \mathrm{E}+00$	15.00 .470345	49.50	. 266420
TFAC $=.69088 \mathrm{E}-03$	16.50 . 453537	51.00	. 261936
NTOT $=11$	18.00 . 438118	52.50	. 257632
$\mathrm{TOL}=.100000 \mathrm{E}-04$	19.50 . 423902	54.00	. 253499
METH $=2$	21.00 .410737	55.50	. 249527
MITER $=2$	22.50 . 398499	57.00	. 245706
DTINTT $=.100000 \mathrm{E}-$	24.00 .387083	58.50	. 242030
49	25.50 . 376403	60.00	. 238491
DTOUT =	27.00 . 366385	61.50	. 235080
. $150000 \mathrm{E}+01$	28.50 . 356966	63.00	. 231792
TFINAL =	30.00 . 348093	64.50	. 228622
. $240000 \mathrm{E}+03$	31.50 . 339715	66.00	. 225563

Calgon F-300 (virgin)

(F-S)MODEL MIB Virgin 125 day isotherm pseudo single solute data and $\mathrm{Ce}=$ to Cinf Hg skeletal density
0.0033 / A K ((mg/g)(L/ug)**(1/n))
0.7459 /B 1/n
0.05329 / C0 Co influent concentration (ug/L)

12 / IR0 Initial division parameter, more than 10 recommended
0.3614 / U Approach velocity (cm/min)
0.1545 / DIA Diameter of adsorbent (cm)- Ave for 12×14 size fraction is 0.1545
cm
0.7912 / RS Apparent particle density of adsorbent (g/cm**3)
0.5323 /RB Bulk density of bed ($\mathrm{g} / \mathrm{cm}^{* * 3 \text {) }}$
3.9013400E-04 / AKF Kf film transfer coefficient ($\mathrm{cm} / \mathrm{sec}$)
1.6257934E-06 / DS Surface diffusion coefficient (cm**2/sec)
0.00 / DB Dispersion coeffisient of flow through bed ($\mathrm{cm}^{* *} 2 / \mathrm{sec}$)
1.00E-05 / DELT initial time step (hr) DTMIN
0.101 / DELTMX Maximum time step (hr)

DTMAX $=$ MIN(DTMAX,DTMIN* $10 *$ N)
51.6000 / TEND Total run time (hr)
0.1 / DELZ Initial difference of bed depth (cm)
$1.20 \quad /$ ZEND Total bed depth (cm)
1.0 / DTUBE Diameter of column (cm)

10 / IITM Frequency of output eg. 10 means 1 out of 10 time-steps
32 / NDATA Number of experimental data // less than 10 ignored
50.00 0.00699742 / TDATAI(I) CDI(I) Time(min) Conc.(ug/L)
55.000 .006179173 / TDATAI(I) CDI(I) Time(min) Conc.(ug/L)
60.00 0.00738303 / TDATAI(I) CDI(I) Time(min) Conc.(ug/L)
65.000 .006574189 / TDATAI(I) CDI(I) Time(min) Conc.(ug/L)
73.00 0.00597226 / TDATAI(I) CDI(I) Time(min) Conc.(ug/L)
80.000 .006931584 / TDATAI(I) CDI(I) Time(min) Conc.(ug/L)
$85.00 \quad 0.006160363$
$90.00 \quad 0.005191634$
270.000 .007721615
342.000 .008784395
462.000 .008784395
707.000 .009442754
952.000 .008483431
959.000 .00965437
964.000 .008596292
$1062.00 \quad 0.008869041$

1187.00	0.009668478
1427.00	0.0080602
1507.00	0.009282867
1795.00	0.008244493
1800.00	0.008640473
1842.00	0.010721902
2174.00	0.009645651
2534.00	0.008802926
2539.00	0.010204083
2546.00	0.010061937
2683.00	0.00799066
2688.00	0.009879177
3027.00	0.009706571
3032.00	0.007980507
3086.00	0.008354069
3091.00	0.008714404

Calgon F-300 (1 year preload)

(F-S)MODEL MIB Hammond 125 day isotherm pseudo single solute data and $\mathrm{Ce}=$ to Cinf Hg skeletal density
0.00825 / A K ((mg/g)(L/ug)**(l/n))
0.6471 /B 1/n
0.02509 / C0 Co influent concentration (ug/L)

12 / IR0 Initial division parameter, more than 10 recommended
0.3671 /U Approach velocity ($\mathrm{cm} / \mathrm{min}$)
0.1545 / DIA Diameter of adsorbent (cm)- Ave for 12×14 size fraction is 0.1545
cm
0.9827 / RS Apparent particle density of adsorbent ($\mathrm{g} / \mathrm{cm}^{* *} 3$)
0.5653 / RB Bulk density of bed ($\mathrm{g} / \mathrm{cm}^{* * 3 \text {) }}$
2.9514371E-04 / AKF Kf film transfer coefficient ($\mathrm{cm} / \mathrm{sec}$)
$1.3153105 \mathrm{E}-011$ / DS Surface diffusion coefficient ($\mathrm{cm}^{* * 2 / \mathrm{sec} \text {) }) ~}$
0.00 / DB Dispersion coeffisient of flow through bed (cm**2/sec)
1.00E-05 / DELT initial time step (hr) DTMIN
0.101 / DELTMX Maximum time step (hr)

DTMAX $=$ MIN(DTMAX,DTMIN* 10 *N)
45.000 / TEND Total run time (hr)
0.1 / DELZ Initial difference of bed depth (cm)
1.15 / ZEND Total bed depth (cm)
1.0 / DTUBE Diameter of column (cm)

10 / IITM Frequency of output eg. 10 means 1 out of 10 time-steps

30	/ NDATA	umber of experimental data //	ess than 10 ignored
154	0.008255592	$/$ TDATAI($)$ CDI(I) Time(min)	Conc.(ug/L)
162	0.009050663	$/$ TDATAI ($)$ CDI(1) Time(min)	Conc.(ug/L)
184	0.006832832	$/$ TDATAI(I) CDI(I) Time(min)	Conc.(ug/L)
214	0.009020773	$/$ TDATAI(${ }^{\text {l }}$ CDI(I) Time(min)	Conc.(ug/L)
626	0.010509291	$/$ TDATAI($)$ CDI(1) Time(min)	Conc.(ug/L)
634	0.009349562	$/$ TDATAI($)$ CDI(I) Time(min)	Conc.(ug/L)
664	0.011011441	$/$ TDATAI(${ }^{\text {c }}$ CDI(I) Time(min)	Conc.(ug/L)
694	0.014096079	$/$ TDATAI($)$ CDI(I) Time(min)	Conc.(ug/L)
1144	0.010180502	$/$ TDATAI(${ }^{\text {l }}$ CDI(I) Time(min)	Conc.(ug/L)
1204	0.011131001	$/$ TDATAI(${ }^{\text {c }}$ CDI(I) Time(min)	Conc.(ug/L)
1234	0.011346208	$/$ TDATAI($)$ CDI(1) Time(min)	Conc.(ug/L)
1384	0.011537503	$/$ TDATAI(I) CDI(I) Time(min)	Conc.(ug/L)
1464	0.011011441		
1504	0.012135302		
1534	0.012565716		
1594	0.012535826		
1624	0.012697232		
1999	0.011612756		
2014	0.011836403		
2044	0.013462413		
2104	0.013396656		
2119	0.012039654		
2134	0.012470069		
2584	0.012434201		
2592	0.012571694		
2604	0.013862938		
2634	0.013229272		
2674	0.013731423		
2704	0.013426545		
2824	0.013031999		

Calgon F-300 (2 year preload)
(F-S)MODEL MIB michigan city 125 day isotherm pseudo single solute data and $\mathrm{Ce}=$ to Cinf Hg skeletal density

```
0.01131 / A K ((mg/g)(L/ug)**(1/n))
0.5882 / B l/n
0.05167 / C0 Co influent concentration (ug/L)
    12 / IR0 Initial division parameter, more than }10\mathrm{ recommended
0.3686 /U Approach velocity (cm/min)
```


Appendix D (Computer Models)

EBC: EQUILIBRIUM PARAMETER SEARCH COMPUTER PROGRAM

C PROGRAM EBCM

C
C This program incorporates data from several isotherms to determine the
C Freundlich parameters for the EBC.
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
REAL*8 MWS(10),MCS(10,50)
CHARACTER*16 INPUT(10),OUTPUT
C
COMMON PARS(50),QS(10,3,50),CES($10,3,50$),
\& $\mathrm{XKS}(10), \mathrm{XNS}(10), \mathrm{CO}(10,10)$,
\& MCS,VS(10,50),NDS(10),NCS(10),SSQ,IPS(4),MWS,NDSETS
C
COMMON /BLOCK2/QD(10,3,50),CD(10,3,50),CMEAN,ERRREL,ITMAX
C
DIMENSION X(30),XGUESS(30),XSCALE(30),FSCALE(500),
\& IPARAM(6),RPARAM(7),FVEC(500),FJAC(500,30),FDD(500)
C
EXTERNAL FCN,LSJAC,DNEQBJ,DU4LSF
EXTERNAL FS
C
ERRREL $=0.001$
ITMAX $=100$
C
OPEN(UNIT = $\left.1, F I L E={ }^{\prime} E B C . N^{\prime}, S T A T U S=' O L D '\right)$
C
$\mathrm{K}=0$
5 CONTINUE
$K=K+1$
C ***
C Read in the name of the data file

