
U.S. Department
of Commerce

National Bureau
ot Standards

Computer Science
and Technology

NBS

PUBLICATIONS

'"le^.v of

NBS Special Publication 500-80

Proceedings of the

NBS/IEEE/ACM Software

Tool Fair



NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards' was established by an act of Congress on March 3, 1901.

The Bureau's overall goal is to strengthen and advance the Nation's science and technology

and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific

and technological services for industry and government, (3) a technical basis for equity in

trade, and (4) technical services to promote public safety. The Bureau's technical work is per-

formed by the National Measurement Laboratory, the National Engineering Laboratory, and

the Institute for Computer Sciences and Technology.

THE NATIONAL MEASUREMENT LABORATORY provides the national system of

physical and chemical and materials measurement; coordinates the system with measurement

systems of other nations and furnishes essential services leading to accurate and uniform

physical and chemical measurement throughout the Nation's scientific community, industry,

and commerce; conducts materials research leading to improved methods of measurement,

standards, and data on the properties of materials needed by industry, commerce, educational

institutions, and Government; provides advisory and research services to other Government
agencies; develops, produces, and distributes Standard Reference Materials; and provides

calibration services. The Laboratory consists of the following centers:

Absolute Physical Quantities' — Radiation Research — Thermodynamics and

Molecular Science — Analytical Chemistry — Materials Science.

THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser-

vices to the public and private sectors to address national needs and to solve national

problems; conducts research in engineering and applied science in support of these efforts;

builds and maintains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement capabilities;

provides engineering measurement traceability services; develops test methods and proposes

engineering standards and code changes; develops and proposes new engineering practices;

and develops and improves mechanisms to transfer results of its research to the ultimate user.

The Laboratory consists of the following centers:

Applied Mathematics — Electronics and Electrical Engineering^ — Mechanical

Engineering and Process Technology^ — Building Technology — Fire Research —
Consumer Product Technology — Field Methods.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts

research and provides scientific and technical services to aid Federal agencies in the selection,

acquisition, application, and use of computer technology to improve effectiveness and

economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759),

relevant Executive Orders, and other directives; carries out this mission by managing the

Federal Information Processing Standards Program, developing Federal ADP standards

guidelines, and managing Federal participation in ADP voluntary standardization activities;

provides scientific and technological advisory services and assistance to Federal agencies; and

provides the technical foundation for computer-related policies of the Federal Government.

The Institute consists of the following centers:

Programming Science and Technology — Computer Systems Engineering.

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted;

mailing address Washington, DC 20234.

'Some divisions within the center are located at Boulder, CO 80303.



Computer Science
and Technology

NATIONAL BUHEAO
or STANDAB1>3

LIBBART

OCT 2 1981

•^^"^ NBS Special Publication 500-80

m\ Proceedings of the
t'^ NBS/IEEE/ACM Software

Tool Fair

Held in conjunction with the

5th International Conference on Software Engineering

in San Diego, CA, March 10-12, 1981

Editor:

Raymond C. Houghton, Jr.

Center for Programming Science and Technology
Institute for Computer Sciences and Technology
National Bureau of Standards

Washington, DC 20234

Sponsored by:

National Bureau of Standards

Washington, DC 20234

and

IEEE Computer Society

P.O. Box 639
Silver Spring, MD 20901

and

SIGSOFT ACM
1 1 33 Avenue of the Americas
New York, NY 10036

U.S. DEPARTMENT OF COMMERCE
Malcolm Baldrige, Secretary

National Bureau of Standards
Ernest Ambler, Director

Issued October 1981



Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal

Government for computer science and technology activities. The programs of the

NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness

of computer utilization in the Federal sector, and to perform appropriate research and
development efforts as foundation for such activities and programs. This publication

series will report these NBS efforts to the Federal computer community as well as to

interested specialists in the academic and private sectors. Those wishing to receive

notices of publications in this series should complete and return the form at the end of

this publication.

National Bureau of Standards Special Publication 500-80
Nat. Bur. Stand. (U.S.), Spec. Publ. 500-80, 238 pages (Oct. 1981)

CODEN; XNBSAV

Library of Congress Catalog Card Number: 81-600109

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1981

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402

Price $6.50

(Add 25 percent for other than U.S. mailing)



FOREWORD

The Institute for Computer Sciences and Technology (ICST)
within the National Bureau of Standards (NBS) has a mission under
Public Law 89-306 (Brooks Act) to develop standards to enable the
"economic and efficient purchase, lease, maintenance, operation,
and utilization of automatic data processing equipment by Federal
Departments and Agencies." As part of its current standards
initiative, ICST is studying, evaluating, and publishing methods
that increase the productivity and quality of software procured
by the Government and software developed within the Government.
A way to achieve higher quality and increased programmer
productivity appears to lie in the use of computer technology
itself. Automation must be used to serve and augment itself. A
recent GAO report [1] endorses this use of automation and
concludes that software tools can offer the Federal Government
the following:

— Better management control of computer software development,
operation, maintenance, and conversion.

— Lower costs for computer software development, operation,
maintenance, and conversion.

— Feasible means of inspecting both contractor-developed and
in-house-developed computer software for such quality
indications as conformance to standards and thoroughness of
testing

.

To this end, ICST has established a project to study,
evaluate, and make recommendations concerning the use of software
development tools. A database on existing tools has been
assembled and is available in published form [2]. A taxonomy of
software tool features has been produced [3] to provide a means
for classifying and evaluating the capabilities of the ever more
complex tools available in the marketplace. As a part of the
program to provide information to Federal Agencies on tool usage,
capabilities, limitations, and availability, NBS co-sponsored the
tool fair held in conjunction with the Fifth International
Conference on Software Engineering. The concept for the tool
fair came from Professor Gerald Estrin, Chairperson, Computer
Science Department, UCLA, as a result of experiences with remote
interactive demonstrations of SARA (System ARchitects Apprentice)
over a 3 year period.

The proceedings of the tool fair are intended for use by all
Federal and private organizations seeking information about
current and future software engineering tools. The views
expressed in the papers do not necessarily reflect those of the
National Bureau of Standards, and the inclusion of any given
tool, whether or not commercially available, does not imply that
NBS endorses or warrants its operability or suitability.

[1] "Wider Use of Better Computer Software Technology Can Improve
Management Control and Reduce Costs", FGMSD-80-38, Apr 80.

[2] "NBS Software Tools Database", NBSIR 80-2159, Oct 80.

[3] "Features of Software Development Tools", NBS SP 500-74, Feb
81 .



PREFACE

The San Diego Tool Fair was a first-of- its-kind
demonstration of software engineering tools at a major
conference. The goals of the tool fair were to preview tools
currently in research, to increase knowledge of what available
tools do, and to demonstrate how tools are used in software
engineering. However, a more important goal of the tool fair was
to make the demonstrations an extension of the technical
proceedings of the conference. This goal was accomplished by
emphasizing the technical aspects of the tools in a professional,
non-sales manner.

The tool fair ran parallel with the conference program.
Demonstrations were held in private conference rooms and were
scheduled on a periodic basis. Over 33 tools were demonstrated
at the tool fair and included the following:

Requirements, Design, and Modeling Tools
Cost Estimation and Project Management Tools
Program Analysis and Testing Tools
Configuration Management Systems
Formal Verification Systems
Program Construction and Generation Systems
Programming Environments

The majority of the tools demonstrated are not marketed
commercially. Many of these tools were developed by universities
or Government- supported research organizations, while many others
were developed for internal use by organizations.

This document summarizes the presentations made by each
demonstrator at the San Diego Tool Fair. These summaries are
arranged in chronological and station order, so they reflect the
published schedule of the tool fair. Each summary includes a
short description of the tool, a scenario of the demonstration, a
list of references, background on the demonstrators, sample
output, and a page of miscellaneous data obtained from the NBS
Software Tools Database (see page 180). The appendix provides a
cross reference to the features of the tools and can be used as
an index to identify tools of interest.

The organizing committee would like to acknowledge the
support of the following people and thank them for their
contributions: Mr. Seymour Jeffery, General Chairperson, and
Dr. Leon G. Stucki , Program Chairperson of ICSES, for their
foresight and support of Tool Fair; Mr. Robert Fritz of General
Dynamics Corporation, San Diego, for his support in finding
resources for many of the demonstrations; Dr. Martha Branstad,
NBS, and Ms. Patricia Powell, NBS, for their helpful guidance
and on-site assistance; and finally, the Review Committee for
their support in reviewing the many proposals received for Tool
Fair.

Dr. Gerald Estrin, Chairperson
Mr. Raymond C. Houghton, Vice Chairperson
Tool Fair Organizing Committee

iv



ORGANIZING COMMITTEE

G. Estr in, Chairperson R. Houghton, Vice Chairperson

REVIEW COMMITTEE

J. Barkl ey G. Cannon, Jr. R. Fairley
S. Frankel H. Hecht B. Leong-Hong
G. Lyon E. Miller K. Moore
A. Neumann L. Osterweil M. Penedo
P. Powe 1

1

R. Razouk D. Reifer
W. Riddle P. Santoni M. Zelkowitz

ABSTRACT

This document summarizes the presentations made by each
demonstrator at the San Diego Tool Fair. The San Diego Tool Fair
was a first-of- its-kind demonstration of software engineering
tools at a major conference. Each summary includes a short
description of the tool, a scenario of the demonstration, a list
of references, background on the demonstrators, sample output,
and a page of miscellaneous data obtained from the NBS Software
Tools Database. The appendix provides a cross reference to the
features of the tools.

Key words: programming aids; software automation; software
development; software engineering; software testing; software
tool s

.

EDITOR'S COMMENT

Most of the tool descriptions and scenarios that appear in
this publication were received directly from the
authors/demonstrators and were reviewed by members of the review
committee. In some cases, the text was modified for brevity or
adherence to NBS publishing guidelines. Sample output was either
directly received from the authors/demonstrators or acquired from
handouts distributed at the conference. The Appendix and the
lists of tool features were obtained from the NBS Software Tools
Database. Definitions for most of these features can be found in
NBS Letter Circular-1127, Software Development Tools: A
Reference Guide to a Taxonomy of Tool Features, Feb. 81. Copies
of this reference guide may be requested from: The Software
Tools Project, Room A-265 Technology, National Bureau of
Standards, Washington, DC 20234.

NOTE

In no case does identification of commercial products imply
recommendation or endorsement by the National Bureau of
Standards, nor does it imply that the product identified is

necessarily the best available for the purpose.

V



TABLE OF CONTENTS and TOOL FAIR SCHEDULE

March 10, 1981

Station 1

CS4: A Tool for the Design and Generation of
Database Systems

S. Berild
University of Stockholm, Stockholm, Sweden

S. Nachmens
Databaskonsul t DBK AB, Solna, Sweden

Station 2

LILITH: A Modula Machine
N. Wirth

Institut fuer Informatik, ETH, Zurich, Switzerland
R. Ohran

Brigham Young University, Provo, UT

Station 3

SARA: A Demonstration of the Development of
Interactive Software with Integral Help 10

Robert S. Fenchel
University of California, Los Angeles, CA

Station 4

VIRTUAL OS: The Software Tools Virtual Operating
System Project 15

Debbie Scherrer
Lawrence Berkeley Laboratory, Berkeley, CA

Dave Martin
Hughes Aircraft Company, Los Angeles, CA

Chris Peterson
Orincon Corp., La Jolla, CA

Station 5

SCG ; Structure Chart Graphics System 21
Debra L. Resendez and James W. Winchester

Hughes Aircraft Company, Fullerton, CA

DQM : Design Quality Metrics System 25
Debra L. Resendez and James W. Winchester

Hughes Aircraft Company, Fullerton, CA

vi



AISIM: Automated Interactive Simulation
Modelling System 29

William P. Austell, Jr. and Ronald R. Willis
Hughes Aircraft Company, Fullerton, CA

Station 6

THE ENGINE ; COBOL Structuring Engine 33
Jon Cris Miller and Michael J. Lyons

Catalyst Corporation, La Grange, IL

Station 7

PSL/PSA ; Problem Statement Language/Probl em
Statement Analyzer 38

E. Cal lender
Jet Propulsion Laboratory, Pasadena, CA

Hasan H. Sayani
Advanced Systems Technology, Greenbelt, MD

Daniel Teichroew
University of Michigan, Ann Arbor, MI

SDDL ; Software Design and Documentation Language 44
E. Callender, C. Hartsough, and H. Kleine

Jet Propulsion Laboratory, Pasadena, CA

Station 8

SLIM ; A Quantitative Tool for Software Cost and
Schedule Estimation 49

Lawrence H. Putnam
Quantitative Software Management, Inc., Mc Lean, VA

Station 9

POD: Performance Oriented Design 58
A. Levy

BGS Systems, Inc., Waltham, MA

Station 11

PWB FOR VAX/VMS ; Programmer Workbench Tools
on VAX/VMS 64

Heinz Lycklama
Interactive Systems Corporation, Santa Monica, CA

vii



March 11, 1981

Station 1

AFFIRM ; A Specification and Verification System 69
R. Erickson, S. Gerhart, S. Lee, and D. Thompson

USC/lnformat ion Sciences Institute,
Marina Del Ray, CA

Station 3

SARA: SARA as a Tool for Software Design:
Building-block Modelling and Composition 76

Maria Heloisa Penedo
University of California, Los Angeles, CA

Station 4

ARGUS/ MICRO ; ARGUS in the Microcomputer Environment 83
Wi 1 1 i am C. King

Boeing Computer Services Company, Seattle, WA

DYNA: A Tool From the ARGUS Toolbox 88
Leon G. Stucki

Boeing Computer Services Company, Seattle, WA

COMMAP: A Tool from the ARGUS Toolbox 96
Leon G. Stucki

Boeing Computer Services Company, Seattle, WA

Station 5

LOGICFLOW : A Software Design and Analysis Tool 103
S. Moy, G. Nielsen, R. Sanchez, T. Wallace,
and S. Mc Wethy

Logicon, San Pedro, CA

Station 6

SREM : Software Requirements Engineering Methodology Ill
R. H. Hoffman, R. P. Loshbough, and R. W. Smith

TRW Inc., Huntsville, AL

Station 7

SDP: A Computerized Tool for System Design
and Maintenance 117

Nancy Linden and Moshe Yavne
Mayda Software Engineering, Rehovot, Israel

vii i



stations 8 & 10

SOFTOOL 80 (TM)

*

; A Methodology and a Comprehensive Set
of Tools for Software Management, Development,
and Maintenance 122

Richard Hug and Thomas Strelich
Softool Corporation, Goleta, CA

Michael Resnicow and Robert Ahola
Systems Engineering Laboratories,
Fort Lauderdale, FL

Station 9

ITB ; Interactive Test Bed 128
James B. Henderson and Edward F. Miller, Jr.

Software Research Associates, San Francisco, CA

ISUS: Interactive Semantic Update System 136
James B. Henderson and Edward F. Miller, Jr.

Software Research Associates, San Francisco, CA
Morton Hirschberg

U. S. Army Ballistic Research Laboratory,
Aberdeen Proving Ground, MD

Station 11

FAME ; Front-End Analysis and Modeling Environment 146
J. Rosenbaum and C. Early

Higher Order Software, Inc., Jericho, NY

March 12, 1981

Station 1

Schemacode ; An Interactive Schematic Pseudocode for
Program Development, Documentation, and
Structured Coding 152

Pierre N. Robillard and Re jean Plamondon
Ecole Polytechnique de Montreal, Montreal, Canada

* SOFTOOL 80 is a Trade Mark of Softool Corporation

IX



station 2

INSTRU: An Automated Software Instrumentation System 159
J . C . Huang

University of Houston, Houston, TX

Station 3

SARA ; Control-Flow Analysis in SARA 163
Rami R. Razouk

University of California, Los Angeles, CA

Station 4

ONLINE ASSIST ; A User Interface for Online Assistance .... 167
Nathan Relies

Sperry Univac, Blue Bell, PA
Lynne A. Price

BNR, Inc., Mountain View, CA

Station 5

FTN-7 7 ANALYZER ; FORTRAN 77 Analyzer , 174
John Barkley and Patricia Powell

National Bureau of Standards, Gai thersburg , MD

TOOLS DATABASE ; NBS Software Tools Database 180
Raymond C. Houghton, Jr. and Karen A. Oakley

National Bureau of Standards, Gai thersburg , MD

Station 6

SRIMP ; Software Requirements Integrated Modeling
Program 186

Stephanie White
Grumman Aerospace Corp., Bethpage, NY

Station 7

AUTO-DBO ; Automated Design by Objectives 190
Tom Gilb

Independent EDP Consultant, Kolbotn, Norway
Lech Krzanik

University of Krakow, Krakow, Poland

X



stations 8 & 10

UCSD P-SYSTEM ; A Portable Software Development System .... 194
Mark Overgaard and Joan Gianetta

Softech Microsystems, San Diego, CA

MSEF ; The Microprocessor Software Engineering Facility ... 197
Rich Thall

SofTech, Inc., Waltham, MA
Gail Anderson

Softech Microsystems, San Diego, CA

Station 9

IFTRAN (TM)

*

; A Preprocessor for FORTRAN 200
Sabina H. Saib, Jeoffrey P. Benson, Carolyn Gannon,
and William R. DeHaan

General Research Corp., Santa Barbara, CA

RXVP80 (TM)

*

; A Software Documentation, Analysis, and
Test System 208

Sabina H. Saib, Jeoffrey P. Benson, Carolyn Gannon,
and William R. DeHaan

General Research Corp., Santa Barbara, CA

* IFTRAN and RXVP80 are Trade Marks of General Research
Corporation

xi





CS4

A TOOL FOR THE DESIGN AND GENERATION OF
DATABASE SYSTEMS

Stig Berild and Sam Nachmens

SYSLAB
University of Stockholm
S-106 91 Stockholm
Sweden

Databaskonsul t DBK AB
Huvudstagatan 12
S-171 58 Solna
Sweden

1 . INTRODUCTION

The CS4 system was originally designed by the CADIS
Research Group at the Royal Institute of Technology
and the University of Stockholm. Since 1978, CS4
has been maintained and has been further developed
by Databaskonsul t DBK AB, in parallel with further
conceptual development within SYSLAB (the System
Development Laboratory) at the University of
Stockholm

.

CS4 has been operational since 1975, and has been
used for a variety of applications - from simple
" tel ephone-list" systems to complex systems, e.g.
for planning and resource allocation. CS4 has also
been used for education at several universities in
Europe - both as a first programming language and as
a tool at more advanced courses on databases.

CS4 is available on DEC-10/DEC-20 under TOPS-10 or
TOPS-20, and on UNIVAC-1100 under EXEC-8. An
IBM/TSO version is under development (planned
release during the summer of 1981), and an
implementation on VAX is planned.

2. SUMMARY OF CS4

CS4 is a systems development package, developed
mainly as a tool for quick and flexible
implementation of prototype systems as well as minor
production systems. CS4 includes an interpreter for
an easily learned general purpose programmming
language, specially designed for handling
associative databases.

In a CS4 associative database, information is
represented as associations between entities. This
simple but powerful representation facilitates
handling of data of arbitrary complexity.



Small, self-contained procedures are built up and
stored in a procedure library. Procedures can call
each other arbitrarily and recursively.

3. SCENARIO OF A CS4 DEMONSTRATION

A demonstration starts with a short description of
the CS4 associative database - how data are
represented and retrieved. This description takes
only a few minutes, but is essential for an
understanding of the demonstration.

The audience will then be asked to specify a small
system, which is successively implemented and
extended according to the specifications of the
audience. The emphasis will be put on showing the
flexibility of the associative database.

A demonstration will take about 30 minutes,
whereafter 30 minutes will be set aside for those
wishing to further extend the system being built by
the audience, or have any other aspect of CS4
demonstrated

.

4. CS4 LITERATURE

1. Janning, Berild, Nachmens, "Introduction to
Associative Databases and the CS4 System", is a
text book giving a comprehensive introduction to
the main CS4 features. It can be read by
persons without programming experience.
Published by Studentl i tteratur , Lund, Sweden,
1981. Available in Swedish and English.

2. Berild, Nachmens, "Some Practical Applications
of CS4 - a DBMS for Associative Databases" , in
Nijssen, "Architecture and Models in Database
Management Systems", North-Holland 1977, pp.
213-236.

3. Berild, Nachmens, "CS4 - A tool for Database
Design by Infological Simulation", VLDB-3,
Tokyo, 1977 (published in Ramamoorthy, Yeh,
"Tutorial: Software Methodology", COMPSAC 78).

4. Nachmens, "Associative Databases for Changing
Information Requirements", 13th Hawaiian
International Conference on Systems Sciences,
Honolulu, 1980.



5. THE DEMONSTRATORS

Stig Berild

Stig Berild has been a researcher at the Department
of Computer Science, University of Stockholm, since
1970. He is currently a member of the Sytems
Development Laboratory, working with
database-oriented problems and with development of
computer-aided tools for database design, with
special emphasis on the further improvement of CS4.
Since 1978, he is also connected to Databaskonsul

t

DBK AB, which is a Swedish company that now is
responsible for the product orientation of the CS4
system

.

Sam Nachmens

Sam Nachmens has been working as a researcher at the
Department of Computer Science, University of
Stockholm, since 1972. He has been working with the
development of the CS4 system, and with related
information-structuring and data- structuring
problems. Since 1978, he has been also working
within Databaskonsul t DBK AB

.



CS4
SAMPLE OUTPUT

Page 4

Representation of reality in a CS4-database

EMPLOYEE
EXCO

EMPLOYEE

.inwpc;

SMITH .
MANAtatn

SALARY

6000 4000

-Salary

r COMPANY^
<company nanne>

EMPLOYEE

/ PERSON >k\
\^person name>/ l MANAGER

SALARY

^ SALARY A
<^alary amount^

Occurrence level Conceptual level

Each association is represented by an e-record (elementary record) indicating the
name of the association and the two entities involved. The representation in figure c can now be described
by the following e-records:

An e-record (A, B, C) is interpreted

as "A of B is C"—for instance "EM-
PLOYEE of EXCO is JONES".

('EMPLOYEE', EXCO', JONES')
('EMPLOYEE', EXCO', SMITH')
('MANAGER', SMITH', 'JONES')
('SALARY', SMITH', '6000')

('SALARY', 'JONES', '4000')

Retrieval of information
Those instructions in CSL which refer to information in the database use search templates to describe which

e-records are to be retrieved. A search template has the same structure as an e-record, i.e.^it has three compo-

nents. Up to three components of a template can be specified (i.e. known)—they are names. Other comiX)nents

can be indicated as 'searched-for' (= ) or 'irrelevant' (*). A search template is logically matched against all

e-records of the database and those 'searched-for' names where the template's specified components match the

corresponding ones of the e-records are retrieved. Some examples are:

('MANAGER', 'SMITH', 'JONES') the value is TRUE, if such an e-record exists, else FALSE
retrieves salary amount(s) associated with SMITH
retrieves all persons which have JONES as MANAGER
retrieves names of all persons which participate in some EMPLOYEE association

retrieves names of all associations which emanate from JONES.

('SALARY', SMITH , = )

( MANAGER , = , 'JONES')

('EMPLOYEE', *
, = )

{ = , 'JONES', *)

Example 1

Assume a database with a structure according to figure f on the preceeding page. We now wish to specify a

procedure which for each employee of EXCO lists his/her name and salary.

10 BEGIN
20 ENTITY EMP, SAL
30 FORMAT LINE= <1,15<EMP;>17,25>SAL
40 OUTPUT EMPLOYEE SALARY', SPACE
50 FOREACH EMP IN ('EMPLOYEE', 'EXCO',=) DO
60 GET SAL IN ('SALARY', EMP,=)
70 OUTPUT LINE
80 NEXT
90 END



CS4 Page

SAMPLE OUTPUT
A session for input and test of the procedure according to example 1 may look as follows:

. R CS4
* ASSIGN DB EXBAS
* ASSIGN LIB EXLIB
* INSERT

Initiate CS4. Start of session

Assign a database

Assign a procedure library

Command lor automatic generation ot line numbers

10 BEGIN

Inout of procedure

90 END
* NAME SALARYLIST
* SAVE
* RUN SALARYLIST
EMPLOYEE SALARY

Assign name lO procedure

Save procedure in library

Execute procedure

ANDERSON
ERICSON
JONES

5000

5600

4000

The salary list is printea

SMITH 6000

ZIMMERMAN
* STOP

11500

End of CS4-session

Example 2

Assume a database with the same structure as before. We now wish to design a procedure which first requests

a name of an employee of EXCO and then lists all his/her subordinates, the subordinates of the subordinates

etc., according to the following lay-out:

WHICH EMPLOYEE: JONES

JONES
ANDERSON
CARLSON
SMITH

LEE
DAVIDSON

In order to achive this we specify two procedures. We start with the procedure which queries the user for

an employee name.

10 BEGIN
20 ENTITY EMP
30 QUERY 'WHICH EMPLOYEE: ' :EMP
40 IF ('EMPLOYEE', 'EXCO', EMP) EXIST
50 THEN SUBORDINATE EMP, 1

60 ELSE OUTPUT EMP; ' IS NOT EMPLOYED BY EXCO'
70 END

The SUBORDINATE procedure is defined as follows:

10 TN-ENTITY EMP, LEVEL
20 BEGIN
30 ENTITY SUB, LINE

40 LET LINE (LEVEL, LEVEL-I-15) = EMP
50 OUTPUT LINE

60 FOREACH SUB IN ('MANAGER', =, EMP) DO
70 SUBORDINATE SUB, LEVEL+2
80 HEXT
90 END

etc



CS4 Page 6

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. DATA INPUT

. CODE INPUT
• • • OSL

FUNCTION
. TRANSFORMATION

. TRANSLATION
. STATIC ANALYSIS

. MANAGEMENT
. DATA BASE MANAGEMENT

OUTPUT
. USER OUTPUT

. LISTINGS

. USER-ORIENTED TEXT
. DOCUMENTATION

. MACHINE OUTPUT
. OBJECT CODE OUTPUT
. DATA OUTPUT

IMPLEMENTATION LANGUAGE: FORTRAN

TOOL PORTABLE: NO

COMPUTER (OTHER HARDWARE

)

: IBM 360/370, DECSYSTEM 10/20,
UNIVAC-1100, VAX

OS (OTHER SOFTWARE)

:

TSO, EXEC-8, TOPS 10/20

TOOL AVAILABLE: YES

RESTRICTIONS (COPYRIGHTS, LICENSES, ETC .

)

; CONTACT
DATABASKONSULT DBK AB

TOOL SUPPORTED: YES, TOOL SUPPORT: DATABASKONSULT DBK AB

CONTACT : SAM NACHMENS, DATABASKONSULT DBK AB, HUVUDSTAGATAN
12, SOLNA, S-171 58, SWEDEN, 08-83 07 30
STIG BERILD, UNIVERSITY OF STOCKHOLM, DEPT OF INFORMATION
PROCESSING, FACK, STOCKHOLM, 10691, SWEDEN, 46-8-150160



LILITH Page 7

LILITH - A MODULA MACHINE

1. Project Sponsor:

Institut fuer Informatik
Eidgenoessische Technische Hochschule
Zurich, Switzerland

2. Project Summary:

LILITH is a tool for the creation of programs and docu-
ments . It is a general purpose computer created to provide
an optimal environment for the programming language MODULA II.
The merit of this system as a program and document preparation
tool rests upon the following features of the system:

a. The effectiveness and versatility of the language MODULA II,

b. The high performance in program execution achieved by
LILITH because of its extremely compact compiled code
and its specialized architecture,

c. The ability to show elaborate images with a high resolution
display and the ability to manipulate them with powerful
firmware- implemented graphic operations,

d. The efficiency for entering user commands available from
the combination of the Keyboard and mouse as input devices,

e. The reliability of both software and hardware resulting
from the avoidance of unnecessary complexity.

It will be shown that the LILITH computer and the MODULA II
language have delivered a significant performance for a modest
investment of resources.

3. Scenario of demonstration:

For groups of around 10 individuals, the demonstration
will consist of a presentation of the machine as the programmer
or user sees it and short statements covering respectively the
innovations in the language MODULA II and the LILITH computer.
The purpose of these statements will be to open discussions
with the visitors and invite their inquiries for a greater depth
of understanding in either the hardware or software area.



LILITH Page

During the presentation of the machine as it is actually used,
the visitor will be exposed to the graphics display capabilities
and the use of the mouse for entering commands . The visitor
will also see a demonstration of the text editor and the compiler
in preparation for a program for execution. A graphics editor
will demonstrate the preparation of a document containing a
circuit diagram.

4. Literature on MODULA II and LILITH

N. Wirth, Modular a language for modular multiprogramming,
Software - Practice and Experience, 7, 3-35 (1977).

N. Wirth, MODULA-2, research report Nr. 36, Institut fuer
Informatik, ETH-Zurich, 8092 Zurich, Switzerland.

J. Hoppe: A Simple Nucleus Written in MODULA-2, research
report Nr. 35, Institut fuer Informatik, ETH-Zurich, 8092
Zurich, Switzerland.

5. Biographical Data:

N. Wirth, Professor, Institut fuer Informatik, ETH-Zurich

R. Ohran, Asst. Professor, Electrical Engineering Dept„
Brigham Young University, on leave to Institut fuer Informatik,
ETH-Zurich.



LILITH Page 9

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. TEXT INPUT

. CODE INPUT
. MODULA II
. MODULA

FUNCTION
. TRANSFORMATION

. TRANSLATION

. EDITING

. OPTIMIZATION
OUTPUT

. USER OUTPUT
. GRAPHICS
. LISTINGS

. MACHINE OUTPUT
. OBJECT CODE OUTPUT

IMPLEMENTATION LANGUAGE: MODULA II

COMPUTER (OTHER HARDWARE )

;

LILITH

TOOL AVAILABLE

:

YES, PUBLIC DOMAIN; NO

RESTRICTIONS (COPYRIGHTS, LICENSES, ETC . )

;

LICENSED BY ETH

TOOL SUPPORTED; NO

CONTACT: RICHARD OHRAN, BRIGHAM YOUNG UNIVERSITY, EE DEPT,
459 CLYDE BUILDING, PROVO, UTAH, 84602, USA, 801-378-4015



SARA Page 10

A Demonstration of the Development of Interactive Software with Integral Help

Robert S Fenchel

University of California, Los Angeles

March 1981

There are many complex factors which determine whether a user interface is good. One set of

factors is concerned with properties that make it easy to issue desired commands after a user

understands the information system. Anodier set of factors is concerned with interaction when a

user does not understand enough about the ftjnctionaUty of the information system to know what to

do next. In the latter case, it is obviously not possible to predict every condition and provide an

adequate response. Instead, it is essential that systems have a strong self-describing property and that

they respond to a simple user request for help. Such systems must be able to teach; i.e., to help a

user to learn about their behavior.

It is the author's contention that the self-describing property should not be created as an

afterthought - it can best be built if a help system is integral; i.e., designed into the system.

Integral help has been incorporated into SARA (System y^rchitect's yipprentice) tools. SARA is a

unique software resource supporting interactive design of information systems. The user interface

to such a system is particularly important because if not done v/ell it detracts from high-value

design objectives of a user.

This demonstration presents a software engineering tool to aid in the development of interactive

programs and in the process to provide integral assistance information. This tool produces

programs intended to execute in a run-time environment which provides consistent access to a help

ftmction and other utilities.

Using these techniques, interactive programs can be developed and debugged. The end result runs

in a sophisticated environment providing powerful user interface and user assistance capabilities.

The inputs to the tool consist of the following:

1. A context free grammar specifying the interaction language of the program
under development.

2. Error recovery specifications.

3. References to semantic routines to implement the ftmctionality of the program.

4. Semantic descriptions of language constructs.

The tool processes these inputs and produces the following:

1. A parser to recognize the interaction language.

2. A data base of user assistance information.

3. The source code (with formatting commands) for a user's manual.

4. The framework for developing semantic routines.

*This work was supported by the Department of Energy, Contract No. DE-AF03-765F0034 P.A.,

No. DE-AT-036, ER70214, Mod. A006

Author's current address: Xerox Corporation, 701 S. Aviation Blvd., El Segundo, CA 90245



SARA Page 11

The standard run-time environment provides a consistent user interface to all programs developed
using these techniques. The environment provides consistent access to the following classes of
commands:

1. Input/Output stream manipulation commands.
2. Information and assistance commands.
3. Terminal characteristic specification/modification commands.
4. Inter-user communication commands.
5. Commands which afford access to operating system capabilities.

6. Commands which afford access to (specialized) storage system facilities.

Each of the commands in these classes is available uniformly throughout the use of any programs
developed in this environment The environment contains additional user interface components to

ease the burden of the user in attempting to use and to learn the use of the programs available.

These components include an interactive tutor to present lessons to a user and to promote
controlled experimentation, as well as comment and news facilities to allow users to influence the

design of programs and to be notified of any changes.

The tools and enviroimient are available on the MIT-Multics computer system and are accessible

via ARPANET, TELENET and TYMENET. Anyone interested in these facilities is encouraged to

open an MIT-Multics account and access the demonstrated tools.

References

Fenchel, R. Integral Help for Interactive Systems, Computer Science Department, School of

Engineering and Applied Science, University of California, Los Angeles, UCLA-ENG-8051,
September 1980.

Fenchel,R. and G. Estrin. "Self-Describing Systems Using Integral Help", Internal Memorandum
#201, University of California, Los Angeles, April 1980 (submitted to IEEE Transactions on
Systems, Man and Cybernetics).

Fenchel.R. "An Integral Help System and User Interface Demonstration on UCLA's SARA (System

Architect's Apprentice) System", The UCLA Computer Science Department Quarterly, Vol. 7, No. 3,

pp. 105-124, July 1979.

Station, Day and Time

Station 3, Tuesday March 10, from 11:00 am until 3:00 pm.

Demonstrator

Rober: S Fenchel

Dr. Fenchel is currently a member of the User Interface Engineering group of Xerox Corporation

in El Segundo. He received Ph. D. and M.S. degrees in computer science from UCLA (1975,1980)

and a B.A. degree in mathematics from the University of Rochester (1973). His interests focus on

^proving the interface between people and computers. His current research areas include

techniques for developing interactive computer systems which provide accurate and consistent

assistance for their users. Dr. Fenchel was a member of the SARA research group at UCLA and is

responsible for the user interface of the SARA system.



SARA
SAMPLE OUTPUT

Page 12

Hie roUowin* a t tnaacripi of u acoul soBon vitta itw looli to aid in intiofan
iniencOve prognnu with mugnl hdp. The uxXi resde u MIT-Muliia u>d tie txeaible
VM the ARPANET. TELENET or TYMENET oetwortu. Thit ainjcnpt show i user

logging in to the MTT-Mulocs marhinf, mvoluiig the gnmnur . processing progiam to

pracesi the speafiooon of the SARA Newi syaem. Once the sftaRaaoa has beta
piQccatd succeaiAiUy. the user executes the oewi systm uxini other componeoa of the

deveiopmem envuomnenL At this point the syntax of the language for intenctive with the

tiewi synem ii tested, u well u the syntacbc and semannc Help, and symacdc error

usages and error recovery. In Oder to diainguuh between user input and syncm
respoDse, all user input appean in bold faced type unles oJurwue ototed.

Multics 34.30: MIT, Cambridge. Mass.
Load ' 28.0 out of 100.0 units: tjsers • 28, 11/25/80 2342.7 sst Tu«
login Ftnchal
Password : YourPasaword
You ara protected from preemption.
Fenchel SARA logged in 11/26/80 2342.8 est Tue from tELNET ASCII
terminal "NET".
Last login 11/25/80 2340.2 est Tue from TELNET ASCII terminal "NET*.
line kill -

You have no mail

.

r time 23:43 cost SO. 01 SO. 01

The user involtes the giammar processor. This tool accepa a speoAcuion of the

interacdon language for the inteiactive program under design. The spedficaiiOD includes

error recovery infonnadon and a specification of the meaning of each language construct.

•c grammar
SLR(l) Grammar Preprocessor December 19, 1979
You will be prompted for the following:

directory name -> directory to store grammar tables
tool name -> the name of the tool being designed

directory name>n«wa
Working library now >user«-di r«-di r>SARA>Fenchel >news
tool name>news
>Si1nput news . grammar -echo

The user requests that the contents of the file newigrammar be used as mput to the

grammar prograia In this way the user can prepare the input using an editor and then

feed It to the grammar program.

Inout from source >user«-di r«-d1 r>SARA>fenche1 >news>new8
.
grammar

started
/• This is the grammar for the SARA news system •/

TITLE "Hews System"
VERSION "SLR(l) version 1.3, includes descriptions"
AUTHOR "R. Fenchel"

/• set the default for the error recovery •/

DEFAULT R NewsKommand S ":'
:

The specaficaoon of the grammar (interacdon language) is a BNF-like nooiion for a context

free language. Notice that several addiional components have been added The D /

precedes a semantic desaiptioiL This descnptioo ts used to generate interactive flwinan/*

as well as user inanuala. E / and S ! indicate example and note sections respectively.

Notice that all three of these secDons may include fonnaitmg msiruccons (eg .// f). The
infonnadon surrounded by % chaocteis speojies the semanoc routme (if any) to be
mvoked when its associated producoon is reduced by the generated parser. Syntaoic error

recovery and other production or aonienmnal specific infonnaiion may also be mctuded
For example, the noudon %l 2% mdicaies that semandc rouone number 2 is to be
assoaated with the current produoioiL

/• now specify the grammar •/

News«-System : News«-Command«-l ist
0 I The news system provides SARA users the

ability to learn of any changes to the SARA
system, or any other SARA related information.
The user may list the names of "news" segments
and view the contents of these segments. ! ;

News«-Command«-l ist : News«-Command«-l ist News«-Command
Command«-Terminator

I
News«-Command Command«-Terminator

D ! News commands are terminated by a new line character,
multiple news commands may be placed on a line by
separating them by a semicolon.!;

News«-Command : Di spl ay«-Menu«-Command

I

Pri nt»-News«-Command

I
End<-Comnand

I

D !A News command allows the user to do one of the
fol lowing

:

.11 1

.le
Display a menu of available news items
.1e
Select and print the contents of a news item
. le
End the news tool and return to the SARA selector
.el ! ;

Oisplay-Menu'-Command : @menu Oate'-option 1 %
D I The display menu command provides the

ability to list the names of news items.
The user may indicate an optional date
and thus request that only names of news items
modif ied
on or after the given date be displayed.

Print«-Hews«-Command : Uprint N»ws«-Item XI 2X
0 I The print news command allows the user to view th«

contents of the indicated news item.

I

N !News<-Iteffl must be one of the items
available in the news -system

(see 01sp1«y*««nu*<:onmand). I

E !9pr1nt help
.br
Sprint pi ip«-in$taned I;

End<-Command : Send xi ya
0 I The end command ends the SARA News tool. I

E I Send I:

Date<-option : Date XI 8X
1 XI 7X
0 I A date option is an optional date. If the

data is indicated, then newt items on or after
that date are selected. If no date is given,
then ALL news items are selected. 1 ;

Date : Month Delimiter Day Year<-opt1on
D lA data is a calendar data where tha year spaciflad Is

optional .

I

E 13/15/79
.br
9/21 1:

Yaar<-option : Delimiter Year
1 XI lOX

D !A year option is an optional specification of a year.
If a year is not given, then tha current year is
assumed. 1 :

Month : integer XI IIX
0 !A month is a numerical (Integer) specification of

a month of the year!
N !The month integer must be betwcan 1 and 12 inclutlva

Day : integer XI 13X
0 lA day is a numerical (integer) specification of

a day of a month I

N iThe day integer must be valid for whatever month
is being used. 1 :

Year : integer XI 9X
D !A year is a numerical (integer) specification of a

calendar year. The year must be specifed by tha
last 2 digits of the calendar year only.l

E 178

.br
82 !

:

Delimiter : /

I
.

I

-

D I A delimiter is a symbol used to separata the various
components of a date. I ;

News<-Item : id XI 4X

I

qualified-id "/.I 4X
0 ! A news item is the name of any available news

item. The list of available news items is
generated by the "9menu" command
(see Oisp1ay<-Menu<-Command) . !;

Command-Terminator :
";" XXX

I

new-line XXX
,

D lA command terminator is used to indicate the end
of a news system command. The ";" may be used to
place multiple commands on one input line. I ;

/• Specification of synonyms for terminals in language •/

Smenu • 9mn Om :

Sprint » 9pr 9p ;

END

The mput to die gnmmtr program is finished and procening is in progress. Any emn or

warnings will be presented to the user via the user's terminal, a detailed listing of the

results of the grammar program are mduded in a file. If the prtxessug completes

anfannrily. the gnmmar postprocessor will generate several files which will include parse

tables, help utformaoon and user manual source.

Listing wi11 appear in file: [pd]>news . 1 i sting

Intermediate grammar processing started.
••• the grammar is slr(l)
Intermediate grammar processing completed.

Grammar Postprocessor
Working library now >user-d1r-dir>SARA>Fenchel>news
news grammar is slr(l)
End of Grammar Postprocessor
Converting parse tables to SARA format.
End of SLR(l) Grammar Preprocessor
r time 00:07 cost SI. 08 SI. 10

E !9menu 4/5/79



The immnu procoBni hu been ccmpleted sucnafUUy Now ibe user ten Hie linfuifa

wtucb tus been caasciucted by unog the mpui/ouqwt system, later, parser etc m the rua-

lime enviroiunent associated with the devekipnient envtroomem. At this point, ao semantic

routines have been implememed. thus viJld syoiax will be rccofoued. however ao semantic

processing will cake place. Noace that syntactic and seznannc help arc available u this

suie. as are error tnesiaifs and error recovery. Also noie thai '«**o>n/-» may be invokM
(via the 7 facility) at any point of system use. This is mdicied by the ^ afipcanni both

prcoedicg and following commands in this eumple.

•c tttt.graiMtr >udd>SARA>F«ncha1>n«w« n«««
News Systsm November 26. 1980
>7

Expecting News<-Co(nnand or Comniand«-Terminator
News*-Comnand starts with one of the following:

Smenu Sprint Send
Comniand<-Terniinator starts with:

or input of type:
newl ine

>79m«nu
Syntax:
Oisp1ay<-Menu*-Comniand -> Smenu Oata*^pt1on
>78fflenu -Hnanual

Descr ipt ion

:

The display menu command provides the ability to list the

names of news items. The user may indicate an optional data
and thus request that only names of newa items modified on

or after the given date be displayed.
Syntax:
Display«^<enu<-Command -> 9menu Oate«-option
Example:
9menu 4/5/79
>afflenu 7

Expecting Date<-option or Command«-Terminator
Date<-option starts with input of type:

integer
Command«-rerminator starts with:

or input of type:
new«-l ine

9menu >127
Expecting Delimiter
Delimiter starts with one of the following:

/ ,
-

Smenu 12>/7
Expecting Day
Day starts with input of type:

integer
Smenu 12/>21

The following are eumpla of genenied syntactic error informanon. Nobce the terse error

message and the way in which the user can easily request additional infcimaiiao for

components of the error mesnge (et NewsH^ommmdi

>ERROR
ERROR
T

News<-Command or Commando-Terminator was expected
>9bad command
Sbad comtnand
T

News<-Command or Command<-Terminator was expected
>7na«(t<-comRiand -Hnanual

Description

:

A News command allows the user to do one of the following:

1. Display a menu of available news items

2. Select and print the contents of a news item

3. End the news tool and return to the SARA selector

Syntax:
News«-Command-> Oispl ay«-Menu<-Command
News«-Command-> Print«-News«-Command
News*-Command-> End<-Cocranand

News«-Coimnand->
>?end«-command
Syntax:
End«-Conimand-> Send
>9and
r time 00;12 cost $0.17 $1.27

The lesDog session- has been terminated, at this pouit the user may wish to modify the

language speafication-. In this example, the user deades to quit and thus termmates the

Muiocs session.

logout



SARA Page 14

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. VHLL INPUT
. SLl

. . . GMB
. BNF

. TEXT INPUT
FUNCTION

. TRANSFORMATION
. TRANSLATION
. FORMATTING
. RESTRUCTURING

. STATIC ANALYSIS
. DATA FLOW ANALYSIS
. STRUCTURE CHECKING
. CROSS REFERENCE
. CONSISTENCY CHECKING
. COMPLETENESS CHECKING
. SCANNING

. DYNAMIC ANALYSIS
. SIMULATION

OUTPUT
. USER OUTPUT

. GRAPHICS

. LISTINGS

. USER-ORIENTED TEXT
. DOCUMENTATION
. ON-LINE ASSISTANCE

. MACHINE OUTPUT
. SOURCE CODE OUTPUT
. DATA OUTPUT
. PROMPTS

IMPLEMENTATION LANGUAGE ; PL/l , TOOL PORTABLE: NO, TOOL
SIZE; 25000 LINES OF PL/l SOURCE

COMPUTER (OTHER HARDWARE

)

; HONEYWELL, OS (OTHER
SOFTWARE ) : MULTICS

TOOL AVAILABLE ; YES, PUBLIC DOMAIN; YES, TOOL SUPPORTED ;

NO

CONTACT: G. ESTRIN, UNIVERSITY OF CALIFORNIA, COMPUTER
SCIENCE DEP, BOELTER HALL 37 32, LOS ANGELES, CA, 90024, USA,
213-825-8878



VIRTUAL OS Page

THE SOFTWARE TOOLS VIRTUAL OPERATING SYSTEM PROJECT
Debbie Scherrer, Dave Martin, Chris Petersen

1 , Virtual Operating Systems

One of the many problems which programmers (and enr] users)
encounter in their everyday use of computers is the lack of com-
mon utilities as they move from system to system. In addition,
moving code from machine to machine is costly and error-prone.
These problems can be reduced through the use of a virtual
operating system that disentangles computing environments from
their underlying operating systems. The Software Tools project
is an experiment to achieve inter-system uniformity at all levels
of user interface.

A real operating system presents three principal interfaces to
its users: the virtual machine or operating system primitives
accessible through programming languages; the utilities programs
such as editors, compilers, linkers; and the command language or
means by which users access system resources from a terminal.
The idea of a virtual operating system is to provide standard
versions of these interfaces, based on organizational require-
ments. Possible applications include data management environ-
ments, office information environments, real-time process control
environments, and program development environments, to name a

few.

2 . The Software Tools

The Software Tools to be demonstrated represent a program
development environment as one realization of a virtual operating
system. The environment consists of resources which assist pro-
grammers in the development and maintenance of computer programs.
The system is modelled after the UNIX* operating system, a system
considered by many to provide a superior collection of program
development aids. Many of the utilities originated in the book
"Software Tools" by Brian Kernighan and P. J. Plauger.

To be useful, the Software Tools environment was designed to be
portable and to co-exist with the local operating system. More
than 300 different sites, running 50 operating systems, have
implemented these tools to varying degrees of sophistication.

A users group has also been organized. Current activities
include the establishment of a centralized tape distribution
facility, distribution of a newsletter, organization of active
special interest groups on various topics, and sponsorship of
biannual meetings.

* UNIX is a registered trademark of Bell Labs



VIRTUAL OS Page

3_. The Deironstrat ion

The demonstration v;ill begin with a description of the virtual
operating system approach, its advantages and disadvantages.
With this as background, we will then concentrate on a descrip-
tion of the utilities, both those provided with the basic package
and experimental extensions. Emphasis will be on the text mani-
pulation functions and on the powerful command line interpreter,
which assists the user in combining small tools to perform
larger, more complex tasks. Finally, we will present several
problems to the audience either for discussion or direct solution
on the machine.

To emphasize the portability of the package, we hope to present
the tools running on a large minicomputer and on a small Z80-
based micro.

4^. References

The following documents will be available for reference at the
demonstration:

Akin, T. Allen, P. Flinn, and D. Forsyth, Jr., 'Software Tools
Subsystem Reference Manual', Technical Report, School of Informa-
tion and Computer Science, Georgia Institute of Technology,
Atlanta, GA, April 1978.

Hall, Dennis E. , Deborah K. Scherrer, Joseph S. Sventek, 'The
Software Tools Programmers Manual', Internal Rep. LBID 097, LBL,
University of California, Berkeley, CA, 1978.

Hall, Dennis, Deborah K. Scherrer, Joseph S. Sventek, 'A Virtual
Operating System,' Communications of the ACM , Vol. 23 (Sept 80),
pp. 495-502.

Hanson, David R. , 'The Portable Directory System PDS
' , Technical

Report TR 80-4, Department of Computer Science, The University of
Arizona, Tucson, AZ, March 1980.

Hanson, David R. , 'The Portable I/O System PIOS', Technical
Report TR 80-6, Department of Computer Science, The University of
Arizona, Tucson, AZ, April 1980.

