The Fire and Fuels Extension to the Forest Vegetation Simulator

Addendum to RMRS-GTR-116

This document outlines changes and additions that have been made to the Fire and Fuels Extension since the publication of the official FFE documentation (RMRS-GTR-116)

February 2, 2009

The Authors

Add –

Stephanie A. Rebain is a Forester with the Forest Vegetation Simulator staff, USDA Forest Service, Fort Collins, CO. She has been involved with FFE since 2002. Her contributions include the development of the FFE for the Ozark, Lake States, and Northeast regions, leading FVS-FFE training sessions, and maintenance of the FFE code.

Acknowledgments

Add the following people who were involved with the development of new variants or participated in a regional validation workshop:

Applegate, Vic Babb, Geoff Bennett, Jeremy Birdsey, Richard Blessing, Dan Burke, Earl Bush, Renate Caves, Tom Duran, Lara Dwyer, Dennis Evans, David Fieldhouse, Paul Fryar, Roger Gayton, Dyce Geils, Brian Hanson, Dan Harnois, Mike Harry, Lee Hartman, George Heath, Linda Hoover, Coeli Hoverman, Roger Hutton, Diane Johnson, Morris Johnson, Steve Journey, Mike Kolacs, Jeremy Lieser, Ed Locke, Mike Lundberg, Renee Maffei, Helen Martin, Fred Mateyka, Mike Mellen, Kim Miedtke, Doug

Morin, Randy Negron, Jorge Novak, Mark Paddock, Erin Ponder, Felix Reed, Dave Remus, Tom Schantz, Rob Shea, Julie Shifley, Steve Simpson, Mike Smith, Jane Smith, Jim Spetich, Marty Stock, Joyce Stone, Jim Tandy, Brian Terrell, Bennie Turner, Lauri Underwood, Steve Vickers, Gregg Weyenberg, Scott Woodall, Chris Wright, Debi Yanez, Leo Young, Carol

ii

Table of Contents

List of Tables	vii
List of Figures	xiv
Chapter 1 – Purpose and Applications	1
Chapter 2 – Fire and Fuels Extension: Model Description	1
Chapter 3 – User's Guide	8
Chapter 4 – Variant Descriptions	
4.12 Klamath Mountains (NC)	
4.12.1 Tree Species	
4.12.2 Snags	
4.12.3 Fuels	
Live Tree Bole	
Tree Crown	
Live Herbs and Shrubs	
Dead Fuels	
4.12.4 Bark Thickness	
4.12.5 Decay Rate	
4.12.6 Moisture Content	
4.12.7 Fire Behavior Fuel Models	
4.13 Inland California and Southern Cascades (CA)	
4.13.1 Tree Species	
4.13.2 Snags	
4.13.3 Fuels	
Live Tree Bole	
Tree Crown	
Live Herbs and Shrubs	
Dead Fuels	
4.13.4 Bark Thickness	
4.13.5 Decay Rate	
4.13.6 Moisture Content	
4.13.7 Fire Behavior Fuel Models	
4.14 Inland Empire (IE)	74
4.14.1 Tree Species	
4.14.2 Snags	
4.14.3 Fuels	
Live Tree Bole	77
Tree Crown	77
Live Herbs and Shrubs	
Dead Fuels	
4.14.4 Bark Thickness	
4.14.5 Decay Rate	
4.14.6 Moisture Content	
4.14.7 Fire Behavior Fuel Models	
4.15 Southern (SN)	
4.15.1 Tree Species	
4.15.2 Snags	
4.15.3 Fuels	
Live Tree Bole	

Tree Crown	
Live Herbs and Shrubs	
Dead Fuels	
4.15.4 Bark Thickness	
4.15.5 Decay Rate	
4.15.6 Moisture Content	
4.15.7 Fire Behavior Fuel Models	
4.15.8 Other	
4.16 Pacific Northwest Coast (PN)	
4.16.1 Tree Species	
4.10.1 Tree Species	
4.16.3 Fuels	
Live Tree Bole	
Tree Crown	
Live Herbs and Shrubs	
Dead Fuels	
4.16.4 Bark Thickness	
4.16.5 Decay Rate	
4.16.6 Moisture Content	
4.16.7 Fire Behavior Fuel Models	
4.17 Westside Cascades (WC)	
4.17.1 Tree Species	
4.17.2 Snags	
4.17.3 Fuels	
Live Tree Bole	
Tree Crown	
Live Herbs and Shrubs	
Dead Fuels	
4.17.4 Bark Thickness	
4.17.5 Decay Rate	
4.17.6 Moisture Content	
4.17.7 Fire Behavior Fuel Models	
4.18 Southern Oregon/Northern California (SO)	
4.18.1 Tree Species	
4.18.2 Snags	
4.18.3 Fuels	
Live Tree Bole	
Tree Crown	
Live Herbs and Shrubs	
Dead Fuels	
4.18.4 Bark Thickness	
4.18.5 Decay Rate 4.18.6 Moisture Content	
4.18.7 Fire Behavior Fuel Models	
4.18.8 Consumption 1-hr and 10-hr fuels	
100-hr fuels	
1000-hr+ fuels	
Duff	
4.19 Lake States (LS)	
4.19.1 Tree Species	
4.19.2 Snags	
4.19.3 Fuels	
Live Tree Bole	

Tree Crown	
Live Herbs and Shrubs	
Dead Fuels	
4.19.4 Bark Thickness	
4.19.5 Decay Rate	
4.19.6 Moisture Content	
4.19.7 Fire Behavior Fuel Models	
4.19.8 Fire-related Mortality	
4.20 Northeastern (NE)	
4.20.1 Tree Species	
4.20.2 Snags	
4.20.3 Fuels	
Live Tree Bole	
Tree Crown	
Live Herbs and Shrubs	
Dead Fuels	
4.20.4 Bark Thickness	
4.20.5 Decay Rate	
4.20.6 Moisture Content	
4.20.7 Fire Behavior Fuel Models	
4.20.8 Fire-related Mortality	
4.21 Central States (CS)	
4.21.1 Tree Species	
4.21.1 The Species	
4.21.2 Shags	
4.21.5 Fuels	
Tree Crown	
Live Herbs and Shrubs	
Dead Fuels	
4.21.4 Bark Thickness	
4.21.5 Decay Rate	
4.21.6 Moisture Content	
4.21.7 Fire Behavior Fuel Models	
4.21.8 Other	
4.22 Southeast Alaska (AK)	
4.22.1 Tree Species	
4.22.2 Snags	
4.22.3 Fuels	
Live Tree Bole	
Tree Crown	
Live Herbs and Shrubs	
Dead Fuels	
4.22.4 Bark Thickness	
4.22.5 Decay Rate	
4.22.6 Moisture Content	
4.22.7 Fire Behavior Fuel Models	
Appendix A: P-Torch	
Appendix B: Wood Density Values	
Appendix C: Adjusting the Fire Behavior Calculations	
1. Modeled fuel loads to custom fuel model	
1.1 Fuelbed depth	
1.2 Dead fuel extinction moisture content	
2. Modeled fuel loads to standard fuel model	

2.1 Narrowing the fuel model choices	
2.1.1 Fire-carrying fuel type	
2.1.2 Climate Type	
2.1.3 Fuel model set	
2.2. Selecting a fuel model from the narrowed list	
2.2.1 Departure index	
2.2.2 Choosing a single standard fuel model	
2.2.3 Choosing more than one standard fuel model	
References	

List of Tables

Table 4.77	Default annual loss rates are applied based on size class. A portion of the loss is added to the duff pool each year. Loss rates are for hard material. If present, soft material in all size classes except litter and duff decays 10% faster.	37
Table 4.12.1.	Tree species simulated by the Klamath Mountains variant.	41
Table 4.12.2.	Default snag fall, snag height loss and soft-snag characteristics for 20" DBH snags in the NC-FFE variant. These characteristics are derived directly from the parameter values shown in Table 4.12.3.	42
Table 4.12.3.	Default snag fall, snag height loss and soft-snag multipliers for the NC-FFE. These parameters result in the values shown in Table 4.12.2. (These three columns are the default values used by the SNAGFALL, SNAGBRK and SNAGDCAY keywords, respectively.)	42
Table 4.12.4.	Woody density (ovendry lbs/green ft ³) used in the NC-FFE variant	43
Table 4.12.5.	The crown biomass equations used in the NC-FFE. Species mappings are done for species for which equations are not available.	44
Table 4.12.6.	Life span of live and dead foliage (yr) and dead branches for species modeled in the NC- FFE variant	44
Table 4.12.7.	Values (dry weight, tons/acre) for live fuels used in the NC-FFE. Biomass is linearly interpolated between the "initiating" (I) and "established"(E) values when canopy cover is between 10 and 60 percent.	45
Table 4.12.8.	Canopy cover and cover type are used to assign default coarse woody debris (tons/acre) by size class for established (E) and initiating (I) stands.	46
Table 4.12.9.	Species specific constants for determining single bark thickness.	47
Table 4.12.10.	Default annual loss rates are applied based on size class. A portion of the loss is added to the duff pool each year. Loss rates are for hard material. If present, soft material in all size classes except litter and duff decays 10% faster.	47
Table 4.12.11.	The NC-FFE modifies default decay rate (Table 4.12.10) using R5 Site Code to improve simulated decomposition. Lower R5 Site Classes indicate moister sites.	48
Table 4.12.12.	Default wood decay classes used in the NC-FFE variant. Classes are from the Wood Handbook (1999). (1 = exceptionally high; 2 = resistant or very resistant; 3 = moderately resistant, and 4 = slightly or nonresistant). Modified decay classes for madrone, California black oak, tanoak and other hardwoods were adopted at the California variants workshop (Stephanie Rebain, pers. comm., February 2003)	48
Table 4.12.13.	Moisture values, which alter fire intensity and consumption, have been predefined for four groups.	49
Table 4.12.14.	California Wildlife Habitat Relationships, as defined by Mayer and Laudenslayer (1988), with modifications to the tree size and canopy cover class breakpoints for the NC-FFE.	50
Table 4.12.15.	Fire behavior fuels models for the NC-FFE are determined using forest type and CWHR class, as described in the text. The modeling logic allows one or more fuel models to be selected.	52
Table 4.13.1.	Tree species simulated by the Inland California and Southern Cascades variant.	53
Table 4.13.2.	Default snag fall, snag height loss and soft-snag characteristics for 20" DBH snags in the CA-FFE variant. These characteristics are derived directly from the parameter values shown in Table 4.13.3.	55
Table 4.13.3.	Default snag fall, snag height loss and soft-snag multipliers for the CA-FFE. These parameters result in the values shown in Table 4.13.2. (These three columns are the default values used by the SNAGFALL, SNAGBRK and SNAGDCAY keywords, respectively.)	

Table 4.13.4.	Woody density (ovendry lbs/green ft ³) used in the CA-FFE variant	58
Table 4.13.5.	The crown biomass equations used in the CA-FFE. Species mappings are done for species for which equations are not available	59
Table 4.13.6.	Life span of live and dead foliage (yr) and dead branches for species modeled in the CA- FFE variant	60
Table 4.13.7.	Values (dry weight, tons/acre) for live fuels used in the CA-FFE. Biomass is linearly interpolated between the "initiating" (I) and "established"(E) values when canopy cover is between 10 and 60 percent.	62
Table 4.13.8.	Canopy cover and cover type are used to assign default coarse woody debris (tons/acre) by size class for established (E) and initiating (I) stands.	64
Table 4.13.9.	Species specific constants for determining single bark thickness.	67
Table 4.13.10.	Default annual loss rates are applied based on size class. A portion of the loss is added to the duff pool each year. Loss rates are for hard material. If present, soft material in all size classes except litter and duff decays 10% faster.	67
Table 4.13.11.	The CA-FFE modifies default decay rate (Table 4.13.10) using R5 Site Code to improve simulated decomposition. Lower R5 Site Classes indicate moister sites	68
Table 4.13.12.	Default wood decay classes used in the CA-FFE variant. Classes are from the Wood Handbook (1999). (1 = exceptionally high; 2 = resistant or very resistant; 3 = moderately resistant, and 4 = slightly or nonresistant). Modified decay classes for madrone, California black oak, tanoak and other hardwoods were adopted at the California variants workshop (Stephanie Rebain, pers. comm., February 2003)	69
Table 4.13.13.	Moisture values, which alter fire intensity and consumption, have been predefined for four groups.	70
Table 4.13.14.	California Wildlife Habitat Relationships, as defined by Mayer and Laudenslayer (1988), with modifications to the tree size and canopy cover class breakpoints for the CA-FFE	71
Table 4.13.15.	Fire behavior fuels models for the CA-FFE are determined using forest type and CWHR class, as described in the text. The modeling logic allows one or more fuel models to be selected.	73
Table 4.14.1.	Tree species simulated by the Inland Empire variant	74
Table 4.14.2.	Default snag fall, snag height loss and soft-snag characteristics for 20" DBH snags in the IE-FFE variant. These characteristics are derived directly from the parameter values shown in Table 4.14.3.	75
Table 4.14.3.	Default snag fall, snag height loss and soft-snag multipliers for the IE-FFE. These parameters result in the values shown in Table 4.14.2. (These three columns are the default values used by the SNAGFALL, SNAGBRK and SNAGDCAY keywords, respectively.)	76
Table 4.14.4.	Woody density (ovendry lbs/green ft ³) used in the IE-FFE variant.	77
Table 4.14.5.	The crown biomass equations used in the IE-FFE. Species mappings are done for species for which equations are not available	78
Table 4.14.6.	Life span of live and dead foliage (yr) and dead branches for species modeled in the IE-FFE variant.	79
Table 4.14.7.	Values (dry weight, tons/acre) for live fuels used in the IE-FFE. Biomass is linearly interpolated between the "initiating" (I) and "established"(E) values when canopy cover is between 10 and 60 percent.	80
Table 4.14.8.	Canopy cover and cover type are used to assign default coarse woody debris (tons/acre) by size class for established (E) and initiating (I) stands.	81
Table 4.14.9.	Species specific constants for determining single bark thickness.	82
Table 4.14.10.	Default annual loss rates are applied based on size class. A portion of the loss is added to the duff pool each year. Loss rates are for hard material. If present, soft material in all size classes except litter and duff decays 10% faster.	83

Table 4.14.11.	Default wood decay classes used in the IE-FFE variant. Classes are from the Wood Handbook (1999). (1 = exceptionally high; 2 = resistant or very resistant; 3 = moderately resistant, and 4 = slightly or nonresistant).	84
Table 4.14.12.	Moisture values, which alter fire intensity and consumption, have been predefined for four groups.	84
Table 4.14.13.	When low fuel loads are present in the IE-FFE, fire behavior fuel models are determined using one of three habitat groups: dry grassy, dry shrubby and other. Fuel model is linearly interpolated between the two low fuel models when canopy cover falls between 30 and 50 percent.	86
Table 4.15.1.	Tree species simulated by the Southern variant.	
Table 4.15.2.	Snag class for each species in SN-FFE.	
Table 4.15.3.	Snag fall, snag height loss and soft-snag characteristics for 12" DBH snags in the SN-FFE variant. These characteristics directly coincide with the parameter values shown in Table 4.15.4.	
Table 4.15.4.	Default snag fall, snag height loss and soft-snag multipliers for the SN-FFE. These parameters result in the values shown in Table 4.15.3. (These three columns are the default values used by the SNAGFALL, SNAGBRK and SNAGDCAY keywords, respectively.)	
Table 4.15.5.	Woody density (ovendry lbs/green ft ³) used in the SN-FFE variant	94
Table 4.15.6.	Life span of live foliage and crown fall class (1 to 6) for species modeled in the SN-FFE variant.	96
Table 4.15.7.	Years until all snag crown material of certain sizes has fallen by crown fall class	97
Table 4.15.8.	Values (dry weight, tons/acre) for live fuels used in the SN-FFE	97
Table 4.15.9.	Forest type is used to assign default coarse woody debris (tons/acre) by size class.	97
Table 4.15.10.	Species specific constants for determining single bark thickness.	98
Table 4.15.11.	Default annual loss rates are applied based on size class. A portion of the loss is added to the duff pool each year. Loss rates are for hard material. If present, soft material in all size classes except litter and duff decays 10% faster.	
Table 4.15.12.	Default wood decay classes used in the SN-FFE variant. Classes are from the Wood Handbook (1999). (1 = exceptionally high; 2 = resistant or very resistant; 3 = moderately resistant, and 4 = slightly or nonresistant).	100
Table 4.15.13.	Moisture values, which alter fire intensity and consumption, have been predefined for four groups.	
Table 4.15.14.	When low fuel loads are present in the SN-FFE, fire behavior fuel models are determined using forest type. This table shows how forest type is determined. A default of Hardwood is used when the forest type code does not key to any of the listed forest types.	
Table 4.15.15.	Relationship between forest type and fuel model selected.	103
Table 4.16.1.	Tree species simulated by the Pacific Northwest Coast variant.	
Table 4.16.2.	Woody density (ovendry lbs/green ft ³) used in the PN-FFE variant	106
Table 4.16.3.	The crown biomass equations used in the PN-FFE. Species mappings are done for species for which equations are not available	106
Table 4.16.4.	Life span of live and dead foliage (yr) and dead branches for species modeled in the PN- FFE variant	108
Table 4.16.5.	Values (dry weight, tons/acre) for live fuels used in the PN-FFE. Biomass is linearly interpolated between the "initiating" (I) and "established"(E) values when canopy cover is between 10 and 60 percent.	110
Table 4.16.6.	Canopy cover and cover type are used to assign default coarse woody debris (tons/acre) by size class for established (E) and initiating (I) stands.	112
Table 4.16.7.	Species specific constants for determining single bark thickness.	

Table 4.16.8.	Default annual loss rates on mesic sites are applied based on size class. A portion of the loss is added to the duff pool each year. Loss rates are for hard material. If present, soft material in all size classes except litter and duff decays 10% faster.	114
Table 4.16.9.	Habitat type – moisture regime relationships for the PN-FFE variant. Moisture classes modify default decay rates, as described in the text	115
Table 4.16.10.	Default wood decay classes used in the PN-FFE variant. Classes are from the Wood Handbook (1999). (1 = exceptionally high; 2 = resistant or very resistant; 3 = moderately resistant, and 4 = slightly or nonresistant).	116
Table 4.16.11.	Moisture values, which alter fire intensity and consumption, have been predefined for four groups	116
Table 4.16.12.	Habitat type – ground cover mapping for the PN-FFE variant. Ground cover classes modify default fuel model selection, as described in the text. Unclassified habitat groups default to 'Grass'.	118
Table 4.17.1.	Tree species simulated by the Westside Cascades variant.	120
Table 4.17.2.	Woody density (ovendry lbs/green ft ³) used in the WC-FFE variant	122
Table 4.17.3.	The crown biomass equations used in the WC-FFE. Species mappings are done for species for which equations are not available.	122
Table 4.17.4.	Life span of live and dead foliage (yr) and dead branches for species modeled in the WC-FFE variant.	124
Table 4.17.5.	Values (dry weight, tons/acre) for live fuels used in the WC-FFE. Biomass is linearly interpolated between the "initiating" (I) and "established"(E) values when canopy cover is between 10 and 60 percent.	126
Table 4.17.6.	Canopy cover and cover type are used to assign default coarse woody debris (tons/acre) by size class for established (E) and initiating (I) stands.	128
Table 4.17.7.	Species specific constants for determining single bark thickness.	130
Table 4.17.8.	Default annual loss rates on mesic sites are applied based on size class. A portion of the loss is added to the duff pool each year. Loss rates are for hard material. If present, soft material in all size classes except litter and duff decays 10% faster.	130
Table 4.17.9.	Habitat type – moisture regime relationships for the WC-FFE variant. Moisture classes modify default decay rates, as described in the text	131
Table 4.17.10.	Default wood decay classes used in the WC-FFE variant. Classes are from the Wood Handbook (1999). (1 = exceptionally high; 2 = resistant or very resistant; 3 = moderately resistant, and 4 = slightly or nonresistant).	132
Table 4.17.11.	Moisture values, which alter fire intensity and consumption, have been predefined for four groups	133
Table 4.17.12.	Habitat type – ground cover mapping for the WC-FFE variant. Ground cover classes modify default fuel model selection, as described in the text. Unclassified habitat groups default to 'Grass'.	135
Table 4.18.1.	Tree species simulated by the Southern Oregon/Northern California variant	138
Table 4.18.2.	Default snag fall, snag height loss and soft-snag characteristics for 20" DBH snags in the California portion of the SO-FFE variant. These characteristics are derived directly from the parameter values shown in Table 4.18.3. Snags from California stands never become soft, and height loss in snags from California stands stops at 50% of the original height	139
Table 4.18.3.	Default snag fall, snag height loss and soft-snag multipliers for the California portion of the SO-FFE. These parameters result in the values shown in Table 4.18.2. (These three columns are the default values used by the SNAGFALL, SNAGBRK and SNAGDCAY keywords, respectively.)	141
Table 4.18.4.	Woody density (ovendry lbs/green ft ³) used in the SO-FFE variant	142
Table 4.18.5.	The crown biomass equations used in the SO-FFE. Species mappings are done for species for which equations are not available	143

Table 4.18.6.	Life span of live and dead foliage (yr) and dead branches for species modeled in the SO- FFE variant	144
Table 4.18.7.	Stand structure classification is converted from the Crookston and Stage to Ottmar system using these mappings and assumptions	146
Table 4.18.8.	Cover type and structural stage class are used to determine the appropriate FCC, in order to estimate herb and shrub load and the initial default coarse woody debris load. FCCs for sugar pine are mapped using western white pine. When a ponderosa pine stand is classed as regenerating from bare ground, it is assumed that it has been recently logged and is assigned FCC-1 instead of FCC-4. Species 12–33 are assumed the same as Douglas-fir	147
Table 4.18.9.	Default live fuel loads (tons/acre) are determined for each FCC. The appropriate FCC is assigned using Table 4.18.8.	148
Table 4.18.10.	Default dead fuel loads (tons/acre) are determined for each FCC used in the SO-FFE variant. The appropriate FCC for each modeled stand is assigned using Tables 4.18.7 and 4.18.8. Litter estimates are absent in the FCC, and set to zero	148
Table 4.18.11.	Species specific constants for determining single bark thickness.	149
Table 4.18.12.	Default annual loss rates are applied based on size class.	150
Table 4.18.13.	Default wood decay classes used in the SO-FFE variant. Classes are from the Wood Handbook (1999). (1 = exceptionally high; 2 = resistant or very resistant; 3 = moderately resistant, and 4 = slightly or nonresistant)	150
Table 4.18.14.	Moisture values, which alter fire intensity and consumption, have been predefined for four groups	151
Table 4.19.1.	Tree species simulated by the Lake States variant.	157
Table 4.19.2.	Snag class for each species in LS-FFE	158
Table 4.19.3.	Snag fall, snag height loss and soft-snag characteristics for 12" DBH snags in the LS-FFE variant. These characteristics directly coincide with the parameter values shown in Table 4.19.4.	162
Table 4.19.4.	Default snag fall, snag height loss and soft-snag multipliers, and all down values for the LS- FFE. These parameters result in the values shown in Table 4.19.3. (These columns are the default values used by the SNAGFALL, SNAGBRK and SNAGDCAY keywords.)	163
Table 4.19.5.	Woody density (ovendry lbs/green ft ³) used in the LS-FFE variant.	
Table 4.19.6.	Life span of live foliage and crown fall class (1 to 4) for species modeled in the LS-FFE variant.	
Table 4.19.7.	Years until all snag crown material of certain sizes has fallen by crown fall class	167
Table 4.19.8.	Values (dry weight, tons/acre) for live fuels used in the LS-FFE.	167
Table 4.19.9.	FIA forest type and size class are used to assign default surface fuel values (tons/acre) by size class	
Table 4.19.10.	Species specific constants for determining single bark thickness.	169
Table 4.19.11.	Default annual loss rates are applied based on size class. A portion of the loss is added to the duff pool each year. Loss rates are for hard material. If present, soft material in all size classes except litter and duff decays 10% faster.	
Table 4.19.12.	Default wood decay classes used in the LS-FFE variant. Classes are from the Wood Handbook (1999). (1 = exceptionally high; 2 = resistant or very resistant; 3 = moderately resistant, and 4 = slightly or nonresistant)	170
Table 4.19.13.	Moisture values (%), which alter fire intensity and consumption, have been predefined for four groups.	171
Table 4.19.14.	In LS-FFE, fire behavior fuel models are determined using forest type. This table shows how forest type is determined. If there are no trees or a forest type cannot be determined, the type from the previous year is used. If this occurs at the beginning of a simulation, the default forest type is red pine.	173
Table 4.19.15.	Relationship between forest type and fuel model selected	

Table 4.19.16.	LS-FFE native plant community (NPV) codes and descriptions (Minnesota Department of Natural Resources 2003).	175
Table 4.20.1.	Tree species simulated by the Northeastern variant.	178
Table 4.20.2.	Snag class for each species in NE-FFE.	179
Table 4.20.3.	Default soft-snag multipliers for the NE-FFE. This multiplier is the default value used by the SNAGDCAY keyword	181
Table 4.20.4.	Default snag fall rates for the NE-FFE	181
Table 4.20.5.	Woody density (ovendry lbs/green ft ³) used in the NE-FFE variant	185
Table 4.20.6.	Life span of live foliage and crown fall class (1 to 6) for species modeled in the NE-FFE variant.	187
Table 4.20.7.	Years until all snag crown material of certain sizes has fallen by crown fall class	188
Table 4.20.8.	Values (dry weight, tons/acre) for live fuels used in the NE-FFE.	188
Table 4.20.9.	FIA forest type and size class are used to assign default surface fuel values (tons/acre) by size class	188
Table 4.20.10.	Species specific constants for determining single bark thickness.	189
Table 4.20.11.	Default annual loss rates are applied based on size class. A portion of the loss is added to the duff pool each year. Loss rates are for hard material. If present, soft material in all size classes except litter and duff decays 10% faster.	191
Table 4.20.12.	Default wood decay classes used in the NE-FFE variant. Classes are from the Wood Handbook (1999). (1 = exceptionally high; 2 = resistant or very resistant; 3 = moderately resistant, and 4 = slightly or nonresistant)	191
Table 4.20.13.	Moisture values (%), which alter fire intensity and consumption, have been predefined for four groups.	193
Table 4.21.1.	Tree species simulated by the Central States variant.	195
Table 4.21.2.	Snag class for each species in CS-FFE.	196
Table 4.21.3.	Snag fall, snag height loss and soft-snag characteristics for 12" DBH snags in the CS-FFE variant. These characteristics directly coincide with the parameter values shown in Table 4.21.4.	198
Table 4.21.4.	Default snag fall, snag height loss and soft-snag multipliers for the CS-FFE. These parameters result in the values shown in Table 4.21.3. (These three columns are the default values used by the SNAGFALL, SNAGBRK and SNAGDCAY keywords, respectively.)	198
Table 4.21.5.	Woody density (ovendry lbs/green ft ³) used in the CS-FFE variant.	201
Table 4.21.6.	Life span of live foliage and crown fall class (1 to 6) for species modeled in the CS-FFE variant.	202
Table 4.21.7.	Years until all snag crown material of certain sizes has fallen by crown fall class	203
Table 4.21.8.	Values (dry weight, tons/acre) for live fuels used in the CS-FFE	204
Table 4.21.9.	Forest type is used to assign default coarse woody debris (tons/acre) by size class	204
Table 4.21.10.	Species specific constants for determining single bark thickness.	205
Table 4.21.11.	Default annual loss rates are applied based on size class. A portion of the loss is added to the duff pool each year. Loss rates are for hard material. If present, soft material in all size classes except litter and duff decays 10% faster.	206
Table 4.21.12.	Default wood decay classes used in the CS-FFE variant. Classes are from the Wood Handbook (1999). (1 = exceptionally high; 2 = resistant or very resistant; 3 = moderately resistant, and 4 = slightly or nonresistant)	206
Table 4.21.13.	Moisture values, which alter fire intensity and consumption, have been predefined for four groups	208
Table 4.21.14.	When low fuel loads are present in the CS-FFE, fire behavior fuel models are determined using forest type. This table shows how forest type is determined. A default of Hardwood is used when the forest type code does not key to any of the listed forest types	209

Table 4.21.15.	Relationship between forest type and fuel model selected	210
Table 4.22.1.	Tree species simulated by the Southeast Alaska variant.	211
Table 4.22.2.	Woody density (ovendry lbs/green ft ³) used in the AK-FFE variant.	212
Table 4.22.3.	The crown biomass equations used in the AK-FFE. Species mappings are done for species for which equations are not available	212
Table 4.22.4.	Life span of live and dead foliage (yr) and dead branches for species modeled in the AK- FFE variant	213
Table 4.22.5.	Values (dry weight, tons/acre) for live fuels used in the AK-FFE. Biomass is linearly interpolated between the "initiating" (I) and "established"(E) values when canopy cover is between 10 and 60 percent.	214
Table 4.22.6.	Canopy cover and cover type are used to assign default coarse woody debris (tons/acre) by size class for established (E) and initiating (I) stands.	215
Table 4.22.7.	Species specific constants for determining single bark thickness.	216
Table 4.22.8.	Default annual loss rates are applied based on size class and decay rate class. A portion of the loss is added to the duff pool each year. Loss rates are for hard material. If present, soft material in all size classes except litter and duff decays 10% faster.	216
Table 4.22.9.	Default wood decay classes used in the AK-FFE variant. Classes are from the Wood Handbook (1999). (1 = exceptionally high; 2 = resistant or very resistant; 3 = moderately resistant, and 4 = slightly or nonresistant)	217
Table 4.22.10.	Moisture values, which alter fire intensity and consumption, have been predefined for four groups	217