$\operatorname{READ}(1,1000)$ INPUT(K)
IF (INPUT(K).NE.'NULL') THEN
NDSETS=K
GOTO 5
ELSE
C ***
C Name of output file
C **
READ $(1,1000)$ OUTPUT
C $\operatorname{READ}(1, *)(\operatorname{IPS}(I), I=1,4)$
ENDIF
C
DO 101 $I=1,4$
$\operatorname{IPS}(1)=1$

```
    101 CONTINUE
C
    WRITE(*,*)' YOUR INPUT DATA FILES ARE:'
    WRITE(*,*) (INPUT(JJ),JJ=1,NDSETS)
    WRITE(*,*)' YOUR OUTPUT DATA FILE IS:'
    WRITE(***)OUTPUT
C
    DO45 JJ=I,NDSETS
C
    OPEN(JJ,FILE=INPUT(JJ),STATUS='OLD')
C
    READ (JJ,*) NDS(JJ),NCS(JJ)
    DO 20 [=1,NDS(JJ)
        READ (JJ,*) MCS(JJ,I),VS(JJ,I),(CES(JJ,J,I),J=1,NCS(JJ))
        MCS(JJ,I)=MCS(JJ,I)/1000.0D0
        VS(JJ,I)=VS(JJ,I)/1000.0D0
    20 CONTINUE
C
            DO 40 I= I,NCS(JJ)
                IF(JJ.EQ.I) THEN
                READ (JJ,*) XKS(I),XNS(I),C0(JJ,I),MWS(I)
                XKS(I)=XKS(I)*(1000.0D0/MWS(I))*
    & MWS(I)**XNS(I)
            XNS(I)=1.0D0/XNS(I)
            ELSE
            READ (JJ,*) DUMXKS,DUMXNS,C0(JJ,I),DUMMWS
            ENDIF
            C0(JJ,I)=C0(JJ,I)/MWS(I)
            DO 30 J=1,NDS(JJ)
                CES(JJ,I,J)=CES(JJ,I,J)/MWS(I)
                QS(JJ,I,J)=(C0(JJ,I)-CES(JJ,I,J)*VS(JJ,J)/MCS(JJ,J)
                CEQ=CES(JJ,I,J)*MWS(I)
                QEQ=QS(JJ,I,J)*MWS(I)/1000
                WRITE(*,*) CEQ,QEQ
    30 CONTINUE
    40 CONTINUE
C
    45 CONTINUE
C
        [=2
        NDAT=0
        CMEAN=0
        DO 46 JJ=l,NDSETS
            NDAT=NDAT+NDS(JJ)
            DO 31 J=1,NDS(JJ)
            CMEAN=CMEAN+CES(JJ,I,J)
    3! CONTINUE
    46 CONTINUE
        CMEAN=CMEAN/NDAT
C
    OPEN (NDSETS+1,FILE=OUTPUT,STATUS='OLD')
C WRITE (NDSETS+1,*) (XKS(1),I=1,NCS(1))
C WRITE (NDSETS+1,*) (XKS(T),I=1,NCS(2))
C WRITE (NDSETS+1,*)(QS(1,2,I),I=1,NDS(1))
```

```
C WRITE (NDSETS+1,*) (QS(2,2,I),I=1,NDS(2))
C
    K=0
    PARS(1)=XKS(1)
    IF(IPS(I).EQ. I) THEN
            K=K+1
            XGUESS(K)=PARS(1)
            XGUESSI=XGUESS(K)/
    & ((1000.0/MWS(1))*MWS(1)**(1.0/XNS(1)))
            WRITE(*,*)' PARAMETER #',K,' = K ','; IG:',XGUESSI
    WRITE(NDSETS+I,*)'PARAMETER #',K,' == K '', ; IG: ',XGUESS!
    END IF
C
    PARS(2)=XNS(1)
    IF(IPS(2) .EQ. I) THEN
        K=K+1
        XGUESS(K)=PARS(2)
        XGUESS2=1.0/XGUESS(K)
        WRITE(*,*)' PARAMETER #',K,' = 1/n','; ; IG: ',XGUESS2
    WRITE(NDSETS+1,*) 'PARAMETER # ',K,' = l/n','; IG: ',XGUESS2
    END IF
C
    PARS(3)=CO(1,1)
    IF(IPS(3) .EQ. 1) THEN
        K=K+1
        XGUESS(K)=PARS(3)
        XGUESS3=XGUESS(K)*MWS(1)
        WRITE(*,*)' PARAMETER # ',K,' = Co',' ; IG: ',XGUUESS3
    WRITE(NDSETS+I,*) 'PARAMETER # ',K,' == Co',' ; IG: ',XGUESS3
    END IF
C
    N=K
    M=0
    DO 70 JJ=1,NDSETS
        M=M+NDS(JJ)
    7 0 ~ C O N T I N U E ~
C WRITE (NDSETS+1,*) (XGUESS(I),I=1,N)
    WRITE (NDSETS+1,*) N,M
    WRITE (*,*) N,M
C
C Call to the search routine
C ******************************************************************
    DO 150 [=1,N
        XSCALE(I)=1.0D0
    150 CONTINUE
        DO 160 J=1,M
            FSCALE(J)=1.0D0
    160 CONTINUE
        LDFJAC=M
C
    XGUESS(1)=XGUESS(1)
    XGUESS(2)=XGUESS(2)**2
    XGUESS(3)=XGUESS(3)
C
```

```
    CALL DU4LSF(IPARAM,RPARAM)
    IPARAM(3)=400
    [PARAM(4)=2500
C
    CALL DUNLSF(FCN,M,N,XGUESS,XSCALE,FSCALE,
    & IPARAM,RPARAM,X,FVEC,FJAC,LDFJAC)
C
    CALL FCN(M,N,X.FDD)
C
C *****************************************************************
C Send results to output file
C
    X(1)=(ABS(X(I)))
    X(2)=(ABS(X(2)))**0.5
    X(3)=(ABS(X(3)))
C
    WRITE(NDSETS+1,1000) 'EBC'
    K=0
    IF (IPS(I).EQ.I) THEN
        K=K+1
        XKOUT=X(K)/
    & ((1000.0/MWS(1))*MWS(1)**(1.0/XNS(1)))
        ELSE
        XKOUT=PARS(1)/
    & ((1000.0/MWS(1))*MWS(1)**(1.0/XNS(1)))
    ENDIF
        WRITE (NDSETS+1,1003) XKOUT
C
    IF (IPS(2).EQ.I) THEN
        K=K+1
        XNOUT=I.0D0/X(K)
    ELSE
        XNOUT=1.0D0/PARS(2)
    ENDIF
    WRITE (NDSETS+1,1004) XNOUT
C
    IF (IPS(3).EQ.1) THEN
        K=K+1
        C0OUT=X(K)*MWS(1)
    ELSE
        C0OUT=PARS(3)*MWS(1)
    ENDIF
    WRITE (NDSETS+1,1005) C0OUT
    WRITE (NDSETS+1,1001) MWS(1)
C
    WRITE(NDSETS+1,1000) 'TARGET COMPOUND'
    XKOUT2=XKS(2)/
    & ((1000.0/MWS(2))*MWS(2)**(1.0/XNS(2)))
    XNOUT2=1.0/XNS(2)
    WRITE (NDSETS+1,1003) XKOUT2
    WRITE (NDSETS+1,1004) XNOUT2
    DO 249 JJ=1,NDSETS
    C0OUT2=C0(JJ,2)*MWS(2)
    WRITE (NDSETS+1,1005) C0OUT2
```

```
    2 4 9 ~ C O N T I N U E ~
    WRITE (NDSETS+1,1001) MWS(2)
C
    DO 248 JJ=1,NDSETS
    WRITE (NDSETS+l,1002) INPUT(JJ)
    248 CONTINUE
C
            WRITE(NDSETS+1,*)'no, Q-obs Q-cal '
            & ,'C-obs C-cal AC-dose'
            DO 250 JJ=1,NDSETS
            DO 200 J=1,NDS(JJ)
                Q =QS(JJ,2,J*MWS(2)/1000.0
                QOUT=QD(JJ,2,J*MWS(2)/1000.0
            CEQ=CES(JJ,2,J)*MWS(2)
            XMCSJ=MCS(JJ,J)*1000.0
            CEQOUT=CD(JJ,2,J)*MWS(2)
            WRITE (NDSETS+I,1006) J,Q,QOUT,CEQ,CEQOUT,XMCSJ
200 CONTINUE
250 CONTINUE
C
            DO 210 I= I,M
            WRITE (NDSETS+1,1007) I,FVEC(I)
    210 CONTTNUE
C
            WRITE (NDSETS+1,1008) SSQ
C
l000 FORMAT(A)
1001 FORMAT(IX,'MW = ',E17.8,' g/mol')
1002 FORMAT(IX,A20)
l003 FORMAT(IX,'K = ',El7.8,'(mg/g)(ug/L)^-I/n')
1004 FORMAT(IX,' 1/n = ',E17.8)
I005 FORMAT(IX,'C0 = ',E17.8,' ug/L')
1006 FORMAT(IX,'Q(',I2,') = ',E10.4,E10.4,' mg/g'
    & ,El0.4,El0.4,'ug/l',E10.4,' mg/l')
1007 FORMAT(1X,'F(',I2,') = ',E14.5)
I008 FORMAT(IX,'Error sum of squares = ',E14.5)
C
    STOP ' all done'
    END
C
C **********************************************************************
C This subroutine evaluates the function that defines the least
C squares problem
C
    SUBROUTINE FCN(M,N,X,F)
C
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
    REAL*8 MW(10),XMC(10,50)
C
    COMMON PAR(50),Q(10,3,50),CES(10,3,50),
    & XK(10),XN(10),CO(10,10),
    & XMC,V(10,50),ND(10),NC(10),SSQ,IPS(4),MW,NDSETS
C
    COMMON /BLOCKI/JJ,J,K
```

```
    COMMON /BLOCK2/QD(10,3,50),CD(10,3,50),CMEAN,ERRREL,ITMAX
C
    DIMENSION F(M),X(N)
    & ,XI(10),XIGUESS(10),XIGI(10),XIG2(10)
    DIMENSION QQ(10),QQD(2),FF(2)
C
    DIMENSION XSCALE(2),FSCALE(2)
    & ,IPARAM(6),RPARAM(5),FVEC(2)
    EXTERNAL FCNIAS,LSJAC,DNEQBJ,DZBREN
    EXTERNALFS
C
    DATA ICALL/0/
C
C WRITE(*,*) 'FCN IN DUNLSF'
    ICALL=ICALL+I
C *****************************************************************
C If trouble, limit the parameters to the smallest value of 10D-30
C
C
    XI=(ABS(X(1)))
    X2=(ABS(X(2)))**0.5
    X3=(ABS(X(3)))
C
    IF (X1.LT.0.000001) XI=0.000001
    IF (X2.LT.0.01) X2=0.01
    IF (X3.LT.0.000001) X3=0.000001
C
    IF (IPS(1).EQ.I) XK(1)=X1
    IF (IPS(2).EQ.1) XN(1)=X2
    IF (IPS(3).EQ.1) THEN
    DO 117 JJ=1,NDSETS
    C0(JJ,1) =X3
    117 CONTINUE
    ENDIF
    Xll=X1/
    & ((1000.0/MW(1))*MW(1)**(1.0/X2))
    X22=1.0/X2
    X33=X3*MW(1)
    WRITE(*,*) X11,X22,X33
C
    [=0
    DO 115 JJ=1,NDSETS
        NN=NC(J)
        DO 110 J=1,ND(JJ)
        I=I+1
C
        DO 100 K=1,NN
        QMAXI = C0(JJ,K)*V(JJ,\)/XMC(JJ,J)
        QMAX2 = XK(K)*CO(JJ,K)**(1.0/XN(K))
            IF(QMAX1.LE.QMAX2) THEN
            QMAX=QMAXI
            ELSE
            QMAX=QMAX2
            ENDIF
```

```
    QEST=QMAX*1.0000I
    QMIN=0
    EABS=0
    EREL=0.002
    MAXFN=100
    C
    C WRITE(**) JJ,J,K,QEST
    C WRITE(*,*) FI,F2
    C WRITE(*,*) CO(JJ,K),V(IJ,J),XMC(JJ,J)
    C WRITE(*,*) XK(K),XN(K)
    CALL DZBREN(FS,EABS,EREL,QMIN,QEST,MAXFN)
        WRITE(*,*) JJ,J,K,QEST
    QQ(K)=QEST
    100 CONTINUE
C
C
C
    KMAX=1000
    PD=1.1
    MR=1
    FMAX=1.0D99
C
    FMINI=FMAX
    NFLG=0
    DO 202 K2=1,KMAX
        QQD(2)=QQ(2)/PD**(K2-1)
        FABS=FMAX
        DO 203 Kl=1,KMAX
        QQD(1)=QQ(1)/PD**(KI-1)
        CALL FCNLAS(NN,QQD,FF)
        FABSB=FABS
        FABS=(FF(1)/C0(JJ,1))**2
            +(FF(2)/C0(JJ,2))**2
                FABS=DABS(FF(1))+DABS(FF(2))
        IF(FABS.LT.FMINI) THEN
            FMINI=FABS
        XIGl(1)=QQD(1)
        XIGl(2)=QQD(2)
        KIl=Kl
        K22=K2
        NFLG=1
        ELSE
            IF(FABS.GT.FABSB) GO TO 205
        ENDIF
        CONTINUE
        IF(K2-K22.GE.MR.AND.NFLG.EQ.I) GO TO 204
        CONTINUE
        CONTINUE
        FMIN2=FMAX
C GO TO 304
    NFLG=0
    DO 302 KI=I,KMAX
```

```
            QQD(1)=QQ(1)/PD**(Kl-1)
            FABS=FMAX
            DO 303 K2=1,KMAX
            QQD(2)=QQ(2)/PD**(K2-1)
            CALL FCNIAS(NN,QQD,FF)
            FABSB=FABS
            FABS=(FF(1)/C0(JJ,1))**2
                +(FF(2)/C0(JJ,2))**2
                FABS=DABS(FF(1))+DABS(FF(2))
            IF(FABS.LT.FMIN2) THEN
                FMIN2=FABS
                XIG2(1)=QQD(1)
                XIG2(2)=QQD(2)
                Kll=Kl
                K22=K2
                NFLG=1
            ELSE
                IF(FABS.GT.FABSB) GO TO 305
                ENDIF
            CONTINUE
            IF(KI-KII.GE.MR.AND.NFLG.EQ.I) GO TO 304
                CONTINUE
                CONTINUE
            IF(FMINI.LT.FMNN2) THEN
                XIGUESS(1)=XIGl(1)
                XIGUESS(2)=XIGI(2)
            ELSE
            XIGUESS(1)=XIG2(1)
            XIGUESS(2)=XIG2(2)
            ENDIF
C
C WRITE(*,*) JJ,J,(QQ(K),K=I,NN),' QQ'
C WRITE(**)K1l,K22,' kl, k2'
C WRITE(*,*) JJ,J,(XIGUESS(K),K=I,NN),' XIG'
C CALL DNEQNJ(FCNIAS,LSJAC,ERRREL,NN,ITMAX,XIGUESS,XI,FNOPM)
    DO 98 K=1,NN
        XSCALE(K)=1.0
        FSCALE(K)=1.0
        CONTINUE
        CALL DN4QBJ(IPARAM,RPARAM)
        IPARAM(l)=0
            WRITE(*,*) IPARAM(3),RPARAM(1),RPARAM(2)
            [PARAM(3)=500
            RPARAM(1)=0.0D0
            RPARAM(2)=0.0D0
            CALL DNEQBJ(FCNIAS,LSJAC,NN,XIGUESS
    & ,XSCALE,FSCALE,IPARAM,RPARAM,XI,FVEC)
        CALL DNEQBF(FCNLAS,NN,XIGUESS
C & ,XSCALE,FSCALE,IPARAM,RPARAM,XI,FVEC)
C
C WRITE(*,*) JJ,J,(XI(K),K=1,NN)
C
```

```
        DO 103 K=1,NN
        QD(JJ,K,J)=XI(K)
        CD(JJ,K,J)=C0(JJ,K)-XMC(JJ,J)/V(JJ,J)*XI(K)
    CONTINUE
C
C QG=Q(JJ,2,J*MW(2)
C QDG=QD(JJ,2,J*MW(2)
C
C ebcml
C F(I)=DABS(DLOG(CES(JJ,2,J))-DLOG(CD(JJ,2,J)))
C & +DABS(DLOG( Q(JJ,2,J))-DLOG(QD(JJ,2,J))
C
C ebcm3
C F(I)=DLOG(CES(JJ,2,J)-DLOG(CD(JJ,2,J))
C ebcm4
C F(I)=(CES(JJ,2,J)-CD(JJ,2,J))/CES(JJ,2,J)**0.5*10
C ebcm5
C F(I)=CES(JJ,2,J)-CD(JJ,2,J)
C ebcm6
C F(I)=(CES(JJ,2,J)-CD(JJ,2,J))
C & /(DLOG(C0(JJ,2)/CES(JJ,2,J)))**0.5
C ebcm7
C F(I)=(CES(JJ,2,J)-CD(JJ,2,J))/CES(JJ,2,J)
C ebcm8
C F(I)=DSQRT(DABS(CES(JJ,2,J)-CD(JJ,2,J)))
C ebcm9
C F(I)=(DABS((CES(JJ,2,J)-CD(JJ,2,J))/CES(JJ,2,J)))
C & +(DABS(( Q(JJ,2,J)-QD(JJ,2,J))/Q(JJ,2,J)))
C ebcmlO
C F(I)=DABS(CES(JJ,2,J)-CD(JJ,2,J))
C & *(1.0D0/CES(JJ,2,J)+1.0D0/CMEAN)
C ebcmll
C F(I)=DSQRT((DLOG(CES(JJ,2,J))-DLOG(CD(JJ,2,J)))**2
C & +(DLOG( Q(JJ,2,J))-DLOG(QD(JJ,2,J)))**2 )
C ebcml2
C F(I)=DSQRT( ((CES(JJ,2,J)-CD(JJ,2,J))/CES(JJ,2,J))**2
C & +(( Q(JJ,2,J)-QD(JJ,2,J))/ Q(JJ,2,J))**2)
C ebcml3
C F(I)=DSQRT( (CES(JJ,2,J)-CD(JJ,2,J))**2
C & *(1.0D0/CES(JJ,2,J)**2+1.0D0/CMEAN**2))
C ebcml4
    F(I)=DSQRT(DABS(CES(JJ,2,)-CD(JJ,2,J))
    & *(1.0D0/CES(JJ,2,J)+1.0D0/CMEAN) )
C ebcml5
C F(I)=DSQRT(DABS((CES(JJ,2,J)-CD(JJ,2,J))/CES(JJ,2,J)))
C ebcml6
C F(I)=DSQRT(DABS(DLOG(CES(JJ,2,J))-DLOG(CD(JJ,2,J)))
C ebcml7
C F(I)=DSQRT(DABS(DLOG(CES(JJ,2,J))-DLOG(CD(JJ,2,J))
C & + DABS(DLOG( Q(JJ,2,J))-DLOG(QD(JJ,2,J))))
C ebcml8
C F(I)=DSQRT(DABS((CES(JJ,2,J)-CD(JJ,2,J))/CES(JJ,2,J))
C & + DABS(( Q(JJ,2,J)-QD(JJ,2,J)// Q(JJ,2,J)))
C ebcml9
```

```
C F(I)=DSQRT( DABS(CES(JJ,2,,)-CD(JJ,2,J)
C & *(1.0D0/CES(JJ,2,J)+1.0D0/CMEAN)
C & +DABS((Q(JJ,2,N)-QD(JJ,2,J)/Q(JJ,2,J)))
C ebcm20
C F(I)=DABS((Q(JJ,2,J)-QD(JJ,2,J)/Q(JJ,2,J) )
C ebcm21
C F(l)=DABS(Q(JJ,2,)-QD(JJ,2,J) )
C
C WRITE(*,*) JJ,J,QG,QDG
C WRITE(*,*) JJ,J,I,F(1)
110 CONTINUE
    IIS CONTINUE
C
        SSQ=0
        DO 120 K=1,M
        IF (DABS(F(K)).GT.I.OD-30) THEN
            IF (DABS(F(K)).LT.1.0D30) THEN
                    SSQ=SSQ+F(K)**2.0D0
            ENDIF
        ENDIF
    120 CONTINUE
        SSQ=SSQ/M
    C
        WRITE (*,1009) ICALL, SSQ
    1009 FORMAT(1X,'Iteration No.:',IS,4X,'Error sum of sq. = ',EI4.6)
C
    RETURN
    END
C
C
C This set up the equations that will be solved by the
C subroutine DNEQNF
C The equation is derived from IAST plus Freundlich equations
C for a target compound and a background compound
C
C SUBROUTINE FCNIAS(X,F,N)
    SUBROUTINE FCNIAS(N,X,F)
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
    REAL*8 MW(10),XMC(10,50)
C
    COMMON PAR(50),Q(10,3,50),CES(10,3,50),
    & XK(10),XN(10),CO(10,10),
    & XMC,V(10,50),ND(10),NC(10),SSQ,IPS(4),MW,NDSETS
C
    COMMON/BLOCKI/JJ,J,KK
C
    DIMENSION X(N),F(N)
C
    QS=X(1)+X(2)
    QNS=XN(1)*X(1)+XN(2)*X(2)
C
    DO 1000 I= l,N
        F(I)=C0(JJ,I)-X(I)*XMC(J,,)/v(JJ,J)
    & -X(I)/QS*(QNS/XN(I)/XK(I))** XN(1)
```

```
C WRITE(*,*) JJ,I,,X(I),F(I),'F
    1000 CONTINUE
C
    RETURN
    END
C *****************************************************************
C This set up the equations that will be solved by the
C subroutine DNEQNF
C The equation is derived from IAST plus Freundlich equations
C for a target compound and a background compound
C *********************************************************************
C SUBROUTINE LSJAC(N,X,FJAC)
    SUBROUTINE LSJAC(N,X,FJAC,LDFJAC)
C
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
    REAL*8 MW(10),XMC(10,50)
    INTEGER N,I.J
C
C DIMENSION X(N),FJAC(N,N)
    DIMENSION X(N),FJAC(LDFJAC,*)
C
    COMMON PAR(50),Q(10,3,50),CES(10,3,50),
    & XK(10),XN(10),CO(10,10),
    & XMC,V(10,50),ND(10),NC(10),SSQ,IPS(4),MW,NDSETS
C
    COMMON /BLOCKI/JJ,J,KK
C
    QS=X(1)+X(2)
    QNS=XN(1)* X(1)+XN(2)* X(2)
C
    DO 1000 [=1,N
        XNI=XN(I)
        XKI=XK(I)
        XI=X(I)
        DO 1100 K=I,N
        IF(I.NE.K) THEN
            FJAC(I,K)=XI/QS**2*(QNS/XNI/XKI)**XNI
    & -(XI*XNI* XN(K)/QS)
    & *QNS**(XNI-1.0)/(XNI*XKI)**XNI
            ELSE
            FJAC(I,K)=-XMC(JJ,J)/V(JJ,J)
    & -1.0/QS*(QNS/XNI/XKI**XNI
    & +(XI/QS**2)*(QNS/XNI/XKI)**XNI
    & -(XI*XNI**2/QS)
    & *QNS**(XNI-1.0)/(XNI*XKI)**XNI
        ENDIF
C WRITE(*,*) [,J,FJAC(I,K),'JAC'
C FJAC(I,K)=FJAC(I,K)*0.5
    1100 CONTINUE
    1000 CONTINUE
C
    RETURN
    END
```


C

REAL*8 FUNCTION FS(X)

C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
[NTEGER JJ,J,KK
REAL*8 MW(10),XMC(10,50$)$
C
COMMON PAR(50),Q(10,3,50),CES(10,3,50),
\& $\quad \mathrm{XK}(10), \mathrm{XN}(10), \mathrm{CO}(10,10)$,
\& XMC,V(10,50),ND(10),NC(10),SSQ,IPS(4),MW,NDSETS
C
COMMON /BLOCK 1/JJ,J,KK
C
$\mathrm{FS}=\mathrm{CO}(\mathrm{JJ}, \mathrm{KK})-\mathrm{X} * \mathrm{XMC}(\mathrm{JJ}, \mathrm{J}) / \mathrm{V}(\mathrm{JJ}, \mathrm{J})$
\& $\quad-(\mathrm{X} / \mathrm{XK}(\mathrm{KK}))^{* *} \mathrm{XN}(\mathrm{KK})$
C WRITE $\left({ }^{*},{ }^{*}\right)$ JJ,J,FS,' FSINGL'
C
RETURN
END

