
HDF5 & Blosc2
Unleashing the full potential of Blosc2 from HDF5

Francesc Alted / @FrancescAlted

The Blosc Development Team / @Blosc2

CEO / @ironArray

EUROPEAN HDF5 USER GROUP (HUG) meeting
May 31th 2022

The Blosc
Development
Team

Aleix Alcacer

Oscar Guiñón

Marta Iborra

Alberto Sabater

Nathan Moinvaziri

Francesc Alted (BDFL)

A few words about ironArray

CPU

Intertwining compression and computation for improving performance

Decompression

Compression

Computation

Writing

Reading

Decompression

Compression

Computation

Writing

Reading

L1/L2
Cache

L1/L2
Cache

L1/L2
CacheCore 1 Core 2 Core N

d

a b c

What is Blosc?

ü Sending data from
CPU to memory (and
back) faster than
memcpy().

ü Split in blocks for
better cache use:
divide and conquer.

ü It can use different
filters (e.g. shuffle,
bitsuffle) and codecs
(e.g. LZ4, Zlib, Zstd,
BloscLZ).

Block 1

Block 2

...

Block N...

L1/L2
Cache

CPU

Binary
dataset
(Chunk)

Blosc
Container

Origins of Blosc

• 2009: it was very clear that compression was slowing down storage in
PyTables/HDF5 a lot. Work began.

• 2010: Blosc 1.0 was ready for production. Innovations:

• Shuffle filter was optimized for SSE2 (*much* faster)
• Multithreaded operation

• 2013: Blosc gained multi-codec (LZ4, Snappy and Zlib where included)
• 2015: hdf5-blosc plugin for HDF5 was released (hdf5plugin took over!)
• 2021: Blosc2 appeared with lots of new features.

What is Blosc2?

ü Next generation of Blosc1.
ü New 63-bit frames that

expand over the existing 31-bit
chunks in Blosc1.

ü Metalayers for adding info for
applications.

ü Area for adding metadata for
users (variable length).

Filter Pipeline
Itemsize

…
Metalayers

Chunk 0
Chunk 1

Chunk N

…

Chunk Index

UserMeta

Blosc2 Frame

Example of Decompression Speed

https://www.blosc.org/posts/breaking-memory-walls/

https://www.blosc.org/posts/breaking-memory-walls/

HDF5: Multidimensions and Chunking

• Data can be stored in hypercubes, making retrieval very convenient.

• But there is a price to pay for this flexibility: HDF5 is known to be
slow when writing/retrieving (hyperslabs of) data.

Direct Chunk
Write/Read Feature

• Allow the aplication to handle
the chunk I/O and bypass the
powerful (but slow!) chunk
handling machinery in HDF5.

• The result is that data can be
handled up to about 10x
faster (with efficient pre and
post processing in the app).

HDF5

Blosc2

H5Dwrite_chunk

Applicationchunk chunk

Storage

• Blosc2 can do parallel I/O
• Blosc2 can do chunk reads with

enhanced selectivity from disk

H5Dget_chunk_info

• HDF5 stores compressed data

All compression and
decompression
executed in parallel
via Blosc2!

Proposal 1: Use Blosc2 Inside Direct Chunk

Blosc2 Advantages

Blosc2: Fine Tuned Cache Usage

Prefilter Codec

src1 c_src1

Compression: chunks are split in blocks for CPU cache sake

tmp1 tmp2

Filters
pipeline

src2 c_src2tmp1 tmp2

src3 c_src3tmp1 tmp2

Thread 1

Thread 2

Thread 3

Fram
e

either
on disk or in m

em
ory

Buffers are reused inside CPU caches -> speed!

Blocks

Fram
e

either
on disk or in m

em
ory

Blosc2: Leveraging I/O Parallelism

src1 c_src1

Decompression: blocks are read in parallel from storage

tmp1 tmp2

src2 c_src2tmp1 tmp2

src3 c_src3tmp1 tmp2

Thread 1

Thread 2

Thread 3

Postfilter Codec
Filters
pipeline

Parallel I/O in action!

Blocks

Caterva: Blosc2 Goes Multidimensional

ü Metalayer representing
multidimensionality

ü Each Caterva array is
split in chunks

ü Each chunk is split in
blocks

ü All the partitions are
multidimensional!

Benefits of the Caterva Layer

• Get improved
compression ratio
because data is packed in a
way that can show higher
spatial locality.

• Also, get improved
hyperslab query speed,
i.e. some blocks can be
masked out so as to not
read them.