List of Figures

Figure 4.6 – Re	vised – Logic for modeling fire at "low" fuel loads in the CR-FFE variant	34
Figure 4.8 – Re	vised – Logic for modeling fire at "low" fuel loads in the UT-FFE variant	36
Figure 4.#.	If large and small fuels map to the shaded area, candidate fuel models are determined using the logic shown in Table 4.82. Otherwise, flame length based on distance between the closest fuel models, identified by the dashed lines, and on recent management (see Model Description Section 4.8 for further details).	38
Figure 4.12.1	Two measures of canopy cover, unadjusted and overlap-adjusted percent canopy cover, are used to derive weighted estimates of the four CWHR density classes. (S = sparse, P = open, $M = moderate$ and $D = dense$)	51
Figure 4.12.2.	If large and small fuels map to the shaded area, candidate fuel models are determined using the logic shown in Table 4.12.15. Otherwise, fire behavior is based on the closest fuel models, identified by the dashed lines, and on recent management (see Model Description Section 4.8 for further details).	52
Figure 4.13.1.	Two measures of canopy cover, unadjusted and overlap-adjusted percent canopy cover, are used to derive weighted estimates of the four CWHR density classes. (S = sparse, P = open, $M = moderate$ and $D = dense$)	72
Figure 4.13.2.	If large and small fuels map to the shaded area, candidate fuel models are determined using the logic shown in Table 4.13.15. Otherwise, fire behavior is based on the closest fuel models, identified by the dashed lines, and on recent management (see Model Description Section 4.8 for further details).	73
Figure 4.14.1.	If large and small fuels map to the shaded area, candidate fuel models are determined using the logic shown in Table 4.14.13. Otherwise, fire behavior is based on the closest fuel models, identified by the dashed lines, and on recent management (see Model Description Section 4.8 for further details).	85
Figure 4.15.1.	Snag fall rates for 10 inch trees.	91
Figure 4.15.2.	Snag fall rates for 20 inch trees.	92
Figure 4.15.3.	The number of years until soft for various diameter snags.	92
Figure 4.15.4.	If large and small fuels map to fuel models 1 - 9, candidate fuel models are determined using the logic shown in Tables 4.15.14 and 4.15.15. Otherwise, fire behavior is based on the distance to the closest fuel models, identified by the dashed lines	102
Figure 4.16.1.	If large and small fuels map to the shaded area, candidate fuel models are determined using the logic shown in Figure 4.16.2. Otherwise, fire behavior is based on the closest fuel models, identified by the dashed lines, and on recent management (see Model Description Section 4.8 for further details).	118
Figure 4.16.2.	Fuel models for the PN-FFE variant.	119
Figure 4.17.1.	If large and small fuels map to the shaded area, candidate fuel models are determined using the logic shown in Figure 4.17.2. Otherwise, fire behavior is based on the closest fuel models, identified by the dashed lines, and on recent management (see Model Description Section 4.8 for further details).	136
Figure 4.17.2.	Fuel models for the WC-FFE variant.	137
Figure 4.18.1.	If large and small fuels map to the shaded area, candidate fuel models are determined using the logic shown in Figure 4.18.2. Otherwise, fire behavior is based on the closest fuel models, identified by the dashed lines, and on recent management (see Model Description section 2.4.8 for further details).	153
Figure 4.18.2.	Fuel model logic for Region 5 (a) and Region 6 (b) forests modeled in the SO-FFE.	
Figure 4.19.1.	The rate of fall of small snags and the first 95% of large snags	

Figure 4.19.2	Snag fall rates for 12 inch trees.	161
Figure 4.19.3	Snag fall rates for 20 inch trees.	161
Figure 4.19.4.	The number of years until soft for various diameter snags.	162
Figure 4.19.5.	Candidate fuel models are determined using the logic shown in tables 4.19.14 and 4.19.15. At high fuel loads, multiple fuel models may be candidates. In this case, fire behavior is based on the closest fuel models, identified by the dashed lines. Not all fuel models are candidates under all forest types (see table 4.19.15).	172
Figure 4.20.1 .	The rate of fall of small snags and the first 95% of large snags	
Figure 4.20.2	Snag fall rates for 5 and 12 inch trees.	182
Figure 4.20.3	Snag fall rates for trees larger than 20 inches dbh.	183
Figure 4.20.4.	The number of years until soft for various diameter snags.	183
Figure 4.20.5.	At high fuel loads, multiple fuel models may be candidates. In this case, fire behavior is based on the closest fuel models, identified by the dashed lines. At low fuel loads, fuel model 9 is selected.	194
Figure 4.21.1.	Snag fall rates for 10 inch trees.	198
Figure 4.21.2.	Snag fall rates for 20 inch trees.	199
Figure 4.21.3.	The number of years until soft for various diameter snags.	199
Figure 4.21.4.	If large and small fuels map to fuel models 1 - 9, candidate fuel models are determined using the logic shown in Tables 4.21.14 and 4.21.15. Otherwise, fire behavior is based on the distance to the closest fuel models, identified by the dashed lines	209
Figure 4.22.1.	At high fuel loads, multiple fuel models may be candidates. In this case, fire behavior is based on the closest fuel models, identified by the dashed lines. At low fuel loads, fuel model 8 is selected.	218

Chapter 1 – Purpose and Applications

Chapter 2 – Fire and Fuels Extension: Model Description

Section 2.3 Snag Submodel

The snag fall rate, snag decay, and snag height loss predictions were modified in the Region 6 variants of FFE, based on work by Kim Mellen, regional wildlife ecologist. Contact Stephanie Rebain (sarebain@fs.fed.us) for more information.

Section 2.3.7 Management

There is actually no base model SALVAGE keyword.

Table 2.7:

The correct default initial fuel loadings for the north Idaho variant are found in Table 4.8

Section 2.4.2 Initialization:

Dead surface fuel loads can also be initialized by including this information in the StandInit table of an input FVS database.

In addition to entering initial fuel loadings (tons/acre) directly, users can initialize their surface fuel loads by specifying a representative fuels photo series photo. This can be done with the FFE keyword FuelFoto or by including this information in the StandInit table of an input FVS database.

Section 2.4.3 Estimation of Tree Material:

Table 2.8 – The density values are incorrect. The current density values are in Appendix B.

When FFE uses Brown and Johnston's equations to calculation crown biomass, and the equation uses dominance position, a tree is considered dominant or co-dominant if it is above the 60^{th} percentile in height (the tallest 40% of trees). If a tree is below the 60^{th} percentile, it is assumed to be intermediate/suppressed. No linear interpolation is done.

Section 2.4.7 Canopy Fuels:

By default, the canopy fuels calculations are determined from estimates of foliage and fine branchwood (half of the 0-0.25" branchwood) of conifer trees at least 6 feet tall. Canopy base height is generally set when 30 lbs/acre/foot is reached. You can use the FFE keyword CanCalc to include hardwoods or smaller trees in the canopy fuel calculations and to change the cutoff value that is used to set the canopy base height. Canopy fuels profile information – the density of foliage and fine branchwood at various heights above the ground – can be exported to an FVS output database using the FFE keyword CanFProf.

Section 2.4.8 Fire Behavior Fuel Models:

Table 2.13:

The Scott and Burgan fuel models (Scott and Burgan 2005) can also be selected within FFE and are used in the default fuel model selection logic in some variants. These should be added to the table.

The fire behavior fuel model can also be set by including this information in the StandInit table of an input FVS database.

Table 2.16:

Trampling and flailing values are reversed. The trampling category corresponds to a multiplier of 0.75 and the flailing category corresponds to a multiplier of 0.83.

Section 2.5.3 Controlling Fire Extent:

Correction to the default values mentioned for jackpot burns:

By default, in jackpot burning, 60 percent of the stand's fuel is in the burned part of the stand. These piles are assumed to be far enough from trees not to cause mortality.

Table 2.19:

The table heading incorrectly states that the wind speed is the mid-flame wind speed. The wind speed is actually the 20-ft wind speed (in miles per hour) at the time of the fire.

Section 2.5.5 Fire Effects:

The tree mortality equation presented is for surface fires. When crown fires are simulated, additional mortality is predicted based on the percent crowning predicted.

In the equation for P_{mort} , one coefficient is incorrect. The coefficient of 6.313 is actually 6.316.

When users set the percentage of the stand area burned to less than 100% (see the SimFire and PotFPAB keywords), a random number is used to determine whether a tree record is in the burned or unburned portion of the stand. Mortality and fire effects on tree crowns are then only applied to the tree records in the burned portion of the stand.

Section 2.5.7 Output:

The format of the potential fire report has changed. In addition to total flame length, surface fire flame length is now also reported for severe and moderate fires. The surface fire flame length is an estimate of the flame length assuming a surface fire. The total flame length is an estimate of the flame length that takes into account any crown fire behavior that is being predicted. Therefore, the two flame length estimates will be the same if a surface fire is predicted, but when a passive or active or conditional crown fire is predicted, the total flame length will be larger than the surface fire flame length. The type of fire is now reported as "A", "P", "S", or "C" for active, passive, surface, or conditional fires. A conditional fire is predicted when the wind speed is greater than the crowning index, but less than the torching index (Scott and Reinhardt 2001). The interpretation is that if a fire originates as a surface fire in the stand, it is expected to remain so. If a fire originates as an active crown fire in an adjacent stand, active crown fire will continue through the stand. FFE models conditional fires as conditional crown fires (i.e. the associated flame length and fire effects, such as mortality, assume a crown fire. P-torch, the proportion of small places where torching is possible, is also reported. See Appendix A for more information about P-torch.

A new soil heating report is available for output with the SOILHEAT keyword whenever a fire is simulated. The soil heating estimates match those in the FOFEM model. The soil heating output includes the temperature ($^{\circ}$ C) at various depths below the surface. Also output is the depth where the temperature exceeds 60 $^{\circ}$ C (often considered the lethal temperature for living organisms) and 275 $^{\circ}$ C.

Section 2.6 Discussion

This section is renumbered as Section 2.7

This following new section is inserted as a new Section 2.6

2.6 Carbon Submodel

2.6.1 Overview

Natural resource managers may be interested in the amount of carbon being sequested by their forest. In addition, they may want to know how various management activities affect the amount of carbon sequestered. The accounting and detailed fuel modelling approach used by the FFE lends itself naturally to an accounting of stand carbon stocks and carbon in harvested products. With the exception of the litter and duff pools, carbon found in the living and dead biomass is converted to units of carbon by multiplying by 0.5 (Penman and others, 2003); litter and duff biomass are converted using a multiplier of 0.37 (Smith and Heath, 2002). By default, the reports use the default units of FVS and the FFE: tons C per acre, where a ton is a short ton (2000 lbs). Users may optionally request output using metric or combined units: metric tons C per hectare or metric tons C per acre. The requested units are used in the main output and in any optional output that may be written to an external database.

Stand C stocks are calculated and reported for the following categories:

- Total aboveground live: live trees, including stems, branches, and foliage, but not including roots.
- Merchantable aboveground live: only the merchantable portion of live trees
- Belowground live: the roots of live trees
- Belowground dead: the roots of dead and cut trees
- Standing dead: dead trees, including stems and any branches and foliage still present, but not including roots
- Forest down dead wood: all woody surface fuel, regardless of size
- Forest floor: litter and duff
- Herbs and shrubs
- Total stand carbon: the sum of the above categories
- Total removed carbon: carbon removed thru the cutting of live trees, dead trees, and the hauling away of woody debris.
- Carbon released from fire: carbon in fuel consumed by simulated wildfires, prescribed burns, and pile-burns

Aboveground dead biomass is always computed using the existing FFE algorithms. However, aboveground live components can be calculated either with the existing FFE biomass algorithms, or alternatively with a set of allometric equations described by Jenkins and others (2003). The Jenkins equations, based on 10 species groups (see Appendix A of Jenkins and others (2003)), are also used to estimate belowground components. Belowground dead biomass is formed when trees die or are cut; the root decay rate is 0.0425 by default (Ludovici et. al. 2002) and can be adjusted by the model user with the CarbCalc keyword.

As Table 2.26 shows, the assumptions and internal pool sources used by the two reporting methods are similar, but differ in the estimation of live tree biomass. FFE live tree merchantable biomass estimates are based on FVS volume equations which vary by geographic variant, and do not include C from bark biomass. Calculation of FFE live tree total biomass includes the merchantable biomass, as well as crown biomass and biomass from any unmerchantable portion of the tree. The Jenkins biomass estimates are based on allometric relationships for aboveground and merchantable biomass, including C from bark, but are not fitted for trees less than 1 inch (2.5 cm) DBH. In this implementation, trees smaller than 1 inch DBH are assigned aboveground and belowground biomass based on a linear interpolation of their

diameter relative to the 1 inch minimum. For example, a tree of 0.5 inches DBH will have one half the aboveground biomass of a tree of 1 inch DBH.

Biomass included in the input inventory data (live trees, dead trees, and surface fuel) are included in the stand C pools. Stand and fuel management activities simulated through existing FVS base model keywords and through the SIMFIRE, PILEBURN, SALVAGE and FUELMOVE FFE keywords are all accounted for in the stand C pools. When thinning or harvesting, users can optionally control what is removed and what is left in the stand as slash through the YARDLOSS keyword, and these choices are also mirrored in the stand C pools. Lastly, when fires are simulated with the SIMFIRE or PILEBURN keywords, the carbon released from fire is reported based upon the predicted amount of fuel consumed during that fire.

Stand entries that remove live trees or snags from the stand can be reported in a harvested products report, which reports the fate of C in merchantable biomass as it decays over time. Depending on the user selection, live merchantable biomass can use either FFE or Jenkins estimates; dead merchantable biomass from snags always uses FFE estimates. Stems smaller than a threshold diameter (by default, 9 inches DBH for softwood; 11 inches for hardwood) are assumed to be harvested for pulpwood; those greater than or equal to the threshold diameter are assumed to be harvested for timber (sawlog) use. The fate of C in each of these 4 categories (hardwood/softwood and pulpwood/sawlog) is recorded as being either in use, in a landfill, emitted with energy capture, or emitted without energy capture. Transfer of C among these end-use categories is based on regional estimates from Smith and others (2006) (see Figure 1 of Smith and others (2006)), and differs among the FVS-FFE geographic variants. The year of removal and the subsequent ageing of harvested products is assumed to take place in the first year of an FVS cycle.

Table 2.26 Stand carbon accounting is based on a combination of FFE and Jenkins methods. Users can request FFE-based C estimates, in which case FFE volume and crown biomass estimates are used for total and merchantable live tree biomass. Merchantablity limits may vary depending on variant and settings chosen by the user. Alternatively, Jenkins estimates can be requested, in which case Jenkins equations are used for aboveground total biomass and aboveground merchantable biomass. Regardless of the requested reporting method, FFE-biomass is the basis for herb, shrub, standing dead, litter, duff and woody debris pools, while Jenkins-biomass is the basis for live and dead root biomass. The calculation method column shows corresponding categories from the FFE All Fuels report.

Stand Carbon Report Label ¹	Requested Reporting Method ²		Calculation Method		
	FFE	Jenkins	FFE All Fuels Report ³	Jenkins	
Aboveground Live, Total	✓	~	Live, Fol Live, 0-3in ⁴ Live >3"	f(sp,dbh)	
Aboveground Live, Merchantable	~	~	Portions of Live >3"	f(sp,dbh)	
Stand Dead	~	FFE method	Standing Dead, 0-3in Standing Dead, >3"		
Forest, Shb/Hrb	~	always used	Herb Shrub		
Forest, Floor	✓		Litter Duff		

Forest, DDW	✓		Dead Surface Fuel 0-3in Dead Surface Fuel >3in				
Belowground, Live	Jenkins	\checkmark		f(sp,dbh)			
Belowground, Dead	method always used	\checkmark		f(sp,dbh)			
2 – Report method re 3 – Column headings							

2.6.2 Output

Information about the carbon content of the stand components can be useful for quantifying sources and sinks as stands are managed for timber or other ecosystem values. Two reports – one for stand carbon and one for carbon in harvested products – can be produced by the model.

Stand Carbon Report: Using the CARBREPT keyword, carbon content in a variety of live and dead pools can be summarized to the main output, and optionally sent to an external database, using the database (DBS) extension and the DBS CARBRPTS keyword. The content of the Stand Carbon Report is described in section 2.6.1 of this document. The content of this report mirrors the content of the All Fuels Report (see Section 2.4.10 and Table 2.17) and in some configurations will give identical results, after allowing for unit conversions.

By default, FFE biomass estimates are used to calculate C, and results are expressed as tons C per acre. However, the CARBCALC and CARBREPT keywords can be used in concert to request different carbon accounting algorithms and different measurement units. An alternative methodology can be requested which uses species-based biomass relationships published by Jenkins and others (2003). Similarly, if metric or combined units are requested, output reporting units are expressed as metric tons C per hectare or metric tons C per acre, respectively.

In the example shown in Table 2.27 (which includes parallel extracts from the Stand Carbon Report and the All Fuels Report), a harvest in 2010 removes 76 t/ac biomass and adds crown material to the dead surface fuel pools. From a carbon perspective the entry removes 38.1 tC/ac from the stand and reduces the aboveground live C; crowns left in the stand increase the carbon stored in the Forest DDW and Floor pools. A simulated fire in 2025 then reduces litter and duff biomass from 25.9 t/ac to 6.0 t/ac (equivalent to a residual 2.22 tC/ac, using a biomass-to-carbon conversion factor of 0.37). Biomass of live and dead surface fuels, excluding litter and duff, are reduced from 34.9 t/ac to 13.1 t/ac (residual 6.5 tC/ac; using a conversion factor of 0.50).

Table 2.27 – Example Stand Carbon Report. This example reports conditions every 5 years using the default FFE-calculated biomass and default units. Note that changes to the various pools also include contributions from stand growth and mortality, as well as from stand management actions and fire disturbance. Two disturbances are shown in bold and highlighted with asterisks at the end of the report line. First, a harvest in 2010 reduces C in the aboveground live and merchantable categories. This harvest transfers some live belowground C in roots to dead root C, representing the roots of harvested trees. Second, further changes occur with a simulated fire in 2025, which consumes much of the C in surface fuel but has neglible effect upon the C held in standing wood. A corresponding extract from the All Fuels Report is shown below, for comparison.

							STAND	CARBO	N REPO	N 1.0 ** RT N TONS/#									
TANE	ID: 9	999114	ł			Μ	IGMT ID	: NON	E										
	Above	ground	l Live			und				Fores	st.		Total		'otal		rbon		
EAR	Tot	al	Merch				Sta: De		DDW			nb/Hrb				Relea from H			
005 010	74 29	.9	53.5 22.4		.2	0.6 12.2	11 11	.6	10.5 18.5	10 11	1	0.1 0.9	92.4	ł	0.0 38.1		0.0 0.0 **	 +	
015 020 025	31 33 33	.5	23.6 25.4 25.4	9	.6 .2 .9	2.3 0.4 0.9	6	.2 .7 .2	17.2 16.6 5.7	9	6	0.9 0.8 0.8	79.1 76.8 58.9	3	0.0 0.0 0.0		0.0 0.0 18.7 *	÷	
030 035	35 37	.2	27.1 28.9	9	.5	0.2	5		7.2 7.7	2		0.9	60.4	5	0.0				
			su	RFACE	FUEL	(TONS/A	.CRE)			FED FUEI			ING WOOI) (TON	IS/ACRI	E)			
			DEA	D FUEL				L	IVE		I	DEAD		LIVE	1				
EAR	LITT.	DUFF								SURF TOTAL		" >3 "				TOTAL			BIOMAS REMOVE
005 010 015	2.97 5.15 0.98	24.9 25.0 25.0	4.1 17.3 11.4			8.0 9.1 10.3	1.7 3.3 5.0	0.15 0.26 0.26	1.50	49.1 68.9 62.2	1.34		8.6 2.4 2.5	21.3 8.4 8.7	118 49 51		152	0 0 0	0 76 0
)20)25)30	0.98 0.40 0.79	25.0 25.0 5.6 5.7	7.5 1.4	25.7 10.1 12.4	7.7 0.4 0.4	11.3 4.4	6.8 5.3	0.25	1.42 1.39	60.7 19.2	0.3	5 13.0 4 13.1 0 9.9	2.3 2.7 2.4 2.4	9.2 8.7 9.0	55 55 59	80 81	141 100	0 43 0	0
		5.7		13.4		4.8				22.0	0.28		2.6	9.6	63			0	0

Harvested Products Report: Using the CARBCUT keyword, the carbon content of the merchantable timber utilized from stand entries (including salvage harvests) can be followed over time and summarized to the main output, and optionally sent to an external database using the database (DBS) extension and the DBS CARBRPTS keyword. By default, FFE biomass estimates are used to calculate C in harvest products, and results are expressed as tons C per acre. However, the CARBCALC and CARBREPT keywords can be used in concert to request alternative carbon accounting algorithms and different measurement units. An alternative methodology can be requested which uses species-based biomass relationships published by Jenkins and others (2003). Similarly, if metric or combined units are requested, output reporting units are expressed as metric tons C per hectare or metric tons C per acre, respectively.

The Merch Carbon removed as reported within the Harvested Products reports usually differs from the Total Removed Carbon reported by the Stand Carbon report, since the Stand Carbon report includes C removals based on both merchantable and unmerchantable biomass removed. Carbon reported as removed in the Harvested Products report includes the carbon in the merchantable biomass only, including merchantable biomass from snags harvested with the SALVAGE keyword. Also, the removals in the Stand Carbon Report are for a given year alone. In contrast, the removals in the Harvested Products report are cumulative and include removed carbon up to and including the year of the output.

6

Table 2.28 – Example Harvested Products Report. This example reports conditions every 5 years using the default FFE-calculated biomass and units. The result of a harvest in 2010 is shown in bold and highlighted with asterisks at the end of the report line. (see Table 2.27 for the corresponding Stand Carbon report). Note that the 34.3 tC/ac of merchantable removed carbon is less than the total carbon removed from the stand (38.1 tC/ac). The Total Carbon Stored category is the sum of the Products and Landfill; Total Carbon Removed is the sum of all four categories.

The format of the Harvested Products report follows the decay-fate categories of Smith and others (2006). Over time, harvested merchantable C may continue to reside in a Products or Landfill category, or may be released as one of two kinds of Emissions: emitted with energy capture or emitted without energy capture. As decay occurs, more and more of the C resides in an Emitted category.

Some care must be taken when interpreting the Stand Carbon report and the Harvested Products report: there are differences in terminology among FVS variants and differences in the assumptions made by the FFE and Jenkins algorithms. In western FVS variants, both merchantable cubic feet volume and total cubic feet volume are predicted for trees. In these variants, the total carbon (either standing or removed) in live trees is based on the total volume and crown biomass equations that predict the biomass of branchwood and foliage. The merchantable carbon reported is based on the merchantable cubic feet volume and does not include unmerchantable trees or the unmerchantable parts of merchantable trees. In eastern variants linked to the FFE, the total carbon (either standing or removed) in live trees is based on the merchantable cubic feet volume in pulpwood and crown biomass equations that predict unmerchantable biomass for a tree. The merchantable carbon reported is based on the merchantable cubic feet volume in pulpwood. Whatever volume definition is used, it is combined with the specific gravity of wood for each tree species to calculate biomass and C stock for that portion of the tree. The FFE biomass/carbon algorithms do not include stem bark in the estimate of total or merchantable biomass, therefore stem bark is also missing from the C accounting. In contrast, the Jenkins equations include bark in their estimate of total aboveground biomass. Also, when Jenkins equations are used and merchantable biomass is reported, this includes the stem wood portion of trees and does not include the stem bark.

Chapter 3 – User's Guide

Section 3.3, Initalization the Model:

FUELINIT keyword-Two additional fields have been added to the FuelInit keyword, so that users can set the 1 and 10 hour fuels separately. Field 8: Initial fuel load for the 0-0.25" class (tons/acre) Field 9: Initial fuel load for the 0.25-1" class (tons/acre)

The initial fuel loadings can also be set within the StandInit table of an input FVS database.

In addition to entering initial fuel loadings (tons/acre) directly, users can initialize their surface fuel loads by specifying a representative fuels photo series photo. This can be done with the FFE keyword FuelFoto or by including this information in the StandInit table of an input FVS database.

FuelFoto – Initialize surface fuel loading by selecting a photos series photo. Field 1: The photo series reference number (1 - 32) Field 2: The photo reference code (integer)

When included with input FVS data, the photo series information should be specified in the StandInit table in columns labelled Photo_Ref and Photo_Code. Photo_Ref holds the photo series reference number (1 - 32) and Photo_Code holds the character string photo reference code.

The photo series reference numbers are listed below. Some reference numbers (4,10) are not used and one is a replicate of another (14, 15). This was not changed to maintain consistency with the photo reference numbers used in FSVEG.

When used in conjunction with the FuelInit keyword or associated DB StandInit fields, the specific tons/acre values entered will override those associated with the photo series photo. Likewise, if a photo series photo did not include fuel loading information for a certain class (litter or duff), the default that would have been assumed for that category is used. So the fuel loadings start out at the default values, are overwritten with any photo series information provided, and are then overwritten if any specific fuel loadings (tons/acre) are provided. When multiple FuelFoto keywords are in a simulation, the last one is used (this matches how the FuelInit keyword is processed.)

Photo series reference numbers and associated photo reference codes:

- Fischer, W.C. 1981. Photo guide for appraising downed woody fuels in Montana forests: grand firlarch-Douglas-fir, western hemlock, western redcedar-western hemlock, and western redcedar cover types. Gen. Tech. Rep. INT-96. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 53 p.
- 2 Fischer, W.C. 1981. Photo guide for appraising downed woody fuels in Montana forests: interior ponderosa pine, ponderosa pine-larch-Douglas-fir, larch-Douglas-fir, and interior Douglas-fir cover types. Gen. Tech. Rep. INT-97. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 133 p.

Also published by the National Wildfire Coordinating Group as PMS 820 / NFES 2293

3 – Fischer, W.C. 1981. Photo guide for appraising downed woody fuels in Montana forests: lodgdpole pine and Engelmann spruce-subalpine fir cover types. Gen. Tech. Rep. INT-98. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 143 p.

Also published by the National Wildfire Coordinating Group as PMS 821 / NFES 2294

- 5 Koski, W.H. and W.C. Fischer. 1979. Photo series for appraising thinning slash in north Idaho: western hemlock, grand fir, and western redcedar timber types. Gen. Tech. Rep. INT-46. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 50 p.
- 6 Maxwell, W.G. and F.R. Ward. 1976. Photo series for quantifying forest residues in the ponderosa pine type, ponderosa pine and associated species type, lodgepole pine type. Gen. Tech. Rep. PNW-52. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station. 73 p.
- 7 Blonski, K.S. and J.L. Schramel. 1981. Photo series for quantifying natural forest residues: southern Cascades, northern Sierra Nevada. Gen. Tech. Rep. PSW-56. Berkeley, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station. 145 p.

Also published by the National Wildfire Coordinating Group as PMS 818 / NFES 1872

- 8 Maxwell, W.G. and F.R. Ward. 1980. Photo series for quantifying natural forest residues in common vegetation types of the Pacific Northwest. Gen. Tech. Rep. PNW-105. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station. 230 p.
- 9 Ottmar, R.D. and C.C. Hardy. 1989. Stereo photo series for quantifying forest residues in coastal Oregon forests: second-growth Douglas-fir-western hemlock type, western hemlock-Stika spruce type, and red alder type. Gen. Tech. Rep. PNW-GTR-231. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 67 p.
- 11 Maxwell, W.G. 1982. Photo series for quantifying forest residues in the black hills, ponderosa pine type, spruce type. A-89-6-82. U.S. Department of Agriculture, Forest Service, Rocky Mountain Region. 80 p.
- 12 1997?. Photo series for quantifying forest residues in the southwestern region: data compiled from Black Hills Ponderosa Pine and Spruce Type, 1990; GTR-PNW-105, 1980; GTR-PNW-52, 1976; GTR-PSW-56, 1981. Albuquerque, NM: U.S. Department of Agriculture, Forest Service, Southwestern Region. 227 p.

Also published by the National Wildfire Coordinating Group as PMS 822 / NFES 1395

13 – Maxwell, W.G. and F.R. Ward. 1976. Photo series for quantifying forest residues in the coastal Douglas-fir-hemlock type, coastal Douglas-fir-hardwood type. Gen. Tech. Rep. PNW-51. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station. 73 p.