IAST: EQUILIBRIUM EQUATION SOLVING COMPUTER PROGRAM

```
C [AST PREDICTION
C 'IASTM.FOR'
C
C This program solves the Freundlich-type ideal adsorbed solution
C theory for a closed multi-solute equilibrium system, given the
C single solute isotherm constants, the carbon dosage, the
C solution volume.
C***********************************************************************
C
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
    INTEGER ITMAX, N, MAXFN
    REAL*8 ERRREL
    REAL*8 LSJAC, X(10), XGUESS(10),XG1(10),XG2(10)
C
    EXTERNAL FCNIAS,LSJAC,DNEQNJ,F
C
    INTEGER NC.ND,I
    DIMENSION Q(10,50),C(10,50)
    REAL*8 MW(10),M(50),K(10),V(50),CO(10),XN(10)
C
    DIMENSION IPARAM(6), RPARAM(5)
    & , XSCALE(2), FSCALE(2), FVEC(2)
    REAL*8 QQD(2),FF(2)
C
    CHARACTER CHAR(10)*80
    COMMON PAR(50)
    COMMON /BI/I
C
C Open files and read input data
C
    OPEN (9, FILE = 'DATA.IN', STATUS = 'OLD')
    OPEN (10, FILE ='DATA.OUT, STATUS = 'OLD')
    READ (9,*) NC, ND
    DO 15I = 1, ND
        READ (9,*) M(I), V(I)
        M(I) = M(I)/1000.0D0
        V(I)=V(I)/1000.0D0
15 CONTINUE
    DO 20 I = 1,NC
        READ (9,16) CHAR(I)
16 FORMAT (Al0)
        READ (9,*) K(I), XN(I), CO(I), MW(I)
        WRITE (*,*) K(I),XN(I),CO(I),MW(I)
        K(I)=K(I)*(1000.0/MW(I))*MW(I)**XN(I)
        CO(I)=CO(I)/MW(I)
        XN(I) = I/XN(I)
20 CONTINUE
C
C Solve each dosage individually
C
```

```
    DO 100 J = 1,ND
    C Put 'DATA.IN' into a one dimensional array
C
    IF (J.EQ.l) THEN
        DO 25I =1,NC
            PAR(I)=K(I)
            PAR(10+[) =XN(I)
            PAR(20+1)=CO(1)
25
            CONTINUE
    ENDIF
    PAR(30) =M(J)
    PAR(40) =V(J)
C
C Calculate initial guesses on surface loadings
C
    DO 30I = 1, NC
        QMAX2 = K(I)*CO(I)** (1.0/XN(I))
        IF(M(J).GT.0) THEN
            QMAXI = CO(I)*V(J)/M(J)
            ELSE
            QMAX1 = QMAX2
            ENDIF
        IF(QMAXI.LE.QMAX2) THEN
        QMAX=QMAXI
        ELSE
        QMAX=QMAX2
        END IF
        QEST=QMAX+1.1
        QMIN = 0
        EABS=0
        EREL=0.002
        MAXFN=100
            Fl=F(QMIN)
            F2=F(QEST)
C WRITE(***) J,I,Fl,F2
        CALL DZBREN(F,EABS,EREL,QMIN,QEST,MAXFN)
        Q(I,J)=QEST
        CONTINUE
C
        KMAX=1000
        PD=1.1
        MR=1
C
        FMINI=1.0D99
        NFLG=0
        DO 202 K2=1,KMAX
            QQD(2)=Q(2,J)/PD**(K2-1)
            FABS=1.0D99
            DO 203 Kl=1,KMAX
            QQD(1)=Q(1,J)/PD**(Kl-1)
            CALL FCNIAS(NC,QQD,FF)
            FABSB=FABS
C FABS=DABS(FF(1))/CO(1)+DABS(FF(2))/CO(2)
            FABS=(FF(1)/CO(1))**2+(FF(2)/CO(2))**2
```

```
C FABS=DABS(FF(1))+DABS(FF(2))
C FABS=(FF(1))**2+(FF(2))**2
    IF(FABS.LT.FMIN1) THEN
        FMINI=FABS
        XGI(1)=QQD(1)
        XGl(2)=QQD(2)
        K22=K2
        KlI=Kl
        NFLG=1
        ELSE
            IF(FABS.GT.FABSB) GO TO 205
        ENDIF
        CONTINUE
        IF(K2-K22.GE.MR.AND.NFLG.EQ.I ) GO TO 204
        CONTINUE
        CONTINUE
C
C GO TO 304
    FMNN2=1.0D99
    NFLG=0
    DO 302 KI=1,KMAX
    QQD(I)=Q(1,J)/PD**(KI-I)
    FABS=1.0D99
    DO 303 K2=1,KMAX
        QQD(2)=Q(2,J)/PD**(K2-1)
        CALL FCNIAS(NC,QQD,FF)
        FABSB=FABS
            FABS=DABS(FF(1))/CO(1)+DABS(FF(2))/CO(2)
            FABS=(FF(1)/CO(1))**2+(FF(2)/CO(2))**2
                FABS=DABS(FF(1))+DABS(FF(2))
            FABS=(FF(1))**2+(FF(2))**2
            IF(FABS.LT.FMIN2) THEN
                FMNN2=FABS
        XG2(1)=QQD(1)
        XG2(2)=QQD(2)
        K11=K1
        K22=K2
        NFLG=1
        ELSE
            IF(FABS.GT.FABSB) GO TO 305
        ENDIF
        CONTINUE
        IF(KI-KIl.GE.MR.AND.NFLG.EQ.I) GO TO 304
        CONTINUE
    CONTINUE
        IF(FMIN1.LT.FMIN2) THEN
        XGUESS(1)=XGl(1)
        XGUESS(2)=XGl(2)
        ELSE
        XGUESS(1)=XG2(1)
        XGUESS(2)=XG2(2)
        END IF
C
```

```
C QS=Q(1,J)+Q(2,J)
C QNS=PAR(11)*Q(1,J)+PAR(12)*Q(2,J)
    DO 40 [=1,NC
    Q(I,J)=CO(I)
    & /(M(J)/V(J)+(QNS/PAR(I)/PAR(10+D)**PAR(10+I)/QS)
    XGUESS(I)=Q(I,J)
    WRITE(*,*)QMAX,QEST
C40 CONTINUE
C
C Enter the rest of parameters for DNEQNF
C
    IF (J.EQ.1) THEN
    READ (9,*) ITMAX, ERRREL
    ENDIF
    N = NC
C
C Call DNEQNJ to solve the system of equations
C
C WRITE(*,*) J,(Q(I,J),I=1,NC)
C WRITE(*,*) FMINI,(XGI(I),I=1,NC)
C WRITE(*,*) FMIN2,(XG2(I),I=I,NC)
    WRITE(*,*) J,(XGUESS(I),I=1,NC)
C
C CALL DNEQNJ (FCNIAS, LSJAC, ERRREL, N, ITMAX, XGUESS, X, FNORM)
    IPARAM(1)=0
    IPARAM(3)=500
    DO 201 I=1,N
    XSCALE(I)=1
    FSCALE(I)=1
201 CONTINUE
    CALL DNEQBJ (FCNIAS, LSJAC, N, XGUESS
    & , XSCALE, FSCALE, IPARAM, RPARAM, X, FVEC)
C CALL DNEQNF (FCNIAS, ERRREL, N, ITMAX, XGUESS, X, FNORM)
C
C Store the calculated surface loadings back to Q(I,J)
    QS=0.0
    QNS=0.0
    DO 50I = 1,NC
        Q(I,J)=X(I)
        QS=QS+X(I)
        QNS=QNS+PAR(10+[)*X(I)
5 0 ~ C O N T I N U E ~
    XMJ=M(J)* 1000.0D0
    WRITE(*,*) J,XMJ,' a.c. dose'
    WRITE(*,*) J,(X(I),I=1,NC)
C
C Calculate the liquid phase concentrations
C
    DO 60I = 1,NC
        CD = CO(I)-M(J)/V(J)*Q(I,J)
        C(I,J)= Q(I,J)/QS*(QNS/PAR(I)/PAR(10+1))**PAR(10+I)
C WRITE(*,*)CD,C(I,J)
60 CONTINUE
```

```
100 CONTINUE
C
C change units for printing
C
    DO 120 J=l,ND
        DO 110I=1,NC
        Q(I,J)=Q(I,J)*MW(I)/1000.D0
        C(I,J) = C(I,J)*MW(I)
    IIO CONTINUE
120 CONTINUE
C
C
C Print out results
C
    WRITE (10, 200)
200 FORMAT (//,8X,'PROPERTIES of COMPONENTS')
    WRITE (10,210)
210 FORMAT (/,'COMPONENT,T15,'K(mg/g)(ug/L)**-I/n',T38,'l/n',T45,
    &'CO (ug/l)',3X,'MW(dalton)'/)
    DO 300 I = I,NC
        XN(I) = 1.0D0/XN(I)
        CO(I)=CO(I)*MW(I)
        K(I)=K(I)/
    & ((1000.0/MW(I))*MW(I)**XN(I))
        WRITE (10,250) CHAR(I),K(I),XN(I),CO(I),MW(I)
250 FORMAT(IX,A10,T20,GII.5,T3I,GII.5,T43,GlI.5,T55,F10.3/)
300 CONTINUE
    WRITE (10,310)
310 FORMAT (//10X,'IAST PREDICTION')
    WRITE (10,320) CHAR(1), CHAR(2), CHAR(3)
320 FORMAT (I/I,IX,'DOSAGE',T20,A10,T42,A10,T65,A10)
    WRITE (10,330)
330 FORMAT (/2X,'(mg/l)',T14,'C ug/l',T24,'q mg/g',T35,'C ug/l',T45,
    &'q mg/g',T56,'C ug/l',T66,'q mg/g',/)
    DO 340 J = 1,ND
        M(J)=M(J)/V(J)*1000.0D0
        WRITE (10,360) M(J),C(1,J),Q(1,J),C(2,J),Q(2,J)
340 CONTINUE
    IF (NC.GT.2) THEN
    WRITE (10,320) CHAR(4), CHAR(5), CHAR(6)
    WRITE (10,330)
    DO 350 J =1,ND
        WRITE (10,360) M(J),C(3,J),Q(3,J),C(4,J),Q(4,J)
350 CONTINUE
    ENDIF
    IF (NC.GT.6) THEN
    WRITE (10,320) CHAR(7), CHAR(8), CHAR(9)
    WRITE (10,330)
    DO 355 J =1,ND
    WRITE (10,360) M(J),C(7,J),Q(7,J),C(8,J),Q(8,J),C(9,J),
    &Q(9,J)
355 CONTINUE
    ENDIF
360 FORMAT (F6.2,T10,G10.3,T21,G10.3,T32,F10.5,T44,F10.5,T54,F10.5,
```

```
    &T65,F9.4,/)
C
C
C
    do 400 [ = I,N
    write (*)*) PAR(I), PAR(I+10), PAR(I+20),PAR(30),PAR(40)
4 0 0 ~ c o n t i n u e
    STOP
    END
C
C************
C subroutine FCNIAS
C This subroutine will set up the equations that will be solved
C by the subroutine DNEQNF
C
C SUBROUTINE FCNIAS(X,F,N)
    SUBROUTINE FCNIAS(N,X,F)
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
    INTEGER N,I
    REAL*8 X(N),F(N),CC
    COMMON PAR(50)
    CC = PAR(30)/PAR(40)
    QS =0.0D0
    QNS =0.0D0
    DO 1000 I=I,N
        IF(X(I).LT.0) X(I)=0
        QS =QS+X(I)
        QNS =QNS+PAR(10+1)*X(1)
1000 CONTINUE
    DO 1200 I = I.N
C WRITE(*,*)I,X(I),PAR(I),PAR(10+1),PAR(20+[),CC,QS,QNS
    F(I) = PAR(20+I)-CC*X(I)-X(I)/QS*(QNS/PAR(10+I)/
    & PAR(I))** PAR(10+1)
C WRITE(*,*)I,F(I)
1200 CONTINUE
    RETURN
    END
C
C SUBROUTINE LSJAC(N,X,FJAC)
    SUBROUTINE LSJAC(N,X,FJAC,LDFJAC)
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
    INTEGER N,I,J
C REAL*8 X(N),FJAC(N,N),CC
    REAL*8 X(N),FJAC(LDFJAC,*),CC
    COMMON PAR(50)
    CC= PAR(30)/PAR(40)
    QS = 0.0
    QNS=0.0
    DO 1000 I= 1,N
        IF(X(I).LT.0) X(I)=0
        QS=QS+X(I)
        QNS=QNS+PAR(10+1)*X(I)
1000 CONTINUE
    DO 1200 I= I,N
```

```
        DO 1300 J=1,N
C WRITE(*,*) I,J
            IF(I.NE.J) THEN
            FJAC(I,J)=X(I)/QS**2*(QNS/PAR(I0+1)/PAR(I))**PAR(10+I)
    & -(X(I)*PAR(10+1)*PAR(10+J)/QS)
    & *QNS**(PAR(10+1)-1.0)/(PAR(10+1)*PAR(1)**PAR(10+1)
        ELSE
        FJAC(I,J)=-CC
    & -1.0/QS*(QNS/PAR(10+[)/PAR(I))**PAR(10+1)
    & +(X(I)/QS**2)*(QNS/PAR(10+1)/PAR(I)}\mp@subsup{)}{}{**PARAR(10+1)
    & -(X(1)*PAR(10+1)**2/QS)
    & *QNS**(PAR(10+1)-1.0)/(PAR(10+1)*PAR(I))**PAR(10+1)
        END IF
C WRITE(*,*) I,J,FJAC(I,J)
C FJAC(I,J)=FJAC(I,J)*10.0
    1300 CONTINUE
    I200 CONTINUE
    RETURN
    END
C
    REAL*8 FUNCTION F(X)
    [MPLICIT DOUBLE PRECISION (A-H,O-Z)
    INTEGER I
    COMMON PAR(50)
    COMMON/BI/I
    CC= PAR(30)/PAR(40)
    F=PAR(20+1)-CC*X-(X/PAR(I))**PAR(10+1)
C WRITE(*,*)I,X,F,PAR(20+1)
    RETURN
    END
```


SEARCH: BATCH KINETIC PARAMETER SEARCH COMPUTER PROGRAM

PROGRAM SEARCH

C * This FORTRAN program is used to simultaneously search for the optimum*
C * set of kinetic parameters and/or equilibrium parameters that would *
C * best fit the HSDM to the experimental batch adsorption data. The IMSL*
C * optimization subroutine DUNLSF coupled with the subroutine HSDM
C * (same as <HSDM.FOR> program) will be used to determine the optimum *
C * parameter values.
C
C * The control input file <SEARCH.IN> will identify the name of the
C * experimental data input file, the name of the output file, and the *
C * parameters to be searched.
C
C * The experimental data input file <SEARCH.DAT> needs to be filled with*
C * the appropriate data, including an initial guess for Ds and kf. Then,*
C * the program is run to evaluate the Ds and kf values that result in
C * the best fit for the experimental data. If the error for the obtained*
C * result is high, a different initial guess should be used. The output *
C * of the search program is contained in the file <SEARCH.OUT>. All
C * other files are intermediate files containing control parameters that*
$C *$ do not need to be changed.
C * *

C * Department of Civil Engineering *
C * UNIVERSITY OF ILLINOIS, URBANA-CHAMPAIGN
C
C **)
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
COMMON /PARI/ C0V(10),CCONCV(10),RADPV(10),RHOPV(10),
\& PARV(4,10),NDPV(10),NDSET,IPS(4),ISCALE(4),
\& $\quad \mathrm{TM}(50,10), \mathrm{YM}(50,5,10)$,IDREP(10),NDPSV(10),
\& $\quad Y F(50,10)$
C
CHARACTER*80 IFNAME(10)
C
DIMENSION X(4),F(500),XGUESS(4),XSCALE(4),FSCALE(500),
\& IPARAM(6),RPARAM(7),FVEC(500),FJAC(500,4)
C
EXTERNAL FIND
C
OPEN(1,FILE='SEARCH.IN',STATUS='OLD')
C
$\mathrm{K}=1$
123 CONTINUE
READ (1,1000) IFNAME(K)
IF(IFNAME(K) .NE. 'null') THEN
C

```
C Read in the name(s) of the data file(s)
C *******************************************************************
        NDSET=K
        K=K+1
        GO TO 123
    ELSE
C **********************************************************************
C Name of output file
C
    READ(1,1000) IFNAME(K)
    END IF
C
    READ(1,*)(IPS(I),I=1,4)
C
    WRITE(*,*)' YOUR INPUT ',NDSET, ' DATA FILE(S):'
    DO I K=1,NDSET
        WRITE(*,*) IFNAME(K)
    I CONTINUE
C
    WRITE(*,*)' YOUR OUTPUT DATA FILE IS:'
    WRITE(*,*) IFNAME(NDSET+1)
C
    IPSSUM=0
    DO 2 K=1,4
        IF(IPS(K) .EQ. I ) THEN
            IPSSUM=[PSSUM+1
        END IF
    2 CONTINUE
C
    DO |l K=I,NDSET
        OPEN(K,FILE=IFNAME(K),STATUS='OLD')
        REWIND(K)
        READ(K,*) NDPV(K),C0V(K),IDREP(K)
        DO 22 IP=1,NDPV(K)
            READ(K.*) TM(IP,K),(YM(IP,I,K),I=1,IDREP(K))
    22 CONTINUE
        READ(K,*) CCONCV(K)
        READ(K,*) RADPV(K)
        READ(K,*) RHOPV(K)
        READ(K,*) PARV(3,K)
        READ(K,*) PARV(4,K)
        PARV(3,K)=PARV(3,K)*(L000.0D0**PARV(4,K))
        READ(K,*) PARV(I,K)
        READ(K,*) PARV(2,K)
    ll CONTINUE
C **********************************************************************
C Count total number of data points
C ************************************************************************
    DO 95 II=1,NDSET
    NDPSV(II)=0
    DO }94\mathrm{ [J=1,NDPV(II)
        DO 93 JJ=1,IDREP(II)
        [F(YM(IJ,JJ,II) .LE. l.ID0) THEN
            NDPSV(II)=NDPSV(II)+1
```

```
                END IF
                CONTINUE
    94 CONTINUE
    95 CONTINUE
C
    Ml=0
    DO 211 KK=1,NDSET
        Ml=Ml+NDPV(KK)
    21I CONTINUE
C
    M=0
    DO 21 KK=1,NDSET
        M=M+NDPSV(KK)
    21 CONTINUE
C
    WRITE(*,*) ' TOTAL OBSERVATION TTMES :',Ml
    WRITE(***)' TOTAL DATA POINTS :',M
    WRITE(*,*)' YOU ARE SEARCHING FOR ',IPSSUM ,' PARAMETERS'
C
    K=1
    IF(IPS(1).EQ. 1) THEN
        SCALE=DLOG10(PARV(1,1))
        IF(SCALE .GT. 0.0D0) THEN
            ISCALE(K)=DINT(SCALE)+1
        ELSE
            ISCALE(K)=DINT(SCALE)
        END IF
        XGUESS(K)=PARV(1,1)/(10.0D0**ISCALE(K))
        XXX=XGUESS(K)*10.0D0**ISCALE(K)
        WRITE(*,*)' PARAMETER #',K,' == kf,'; IG: ',XXX
        K=K+1
    END IF
C
    IF(IPS(2) .EQ. 1) THEN
        SCALE=DLOGIO(PARV(2,I))
        IF(SCALE .GT. 0.0D0) THEN
            ISCALE(K)=DINT(SCALE)+1
        ELSE
            ISCALE(K)=DINT(SCALE)
        END IF
        XGUESS(K)=PARV(2,1)/(10.0D0**ISCALE(K))
        XXX=XGUESS(K)*10.0D0**ISCALE(K)
        WRITE(*,*) ' PARAMETER # ',K,' == Ds',' ; IG: ',XXX
        K=K+1
        END IF
C
    IF(IPS(3) .EQ. 1) THEN
        SCALE=DLOG10(PARV(3,1))
        IF(SCALE .GT. 0) THEN
        ISCALE(K)=DINT(SCALE)+1
        ELSE
        ISCALE(K)=DNNT(SCALE)
    END IF
    XGUESS(K)=PARV(3,1)/(10.0D0**ISCALE(K))
```

```
        XXX=XGUESS(K)*10.0D0**ISCALE(K)
        WRITE(*,*)' PARAMETER # ',K,' == K',' ; IG: ',XXX
        K=K+1
    END IF
C
    IF(IPS(4) .EQ. 1) THEN
        SCALE=DLOGIO(PARV(4,1))
        IF(SCALE .GT. 0) THEN
            ISCALE(K)=DINT(SCALE)+1
        ELSE
        ISCALE(K)=DINT(SCALE)
        END IF
        XGUESS(K)=PARV(4,1)/(10.0D0**ISCALE(K))
        XXX=XGUESS(K)*10.0D0**ISCALE(K)
        WRITE(*,*)'PARAMETER # ',K.' == n',' ; IG: ',XXX
        END IF
C *********************************************************************
C Call to the search routine
C **********************************************************************
    OPEN(NDSET+1,FILE=[FNAME(NDSET+1),STATUS='OLD')
C
    N=IPSSUM
    DO 150 I= 1,N
        XSCALE(I)=1.0D0
    150 CONTINUE
        DO 160 J=1,M
            FSCALE(J)=1.0D0
    I60 CONTINUE
        IPARAM(I)=0
        LDFJAC=M
C
        CALL DUNLSF(FIND,M,N,XGUESS,XSCALE,FSCALE,IPARAM,RPARAM,
    & X,FVEC,FJAC,LDFJAC)
C *********************************************************************
C Send results to output file
C ********************************************************************
    DO III K=1,NDSET
        DO 222 IP=1,NDPV(K)
            WRITE(NDSET+1,1001) TM(IP,K),(YM(IP,II,K),II=1,IDREP(K)),
                YF(IP,K)
    222 CONTINUE
    111 CONTINUE
C
    1000 FORMAT(A)
    1001 FORMAT(2X,6E16.6)
C
    STOP ' all done'
    END
C
C *********************************************************************
C This subroutine evaluates the function that defines the least
C squares problem
C **********************************************************************
    SUBROUTINE FIND(M,N,X,F)
```