ZFP: a new registered plugin

Masked & Paralel I/O in Multidim Datasets

Much more selective and faster queries!
Caterva (https://github.com/Blosc/caterva) and ironArray (https://ironarray.io)

https://github.com/Blosc/caterva
https://ironarray.io/

0 1

4 5 6

2

1098 11

7

3

15141312

Thread 1: 1, 5, 9

Thread 2: 2, 6, 10

Thread 3: 3, 7, 11

Block maskout F T T T F T T T F T T T F T T T

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Block Masks and Parallel I/O

Specially effective when retrieving slices of multidim datasets.

Masked & Paralel I/O in Multidim Datasets

Better performance in general
(except for dimensions where retrieving a chunk is already optimal)

https://ironarray.io/docs/html/tutorials/03.Slicing_Datasets_and_Creating_Views.html

https://ironarray.io/docs/html/tutorials/03.Slicing_Datasets_and_Creating_Views.html

Blosc2: Paralellism and Efficiency

• In the plot: 3 compressed
arrays are decompressed,
operated with, and the result
is compressed again.

• ironArray is using Blosc2.

• When handled correctly,
parallelism can buy not only
speed, but also less memory
resources!

Mean of 3 arrays of 3 GB each (on disk)

https://ironarray.io/docs/html/bench/05.Reductions_OnDisk.html

https://ironarray.io/docs/html/bench/05.Reductions_OnDisk.html

Blosc2 + HDF5 Direct Chunk
Quick Benchmark
Quick test on data from ERA5 dataset, using
different measurements (wind, temp, precip…).
The datasets are ~3 GB (uncompressed) each.

• Blosc2 + HDF5 speed-up is typically between
10x and 20x for writing.

• Blosc2 + HDF5 speed-up is typically between
20x and 30x for reading.

Note: this is very preliminary, but the measuments
make sense, specially when using a fast storage (in
this case OS FS cache).

Blosc2 + H5Dchunk_write

Blosc2 + H5Dchunk_read

Adaptability: Plugins in Local Registry

BLOSC_SHUFFLE 1

BLOSC_BITSHUFFLE 2

BLOSC_DELTA 3

. . .

BLOSC_NDCELL 32

BLOSC_NDMEAN 33

. . .

urfilter1 160

urfilter2 161

. . .

Filters registry

cparams.filters[4] = 161;

Can be used now:To register locally:

int urfilter2(
blosc2_filter *filter) {
…

}

blosc2_register_filter(
urfilter2)

Blosc official registered filters
User local filters

User defined filter:

(Similar functionality to the plugin interface in HDF5)

Registering Global Plugins in Blosc2

GitHub

Pull Request
User plugin Blosc

development team

Evaluation

process

To global
registry

Specifications
not fulfilled

Specs: https://github.com/Blosc/c-blosc2/blob/main/plugins/README.md

https://github.com/Blosc/c-blosc2/blob/main/plugins/README.md

Proposal 2: Help in Determing Optimal
Compression Pipelines

We are offering a service for adapting to the user data, and
determining:
• Set of most useful codecs to be used
• Set of most useful filters to be used

We produce specific versions of BTune, a machine learning tool for
selecting the best pipeline candidate on a chunk by chunk basis, that
adapts to the needs of the user.

Fine Tuning Performance with BTune

• BTune can fine tune the
different parameters of the
underlying Blosc2 storage to
perform as best as possible.

• Active during the
compression pipeline.
Automatically learns the
best parameters on the go.

Demo time

https://btune.blosc.org

https://btune.blosc.org/

Work in Improving BTune

• Currently BTune needs some warm-up tests (hard and soft
readapts) so as to come with a sensible guess.

• We are planning to shorten this warm-up period by using deep
learning techiques.

• The idea is to come with some predictor for the entropy for every
chunk and train a neural network. This will be used for reaching
the sensible guess faster.

Current Investigation
(Preliminary Results)

Codecs with
similar

features:
Not good

predictions

Codecs with
different
features:

Much better
predictions!

Conclusion

Blosc2 Helps Saving Resources

Blosc2 orchestrates a rich set of codecs and filters for:

• CPU parallelization via multithreading
• Reuse and sharing internal buffers for optimal

memory consumption
• Parallel I/O
• More selective hyperslabs

The result is a highly efficient tool for
compressing and accessing your data your way

Summary of Proposals

1. Use Blosc2 in combination with HDF5 direct chunking mechanism
for efficient compression and parallel I/O.

2. Help in determing optimal compression pipelines by adapting to
user data and using machine learning techniques.

The Blosc team would be glad to be involved
in efforts towards these goals

Thanks to donors
& contracts
& contractors!

Without them, we could not have possibly put Blosc2 into production
status: Blosc2 2.0.0 came out in June 2021; now at 2.1.1.

Jeff
Hammerbacher

Enjoy data!

https://blosc.org/