Also published by the National Wildfire Coordinating Group as PMS 819 / NFES 1870

- 14 Ottmar, R.D., R.E. Vihnanek, and C.S. Wright. 1998. Stereo photo series for quantifying natural fuels. Volume I: mixed-conifer with mortality, western juniper, sagebrush, and grassland types in the interior Pacific Northwest. PMS 830. Boise, ID: National Wildfire Coordinating Group, National Interagency Fire Center. 73 pp.
- 15 Ottmar, R.D., R.E. Vihnanek, and C.S. Wright. 1998. Stereo photo series for quantifying natural fuels. Volume I: mixed-conifer with mortality, western juniper, sagebrush, and grassland types in the interior Pacific Northwest. PMS 830. Boise, ID: National Wildfire Coordinating Group, National Interagency Fire Center. 73 pp.
- 16 Ottmar, R.D. and R.E. Vihnanek. 1998. Stereo photo series for quantifying natural fuels. Volume II: black spruce and white spruce types in Alaska. PMS 831. Boise, ID: National Wildfire Coordinating Group, National Interagency Fire Center. 65 pp.

and

- **Ottmar, R.D. and R.E. Vihnanek.** 2002. Stereo photo series for quantifying natural fuels. Volume IIa: hardwoods with spruce in Alaska. PMS 836. Boise, ID: National Wildfire Coordinating Group, National Interagency Fire Center. 41 pp.
- 17 Ottmar, R.D., R.E. Vihnanek, and C.S. Wright. 2000. Stereo photo series for quantifying natural fuels. Volume III: Lodgepole pine, quaking aspen, and gambel oak types in the Rocky Mountains. PMS 832. Boise, ID: National Wildfire Coordinating Group, National Interagency Fire Center. 85 pp.
- 18 Ottmar, R.D. and R.E. Vihnanek. 1999. Stero photo series for quantifying natural fuels. Volume V: midwest red and white pine, northern tallgrass prairie, and mixed oak types in the Central and Lake States. PMS 834. Boise, ID: National Wildfire Coordinating Group, National Interagency Fire Center. 99 p.

and

- **Ottmar, R.D., R.E. Vihnanek, and C.S. Wright.** 2002. Stero photo series for quantifying natural fuels. Volume Va: jack pine in the Lake States. PMS 837. Boise, ID: National Wildfire Coordinating Group, National Interagency Fire Center. 49 p.
- 19 Ottmar, R.D. and R.E. Vihnanek. 2000. Stereo photo series for quantifying natural fuels. Volume VI: longleaf pine, pocosin, and marshgrass types in the Southeast United States. PMS 835. Boise, ID: National Wildfire Coordinating Group, National Interagency Fire Center. 56 p.

and

- **Ottmar, R.D., R.E. Vihnanek, and J.W. Mathey.** 2003. Stereo photo series for quantifying natural fuels. Volume VIa: sandhill, sand pine scrub, and hardwoods with white pine types in the Southeast United States. PMS 838. Boise, ID: National Wildfire Coordinating Group, National Interagency Fire Center. 78 p.
- 20 Maxwell, W.G. 1990. Photo series for quantifying forest residues in the black hills, ponderosa pine type, spruce type. A-89-1-90. U.S. Department of Agriculture, Forest Service, Rocky Mountain Region. 80 p.

10

- 21 Ottmar, R.D., R.E. Vihnanek, and J.C. Regelbrugge. 2000. Stereo photo series for quantifying natural fuels. Volume IV: pinyon-juniper, sagebrush, and chaparral types in the Southwestern United States. PMS 833. Boise, ID: National Wildfire Coordinating Group, National Interagency Fire Center. 97 pp.
- 22 Wright, Clinton S., R.D. Ottmar, R.E. Vihnanek, and D.R. Weise. 2002. Stereo photo series for quantifying natural fuels: grassland, shrubland, woodland, and forest types in Hawaii. Gen. Tech. Rep. PNW-GTR-545. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 91 p.
- 23 Ottmar, R.D., C.C. Hardy, and R.E. Vihnanek. 1990. Stereo photo series for quantifying forest residues in the Douglas-fir-hemlock type of the Willamette National Forest. Gen. Tech. Rep. PNW-GTR-258. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 63 p.
- 24 Lynch, C.M. and L.J. Horton. 1983. Photo series for quantifying forest residues in loblolly pine, Eastern white pine, pitch pine, Virginia pine. NA-FR-25. Radnor, PA: U.S. Department of Agriculture, Forest Service, Northeastern Area, State and Private Forestry. 69 p.
- 25 Wilcox, F., J. McCarty, and B. Bungard. 1982. Photo series for quantifying forest residues in the northern hardwood type, oak-hickory type. NA-FR-22. Broomall, PA: U.S. Department of Agriculture, Forest Service, Northeastern Area, State and Private Forestry, and Pennsylvania Department of Environmental Resources, Bureau of Forestry. 43 p.
- 26 Scholl, E.R. and T.A. Waldrop. 1999. Photos for estimating fuel loadings before and after prescribed burning in the upper coastal plain of the southeast. Gen. Tech. Rep. SRS-26. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. 25 p.
- 27 Ottmar, R.D., R.E. Vihnanek, C.S. Wright, and D.L. Olsen. 2004. Stero photo series for quantifying natural fuels. Volume VII: Oregon white oak, California deciduous oak, and mixedconifer with shrub types in the Western United States. PMS 839. Boise, ID: National Wildfire Coordinating Group, National Interagency Fire Center. 75 p.
- 28 Maxwell, W.G. and F.R. Ward. 1979. Photo series for quantifying forest residues in the sierra mixed conifer type, sierra true fir type. Gen. Tech. Rep. PNW-95. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station. 79 p.
- 29 Sanders, B.M. and D.H. Van Lear. 1988. Photos for estimating residue loadings before and after burning in Southern Appalachian mixed pine-hardwood clearcuts. Gen. Tech. Rep. SE-49. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station. 21 p.
- 30 Wade, D.D., J.K. Forbus, and J.M. Saveland. 1993. Photo series for estimating post-hurricane residues and fire behavior in southern pine. Gen. Tech. Rep. SE-82. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station. 19 p.

11

- 31 Blank, R.W. 1982. Stereo photos for evaluating jack pine slash fuels. Gen. Tech. Rep. NC-77. St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station. 23 p.
- 32 Popp, J.B. and J.E. Lundquist. 2006. Photos series for quantifying forest residues in managed lands of the Medicine Bow National Forest. Gen. Tech. Rep. RMRS-GTR-172. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 105 p.

Ref	Char. code	Int. code	Ref	Char. code	Int. code
1	16	1	2	64	15
1	15	2	2	79	16
1	63	3	2	75	17
1	65	4	2	73	18
1	67	5	2	77	19
1	25	6	2	84	20
1	66	7	2	74	21
1	9A	8	2	78	22
1	4A	9	2	68	23
1	17A	10	2	31	24
1	3A	11	2	36A	25
1	13A	12	2	71	26
1	6A	13	2	14	27
1	18A	14	2	88	28
1	10A	15	2	13	29
1	7A	16	2	9	30
1	19A	17	2	89	31
1	11A	18	2	5	32
1	5A	19	2	29	33
1	8A	20	2	30	34
1	16A	21	2	56	35
1	15A	22	2	33	36
2	24	1	2	91	37
2	18	2	2	7	38
2	23	3	2	32	39
2	33A	4	2	8	40
2	30A	5	2	28	41
2	32A	6	2	43	42
2	17	7	2	14A	43
2	31A	8	2	39A	44
2	29A	9		41A	45
2	72	10	2	49	46
2	76	11		28A	47
2	69	12		27A	48
2	80	13		12A	49
2	70	14	2	37A	50

Ref	Char. code	Int. code	Ref	Char. code	Int. code
2	42A	51	3	44	35
2	38A	52	3	37	36
2	86	53	3	21	37
2	43A	54	3	21A	38
2	34	55	3	90	39
2	40A	56	3	54	40
2	42	57	3	36	41
2	48	58	3	22A	42
2	95	59	3	50	43
3	2	1	3	58	44
3	26A	2	3	19	45
3	1	3	3	57	46
3	35A	4	3	96	47
3	82	5	3	23A	48
3	85	6	3	46	49
3	25A	7	3	97	50
3	34A	8	3	20	51
3	45A	9	3	59	52
3	47A	10	3	44A	53
3	87	11	3	93	54
3	83	12	3	47	55
3	92	13	3	4	56
3	53	14	3	22	57
3	41	15	3	51	58
3	49A	16	3	62	59
3	98	17	3	12	60
3	61	18	3	20A	61
3	60	19	3	94	62
3	6	20	3	10	63
3	55	21	3	3	64
3	48A	22	3	38	65
3	11	23	3	52	66
3	46A	24	5	1WH1TH	1
3	27	25	5	2WH1TH	2
3	81	26	5	3WH1TH	3
3	45	27	5	4WH1TH	4
3	1A	28	5	5WH1TH	5
3	40	29	5	6WH1TH	6
3	39	30	5	1GF1TH	7
3	35	31	5	2GF1TH	8
3	2A	32	5	3GF1TH	9
3	26	33	5	4GF1TH	10
3	24A	34	5	1WC1TH	11

Ref	Char. code	Int. code	Ref	Char. code	Int. code
5	2WC1TH	12	7	1PP2	11
5	3WC1TH	12	7	2PP2	12
5	4WC1TH	13	7	3PP2	13
5	5WC1TH	15	7	4PP2	10
5	6WC1TH	16	7	1PP3	15
5	7WC1TH	10	7	2PP3	16
6	1PP4CC	1	7	3PP3	17
6	2PP4CC	2	7	4PP3	18
6	1PP4PC	3	7	1PP4	19
6	2PP4PC	4	7	2PP4	20
6	3PP4PC	5	7	3PP4	21
6	4PP4PC	6	7	1LP2	22
6	5PP4PC	7	7	2LP2	23
6	1PP1TH	8	7	3LP2	24
6	2PP1TH	9	7	4LP2	25
6	3PP1TH	10	7	5LP2	26
6	4PP1TH	11	7	1LP3	27
6	5PP1TH	12	7	2LP3	28
6	6PP1TH	13	7	3LP3	29
6	1PP&ASSOC4PC	14	7	4LP3	30
6	2PP&ASSOC4PC	15	7	1LP4	31
6	3PP&ASSOC4PC	16	7	1WF2	32
6	4PP&ASSOC4PC	17	7	2WF2	33
6	5PP&ASSOC4PC	18	7	3WF2	34
6	6PP&ASSOC4PC	19	7	4WF2	35
6	7PP&ASSOC4PC	20	7	1WF3	36
6	8PP&ASSOC4PC	21	7	2WF3	37
6	1LP3CC	22	7	3WF3	38
6	1LP3PC	23	7	4WF3	39
6	2LP3PC	24	7	5WF3	40
6	3LP3PC	25	7	1WF4	41
6	4LP3PC	26	7	2WF4	42
6	5LP3PC	27	7	3WF4	43
7	1MP4	1	7	4WF4	44
7	2MP4	2	7	5WF4	45
7	3MP4	3	7	1RF3	46
7	4MP4	4	7	2RF3	47
7	5MP4	5	7	3RF3	48
7	1MF4	6	7	4RF3	49
7	2MF4	7	7	5RF3	50
7	3MF4	8	7	1RF4	51
7	4MF4	9	7	2RF4	52
7	5MF4	10	7	3RF4	53

Ref	Char. code	Int. code	Ref	Char. code	Int. code
7	4RF4	54	8	2LP1	41
7	5RF4	55	8	3LP1	42
7	1MH4	56	8	1LP2	43
8	1DFHD3	1	8	2LP2	44
8	2DFHD3	2	8	3LP2	45
8	3DFHD3	3	8	4LP2	46
8	1DFHD4	4	8	1LP3	47
8	2DFHD4	5	8	2LP3	48
8	3DFHD4	6	8	3LP3	49
8	4DFHD4	7	8	1PP&Assoc3	50
8	5DFHD4	8	8	2PP&Assoc3	51
8	1HD2	9	8	3PP&Assoc3	52
8	2HD2	10	8	4PP&Assoc3	53
8	1DF2	11	8	5PP&Assoc3	54
8	2DF2	12	8	1PP&Assoc4	55
8	1DF3	13	8	2PP&Assoc4	56
8	2DF3	14	8	3PP&Assoc4	57
8	1DF4	15	8	1PP1	58
8	2DF4	16	8	2PP1	59
8	3DF4	17	8	3PP1	60
8	4DF4	18	8	1PP2	61
8	5DF4	19	8	2PP2	62
8	6DF4	20	8	3PP2	63
8	7DF4	21	8	4PP2	64
8	1SA1	22	8	1PP3	65
8	2SA1	23	8	2PP3	66
8	3SA1	24	8	3PP3	67
8	1SA2	25	8	4PP3	68
8	2SA2	26	8	5PP3	69
8	1SA3	27		6PP3	70
8	2SA3	28	8	7PP3	71
8	3SA3	29	8	8PP3	72
8	1SA4	30	8	1PP4	73
8	2SA4	31	8	2PP4	74
8	1MC2	32	8	3PP4	75
8	2MC2	33	8	4PP4	76
8	3MC2	34	8	5PP4	77
8	1MC3	35	8	6PP4	78
8	2MC3	36	8	7PP4	79
8	3MC3	37	8	8PP4	80
8	1MC4	38	8	1BR	81
8	2MC4	39	8	2BR	82
8	1LP1	40	8	1JU2	83

Ref	Char. code	Int. code	Ref	Char. code	Int. code
8	2JU2	84	11	3PP3PC	15
8	1GR	85	11	1PP3CC	16
8	2GR	86	11	2PP3CC	10
9	1DFWHPRE01	1	11	1PPSP3PC	18
9	1DFWHPRE02	2	11	2PPSP3PC	10 19
9	1DFWHPRE03	3	11	3PPSP3PC	20
9	1DFWHPRE04	4	11	1SP3PC	20
9	1DFWHPRE05	5	11	2SP3PC	22
9	1DFWHPRE06	6	11	1PP1	22
9	1DFWHPRE07	0 7	11	1PP2	23
9	1DFWHPRE08	8	11	2PP2	25
9	1DFWHPRE09	9	11	1PP3	26
9	2WHSSPRE01	10	12	1PP1TH(BH)	1
9	3RAPRE01	10	12	2PP1TH(BH)	2
9	3RAPRE02	12	12	3PP1TH(BH)	3
9	3RAPRE03	13	12	4PP1TH(BH)	4
9	3RAPRE04	14	12	5PP1TH(BH)	5
9	3RAPRE05	15	12	6PP1TH(BH)	6
9	3RAPRE06	16	12	7PP1TH(BH)	8 7
9	3RAPRE07	17	12	1PP2PC	8
9	4DFWHPOST01	18	12	2PP2PC	9
9	4DFWHPOST02	19	12	3PP2PC	10
9	4DFWHPOST03	20	12	4PP2PC	10
9	4DFWHPOST04	21	12	5PP2PC	12
9	5RAPOST01	22	12	1PP3PC	13
9	5RAPOST02	23	12	2PP3PC	14
9	5RAPOST03	24	12	3PP3PC	15
9	5RAPOST04	25	12	1PP3CC	16
9	5RAPOST05	26	12	2PP3CC	17
11	1PP1TH	1	12	1PPSP3PC	18
11	2PP1TH	2	12	2PPSP3PC	19
11	3PP1TH	3	12	3PPSP3PC	20
11	4PP1TH	4	12	1SP3PC	21
11	5PP1TH	5	12	2SP3PC	22
11	6PP1TH	6	12	1PP1(BH)	23
11	7PP1TH	7	12	1PP2(BH)	24
11	1PP2PC	8	12	2PP2(BH)	25
11	2PP2PC	9	12	1PP3(BH)	26
11	3PP2PC	10	12	1AZPPSPPRE01	27
11	4PP2PC	11	12	1AZPPSPPRE02	28
11	5PP2PC	12	12	1AZPPSPPRE03	29
11	1PP3PC	13	12	1AZPPSPPRE04	30
11	2PP3PC	14	12	1MC2	31

Ref	Char. code	Int. code	Ref	Char. code	Int. code
12	2MC2	32	12	5PP1TH	75
12	3MC2	33	12	6PP1TH	76
12	1MC3	34	12	1PP2	77
12	2MC3	35	12	2PP2	78
12	3MC3	36	12	3PP2	79
12	1PP&Assoc3	37	12	4PP2	80
12	2PP&Assoc3	38	12	1PP3	81
12	3PP&Assoc3	39	12	2PP3	82
12	4PP&Assoc3	40	12	3PP3	83
12	5PP&Assoc3	41	12	4PP3	84
12	1PP&Assoc4	42	12	1PP4	85
12	2PP&Assoc4	43	12	2PP4	86
12	3PP&Assoc4	44	12	3PP4	87
12	1PP1	45	12	3WF2	88
12	2PP1	46	12	4WF3	89
12	3PP1	47	12	3WF3	90
12	1PP2(PNW-105)	48	13	1DF4CC	1
12	2PP2(PNW-105)	49	13	2DF4CC	2
12	3PP2(PNW-105)	50	13	3DF4CC	3
12	4PP2(PNW-105)	51	13	4DF4CC	4
12	1PP3(PNW-105)	52	13	5DF4CC	5
12	2PP3(PNW-105)	53	13	6DF4CC	6
12	3PP3(PNW-105)	54	13	7DF4CC	7
12	4PP3(PNW-105)	55	13	8DF4CC	8
12	5PP3	56	13	9DF4CC	9
12	6PP3	57	13	10DF4CC	10
12	7PP3	58	13	1DF4PC	11
12	8PP3	59	13	2DF4PC	12
12	1PP4(PNW-105)	60	13	3DF4PC	13
12	2PP4(PNW-105)	61	13	4DF4PC	14
12	3PP4(PNW-105)	62	13	5DF4PC	15
12	4PP4	63	13	6DF4PC	16
12	1JU2	64	13	7DF4PC	17
12	2JU2	65	13	8DF4PC	18
12	1PP4PC	66	13	9DF4PC	19
12	2PP4PC	67	13	1DF3PC	20
12	3PP4PC	68	13	2DF3PC	21
12	4PP4PC	69	13	3DF3PC	22
12	5PP4PC	70	13	4DF3PC	23
12	1PP1TH	71	13	5DF3PC	24
12	2PP1TH	72	13	6DF3PC	25
12	3PP1TH	73	13	1DF1TH	26
12	4PP1TH	74	13	2DF1TH	27

		Int.			Int.
Ref	Char. code	code	Ref	Char. code	code
13	3DF1TH	28	14	WJ04	29
13	4DF1TH	29	15	BG01	1
13	1DFHD4CC	30	15	BG02	2
13	2DFHD4CC	31	15	BG03	3
13	3DFHD4CC	32	15	BG04	4
13	4DFHD4CC	33	15	MC01	5
13	5DFHD4CC	34	15	MC02	6
13	6DFHD4CC	35	15	MC03	7
13	7DFHD4CC	36	15	MC04	8
13	1DFHD4PC	37	15	MC05	9
13	2DFHD4PC	38	15	MC06	10
13	3DFHD4PC	39	15	MC07	11
13	4DFHD4PC	40	15	MC08	12
13	5DFHD4PC	41	15	MC09	13
13	6DFHD4PC	42	15	MC10	14
14	BG01	1	15	MC11	15
14	BG02	2	15	MC12	16
14	BG03	3	15	MC13	17
14	BG04	4	15	MC14	18
14	MC01	5	15	MC15	19
14	MC02	6	15	MC16	20
14	MC03	7	15	MC17	21
14	MC04	8 9	15	SB01	22
14	MC05		15	SB02	23
14 14	MC06 MC07	10 11	15 15	SB03	24
14	MC07 MC08	12	15	SB04 WJ01	25 26
14	MC08 MC09	12	15	WJ02	20 27
14	MC10	13	15	WJ02	28
14	MC10 MC11	14	15	WJ04	28
14	MC12	16	15	AKHD01	29
14	MC13	17	16	AKHD02	2
14	MC13 MC14	18	16	AKHD02	3
14	MC14 MC15	19	16	AKHD04	4
14	MC16	20	16	AKHD05	5
14	MC10 MC17	21	16	AKHD06	6
14	SB01	22	16	AKHD07	7
14	SB01 SB02	23	16	AKHD08	8
14	SB03	23	16	AKHD09	9
14	SB04	25	16	AKHD10	10
14	WJ01	26	16	AKHD10	10
14	WJ02	27	16	AKHD12	12
14	WJ03	28	16	AKHD13	12
		_0	10		.0

Ref	Char. code	Int. code	Ref	Char. code	Int. code
16	AKHD14	14	17	LP07	16
16	AKHD15	15	17	LP08	17
16	BS01	16	17	LP09	18
16	BS02	17	17	LP10	19
16	BS03	18	17	LP11	20
16	BS04	19	17	LP12	21
16	BS05	20	17	LP13	22
16	BS06	21	17	QA01	23
16	BS07	22	17	QA02	24
16	BS08	23	17	QA03	25
16	BS09	24	17	QA04	26
16	BS10	25	17	QA05	27
16	BS11	26	17	QA06	28
16	BS12	27	17	QA07	29
16	BS13	28	17	QA08	30
16	BS14	29	17	QA09	31
16	WS01	30	17	QA10	32
16	WS02	31	17	QA11	33
16	WS03	32	17	QA12	34
16	WS04	33	17	QA13	35
16	WS05	34	18	JP01	1
16	WS06	35	18	JP02	2
16	WS07	36	18	JP03	3
16	WS08	37	18	JP04	4
16	WS09	38	18	JP05	5
16	WS10	39	18	JP06	6
16	WS11	40	18	JP07	7
16	WS12	41	18	JP08	8
17	GO01	1	18	JP09	9
17	GO02	2	18	JP10	10
17	GO03	3	18	JP11	11
17	GO04	4	18	JP12	12
17	GO05	5	18	JP13	13
17	GO06	6	18	JP14	14
17	GO07	7	18	JP15	15
17	GO08	8	18	JP16	16
17	GO09	9	18	JP17	17
17	LP01	10	18	JP18	18
17	LP02	11	18	JP19	19
17	LP03	12	18	MO01	20
17	LP04	13	18	MO02	21
17	LP05	14	18	MO03	22
17	LP06	15	18	MO04	23

Def	Char and	Int.	Def	Char and	Int.
Ref 18	Char. code MO05	code 24	Ref 19	Char. code SH05	code 24
18	MO05 MO06	24	19	SH05 SH06	24 25
18	MO07	25	19	SH07	25 26
18	MO08	20	19	SH08	20
18	MO09	28	19	SH09	28
18	MO10	29	19	SH10	29
18	MO10 MO11	30	19	SH11	30
18	MP01	31	19	SPS01	31
18	MP02	32	19	SPS02	32
18	MP03	33	19	SPS03	33
18	MP04	34	19	SPS04	34
18	MP05	35	20	1PP1TH	1
18	MP06	36	20	2PP1TH	2
18	MP07	37	20	3PP1TH	3
18	MP08	38	20	4PP1TH	4
18	MP09	39	20	5PP1TH	5
18	MP10	40	20	6PP1TH	6
18	MP11	41	20	7PP1TH	7
18	MP12	42	20	1PP2PC	8
18	MP13	43	20	2PP2PC	9
19	HP01	1	20	3PP2PC	10
19	HP02	2	20	4PP2PC	11
19	HP03	3	20	5PP2PC	12
19	HP04	4	20	1PP3PC	13
19	HP05	5	20	2PP3PC	14
19	HP06	6	20	3PP3PC	15
19	HP07	7	20	1PP3CC	16
19	LLP01	8	20	2PP3CC	17
19	LLP02	9	20	1PPSP3PC	18
19	LLP03	10	20	2PPSP3PC	19
19	LLP04	11	20	3PPSP3PC	20
19	LLP05	12	20	1SP3PC	21
19	LLP06	13	20	2SP3PC	22
19	LLP07	14	20	1PP1	23
19	LLP08	15	20	1PP2	24
19	LLP09	16	20	2PP2	25
19	LLP10	17	20	1PP3	26
19	P-W01	18	21	PJ01	1
19	P-W02	19	21	PJ02	2
19	SH01	20	21	PJ03	3
19	SH02	21	21	PJ04	4
19	SH03	22	21	PJ05	5
19	SH04	23	21	PJ06	6

Ref	Char. code	Int. code	Ref	Char. code	Int. code
21	PJ07	7	22	HI-S03	25
21	PJ08	8	22	HI-S04	26
21	PJ09	9	22	HI-S05	27
21	PJ10	10	22	HI-S06	28
21	PJ11	11	22	HI-S07	29
21	PJ12	12	22	HI-W01	30
21	PJ13	13	22	HI-W02	31
21	PJ14	14	22	HI-W03	32
21	SWSB01	15	22	HI-W04	33
21	SWSB02	16	22	HI-W05	34
21	SWSB03	17	22	HI-W06	35
21	SWSB04	18	22	HI-W07	36
21	SWSB05	19	23	1DFWHPRE01	1
21	SWSB06	20	23	1DFWHPRE02	2
21	SWSB07	21	23	1DFWHPRE03	3
21	SWSB08	22	23	1DFWHPRE04	4
21	SWSB09	23	23	1DFWHPRE05	5
21	SWSB10	24	23	1DFWHPRE06	6
21	SWSB11	25	23	1DFWHPRE07	7
22	HI-F01	1	23	1DFWHPRE08	8
22	HI-F02	2	23	1DFWHPRE09	9
22	HI-F03	3	23	1DFWHPRE10	10
22	HI-F04	4	23	1DFWHPRE11	11
22	HI-F05	5	23	1DFWHPRE12	12
22	HI-F06	6	23	1DFWHPRE13	13
22	HI-F07	7	23	1DFWHPRE14	14
22	HI-F08	8	23	1DFWHPRE15	15
22	HI-F09	9	23	1DFWHPRE16	16
22	HI-G01	10	23	1DFWHPRE17	17
22	HI-G02	11	23	1DFWHPRE18	18
22	HI-G03	12	23	1DFWHPRE19	19
22	HI-G04	13	23	2DFWHPOST01	20
22	HI-G05	14	23	2DFWHPOST02	21
22	HI-G06	15	23	2DFWHPOST03	22
22	HI-G07	16	23	2DFWHPOST04	23
22	HI-G08	17	23	2DFWHPOST05	24
22	HI-G09	18	23	2DFWHPOST06	25
22	HI-G10	19	23	2DFWHPOST07	26
22	HI-G11	20	24	1LL2N	1
22	HI-G12	21	24	2LL2H	2
22	HI-G13	22	24	3LL3N	3
22	HI-S01	23	24	4LL2H	4
22	HI-S02	24	24	5LL1P	5

		Int.	- /		Int.
Ref	Char. code	code	Ref	Char. code	code
24	6LL3H	6	26	FC4POST	8
24	7LL3H	7	26	FC5PRE	9
24	8LL3N	8	26	FC5POST	10
24	9LL3H	9	26	FC6PRE	11
24	1WP3N	10	26	FC6POST	12
24	2WP2P	11	26	FC7PRE	13
24	3WP3N	12	26	FC7POST	14
24	4WP3H	13	26	FC8PRE	15
24	5WP3H	14	26	FC8POST	16
24	6WP2H	15	27	CDO01	1
24	7WP3N	16	27	CDO02	2
24	1PP1N	17	27	CDO03	3
24	2PP2N	18	27	CDO04	4
24	3PP1N	19	27	CDO05	5
24	4PP1N	20	27	CDO06	6
24	5PP2N	21	27	CDO07	7
24	6PP2N	22	27	CDO08	8
24	7PP3H	23	27	CDO09	9
24	1VP2N	24	27	MCS01	10
24	2VP2N	25	27	MCS02	11
24	3VP3N	26	27	MCS03	12
24	4VP2N	27	27	MCS04	13
25	1A21N	1	27	MCS05	14
25	2A22N	2	27	MCS06	15
25	3B21N	3	27	MCS07	16
25	4A22N	4	27	MCS08	17
25	5B12N	5	27	MCS09	18
25	6A12N	6	27	MCS10	19
25	7B22N	7	27	MCS11	20
25	8A22N	8	27	WO01	21
25	9A11N	9	27	WO02	22
25	10A22CC	10	27	WO03	23
25	11B22CC	11	27	WO04	24
25	12A22CC	12	27	WO05	25
25	13A22CC	13	27	WO06	26
25	14B23CC	14	27	WO07	27
26	FC1PRE	1	27	WO08	28
26	FC1POST	2	27	WO09	29
26	FC2PRE	3	27	WO10	30
26	FC2POST	4	28	1-MC-4-RC	1
26	FC3PRE	5	28	2-MC-4-RC	2
26	FC3POST	6	28	3-MC-4-RC	3
26	FC4PRE	7	28	1-MC-4-PC	4

Ref	Char. code	Int. code	Ref	Char. code	Int. code
28	2-MC-4-PC	5	30	3D-postburn	2
28	3-MC-4-PC	6	30	2A-preburn	3
28	4-MC-4-PC	7	30	2A-postburn	4
28	5-MC-4-PC	8	30	3B-preburn	5
28	6-MC-4-PC	9	30	3B-postburn	6
28	7-MC-4-PC	10	30	2C-preburn	7
28	8-MC-4-PC	11	30	2C-postburn	8
28	1-MC-3-PC	12	30	2D-preburn	9
28	2-MC-3-PC	13	30	2D-postburn	10
28	3-MC-3-PC	14	30	1A-preburn	11
28	4-MC-3-PC	15	30	1A-postburn	12
28	5-MC-3-PC	16	30	1C-preburn	13
28	6-MC-3-PC	17	30	1C-postburn	14
28	7-MC-3-PC	18	30	1D-preburn	15
28	8-MC-3-PC	19	30	1D-postburn	16
28	1-TF-4-RC	20	31	1	1
28	2-TF-4-RC	21	31	2	2
28	3-TF-4-RC	22	31	3	3
28	4-TF-4-RC	23	31	4	4
28	5-TF-4-RC	24	31	5	5
28	6-TF-4-RC	25	31	6	6
28	1-TF-4-PC	26	31	7	7
28	2-TF-4-RC	27	31	8	8
28	3-TF-4-PC	28	31	9	9
28	4-TF-4-PC	29	31	10	10
28	5-TF-4-PC	30	32	1A	1
29	1-preburn	1	32	1B	2
29	1-postburn	2	32	1C	3
29	2-preburn	3	32	2A	4
29	2-postburn	4	32	2B	5
29	3-preburn	5	32	ЗA	6
29	3-postburn	6	32	3B	7
29	4-preburn	7	32	4A	8
29	4-postburn	8	32	4B	9
29	5-preburn	9	32	4C	10
29	5-postburn	10	32	5A	11
29	6-preburn	11	32	5B	12
29	6-postburn	12	32	5C	13
29	7-preburn	13	32	6A	14
29	7-postburn	14	32	6B	15
29	8-preburn	15	32	6C	16
29	8-postburn	16	32	7A	17
30	3D-preburn	1	32	7B	18

Ref	Char. code	Int. code	Ref	Char. code	Int. code
32	7C	19	32		30
32	8A	20	32	13B	31
32	9A	21	32	13C	32
32	9B	22	32	13D	33
32	10A	23	32	13E	34
32	10B	24	32	14A	35
32	10C	25	32	14B	36
32	11A	26	32	14C	37
32	12A	27	32	14D	38
32	12B	28	32	14E	39
32	12C	29			

Section 3.4.2, SIMFIRE keyword:

Wind speed is in miles per hour 20 feet above the vegetation, not 20 feet above the ground

Three additional fields have been added to the SimFire keyword.