C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

C
COMMON /PAR1/ COV(10),CCONCV(10),RADPV(10),RHOPV(10),
\& PARV(4,10),NDPV(10),NDSET,IPS(4),ISCALE(4),
\& $\operatorname{TM}(50,10), \mathrm{YM}(50,5,10), \operatorname{IDREP}(10), \mathrm{NDPSV}(10)$,
\& $\quad Y \mathrm{~F}(50,10)$
C
DIMENSION X(4),F(500)
DIMENSION TT(50),YY(50)
DIMENSION SSQV(10),XXV(4),YYM(50,5)
C
DATA ICALL /0/
C
ICALL=ICALL+1
C ***
C If trouble, limit the parameters to the smallest value of 10D-30
C **
DO l KK=I,N
$X(K K)=\operatorname{DMAXI}(X(K K), 1.0 D-30)$
I CONTINUE
C
WRITE (*,1000) ICALL,(X(KK)* 10.0D0**ISCALE(KK),KK=1,N)
WRITE(NDSET+1,1000) ICALL,(X(KK)*10.0D0**ISCALE(KK),KK=1,N)
C
LL=1
DO $111 \mathrm{~K}=1$, NDSET
C ***
C LOAD TIME VECTOR FOR THE K'S DATA SET
C **
DO 2 L=I,NDPV(K)
$\mathrm{TT}(\mathrm{L})=\mathrm{TM}(\mathrm{L}, \mathrm{K})$
DO 229 KI=1,IDREP(K)
YYM(L,KI) $=$ YM(L,KI,K)
229 CONTINUE
2 CONTINUE
C
LLL=0
DO 9 II=I,4
IF(IPS(II) .EQ. I) THEN
LLL=LLL+1
XXV(II) $=\mathrm{X}(\mathrm{LLL}) * 10.0 \mathrm{D} 0^{* *}$ ISCALE(LLL)
ELSE
XXV $(\mathrm{II})=\operatorname{PARV}(\mathrm{II}, \mathrm{K})$
END IF
9 CONTINUE
C
CALL HSDM(COV(K),CCONCV(K),RADPV(K),RHOPV(K),XXV(1),XXV(2),
\& \quad XXV(3),XXV(4),TT,YY,NDPV(K),YYM,IDREP(K))

C Set up the residual vector F

$\operatorname{SSQV}(\mathrm{K})=0.0 \mathrm{D} 0$
DO $3 \mathrm{~L}=1, \mathrm{NDPV}(\mathrm{K})$

```
        YF(L,K)=YY(L)
        DO 4 ID=1,IDREP(K)
            IF(YM(L,ID,K) .LE. I.ID0) THEN
                F(LL)=(YM(L,ID,K)-YY(L))/YM(L,ID,K)
                    WRITE(*,*) LL,F(LL)
                SSQV(K)=SSQV(K)+F(LL)*F(LL)
                LL=LL+1
                END IF
    4 CONTINUE
    3 CONTINUE
    I|CONTINUE
C
    WRITE(*,1000) ICALL,(SSQV(I),I=1,NDSET)
    WRITE(NDSET+1,1000) ICALL,(SSQV(I),I=1,NDSET)
    I000 FORMAT(1X,I5,6E16.6)
C
    RETURN
    END
C
C *******************************************************************
C This subroutine numerically solves the HSDM
C **********************************************************************
    SUBROUTNNE HSDM(C01,CCONCI,RADPI,RHOPI,XKFI,DSI,XKI,XNI,
    & TT,YY,NDP,YYM,IDREPI)
C
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
    COMMON /CTRL/ IPRC,IPRI,IPRO,TOL,METH,MITER
    COMMON /COL/ NCP,WP(14),BP(14,14)
    COMMON/PARM/ C0,Q0,CCONC,DS,XKF,
    & XK,XN,RADP,RHOP,BIOT,CD,TFAC
    COMMON /WORK/ DTNNIT,DTOUT,TFINAL,ITMAX,ITRY
    COMMON/VAR/ Y(15),NTOT
C
    DIMENSION TT(1),YY(1),YYM(1,1)
C
    DATA ICALL /0/
C
    OPEN(31,FILE='PART.C',STATUS='OLD')
    OPEN(32,FILE='HSDM.RAW',STATUS='OLD')
C
    IF(ICALL .EQ. 0) THEN
C
    CALL INPUT
C
    CALL INCOL
C
    ICALL=1
    END IF
C
    CO=COI
    CCONC=CCONCI
    RADP=RADPI
    RHOP=RHOPI
```

```
    XK=XK1
    XN=XN1
    XKF=XKF1
    DS=DSI
C
    CALL INIT
C
    CALL CALCC(TT,YY,NDP,YYM,IDREPI)
C
    RETURN
C
    END
C
    SUBROUTINE INPUT
C
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
    COMMON /CTRL/ IPRC,IPRI,IPRO,TOL,METH,MITER
    COMMON /COL/ NCP,WP(14),BP(14,14)
    COMMON /PARM/ C0,Q0,CCONC,DS,XKF,
    & XK,XN,RADP,RHOP,BIOT,CD,TFAC
    COMMON /WORK/ DTINIT,DTOUT,TFINAL,ITMAX,ITRY
    COMMON /VAR/ Y(15),NTOT
C
    OPEN(30,FILE='HSDM.C',STATUS='OLD')
    REWIND (30)
    READ(30,*) IPRC,IPRI,IPRO
C ********************************************************************
C Control Parameters
C
    READ(30,*) NCP
    READ(30,*) TOL,METH,MITER
    READ(30,*) DTINIT
C
    CLOSE (30)
C
    RETURN
    END
C
    SUBROUTINE INCOL
C
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
    COMMON /CTRL/ IPRC,IPRI,IPRO,TOL,METH.MITER
    COMMON /COL/ NCP,WP(14),BP(14,14)
    COMMON/PARM/ C0,Q0,CCONC,DS,XKF,
    & XK,XN,RADP,RHOP,BIOT,CD,TFAC
    COMMON /WORK/ DTINIT,DTOUT,TFINAL,ITMAX,ITRY
    COMMON /VAR/ Y(15),NTOT
C
    DIMENSION DUMMY(14)
C
    IFLI=0
    IFL2=0
```

```
C
    10 CONTINUE
C
    READ(31,*)[D
    IF(ID .EQ. 999) THEN
C ************************************************************************
C SOMETHING IS WRONG
C *************************************************************************
WRITE(*,*)' REQUESTED COLLOCATION MATRIX IS NOT AVAILABLE'
    STOP ' ERROR - all done '
    END IF
C
    IF(ID .EQ. NCP) THEN
        IFLI=l
    END IF
C ************************************************************************
C READ IN AND DISTRIBUTE
C *************************************************************************
    IF(IFLI .NE.0) THEN
        READ(31,1001) (WP(I),I=1,ID)
        DO 2 I=1,ID
            READ(31,1001) (BP(I,J),J=1,ID)
    2 CONTINUE
C
    IF(IFL1 .EQ. 0) GO TO 10
    IF(IFLI .EQ. I) GO TO II
C
    END IF
C
    IF(IFLI .EQ. 0) THEN
        READ(31,1001) (DUMMY(I),I=1,ID)
        DO }6\mathrm{ I=1,ID
            READ(31,1001) (DUMMY(J),J=1,ID)
    6 ~ C O N T I N U E ~
        GO TO 10
        END IF
C
    II CONTINUE
C *******************************************************************
C WRITE THE MATRICES
C ********************************************************************
    IF(IPRC .EQ. I) THEN
        WRITE(*,*)' WEIGHTS '
        WRITE(*,1001) (WP(I),I=1,NCP)
        WRITE(*,*)' COLLOCATION MATRIX (B)'
        DO 13 I=1,NCP
            WRITE(*,1001) (BP(I,J),J=1,NCP)
    13 CONTINUE
        END IF
C
    1001 FORMAT(4D20.12)
C
    RETURN
    END
```

```
C
    SUBROUTINE INIT
C
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
    COMMON /CTRL/ IPRC,IPRI,IPRO,TOL,METH,MITER
    COMMON /COL/ NCP,WP(14),BP(14,14)
    COMMON/PARM/ C0,Q0,CCONC,DS,XKF,
    & XK,XN,RADP,RHOP,BIOT,CD,TFAC
    COMMON /WORK/ DTINIT,DTOUT,TFINAL,ITMAX,ITRY
    COMMON NAR/ Y(15),NTOT
C
    NTOT=NCP+1
C ********************************************************************
C INITIAL CONDITION FOR SOLID PHASE
C ***********************************************************************
    DO 11 I=1,NTOT-1
        Y(I)=0.0D0
    II CONTINUE
C **********************************************************************
C LIQUID PHASE
C *********************************************************************
    Y(NTOT)=1.0D0
C ********************************************************************
C COMPUTE DEPENDENT PARAMETERS
C *******************************************************************
    Q0=XK*C0**XN
C
    CD=CCONC*Q0/C0
C
    BI=XKF*RADP*C0
    B2=DS*RHOP*Q0*1000.0D0
    BIOT=B1/B2
C
    TFAC=DS/(RADP*RADP)
C
    IF(IPRI .EQ. 1) THEN
        WRITE(32,100I) C0,CCONC,CD
        WRITE (32,1004) DS
        WRITE}(32,1005) XKF
        WRITE}(32,1006) BIOT
        WRITE (32,1007) RADP
        WRITE (32,1008) RHOP
        WRITE (32,1009) XK
        WRITE (32,1010) XN
        WRITE(32,1011) TFAC
C ********************************************************************
C CONTROL PARAMETER
C *********************************************************************
        WRITE(32,1013) NTOT,TOL,METH,MITER,DTINIT,DTOUT,TFINAL
        END IF
C *********************************************************************
C FORMAT STATEMENTS
C ***********************************************************************
```

```
    100I FORMAT(2X,'C0 = ',E12.6,/,
    & 2X,'CCONC = ',E12.6,/,
    & 2X,'CD =',EI2.6,/)
C
    1004 FORMAT(IX,'DS =',E12.5)
    1005 FORMAT(IX,'XKF = ',E12.5)
    1006 FORMAT(IX,'BIOT = ',E12.5)
    1007 FORMAT(IX,'RADP = ',E12.5)
    1008 FORMAT(IX,'RHOP = ',EI2.5)
    1009 FORMAT(IX,'XK =',EI2.5)
    1010 FORMAT(IX,'XN = ',El2.5)
    I011 FORMAT(IX,'TFAC = ',EI2.5)
C
    1013 FORMAT(1X,NTOT =',14,/,
    & IX,'TOL =',E16.6,/,
    & IX,'METH =',I4,/,
    & 1X,'MITER =',I4,/,
    & IX,'DTINIT =',E16.6,/,
    & IX,'DTOUT =',E16.6,/,
    & 1X,'TFINAL =',E16.6/,
    & IX,NULL')
C
    RETURN
    END
C
    SUBROUTINE CALCC(TT,YY,NDP,YYM,IDREPI)
C
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
    COMMON /CTRL/ IPRC,IPRI,IPRO,TOL,METH,MITER
    COMMON /COL/ NCP,WP(14),BP(14,14)
    COMMON /PARM/ C0,Q0,CCONC,DS,XKF,
    & XK,XN,RADP,RHOP,BIOT,CD,TFAC
    COMMON /WORK/ DTINIT,DTOUT,TFINAL,ITMAX,ITRY
    COMMON /VAR/ Y(15),NTOT
C
    DIMENSION TT(1),YY(1),YYM(1,1)
C
    DIMENSION A(1,1),PARAM(50)
C
    EXTERNAL FCN,FCNJ
C
    N=NTOT
    [DO=1
    DO 50 [=1,50
        PARAM(I)=0.0D0
    5 0 ~ C O N T I N U E ~
    PARAM(1)=DTINIT
    PARAM(12)=METH
    PARAM(13)=MITER
C
    T=0.0D0
C
    ITRY=0
```

```
    ITRYT=0
    TPHYS=0.0D0
    ITER=0
C
    DO 100 IP=1,NDP
C
        ITER=ITER+1
        TEND=TT(IP)*TFAC
C
        IF(TT(IP) .LE. 0.01) THEN
        YY(IP)=1.0D0
        GO TO 100
        END IF
C
        ITRY=0
C
        CALL DIVPAG(IDO,N,FCN,FCNJ,A,T,TEND,TOL,PARAM,Y)
C
        ITRYT=ITRYT+ITRY
        T=TEND
        TPHYS=T/TFAC
C
        WRITE(*,1000) TPHYS,(YYM(IP,KKI),KKI=1,IDREPI),Y(NTOT)
    1000 FORMAT(1X,5E16.6)
C
        YY(IP)=Y(NTOT)
C
    IO0 CONTINUE
C
        IDO=3
        CALL DIVPAG(IDO,N,FCN,FCNJ,A,T,TEND,TOL,PARAM,Y)
C
    RETURN
    END
C
    SUBROUTINE FCNJ(N,T,Y,PD)
C
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
    DIMENSION Y(N),PD(N,N)
C
    RETURN
    END
C
    SUBROUTINE FCN(N,T,Y,YPRIME)
C
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
    COMMON /CTRL/ IPRC,IPRI,IPRO,TOL,METH,MITER
    COMMON /COL/ NCP,WP(14),BP(14,14)
    COMMON/PARM/ C0,Q0,CCONC,DS,XKF,
    & XK,XN,RADP,RHOP,BIOT,CD,TFAC
    COMMON /WORK/ DTINIT,DTOUT,TFINAL,ITMAX,ITRY
C
```

```
    DIMENSION Y(N),YPRIME(N)
    DIMENSION BB(14)
C
    ITRY=[TRY+1
C
    NTOT=N
    KK=0
    II=0
C
    NICP=NCP-I
C
    DO 30 J=1,NICP
        BB}(J)=0.0\textrm{D}
    30 CONTINUE
C
    WW=0.0D0
C
    DO 50 I=1,NICP
        II=[I+1
        LL=0
C
    DO 40 J=1,NCP
        LL=LL+I
        BB(I)=BB(I)+BP(I,J)*Y(LL)
    40 CONTINUE
C *********************************************************************
C MASS BALANCE INSIDE PARTICLE (EXCEPT BOUNDARY)
C ***********************************************************************
        YPRIME(II)=BB(I)
        WW=WW+WP(I)*YPRIME(II)
    50 CONTINUE
C ********************************************************************
C SOLID-LIQUID INTERFACE (HEAT EQ. AT INTERFACE
C ***********************************************************************
    II=[I+1
    BSUM=0.0D0
C
    DO 11 KKK=1,NCP
        BSUM=BSUM+BP(NCP,KKK)*Y(KKK)
    l| CONTINUE
C
    IF(Y(II) .LT. 0.0D0) THEN
        YPRIME(II) = (((BIOT*(Y(NTOT)-0.0D0)-WW)/WP(NCP))+BSUM)*0.5D0
        ELSE
        YPRIME(II) = (((BIOT**(YNTOT)-(Y(II)**(1.0D0/XN)))-WW)/
    & WP(NCP))+BSUM)*0.5D0
    END IF
C ********************************************************************
C LIQUID PHASE MASS BALANCE
C **********************************************************************
    YPRIME(NTOT)=-3.0D0*CD*(WW+(YPRIME(II)*WP(NCP)))
C
    RETURN
    END
```