Hanson, David R. , 'Software Tools Programmer's Manual', Technical
Report TR 79-15, Department of Computer Science, The University
of Arizona, Tucson, AZ , August 1979.

Kernighan, Brian W. , 'Ratfor - A Preprocessor for a Rational For-
tran', Software - Practice and Experience , Vol. 5, 4 (Oct-Dec
75) , pp. 395-406.

Kernighan, Brian W, and P. J. Plauger, Software Tools, Addison-
Wesley Publishing Company, Reading, MA, 1976.



VIRTUAL OS Page

Scherrer, Deborah, 'COOKBOOK - Instructions for Implementing the
Software Tools Package', Technical Report LBID 098, Department of
Computer Science and Applied Mathematics, Lawrence Berkeley
Laboratory, University of California, Berkeley, CA.

"Machines and Operating Systems Running the Software Tools"; a
list of names and addresses of people to contact who have or who
are interested in implementing the software tools on various sys-
tems .

"Software Tools Communications" - the newsletter distributed by
the Software Tools Users Group.

5^. Location and Time

Station 4, Tuesday, March 10 from 9:00 AM to 5:00 PM.

6^. Personnel

The demonstration will be prepared and led by the following peo-
ple :

Debbie Scherrer
Lawrence Berkeley Laboratory
Computer Scientist and member of the Advanced Systems research
group at LBL. Along with her colleagues Dennis Hall and Joe
Sventek, one of the founders of the virtual operating system
approach. Organizer of the Software Tools Users Group.

Dave Martin
Hughes Aircraft Company
Staff Engineer at Hughes. Dave is a prolific toolsmith whose
primary interest is in extensions to the basic software tools
package. His experimental command line interpreter will be
available for use in the demonstration.

Chris Petersen
ORINCON Corporation
Principal Engineer and manager of computer services at ORINCON;
primarily concerned with the development of software systems for
various Navy applications. Implemented the software tools on the
TENEX system.



VIRTUAL OS Page

THE SOFTWARE TOOLS
UTILITIES

MAINTAINING FILES

Look ing at/copying files
cat , concatenate and print text files
crt copy files to terminal
pi print specified lines/pages in a file
pr pr int file
show show all characters in a file
tail print last lines of a file
tee copy input to output and named files

Organizing Files
cd change directory
is list current directory
mv move (rename) a file
pwd print working directory name
rm remove (delete) files

Grouping Files
ar archive file maintainer
includ file inclusion preprocessor
lam laminate files
split split file into pieces

Monitor ing Files
cmp comparing files
comm print lines common to two files
diff isolate differences between files
11 print line lengths
uniq strip adjacent repeated lines from a file
wc count lines, words, and characters in files

MANIPULATING TEXT

Alter ing Text
ch change text patterns
ed editor
sedit stream editor
tr character transliteration

Transforming Text
cpress compress input files
crypt encrypt and decrypt standard input
detab convert tabs to spaces
entab convert spaces to tabs and spaces
expand uncompress input files
OS convert backspaces into multiple lines



VIRTUAL OS Page 19

Arranging Text
field manipulate fields of data
kwic prepare lines for keyword-in-context index
mcol inulticolumn formatting
rev reverse lines
roff text formatter
sort sort and/or merge text files
tsort topolog ically sort symbols
unrot unrotate lines prepared by kwic

Locating Text
fb search blocks of lines for text patterns
find search a file for text patterns
spell locate spelling errors
xref make a cross reference of symbols

Language Translation
macro general-purpose macro processor
ratfor Ratfor preprocessor
rc Ratfor compile, link, and load
fc Fortran compile, link, and load
Id Link and load

MONITORING THE ENVIRONMENT

Process Control
sh command line interpreter
pstat show status of process
kill kill process
suspnd suspend process
resume resume suspended process

User Support
dc desk calculator
echo echo command line arguments
man show users manual page
help user assistance

Information Retr ieval
date print the date and time
who list who is on the system
users list valid (mail) users

Inter-user/inter-machine communication
mail
msg

send/receive mail
. . . . fancy mailer



VIRTUAL OS Page 20

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. CODE INPUT
. RATFOR

. TEXT INPUT
FUNCTION

. TRANSFORMATION
. EDITING
. TRANSLATION
. FORMATTING

. STATIC ANALYSIS
. MANAGEMENT

. FILES MANAGEMENT
. CROSS REFERENCE
. COMPARISON

OUTPUT
. USER OUTPUT

. LISTINGS

. DIAGNOSTICS

. USER-ORIENTED TEXT
. MACHINE OUTPUT

. SOURCE CODE OUTPUT
. FORTRAN

IMPLEMENTATION LANGUAGE: FORTRAN, PASCAL, RATFOR

TOOL PORTABLE

:

YES, TOOL SIZE: 50000 LINES

TOOL AVAILABLE

:

YES, PUBLIC DOMAIN; YES

RESTRICTIONS (COPYRIGHTS, LICENSES, ETC .

)

; SOME SPECIFIC
SYSTEMS INTERFACES ARE BEING MARKETED

TOOL SUPPORTED; YES, TOOL SUPPORT; SOFTWARE TOOLS USERS
GROUP

CONTACT: MICHAEL BOURKE, SRI INTERNATIONAL, 333 RAVENSWOOD
AVE., PN311, MENLO PARK, CA, 94025, USA, 415-326-6200



SCG
Page 21

STRUCTURE CHART GRAPHICS S^STKM

A Software Engineering Tool Demonstration

Debra L. Resendez and James W. Winchester

1. Introduct ici^n

This proposal is in response to the call for software
engineering tool developers to demonstrate their accomplish-
ments at the 5th International Conference on Software
Engineering in San Uiego, March 9-12, 19bl.

We will be demonstrating the SCG system developed by Hughes
Aircraft Company's Software Engineering Division as an
Internal Research & Development project.

2. Summary ofSCG

The Structure Chart Graphics subsystem (SCG) was developed
to solve the following fundamental software design problem:

Although effective design guidelines have been esta-
blished (such as with Yourdon, Meyers, & Constantine)
which reduce the overall life cycle cost of software,
consistent and thorough application of these guidelines
across all development efforts is hampered by a lengthy
technology transfer time and the rare availability of
expert designers.

The recommended three-step approach to easing this problem
is, first, to develop a user-friendly graphics interface
which provides automatic documentation. Second, once having
captured a aesign in a machine readable form, develop
automatic design quality analyzers to enforce adherence to
design standards. Third, gain acceptance and widespread use.
The SCG depicted below is a first generation feasibility
demonstration of this approach.

The user interacts with SCG through a graphics terminal
using aesign commands such as 'place a module", connect two
jnodules"' , and using graphics commands such as "jump to
module x '

, 'reposition subtree to (x,y) ". Having captured
the resign in a data base, the user can request eitner
page-sized CALCOJ'IP copies or wall cnarts of the entire
design. SCG is a feasibility prototype and has led to tne



SCG Page 22

specification of a computer aided design tool called
Automated Interactive Desiqn and Evaluation System (AIDES)
descriDed in (willis79].

I

Overview of the SCG. Interactive graphics and
automatic documentation are key features.

3. A Scenario ot an SCG_ Uemonstration

A sample structure cnart will be developed using the SCG
commands. The meaning of the structure chart will be
described while developing it at the terminal. Samples of
structure chart plotted output will be available for hand-
out. ISCE attendees will be permitted to enter commands to
add to or modify the sample structure chart. A users manual
will be available.

4. SCG LiteraJ:ure

SCG related literature includes:

SCG Users Manual



SCG Page 23

[WILLIS79] Willis, R. H. , E, P. Jensen. "Computer Aided
Software Systems', Proc. 4th International Conference on
Software Engineering, September 17-19, 1979.

[YIW79] Yin, B. , J. W. Winchester. "Software Design
Quality Metrics System," The Second International Conference
on Mathematical Modeling, St. Louis, Missouri, July 1979.

5. Stationj, pay* and Time

Station 5, Tuesday, March 10, from, 9:0U a.m until 7:00 p.m.

6. The Demonstrators

Debra L. Hesendez

Debra Hesendez is a member of the Technical Staff for
Software IH&D at Hughes Aircraft Company. She is currently
involved in the specification of the requirements for an
Integrated Software Development facility (ISDF) using a for-
mal requirements definition language, her background is in
requirements definition methodologies and data base inter-
faces for interactive software systems. Previous activities
include extensive enhancements to the Structure Chart Graph-
ics (SCG) System; an interactive tool for creating and main-
taining structure charts. Ms. Hesendez holds a b.S. in Com-
puter Science from the University of North Dakota and is
currently pursuing an M.S. in Electrical Engineering -Com-
puters at the University of Southern California.

James W. Winchester

James Winchester is currently the Head of the Research &

Analysis Section in the Software Engineering Division at
Hughes Aircraft Company. Dr. Winchester is responsible for
ongoing research and development in the areas of software
and system specification, design and development. Dr. Win-
chester was previously Head of the Research Analysis Group
leading software IH&D projects. His particular research
emphasis is in requirements specification languages and
their relationship to the system development life cycle.
Prior to his employment with Hughes^ Dr. Winchester was an
officer in the U. S. Army, where he directed the development
of an automated maintenance management system, he holds a

B.S. degree in Engineering Physics from Cornell University,
as well as an M.A. (Education) and Ph.D. (Computer Science)
from U.C.L.A.



SCG Page 24

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. VHLL INPUT
. DESIGN SPECIFICATION

FUNCTION
. TRANSFORMATION

. TRANSLATION

. RESTRUCTURING
OUTPUT

. USER OUTPUT
. GRAPHICS

. STRUCTURE CHARTS

IMPLEMENTATION LANGUAGE: FORTRAN

TOOL PORTABLE: PARTIAL

COMPUTER (OTHER HARDWARE

)

: AMDAHL 470 (HP2647A OR HP2648A
GRAPHICS TERMINAL, CALCOMP PLOTTER), VAX 11/780 (HP2647A OR
HP2648A GRAPHICS TERMINAL, CALCOMP PLOTTER)

OS (OTHER SOFTWARE): MVS (PLOT-10, ADBMS)

TOOL AVAILABLE: NO, PUBLIC DOMAIN: NO

RESTRICTIONS (COPYRIGHTS, LICENSES, ETC .

)

: HUGHES
PROTRIETARY

TOOL SUPPORTED: NO

CONTACT : JAMES W. WINCHESTER, HUGHES AIRCRAFT COMPANY, POST
OFFICE BOX 3310, FULLERTON, CA, 92634, USA, 714-732-3232



DQM Page 25

DESIGN QUALITy h ETHICS SYSTEM

A Software Engineering Tool Demonstration

Debra L. Hesendez and James V4 . Winchester

1. In_troduction

This proposal is in response to the call for software
engineering tool developers to demonstrate their accomplish-
ments at the 5th International Conference on Software
Engineering in San Diego, March 9-12, 1981.

We will be demonstrating tfie DQM system developed by Hughes
Aircraft Company's Software Engineering Division as an
Internal Research & Development project.

2. Summajy of DQM

Although methodologies with qualitative guidelines abound,
few, if any, are supported with quantitative, measurable
means of adherence. Indeed, Hughes' Structured Design raethO"*-

dology for software decomposition contains guidelines such
as "maximize modularity" and "minimize coupling" - both of
which have no apparent quantifiable measure of compliance.

The Design Quality Metrics System (DQM) is an initial step
to solve this probleiji. As shown below and reported in

[Yin78] , [Yin79] algorithms have been developed which, when
applied to the structure chart of software modules, produce
a quantification of the design using a plot of complexity as
a function of tree depth. The results of this technique have
been validated on two major software development efforts and
have been shown to correlate closely with the number of
errors encountered in software testing. In other words, DQM
quantifies qualitative guidelines and, therefore, provides a

predictive tool which can reduce the number of errors and
the cost of software.

DQM obtains design information from the Structure Chart
Graphics data base. The user can interactively request
plots of complexity for any subtree, fan-in and fan-out
information, and lists of module names contained in any sub-
tree of the hierachy.



DQM Page 26

LEVEL

LEVEL (I)

DQM (Design Quality Metric) System. A quantitative

measure for SW design "goodness".

3. A Scenajio^ of a_DOI*^ Demonstration

A sample structured desiqn will reside in the SCG data base.
DQM will be invoked to measure the complexity of this sample
design. Plots of complexity, module 'call" information, and
fan-in/fan-out data will be displayed. The sample design
will then be modified via SCG commands and the DQM re-
invoked to portray the use of UQw in achieving designs which
are less complex. handouts will be available. ISCE atten-
dees will be permitted to interactively modify a design and
measure its quality.

^* ^^1^ Literature

DQM related literature includes:

DQM Users Manual

[YIN78] Yin, B. , J. W. Winchester. "The Establishment
and use of Quality Measures to Evaluate the Quality of
Software Designs," Proc. ACM Software Quality Workshop, San
Diego, Ca . November 1978.

[YIN79] Yin, B. , J. W. Winchester. "Software Design
Quality Metrics System," The Second International Conference
on Mathematical Modeling, St. Louis, Missouri, July 1979.



DQM Page 27

5. Station, Day, and Time

Station 5. Tuesday, March lU, from y:UU a.m. until 7:UU p.m.

6. The Demonstrators

Debra L. Hesendez

Debra Resendez is a member ot the Technical Statt tor
Software IH&D at Hughes Aircraft Company. She is currently
involved in the specification ot the requirements for an
Integrated Software Development Facility (ISDt) using a for-
mal requirements definition language. Her background is in
requirements definition methodologies and data base inter-
faces for interactive software systems. Previous activities
include extensive enhancements to the Structure Chart Graph-
ics (SCG) System; an interactive tool for creating and main-
taining structure charts. Ms. Hesendez holds a B.S. in Com-
puter Science from the University of North Dakota and is
currently pursuing an M.S. in Electrical Engineering -Com-
puters at the University of Southern California.

James w. Winchester

James Winchester is currently the Head of the Research &

Analysis Section in the Software Engineering Division at
Hughes Aircraft Company. Dr. Winchester is responsible tor
ongoing research ana development in the areas of software
and system specification, design and development. Dr. Win-
chester was previously head of the Research Analysis Group
leading software IR&D projects. His particular research
emphasis is in requirements specification languages and
their relationship to the system development life cycle.
Prior to his employment with hughes Dr. Winchester was an
officer in the U. S. Army where he directed the development
of an automated maintenance management system. He holds a

B.S. degree in Engineering Physics from Cornell University,
as well as an M.A. (Education) and Ph.D. (Computer Science)
from U.C.L.A.



DQM Page 28

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. VHLL INPUT
. DESIGN SPECIFICATION

FUNCTION
. TRANSFORMATION

. TRANSLATION
. STATIC ANALYSIS

. COMPLEXITY MEASUREMENT
OUTPUT

. USER OUTPUT
. GRAPHICS

. DESIGN CHARTS
. TABLES

IMPLEMENTATION LANGUAGE: FORTRAN

TOOL PORTABLE: PARTIAL

COMPUTER (OTHER HARDWARE

)

: AMDAHL 470 (HP2647A OR HP2648A
GRAPHIC TERMINAL)

OS (OTHER SOFTWARE): MVS (ADBMS AND PLOT-10)

TOOL AVAILABLE: NO, PUBLIC DOMAIN; NO

RESTRICTIONS (COPYRIGHTS, LICENSES, ETC ,

)

; HUGHES
PROPRIETARY

TOOL SUPPORTED: NO

CONTACT: JAMES W. WINCHESTER, HUGHES AIRCRAFT COMPANY, POST
OFFICE BOX 3310, FULLERTON, CA, 92634, USA, 714-732-3232



AISIM Page 29

AUTOMATED INTEKACTlVt; SIMULATION MODELLING SySTEM

A Software Engineering Tool Demonstration

William P. Austell Jr. and Ronald K. Willis

This proposal is in response to the call tor software
engineering tool developers to demonstrate their accomplish-
ments at the 5th International Conference on Software
Engineering in San Diego, March y-12, 1981.

We will be demonstrating the AISIm system, currently under
development by Hughes Aircraft Company's Software Engineer-
ing Division for the Air Force's Electronics Systems Divi-
sion at Hanscom Air Force base, Massachusetts.

2. Summary otAISiM

The Automated Interactive Simulation Modelling System
(AISIM) is an outgrowth of two previous modelling systems:
The Design Analysis System (DAS), wliich provided interactive
graphics support for modelling general functions in a

procedure-oriented system, and the Distributed Data Process-
ing Model (DDPM) , which consisted of a library of standard,
table-'dr iven computer system models. AISIM combines the
features of both to provide an interactive, graphics simula-
tion system for distributed system analysis.

As shown in the figure below AISIM provides three types of
interfaces for modelling computer systems, tlowchart-
oriented processes representing software, information flow,
or man/machine procedures are entered via an interactive
graphics language consisting of execution control, resource
allocation, and timing primitives. Architectures of inter-
connected processors, channels, disks, tapes, and other dev-
ices are graphically entered via an interactive architecture
design editor. Device characteristic specifications,
scenario definitions, and simulation variables are entered
via an interactive to rm-or ii:n ted editor.

After a model has been developed, it can be automatically
translated into an executable SImSCRIPT II. 5 simulation
model. Then the user can simulate the computer system
interactively while stopping at specified breakpoints to



AISIM- Page 30

change critical system variables and observe cause/ettect
relationships. Outputs are interactive user-det i ned plots
and complete statistical summaries in listing torn.

NAME K55^Z5Z?Za

I'Mionnv VP^ZPl

(TtM PEI

GMAPHIC5 INPUT
0» GENCHAL
FUNCTION MOOri S

GPAPHir INPUT OF
COMPUIER SYSTFM
AHCHITEC TURFS

FOt*M INPUT or
SVStEM
CHARACTEniSncS
& SCENARIOS

71

PLOTTED SYSTEM
PERFORMANCE
RESULTS

VARIABLE
CHANGES

AMDAHL 4 70

MODE!
LIBRARY
MANAGER
(ADBMSl

AUTOMATIC
MODEL TRANSLATOR
( TO SIMSCRIP M.5)

INTERACTIVE GEriERAL
SIMULATION rUNCTION MODEL
ANALYSIS (StMUI-ATOR)

COMPUTER
SYSTEM
MOOEL
LIBRARY

AISIM — Graphics-Oriented Computer System Simulation Analysis

3. A Scenario ot an AISIM Demonstration

A sample distributed data processing model will reside in

the AISIM data base. AlSIw commands will be exercised to
view the various forms supporting the user interlace. The
analysis portion of AISIM will be invoked to demonstrate
automatic model creation and simulation. During simulation,
model variables will be changed and results plotted to show
cause/effect relationships and to demonstrate interactive
simulation analysis. A user's manual will be available.
Copies ot selected user input forms and output reports will
be available.

4. Literature

AISIM related documentation includes:

[AUSTELL80] Austell, W. "AISIM Systems User's Manual."
CDRL #104 of Contract f 1962fa-7 y-C-Ul 53 , Electronic Systems
Division (ESD) , TOIT, hanscom AFB , MA.



AISIM Page 31

[AUSTELL8U] Austell, W. "AISIM Final Report," CDRL #114
ot Contract i''iy62b-7 y-C-Ul 53 , Electronic Systems Division
(ESD) , TOIT, Hanscom AFB , MA.

[WILLIS78] Willis, K. H. "DAS-An Automated System to
Support Design Analysis," Proc. 3rd International Conference
on Software Engineering, May 1978.

5. Station^ Day, and Time

Station 5, Tuesday, March lU, from 9:U0 a.m. until 7:00 p.m.

6. The Demonst raters

Will^m P. Austell, Jr.

William Austell is a project manager in the Software
Engineering Division ot Hughes Aircraft Company. Currently
he is managing the development of two automated simulation
systems; AISIM which is used to model and simulate distri-
buted data processing systems and IDSS which is used to
analyze manufacturing systems. His background includes
design and analysis of various software and hardware sys-
tems. Prior to his employment with Hughes Aircraft Company,
Mr. Austell was an officer in the United States Air Force
wnere he managed the development of command, control and
communication sytems. He holds a B.S. degree in Electrical
Engineering and an M.S. in Electrical and Computer
Engineering, both from Clemson University.

Ronald R. Willis

Ron Willis is currently the Technical Director for the
Software Engineering and Technology Department in the
Software Engineering Division of Hughes Aircraft Company.
Mr. Willis' recent management experience has entailed simu-
lation analysis, IR&D studies, marketing and sales, and
training. He has led over 60 simulation analysis studies,
ranging the spectrum of computer system applications. Ear-
lier, Mr. Willis led IR&D studies in distributed processing
computer systems, requirements and analysis using simula-
tion, structured design, and system engineering language
technology transfer. He has gained modeling training experi-
ence as an ATEP instructor for in-house courses. Mr. Willis'
background includes extensive work with over 20 computer
architectures, 15 operating systems, and 25 programming
languages and is the author of eight papers on state-of-
the-art simulation and system analysis methodologies. Mr.
Willis holds a B.S. degree in Math from C.S.U. Long Beach
and an M.S. degree in Computer Science from U.S.C.



AISIM Page 32

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. VHLL INPUT
. DESIGN SPECIFICATION

FUNCTION
. TRANSFORMATION

. TRANSLATION
. DYNAMIC ANALYSIS

. SIMULATION
. COMPUTER SYSTEM SIMULATION

OUTPUT
. USER OUTPUT

. GRAPHICS

. TABLES

IMPLEMENTATION LANGUAGE: FORTRAN, SIMSCRIPT II.

5

TOOL PORTABLE: PARTIAL

COMPUTER (OTHER HARDWARE

)

; AMDAHL 470/V8 (HP2647/48 GRAPHICS
TERMINAL)

OS (OTHER SOFTWARE) ; MVS (PLOT 10, SIMSCRIPT II. 5, ADBMS (U

.

OF MICH)

)

PUBLIC DOMAIN: YES

RESTRICTIONS (COPYRIGHTS, LICENSES, ETC .

)

; AVAILABLE JAN
1982 THROUGH USAF/ESD/TOIT, HANSCOM AFB, MASS.

TOOL SUPPORTED; NO

CONTACT; BILL AUSTELL, HUGHES AIRCRAFT COMPANY, PO BOX 3310,
FULLERTON, CA, 92634, USA, 714-732-3232



THE ENGINE Page 33

NAME OF TOOL: COBOL Structuring Engine (THE ENGINE)

TITLE: A methodology and set of software tools

for introducing Structured Programming

into unstructured (spaghetti) COBOL

programs.

INTRODUCTION :

There will be a detailed concept presentation on our

COBOL Structuring Engine (THE ENGINE) and its corresponding

STRUCTURED RETROFIT methodologies given on Wednesday,

11 March 1981 at 2-3:30 P.M. The presentation will cover

the purpose of Structured Retrofit, its focus, scope,

methodology and success to date. The software tools used

in STRUCTURED RETROFIT including the COBOL Structuring

Engine will be demonstrated on Tuesday, 10 March at

stage #6 throughout the day. We recommend you attend

a live demonstration of the Structured Retrofit software

tools to include the COBOL Structuring Engine sometime

during the day on Tuesday and then attend the concept

presentation on Wednesday.

SUMMARY :

Structured Retrofit is a software tools based methodology. It

introduces today'sstructured programming methodologies into existing

systems in order to meet future demands for change. Its focus is

on application systems maintenance.

Today maintenance consumes 70% of the typical MIS budget. The

structured programming methodologies cut maintenance costs by a

ratio of 3 to 1. Structured Retrofit allows an organization to

introduce the structured methodologies into systems developed without

them in a straightforward, fast and reliable manner.



THE ENGINE Page 34

Retrofit takes working COBOL programs—written and maintained by a

variety of programmers in a variety of styles—and restructures and

reformats them mechanically. It gives the code a consistent structure

and format, making it more readable, understandable, and maintainable.

It is the application of the structured progranming constructs to

existing "spaghetti" code.

SCENARIO OF DEMONSTRATION

The Structured Retrofit process is reviewed and the on/

line tools are demonstrated. Out put from the Retrofit

process is exhibited. Materials are of a technical

nature and assume participant has some knowledge of

Structured Programming and the COBOL language.

LOCATION AND TIME

DEMONSTRATIONS: DATE: Tuesday, 10 March 1981

TIME: 9 A.M. - 7 P.M.

LENGTH: 1 Hour (on the hour)

LOCATION: Space #6

REFERENCES

Lyons, M.J., "Structured Retrofit - 1980". Proceedings of

SHARE 55 ., (Vol. 1), 1980, pp. 263-275.

Lyons, M.J., "Salvaging Your Software Asset", Proceedings of

the National Computer Conference (NCC81) , Chicago, IL., May

1981, pp. (Not Yet Published).

SOFTWARE TOOL DEMONSTRATORS : JON CRIS MILLER
PRESIDENT

MICHAEL J. LYONS
VICE PRESIDENT
Marketing Director

THE CATALYST CORPORATION
433 S. KENSINGTON AVE,

LA GRANGE, ILLINOIS 60525

(312) 352-5422



THE ENGINE
SAMPLE OUTPUT

Page 3 5

zo COZ (/)
CO o ec

CO 3 >- ft o
C5 »— u. CI— ccZ LJ (/) z z o t-i s: UJ oi
»-4 O h- ID UJ O cc: o <£ _) UJ< Z DC CDz =c z SZ3 LU CS Q£ O CO O O CD Z CJ
t— CO •-• • • h- o => UJ O UJ Z o »-• •—

•

o ce: —

J

CO *— 1 <: >—1 a: oo CD3 tU 3C z 3= CD =3 O. Oo 2 S O h- UJo S 1— o Z O _l «C _JZ t-H »—

<

_j »-< o a. _j _i
1/1 o 3: 1— U. 0 0.0 o cu z =3 <: _j o UJ< CO d: CO u. CO o cj oc o o <: 1— >.
UJ o ai UJ o oc: UJ o£ 1— o z q; t/i oZ UJ (/) UJ Ck. I— UJ H- Q o z o CD UJ (/) z z:
»— 31 _J »— a. o < O >—' N UJ O UJ

_j oo o z CO UJ o oo h- >- H- •—' d;< UJ CS CO UJ o 1— O _J Q <: H-O —1 UJ 1— o. UJ 1— t>o 3= <c —1 D <: 1—< -J UJ «/><<cocoi— «lco UJ CD <t cC •—1 Z ^ O
1— Ui o. <_) UJZ-JUJaCOCZUJ (— •—>C0C_>O_J«->OZ
UJ > z <c iDCCJUJUJt—!>. <_JQ»-«Z02:<

-J3IZI/)<(OSd3(/)O UJ < o. ozuj=>ac>z:o< X CO S»-h5"QCJZ»-iZ ocDr)>-»— zujouj
U. UJ UJ^OUJZO-JUJ «/5»—«03:cooi— ooo p o£ UJ n; 1—1 c_3 UJ q: I-) 3: m o. o a
UJ 1— t/> II 1 1 1 1 1 1 1 1 1 1 1Z «-!o >- ac UJ

1—< CO o3 _J UJO • •"^ z
CO (/) o

- H- (/) <c cs z o3 UJ UJ
O. UJ UJ r •—

1

00
—1 3: o CD
a. s •-• 1- UJ Z

-J < UJ z t—

<

S UJ oeX •• C9 O cs eg
UJ UJ O CO z H-z oto UJ U
in •—I O- • z < cs 3i

»-H i-i C9 CD UJ UJ z ee
OL pC Z U.O

UJ o _>
^ < t-O C_3 _J (/)

C9'

UlU
UJ^o o.X

Ul

W I

z •

« Ul
• • *

ocas

— u.

4 « «

Ul
U Ui to>»
S3 oe

09 0

Ul

Ul I

o u

O

»
Ul

^
Ul

Ul

•^1

a

uô
•

t/t

Z O

— Ul
u. ae

• • L

Ul

AS
2 'O Ul
ul to
- <AO
-•OX to

• s-^
>c — »

u —
Z 3>

t

Ul

t •

UJ 4.

:S3
Ul II.

i
zX I

S3
I

K lb
mUI

< ae

St

X9
• u.

< <

^uioAuiof

•

toO totoJIAtoUl toto<a
to aa to totouKX3i.J9«tk xxaeuiX'juiuoOto wuiiae

•A I I <
O « o <
J Ul 3 9o ^ z <

I 3

0 41
Z 3 O
01 < <

O Ul

t
• X

to Ik

w) ae • to toUi to<

Ik
Ul u

ce
Ul

>O to
z u.

o<L

u.
Ul VJ

a Ul

a.*-

3C Ul

»i>Z
CJ*-

to to M </t

Ti T

to a
3 Ul

Ul Ul
> >
3 O
z z

w» z
U I

I VJ

Ul
1< a.
I to
a
<

12
oe I

flCUl

3« Z^ < I

• lb
VJ

Ul
a >H.
3ii

I 3 Ul&»>3
OC ^

-*^>
lb 3Z I

Ul toa z

a > J*-

Ul>o u.
C to

a Ul
z z z X
to3 to3
I Z I Z
ee k. ee to

^ceo ceo
lb 3 lb 3
Ul to til Ul to to

% - to
3 • >> 3* Z
to O to to J 3
• I • I

to. ^ to >-
U Ji^ ^ VII

a » I a > I

lb 3
Ul t-

3»
to O

a a o
ae Ul lb

Ul < I Iu a« < ee
a. I X <
vi r

« ^ lb am I to
to ic JJa <>/»
z a ae 41< •/) oX -a <
lb • X ^
^ s
X Ul tb ^
I >

• • •X •
a to •
X lb
< Ul au oe ee
I & • <

< to to oj< X %
a -1 J ^
< U to

- -» "33 < to UJ
a. z
•o a to

UJ Ul o> > Ulo a z
•s « o

if
to Ul
I ^
Ul >>

• UJ Ul
Ul ee >Z Z toO to tk
• I I^ Ul Ul
a. a. a.

> X X «*-<•<<
a I I I

J s a a

ooooeaooeooooaooeeoe
,!« 9to«>etofv««i<rin«»»«»Otoe4m^

oeooeooooooeoooeeaaoaoaaaooaaaiA«r»s9etorMm #iAi0^«>Otor«4*n^K« 9 ^ 9 '* '>i^^^^•rAtAiA'AA«AA^«nin'«4« Q<04.9tototototo

•J to

^ a
a<
<

d o a a a0 to »M



THE ENGINE
SAMPLE OUTPUT

Page 36

ZDo
UJ
oc

Ul
0£.

SE
<u
»—

S.o
~l

Ui
CDz

—J Uio >zo
1- oO Ulo o (/><
—J • UJ

Ui a. • o
EX

« LE ?o < o
Ul ZDo ecz O Ui

C9 oc

•
UJo oO UJu a.

1 Q
Z Ck

z
Of UJ

LU

UJ C0z D
l-<
Z ZD

z
u.

< -I UlZ _l z
»-<:

Ul
1- UJ z

1 r

Ul

•
UJ

» « X U. &
ecu UJ >

•
1

o
<u

z 1M
•A
4Jo3

1

O
art

o> M
• <

X X

U 41 u.>>
a.

Jl

x
I

U.U
art

e
x'='
o «

Ui 1

G

a. tA ^
>• I

t^re M

3 • L
•« o «/»

o I

I >'M

^ au u >

I 3U.
o u —

Z a. M
0 JC «/
1 o
UJ 01 >
a 3 —
> t/t o

I •

I n ic
9 U VJ
ae Ul oj
« X XU SJ u
• ' 19 9 9
«>4

M ^ M«
9 9 9
-J >* IS

:c z X
3 3 3
J,

^ it tt
X X a

> Xo9 S
a <
3 oe

I I

0 o
Ui '41

X Xu o
1 I

t%
O 9

I/)

ui Ui0 Ul ae
< z a

9
3 2 < O
1 • i *

)c >c Ui
u u u I

Ui Ui Ui UiXXX-o a u

'

III.
9 9 9 9

•« jt 9
•N N N «n
O 9 9 9
•S >i >* >»

IS
I

X zz zzx
Ik Ik -k .k 4. 'k
« :£ « <
^ JJ .U U J Ji
X X a. a. a. a.

ae
:< za ae Ul Ul

a 3 »- >
3 3 <

ha 55 X a Ik

-« «L 3
3-«
a Ui o M«L ^ 1

«« Ui
«V fr. O Ui ae z X 9 o <A X 9
O > U 9 3 Q U. Ul o > o z 9 > Z
9 1 Z 9 1 1 1 9*- I u 9 N> Ui

1 le 4i • ae 1 1 1O U 1 U k» Ui • 9a ee 9 Ul
ee Ul 3 Ui Ul oe ae Ui 3 ae >

X < X a z XXX X< X
Uk> V>

3 X <
«J VJ u ^ o X U U X•III ' i ' 1 1 1 »- 1 1« O O 9 M 9 9 9 '«0 o X 2 ^a X lit •« §
y» .•n ^ «/» ^ « A «
1 9 9 9 9 9 9 1 9 9 9 1 9 9

ic
>t •

•4 >| «4 ae ^ >• IS -e«^«««A
1 X z z 1 XXX 1 z z Z 1 xz

9
ae N JC ae

9 3 39 ^ 4. 4. «> » ae « i
9 u. X* XX

U ^ 4t A u a t \U it
a. a. & & a 4. a.

Ui O
Z X —
a ae vt
I -9 —
Ul a >
X 3 —> 9^ I I

I je aeQUO
ce Ui Ui
< Z Xu u o
I I I9 9 9
N 'N 'M
9 9 9^ !S •S

> Z

s$
3 ae
«/» ftl

I I

ae ae
u u
Ul Ui
X XO Vil

I IO 9
lA 4M
9 9
*4 "S

vt
tt UlO Ui ae
< Z 9

•< 9 •
3 Z < O
• I I z
ae ae ae UlU O U I

Ul Ui Ui Ul
X X X z0 o o a
1 I I I

9 9 9 9S 9 9M oi "I <n
9 9 9 9
«< >l "<l

zzzxxzzzz
33 555555555 *
U.X U.k>kkkklkXX *m»

de-<aexx<x<je^ J4 JJ ^ ^ ^XCbXXXXXXX

ae w

9 O

z
3
It
X

Ui Uloz
Si
X

xee3 '3
3 I

X XO 3
I -tm



THE ENGINE Page 37

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. CODE INPUT
. COBOL

FUNCTION
. TRANSFORMATION

. INSTRUMENTATION

. EDITING

. TRANSLATION

. FORMATTING

. RESTRUCTURING
. CODE RESTRUCTURING

. STATIC ANALYSIS
. ERROR CHECKING
. STRUCTURE CHECKING

. DYNAMIC ANALYSIS
. COVERAGE ANALYSIS
. TRACING

OUTPUT
. USER OUTPUT

. LISTINGS
. MACHINE OUTPUT

. SOURCE CODE OUTPUT
. COBOL

IMPLEMENTATION LANGUAGE: COBOL

TOOL PORTABLE: YES, TOOL SIZE; 400K

TOOL AVAILABLE : YES, PUBLIC DOMAIN

;

NO

RESTRICTIONS (COPYRIGHTS, LICENSES, ETC . )

:

SERVICE CONTRACT

TOOL SUPPORTED: YES, TOOL SUPPORT: CATALYST CORPORATION

CONTACT: MICHAEL J. LYONS, CATALYST CORPORATION, 582 7 WEST
RACE, CHICAGO, IL, 60644, USA, 312-354-5641



PSL/PSA Page 38

PSL/PSA DEMONSTRATION

available on a number of large scale computers.
currently

1200 baud modem phone line l^H Ti^^^ I -^^^ demonstration are a 300 or
terminal and access to a remote larnp^crl?:""'""^*. ^"PP^^ line

^^l^^r^^^- ^^^^^^^ t^Z^^

References

1. Teichroew, Daniel, and Ernest A. Hershey III "PSA/PSA- A

Tnfnrm^^Tin'^D'^
Technique for Structured Documentation and Analysis ofInformation Processing Systems", Vol. SE-3, No. 1, IEEE Transact onson Software Engineering. January 1977.

' r dribacnons



PSL/PSA
SAMPLE OUTPUT

Page

o

c

c
o

•l-t

-M
fD
U
+J
(0

g
E

^2

w
u • •

3 (U X
U ^ (U

(U 0)

E W <u
fC i-H (U

2 0) W

+
I

CO

i u

M -P I

I W TD
I 3 C
I U fO
+ M M

w ^
o w
c w
> TM +

+ l-i

I-H
1

1

1 1

o w
-P u

O
I
IT" 1 <u

w e
W
U

a, -P o O
TJ u

a. w C 2
? U

PA
1

a o
O 1 <

+ M M M +

t7""T

4-1

M M +

M M M 4-

O ^ Q
+

I

5 I o

z
a, o

-|- M M M
I

w
u
Q>

•P I

w 'a
3 c
u «a >+ "-1 M M --

CM

O

c

c
o

•rH

fD
u
-p
W
g
E

CO

in

V-i

o
c
>
I

c
(D

I

w
u
<u

E
o
J-)

w
u

+ M I-H M +III T
O U CO
i-i <u w u

H- ' o o <a. w 4J a2 -p w c wM D D 0) Z
I CI, U > w
"

•-H ++ M fl

+ M M
I

I

^
i V-I

' E
o

t
I

I

I

I

I

IM 4-) I I

\
m X) c

'

I U (D
+ M M l-H +

+
I

a,

?

t
I

o
4-»

I

-P
a
4-> 3 0) M
3 o > S
O I \

I

I-H HH M 4-

co

O M



PSL/PSA
SAMPLE OUTPUT

Page 40

-J-

M M M -j-

I

^ I

I i~> I

(n (D cn
I

E u \20 01
tH +J

I XJ I

I W -D C I

I 3 C <U
!O fO >+ M H l-( +

+ M M
I

to

o

0)

>

Cx4

T

i
s

I I

+ M M M +

T

a:

+ M M M

a>

U CO

4- M M

o

c
(0

c
o
iH
4J
10

4-3

W
s

I

•J
en
04

(0

o

?
>
I

TJ
C
OS
I

w

E
o
4-»

w
3

u



PSL/PSA
SAMPLE OUTPUT

Page 41

o

't-t

a
c
<D
CO

s
4J
<0
UP
e

(0
u
o

I

1

0)

E
B

IT

CO

>
I

a. o > w

-j- HI l-H t-t -j-

I I

I c <u i

I U fO > I

+ l-l l-t l-H 4

T 3 9 > oi

+ IH tH tH +

+
I

I

I

I

+

tH

i

O

>

t

i

M IH +
M l-t l-l +

1^

§
4-) a;

O CO

M l-l l-l -I-



ps'l/psa
sample output

Page 42

IT)

Eli

O

i

iC
3 CM -O

iJ x:

CO3

1-1 IM
O

=3 E

EL4

o

i

o
<1> 4-»

=> E

CN 73

c

C
O
•H
4J
«D

4-)

W
s

w
u
0)

o
II

_ U <D

OS 0) O
- O

U u
, o a+ M M t

T

8
a:

'I'

I

CO

u

+ l-H M l-l +

+ M M M

I

+ M M M +

i

i

b 4J

2

U ti 3 u (D

u ti

I?M +

I
(0

(1)

E
^ O2 !->M CO

1 " 1+ M M l-t --

O

Q
C
CO

C
O
•H
4.)

(0

JJ
{/)

s

J2

tM M M -j-

tJi CO
CO
COu
8

o
o
u
<0

CO

4- l-H t-l hH +

+ M M 1-1

I.
Iw

E
o wP CJ

CJ IM +

M (-1 M -j-

I

a;

4J

o
8^

c
CO

4-1

g
£

•-)

CO

w
u
o
t3

>
"cO" CO
u u
<u o
E 73
0 CP d)

B f
CJ T3
1 c
E (0

0 I

U CO

1 Q)
CO E
4J 5
S

•rH U

V)
U
o

?
>

0)

e
4-)

CO 4-1

o

4J 4-1

O C

•H CN «')



PSL/PSA Page 43

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. DATA INPUT

. VHLL INPUT
. PSL

FUNCTION
. STATIC ANALYSIS

. ERROR CHECKING
. SYNTAX CHECKING

. COMPLETENESS CHECKING
OUTPUT

. USER OUTPUT
. TABLES
. LISTINGS
. DIAGNOSTICS

. MACHINE OUTPUT
. DATA OUTPUT

IMPLEMENTATION LANGUAGE: FORTRAN

TOOL PORTABLE: YES

TOOL AVAILABLE: YES, PUBLIC DOMAIN: NO

RESTRICTIONS (COPYRIGHTS, LICENSES, ETC . )

:

SPONSORSHIP

CONTACT: DANIEL TEICHROEW, UNIVERSITY OF MICHIGAN, ISDOS
PROJECT, 231/443 WEST ENGINEERING BLDG, ANN ARBOR, MI, 48109,
USA, 313-763-2238
HASAN H. SAYANI, ADVANCED SYSTEMS TECHNOLOGY CORPORATION,
9111 EDMONSTON ROAD, SUITE 302, GREENBELT, MD, 20770, USA,
301-441-9036
CYRIL P. SVOBODA, ADVANCED SYSTEMS TECHNOLOGY CORPORATION,
9111 EDMONSTON ROAD, SUITE 302, GREENBELT, MD, 207 70, USA,
301-441-9036



SDDL Page

SOFTWARE DESIGN AND DOCUMENTATION LANGUAGE
(SDDL)

DEMONSTRATION

SDDL is a language and associated processor that is oriented toward
supporting software detailed design. The SDDL processor accepts an input of
file of source statements, structures these source statements according to the
general rules of structured programming, and produces various reports
including a structured list of the original source statements. One of its

major features is the ability to select keywords that are appropriate for the
application of the user.

The proposed scenario would allow an ICSC attendee to create a very
brief input file and then have this input file processed and the output
returned to the attendee through a hard copy terminal. The only constraint
would be the size of the input file.

References

1. Kleine, H. SDDL Reference Guide . JPL Publication 77-24

2. Cal lender, Clarkson, and Frasier. An Application of SDDL ,

JPL Report 80-16.



SDDL
SAMPLE OUTPUT

Page

SDDL

SDDL STRUCTURES ILLUSTRATIW

LINE PAGE 1

1 PROGRAM "PG EM-W^Wy THE SDDL KEYWORDS

2 _______ _____
4 * THIS EXAMPLE ILLUSTRATES THE PROCESSOR'S REPOKSE TO KEYWORD *

5 * STATE r€ NTS. *

7

8 LOOP UNTIL FINISHED
9 IF PROPOSITION IS TRUE

10 DO STEP. ONE (DEFERRED ABSTRACTION) -.-^( )

11 ELSE

12 DO STEP.TKO — { )

13 ENDIF
14 IF THINGS LOOK BAD AT THIS POINT
15 — EXITLOOP
16 ELSEIF THINGS LOOK DISASTROUS
17 EXITPPOGRAM
18 ENDIF
19 REPEAT UNTIL WE GET IT RI'GHT

20 CALL EXEMPLIFY TO DEMONSTRATE RAGE WJ^'BERING- 1)

21 EtJDPROGRAK



SDDL p
SAMPLE OUTPUT

J • • •

O
w w
-i ^
w u
« tfl

X ^ o
M kJ z
> A B
u «n
X • w
^ «» t»
c «

^ Li a.
O M
> U

«» •* X
• Z 4 • • 4 m a

• W V Z 4
m g

• XV O 1
m • ^ m g

• Ml O • w g
• K flC O 4 • o m g
% mm ^ Z 4 • m g

m g
• 9 X g g
• wo • M m g
• flC g

g g
• ^ ^ a g
• 4 ^ m g
• Z 9 ^ 4 ^ o
• A Z 2 c

> n Ul
or • » M o «

S 4 1 H- ae (A
• Z Ui o *V Ul >-

:y • 3 W 4 Z 4 (A
• 7 • i2 O « • 'tt

a: • « > 1 u O
• Ul X 1- • O
• Z K O Z 4» z UJ UJ <

< • ^ O Ul v9 «1 « •> oe
z • u. 4» 1 mm u o
e • U. K in Qc 4» K *- o .X

• O UJ » Ul u < >- UJ
»- • a. ^ UJ 4» ^4 < Z « (A -1 u
u # ^ T 4» w IT ae 1 3 z
z <A ^ 4» ^ UJ X Ul X <

• o z r »- 1 z Z o X
U. • ^ o Ui "F. 41 z * z Ul Ul Ul lA or

1 >- O 4» < <n CI X 1 UJ o
o. • ui m • 1 < in 1 z UJ CI u.
u • or i/t z < oe o a: z ae

• a» UJ X 4» < UJ 1 z ae oe u Ul
> • r Z O 4 lA Ul o a. ^ a.

• « X X 4» z z a. > z o oe
• Ul !/» 4» > o Ul UJ z u O Ul
• 'f\ b. 4* «•» nc a. -1 a; Ui •» UJ U. .J T

o • — o O UJ 4 o X CI ae u O
u. • z C 4 u. o >> z < UJ >-

• M « z •* • ^ U Ul >- V- H> fll u
O 4» z Z X z z Z lA

o • z >> — m 4» UJ O UJ Ul ^9 Z Ul u UJ X V9 U
O »- X (/> ae • X * ae X z o X X X 3 Z
• O Z UJ <• UJ o Ul u Ul Ul Ul O X — u.

< • z « (Q 4» K or K . ae a; < mm >
u • o 0. r 4 >• z Ul X » CJ

• u • 3 u K Z 3 »- <c ae Ui
u. • Ul Ul Z 4> or ^ or > O Ul or <y or lA X o a.

• UJ u Ul Ul Ul (A
u • • • • • i• oc 4 or f ae ae K 1

Ui O
Q. Z

Ui

If) ^ « » ( m • •> o — lA O — M m » lA



SDDL
SAMPLE OUTPUT

Page 47

MM

Ul

ae uj

(V

cruj

o
Ul

»-»-x.Hjoeoe-oc»-i«oQ5333« OaXSN

N

^ ^'W** ^ wwwwwww

UlX
Ul
941.

Ul



SDDL

I

Page 48 '

FEATURE CLASSIFICATION:

INPUT
. SUBJECT

. VHLL INPUT
. SDDL

FUNCTION
. TRANSFORMATION

. FORMATTING
. STATIC ANALYSIS

. SCANNING
. KEY WORD SCANNING
. STRUCTURE SCANNING

OUTPUT
. USER OUTPUT

. LISTINGS
. STRUCTURED LISTINGS

IMPLEMENTATION LANGUAGE: PASCAL

TOOL PORTABLE: YES

TOOL AVAILABLE

;

YES, PUBLIC DOMAIN: YES

RESTRICTIONS (COPYRIGHTS, LICENSES, ETC .

)

: AVAILABLE FROM
COSMIC

TOOL SUPPORTED: NO

CONTACT: H. KLEINE, JET PROPULSION LABORATORY, 4800 OAK
GROVE DRIVE, PASADENA, CA, 91109, USA, 213-354-3655



Page

SLIM
A Quantitative Too/ for Software
Cost and Sclieduie Estimation

A Demonstration of a Software

Management Tool

Lawrence H. Putnam

1. Introduction

Software development has been characterized by large cost

overruns and severe schedule slippages. How much will it

cost? How long will it take? How many people will it take?

what are the chances of the system being operational on time?

What trade-off options do I have? Is the program sponsor

or contractor underestimating or overestimating time, money,

effort and machine time? Managers need quantitative answers

to these questions.

2. Summary of SLIM

SLIM (Software Li_fe Cycle Management) is a tool for effectively

managing software development. It is a capital budgeting and

strategic planning vehicle for the software life cycle. Using

the PERT algorithm, linear programming, Monte Carlo simulation

and sensitivity profiling techniques, SLIM provides accurate

cost, time, personnel and machine projections for developing

software systems. SLIM identifies limiting constraints that

can block development plans. Confidence levels and risk factors

are calculated to provide the manager with the hard data needed



SLIM Page 50

to make decisions on cost, schedule, effort, manloading and

cashflow. SLIM's accuracy has been validated for over 400

systems -- business, real time, military, telecommunications,

scientific, command and control, operating systems, process

control, and microprocessor software developments. SLIM is

available through the timesharing facilities of American

Management Systems' AMShare service. It is accessible nationwide

and in many overseas locations via GTE Telenet. SLIM is also

available as an in-house system running on the HP-85 personal

computer in a turn-key version.

3. Scenario of SLIM Demonstration

The SLIM demonstration will be done in two parts. A brief

narrative description of the software life cycle cost methodology

will be given. A description of the mechanics of the computerized

SLIM implementation will be made. The second part will be a

demonstration of how to run SLIM, both on the timesharing computer

and on the HP-85 personal computer. Questions from the audience

will be welcome and members of the audience will be encouraged

to run the systems themselves . The demonstration will take about

one hour. It can be repeated as often as necessary. About 10

people can be handled in each demonstration group.