Field 5: Mortality Code. 0 = Turn off FFE mortality predictions, 1 = FFE estimates mortality.

Field 6: Percentage of stand area burned; default is 100.

Field 7: Season of the burn. 1 = early spring (compact leaves), 2 = before greenup,

3 = after greenup (before fall), 4 = fall; default is 1.

The percentage of stand area burned affects many of the fire effects calculations, such as mortality, fuel consumption, smoke production, and mineral soil exposure.

Section 3.4.2, MOISTURE keyword:

To implement the new fuel models, the "live" surface fuel category needed to be split into two categories, one for live woody fuel and one for live herbaceous fuel. As a result, an 8th field was added to this keyword. Field 7 now represents the percent moisture for live woody fuel and field 8 represents the percent moisture for live herbaceous fuel.

Section 3.4.2, FlameAdj keyword:

One field has been added to the SimFire keyword.

Field 5: Scorch height (ft). If entered in addition to flame length and percent crowning, this sets the scorch height for the simulated fire. If left blank, the scorch height is estimated based on the flame length and percent crowning of the fire.

Section 3.4.3, PileBurn keyword:

Field 4: Percent of the affected area into which the fuel is concentrated (area which will be treated, i.e. footprint of piles).

Section 3.4.4, POTFMOIS keyword:

To implement the new fuel models, the "live" surface fuel category needed to be split into two categories, one for live woody fuel and one for live herbaceous fuel. As a result, an 8th field was added to this keyword. Field 7 now represents the percent moisture for live woody fuel and field 8 represents the percent moisture for live herbaceous fuel.

Section 3.4.4, New keywords:

The LS fuel model logic uses the season of the burn to determine the fuel model and in its fire-related mortality predictions. As a result, a new keyword, POTFSEAS, was created so that users can control the season of potential fires. The season of the fire does not affect other FFE variants.

POTFSEAS - controls the season of the burn for potential fire calculations. (Currently used in LS-FFE only.)

Field 1: season of the burn for potential severe fires.

1 = early spring (compact leaves), 2 = before greenup, 3 = after greenup (before fall), 4 = fall default is 1.

Field 2: season of the burn for potential moderate fires.

1 = early spring (compact leaves), 2 = before greenup, 3 = after greenup (before fall), 4 = fall default is 1.

The keyword POTFPAB was created so that users can control the percentage of the stand area that is assumed burned for potential fires, which is used in the fire effect calculations.

POTFPAB - controls the percentage of the stand area burned for potential fire calculations. Field 1: percentage of the stand area burned for potential severe fires; default is 100%. Field 2: percentage of the stand area burned for potential moderate fires; default is 100%.

Section 3.4.5, DEFULMOD keyword:

Loadings should be entered in lbs/ft².

To implement the new fuel models, the "live" surface fuel category needed to be split into two categories, one for live woody fuel and one for live herbaceous fuel. As a result, two new fields were added to this keyword. Field 6 now represents the surface to volume ratio of the live woody fuel. Field 10 represents the loading for the live woody fuel. Field 13 represents the surface to volume ratio for the live herbaceous fuel. Field 14 represents the loading for the live herbaceous fuel.

Section 3.4.5, FUELMODL keyword:

The new fuel models (Scott and Burgan 2005) were added and can now be selected with the FuelModl keyword. These should be added to **Table 3.2.** The fuel model can also be set within the StandInit table of an input FVS database.

Section 3.4.5, new keywords:

FIRECALC - Modify the fire behavior calculations. Users can choose to use the original fuel model selection logic, the new fuel model selection logic (includes the 40 new fuel models) or can choose to predict fire behavior from modelled fuel loads directly. The SAV and bulk density values entered are used only if the new fuel model selection logic or the modelled loads option is chosen. The heat content entered is used only if the modelled loads option is chosen. These variables should be entered as they pertain to your fuel bed and will be used to help select the most similar fuel model(s) (if using the new fuel model logic) or will be used directly in the fire behavior calculations (if using the modelled loads option). When using the modelled loads option, no standard fuel model is actually selected and used, but the use of this option is reported as fm89. See Appendix C for more details on the new fuel model logic and the modelled loads option.

Field 1: Year or cycle in which the fire behavior calculations will be changed. Default = 1.

(Once in effect, this keyword stays in effect until replaced with another FireCalc keyword.) Field 2: The fire behavior calculations should use:

- 0 = the original FFE fuel model selection logic (Default)
- 1 = the new fuel model selection logic (includes the 40 new fuel models)
- 2 = modelled loads directly in predicting fire behavior
- Field 3: Fuel model set for use with the new fuel model logic:
 - 0 = use the original 13 fuel models
 - 1 = use the 40 new Scott and Burgan fuel models
 - 2 =use all 53 fuel models (Default)
- Field 4: Surface area to volume ratio (1/ft) for 1 hr (0-.25") fuels. Default = 2000.
- Field 5: Surface area to volume ratio (1/ft) for live herb fuels. Default = 1800.
- Field 6: Surface area to volume ratio (1/ft) for live woody fuels. Default = 1500.
- Field 7: Bulk density (lbs/ft3) for live fuels. Default = 0.10
- Field 8: Bulk density (lbs/ft3) for dead fuels. Default = 0.75
- Field 9: Heat content (BTU/lb). Default = 8000

FMODLIST - Adjust the fuel models available for selection in conjuction with the new fuel model logic (also see FireCalc keyword). Fuel models can either be turned "on" (they will be part of the potential fuel model pick list) or turned "off". See Appendix C for details on the new fuel model logic and what fuel models are part of the pick list by default. Once set, this keyword stays in effect unless reset.

Field 1: Year or cycle in which the keyword will apply. Default = 1. (Once in effect, this keyword stays in effect unless reset.

Multiple FMODLIST keywords can be used simultaneously.)

Field 2: Fuel model (1 - 204). Default = 1

Field 3: Fuel model status:

- -1 = use default logic to determine if fuel model is part of the pick list (Default)
- 0 = fuel model IS part of the pick list
- 1 =fuel model IS NOT part of the pick list

Section 3.4.6 Canopy fuels:

Add this section with the following description:

Estimates of canopy base height and canopy bulk density help determine whether a surface fire, passive crown fire, or active crown fire are simulated. By default, CBH and CBD are calculated as described in section 2.4.7. Users can alter these calculations with the CanCalc keyword.

CANCALC – Modify the calculation of canopy base height and canopy bulk density. Users can specify which trees are included in these calculations. They can also change the cutoff value used to determine canopy base height.

Field 1: The method used. 0 = standard method. Currently this is the only method supported.

Field 2: Minimum height (in feet) of trees used in the calculation. Default is 6.

Field 3: The species included in the calculation. Default is 0 = conifers only. 1 = all species.

Field 4: Cutoff value used in determining canopy base height. Default is 30 lbs/acre/foot

Table 3.6:

FUELMOVE is in section 3.7.3 FUELTRET is in section 3.7.3 PRUNE is in section 3.7.1 SALVAGE is in section 3.7.2 YARDLOSS is in section 3.7.1

Section 3.7.1, Yardloss keyword:

Description should say: Set the proportion of cut stems that are left in the stand and, of those, set the portion that are left down. Also specify the proportion of branchwood that is left from removed stems.

Description of fields should match the description in Suppose.

Field 2: Proportion of cut stems left in the stand.

Field 3: Proportion of left stems that are down.

Field 4: Proportion of branchwood left from removed stems. (Proportion of unmerchantable wood left from removed stems in the eastern variants.)

Section 3.7.2 Snag Management

An additional keyword, SALVSP, is now available:

SALVSP – Allows users to select a species to either be cut or left when using the SALVAGE keyword. Once in effect, this keyword stays in effect until reset.

Field 1: The FVS cycle number or the calender year.

Field 2: Species or species group. Default is all.

Field 3: Whether the species listed in field 2 is to be cut or left in subsequent salvage operations. 0 = cut this species. 1 = leave this species. Default is 0.

Also, the Salvage keyword was recently modified. It now gets processed only at the beginning of each cycle, like the thinning keywords. So any time a Salvage keyword is set for mid-cycle, it will get moved up and will actually be done at the beginning of the cycle.

The following new section is inserted:

3.8 Carbon Accounting Keywords

CARBCALC Set carbon accounting parameters

- Field 1: Use FFE algorithm for aboveground biomass (field is 0 or blank), or use Jenkins and others (2003) algorithm for aboveground biomass (field is 1). Default is 0.
- Field 2: Use US units (tons carbon per acre) for output (field is 0 or blank), or metric units (metric tons carbon per hectare) (field is 1), or combined units (metric tons carbon per acre) (field is 2). Default is 0. (With US units, a ton = a short ton = 2000 lbs.)
- Field 3: Annual decay rate (proportion per year) for belowground-dead carbon pool (dead roots). Default is 0.0425. Valid range is >0.0 1.0.
- Field 4: DBH breakpoint (inches) for softwood species. Stem biomass from trees smaller than this size assigned to a pulpwood class for calculations that produce the harvested products report; those equal or larger are assigned to a sawlog class. Default is 9 inches DBH.
- Field 5: DBH breakpoint (inches) for hardwood species. Stem biomass from trees smaller than this size assigned to a pulpwood class for calculations that produce the harvested products report; those equal or larger are assigned to a sawlog class. Default is 11 inches DBH.

Line				Colum	n Ruler				
Number	1	+2	3	+4	+5	+б	+7	+8	
	Keyword	Field 1	Field 2	Field 3	Field 4	Field 5	Field 6	Field 7	
1-11	see figure 3	3.1							
FFE 1	ThinBBA	2010	100						
FFE 2	Fmin								
FFE 3	SimFire	2025							
FFE 4	CarbCalc			0.1	б	б			

FFE 5	CarbRept	5
FFE 6	CarbCut	5
FFE 7	FuelOut	5
FFE 8	PotFire	5
FFE 9	End	
12-17	See figure 3.1	

Figure 3.14 A keyword file to simulate a thin-from-below harvest followed by a fire. Keywords added to configure the algorithms, output units, decay rate and diameter breakpoints for carbon accounting, and to print the two carbon reports.

The following section number: Output Keywords is incremented from **3.8 to 3.9**. Tables in the Output Keywords section and later (currently Tables 3.14 - 3.17) will need to be incremented.

3.9 Output Keywords

Four additional output keywords, CanFProf, SoilHeat, CarbRept and CarbCut are now available. The following text is inserted following the SVIMAGES keyword. Figure 3.8 and Figure 3.15 should be updated to include examples of the 4 new keywords:

CANFPROF Request that the canopy fuels profile information be sent to an output FVS database. Output includes the available canopy fuel (kg/m³ or lbs/acre/ft) at various heights above the ground (feet or meters). This keyword creates the FVS_CanProfile table (See the Users Guide to the Database Extension of FVS for more details on this table). There is no corresponding text output table. The database extension to FVS is required to obtain this output. Available canopy fuels include foliage and fine branchwood only - See section 2.4.7 for more information on canopy fuels.

Field 1: The FVS cycle number or the calendar year when the output starts; default is 1.

Field 2: Number of years to output; default is 200.

Field 3: Interval to output; default is 1 (every year).

SOILHEAT Request the soil heating report when a fire is simulated.

- Field 1: The FVS cycle number or the calendar year when the output starts; default is 1.
- Field 2: Number of years to output; default is 200.
- Field 3: Soil Type 1 (Loamy Skeletal), 2 (Fine Silt), 3 (Fine), 4 (Coarse Silt), or 5 (Coarse Loam)

CARBREPT Request the stand carbon report.

Field 1: The FVS cycle number or the calendar year when the output starts; default is 1. Field 2: Number of years to output; default is 200.

Field 3: Interval to output; default is 1 (every year).

CARBCUT Request the harvested products report.

Field 1: The FVS cycle number or the calendar year when the output starts; default is 1. Field 2: Number of years to output; default is 200. Field 3: Interval to output; default is 1 (every year).

The following section, currently **3.9**, is incremented from 3.9 to **3.10**.

Section 3.10 Using the FVS Event Monitor:

The POTFLEN function returns the flame lengths reported in the potential fire report. If $\arg 1 = 1$, total flame length under severe conditions is returned. If $\arg 1 = 2$, total flame length under moderate conditions is returned. If $\arg 1 = 3$, surface fire flame length under severe conditions is returned. If $\arg 1 = 4$, surface fire flame length under moderate conditions is returned.

The SNAGS function was altered to accept an 8th argument. If the 8th argument is 0, values from the beginning of a cycle are returned. If the 8th argument is 1, post salvage and thinning values are returned.

Eight new FFE event monitor functions are available.

PotFMort(arg1) returns potential fire mortality. Arg1 = 1 returns potential severe fire mortality in terms of % BA Arg1 = 2 returns potential moderate fire mortality in terms of %BA Arg1 = 3 returns potential severe fire mortality in terms of total cuft/acre Arg1 = 4 returns potential moderate fire mortality in terms of total cuft/acre

FuelMods(arg1, arg2) returns the fuel models and associated weights being used.

Arg1 = 1, 2, 3, or 4 and controls which fuel model / weight is returned.

Arg2 = 1 returns the actual fuel model number

Arg2 = 2 returns the associated weight

SalvVol(arg1, arg2, arg3) returns salvage volume removed by species and diameter.

Arg1 = species (0 = all species)

Arg2 = the lower limit dbh in inches (greater than or equal to)

Arg3 = the upper limit dbh in inches (less than)

In the western variants, the volume is in terms of total cuft/acre; in the eastern variants, the volume is in merchantable cuft/acre.

When more than one salvage operation is done in a cycle, SalvVol returns the cumulative volume.

PotFType(arg1) returns potential fire type. Arg1 = 1 returns potential severe fire type Arg1 = 2 returns potential moderate fire type

The returned value is numeric as follows:

1 = surface fire

2 = passive crown fire

3 = active crown fire

4 =conditional crown fire

PotSRate(arg1) returns potential fire spread rate in feet/min.

Arg1 = 1 returns the potential severe fire spread rate assuming a surface fire

Arg1 = 2 returns the potential moderate fire spread rate assuming a surface fire

Arg1 = 3 returns the final potential severe fire spread rate (taking any crown fire activity into account)

Arg1 = 4 returns the final potential moderate fire spread rate (taking any crown fire activity into account)

PotReInt(arg1) returns potential fire reaction intensity in BTU/ft2/min.

Arg1 = 1 returns potential severe fire reaction intensity

Arg1 = 2 returns potential moderate fire reaction intensity

TreeBio(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8) returns the biomass (dry weight tons per acre) of standing tree (live and/or dead) and the biomass of tree removed from the stand through harvest and/or salvage.

Arg1 = trees to include: (<0 = standing trees only; 0=removed trees only; >0 = both)Arg2 = trees to include: (<0 = dead trees only; 0=live trees only; >0 = both)Arg3 = tree portion to include: (<0 = tree stems only; 0=tree crowns only;
>0 = both; 2 = foliage (only for live standing trees))Arg4 = species; 0 = ALL.Arg5 = the lower diameter limit (ft); default is 0.Arg6 = the upper diameter limit (ft); default is a large number.

Arg7 = the lower height limit (ft); default is 0.

Arg8 = the upper height limit (ft); default is a large number.

CarbStat(arg1) returns carbon stored in various pools, in whatever units are designated with the CarbCalc keyword. The following pools correspond exactly to those reported in the two existing FFE carbon reports.

Arg1 = 1 returns the total aboveground live tree carbon

Arg1 = 2 returns the merchantable aboveground live tree carbon

Arg1 = 3 returns the belowground live carbon (roots)

Arg1 = 4 returns the belowground dead carbon (roots of dead or cut trees)

Arg1 = 5 returns the standing dead carbon

Arg1 = 6 returns the down dead wood carbon

Arg1 = 7 returns the forest floor carbon

Arg1 = 8 returns the shrub and herb carbon

Arg1 = 9 returns the total stand carbon

Arg1 = 10 returns the total removed carbon

Arg1 = 11 returns the carbon released from fire

Arg1 = 12 returns the merchantable removed carbon in wood products

Arg1 = 13 returns the merchantable removed carbon in landfills

Arg1 = 14 returns the merchantable removed carbon emitted with energy capture

Arg1 = 15 returns the merchantable removed carbon emitted without energy capture

Arg1 = 16 returns the merchantable removed stored carbon (products + landfills)

Arg1 = 17 returns the merchantable removed carbon (all categories)

Chapter 4 – Variant Descriptions

Species Name Changes

The common names and codes for some species changed with the release of the western species translator. The following changes should be incorporated into the next version of the FFE documentation:

North Idaho, Eastern Montana, East Cascades, Central Idaho, Tetons, Blue Mountains – other changed to other species

Central Rockies – Rocky Mountain juniper was changed to juniper sp., cottonwoods changed to cottonwood species, oaks changed to oak species

Utah – oak changed to oak species, other changed to other species

Western Sierra – other conifers was changed to other softwoods, other hardwood changed to other hardwoods (part of the California black oak category), red fir changed to California red fir

Sections 4.1 Introduction

The Fire and Fuels Extension (FFE) has been developed for 19 of the Forest Vegetation Simulator (FVS) variants: Northern Idaho, Kookantl, Central Rockies, Utah, Eastern Montana, Western Sierra, Blue Mountains, Eastern Cascades, Central Idaho, Tetons, Southern Oregon/Northern California, Klamath Mountains, Inland California and Southern Cascades, Inland Empire, Southern, Pacific Northwest Coast Westside Cascades, Lake States, and Northeast. Northern Idaho was the first variant developed and is considered the "base variant" as described in the FFE Model Description and User's Guide. The Model Description document provides an in-depth look into the logic and parameters of that variant. As new variants have been developed, logic and parameter modifications were made to the NI variant in order to model fire effects in the regions covered by the new variants. The modifications were based on workshops and consultations with scientists and other fire experts familiar with each variant's region. Many revisions were based on "expert knowledge" and unpublished information. References are included for modifications based on published information.

The user can modify many of the model processes, for instance snag dynamics. Some of the keywords are identified in this document; however, all of the user keywords are described in the FFE Model Description (RMRS-GTR-116, chapter 2).

The purpose of this document is to describe the parameterization differences and, where applicable, logical modifications made to the NI variant in order to make the FFE model fire effects appropriately in new variants of the Fire and Fuels Extension to FVS.

Sections 4.4.2, 4.8.2, 4.11.2 Snags:

The snag fall rate, snag decay, and snag height loss predictions were modified in the Region 6 variants of FFE, based on work by Kim Mellen, regional wildlife ecologist. Contact Stephanie Rebain (sarebain@fs.fed.us) for more information.

Sections 4.2.3, 4.3.3, 4.4.3, 4.5.3, 4.6.3, 4.7.3, 4.8.3, 4.9.3, 4.10.3, 4.11.3 Fuels:

Live Tree Bole:

The wood density values used (lbs/cuft factors) are based on the green specific gravity values in table 4-3a of The Wood Handbook (Forest Products Laboratory 1999). Tables 4.4, 4.17, 4.30, 4.47, 4.59, 4.71, 4.86, 4.99, 4.114, 4.126 are incorrect.

The correct density values are listed in Appendix B.

Section 4.3.3 Fuels:

The live and dead surface fuel values for the "other" category in tables 4.20 and 4.21 were updated and taken from:

Ottmar, R.D., Vihnanek, R.E., and Wright, C.S. 1998. Stereo photo series for quantifying natural fuels. Volume I: mixed-conifer with mortality, western juniper, sagebrush, and grassland types in the interior Pacific Northwest. PMS 830. Boise, Idaho: National Wildfire Coordinating Group, National Interagency Fire Center. 73 pp.

The "other" category in the EM variant is modeled as juniper and the following values are now used:

Species		Herbs	Shrubs	Notes
othor	E	0.14	0.35	Ottmor photo corios Volume I
other	I	0.10	2.06	Ottmar photo series, Volume I

					Size C	lass (in)			
Species		< 0.25	0.25 – 1	1 – 3	3 – 6	6 – 12	> 12	Litter	Duff
other	E	0.1	0.2	0.4	0.5	0.8	1.0	0.1	0.0
olliei	I	0.2	0.4	0.2	0.0	0.0	0.0	0.2	0.0

Section 4.5.3 Fuels:

The live and dead surface fuel values for juniper, pinyon pine, and bristlecone pine in tables 4.50 and 4.51 were taken from:

Ottmar, R.D. and R.E. Vihnanek. 2000. Stereo photo series for quantifying natural fuels. Volume IV: pinyon-juniper, sagebrush, and chapparal types in the southwestern United States. PMS 833. Boise, Idaho: National Wildfire Coordinating Group, National Interagency Fire Center. 97 pp.

The litter amounts were switched to 0.5 and 0.3 tons/acre for established and initiating stands, respectively, since the photo series values seemed too high.

Section 4.5.7 Fire Behavior Fuel Models

Figure 4.6 – Logic for modeling fire at "low" fuel loads in the CR-FFE variant:

For the ponderosa pine cover type, when crown cover is less than or equal to 60%, understory tree and snag biomass is greater than 0, and the midflame wind speed is less than 7 miles per hour, the fuel model selected was fuel model 8. This was changed to fuel model 5.

In older versions of CR-FFE, the default structure class parameters (percentage of tree height that must be exceeded to find a gap in the height distribution, diameter breakpoint between seedlings/saplings and pole-sized trees, diameter breakpoint between pole-sized trees and large older trees, minimum cover percent needed to qualify as a stratum, minimum trees/acre needed to classify as stand initiation, minimum percent of maximum stand density index to classify as stem exclusion) were used to determine structure class, which was then used to determine the appropriate fuel models for some cover types. However, if users selected the STRCLASS keyword, the parameters they input on this keyword were

used instead. Based on input from a CR-FFE validation meeting in October 2004, new versions of CR-FFE use the following structure class parameters for the determination of fuel model:

% of tree ht. that must be exceeded to find a gap in the ht. distribution	= 20
diameter breakpoint between seedlings/saplings and pole-sized trees	= 5
diameter breakpoint between pole-sized trees and large older trees	= 18 (12 for lodgepole pine)
minimum cover % needed to qualify as a stratum	= 5
minimum trees/acre needed to classify as stand initiation	= 200
minimum % of maximum sdi to classify as stem exclusion	= 30

These parameters are only assumed for the fuel model logic, so users can still enter the values they want on the STRCLASS keyword.

Also, the logic for some cover types at low fuel loads was changed.

For the pinyon juniper cover type, the fuel models are now based on canopy cover, with linear interpolation used when canopy cover is near the breakpoints below: Canopy cover 0 - 30%: fm 2 Canopy cover 30 - 50%: fm 5 Canopy cover 50% and up: fm 6

For the spruce fir cover type, the fuel models are based on structure class: structure class 0: fm 2 structure class 1: fm 2 (unless the qmd is greater than 1 inch, then fm 5 is used) structure class 2: fm 8 structure classes 3 - 6: fm 10

For the lodgepole pine cover type, the fuel models are based on structure class: structure class 0, 1, or 5: fm 5 structure class 2: fm 8 structure class 3, 4, or 6: fm 10

For the mixed conifer cover type, the fuel models logic is described below. If the total ponderosa pine basal area is > any other species: fm 9 If ponderosa pine is not dominant then the following logic is used: structure class 0: fm 2 (fm 1 if within a drought period) structure class 1: fm 5 (fm 6 if within a drought period) structure class 2: fm 8 (fm 6 if within a drought period) structure class 3, 4, or 6: fm 10 structure class 5 and canopy cover < 50%: fm 2 (interpolation is used if canopy cover is close to 50%) structure class 5 and canopy cover >= 50%: fm 8 (interpolation is used if canopy cover is close to 50%)

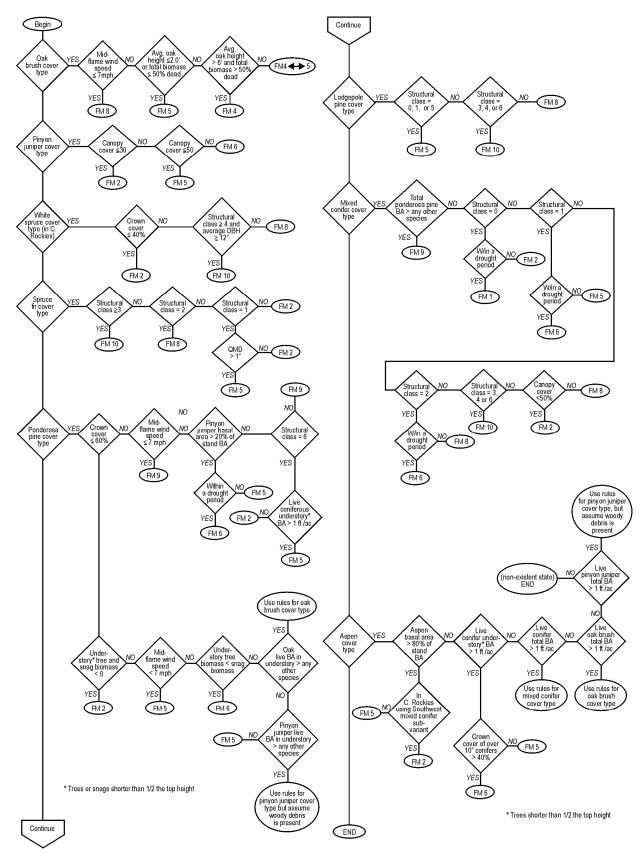


Figure 4.6 - Revised - Logic for modeling fire at "low" fuel loads in the CR-FFE variant

Section 4.6.3 Fuels:

The live and dead surface fuel values for juniper and pinyon pine in tables 4.62 and 4.63 were taken from:

Ottmar, R.D. and R.E. Vihnanek. 2000. Stereo photo series for quantifying natural fuels. Volume IV: pinyon-juniper, sagebrush, and chapparal types in the southwestern United States. PMS 833. Boise, Idaho: National Wildfire Coordinating Group, National Interagency Fire Center. 97 pp.

The litter amounts were switched to 0.5 and 0.3 tons/acre for established and initiating stands, respectively, since the photo series values seemed too high.

Section 4.6.7 Fire Behavior Fuel Models

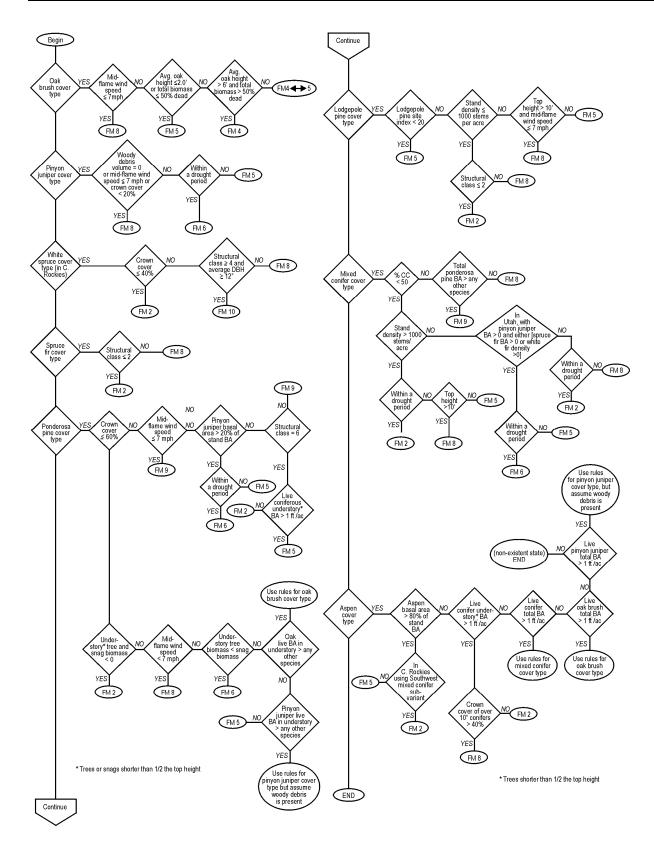


Figure 4.8 – Revised – Logic for modeling fire at "low" fuel loads in the UT-FFE variant

Section 4.7.3 Fuels:

The values in Table 4.74 are incorrect for California black oak / other hardwoods. The correct live fuel loads are listed below.