HSDM: BATCH KINETIC EQUATION SOLVING COMPUTER

PROGRAM

```
PROGRAM HSDM
C
C *********************************************************************
C *
C * This FORTRAN program <HSDM.FOR> solves the HSDM system of partial*
C * differential equations for a closed batch reactor or a plug flow *
C * reactor using the orthogonal collocation technique. The IMSL
C * subroutine DIVPAG is used to solve for the bulk concentration
C * profile versus time.
C *
C * The input file is <HSDM.IN> requires the user to enter the *
C * parameters Co, Ds, kf, K, l/n, apparent density, and final time. *
C * The other control terms do not need to be changed. After running *
C * the program, the output file <HSDM.OUT> will contain the bulk *
C * concentration profile as a function of time
C * *
C * Department of Civil Engineering *
C * UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN *
C ********************************************************************
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
    COMMON /CTRL/ [PRC,IPRI,IPRO,TOL,METH,MITER
    COMMON /COL/ NCP,WP(14),BP(14,14)
    COMMON /PARM/ C0,Q0,CCONC,DS,XKF,
    & XK,XN,RADP,RHOP,BIOT,CD,TFAC
    COMMON /WORK/ DTINIT,DTOUT,TFINAL,ITMAX,ITRY
    COMMON/VAR/ Y(15),NTOT
C
C
    OPEN(30,FILE='HSDM.N',STATUS='OLD')
    OPEN(31,FILE='PART.C',STATUS='OLD')
    OPEN(32,FILE='HSDM.OUT,STATUS='OLD')
C
    CALL INPUT
C
    CALL INCOL
C
    CALL INIT
C
    CALL CALCC
C
    STOP ' all done'
C
    END
C
C ******************************************************************
C This subroutine reads the data from the input file HSDM.IN
C ******************************************************************
```

```
    SUBROUTINE INPUT
C
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
    COMMON /CTRL/IPRC,IPRI,IPRO,TOL,METH,MITER
    COMMON/COL/ NCP,WP(14),BP(14,14)
    COMMON /PARM/ C0,QO,CCONC,DS,XKF,
    & XK,XN,RADP,RHOP,BIOT,CD,TFAC
    COMMON /WORK/ DTINIT,DTOUT,TFINAL,ITMAX,ITRY
    COMMON /VAR/ Y(IS),NTOT
C
    READ(30,*) IPRC,IPRI,IPRO
```



```
C Physical parameters
C *****************************************************************
    READ(30,*) C0
    READ(30,*) CCONC
    READ(30,*)DS
    READ(30,*) XKF
    READ(30,*) XK
    READ(30,*) XN
    XK = XK*1000.0D0**XN
    READ(30,*) RADP
    READ(30,*) RHOP
C *****************************************************************
C Control parameters
C *****************************************************************
    READ(30,*) NCP
    READ(30,*) TOL,METH,MITER
    READ(30,*) DTINIT
    READ(30,*) DTOUT
    READ(30,*) TFINAL
    READ(30,*)ITMAX
C
    RETURN
    END
C
C ******************************************************************
C This subroutine determines the weights and collocation matrix
C ******************************************************************
    SUBROUTINE INCOL
C
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
    COMMON /CTRL/ IPRC,IPRI,IPRO,TOL,METH,MITER
    COMMON/COL/ NCP,WP(14),BP(14,14)
    COMMON /PARM/ C0,QO,CCONC,DS,XKF,
    & XK,XN,RADP,RHOP,BIOT,CD,TFAC
    COMMON /WORK/ DTINIT,DTOUT,TFINAL,ITMAX,ITRY
    COMMON /VAR/ Y(15),NTOT
C
    DIMENSION DUMMY(14)
C
    IFLI=0
```

```
        [FL2=0
C
    10 CONTINUE
C
    READ(31,*)ID
    IF(ID .EQ. 999) THEN
C SOMETHING IS WRONG
        WRITE(*,*)' REQUESTED COLLOCATION MATRIX IS NOT AVAILABLE'
        STOP ' ERROR - all done '
        END IF
C
    IF(ID .EQ. NCP) THEN
        IFLI=1
    END IF
C **********************************************************************
C Read weights into array WP and collocation matrix into array BP
C **********************************************************************
    IF(IFLl .NE.0) THEN
        READ(31,1001) (WP(I),I=1,ID)
        DO 2 I=1,ID
            READ(31,1001) (BP(1,J),J=1,ID)
    2 CONTINUE
        IF(IFLI .EQ. 0) GO TO 10
        IF(IFLI .EQ. 1) GO TO II
        END IF
C
    IF(IFLI .EQ. 0) THEN
        READ(31,1001) (DUMMY(I),I=1,ID)
        DO }6\mathrm{ I=1,ID
            READ(31,1001) (DUMMY(J),J=1,ID)
    6 ~ C O N T I N U E
        GO TO 10
        END IF
C
    | CONTINUE
C *******************************************************************
C Write the arrays to the screen if desired
C ******************************************************************
    IF(IPRC .EQ. 1) THEN
        WRITE(*,*)' WEIGHTS '
        WRITE(*,1001) (WP(I),I=1,NCP)
        WRITE(*,*)' COLLOCATION MATRIX (B)'
        DO 13 [=1,NCP
            WRITE(*,1001) (BP(I,J),J=1,NCP)
    13 CONTINUE
    END IF
C
    I001 FORMAT(4D20.12)
C
    RETURN
    END
C
C *******************************************************************
C This subroutine writes initial data to the output file HSDM.OUT
```

C
SUBROUTINE INIT
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
COMMON /CTRL/ IPRC,IPRI,IPRO,TOL,METH,MITER
COMMON/COL/ NCP,WP(14),BP(14,14)
COMMON /PARM/ C0,Q0,CCONC,DS,XKF,
\& \quad XK,XN,RADP,RHOP,BIOT,CD,TFAC
COMMON /WORK/ DTINIT,DTOUT,TFINAL,ITMAX,ITRY
COMMON/VAR/ Y(15),NTOT
C
NTOT $=\mathrm{NCP}+\mathrm{I}$
C $* ~$
C Initial conditions for the solid phase
C ***
DO $11[=1, N T O T-1$
$Y(1)=0.0 \mathrm{DO}$
11 CONTINUE
C **
C Initial condition for the liquid phase
C $\boldsymbol{\text { * }}$ *** $\mathrm{Y}(\mathrm{NTOT})=1.0 \mathrm{D} 0$
C $* ~(~) ~$
C Compute dependent parameters
C **
$\mathrm{Q} 0=\mathrm{XK}{ }^{*} \mathrm{C} 0 * * \mathrm{XN}$
C
$\mathrm{CD}=\mathrm{CCONC}{ }^{*} \mathrm{Q} 0 / \mathrm{C} 0$
C
$\mathrm{Bl}=\mathrm{XKF}{ }^{*}$ RADP* ${ }^{*} 0$
$\mathrm{B} 2=\mathrm{DS}^{*}$ RHOP* ${ }^{\text {Q }}$ * 1000.0 D 0
$\mathrm{BIOT}=\mathrm{B} 1 / \mathrm{B} 2$
C
TFAC=DS/(RADP*RADP)
C
IF(IPRI .EQ. 1) THEN
WRITE $(32,1001)$ C0,CCONC,CD
WRITE $(32,1004)$ DS
WRITE $(32,1005)$ XKF
WRITE $(32,1006)$ BIOT
WRITE $(32,1007)$ RADP
WRITE $(32,1008)$ RHOP
WRITE $(32,1009)$ XK
WRITE $(32,1010)$ XN
WRITE $(32,1011)$ TFAC
WRITE $(32,1013)$ NTOT,TOL,METH,MITER,DTINIT,DTOUT,TFINAL

END IF

C ${ }^{*}$ ***
C FORMAT STATEMENTS
C ***
1001 FORMAT(2X,'C0 $=$ ',E12.6/,,
\& 2X,'CCONC =',E12.6/,
\& 2X,'CD $=$ ', E12.6, $)$

```
C
1004 FORMAT(IX,'DS =',E12.5)
1005 FORMAT(1X,'XKF =',E12.5)
1006 FORMAT(IX,'BIOT =',EI2.5)
1007 FORMAT(IX,'RADP = ',E12.5)
1008 FORMAT(IX,'RHOP =',E12.5)
1009 FORMAT(IX,'XK =',EI2.5)
1010 FORMAT(IX,'XN =',EI2.5)
1011 FORMAT(IX,'TFAC =',E12.5)
C
1013 FORMAT(IX,NTOT =',14,/,
    & IX,'TOL =',E16.6,/,
    & IX,'METH =',14,,
    & IX,'MITER =',14,/,
    & IX,'DTINIT =',E16.6,/,
    & IX,'DTOUT =',E16.6/,
    & IX,TFINAL =',E16.6/,
    & IX,NULL')
C
    RETURN
    END
C
C *********************************************************************
C This subroutine solves the differential equation
C *****************************************************************
    SUBROUTINE CALCC
C
    [MPLICIT DOUBLE PRECISION (A-H,O-Z)
C
    COMMON /CTRL/ IPRC,IPRI,IPRO,TOL,METH,MITER
    COMMON/COL/ NCP,WP(14),BP(14,14)
    COMMON/PARM/ C0,Q0,CCONC,DS,XKF,
    & XK,XN,RADP,RHOP,BIOT,CD,TFAC
    COMMON/WORK/ DTINIT,DTOUT,TFINAL,ITMAX,ITRY
    COMMON/VAR/ Y(15),NTOT
C
    DIMENSION A(1,1),PARAM(50)
C
    EXTERNAL FCN,FCNJ
C *****************************************************************
C Set parameters for IMSL subroutine DIVPAG
C *****************************************************************
    N=NTOT
    IDO=1
    DO 50 I=1,50
        PARAM(I)=0
    50 CONTINUE
    PARAM(1)=DTINIT
    PARAM(12)=METH
    PARAM(13)=MITER
C
    T=0.0D0
C
    ITRY=0
```

```
    ITRYT=0
    TPHYS=0.0D0
    ITER=0
C
    WRITE(*,*) TPHYS,Y(NTOT)
    WRITE(32,1500) TPHYS,Y(NTOT)
C
    IO0 CONTINUE
C
    [TER=ITER+1
    TEND=T+DTOUT*TFAC
C
    ITRY=0
    CALL DIVPAG(IDO,N,FCN,FCNJ,A,T,TEND,TOL,PARAM,Y)
C
    ITRYT=[TRYT+[TRY
    T=TEND
    TPHYS=T/TFAC
C
    WRITE(*,*) TPHYS,Y(NTOT)
    WRITE(32,1500) TPHYS,Y(NTOT)
C
    1500 FORMAT(1X,F8.2,T10,F10.6)
C
    IF (T/TFAC .LT. TFINAL) GO TO 100
C
    WRITE(*,*)'ITRYT = ',ITRYT
    WRITE(32,*)'999 999 999 999 999 999 999'
    RETURN
    END
C
C *********************************************************************
C This is a dummy subroutine that is required by DIVPAG
C ********************************************************************
    SUBROUTINE FCNJ(N,T,Y,PD)
C
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
    DIMENSION Y(N),PD(N,N)
C
    RETURN
    END
C
C **********************************************************************
C This subroutine calculates the Jacobian required by DIVPAG
C *********************************************************************
    SUBROUTINE FCN(N,T,Y,YPRIME)
C
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
    COMMON /CTRL/ IPRC,IPRI,IPRO,TOL,METH,MITER
    COMMON /COL/ NCP,WP(14),BP(14,14)
    COMMON /PARM/ C0,Q0,CCONC,DS,XKF,
    & XK,XN,RADP,RHOP,BIOT,CD,TFAC
```

COMMON /WORK/ DTINIT,DTOUT,TFINAL,ITMAX,ITRY
C
DIMENSION Y(N),YPRIME(N)
DIMENSION BB(14)
C
$I T R Y=I T R Y+1$
C
NTOT $=\mathrm{N}$
$\mathrm{KK}=0$
II $=0$
C
$\mathrm{NICP}=\mathrm{NCP}-\mathrm{I}$
C
DO $30 \mathrm{~J}=1, \mathrm{NICP}$ $B B(J)=0.0 \mathrm{D} 0$
30 CONTINUE
C
$W W=0.0 \mathrm{DO}$
C
DO 50 I= $1, \mathrm{NICP}$
II $=\mathrm{II}+1$
$L L=0$
C
DO $40 \mathrm{~J}=\mathrm{I}, \mathrm{NCP}$
$L L=L L+1$
$\mathrm{BB}(\mathrm{I})=\mathrm{BB}(\mathrm{I})+\mathrm{BP}(\mathrm{I}, \mathrm{J}) * \mathrm{Y}(\mathrm{LL})$
40 CONTINUE
C ***)
C Mass balance inside particle (except boundary)

YPRIME(II)=BB(I)
C
$W W=W W+W P(I) * Y P R I M E(I I)$
50 CONTINUE

C Solid-liquid interface (heat eq. at interface)
C **
II $=$ II +1
BSUM=0.0D0
C
DO 11 LLL $=1, \mathrm{NCP}$
BSUM=BSUM+BP(NCP,LLL)*Y(LLL)
11 CONTINUE
C
IF(Y(II) .LT. 0.0D0) THEN
YPRIME(II) = (((BIOT*(Y(NTOT)-0.0D0)-WW)/WP(NCP))+BSUM)
\& *0.5D0
C
ELSE
YPRIME $(\mathrm{IL})=\left(\left(\left(\mathrm{BIOT}^{*}\left(\mathrm{Y}(\mathrm{NTOT})-\left(\mathrm{Y}(\mathrm{II})^{* *}(1.0 \mathrm{D} 0 / \mathrm{XN})\right)\right)-\mathrm{WW}\right) /\right.\right.$
\& WP(NCP))+BSUM)*0.5D0
END IF
C ***
C Liquid phase mass balance

YPRIME(NTOT)=-3.0D0*CD*(WW+(YPRIME(II)*WP(NCP)))
C RETURN
END

CSTR: EQUATION SOLVING COMPUTER PROGRAM

PROGRAM CSTR
C
C ***
C *
C * This FORTRAN program is used to solve for the steady-state
c * performance of PAC in a CSTR with or without solids residence *
C * time distribution. The program uses the secant method to solve *
C * the nonlinear equation (i.e the CSTR model). The convergence *
C * criterion for the infinite series is a relative error of $<.1 \%$.
C *
C * The input file <CSTR.IN $>$ should be used to enter the parameters*
C * R, Ds, K, N, Cin, Ccin, and final time. The other parameters *
C * are the first and second guesses for the value of Ceff in ug/l *
C * which do not need to be changed. Finally the tolerable error is*
C * set to $1.0 \mathrm{e}-04$; it can be increased to $1.0 \mathrm{e}-03$ depending on
C * the sensitivity of the required data.
C *
C * The output file <CSTR.OUT> contains the input parameters as *
C * well as the list of the steady-state effluent concentrations *
C * as a function of solids residence time.
C * *
C * Department of Civil Engineering
C * UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
C ***)
C
C The following are the input variables to the program:
C
C $\quad \mathrm{R}=$ radius of carbon particle, cm
C Ds = surface diffusion coefficient, $\mathrm{cm} 2 / \mathrm{min}$
C $\quad K=$ Freundlich coeff, (mg/g)(ug/L)^-I/n
C $\quad \mathrm{N}=$ Freundlich constant n , (inverse of l / n)
C $\quad \mathrm{Cin}=$ influent adsorbate concentration, ug/L
C CCin = influent PAC dose, mg/L
C TFINAL = final desired time, min
C A = first guess for the value of Ceff, ug/L
C $B=$ second guess for the value of Ceff, ug/l
C $E=$ tolerable error
C
IMPLICIT REAL(A-H,N-Z)
C
C
DATA INP,IOUT/5,6/
OPEN(INP,FILE='CSTR.IN',STATUS='OLD')
OPEN(IOUT,FILE='CSTR.OUT,STATUS='OLD')
C
C
READ(INP,*) R
READ(INP,*) DS
READ(INP,*) FRK
READ(INP,*)N

```
    READ(INP,*) CIN
    READ(INP,*) CCIN
    READ(INP,*) A,B,E
    READ(INP,*) TFINAL
    WRITE(*,*) 'Is This Completely Mixed Reactor:'
    WRITE(*,*) '(1) WITH a Solids Age Distribution, or'
    WRITE(*,*) '(2) WITHOUT a Solids Age Distribution ?'
    READ(***) FLAG
C
C
    WRITE(IOUT,20) R
    WRITE(IOUT,25) DS
    WRITE(IOUT,30) FRK
    WRITE(IOUT,35) N
    WRITE(IOUT,50) CIN
    WRITE(IOUT,55) CCIN
    WRITE(IOUT,*)
C
    IF(FLAG .EQ. 1) THEN
        WRITE(IOUT,*)'** THIS IS A CSTR WITH PAC AGE DISTRIBUTION **'
    ELSE
        WRITE(IOUT,*)'** THIS IS A CSTR WITHOUT PAC AGE DISTRIBUTION **'
    END IF
    WRITE(IOUT,*)
C
    20 FORMAT(IX,'PARTICLE RADIUS, R =',F10.4,' cm')
    25 FORMAT(IX,'DIFFUSION COEFFICIENT, Ds =',E10.2,' cm2/min')
    30 FORMAT(IX,'FREUNDLICH CONSTANT, K =',F10.4,'(mg/g-ug/L)')
    35 FORMAT(IX,'FREUNDLICH CONSTANT, N =',F10.4)
    50 FORMAT(IX,'INFLUENT ADSORBATE CONCENTRATION =',FI0.4,' ug/L')
    55 FORMAT(IX,'INFLUENT PAC CONCENTRATION =',FI0.4,' mg/L')
C
    ZZ=0
    WRITE(IOUT,90) ZZ,CIN/CIN
    WRITE(*,90) ZZ,CIN/CNN
    XII=0.0
    13 [F(XII .LT. 4.95) THEN
        XII=XII+1.0
    ELSE
        XII=XII+5.0
    END IF
    THS = XII
    PI = 3.141590
C
C
    IF(FLAG .EQ. 2) THEN
        CALL XSUM(R,THS,DS,PI,S)
    ELSE
        CALL SUM(R,THS,DS,PI,S)
    END IF
C
C
    COEF=CCIN*FRK*(1-(6*S/PI**2))
C
```

```
C
    CALL ITER(CIN,CONC,COEF,N,A,B,E)
C
C
C
C
    CONCNON = CONC/CIN
    WRITE(IOUT,90) THS/60,CONCNON
    WRITE(*,90) THS/60,CONCNON
    90 FORMAT(IX.F10.4,T20,F10.4)
    IF(XII .LT. TFINAL) GOTO 13
C
    STOP
    END
C
C
    SUBROUTINE SUM(R,THS,DS,PI,S)
    IMPLICIT REAL(A-H,N-Z)
C
C
    CKAPPA = R**2/THS/DS/P[**2
    S=0
    DO 15 [=1,100
        SP=S
        S = S + (I/(I**2**(1+[**2/CKAPPA))
        IF(((S-SP)/S).LT. 0.001) GOTO 77
    15 CONTINUE
    7 7 \text { RETURN}
    END
C
C
    SUBROUTINE ITER(CIN,X,COEF,N,A,B,E)
    IMPLICIT REAL(A-H,N-Z)
C
C
    40X=A
        CALL FUNCT(Y,CIN,X,COEF,N)
    U = Y
    X=B
    CALL FUNCT(Y,CIN,X,COEF,N
    V=Y
    CE = (B*U-A*V)/(U-V)
    X = CE
    CALL FUNCT(Y,CIN,X,COEF,N)
    IF(ABS(Y) .GT. E) THEN
    A = B
    B = CE
    GOTO 40
    END IF
    RETURN
    END
C
```

```
C
    SUBROUTINE FUNCT(Y,CIN,X,COEF,N)
    IMPLICIT REAL(A-H,N-Z)
C
C
    \(\mathrm{Y}=\mathrm{CIN}-\mathrm{X}-\operatorname{COEF}^{*} \mathrm{X}^{* *}(1 / \mathrm{N})\)
    RETURN
    END
C
C
    SUBROUTINE XSUM(R,THS,DS,PI,S)
    IMPLICIT REAL(A-H,N-Z)
    CKAPPA \(=\mathrm{R}^{* * 2 / \text { THS } / \mathrm{DS}^{2} / \mathrm{PI}^{* * 2} 2}\)
    \(\mathrm{S}=0\)
    DO \(185 I=1,100\)
        \(\mathrm{SP}=\mathrm{S}\)
        FACT \(=\left(E X P\left(-1.0^{*} I^{* *} 2 / C K A P P A\right)\right) / /^{* * 2}\)
        \(\mathrm{S}=\mathrm{SP}+\mathrm{FACT}\)
        IF(FACT/S) .LT. 0.001) GOTO 187
    185 CONTINUE
    187 CONTINUE
    RETURN
    END
```