4. SLIM Literature

A* References on the Methodology.

Putnam, Lawrence H., Prog r ess in Model 1 i ng the Sof twa re

Life Cycle in_ a Ph enomeno log i ca 1 Way to Obta in

Engineering QuaTTty Est ima tes and Dynamic Control of the
Process , Proceed ings of the Second Software Life Cycle
Management Workshop, Atlanta, August 21-22, 1978, IEEE
Computer Society Publication, No. 78CH 1390-4C, pp.
105-128.

Putnam, Lawrence H., Exampl e of an Ea rly Sizing , Cost
and Schedul e Estimate for an Appl icat ion So f twa re
System "! Proceedings IEEE Computer Society COMPSAC TTT
Nov. 14-16, 1978, Chicago.



SLIM Page 5

Putnam, Lawrence H., Sof twa re Cost ing and Life Cycl

e

Control, Workshop on Quantitative Software Models for
Rel iabil ity , Complexity and Costs: An Assessment of the
State of the Art, Kiamesha Lake, N.Y., Sept 9-11, 1979,
IEEE Catalog No. THoo 67-9, pp. 20-31.

Putnam, Lawrence H. and Fitzsimmons, Ann, Estimating
Software Costs , DATAMATION, Sept 1979, pp. 189-198, Oct
1979, pp. 171-178, Nov 1979, pp. 137-140.

Putnam, Lawrence H. , A General Empi r ical Solution to the
Macro Sof twa re Si z ing and Estimating Pr obi em , IEEE
Transactions on Software Engineering, Vol. SE-4, No. 4

July 1978, pp. 345-361.

B. Specific references on SLIM

* SLIM product description

* Sample output for a large system and a small system

* SLIM characteristics profile

* SLIM User's Guide for DECsystem 20

* SLIM User's Guide for HP-85

5. Location

Station 8, Tuesday, March 10 from 9:00 AM to 6:00 PM

6. The Demonstrator

Lawrence H. Putnam, President of Quantitative Software Management, Inc

1057 Waverley Way, McLean, VA 22101. Developer of the Software

Lifecycle Methodology and SLIM. He is the author of numerous

articles on software cost estimating and life cycle control.

He is a frequent speaker on this subject in the United States

and abroad. Mr. Putnam holds a BS degree from the US Military

Academy and MS-Physics from the US Naval Postgraduate School.

He was elected to Sigma Xi in 1962.



SLIM
SAMPLE OUTPUT

Page 52

SUMMARY OF INPUTS

SMALL TELECOM SYSTEM
24 JUL 81

13: 07

PROJECT START: 0181

» COST ELEMENTS »

COST /MY:
U)

0^ (COST/MY )

:

INFLATION RATE:

5O00O

5000
. 085

» MODERN PROGRAMMING PRACTICES »

STRUCTURED PROGRAMMING: > 75%
DESIGN/CODE INSPECTION: 25-75X
TOP-DOWN DESIGN: > 75X
CHIEF PROG TEAM USAGE: < 25X

» EXPERIENCE »

» ENVIRONMENT *

ONLINE DEV:
HOL USAGE:
DEVELOPMENT TIME.
PRODUCTION TIME:
DBMS:
REPORT WRITER:
LANGUAGE:

1.00
1. 00
.80
.20

0. 00
0.00

OVERALL:
SYSTEM TYPE:
LANGUAGE:
HARDWARE:

EXTENSIVE
EXTENSIVE

MINIMAL
EXTENSIVE

PASCAL » TECHNOLOGY »

» SYSTEM »

FACTOR:
(ADJUSTED)

:

TYPE: TELECOMMUNICATION & MESSA
GE SWITCHING

REAL-TIME CODE:
LEVEL:
UTILIZATION:

,15
3

60

» SIZE *

LOWEST
HIGHEST

10000
30000



SLIM
SAMPLE OUTPUT

Page 53

SIMULATION

SMALL TELECOM SYSTEM
24 JUL 81

13: 08

SYSTEM SIZE
MEAN STD DEV

<STMTS) 20000 3333
MIN DEV TIME

(MONTHS) 13.4 17
DEV EFF

<MM) 85.1 32.3
DEV COST <X 1000 )
<UNINFLATED) 360 148
(INFLATED) 377 157

SENSITIVITY PROFILE

FOR MINIMUM TIME SOLUTION

-3a

-Iff

MOST LIKELY

+ 1 a

+ 3 a

10000 STMTS
9.9 MONTHS
29 MANMONTHS

121391

16667 STMTS
12.4 MONTHS
56 MANMONTHS

234111 %

20000 STMTS
13.4 MONTHS
85 MANMONTHS

359897 *

23333 STMTS
14.3 MONTHS
122 MANMONTHS

507120

30000 STMTS
15.9 MONTHS
214 MANMONTHS

890902 $

CONSISTENCY CHECK
WITH INDEPENDENT DATA BASE

85 MM IN NORMAL RANGE
13.4 MONTHS IN NORMAL RANGE

6 AVG MNPWR IN NORMAL RANGE
235 LINES/MM IN NORMAL RANGE



SLIM
SAMPLE OUTPUT

Page 54

SIZE, S <X 1000)



SLIM
SAMPLE OUTPUT

Page 5 5

DESIGN TO COST

THE BEST ESTIMATES OF THE MINI-
MUM TIME AND CORRESPONDING EF-
FORT AND COST ARE:

13-41 MONTHS
85 MANMONTHS

360 <X 1000 $)

ENTER DESIRED DEV EFF IN MM
?

50

NEW DEVELOPMENT TIME
SMALL TELECOM SYSTEM

MEAN o

NEW DEV TIME
(MONTHS) 15.16 1.88

NEW DEV EFFORT
(MANMONTHS) 50 19

NEW DEV COST 208 86
(X lOOO )

YOUR FILE IS NOW UPDATED WITH
THESE NEW PARAMETERS. RUN MAN-
LOADING & CASHFLOW TO SEE HOtt

THESE SA«^INGS CAN BE REALIZED.

CONSISTENCY CHECK
WITH INDEPENDENT DATA BASE

50 MM IN NORMAL RANGE
15.2 MONTHS IN NORMAL RANGE

3 A«^G MNPWR IN NORMAL RANGE
400 LINES/MM IN NORMAL RANGE



SLIM
SAMPLE OUTPUT

Page 56

***»«*»*»«»»»»#»*«««»»«»»»«»«»»«
MANLOADING

SMALL TELECOM SYSTEM

STAFFING PLAN

(b

rH

O
Of

•w

a:
ill

3
O
a.

a:

DEV TIME (months)

THE TABLE BELOW SHOWS THE MEAN
PROJECTED EFFORT (AND STANDARD
DE»JIATION) REQUIRED FOR
DEVELOPMENT. THESE VALUES ARE
BASED ON A DEV TIME OF 15.2
MONTHS AND A TOTAL DEV EFFORT
OF 50.0 MANMONTHS.

STAFFING PLAN

MONTH PPL CUM MM

JAN 81 1 .5 1

FEB 81 2 1.3 2 1

MAR 81 3 2.0 5 2
APR 81 4 2.6 9 3
MAY 81 4 2.9 13 5
JUN 81 5 3.1 18 7
JUL 81 5 3.

1

23 9
MG 81 5 3.0 27 10
SEP 81 5 2.8 32 12
OCT 81 4 2.5 36 14
HQK^ 81 4 2.1 40 15
DEC 81 3 1.8 43 16
JAN 82 3 1.5 46 17
FEB 82 2 1.2 48 18
MAR 82 2 .9 50 19

APR 82 1 .3 50 19



SLIM Page 57

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. DATA INPUT
FUNCTION

. STATIC ANALYSIS
. COST ESTIMATION
. SCHEDULING

. TIME SCHEDULING

. PERSONNEL SCHEDULING
. DYNAMIC ANALYSIS

. SIMULATION
. MONTE CARLO SIMULATION

. LINEAR PROGRAMMING
OUTPUT

. USER OUTPUT
. GRAPHICS

. BAR CHARTS

. LINE GRAPHS
. TABLES

. SCHEDULES

. RISK PROFILES

IMPLEMENTATION LANGUAGE: BASIC, FORTRAN IV

TOOL PORTABLE: YES, TOOL SIZE: 200K BYTES

COMPUTER (OTHER HARDWARE )

;

DECSYSTEM-1 0/20 , HP-85

TOOL AVAILABLE: YES, PUBLIC DOMAIN: NO

RESTRICTIONS (COPYRIGHTS, LICENSES, ETC.): LICENSE

TOOL SUPPORTED : YES, TOOL SUPPORT: QUANTITATIVE SOFTWARE
MANAGEMENT

CONTACT : LAWRENCE H. PUTNAM, QUANTITATIVE SOFTWARE
MANAGEMENT, INC., 105 7 WAVERLEY WAY, MCLEAN, VA, 22101, USA,
703-790-0055



POD Page 58

PERFORMANCE ORIENTED DESIGN

- BGS Systems, Inc. -

1 .0 Introduction

This session will present powerful software engineering tools for the
life cycle management of system performance. The tools provide essential
performance related information throughout the system development cycle.
They provide feedback on areas of system performance sensitivity and on
alternative strategies for eliminating performance problems.

The tools can calculate key performance variables (e.g., throughput,
utilization, response time) based on the specification of a system's
hardware, software and workload environments. In addition, interactive
front end graphics facilitate parametric studies of system performance.

2 .0 Summary of Performance Oriented Design

The Basic goals of Performance Oriented Design may be summarized as

follows

:

• To provide better management control during system design and
implementation by enabling project maangers to define and vali-
date performance objectives at each stage of the development
process

.

• To reduce total development time and cost by providing designers
and implementors with early warning of upconing performance
problems and by focusing attention on critical problem areas.

• To reduce maintenance costs by providing maintenance personnel
with performance related information which can be consulted
when performance problems arise after the system is deployed.

• To reduce development time and cost for future systems by
providing designers with performance related information about
existing systems which will be of direct value in future design
efforts.

3.0 Demo Scenario

The demonstration Will consist of an on-line interactive session/
presentation which presents details of performance analysis throughout
the development life cycle. The audience will have the opportunity to
participate by posing alternative configuration and design strategies
which will be addressed on-line. Hands-on user time will also be made
available.



POD Page 59

4.0 References

1. POD - A software engineering tool for life cycle management of
system performance, BGS Systems, TR0014-28, March 1979.

2. POD - Preliminary User's Manual, BGS Systems, TR0014-32,
April 1979.

5.0 Stations, Date and Time

Short Demo: March 10, Station 9

10:00 AM - 4:30 PM and 6:00 PM - 7:30 PM.

Extended Lecture: March 10, Council Room
4:30 PM - 6:00 PM.

6.0 The Demonstration

Allan I. Levy will represent BGS Systems, Inc., a Waltham, Massachusetts
firm that is actively involved in the computer performance evaluation field
and is widely recognized as an industry leader in this discipline. In its

work, BGS Systems emphasizes the use of analytic models for the solution of
capacity planning problems. To support this activity, it has developed
expertise in related areas of performance measurement, system tuning, work-
load forecasting, data base design and data analysis procedures. Its research
contributions in computer performance have been widely recognized, and in

the past three years BGS Systems' personnel have published more than twenty-
five technical papers in professional journals and conference proceedings.



POD
SAMPLE OUTPUT

Page 60

GO

PRINCIPAL RESULTS

ASSESSING THE PERFORMANCE
OF THE CURRENT DESIGN

WORKLOAD RESPONSE TIME THROUGHPUT % CPU

1 POLLING_WKL
2 STORE_WKL

3 FLASH_WKL
4 FORWARD WKL

0.01 SEC

1.59 SEC

0.61 SEC
1.25 SEC

36000.

6000.

667.
1333.

PER HOUR

PER HOUR

PER HOUR
PER HOUR

TOTAL CPU UTILIZATION =

7.5 *

25.0 %

^.2 %
6.9 %

«3.6 %

SET FLASH WKL ARRIVAL RATE = 2000

GO

»»« PRINCIPAL RESULTS »»»

ASSESSING THE PERFORMANCE
IMPACT OF A 3-FOLD INCREASE
IN FLASH MESSAGE REQUESTS

WORKLOAD RESPONSE TIME THROUGHPUT % CPU

1 POLLING_WKL

2 STORE_WKL

3 FLASH_WKL

U FORWARD WKL

0.01 SEC 36000. PER HOUR 7.5 t

3.03 SEC 6000. PER HOUR 25.0 %

0.83 SEC 2000. PER HOUR 12.5 %

1.52 SEC 1333. PER HOUR 6.9 5

TOTAL CPU UTILIZATION = 51.9 J

SET FLASH WKL ARRIVAL RATE = 667

SET STORE WKL ARRIVAL RATE = 7500

GO

»»» PRINCIPAL RESULTS »»»

ASSESSING THE PERFORMANCE
IMPACT OF A 25% INCREASE
IN STORE MESSAGE REQUESTS

WORKLOAD RESPONSE TIME THROUGHPUT % CPU

1 POLLING_WKL

2 STORE_m
3 FLASHJVKL

14 FORWARD WKL

0.01 SEC

4.61 SEC

0.66 SEC

1.28 SEC

36000.

7500.

667.

1333.

PER HOUR

PER HOUR

PER HOUR

PER HOUR

TOTAL CPU UTILIZATION =

7.5 %

31.3 %

11.2

6.9

19.9



POD
SAMPLE OUTPUT

Page

DGRAPH 1

14.0 •

11.7

9.3 •

7.0

'4.7 ••

2.3 •-

0.0

25-NOV-79 15:52

STORE WKL RESPONSE TIME

o • .o •
.o- •

RESULTS OF TEE PARAMETRIC
STUDY PRESENTED GRAPHICALLY

5000. 6000. 7000. 8000. 9000.10000.

STORE WKL ARRIVAL RATE

DGRAPH 2

25-NOV-79 15:5^*

TOTAL CENTRAL PROCESSOR UTIL

51.9 ••

«9.9

m.B

43.6 •-

41.5 •

39.4
5000. 6000. 7000. 8000. 9000.10000.

STORE WKL ARRIVAL RATE



POD
SAMPLE OUTPUT

Page 62

VARY STORE WKL ARRIVAL RATE

FROM 5000 TO 10000 BY 500

?ARA14ETRIC STUDY TO
DETEmUNE TEE PERFORIUNCE
SENSITIVITY OF THE DESIGN
TO A RANGE OF STORE MESSAGE
ARRIVAL RATES

STOPIF STORE WKL RT > 8

OR TOTAL CENTRAL_PROCESSOR UTIL > 35%

SHOW

STORE_WKL RT

TOTAL CENTRAL_PROCESSOR UTIL
END

RUN

« PAGE 1 OF 2 STORE WKL ARRIVAL RATE

STORE_WKL RESPONSE_TIME

TOTAL CENTRAL PROCESSOR UTIL

5000.0

1.1

39.^

5500.0 6000.0

1.3 1.6

41.5 M3.6

6500.0
2.1

its.?

« PAGE 2 OF 2 STORE WKL ARRIVAL RATE

STORE_WKL RESPONSE_TIME

TOTAL CENTRAL PROCESSOR UTIL

7000.0

2.9

47.8

7500.0 8000.0
'4.6 12.0

49.9 51.9



POD Page 63

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. VHLL INPUT
. SYSTEM SPECIFICATION

FUNCTION
. DYNAMIC ANALYSIS

. SIMULATION

. TUNING
OUTPUT

. USER OUTPUT
. GRAPHICS
. TABLES

IMPLEMENTATION LANGUAGE: FORTRAN

TOOL PORTABLE: YES

TOOL AVAILABLE: YES, PUBLIC DOMAIN; NO

RESTRICTIONS (COPYRIGHTS, LICENSES, ETC .

)

: DETAILS FROM BGS
SYSTEMS

TOOL SUPPORTED: YES

CONTACT: ALLAN LEVY, BGS SYSTEMS, INC., 470 TOTTEN POND ROAD,
WALTEiAM, MA, 02254, USA, 617-890-0000



PWB FOR VAX/VMS Page

Programmer Workbench Tools on VAX/VMS
Heinz Lycklama

INTERACTIVE Systems Corporation

Software developers need good tools to improve their productivity. One such set of tools has been

available for some time now with the Programmer's Workbench version of UNIX * running on the

DEC PDPl 1 series of computers. The recent introduction of the DEC VAX computers with the VMS
operating system left something to be desired in the area of software tools. A rich set of languages have

been and are being developed under the VMS operating system, but there was nothing equivalent to

the PWB tools. INTERACTIVE Systems Corporation has recently introduced the PWB tools on the

VAX/VMS system, thereby improving the productivity of software engineers on this machine

significantly. The tools have been designed to work effectively in the VMS environment.

A programmer needs a number of tools to accomplish the design and implementation of the end

product:

editors

compilers

source code control system

program maintenance system

documentation system

This demonstration will concentrate on how a general-purpose source code control system and a pro-

gram maintenance system can be used to advantage in an operating system environment for which it

was not initially designed.

The Source Code Control System (SCCS) is a system for controlling changes to files of text such as

the source code and documentation of software systems. It provides facilities for storing, updating, and

retrieving any version of a file of text, for controlling updating privileges to that file, for identifying the

version of a retrieved file, and for recording who made each change, when and where it was made, and

why. SCCS is a collection of less than a dozen programs or commands available to the user. The SCCS
commands consist of:

1 . admin - administer SCCS files

2. chghist - change history entry of an SCCS delta

3. comb - combine SCCS deltas

4. delta - make an SCCS delta

5. get - get generation from SCCS file

6. prt - print SCCS file

7. rmdel - remove a delta from an SCCS file

8. sccsdiff - compare two versions of an SCCS file

9. what - identify version of a file

In the VAX/VMS environment, the SCCS system is sufficient for monitoring changes to source code in

any language as well as documents written using the editor.

The Make facility is provided for maintaining computer programs. When dealing with a large

software development project, it is common practice to break large programs into small manageable

files. Each one of these pieces is likely to require a different treatment to produce the object modules

* UNIX is a Trademark of Bell Telephone Laboratories.



PWB FOR VAX/VMS Page

that need to be linked into a final executable program. In some cases, object modules are produced by

using one of many compilers available. In other cases the source code may need to be run through a

macro processor or even processed by one of the sophisticated program generators available, such as

yacc, a compiler-compiler, or lex, a lexical analyzer generator. The final code resulting from all of the

possible transformations may then need to be loaded together with certain libraries under the control of

special options. Even for the very sophisticated programmer it is easy to forget which files depend on

which others, which files have been modified recently, and the exact sequence of operations needed to

make as well as exercise a new version of the program. The Make program automates all of the neces-

sary steps that a programmer would have to go through to produce an up-to-date executable program,

given that the graph of file dependencies is correct. However, it does not reproduce those object

modules which are already up-to-date, in the process. On the VAX, the Make program has been

modified to fit into the VMS environment. Given a new language compiler, it is easy to specify the new
'suffix' rules with the make facility.

Dr. Heinz Lycklama, Vice President - Technical Development

Heinz is head of the technical product development team at INTERACTIVE Systems, and in this capa-

city is responsible for all new product development. He holds a Ph.D. from McMaster University, and

spent nine years at Bell Telephone Laboratories in research and development, both at Murray Hill and

Holmdel, before joining INTERACTIVE Systems in 1978. Eight of his years at Bell were spent in

operating systems research, and during much of that time he was associated with the UNIX operating

system. His last position at Bell Labs was as a supervisor of a group responsible for designing a message

switching and data entry system in a data communications network.

Heinz has made many contributions to operating systems research: He participated in design and

implementation of a virtual memory operating system for a Honeywell DDP-5I6 computer; added asyn-

chronous I/O and large contiguous file system to an early version of UNIX; codesigned and built the

MERT operating system for the DEC PDP-11 computers; codesigned a satellite processor system to

support a large number of micro's and mini's attached to a central PDP-11 host machine; developed a

single-user UNIX system for the LSI- 11 microcomputer; developed the Mini-UNIX system for small

PDP-11 computers; and developed a number of interactive programs suitable for CRT terminals and

intelligent terminals. Much of this work has been published in the Bell System Technical Journal and

other professional publications.

At INTERACTIVE Heinz led the team which developed the UNIX system on the VAX/VMS
operating system for the DEC 11/780 computer.



PWB FOR VAX/VMS
SAMPLE OUTPUT

Page 66

s.nl.c:

Checked out for editing —
1.14 1.15 jim 81/03/03 13:16:03

D 1.14 80/12/19 02:53:06 jim 14 13 00001/00001/01295
Avoid calling rbfO if ip == -1; caused . rd to crash on the VAX

D 1.13 80/09/23 16:25:56 hal 13 12 00002/00001/01294
cut down on ttyn calls by allowing a gtty failure in place of

ttyn returning 'x'.

D 1.12 80/09/16 02:57:53 Steve 12 11 00015/00014/01280
Fix bug which caused terminal to be made unwritable even if

output was not to the terminal. Save unnecessary ttyn's.

D 1.11 80/02/25 21:35:44
Changes for CAT/8.

D 1.10 79/12/27 08:42:57
Portability changes.

D 1.9 79/07/27 15:57:41
fix vax .ev bug.

D 1.8 79/07/19 21:27:32
add save-restore option.

D 1.7 79/07/10 10:21:10
add jim's vax changes

heinz 11 10 00009/00001/01285

heinz 10 9 00002/00003/01284

hal 9 8 00005/00000/01282

hal 8 7 00303/00037/00979

hal 7 6 00117/00046/00899

D 1.6 79/04/12 14:23:19 jim 6 5 00011/00007/00934
clean up gtty/stty so there is a set for both input and output

D 1.5 79/04/11 19:07:15 jim 5 4 00002/00002/00939
Fixed stty bug that messed up Diablo/Qumes by
setting them to the speed of the input terminal rather than
the output device.

D 1.4 79/01/08 03:02:05 jim 4

added -0 flag for absolute page numbers

D 1.3 78/12/01 09:18:41
fix cnts underscore

Jim

D 1.2 78/11/30 03:27:58 jim 2 1

gets rid of spurious "intermediate language" tap

00005/00000/00936

00002/00003/00934

00000/00006/00937

D 1.1 78/11/29 17:58:47 mike 1 0 00943/00000/00000



PWB FOR VAX7VMS
SAMPLE OUTPUT

Page 67

Users allowed to make deltas --

Steve
heinz
hal
jim

Flags
none

Description
This file is the Version 7 Phototypesetter NROFF source as
received from Bell Labs, with slight modifications. The

SCCS'ing of these files is prepartory to making changes
required by our support of Davis, Polk, Wardwell and the
-mw macro package.

s . n3 . c

:

D 1.10 80/12/19 03:02:48 jim 10 9

eliminate UNSIGNED since unsigned now works on VAX;
fix bug, estate -> estate [index]

D 1.9 80/04/28 21:54:43 heinz 9 8

Changes made for portability to reflect changes in VAX

D 1.8 79/12/27 08:45:52
Portability changes.

heinz 8

D 1.7 79/07/27 18:40:48 hal 7 6

make size of cache be settable from makefile.

D 1.6 79/07/27 16:29:26 hal 6 5

make UNSIGNED defined for -11 as well as vax.

D 1.5 79/07/27 15:58:40 hal 5 4

fix vax .ev bug; correct problem due to vax C compiler
unsigneds lose their left halves at random times.

00004/00012/00858

00001/00001/00869
C compiler.

00010/00008/00860

00000/00002/00868

00002/00000/00868

bug:

D 1.4 79/07/19 21:29:41
cache macros.

D 1.3 79/07/10 10:25:49
add jim's vax changes

D 1.2 78/12/01 09:38:38
fix cnts underscore

D 1.1 78/11/29 17:59:03

hal

hal

jim

mike

00021/00004/00847

00181/00016/00670

00065/00024/00621

00000/00000/00645

00645/00000/00000



PWB FOR VAX/VMS Page 68

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. DATA INPUT

. CODE INPUT
FUNCTION

. TRANSFORMATION
. EDITING

. STATIC ANALYSIS
. MANAGEMENT

. CONFIGURATION MANAGEMENT
. COMPARISON
. COMPLETENESS CHECKING

OUTPUT
. USER OUTPUT

. TABLES

. DIAGNOSTICS
. MACHINE OUTPUT

. OBJECT CODE OUTPUT

. DATA OUTPUT

IMPLEMENTATION LANGUAGE: C

TOOL PORTABLE: PARTIAL

COMPUTER (OTHER HARDWARE): VAX 11/780, PDP 11, ONYX

OS (OTHER SOFTWARE) : UNIX, VMS

TOOL AVAILABLE

:

YES, PUBLIC DOMAIN: NO

RESTRICTIONS (COPYRIGHTS, LICENSES, ETC .

)

; LICENSE

TOOL SUPPORTED : YES, TOOL SUPPORT ; INTERACTIVE SYSTEMS
CORP.

CONTACT: HEINZ LYCKLAMA, INTERACTIVE SYSTEMS CORPORATION,
1212 SEVENTH ST., SANTA MONICA. CA, 90401. USA. 213-450-8363



AFFIRM Page

Affirm

A Specification and Verification System

A Software Engineering Tool Demonstration

Roddy W. Erickson, Susan L. Gerhart, Stanley Lee, and David H. Thompson

1. A Brief Synopsis

What is Affirm?

Affirm is an experimental system for the specification of abstract data types and algorithms, and the verification of their

properties. The system uses the algebraic axiomatic specification technique, where the user specifies a set of operations and

a set of axioms detailing how the operations work. Algorithms may be expressed either in terms of atistract data types, or in a

Pascal-like language, or both. General systems, such as communication networks, may also be modeled using the algebraic

axiomatic method.

The heart of the system is a "natural deduction" theorem prover for interactively proving properties ctf specifications and

algorithms. Other features include a library of data types, and extensive user interface facilities.

Experience with Affirm includes extensive experimentation with data type specifications, verification of small algorithms, the

specification and partial proof of a large file-updating module, and the proof of high-level properties of protocols. Security

kernels, and distributed file systems.

How do I use it?

A typical session with the system consists of signing on, reading in type specifications, proposing theorems to be proved, and

interactively developing proofs. Finally, the user can freeze the system state for further use, and print out a transcript of the

session for further study.

What's an abstract data type?

An abstract data type consists of a set of operations and a set of axioms. The axioms define the operations by describing their

observable beiiavior (i.e., the axioms tell what the operations do, but not how they're implemented).

In proving theorems using Affirm, the axioms of data types are used to rewrite expressions to simpler forms: the axioms

become part of the simpiification process.

What's an algorithm? Is it a program?

Affirm deals with specifications and algorltlims. We say algorithm rather than program for several reasons. First, ttie days of

verifying programs only when they're ali finished being coded are past: now, verification of the Intended code is

performed--the specification of the problem is somehow validated. Second, the system accepts "programs" in a language

close to Pascal, but it isn't Pascal. No compiler for it exists. Other verification systems address real programming languages;

we simply choose to emphasize specifications.

What sorts of things do you prove using Affirm?

We prove properties of specifications. If the specification is of an abstract data type, such as for example Sequence, we might

prove some useful property about sequences. If the specification is of a protocol, we might state and prove that the protocol

doesn't deadlock, or that it will deliver the right messages in the right order. If the specification is of an algorithm for sorting

integers, we might prove that it indeed sorts the same integers handed to it.

How do you prove properties in Affirm?

The theorem prover in Affirm provides a large number of commands that help break a complex expression into a series of

smaller ones. And the theorem prover uses the axioms of the defined data types to rewrite pieces of an expression into simpler

forms.

The system's theorem prover is an interactive , natural-deduction prover. The user guides the system through the steps of a

proof; the system performs the bookkeeping, keeps the user honest, and performs much of the simplifications along the way.

But the prover does qqI generate the proof by itself; the human user does. The sequence of steps leading to a proof starts virith

the user stating a property to be proved, in the language of first-order predicate calculus. The objective at each step is to

either immediately simplify the expression to true, if possible, or to break the complex expression up into a series of smaller,

hopefully simpler expressions. The approach is thus "divide and conquer." The system keeps track o# what's left to prove,

records the steps taken so far, and helps the user move among the various expressions that must each be simplified to true in

order for the original expression to t>e proved.



AFFIRM Page

Do I have to be some sort of mathematical or logic whiz to use Affirm?

It helps. But it's not necessary. We've trained people in one day to be able to use the system effectively. Much of the

exoerience with Affirm was accumulated by people not associated with our project.

Can I verify my payroll system?

No. We can verify "programs" expressed in our "programming language," closely akin to Pascal. But you'd have to translate

the individual routines into our language, and specify what you want to prove about them. And the verification effort for a large

system would be very expensive, given current resources.

What are Affirm's strengths and weaknesses?

Strengttts:

The specification methodology is extremely general. We've described security kernels, communication protocols, data

types, algorithms for numerical analysis and distributed file systems, etc., all in the same algebraic axiomatic way.

> We've emphasized the user interface-pieces of the system whose job it is to make the whole thing easier to use. Spelling

correction, user profiles, and the like help the user use the system more effectively.

f Extensive documentation of the system is available. There are five volumes in the reference library, consisting of about

500 pages of material: the Reference Manual, a User's Guide, a Type Library, the Annotated Transcripts, and the Collected

Papers.

> The system naturally follows modern programming methods-abstraction-though no specific style is enforced by the

system.

Weaknesses:
The specification technique doesn't handle the explicit notion of an e rror. In terms of a sequence, what's the first element

of an empty sequence? Would a program implementing the first operation return an error, or what?

^ The specification technique doesn't directly deal with notions of parallelism or concurrency.

> The theorem prover consumes computer space and computer time. Resource requirements are the major limitation of

the system at this time.

It is often necessary for the user to direct the theorem prover in smaller steps than we would like. Affirm is particularly

weak in its knowledge of integers.

What exactly is the experience to date?

I With data abstraction as its main methodology. Affirm has been pushed heavily in specifying and verifying a number of

data types, including Sequence, Queue, Mapping (or Array), Circle, Set, and 3inaryTree.

I In the Delta experiment, ten algorithms were abstracted from about 1000 lines of code from a message system. It was
proved that each of the procedures computed several specified functions, and that these functions satisfied an overall

system requirement.

I A toy security kernel was specified, and a security property was verified, in the space of two days.

I A number of different communication protocols have been specified, and various properties of the protocols verified:

* The Alternating Bit protocol was specified in several "layers," all the way from the high-level abstract statement that the

protocol acts like a queue, through the description of a nondeterministic distributed protocol, down to the "code." We
verified a number of properties stating that the various specifications were consistent with one another, and that the right

messages were delivered in the right order.

* The three-way handshake protocol (pan of a real protocol used in the ARPANET) was specified, and some properties

about it verified. Similar work was done for the majority consensus protocol (a concurrency control protocol for

distributed databases).

2. A Scenario of an Affirm Demonstration
A demonstration of Affirm consists of two parts. The first part is a detailed description of an abstract

data type specification. This entails describing how one specifies a data type in Affirm and what that

specification means. This first part takes about 10 minutes. We will then take a small theorem and

prove it' interactively. This will hopefully give the audience a feeling of actual Affirm usage. The

whole highly interactive demonstration will take about 30 minutes.



IRM Page 7

3. Affirm Literature

The Affirm Reference Library consists of five volumes. The Reference Manual contains a detailed

discussion of the major concepts behind Affirm, presented in terms of the abstract machines that

form the structure of the system as seen by the user. The Users Guide is a quesiioh-and answ/er

dialogue detailing the whys and wherefores of specifying and proving using Affirm. The Type Library

documents the several abstract data type specifications developed and used by the ISI Program

Verification Project, with additional commentary and alternative definitions where applicable. The

Annotated Transcripts volume of the reference libary consists of a series of heavily annotated

transcripts displaying Affirm in action, to be used as a sort of workbook along with the Users Guide

and Reference Manual. And the Collected Papers is a collection of articles authored by members of

the ISI Program Verification Project (past and present), updated with new examples from the latest

version of Affirm. In addition, the following papers of general interest are available in the literature:

[1] Gerhart, S. L., et ai. An overview of Affirm: a specification and verification system. In Proceedings

IFIP80, pages 343-348. Australia, October, 1980.

[2] Guttag, J. V. Notes on type abstraction. IEEE Transactions on Software Engineering SE-6(1):13-23,

January, 1980.

[3] Musser, D. R. Abstract data type specification in the Affirm system. IEEE Transactions on

Software Engineering SE-6(1):24-32, January, 1980.

[4] Thompson, D. H., 0. A. Sunshine, R. W. Erickson, S. L. Gerhart, and D. Schwabe. Specification

and Verification of Communication Protocols in Affirm using State Transition Models, ISI/RR-81 -88,

use/Information Sciences Institute, February, 1981 . (Also submitted for publication).

4. Station, Day, and Time
We will demonstrate Affirm at Station 1 , Wednesday, March 1 1 , from 1 1 :00 am until 3:00 pm.

5. The Demonstrators
Roddy W. Erickson

Rod designed and implemented the proof structure underlying the theorem-prover component

of the Affirm system. His research interests include specification methodologies and issues of

network communica:tion.

Stanley Lee

Stan has spent the last year as one of the main users of the system. He has used Affirm in the

verification of a program using rational arithmetic, and has worked on the specification and

proof of high-level file update consistency properties of a distributed file system.

Susan L. Gertiart

Susan has been involved with Affirm since its inception in 1978 as the primary critical user.

She has used Affirm for numerous small examples and data types and has led efforts in larger

applications of the system to such areas as protocols and file updating.

David H. Tfiompson

David implemented much of the user- interface of the system. His research interests include

issues of user habitability, both in the design process for new systems and as an add-on

capability for existing systems.



AFFIRM
SAMPLE OUTPUT

Page

6. Example Output: Proof of "nodups(dedup(s))"
The property proved here is a statement of consistency between two operations on sequences,

dedup is an operation that removes duplicate elements from a sequence, nodups is a predicate that

tests a sequence; it returns true if no duplicates are present.

axioms

dedup(Empty) = = Empty,

dedup(s apr i) = = if i in s

then dedup(s)

else dedup(s) apr i;

axioms

nodups(Empty) = = true,

nodups(s apr i) = = (nodups(s) and not (i in s));

Thus one property that should hold for all sequences s is "nodups(dedup(s)):" a sequence whose

duplicates have been removed should have no duplicates. The following transcript was automatically

produced by the system during the interactive proof of the above theorem. The italicized comments

were added afterwards. User-typed input is display in a large font; system-generated output is

displayed in a small font.

Transcript file <DTHOMPSON>TRANSCRiPT-AFFIRM.3-MAR-81 .3

is open in the Affirm system <AFFIRM>AFFiRM.EXE.121
gel the Sequence typefrom the library.

1 U:needs type sequence;

compiled for Affirm on 3-Mar-81 1 1 :13:17

file created for Affirm on 3-Mar-81 11:12:55

SEQUENCECOMS
compiled for Affirm on 3-Mar-81 1 1 :1 7:00

ELEMENTCOMS
<DTHOMPSON>ELEMENT.CX)M.1<DTHOMPSON>SEQUENCE.COM.1

make the type's declarations availablefor use in proving. The system responds by echoing the

usable declarations.

2U:edit sequence;

(sequence => Sequence)

type Sequence

8, ss, s1 , s2: Sequence

k, ii, i, i1, i2, j: Element

3U:freeze demo;
Writing file... <DTHOMPSON>DEMO.EXE.1

4 U:try nodupsAfterDeduped, nodups(dedup(s));

nodupsAfterDeduped is untried.

all s (nodups(dedups(s)))

To prove our theorem we use induction on the structure ofsequence s. That is, we must show

the theorem holds for Empty, the empty sequence, and for any sequence of the form
some-sequence append- right ii. or ss apr i i. The Empty case falls out directly from the

axioms for nodups and dedup. The general case, as usual, requires some more proof steps

(commands to Affirm). IH is an abbreviation for the Induction Hypothesis: in proving the ss

ap r i i case, we can assume (as a hypothesis) that the theorem holdsfor sequence s s.

5U:empIoy Induction(s);

Case Empty: Prop{Empty) proven.

Case apr: all ss, ii (IH(ss) imp Prop{ss apr ii)) remains to be shown.

(apr:)

all ss, ii

( IH(ss, 1 {nodupsAfterDeduped})

imp if ii in ss

then nodups(dedup(ss))



AFFIRM
SAMPLE OUTPUT

Page

else nodups(dedup(ss)) and ~(ii in dedup(ss)))

The inductive hypothesis III-

6 u:print IH;
IH(ss, 1 {nodupsAfterDeduped}) = = nodups(dedup(ss))

At any time during the proofwe can examine a summary ofproof steps performed so far; all

we've done so far is to employ Induction to produce two subgoals, one of which immediately

reduced to TRUE. The arrow (->) shows our current location in the proof

7 u:print proof;

theorem nodupsAfterDeduped, nodups(dedup(s));

proof tree:

5:| nodupsAfterDeduped

employ Induction(s)

Empty:

immediate

5: apr:

2 cases

?-> 3
Expand the reference to IH. by replacing the reference with the definition (and then simplify).

8U:invoke IH;
all ss, ii (nodups(dedup(ss)) imp ii in ss or ~(ii in dedup(ss)))

The form of the above expression suggests a lemma stating that if an element appears in

dedup( s ), it must also be in s. Several things happen next. The lemma is stated but no

name is provided (Iforgot). So the system generates onefor me. The profile entry AutoSearch

is set. so the system automatically looks for an instantiation of the variables of the lemma- it

looks for likely values in the expression being proved In this case, the system found an

instantiation that actually simplified the expression being proved to TRUE The system then

keeps us honest: we next have to validate the lemma.

g U:apply i in dedup(s) imp i in s;

Since you didn't supply a name, that's called lemmalOfnodupsAfterDeduped

some i, s (i in dedup(s) imp 1 in s)

(will search for instantiation)

I /2: (s = ss) and (i = ii)

Proved by chaining and narrowing using the substitution (s = ss) and (i = ii)

TRUE
nodupsAfterDeduped is awaiting the proof of lemma lemmalOfnodupsAfterDeduped.

Going to lemma lemmalOfnodupsAfterDeduped.

lemmalOfnodupsAfterDeduped is untried,

all i, s (i in dedup(s) imp i in s)

We change the name to something more mnemonic.

iou:name inDedup, lemma$;
(lemma$ => lemmalOfnodupsAfterDeduped)

Again, induction is our main tool. The definition of the inductive hypothesis IH and the proof

are displayed below.

II u:employ Induction(s);

Case Empty: Prop(Empty) proven.

Case apr: all ss, ii (IH(ss) imp Prop{ss apr ii)) remains to be shown,

(apr:)

all ss, ii, i ( IH(ss, 5 {inDedup}) and i in dedup(ss)

imp i in ss or (i = ii))

i2U:print IH;
Note the universal quantifier i in the definition oflH.

IH{ss, 5 {inDedup})

= = all i (i in dedup(ss) imp i in ss)



AFFIRM
SAMPLE OUTPUT

Page

When we replace the reference to the inductive hypothesis IH with its definition. The universal

quantifier i becomes an existential quantifier (a rule oflogic: the universal quantifier is part of

the left operand ofan implication). The system again looksfor a likely instantiation. It finds

one, and we're done. The system then automatically prints the completedprooftrees.

i3U:invoke IH;
(will search for instantiation)

1/1: i* = 1

Proved by chaining and narrowing using the substitution i' = i

TRUE
inDedup proved.

noduDsAfterDeduped proved.

theorem inDedup, i in dedup(s) imp i in s;

proof tree:

11:1 inDedup

employ Induction(s) {proved by Dthompson using Affirm 121 on 3-Mar-81 in

transcript <DTHOMPSON>TRANSCRIPT-AFFIRM.3-MAR-81 .5}

Empty:

immediate

11: apr:

8 cases

13: 9 invoke IH

13: 10 put i' = i (search)

13:-> (proven!)

theorem nodupsAfterDeduped, nodups(dedup(s));

nodupsAfterDeduped uses inDedup!.

proof tree:

5:1 nodupsAfterDeduped

employ Induction(s) {proved by Dthompson using Affirm 121 on 3-Mar-81 in

transcript <DTHOMPSON>TRANSCRiPT-AFFlRM.3-MAR-81 .5)

Empty:

immediate

5: apr

2 cases

8: 3 invoke IH

8: 4 apply inDedup

9: 6 put (s = ss) and (i = ii) {search}

9: (proven!)

The proof of this part is finished.

No theorems are untried.

No theorems are tried.

No theorems are awaiting lemma proof.

i4U:quit;

Save this Affirm session? no [confirm]

Type CONTINUE to return to Affirm.



AFFIRM Page 75

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. CODE INPUT

. VHLL INPUT
. ALGEBRAIC SPECIFICATIONS

FUNCTION
. STATIC ANALYSIS

. CONSISTENCY CHECKING

. TYPE ANALYSIS
. DYNAMIC ANALYSIS

. ASSERTION CHECKING
. FORMAL PROOF OF CORRECTNESS

OUTPUT
. USER OUTPUT

. LISTINGS

. DIAGNOSTICS

IMPLEMENTATION LANGUAGE: LISP INTERLISP

TOOL PORTABLE: NO

COMPUTER (OTHER HARDWARE

)

: DECSYSTEM-1 0/20

OS (OTHER SOFTWARE) : INTERLISP

TOOL AVAILABLE: YES, PUBLIC DOMAIN: YES

RESTRICTIONS (COPYRIGHTS, LICENSES, ETC .

)

: ACCESS PREFERED
OVER ARPANET

TOOL SUPPORTED: YES, TOOL SUPPORT ; INFORMATION SCIENCES
INSTITUTE

CONTACT; R. W. ERICKSON, INFORMATION SCIENCES INSTITUTE,
4676 ADMIRALTY WAY, MARINA DEL REY, CA, 90291, USA,
213-822-1511
S. L. GERHART, INFORMATION SCIENCES INSTITUTE, 4676
ADMIRALTY WAY, MARINA DEL REY, CA, 902 91, USA, 213-82 2-1511



SARA Page 7

SARA as a tool for software design:
Building-block modelling and composition

Maria Heloisa Penedo
Conputer Science Department

Lfliiversity of California, Los Angeles

1. Introduction:

SARA (System ARchitects' Apprentice) is a computer-aided design syston,
currently under development at UCLA, which supports a structured multi-level
design methodology for the design of hardware or software systems. It

comprises a number of language processors and tools for assisting designers
using the SARA methodology, together with a user-interface capability for as-
sisting designers using the SARA system. The SARA system is implemented on
the MIT Multics systan and is readily accessible through ARPANET or TELENET.

The hierarchy of the SARA system is illustrated below:

SARA

1 \ \ r I I I \ r

requirements* SLl behavior MID* library tutor utility comment news

I I

GMB SAM

I

translator linker PLIP simulator analyzer

The leaves of the left branch of the tree are the tools supporting the
methodology while the leaves of the right branch are the tools supporting the
SARA syston [FenRSO] . The asterisks indicate that the tools have not been im-
plemented yet.

2. Summary :

The SARA methodology is requirement driven and it supports both top-down
and bottom-up design procedures. Each step of a design starts with the defin-
ition of the requirements for the system and the assumptions about the
system's environment. The tools to accept and analyze requirement definitions
are currently under development and are discussed in a recently completed
dissertation [WinJSO]

.

+ This work was supported by the Department of Energy, Contract No. DE-AF03-
765F0034 P.A. , No. DE-AT-036, ER70214, Mod. A006.



SARA Page 77

Hardware and software systems are designed in SARA by modelling their
structure and behavior . The tools SLl (Structural Language 1) and GMB (Graph

Model of Behavior) support definition of structural and behavioral models
respectively. GMB allows definition of behavior in three domains: control-
flow, data-flow and interpretation. The GMB Translator is the language pro-
cessor for the control and data-graph definitions; FLIP is the language pro-
cessor for the interpretation.

GMB models are mapped to structures and are denoted SLl-GMB models. The
linking of Qffis mapped to connected structures is processed by the GMB-Linker.

The 01B Simulator provides an interactive simulation environment which
permits experiments on the behavioral models. The O© Analyzer allows
designers to perform formal analysis on the Qffi control-graph [RazR80a,b].

Behavioral Attributes can be associated with structures by means of
SARA'S Attribute-Based Model (SAM) [SamASl]

.

A top-down design strategy can be applied by refining structural and
behavioral models of the syston. A bottom-up design strategy can be applied
by composing structural and behavioral models of existing building-blocks
[DroJSO]

.

In software design, a path between modelling and code is provided by the
definition of the structure of code and a mapping between the structure of the
models and the code structure. The MID (Module Interface Description) tool

(not yet implemented) permits these definitions [PenM80,81].

3_. Scenario ;

The use of the SARA tools in the design of concurrent software is illus-
trated by the design of a bounded buffer with asynchronous read and write
operations, and by the use of two instances of the buffer system in the compo-
sition of a larger system.

The design of the buffer system includes modelling the structure and the

behavior of the buffer and its environment using SARA's SLl (Structural

Language 1) and OVIB (Graph Model of Behavior) tools. The requirements of the

buffer are checked by simulating the behavior of the buffer using the GMB

Simulator. Formal analysis of the 01B models is used to detect potential
deadlocks caused by synchronization mechanisms.

As an example of canposition, two instances of the buffer building-block
are used in the design of a larger systan. Structural and behavioral models

are defined, linked, and then simulated to determine if requirements are met.

Attendees will be able to enter their own models and to exercise all of

the SARA tools. A transcript for each session will be automatically generated
by SARA and mailed to interested parties at a later date.



SARA

4. SARA Literature:

Page 78

[DroJSO] Drobman, J. "Building Block Modeling Methodology for Composition of
Microprocessors-Based Digital Systems," Ph.D. Dissertation, Computer
Science Department, University of California, Los Angeles, July
1980.

[EstG78] Estrin, G. "A Methodology for design of digital systems - supported
by SARA at the age of one," AFIPS, Proceedings of the National Con-
puter Conference, June 1978.

[FenRSO] Fenchel, R.S "Interactive Systems with Integral Help," Ph.D. Disser-
tation, Computer Science Department, Lftiiversity of California, Los
Angeles, July 1980.

[PenM80] Penedo, M.H. "The Use of a Module Interface Description in the Syn-
thesis of Reliable Software Systans," Ph.D. Dissertation, Computer
Science Department, Uiiversity of California, Los Angeles, ttovember

1980.

[PenMSl] Penedo, M.H., et. al. "An Algorithm to support Code-Skeleton Genera-
tion for Concurrent Systons," Proceedings of the 5th International
Conference on Software Engineering , San Diego, California, March
1981.

[RazR80a] Razouk, R. "Computer-Aided Design and Evaluation of Digital Computer
Systems," Ph.D. Dissertation, Canputer Science Department, Uhiversi-
ty of California, Los Angeles, August 1980.

[RazRSOb] Razouk, R. and G. Estrin "Modeling and Verification of Catimunication
Protocols in SARA: The X.21 Interface," IEEE Transactions on Comput-
ers , December 1980.

[SamA81] Sampaio, A. B.C. "A Scheme of Attributes for Checking Design Incon-
sistencies," Ph. D. Dissertation, Computer Science Department,
University of California, Los Angeles, to be conpleted 1981.

[WinJ80] Winchester, J. "Requirements Definition and its Interface to the
SARA Design Methodology for Computer-Based Systems," Ph.D. Disserta-
tion, Computer Science Department, Lhiversity of California, Los
Angeles, November 1980.

_5. Station , Day and Time ;

Station 3, Wednesday March 10, from 11:00 a.m. until 4:00 p.m.

6^. The Demonstrator : Dr. Maria Heloisa Penedo

Dr. Penedo is currently employed in the software analysis and evaluation
department of TRW's defense and space systons group. Her current research
focuses on the design, evaluation and integration of tools to aid in software
development. She received her Ph.D. in computer science from UCIA where she
explored the SARA methodology as used to model and implement software systems.
She also holds an M.S. in canputer science from Pontificia Universidade Catol-
ica and a B.S. in Mathematics from Universidade Santa Ursula in Brasil.



SARA
SAMPLE OUTPUT

Page 79

SAMPLE OF A SABA SESSION

ec >udd>SAEA>SARA_system>ec>sara
SABA Selector February 9, 1980

New or modified news:

no news changed
>/* Describe teminal characteristics to SABA.