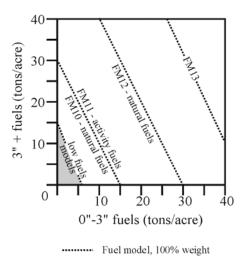
Species		Herbs	Shrubs	Notes
California black oak / other	Е	0.23	0.22	
hardwoods	Ι	0.55	0.35	

The values in Table 4.75 are incorrect for California black oak / other hardwoods. The correct dead fuel loads are listed below.

			Size Class (in)						
Species		< 0.25	0.25 – 1	1 – 3	3 – 6	6 – 12	> 12	Litter	Duff
California black oak /	Е	0.3	0.7	1.4	0.2	0.1	0.0	3.9	0.0
other hardwoods	Ι	0.1	0.1	0.0	0.0	0.0	0.0	2.9	0.0

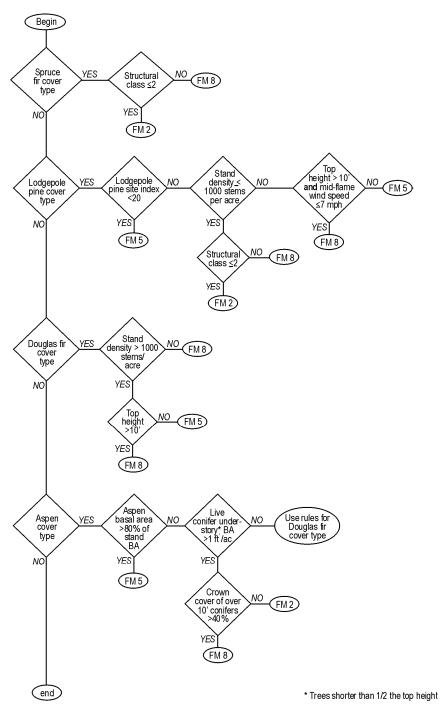
Section 4.7.5 Decay Rate:

The values in Table 4.77 are incorrect. The correct decay rates are listed below. Also, the rates are not from Abbott and Crossley, but are based on the decay rates used in the Sierra Nevada Framework.


Table 4.77Default annual loss rates are applied based on size class. A portion of the loss is added to the duff
pool each year. Loss rates are for hard material. If present, soft material in all size classes except
litter and duff decays 10% faster.

Annual Loss Rate	Proportion of Loss Becoming Duff
0.025	
	0.02
0.0125	
0.5	_
0.002	0.0
	Rate 0.025 0.0125 0.5

Table 4.78 was modified to include R5 site classes 6 and 7, which get a decay rate multiplier of 0.5.


Section 4.7.7 Fire Behavior Fuel Models:

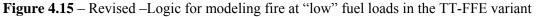

The following figure should also be included in section 4.7.7 Fire Behavior Fuel Models for the WS-FFE.

Figure 4.#. If large and small fuels map to the shaded area, candidate fuel models are determined using the logic shown in Table 4.82. Otherwise, flame length based on distance between the closest fuel models, identified by the dashed lines, and on recent management (see Model Description Section 4.8 for further details).

Section 4.10.7 Fire Behavior Fuel Models

Section 4.11.3 Fuels:

The live and dead surface fuel values for the "other" category in tables 4.129 and 4.130 were updated and taken from:

Ottmar, R.D., Vihnanek, R.E., and Wright, C.S. 1998. Stereo photo series for quantifying natural fuels. Volume I: mixed-conifer with mortality, western juniper, sagebrush, and grassland types in the interior

Pacific Northwest. PMS 830. Boise, Idaho: National Wildfire Coordinating Group, National Interagency Fire Center. 73 pp.

The "other" category in the BM variant is modeled as juniper and the following values are now used:

Species		Herbs	Shrubs	Notes
othor	E	0.14	0.35	Ottmar photo parios Valuma I
other	Ι	0.10	2.06	Ottmar photo series, Volume I

					Size C	lass (in)			
Species		< 0.25	0.25 – 1	1 – 3	3 – 6	6 – 12	> 12	Litter	Duff
other	E	0.1	0.2	0.4	0.5	0.8	1.0	0.1	0.0
ourier	I	0.2	0.4	0.2	0.0	0.0	0.0	0.2	0.0

4.12 Klamath Mountains (NC)

4.12.1 Tree Species

The Klamath Mountains (Northern California) variant models the 9 tree species shown in Table 4.12.1. Two additional categories, 'other hardwoods' and 'other softwoods', are modeled using tanoak and Douglas-fir, respectively.

Common Name	Scientific Name	Notes
sugar pine	Pinus lambertiana	
Douglas-fir	Pseudotsuga menziesii	
white fir	Abies concolor	
Pacific madrone	Arbutus menziesii	
incense-cedar	Calocedrus decurrens	= Libocedrus decurrens
California black oak	Quercus kelloggii	
tanoak	Lithocarpus densiflorus	
California red fir	Abies magnifica	
ponderosa pine	Pinus ponderosa	
other hardwoods		= tanoak
other softwoods		= Douglas-fir

 Table 4.12.1.
 Tree species simulated by the Klamath Mountains variant.

4.12.2 Snags

The majority of the snag model logic is based on unpublished data provided by Bruce Marcot (USFS, Portland, OR, unpublished data 1995). Snag fall parameters were developed at the California variants workshop. A complete description of the Snag Submodel is provided in Section 3 of the FFE Model Description.

Three variables are used to modify the Snag Submodel for the different species in the NC-FFE variant:

- a multiplier to modify the species' fall rate;
- the maximum number of years that snags will remain standing; and
- a multiplier to modify the species' height loss rate.

These variables are summarized in Tables 4.12.2 and 4.12.3.

Unlike the some other FFE variants, snags in the NC-FFE do not decay from a hard to soft state. Users can initialize soft snags using the SNAGINIT keyword if they wish, but these initialized soft snags will eventually disappear as they are removed by snag fall. In addition, snags lose height only until they are reduced to half the height of the original live tree. The maximum standing lifetime for many snag species is set to 100 years (Mike Landram, USFS, Vallejo, CA, pers. comm., 2000).

Table 4.12.2.Default snag fall, snag height loss and soft-snag characteristics for 20" DBH snags in the NC-FFE
variant. These characteristics are derived directly from the parameter values shown in Table
4.12.3.

Species	95% Fallen (yr)	All Down (yr)	50% Height (yr)	Hard-to- Soft (yr)	Notes
sugar pine	25	100	20	-	All species: soft snags
Douglas-fir	35	100	20	_	do not normally occur; height loss stops at
white fir	35	100	20	_	50% of original height
Pacific madrone	20	50	20	_	5 5
incense-cedar	45	100	20	_	
California black oak	20	50	20	_	
tanoak	20	50	20	_	
California red fir	35	100	20	_	
ponderosa pine	25	100	20	_	
other hardwoods	20	50	20	_	
other softwoods	35	100	20	_	

Table 4.12.3.Default snag fall, snag height loss and soft-snag multipliers for the NC-FFE. These parameters
result in the values shown in Table 4.12.2. (These three columns are the default values used by the
SNAGFALL, SNAGBRK and SNAGDCAY keywords, respectively.)

Species	Snag Fall	Height Ioss	Hard-to- Soft	Notes
sugar pine	1.24	1.49	_	All species: soft snags do not
Douglas-fir	0.88	1.49	_	normally occur; height loss stops at
white fir	0.88	1.49	_	50% of original height
Pacific madrone	1.54	1.49	_	
incense-cedar	0.69	1.49	_	
California black oak	1.54	1.49	_	
tanoak	1.54	1.49	_	
California red fir	0.88	1.49	_	
ponderosa pine	1.24	1.49	_	
other hardwoods	1.54	1.49	_	
other softwoods	0.88	1.49	_	

Snag bole volume is determined using the base FVS model equations. The coefficients shown in Table 4.12.4 are used to convert volume to biomass.

4.12.3 Fuels

Information on live fuels was developed using FOFEM 4.0 (Reinhardt and others 1997) and FOFEM 5.0 (Reinhardt and others 2001) and in cooperation with Jim Brown, USFS, Missoula, MT (pers. comm. 1995). A complete description of the Fuel Submodel is provided in Section 4 of the FFE Model Description.

Fuels are divided into to four categories: live tree bole, live tree crown, live herb and shrub, and dead surface fuel. Live herb and shrub fuel load and the initial dead surface fuel load are assigned based on the cover species with greatest basal area. If there is no basal area in the first simulation cycle (a 'bare ground' stand) then the initial fuel loads are assigned by the vegetation code provided with the STDINFO keyword. If the vegetation code is missing or does not identify an overstory species, the model uses a ponderosa pine cover type to assign the default fuels. If there is no basal area in other cycles of the simulation (after a simulated clearcut, for example) herb and shrub fuel biomass is assigned by the previous cover type.

Live Tree Bole

The fuel contribution of live trees is divided into two components: bole and crown. Bole volume is transferred to the FFE after being computed by the FVS model, then converted to biomass using wood density calculated from Table 4-3a of The Wood Handbook (Forest Products Laboratory 1999). The coefficients in Table 4.12.4 for madrone are based on tanoak; Douglas-fir is based on 'Douglas-fir Interior west.'

Species	Density (lbs/ft ³)
sugar pine	21.2
Douglas-fir	28.7
white fir	23.1
Pacific madrone	36.2
incense-cedar	21.8
California black oak	34.9
tanoak	36.2
California red fir	22.5
ponderosa pine	23.7
other hardwoods	36.2
other softwoods	28.7

Table 4.12.4.Woody density (ovendry $lbs/green ft^3$) used in the NC-FFE variant.

Tree Crown

As described in the Section 2 of the FFE Model Description, equations in Brown and Johnston (1976) provide estimates of live and dead crown material for most species in the NC-FFE. Some species mappings are used, as shown below in Table 4.12.5. Madrone, California black oak and tanoak crown biomass equations are taken from new sources.

Species	Species Mapping and Equation Source		
sugar pine	western white pine; Brown and Johnston (1976)		
Douglas-fir	Brown and Johnston (1976		
white fir	grand fir; Brown and Johnston (1976)		
Pacific madrone	Snell and Little (1983)		
incense-cedar	based on western redcedar; Brown and Johnston (1976)		
California black oak	Snell and Little (1983); Snell (1979)		
tanoak	Snell and Little (1983), Snell (1979)		
California red fir	grand fir; Brown and Johnston (1976)		
ponderosa pine	Brown and Johnston (1976)		
other conifers	lodgepole pine; Brown and Johnston (1976)		
other hardwoods	California black oak; Snell and Little (1983), Snell (1979)		

Table 4.12.5.	The crown biomass equations used in the NC-FFE.	Species mappings are done for species for
	which equations are not available.	

Live leaf lifespan is used to simulate the contribution of needles and leaves to annual litter fall. Dead foliage and branch materials also contribute to litter fall, at the rates shown in Table 4.12.6. Each year the inverse of the lifespan is added to the litter pool from each biomass category. These data are from the values provided at the California variants workshop.

	Live		De	ead	
Species	Foliage	Foliage	<0.25"	0.25–1"	> 1"
sugar pine	3	3	10	15	15
Douglas-fir	5	3	10	15	15
white fir	7	3	10	15	15
Pacific madrone	1	1	10	15	15
incense-cedar	5	1	10	15	20
California black oak	1	1	10	15	15
tanoak	1	1	10	15	15
California red fir	7	3	10	15	15
ponderosa pine	3	3	10	10	10
other softwoods	5	3	10	15	15
other hardwoods	1	1	10	15	15

 Table 4.12.6.
 Life span of live and dead foliage (yr) and dead branches for species modeled in the NC-FFE variant.

Live Herbs and Shrubs

Live herb and shrub fuels are modeled very simply by the FFE. Shrubs and herbs are assigned a biomass value based on total tree canopy cover and dominant overstory species (Table 4.12.7). When there are no trees, habitat type is used to infer the most likely dominant species of the previous stand (Model Description, Section 4.2). When total tree canopy cover is <10 percent, herb and shrub biomass is assigned an "initiating" value (the 'I' rows from Table 4.12.7). When canopy cover is >60 percent, biomass is assigned an "established" value (the 'E' rows). Live fuel loads are linearly interpolated when

canopy cover is between 10 and 60 percent. When more than one species is present, the final estimate is computed by combining the interpolated estimates from the rows (Table 4.12.7) representing the two dominant species. Those two estimates are themselves weighted by the relative amount of the two dominant species. Data are based on NI-FFE data taken from FOFEM 4.0 (Reinhardt and others 1997) with modifications provided by Jim Brown, USFS, Missoula, MT (pers. comm., 1995). Hardwood estimates are from Gambel oak stands reported by Chojnacky (1992).

Table 4.12.7.Values (dry weight, tons/acre) for live fuels used in the NC-FFE. Biomass is linearly interpolated
between the "initiating" (I) and "established"(E) values when canopy cover is between 10 and 60
percent.

Species		Herbs	Shrubs	Notes
	Е	0.20	0.10	
sugar pine	I	0.40	1.00	lodgepole pine, NI-FFE
Douglas-fir	E	0.20	0.20	NI-FFE
	I	0.40	2.00	
white fir	Е	0.15	0.10	Grand fir, NI-FFE
white in	I	0.30	2.00	
Pacific madrone	E	0.20	0.20	Douglas-fir, NI-FFE
	I	0.40	2.00	
Incense-cedar	Е	0.20	0.20	Douglas-fir, NI-FFE
Incense-ceual	I	0.40	2.00	
California black oak	Е	0.23	0.22	Gambel oak, CR-FFE
	I	0.55	0.35	Gamber Oak, CIV-I I L
tanoak	Е	0.25	0.25	aspen, CR-FFE
lanoak	I	0.18	2.00	
California red fir	Е	0.15	0.10	grand fir, NI-FFE
	I	0.30	2.00	
ponderosa pine	E	0.20	0.25	NI-FFE
	I	0.25	1.00	
other softwoods	E	0.20	0.20	Douglas-fir, NI-FFE
	I	0.40	2.00	
other hardwoods	Е	0.25	0.25	aspen, CR-FFE
Uner Haruwoous	I	0.18	2.00	

Dead Fuels

Initial default CWD pools are based on overstory species. When there are no trees, habitat type is used to infer the most likely dominant species of the previous stand (Model Description, Section 4.2). Default fuel loadings were provided by Jim Brown, USFS, Missoula, MT (pers. comm., 1995) (Table 4.12.8). If tree canopy cover is <10 percent, the CWD pools are assigned an "initiating" value and if cover is >60 percent they are assign the "established" value. Fuels are linearly interpolated when canopy cover is between 10 and 60 percent. When more than one species is present, the final estimate is computed by combining the interpolated estimates from the rows (Table 4.12.8) representing the two dominant species. Those two estimates are themselves weighted by the relative amount of the two dominant species. Initial fuel loads can be modified using the FUELINIT keyword.

					Size C	lass (in)			
Species		< 0.25	0.25 – 1	1 – 3	3 – 6	6 – 12	> 12	Litter	Duff
	Е	0.9	0.9	1.2	7.0	8.0	0.0	0.6	15.0
sugar pine	I	0.6	0.7	0.8	2.8	3.2	0.0	0.3	7.0
Douglas-fir	Е	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
Douglas-III	I	0.5	0.5	1.0	1.4	1.4	0.0	0.3	5.0
white fir	Е	0.7	0.7	3.0	7.0	7.0	0.0	0.6	25.0
white m	I	0.5	0.5	2.0	2.8	2.8	0.0	0.3	12.0
Pacific madrone	Е	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
Facilit Maulune	I	0.5	0.5	1.0	1.4	1.4	0.0	0.3	5.0
incense-cedar	Е	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
	I	0.5	0.5	1.0	1.4	1.4	0.0	0.3	5.0
California black oak	Е	0.3	0.7	1.4	0.2	0.1	0.0	3.9	0.0
California Diack Oak	I	0.1	0.1	0.0	0.0	0.0	0.0	2.9	0.0
Tanoak	Е	0.2	0.6	2.4	3.6	5.6	0.0	1.4	16.8
Tanoak	I	0.1	0.4	5.0	2.2	2.3	0.0	0.8	5.6
California red fir	Е	0.7	0.7	3.0	7.0	7.0	0.0	0.6	25.0
	I	0.5	0.5	2.0	2.8	2.8	0.0	0.3	12.0
ponderece pine	Е	0.9	0.9	1.2	7.0	8.0	0.0	0.6	15.0
ponderosa pine	I	0.6	0.7	0.8	2.8	3.2	0.0	0.3	7.0
other softwoods	Е	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
ULIEI SULWUUUS	I	0.5	0.5	1.0	1.4	1.4	0.0	0.3	5.0
other hardwoods	Е	0.2	0.6	2.4	3.6	5.6	0.0	1.4	16.8
other hardwoods	I	0.1	0.4	5.0	2.2	2.3	0.0	0.8	5.6

Table 4.12.8.Canopy cover and cover type are used to assign default coarse woody debris (tons/acre) by size
class for established (E) and initiating (I) stands.

4.12.4 Bark Thickness

Bark thickness contributes to predicted tree mortality from simulated fires The bark thickness multipliers in Table 4.12.9 are used to calculate single bark thickness (RMRS-GTR-116, Section 2.5.5). The bark thickness equation used in the mortality equation is unrelated to the bark thickness used in the base FVS model. Data are from FOFEM 5.0 (Reinhardt and others 2001).

Species	Multiplier (V _{sp})
sugar pine	0.072
Douglas-fir	0.063
white fir	0.048
Pacific madrone	0.060
incense-cedar	0.060
California black oak	0.030
tanoak	0.052
California red fir	0.039
ponderosa pine	0.063
other softwoods	0.063
other hardwoods	0.052

 Table 4.12.9.
 Species specific constants for determining single bark thickness.

4.12.5 Decay Rate

Decay of down material is simulated by applying the loss rates shown in Table 4.12.10, as described in section 2.4.5 of the FFE documentation. Default decay rates are based on the decay rates used in the Sierra Nevada Framework.

Table 4.12.10.Default annual loss rates are applied based on size class. A portion of the loss is added to the duff
pool each year. Loss rates are for hard material. If present, soft material in all size classes except
litter and duff decays 10% faster.

Size Class (inches)	Annual Loss Rate	Proportion of Loss Becoming Duff
< 0.25		
0.25 – 1	0.025	
1 – 3		
3 – 6		0.02
6 – 12	0.0125	
> 12		
Litter	0.5	_
Duff	0.002	0.0

The default decay rates are modified by incorporating information from the R5 site class. The multipliers shown in Table 4.12.11 modify the default decay rates of Table 4.12.10 to by incorporating a measure of site quality and moisture availability.

R5 Site Class	Multiplier
0	1.5
1	1.5
2	1.0
3	1.0
4	1.0
5	0.5
6	0.5
7	0.5

Table 4.12.11.The NC-FFE modifies default decay rate (Table 4.12.10) using R5 Site Code to improve simulated
decomposition. Lower R5 Site Classes indicate moister sites.

By default, the FFE decays all wood species at the rates shown in Table 4.12.10. The decay rates of species groups may be modified by users, who can provide rates to the four decay classes shown in Table 4.12.12 using the FUELDCAY keyword. Users can also reassign species to different classes using the FUELPOOL keyword.

Table 4.12.12.Default wood decay classes used in the NC-FFE variant. Classes are from the Wood Handbook
(1999). (1 = exceptionally high; 2 = resistant or very resistant; 3 = moderately resistant, and 4 =
slightly or nonresistant). Modified decay classes for madrone, California black oak, tanoak and
other hardwoods were adopted at the California variants workshop (Stephanie Rebain, pers.
comm., February 2003)

Species	Decay Class
sugar pine	4
Douglas-fir	3
white fir	4
madrone	3
incense-cedar	2
California black oak	2
tanoak	4
California red fir	4
ponderosa pine	4
other softwoods	3
other hardwoods	4

4.12.6 Moisture Content

Moisture content of the live and dead fuels is used to calculate fire intensity and fuel consumption (Model Description, Section 5.2.1). Users can choose from four predefined moisture groups shown in Table 4.12.13, or they can specify moisture conditions for each class using the MOISTURE keyword.

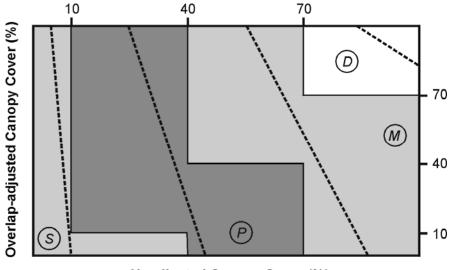
48

	Moisture Group								
Size Class	Very Dry	Dry	Moist	Wet					
0 – 0.25 in. (1 hr.)	3	8	12	12					
0.25 – 1.0 in. (10 hr.)	4	8	12	12					
1.0 – 3.0 in. (100 hr.)	5	10	14	14					
> 3.0 in. (1000+ hr.)	10	15	25	25					
Duff	15	50	125	125					
Live	70	110	150	150					

Table 4.12.13. Moisture values, which alter fire intensity and consumption, have been predefined for four groups.

4.12.7 Fire Behavior Fuel Models

Fire behavior fuel models (Anderson 1982) are determined in two steps: determination of cover classification and determination of dominant species. The first step uses tree cover attributes classified by the California Wildlife Habitat Relationships (CWHR) system (Mayer and Laudenslayer 1988) shown in Table 4.12.14. Following the approach used in the WS-FFE, the table classifies stands by their canopy cover and the size of the larger trees in the stand, predicting CWHR size class and CWHR density class¹ (the third and fourth columns). Mayer and Laudenslayer's class definitions were modified to reflect the tree size and canopy cover class breakpoints requested at the NC-FFE workshop (Nick Vagle, Rogue River and Siskiyou NF, personal communication). To meet the internal requirements of the CWHR, the largest tree size category provided at the NC-FFE workshop (>32 inches DBH) was merged with the 21–32" category, creating a single >21" category.


¹ A BASIC-language function named 'CWHRSizeDensity' was provided at the WS-FFE workshop. This function is incorporated into the NC-FFE with some minor housekeeping modifications.

Tree size (DBH in.)	Canopy cover (%)	CWHR Size Class	CWHR Density Class	Stand Description
< 1	< 10	1	_	Seedlings
1 – 5	0 - 10	2	S	Sapling – sparse
1 – 5	11 – 40	2	Р	Sapling – open cover
1 – 5	41 – 70	2	М	Sapling – moderate cover
1 – 5	> 70	2	D	Sapling – dense cover
5 – 9	0 - 10	3	S	Pole tree – sparse
5 – 9	11 – 40	3	Р	Pole tree – open cover
5 – 9	41 – 70	3	М	Pole tree – moderate cover
5 – 9	> 70	3	D	Pole tree – dense cover
9 – 21	0 - 10	4	S	Small tree – sparse
9 – 21	11 – 40	4	Р	Small tree – open cover
9 – 21	41 – 70	4	М	Small tree – moderate cover
9 – 21	> 70	4	D	Small tree – dense cover
> 21	0 - 10	5	S	Med/Lg tree – sparse
> 21	11 – 40	5	Р	Med/Lg tree – open cover
> 21	41 – 70	5	М	Med/Lg tree – moderate cover
> 21	> 70	5	D	Med/Lg tree – dense cover
> 21	> 70	6	-	Multi-layer canopy, dense cover

 Table 4.12.14.
 California Wildlife Habitat Relationships, as defined by Mayer and Laudenslayer (1988), with modifications to the tree size and canopy cover class breakpoints for the NC-FFE.

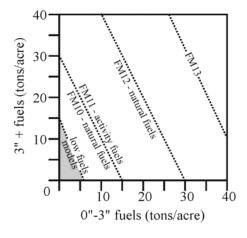
* QMD of the 75 percent largest trees based on basal area.

The NC-FFE modifies the internal CWHR logic slightly, making use of two additional measures internal to the CWHR: unadjusted percent canopy cover and overlap-adjusted percent canopy cover, respectively. The two kinds of canopy estimate are used in combination with the CWHR logic to create weights for the predicted CWHR density class. Each stand's CWHR density class becomes a combination of one or two adjacent classes. Figure 4.12.1 shows how the two measures are used to weight the S, P, M or D classes at each timestep of the simulation. When a point (defined by the two kinds of canopy cover estimate) lies on a dashed line in the figure, that CWHR density class is given a 100% weight. Otherwise, the distance from the point to the nearest dashed lines is used to create weights for the nearest CWHR density classes.

Unadjusted Canopy Cover (%)

Figure 4.12.1 Two measures of canopy cover, unadjusted and overlap-adjusted percent canopy cover, are used to derive weighted estimates of the four CWHR density classes. (S = sparse, P = open, M = moderate and D = dense)

The second step determines the dominant species. A species is considered dominant if it comprises more than 80 percent of the stand basal area. The search starts with pine and moves down the column of forest types listed in the leftmost column of Table 4.12.15. If no species is dominant, then other softwoods is the default cover type.


The rules governing Table 4.12.15 select one or two candidate (usually low) fuel models. These are used along with the high fuels models to select the final set of weighted fuel models. The table has been modified from Landram's original table so that with the exception of the right-most column (mature Size Class 6 stands), cells with fuel model 10 or 12 in the original table have been replaced with fuel model 8. This change was made so that when appropriate, the default FFE fuel model logic (described in Section 4.8 and Figure 4.5 of the FFE Model Description) is not constrained in its selection of a candidate high fuel models: combinations of fuel models 10, 11,12 and 13 may still be selected when fuel loads are high (Figure 4.12.2). Finally, in order to give Table 4.12.15 priority, FM10 is removed from the list of candidate models when FM11 has been selected from the table.

In some situations a thinning or disturbance may cause one of the selected fuel models to switch from FM8 or FM9 to FM5. When this happens, the transition to these brush fuel models is modified to simulate a delay in brush ingrowth. In the case where an FM8 or FM9 fuel model is predicted to change to FM5, the change is made over five years, gradually shifting from FM8 or FM9 to FM5.

Finally, flame length is calculated using the weights from above the appropriate fuel models. The FLAMEADJ keyword allows users to scale the calculated flame length or override the calculated flame length with a value they choose.

Size Class	1			2				3				4				5		6
Density Class		S	Ρ	М	D	S	Ρ	М	D	S	Р	М	D	S	Р	М	D	
Forest Type																		
Pine	5	6	6	6	6	2	2	9	9	2	2	2	9	2	2	9	9	10
Red fir	5	5	5	8	8	11	11	8	8	8	8	8	8	8	8	8	8	10
White fir – east side	5	5	5	8	8	11	11	11	8	8	8	8	8	8	8	8	8	10
White fir – west side	5	5	5	8	8	11	11	8	8	8	8	8	8	8	8	8	8	10
Douglas-fir	5	5	5	6	6	6	6	8	8	11	11	9	8	11	11	9	8	10
Hardwoods	5	5	5	6	6	11	11	11	9	9	9	9	9	9	9	9	9	10
Pine mixed – conifer	5	5	5	6	6	6	6	6	9	9	9	8	8	8	8	8	8	10
Fir mixed – conifer	5	5	5	6	6	6	6	6	8	6	6	8	8	6	6	8	8	10
Other softwoods	5	5	5	6	6	6	6	6	8	6	6	8	8	6	6	8	8	10

Table 4.12.15. Fire behavior fuels models for the NC-FFE are determined using forest type and CWHR class, as described in the text. The modeling logic allows one or more fuel models to be selected.

----- Fuel model, 100% weight

Figure 4.12.2. If large and small fuels map to the shaded area, candidate fuel models are determined using the logic shown in Table 4.12.15. Otherwise, fire behavior is based on the closest fuel models, identified by the dashed lines, and on recent management (see Model Description Section 4.8 for further details).

4.13 Inland California and Southern Cascades (CA)

4.13.1 Tree Species

The Inland California and Southern Cascades variant models the 47 tree species shown in Table 4.13.1. Two additional categories, 'other hardwoods' and 'other softwoods', are modeled using California black oak and ponderosa pine, respectively.

Table 4.13.1.Tree species simulated by the Inland California and Southern Cascades variant.

Common Name	Scientific Name	Notes
Port-Orford-cedar	Chamaecyparis lawsonia	
incense-cedar	Calocedrus decurrens	= Libocedrus decurrens
western redcedar	Thuja plicata	
white fir	Abies concolor	
California red fir	Abies magnifica magnifica	
Shasta red fir	Abies magnifica shastensis	
Douglas-fir	Pseudotsuga menziesii	
western hemlock	Tsuga heterophylla	
mountain hemlock	Tsuga mertensiana	
whitebark pine	Pinus albicaulis	
knobcone pine	Pinus attenuata	
lodgepole pine	Pinus contorta	
Coulter pine	Pinus coulteri	
limber pine	Pinus flexilis flexilis	
Jeffrey pine	Pinus jeffreyi	
sugar pine	Pinus lambertiana	
western white pine	Pinus monticola	
ponderosa pine	Pinus ponderosa	
Monterey pine	Pinus radiata	
gray pine	Pinus sabiniana	
western juniper	Juniperus occidentalis	
Brewer spruce	Picea breweriana	
giant sequoia	Sequoiadendron giganteum	= Sequoia gigantea
Pacific yew	Taxus brevifolia	
coast live oak	Quercus agrifolia	
canyon live oak	Quercus chrysolepsis	
blue oak	Quercus douglasii	
Engelmann oak	Quercus engelmanni	
Oregon white oak	Quercus garryana	
California black oak	Quercus kelloggii	
valley white oak	Quercus lobata	

Common Name	Scientific Name	Notes
interior live oak	Quercus wislizenii	
bigleaf maple	Acer macrophyllum	
California buckeye	Aesculus californica	
red alder	Alnus rubra	
Pacific madrone	Arbutus menziesii	
giant chinkapin	Chrysolepis chrysophylla	
Pacific dogwood	Cornus nuttallii	
Oregon ash	Fraxinus latifolia	
walnut species	Juglans spp.	
tanoak	Lithocarpus densiflorus	
California sycamore	Platanus racemosa	
quaking aspen	Populus tremuloides	
black cottonwood	Populus trichocarpus	
willow species	Salix spp.	
California nutmeg	Torreya californica	
California-laurel	Umbellularia californica	
other softwoods		= ponderosa pine
other hardwoods		= California black oak

4.13.2 Snags

The majority of the snag model logic is based on unpublished data provided by Bruce Marcot (USFS, Portland, OR, unpublished data 1995). Snag fall parameters were developed at the California variants workshop. A complete description of the Snag Submodel is provided in Section 3 of the FFE Model Description.