FS-SI: FIXED-BED ADSORPTION KINETIC PARAMETER SEARCH

 COMPUTER PROGRAMC FS-SI.FOR

C

C FIXED BED ADSORPTION, FS MODEL
C MAIN PROGRAM
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
DIMENSION X(2),XGUESS(2),XSCALE(2),FSCALE(100)

* ,IPARAM(6),RPARAM(7),FVEC(100),FJAC(100,2),FDUMY(100)

C
DIMENSION CB(21),CCB(21)

* $\quad \mathrm{Q}(21,21), \mathrm{QQ}(21,21)$
* ,SOLUTE(18)
* \quad, $\mathrm{Sl}(21,22), \mathrm{S}(21,22), \mathrm{S} 3(21,22), \mathrm{S} 4(21,22)$

C
DIMENSION CDI(200),TDATAI(200)
COMMON /BLOCKC/ FMIN,TP(4000),CP(4000)

* ,TD(200),CD(200),CINT(200),RES(200),NDATA

C
COMMON /BLI/CB,Q,QSD,F,FD

* /BL2/CCB,QQ
* /BLS/SI,S2,S3,S4
* /BLDATA/SOLUTE,ISO,A,B,C0,Q0,IR0
* ,U,DIA,RS,RB,AKF,DS,DB
* ,DELT,DELTMX,TEND,DELZ,ZEND,DTUBE
* ,IITM

C
EXTERNAL FCN,DU4LSF
C
OPEN(5,FILE='FS.IN')
OPEN(6,FILE='FS-SI.OUT)
C
$\operatorname{READ}(5,1001)$ SOLUTE
ISO $=2$
$\operatorname{READ}(5, *) \mathrm{A}$
READ(5,*) B
$\operatorname{READ}(5, *) \mathrm{C00}$
READ(5,*) IR0
C
$\operatorname{READ}(5, *, E N D=500) \mathrm{U}$
$\operatorname{READ}(5, *, E N D=500)$ DIA
READ(5,*,END=500) RS
READ(5,*,END=500) RB
READ ($5, *, \mathrm{END}=500$) AKF
$\operatorname{READ}(5, *, E N D=500)$ DS

```
    READ(5,*,END=500) DB
    READ(5,*) DELT
    READ(5,*) DELTMX
    READ(5,*) TEND
    READ(5,*) DELZ
    READ(5,*) ZEND
    READ(5,*) DTUBE
C
    READ(5,*) IITM
C
    C0=C00/1000.0
    Q0=A*C00**B
C
    WRITE(6,1008) SOLUTE,A,B,C00,Q0,IR0
    * ,U,DIA,RS,RB,AKF,DS,DB
    * ,DELT,DELTMX,TEND,DELZ,ZEND,DTUBE
    WRITE(*,1008) SOLUTE,A,B,C00,Q0,IR0
    * ,U,DIA,RS,RB,AKF,DS,DB
    * ,DELT,DELTMX,TEND,DELZ,ZEND,DTUBE
1001 FORMAT(18A4)
1002 FORMAT(II0,3F10.0,110)
C 1003 FORMAT(F10.0)
C 1007 FORMAT(II0)
1008 FORMAT(IH ,'FIXED BED ADSORPTION, FS MODEL'/
    * 1H,'SOLUTE = ',5X,18A4/
    * 1H,'A,B,C0,Q0,IR0 = '/1H,IP4E16.5,II0/
    * 1H,'U,DIA,RS,RB,AKF,DS,DB ='/IH,IP7E16.5/
    * 1H,'DELT,DELTMX,TEND,DELZ,ZEND,DTUBE ='/1H ,IP6E16.5/)
C
    READ(5,*) NDATA
    IF (NDATA.LE.0) STOP
    DO 10 I=1,NDATA
    READ(5,*) TDATAI(I),CDI(I)
    CD(I)=CDI(I)/C0/1000.0
    TD(I)=TDATAI(I)/60.0
    10 CONTINUE
C
    A=A*1000.0**B
C
    U=U*60.
    RS=RS*1000.
    RB=RB*1000.
C AKF=AKF*3600.
C DS=DS*3600.
    DB=DB*3600.
C
C searching for Kf and Ds
    N=2
    M=NDATA
    LDFJAC=M
    XGUESS(1)=AKF
    XGUESS(2)=DS*1.0E10
    DO 50 I=1,N
    XSCALE(I)=1.0
```

```
    50 CONTINUE
    DO 51 I=1,M
    FSCALE(I)=1.0
    5I CONTINUE
C
    CALL DU4LSF(IPARAM,RPARAM)
    IPARAM(3)=400
    IPARAM(4)=2500
C
    WRITE(*,*) 'start searching'
C
    CALL DUNLSF(FCN,M,N,XGUESS,XSCALE,FSCALE,
    & IPARAM,RPARAM,X,FVEC,FJAC,LDFJAC)
C
    CALL FCN(M,N,X,FDUMY)
C
    AKF=DABS(X(1))
    DS=DABS(X(2)/I.0E10)
    WRITE(*,120) AKF,DS,FMIN
    WRITE(6,120) AKF,DS,FMIN
    120 FORMAT(IX,'OPTIMUM'/
    & 'KF=',1PG15.7,4X,'DS=',G15.7/
    & ' ',19X,'ERROR=',G15.7)
    WRITE(6,*)
    & ' TIME(hr) C/Co(obs) C/Co(cal) error(%)'
    DO III=1,NDATA
    WRITE(6,121) TD(I),CD(I),CINT(I),RES(I)
    II CONTINUE
    I21 FORMAT(1X,4(1PG15.5))
C
    500 CONTINUE
    STOP 'ALL DONE'
    END
C
C
    SUBROUTINE FCN(MS,NS,XX,FF)
C
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
    DIMENSION XX(NS),FF(MS)
C
    DIMENSION CB(21),CCB(21),QT(21),Z(21)
    * ,Q(21,21),QQ(21,2l),CS(21),CCS(21)
    * ,N(21),NR(21),INDEX(21),IR(21),F1(21),F2(21)
    * ,CK(50),QK(50),FDK(50),CKK(25),SOLUTE(18)
    * ,Sl(21,22),S2(21,22),S3(21,22),S4(21,22)
    * ,CBX(25),QTX(25)
C
    COMMON /BLOCKC/ FMIN,TP(4000),CP(4000)
    * ,TD(200),CD(200),CINT(200),RES(200),NDATA
C
    COMMON/BLI/CB,Q,QSD,F,FD
    * /BL2/CCB,QQ
    * /BLS/S1,S2,S3,S4
```

```
    * /BLDATA/SOLUTE,ISO,A,B,C0,Q0,IR0
    * ,U,DIA,RS,RB,AKF,DS,DB
    * ,DELTT,DELTMX,TEND,DELZ,ZEND,DTUBE
    * ,IITM
C
    DELT=DELTT
C
    AKFF=DABS(XX(1))
    DSS=DABS(XX(2)/1.0El0)
    WRITE(*,*)'Kf & Ds ',AKFF,DSS
    AKF=AKFF*3600.0
    DS=DSS*3600.0
C WRITE(*,1008) SOLUTE,ISO,A,B,C0,Q0,IR0
C * ,U,DIA,RS,RB,AKF,DS,DB
C * ,DELT,DELTMX,TEND,DELZ,ZEND,DTUBE
CI008 FORMAT(IH,'SOLUTE = ',5X,18A4/
C * IH,I10,5X,IP4E16.5,I10/
C * IH,IP7E16.5/
C * 1H,IP6E16.5)
C
    NKK=25
    CKK(1)=0.0
    CKK(2)=0.0001
    CKK(3)=0.0002
    CKK(4)=0.0005
    CKK(5)=0.001
    CKK(6)=0.002
    CKK(7)=0.005
    CKK(8)=0.0075
    CKK(9)=0.01
    CKK(10)=0.02
    CKK(11)=0.05
    CKK(12)=0.075
    CKK(13)=0.1
    CKK(14)=0.15
    CKK(15)=0.2
    CKK(16)=0.3
    CKK(17)=0.4
    CKK(18)=0.5
    CKK(19)=0.6
    CKK(20)=0.7
    CKK(21)=0.8
    CKK(22)=0.9
    CKK(23)=1.0
    CKK(24)=1.5
    CKK(25)=2.0
C
    NK=NKK
    DO 120 K=1,NK
    CK(K)=C0*CKK(K)
    IF(ISO.EQ.1) QK(K)=A*B*CK(K)/(1.+B*CK(K))
    IF(ISO.EQ.2) QK(K)=A*CK(K)**B
    [F(ISO.EQ.3) QK(K)=A*CK(K)
    IF(K.EQ.1) GO TO 120
```

```
            FDK(K)=(CK(K)-CK(K-1))/(QK(K)-QK(K-1))
    120 CONTINUE
    Q0=QK(23)
C
    RADIUS=DIA/2.
    NR0=20*2**IRO
C NRO=5*2**IR0
    DELR=RADIUS/DFLOAT(NR0)
    AV=3.*RB/RS/RADIUS
    EB=1.-RB/RS
    COEF=DTUBE**2*3.14/4.*U/1000.
    F10=DELR**2/DS/DELT
    F20=AKF/RS/DS/RADIUS*DELR*(RADIUS+DELR)
    IF(DB.EQ.0.) FY=AKF*AV/U
    IF(DB.NE.0.) FY=(U-DSQRT(U**2+4.*AKF*AV*EB*DB))/2./EB/DB
    F3=U/AKF/AV/DELZ
    F4=DEXP(FY*DELZ)
    F5=AKF*AV*DELT/2./RB
    6 DO 130 I= 1,21
    ZX=DELZ*DFLOAT(I-1)
    IF(ZX.GE.ZEND) GO TO 7
    CX=DEXP(FY*ZX)
    IF(CX.LT.0.001) M=[-1
    [F(CX.LT.0.001) MI=I
    IF(CX.LT.0.001) GO TO }
130 CONTINUE
    DELZ=2.*DELZ
    F3=U/AKF/AV/DELZ
    F4=DEXP(FY*DELZ)
    GO TO }
    7M=20
    Ml=21
    DELZ=ZEND/20.
    F3=U/AKF/AV/DELZ
    F4=DEXP(FY*DELZ)
    F3M1=F3
    F4Ml=F4
    8DO I50 I=1,M1
    Z(I)=DFLOAT(I-1)*DELZ
    CB(I)=DEXP(FY*Z(I))*C0
    CBX(I)=CB(I)/C0
    CCB(I)=CB(I)
    CS(I)=0.
    CCS(I)=0.
    QT(I)=0.
    IR(I)=IRO
    NR(I)=NR0
    Fl(I)=F10
    F2(I)=F20
    N(I)=11
    INDEX(I)=0
    DO 140 J=1,21
    Q(I,J)=0.
    QQ(I,J)=0.
```

```
    I40 CONTINUE
    150 CONTINUE
    T=0.
C
    IIT=0
    IITT=0
C
    KW=0
    KC=0
    KXY=0
    NPT=0
    KWH=10
    KCH=100
    KXYH=10
C WRITE(*,1010)T
C WRITE(*,IOIl)(Z(I),I=1,MI)
C WRITE(*,1012)(CBX(I),I=1,M1)
C
C WRITE (6,1010)T
C WRITE(*,1010)T
C
    10 T=T+DELT
C
    IIT=IIT+I
C
    KXY=KXY+1
    KW=KW+1
    KC=KC+1
    DO 200 I=l,M1
20 QSD=QQ(I,2I)
    DO 210 K=2,NK
    IF(QSD.LT.QK(K)) GO TO 21
210 CONTINUE
21 FD=FDK(K)
    F=FDK(K)*(QSD-QK(K-1))+CK(K-1)
    IF(I.NE.1) X=CCS(I-1)
    IF(I.NE.I) Y=CCB(I-I)
    IF(Z(I).NE.ZEND) F3I=F3
    IF(Z(I).NE.ZEND) F4I=F4
    IF(Z(I).EQ.ZEND) F3[=F3MI
    IF(Z(I).EQ.ZEND) F4I=F4M1
    CALL KEISU(I,N(I), NR(I), INDEX(I), IR(I)
    * ,F1(I), F2(I), F3I, F4I, X, Y, CS(I))
    CALL GAUSS(I, N(I))
    IF(ISO.EQ.3) GO TO 22
    ERR=(QQ(I,21)-QSD)/QQ(I,21)
    IF(ABS(ERR).GT.1.E-4) GO TO 20
22 CCS(I)=F
    CUTQ=QQ(1,21)*0.01
    IF(QQ(I,N(I)).LT.CUTQ) GO TO 200
    IF(N(I).EQ.1) GO TO 23
    N(1)=N(1)-1
    GO TO 20
23 IF(IR(1).EQ.0) GO TO 200
```

```
    IR(I)=IR(I)-1
    NR(I)=NR(L)/2
    DELR=RADIUS/DFLOAT(NR(I))
    Fl(I)=DELR**2/DS/DELT
    F2(I)=AKF/RS/DS/RADIUS*DELR*(RADIUS+DELR)
    N(I)=10
    INDEX(1)=0
    DO 220 J=21,11,-1
    JJ=2*J-2I
    Q(I,J)=Q(I,JJ)
    QQ(I,J)=QQ(I,JJ)
    220 CONTINUE
    DO 230 J=1,10
    Q(I,J)=0.
    QQ(I,J)=0.
    230 CONTINUE
    GO TO 20
    200 CONTINUE
    DO 240 I= I,MI
    QT(I)=F5*(CCB(I)+CB(I)-CCS(I)-CS(I))+QT(I)
    CB(I)=CCB(1)
    CS(I)=CCS(I)
    DO 240 J=1,2l
    Q(1,J)=QQ(1,J)
    240 CONTINUE
    IF(Z(MI).LT.ZEND) GO TO 30
C IF(Z(MI).LT.ZEND*0.9999) GO TO 30
    IF(KXY.LT.KXYH) GO TO 30
    NPT=NPT+1
C TW(NPT)=T
    CWNPT=CB(Ml)/C0
C VOL(NPT)=T*COEF
    KXY=0
    30 IF(KW.LT.KWH) GO TO 40
        DO 300 I= 1,M1
        CBX(I)=CB(I)/C0
        QTX(I)=QT(I)/Q0
    300 CONTINUE
C
    IF(IIT.GE.IITM) IIT=0
C
    IF(IIT.EQ.0) THEN
        IITT=[ITT +1
C WRITE(6,*)M1,M
C WRITE(6,1010) T,CWNPT
C WRITE(*,1010) T,CWNPT
    TP(IITT)=T
        CP(IITT)=CWNPT
        ELSE
    ENDIF
C WRITE(6,1011)(Z(I),I=1,M1)
C WRITE (6,1012) (CBX(I),I=1,MI)
C WRITE(6,1013)(QTX(I),I=1,Ml)
    1010 FORMAT(1H ,'T=',1PE10.3,'(HR)',5X,'CB/C0=',1PE11.4)
```

```
I011 FORMAT(IH ;' Z=',IPlIElI.4/IH,7X,IPIIEII.4)
1012 FORMAT(1H,' C/C0=',1P1IE11.4/1H,7X,IP11Ell.4)
I013 FORMAT(IH,' Q/Q0=',IPlIElI.4/lH,7X,IPIIEII.4)
    KW=0
    KXY=0
    IF(CB(Ml)/C0.GE.0.98) GO TO 50
    IF(T.GE.TEND) GO TO 50
    IF(KC.LT.KCH) GO TO 40
    KC=0
    KCH=90
    IF(10.*DELT.GE.DELTMX) KWH=10
    IF(10.*DELT.GE.DELTMX) GO TO 40
    DELT=10.*DELT
    F10=F10/10.
    F5=F5*10.
    DO 310 I= I,Ml
    Fl(I)=F1(I)/10.
    INDEX(I)=0
310 CONTINUE
40 IF(QT(2)/Q0.LT.0.999) GO TO 45
    IF(M.EQ.1) GO TO 50
    M=M-1
    Ml=M1-1
    DO 400 I=1,MI
    II=I+1
    Z(I)=Z(II)
    CB(I)=CB(II)
    CCB(I)=CCB(II)
    CS(I)=CS(II)
    CCS(I)=CCS(II)
    QT(I)=QT(II)
    IR(I)=IR(II)
    NR(I)=NR(II)
    F1(I)=Fl(II)
    F2(I)=F2(II)
    N(I)=N(II)
    INDEX(I)=INDEX(II)
    DO 400 J=1,21
    Q(I,J)=Q(II,J)
    QQ(I,J)=QQ(II,J)
    Sl(I,J)=S l(II,J)
    S2(I,J)=S2(II,J)
    S3(I,J)=S3(II,J)
400 CONTINUE
    CB(1)=C0
    CCB(1)=C0
    45 IF(CB(MI)/C0.LT.0.001) GO TO 10
    IF(Z(Ml).GE.ZEND) GO TO 10
C IF(Z(M1).GE.ZEND*0.99999) GO TO 10
    IF(MI.EQ.21) GO TO 46
    M=M+l
    Ml=Ml+1
    GO TO 47
46 DELZ=2.*DELZ
```

```
        F3=U/AKF/AV/DELZ
        F4=DEXP(FY*DELZ)
        DO 410 I=2,11
        II=2*I-I
        Z(I)=Z(II)
        CB(I)=CB(II)
        CCB(I)=CCB(II)
        CS(I)=CS(II)
        CCS(I)=CCS(II)
        QT(I)=QT(II)
        IR(I)=IR(II)
        NR(I)=NR(II)
        Fl(I)=Fl(II)
        F2(I)=F2(II)
        N(I)=N(II)
        INDEX(I)=INDEX(II)
        DO 410 J=1,21
        Q(I,J)=Q(II,J)
        QQ(I,J)=QQ(II,J)
        Sl(I,J)=Sl(II,J)
        S2(I,J)=S2(II,J)
        S3(I,J)=S3(II,J)
    4IO CONTINUE
    M=11
    MI=12
C M=10
C Ml=11
    47 Z(MI)=Z(M)+DELZ
        CB(MI)=CB(M)*F4+CS(M)*(F3-F4-F3*F4)
        IF(Z(MI).LT.ZEND) GO TO 48
        DELZMl=ZEND-Z(M)
        F3MI=U/AKF/AV/DELZMI
        F4Ml=DEXP(FY*DELZM1)
        Z(M1)=ZEND
        CB(Ml)=CB(M)*F4Ml+CS(M)*(F3MI-F4MI-F3MI*F4MI)
    48 CCB(MI)=CB(Ml)
        CS(MI)=0.
        CCS(MI)=0.
        QT(M1)=0.
        IR(MI)=IR0
        NR(MI)=NR0
        FI(MI)=Fl0
        F2(MI)=F20
        N(M1)=11
        [NDEX(M1)=0
        DO 420 J=1,21
        Q(M1,J)=0.
        QQ(M1,J)=0.
    420 CONTINUE
        GO TO 10
    50 CONTINUE
C
C WRITE(***) 'END OF N TH SEARCH'
    NP=IITT
```

```
    CALL OBJFUN (NP )
    DO }81\textrm{J}=\textrm{l},NDAT
        RES(J)= ((CINT(J) - CD(J))/CD(J))*100.0
        FF(J)=DABS(RES(J))
C WRITE(*,*) CD(J),CINT(J)
    8I CONTINUE
    WRITE(*,1 I2) NDATA,FMIN
    112 FORMAT(5X,'FMIN BASED ON',I4,2X,'DATA POINTS:',
        & 3X,'FMIN = ',G15.8)
C
    RETURN
    END
C
C
    SUBROUTINE OBJFUN (NP )
C
C ***********************************************************************
C * This subroutine calculates the standard deviation between *
C * the predicted concentrations and experimental data, if any *
C * is given. If no data is given this subroutine is ignored. *
C ******************************************************************
C
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
    COMMON/BLOCKC/ FMIN,TP(4000),CP(4000)
    * ,TD(200),CD(200),CINT(200),RES(200),NDATA
            FMIN = 0.0D0
            NP1 = NP - 1
            DO 10 J = I,NDATA
                DO 5I = I,NPI
                    IF(TD(J).LT. TP(I) .OR. TD(J).GT. TP(I+1)) GO TO 5
            CAP = CP(I) + ((TD(J)-TP(I))/(TP(I+I)-TP(I)))*
    & (CP(I+1)-CP(D)
            CINT(J) = CAP
            FMIN = FMIN + ((CAP-CD(J))/CD(J))**2
            GO TO 10
    5 CONTINUE
    10 CONTINUE
        FMIN = SQRT(FMNN/FLOAT(NDATA-1))*100.0D0
    RETURN
    END
C
C
C SUBROUTINE KEISU
    SUBROUTINE KEISU(I,N,NR,INDEX,IR,F1,F2,F3,F4,X,Y,CS)
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
    DIMENSION CB(21),Q(21,21)
    * ,Sl(21,22),S2(21,22),S3(21,22),S4(21,22)
    COMMON /BLI/CB,Q,QSD,F,FD
    * /BLS/S1,S2,S3,S4
    IF(INDEX.NE.0) GO TO 10
    DO 100 J=1,20
    EJ=NR-21+J
    IF(EJ.EQ.0.) GO TO 100
    SI(I,J)=-(EJ-I.)/2./EJ
```

```
        S2(I,J)=Fl+1.
        S3(I,J)=(EJ+1.)/2./EJ
    100 CONTINUE
        IF(IR.EQ.0) S2(I,1)=Fl+3.
        IF(IR.EQ.0) S3(I,1)=-3.
        SI(1,2I)=1.
        S3(1,21)=-F2
        S2(1,22)=1.
        [NDEX=1
    10 DO 110 J=N,20
        IF(J.EQ.I.AND.IR.EQ.0) S4(I,I)=3.*(Q(I,2)-Q(I,I))+FI*Q(I,1)
        IF(J.EQ.I_AND.IR.NE.0) S4(I,I)=(Fl-I.)*Q(I,I)-S3(I,I)*Q(I,2)
        IF(J.NE.I) S4(I,J)=-SI(I,J)*Q(I,J-1)+(F1-I.)*Q(I,J)
    * -S3(I,J)*Q(I,J+1)
    IIO CONTINUE
        S2(I,2l)=1.+F1+F2*FD
        S4(I,2l)=Q(I,20)-F2*(CS+F-FD*QSD)+(Fl-I.)*Q(I,21)+F2*CB(I)
        IF(I.NE.1) SI (I,22)=(-1.+F3-F3*F4)*FD
        IF(I.NE.I) S4(I,22)=(1.-F3+F3*F4)*(F-FD*QSD)+(F3-F4-F3*F4)*X+F4*Y
        RETURN
        END
C
C SUBROUTINE GAUSS-SEIDEL
    SUBROUTINE GAUSS(I,N)
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
    DIMENSION CCB(21),QQ(21,21),QG(21)
    * ,S1(21,22),S2(21,22),S3(21,22),S4(21,22)
    COMMON/BL2/CCB,QQ
    * /BLS/S1,S2,S3,S4
    l DO 100 J=1,2I
    QG(J)=QQ(I,J)
    100 CONTINUE
        CBG=CCB(I)
        IF(I.EQ.1) GO TO 10
        CCB(I)=(S4(I,22)-Sl(I,22)*QG(2l))/S2(I,22)
    10 QQ(I,2l)=(S4(I,2l)-Sl(I,2l)*QG(20)-S3(I,2l)*CCB(I))/S2(I,2l)
        DO 110 J=20,N,-1
        IF(J.EQ.1) QQ(I,1)=(S4(1,1)-S3(1,I)*QQ(I,2))/S2(I,l)
        IF(J.NE.I) QQ(I,J)=(S4(I,J)-Sl(I,J)*QG(J-1)-S3(I,J)*QQ(I,J+1))
    * /S2(I,J)
    IlO CONTINUE
    IF(I.EQ.1) GO TO 20
    ERR=(CCB(I)-CBG)/CCB(I)
    IF(ABS(ERR).GT.I.E-4) GO TO I
    20 DO 120 J=2I,N,-I
        IF(QQ(I,J).EQ.0.) GO TO 120
        ERR=(QQ(I,J)-QG(J))/QQ(I,J)
        IF(ABS(ERR).GT.1.E-4) GO TO I
    120 CONTINUE
        RETURN
    END
```