X terminal nl 16 Is 64

Terminal profile changed
>

>/* The following tools will be used in this demo:
>/* Structure - to process the structural model.
>/* - to procesa the behavioral model:
>/* oe. Translator , to process the control
>/* and data graphs and/or the mapping between
>/* the structure and behavior; OC. Linker,
>/* to link gmbs; OIB.PLIP - to process the
>/* interpretation for the datagraph;
>/* GMB.Simulator , to simulate the gmb model.
>/* All tools are interactive, i.e., lines are
>/* read and processed. Processing a model means
>/* translating it into an internal structure.
>

>/* Now we will define a working library.
>Hibrary >udd>SARA>sl>buffer
Working library now >iidd>SAEA>sl>buffer
>

>/* SLl EEFINITICN
>#structure
SABA.Structure
SLl Translator November 28, 1979
>

>/* The source code for the Buffer example
>/* exists in the file buffer.sll. The input
>/* will be read in and echoed.
>sinput buffer.sll -echo
Input frOTi source >udd>SAEA>sl>buffer>buffer .sll started

/* sll definition for BUFFEB example */

'jniverse (environment, buffer_bb)

;

environment < $write, Sread >;

buffer_bb < Swrite, Sread >;

universe (Iwrite : environmentSwrite - buffer_bb$write)

;

universe (Iread : environmentSread - buffer_bb$read)

;

>

>/* The above definition specifies a module
>/* (SnVERSS with two sutamodules (see fig.).
>/* Next we store the current model.
>i8tore buffer
model stored under "buffer".
>#end> /* ends the structure processor */

End of SLl Translator
SABA
>

>/* GMB DEFINITION
>9behavior ;@gmb; ^translator
SABA. Behavior
SABA. Behavior .Q©
SABA. Behavior Translator
a© Translator Jan 16, 1980
>/* Sow we define gmbs (behavioral models)
>/* to be associated with the structures.
>

'iload_sll_rodel buffer /* load sll_model model *'

model loaded fron "buffer"
creation date: 810326

§system environment;
/* gmb description of module environment */

?control_graph;
Inodes ni , nw, nrl, nr2, nt;
3arcs 3(1) , al, a2, t,

acw, arw, afl,
acr, arr, 23, air, af2;

ni ( s : ai"a:^ )

;

nw( al+arw : acw+af1 )

;

nrl( a2+alr : a3*acr )

;

nr2( a3*arr : af2+alr )

;

nt( afl*af2 : t)

;

acw( nw : $write )

;

arw( $write : nw )

;

acr ( nrl : 5read )

;

arr ( $read : nr2 ) ;

I?end;

@data_graph;
^processors Fw(nw) , pr2(nr2) , pt(nt)

;

lidatasets mes_in, mes_out, input, output,
ptr_in, ptr;_out;

@arcs di, din, do, dout, dinput, doutput,
dpwin, dpwout, dprin, dprout, dtl, dt2;

dinput { input : pw
) ;

di { pw : mes_in)

;

dtl ( input : pt )

;

dt2 ( output : pt )

;

doutput ( pr2 : output );

do ( mes_out : pr2 )

;

din( mes_in : $write)

;

dout( $read : mes_out)

;

dEwin( ptr_in : pw )

;

dpwout ( Orf : ptr_Ln )

;

dprin( ptr_out : pr2 );

dprout ( pr2 : ptr_out );

(Send;

(aendsys; /* store mapped gmb for Enviroment
model stored under model name environment
model stored under "buffer".

isystem buffer bb;

>9end; /" mds the gmb procesaor
percentage of gmbplx tables used = 32.0%
End of <3ffi Translator
SARA. Behavior .OIB

>

>/* LINKING
>@llnker buffer
SABA. Behavior .Offi. Linker
Offl Linker Novertoer 27, 1979
model loaded from "buffer"
creation date: 810326

Current SLl model: buffer
>/* The gmb models were defined separately
>/* for each module- Now we compose
>/* module (JNIVEIISE, i.e., link the gmb
>/* models defined for its subnodules.
>@ooinpose universe
universe successfully linked
>

>/* Next we store the linked gmbs.
>§store_sll buffer
model stored under "buffer".
Current SLl model: buffer
>§store_gmb buffer
Current Q1B model : buffer

>§«va; /* end the Linker
End of <3fS> Linker
SABA. Behavior .Qffi

>
'



SARA
SAMPLE OUTPUT

Page

-PLIP EEFINinON->/*

>?plip buffer
SARA.Behavior .CSffi.PLIP

GMB PLl Preprocessor February 21, 1980

model loaded from "buffer"
creation date: 810326

Current model : buffer
>

>/* Now we define interpcetationa for
>/* the data graph using PLIP, a PLl

>/* pceproceasoc : procedures are associated
>/* with data ^ocessocs and types are
>/* associated with datasets/dataarcs

.

3 system buffer_bb;

Current SLl system: universe.buffer_bb
/* plip for module buffer_bb */

iatemplate(din, dout)

tmessage char (80) var;

@ template (dw, dw_in, dr)

tbuffer(8) char (80) var;

(3template (dpr in, dp*in, dpwout, dprout)
tl fixed bin (15)

;

gdataset (ptr_w ptr_r) @like tl ?initial(0);

laprocessor

(3 read message ^from din;

9 read ptr_w lafrom dpwin;
ptr_w = mod( ptr_w, 8) + 1;

/* we use a read-Mrodify-write for arrays */

@read buffer ^from dw_in;

buffer (ptr w) = message;
(Jwrite buf?er §to dw;

gwrite ptr_w ato dpwout;
Sendcrocesscr

:

>/* Now we store the curreit plip model

>/* and tell SABA to compile the code.

>@8tore
*** 0 errors
*** 0 warnings
Do you want to compile the PLIP output? >yes

PL/I compilation in progress
PL/I 26a

Current model: buffer
>

>eend; /* terminate PLIP

End of G^B PLl Preprocessor
SABA . Behav ior . CJE

->Ssim buffer
SARA.Behavior .QE. Simulator
GiMB Simulator November 28, 1979

model loaded from "buffer"
creation date: 810326

>

>/* llie buffer building block model may now
>/* be simulated. Vte will test whether the
>/* buffer behaves according to its re<^.
>/* Uie Environment is used to generate
>/* messages (at 2 ms intervals) to be
>/* deposited in the buffer. It also reads
>/* in the messages from the buffer (at 5 ms
>/* intervals) . The writing and reading are
>/• done concurrently. Upon ccwpletion,

>/* all messages are deposited and
>/*, received by the Environment, processor
>/* FT checks the output messages
>/* and prints out the result of
>/* the comparison. If all output messages
>/* are the same as the input ones, it ^ints
>/* out! 'Massages were delivered correctly';
>/* otherwise it prints: 'Messages were not
>/* delivered correctly'

.

>

>/* Start the simulation
>§start
messages were delivered correctly
End of simulation, time = 152000062 ns
proper termination of control graph
>

>/* Simulation ended; buffer system behaved as
>/* expected.
>@end; /* terminate Simulator
End of GMB Simulator
SAiyv . Behav ior .CUB
>9end
SAfy^. Behavior
>§end
SAi?A

>§end
t-nd of SARA Selec'.cr



SARA
SAMPLE OUTPUT

Page 81

GMB CONTROL GRAPH

ENV IRO!*IENT BUFFER BB

UNIVERSE ay© DATA GRAPH

ENVIRONMENT

PTR IN

1^
dpwin

dpwou
WRITE-

d input

INPUT

dtl

0

dorin

dt:

OUTPUT

doutput

MES_aUT ^
dout

dprout READ-

BUFFER-BB

LREAD

din

X WRITE

dqwin
PTR_W

dw in

PW
dpwou t

dw

BUFFER

dr

dout

"V READ

PTR OUT



SARA Page 82

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. VHLL INPUT
. SLl
. GMB
. BNF

. TEXT INPUT
FUNCTION

. TRANSFORMATION
. TRANSLATION
. FORMATTING
. RESTRUCTURING

. STATIC ANALYSIS
. DATA FLOW ANALYSIS
. STRUCTURE CHECKING
. CROSS REFERENCE
. CONSISTENCY CHECKING
. COMPLETENESS CHECKING
. SCANNING

. DYNAMIC ANALYSIS
. SIMULATION

OUTPUT
. USER OUTPUT

. GRAPHICS

. LISTINGS

. USER-ORIENTED TEXT
. DOCUMENTATION
. ON-LINE ASSISTANCE

. MACHINE OUTPUT
. SOURCE CODE OUTPUT
. DATA OUTPUT
. PROMPTS

IMPLEMENTATION LANGUAGE ; PL/1 , TOOL PORTABLE ; NO, TOOL
SIZE; 25000 LINES OF PL/1 SOURCE

COMPUTER (OTHER HARDWARE

)

; HONEYWELL, OS (OTHER
SOFTWARE)

;

MULTICS

TOOL AVAILABLE; YES, PUBLIC DOMAIN: YES, TOOL SUPPORTED:
NO

CONTACT: G. ESTRIN, UNIVERSITY OF CALIFORNIA, COMPUTER
SCIENCE DEP, BOELTER HALL 37 32, LOS ANGELES, CA, 90024, USA,
213-825-8878



ARGUS/ MICRO Page

ARGUS in the Microcomputer Environment

William C. King

Boeing Computer Services Company

Seattle, Washington

1. Introduction

ARGUS is an integrated collection of software management, design, testing and
maintenance tools. ARGUS is being developed by the Space and Military

Applications Division of Boeing Computer Services Company.

This proposal describes the demonstration of ARGUS on a microcomputer.

2. Summary of ARGUS in the Microcomputer Environment

ARGUS on a microcomputer provides a number of capabilities similar to those

available with ARGUS on main-frame computers, but also provides some important
new capabilities affordable with the dedicated processing power and high display

band width of a microcomputer.

Through a menu-driven interface, ARGUS provides access to Pascal and Fortran 77

compilers, link editor, DAPPER ~ A Dynamic Analyzer for Pascal, Pascal source

cross reference generator, and VED ~ a powerful text and graphics editor. VED
has been tailored for the creation of "data flow" diagrams and viewfoils, in

addition to many other graphical charts for arbitrary documentation purposes.

Complementing these capabilities is a set of compatible print, plot and file-

manipulation utilities.

Plans for further development include linking the excellent user-interface of the

micro-based version of ARGUS to the main-frame version of ARGUS.

3. A Scenario for Demonstration

The demonstration of ARGUS will consist of a "canned" demonstration of VED ~
the text/graphics editor, and a walk-through of the ARGUS menu interface. Tools

Fair participants will be offered the ability to develop their own graphic creations

by hands-on use of the VED program. Samples of ARGUS produced graphics

(including "data flow" diagrams) will be available for the attendees.



ARGUS/micro Page

^. ARGUS Literature

Available within the Boeing Company:

The ARGUS Microcomputer Environment (Reference Manual),

Bill King, February 10, 1981

DAPPER— Dynamic Analyzer; Pascal Program Execution reporter

(User's Manual), John Joseph Chilenski

Available outside Boeing:

"Concepts and Prototypes of ARGUS — A Progress Report on the ARGUS
Project," Leon G. Stucki and Harry D. Walker (Contributed chapter to

Software Engineering Environments , Edited by Horst Huenke, North-Holland
Publishing Company -Amsterdam - New York - Oxford 1981)

5. Station, Day, and Times

ARGUS will be demonstrated at Station ^, Wednesday March 11 throughout the day.

A special extended presentation will be offered on Thursday morning in the special

presentation room.

6. The Demonstrator

William C. King

Since joining the Software Engineering Technology Group within the Space and
Military Applications Division of Boeing Computer Services Company in 1980, Mr.
King has participated in several software engineering research projects. Most
notably, he has been responsible for implementing the ARGUS environment on
microcomputer-based systems. Prior to joining Boeing Computer Sevices

Company, William C. King was a member of the scientific staff at Bell Northern
Research, Inc., Palo Alto, with the Advanced Business Systems Group. Mr. King
received his undergraduate degree in computer science from Washington State
University, where he was well-known as a co-author of "bg" a backgammon-playing
program.



ARGUS/ MICRO
SAMPLE OUTPUT

Page

STATUS OF ARGUS TOOLBOXES

CYBER/EKS TOOLS (ORIGIN) TERAK TOOLS (ORIGIN)

Audit - PFORT (Bell Labs)

Document - PDQ3 (EKS/BACSD)

CALLHAP (EKS/SAHA)

DOCUMENTER (SANA)

Test - PD03 (EKS/BACSD)

DYNA (SAHA) FORTRAN

DAPPER (BCAC/SAMA) PASCAL

COMMAP (SANA)

Design - PDL/FORTRAN (BCAC)

mm
CURRENT CAPABILITIES

FUTURE/PROPOSED CAPABILITIES

Management ~

Design ~

Programer

Toolbox -

General

Utilities

Viewfoil Edit (SANA)

Milestone (SAHA)

^

Forms Mode (SANA)

Diagram Edit (SANA)

Data Diet (SANA)

Customized Edit (SAHA)

PASCAL (ATAD)

Filer (ATAD)

DAPPER - (BCAC/SAHA)

Print (SAHA)

Plot (SAHA)

Display (SAHA)



ARGUS/ MICRO
SAMPLE OUTPUT

Page 86



ARGUS/MICRO Page 87

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. TEXT INPUT

. CODE INPUT
. FORTRAN
. PASCAL
. FORTRAN 77

FUNCTION
. TRANSFORMATION

. TRANSLATION

. EDITING

. INSTRUMENTATION
. STATIC ANALYSIS

. MANAGEMENT
. FILES MANAGEMENT

. DYNAMIC ANALYSIS
. COVERAGE ANALYSIS

OUTPUT
. USER OUTPUT

. DIAGNOSTICS

. USER-ORIENTED TEXT

. GRAPHICS

. TABLES

. LISTINGS

IMPLEMENTATION LANGUAGE: PASCAL

TOOL PORTABLE: YES

TOOL AVAILABLE: NO, PUBLIC DOMAIN: NO

RESTRICTIONS (COPYRIGHTS, LICENSES, ETC .

)

; UNDER PROTOTYPE
DEVELOPMENT, CURRENTLY FOR INTERNAL BOEING USE

TOOL SUPPORTED: YES, TOOL SUPPORT: BOEING COMPUTER SERVICES
COMPANY

CONTACT: LEON G. STUCKI , BOEING COMPUTER SERVICES COMPANY,
P.O. BOX 24346 M/S 9C-03, SEATTLE, WA, 98124, USA,
206-575-5118
WILLIAM C. KING, BOEING COMPUTER SERVICES, PO BOX 24346,
SEATTLE, WA, 98124,



DYNA Page 88

DYNA: A Tool From the ARGUS Toolbox

Leon G. Stucki

Boeing Computer Services Company

Seattle, Washington

1 . Introduction

This proposal is in response to the call for software engineering developers to

demonstrate their accomplishments at the 5th International Conference on
Software Engineering in San Diego, March 9 - 12, 1981.

This proposal describes the demonstration of DYNA. DYNA is a dynamic analyzer

for FORTRAN programs which is part of the ARGUS toolbox being developed by
the Space and Military Applications Division of Boeing Computer Services.

2. Summary of DYNA

DYNA is a tool for FORTRAN Programs which allows the user to see the dynamic
behavior of a module while it is executing test data. The test data used is that of

the users or developers. No modifications to either the program or its test data

are required. DYNA operates in three steps. During the preprocessing step, probes

(Additional FORTRAN statements) are automatically inserted in the source code
and the "instrumented source" code is compiled. During the execution step, counts
are made of the number of times each statement is executed by the test data. The
counts may be accumulated with the counts from previous executions, if desired.

During the post processing step, the execution data is formatted into reports.

The reports include an Entry Summary, a Program Summary, Module Summaries
and an Annotated Source Listing. The Entry Summary documents the number of

times each module was called while executing the test data. The Program
Summary and Module Summaries categorize the number of different types of

statements in the program or module and the percentage of each which were
executed. This information provides a measure of how thoroughly the program has

been tested. The Annotated Source Listing provides detailed information about the

number of times each statement or branch was executed.

3. A Scenario for a DYNA Demonstration

The demonstration of DYNA will consist of two parts. The first part will be a
description of the reports produced by DYNA. The second part of the

demonstration will show how DYNA is accessed through the ARGUS interface.



DYNA Page 89

It. DYNA Literature

Requirements for ARGUS An Advanced Software Engineering Workbench
(Concept Definition) A discussion of the concepts, objectives and dvelopment
philosophy of the ARGUS project. (Available within Boeing.)

DYNA User's Manual EKS Version
A user's manual for the dynamic analyzer for FORTRAN program.
(Available within Boeing.)

"Concepts and Prototypes of ARGUS — A Progress Report on the ARGUS
Project," Leon G. Stucki and Harry D. Walker (Contributed chapter to

Software Engineering Environments , Edited by Horst Huenke, North-Holland
Publishing Company -Amsterdam - New York - Oxford 1981)

5. Station, Day, and Time

DYNA on EKS will be demonstrated at Station ^,Wednesday March 11

throughout the day. A special extended presentation will be offered on
Thursday morning in the special presentation room.

6. The Demonstrator

Leon Stucki

Dr. Leon G. Stucki is Manager of Software Engineering Technology for the Space
and Military Applications Division of BCS. He is responsible for coordinating

technology development and dissemination throughout the entire division. He also

serves as liason between the division and other corporate organizations involved

with advanced technology. He is currently responsible for an internal productivity

research and development project ARGUS aimed at creating an advanced computer
aided software engineering environment. Other current activities within the SAMA
Division include support to contract research in the following areas of software
engineering: software management technology, requirements analysis/verification,

design analysis/verification, and automated verification of code. Prior to his

career with BCS, Dr. Stucki spent 9 years with McDonnell Douglas Astronautics

Company. There he had broad experience in the design, implementation, testing,

validation and verification of advanced military, space, and commercial software

systems. He received his Ph.D., Computer Science from UCLA, 1976; M.B.A.,

Business Administration, University of California, 1970; and B.A., Mathematics,

University of Utah, 1968. Dr. Stucki is a member of the ACM, and also currently

serves on the Executive Board of the IEEE Technical Committee on Software

Engineering. He is a member of the editorial board for the widely circulated IEEE
Transactions on Software Engineering . He is also serving on the editorial board of

The Journal of Systems and Software . Dr. Stucki is Program Chairman of the 5th

International Conference of Software Engineering. He was Program Co-Chairman
for the ^th International Software Engineering Conference held in Munich,

Germany in 1979, has served on various other program committees, and was
Chairman of the 1975 NBS-ACM-IEEE Workshop on Currently Available Program
Testing Tools.



DYNA
"

VER 1.1 DYNA PRCK»AM SUMMARY

Page 90

LAST RUN OATEi 81/03/05. LIST OATEi 61/03/05.
TXMEa 11.15.21. TIMEt 11.17.00.

SUMMARY OF 2 RUNS PROGRAM SOLVE

CLASSIFICATION OF STATEMENTS

NUMBER PERCENT NUMBER PERCENT
STATEMENT TYPE PRESENT OF TOTAL MONITORED MONITORED

COMMENT 12 20
DECLARATIVE 12 20
EXECUTABLE 37 61 37 100
UNRECOGNIZED 0 0

TOTAL 61
EXECUTABLE STATEMENTS

TOTAL MONITORED STATEMENTS
STATEMENTS

STATEMENT TYPE PRESENT EXECUTED X EXECUTED

ASSIGNMENT
DO
TRANSFER

SIMPLE GO TO
COMPUTED 60 TO

BRANCHES
OUT-OF-RANGE

ASSIGN CO TO
LOGICAL IF

TRUE
FALSE

ARITHMETIC IF <3 BR
NEGATIVE
ZERO
POSITIVE

ARITHMETIC IF <2 BR>
ZERO
NON-ZERO

CALL
RETURNS

INPUT/OUTPUT
OTHER

SUMMARY TOTALS

MODULES
EXECUTABLE

BRANCHES

11 9 82
1 1 100

13 11 85
7 5 71
1 1 100
4 3 75

0 0
0
2 2 100
2 1 50
2 2 100
1 1 100
1 1 10010 0
1 1 100
0
0
0
2 2 100
2 2 100
7 5 71
5 4 80

3 3 100
37 30 81
20 15 75



DYNA
SAMPLE OUTPUT

Page 91

LAST RUN DATEi 81/03/05. LIST DATEi 91/03/05.

TIHEt 11.15.21. TIHEi 11.17.00.

SUMMARY OF 2 RUNS PROGRAM SOLVE

PAGE 1

30UT0F 3 MODULES ENTERED

100 X MODULES ENTERED

MODULES ENTERED

MODULE NAME TIMES ENTERED

PROGRAM SOLVE 2

SUBROUTINE LINEAR 2

SUBROUTINE DISCRM 3



DYNA
SAMPLE OUTPUT

Page 92

VER 1. 1 DYNA MODULE SUMMARY

LAST RUN DATEi 81/03/05.
TIMEa 11.15.21.

LIST DATEi Sl/03/05.
TXMEi 11.17.00.

SUMMARY OF 2 RUNS SUBROUTINE LINEAR

STATEMENT TYPE

CLASSIFICATION OF STATEMENTS

PERCENT
OF TOTALPREKNT MONITORED

PERCENT
MONITORED

COMMENT
DECLARATIVE
EXECUTABLE
UNRECOGNIZED

TOTAL

STATEMENT TYPE

0
2
4
0

0
38
87 100

EXECUTABLE STATEMENTS

MONITORED STATEMENTSTOTAL
STATEMENTS
PRESENT EXECUTED X EXECUTED

ASSIGNMENT
DO
TRANSFER

SIMPLE GO TO
COMPUTED GO TO

BRANCt^ES
OUT-OF-RANGE

ASSIGN GO TO
LOGICAL IF

TRUE
FALSE

ARITHMETIC IF CS BR>
NEGATIVE
ZERO
POSITIVE

ARITHMETIC IF C2 BR>
ZERO
NON-ZERO

CALL
RETURNS

INPUT/OUTPUT
OTHER

SUMMARY TOTALS

EXECUTABLE
BRANCHES

1

0
1

0
0

0
1

1

1

0
0
0
0
0
0
0
0
0

4
2

S
1

100

100

100
0

100

75
50

TOTAL TIMES ENTEREDi 2



DYNA
SAMPLE OUTPUT

Page 93

DYNA EXECUTION 8UHHARY

RUN DATE RUN TIME RUN DESCRZPTZON

81/03/0S
81/83/05

11.08.36
11. 15. 21

INPUT FILEa INI
INPUT FILE* IN2

DYNA ANNOTATED SOURCE LISTING

LINE#

LAST RUN DATEt 81/03/05
LAST RUN TIHEa 11.15.21
SUMMARY OF 2 RUNS

SOURCE

LIST DATE 81/03/05.
LIST TIME 11.17.00.

MONITOR COUNTS
TOTAL CONDITIONAL

1

2
3 901

SOLVE<INFIU OUTFIU T. . .

COUNT. JUMP
110 >

951
4
5
8
7 i

8 952
9
10 953
11
12
13C
14
15
18

17
18
19

PROGRAM
INTEGER
FORMAT

C

FORMAT C3F10.2>
FORMAT aXpF10. 2."

/.5X.-X1 -
A5X.-X2 -

FORMAT aX»F10. 2."
/.5X.-X1 -

FORMATaX.F10.2. "

FORMATaX»F10.2.*'
READ C7.901> COUNT

X—2 ".Fl.
".F10.2.
.F10.2.
X—2 ,F1.
-.F10.2./..
- 0-./.5X..
- 0-./.5X..

DO 100 I-U COUNT
I^AD C7« 902> A. Bp C
IF <A .NE. 0.> GOTO 10

21 10

24 20
25
28
27
28C
29 30
30
31
32C

CALL LINEAR<B»aX>.RET...
JUMP - 4
GOTO 50

CALL DI8CRM<A«B.C.D>
IF <D> 20.30.40

REALX - -B/<2«A>
COMPX - SQRTC-0>/C2«A>..
JUMP - 1

GOTO 50

REALX - -B/<2«A>
JUMP - 2
GOTO 50

2
8
8

2
2
2

3
3

2
2
2
2

EXECUTED

TRUE
FALSE
RETURNED

RETURNED
NEGATIVE
ZERO
POSITIVE

S

8
3

3
2

1



DYNA
SAMPLE OUTPUT

DYNA ANNOTATED SOURCE LISTING

Page 94

LAST RUN DATES 81/03/05
LAST RUN TIMEi 11.15.21
SUHMARY OF 2 RUNS

LIST DATE 81/03/05.
LIST TIME 11.17.00.

LINE# SOURCE MONITOR COUNTS
TOTAL CONDITIONAL

33 40 REALl - <-B SQRT<D>>... 1

34 REAL2 - <-B - SQRT<D>>... 1

35 JUMP -3 1

37 50 GOTO C60. 7a. 80, 90). JUMP 5

36C
39 60 WRITE <8.951> A, B, a REALS.... 2
40 GOTO 100 2
41C
42 70 WRITE C8. 952) A. B,a REALX. R. .

.

43 GOTO 100
44C
45 80 WRITE Ca.ffi2) A. B. C REALl. . . . 1

46 GOTO 100 1

47C
46 90 WRIT£<8. 953)8. ax 2
49 GOTO 100 2
50C
51 99 WRITE <8. 954) C
52C
53 100 CONTINUE 5
54 STOP 1

55 END
56 SUBROUTINE LINEAR <B. C. X) . RE. .

.

2
57 REAL B.aX
58 IF <B . EQ. 0) GO TO 10 2

59 X - -C/B 2
60 RETURN M 2
61 ;L0 RETURN N
62 END
63 SUBROUTINE DISCRM <A.B.C.D) 3
64 REAL A.B.aD
65 D - B»B - 4»A»C 3
66 RETURN 3
67 END

LABEL 60« 2
LABEL 701 •*0*«

LABEL 801 1

LABEL 901 2
OUT OF RANGEi *«0*«

TRUE
FALSE t 2



DYNA Page 95

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. CODE INPUT
. FORTRAN
. FORTRAN 66

FUNCTION
. TRANSFORMATION

. INSTRUMENTATION
. DYNAMIC ANALYSIS

. COVERAGE ANALYSIS
OUTPUT

. USER OUTPUT
. TABLES
. LISTINGS

. MACHINE OUTPUT
. SOURCE CODE OUTPUT

. FORTRAN... FORTRAN 66

IMPLEMENTATION LANGUAGE: FORTRAN 77

TOOL PORTABLE: YES

TOOL AVAILABLE: NO, PUBLIC DOMAIN: NO

RESTRICTIONS (COPYRIGHTS, LICENSES, ETC .

)

: FOR INTERNAL
BOEING USE

TOOL SUPPORTED : YES, TOOL SUPPORT: BOEING COMPUTER SERVICES
COMPANY

CONTACT: LEON G. STUCKI , BOEING COMPUTER SERVICES COMPANY,
P.O. BOX 24346 M/S 9C-03, SEATTLE, WA, 98124, USA,
206-575-5118



COMMAP Page 96

COMMAP: A Tool from the ARGUS Toolbox

Leon G. Stucki

Boeing Computer Services Company

Seattle, Washington

1. Introduction

This proposal is in response to the call for software engineering developers to

demonstrate their accomplishments at the 3th International Conference on
Software Engineering in San Diego, March 9 - 12, 1981.

This proposal describes the demonstration of COMMAP. COMMAP is a common
block analysis tool which is part of the ARGUS toolbox being developed by the

Space and Military Applications Division of Boeing Computer Services.

2. Summary of COMMAP

COMMAP is a static analyzer for FORTRAN programs. Operating on existing

source code, it produces a matrix cross-referencing variables in common blocks

versus the subroutines that use them. The matrix specifies whether a variable is

referenced or defined within a subroutine. It also analyzes the information in the

matrix and reports on potential errors in the use of the variable (for example,
variables which are referenced, but never defined).

3. A Scencirio for COMMAP Demonstration

The demonstration of COMMAP will consist of two parts. The first part will be a
description of the matrices and reports produced by COMMAP. The second part of

the demonstration will show how COMMAP is accessed through the ARGUS
interface.

^. ARGUS Literature

The ARGUS reference library includes the following documents.

Requirements for ARGUS An Advanced Software Engineering Workbench
(Concept Definition)

A discussion of the concepts, objectives and development philosophy of the

ARGUS project. (Available within Boeing.)

"Concepts and Prototypes of ARGUS — A Progress Report on the ARGUS
Project," Leon G. Stucki and Harry D. Walker (Contributed chapter to

Software Engineering Environments , Edited by Horst Huenke, North-Holland
Publishing Company -Amsterdam - New York - Oxford 1981)



COMMAP Page 97

5. Station, Day, cind Time

The ARGUS Toolbox on CYBER/EKS will be demonstrated at Station 'tjWednesday

March 1 1 throughout the day. A special extended presentation will be offered on
Thursday morning in the special presentation room.

6. The Demonstrator

Leon Stucki

Dr. Leon G. Stucki is Manager of Software Engineering Technology for the Space
and Military Applications Division of BCS. He is responsible for coordinating

technology development and dissemination throughout the entire division. He also

serves as liason between the division and other corporate organizations involved

with advanced technology. He is currently responsible for an internal productivity

research and development project ARGUS aimed at creating an advanced
computer-aided software engineering environment. Other current activities within

the SAMA Division include support to contract research in the following areas of

software engineering: software management technology, requirements
analysis/verification, design analysis/verification, and automated verification of

code. Prior to his career with BCS, Dr. Stucki spent 9 years with McDonnell
Douglas Astronautics Company. There he had broad experience in the design,

implementation, testing, validation and verification of advanced military, space,

and commercial software systems. He received his Ph.D., Computer Science from
UCLA, 1976; M.B.A., Business Administration, University of California, 1970; and
B.A., Mathematics, University of Utah, 1968. Dr. Stucki is a member of the ACM,
and also currently serves on the Executive Board of the IEEE Technical Committee
on Software Engineering. He is a member of the editorial board for the widely

circulated IEEE Transactions on Software Engineering . He is also serving on the

editorial board of The Journal of Systems and Software . Dr. Stucki is Program
Chairman of the 5th International Conference of Software Engineering. He was
Program Co-Chairman for the ^th International Software Engineering Conference
held in Munich, Germany in 1979, has served on various other program committees,
and was Chairman of the 1975 NBS-ACM-IEEE Workshop on Currently Available

Program Testing Tools.



COMMAP
SAMPLE OUTPUT

COMMON BLOCK MATRIX

Page 98

COMMON BLOCK MATRIX
STRIP 1

KEY 8 R - ONLY REFERENCED
0 - ONLY DEFINED
B - BOTH REFERENCED AND DEFINED
? - UNKNOWN OJSED IN A CALL ETC.)
• - COMMON BLOCK DEFINED
- VARNIN6 EOUIVALENCED VARIABLE OR COMMON MULTIPLY DEFINED

iS I OkS D LiV 0
lE N IkO I ItE I

• T P TtL S NIL S
lU U ftV C Ea

• P T IkE Ai

Ti Rk

1

•^IREWK
HEIGHT
XANGLE
XSPEED
YANGLE
YSPEED

PHYCON
G
PI

••QUAD
A
B
C

••RCOMP
TIME
XDIST

••X6VEL
YDIST
YGUEL

SPACEN
ELYSP
GNG
LKUNI
MVEL

D B



COMMAP
SAMPLE OUTPUT

Page 99

COHHAP VARIABLE WARNING SUMMARY

PAGE 1

LIST DATEi

TIME:

81/03/K.

09.20.26.

COMMON

BLOCKS

VARIABLES

REFERENCE!

BUT NEVER

DEFINED

VARIABLES

DEFINED

BUT NEVER

RER

I VARIABLES

s WITH

I WARNINGS*

s

I VARIABLES

s NEVER

t USED

t

VARIABLES

USED BY

(RY ONE

MODULE*

t#FIREWK t HEIGHT

s XANGLE

: XSPEED

t YANGLE

: YSPEED

PHYCON PI PI

'QUAD B

A

C

B

A

**RCOMP I XGVEL : XDIST

: YDIST

SPACEN MVEL t ELVSP

t GNG

MVEL

HI SEE DECLARATION WARNING SUMMARY

t VARIABLE EQUIVALENCED TO ANOTJ€R

+ NOT AN ERROR OiT WOllD REDUCE DATA COUPLING

IF ISOUTED IN A SEPARATE COMMON BLOCK (nN4)

OR DECLARED WITH A SAVE COMMAND (FTN5)



COMMAP
SAMPLE OUTPUT

Page 100

COMMAP DECLARATION WARNING SUMMARY

LIST DATE: 81/03/05.

PAGE 1 TIME: 09.20.26.

UNNECESSARY COMMON BLOCK DECLARATIONS

COMMON :

BLOCKS : MODULES USING NO YARIAKIS

FIREVK : SOLVE DISC

QUAD : OUTPUT SOLVE

RCOMP : SOLVE

COMMON BLOCKS THAT ARE NOT USED BY ANY MODULE

FIREWK

COMMON BLOCKS THAT ARE DECLARED DIFFERENTLY

(L G. DIFFERENT VARIABLE NAMES, DIFFERENT LENGTHS. . .

)

FIREWK QUAD RCOMP



COMMAP
SAMPLE OUTPUT

Page 101

IN USAGE SUMMARY

LIST DATE: 81/03/05;

PAGE 1 TIME: 09.20.26.

NECESSARY COMMONm DECLARATIONS

COMMON :

BLOCKS : MODULES USING VARIABLES

''PHYCON : OUTPUT

•

QUAD : SERF DISC

: SETUP

: DIS

INPUT DISC LINEAR E

SPACEN : SETUP



COMMAP Page 102

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. CODE INPUT
. FORTRAN

FUNCTION
. STATIC ANALYSIS

. CROSS REFERENCE

. ERROR CHECKING
OUTPUT

. USER OUTPUT
. DIAGNOSTICS
. TABLES

IMPLEMENTATION LANGUAGE: FORTRAN

TOOL PORTABLE: YES

TOOL AVAILABLE; NO, PUBLIC DOMAIN; NO

RESTRICTIONS (COPYRIGHTS, LICENSES, ETC .

)

; FOR INTERNAL
BOEING USE

TOOL SUPPORTED ; YES, TOOL SUPPORT : BOEING COMPUTER SERVICES
COMPANY

CONTACT; LEON G. STUCKI, BOEING COMPUTER SERVICES COMPANY,
P.O. BOX 24346 M/S 9C-03, SEATTLE, WA, 98124, USA,
206-575-5118



LOG ICFLOW Page 103

LOGICFLOW:

A Software Design & Analysis Tool

S. Moy, G. Nielsen, R. Sanchez, T. Wallace, S. McWethy

1. Introduction

This proposal is in response to the call for software engineering tool

developers to demonstrate their accomplishments at the 5th International

Conference on Software Engineering in San Diego, March 9-12, 1981.

We will be demonstrating the LOGICFLOW system developed by Logicon, Inc.

The demonstration will consist of a cartridge tape driven, pre-recorded

computer output of typical computer sessions.

2. Summary of LOGICFLOW

The LOGICFLOW System is a Logicon-developed software system which aids the

design, development, analysis and documentation of reliable software.

During the design phase, LOGICFLOW accepts program design language (PDL) and

produces a graphic representation of that design in flowchart form for eval-

uation. Since LOGICFLOW analyzes the syntax of the input to produce the

graphic representation at this stage, it also checks for basic logic errors

such -as improper loop constructs. Metrics of that design can be obtained by

invoking a metrics evaluator. This feature provides the analyst normalized

metrics on selected design characteristics such as structuredness , simplicity,

and complexity. A cross-reference of all design names can be obtained using

the cross-reference generator.

The LOGICFLOW Flowcharter automatically produces high-quality flowcharts from

Design Language or FORTRAN source. The flowcharts can be output to a plotter,

a graphics display unit or a line printer. Unstructured code can be flow-

charted as is or the user can choose to have it drawn as a functionally equi-

valent structured chart. ' Once the design has been finalized to a low level.

1. Dahl, Dykstra, and Hoare, "Structured Programming", Academic Press, 1972



LOGICFLOW Page 104

LOGICFLOW translates the Design Language into FORTRAN or JOVIAL source code,

thereby maintaining the integrity of the design and eliminating coding errors

during translation.

3. Scenario of the LOGICFLOW Demonstration

The demonstration of the LOGICFLOW system will consist of verbal descriptions

and visual demonstrations of each of the LOGICFLOW features. The demonstra-

tion will illustrate the generation ofa simple software design from idea-

conception to translation into a higher-order-language source code.

The demonstration will take about forty minutes with time reserved for ques-

tions at the end.

4. LOGICFLOW Literature

The LOGICFLOW reference library is composed of the following documents:

• Requirements Documents

A detailed description of the requirements for each tool

developed in the LOGICFLOW System,

i Design Documents

A detailed description of function and data flow for each

procedure in each tool is given.

0 Users Guide

A comprehensive users guide to the LOGICFLOW System with

a section for beginning or one-time users and another

section for the sophisticated user.

5. Station, Day and Time

Station 5, Wednesday, March 11, from 10:00 a.m. until 4:00 p.m.

6. The Demonstrators

Susan Moy

Susan Moy is responsible for the Design Metric Study in the Systems Evaluation

Department. The purpose of this study is to identify and implement techniques

for measuring software design quality. Her work includes the identification



LOGICFLOW Page 105

of quantifiable characteristics of good software design and the enhancement
of a prototype design metric evaluator program. Ms. Moy's prior work includes
the evaluation of the Computer-Aided Design and Specification Analysis Tool

(CADSAT) and its applicability to program specifications. She has also worked
on a research project on the technologies of software conversion, from assembly
to higher-order language, and from one computer to another. Before that she
participated in the verification and validation of the Metric Integrated
Processing System library. She has a B.A. in mathematics from Hampshire College
(1974) and an M.A. in statistics from the University of Rochester (1976).

Gary Nielsen

Gary Nielsen, a member of the C^ Software Department, is task leader for the
development of the MX J0VIAL/J73 Editor, a static code analyzer to be used for
Logicon's MX PATE/NSCCA activities. Mr. Nielsen is also assisting the devel-
opment of the J0VIAL/J73 Analyzer and Flowcharter Program, an MX PATE/NSCCA
support tool that interfaces with the LOGICFLOW system. This program will

execute on the VAX 11/780 and produce interface files to drive the LOGICFLOW
Flowcharter. Mr. Nielsen has also been responsible for a software testing
study evaluating the applicability of new testing methodologies to MX programs.

Before his present assignment, Mr. Nielsen was responsible for Logicon's
initial Design Metrics Study. He has a B.S. in mathematical sciences from

Stanford University (1974) and an M.S. in computer science from the Univer-
sity of Southern California (1976).

Robert Sanchez

Robert Sanchez, a programmer analyst in the Systems Evaluation Department,

is responsible for the implementation of the LOGICFLOW cross-reference gener-

ator feature. Earlier he performed verification and validation tasks on the

Minuteman System. Mr. Sanchez has a B.A. in mathematics from California State

University, Dominguez Hills (1976).

Thomas Wallace

Thomas Wallace is a programmer/analyst in the Systems Evaluation Department,

with over 10 years of professional experience. Mr. Wallace has had sole res-

ponsibility for designing and implementing the interactive-flow-designer, an

extension of LOGICFLOW which allows the user to design software graphically

by specifying simple component structures and interconnection data. The

program continually updates and displays the design in flowchart form on a

CRT, providing vjsual feedback to the software design. He has also developed

tools for, and participated in, verification and validation of numerous

Minuteman programs. Mr. Wallace has a B.S. and M.S. in physics from the

University of Missouri (1965, 1967).



LOGICFLOW
SAMPLE OUTPUT Page 106

PROCEDURE DL EXAMPLE
IFfCONDO)

CASE VAR
CASEIFfl,2)

LOOP

TEXTl:
WHILEfCONDl) REPEAT
TEXT2;

CASEIF(3,7)
LOOP WHILEfC0ND2)

TEXT3;
REPEAT

CASETFO
TEXT4;

ENDCASE
ELSE

IFfCONDl)
TEXTS;

ELSE

L00PF0R(I=1,7)
TEXT6;

REPEAT
ENDIF

ENDIF
EXITPROC

ENDPROC

1



LOGICFLOW
SAMPLE OUTPUT

Page 107

PR0CEDURE DL_EXAMPLE

(enter)

<(caNiio

<(VAR^1.2 "y-

TEXTl
3Z

TEXT2

J£

<(VAR=3.7 "'>^

TEXTS H-K^CaNDl y—>

<( cgNji y-

TEXT4

TEXT3

1^1

TEXTS

(E^



LOGICFLOW
SAMPLE OUTPUT

Page 108

C***THIS ROUTINE UPDATES OBJECT INFORMATION AT
C****THE DEPLOYMENT OF AN OBJECT

SUBROUTINE UPDATE
IMPLICIT INTEGER(A-Z)
DIMENSION 0BJTYPf2)

C

OBJNUM = OBJNUM + 1

OBJINT = OBJINT + 1

10 TOBJ = OBJTYP (OBJNUM + TRNUM - 1)
IF(TOBJ.EQ.'EOT') GOTO 20

IFfTOBJ.EQ. 'RV') GOTO 30

IF(TOBJ.EQ.'RV/CH') GOTO 40
IFfTOBJ.EQ. 'CH') GOTO 50

GOTO 60

20 TRNUM = TRNUM + 1

OBJINT = 1

GOTO 10

30 RVNUM = RVNUM + 1

GOTO 60

40 RVNUM = RVNUM + 1

50 CHNUM = CHNUM + 1

60 I = 0

NOBJTR = TRNUM
70 NOBJ = OBJTYP(OBJNUM + TRNUM + I)

IF(NOBJ.NE.'EOT') GOTO 100
NOBJTR = NOBJTR + 1

1 = 1 + 1

GOTO 70

C

100 CONTINUE
RETURN
END



LOGICFLOW
SAMPLE: OUTPUT

Page 109

SUBR8UTINE UPDATE
#**THIS R8UTINE UPDATES 8BJECT ]NF8RMAT]aN AT
****THE DEPL0YMENT 0F AN QBJECT

(enter)

SI

0BJNUM=0BJNUM+1
0BJINT=0BJ]NT+1

10 S2
T0BJ=0BJTYP(0BJNUM+TRNUM-1

)

T3 20 S7
<^T0BJ^^E0T^ y-»|TRNUM^TRNUhH-l

0BJ]NT=1

<(T0BJ^^R\r

V
T4 30 S8
^^~y-»[RVNUM=RVNUM-»-

1

T5 40

<^T0BJ=^RV/CH^
S9

RVNUM=RVNUM+1
CHNUM=CHNUM+1

<(T0BJ='CH~

60

T8 50 SIO
y-»[cHNUM-CHNUM-»-

1

Sll

] = 0
N0BJTR=TRNUM

70 S12
N0BJ=0BJTYP(0BJNUM+TRNUM+])

M/ T13

<N0BJ^^E0T^ y-^EXIT)

S14
N0BJTR=N0BJTR+1



LOGICFLOW Page 110

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. CODE INPUT
. FORTRAN

. . FORTRAN IV (Gl

)

. BAL

. ASSEMBLY LANGUAGE
. VHLL INPUT

. DESIGN LANGUAGE

. DL
FUNCTION

. TRANSFORMATION
. EDITING
. TRANSLATION
. FORMATTING
. RESTRUCTURING

. STATIC ANALYSIS
. ERROR CHECKING
. STRUCTURE CHECKING
. COMPLEXITY MEASUREMENT
. AUDITING

OUTPUT
. USER OUTPUT

. GRAPHICS
. FLOW CHARTS
. DESIGN CHARTS

. LISTINGS
. MACHINE OUTPUT

. SOURCE CODE OUTPUT
. FORTRAN
. JOVIAL

CONTACT: DARIO DE ANGELIS, LOGICON, 255 W. FIFTH ST., PO BOX
471, SAN PEDRO, CA, 90733, USA, 213-831-0611
ROBERT J. GALVAN, LOGICON, 255 W. FIFTH ST., PO BOX 471, SAN
PEDRO, CA, 90733, USA, 213-831-0611
ROGER U. FUJII, LOGICON, 255 W. FIFTH ST., PO BOX 471, SAN
PEDRO, CA, 90733, USA, 213-831-0611



SREM
Page 111

SOFTWARE REQUIREMENTS ENGINEERING METHODOLOGY (SREM)
and the

REQUIREMENTS ENGINEERING AND VALIDATION SYSTEM (REVS)

1. INTRODUCTION

Software Requirements Engineering Methodology (SREM) was
developed in response, to continuing and increasing difficulties in
developing complex, large, real-time software for Ballistic
Missile Defense (BMD) systems in the early 1970s. SREM is a
formal, step-by-step process for defining data processing
requirements and is not limited to BMD software applications. It
provides the means to thoroughly evaluate the adequacy of system
requirements towards the goal of attaining good software
specifications for any system prior to design and coding. Its
goal is to reduce software development cost and schedule risk.

2. SUMMARY OF SREM/REVS

SREM is a formal, integrated approach to requirements
engineering activities. For software development from system
requirements, it begins when the system requirements analysis has
identified the system functions, the interfaces between the
subsystems (at least on the functional level), the system
operating rules (conditional statements impacting when and in what
sequence the functions are performed) , and the top level system
requirements allocated to the data processor. It may also be
applied at any time to verify the adequacy of existing software
requirements. During the SREM activities, many problems are
identified which require customer answers as to how the system is
intended to function under certain circumstances. These answers
are typical of processing logic not recognized as needed until
final testing uncovers the fact that these circumstances have not
been addressed in the software design.

In addition to the step-by-step requirements engineering
techniques, SREM includes a machine-processable "English-like"
Requirements Statement Language (RSL) and a Requirements
Engineering and Validation System (REVS) which provides automated
tools for the requirements engineer.

The SREM approach to attaining an explicit requirement
specification is grounded in the use of the RSL. RSL is a formal,
structured language which overcomes the shortcomings of English in
stating requirements. Thus, the precise meaning of each language
concept is fixed and documented to assure unambiguous
interpretation of specifications using this language.

A variety of requirements analysis tools exist under REVS.
Among these are an interactirvfe graphics package, a static analyzer
to assure consistency and completeness of information throughout
the data base, and an automated simulation generator and execution
package which aids in the study of dynamic interactions of the
various requirements. Reports and analyses for engineering or
management support are generated through the use of the analysis
tools.



SREM Page 112

A key consideration in the SREM approach is that all the
steps, including simulations, use a common requirements data base.
This is necessary, since many individuals are continually adding,
deleting, and changing information about requirements for the data
processing system. This centralization allows both the
requirements engineers and the analysis tools to work from a
common, controllable baseline.

3. SCENARIO OF SREM/REVS DEMONSTRATION

The formal foundations of SREM are briefly described and the
advantages of applying the methodology during the development of
software are explained. The basic fundamentals of the RSL are
presented and the most commonly used elements of the language are
defined (e.g., subsystems, entity classes, input/output
interfaces, data, and requirements networks called R__NETS)

,

The use of these elements in construction of a data base is
described in terms of a sample probl'em, the College Curriculum
Scheduling System (CCSS) . A system level description of CCSS is
presented with a brief explanation of the methods which were
employed to build the CCSS data base using REVS.

The REVS software is executed on the VAX 11/780 at the
BMDATC Advanced Research Center (ARC) in Huntsville, Alabama,
processing the CCSS data base. An Intelligent Systems Corporation
(ISC) color graphics terminal is connected via a 300 baud modem to
demonstrate both the character and graphics mode operations of
REVS. A TELERAY model 100 CRT terminal is also connected at 300
baud to provide system monitoring and to support the REVS
demonstration.— The^REVS execution consists of demonstration of
the three operations which are used most often—the language
translator (RSL) , the static analyzer (RADX) , and the interactive
graphics (RNETGEN) . RADX demonstrates methods for listing
selected portions of the data base in various formats and
techniques for detecting errors in the requirements. RSL is
applied to enter new information into the data base and to modify
existing data to correct errors. RNETGEN is executed to present
illustrations of R_NET structures, to define new structures, and
to modify existing ones (An R__NET is the logic flow diagram of the
processing required to respond to the stimuli of input MESSAGES to
the DP). In general, the REVS demonstration highlights the key
operations of the system for an audience assumed to be familiar
with the process of defining requirements, but with little or no
knowledge of the SREM approach.

4. SREM/REVS LITERATURE

1. M.W. Alford, "A Requirements Engineering Methodology for
Real-time Processing Requirements," IEEE Transactions on
Software Engineering , Vol. SE-3, No. 1, Jan. 1977, pp.
60-69.

2. T. E. Bell, D. C. Bixler, and M. E. Dyer, "An Extendable
Approach to Computer-Aided Software Requirements



SREM Page 113

Engineering," IEEE Transactions on Software Engineering ,

Vol. SE-3, No. 1, Jan. 1977, pp. 49-60.