Three variables are used to modify the Snag Submodel for the different species in the NC-FFE variant:

- a multiplier to modify the species' fall rate;
- the maximum number of years that snags will remain standing; and
- a multiplier to modify the species' height loss rate.

These variables are summarized in Tables 4.13.2 and 4.13.3.

Unlike the some other FFE variants, snags in the CA-FFE do not decay from a hard to soft state. Users can initialize soft snags using the SNAGINIT keyword if they wish, but these initialized soft snags will eventually disappear as they are removed by snag fall. In addition, snags lose height only until they are reduced to half the height of the original live tree. The maximum standing lifetime is set to 50 years for most hardwood snag species and to 100 years for most softwoods.

Table 4.13.2.Default snag fall, snag height loss and soft-snag characteristics for 20" DBH snags in the CA-FFE
variant. These characteristics are derived directly from the parameter values shown in Table
4.13.3.

Species	95% Fallen (yr)	All Down (yr)	50% Height (yr)	Hard-to- Soft (yr)	Notes
Port-Orford-cedar	25	150	20	_	All species: soft snags
incense-cedar	45	100	20	-	do not normally occur; height loss stops at
western redcedar	25	150	20	_	50% of original height
white fir	35	100	20	_	
California red fir	35	100	20	_	
Shasta red fir	35	100	20	_	
Douglas-fir	35	100	20	_	
western hemlock	25	100	20	-	
mountain hemlock	25	100	20	-	
whitebark pine	25	100	20	_	
knobcone pine	25	100	20	_	
lodgepole pine	25	100	20	_	
Coulter pine	25	100	20	_	
limber pine	25	100	20	_	
Jeffrey pine	25	100	20	_	
sugar pine	25	100	20	_	
western white pine	25	100	20	_	
ponderosa pine	25	100	20	_	
Monterey pine	25	100	20	_	
gray pine	25	100	20	_	
western juniper	45	150	20	_	
Brewer spruce	25	100	20	_	
giant sequoia	45	150	20	_	
Pacific yew	45	100	20	_	
coast live oak	20	50	20	_	
canyon live oak	20	50	20	_	
blue oak	20	50	20	_	
Engelmann oak	20	50	20	_	
Oregon white oak	20	50	20	_	
California black oak	20	50	20	_	
valley white oak	20	50	20	-	
interior live oak	20	50	20	-	
bigleaf maple	20	50	20	-	
California buckeye	20	50	20	-	
red alder	20	50	20	-	
Pacific madrone	20	50	20	-	
giant chinkapin	20	50	20	-	
Pacific dogwood	20	50	20	-	
Oregon ash	20	50	20	_	

Species	95% Fallen (yr)	All Down (yr)	50% Height (yr)	Hard-to- Soft (yr)	Notes
walnut species	20	50	20	_	
tanoak	20	50	20	_	
California sycamore	20	50	20	_	
quaking aspen	20	50	20	_	
black cottonwood	20	50	20	_	
willow species	20	50	20	_	
California nutmeg	20	50	20	_	
California-laurel	20	50	20	_	
other softwoods	25	100	20	_	
other hardwoods	20	50	20	-	

Table 4.13.3.Default snag fall, snag height loss and soft-snag multipliers for the CA-FFE. These parameters
result in the values shown in Table 4.13.2. (These three columns are the default values used by the
SNAGFALL, SNAGBRK and SNAGDCAY keywords, respectively.)

Species	Snag Fall	Height Ioss	Hard-to- Soft	Notes
Port-Orford-cedar	1.24	1.0	-	All species: soft snags do not
incense-cedar	0.69	1.0	_	normally occur; height loss stops at
western redcedar	1.24	1.0	_	50% of original height
white fir	0.89	1.0	_	
California red fir	0.89	1.0	_	
Shasta red fir	0.89	1.0	_	
Douglas-fir	0.89	1.0	_	
western hemlock	1.24	1.0	_	
mountain hemlock	1.24	1.0	_	
whitebark pine	1.24	1.0	_	
knobcone pine	1.24	1.0	_	
lodgepole pine	1.24	1.0	_	
Coulter pine	1.24	1.0	_	
Limber pine	1.24	1.0	_	
Jeffrey pine	1.24	1.0	_	
sugar pine	1.24	1.0	_	
western white pine	1.24	1.0	_	
ponderosa pine	1.24	1.0	_	
Monterey pine	1.24	1.0	_	
gray pine	1.24	1.0	_	
western juniper	0.69	1.0	_	
Brewer spruce	0.69	1.0	_	
giant sequoia	0.69	1.0	_	
Pacific yew	0.69	1.0	_	
coast live oak	1.55	1.0	_	
canyon live oak	1.55	1.0	_	

Species	Snag Fall	Height Ioss	Hard-to- Soft	Notes
blue oak	1.55	1.0	_	
Engelmann oak	1.55	1.0	_	
Oregon white oak	1.55	1.0	_	
California black oak	1.55	1.0	_	
valley white oak	1.55	1.0	_	
interior live oak	1.55	1.0	_	
bigleaf maple	1.55	1.0	_	
California buckeye	1.55	1.0	_	
red alder	1.55	1.0	_	
Pacific madrone	1.55	1.0	_	
giant chinkapin	1.55	1.0	-	
Pacific dogwood	1.55	1.0	-	
Oregon ash	1.55	1.0	-	
walnut species	1.55	1.0	-	
tanoak	1.55	1.0	-	
California sycamore	1.55	1.0	-	
quaking aspen	1.55	1.0	-	
black cottonwood	1.55	1.0	-	
willow species	1.55	1.0	-	
California nutmeg	1.55	1.0	-	
California-laurel	1.55	1.0	-	
other softwoods	1.24	1.0	-	
other hardwoods	1.55	1.0	_	

Snag bole volume is determined using the base FVS model equations. The coefficients shown in Table 4.13.4 are used to convert volume to biomass.

4.13.3 Fuels

Information on live fuels was developed using FOFEM 4.0 (Reinhardt and others 1997) and FOFEM 5.0 (Reinhardt and others 2001) and in cooperation with Jim Brown, USFS, Missoula, MT (pers. comm. 1995). A complete description of the Fuel Submodel is provided in Section 4 of the FFE Model Description.

Fuels are divided into to four categories: live tree bole, live tree crown, live herb and shrub, and dead surface fuel. Live herb and shrub fuel load and the initial dead surface fuel load are assigned based on the cover species with greatest basal area. If there is no basal area in the first simulation cycle (a 'bare ground' stand) then the initial fuel loads are assigned by the vegetation code provided with the STDINFO keyword. If the vegetation code is missing or does not identify an overstory species, the model uses a ponderosa pine cover type to assign the default fuels. If there is no basal area in other cycles of the simulation (after a simulated clearcut, for example) herb and shrub fuel biomass is assigned by the previous cover type.

Live Tree Bole

The fuel contribution of live trees is divided into two components: bole and crown. Bole volume is transferred to the FFE after being computed by the FVS model, then converted to biomass using wood density calculated from Table 4-3a of The Wood Handbook (Forest Products Laboratory 1999). The coefficient in Table 4.13.4 for Douglas-fir is based on 'Douglas-fir Interior west'; whitebark pine and limber pine are based on western white pine; knobcone pine, Coulter pine, Monterey pine, gray pine are based on lodgepole pine and ponderosa pine; Jeffrey pine is based on sugar pine; Brewer spruce is based on Engelmann spruce; Pacific yew is based on baldcypress; coast live oak, canyon live oak and interior live oak are based on white oak; Engelmann oak, Oregon white oak, valley white oak and California buckeye are based on white oak; Pacific madrone, giant chinkapin and California laurel are based on tanoak; and Pacific dogwood is based on bigleaf maple. The value for juniper is from Chojnacky and Moisen (1993).

Species	s Density (lbs/ft ³) Species		Density (lbs/ft ³)
Port-Orford-cedar	24.3	canyon live oak	49.9
incense-cedar	21.8	blue oak	37.4
western redcedar	19.3	Engelmann oak	37.4
white fir	23.1	Oregon white oak	37.4
California red fir	22.5	California black oak	34.9
Shasta red fir	22.5	valley white oak	37.4
Douglas-fir	28.7	interior live oak	49.9
western hemlock	26.2	bigleaf maple	27.4
mountain hemlock	26.2	California buckeye	37.4
whitebark pine	22.5	red alder	23.1
knobcone pine	23.7	Pacific madrone	36.2
lodgepole pine	23.7	giant chinkapin	36.2
Coulter pine	23.7	Pacific dogwood	27.4
limber pine	22.5	Oregon ash	31.2
Jeffrey pine	21.2	walnut species	31.8
sugar pine	21.2	tanoak	36.2
western white pine	22.5	California sycamore	28.7
ponderosa pine	23.7	quaking aspen	21.8
Monterey pine	23.7	black cottonwood	19.3
gray pine	23.7	willow species	22.5
western juniper	34.9	California nutmeg	34.9
Brewer spruce	20.6	California-laurel	36.2
giant sequoia	21.2	other softwoods	23.7
Pacific yew	26.2	other hardwoods	34.9
coast live oak	49.9		

Table 4.13.4.Woody density (ovendry $lbs/green ft^3$) used in the CA-FFE variant.

Tree Crown

As described in the Section 2 of the FFE Model Description, equations in Brown and Johnston (1976) provide estimates of live and dead crown material for most species in the CA-FFE. Some species mappings are used, as shown below in Table 4.13.5.

Table 4.13.5.	The crown biomass equations used in the CA-FFE. Species mappings are done for species for
	which equations are not available.

Species	Species Mapping and Equation Source
Port-Orford-cedar	western redcedar; Brown and Johnston (1976)
incense-cedar	based on western redcedar; Brown and Johnston (1976)
western redcedar	Brown and Johnston (1976)
white fir	grand fir; Brown and Johnston (1976)
California red fir	grand fir; Brown and Johnston (1976)
Shasta red fir	grand fir; Brown and Johnston (1976)
Douglas-fir	Brown and Johnston (1976)
western hemlock	Brown and Johnston (1976)
mountain hemlock	western hemlock; Brown and Johnston (1976), Gholz (1979)
whitebark pine	Brown and Johnston (1976)
knobcone pine	lodgepole pine; Brown and Johnston (1976)
lodgepole pine	Brown and Johnston (1976)
Coulter pine	lodgepole pine; Brown and Johnston (1976)
limber pine	lodgepole pine; Brown and Johnston (1976)
Jeffrey pine	western white pine; Brown and Johnston (1976)
sugar pine	western white pine; Brown and Johnston (1976)
western white pine	Brown and Johnston (1976)
ponderosa pine	Brown and Johnston (1976)
Monterey pine	ponderosa pine; Brown and Johnston (1976)
gray pine	lodgepole pine; Brown and Johnston (1976)
western juniper	Rocky Mountain Juniper; Grier (1992)
Brewer spruce	Engelmann spruce; Brown and Johnston (1976)
giant sequoia	western redcedar, western hemlock; Brown and Johnston (1976)
Pacific yew	western redcedar; Brown and Johnston (1976)
coast live oak	tanoak; Snell and Little (1983), Snell (1979)
canyon live oak	tanoak; Snell and Little (1983), Snell (1979)
blue oak	California black oak; Snell and Little (1983), Snell 1979)
Engelmann oak	tanoak; Snell and Little (1983), Snell (1979)
Oregon white oak	California black oak; Snell and Little (1983), Snell (1979)
California black oak	Snell and Little (1983), Snell (1979)
valley white oak	California black oak; Snell and Little (1983), Snell (1979)
interior live oak	Tanoak; Snell and Little (1983), Snell (1979)
bigleaf maple	Snell and Little (1983)
California buckeye	Jenkins et. al. (2003); Loomis and Roussopoulos (1978)
red alder	Snell and Little (1983)

Species	Species Mapping and Equation Source
Pacific madrone	Snell and Little (1983)
giant chinkapin	tanoak; Snell and Little (1983), Snell (1979)
Pacific dogwood	Jenkins et. al. (2003); Loomis and Roussopoulos (1978)
Oregon ash	Jenkins et. al. (2003); Loomis and Roussopoulos (1978)
walnut species	Jenkins et. al. (2003); Loomis and Roussopoulos (1978)
tanoak	Snell and Little (1983), Snell (1979)
California sycamore	Jenkins et. al. (2003); Loomis and Roussopoulos (1978)
quaking aspen	bigtooth aspen; Smith (1985), Jenkins et. al. (2003); Loomis and Roussopoulos (1978)
black cottonwood	Smith (1985); Jenkins et. al. (2003); Loomis and Roussopoulos (1978)
willow species	Jenkins et. al. (2003); Loomis and Roussopoulos (1978)
California nutmeg	tanoak; Snell and Little (1983), Snell (1979)
California-laurel	tanoak; Snell and Little (1983), Snell (1979)
other softwoods	ponderosa pine; Brown and Johnston (1976)
other hardwoods	California black oak; Snell and Little (1983), Snell (1979)

Live leaf lifespan is used to simulate the contribution of needles and leaves to annual litter fall. Dead foliage and branch materials also contribute to litter fall, at the rates shown in Table 4.13.6. Each year the inverse of the lifespan is added to the litter pool from each biomass category. These data are from the values provided at the California variants workshop.

Species	Foliage	E 111 - 1		Dead				
		Foliage	<0.25"	0.25–1"	> 1"			
Port-Orford-cedar	4	3	10	15	20			
incense-cedar	5	1	10	15	20			
western redcedar	5	3	10	15	20			
white fir	7	3	10	15	15			
California red fir	7	3	10	15	15			
Shasta red fir	7	3	10	15	15			
Douglas-fir	5	3	10	15	15			
western hemlock	5	3	10	15	15			
mountain hemlock	4	3	10	15	15			
whitebark pine	3	3	10	15	15			
knobcone pine	4	3	10	15	15			
lodgepole pine	3	3	10	15	15			
Coulter pine	3	3	10	15	15			
limber pine	3	3	10	15	15			
Jeffrey pine	3	3	10	15	15			
sugar pine	3	3	10	15	15			
western white pine	3	3	10	15	15			

Table 4.13.6.	Life span of live and dead foliage (yr) and dead branches for species modeled in the CA-FFE
	variant.

	Live	Dead				
Species	Foliage	Foliage	<0.25"	0.25–1"	> 1"	
ponderosa pine	3	3	10	10	10	
Monterey pine	3	3	10	15	15	
gray pine	3	3	10	15	15	
western juniper	4	3	10	15	20	
Brewer spruce	8	3	10	15	15	
giant sequoia	5	3	10	15	20	
Pacific yew	7	3	10	15	15	
coast live oak	1	1	10	15	15	
canyon live oak	1	1	10	15	15	
blue oak	1	1	10	15	15	
Engelmann oak	1	1	10	15	15	
Oregon white oak	1	1	10	15	15	
California black oak	1	1	10	15	15	
valley white oak	1	1	10	15	15	
Interior live oak	1	1	10	15	15	
Bigleaf maple	1	1	10	15	15	
California buckeye	1	1	10	15	15	
red alder	1	1	10	15	15	
Pacific madrone	1	1	10	15	15	
giant chinkapin	1	1	10	15	15	
Pacific dogwood	1	1	10	15	15	
Oregon ash	1	1	10	15	15	
walnut species	1	1	10	15	15	
tanoak	1	1	10	15	15	
California sycamore	1	1	10	15	15	
quaking aspen	1	1	10	15	15	
black cottonwood	1	1	10	15	15	
willow species	1	1	10	15	15	
California nutmeg	1	1	10	15	15	
California-laurel	1	1	10	15	15	
other softwoods	3	3	10	10	10	
other hardwoods	1	1	10	15	15	

Live Herbs and Shrubs

Live herb and shrub fuels are modeled very simply by the FFE. Shrubs and herbs are assigned a biomass value based on total tree canopy cover and dominant overstory species (Table 4.13.7). When there are no trees, habitat type is used to infer the most likely dominant species of the previous stand (Model Description, Section 4.2). When total tree canopy cover is <10 percent, herb and shrub biomass is assigned an "initiating" value (the 'I' rows from Table 4.13.7). When canopy cover is >60 percent, biomass is assigned an "established" value (the 'E' rows). Live fuel loads are linearly interpolated when canopy cover is between 10 and 60 percent. When more than one species is present, the final estimate is computed by combining the interpolated estimates from the rows (Table 4.13.7) representing the two

dominant species. Those two estimates are themselves weighted by the relative amount of the two dominant species. Data are based on NI-FFE data taken from FOFEM 4.0 (Reinhardt and others 1997) with modifications provided by Jim Brown, USFS, Missoula, MT (pers. comm., 1995). Hardwood estimates are from Gambel oak stands reported by Chojnacky (1992). Many of the minor species are unlikely to be dominant: In these cases (Port Orford cedar, Monterey pine, gray pine, Pacific yew, California buckeye, red alder, Pacific madrone, Pacific dogwood, Oregon ash, walnut, California sycamore, California nutmeg and California laurel) values of the likely dominant overstory are used.

Table 4.13.7.Values (dry weight, tons/acre) for live fuels used in the CA-FFE. Biomass is linearly interpolated
between the "initiating" (I) and "established"(E) values when canopy cover is between 10 and 60
percent.

Species		Herbs	Shrubs	Notes
Port-Orford-cedar	Е	0.20	0.20	Douglas-fir, NI-FFE
	I	0.40	2.00	
incense-cedar	E	0.20	0.20	Douglas-fir, NI-FFE
Incense-cedar	I	0.40	2.00	
western redcedar	E	0.20	0.20	NI-FFE
in colorin rouboddar	<u> </u>	0.40	2.00	
white fir	E	0.15	0.10	grand fir, NI-FFE
		0.30	2.00	grand m, to the
California red fir	E	0.15	0.10	grand fir, NI-FFE
		0.30	2.00	<u> </u>
Shasta red fir	E	0.15	0.10	grand fir, NI-FFE
		0.30	2.00	g
Douglas-fir	E	0.20	0.20	NI-FFE
		0.40	2.00	
western hemlock	E	0.20	0.20	NI-FFE
		0.40	2.00	
mountain hemlock	E	0.15	0.20	subalpine fir, NI-FFE
		0.30	2.00	
whitebark pine	E	0.20	0.10	lodgepole pine, NI-FFE
		0.40	0.10	
knobcone pine	E	0.20	0.10	lodgepole pine, NI-FFE
		0.40	0.10	
lodgepole pine	E	0.20	0.10	NI-FFE
		0.40	0.10	
Coulter pine	E	0.20	0.10	lodgepole pine, NI-FFE
		0.40	0.10	
limber pine	E	0.20	0.10	lodgepole pine, NI-FFE
	<u> </u>	0.40	0.10	51 1 2
Jeffrey pine	E	0.20	0.25	ponderosa pine, NI-FFE
,	<u> </u>	0.25	1.00	
sugar pine	E	0.20	0.25	ponderosa pine, NI-FFE
	<u> </u>	0.25	1.00	· · · · · · · · · · · · · · · · · · ·
western white pine	E	0.15	0.10	NI-FFE
		0.30	0.20	
ponderosa pine	E	0.20	0.25	NI-FFE
	<u> </u>	0.25	1.00	
Monterey pine	E	0.20	0.20	Douglas-fir, NI-FFE
	I	0.40	2.00	3
gray pine	E	0.23	0.22	Gambel oak, CR-FFE
	<u> </u>	0.55	0.35	
western juniper	E	0.14	0.35	Ottmar photo series, Volume I

Species		Herbs	Shrubs	Notes
	I	0.10	2.06	
Brewer spruce	Е	0.15	0.20	
Diewei spiuce	I	0.30	2.00	Engelmann spruce, NI-FFE
diant acquaia	Е	0.20	0.20	
giant sequoia	I	0.40	2.00	Douglas-fir, NI-FFE
Desifie your	E	0.20	0.20	
Pacific yew	I	0.40	2.00	Douglas-fir, NI-FFE
and the set	E	0.23	0.22	
coast live oak	I	0.55	0.35	Gambel oak, CR-FFE
	E	0.25	0.25	
canyon live oak	1	0.18	2.00	aspen, CR-FFE
	E	0.23	0.22	
blue oak	-	0.55	0.35	Gambel oak, CR-FFE
Frankrau sala	E	0.23	0.22	
Engelmann oak	-	0.55	0.35	Gambel oak, CR-FFE
	E	0.23	0.00	
Oregon white oak	1	0.55	0.35	Gambel oak, CR-FFE
	E	0.23	0.33	-
California black oak		0.23	0.22	Gambel oak, CR-FFE
	 E	0.23	0.33	
valley white oak		0.23	0.22	Gambel oak, CR-FFE
	 E			
interior live oak	E	0.23	0.22	Gambel oak, CR-FFE
		0.55	0.35	
bigleaf maple	E	0.20	0.20	Douglas-fir, NI-FFE
	<u> </u>	0.40	2.00	
California buckeye	E	0.20	0.20	Douglas-fir, NI-FFE
•		0.40	2.00	
red alder	E	0.20	0.20	Douglas-fir, NI-FFE
		0.40	2.00	C
Pacific madrone	E	0.20	0.20	Douglas-fir, NI-FFE
		0.40	2.00	,
giant chinkapin	E	0.25	0.25	aspen, CR-FFE
3		0.18	2.00	
Pacific dogwood	Е	0.20	0.20	Douglas-fir, NI-FFE
i domo dognood		0.40	2.00	
Oregon ash	Е	0.20	0.25	ponderosa pine, NI-FFE
orogon don		0.25	1.00	
walnut species	E	0.20	0.20	Douglas-fir, NI-FFE
walling species		0.40	2.00	
tanoak	E	0.25	0.25	aspen, CR-FFE
lanoak	I	0.18	2.00	
California sycamore	Е	0.20	0.20	Douglas-fir, NI-FFE
California Sycamore	I	0.40	2.00	Douglas-III, NI-FFE
quaking oppop	E	0.25	0.25	CD FEE
quaking aspen	I	0.18	2.00	CR-FFE
blook oottoowaa -	E	0.25	0.25	
black cottonwood	I	0.18	2.00	aspen, CR-FFE
	E	0.25	0.25	
willow species	-	0.18	2.00	aspen, CR-FFE
	E	0.20	0.20	
California nutmeg	L 	0.40	2.00	Douglas-fir, NI-FFE
	E	0.40	0.20	
California-laurel	L 	0.20	2.00	Douglas-fir, NI-FFE
	I	0.40	2.00	

Species		Herbs	Shrubs	Notes	
other softwoods	E	0.20	0.20	Douglas fir NI EEE	
other softwoods	I	0.40	2.00	Douglas-fir, NI-FFE	
other hardwoods	E	0.23	0.22	Gambel oak. CR-FFE	
		0.55	0.35		

Dead Fuels

Initial default CWD pools are based on overstory species. When there are no trees, habitat type is used to infer the most likely dominant species of the previous stand (Model Description, Section 4.2). Default fuel loadings were provided by Jim Brown, USFS, Missoula, MT (pers. comm., 1995) (Table 4.13.8). If tree canopy cover is <10 percent, the CWD pools are assigned an "initiating" value and if cover is >60 percent they are assign the "established" value. Fuels are linearly interpolated when canopy cover is between 10 and 60 percent. When more than one species is present, the final estimate is computed by combining the interpolated estimates from the rows (Table 4.13.8) representing the two dominant species. Those two estimates are themselves weighted by the relative amount of the two dominant species. Initial fuel loads can be modified using the FUELINIT keyword.

Table 4.13.8.	Canopy cover and cover type are used to assign default coarse woody debris (tons/acre) by size
	class for established (E) and initiating (I) stands.

					Size C	lass (in)			
Species		< 0.25	0.25 – 1	1 – 3	3 – 6	6 – 12	> 12	Litter	Duff
Port-Orford-cedar	Е	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
Full-Onoru-ceuar	I	0.5	0.5	1.0	1.4	1.4	0.0	0.3	5.0
incense-cedar	Е	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
Incense-cedar	I	0.5	0.5	1.0	1.4	1.4	0.0	0.3	5.0
western redcedar	Е	1.6	1.6	5.2	15.0	20.0	15.0	1.0	35.0
western reuceual	I	1.6	1.6	3.6	6.0	8.0	6.0	0.5	12.0
white fir	Е	0.7	0.7	3.0	7.0	7.0	0.0	0.6	25.0
white in	I	0.5	0.5	2.0	2.8	2.8	0.0	0.3	12.0
California red fir	Е	0.7	0.7	3.0	7.0	7.0	0.0	0.6	25.0
	I	0.5	0.5	2.0	2.8	2.8	0.0	0.3	12.0
Shasta red fir	Е	0.7	0.7	3.0	7.0	7.0	0.0	0.6	25.0
	I	0.5	0.5	2.0	2.8	2.8	0.0	0.3	12.0
Douglas-fir	E	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
	I	0.5	0.5	1.0	1.4	1.4	0.0	0.3	5.0
western hemlock	Е	2.2	2.2	5.2	15.0	20.0	15.0	1.0	35.0
western herniock	I	1.6	1.6	3.6	6.0	8.0	6.0	0.5	12.0
mountain hemlock	Е	1.1	1.1	2.2	10.0	10.0	0.0	0.6	30.0
mountain normook	I	0.7	0.7	1.6	4.0	4.0	0.0	0.3	12.0
whitebark pine	Е	0.7	0.7	1.6	2.5	2.5	0.0	1.4	5.0
		0.1	0.1	0.2	0.5	0.5	0.0	0.5	0.8
knobcone pine	Е	0.7	0.7	1.6	2.5	2.5	0.0	1.4	5.0
	I	0.1	0.1	0.2	0.5	0.5	0.0	0.5	0.8
lodgepole pine	Е	0.7	0.7	1.6	2.5	2.5	0.0	1.4	5.0
	I	0.1	0.1	0.2	0.5	0.5	0.0	0.5	0.8
Coulter pine	E	0.7	0.7	1.6	2.5	2.5	0.0	1.4	5.0
	I	0.1	0.1	0.2	0.5	0.5	0.0	0.5	0.8
limber pine	E	0.7	0.7	1.6	2.5	2.5	0.0	1.4	5.0
•		0.1	0.1	0.2	0.5	0.5	0.0	0.5	0.8
Jeffrey pine	E	0.9	0.9	1.2	7.0	8.0	0.0	0.6	10.0

					Size C	ass (in)			
Species		< 0.25	0.25 – 1	1 – 3	3 – 6	6 – 12	> 12	Litter	Duff
	I	0.6	0.7	0.8	2.8	3.2	0.0	0.3	5.0
sugar pine	Е	0.9	0.9	1.2	7.0	8.0	0.0	0.6	10.0
	I	0.6	0.7	0.8	2.8	3.2	0.0	0.3	5.0
western white pine	Е	1.0	1.0	1.6	10.0	10.0	10.0	0.8	30.0
	I	0.6	0.6	0.8	6.0	6.0	6.0	0.4	12.0
ponderosa pine	Е	0.9	0.9	1.2	7.0	8.0	0.0	0.6	10.0
	I	0.6	0.7	0.8	2.8	3.2	0.0	0.3	5.0
Monterey pine	Е	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
	I	0.5	0.5	1.0	1.4	1.4	0.0	0.3	5.0
gray pine	Е	0.3	0.7	1.4	0.2	0.1	0.0	3.9	0.0
gray pine	I	0.1	0.1	0.0	0.0	0.0	0.0	2.9	0.0
western juniper	Е	0.1	0.2	0.4	0.5	0.8	1.0	0.1	0.0
	I	0.2	0.4	0.2	0.0	0.0	0.0	0.2	0.0
Brewer spruce	Е	1.1	1.1	2.2	10.0	10.0	0.0	0.6	30.0
		0.7	0.7	1.6	4.0	4.0	0.0	0.3	12.0
giant sequoia	E	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
giant sequoia	I	0.5	0.5	1.0	1.4	1.4	0.0	0.3	5.0
Pacific yew	Е	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
Pacific yew	I	0.5	0.5	1.0	1.4	1.4	0.0	0.3	5.0
coast live oak	Е	0.3	0.7	1.4	0.2	0.1	0.0	3.9	0.0
Coast live oak	I	0.1	0.1	0.0	0.0	0.0	0.0	2.9	0.0
	Е	0.2	0.6	2.4	3.6	5.6	0.0	1.4	16.8
anyon live oak	I	0.1	0.4	5.0	2.2	2.3	0.0	0.8	5.6
	E	0.3	0.7	1.4	0.2	0.1	0.0	3.9	0.0
olue oak	I	0.1	0.1	0.0	0.0	0.0	0.0	2.9	0.0
	Е	0.3	0.7	1.4	0.2	0.1	0.0	3.9	0.0
Engelmann oak	I	0.1	0.1	0.0	0.0	0.0	0.0	2.9	0.0
	E	0.3	0.7	1.4	0.2	0.1	0.0	3.9	0.0
Dregon white oak	I	0.1	0.1	0.0	0.0	0.0	0.0	2.9	0.0
	Е	0.3	0.7	1.4	0.2	0.1	0.0	3.9	0.0
California black oak	I	0.1	0.1	0.0	0.0	0.0	0.0	2.9	0.0
	E	0.3	0.7	1.4	0.2	0.1	0.0	3.9	0.0
alley white oak	I	0.1	0.1	0.0	0.0	0.0	0.0	2.9	0.0
	E	0.3	0.7	1.4	0.2	0.1	0.0	3.9	0.0
nterior live oak	1	0.1	0.1	0.0	0.0	0.0	0.0	2.9	0.0
	Е	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
pigleaf maple	-	0.5	0.5	1.0	1.4	1.4	0.0	0.3	5.0
	E	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
California buckeye	-	0.5	0.5	1.0	1.4	1.4	0.0	0.3	5.0
	Ē	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
ed alder	Ī	0.5	0.5	1.0	1.4	1.4	0.0	0.3	5.0
	Ē	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
Pacific madrone	Ī	0.5	0.5	1.0	1.4	1.4	0.0	0.3	5.0
	Ē	0.2	0.6	2.4	3.6	5.6	0.0	1.4	16.8
jiant chinkapin	1	0.2	0.4	5.0	2.2	2.3	0.0	0.8	5.6
	Ē	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
Pacific dogwood	1	0.5	0.5	1.0	3.3 1.4	5.5 1.4	0.0	0.0	5.0
	E	0.9	0.9	1.0	7.0	8.0	0.0	0.6	10.0
Dregon ash		0.9	0.9	0.8	7.0 2.8	8.0 3.2	0.0	0.8	5.0
	E	0.8	0.7	1.6	3.5	3.2	0.0	0.3	5.0 10.0
valnut species			0.9 0.5	1.6				0.6	5.0
anaak		0.5			1.4	1.4	0.0		
anoak	Е	0.2	0.6	2.4	3.6	5.6	0.0	1.4	16.8

		Size Class (in)							
Species		< 0.25	0.25 – 1	1 – 3	3 – 6	6 – 12	> 12	Litter	Duff
	Ι	0.1	0.4	5.0	2.2	2.3	0.0	0.8	5.6
California sycamore	Е	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
California Sycamore	I	0.5	0.5	1.0	1.4	1.4	0.0	0.3	5.0
quaking aspen	Е	0.2	0.6	2.4	3.6	5.6	0.0	1.4	16.8
quaking aspen	I	0.1	0.4	5.0	2.2	2.3	0.0	0.8	5.6
black cottonwood	Е	0.2	0.6	2.4	3.6	5.6	0.0	1.4	16.8
DIACK COLIONWOOD	I	0.1	0.4	5.0	2.2	2.3	0.0	0.8	5.6
willow openion	Е	0.2	0.6	2.4	3.6	5.6	0.0	1.4	16.8
willow species	I	0.1	0.4	5.0	2.2	2.3	0.0	0.8	5.6
California nutmeg	Е	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
California nutifieg	I	0.5	0.5	1.0	1.4	1.4	0.0	0.3	5.0
California-laurel	Е	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
California-laurei	I	0.5	0.5	1.0	1.4	1.4	0.0	0.3	5.0
oth or cofficionale	Е	0.9	0.9	1.2	7.0	8.0	0.0	0.6	10.0
other softwoods	I	0.6	0.7	0.8	2.8	3.2	0.0	0.3	5.0
othar hardwooda	Е	0.3	0.7	1.4	0.2	0.1	0.0	3.9	0.0
other hardwoods	I	0.1	0.1	0.0	0.0	0.0	0.0	2.9	0.0

4.13.4 Bark Thickness

Bark thickness contributes to predicted tree mortality from simulated fires. The bark thickness multipliers in Table 4.13.9 are used to calculate single bark thickness (RMRS-GTR-116, Section 2.5.5). The bark thickness equation used in the mortality equation is unrelated to the bark thickness used in the base FVS model. Data are from FOFEM 5.0 (Reinhardt and others 2001).