FS: FIXED-BED ADSORPTION EQUATION SOLVING COMPUTER
PROGRAM

C FS.FOR

C
C FIXED BED ADSORPTION, FS MODEL
C MAIN PROGRAM
C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C
DIMENSION CB(21),CCB(21),QT(21),Z(21)

* $\quad, \mathrm{Q}(21,21), \mathrm{QQ}(21,21), \mathrm{CS}(21), \mathrm{CCS}(21)$
* , N(21),NR(21), ND (21), $\mathrm{R}(21), \mathrm{Fl}(21), \mathrm{F} 2(21)$
* ,CK(50),QK(50),FDK(50),CKK(25),SOLUTE(18)
* \quad, $1(21,22), S 2(21,22), S 3(21,22), S 4(21,22)$
* ,CBX(25),QTX(25)

C * ,TW(10000),CW(10000),VOL(10000)
COMMON/BLI/CB,Q,QSD,F,FD

* /BL2/CCB,QQ
* /BLS/S1,S2,S3,S4

C * /BLXY/TW,CW,VOL
C * /BLDATA/SOLUTE,ISO,A,B,C0,Q0,IR0
C * ,U,DIA,RS,RB,AKF,DS,DB
C * ,DELT,DELTMX,TEND,DELZ,ZEND,DTUBE
C DATA NKK/22/
C * ,CKK/ $0 ., 0.001,0.002,0.005,0.0075,0.01,0.02$
C * $\quad 0.05,0.075,0.1,0.15,0.2,0.3,0.4,0.5$
C * $\quad 0.6,0.7,0.8,0.9,1.0,1.5,2.0 /$
DATA NKK/25/

* ,CKK/0.,0.0001,0.0002, 0.0005
* ,0.001 ,0.002, 0.005, 0.0075, 0.01, 0.02
* $\quad 0.05,0.075,0.1,0.15,0.2,0.3,0.4,0.5$
* $\quad 0.6,0.7,0.8,0.9,1.0,1.5,2.0 /$