3. C. G. Davis and C. R. Vick, "The Software Development
System," IEEE Transactions on Software Engineering , Vol.
SE-3, No. 1, Jan. 1977, pp. 69-84.

4. M. W, Alford, "Software Req^ui r ements Engineering
Methodology (SREM) at the Age of Two." COMPSAC 78
Proceedings, pp. 332-339.

5. M. W. Alford, "Software Requirements Engineering
Methodology (SREM) at the Age of Four," COMPSAC 80
Proceedings, pp. 866-874.

6. M. W. Alford and I. F. Burns, "R-NETS: A Graph Model
for Real-Time Software Requirements," Symposium on
Computer Software Engineering Polytechnic Institute of
New York, April 20-22, 1976.

5. SREM/REVS DEMONSTRATORS

R.H. Hoffman

Mr. Hoffman earned his BS degree in Mathematics at Florida
State University in 1968. Bob has been with TRW since graduation,
where he has been involved in the development of a variety of
different types of software for the Apollo Project in Houston, the
Site Defense Project in Redondo Beach, and the Ballistic Missile
Defense program in Huntsville. He is currently manager of the
Application Software Section for TRW at the Huntsville Laboratory.

R. P. Loshbough

Mr. Loshbough has a BS degree in Electrical Engineering from
the University of Toledo and an MBA from Babson Institute. Bob
has 18 years experience in software development, and has been with
TRW for 2 years. He is currently manager of the Requirements
Engineering Section for TRW at the Huntsville Laboratory.

R. W. Smith

Mr. Smith holds a BS degree in Computer Science from the
University of Southern Mississippi. Wayne is currently manager of
the Software Development Department for TRW at the Huntsville
Laboratory. He was previously involved in the development of REVS
as principal investigator ftnf' the Requirements Analysis and Data
Extraction (RADX) function.



SREM
SAMPLE OUTPUT

Page 114

>RADX (« PERFORM RQMTS AND DATA EXTRACTION OPERATION *).
RADX (« PERFORM RQMTS AND DATA EXTRACTION OPERATION «).

OXX 001 FUNCTION RADX INITIATED. t*******************it**%*t**t*****
*-*-* ENTER RADX. DATE =» 30MAR-81» TIME » 07:42:S6 *-«-«

CRADX COMMAND*
>LIST SUBSYSTEM <« SUBSYSTEMS EXTERNAL TO CCSS DP SYSTEM «).
LIST SUBSYSTEM (« SUBSYSTEMS EXTERNAL TO CCSS DP SYSTEM «).

subsystem: admin_ofc.
connected to:

input.interface: from_admin_ofc
output-interface: to_admin_ofc.

subsystem: multiplexer,
connected to:

input.interface: from_multiplexer
output.interface: to_multiple;<er.

subsystem: operator.

subsystem: registrar.

cradx command*
>append all none (« abbreviate lists «>.
append all none (« abbreviate lists «).

CRADX COMMAND*
•LIST INPUT.INTERFACE <« LIST INPUT INTERFACES TO CCSS «).

LIST INPUT_INTERFACE (« LIST INPUT INTERFACES TO CCSS «)

input.interface: from.admin_ofc.

input.interface : from-multiplexer

.

input.interface: from.operator.

input.interface : from.reg istrars«ofc

.

cradx command"
>append all structure <* include structure in lists «).
append all structure <« include structure in lists *).

CRADX COMMAND*
>LIST COMPUTER-OPERATOR-PROCESSING (* LIST AN R_NET *).
LIST COMPUTER-OPERATOR-PROCESSING (« LIST AN R-NET «).

R-NET: COMPUTER-OPERATOR-PPOCESSING
(»400«) .

structure:
input-interface : from-operator
CONSIDER data: DPERATOR-rtSG_TYPE
IF (REESTABLISH-REGISTRAR-TERMINAL)

alpha: TURN-OFF^^PUT-PROHIBITED-FLAG
terminate

or <set_seme3ter)
alpha: set-neu-semester
terminate

or (set-year)
alpha: set-neu-year
terminate

END
END.



SREM
SAMPLE OUTPUT

Page 115

cradx command-
>analy2e data.flou cdrtputer_operator_prdcessing.
analyze data-flow computer_operator_frocessing

.

«-*-«-« analyze data flow for r_net: computer_operator_processing
*error 2641 element on consider or does not haue type attribute

data: operator_msg_type
« error detected at or-node data: operator-msg-type
« preceded by input-interface: frqm-operator
« preceded by r-net: computer-operator-processing

«ERROR 2643 ELEMENT ON CONSIDER OR DOES NOT HAVE RANGE ATTRIBUTE
data: OPERATOR-MSG-TYPE

« ERROR DETECTED AT OR-NODE DATA: OPERATOR-MSG-TYPE
« PRECEDED BY INPUT-INTERFACE: FROM-fiPERATOR
* PRECEDED BY R_NET: COMPUTER-OPERATOR-PROCESSING

«error 2820 information passing input-interface not used,
data: neu-TEar-In.

MENU
•STRUCTURE TYPES

RNET
•SUBNET
•VALPATH

•NODE TYPES
• SOR
• CFOR
•ALPHA - •AMI'
•EVENT ' •FIRST
•SUBNET •TERMINAb
• •RETURN

•MOVE SUBTREE
•MOVE NODE
•CONNECT NODES
•DISCONNECT NODES
•DELETE NODE
•CO^tiENT NODE
•SUCCESSOR NODE
•DISPLAY NODE
•DISPLAY BRANCH
•SCROLL NET
•AUTOPLOT
ZOOM-IN ON NET

•ZOOM-OUT OH NET
•CALCOMP
•SAVE NET
•STOP

C0^:

ZOOM-IN IS COMPLETE, CONTINUE

j INPUT-' OUTPUT-; LOC-; TRANSP-

COHPUTER OPERATOR PROCESSING



SREM Page 116

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. VHLL INPUT
. REQUIREMENTS STATEMENT LANGUAGE
. RSL

FUNCTION
. STATIC ANALYSIS

. COMPLETENESS CHECKING

. CONSISTENCY CHECKING

. MANAGEMENT
. DATA BASE MANAGEMENT

. DYNAMIC ANALYSIS
. SIMULATION

OUTPUT
. USER OUTPUT

. DIAGNOSTICS

. USER-ORIENTED TEXT
. REPORTS

. Gr^APHICS

. LISTINGS

IMPLEMENTATION LANGUAGE

;

FORTRAN, PASCAL

TOOL PORTABLE: YES

TOOL AVAILABLE

;

YES, PUBLIC DOMAIN; YES

RESTRICTIONS (COPYRIGHTS, LICENSES, ETC

)

; NO RESTRICTIONS
WITHIN THE USA

TOOL SUPPORTED; YES, TOOL SUPPORT ; TRW DEFENSE AND SPACE
SYSTEMS GROUP, HUNTSVILLE, AL

CONTACT; ROBERT H. HOFFMAN, TRW INC., HUNTSVILLE FACILITY,
7702 GOVERNORS DRIVE WEST, HUNTSVILLE, ALABAMA, 35805, USA,
205-837-3950



SDP Page 117

SDP: A COMPUTERIZED TOOL FOR SYSTEM
DESIGN AND MAINTENANCE

Proposal for Demonstrating SDP at the 5th ICSE
Nancy Linden and Moshe Yavne

1. DESCRIPTION OF SDP

SDP is a very high level language (VHLL) that applies Soft-
ware Engineering methodologies such as Top-down design, structured
design, and data abstraction to the design of systems. The de-
signer expresses his ideas in a structured English- like language.
SDP produces documents which display the design in a clear and
readable manner so that all those involved can easily understand
the solution. SDP formats the design modules, providing full
cross-referencing of the modules and data items, and a tree repre-
senting the hierarchical sequence of referencing (calling tree).
In addition, SDP provides a mechanism for designing data structures
using abstract data typing, and for designing the control of syn-
chronization between processes. Additional features include text
modules, inclusion of external modules, interface definition, user
defined keywords, and parameterized module names. SDP performs
several consistency checks on the design such as proper use of
control primitives, and interface between modules.

The functional specification for SDP was defined under research
at the University of California at Los Angeles, and the processor
was developed by MAYDA, Software Engineering. SDP is currently
used throughout Israel, including the Ministry of Defense, and
Israel Aircraft Industries. It has been used both for the develop-
ment of new systems, and for documenting old systems for mainten-
ance.

2. SCENARIO OP THE SDP DEMONSTRATION

There will be two types of demonstrations of SDP. One will
be a prepared demonstration where the demonstrator will choose an
appropriate example and will invoke SDP to produce the design docu-
ment. The second will be where the user would define a sample
design in pseudo-code, and the demonstrator would activate SDP
using the user's input.

3 . LITERATURE

A. SDP REFERENCE MANUAL
A detailed description of all the features provided by
SDP, including a sample design. Appendices provide the
error messages, and a detailed explanation of abstract
data types

.



Page 118

B. PROGRAMMER'S GUIDE
Describes the motivation behind the development of SDP,
the methodologies used by SDP and a description of how
to design with SDP.

C. PAPERS

"Software Development Processor: A Tool for Software
Design," Nancy May Linden, Masters Thesis, University
of California, 1976, Los Angeles.

"SDP, A Tool for Software Design and Maintenance,"
Nancy Linden, Mayda Software Engineering, Rehovot,
Israel, 1981.

STATION, DAY AND TIME

Station 7, Wednesday March 11, from 9-12 and 2-5.

THE DEMONSTRATORS

Nancy Linden is a member of the managing staff of Mayda
Software Engineering, Israel, where she is responsible for
the development of Software Engineering Tools. She received
her Master's in Computer Science at the University of Calii-
fornia at Los Angeles, where she originally defined the
functional specification of SDP. Prior to joining Mayda,
she was involved in the areas of compiler construction, in
the U.S., and data networks in Holland and Israel.

Moshe Yavne is a member of the managing staff of Mayda
Software Engineering, Israel. Hie is responsible for research
and development. He received his Master's in Computer Science
at the University of California at Los Angeles, where he
performed research on the Graph Model of Computation for the
Atomic Energy Commission. Prior to joining Mayda, he was
involved in the Voyageur software effort at Jet Propulsion
Laboratory, and in data communication networks in Holland.



SDP
SAMPLE OUTPUT

Page 119

PAYROLL C»LCOLAIION 0«/J«'tO PASf

TASLE CF CONTENTS

INTBCCLCTICN

COMPUTE PAVQCLL •

PATBCLL fIL? C»T» CESCBIPTION

OUTPLT DATA

COMPUTE PAY

PROCE<< COOO 0A1A

OUTPLILINE

CALCLLATION BOUIIKES . . . .

CCMPUTE GfiCSS PAY . .

CCHPUT^ OVERTIME PAY • •

CCPgt? TOTAL EXEMPIIOM
CCMPUT€ TA>
CCMCUTE MET PAY . . . .

CALLING TRE'ES
H30ULE DICTICNARV
DATA C IC TIONARV

ce/2A/ec

CALCULATICK

COMPLIE CAY

9
10
11

IS
16
1»
18
1«

> 20
I 21
> 22
> 23
> 2»
• 25
• 26

oeCLABe OBCSS PAY.

ofiS VpIybcll ^ECCBC

J,'. NY 8AC CATA

UF EBCOB MESSAGE

ELSE (,55 ,N0 PEBFOBM

imri^
IF SIZE EBBCB

""Set up ebbcb message

""bOCESS OCCO DATA

n

lill^'l ^pL;Icll peccbo

°?LCSE FILES
oetuB" ....

»» i
It •
»3 •

18 •
19 •
ao •
»» !« •
23 •
» 125 •

.....•••••••••^

.AYBOLL
CALCULATTO-

PBOCESS .000 OATA

• lO

• 12
• U
• 1*

' • 16
. IT
•

-;cMPu.e c--,,^ ..eMPMCH

«^nAx ze"0

''lir^Voi;^^-'-^^

ZZ

3 •

10 •

13 '

l»
«5
1«
IT



SDP
SAMPLE OUTPUT

Page 120

0(J KJKJKJKJKJ^JKJKJKJKJKJKJKJKJKJKJUKJUKJKJKJKJKJKJKJKjyjKJKJ
o u

u
•-•(\>(\i(\i(\JCMC\J(\J(\i(V) KJ

u KJ
u KJ

KJ
v> KJ
u KJ

KJ

u KJ
KJ
KJ
KJ
KJ
KJ

u KJ
i tV KJ

KJ
u KJ

U
U
U
KJ

c KJ
KJ

u U
u U

U
U

o O
U

KJ O
yj KJ
KJ KJ
\J KJ
KJ KJ
KJ KJ
KJ KJ
KJ KJ
KJ KJ
KJ U
KJ KJ
KJ KJ
KJ UA KJ
KJ 3t U
KJ UJI U
KJ KJ
KJ oi KJ
KJ KJ

114 KJ U. KJ

31 U O KJ

M U KJ

3t KJ O UNJ KJ

oi CC
OJ UJ|< CC

Q KJ 1 "it. J\y- KJ
KJ _l U C7| KJ

U KJ o u >- KJ
O )^ KJ UI a -J o< KJ
_J W KJ -to KJ
(D CJ KJ £ ^ u ^ X 1 ^ KJ

l-i U 3 KJ u U J u KJ

J U \J O O -( O O L) U O KJ
CJ 1 KJ KJ vi OJ KJ
(X -J OJ UJ tlj 1 C UJ ^ J QJ KJ
^ u UI -J ^ OJ IX KJ

z o KJ < J7 "Z lU o U. l«-» l-JH KJ
(J KJ W> Of o U. UJ t^l J U V9 KJ

KJ X IX CJ (J mi D 1 U U Z KJ
KJ H- Q. U. 0) UJ CI U U" KJ

V ff u KJ o z U. UJ KJU 3UJ »- Z _J KJ

H lU 1 KJ II (/) UI oou. za 1 KJ

d UL (X KJ UJ (T J :? 1 4 U. OUUJ KJ
3t (L UJ KJ _J IV) V) >o X < ir a I UJt-D KJ \-D KJ
Ui^ LL KJ III < < ^ K U. ^ UJH X ^ (u Itr UJ KJ

(D U- KJ Ui UJ a ujo u. o Ui a UI 3 KJ
1 —

\

p» —

^

KJ 3 U O _J 2. ^ ^ z z u. z UJ 2. Z UJ u. o KJ
f 1 ^ n 1^ UJ U UJ u. < ujctuj a a JuJ > uia a u. u. KJ

U 3 D UJ < 3 9 aD_j Oa 3 O U. DK KJ
ID O KJ O OJ X • H H 1 KJ

UJIZ ^ KJ OVIUJ tU- lU HU) UlUJUJ IK OJ Uj KJ

31 Ui KJ lUUJUJUJ zzozaujK X _> zq: o a uiiij KJ

UJIh- Q. U aococa a UJ Ui V) UJ uj UJ 10 O U UJ KJ
Diuj a KJ «« iui:3 13 X J z :? X J zuja KJ

U rXK O H UJ OK UI ujcno KJ

U uuuo UJtU) H a z z KJ

KJ lUUJIUlU ZJ*a IL <M UJ IL KJ
KJ OQOO Ol HI U. ox U. < KJ

cc KJ KJ
III KJ a a a KJ
> KJ o o o KJ

M (J KJ
U KJ

u
lU

CC CC

3 KJ •-•<vjfo*in>ON(DOo»H(\iro*in\o'^<DO'0^<\jro<»invONco KJ
z lU U KJ

D KJ O
o KJKJKJUKJKJKJKJKJKJKJKJKJKJKJKJKJUUKJKJKJUKJKJKJKJKJKJKJ KJKJ

Abstract Data !I^ypes in SDP



SDP Page 121

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. VHLL INPUT
FUNCTION

. TRANSFORMATION
. FORMATTING

. STATIC ANALYSIS
. STRUCTURE CHECKING
. CROSS REFERENCE
. SCANNING

OUTPUT
. USER OUTPUT

. GRAPHICS
. HIERARCHICAL TREE

. LISTINGS

. USER-ORIENTED TEXT
. DOCUMENTATION

IMPLEMENTATION LANGUAGE: FORTRAN 66

TOOL PORTABLE

;

YES, TOOL SIZE: 64 KB

TOOL AVAILABLE

:

YES, PUBLIC DOMAIN: NO

RESTRICTIONS (COPYRIGHTS, LICENSES, ETC . ) : LICENSE

TOOL SUPPORTED: YES, TOOL SUPPORT : MAYDA SOFTWARE
ENGINEERING

CONTACT : MAYDA SOFTWARE ENGINEERING, PO BOX 1389, REHOVOT,
76113, ISRAEL, 054-58534



80 (TM)

SOFTOOL 80"

Page 122

A METHODOLOGY AND A COMPREHENSIVE SET OF TOOLS FOR SOFTWARE

MANAGEMENT, DEVELOPMENT AND MAINTENANCE.

1 . INTRODUCTION

SOFTOOL 80 is an integrateql. methodology and supporting tools for software

management, development and maintenance. It is a portable system currently

supported on SEL, DEC, DG and IBM computers,

SOFTOOL 80 consists of several major releases addressing; 1) Programming

Environment, 2) Change and Configuration Control, 3) Design, and

4) Requirements. At the 5th International Conference on Software Engineering

in San Diego, Calif., I4arch 1981, we will be demonstrating Release 1:

Programming Environment

.

SOFTOOL 80 is a commercially available product fully supported with manuals,

interactive tutorials, courses and maintenance. It is a proprietary product

of Softool Corporation, Goleta, California. It is currently in use in over

35 different installations.

2. SUMMARY

Conceptually, SOFTOOL 80, Release 1, allows a user to interactively create in

an 'application generator mode' a substantial portion of a new application,

typically, over 50% of the required code. The user then, with the aid of an

elaborate collection of software tools, completes the program and generates a

deliverable product. The areas supported with existent tools include:

structured programming at a level that matches design documents, extensive

diagnostics, code auditing, portability, documentation, tracing, testing, time

and space optimi2ation. Management visibility, standards and quality control

are given explicit support.

Experience in the use of SOFTOOL 80, Release 1, indicates that fivefold

improvements, over conventional approaches, in the amount and quality

of the software created are readily attained.



SOFTOOL 80 (TM) Page 123

3. A SCENARIO FOR THE DEMONSTRA.TION

The demonstration will consist of two parts.

The first part is a summary slide presentation outlining the methodology

and tools of SOFTOOL 80. The presentation will run for about 30 minutes.

This presentation will be given several times according to a preposted

schedule.

The second part is a hands on demonstration at the terminals to take place

between slide presentations. Participants will be encouraged to sit at the

terminals and exercise various components of SOFTOOL 80.

A color outline of a SOFTOOL 80 scenario will be passed out to those attending

a demonstration.

4. SOFTOOL 80 LITERATURE

Reference Manuals

There is a comprehensive reference manual for each SOFTOOL 80 component.

Interactive Tutorials

There is a growing number of interactive tutorials to assist in the

effective training of new users.

Technical Notes

There is a growing library of short notes discussing specific issues

in the SOFTOOL 80 context. Areas addressed by existing notes include:

structured programming, error resistant programs, instrumentation,

flow analysis and portability.

Technical Reports

There is a growing library of technical reports providing thorough

discussion of a number of specific topics in the SOFTOOL 80 context.

Areas addressed by existing reports include: testing, optimization,

portability and interactives . (One of these reports entitled 'A

Pragmatic Approach to Portable Software' appeared in Computerworld

in-Depth report, April 14,80 and in Mini Micro Systems, May, 80)

Product Brochures

Marketing brochures describing the various SOFTOOL 80 components



SOFTOOL 80 (TM) Page 1

5. STATION, DAY AND TIME

STATION: 8,10

DAY: WEDNESDAY, MARCH 11, 1981

TIME: 9 a.m. To: 5:30 p.m.

6 . DEMONSTRATORS

RICHARD HUG

Mr. Hug received his B.S. degree in Computer Science in 1975 from the

University of California, Santa Barbara. His current interests are in

software methodology and tools. He is a senior project manager at

Softool Corporation.

THOMAS STRELICH

Mr. Strelich received his B.S. degree in Biology in 1977 from Calif.

State College, Bakersfield, and his M.S. degree in Computer Science in

1980 from California Polytechnic State University, San Luis Obispo. His

current interests are in programming languages and systems. Mr. Strelich

is a member of the technical staff of Softool Corporation.

MICHAEL RESNICOW

Mr. Resnicow received his B.S. degree in Electrical Engineering in 1975 from Tufts
University, Boston Massachusetts, and his M.B.A. at Monmouth College, New Jersey.
His interests include software methodology and tools and optimization technology.
He is currently Software Sales Manager at Systems Engineering Laboratories, In-

corporated in Fort Lauderdale, Florida.

ROBERT AHOLA

Mr. Ahola received his A.A.S. degree in chenistry in 1963 from University of
Minnesota and further studies at Columbia and State University of New York at

Buffalo in Engineering and Computer Science. His interests include artificial
language and development methodologies. His current position is Technical
Software Support Manager at Systems Engineering Laboratories, Incorporated in

Fort Lauderdale, Florida.



SOFTOOL 80 (TM)
SAMPLE OUTPUT

Page 125

SOFTOOL 80™, Release 1, is an integrated collection of
over 20 major tools. Here we present some examples.

Sample Explosion of Interfaces

*** EXPLOSION FOR MAIN **
^ A I N M

E . X 1 L)

ENTER F
SUBl M

COM? C
COMl C
INSERT U
SUB 3 U
SUBil M

SIJH2 M
sue3 U
SIJ8« M

RECURSION**
SUBS M

sues u
SUB6 M

SEARCH M
ENTER E
CON'? C
INSERT U
B3 M

SU82 M
REPEATED NODE**

Sample Test Coverage Reporu - Routine level

************************************************************************
* *
* TEST COVERAGE DOCUHf NTATION •
* *
************************************************************************

TEST COVERAGE PROFILE

TOTAL ROUTIKES IM SYSTEMl 1«

NUMBER OF
ROUT INES
EXERCISED

X OF
TOTAL

ROUT INES

NUMBER OF
ROUTINE

EXECUTIONS

TEST EFFECTIVENESS
(NUMBER EXECUTIONS/
X TOTAL ROUTINES)

THIS RUN» 28.57 46 .02

ALL RUNS! 35.71 79 .02

DIFFERENT ROUTINES
IN THIS RUNl

/

7.14

Test coverage accompliehed

46 .06

/
This Is an indication of the cost effectiveness

of the testing acHvity; the lower the better



SOFTOOL 80 (TM) Page 126
SAMPLE OUTPUT

Sample Optimization Report - Statement level

»«•**«•**•••*«••****«•••****•*******•*•********•***********************

* OPTIMIZATION DOCUMENTATION *

* *

ROUT 1 ! SEARCH

TOTAL TIHF PROFILt.
SINGLE RU^

STATEMFNT TOTAL TIME
(^-StC)

t OF
TOTAL TIMF

26 S6.320 35.53

1 1 24.23

2 2e.«J3t 18.25

9 1 3 . 0«5 8.23

6 t 0.5<)5 6 .68

u\ 5.028 3.17

a 1 .ssn .98

27 .57

24 .S7f .36

33 .32

12 . «<Jfc .31

7 .«21 .27

22 .288 .18

Note that the first 3 statements
account for 78% of the total time.

That is, 7% of the statements in the

routine account for 78% of the time.

This is typical

The output is ordered according

to time consumption

Sample Error Detection Report through
Dynamic Flow Analysis !

E301 FLOW ERROR

ROUT INE:

STRUCTURE:

TRANSITION:

RECORD:

FIELDr

STRD

STRUC

UNDEF/READ

6

2

CURRENT OF RECORDS: 5

The above information indicates that routine STRD,
which reads fields of records, attempted to read an
undefined field. The attempt was to read field 2 of
record 6 of the structure STRUC. However, note that
the current number of records in STRUC is only 5

,

thus record 6 is undefined.



SOFTOOL 80 (TM) Page 127

FEATURE CLASSIFICATION:

INPUT
. SUBJECT

. CODE INPUT

. VHLL INPUT
FUNCTION

. TRANSFORMATION
. INSTRUMENTATION
. TRANSLATION
. FORMATTING

. STATIC ANALYSIS
. MANAGEMENT

. CONFIGURATION MANAGEMENT
. DATA FLOW ANALYSIS
. STRUCTURE CHECKING
. COMPLEXITY MEASUREMENT
. AUDITING
. COMPARISON
. COMPLETENESS CHECKING
. SCANNING
. INTERFACE ANALYSIS

. DYNAMIC ANALYSIS

. . COVERAGE ANALYSIS
. TRACING
. TUNING
. TIMING

OUTPUT
. USER OUTPUT

. TABLES

. LISTINGS

. DIAGNOSTICS

. USER-ORIENTED TEXT
. DOCUMENTATION

. MACHINE OUTPUT
. SOURCE CODE OUTPUT

IMPLEMENTATION LANGUAGE ; FORTRAN, TOOL PORTABLE: YES, TOOL
SIZE : 2K - 270K BYTES, TOOL AVAILABLE: YES, PUBLIC
DOMAIN : NO, RESTRICTIONS (COPYRIGHTS, LICENSES, ETC .

)

;

PROPRIETARY PRODUCT, TOOL SUPPORTED ; YES, TOOL
SUPPORT: SOFTOOL CORPORATION

CONTACT: SOFTOOL CORPORATION, 340 S. KELLOGG, GOLETA, CA,
93117, USA, 805-964-0560



ITB Page 128

ITB:

Interactive Test Bed

A Demonstration for the Softwore Tool Fair at the

Fifth International Conference on Software Engineering,
March 9-12, 1981

Jannes B. Henderson, Edward F. Miller, Jr.

1. Introduction

This is a description of demonstrations of the Interactive Test Bed System
(ITB) at the Software Tool Fair of the Fifth International Software
Engineering Conference in San Diego, March 9-12, 1981. The ITB system has
been developed by Software Research Associates.

2. Sunrvnory of ITB

The Interactive Test Bed (ITB) system is a system for performing quality
assurance analysis of modular software systems.

Invocation of two macros is sufficient to create a test bed for testing a
given routine. Once the test bed is created, ITB allows the user interactive

access to any of the variables in the commons and parameter list in the test
source which was analyzed by the ITB set up program. The user may alter or

examine any of these variables. The user is empowered to execute a series

of tests of the program, to manipulate and examine the values of variables

as well as consult the (CI) coverage report between executions. The NOT
HIT command pinpoints the segments which have not yet been executed. By
saving copies of the environment of variables, ITB can help process complex
tree-structured sets of test cases. Additionally, ITB is useful in the software

testing documentation process.

The ITB system to be demonstrated processes pure-FORTRAN or SRTRAN (a

structured extension of FORTRAN) programs. However, the concepts of the

ITB extend beyond FORTRAN to any language or environment.

3. Dennonstration Scenario

As indicated in the summary information, the Interactive Test Bed (ITB) is a
system for the on-line testing of FORTRAN programs. The general

demonstration will consist of one of our staff using the test bed to exercise
some sample programs. The test beds for each example will have been
prepared in advance. What the Tool Fair attendees will be able to watch is

the process of setting up input values using the test bed, running of tests

with ITB, examining coverage reports generated by ITB, examining output
results, and repeating the process of altering data, re-running tests, checking

coverage and output, etc.

Scripts of test sessions can also be run on-line in a batch mode to speed
data entry, yet still produce a trace of the whole ITB session.



ITB Page 129

If time permits Fair attendees may be able to try running the test bed
examples themselves. The difficulty of entering into the system an arbitrary
program supplied by the user precludes the possibility of demonstrating ITB
on such an arbitrary program at the Tool Fair.

4. ITB References

The following documents make up the reference library for ITB. Documents
marked with an asterisk will be available at the Tool Fair.

Tom Mapp and Robert Schulman, "ITB Command Reference Manual —
Data General SRTRAN Version", TN-690/4, Software Research
Associates, August 1980.

* Tom Mapp, "ITB Sample Outputs," TN-801, Software Research
Associates, February 1981.

* "ITB Fact Sheet," Software Research Associates, September, 1980.

* "ITB Command Summary," Software Research Associates, February
1981.

* "SofTest Methodology Description / Fact Sheet," Software Research
Associates, February 1981.

5. Demonstration Location cmd Time

Station 9, Wednesday, March II, from 9:00 am until 4:00 pm, at specific
times to be posted at the station (4-6 demonstrations throughout the day).

6. The Demonstrators

Dr. EDWARD F. MILLER, JR., is Technical Director of Software Research
Associates, San Francisco, California, a firm devoted to advanced computer
technology and software applications. His interests include software
engineering management, software testing technology, software maintenance
technology, automated tool design and computer architecture.

Dr. Miller was previously Director of the Software Technology Center,

Science Applications, Inc., San Francisco, and Director of the Program
Validation Project at General Research Corporation, Santa Barbara,

California. He received a BSEE at Iowa State University in 1962, an M. S. in

Applied Mathematics at the University of Colorado in 1964, and the Ph. D.

at the University of Maryland in 1968 where he was an Instructor from 1964
to 1968.

Dr. Miller is a member of the IEEE Computer Society, the ACM, SIAM and
several honorary societies. He currently serves on several technical

committees and is an Associate Technical Editor of COMPUTER Magazine.

Mr. JAMES B. HENDERSON is a programmer who specializes in the

development of advanced concept tools for modern Software Engineering. His



ITB Page 130

current research interest center on the development of techniques for

hierarchical decomposition of programs based on their directed graph

structure.

Since joining SRA in June 1979 he has been involved in a number of projects

that support various Company projects. He has been responsible for

production of the baseline version of SRTRAN, the Company's structured

preprocessor system for Structured FORTRAN programming.

Mr. Henderson has supported the Company quality assurance program by
participating in the development of a COBOL testbed system for the UNIVAC
1100 system, and through development of special versions of the COBOL
Instrumentation Subsystem also for the UNIVAC I 100 environment. He is

currently responsible for quality control on the entire COBOL Instrumentation
Subsystem (all machine environments).

He has also participated in other Company efforts, including the development
of the Semantic Update System (ISUS) series of automated software

maintenance tools, and various in-house administrative processing facilities.

7. ITB Contact

For further information please contact:

Dr. Edward Miller

Software Research Associates

P. 0. Box 2432
San Francisco, CA 94126

(415) 957-1441

8. Proprietory Statement

This system is proprietary to Software Research Associates. The

demonstrations of the system will be made for the purpose of describing the
technical capabilities of the system only. Extensive documentation of a

proprietary nature is available but will not be distributed to attendees
without appropriate levels of protection of proprietary rights. Information and

materials that are distributed freely at the demonstrations carry no such
restriction, however.



ITB Page 131

SAMPLE OUTPUT

SAMPLE COMMAND SEQUENCES

1 0PTI0NS(INST=Y,LINWDT=71

)

SUBROUTINE ADD
3 COMMON /ADDCOM/ N, A, SUM
4 INTEGER N, I
c
J INTEGER A(lO), SUM

C

c THE PURPOSE OF THIS PROCEDURE IS TO ADD UP THE
c CONTENTS OF A(1)...A(N) AND PLACE
c

C

THE TOTAL IN THE OUTPUT VARIABLE SUM

c

c

INITIALIZATION. .

.

0 ISUM = 0

c INITIAL PROTECTION. .

.

7
1

c

IF ^ N . GT. 1 ; (2)
(
\ J )

c
\J

TU TT T TTT D A T T AXT
1 M t i 1 t.KA I iUN . . .

(
\

8 ( 1) . 1 = 1

9 ( 1) . WHILE (I .LE. N) (3)
10 ( 2) . . ISDM = ISUM + A(I)
11 ( 2) . . 1 = 1 + 1

1 0
1 /

/
\ 1

;

END WHILE (4)
/
\ 1

)

c
f
( 1

)

c ALTERNATIVE. .

.

( 1) c

13 ( 1) ELSE (5)
14 ( 1) . WRITE (10, 10) N

15 ( 1) 10 . FORMAT ( 22H ERROR. ..N HAS VALUE =
, 110)

16 END IF (6)
c

c

c

CAPTURE THE RESULT...

17 SUM = ISUM
18 RETURN
19 END

NUMBER OF SRTRAN STATEMENTS IN THIS MODULE IS 8

NUMBER OF FORTRAN STATEMENTS IN THIS MODULE IS 11

NUMBER OF COMMENT STATEMENTS IN THIS MODULE IS 17

TOTAL NUMBER OF STATEMENTS IN THIS MODULE IS 36

Figure A — Example Routine ADD



ITB
SAMPLE OUTPUT

Page 132

SAMPLE COMMAND SEQUENCES

. . * Set ECHO so that coTmands read from ghost file will be

. * echoed on the output file

. ECHO

. * Make PROMPT character into a question mark "?"

. PROMPT "?"

?NEW N IS 4

?SEE SUM
connnon ADDCOM, offset 12: 0 000000
?* SUM is set to 0

?SEE N

common ADDCOM, offset 1: A 000004
?* N has been set to 4

?NEW A(l) IS -5

?NEW A(2) IS 305

?NEW A(4) IS 46
?* Now we can look at the values put into array A
?SEE A(1..4)
common ADDCOM, offset 2: -5 177773

common ADDCOM, offset 3: 305 000461 "1

'

common ADDCOM, offset 4: 0 000000
common ADDCOM, offset 5: 46 000056 '

?* Note how far right also provides us with the
?* alphanumeric interpretation of the value.
?EXEC
?SEE SUM
common ADDCOM, offset 12: 346 000532 "Z*

?STOP

Figure B — Setting and Viewing Input Variables



Page 133
ITB ^

SAMPLE OUTPUT

SAMPLE COMJ'IAND SEQUENCES

?NEW SUM IS 35

?NEW N IS 5

?NEW A(l) IS 2

?NEW A(2) IS 4

?NEW A(3) IS 5

?NEW A(4) IS -1

?NEW A(5) IS -3

?SEE A(1..5)
connnon ADDCOM, offset 2 2 000002
couuiion ADDCOM, offset 3 4 000004

common ADDCOM, offset 4 5 000005
connnon ADDCOM, offset 5 -1 177777
c onmon ADDCOM, offset 6 -3 177775
?EXEC
?SEE SUM
common ADDCOM, offset 12: 7 000007
?* Now this environment will be saved
?PUSH SAVEl
?NEW N IS -3

?NEW SUM IS 0

?* Put invalid values in array A
?NEW A(1..5) IS 0

?SEE A(1..5)
common ADDCOM, offset 2: 8224 020040
common ADDCOM, offset 3 : 8224 020040

common ADDCOM, offset 4: 8224 020040
common ADDCOM, offset 5 : 8224 020040
common ADDCOM, offset 6 8224 020040

?EXEC
ERROR. . .N HAS VALUE = -3

?* Recall old environment
?FROM STACK SAVEl
?SEE SUM
common ADDCOM, offset 12: 7 000007

?SEE A(1..5)
common ADDCOM, offset 2: 2 000002

common ADDCOM, offset 3 : 4 000004

coimnon ADDCOM, offset 4 5 000005

common ADDCOM, offset 5 :
-1 177777

common ADDCOM, offset 6 -3 177775

?SEE N
common ADDCOM, offset 1 5 000005

?STOP

Figure C — Saving Environments



ITB
SAMPLE OUTPUT

Page 134

?TEST ADD ONE
?NEW N IS 3

?NEW A(l) IS -271

?NEW A(2) IS 8A

TNZW A(3) IS 4

?SEE A(l . .3)

conmon ADDCOM, offset 2: -271 177361
connnon ADDCOM, offset 3: 84 000124 "T*

common ADDCOM, offset 4: 4 000004
?EXEf'

?* How many segments did this test exercise?
?C1

Coverage for module ADD :

(Most recent test) 5 segments hit out of 6. Cl : 83.332
(Previous tests) 0 segments hit out of 6. Cl : .00%

?* Which segments were not exercised?
?N0T HIT
Not hit report for ADD

Segments not hit in most recent test:

Segment 5 not hit
Segments not hit in previous tests:

Segment 1 not hit
Segment 2 not hit
Segment 3 not hit
Segment 4 not hit
Segment 5 not hit
Segment 6 not hit

?END TEST
?TEST ADD TWO
?NEW N IS -110

?EXEC
ERROR... N HAS VALUE = -110

?C1

Coverage for module ADD :

(Most recent test) 3 segments hit out of 6. Cl : 50.00%

(Previous tests) 5 segments hit out of 6. Cl " 83.33%
?END TEST
?* Merging this last test with previous tests, gives us this coverage
?C1

Coverage for module ADD :

(Most recent test) 3 segments hit out of 6. Cl : 50.00%
(Previous tests) 6 segments hit out of 6. Cl : 100.00%

?N0T HIT
Not hit report for ADD

Segments not hit in most recent test:

Segment 2 not hit
Segment 3 not hit
Segment 4 not hit

Segments not hit in previous tests:
All segments hit.

?STOP

Figure D — Reporting Cl Test Effectiveness



ITB Page 135

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. CODE INPUT
. SRTRAN
. FORTRAN

FUNCTION
. TRANSFORMATION

. INSTRUMENTATION
. DYNAMIC ANALYSIS

. COVERAGE ANALYSIS

. TRACING
OUTPUT

. USER OUTPUT
. TABLES
. LISTINGS

. MACHINE OUTPUT
. SOURCE CODE OUTPUT

. SRTRAN

. FORTRAN

IMPLEMENTATION LANGUAGE: SRTRAN

TOOL PORTABLE: YES

TOOL AVAILABLE

;

YES, PUBLIC DOMAIN: NO

TOOL SUPPORTED ; YES, TOOL SUPPORT: SOFTWARE RESEARCH
ASSOCIATES

CONTACT: EDWARD F. MILLER, SOFTWARE RESEARCH ASSOCIATES,
P.O. BOX 2432, SAN FRANCISCO, CA, 94126, USA, 415-957-1441



ISUS Page 136

ISUS:

Interactive Semantic Update System

A Demonstration for the Software Tool Fair at the

Fifth International Conference on Software Engineering,
March 9-12, 1981

James B. Henderson, Edward F. Miller, Jr., Morton Hirschberg

1. Introduction

This is a description of demonstrations of the Interactive Semantic Update
System (ISUS) at the Software Tool Fair of the Fifth International Software
Engineering Conference in San Diego, March 9-12, 1981. The ISUS system has

been developed by Software Research Associates in cooperation with the U.
S. Army Ballistics Research Laboratory.

2. Summary of ISUS

ISUS is a system that -combines features of a text editor, a source code
control system, a configuration management system, and a static analyzer to

provide an integrated facility for maintenance of complex software systems.
The most important feature of ISUS is that it has the capability to perform
single- and multiple-module consequence analysis, either interactively or in

batch mode.

The ISUS system is designed as an interactive tool, responding to user
commands, but it can also be run in a batch mode, reading from a prepared

command file, for "background" runs performing the day to day chores
associated with system maintenance.

The current version of ISUS processes FORTRAN programs which have been
organized into a special format, called a Program Master (PM). The PM
contains both the system's modules (main programs, subroutines, functions,
block datas) and the system's globals (COMMOIN declarations of data areas to

be used by many modules). ISUS contains an INCLUDE facility whereby
globals can be referenced by modules.

ISUS reads in a PM at the start of a session, modifies it in response to user

commands, and produces a new PM at the end of the session. ISUS also

produces a trace file containing all commands issued by the user during a

session. This trace file in combination with the old PM and ISUS itself

typifies the changes made to the system in a readily understandable form. By
saving the original PM of a system and the trace files from a series of

changes made any of the intermediate versions of the system can be
reproduced by running ISUS in the batch mode with the trace files, thus

making source code control a reality.

The static analyses performed by the current version of ISUS include:

o Auditing the control flow of the module being changed by using

directed graph techniques

o Modelling the calling hierarchy of the program's modules and globals



ISUS Page 137

by analyzing subroutine and function calls and INCLUDE statements

o Tracing a variable's usage within modules, and across module
boundaries by analyzing parameter passing

These analyses and some reports based on them are triggered automatically
by changes made to the program by the user. Other reports are available to

the user on demand.

3. Demonstration Scenario

The demonstration will consist of one of our staff using ISUS to make
changes to a program stored in a PM in order to demonstrate the functions

and capabilities of the ISUS system. Tool Fair attendees will be able to

suggest changes to be made, and will even be able to operate the system
themselves, with prompting from our staff.

A single demonstration which demonstrates the technical capabilities of ISUS
in a fairly complete manner should take 30 minutes or more, depending on

the number of questions and suggestions offered by attendees. Hard copy of

a sample ISUS session will be made available at the demonstration.

4. ISUS References

The following documents make up the reference library for ISUS. Documents
marked with an asterisk (*) will be available at the Tool Fair.

E. F. Miller, Jr. and J. S. Praninskas, "Semantic Update Systems — A
Conceptual Analysis," RP-104, Software Research Associates, October

1977.

M. A. Hirschberg, W. G. Frickel, and E. F. Miller, Jr., "A Semantic
Understanding System for Software Maintenance," Proc. 1979 Compcon
Spring, March 1979.

* E. Sprinsock, "Examples of ISUS Use", TN-749/2, Software Research
Associates, February 1981.

E. Sprinsock, "ISUS Command Reference Manual," RM-662/5, Software
Research Associates, February 1981.

E. Sprinsock, "ISUS User Guide," RM-661/5, Software Research
Associates, February 1981.

* "ISUS Fact Sheet", Software Research Associates, February 1981.

* "ISUS Implemented Command Summary," Software Research Associates,

February 1981.

5. Demonstration Location and Time

Station 9, Wednesday, March II, from 9:00 am until 4:00 pm, at specific



ISUS Page 138

times to be posted at the station (4-6 demonstrations throughout the day).

6. The Demonstrators

Mr. MORTON A. HIRSCHBERG has been a Mathematician at the U. S.

Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryand since

1973. His technical interests include software engineering management,
software testing technology, and database design and management. In addition

to his position with the Army, Mr. Hirschberg is a consultant to the Shock
Trauma Unit at the University of Maryland's hospital complex in Baltimore,

Maryland.

Previously, Mr. Hirschberg was a member of the technical staff at General
Research Corporation, Santa Barbara, California, and Senior Computer
Engineer at North American Aviation.

Mr. Hirschberg received his B. A. in Mathematics from the University of
California, Los Angeles, and the M. A. in Psychology fro the University of

California, Santa Barbara. During the 1973 academic year Mr. Hirschberg was
Associate Professor of Psychology at UCSB. Mr. Hirschberg is a member of

the ACM. Support for development of some versions of the ISUS system was
provided under U. S. Army Contract No. DAAD05-78-C- 1 070.

Dr. EDWARD F. MILLER, JR., is Technical Director of Software Research
Associates, San Francisco, California, a firm devoted to advanced computer
technology and software applications. His interests include software
engineering management, software testing technology, software maintenance
technology, automated tool design and computer architecture.

Dr. Miller was previously Director of the Software Technology Center,

Science Applications, Inc., San Francisco, and Director of the Program
Validation Project at General Research Corporation, Santa Barbara,

California. He received a BSEE at Iowa State University in 1962, an M. S. in

Applied Mathematics at the University of Colorado in 1964, and the Ph. D.

at the University of Maryland in 1968 where he was an Instructor from 1964
to 1968.

Dr. Miller is a member of the IEEE Computer Society, the ACM, SIAM and
several honorary societies. He currently serves on several technical

committees and is an Associate Technical Editor of COMPUTER Magazine.

Mr. JAAAES B. HEh©ERSON is a programmer who specializes in the

development of advanced concept tools for modern Software Engineering. His

current research interest center on the development of techniques for

hierarchical decomposition of programs based on their directed graph

structure.

Since joining SRA in June 1979 he has been involved in a number of projects

that support various Company projects. He has been responsible for

production of the baseline version of SRTRAN, the Company's structured

preprocessor system for Structured FORTRAN programming.

Mr. Henderson has supported the Company quality assurance program by
participating in the development of a COBOL testbed system for the UNIVAC



ISUS Page 139

1 100 system, and through development of special versions of the COBOL
Instrumentation Subsystem also for the UNIVAC I 100 environment. He is

currently responsible for quality control on the entire COBOL Instrumentation
Subsystem (all machine environments).

He has also participated in other Company efforts, including the development
of the Semantic Update System (ISUS) series of automated software

maintenance tools, and various in-house administrative processing facilities.

7. ISUS Contact

For further information please contact:

Dr. Edward Miller

Technical Director

Software Research Associates

P. O. Box 2k32

San Francisco, CA 94126
(415) 957-1441

Mr. Morton Hirschberg

U. S. Army Ballistic Research Laboratory
Aberdeen Proving Ground, MD 21005

(301) 278-4271

8. Proprietary Statement

This system Is proprietary to Software Research Associates. The
demonstrations of the system will be made for the purpose of describing the

technical capabilities of the system only. Extensive documentation of a

proprietary nature is available but will not be distributed to attendees

without appropriate levels of protection of proprietary rights. Information and
material that is distributed freely at the demonstrations carries no such

restrictions, however.



ISUS
SAMPLE OUTPUT

Page 140

SAMPLE CO'IM^XD SEQUENCES

Figure A:

COMMAND? FIND /MINO/
2480 MINCLAS=MINO(MINCLAS, ICURCLS)

COMMAND? VIEW 5

2430 C

2440 C SET UP FOR THE NEXT CHARACTER
2450 IF( ITKLST.GE. ITKMAX) RETURN
2460 20 INDEX=INDEX+1
2470 MINCM1=MINCLAS
2480 MI NCLAS=MI NO (MINCLAS, ICURCLS)
2490 MAXCLAS=MAXO(MAXCLAS, ICURCLS)

2500 IF( ICURCLS. LE. DIGIT. AND. INDEX. LE.80)GOTO 20
2510 LS= INDEX

2520 MINCLAS=ICURCLS
2530 MAXCLAS= ICURCLS

COMMAND? UPDATE DEL 2460
STATEMENT 2460 DELETED.
*** DELETED STATEMENT HAD A LABEL.
*** PROGRAM MAY NO LONGER BE SYNTACTICALLY CORRECT.
*** DELETED iiTATEMENT WAS ASSIGNMENT TO A VARIABLE.
*** THE FOLLOWING LIST IS OF THE STATEMENTS WHICH
*** LOGICALLY FOLLOW THE DELETED STATEMENT AND CONTAIN A
*** REFERENCE TO THE VARIABLE ASSIGNED TO IN THE DELETED
*** STATEMENT.
*** 2500
*** 2510
*** 2590
STATEMENT 1070:
MESSAGE: TARGET OF GOTO NOT FOUND.

STATEMENT 1 1 90

:

MESSAGE: TARGET OF GOTO NOT FOUND.

STATEMENT 2500:
MESSAGE: TARGET OF GOTO NOT FOUND.
*** AS STATED IN THE ABOVE MESSAGE(S), THE LOGICAL
*** STRUCTURE OF THE CURRENT MODULE IS FLAWED, AND SO THE
*** DIRECTED GRAPH OF THE MODULE IS UNUSABLE. ANY
*** CONSEQUENCE ANALYSIS THAT REQUIRES THE DIRECTED
*** GRAPH WILL BE INHIBITED UNTIL THE LOGICAL STRUCTURE
*** OF THE MODULE IS SOUND.

COMMAND? RESTORE 2460
2460 20 1NDEX=INDEX+1

COMMAND?



ISUS
SAMPLE OUTPUT

Page

SAMPLE COMM^XD SEQUENCES

Figure B:

COMMAND? M0DULE=LEXFR2
LOADING MODULE LEXFR2
MODULE LOADED, 258 STATEMENTS READ.

COMMAND? F /ITKDIR/

550 DIMENSION ISTMT( 666) , ITKDIR(2 , 200)

COMMAND? VIEW 4

510 C

520 INCLUDE "STDFIL.COM"
530 INCLUDE "DEBUG.COM"
540 C

550 DIMENSION ISTMT(666) , ITKDIR(2,200)
560 INTEGER QTYPE
570 LOGICAL LCOMP
580 C

590 DATA I0PAR/1H(/

COMMAND? DIMENSION DEL ITKDIR 1

550 DIMENSION ISTMT( 666) , ITKDIR( 200)
830 ITKDIR(J)=0

UNSUBSCRIPTED OCCURRENCE OF VARIABLE IN STATEMENT 1020, NO CHANGE MADE.
WRITING SECONDARY COMMANDS FOR STMT 1020:

1020 CALL SUBLXK 1-4, 1-1,ITKLST, ITKDIR, ITKMAX,LS)

SECONDARY: M0DULE=SUBLX1
SAVING MODULE LEXFR2
MODULE SAVED, 258 STATEMENTS WRITTEN.

LOADING MODULE SUBLXl
MODULE LOADED, 44 STATEMENTS READ.