Species	Multiplier (V _{sp})	Species	Multiplier (V _{sp})
Port-Orford-cedar	0.081	canyon live oak	0.024
Incense-cedar	0.060	blue oak	0.033
western redcedar	0.035	Engelmann oak	0.059
white fir	0.048	Oregon white oak	0.029
California red fir	0.039	California black oak	0.030
Shasta red fir	0.039	valley white oak	0.043
Douglas-fir	0.063	interior live oak	0.034
western hemlock	0.35	bigleaf maple	0.024
mountain hemlock	0.40	California buckeye	0.036
whitebark pine	0.030	red alder	0.026
knobcone pine	0.030	Pacific madrone	0.062
lodgepole pine	0.028	giant chinkapin	0.045
Coulter pine	0.063	Pacific dogwood	0.062
limber pine	0.030	Oregon ash	0.042
Jeffrey pine	0.068	walnut species	0.041
sugar pine	0.072	tanoak	0.052
western white pine	0.035	California sycamore	0.033
ponderosa pine	0.063	quaking aspen	0.044
Monterey pine	0.030	black cottonwood	0.044
gray pine	0.033	willow species	0.041
western juniper	0.025	California nutmeg	0.025
Brewer spruce	0.025	California-laurel	0.026
giant sequoia	0.081	other softwoods	0.063
Pacific yew	0.025	other hardwoods	0.030
coast live oak	0.050		

Table 4.13.9.	Species specific constants for determining single bark thickness.
---------------	---

4.13.5 Decay Rate

Decay of down material is simulated by applying the loss rates shown in Table 4.13.10, as described in section 2.4.5 of the FFE documentation. Default decay rates are based on the decay rates used in the Sierra Nevada Framework.

Table 4.13.10.Default annual loss rates are applied based on size class. A portion of the loss is added to the duff
pool each year. Loss rates are for hard material. If present, soft material in all size classes except
litter and duff decays 10% faster.

Size Class (inches)	Annual Loss Rate	Proportion of Loss Becoming Duff
< 0.25		
0.25 – 1	0.025	
1 – 3		
3 – 6		0.02
6 – 12	0.0125	
> 12		
Litter	0.5	_
Duff	0.002	0.0

The default decay rates are modified by incorporating information from the R5 site class. The multipliers shown in Table 4.13.11 modify the default decay rates of Table 4.13.10 to by incorporating a measure of site quality and moisture availability.

Table 4.13.11.The CA-FFE modifies default decay rate (Table 4.13.10) using R5 Site Code to improve simulated
decomposition. Lower R5 Site Classes indicate moister sites.

R5 Site Class	Multiplier
0	1.5
1	1.5
2	1.0
3	1.0
4	1.0
5	0.5
6	0.5
7	0.5

By default, the FFE decays all wood species at the rates shown in Table 4.13.10. The decay rates of species groups may be modified by users, who can provide rates to the four decay classes shown in Table 4.13.12 using the FUELDCAY keyword. Users can also reassign species to different classes using the FUELPOOL keyword.

Table 4.13.12.Default wood decay classes used in the CA-FFE variant. Classes are from the Wood Handbook
(1999). (1 = exceptionally high; 2 = resistant or very resistant; 3 = moderately resistant, and 4 =
slightly or nonresistant). Modified decay classes for madrone, California black oak, tanoak and
other hardwoods were adopted at the California variants workshop (Stephanie Rebain, pers.
comm., February 2003)

Species	Decay Class	Species	Decay Class
Port-Orford-cedar	2	canyon live oak	2
Incense-cedar	2	blue oak	2
western redcedar	2	Engelmann oak	2
white fir	4	Oregon white oak	2
California red fir	4	California black oak	2
Shasta red fir	4	valley white oak	2
Douglas-fir	3	interior live oak	2
western hemlock	4	bigleaf maple	4
mountain hemlock	4	California buckeye	4
whitebark pine	4	red alder	4
knobcone pine	4	Pacific madrone	3
lodgepole pine	4	giant chinkapin	4
Coulter pine	4	Pacific dogwood	4
limber pine	4	Oregon ash	4
Jeffrey pine	4	walnut species	2
sugar pine	4	tanoak	4
western white pine	4	California sycamore	4
ponderosa pine	4	quaking aspen	4
Monterey pine	4	black cottonwood	4
gray pine	4	willow species	4
western juniper	2	California nutmeg	4
Brewer spruce	4	California-laurel	2
giant sequoia	2	other softwoods	4
Pacific yew	1	other hardwoods	2
coast live oak	2		

4.13.6 Moisture Content

Moisture content of the live and dead fuels is used to calculate fire intensity and fuel consumption (Model Description, Section 5.2.1). Users can choose from four predefined moisture groups shown in Table 4.13.13, or they can specify moisture conditions for each class using the MOISTURE keyword.

	Moisture Group					
Size Class	Very Dry	Dry	Moist	Wet		
0 – 0.25 in. (1 hr.)	3	8	12	12		
0.25 – 1.0 in. (10 hr.)	4	8	12	12		
1.0 – 3.0 in. (100 hr.)	5	10	14	14		
> 3.0 in. (1000+ hr.)	10	15	25	25		
Duff	15	50	125	125		
Live	70	110	150	150		

Table 4.13.13. Moisture values, which alter fire intensity and consumption, have been predefined for four groups.

4.13.7 Fire Behavior Fuel Models

Fire behavior fuel models (Anderson 1982) are determined in two steps: determination of cover classification and determination of dominant species. The first step uses tree cover attributes classified by the California Wildlife Habitat Relationships (CWHR) system (Mayer and Laudenslayer 1988) shown in Table 4.13.14. Following the approach used in the WS-FFE, the table classifies stands by their canopy cover and the size of the larger trees in the stand, predicting CWHR size class and CWHR density class² (the third and fourth columns). Mayer and Laudenslayer's class definitions were modified to reflect the tree species, tree size and canopy cover class breakpoints requested at the CA-FFE workshop (Nick Vagle, Rogue River and Siskiyou NF, personal communication). To meet the internal requirements of the CWHR, the largest tree size category provided at the CA-FFE workshop (>32 inches DBH) was merged with the 21–32" category, creating a single >21" category.

² A BASIC-language function named 'CWHRSizeDensity' was provided at the WS-FFE workshop. This function is incorporated into the CA-FFE with some minor housekeeping modifications.

Tree size (DBH in.)	Canopy cover (%)	CWHR Size Class	CWHR Density Class	Stand Description
< 1	< 10	1	_	Seedlings
1 – 5	0 - 10	2	S	Sapling – sparse
1 – 5	11 – 40	2	Р	Sapling – open cover
1 – 5	41 – 70	2	М	Sapling – moderate cover
1 – 5	> 70	2	D	Sapling – dense cover
5 – 9	0 - 10	3	S	Pole tree – sparse
5 – 9	11 – 40	3	Р	Pole tree – open cover
5 – 9	41 – 70	3	М	Pole tree – moderate cover
5 – 9	> 70	3	D	Pole tree – dense cover
9 – 21	0 - 10	4	S	Small tree – sparse
9 – 21	11 – 40	4	Р	Small tree – open cover
9 – 21	41 – 70	4	М	Small tree – moderate cover
9 – 21	> 70	4	D	Small tree – dense cover
> 21	0 – 10	5	S	Med/Lg tree – sparse
> 21	11 – 40	5	Р	Med/Lg tree – open cover
> 21	41 – 70	5	М	Med/Lg tree – moderate cover
> 21	> 70	5	D	Med/Lg tree – dense cover
> 21	> 70	6	-	Multi-layer canopy, dense cover

 Table 4.13.14.
 California Wildlife Habitat Relationships, as defined by Mayer and Laudenslayer (1988), with modifications to the tree size and canopy cover class breakpoints for the CA-FFE.

* QMD of the 75 percent largest trees based on basal area.

The CA-FFE modifies the internal CWHR logic slightly, making use of two additional measures internal to the CWHR: unadjusted percent canopy cover and overlap-adjusted percent canopy cover, respectively. The two kinds of canopy estimate are used in combination with the CWHR logic to create weights for the predicted CWHR density class. Each stand's CWHR density class becomes a combination of one or two adjacent classes. Figure 4.13.1 shows how the two measures are used to weight the S, P, M or D classes at each timestep of the simulation. When a point (defined by the two kinds of canopy cover estimate) lies on a dashed line in the figure, that CWHR density class is given a 100% weight. Otherwise, the distance from the point to the nearest dashed lines is used to create weights for the nearest CWHR density classes.

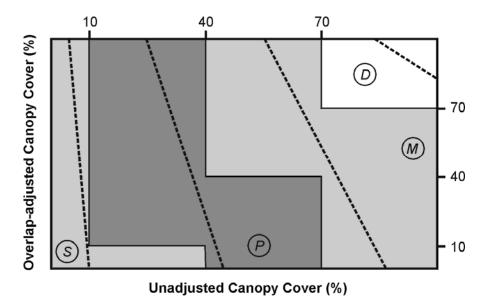
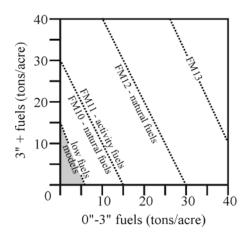


Figure 4.13.1. Two measures of canopy cover, unadjusted and overlap-adjusted percent canopy cover, are used to derive weighted estimates of the four CWHR density classes. (S = sparse, P = open, M = moderate and D = dense)

The second step determines the dominant species. A species is considered dominant if it comprises more than 80 percent of the stand basal area. The search starts with pine and moves down the column of forest types listed in the leftmost column of Table 4.13.15. If no species is dominant, then other softwoods is the default cover type.


The rules governing Table 4.13.15 select one or two candidate (usually low) fuel models. These are used along with the high fuels models to select the final set of weighted fuel models. The table has been modified from Landram's original table so that with the exception of the right-most column (mature Size Class 6 stands), cells with fuel model 10 or 12 in the original table have been replaced with fuel model 8. This change was made so that when appropriate, the default FFE fuel model logic (described in Section 4.8 and Figure 4.5 of the FFE Model Description) is not constrained in its selection of a candidate high fuel models: combinations of fuel models 10, 11,12 and 13 may still be selected when fuel loads are high (Figure 4.13.2). Finally, in order to give Table 4.13.15 priority, FM10 is removed from the list of candidate models when FM11 has been selected from the table.

In some situations a thinning or disturbance may cause one of the selected fuel models to switch from FM8 or FM9 to FM5. When this happens, the transition to these brush fuel models is modified to simulate a delay in brush ingrowth. In the case where an FM8 or FM9 fuel model is predicted to change to FM5, the change is made over five years, gradually shifting from FM8 or FM9 to FM5.

Finally, flame length is calculated using the weights from above the appropriate fuel models. The FLAMEADJ keyword allows users to scale the calculated flame length or override the calculated flame length with a value they choose.

Size Class	1			2				3				4				5		6
Density Class		S	Ρ	М	D	S	Ρ	М	D	S	Р	Μ	D	S	Р	М	D	
Forest Type																		
Ponderosa pine	5	6	6	6	6	2	2	9	9	2	2	2	9	2	2	9	9	10
Red fir	5	5	5	8	8	11	11	8	8	8	8	8	8	8	8	8	8	10
White fir – east side	5	5	5	8	8	11	11	11	8	8	8	8	8	8	8	8	8	10
White fir – west side	5	5	5	8	8	11	11	8	8	8	8	8	8	8	8	8	8	10
Douglas-fir	5	5	5	6	6	6	6	8	8	11	11	9	8	11	11	9	8	10
Jeffrey pine	5	2	2	6	6	2	2	2	9	2	2	2	9	2	2	2	9	10
Hardwoods	5	5	5	6	6	11	11	11	9	9	9	9	9	9	9	9	9	10
Lodgepole pine	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	10
Pine mixed – conifer	5	5	5	6	6	6	6	6	9	9	9	8	8	8	8	8	8	10
Fir mixed – conifer	5	5	5	6	6	6	6	6	8	6	6	8	8	6	6	8	8	10
Other softwoods	5	5	5	6	6	6	6	6	8	6	6	8	8	6	6	8	8	10

Table 4.13.15.Fire behavior fuels models for the CA-FFE are determined using forest type and CWHR class, as
described in the text. The modeling logic allows one or more fuel models to be selected.

----- Fuel model, 100% weight

Figure 4.13.2. If large and small fuels map to the shaded area, candidate fuel models are determined using the logic shown in Table 4.13.15. Otherwise, fire behavior is based on the closest fuel models, identified by the dashed lines, and on recent management (see Model Description Section 4.8 for further details).

4.14 Inland Empire (IE)

4.14.1 Tree Species

The Inland Empire variant models the 21 tree species shown in Table 4.14.1. Two additional categories, 'other hardwoods' and 'other softwoods', are modeled using red alder and mountain hemlock.

Common Name	Scientific Name	Notes
western white pine	Pinus monticola	
western larch	Larix occidentalis	
Douglas-fir	Pseudotsuga menziesii	
grand fir	Abies grandis	
western hemlock	Tsuga heterophylla	
western redcedar	Thuja plicata	
lodgepole pine	Pinus contorta	
Engelmann spruce	Picea engelmannii	
subalpine fir	Abies lasiocarpa	
ponderosa pine	Pinus ponderosa	
mountain hemlock	Tsuga mertensiana	
whitebark pine	Pinus albicaulis	
limber pine	Pinus flexilis	
subalpine larch	Larix Iyallii	
pinyon pine	Pinus edulis	
Rocky Mountain juniper	Juniperus scopulorum	
pacific yew	Taxus brevifolia	
quaking aspen	Populus tremuloides	
cottonwood species	Populus spp.	
Rocky Mountain maple	Acer glabrum	
paper birch	Betula papyrifera	
other hardwoods		= red alder
other softwoods		= mountain hemlock

4.14.2 Snags

The majority of the snag model logic is based on unpublished data provided by Bruce Marcot (USFS, Portland, OR, unpublished data 1995). Snag fall parameters were developed at the FFE design workshop. A complete description of the Snag Submodel is provided in Section 3 of the FFE Model Description.

Four variables are used to modify the Snag Submodel for the different species in the IE-FFE variant:

- a multiplier to modify the species' fall rate;
- a multiplier to modify the time required for snags to decay from a "hard" to "soft" state;
- the maximum number of years that snags will remain standing; and
- a multiplier to modify the species' height loss rate.

These variables are summarized in Tables 4.14.2 and 4.14.3.

Snag bole volume is determined using the base FVS model equations. The coefficients shown in Table 4.14.4 are used to convert volume to biomass. Soft snags have 80 percent the density of hard snags.

Snag dynamics can be modified by the user using the SNAGBRK, SNAGFALL, SNAGDCAY and SNAGPBN keywords described in the FFE Model Description.

Table 4.14.2.	Default snag fall, snag height loss and soft-snag characteristics for 20" DBH snags in the IE-FFE
	variant. These characteristics are derived directly from the parameter values shown in Table
	4.14.3.

Species	95% Fallen (yr)	All Down (yr)	50% Height (yr)	Hard-to- Soft (yr)
western white pine	34	110	33	42
western larch	34	110	33	42
Douglas-fir	34	110	33	42
grand fir	28	90	27	35
western hemlock	28	90	27	35
western redcedar	28	90	27	35
lodgepole pine	28	90	27	35
Engelmann spruce	28	90	27	35
subalpine fir	28	90	27	35
ponderosa pine	31	100	30	39
mountain hemlock	31	100	30	39
whitebark pine	31	100	30	39
limber pine	31	100	30	39
subalpine larch	31	100	30	39
pinyon pine	31	100	30	39
Rocky Mountain juniper	31	100	30	39
Pacific yew	31	100	30	39
quaking aspen	31	100	30	39
cottonwood species	31	100	30	39
Rocky Mountain maple	31	100	30	39
paper birch	31	100	30	39
other hardwoods	31	100	30	39
other softwoods	31	100	30	39

Table 4.14.3.Default snag fall, snag height loss and soft-snag multipliers for the IE-FFE. These parameters
result in the values shown in Table 4.14.2. (These three columns are the default values used by the
SNAGFALL, SNAGBRK and SNAGDCAY keywords, respectively.)

Species	Snag Fall	Height Ioss	Hard-to- Soft
western white pine	0.9	0.9	1.1
western larch	0.9	0.9	1.1
Douglas-fir	0.9	0.9	1.1
grand fir	1.1	1.1	0.9
western hemlock	1.1	1.1	0.9
western redcedar	1.1	1.1	0.9
lodgepole pine	1.1	1.1	0.9
Engelmann spruce	1.1	1.1	0.9
subalpine fir	1.1	1.1	0.9
ponderosa pine	1.0	1.0	1.0
mountain hemlock	1.0	1.0	1.0
whitebark pine	1.0	1.0	1.0
limber pine	1.0	1.0	1.0
subalpine larch	1.0	1.0	1.0
pinyon pine	1.0	1.0	1.0
Rocky Mountain juniper	1.0	1.0	1.0
Pacific yew	1.0	1.0	1.0
quaking aspen	1.0	1.0	1.0
cottonwood species	1.0	1.0	1.0
Rocky Mountain maple	1.0	1.0	1.0
paper birch	1.0	1.0	1.0
other hardwoods	1.0	1.0	1.0
other softwoods	1.0	1.0	1.0

4.14.3 Fuels

Information on live fuels was developed using FOFEM 4.0 (Reinhardt and others 1997) and FOFEM 5.0 (Reinhardt and others 2001) and in cooperation with Jim Brown, USFS, Missoula, MT (pers. comm. 1995). A complete description of the Fuel Submodel is provided in Section 4 of the FFE Model Description.

Fuels are divided into to four categories: live tree bole, live tree crown, live herb and shrub, and dead surface fuel. Live herb and shrub fuel load and the initial dead surface fuel load are assigned based on the cover species with greatest basal area. If there is no basal area in the first simulation cycle (a 'bare ground' stand) then the initial fuel loads are assigned by the vegetation code provided with the STDINFO keyword. If the vegetation code is missing or does not identify an overstory species, the model uses a ponderosa pine cover type to assign the default fuels. If there is no basal area in other cycles of the simulation (after a simulated clearcut, for example) herb and shrub fuel biomass is assigned by the previous cover type.

Live Tree Bole

The fuel contribution of live trees is divided into two components: bole and crown. Bole volume is transferred to the FFE after being computed by the FVS model, then converted to biomass using wood density calculated from Table 4-3a of The Wood Handbook (Forest Products Laboratory 1999). The coefficient in Table 4.14.4 for Douglas-fir is based on 'Douglas-fir Interior north'. The values for pinyon pine and juniper are from Chojnacky and Moisen (1993).

Table 4.14.4.Woody density (ovendry lbs/green ft³) used in the IE-FFE variant.

Species	Density (Ibs/ft ³)
western white pine	22.5
western larch	29.9
Douglas-fir	28.1
grand fir	21.8
western hemlock	26.2
western redcedar	19.3
lodgepole pine	23.7
Engelmann spruce	20.6
subalpine fir	19.3
ponderosa pine	23.7
mountain hemlock	26.2
whitebark pine (used w. white pine)	22.5
limber pine (used w. white pine)	22.5
subalpine larch (used subalpine fir)	19.3
pinyon pine	31.8
Rocky Mountain juniper	34.9
Pacific yew (used baldcypress)	26.2
quaking aspen	21.8
cottonwood species (used black cottonwood)	19.3
Rocky Mountain maple (used red maple)	30.6
paper birch	29.9
other hardwoods	23.1
other softwoods	26.2

Tree Crown

As described in the Section 2 of the FFE Model Description, equations in Brown and Johnston (1976) provide estimates of live and dead crown material for most species in the IE-FFE. Mountain hemlock biomass is based on Gholz (1979), using western hemlock equations from Brown and Johnston to partition the biomass and also to provide estimates for trees under one inch diameter.

Species	Species Mapping and Equation Source
western white pine	Brown and Johnston (1976)
western larch	Brown and Johnston (1976)
Douglas-fir	Brown and Johnston (1976)
grand fir	Brown and Johnston (1976)
western hemlock	Brown and Johnston (1976)
western redcedar	Brown and Johnston (1976)
lodgepole pine	Brown and Johnston (1976)
Engelmann spruce	Brown and Johnston (1976)
subalpine fir	Brown and Johnston (1976)
ponderosa pine	Brown and Johnston (1976)
mountain hemlock	Gholz (1979); Brown and Johnston (1976)
whitebark pine	Brown (1978)
limber pine	lodgepole pine: Brown and Johnston (1976)
subalpine larch	subalpine fir: Brown and Johnston (1976)
pinyon pine	Chojnacky (1992), Grier and others (1992)
Rocky Mountain juniper	Chojnacky (1992), Grier and others (1992)
Pacific yew	western redcedar: Brown and Johnston (1976)
quaking aspen	Smith (1985); Jenkins et. al. (2003); Loomis and Roussopoulos (1978)
cottonwood species	Smith (1985); Jenkins et. al. (2003); Loomis and Roussopoulos (1978)
Rocky Mountain maple	big-leaf maple: Snell and Little (1983)
paper birch	aspen: Smith (1985); Jenkins et. al. (2003); Loomis and Roussopoulos (1978)
other hardwoods	red alder: Snell and Little (1983)
other softwoods	mountain hemlock: Gholz (1979); Brown and Johnston (1976)

Table 4.14.5.The crown biomass equations used in the IE-FFE. Species mappings are done for species for
which equations are not available.

Live leaf lifespan is used to simulate the contribution of needles and leaves to annual litter fall. Dead foliage and branch materials also contribute to litter fall, at the rates shown in Table 4.14.6. Each year the inverse of the lifespan is added to the litter pool from each biomass category. Leaf lifespan data are from Keane and others (1989). Lifespans of western white pine and mountain hemlock are mapped using ponderosa pine, and western hemlock and western redcedar are based on Douglas-fir. The leaflife values for species not in the NI variant were taken from other variants.

	Live		De	ead	
Species	Foliage	Foliage	<0.25"	0.25–1"	> 1"
western white pine	4	2	5	5	15
western larch	1	1	5	5	15
Douglas-fir	5	2	5	5	15
grand fir	7	2	5	5	15
western hemlock	5	2	5	5	15
western redcedar	5	2	5	5	20
lodgepole pine	3	2	5	5	15
Engelmann spruce	6	2	5	5	10
subalpine fir	7	2	5	5	15
ponderosa pine	4	2	5	5	10
mountain hemlock	4	2	5	5	15
whitebark pine	3	2	5	5	15
limber pine	3	2	5	5	15
subalpine larch	1	1	5	5	15
pinyon pine	3	2	5	5	15
Rocky Mountain juniper	4	2	5	5	15
Pacific yew	7	2	5	5	15
quaking aspen	1	1	5	5	15
cottonwood species	1	1	5	5	15
Rocky Mountain maple	1	1	5	5	15
paper birch	1	1	5	5	15
other hardwoods	1	1	5	5	15
other softwoods	4	2	5	5	15

 Table 4.14.6.
 Life span of live and dead foliage (yr) and dead branches for species modeled in the IE-FFE variant.

Live Herbs and Shrubs

Live herb and shrub fuels are modeled very simply by the FFE. Shrubs and herbs are assigned a biomass value based on total tree canopy cover and dominant overstory species (Table 4.14.7). When there are no trees, habitat type is used to infer the most likely dominant species of the previous stand (Model Description, Section 4.2). When total tree canopy cover is <10 percent, herb and shrub biomass is assigned an "initiating" value (the 'I' rows from Table 4.14.7). When canopy cover is >60 percent, biomass is assigned an "established" value (the 'E' rows). Live fuel loads are linearly interpolated when canopy cover is between 10 and 60 percent. Data are based on NI-FFE data taken from FOFEM 4.0 (Reinhardt and others 1997) with modifications provided by Jim Brown, USFS, Missoula, MT (pers. comm., 1995).

Table 4.14.7.Values (dry weight, tons/acre) for live fuels used in the IE-FFE. Biomass is linearly interpolated
between the "initiating" (I) and "established"(E) values when canopy cover is between 10 and 60
percent.

Species		Herbs	Shrubs	Notes
western white pine	Е	0.15	0.10	
western white pine	I	0.30	2.00	
western larch	Е	0.20	0.20	
western arch	I	0.40	2.00	
Douglas fir	Е	0.20	0.20	
Douglas-fir	I	0.40	2.00	
grand fir	Е	0.15	0.10	
granu ili	I	0.30	2.00	
western hemlock	Е	0.20	0.20	Use Douglas-fir
Western Hennock	I	0.40	2.00	Ose Douglas-III
western redcedar	Е	0.20	0.20	Use Douglas-fir
western reuceual	I	0.40	2.00	Ose Douglas-III
	Е	0.20	0.10	
odgepole pine	I	0.40	1.00	
	Е	0.15	0.20	
Engelmann spruce	I	0.30	2.00	
eule el mine fin	E	0.15	0.20	
subalpine fir	I	0.30	2.00	
	E	0.20	0.25	
ponderosa pine	I	0.25	0.10	
mountain hemlock	E	0.15	0.20	
	I	0.30	2.00	Use spruce-subalpine fir
whitebark pine	E	0.15	0.20	
	I	0.30	2.00	Use spruce-subalpine fir
live how mine	Е	0.20	0.25	
limber pine	I	0.25	0.10	Use ponderosa pine
aubalaina larah	Е	0.15	0.20	Llos opruso substains fir
subalpine larch	I	0.30	2.00	Use spruce-subalpine fir
	Е	0.20	0.25	Liso ponderosa pino
pinyon pine	<u> </u>	0.25	0.10	Use ponderosa pine
Rocky Mountain juniper	E	0.20	0.25	Use ponderosa pine
	<u> </u>	0.25	0.10	
Pacific yew	Е	0.20	0.20	Use Douglas-fir
	I	0.40	2.00	
quaking aspen	Е	0.20	0.20	Use Douglas-fir
	I	0.40	2.00	
cottonwood species	Е	0.20	0.20	Use Douglas-fir
	I	0.40	2.00	
Rocky Mountain maple	Е	0.20	0.20	Use Douglas-fir
		0.40	2.00	
paper birch	E	0.20	0.20	Use Douglas-fir
		0.40	2.00	
other hardwoods	E	0.20	0.20	Use Douglas-fir
	<u> </u>	0.40	2.00	
	Е	0.15	0.20	Use spruce-subalpine fir
other softwoods		0.30	2.00	

Dead Fuels

Initial default CWD pools are based on overstory species. When there are no trees, habitat type is used to infer the most likely dominant species of the previous stand (Model Description, Section 4.2). Default fuel loadings were provided by Jim Brown, USFS, Missoula, MT (pers. comm., 1995) (Table 4.14.8). If tree canopy cover is <10 percent, the CWD pools are assigned an "initiating" value and if cover is >60 percent they are assign the "established" value. Fuels are linearly interpolated when canopy cover is between 10 and 60 percent. Initial fuel loads can be modified using the FUELINIT keyword. Mappings are the same as with the live herb and shrub estimates.