C
OPEN(5,FILE='FS.IN')
OPEN(6,FILE='FS.OUT')
C
READ $(5,1001)$ SOLUTE
ISO=2
$\operatorname{READ}(5, *) \mathrm{AA}$
$\operatorname{READ}(5, *) \mathrm{B}$
$\operatorname{READ}(5, *) \mathrm{COO}$
READ(5,*) IR0
C
$\mathrm{CO}=\mathrm{C} 00 / 1000.0$
IF(ISO.EQ.2) $A=A A * 1000.0^{* * B}$
C
1001 FORMAT(18A4)

```
C 1002 FORMAT(I10,3F10.0,I10)
    1004 FORMAT(IHI//I/IH ,'SOLUTE = ',18A4///)
    1005 FORMAT(IH ,'CK (MG/L)'/(IH ,IPIOE12.3))
    1006 FORMAT(1H ,'QK (MG/G)'/(1H ,IPIOE12.3))
C 1007 FORMAT(7I10)
    2 NK=NKK
        DO 120 K=1,NK
        CK(K)=C0*CKK(K)
        IF(ISO.EQ.1) QK(K)=A*B*CK(K)/(1.+B*CK(K))
        [F(ISO.EQ.2) QK(K)=A*CK(K)**B
        IF(ISO.EQ.3) QK(K)=A*CK(K)
        IF(K.EQ.I) GO TO 120
        FDK(K)=(CK(K)-CK(K-1))/(QK(K)-QK(K-1))
    I20 CONTINUE
        Q0=QK(23)
    3 CONTINUE
C
    5 \text { CONTINUE}
        READ(5,*,END=500) U
        READ(5,*,END=500) DIA
        READ(5,*,END=500) RS
        READ(5,*,END=500) RB
        READ(5,*,END=500) AKF
    READ(5,*,END=500) DS
    READ(5,*,END=500) DB
    READ(5,*) DELT
    READ(5,*) DELTMX
    READ(5,*) TEND
    READ(5,*) DELZ
    READ(5,*) ZEND
    READ(5,*)DTUBE
C
    READ(5,*) IITM
C
    WRITE(6,1008) SOLUTE,AA,B,C00,Q0,IR0
    * ,U,DIA,RS,RB,AKF,DS,DB
    * ,DELT,DELTMX,TEND,DELZ,ZEND,DTUBE
    WRITE(*,1008) SOLUTE,AA,B,C00,Q0,IR0
    * ,U,DIA,RS,RB,AKF,DS,DB
    * ,DELT,DELTMX,TEND,DELZ,ZEND,DTUBE
1008 FORMAT(IH ,'FIXED BED ADSORPTION, FS MODEL'/
    * IH,'SOLUTE = ',5X,18A4/
    * IH,'A,B,C0,Q0,IR0 = '/1H ,IP4E16.5,I10/
    * IH,'U,DIA,RS,RB,AKF,DS,DB ='/1H,IP7EI6.5/
    * IH,'DELT,DELTMX,TEND,DELZ,ZEND,DTUBE ='/lH,IP6E16.5/)
    U=U*60.
    RS=RS*1000.
    RB=RB*1000.
    AKF=AKF*3600.
    DS=DS*3600.
    DB=DB*3600.
    RADIUS=DIA/2.
    NRO=20*2**IR0
C NR0=5*2**IR0
```

```
        DELR=RADIUS/DFLOAT(NR0)
        AV=3.*RB/RS/RADIUS
        EB=1.-RB/RS
        COEF=DTUBE**2*3.14/4.*U/1000.
        F10=DELR**2/DS/DELT
        F20=AKF/RS/DS/RADIUS*DELR*(RADIUS+DELR)
        IF(DB.EQ.0.) FY=AKF*AV/U
        IF(DB.NE.0.) FY=(U-DSQRT(U**2+4.*AKF*AV*EB*DB))/2./EB/DB
        F3=U/AKF/AV/DELZ
        F4=DEXP(FY*DELZ)
        F5=AKF*AV*DELT/2./RB
    6 DO 130I=1,2!
    ZX=DELZ*DFLOAT(I-I)
    IF(ZX.GE.ZEND) GO TO 7
    CX=DEXP(FY*ZX)
    IF(CX.LT.0.001) M=I-I
    IF(CX.LT.0.001) MI=I
    [F(CX.LT.0.001) GO TO }
    130 CONTINUE
    DELZ=2.*DELZ
    F3=U/AKF/AV/DELZ
    F4=DEXP(FY*DELZ)
    GO TO }
    7M=20
    Ml=21
    DELZ=ZEND/20.
    F3=U/AKF/AV/DELZ
    F4=DEXP(FY*DELZ)
    F3Ml=F3
    F4Ml=F4
    8 DO 150 I=1,Ml
    Z(I)=DFLOAT(I-I)*DELZ
    CB(I)=DEXP(FY*Z(I)*C0
    CBX(I)=CB(I)/C0
    CCB(I)=CB(I)
    CS(I)=0.
    CCS(I)=0.
    QT(I)=0.
    IR(I)=IR0
    NR(I)=NRO
    Fl(I)=F10
    F2(I)=F20
    N(I)=11
    [NDEX(I)=0
    DO 140 J=1,21
    Q(I,J)=0.
    QQ(I,J)=0.
    140 CONTINUE
    I50 CONTINUE
    T=0.
C
    IIT=0
C
    KW=0
```

```
    KC=0
    KXY=0
    NPT=0
    KWH=10
    KCH=100
    KXYH=10
    WRITE(*,1010) T
    WRITE(*,1011) (Z(I),I=1,MI)
    WRITE(*,1012) (CBX(I),I=1,M1)
C
    WRITE(6,1010) T
    WRITE(*,1010) T
C
    10 T=T+DELT
C
    IIT=[IT+1
C
    KXY=KXY+1
    KW=KW+1
    KC=KC+1
    DO 200 I= 1,Ml
20 QSD=QQ(I,2I)
    DO 210 K=2,NK
    IF(QSD.LT.QK(K)) GO TO 2I
210 CONTINUE
21 FD=FDK(K)
    F=FDK(K)*(QSD-QK(K-1))+CK(K-1)
    IF(I.NE.I) X=CCS(I-1)
    IF(I.NE.1) Y=CCB(I-1)
    IF(Z(I).NE.ZEND) F3I=F3
    IF(Z(I).NE.ZEND) F4I=F4
    IF(Z(I).EQ.ZEND) F3I=F3M1
    IF(Z(I).EQ.ZEND) F4I=F4Ml
    CALL KEISU(I, N(I), NR(I), INDEX(I), IR(I)
    * ,Fl(I), F2(I), F3I, F4I, X, Y, CS(I))
    CALL GAUSS(I, N(I))
    IF(ISO.EQ.3) GO TO 22
    ERR=(QQ(I,21)-QSD)/QQ(I,2I)
    IF(ABS(ERR).GT.I.E-4) GO TO 20
22 CCS(I)=F
    CUTQ=QQ(1,21)*0.01
    IF(QQ(I,N(I)).LT.CUTQ) GO TO 200
    IF(N(I).EQ.I ) GO TO 23
    N(I)=N(I)-1
    GO TO 20
23 IF(IR(I).EQ.0) GO TO 200
    IR(I)=[R(I)-1
    NR(I)=NR(I)/2
    DELR=RADIUS/DFLOAT(NR(I))
    Fl(T)=DELR**2/DS/DELT
    F2(I)=AKF/RS/DS/RADIUS*DELR*(RADIUS+DELR)
    N(I)=10
    INDEX(I)=0
    DO 220 J=21, 11,-1
```

```
    JJ=2*J-2l
    Q(I,J)=Q(I,JJ)
    QQ(I,J)=QQ(I,JJ)
    220 CONTINUE
    DO 230 J=1,10
    Q(I,J)=0.
    QQ(I,J)=0.
    230 CONTINUE
    GO TO 20
    200 CONTINUE
    DO 240 [=1,Ml
    QT(I)=F5*(CCB(I)+CB(I)-CCS(I)-CS(I))+QT(I)
    CB(I)=CCB(I)
    CS(I)=CCS(I)
    DO 240 J=1,21
    Q(I,J)=QQ(I,J)
    240 CONTINUE
    IF(Z(M1).LT.ZEND) GO TO 30
C IF(Z(MI).LT.ZEND*0.99999999) GO TO 30
    IF(KXY.LT.KXYH) GO TO 30
    NPT=NPT+1
C TW(NPT)=T
    CWNPT=CB(MI)/C0
C VOL(NPT)=T*COEF
    KXY=0
    30 IF(KW.LT.KWH) GO TO 40
        DO 300 I=I,MI
        CBX(I)=CB(I)/C0
        QTX(I)=QT(I)/Q0
    300 CONTINUE
C
    IF(IIT.GE.IITM) IIT=0
C
    IF(IIT.EQ.0) WRITE(6,1010) T,CWNPT
C WRITE(6,*)MI,M
    IF(IIT.EQ.0) WRITE(*,1010) T,CWNPT,DELT
C WRITE(6,1011)(Z(I),I=1,MI)
C WRITE(6,1012)(CBX(I),I=1,MI)
C WRITE(6,1013)(QTX(I),I=1,M1)
1010 FORMAT(IH ,'T=',1PE10.3,'(HR)',5X,'CB/C0=',1PEII.4,3X,1PE9.2)
I01l FORMAT(IH,' Z=',IPllEll.4/lH,7X,IPllEll.4)
I012 FORMAT(1H ,' C/C0=',IPIIE11.4/IH ,TX,IPlIEII.4)
I013 FORMAT(IH ;' Q/Q0=',IPIIEII.4/1H,7X,IPlIEII.4)
    KW=0
    KXY=0
    IF(CB(MI)/C0.GE.0.98) GO TO 50
    IF(T.GE.TEND) GO TO 50
    IF(KC.LT.KCH) GO TO 40
    KC=0
    KCH=90
    IF(10.*DELT.GE.DELTMX) KWH=10
    IF(10.*DELT.GE.DELTMX) GO TO 40
    DELT=10.*DELT
    F10=F10/10.
```

```
    F5=F5*10.
    DO 310I=1,M1
    Fl(I)=Fl(I)/LO.
    INDEX(I)=0
310 CONTINUE
40 IF(QT(2)/Q0.LT.0.999) GO TO 45
    IF(M.EQ.1) GO TO 50
    M=M-1
    Ml=Ml-I
    DO 400 I= l,Ml
    II=I+I
    Z(I)=Z(II)
    CB(I)=CB(II)
    CCB(I)=CCB(II)
    CS(I)=CS(II)
    CCS(I)=CCS(II)
    QT(I)=QT(II)
    IR(I)=[R(II)
    NR(T)=NR(II)
    Fl(I)=Fl(II)
    F2(I)=F2(II)
    N(I)=N(II)
    INDEX(I)=[NDEX(II)
    DO 400 J=1,21
    Q(I,J)=Q(II,J)
    QQ(I,J)=QQ(II,J)
    Sl(I,J)=Sl(II,J)
    S2(I,J)=S2(II,J)
    S3(I,J)=S3(II,J)
400 CONTINUE
    CB(1)=C0
    CCB(1)=C0
45 IF(CB(MI)/C0.LT.0.00I) GO TO 10
    IF(Z(MI).GE.ZEND) GO TO 10
    IF(MI.EQ.21) GO TO 46
    M=M+1
    Ml=Ml+1
    GO TO 47
46 DELZ=2.*DELZ
    F3=U/AKF/AV/DELZ
    F4=DEXP(FY*DELZ)
    DO 410 I=2,11
    II=2*I-I
    Z(I)=Z(II)
    CB(I)=CB(II)
    CCB(I)=CCB(II)
    CS(I)=CS(II)
    CCS(I)=CCS(II)
    QT(I)=QT(II)
    IR(I)=IR(II)
    NR(I)=NR(II)
    Fl(I)=F1(II)
    F2(I)=F2(II)
    N(I)=N(II)
```

```
        INDEX(I)=INDEX(II)
        DO 410 J=1,21
        Q(I,J)=Q(II,J)
        QQ(I,J)=QQ(II,J)
        Sl(I,J)=SI(II,J)
        S2(I,J)=S2(II,J)
        S3(I,J)=S3(II,J)
    410 CONTINUE
        M=11
        Ml=12
    C M=10
    C Ml=II
    47 Z(M1)=Z(M)+DELZ
        CB(MI)=CB(M)*F4+CS(M)*(F3-F4-F3*F4)
        [F(Z(MI).LT.ZEND) GO TO 48
        DELZMl=ZEND-Z(M)
        F3MI=U/AKF/AV/DELZM1
        F4MI=DEXP(FY*DELZMI)
        Z(MI)=ZEND
        CB(Ml)=CB(M)*F4MI+CS(M)*(F3Ml-F4Ml-F3MI*F4MI)
    48 CCB(M1)=CB(M1)
        CS(MI)=0.
        CCS(MI)=0.
        QT(MI)=0.
        IR(MI)=IRO
        NR(MI)=NRO
        Fl(MI)=F10
        F2(MI)=F20
        N(MI)=1 l
        INDEX(MI)=0
        DO 420 J=1,21
        Q(MI,J)=0.
        QQ(MI,J)=0.
    420 CONTINUE
        GO TO 10
    5 0 ~ C O N T I N U E ~
C GOTO 5
    500 CONTINUE
        STOP
        END
C SUBROUTINE KEISU
            SUBROUTINE KEISU(I,N,NR,INDEX,IR,FI,F2,F3,F4,X,Y,CS)
            IMPLICIT DOUBLE PRECISION (A-H,O-Z)
            DIMENSION CB(21),Q(21,21)
            * ,Sl(21,22),S2(21,22),S3(21,22),S4(21,22)
    COMMON /BLI/CB,Q,QSD,F,FD
    * /BLS/Sl,S2,S3,S4
    IF(INDEX.NE.0) GO TO 10
    DO 100 J=1,20
    EJ=NR-21+J
    IF(EJ.EQ.0.) GO TO 100
    SI(I,J)=-(EJ-1.)/2./EJ
    S2(I,J)=F1+1.
    S3(I,J)=-(EJ+l.)/2./EJ
```

```
    100 CONTINUE
    [F(IR.EQ.0) S2(I,1)=F1+3.
    IF(IR.EQ.0) S3(I,l)=-3.
    S1(1,21)=1.
    S3(I,21)=F2
    S2(1,22)=1.
    INDEX=1
    10 DO 110 J=N,20
    IF(J.EQ.I.AND.IR.EQ.0) S4(I,I)=3.*(Q(I,2)-Q(I,I))+FI*Q(I,I)
    IF(J.EQ.1.AND.IR.NE.0) S4(I,1)=(Fl-I.)*Q(I,1)-S3(I,I)*Q(I,2)
    IF(J.NE.1) S4(I,J)=S (I,J)*Q(I,J-1)+(Fl-I.)*Q(I,J)
    * -S3(I,J)*Q(I,J+1)
    110 CONTINUE
    S2(I,2l)=1.+Fl+F2*FD
    S4(I,21)=Q(I,20)-F2*(CS+F-FD*QSD)+(Fl-1.)*Q(I,21)+F2*CB(I)
    IF(I.NE.1) Sl (I,22)=(-1.+F3-F3*F4)*FD
    IF(I.NE. L ) S4(I,22)=(1.-F3+F3*F4)*(F-FD*QSD)+(F3-F4-F3*F4)*X+F4*Y
    RETURN
    END
C SUBROUTINE GAUSS-SEIDEL
    SUBROUTINE GAUSS(I,N)
    IMPLICIT DOUBLE PRECISION (A-H,O-Z)
    DIMENSION CCB(21),QQ(21,21),QG(21)
    * ,S1(21,22),S2(21,22),S3(21,22),S4(21,22)
    COMMON/BL2/CCB,QQ
    * /BLS/SI,S2,S3,S4
    I DO 100 J=1,21
    QG(J)=QQ(I,J)
100 CONTINUE
    CBG=CCB(I)
        IF(I.EQ.1) GO TO 10
        CCB(I)=(S4(I,22)-Sl(I,22)*QG(21))/S2(I,22)
    10 QQ(I,2I)=(S4(I,21)-SI(I,2I)*QG(20)-S3(I,21)*CCB(I))/S2(I,2I)
        DO 110 J=20,N,-1
        IF(J.EQ.1) QQ(I,1)=(S4(I,1)-S3(I,1)*QQ(I,2))/S2(1,1)
        IF(J.NE.I) QQ(I,J)=(S4(I,J)-SI(I,J)*QG(J-1)-S3(I,J)*QQ(I,J+1))
            /S2(I,J)
110 CONTINUE
        IF(I.EQ.l) GO TO 20
        ERR=(CCB(I)-CBG)/CCB(I)
        IF(ABS(ERR).GT.I.E-4) GO TO I
    20 DO 120 J=21,N,-1
        IF(QQ(I,J).EQ.0.) GO TO I20
        ERR=(QQ(I,J)-QG(J))/QQ(I,J)
        IF(ABS(ERR).GT.I.E-4) GO TO I
120 CONTINUE
    RETURN
    END
```

"In the ordinary business of life, industry can do anything which genius can do, and very many things which it cannot." (Henry Ward Beecher)

Vita

THOMAS EDWARD TOKUO GILLOGLY

PERSONAL INFORMATION

Date of Birth: June 5, 1971
Place of Birth: San Francisco, CA

EDUCATION

University of Illinois, IL

Doctor of Philosophy in Environmental Engineering in Civil Engineering, January 1999

Dissertation: "Effect of Chlorine on MIB Removal by Activated Carbon"
Advisor: Vernon L. Snoeyink
Master of Science in Civil Engineering, May 1995
Advisor: Vernon L. Snoeyink
Carnegie Mellon University, PA
Bachelor of Science in Chemical Engineering and Engineering \& Public Policy (with an Environmental Engineering minor), May 1993

EXPERIENCE

12/93 - present	Graduate Research Assistant - Advisor: Vernon L. Snoeyink, Ph.D. University of Illinois Environmental Engineering Program, Urbana. IL - Research the theory and basic design of processes used in water treatment - Correlate physical/chemical measurements to adsorption phenomena
9/93-12/93	Teaching Assistant - CE342: Water and Wastewater Treatment Unit Operations
	University of Illinois, Environmental Engineering Program, Urbana, IL
6/93-9/93	Health Services Officer - Public Health Service (0-1 ensign)
	U.S. Environmental Protection Agency (EPA, OSWER, OPM),

- Analyzed and compiled regional data for Superfund directoral meetings
- Reviewed external reports concerning the Superfund Program
- Wrote internal document consolidating Superfund program information
9/92-5/93 Undergraduate Research Assistant - Advisor: David A. Dzombak, Ph.D., P.E.
Carnegie Mellon University, Department of Civil and Environmental Engineering, Pittsburgh, PA
- Wrote, "Synthesis of MnO_{2} Coated Granular Activated Carbon for the Removal of Heavy Metals From Aqueous Media"
- Developed methodologies to produce various MnO_{2} coatings
- Analyzed stability and adsorptive capacity of coatings

6/92-9/92 Health Services Officer - Public Health Service (0-1 ensign)
U.S. Environmental Protection Agency (EPA, ORD, SITE Program), Cincinnati, OH

- Analyzed proposed innovative technologies for hazardous waste site remediation
- Orchestrated work on scaling up a dehalogenation process

6/91-9/91, Engineering Intern - (GS-4)
12/91-1/92 U.S. Army Toxic and Hazardous Materials Agency, A.P.G., MD

- Wrote, "The Development of a Soil Sampling Plan for the RDX Manufacturing Area, Newport Army Ammunition Plant"
- Assisted project managers in data analysis/management

PUBLICATIONS AND PRESENTATIONS

Peer Reviewed

Gillogly, T.E.T., V.L. Snoeyink, J. Vogel, C.M. Wilson \& E.P. Royal. Determining Remaining GAC Bed Life for Taste and Odor Control. Journal American Water Works Association (Submitted 10/98).
Gillogly, T.E.T., V.L. Snoeyink, G. Newcombe \& J.R. Elarde. A Simplified Method to Determine the PAC Dose Required to Remove MIB. Water Science and Technology (Accepted 4/98).
Gillogly, T.E.T., V.L. Snoeyink, A. Holthouse, C.M. Wilson \& E.P. Royal. (1998) Effect of Chlorine on PAC's Ability to Adsorb MIB. Journal American Water Works Association 90:2:107.
Gillogly, T.E.T., V.L. Snoeyink, J.R. Elarde, C.M. Wilson \& E.P. Royal. (1998) ${ }^{14}$ C-MIB Adsorption on PAC in Natural Water. Journal American Water Works Association 90:1:98.

Conference Proceedings

Gillogly, T.E.T., V.L. Snoeyink, G. Newcombe \& J.R. Elarde. A Simplified Method to Determine the PAC Dose Required to Remove MIB. In

Proceedings of the LAWQ - Fifth International Symposium on Off-Flavours in the Aquatic Environment. Paris, France. 12-16 October, 1997.
Gillogly, T.E.T., V.L. Snoeyink, A. Holthouse, C.M. Wilson \& E.P. Royal. Effect of Chlorine on 2-Methylisoborneol Adsorption by Activated Carbon. In Proceedings of the American Water Works Association Annual Conference \& Exposition. Atlanta, Georgia. 15-19 June, 1997.
Gillogly, T.E.T., V.L. Snoeyink, J.R. Elarde, C.M. Wilson \& E.P. Royal. Kinetic and Equilibrium Studies of ${ }^{14} \mathrm{C}-\mathrm{MIB}$ Adsorption on PAC in Natural Water. In Proceedings of the American Water Works Association Annual Conference \& Exposition. Toronto, Canada. 23-27 June, 1996.
Snoeyink, V.L., T.E.T. Gillogly, D.R.U. Knappe \& J.R. Elarde. Optimal Use of Powdered Activated Carbon for Pesticide and Taste and Odour Removal. In Proceedings of WaterTech (Australian Water \& Wastewater Association). Sydney, Australia. 27-28 May, 1996.

Invited Lectures

Gillogly, T.E.T., V.L. Snoeyink, J.R. Elarde, \& G. Newcombe. Practical and Innovative Use of PAC for Taste and Odor Control. Small Reservoir Management Conference. Rensselaer, New York. 10 June, 1998.

Platform Presentations

Gillogly, T.E.T., V.L. Snoeyink, G. Newcombe \& J.R. Elarde. A Simplified Method to Determine the PAC Dose Required to Remove MIB. IAWQ - Fifth International Symposium on Off-Flavours in the Aquatic Environment. Paris, France. 12-16 October, 1997.
Gillogly, T.E.T., V.L. Snoeyink, A. Holthouse, C.M. Wilson \& E.P. Royal. Effect of Chlorine on 2-Methylisoborneol Adsorption by Activated Carbon. AWWA Annual Conference. Atlanta, Georgia. 15-19 June, 1997.
Gillogly, T.E.T., V.L. Snoeyink, J.R. Elarde, C.M. Wilson \& E.P. Royal. Kinetic and Equilibrium Studies of ${ }^{14} \mathrm{C}-\mathrm{MIB}$ Adsorption on PAC in Natural Water. AWWA Annual Conference. Toronto, Canada. 23-27 June, 1996.
Thurston E. Larson - Best Paper Award. Gillogly, T.E.T., V.L. Snoeyink, J.R. Elarde, C.M. Wilson \& E.P. Royal. Taste and Odor Studies: Recent Illinois Problems and Solutions. Illinois Section AWWA 87th Annual Meeting. Rockford, Illinois. 26-29 March, 1996.
Snoeyink, V.L. \& T.E.T. Gillogly. Progress Report Presentation. City of Chicago Department of Water. Chicago, Illinois. 30 November, 1998; 22 July, 1998; 19 December, 1997; 26 February, 1997; 9 October, 1996; 10 January, 1996; 21 July, 1995; 2 December, 1994; 10 June, 1994.

PROFESSIONAL REGISTRATION AND MEMBERSHIP

1994
1993-present American Water Works Association
1990-1993 American Institute of Chemical Engineers

- 1993. Applied Imaga, Inc. All Rights Resarved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[^0]: ' Trained personnel consisted of 25 to 36 water examination laboratory staff members; 46 untrained panelists were randomly selected from the water treatment plant's distribution area (Sano, 1988). Trained personnel tend to be more aware of various attributes of the water, and as a result the perceived OTC of a trained panel is typically lower than an untrained panel (Meilgaard et al., 1991).

[^1]: - University of Illinois, 205 N. Mathews Avenue, Urbana, Illinois 61801 (V.L. Snoeyink served as an advisor to the project; J.R. Elarde, a masters student, assisted in collecting data from the domestic waters)
 - Australian Water Quality Centre, Private Mail Bag, Salisbury South Australia 5108, Australia (G. Newcombe collected the data obtained from the Australian waters)

[^2]: - University of Illinois, 205 N. Mathews Avenue, Urbana, Illinois 61801 (V.L. Snoeyink served as an advisor to the project; J.R. Elarde, a masters student, assisted in collecting data)
 "City of Chicago, Department of Water, 1000 East Ohio Street, Chicago, Illinois 60611 (C.M. Wilson and E.P. Royal provided information about the problem in Lake Michigan)

[^3]: - University of Illinois, 205 N. Mathews Avenue, Urbana, Illinois 61801 (V.L. Snoeyink served as an advisor to the project; A. Holthouse, an undergraduate student, assisted in collecting data)
 * City of Chicago, Department of Water, 1000 East Ohio Street, Chicago, Illinois 60611 (C.M. Wilson and E.P. Royal provided information about the problem in Lake Michigan)

[^4]: ${ }^{2}$ For the lower PAC concentrations, not all of the chlorine initially present was reacted within 4 hours. These numbers indicate the actual amount reacted.

[^5]: ${ }^{3}$ This study, assuming plateau values in Figure 5 approximate equilibrium

[^6]: - University of Illinois, 205 N. Mathews Avenue, Urbana, Illinois 61801 (V.L. Snoeyink served as an advisor to the project)
 *" Greeley and Hansen, 100 South Wacker Drive, Chicago, Illinois 60606 (J.C. Vogel provided pilot-plant data)
 *- City of Chicago, Department of Water, 1000 E. Ohio Street, Chicago, Illinois 60611 (C.M. Wilson and E.P. Royal provided information about the problem in Lake Michigan)