SECONDARY: DIMENSION DEL lU 1

UNSUBSCRIPTED OCCURRENCE OF VARIABLE IN STATEMENT 20, NO CHANGE MADE.

240 DIMENSION ITKDIR(200)

3 1 0 ITKDIRC ITKLST) =ISTART

320 ITKDIRC ITKLST) =I-1START+1

SECONDARY: M0DULE=LEXFR2
SAVING MODULE SUBLXl
MODULE SAVED, 44 STATEMENTS WRITTEN.
LOADING MODULE LEXFR2

MODULE LOADED, 258 STATEMENTS READ.

COMMAND?



ISUS
SAMPLE OUTPUT

Page 142

SAMPLE CO'mXD SEQUENCES

Figure C:

COMMAND? P 1420
1420 ITYPE=IRECTP(K)

COMMAND? VIEW 4

1380 C

1390 C SET ELEMENTS OF PRESENT KEYWORD
1400 C

1410 NROW=K
1420 ITYPE=IRECTP(K)
1430 IGRUP=IGRP(K)
1440 INDNTY=INDTYP(K)
1450 IPRNCK=IPARCK(K)
1460 NSEG=NSGS(K)

COMMAND? SUB /K/K+1/ 1410 1460
1380 C

13 90 C SET ELEMENTS OF PRESENT KEYWORD
1400 C

1410 NR0W=K+1
1420 ITYPE=IRECTP(K+1)
1430 IGRUP=IGRP(K+1)
1440 INDNTY=INDTYP(K+1)
1450 IPRNCK=1PARCK(K+1)
1460 NSEG=NSGS(K+1)

COMMAND?



ISUS
SAMPLE OUTPUT

Page 143

SAMPLE COMMAND SEQUENCES

Figure D:

COMMAND? VIEW A

760 C RUN THROUGH ALL ENTRIES
770 1=1

780 310 JBSO( I)=JSTAT*(KLS0(I)+I)
790 1=1+1

800 IF(I.LE.300)GOTO 310
810 IF( JBSO( I) .GT.0)GOTO 320

820 CALL ERR0R(JBS0(I))

830 320 CONTINUE
840 C

COMMAND? MOVE 810 830 B 800

COMMAND? POS 800

800 IF( JBSO(I).GT.O)GOTO 320

COMMAND? VIEW 4

760 C RUN THROUGH ALL ENTRIES
770 1=1

780 310 JBS0(I)=JSTAT*(KLS0(I)+I)
790 1=1+1

800 IF( JBSO(I).GT.0)GOTO 320

810 CALL ERRORC JBSO(I))

820 320 CONTINUE
830 IF(I.LE.300)GOTO 310

840 C

COMMAND?



ISUS
SAMPLE OUTPUT

Page 144

SAMPLE COMMAND SEQUENCES

Figure E:

COMMAND? VIEW 6

210 JPAR=1

220 DO 600 I=IFRST+1 , ITKLST-1

230 IF( ITGET( I , ITOK , LEN) . NE. 1 ) GOTO 300
240 IF( ISTOK( ITKLST, ITKDIR, 1,1, ILPR) .ITC. 1 ) GOTO 100
250 JPAR=JPAR+1
260 GOTO 200
270 100 IF( ISTOKC ITKLST, ITKDIR, 1,1, IRPR) . NE. 1 ) GOTO 200
280 JPAR=JPAR-1
290 200 CONTINUE
300 IF( JPAR.EQ.0)GOTO 600
310 ILST=I
320 ITBLPR=1

330 300 CONTINUE

COMMAND? DUP 250 A 300

COMMAND? POS 270
270 100 IF( IST0K( ITKLST, ITKDIR, 1,1, IRPR). NE.DGOTO 200

COMMAND? VIEW 6

210 JPAR=1
220 DO 600 I^IFRST+l, ITKLST-1

230 IFdTGETd, ITOK, LEN). NE.DGOTO 300

240 IF( ISTOKC ITKLST, ITKDIR, 1,1, ILPR). NE.DGOTO 100

250 JPAR=JPAR+1
260 GOTO 200

270 100 IF(IST0K( ITKLST, ITKDIR, 1,1, IRPR). NE.DGOTO 200
280 JPAR*JPAR-1
290 200 CONTINUE
300 IF(JPAR.EQ.0)GOTO 600

310 JPAR=JPAR+1
320 ILST-I
330 ITBLPR=1

COMMAND?



ISUS. Page 145

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. CODE INPUT
. SRTRAN
. FORTRAN

FUNCTION
. TRANSFORMATION

. EDITING
. STATIC ANALYSIS

. MANAGEMENT
. CONFIGURATION MANAGEMENT
. CHANGE CONTROL

. ERROR CHECKING

. DATA FLOW ANALYSIS

. STRUCTURE CHECKING
OUTPUT

. USER OUTPUT
. LISTINGS
. DIAGNOSTICS

. MACHINE OUTPUT
. SOURCE CODE OUTPUT

. SRTRAN

. FORTRAN

IMPLEMENTATION LANGUAGE: SRTRAN

TOOL PORTABLE

;

YES, TOOL SIZE; APPROX. 40K NC'SS

TOOL AVAILABLE; YES, PUBLIC DOMAIN; NO

RESTRICTIONS (COPYRIGHTS, LICENSES, ETC .

)

; LISCENSED
SOFTWARE SYSTEMS

TOOL SUPPORTED ; YES, TOOL SUPPORT: SOFTWARE RESEARCH
ASSOCIATES

CONTACT ; EDWARD F. MILLER, SOFTWARE RESEARCH ASSOCIATES,
P.O. BOX 2432, SAN FRANCISCO, CA, 94126, USA, 415-957-1441
MORTON HIRSCHBERG, US ARMY BALLISTIC RESEARCH LABORATORY,
ABERDEEN PROVING GROUND, ABERDEEN, MD, 21005, USA,
301-278-4271



FAME Page 146

A Software Engineering Tool Demonstration of

FAME

Front-End Analysis and Modeling Environment

A Product Of

HIGHER ORDER SOFTWARE, INC.

INTRODUCTION

FAME, the Higher Order Software, Inc. Front-End Analysis and Modeling
Environment, is an interactive computer aided design tool that allows
users to build, analyze, validate, store and graphically display models
of systems. Use of FAME promotes higher productivity in the develop-
ment of systems because it is easy to learn, and allows a spectrum of
users to build many types of models necessary for system life cycle
development and management, and insures consistency between them.

The techniques employed by HOS, Inc. have been developed over a number
of years with a view toward providing a complete methodology for
specification of complex, large scale systems. It has effectively been
used for a variety of applications ranging in size from small and simple
to large real-time systems. As part of its long range commitment to
development of an integrated set of automated techniques that support
the HOS methodology, HOS, Inc. has developed and is now marketing its

automated modeling system.

Currently there are a number of manual methods in use that aid in design
of systems. In general, these methods are costly to update and difficult
to validate because they are maintained manually. Other systems exist
to allow the user to describe the model in a computer so that it can be

analyzed. These systems generally reside on large scale computers, are

costly to operate and are not user friendly.

FAME is a computer-based system for interactively developing, analyzing
and displaying HOS system models in a user friendly environment. The

nature of the model is such, that when completed it can be the basis for

projection to a variety of forms such as Structured Design Diagrams,
Petri-Nets, Data Flow Diagrams, PSL/PSA, various HOL source codes, etc.

The user's interface with the analyzer is easily recognized by any current
user of a structured modeling approach; therefore extensive training is

unnecessary. Furthermore, when all the system capabilities are used one
can check on proper usage of Data Types, Functions and Control Structures
and thereby add a new dimension to the design process that will lead to

better, and more easily verified software designs.



FAME Page 147

SUMMARY OF FAME FEATURES

The Fame System features:

Prompted interactive development of models in a control map format
which has been shown to be compatible with a wide variety of

system modeling techniques.

Analysis of modeling errors based on a set of rules specified by
the Higher Order Software methodology. Many common errors are

found as the data is entered. The remainder can be found and

corrected immediately after data entry.

Automated documentation of models in the form of printed specific-
ations, graphic representations that include hierarchy charts and

control maps. Projections to a variety of familiar forms are easily
developed.

Software that is designed to operate on a spectrum of computer
systems including single and multi-user computers with floppy
disk to large scale midi-computer systems such as VAX 11/780,
It is highly modularized and written in PASCAL with a view toward

maximizing transportability.

System model development in a prompted alpha-numeric mode using

either a standard screen-oriented terminal or a printing terminal.

SCENARIO FOR DEMONSTRATION

The Tools Fair demonstration will be conducted in three phases.

I- Brief Overview of Higher Order Software and FAME - The overview,

confined to 15 minutes, will cover basics of HOS, their implement-

ation in FAME and the results of FAME usage.

II- A live demonstration of the system will then be performed. Using

a large screen video terminal and keyboard. Hard copy output will

also be available. (15-30 minutes)

III- User questions and specific demo requests will be handled after

the demo. At that time individuals can ask and get answers to

any questions they have relative to the system. (30 minutes)

Hands on or one-to-one demonstrations can be arranged by contacting

Mr. Jack Rosenbaum at the conference.



FAME Page 148

FAME/HQS RELATED LITERATURE

The following literature is available at the conference.

0 M. Hamilton and S. Zeldin, "The Relationship Between Design and
Verification," The Journal of Systems and Software, 1, 29-56 (1979),

0 J. Rosenbaum, W.R, Hackler, "Requirement Specifications for
Embedded Astronautic Systems", Presented at the American
Astronautical Society, October 1980.

0 FAME System Description

0 A set of Abstracts of other HOS literature that are available on
request from Higher Order Software.

DEMONSTRATION SCHEDULE

Station 11, Wednesday, March 11

Starting 9 AM, 10 AM, 11 AM, 2 PM, 3 PM, 4 PM, 5 PM, 6 PM

DEMONSTRATORS

Jacob D. Rosenbaum

Jacob D. Rosenbaum is the Director of the New York Office of HOS, Inc.

He has 17 years aerospace experience in CAD/CAM Systems and Software
Engineering. Mr. Rosenbaum has spoken frequently on various aspects
of Software Engineering and is knowledgeable in the area of Software
Tools. He was the principal engineer on the design of FAME and is

responsible for developing related documenting and training courses.

Christopher Early

Christopher Early is a Programmer/Analyst at the New York Office of

HOS, Inc. He has had experience with a wide variety of computer
systems and programming languages. Mr. Early was a major contributor
to the design and programming of FAME.



FAME
SAMPLE OUTPUT

hm: ordset
Outputs

A

RADAR
SYSTEM

i: ORDSEl
ssf: ordset
raf: ordset

Page 149

I ri p u 1

5

A2
RADAR
SYSTEM
PROCESS-
ING

COJOIN

Al

RADAR
SYSTEM
INITIAL-
IZATION

HM I

SSF
RAF
SQ'

SQ I

SSF

Keyname Lo nan a me Datatype. ..Part of.

I

SSF
RAF
HM
SG

INFORMATION FILE
SEARCH SCAN FILE
RADAR ACTIVITIES FILE
HANDOVER MESSAGE
ORDERED SET OF REQUESTS

ORDSET
ORDSET
ORDSET
ORDSET
ORDSET

warning: keyname 'SQ'' not found in alobal or local model.

TV P

I

CAL PARENT/OFFSPRING DIAGRAM



FAME
SAMPLE OUTPUT

Page 150

u. u.
CD <r

»-4 O) cc

X

cn
-H cn

C3

u. u.
cn <i cr

i-^ cn u: cn

TYPICAL HIERARCHICAL TREE DIAGRAM

ii: CO

A U.
o ^

O

CQ

M U: HH

CJ

O
O

K H- t

U O CO
Ul UJ >H

<r -) H- cn
C i id ui ui
<! o a a

C5

u.
<i (3M a; cn

o C5
U CO

u.
cn N

M CO W



FAME Page 151

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. VHLL INPUT
FUNCTION

. STATIC ANALYSIS
. ERROR CHECKING

OUTPUT
. USER OUTPUT

. DIAGNOSTICS

. GRAPHICS
. HIERARCHICAL TREE
. CONTROL MAP

IMPLEMENTATION LANGUAGE: PASCAL

TOOL PORTABLE

;

NO, TOOL SIZE: MIN VIRTUAL MEMORY - 2 56K

COMPUTER (OTHER HARDWARE )

:

VAX 11/780, CDC CYBER, IBM

OS (OTHER SOFTWARE )

:

VM/CMS, NOS, VMS

TOOL AVAILABLE: YES, PUBLIC DOMAIN; NO

RESTRICTIONS (COPYRIGHTS, LICENSES, ETC

)

; OBJECT CODE
AVAILABLE UNDER LICENSE, TIME SHARED USAGE UNDER CONTRACT

TOOL SUPPORTED: YES, TOOL SUPPORT; HIGHER ORDER SOFTWARE

CONTACT; JACK ROSENBAUM, HIGHER ORDER SOFTWARE, INC., 131

JERICHO TURNPIKE, JERICHO, NY, 11753, USA, 516-997-7825



SCHEMACODE Page 1

SCHEMACODE

AN INTERACTIVE SCHEMATIC PSEUDOCODE FOR PROGRAM DEVELOPMENT,

DOCUMENTATION AND STRUCTURED CODING

{I2.I1.C2/T1.T2.T5.T6.S7.S11.S16./U3.U4.U5.M5.M6)

Pierre N. Robillard and Rejean Plamondon
Ecole Polytechnique de Montreal

INTRODUCTION

A research team from the man-computer interface group at
Ecole Polytechnique de Montreal headed by Professors R. PLAMONDON and
P.N. ROBILLARD has been working for the past three years on an innova-
tive computer programming tool. The key elements of the methodology are
a word-graphic type of communication called Schematic Pseudocode.
Schemacode is the name of the tool that implements the schematic pseu-
docode. Schemacode is more than a comprehensive automatic documenta-
tion and coding tool, it links together the supervisors and the pro-
grammers on the development of a software project.

SCHEMATIC PSEUDOCODE; A Methodology

Schematic pseudocode (SPG) is a chart form which offers many
advantages of the "alphanumerical " pseudocode {executable, self-expla-
natory...) and all of the advantages of pictorial structured algorithm.
Each program can be graphically expressed in terms of actions which can
be:

1) Sequential 2) Conditional 3) Repeti ti ve

?1

^2

B

4)1/0

<3 in

|>out

In this description, we use S for statement and B for Boolean
expressions. The graphic symbolism is exclusively designed to represent
the structure of the process while words are used to describe state-

ments and Boolean expressions.

The problem of solving all equations of the form
ax2 + bx + c = 0 for several given sets of a, b, c values, shown

below, is a simple example that illustrates the use of schematic pseu-

docode. Complex problem solving using SPC will be demonstrated.



SCHEMACODE
Page 153

<] a. b. c

COEFFICIENTS ARE. a, b.

eof

b = o

> NO ROOT |> -c/b>
1

d - b^ - 4ac

d ^ o d = o

-b ± \/d

2a
>

-b

2a >
FIGURE 1

SPC is an easy-to-learn language and its unique property of
word-graphic type of communication can satisfy the needs of both the
supervisor and the programmer.

SCHEMACODE; A Tool

Schemacode is a software package running on an IBM 360. The
terminal (VT-100 compatible) makes it interactive. The primary task of
Schemacode is to assist users in the development, documentation and
structured coding of programs. It usually transmits the source program
to the main computer for execution. In the development phase of a

project the SPC is output at the graphic printer, while in the coding
phase, the structured listing can be output.

Once the need or the task to be performed by software is

correctly defined, the system analyst enters the main control struc-
tures at the terminal. This first step is called refinement #0. The
first or any subsequent refinement can contain up to 10 structures.

This limit is not restrictive. It rather appears as a way to force a

top-down approach. Schemacode asks the user to identify each of the

segments. The identifications expressed in natural language will be

automatically integrated later as comments in the formal language pro-

gram. The user can proceed one step down by refining one segment.

Schemacode will ask for identification of every newly defined segment

or control structure.



SCHEMACODE Page 154

The process can go as far down as required. Once the desired
level is reached, Schemacode will automatically integrate all the steps
and provide a complete chart of the process. The user can recall any
refinement, redraw it or modify it. All modifications to structures or
comments will be automatically integrated into the whole. When the
process is pursued to the code level a structured listing is provided
in a selected language. A real advantage provided by Schemacode is that
every program developed has a unique up-to-date documentation listing.

SCHEMACODE: The Demonstration

A typical scenario of Schemacode demonstration will include
the following steps:

1. What Schemacode can do for you?
•automation of: - step-wise refinement and top-down approach

- documentation
- structured coding

2. An overview of schematic pseudocode (SPG).

3. Ready for an example?
•design of a program with schemacode

(data processing, engineering)

•modification of an existing non documented and unstructured
Fortran program.

STATION, DAY AND TIME

Station 1, Thursday, March 12 from 10:00 am until 6:00 pm.

The demonstration will take about thirty minutes, according to the
posted schedule. Schemacode literature (reference manual, user's guide,

collected examples...) will be available on request.

THE DEMONSTRATORS

Dr. Rejean PLAMONDON and Dr. Pierre N. ROBILLARD are respec-
tively assistant professor of electronics and associate professor of
computer science at Ecole Polytechnique at the Universite de Montreal,
CANADA. They lead a research group currently involved in projects based

on man-computer interaction.

ACKNOWLEDGEMENTS

This research is partially supported by CRSNG grant RD-60,

FCAC grant EQ-1727. The authors wish to thank everyone who has contri-

buted to the development of the tool, in particular Mr. Augustin
'BRAIS, Mr. Tan Phalkun and professor Daniel THALMANN.



SCHEMACODE
SAMPLE OUTPUT

Page 155

EXAMPLE OUTPUT

A program for solving the quadratic equation as derived with the
help of SCHEMACODE is illustrated in the following pages.

The first step ROOO is to get one set of input parameters which
contains three values, one each for a, b, c. Since this problem
requires the solution of the equation for several sets of a, b,
c values the second step ROOl is to loop over all the remining
data (EOF). Before the looping is resumed, the roots must be
computed from the data just read. There are two alternatives
from which we must select, the cases R002 which have less than
two roots and the cases R003 which have two roots (a = 0). The
former concerns solving the equation bx + c = 0 which may have
either a single root or no roots at all. For the latter it is

known that two roots exist, but whether they are real or complex
must still be decided.



SCHEMACODE
SAMPLE OUTPUT

Page 156

ROOD

SOLUTION OF QUADRATIC EQUATION
GET ONE SET OF COEFFICIENTS

Ia,b,c

EOF

l> "COEFFICIENTS", A, B,C

COMPUTE ROOTS
ROOl

(I A,B,

ROOl

COMPUTE ROOTS

A = 0

LINEAR
R002

QUADRATIC
R003

ROOO



SCHEMACODE
SAMPLE OUTPUT

Page 157

R002

- LINEAR

B = 0

NOROOT" l>- C/B

ROOl

R003

- QUADRATIC

D=B**2-4*A«C

D.GT.O D.EQ.O

Droot 1 D-B/<2*A) D"COMPLEX"

DrOOT 2 .

ROOl



SCHEMACODE Page 158

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. VHLL INPUT
. SCHEMATIC PSEUDOCODE

. TEXT INPUT
FUNCTION

. TRANSFORMATION
. EDITING
. FORMATTING
. RESTRUCTURING

. STATIC ANALYSIS
. MANAGEMENT
. COMPLEXITY MEASUREMENT

OUTPUT
. USER OUTPUT

. LISTINGS
. MACHINE OUTPUT

. SOURCE CODE OUTPUT
. FORTRAN

IMPLEMENTATION LANGUAGE: FORTRAN

TOOL SIZE: 150 K

COMPUTER (OTHER HARDWARE )

:

IBM 360/370

TOOL AVAILABLE: YES, PUBLIC DOMAIN: NO

TOOL SUPPORTED: YES, TOOL SUPPORT ; ECOLE POLYTECHNIQUE DE
MONTREAL

CONTACT: PIERRE N. ROBILLARD, DEPT OF EE, ECOLE
POLYTECHNIQUE, BOX 6079, STATION A, MONTREAL, 83C3A7, CANADA,
514-344-4711



INSTRU Page 159

INSTRU

:

AN AUTOMATED SOFTWARE INSTRUMENTATION SYSTEM

A Software Engineering Tool Demonstration

J. C. Huang
University of Houston

1. INTRODUCTION

This proposal is submitted in response to the call for soft-
ware engineering tool developers to demonstrate their accom-
plishments at the Fifth International Conference on Software
Engineering in San Diego, March 9-12, 1981.

We will be demonstrating the INSTRU software system currently
developed by the Program Testing Project at the University of
Houston.

2 . SUMMARY

INSTRU is an experimental software tool that can be used to
increase the error-detection capability of a program test by instru-
menting the program for data-flow anomaly detection and symbolic-
trace generation. The ideas involved are briefly described below:

(a) Data-Flow Anomaly

In execution a program may act on a variable in three different
ways: viz., define, reference, and undefine. A variable is defined
in a statement if an execution of the statement assigns a value to
that variable. A variable is referenced in a statement if an
execution of the statement requires that the value of that variable
be obtained from the memory. Thus, in the assignment statement

X = X + y - z

y and z are both referenced, whereas x is first referenced and then
defined. A variable may become undefined in many circumsstances

.

For example, in a Fortran program, the index variable of a DO state-
ment becomes undefined when the loop is terminated, and the local
variables of a subprogram become undefined when RETURN statement is
executed.

While a program is being executed, a sequence of action will be
taken on each variable in the program. The design of a programming
language is such that a variable cannot be referenced unless its
value is previously defined. Furthermore, there is no need to
define a variable unless it is to be referenced (i.e., its value is
to be used) later. Thus, if we find that a variable in a program is

(1) undefined and referenced, (2) defined and then undefined, or

(3) defined and then defined again, we may then reasonably conclude



INSTRU Page 160

that a programming error might have been committed.

The three types of data flow anomalies mentioned above can be
detected by instrumenting the program to be tested as described in
References [1-3] , and then execute it for a properly chosen set of
test cases,

(b) Symbolic Trace

A symbolic trace [4] is a linear listing of source statements
and branch predicates that occur along an execution path in a
program. Essentially, it represents the sequence of program
components exeamined by a programmer in the process of code walk-
through, or in performing symbolic execution. As such, it can be
utilized to facilitate program debugging and verification.

A symbolic trace provides us with three types of information
that are particularly useful in connection with program testing:
(1) it explicitly describes the path along which the program is
executed, (2) it displays the conditions that must be satisfied at
various points along the path, and (3) it clearly describes the
computation performed in terms of the statements executed. The
first type of information can be used to determine the extent of
test coverage. If the coverage need to be increased, the second
type of information can be used to select additional test cases.
If a test failed, the third type of information can be used to
facilitate location of programming errors. The presence of a
programming error is generally more obvious on a symbolic trace
than on the program text.

3. A SCENARIO OF AN INSTRU DEMONSTRATION

Several example programs will be used to demonstrate how
the software tool INSTRU works. The attendees can also try it
out by using a sample program of their choice as follows:

(1) Enter the program and save it in a file. The program should
be written in ANSI Fortran and meet certain minor syntactic
constraints listed in the user's guide [5],

(2) Instrument the program for data-flow anomaly detection by
invoking INSTRU. D subsystem.

(3) Execute the instrumented program for a number of test cases
interactively on the terminal. If there is a data-flow
anomaly on the execution path, a message will appear on the
terminal indicating the nature and location of the anomaly
as well as the variable involved.

(4) Instrument the program for symbolic-trace generation by
invoking INSTRU. S subsystem.



INSTRU
Page 161

(5) Execute the instrumented program interactively for the same
test cases used in step (3) . The symbolic trace that des-
cribes the test path will be generated in the process.

Remarks: If the test failed, or if a data-flow anomaly was
detected in step (3) , one can examine the symbolic trace to
find the source of error. Ususally the presence of a
programming error is more obvious on a symbolic trace than
on a program text. It is useful to study the symbolic trace
even if the test was successful. One may discover that the
test result is fortuitously correct.

4. REFERENCES

[1] J. C. Huang, "Program Instrumentation and Software Testing,"
COMPUTER, vol. 11, no. 4, April 1978.

[2] J. C. Huang, "Program Instrumentation: a Tool for Software
Testing," INFOTECH State of the Art Report: Software Testing,
Volume 2, 1979.

[3] J. C. Huang, "Detection of Data Flow Anomaly through Program
Instrumentation," IEEE Transactions on Software Engineering,
vol. SE-5, no. 3, May 1979.

[4] J. C. Huang, "Instrumenting Programs for Symbolic-Trace
Generation," COMPUTER, vol. 13, no. 12, December 1980.

[5] INSTRU User's Guide, Department of Computer Science, Univ.
of Houston, (will be made available at the Tool Fair)

5. STATION, DAY, AND TIME

Station 2, Thursday, March 12, from 10:00 am to 2:00 pm.

6. THE DEMONSTRATOR

J. C. Huang:

J. C. Huang is a professor of computer science at the
University of Houston. He has authored numerous articles
on program analysis and testing, and is the principal
investigator of a research project on program testing
currently supported by National Science Foundation.
He received his MS degree from Kansas State University
in 1962, and his Ph.D. degree from the University of

Pennsylvania in 1969.

address: Department of Computer Scince
University of Houston
Houston, TX 77004

telephone: 713 749-2856/4791



INSTRU Page 162

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. CODE INPUT
. FORTRAN

FUNCTION
. TRANSFORMATION

. INSTRUMENTATION
. DYNAMIC ANALYSIS

. TRACING
. DATA FLOW
. LOGIC FLOW
. PATH FLOW

OUTPUT
. USER OUTPUT

. TABLES

. LISTINGS
. MACHINE OUTPUT

. SOURCE CODE OUTPUT
. FORTRAN

IMPLEMENTATION LANGUAGE: FORTRAN IV

TOOL PORTABLE: NO

COMPUTER (OTHER HARDWARE ) : HONEYWELL 6000

OS (OTHER SOFTWARE): 4JS2

TOOL AVAILABLE: YES, PUBLIC DOMAIN: YES

TOOL SUPPORTED: NO

CONTACT: J. C. HUANG, UNIVERSITY OF HOUSTON, CENTRAL
CAMPUS, DEPT OF COMP SCI, HOUSTON, TEXAS, 77004, USA,
713-749-2856



SARA- Page 163

Control-Flow Analysis in SARA +

Rami R. Razouk
Computer Science Department

University of California, Los Angeles

1. Introduction:

SARA (System ARchitects' Apprentice) is a computer-aided design system,
currently under development at UCLA, which supports a structured multi-level
design methodology for the design of hardware or software systems. It

comprises a number of language processors and tools for assisting designers
using the SARA methodology, together with a user- inter face capability for as-
sisting designers using the SARA system. The SARA system is implemented on
the MIT Multics system and is readily accessible through ARPANET or TELENET.

The hierarchy of the SARA system is illustrated below:

SARA
I I

I I

I I

requirements* SLl behavior MID* library tutor utility comment news

I

SAM

I I I I I

translator linker PLIP simulator analyzer

The leaves of the left branch of the tree are the tools supporting the

methodology while the leaves of the right branch are the tools supporting the

SARA system [FenRSO] . The asterisks indicate that the tools have not been im-

plemented yet.

2. Summary :

The SARA methodology is requirement driven and it supports both top-down

and bottcm-up design procedures. Each step of a design starts with the defin-

ition of the requirements for the system and the assumptions about the

system's environment. The tools to accept and analyze requironent definitions

are currently under development and are discussed in a recently completed

dissertation [WinJSO]

.

+ This work was supported by the Department of Energy, Contract No. DE-AF03-

765F0034 P.A. , No. bE-AT-036, ER70214, Mod. A006.



SARA Page 164

Hardware and software systems are designed in SARA by modelling their
structure and behavior . The tools SLl (Structural Language 1) and Q© (Graph
Model of Behavior) support definition of structural and behavioral models
respectively. GfIB allows definition of behavior in three domains: control-
flow, data-flow and interpretation. The OIB Translator is the language pro-
cessor for the control and data-graph definitions; FLIP is the language pro-
cessor for the interpretation.

Q'B models are mapped to structures and are denoted SLl-GMB models. The
linking of Q©s mapped to connected structures is processed by the GMB-Linker.

The ay© Simulator provides an interactive simulation environment v^ich
permits experiments on the behavioral models. The O© Analyzer allows
designers to perform formal analysis on the Offi control-graph [RazR30a,b]

.

Behavioral Attributes can be associated with structures by means of
SARA'S Attribute-Based Model (SAM) [SamASl]

.

A top-down design strategy can be applied by refining structural and
behavioral models of the system. A bottom-up design strategy can be applied
by conposing structural and behavioral models of existing building-blocks
[DroJSO]

.

In software design, a path between modelling and code is provided by the
definition of the structure of code and a mapping between the structure of the
models and the code structure. The MID (Module Interface Description) tool

(not yet implemented) permits these definitions [PenM80,81].

2' Scenario:

SARA'S Control-Flow Analyzer provides the capability for formally
analyzing those aspects of behavior modelled explicitly in the control domain
of the GMB. Typically such behavior includes flow-of-control , process syn-
chronization and resource sharing. The analyzer is capable of performing an
exhaustive analysis to detect all potential deadlocks and cycles. The results
of the analysis are presented to designers in a very readable form vrtiich

highlights the potential areas of difficulty and provides clues as to the pos-
sible sources of the difficulties. The Control-Flow Analyzer combats the
"state explosion" problem by providing a mechanism for performing "proper"
abstraction using the "reduction procedure" developed at UCIA.

In this demonstration methods for modelling behavior in the control
domain will be presented. The analysis techniques, including reduction, will
be explained through the use of some simple examples. The full power of the
analysis machinery will be denonstrated by modeling and analyzing a complex
CCITT communication protocol standard: X.21.

Attendees will be permitted to enter models in the form of QIBs or Petri
Nets and to exercise all of the analysis mechanisms provided.



SARA

4. SARA Literature:

Page 165

[DroJSO] Drobman, J. "Building Block Modeling Methodology for Composition of
Microprocessors-Based Digital Systems," Ph.D. Dissertation, Computer
Science Department, Uhiversity of California, Los Angeles, July
1980.

[EstG78] Estrin, G. "A Methodology for design of digital systems - supported
by SARA at the age of one," AFIPS, Proceedings of the National Com-
puter Conference , June 1978.

[FenR80] Fenchel, R.S "Interactive Systems with Integral Help," Ph.D. Disser-
tation, Computer Science Department, University of California, Los
Angeles, July 1980.

[PenM80] Penedo, M.H. "Ihe Use of a Module Interface Description in the Syn-
thesis of Reliable Software Systems," Ph.D. Dissertation, Computer
Science Department, University of California, Los Angeles, November
1980.

[PenM81] Penedo, M.H. , et. al. "An Algorithm to support Code-Skeleton Genera-
tion for Concurrent Systons," Proceedings of the 5th International
Conference on Software Engineering , San Diego, California, March
1981.

[RazR80a] Razouk, R. "Computer-Aided Design and Evaluation of Digital Computer
Systems," Ph.D. Dissertation, Computer Science Department, Oiiversi-
ty of California, Los Angeles, August 1980.

[RazRSOb] Razouk, R. and G. Estrin "Modeling and Verification of Communication
Protocols in SARA: The X.21 Interface," IEEE Transactions on Comput-
ers , December 1980.

[SamA81] Sampaio, A.B.C. "A Scheme of Attributes for Checking Design Incon-

sistencies," Ph. D. Dissertation, Computer Science Department,
University of California, Los Angeles, to be completed 1981.

[WinJSO] Winchester, J. "Requironents Definition and its Interface to the

SARA Design Methodology for Computer-Based Systems," Ph.D. Disserta-
tion, Computer Science Department, [liiversity of California, Los

Angeles, Novoiiber 1980.

5^. Station , Da^ and Time :

Station 3, Thursday March 12, from 11:00 a.m. until 3:00 p.m.

6. The Demonstrator: Dr. Rami R. Razouk

Dr. Razouk is currently an Assitant Professor in Residence in the Com-
puter Science Department at UCIA. His research interests include computer-
aided design and evaluation of digital computer systems. He received his

Ph.D. in Computer Science from UCLA where he led the development of the SARA
system. He also holds an M.S in Computer Science and a B.S. in Enginerring

fran XLA.



SARA Page 166

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. VHLL INPUT
. SLl
. GMB
. BNF

. TEXT INPUT
FUNCTION

. TRANSFORMATION
. TRANSLATION
. FORMATTING
. RESTRUCTURING

. STATIC ANALYSIS
. DATA FLOW ANALYSIS
. STRUCTURE CHECKING
. CROSS REFERENCE
. CONSISTENCY CHECKING
. COMPLETENESS CHECKING
. SCANNING

. DYNAMIC ANALYSIS
. SIMULATION

OUTPUT
. USER OUTPUT

. GRAPHICS

. LISTINGS

. USER-ORIENTED TEXT
. DOCUMENTATION
. ON-LINE ASSISTANCE

. MACHINE OUTPUT
. SOURCE CODE OUTPUT
. DATA OUTPUT
. PROMPTS

IMPLEMENTATION LANGUAGE ; PL/l , TOOL PORTABLE: NO, TOOL
SIZE; 25000 LINES OF PL/l SOURCE

COMPUTER (OTHER HARDWARE

)

; HONEYWELL, OS (OTHER
SOFTWARE ) : MULTICS

TOOL AVAILABLE ; YES, PUBLIC DOMAIN: YES, TOOL SUPPORTED ;

NO

CONTACT: G. ESTRIN, UNIVERSITY OF CALIFORNIA, COMPUTER
SCIENCE DEP, BOELTER HALL 37 32, LOS ANGELES, CA, 90024, USA,
213-825-8878



ONLINE ASSIST Page 167

A User Interface for Online Assistance

Nathan Relies

SPETOY^UNIVAC
Lynne A. Price

BNR, Inc.

1. INTRODUCTION

The tool we will demonstrate is described in a paper to be presented at the

conference: "A User Interface for Online Assistance." The user interface enables
programmers to provide and maintain online aids in an interactive system. Through
the interface, users are giveh a set of consistent and unobtrusive aids that display

summary information, command descriptions, explanations of error messages, and
other online documentation. The interface will be demonstrated from the views of

both the end-user and the programmer. It has been implemented on a Sperry
Univac 1 100 and on a POP 1 1/70 running on the UNIX operating system.

2. SUMMARY

From the user's point of view, special assistance functions are always available to

request information or to obtain successively more detailed explanations of a

displayed message. These requests are entered through function keys or as special

codes and do not affect the interpretation of other input. Different types of aids may
be requested. For instance, a user who makes an error when responding to a system

prompt can obtain further explanation of the original question, further explanation of

the error message, or examples of correct responses.

From the programmer's point of view, each multi-level message (called a SCRIPT) is

written as a separate file. In both implementations, all the scripts required for a

given application are grouped together in a single file called the MESSAGE FILE,

although single scripts can still be accessed independently by any text editor. To

provide online assistance, a program must request all user input through the

interface, which screens out assistance requests. When such requests are detected,

appropriate help is provided and new input is solicited; other inputs are returned to

the calling routine. Some examples of the types of aids that can be provided by the

interface are shown on the following page. Of course, different aids are possible,

depending on the nature of an application and the characteristics of its users. The

assistance request codes shown here (?ERROR, 7QUESTI0N, etc.) are also intended

only as examples; the programmer may define other codes or. if available, suitable

function keys.



ONLINE ASSIST Page 168

USER MAY ENTER TO OBTAIN

?ERROR

?QUESTION

7EXAMPLE

PDEFINE term

PFORMAT command

7MENU

?DOC section

?STATUS

7INSTRUCT

7NEWS

?HELP

successively more detailed explanations of a displayed error

message

successively more detailed explanations of a displayed

question or prompt

successive examples of correct input or valid commands

explanation or definition of a specified term

a description of the format of a specified command

a list of allowable commands

a display of a specified section of documentation

a description of the current value of various system parameters

instruction on the use of the system

news of interest to users of the system

a list of available user aids

3. SCENARIO

Attendees will be able to test existing software that incorporates the user interface.

They will be encouraged to ask for different types of online assistance and
explanations of displayed messages. Different programs that provide the interface

will be demonstrated and no prior experience with the programs will be required.

Attendees will also be able to inspect the corresponding source code and the text of

assistance messages as entered by the programmer.

4. LITERATURE DESCRIBING THE INTERFACE:

Relies. N., and Price. L A. 'A User Interface for Online Assistance' paper #102 to be
presented at the Fifth International Conference on Software Engineering, 1981. This

paper contains an extensive bibliography on Online Assistance.

Relies. N. The Design and Implementation of User-Oriented Systems. Doctoral

Dissertation, University of Wisconsin-Madison. 1979; University Microfilms No.

79-24.190.

Price. L A. Representing Text Structure for Automatic Processing. Doctoral

Dissertation, University of Wisconsin-Madison, 1978; University Microfilms No.

78-15,065.



ONLINE ASSIST Page 169

5. STATION, DAY. AND TIME:

Station 4; Thursday, March 12; from 1:00 pm to 7:00 pm.

6. DEMONSTRATORS

Nathan Relies is continuing his research on improving the ease with which computer
systems can be learned and used. As a member of Sperry Univac's Software
Research Deparment, his current research is in natural language access *o databases
and in online assistance. He received a Ph.D. in Computer Sciences from the

University of Wisconsin, where he was employed by the Madison Academic
Computing Center in developing and maintaining several database management
systems. He also holds M.S. and B.A. degrees in Computer Sciences from

Wisconsin. Prior to graduate school, he worked for Sperry Univac in the

development of Computer Assisted Instruction systems.

Lynne A. Price is a member of the Computer Science Research Department of BNR,
Inc. and is currently engaged in research on computer-controlled typesetting as well

as online documentation, projects that reflect her interests in computational

linguistics and user-oriented computing. She recently completed work begun as a

dissertation in computer sciences at the University of Wisconsin in Madison and

continued during a postdoctoral research associateship at NASA's Ames Research

Center. Her association with co-author Nathan Relies stems from the LEXICO system

on which they both worked during graduate school. Her undergraduate education

was at the University of Washington in Seattle, where she received a B.S. in

mathematics and an M.S. in computer science.



ONLINE ASSIST
SAMPLE OUTPUT

Page 170

Tue Apr 7 12:48:33 1981
peruse VI. 5 3/11/81

One moment, please.

For a list of available user aids, enter ?

P 0 Sl-1 (Page 4 Line 1 - Page 23 Line 12)
Request? ^
Enter one of the following for help:

Perror, ?menu , Prequest KEYWORD, Pdefine TERM
For explanation of these help functions enter

?

again.
Request? ^
The following codes may be entered at any time (with no preceding
blanks) to obtain the indicated type of help:

?error (or ?e)

?menu (or ?m)

? request KEYWORD
(or ?r KEYWORD)

an explanation of the most recent error message.
?e may be entered several times for progressively
more detailed explanations.

a list of allowable user inputs. After a system
question, ?m may be entered several times for
progressively more detailed descriptions of the
desired information.

a description of the indicated request (KEYWORD
is one of the request keywords listed by ?m)

?define TERM
(or ?d TERM)

a definition of the indicated term (if TERM is
omitted a list of the terms for which definitions

^,„__.^,,„j.,.^^ are available is printed)
Request? 1 7menu I
Any of the following requests may be entered:

text
contents
index
status

to display the text of P 0

to list the subdivisions of P 0

to list the terms pertaining to P 0

to show the status of P 0

about TERMl TERM2 to request information about the
specified combination of terms

passage N to display the requested passage
terms TERM -BEFORE AFTER to list available terms
quit to end the session with peruse

For a description of one of the above requests, enter

?r KEYWORD

where KEYWORD is the first word in one of the requests above.



ONLINE ASSIST
SAMPLE OUTPUT Page 171

Request? ^c^jlAr^-
Definitions are available for the following terms:

choice
combination
contents
index
passage
passage number
P number
peruse
request
status
term
text
Request? ?define P number
"Peruse" operates on a text that has been divided into sections
called "passages". Each passage may itself be subdivided.
Passages are assigned identification numbers (P numbers) to
correspond to line numbers in a complete outline of the text.
Thus, every passage's number is smaller than the numbers of its
subdivisions and also is smaller than the numbers of succeeding
sections. -—

, ,

,

^

.
, y ..^.

.

^^
, ,

^Request? fiabout ^;Call.;^;raagf.ea;l
about call transfer
Passages:
1 P 18 Night Answer From Any Station (Page 7 Lines 24 - 30)
2 P 38 Call Transfer (Page 12 Line 1 - Page 13 Line 9)

Term Combinations:
3 key call transfer
4 call transfer lamp
5 call feature transfer
Choice? (?menu for explanation) |-?mena*{l

Enter a number between 1 and 2 to inspect one of the passages
listed above. Enter a number between 3 and 5 to inspect passages
relevant to one of the combinations of terms listed above. Use
the "status" request to review the possibilities.

Any of the following requests may also be entered:

about TERMl TERM2 TERM3 ... to search for information relevant to
the specified combination of terms

passage N to inspect the specified passage
terms TERM -BEFORE AFTER to display terms
quit to terminate the session with "peruse"

For more information about a specific request, enter
?r KEYWORD

where KEYWORD is the first word in the request



ONLINE ASSIST
SAMPLE OUTPUT

Page 172

Choice? (?menu for explanation)
7: bad choice; enter a number between 1 and 5.

Choice? (?menu for explanation)
[ ?error"}

Enter a number between 1 and 2 to inspect one of the passages
listed above. Enter a number between 3 and 5 to inspect passages
relevant to one of the combinations of terms listed above. Use
the "status" request to review the possibilities.

Choice? (?menu for explanation) \i7-^r\i^j:l~f

No further explanation of the error is available. For more
information, enter

?

for a list of available user aids. If you are unable to proceed,
contact Lynne Price (price on UNIX/C ) at extension 2444.
Choice? (?menu for explanation) I'^r''^

P 18 Night Answer From Any Station (Page 7 Lines 24 - 30)
Request? Any of the following requests may be entered:

text to display the text of P 18
contents to list the subdivisions of P 18
index to list the terms pertaining to P 18
status to show the status of P 18

about TERMl TERM2 ... to request information about the
specified combination of terms

passage N to display the requested passage
terms TERM -BEFORE AFTER to list available terms
quit to end the session with peruse

For a description of one of the above requests, enter

?r KEYWORD

where KEYWORD i s the first word in one of the requests above,
Request? 1 text \

P 18 Night Answer From Any Station (Page 7 Lines 24 - 30)

Night Answer From Any Station

With this type of Night Service, incoming calls will ring on a
night bell(s) and can be answered from any telephone. When the
Night Bell rings, lift the receiver on any phone and dial the
Night Service code. To transfer the call to the appropriate
extension, follow the "Call Transfer" or the "Conference"
procedure.



ONLINE ASSIST Page 17 3

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. TEXT INPUT
FUNCTION

. STATIC ANALYSIS
. MANAGEMENT

. DOCUMENTATION MANAGEMENT
OUTPUT

. USER OUTPUT
. USER-ORIENTED TEXT

. DOCUMENTATION

IMPLEMENTATION LANGUAGE: FORTRAN, C

TOOL PORTABLE: YES

COMPUTER (OTHER HARDWARE )

;

UNIVAC 1100, PDP 11/70

OS (OTHER SOFTWARE) : EXEC 8, UNIX

TOOL AVAILABLE: YES

CONTACT: NATHAN RELLES, SPERRY UNIVAC, MS 2G3, PO BOX 500,
BLUE BELL, PA, 19424, USA, 215-542-2387



FTN-77 ANALYZER
FORTRAN 7 7 AN\LYZER

Page 174

Tool Demonstration For ICSES
John Barkley, Patricia Powell

1. Introduction

The FORTRAN 77 Analyzer was developed by TRW
under contract to the National Bureau of Standards. It pro-
vides static and dynamic analysis of a FORTRAN program. It
is in the public domain and will be available through Na-
tional Technical Information Service (NTIS ) , U.S. Department
of Commerce, 5285 Port Royal Rd., Springfield, V^ 22161 late
summer or early fall of 1981. The Analyzer is written in
FORTRAN 77 and is portable. It requires 64K of memory.

2 . Summary

The FORTRAN 77 Analyzer evaluates the struc-
ture of FORTRAN 77 software both statically, based upon the
source code, and dynamically, during execution. The system
will produce reports describing the findings of the static
and dynamic analysis requested by the user. The Analyzer
system is composed of three parts: the pre-processor , the
instrumented source program and the post-processor. The de-
velopment of the FORTRAN 77 Analyzer was done by the TRW De-
fense and Space Systems Group for the National Bureau of
Standards Institute for Computer Sciences and Technology.
The FORTRAN 77 Analyzer is expected to contribute to the es-
tablishment of a set of generic tools and techniques for the
development of quality software in the Federal Government.

The pre-processor accepts a FORTRAN 77 source
program and options selected by the user to control the ana-
lysis process. The source code is divided into segments, a

group of consecutively executable segments having only one
entry and exit. Code is added to the program so dynamic ex-
ecution statistics can be accumulated.

The user can ask the pre-processor for any or
all of the following options:

-Assertion Checking: An assertion is a soecial form
of the comment statememt which
contains a FORTRAN logical
expression. If this option is
requested, code is added to
monitor the values of assertion
expressions

.

-Tracing: Code is added to print segment
numbers during program
execution

.

-History file management: Execution statistics are
accumulated over several runs



FTN-77 ANALYZER Page 175

of the instrumented source
program

.

The output of the pre-processor consists of:
-the instrumented source program
-an annotated listing of the source program

highlighting segments, assertions and
statements failing syntax analysis

-a subroutine call tree listing
-a static distribution of statement types.

The second part of the analyzer system is the
instrumented source program. The instrumented source pro-
gram accepts the user program's normal input and produces
the user program's normal output. In addition, it can re-
quest segment trace ranges and input a history file, if
these options were selected in the pre-processor. The out-
puts of the instrumented source program are:

-a listing of the dynamic execution frequencies
of segments

-a listing of the segments executed within the
trace ranges selected

-a listing of the assertion identifiers whose
values were false

-an updated history file.

The final part of the analyzer system is the
post-processor. It takes information from the annotated
listing, the summary of statement types(which were created
by the pre-processor) and the history file which was pro-
duced by the instrumented source program. It produces the
following reports under user control:

-program and module names
-number of statements, comments and syntax errors
-invocation frequencies for each routine
-percentage of statement and segment coverage
-dynamic frequencies of segments
-static and dynamic frequencies by statement types
-source program listings annotated with segment

usage and assertion frequencies.

3. Demonstration Scenario

A program, with errors, will be run using the
Analyzer to help find the errors. It will be corrected
using information from the Analyzer and re-run. The demons-
tration program is one which went through the final stages
of debugging using the Analyzer. ICSES attendees will be
able to observe the execution of the Analyzer on the samole
program via a terminal connected by ohone to the Institute
for Computer Sciences and Technology VAX 11/78CI system.
Listings from the FORTRAN 77 Analyzer's run on the samole
program will be available.



FTN-77 ANALYZER Page 176

Demonstration time is about 20 minutes.

4. References

"FORTRAN 77 Analyzer", User's Manual, TRW
Defense and Space Systems Group, One Space
Park, Redondo Beach, CA 90278

"American National Standard Programming
Language FORTRAN" ANSI X3. 9-1973, American
National Standard Institute, New York, 1978

Lyon and Stillman, "A FORTRAN Analyzer",
NBS Technical Note 849, National Bureau
of Standards, 1974

"FORTi \N 77 Analyzer", Maintenance Manual,
TRW Defense and Space Systems Group, One
Space Park, Redondo Beach, CA 90278

5. Place and Time

Station Day Time

5 Thursday, March 12 9 AM to 3 PM

5. Demonstrator

Patricia Powell
National Bureau of Standards
BLDG 225 RM A265
Washington, D.C. 20234
(301) 921-3435

Pat Powell received her undergraduate degree
in Latin-American Studies from Smith College and her
Master's degree in Computer Science from the University of
Maryland. At NBS, she works in the area of Software Quality
Assurance. Prior to NBS, she worked in AI and in the Re-
search and Development of Programming Languages.



FTN-77 ANALYZER
SAMPLE OUTPUT

Page 177

SUMMARY TOTALS

MODULE NUMBER OF PERCENT NUMBER OF NUMBER OF INVOCATION NUMBER OF PERCENT
NAME STATEMFOTS STATEMENT COMMENTS SYNTAX FREQUENCY SEGMENTS SEGMEtIT

COVERAGE ERRORS COVERAGE

MAIN 119 0 .95 66 0 2 53 0, 96
SHUFFL 17 1 00 8 0 2 3 1..00
DEAL 12 1 00 5 0 26 3 1 .00
PLAY 25 1 .00 10 0 94 7 0..86
EVALC 20 0 .00 5 0 0 4 0 .00

M^TCH 20 1. 00 8 0 94 8 1

.

00
LARGE 12 0. 00 5 0 0 4 0. 00
K-IHAN 17 1 00 5 0 96 5 1 00
RMCFBD 17 1 00 5 0 52 4 1. 00
BUILD 43 0 .97 9 0 50 14 0. 93
DISCAR 26 1 .00 11 0 46 9 1 .00

SUMMARY TOTALS

MODULE NUMBER OF PERCENT NUMBER OF NUMBER- OF INVOCATION NUMBER OF PERCENT
NAME STATEMENTS STATEMENT COMMENTS SYNTAX FREQUENCY SEGMENTS SEGMENT

COVERAGE ERRORS COVERAGE

PROGRM 328 0.89 137 0 462 114 0.89

PROGRAM CALL TREE

1 23456789 10
1 MAIN
2 SHUFFL
3 RAN
4 DEAL
5 DISCAR
6 RMHAN
7 RMCFBD
8. PLAY
9 DISCAR ( 5)

10 RMCFBD
11 MATCH
12 BUILD
13 DISCAR ( 5)
14 RMHAN
15 RMHAN
16 EVALC
17 LARGE



FTN-77 ANALYZER Page 178
SAMPLE OUTPUT

SEGMENT EXECUTION FREQUENCIES - CURRENT

\o 1 2 3 4 5 6 7 Q 9

MAIN
1 4 4 4 8 8 4 4. ^ At

IX 52 4 4 4 16 16 4 4 3 12
2X 12 17 68 68 3 14 56 6 50 1
3X 49 3 10 3 7 2 2 0 2 5
4X 5 8 8 47 49 47 49 56 14 3
5X 4 0 4 1

SHUFFL
5X 1 51 51

DEAL
5X 13 52 52

PLAY
6X 47 0 47 188 25 22 47

EVALC
6X 0 0
7X 0

MATCH
7X 47 117 340 28 24 4 316 316

LARGE
7X
8X 0 0 0

RMHAN
8X 48 21 27 41 41

RMCFBD
8X
9X 20 33

BUILD
9X

. 25 100 52 136 337 3 3 0
10X 334 334 136 22 3 3

DISCAR
10>^ ' 23 39 33 5
IIX 28 30 3 30 23

26 6

SEGMENTS NOT EXECUTED

37 51 61 67 68 69 70 79 80 81
82 99



FTN-77 ANALYZER Page 179

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. CODE INPUT
. FORTRAN
. FORTRAN 77

FUNCTION
. TRANSFORMATION

. INSTRUMENTATION
. STATIC ANALYSIS

. STATISTICAL ANALYSIS
. PROFILE GENERATION

. DYNAMIC ANALYSIS
. COVERAGE ANALYSIS
. TRACING
. ASSERTION CHECKING

. RUN-TIME ASSERTION CHECKING
. . TUNING

OUTPUT
. USER OUTPUT

. TABLES

. LISTINGS
. MACHINE OUTPUT

. SOURCE CODE OUTPUT
. FORTRAN 77

IMPLEMENTATION LANGUAGE: FORTRAN 77

TOOL PORTABLE: YES

TOOL AVAILABLE ; YES, PUBLIC DOMAIN: YES

RESTRICTIONS (COPYRIGHTS, LICENSES, ETC .

)

: AVAILABLE FROM
NTIS (FALL 81

)

CONTACT: JOHN BARKLEY, NATIONAL BUREAU OF STANDARDS, TECH
BLDG, A265, WASHINGTON, DC, 20234, USA, 301-921-3485



TOOLS DATABASE Page 180

NBS SOFTWARE TOOLS DATABASE

Raymond C. Houghton, Jr. and Karen A. Oakley

1 Introduction

The NBS Software Tools Database is a compilation of data on
the availability of over 250 software development and testing
tools. The data that has been compiled has been placed into a
relational database using Pascal/R, a language that extends
Pascal by a data relation. The database allows for information
retrieval on tool features, languages, developers, documentation,
hardware and software requirements, availability, publications,
and contacts. The information in a database of tools can be used
by management to develop a software engineering methodology.

It has been concluded in recent reports that modern software
tools can offer the software engineering community the following:

— Better management control of computer software development,
operation, maintenance, and conversion.

— Lower costs for computer software development, operation,
maintenance, and conversion.

— Feasible means of inspecting both contractor-developed and
in-house - developed computer software for such quality
indications as conformance to standards and thoroughness of
testing

.

There are several reasons for compiling information on
software tools. The first is to aid NBS efforts to develop
guidelines and standards that will improve the quality of Federal
software through the use of available tools. The second reason
is to provide a means by which persons in the Federal 'Government
and elsewhere can determine what tools are available and what
their capabilities are. The third reason is to provide a means
by which tool researchers can determine v^at tools are currently
under developnent so that knowledge may be shared and duplication
of effort can be avoided.

2 . Summary

The following is a list of data elements that are stored in
the database for each tool. Following each title is a brief
summary of the information that is stored. Since the data base
is relational, many of the elements can be repeated for a given
tool .

ACRONYM: Acronym or other short name.

TITLE: Title of tool.



iTOOLS DATABASE Page 181

DOCUMENTATION: Types of available documentation.

DOC LENGTH: Extent of available documentation (page count).

REFERENCES: Articles or publications that discuss the tool and
are readily available in the open literature.

DEVELOPER: Developer(s) of tool.

CONTACT: Contact( s) for more information about the tool.

INFORMATION SOURCE: Source( s) of the information contained in
the database

.

3. Scenario

Associated with the database is a tool that retrieves
information and generates documentation for specific software
tools or all software tools within the database. This tool is
divided into five functional procedures each performing a

specific task such as: (1) allowing a user to input the acronym
of a tool, (2) directing docmention to a file, (3) retrieving
information by tool features, (4) sorting the acronyms of tools,
and (5) printing requested inforroation to a terminal. A
technical guide will be available to illustrate the application
of the NBS Software Tools Database. Sample listings of input and
output will also be available. Demonstration of the NBS Tool
Database will be done interactively on a terminal connected by
phone to the NBS DECSYSTEM-10 over the ARPANET.

4

.

References

Houghton and Oakley, 'NBS SOFTWARE TOOLS DATABASE', NBSIR
80-2159, November 80.

5. Station, Day and Time

Station 5, Thursday, March 12, 9AM - 3PM

6« Demonstrator

Raymond C. Houghton, Jr., National Bureau of Standards,
Tech Bldg, Room A265, Washington, DC 20234, (301) 921-3485.
Houghton is a computer scientist at the Bureau' s Institute for

Computer Sciences and Technology where he is in charge of the

Tools Project. The purpose of this project is to aid the

development of guidelines and standards that will improve the

quality of Federal software through the use of available software
development tools.



TOOLS DATABASE
SAMPLE OUTPUT

Page 182

NBS SOFTOARE TOOLS DATABASE

miAT PROCEDURE : ENTER PRINT RETRIEVE SORT
TYPE OR NOTHING?

RETRIEVE
ENTER FEATURE DESCRIPTION
>COVERAGE ANALYSIS
>

30 TOOLS FOUND

TYPE TAXONOMY, YES OR NO? NO
WKAT PROCEDURE : ENTER PRINT RETRIEVE SORT

TYPE OR NOTHING?
RETRIEVE
ENTER FEATURE DESCRIPTION
>ASSERTION CHECKING
>

4 TOOLS FOUND

TYPE TAXONOMY, YES OR NO? NO
V;HAT PROCEDURE : ENTER PRINT RETRIEVE SORT

TYPE OR NOTHING?
RETRIEVE
ENTER FEATURE DESCRIPTION
>ASSERTION CHECKING " COVERAGE ANALYSIS

32 TOOLS FOUND

TYPE TAXONOMY, YES OR NO? NO
WHAT PROCEDURE : ENTER PRINT RETRIEVE SORT

TYPE OR NOTHING?
RETRIEVE
ENTER FEATURE DESCRIPTION
>ASSERTION CHECKING & COVERAGE ANALYSIS

2 TOOLS FOUND

TYPE TAXONOMY, YES OR NO? NO
WHAT PROCEDURE : ENTER PRINT RETRIEVE SORT

TYPE OR NOTHING?
NOTHING

EXIT



TOOLS DATABASE
SAMPLE OUTPUT

Page 1

NBS SOFTWARE TOOLS DATABASE

WHAT PROCEDURE : ENTER PRINT
TYPE OR NOTHING?

ENTER
ENTER '$ALL' FOR LISTING OF ALL TOOLS
ACRONYM OR SHORT TITLE ?

ACRONYM OR SHORT TITLE ?

ACRONYM OR SHORT TITLE ?

WHAT PROCEDURE :

RETRIEVE SORT

FTN-77 ANALYZER
TOOLS DATABASE

ENTER PRINT
TYPE OR NOTHING?

RETRIEVE

TYPE
WHAT SHOULD BE TYPED ABSTRACT

ENVIRONMENT
MAKER
TAXONOMY

BIBLIOGRAPHY
HARDWARE
PROGRESS
USEABILITY OR NOTHING?

CONTACT
IDENTITY
REFERENCES

SORT

DOCUMENTATION
LANGUAGE
SOFTWARE

IDENTITY
ACRONYM TITLE

CLASSIFICATION

FTN-77 ANALYZER NBS FORTRAN-77 AJJALYZER
SOURCE PROGRAM ANALYSIS AND TESTING

TOOLS DATABASE NBS SOFTWARE DEVELOPMENT TOOLS DATABASE
SOFTWARE MANAGEMENT CONTROL, AND MAINTENANCE

WHAT SHOULD BE TYPED

ENVIRONMENT
ACRONYM

ABSTRACT BIBLIOGRAPHY CONTACT DOCUMENTATION
ENVIRONMENT HARDWARE IDENTITY LANGUAGE
MAKER PROGRESS REFERENCES SOFTWARE
TAXONOMY USEABILITY OR NOTHING?

TOOL PORTABLE TOOL SIZE

FTN-77 ANALYZER YES

TOOLS DATABASE

WHAT SHOULD BE TYPED

PROGRESS
ACRONYM

NO

ABSTRACT BIBLIOGRAPHY
ENVIRONMENT HARDWARE
MAKER PROGRESS

CONTACT DOCUMENTATION
IDENTITY LANGUAGE
REFERENCES SOFTWARE

TAXONOMY USEABILITY OR NOTHING?

STAGE OF DEVELOPMENT DATE OF DEVELOPMENT (YYMMDD)

FTN-77 ANALYZER IMPLEMENTED

TOOLS DATABASE IMPLEMENTED

810500

801000



TOOLS DATABASE
SAMPLE OUTPUT Page 184

WHAT SHOULD BE TYPED

MAKER
ACRONYM

DEVELOPER

ABSTRACT BIBLIOGRAPHY CONTACT
ENVIRONMENT HARDWARE IDENTITY
MAKER PROGRESS REFERENCES
TAXONOMY USEABILITY OR NOTHING?

DOCUMENTATION
LANGUAGE
SOFTWARE

FTN-77 ANALYZER
TRW, INC.

TOOLS DATABASE
NATIONAL BUREAU OF STANDARDS

WHAT SHOULD BE TYPED ABSTRACT BIBLIOGRAPHY
ENVIRONMENT HARDWARE
MAKER PROGRESS
TAXONOMY USEABILITY OR

LANGUAGE
ACRONYM

CONTACT
IDENTITY
REFERENCES

NOTHING?

LANGUAGE DIALECT

DOCUMENTATION
LANGUAGE
SOFTWARE

FTN-77 ANALYZER FORTRAN

TOOLS DATABASE PASCAL

FORTRAN 77

R

WHAT SHOULD BE TYPED : ABSTRACT

NOTHING
WHAT PROCEDURE

NOTHING

BIBLIOGRAPHY
ENVIRONMENT HARDWARE
MAKER
TAXONOMY

PROGRESS
USEABILITY OR

ENTER PRINT
TYPE OR NOTHING?

CONTACT
IDENTITY
REFERENCES

NOTHING?

RETRIEVE

DOCUMENTATION
LANGUAGE
SOFTWARE

SORT

EXIT



TOOLS DATABASE Page 185

FEATURE CLASSIFICATION:

INPUT
. SUBJECT

. DATA INPUT
FUNCTION

. STATIC ANALYSIS
. MANAGEMENT

. MANAGEMENT PLANNING
OUTPUT

. USER OUTPUT
. TABLES

IMPLEMENTATION LANGUAGE: PASCAL R

TOOL PORTABLE: NO

COMPUTER (OTHER HARDWARE )

:

DECSYSTEM-10

OS (OTHER SOFTWARE )

:

TOPS-10

TOOL AVAILABLE : YES, PUBLIC DOMAIN: YES

CONTACT: RAYMOND C. HOUGHTON, NATIONAL BUREAU OF STANDARDS,
TECH BLDG, A265, WASHINGTON, DC, 20234, USA, 301-921-3485



Page 186

SRIMP

SOFTWARE REQUIREMENTS INTEGRATED MODELING PROGRAM

A Demonstration of a Front End Modeling Tool

Stephanie White

1 . INTRODUCTION

This proposal is in response to a request for demonstrations of software
engineering tools at the 5th International Conference on Software Engineer-
ing. Grumman Aerospace Corporation will be demonstrating the capabilities
of SRIMP and its function in a software engineering environment. SRIMP, a

front end modeling tool, is part of Grumman's Software Life Cycle Development
System (SOLID). SOLID is a system of methodologies and automated life cycle
tools that supports an environment in which software can be designed, developed,
implemented, tested and maintained.

2. Description of SRIMP

The Software Requirements Integrated Modeling Program (SRIMP) aids in the
conceptual and requirements definition phases of the software development
process.

The SRIMP methodology was developed by synthesizing the better features of
a number of widely accepted requirements techniques, augmented with a number
of Grumman developed innovations. The resultant system provides the user
with a formal language to express specifications through the identification
of objects and acceptable relationships. Top-down decomposition is enforced
by a method which results in structured intra system interfaces, thus mini-
mizing model complexity.

Human factors engineering, which played a major role in the development of
SRIMP, was responsible for the production of an easy-to-use tool. The user is

led through a series of prompts where constant monitoring is performed to

assure that the user provides valid responses. Easy-to-understand diagnostics
are provided when incomplete or inconsistent data is entered.

The requirements are stored in a SRIMP data base which lends itself to

efficient maintenance. Outputs of SRIMP are structure reports, function
reports, hierarchy charts and functional flow diagrams. The visual represen-
tation of a model gives the user an overall hierarchical view of the system
at a glance. Data flow, as well as function flow, is visible in diagrams of

a function and its immediate offspring. Diagrams are automatically produced
from the data base and can be displayed on a CRT or produced on plotters,
slides or microfilm.



SRIMP Page 187

The SRIMP data base can be automatically translated into an input source
file for PSL/PSA. Thus the benefits of PSL/PSA reports, which are an
excellent aid in documentation, are available. Under PSL/PSA the model
can be further defined, documented and analyzed. In addition, a detrans-
lator has been developed which accesses the requirements data base in

order to enhance PSL/PSA with Grumman graphics.

3. The SRIMP Demonstration

The demonstration of SRIMP will consist of a viewgraph presentation
followed by an interactive session. The narrative overview of SRIMP
will address the following areas:

1. the usefulness of a tool such as SRIMP during front end modeling

2. the SRIMP methodology

3. the system features

During the interactive session, an existing SRIMP data base will be

modified, checked for consistency and completeness, and translated into

PSL. Hierarchy charts and functional flow diagrams will be generated

from the data base. The demonstration will take 30 minutes and will be

repeated at 9 AM, 10 AM, 11 AM, 2 PM and 3 PM.

4. SRIMP Literature

H. Barina et al , "Automated Software Design," Proceedings, IEEE Computer

Society's Third International Conference and Applications Conference,

November 1979.

L. Fabiano and J. McCarthy, "Software Life Cycle Development (SOLID)",

will appear in Proceedings, NAECON '81, May 1981.

A copy of the presentation viewgraphs and scenario will be distributed

upon request.

5. Demonstration Station, Day and Time

Station 7, Thursday, March 12 from 9 AM until 12 Noon and from 2 PM until

5 PM.

6. The DEMONSTRATOR

Stephanie White

Education

BA, Mathematics, Hunter College

MS, Mathematics, New York University

MS, Computer Science, Polytechnic Institute of New York

PhD candidate. Computer Science, Polytechnic Institute of New York



SRIMP- Page 188

6. The DEMONSTRATOR (Cont'd)

Stephanie White

Experience

Ms. White is assigned to the Grumman Software Systems Department's
Technology Group and is principal investigator of software requirements
specification methods and tools. She is responsible for developing
methodologies related to problem analyzers and integrated systems data
bases. Among her recent achievements have been establishment of computer-
ized graphics modeling tools that produce hierarchical structure and IDEF
charts. She has also designed a translator to change a Grumman model to
an equivalent Problem Statement Language/Problem Statement Analyzer
(PSL/PSA) model in PSL source code. The model was created using an inter-
active modeling tool developed at Grumman.

Ms. White has developed a program to access the PSA data base in order to
enhance PSL/PSA with Grumman graphics.

She was also employed by C.W. Post College where she developed course
content, served on the curriculum committee and taught graduate and
undergraduate courses in mathematics and computer science.

Society Membership

ACM, IEEE, Phi Beta Kappa, Pi Mu Epsilon, Woodrow Wilson Fellow, Women and
Mathematics.

Papers/Publ ications

"Automated Structured Design", Proceedings, COMPSAC conference, IEEE, 1979
"Student Study Guide for Calculus with Analytic Geometry", Macmillan
Publishing Co., 1978.



FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. VHLL INPUT
. MODEL DESCRIPTION

FUNCTION
. TRANSFORMATION

. TRANSLATION

. EDITING

. FORMATTING
. STATIC ANALYSIS

. DATA FLOW ANALYSIS

. CONSISTENCY CHECKING
OUTPUT

. USER OUTPUT
. GRAPHICS

. HIERARCHICAL TREE

. ACTIVITY DIAGRAM
. LISTINGS

. MACHINE OUTPUT
. VHLL OUTPUT

. PSL

IMPLEMENTATION LANGUAGE ; FORTRAN, PL/1

TOOL PORTABLE: YES

TOOL AVAILABLE

;

YES, PUBLIC DOMAIN; NO

RESTRICTIONS (COPYRIGHTS, LICENSES, ETC .

)

; CONTACT GRUMMAN
AEROSPACE CORP. FOR DETAILS

TOOL SUPPORTED; YES, TOOL SUPPORT: GRUMMAN AEROSPACE CORP.

CONTACT; STEPHANIE WHITE, GRUMMAN AEROSPACE CORP., TECHNOLOGY
DIVISION, M/S A02/35, BETHPAGE, NY, 11714, USA, 516-575-6493



AUTO-DBO Fcxge 190

AUTOMATED DESIGN BY OBJECTIVES ("AUTO-DBO")

Summary of Tool

.

AUTO-DBO is a research project with the objective of exploring

the limits of our understandinq of the softv^/are engineering process.

The principal method for exploration is to see hov far ve can instruct

a computer to carry out the software design process.

We are also interested in seeing to what degree a computer can give

other types of help in addition to "design" itself: for example

as a structured text editor, helping evaluate consequences of changes,

making multiple point changes with little effort, teaching the design

process.

It should he stressed that we are speaking of high level "architectural"

design. This includes goals or requirements ( such as application functions

and particularly attributes ( resources and qualities). It includes

technique specification, evaluation of alternative techniques , evaluation

of alternative major sub-architectures ( such as "which data base softvare ?"),

design completeness evaluation, design incompleteness evaluation,

design documentation inspection statistics recording and reporting,

and incremental delivery planning.

It does not include low level architecture concepts such as planning

of the detailed logic of single modules : in other words execution

sequence is of no concern in detail, although we might well consider

various global rules which influence the programmed sequence or structure,

such as "use decision table logic" ( as a technique specification).

It should be stressed that the DBO method, and the AUTO-DBO tool is

capable of considering the total systems environment ( organizational

forms, documentation design, data structures and bases, hardware, and the

integration of these with software.

The present state of the tool is the first demonstratabl e stage of

development. About 30% of the plans have been implemented. The tool is

available for use and experimentation. It can be used for real projects,

but it is not presently capable of making a design decision ( translating



AUTO-DBO ' Page 191

for example a reliability requirement into a set of system architecture

techniques such as " use distinct softv.'are on all updatinq loaic" ).

In very simple terms the present system is a highly structured

and integrated text editor. It is the framev/ork for design

automation ( the next stage). We are inviting interested parties

to participate in future design- stages in various roles (user,

developer etc.)« The present system is the only one ve know of

which explicitly specifies the required system attributes in

hierarchical and measurable for, and then integrates the evaluation

of the achievement of these attributes into the later design

evaluation stages.

The human interface has been designed to allow easy learning,

ease of operation, and highly reliable use. This is already

v.'ell implemented. Among the demonstrable featurQ,s at present

is the use of the keyboard as a joystick for both moving a

window over design documentation forms, and for moving up and

down hierarchies of documentation. A keyword search capability

allows complete or selective searches of design documentation,

and immediate jumping to the keyword's portion of the design documentation.

The system is operational using UCSD Pascal on Apple II with two disk

drives. One drive is used for logicware, one for design documentation.

Extensive systems description can be accomplished by using a hierarchy

of diskettes, so that we are not limited by the small space available

on Apple 5" diskettes. The system will be shortly implemented

on CYBER Pascal, and we have had requests from parties interested in

implementing it on IBM and Nippon Electric computers. The advantage of

the Apple implementation is that it can be used independently to

support the design tool for a project group for example.

SCENARIOS

We jexpect to demonstrate most of the features using various project files,

.including the one which describes the design of AUTO-DBO itself.

Visitors will be welcome to try hands on if they like.

We hope to show enough so that visitors will see the potential of

such a design tool, and so that some visitors will decide to either

pursue similar developments or to join our informal project.



AUTO-DBO Page 192

REFERENCES:

1. GILB: Computerware Technoscopes. 300 page manuscript description

of the Design by Objectives methods as applied to complex system

perception and evaluation. To be published by North-Holland. Available

until then for copying from author.

2. AUTO-DBO DOCUMENTATION (Oct 9 1980 Version) 6C page documentation

of the AUTO-DBO system initial implementation and global design

( including future enhancements). By Lech Krzanik, Univ. of Krakow.

3. Pascal Program Listing.

4. Diskettes with source and executable programs , as well as

demo project diskettes are available for copying upon request

for contributors to the project.

5. A number of papers and articles on DBO are available in addition

on request.

DEMONSTRATOR : Tom Gilb . Iver Holtersvei 2, N-1410 Kolbotn, Norway

will demonstrate the system. It is unlikely, but not impossible that

the author of the software and most of the detailed design. Lech Krzanik

( WI^OCZKOW 18/10, PL-30103 KRAKOW. POLAND. Tel (48 94) 25817 ) will also

be able to attend. But he will be available for consultation by

mail and telephone. It is also expected that he will provide

additional documentation for the Tool Fair demo.

TOM GILB: is a private and independent consultant, teacher and author

living in Norway and working on all continents. He is the author of

Software Metrics, and ( with Gerald M. Weinberg) Humanized Input.

His major professional activities center around development of the

Design by Objectives method, with particular reference to both

loqicware and dataware engineering.

LECH KRZANIK works at University of Krakow at the new Computer Science

Institute. He is completing his Dr. Thesis, partly based on the

AUTO-DBO project, and will continue work in that area.



AUTO-DBO Page 193

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. VHLL INPUT
. DESIGN SPECIFICATION

FUNCTION
. TRANSFORMATION

. EDITING

. TRANSLATION
. STATIC ANALYSIS

. CONSISTENCY CHECKING

. COMPLETENESS CHECKING

. INTERFACE ANALYSIS
OUTPUT

. USER OUTPUT
. USER-ORIENTED TEXT

. DOCUMENTATION
. MACHINE OUTPUT

. VHLL OUTPUT
. DESIGN SPECIFICATION

IMPLEMENTATION LANGUAGE: PASCAL UCSD PASCAL

TOOL PORTABLE: NO

COMPUTER (OTHER HARDWARE )

;

APPLE II (TWO FLOPPY DISK DRIVES)

CONTACT ; TOM GILB, INDEPENDENT EDP CONSULTANT, IVER
HOLTERSVEI 2, KOLBOTN, N-1410, NORWAY, 47 2-80 16 97



UCSD P-SYSTEM Page 194

THE UCSD p-SYSTEM VERSION IV.O
A PORTABLE SOFTWARE DEVELOPMENT SYSTEM

A Software Engineering Tool Demonstration

Mark Overgaard and Joan Giannetta

I. INTRODUCTION

We will be demonstrating Version IV.O of the UCSD p-System, developed and
distributed by Softech Microsystems, San Diego, California.

II. SUMMARY OF THE UCSD p-SYSTEM

The UCSD p~System is a stand-alone program development and execution
environment for small computers. Its facilities include text editors and file

management utilities, as v/ell as compilers (UCSD Pascal , FORTRAN-77 and
BASIC), macro cross-assemblers and a linkage editor.

The p-System provides a portable software environment independent from the host

processor and its peripheral devices. The foundation for this portability is the

UCSD P-machine. It is a simple idealized stack computer which can be
implemented by direct hardware support or by an interpreter executing in the

machine language of the host computer. All system software is written in UCSD
Pascal, compiled to P-code and then executed by the P-machine.

III. THE DEMONSTRATION

The demonstration of the UCSD p-System includes an introduction to the p-System
facilities and a discussion on how program portability has been attained.

High level language and assembly language routines will be edited, translated and
linked. Transparent execution of the resulting code files on machines with
dissimilar physical processors will be demonstrated.

The demonstration will take approximately one half hour and will be followed by a

guestion and answer period. Several microcomputers will be available for the

attendees to gain hands-on experience.

IV. UCSD P-SYSTEM LITERATURE AND RELATED DOCUMENTS

"UCSD Pascal Users Manual Version IV.O" - A basic reference guide for use of the

UCSD p-System and UCSD Pascal.

"UCSD p-System Architecture Guide"
machine and p-System architecture.

"UCSD p-System Installation Guide" -

- An extensive description of the UCSD P-

A guide to bringing up, "bootstrapping", the



UCSD P-SYSTEM

UCSD p-System.

Page 195

"FORTRAN User Reference Manual" - A guide for using the UCSD p-System ANSl-
77 subset FORTRAN compiler.

"BASIC User Reference Manual" - A guide for using the UCSD p-System BASIC
compiler.

"Beginner's Guide for the UCSD Pascal System", Dr. Kenneth L. Bowles - A
beginner's look at the UCSD Pascal System.

"Problem Solving Using Pascal", Dr. Kenneth L. Bowles - A non-numerical approach
to problem solving using computers.

In addition, the following papers will be of interest:

Overgaard, Mark, "UCSD Pascal : A Portable Software Environment for Small
Computers," AFIPS - Conference Proceedings, Volume 49 , AFIPS Press, Arlington,
Va. 22209.

Irvine, C.A., "UCSD System Makes Programs Portable," Electronic Design , 16
August 1980.

Bowles, K.L., "A (Nearly) Machine Independent Software System for Micro and Mini
Computers," Byte

, May 1978.

V. LOCATION AND SCHEDULE OF DEMONSTRATION

Station 8, Thursday, 12 March 1981, from 9:00 a.m. to 4:00 p.m.

VI. THE DEMONSTRATORS

MARK OVERGAARD

Mark Overgaard is the Manager of Software Development at Softech Microsystems.
He has played a principal technical role throughout the development and evolution

of the UCSD p-System, working first as a graduate student with Dr. Kenneth L.

Bowles at the University of California, San Diego, and more recently at SofTech
Microsystems.

JOAN GIANNETTA

Joan Giannetta is a Marketing Account Manager for SofTech Microsystems. She

previously worked as a systems programmer, maintaining and enchancing a P-code
interpreter and p-System facilities for Dr. Kenneth L. Bowles at the Universtiy of

California, San Diego.

UCSD, UCSD Pascal, and UCSD p-System are all trademarks of the Regents of the

University of California.



UCSD P-SYSTEM Page 196

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. CODE INPUT
. FORTRAN
. FORTRAN 77... PASCAL

FUNCTION
. TRANSFORMATION

. EDITING

. TRANSLATION
OUTPUT

. USER OUTPUT
. LISTINGS

IMPLEMENTATION LANGUAGE: PASCAL UCSD

TOOL PORTABLE: YES

TOOL AVAILABLE; YES, PUBLIC DOMAIN; YES

RESTRICTIONS (COPYRIGHTS, LICENSES, ETC . ) : LICENSE

TOOL SUPPORTED; YES, TOOL SUPPORT: SOFTECH MICROSYSTEMS

CONTACT; SOFTECH MICROSYSTEMS, 9494 BLACK MOUNTAIN ROAD, SAN
DIEGO, CA, 92126, USA, 714-578-6105



MSEF Page 197

The Microprocessor Software Engineering Facility

SofTech, Inc.

1. Introduction

This proposal is in response to the call for software engineering tool
developers to demonstrate their accomplishments at the 5th International
Conference on Software Engineering in San Diego, March 9-12, 1981.

SofTech will demonstrate the Microprocessor Software Engineering Facility
(MSEF), a tool package initially developed under contract to ITT Defense
Communications Division and subsequently extended by SofTech.

2. Summary of the MSEF

The Microprocessor Software Engineering Facility (MSEF) is an integrated
set of software tools to support the development and maintenance of micro-
computer software. The MSEF is hosted on a PDP-11 computer under the UNIX
operating system but can support the production of software for many different
microcomputers. The MSEF Change Control Library promotes defining, updating,
and integrating parts of a software configuration, isolation of user work
environments, and version control. The MSEF supports the organized testing
of software components by associating test scenarios and test results with
the components to be tested. The MSEF also provides automatic change logging
with a configuration audit trail. A macro assembler supporting structured
language constructs and a compiler for "C" are included in the tool complement.

3. Scenario of an MSEF Demonstration

The MSEF demonstration consists of the following:

a) A 10 minute introduction to the MSEF and the demonstration.

b) The master configuration is examined, the log and other features

are described.

c) Using the MERGE command, a local configuration is created to allow

changes to be developed.

d) The configuration is linked and executed. The program consists of

5 modules in "C" and user written tools in the MSEF command language.

Both the "C" program and the tools are executed. The "C" program

generates a horizontal line of large letters corresponding to the

string supplied as an input argument.

e) The program is modified to print the letters vertically. A record

of the changes is accumulated automatically by the MSEF. The

various audit trails and logs are examined to demonstrate the

operation of the configuration management mechanisms.

f) The COMPARE command is used to compare the altered local configura-

tion with the master configuration. All changes applied to the



MSEF Page 198

f) local configuration are readily visible.

g) The MERGE contmand is used to install the altered version back in
the master configuration.

4. MSEF References

Eanes, Hitchon, Thall, and Brackett; "An Environment for Producing Well-
Ingineered Microcomputer Software"; Proceedings of 4th ICSE, September 1979,
pp 386-398.

5. Station, Day, and Time

Station 10, Thursday, March 12, from 9:00 a.m. until 5:00 p.m.

6. The Demonstrators

Rich Thall

Rich Thall is a Systems Consultant with SofTech, Inc. He was principal
designer and implementor of the MSEF change control tools. He is presently
leading the Ada environment development team in SofTech *s Ada program. He
holds B.S. and M.S. degrees from the University of Wisconsin, where he also
served as a Research Assistant for the Information Systems Design and Opti-
mization System Project (ISDOS).

Gail Anderson

Gail Anderson is a Software Engineer with SofTech MicroSystems. She is

currently working on the UCSD p-System operating system. She holds a B.A.

from UCSD and a M.A. from San Diego State University - both in linguistics.
She was on the Development team on MSEF enhancements done at SofTech
Microsystems. Before joining SofTech, she was a UNIX Systems Programmer at

the University of California in Santa Barbara.



MSEF Page 199

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. CODE INPUT
FUNCTION

. TRANSFORMATION
. EDITING
. TRANSLATION

. STATIC ANALYSIS
. MANAGEMENT

. VERSION CONTROL

. CHANGE CONTROL

. TEST DATA MANAGEMENT
. COMPARISON

OUTPUT
. USER OUTPUT

. LISTINGS
. MACHINE OUTPUT

. INTERMEDIATE CODE

IMPLEMENTATION LANGUAGE: C

COMPUTER (OTHER HARDWARE )

:

PDP-11

OS (OTHER SOFTWARE) : UNIX

TOOL AVAILABLE; YES, PUBLIC DOMAIN; NO

RESTRICTIONS (COPYRIGHTS, LICENSES, ETC )

;

LEASE

CONTACT ; VIC VOYDOCK, SOFTECH, INC., 460 TOTTEN POND ROAD,
WALTHAM, MA, 02154, USA, 617-890-6900



IFTRAN (TM) Page 200

IFTRAN'"

A PREPROCESSOR FOR FORTRAN

A SOFTWARE ENGINEERING TOOL DEMONSTRATION

Sabina H. Saib, Jeoffrey P. Benson,
Carolyn Gannon, and William R. DeHaan

1. Introduction

This proposal is in response to the call for software

engineering tool developers to demonstrate their ac-

complishments at the 5th International Conference on

Software Engineering in San Diego, March 9-12, 1981.

We will be demonstrating IFTRAN'", developed in The

Software Workshop'" by General Research Corporation, Santa

Barbara, California.

2. Summary of IFTRAN""

IFTRAN"" is an extension of FORTRAN that simplifies struc-

tured programming and top-down design, aids systematic

testing, supports a practical application of formal

verification techniques, and aids in software fault

tolerance

.

IFTRAN'" has a convenient syntax for writing structured

programming control constructs. The IFTRAN'" preprocessor

translates the IFTRAN'" statements into standard FORTRAN

while passing all other statements unchanged to an output

file which may then be compiled by a FORTRAN compiler. A

listing which automatically indents the source program is

also generated.



IFTRAN (TM) Page 201

IFTRAN™ can be used as a program design language when

English is used in the constructs instead of FORTRAN.

The indented listing is valuable for design reviews.

As an aid to testing, the preprocessor can be directed to

automatically insert calls to data collection routines

into the program so that program execution sequence can

be traced and measured. A standard set of analysis

routines included with the preprocessor provide execution

analysis reports.

Assertions from formal program verification may be

incorporated in an IFTRAN" program to provide documenta-

tion or to provide automatic checks on legitimate ranges

of variables. Programmers may specify corrective actions

(FAIL blocks) to be taken when assertions are violated.

3. A Scenario of an IFTRAN" Demonstration

A Demonstration of IFTRAN" consists of three parts. The

first part is a demonstration of the PROGRAM DESIGN

LANGUAGE feature (see SAMPLE OUTPUT, Figure 1). The

second part is a demonstration of the BLOCK COPYING,

MACRO, INSTRUMENTATION (identification of DD-Paths),

TESTBOUND, STATEMENT COMMENTING, EXECUTABLE ASSERTIONS,

and INDENTED LISTING features (see SAMPLE OUTPUT, Figure

2). The third part is a demonstration of the types of

reports provided by the ANALYZER PROGRAM as a result of

the INSTRUMENTATION probe processing (See SAMPLE OUTPUT,

Figure 3 )

.

The demonstration will take one hour. We will repeat it

as often as necessary. We can handle about 10 people in

each interactive demonstration.



IFTRAN (TM) Page 202

4. IFTRAN™ Literature

User's Manual

A description of the uses of the IFTRAN" syntax and

the IFTRAN™ preprocessor.

Collected Papers

A collection of papers written by members of the

Software Quality Department.

5. Station, Day, and Time

Forum, Tuesday, March 10, from 11:00 am until 12:30 pm.

Forum, Wednesday, March 11, from 9:00 am until 10:30 am

Station 9, Thursday, March 12, from 9:00 am to 5:00 pm.

6. The Demonstrators

Sabina H. Saib is Director of the Software Quality

Department at General Research. She received a BS and a

PhD in Engineering from UCLA and an MSEE from the

University of Maryland. She has published several papers

on the verification and validation of software. Her

current work is in the automated verification of embedded

systems

.

Carolyn Gannon a member of the Software Quality Depart-

ment at General Research. She received her BS and MS

with a computer science specialty from the University of

California, Santa Barbara. She is active in the JOVIAL

users group and is leading the development of an auto-

mated verification system for JOVIAL J73. She has

published several papers on test techniques and automated

verification systems.



IFTRAN (TM) Page 203

Jeoffrey P. Benson received his BA degree from California

State University, Fresno, and his MSEE and PhD degrees

from the University of California, Santa Barbara. Since

1973 Dr. Benson has been at General Research Corporation,

where he has done research in software verification. He

has also taught courses in compiler design and construc-

tion at the University of California, Santa Barbara. His

current research interests include compiler-compilers and

biomedical computing. Dr. Benson is a member of IEEE and

ACM.

William R. DeHaan is Software Marketing Director at

General Research. He received his BS from Fairleigh

Dickinson University and is currently active in the

creation, preparation, and marketing of proprietary

software. Mr. DeHaan is a member of ACM.



IFTRAN (TM)
SAMPLE OUTPUT

Page 204

V I F T R A N- A PROPRIETARY SOFTWARE TOOL FROM THE SOFTWARE WORKSHOP AT GENERAL RESEARCH CORPORATION ~V I F T R A N

SEQ NEST SOURCE PROGRAM KEYTST PAGE

1

2
3
4

5
6
7
8
9

10
U
12
13
14
15
16
17
18
19

PROGRAM KEYTST
C.KEYWORD=ON

LOOP FOREVER
. FOR FIRST/NEXT CARD
EXIT IF NO MORE CARDS

FOR CARD COLUMNS 1 THROUGH 10
IF CURRENT CARD COLUMN CONTAINS, A SPECIAL CHARACTER

CALL ROUTINE TO ENCRIPT THE CHARACTER
. END IF
END FOR
SAVE ENCRIPTED CARP FOR LATER OUTPUT

. END FOR
END LOOP
IF ANY CARDS WERE ENCRIPTED

OUTPUT THE CARDS TO THE SAVE FILE FOR
LATER PROCESSING

END IF
STOP
END

IFTRAN STATISTICS
19 CARDS READ
0 ERROR(S) FOUND

FIGURE 1

IFTRAN'

PROGRAM DESIGN LANGUAGE Example

V I F T R A N— A PROPRIETARY SOFTWARE TOOL FROM THE SOFTWARE WORKSHOP AT GENERAL RESEARCH CORPORATION

SEQ NEST SOURCE

C.SAVE NAME
C THIS IS MODULE t»*t»*.
C.END
C.SAVE TYPE

COMMON /TYPE/ KIND
C.ENil

1

2
4
5
6
7
8
9
10
11
12

13
14
IS

-V I F T R A N

PAGE 1

PROGRAM IFTEST
C.LIST=OFF
C.LIST=ON
C. MACRO NAME./*m«»/IFTEST/
C THIS IS MODULE IFTEST.
C.END
C. MACRO TYPE

COMMON /TYPE/ KIND
C.END
C.INSTRUMENT=ON
C.ENTRY=IFTEST

DD PATH
KIND=0
PRINT »i 'BEGIN EXECUTION.'
WHILE (KIND.NE.3)

PD PATH
16 1 . PRINT 100
17 1 100 . FORMAT (' ENTER THE NUMBER TO BE SQUARE ROOTED.
18 1 . READ tiSQRD
19 1 .IF (SQRD.LE.500)

DD PATH
20 2 . . KIND=1
21 1 .OR IF (SQRD.LE.IOOO)

DD PATH
22 2 . . KIND=2
23 1 . ELSE
24 2 . . KIND=3 tWHEN SQRD .GT. 1000. STOP AFTER SQROOT
25 1 . END IF
26 1 . SQARD=SQROOT(SQRD)
27 1 , PRINT ».' THE SQUARE ROOT OF ',SQRD.' IS '.SDARD
28 1 C.TEST80UND
29 END WHILE
30 PRINT ti'END EXECUTION'
31 STOP

DD PATH 8 IS STOP
32 END

1 IS ENTER DECK

2 IS WHILE DO.

/)

4 IS IF TRUE.

6 IS OR IF TRUE,

3 IS WHILE EXIT

5 IS IF FALSE

7 IS OR IF FALSE

FIGURE 2(a)

IFTOAN"

Example Usage of the

BLOCK COPYING, MACRO, INSTRUMENTATION,

TESTBOUND, STATEMENT COMMENTING, and INDENTED LISTING

Features

(MAIN PROGRAM)



IFTRAN
SAMPLE

(TM)
OUTPUT

Page 205

V I F T R A N— A PROPRIETARY SOFTWARE TOOL FROM THE SOFTWARE WORKSHOP AT GENERAL RESEARCH CORPORATION --V I F T R A H

SEO NEST SOURCE FUNCTION SQROOT (ARC) PAGE

1

2
4
5
6
7
8
9

10
11
12
13

14
IS
16
17

18

19
20
21
22

23

FUNCTION SQROOT (ARG)
C.LIST=OFF
C.LIST=ON
C. MACRO NAHEi/***t**/SQROOT/
C THIS IS MODULE SOROOT.
C.END
C. MACRO TYPE

COMMON /TYPE/ KINIi
C.END
C. ASSERTION
C.DEBUG=ON
C.ENTRY=SQROOT

BARG=ARG
INITIAL (ARG. GT. 0.0). FAIL (ERROR)
SQROOT=SQRT(BARG)
RETURN

DD PATH 1 IS ENTER DECK

DD PATH

DD PATH

2 IS RETURN

3 IS ENTER BLOCK
BLOCK (ERROR)

DEBUG (/REAL/ARG)
. BARG-0.0

PRINT *.' FUNCTION SOROOT VALUE RETURNED EQUAL TO ZERO.'
END BLOCK

DD PATH 4 IS EXIT BLOCK
END

BLOCK CROSS-REFERENCE

BLOCK NAME DEFINED INVOKED

ERROR 18 IS

FIGURE 2(b)

IFTRAN"

Example Usage of the

BLOCK COPYING, MACRO, INSTRUMENTATION,

EXECUTABLE ASSERTIONS, and INDENTED LISTINGS

Features

(SUBPROGRAM)

.coapilins
« linking >

.

BEGIN EXECUTION.
ENTER THE NUMBER TO BE SQUARE ROOTED.

25
THE SQUARE ROOT OF 25.00000 IS 5.000000

ENTER THE NUMBER TO BE SQUARE ROOTED.

-36

FOR MODULE SQROOT INITIAL FALSE AT STATEMENT 15

DEBUG FOR MODULE SQROOT AT STATEMENT 19

ARC =-36,00
FUNCTION SQROOT VALUE RETURNED EQUAL TO ZERO.
THE SQUARE ROOT OF -36.00000 IS C.OOOOOOOEtOO

ENTER THE NUMBER TO BE SQUARE ROOTED.

1200
THE SQUARE ROOT OF 1200.000 IS 34.64102

END EXECUTION

FIGURE 2(c)

IFTRAN"

Sample Output frcm the

Execution of the Programs In Figures 2(a) & 2(b)

Illustrating the EXECUTABLE ASSERTIONS Feature



IFTRAN (TM.)

SAMPLE OUTPUT
RECORD OF DECISION TO DECISION (DD PATH) EXECUTION

Page 206

MODULE ilFTEST $ TEST CASE NO. 1

DD PATH I NO. NOT EXECUTED I NUMBER OF EXECUTIONS — NORMALIZED TO MAXIMUM I I NUMBER OF
NUMBER I I. 20. 40. 60. -80. 100. I I EXECUTIONS

I I

1 I I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX III 1

2 I I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 12 1 1

3 I 3 00000 I I I

4 I I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 14 1 1

5 I 5 00000 I I I

I ... 00000 I ... I I

8 I 8 00000 I I I

TOTAL NUMBER OF DD PATH EXECUTIONS = 3

TOTAL OF 5 NOT EXECUTED EXECUTED 3/ 8 PERCENT EXECUTED = 37.50

FIGURE 5(a)

IFTRAN"

Sample DETAILED INSTRUMENTATION REPORT

For Program In Figure 2(a)
RECORD OF DECISION TO DECISION (DD PATH) TXECUTION

MODULE tSQROOT $ TEST CASE NO.

DD PATH I NO.
NUMBER I

NOT EXECUTED I

I.-
NUMBER OF EXECUTIONS

20. 40.—
NORMALIZED TO MAXIMUM
—60. 80. 100.

I NUMBER OF
I EXECUTIONS

I

I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX I

I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX I

00000 I I

00000 I I

TOTAL OF 2 NOT EXECUTED

TOTAL NUMBER OF DD PATH EXECUTIONS =

EXECUTED 2/ 4 PERCENT EXECUTED = 50.00

FIGURE 3(b)

I FTRAN"

Sample DETAILED INSTRUMENTATION REPORT

For Program In Figure 2(b)

{
I S U M M A R Y — T H I S TEST C U M U L A T I VE SUMMARY

TEST I

CASE I

MODULE
NAME

NUMBER OF
D-D PATHS

I NUMBER OF
I INVOCATIONS

D-D PATHS
TRAVERSED

PER CENT
COVERAGE

NUMBER
OF TESTS INVOCATIONS TRAVERSED COVERAGE

1 I

I IFTEST
I SOROOT
I

I «*ALL«»
I

-j—j

I IFTEST
I SOROOT
I

I ttALLtt
I

12

12

37.50
50.00

41.47

25.00
100.00

50.00

FIGURE 3(c)

37.50
50.00

41.67

37.50
100.00

58.33

MODULE I TEST I PATHS
NAME I NUMBER I NOT HIT

IFTRAN"

Sample SlMWtY INSTRUMENTATION REPORT

For Programs In Figures 2(a) & 2(b)

(Multiple Test Cases due to TESTBOUND In Figure 2(a))

LIST OF DECISION TO DECISION PATHS NOT EXECUTED

<IFTEST > I 2 1

I CUMUL I

1 3 5 6 7 8
3 5 6 7 8

<SOROOT > I 2 1

I CUMUL I

FIGURE 3(d)

IFTRAN"

Sample "NOT HIT" INSTRUMENTATION REPORT

For Programs In Figures 2(a) & 2(b)



IFTRAN (TM) Page 207

FEATURE CLASSIFICATION:

INPUT
. SUBJECT

. CODE INPUT... FORTRAN
. IFTRAN

. VHLL INPUT
. IFTRAN

FUNCTION
. TRANSFORMATION

. INSTRUMENTATION

. EDITING

. TRANSLATION

. FORMATTING
. STATIC ANALYSIS

. STRUCTURE CHECKING
. DYNAMIC ANALYSIS

. COVERAGE ANALYSIS

. TRACING

. ASSERTION CHECKING

. TUNING
OUTPUT

. USER OUTPUT
. GRAPHICS
. LISTINGS
. DIAGNOSTICS

. MACHINE OUTPUT
. SOURCE CODE OUTPUT

. FORTRAN

IMPLEMENTATION LANGUAGE: FORTRAN

TOOL PORTABLE

:

YES, TOOL SIZE: 25K WORKS

TOOL AVAILABLE

:

YES, PUBLIC DOMAIN: NO

RESTRICTIONS (COPYRIGHTS, LICENSES, ETC . ) : LICENSE FEE

TOOL SUPPORTED ; YES, TOOL SUPPORT ; GENERAL RESEARCH
CORPORATION

CONTACT: WILLIAM R. DE HAAN, GENERAL RESEARCH CORP, 5383
HOLLISTER AVE, PO BOX 6770, SANTA BARBARA, CA, 93111, USA,
805-964-7724



RXVP80 (TM) Page 208

RXVP80™

A SOFTWARE DOCUMENTATION, ANALYSIS, AND TEST SYSTEM

A SOFTWARE ENGINEERING TOOL DEMONSTRATION

Sabina H. Saib, Jeoffrey P. Benson,
Carolyn Gannon, and William R. DeHaan

1. Introduction

This proposal is in response to the call for software

engineering tool developers to demonstrate their accomp-

lishments at the 5th International Conference on Software

Engineering in San Diego, March y-12, 1981. ^

We will be demonstrating the RXVPBO™ system, developed in

The Software Workshop" by General Research Corporation,

Santa Barbara, California.

2. Summary of RXVP80"

RXVPBO" is a system of tools which perform a number of

functions such as documentation, analysis, and test

assistance, for code written in common dialects of

FORTRAN including FORTRAN 77. The heart of the system is

a library capable of storing the results of analysis of

very large programs (>100,000 source lines). The system

performs much of its analysis on an internal representa-

tion of the program as a directed graph. One of the

primary features of RXVPSO" is its ability to analyze

only the new or changed modules of a program, using the

stored library to check interfaces.



RXVP80 (TM) Page 209

Documentation features of RXVP80™ include calling trees,

input/output reports, COMMON matrices, cross references,

and statement type suimnaries. Analysis functions include

type checking, parameters checking, set/use checking, and

graph connectivity checking. Test assistance functions

incluae path instrumentation, test coverage reports, and

reaching set reports.

3. A Scenario of an RXVPSO'" Demonstration

A demonstration of RXVP80'" consists of four parts. The

first part is a demonstration of the STATIC ANALYSIS

feature (see SAMPLE OUTPUT, Figure 1). The second part

is a demonstration of the use of a Project Library to

illustrate the checking of interface information (see

SAMPLE OUTPUT, Figure 2). The third part is a demonstra-

tion of the DOCUMENTATION feature (see SAMPLE OUTPUT,

Figure 3). The fourth part is a demonstration of the

EXECUTION COVERAGE ANALYSIS (INSTRUMENTATION) feature

(see SAMPLE OUTPUT, Figure 4).

The demonstration will take one hour. We will repeat it

as often as necessary. We can handle about 10 people in

each interactive demonstration.

4. RXVPBO" Literature

User's Manual

A description of the uses of RXVP80" with command

descriptions and sample outputs.

Collected Papers

A collection of articles written by members of the

Software Quality Department.



RXVP80 (TM) Page 210

5« Station, Day and Time

Forum, Tuesday, March lU, from 11:00 am until 12:30 pm.

Forum, Weanesday, March 11, from 9:00 am until 10:30 am.

Station 9, Thursday, March 12, from 9:00 am until 5:00

pm.

6. The Demonstrators

Sabina H. Saib is Director of the Software Quality

Department at General Research. She received a BS and a

PhD in Engineering from UCLA and an MSEE from the

University of Maryland. She has published several papers

on the verification and validation of software. Her

current work is in the automated verification of embedded

systems

.

Carolyn Gannon is a member of the Software Quality

Department at General Research. She received her BS and

MS with a computer science specialty from the University

of California, Santa Barbara. She is active in the

JOVIAL users group and is leading the development of an

automated verification system for JOVIAL J73. She has

published several papers on test techniques and automated

verification systems.

Jeoffrey P. Benson received his BA degree from California

State University, Fresno, and his MSEE and PhD degrees

from the University of California, Santa Barbara. Since

1973 Dr. Benson has been at General Research Corporation,

where he has done research in software verification. He

has also taught courses in compiler design and construc-

tion at the University of California, Santa Barbara. His

current research interests include compiler-compilers and

biomedical computing. Dr. Benson is a member of IEEE and

ACM.

William R. DeHaan is Software Marketing Director at

General Research. He received his BS from Fairleigh

Dickinson University and is currently active in the

creation, preparation, and marketing of proprietary

software. Mr. DeHaan is a member of ACM.



RXVP80 (TM)
SAMPLE OUTPUT

Page 21

STATIC MMLYSIS

STMT NEST LINE SOURCE...

SUBROUTINE CIRCLE ( AREA ) PA6C

SUBROUTINE CIRCLE ( AREA )

INTEGER AREA
DATA PI / 3.1416 /
RADIUS=DIAMTR/2

CIRCLE 2
CIRCLE 3

CIRaE 4

CIRCLE !

SET/USE ERROR
- VARIABLE DIAHTR USED BUT NEVER SET REFER TO STATEMENT(S)-

AREA=PI»RADIUSIi*2 CIRCLE 6

MODE WARNING
- LEFT HAND SIDE HAS MODE INTEGER RIGHT HAND SIDE HAS MODE REAL

IF (AREA. &T. 50)
CALL PRINT (AREA)

CIRCLE 7

CIRCLE 8

MODE WARNING
-PARAMETER 1 OF PRINT ACTUAL PARAMETER HAS MODE INTEGER

FORMAL PARAMETER HAS MODE REAL

CALL ERRDR
PRINT CALLED WITH 1 ACTUALLY HAS 2 ARGUMENTS

END IF
RETURN
CALL STACK ( RAD lUSr AREA) CIRCLE!!

_ GRAPH WARNING "

STATEMENT 10 IS UNREACHABLE OR IS IN AN INFINITE LOOP

10 10

END

STATIC ANALYSIS SUMMARY ERRORS WARNINGS

GRAPH CHECKING 0 1

CALL CHECKING 1 0
MODE CHECKING 0 2
SET/USE CHECKING 1 0

CALL CHECKING WAS NOT PERFORMED FOR THE FOLLOWING UNKNOWN EXTERNALS ..

STACK

CIRCLE12

STATIC ANALYSIS

STMT NEST LINE SOURCE..

SUBROUTINE PRINT (RADIUSfAREA) PA6E 3

.SOURCE TAB

1 SUBROUTINE PRINT (RADIUS>AREA)
2 WRITE (iilOO) RADIUS! AREA
3 100 FORMAT (12H FOR RADIUS fF10.SflOH> AREA IS iFlO.S)
4 RETURN
5 END

PRINT
PRINT
PRINT
PRINT
PRINT

STATIC ANALYSIS SUMMARY

GRAPH CHECKING
CALL CHECKING
NODE CHECKING
SET/USE CHECKING

ERRORS WARNINGS

FIGURE 1

RXVP80"

Sample STATIC ANALYSIS Report



RXVP80 (TM)
SAMPLE OUTPUT

Page 212

STATIC ANALYSIS SUBROUTINE AVER ( Ai Ni ANS ) PAGE 2

STHT NEST LINE SOURCE... ...SOURCE TAB

1 1 SUBROUTINE AvEr ( A> H, ANS )

2 2 INTEGER Ni I> J
3 3 REAL A(l)f ANS> SUM
A A J = 1

SET/USE HARMING
VARIABLE J SET BUT NEVER USED REFER TO STATEMENT(S)-
4

5 S WHILE ( I .LE. N )

6 1 6 . SUM = SUM + A(I)
7 1 7 .1 = 1 + 1

8 8 END UHILE
9 9 ANS = SUM/FLOAT(N)
10 10 RETURN
11 11 END

STATIC ANALYSIS SUMMARY ERRORS WARNINGS

GRAPH CHECKING 0 0
CALL CHECKING 0 0
MODE CHECKING 0 0
SET/USE CHECKING 0 1

CALL CHECKING WAS NOT PERFORMED FOR THE FOLLOWING UNKNOWN EXTERNALS ...
FLOAT

...WRITING INTERFACE LIBRARY FIGURE 2(a)

... 1898 WORDS WRITTEN
FORTRAN STOP RXVPSO""
RXVP80 processina has ended.

PROJECT LIBRARY USAGE

Creating a Project Library File

With One Subprogram

G R C SOFTWARE VERIFICATION PROGRAM — RXVP80

ENTER COMMANDS FOLLOWED BY END-OF-FILE

EXPAND.
OPTION=STATIC.LIST.

...READING INTERFACE LIBRARY

...END OF LIBRARY ENCOUNTERED

STATIC ANALYSIS

STMT NEST LINE SOURCE...

1 1

PROGRAM STAT PAGE 2

...SOURCE TAB

PROGRAM STAT
INTEGER DATA(IO)
REAL RESULT
READ t> DATA
CALL AVER ( DATA> RESULT )

-PARAMETER 1 OF AVER
MODE WARNING

ACTUAL PARAMETER HAS
FORMAL PARAMETER HAS

MODE INTEGER
MODE REAL

-PARAMETER 2 OF AVER
MODE WARNING

ACTUAL PARAMETER HAS
FORMAL PARAMETER HAS

MODE REAL
MODE INTEGER

AVER CALLED
CALL ERROR

WITH 2 ACTUALLY HAS 3 ARGUMENTS

PRINT ». RESULT
STOP
END

STATIC ANALYSIS SUMMARY

GRAPH CHECKING
CALL CHECKING
MODE CHECKING
SET/USE CHECKING

ERRORS WARNINGS

FIGURE 2(b)

RXVVPSG"

PROJECT LIBRARY FILE

Using the Project Library File

Created In Figure 2(a) by Adding a Subprogram



RXVP80 (TM) p 213
SAMPLE OUTPUT

STATEHENT PROFILE SUBROUTINE SUBA < KliK2fK3rK4rN ) fp^L 27

INTERFACE CHARACTERISTICS

ARGUMENTS 5
COMMON I
ENTRY 1

EXIT 2
WRITE 12

STATEMENT STATEMENT
CLASSIFICATION TYPE NUMBER PERCENT

TlCn ADATTnuUbLLAKAl lUNt *

•

DATA 3 4.8
COMMON 1 1.6
FORMAT 2 3.2

TOTAL 6 9.5

EXECUTABLE...

DO 1 1.&
END 1 1.6
ASSIGNMENT 11 17.5
GOTO 7 11.1
SUBROUTINE 1 1.6
WRITE 12 19.0
CONTINUE 6.3
RETURN 1 3.2

TOTAL 39 61.9

DECISION...

IF 4 6.3
CONTINUE 1 1.6

TOTAL 5 7.9

DOCUMENTATION.

.

COMMENT 13 20.6

TOTAL 13 20.6

FIGURE 3(f)

RXVP80"

Sanple Local STATEMENT PROFILE Report

INVOCATION SUMMARY

ENTRY LISTS OF CALLS

PAGE 28

BKDEMO IS CALLED BY - -NONE-

AND CALLS - -NONE-

HAIN IS CALLED BY - -NONE-

AND CALLS - SUBA

SUBA IS CALLED BY - MAIN

AND CALLS - -NONE-

FIGURE 5(g)

RXVP80'

Sample Global INVXATION SUMMARY Report

COMMON SUMMARY

COMMON MODULES WHICH INCLUDE THE COMMON

NAMES BKDEMO MAIN SUBA

PAGE

FIGURE 3(h)

RXVP80"

Smple Global COWON SUMMARY Report



RXVP80 (TM)
SAMPLE OUTPUT

Page 214

COmON MATRICES

LEGEND (C=FIRST USED IN A CALLrE=EOUIVALENCEDfS-SETtU=USEDtX=SET AND USED)

PAOE 30

tt
t $ HODULE I B H S
*

t
t *
t «
t t

t t
COHHON t SYMBOL » *

t tt

» K A U
t D I B
* E N A
t H
* 0
t

NAMES t ISUBS » S U U *

FIGURE 3(1)

Sanple Global COMMON MATRICES Report

I/O STATEMENTS PAGE

THE FOLLOWING MODULES CONTAIN I/O STATEHFNTS

MAIN
SUBA

I/O STATEMENTS AND ASSOCIATED FORMATS

— MAIN

STMT NEST LINE SOURCE... ...SOURCE TAB

8 15 URITE (6>600)
9 16 600 FORMAT (50H1EXECUTI0N COVERAGE (INSTRUMENTATION) TEST FROGRAMf//)

17 C
10 18 WRITE (6.599) ISUBS(l)
11 19 599 FORMAT (4H IN >A4)
13 21 URITE (6>602) LliIAl
14 22 602 FORMAT (IH ,5X.8HPATH IS .A4, IH, . I5.7H TIMES.)
16 25 READ (Sr500) KSU6>KlfK2>K3>K4.N
17 26 500 FORMAT (5(1X»A4).I3>52X)
18 27 WRITE (6>601) KSUB>Kl>K2iK3iM>N
19 28 601 FORMAT (IH fl6HINPUT DATA IS - .5( A4. IH. ) f 13. IH.

)

29 C

23 32 WRITE (6.602) L3.IA3
24 33 WRITE (6.605) KASE
25 34 605 FORMAT (29H t»t«t*»t* END OF TEST CASE .I3.11H »t*tt»t»»t )

30 40 WRITE (6.602) L2.IA2
41 C

34 44 WRITE (6.602) L4.IA4
35 45 WRITE (6.603)
3i 46 603 FORMAT (43H0 — PROCESSING COMPLETED )

40 51 WRITE (6.602) LS.IA5
52 C

44 55 WRITE (6.602) LlliIAU
45 56 WRITE (6.604)
46 57 604 FORMAT ( IH .21X.16H(N0T RECOGNIZED))
49 61 WRITE (6.602) L6.IA6

— SUBA

STMT NEST LINE SOURCE... ...SOURCE TAB

6 9 WRITE (6.599) ISUBS(2)

FIGURE 5(J)

RXVP80"

Sample Global l/D STATEMENTS Report

COMMON CROSS REFERENCE PAGE 33

NAME SCOPE MODULE USED/SET/EQUIVALENCED ( t INDICATES SET )

ISUBS NAMES BKDEMO 3*
NAMES MAIN 10
NAMES SUBA 6

Sample Global

FIGURE 5(k)

RXVPeO"

COMMON CROSS REFERENCE Report



RXVP80
SAMPLE

(TM)
OUTPUT

DD-PATH DEFINITIONS

STMT NEST LINE SOURCt...

1

SUBROUTINE SUBA ( Kl .K2,K3iK<.N )

Page 215

PAOE I?

...50UPCE TAB

3
4
5

6
7
8
9
10

U

13
14
IS

16
17
18

19

21
22
23

24
25
26

27

29
30
31

32
33
34

1

2 C

3
4 C
5
&
7
8 C
9
10
11
12
13
14
15

16
17
18
19
20
21
22
23
24

25
26
27
26
29
30
31
32
33

34
35
36
37
38
39
40
41

599

600

100

200

300

SUBROUTINE SUBA ( K1>K2>K3>K4>N )

COMMON / NAMES / ISUBS(4)
»» DDPATH 1 IS PROCEDURE ENTRY

DATA LlrL3.L5FL7.L9fLn / 2HAl,2HA3,2HA5i2HA7,2HA9f3HAn /
DATA L2>L4.L6fL8rL10 / 2HA2f2HA4,2HA6r2HA8f 3HfllO /
DATA IA!iIA2.IA3.IA4>IA5.IA6.IA7.IA8.IA9.IA10rIAll / lUO /

URITE (4.599) ISUBS<2)
FORMAT <1H0.10X>3HIN iA4)
IA1 =IAH1
URITE <6i600) LlflAl
FORMAT (IH il5Xi8HPATH IS .A4. IH. , I5.7H TIMES.)

IF ( K1.EQ.L2 ) GO TO 100

IA3=IA3+1
WRITE (6.600) L3.IA3
60 TO 110

CONTINUE
IA2=IA2+1
URITE (6.600) L2.IA2

»» DDPATH
t« DDPATH

110 IF ( K2.EQ.L4 ) GO TO 200

IA5=IA5+1
URITE (6.600) L5.IA5
GO TO 210

«« DDPATH
«« DDPATH

CONTINUE
IA4=IA4+1
URITE (6.600) L4.IA4

210 IF ( K3.EQ.L6 ) GO TO 300

IA7=IA7+1
URITE (6.600) L7.IA7
00 TO 310

«t DDPATH
«* DDPATH

CONTINUE
IA6=IA6^1
URITE (6.600) L6.IA6

2 IS TRUE BRANCH
3 IS FALSE BRANCH

4 IS TRUE BRANCH
5 IS FALSE BRANCH

6 IS TRUE BRANCH
7 IS FALSE BRANCH

FIGURE 4(a)

RXVPSO"

Sample DO -PATH DEFINITIONS Report

Showing Where Probes Were Autanatlcal ly Placed

RECORD OF DECISION TO DECISION (DD PATH) EXECUTION

MODULE tSUBA « TEST CASE NO. 1

DO PATH
NUMBER

I NO.
I

NOT EXECUTED I NUMBER OF EXECUTIONS
I, 20. 40.

—

— NORMALIZED TO MAXIMUM
60. 80.- 100.

I

I

I NUMBER OF
I EXECUTIONS

I I

1 I I XXXXX I 1 I 6
2 I 2 00000 I I I

3 I I xxxxx I 3 I 6
4 I I XX I 1 I 3

5 I I XX I 5 I 3

6 I I X I 6 I 2
7 I I XXX I 7 1 4

8 I I I 8 I 1

9 I I XXXX I 9 I 5
10 I I XXXX I 10 I 5

11 I I XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX I 11 I 57

TOTAL OF 1 NOT EXECUTED EXECUTED 10/ 11

TOTAL NUMBER OF DD PATH EXECUTIONS

PERCENT EXECUTED = 90.91

FIGURE 4(b)

Sample DETAILED EXECUTION COVERAGE Report

For Program In Figure 4(a)



RXVP80 (TM)
SAMPLE OUTPUT

Page 216

BSSCBXSSeSXCSKCSSBSSBSBSKB

SUNHARY— THIS TEST

3S3BSBBBSB3SBBB BBBBBBBBBBBSSnBSBBB

CUMULATIVE SUMMARY

TEST I

CASE I

SSSSSBBS
1 I

I

I

I

I

I

2"]'

I

I

I

I

I

MODULE
NAME

MAIN
SUBA

t*ALL««

MAIN
SUBA

«tALLt*

NUMBER OF
D-D PATHS

7
11

NUMBER OF
INVOCATIONS

18

7

11

18

D-D PATHS
TRAVERSED

PER CENT
COVERAGE

NUMBER
OF TESTS INVOCATIONS

:bbbbsbb SSSBBBBBasBBI
TRAVERSED COVERAGE
BBBBeBBBSBSBBSSBBBBSBBB

5
10

15

A

11

IS

71.43
90.91

83.33

aXBBZBBXSaBXBBa=SB33B

57.14
100.00

83.33

z=rxxs3a=ESS5s

5
10

15

6
11

17

SSSS==XXZXEBXB=SX

71.43
90.91

83.33

BEBSBXBBSBBS33XB

85.71
100.00

94.44

FIGURE 4(c)

RXVP80"

Sample SUMMARY EXECUTION COVERAGE Report

MODULE I TEST I PATHS I LIST OF DECISION TO DECISION PATHS NOT EXECUTED
NAME I NUMBER I NOT HIT I

sssssee:SSIESS=S===C=3SC===£=3ESSS=ESS=S==3=B===S=3SSSSSESza=£XSB£BSBSSSSSSSSSSSSSSS3SSSSSSS3SSSSSZBBSS=SS
<MAiN"" > i 2 I 3 113 7

I CUMUL I 1 I 7

<SUBA > I 2 I 0 I

I CUMUL I 0 I

FIGURE 4(d)

RXVP80"

Sample "NOT HIT" EXECUTION COVERAGE Report



RXVP80 (TM) Page 217

FEATURE CLASSIFICATION;

INPUT
. SUBJECT

. CODE INPUT
. FORTRAN
. IFTRAN

FUNCTION
. TRANSFORMATION

. INSTRUMENTATION

. TRANSLATION

. FORMATTING

. RESTRUCTURING
. STATIC ANALYSIS

. MANAGEMENT

. ERROR CHECKING

. DATA FLOW ANALYSIS

. STRUCTURE CHECKING

. CROSS REFERENCE

. STATISTICAL ANALYSIS

. CONSISTENCY CHECKING

. TYPE ANALYSIS

. COMPLEXITY MEASUREMENT

. COMPLETENESS CHECKING

. SCANNING

. INTERFACE ANALYSIS

. UNITS ANALYSIS
. DYNAMIC ANALYSIS

. COVERAGE ANALYSIS

. TRACING

. ASSERTION CHECKING

. TUNING

. CONSTRAINT ANALYSIS

. SYMBOLIC EXECUTION
OUTPUT

. USER OUTPUT
. GRAPHICS
. TABLES
. LISTINGS
. DIAGNOSTICS

. MACHINE OUTPUT
. SOURCE CODE OUTPUT

. FORTRAN

. IFTRAN

IMPLEMENTATION LANGUAGE ; FORTRAN, TOOL PORTABLE ; YES, TOOL
SIZE : 50K WORDS, TOOL AVAILABLE ; YES, PUBLIC DOMAIN ; NO,
RESTRICTIONS (COPYRIGHTS, LICENSES, ETCj ; LICENSE, TOOL
SUPPORTED; YES, TOOL SUPPORT; GENERAL RESEARCH CORP.

CONTACT ; WILLIAM R. DEHAAN, GENERAL RESEARCH CORP, 5383
HOLLISTER AVE, PO BOX 6770, SANTA BARBARA, CA, 93111, USA,
805-964-7724



Page 218

APPENDIX

FEATURES OF THE SAN DIEGO TOOL FAIR

The following is a cross reference to the features of the
tools that were demonstrated at the San Diego Tool Fair. The
cross reference provides a quick way to identify tools of
interest. This cross reference was developed from the feature
classifications that appear at the end of each tool summary.

INPUT
SUBJECT

. DATA

. DATA

. DATA

. DATA 64)

. DATA

. CODE CS4 ( 1)

. CODE

. CODE

. CODE

. CODE 64)

. CODE AFFIRM ( 69)

. CODE

. CODE

. CODE

. CODE

. CODE SOFTOOL 80 (TM) ( 122)

. CODE

. CODE ISUS ( 136)

. CODE

. CODE 174)

. CODE UCSD P-SYSTEM ( 194)

. CODE

. CODE IFTRAN (TM) ( 200)

. CODE



Page 219

FORTRAN ISUS { 136)
FORTRAN .INSTRU ( 159)
FORTRAN FTN-77 ANALYZER ( 174)
FORTRAN UCSD P-SYSTEM ( 194)
FORTRAN IFTRAN (TM) ( 200)
FORTRAN RXVP80 (TM) ( 208)
MODULA II LILITH ( 7)
MODULA LILITH ( 7)
RATFOR VIRTUAL OS ( 15)
PASCAL ARGUS/MICRO ( 83)
PASCAL UCSD P-SYSTEM ( 194)
COBOL THE ENGINE ( 33)
FORTRAN 77 ARGUS/ MICRO ( 83)
FORTRAN 77 FTN-77 ANALYZER ( 174)
FORTRAN 77 UCSD P-SYSTEM ( 194)
FORTRAN 66 DYNA ( 88)
BAL LOGICFLOW ( 103)
ASSEMBLY LANGUAGE LOGICFLOW ( 103)
FORTRAN IV (Gl) LOGICFLOW ( 103)
SRTRAN ITB ( 128)
SRTRAN ISUS ( 136)
IFTRAN IFTRAN (TM) ( 200)
IFTRAN RXVP80 (TM) ( 208)

LILITH ( 7)
SARA ( 10, 76, 163)
VIRTUAL OS ( 15)
ARGUS/ MICRO ( 83)
SCHEMACODE ( 152)
ONLINE ASSIST ( 167)
SARA ( 10, 76, 163)
SCG ( 21)
DQM ( 25)
AISIM ( 29)
PSL/PSA ( 38)
SDDL ( 44)
POD ( 58)
AFFIRM ( 69)

, LOGICFLOW ( 103 )

SREM ( 111)
, SDP ( 117)
, SOFTOOL 80 (TM) ( 122)
, FAME ( 146)
, , SCHEMACODE ( 152)
, SRIMP ( 186)
, AUTO-DBO ( 190)
, IFTRAN (TM) ( 200)

SLl SARA ( 10, 76, 163 )

GMB SARA ( 10, 76, 163)
BNF SARA ( 10, 76, 163)
DESIGN SPECIFICATION SCG ( 21)
DESIGN SPECIFICATION DQM ( 25)
DESIGN SPECIFICATION AISIM ( 29)
DESIGN SPECIFICATION AUTO-DBO ( 190)
REQUIREMENTS LANGUAGE PSL/PSA ( 38)
PSL PSL/PSA ( 38)

TEXT INPUT
TEXT INPUT
TEXT INPUT
TEXT INPUT
TEXT INPUT
TEXT INPUT
VHLL INPUT
VHLL INPUT
VHLL INPUT
VHLL INPUT
VHLL INPUT
VHLL INPUT
VHLL INPUT
VHLL INPUT
VHLL INPUT
VHLL INPUT
VHLL INPUT
VHLL INPUT
VHLL INPUT
VHLL INPUT
VHLL INPUT
VHLL INPUT
VHLL INPUT



Page 220

. PROBLEM STATEMENT LANGUAGE PSL/PSA ( 38)

. SDDL SDDL ( 44)

. SYSTEM SPECIFICATION POD ( 58)

. ALGEBRAIC SPECIFICATIONS AFFIRM ( 69)

. DESIGN LANGUAGE LOGICFLOW ( 103)

. DL LOGICFLOW ( 103)

. REQUIREMENTS STATEMENT LANGUAGE SREM ( 111)

. RSL SREM ( 111)

. SCHEMATIC PSEUDOCODE SCHEMACODE ( 152)

. MODEL DESCRIPTION SRIMP ( 186)

. IFTRAN IFTRAN (TM) ( 200)
FUNCTION

TRANSFORMATION
. TRANSLATION CS4 ( 1)
. TRANSLATION LILITH ( 7)
. TRANSLATION SARA ( 10, 76, 163)
. TRANSLATION VIRTUAL OS ( 15)
. TRANSLATION SCG ( 21)
. TRANSLATION DQM ( 25)
. TRANSLATION AISIM ( 29)
. TRANSLATION THE ENGINE ( 33)
. TRANSLATION ARGUS/MICRO ( 83)
. TRANSLATION LOGICFLOW ( 103)
. TRANSLATION SOFTOOL 80 (TM) ( 122)
. TRANSLATION SRIMP ( 186)
. TRANSLATION AUTO-DBO ( 190)
. TRANSLATION UCSD P-SYSTEM ( 194)
. TRANSLATION MSEF ( 197)
. TRANSLATION IFTRAN (TM) ( 200)
. TRANSLATION RXVP80 (TM) ( 208)
. EDITING LILITH ( 7)
. EDITING VIRTUAL OS ( 15)
. EDITING THE ENGINE ( 33)
. EDITING PWB FOR VAX/VMS ( 64)
. EDITING ARGUS/MICRO ( 83)
. EDITING LOGICFLOW ( 103)
. EDITING ISUS ( 136)
. EDITING SCHEMACODE ( 152)
. EDITING SRIMP ( 186)
. EDITING AUTO-DBO ( 190)
. EDITING UCSD P-SYSTEM ( 194)
. EDITING MSEF ( 197)
. EDITING IFTRAN (TM) ( 200)
. OPTIMIZATION LILITH ( 7)
. RESTRUCTURING SARA ( 10, 76, 163)
. RESTRUCTURING SCG ( 21)
. RESTRUCTURING THE ENGINE ( 33)
. RESTRUCTURING LOGICFLOW ( 103)
. RESTRUCTURING SCHEMACODE ( 152)
. RESTRUCTURING RXVP80 (TM) ( 208)
. FORMATTING THE ENGINE ( 33)
. FORMATTING SDDL ( 44)
. FORMATTING LOGICFLOW ( 103)
. FORMATTING SDP ( 117)
. FORMATTING SOFTOOL 80 (TM) ( 122)



Page 221

. FORMATTING SCHEMACODE ( 152)

. FORMATTING SRIMP ( 186)

. FORMATTING IFTRAN (TM) ( 200)

. FORMATTING RXVP80 (TM) ( 208)

. INSTRUMENTATION THE ENGINE ( 33)

. INSTRUMENTATION ARGUS/MICRO ( 83)

. INSTRUMENTATION DYNA ( 88)

. INSTRUMENTATION SOFTOOL 80 (TM) ( 122)

. INSTRUMENTATION ITB ( 128)

. INSTRUMENTATION INSTRU ( 159)

. INSTRUMENTATION FTN-77 ANALYZER ( 174)

. INSTRUMENTATION IFTRAN (TM) ( 200)
, INSTRUMENTATION RXVP80 (TM) ( 208)

STATIC ANALYSIS
. MANAGEMENT CS4 ( 1)
. MANAGEMENT VIRTUAL OS ( 15)
. MANAGEMENT PWB FOR VAX/VMS ( 64)
. MANAGEMENT ARGUS/MICRO ( 83)
. MANAGEMENT SREM ( 111)
. MANAGEMENT SOFTOOL 80 (TM) ( 122)
. MANAGEMENT IS US ( 136)
. MANAGEMENT SCHEMACODE ( 152)
. MANAGEMENT ONLINE ASSIST ( 167)
. MANAGEMENT TOOLS DATABASE ( 180)
. MANAGEMENT MSEF ( 197)
. MANAGEMENT RXVP80 (TM) ( 208)

. DATA BASE MANAGEMENT CS4 ( 1)

. DATA BASE MANAGEMENT SREM ( 111)

. FILES MANAGEMENT VIRTUAL OS ( 15)

. FILES MANAGEMENT ARGUS/MICRO ( 83)

. CONFIGURATION MANAGEMENT PWB FOR VAX/VMS ( 64)

. CONFIGURATION MANAGEMENT SOFTOOL 80 (TM) ( 122)

. CONFIGURATION MANAGEMENT ISUS ( 136)

. CHANGE CONTROL ISUS ( 136)

. CHANGE CONTROL MSEF ( 197)

. DOCUMENTATION MANAGEMENT ONLINE ASSIST ( 167)

. MANAGEMENT PLANNING TOOLS DATABASE ( 180)

. VERSION CONTROL MSEF ( 197)

. TEST DATA MANAGEMENT MSEF ( 197)
. DATA FLOW ANALYSIS SARA ( 10, 76, 163)
. DATA FLOW ANALYSIS SOFTOOL 80 (TM) ( 122)
. DATA FLOW ANALYSIS ISUS ( 136)
. DATA FLOW ANALYSIS.. SRIMP ( 186)
. DATA FLOW ANALYSIS RXVP80 (TM) ( 208)
. CROSS REFERENCE SARA ( 10, 76, 163)
. CROSS REFERENCE VIRTUAL OS ( 15)
. CROSS REFERENCE • PSL/PSA ( 38)
. CROSS REFERENCE COMMAP ( 96)
. CROSS REFERENCE SDP ( 117)
CROSS REFERENCE RXVP80 (TM) ( 208)
COMPLETENESS CHECKING SARA ( 10, 76, 163)

. COMPLETENESS CHECKING PSL/PSA ( 38)

. COMPLETENESS CHECKING PWB FOR VAX/VMS ( 64)

. COMPLETENESS CHECKING SREM ( 111)

. COMPLETENESS CHECKING SOFTOOL 80 (TM) ( 122)



Page 222

COMPLETENESS
COMPLETENESS
CONSISTENCY
CONSISTENCY
CONSISTENCY
CONSISTENCY
CONSISTENCY
CONSISTENCY
CONSISTENCY
STRUCTURE
STRUCTURE
STRUCTURE
STRUCTURE
STRUCTURE
STRUCTURE
STRUCTURE
STRUCTURE

CHECKING AUTO-DBO ( 190)
CHECKING RXVP80 (TM) ( 208)

163)CHECKING SARA ( 10, 76,
CHECKING PSL/PSA ( 38)
CHECKING AFFIRM ( 69)
CHECKING SREM ( 111)
CHECKING SRIMP ( 186)
CHECKING AUTO-DBO ( 190)
CHECKING RXVP80 (TM) ( 208)

CHECKING SARA ( 10, 76, 163)
CHECKING THE ENGINE ( 33)
CHECKING LOGICFLOW (

CHECKING ...SDP ( 117)
CHECKING SOFTOOL 80
CHECKING ISUS ( 136)
CHECKING IFTRAN (TM)
CHECKING RXVP80 (TM)

SCANNING SARA ( 10,
SCANNING SDDL ( 44)
SCANNING SDP ( 117)

103)

(TM) ( 122)

( 200)
( 208)

76, 163)

(TM) ( 122)
( 208)

( 15)
( 64)
( 122)

SCANNING SOFTOOL 80
SCANNING RXVP80 (TM)
COMPARISON VIRTUAL OS
COMPARISON PWB FOR VAX/VMS
COMPARISON SOFTOOL 80 (TM)
COMPARISON MSEF ( 197)
COMPLEXITY MEASUREMENT DQM ( 25)
COMPLEXITY MEASUREMENT LOGICFLOW ( 103)
COMPLEXITY MEASUREMENT SOFTOOL 80 (TM) ( 122)
COMPLEXITY MEASUREMENT SCHEMACODE ( 152)
COMPLEXITY MEASUREMENT RXVP80 (TM) ( 208)
ERROR CHECKING THE ENGINE ( 33)
ERROR CHECKING PSL/PSA (38)
ERROR CHECKING .COMMAP ( 96)
ERROR CHECKING LOGICFLOW ( 103)
ERROR CHECKING ISUS ( 136)
ERROR CHECKING FAME ( 146)
ERROR CHECKING RXVP80 (TM) ( 208)
COST ESTIMATION SLIM ( 49)
SCHEDULING SLIM ( 49)

. TIME SCHEDULING SLIM ( 49)

. PERSONNEL SCHEDULING SLIM ( 49)
TYPE ANALYSIS AFFIRM ( 69)
TYPE ANALYSIS RXVP80 (TM) ( 208)
AUDITING LOGICFLOW ( 103)
AUDITING SOFTOOL 80 (TM) (

INTERFACE ANALYSIS SOFTOOL 80 (TM) (

INTERFACE ANALYSIS AUTO-DBO ( 190)

122)
122)

. INTERFACE ANALYSIS RXVP80

. STATISTICAL ANALYSIS FTN-77

. STATISTICAL ANALYSIS RXVP80

. UNITS ANALYSIS RXVP80
DYNAMIC ANALYSIS

. SIMULATION ..SARA (

. SIMULATION AISIM (

(TM) ( 208)
ANALYZER ( 174)
(TM) ( 208)
(TM) ( 208)

10, 76,
29)

163)



Page 223

SIMULATION SLIM ( 49)
SIMULATION POD ( 58)
SIMULATION SREM ( 111)

ANALYSIS THE ENGINE ( 33)
ANALYSIS ARGUS/ MICRO ( 83)
ANALYSIS DYNA ( 88)
ANALYSIS SOFTOOL 80 (TM) (

ANALYSIS ITB ( 128)
ANALYSIS FTN-7 7 ANALYZER (

ANALYSIS IFTRAN (TM) ( 200)
ANALYSIS...., RXVP80 (TM) ( 208)

( 33)ENGINE

COVERAGE
COVERAGE
COVERAGE
COVERAGE
COVERAGE
COVERAGE
COVERAGE
COVERAGE
TRACING THE
TRACING SOFTOOL 80
TRACING ITB ( 128)
TRACING INSTRU
TRACING FTN-7 7

TRACING IFTRAN
TRACING RXVP80

. DATA FLOW TRACING INSTRU
LINEAR PROGRAMMING SLIM (

TUNING POD (

122 )

174 )

(TM) ( 122)

( 159)
ANALYZER (

(TM) ( 200)
(TM) ( 208)
( 159)
49 )

58)
(TM) (

174)

122 )

ANALYZER ( 174)
(TM) ( 200)
(TM) ( 208)
( 69)
ANALYZER ( 174)
(TM) ( 200)
(TM) ( 208)

(TM) (

( 208)
( 208)

122 )

TUNING SOFTOOL 80
TUNING FTN-7 7

TUNING IFTRAN
TUNING RXVP80
ASSERTION CHECKING AFFIRM
ASSERTION CHECKING FTN-7 7

ASSERTION CHECKING IFTRAN
ASSERTION CHECKING RXVP80
TIMING SOFTOOL 80
SYMBOLIC EXECUTION RXVP80 (TM)
CONSTRAINT ANALYSIS RXVP80 (TM)

OUTPUT
USER

TEXT CS4 ( 1)
TEXT SARA ( 10, 76, 163)
TEXT VIRTUAL OS ( 15)
TEXT ARGUS/ MICRO ( 83)
TEXT SREM ( 111)
TEXT SDP ( 117)
TEXT SOFTOOL 80 (TM) ( 122)
TEXT ONLINE ASSIST ( 167)
TEXT AUTO-DBO ( 190)

. DOCUMENTATION CS4 ( 1)

. DOCUMENTATION SARA ( 10,

. DOCUMENTATION SDP ( 117)

. DOCUMENTATION SOFTOOL 80

. DOCUMENTATION ONLINE ASSIST (

. DOCUMENTATION AUTO-DBO ( 190)

. ON-LINE ASSISTANCE SARA ( 10, 76, 163)

. REPORTS SREM ( 111)

LISTINGS CS4 ( 1)

LISTINGS LILITH ( 7)
LISTINGS SARA ( 10, 76,

LISTINGS VIRTUAL OS (

OUTPUT
USER-ORIENTED
USER-ORIENTED
USER-ORIENTED
USER-ORIENTED
USER-ORIENTED
USER-ORIENTED
USER-ORIENTED
USER-ORIENTED
USER-ORIENTED

76, 163)

(TM) ( 122)
167 )

163)
15)



Page 224

LISTINGS THE ENGINE ( 33)
LISTINGS PSL/PSA ( 38)
LISTINGS SDDL ( 44)
LISTINGS AFFIRM ( 69)
LISTINGS ARGUS/MICRO ( 83)
LISTINGS DYNA ( 88)
LISTINGS LOGICFLOW ( 103)
LISTINGS SREM ( 111)
LISTINGS SDP (117)
LISTINGS SOFTOOL 80 (TM) ( 122)
LISTINGS. ITB ( 128)
LISTINGS ISUS ( 136)
LISTINGS SCHEMACODE ( 152)
LISTINGS INSTRU ( 159)
LISTINGS FTN-77 ANALYZER ( 174)
LISTINGS SRIMP ( 186)
LISTINGS UCSD P-SYSTEM ( 194)
LISTINGS MSEF ( 197)
LISTINGS IFTRAN (TM) ( 200)
LISTINGS RXVP80 (TM) ( 208)
GRAPHICS LILITH ( 7)
GRAPHICS SARA ( 10, 76, 163)
GRAPHICS SCG ( 21)
GRAPHICS DQM ( 25)
GRAPHICS AISIM ( 29)
GRAPHICS PSL/PSA ( 38)
GRAPHICS SLIM ( 49)
GRAPHICS POD ( 58)
GRAPHICS ARGUS/ MICRO ( 83)
GRAPHICS LOGICFLOW ( 103)
GRAPHICS SREM ( 111)
GRAPHICS SDP ( 117)
GRAPHICS FAME (146)
GRAPHICS SRIMP ( 186)
GRAPHICS IFTRAN (TM) ( 200)
GRAPHICS RXVP80 (TM) ( 208)

. STRUCTURE CHARTS SCG (21)
. DESIGN CHARTS DQM ( 25)
. DESIGN CHARTS LOGICFLOW ( 103)
. BAR CHARTS SLIM ( 49)
. LINE GRAPHS SLIM ( 49)
. FLOW CHARTS LOGICFLOW ( 103)
. HIERARCHICAL TREE SDP ( 117)
. HIERARCHICAL TREE FAME ( 146)
. HIERARCHICAL TREE SRIMP ( 186)
. CONTROL MAP FAME ( 146)
. ACTIVITY DIAGRAM SRIMP (186)

DIAGNOSTICS VIRTUAL OS ( 15)
DIAGNOSTICS PSL/PSA ( 38)
DIAGNOSTICS PWB FOR VAX/VMS ( 64)
DIAGNOSTICS AFFIRM ( 69)
DIAGNOSTICS ARGUS/ MICRO ( 83)
DIAGNOSTICS COMMAP ( 96)
DIAGNOSTICS SREM ( 111)
DIAGNOSTICS SOFTOOL 80 (TM) ( 122)



Page 225

DIAGNOSTICS ISUS ( 136)
DIAGNOSTICS FAME ( 146)
DIAGNOSTICS IFTRAN (TM) { 200)
DIAGNOSTICS RXVP80 (TM) ( 208)
TABLES DQM ( 25)
TABLES AISIM ( 29)
TABLES PSL/PSA ( 38)
TABLES SLIM ( 49)
TABLES POD ( 58)
TABLES PWB FOR VAX/VMS ( 64)
TABLES ARGUS/MICRO ( 83)
TABLES DYNA ( 88)
TABLES COMMAP ( 96)
TABLES SOFTOOL 80 (TM) ( 122)
TABLES ITB ( 128)
TABLES INSTRU ( 159)
TABLES FTN-77 ANALYZER ( 174)
TABLES TOOLS DATABASE ( 180)
TABLES RXVP80 (TM) ( 208)

MACHINE OUTPUT
OBJECT CODE OUTPUT CS4 ( 1)
OBJECT CODE OUTPUT LILITH ( 7)
OBJECT CODE OUTPUT PWB FOR VAX/VMS ( 64)
DATA OUTPUT , CS4 ( 1)
DATA OUTPUT SARA ( 10, 76, 163)
DATA OUTPUT PSL/PSA ( 38)
DATA OUTPUT PWB FOR VAX/VMS ( 64)
SOURCE CODE OUTPUT SARA ( 10, 76, 163)
SOURCE CODE OUTPUT VIRTUAL OS ( 15)
SOURCE CODE OUTPUT THE ENGINE ( 33)
SOURCE CODE OUTPUT DYNA ( 88)
SOURCE CODE OUTPUT LOGICFLOW ( 103)
SOURCE CODE OUTPUT SOFTOOL 80 (TM) ( 122)
SOURCE CODE OUTPUT ITB ( 128)
SOURCE CODE OUTPUT ISUS ( 136)
SOURCE CODE OUTPUT SCHEMACODE ( 152)
SOURCE CODE OUTPUT INSTRU ( 159)
SOURCE CODE OUTPUT FTN-7 7 ANALYZER ( 174)
SOURCE CODE OUTPUT IFTRAN (TM) ( 200)
SOURCE CODE OUTPUT RXVP80 (TM) ( 208)

. FORTRAN VIRTUAL OS ( 15)

. FORTRAN DYNA ( 88)

. FORTRAN LOGICFLOW ( 103)

. FORTRAN ITB ( 128)

. FORTRAN ISUS ( 136)

. FORTRAN SCHEMACODE ( 152)

. FORTRAN INSTRU ( 159)

. FORTRAN IFTRAN (TM) ( 200)

. FORTRAN RXVP80 (TM) ( 208)

. COBOL THE ENGINE ( 33)

. FORTRAN 77 FTN-77 ANALYZER ( 174)

. FORTRAN 66 DYNA ( 88)

. JOVIAL LOGICFLOW ( 103)

. SRTRAN ITB ( 128)

. SRTRAN ISUS ( 136)



. IFTRAN
. PROMPTS
. VHLL OUTPUT
. VHLL OUTPUT

. DESIGN SPECIFICATION

. PSL
. INTERMEDIATE CODE

Page 226

.RXVP80 (TM) ( 208)

.SARA ( 10, 76, 163)
•SRIMP ( 186)
.AUTO-DBO ( 190)
.AUTO-DBO ( 190)
.SRIMP ( 186)
.MSEF ( 197)



NBS-n4A IREV. 2-80)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1, PUBLICATION OR
REPORT NO,

NBS SP 500-80

2. Performing Organ. Report No. 3. Publication Date

October 1981

4. TITLE AND SUBTITLE

Proceedings of the NBS/IEEE/ACM Software Tool Fair
Held in conjunction with the 5th International Conference on Software Engineering
in San Diego. CA. March 10-12. 1981

5. AUTHOR(S)

Raymond C. Houghton, Jr., Editor

6. PERFORMING ORGANIZATION (If joint or other than NBS. see /nstruct/ons;

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.

8. Type of Report & Period Covered

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State, ZIP)

IEEE Computer Society
P.O. Box 639

Silver Spring, MD 20901

SIGSOFT ACM
and 1133 Avenue of the Americas

New York, NY 10036

10. SUPPLEMENTARY NOTES
Library of Congress Catalog Card Number: 81-600109

I I

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most si gnificant information. If document includes a significant

bibliography or literature survey, mention it here)

This document summarizes the presentations made by each demonstrator at the

San Diego Tool Fair. The San Diego Tool Fair was a first-of-its-kind demonstration

of software engineering tools at a major conference. Each summary includes a

shorty description of the tool, a scenario of the demonstration, a list of references,

background on the demonstrators, sample output, and a page of miscellaneous data

obtained from the NBS Software Tools Database. The appendix provides a cross

reference to the features of the tools.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

programming aids; software automation; software development; software engineering;

software testing; software tools.

13. AVAILABILITY

^^Unlimited

1 1
For Official Distribution. Do Not Release to NTIS

^ Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.

20402.

1 1
Order From National Technical Information Service (NTIS), Springfield. VA. 22161

14. NO. OF
PRINTED PAGES

238

IS. Price

$6.50

USCOMM-DC eO«3-P80

iru.S. GOVERNMENT PRINTING OFFICE; 19 8 1-340-997/1789





ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, D. C. 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series: National Bureau of Standards Special Publication 500-

Name .

Company

Address .

City Stale Zip Code

(Notincation key N-S03)









NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the

National Bureau of Standards reports NBS research and develop-

ment in those disciplines of the physical and engineering sciences in

which the Bureau is active. These include physics, chemistry,

engineering, mathematics, and computer sciences. Papers cover a

broad range of subjects, with major emphasis on measurement
methodology and the basic technology underlying standardization.

Also included from time to time are survey articles on topics

closely related to the Bureau's technical and scientific programs.

As a special service to subscribers each issue contains complete

citations to all recent Bureau publications in both NBS and non-

NBS media. Issued six times a year. Annual subscription: domestic
$13: foreign $16.25. Single copy, S3 domestic; $3.75 foreign.

NOTE: The Journal was formerly published in two sections: Sec-

tion A "Physics and Chemistry" and Section B "Mathematical
Sciences."

DIMENSIONS/NBS—This monthly magazine is published to in-

form scientists, engineers, business and industry leaders, teachers,

students, and consumers of the latest advances in science and
technology, with primary emphasis on work at NBS. The magazine
highlights and reviews such issues as energy research, fire protec-

tion, building technology, metric conversion, pollution abatement,

health and safety, and consumer product performance. In addi-

tion, it reports the results of Bureau programs in measurement
standards and techniques, properties of matter and materials,

engineering standards and services, instrumentation, and
automatic data processing. Annual subscription: domestic $11;

foreign $13.75.

NONPERIODICALS

Monographs—Major contributions to the technical literature on

various subjects related to the Bureau's scientific and technical ac-

tivities.

Handbooks—Recommended codes of engineering and industrial

practice (including safety codes) developed in cooperation with in-

terested industries, professional organizations, and regulatory

bodies.

Special Publications—Include proceedings of conferences spon-

sored by NBS, NBS annual reports, and other special publications

appropriate to this grouping such as wall charts, pocket cards, and

bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and

studies of special interest to physicists, engineers, chemists,

biologists, mathematicians, computer programmers, and others

engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative

data on the physical and chemical properties of materials, com-

piled from the world's literature and critically evaluated.

Developed under a worldwide program coordinated by NBS under

the authority of the National Standard Data Act (Public Law
90-396).

NOTE: The principal publication outlet for the foregoing data is

the Journal of Physical and Chemical Reference Data (JPCRD)
published quarterly for NBS by the American Chemical Society

(ACS) and the American Institute of Physics (AIP). Subscriptions,

reprints, and supplements available from ACS, 1 155 Sixteenth St.,

NW, Washington, DC 20056.

Building Science Series— Disseminates technical information

developed at the Bureau on building materials, components,

systems, and whole structures. The series presents research results,

test methods, and performance criteria related to the structural and
environmental functions and the durability and safety charac-

teristics of building elements and systems.

Technical Notes—Studies or reports which are complete in them-

selves but restrictive in their treatment of a subject. Analogous to

monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final

reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards—Developed under procedures

published by the Department of Commerce in Part 10, Title 15, of

the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all

concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a

supplement to the activities of the private sector standardizing

organizations.

Consumer Information Series— Practical information, based on

NBS research and experience, covering areas of interest to the con-

sumer. Easily understandable language and illustrations provide

useful background knowledge for shopping in today's tech-

nological marketplace.

Order the above NBS publications from: Superintendent of Docu-

ments, Government Printing Office, Washington, DC 20402.

Order the following NBS publications—FIPS and NBSlR's—from
the National Technical Information Services, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS

PUB)—Publications in this series collectively constitute the

Federal Information Processing Standards Register. The Register

serves as the official source of information in the Federal Govern-

ment regarding standards issued by NBS pursuant to the Federal

Property and Administrative Services Act of 1949 as amended.

Public Law 89-306 (79 Stat. 1127), and as implemented by Fx-

ecutive Order 11717 (38 FR 12315, dated May 11, 1973) and Pan 6

of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or

final reports on work performed by NBS for outside sponsors

(both government and non-government). In general, initial dis-

tribution is handled by the sponsor; public distribution is by the

National Technical Information Services, Springfield, VA 22161,

in paper copy or microfiche form.



U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Washington. D.C. 20234

OFFICIAL BUSINESS

Penalty for Private Use, S300

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

COM-21S

SPECIAL FOURTH-CLASS RATE
BOOK


		Superintendent of Documents
	2022-04-16T07:23:25-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office