					Size C	lass (in)			
Species		< 0.25	0.25 – 1	1 – 3	3 – 6	6 – 12	> 12	Litter	Duff
western white pine	Е	1.0	1.0	1.6	10.0	10.0	10.0	0.8	30.0
western white pine	Ι	0.6	0.6	0.8	6.0	6.0	6.0	0.8 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 1.0 0.5 1.0 0.5 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 1.4 0.5 0.6 0.3 1.4 0.5 0.6 0.3 1.4 0.5 0.6 0.3 1.4 0.5 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6	12.0
western larch	Е	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
western larch	Ι	0.5	0.5	1.0	1.4	1.4	0.0	0.3	5.0
Douglas-fir	Е	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
Douglas-III	Ι	0.5	0.5	1.0	1.4	1.4	0.0	$\begin{array}{c} 0.8\\ 0.4\\ 0.6\\ 0.3\\ 0.6\\ 0.3\\ 0.6\\ 0.3\\ 0.6\\ 0.3\\ 1.0\\ 0.5\\ 1.0\\ 0.5\\ 0.6\\ 0.3\\ 0.6\\ 0.3\\ 0.6\\ 0.3\\ 0.6\\ 0.3\\ 1.4\\ 0.5\\ 0.6\\ 0.3\\ 1.4\\ 0.5\\ 0.6\\ 0.3\\ 1.4\\ 0.5\\ 0.6\\ 0.3\\ 1.4\\ 0.5\\ 1.4\\ 0.5\\ 1.4\\ 0.5\\ 1.4\\ 0.5\\ 0.6\\ 0.3\\ 0.6\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\ 0.5\\$	5.0
arond fir	Е	0.7	0.7	3.0	7.0	7.0	0.0	0.6	25.0
grand fir	Ι	0.5	0.5	2.0	2.8	2.8	0.0	0.3	12.0
u actore honologi	Е	2.2	2.2	5.2	15.0	20.0	15.0	1.0	35.0
western hemlock	Ι	1.6	1.6	3.6	6.0	8.0	6.0	0.5	12.0
	Е	2.2	2.2	5.2	15.0	20.0	15.0		35.0
western redcedar	Ι	1.6	1.6	3.6	6.0	8.0	6.0		12.0
adaanala nira	Е	0.9	0.9	1.2	7.0	8.0	0.0	0.6	15.0
lodgepole pine	Ι	0.6	0.7	0.8	2.8	3.2	0.0	0.3	7.0
- ,	Е	1.1	1.1	2.2	10.0	10.0	0.0	0.6	30.0
Engelmann spruce	Ι	0.7	0.7	1.6	4.0	4.0	0.0	0.3	12.0
	Е	1.1	1.1	2.2	10.0	10.0	0.0	0.6	30.0
subalpine fir	Ι	0.7	0.7	1.6	4.0	4.0	0.0		12.0
	Е	0.7	0.7	1.6	2.5	2.5	0.0		5.0
ponderosa pine	Ι	0.1	0.1	0.2	0.5	0.5	0.0	.0 1.4	0.8
	Е	1.1	1.1	2.2	10.0	10.0	0.0		30.0
mountain hemlock	-	0.7	0.7	1.6	4.0	4.0		10.0 0.8 6.0 0.4 0.0 0.6 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 15.0 1.0 6.0 0.5 15.0 1.0 6.0 0.5 0.0 0.6 0.0 0.6 0.0 0.6 0.0 0.6 0.0 0.6 0.0 0.6 0.0 0.6 0.0 0.6 0.0 0.6 0.0 0.6 0.0 0.6 0.0 0.6 0.0 0.6 0.0 0.5 0.0 0.5 0.0 0.6 0.0 0.5 0.0	12.0
	Е	1.1	1.1	2.2	10.0	10.0			30.0
whitebark pine	-	0.7	0.7	1.6	4.0	4.0			12.0
	E	0.7	0.7	1.6	2.5	2.5	0.0	0.8 0.4 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 1.4 0.5 0.6 0.3 1.4 0.5 0.6 0.3 1.4 0.5 0.6 0.3 1.4 0.5 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.6 0.6 <td>5.0</td>	5.0
limber pine	Ι	0.1	0.1	0.2	0.5	0.5		0.5	0.8
	Е	1.1	1.1	2.2	10.0	10.0	0.0	0.8 0.4 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 1.4 0.5 0.6 0.3 1.4 0.5 0.6 0.3 1.4 0.5 0.6 0.3 1.4 0.5 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.6 0.6 <td>30.0</td>	30.0
subalpine larch	Ι	0.7	0.7	1.6	4.0	4.0	0.0	0.3	12.0
	Е	0.7	0.7	1.6	2.5	2.5	0.0		5.0
pinyon pine	Ι	0.1	0.1	0.2	0.5	0.5	0.0	0.5	0.8
Deelus Mesurtaina issuaira	Е	0.7	0.7	1.6	2.5	2.5			5.0
Rocky Mountain juniper	Ι	0.1	0.1	0.2	0.5	0.5	0.0		0.8
Desifiere	Е	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
Pacific yew	Ī	0.5	0.5	1.0	1.4	1.4			5.0
	Е	0.9	0.9	1.6	3.5	3.5			10.0
quaking aspen	Ī	0.5	0.5	1.0	1.4	1.4			5.0
	Е	0.9	0.9	1.6	3.5	3.5			10.0
cottonwood species	-	0.5	0.5	1.0	1.4	1.4			5.0

Table 4.14.8.Canopy cover and cover type are used to assign default coarse woody debris (tons/acre) by size
class for established (E) and initiating (I) stands.

		Size Class (in)							
Species		< 0.25	0.25 – 1	1 – 3	3 – 6	6 – 12	> 12	Litter	Duff
Pocky Mountain maple	Е	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
Rocky Mountain maple	Ι	0.5	0.5	1.0	1.4	1.4	0.0	0.3	5.0
paper birch	Е	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
	Ι	0.5	0.5	1.0	1.4	1.4	0.0	0.3	5.0
other hardwoods	Е	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
	Ι	0.5	0.5	1.0	1.4	1.4	0.0	0.3	5.0
other softwoods	Е	1.1	1.1	2.2	10.0	10.0	0.0	0.6	30.0
	Ι	0.7	0.7	1.6	4.0	4.0	0.0	0.3	12.0

4.14.4 Bark Thickness

Bark thickness contributes to predicted tree mortality from simulated fires The bark thickness multipliers in Table 4.14.9 are used to calculate single bark thickness (RMRS-GTR-116, Section 2.5.5). The bark thickness equation used in the mortality equation is unrelated to the bark thickness used in the base FVS model. Data are from FOFEM 5.0 (Reinhardt and others 2001).

 Table 4.14.9.
 Species specific constants for determining single bark thickness.

Species	Multiplier (V _{sp})
western white pine	0.035
western larch	0.063
Douglas-fir	0.063
grand fir	0.046
western hemlock	0.040
western redcedar	0.035
lodgepole pine	0.028
Engelmann spruce	0.036
subalpine fir	0.041
ponderosa pine	0.063
mountain hemlock	0.040
whitebark pine	0.030
limber pine	0.030
subalpine larch	0.050
pinyon pine (used <i>pinus</i> spp.)	0.030
Rocky Mountain juniper	0.025
Pacific yew	0.025
quaking aspen	0.044
cottonwood species	0.038
Rocky Mountain maple	0.040
paper birch	0.027
other hardwoods	0.026
other softwoods	0.040

4.14.5 Decay Rate

Decay of down material is simulated by applying loss rates to pieces by size class (Table 4.14.10), as described in section 2.4.5 of the FFE documentation. Default decay rates are based on Abbott and Crossley (1982). A portion of the loss is added to the duff pool each year. Loss rates are for hard material; soft material in all size classes, except litter and duff, decays 10% faster.

Table 4.14.10.Default annual loss rates are applied based on size class. A portion of the loss is added to the duff
pool each year. Loss rates are for hard material. If present, soft material in all size classes except
litter and duff decays 10% faster.

Annual Loss Rate	Proportion of Loss Becoming Duff
0.12	
0.12	
0.09	_
	0.02
0.015	
0.50	_
0.002	0.0
	Rate 0.12 0.09 0.015 0.50

By default, the FFE decays all wood species at the rates shown in Table 4.14.10. The decay rates of species groups may be modified by users, who can provide rates to the four decay classes shown in Table 4.14.11 using the FUELDCAY keyword. Users can also reassign species to different classes using the FUELPOOL keyword.

Table 4.14.11.Default wood decay classes used in the IE-FFE variant. Classes are from the Wood Handbook
(1999). (1 = exceptionally high; 2 = resistant or very resistant; 3 = moderately resistant, and 4 =
slightly or nonresistant)

Species	Decay Class
western white pine	4
western larch	3
Douglas-fir	3
grand fir	4
western hemlock	4
western redcedar	2
lodgepole pine	4
Engelmann spruce	4
subalpine fir	4
ponderosa pine	4
mountain hemlock	4
whitebark pine	4
limber pine	4
subalpine larch (subalpine fir)	4
pinyon pine	4
Rocky Mountain juniper	2
Pacific yew	1
quaking aspen	4
cottonwood species	4
Rocky Mountain maple	4
paper birch	4
other hardwoods	4
other softwoods	4

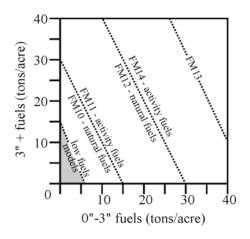
4.14.6 Moisture Content

Moisture content of the live and dead fuels is used to calculate fire intensity and fuel consumption (Model Description, Section 5.2.1). Users can choose from four predefined moisture groups (Table 4.14.12) or they can specify moisture conditions for each class using the MOISTURE keyword.

Table 4.14.12. Moisture values, which alter fire intensity and consumption, have been predefined for four groups.

	Moisture Group				
Size Class	Very Dry	Dry	Moist	Wet	
0 – 0.25 in. (1-hr)	4	8	12	16	
0.25 – 1.0 in. (10-hr)	4	8	12	16	
1.0 – 3.0 in. (100-hr)	5	10	14	18	
> 3.0 in. (1000+ -hr)	10	15	25	50	
Duff	15	50	125	200	
Live	70	110	150	150	

4.14.7 Fire Behavior Fuel Models


Fire behavior fuel models (Anderson 1982) are used to estimate flame length and fire effects stemming from flame length. Fuel models are determined using fuel load and stand attributes (Model Description, Section 4.8) specific to each FFE variant. In addition, stand management actions such as thinning and harvesting can abruptly increase fuel loads and can trigger 'Activity Fuels' conditions, resulting in the selection of alternative fuel models. At their discretion, FFE users have the option of:

- 1. defining and using their own fuel models;
- 2. defining the choice of fuel models and weights;
- 3. allowing the FFE variant to determine a weighted set of fuel models, or
- 4. allowing the FFE variant to determine a weighted set of fuel models, then using the dominant model.

This section explains the steps taken by the IE-FFE to follow the third of these four options.

When the combination of large and small fuel lies in the lower left corner of the graph shown in Figure 4.14.1, one or more low fuel fire models become candidate models. In other regions of the graph, other fire models may also be candidates. The habitat types shown in Table 4.14.13 define which low fuel model(s) will become candidates. According to the logic of this table, only in a single fuel model will be chosen for a given stand structure. Consequently, as a stand undergoes structural changes due to management or maturation, the selected fire model can jump from one model selection to another, which in turn may cause abrupt changes in predicted fire behavior. To smooth out changes resulting from changes in fuel model, the strict logic is augmented by linear transitions between states that involve continuous variables (for example, percent canopy cover, average height, snag density, etc.).

If the STATFUEL keyword is selected, fuel model is determined by using only the closest-match fuel model identified by either Figure 4.14.1 or Table 4.14.13. The FLAMEADJ keyword allows the user to scale the calculated flame length or override the calculated flame length with a value they choose.

Fuel model, 100% weight

Figure 4.14.1. If large and small fuels map to the shaded area, candidate fuel models are determined using the logic shown in Table 4.14.13. Otherwise, fire behavior is based on the closest fuel models, identified by the dashed lines, and on recent management (see Model Description Section 4.8 for further details).

Table 4.14.13.When low fuel loads are present in the IE-FFE, fire behavior fuel models are determined using one
of three habitat groups: dry grassy, dry shrubby and other. Fuel model is linearly interpolated
between the two low fuel models when canopy cover falls between 30 and 50 percent.

Habitat Type	Habitat Type	FFE Habitat	Canopy Cover < 30%	Canopy Cover > 50%	
Number	Name	Category	Fuel Model		
130	PIPO/AGSP	Dry Grassy	1	9	
140	PIPO/FEID				
210	PSME/AGSP				
220	PSME/FEID				
230	PSME/FESC				
161	PIPO/PUTR	Dry Shrubby	2	9	
170	PIPO/SYAL				
171	PIPO/SYAL-SYAL				
172	PIPO/SYAL-BERE				
180	PIPO/PRVI				
181	PIPO/PRVI-PRVI				
182	PIPO/PRVI-SHCA				
310	PSME/SYAL				
311	PSME/SYAL-AGSP				
312	PSME/SYAL-CARU				
313	PSME/SYAL-SYAL				
All others		Other	8	8	

4.15 Southern (SN)

4.15.1 Tree Species

The Southern variant models the 90 tree species categories shown in Table 4.15.1.

Common name	Scientific name	Common name	Scientific name
fir species	Abies spp.	magnolia species	Magnolia spp.
redcedar species	Juniperus spp.	cucumbertree	Magnolia acuminata
spruce species	Picea spp.	southern magnolia	Magnolia grandiflora
sand pine	Pinus clausa	sweetbay	Magnolia virginiana
shortleaf pine	Pinus echinata	bigleaf magnolia	Magnolia macrophylla
slash pine	Pinus elliottii	apple species	Malus spp.
spruce pine	Pinus glabra	mulberry species	Morus spp.
longleaf pine	Pinus palustris	water tupelo	Nyssa aquatica
table mountain pine	Pinus pungens	blackgum/black tupelo	Nyssa sylvatica
pitch pine	Pinus rigida	swamp tupelo	Nyssa sylvatica var. biflora
pond pine	Pinus serotina	eastern hophornbeam	Ostrya virginiana
eastern white pine	Pinus strobus	sourwood	Oxydendrum arboreum
loblolly pine	Pinus taeda	redbay	Persea borbonia
Virginia pine	Pinus virginiana	sycamore	Platanus occidentalis
baldcypress	Taxodium distichum	cottonwood species	Populus spp.
pondcypress	Taxodium distichum var. nutans	bigtooth aspen	Populus grandidentata
hemlock species	Tsuga spp.	black cherry	Prunus serotina
Florida maple	Acer barbatum	white oak	Quercus alba
boxelder	Acer negundo	scarlet oak	Quercus coccinea
red maple	Acer rubrum	southern red oak	Quercus falcata var. falcata
silver maple	Acer saccharinum	cherrybark oak	Quercus falcata
sugar maple	Acer saccharum	turkey oak	Quercus laevis
buckeye/horsechestnut species	Aesculus spp.	laurel oak	Quercus laurifolia
birch species	Betula spp.	overcup oak	Quercus lyrata
sweet birch	Betula lenta	blackjack oak	Quercus marilandica
American hornbeam	Carpinus caroliniana	swamp chestnut oak	Quercus michauxii
hickory species	Carya spp.	chinkapin oak	Quercus muehlenbergi
catalpa	Catalpa spp.	water oak	Quercus nigra
hackberry species	Celtis spp.	chestnut oak	Quercus prinus
eastern redbud	Cercis canadensis	northern red oak	Quercus rubra
flowering dogwood	Cornus florida	Shumard oak	Quercus shumardii
common persimmon	Diospyros virginiana	post oak	Quercus stellata
American beech	Fagus grandifolia	black oak	Quercus velutina
ash species	Fraxinus spp.	live oak	Quercus virginiana
white ash	Fraxinus americana	black locust	Robinia pseudoacacia

Table 4.15.1.Tree species simulated by the Southern variant.

Common name	Scientific name	Common name	Scientific name
black ash	Fraxinus nigra	willow species	Salix spp.
green ash	Fraxinus pennsylvanica	sassafras	Sassafras albidum
honeylocust	Gleditsia triacanthos	basswood species	Tilia spp.
loblolly-bay	Gordonia lasianthus	elm species	Ulmus spp.
silverbell	Halesia spp.	winged elm	Ulmus alata
American holly	llex opaca	American elm	Ulmus americana
butternut	Juglans cinerea	slippery elm	Ulmus rubra
black walnut	Juglans nigra	other softwoods	
sweetgum	Liquidambar styraciflua	other hardwoods	
yellow-poplar	Liriodendron tulipifera	other species	

4.15.2 Snags

The majority of the snag model logic is based on unpublished data provided by Bruce Marcot (USFS, Portland, OR, unpublished data 1995). Snag fall parameters were developed at the SN-FFE development workshop. A complete description of the Snag Submodel is provided in Section 3 of the FFE Model Description.

Three variables are used to modify the Snag Submodel for the different species in the SN-FFE variant:

- a multiplier to modify the species' fall rate;
- a multiplier to modify the time required for snags to decay from a "hard" to "soft" state; and
- the maximum number of years that snags will remain standing.

Initially, each species was put into a snag class (1, 2, or 3), as listed in Table 4.15.2. Then the above variables were determined for each snag class. Snag class 1 generally represents pines, snag class 2 generally represents black oak and similar species, and snag class 3 generally represents white oak species and redcedar species. These variables are summarized in Tables 4.15.3 and 4.15.4.

Snag bole volume is determined using the base FVS model equations. The coefficients shown in Table 4.15.5 are used to convert volume to biomass. Soft snags have 80 percent the density of hard snags.

Snag dynamics can be modified by the user using the SNAGBRK, SNAGFALL, SNAGDCAY and SNAGPBN keywords described in the FFE Model Description.

Species	Snag class	Species	Snag class
fir species	2	magnolia species	2
edcedar species	3	cucumbertree	2
ruce species	2	southern magnolia	2
and pine	1	sweetbay	2
hortleaf pine	1	bigleaf magnolia	2
lash pine	1	apple species	2
pruce pine	1	mulberry species	2
ongleaf pine	1	water tupelo	3
able mountain pine	1	blackgum/black tupelo	3
bitch pine	1	swamp tupelo	3
ond pine	1	eastern hophornbeam	2
astern white pine	1	sourwood	2
oblolly pine	1	redbay	2
/irginia pine	1	sycamore	2
oaldcypress	3	cottonwood species	1
oondcypress	3	bigtooth aspen	1
nemlock species	2	black cherry	2
Florida maple	2	white oak	3
oxelder	2	scarlet oak	2
ed maple	2	southern red oak	2
ilver maple	2	cherrybark oak	2
ugar maple	2	turkey oak	2
ickeye/horsechestnut			
ecies	2	laurel oak	2
ch species	1	overcup oak	2
weet birch	1	blackjack oak	3
merican hornbeam	2	swamp chestnut oak	2
ickory species	3	chinkapin oak	3
catalpa	2	water oak	3
nackberry species	2	chestnut oak	2
eastern redbud	2	northern red oak	2
lowering dogwood	2	Shumard oak	2
common persimmon	3	post oak	3
American beech	2	black oak	2
ash species	2	live oak	2
white ash	2	black locust	3
lack ash	2	willow	1
green ash	2	sassafras	2
oneylocust	3	basswood species	1
oblolly-bay	2	elm species	1
silverbell	2	winged elm	1
American holly	2	American elm	1
outternut	2	slippery elm	1
black walnut	2	other softwoods	1
sweetgum	2	other hardwoods	2
	2	- 44	•

Table 4.15.2. Snag class for each species in SN-FFE.

yellow-poplar

other species

Snag Class	95% Fallen (yr)	All Down (yr)	50% Height (yr)	Hard-to- Soft (yr)	Notes
1	3	6 (pines are 50)		2	Snag height
2	7	15		6	loss is not modeled in
3	11	25 (RC is 100)		10	SN-FFE

Table 4.15.3.Snag fall, snag height loss and soft-snag characteristics for 12" DBH snags in the SN-FFE variant.
These characteristics directly coincide with the parameter values shown in Table 4.15.4.

Table 4.15.4.Default snag fall, snag height loss and soft-snag multipliers for the SN-FFE. These parameters
result in the values shown in Table 4.15.3. (These three columns are the default values used by the
SNAGFALL, SNAGBRK and SNAGDCAY keywords, respectively.)

Snag Class	Snag Fall	Height Ioss	Hard-to- Soft
1	7.17		0.07
2	3.07		0.21
3	1.96		0.35

Additionally, the base fall rate diameter cutoff (diameter at which 5 percent of snags are assigned a slower fall rate) was changed from 18 in. to 12 in. DBH. Due to the dynamics of eastern redcedar, for redcedar snags, even those less than 12 inches, 5 percent are assigned a slower fall rate.

Figures 4.15.1, 4.15.2, and 4.15.3 show how these values translate for 10 and 20 inch snags of varying species.

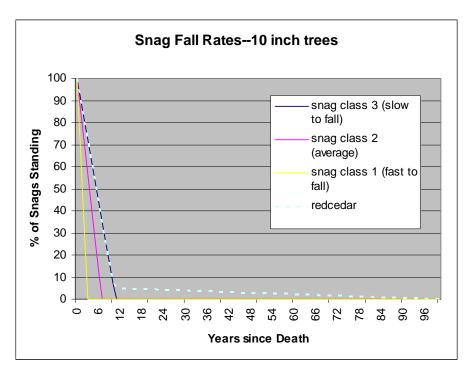


Figure 4.15.1. Snag fall rates for 10 inch trees.

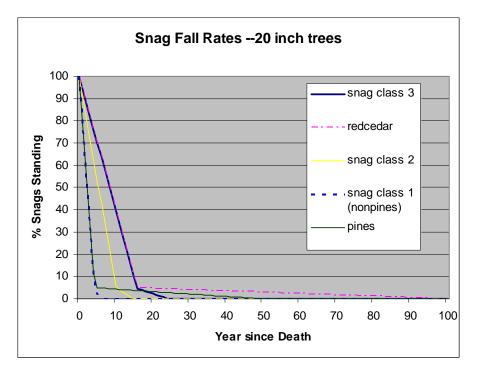


Figure 4.15.2. Snag fall rates for 20 inch trees.

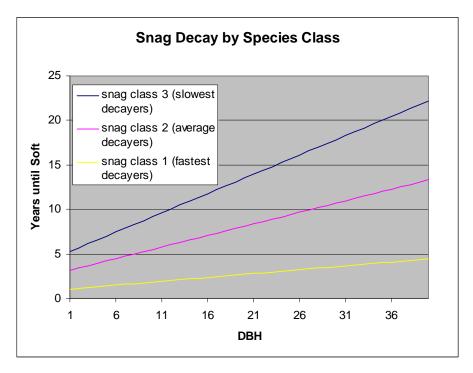


Figure 4.15.3. The number of years until soft for various diameter snags.

4.15.3 Fuels

Fuels are divided into to four categories: live tree bole, live tree crown, live herb and shrub, and dead surface fuel. Live herb and shrub fuel load and the initial dead surface fuel load are assigned based on the Forest Type code, as reported in the Summary Statistics Table.

One difference between the implementation of FFE in the southern variant, relative to its implementation in all of the western variants, is the distinction between crown material and stemwood. In the western variants, stemwood biomass is calculated by converting total cubic foot volume to biomass for each tree. Crown biomass is calculated through equations that predict the biomass of branchwood alone. In the southern variant, total cubic foot volume equations are not in use. As a result, stemwood biomass is calculated by converting merchantable cubic foot volume (to a 4 inch top diameter inside bark) to biomass for each tree. Crown biomass is calculated through equations that predict the biomass of branchwood plus the unmerchantable portion of the main stem (stemwood above a 4 inch diameter). This has some effects that users should be aware of.

- 1. The default assumption in the western variants when harvesting is that the stems are taken and the crown material (branchwood) is left. In the southern variants this corresponds to a default assumption that the merchantable material is taken and the unmerchantable material (branchwood, small trees, unmerchantable topwood) is left.
- 2. Surface fuel accumulation is predicted from a variety of processes including crown breakage and crown lift. Based on a default percentage and the change in crown ratio for each tree record, a certain amount of material is predicted to fall to the ground each year. This assumption changes slightly when using the southern variant. Rather than predicting a certain percentage of the branchwood will fall each year, essentially the model is predicting a certain percentage of the unmerchantable material (branchwood, small trees, unmerchantable topwood) will fall each year.
- 3. Because the total biomass of a tree is calculated by adding the biomass of the merchantable and unmerchantable portions, the minimum merchantable DBH value SHOULD NOT be changed using the Volume keyword.
- 4. Other changes were made to handle this situation and are described in the section on Tree Crowns.

Live Tree Bole

The fuel contribution of live trees is divided into two components: bole and crown. Bole volume is transferred to the FFE after being computed by the FVS model, then converted to biomass using wood density calculated from Table 4-3a of The Wood Handbook (Forest Products Laboratory 1999). Generally, for species not listed, softwoods were mapped to redcedar species and hardwoods were mapped to black oak.

Species	lbs/cuft	Species used	Species	lbs/cuft	Species used
fir species	20.6	balsam fir	magnolia species	27.4	cucumbertree
redcedar species	27.4		cucumbertree	27.4	
spruce species	23.1	red spruce	southern magnolia	28.7	
sand pine	28.7		sweetbay	27.4	cucumbertree
shortleaf pine	29.3		bigleaf magnolia	27.4	cucumbertree
slash pine	33.7		apple species	34.9	blackoak
spruce pine	25.6		mulberry species	34.9	blackoak
longleaf pine	33.7		water tupelo	28.7	
table mountain pine	28.1	Virginia pine	blackgum/black tupelo	28.7	
pitch pine	29.3		swamp tupelo	28.7	
pond pine	31.8		eastern hophornbeam	34.9	blackoak
eastern white pine	21.2		sourwood	34.9	blackoak
loblolly pine	29.3		redbay	34.9	blackoak
Virginia pine	28.1		sycamore	28.7	
baldcypress	26.2		cottonwood species	23.1	
pondcypress	26.2	baldcypress	bigtooth aspen	22.5	
hemlock species	23.7		black cherry	29.3	
Florida maple	34.9	sugar maple	white oak	37.4	
boxelder	30.6	red maple	scarlet oak	37.4	
red maple	30.6		southern red oak	32.4	
silver maple	27.4		cherrybark oak	38.0	
sugar maple	34.9		turkey oak	34.9	blackoak
buckeye/horsechestnut species	34.9	blackoak	laurel oak	34.9	
birch species	34.3	yellow birch	overcup oak	35.6	
sweet birch	37.4		blackjack oak	34.9	blackoak
American hornbeam	34.9	blackoak	swamp chestnut oak	37.4	
hickory species	39.9	shagbark/ mockernut	chinkapin oak	37.4	whiteoak
catalpa	34.9	blackoak	water oak	34.9	
hackberry species	30.6		chestnut oak	35.6	
eastern redbud	34.9	blackoak	northern red oak	34.9	
flowering dogwood	34.9	blackoak	Shumard oak	34.9	blackoak
common persimmon	34.9	blackoak	post oak	37.4	
American beech	34.9		black oak	34.9	
ash species	33.1	green ash	live oak	49.9	
white ash	34.3		black locust	41.2	
black ash	28.1		willow species	22.5	
green ash	33.1		sassafras	26.2	
honeylocust	37.4		basswood species	20.0	
loblolly-bay	34.9	blackoak	elm species	28.7	American elm
silverbell	34.9	blackoak	winged elm	28.7	American elm
American holly	34.9	blackoak	American elm	28.7	
butternut	22.5		slippery elm	29.9	
black walnut	31.8		other softwoods	27.4	redcedar species
sweetgum	28.7		other hardwoods	34.9	blackoak
yellow-poplar	24.9		other species	34.9	blackoak

Table 4.15.5.Woody density (ovendry lbs/green ft³) used in the SN-FFE variant.

Tree Crown

For trees greater than 4 inches dbh, estimates of crown material, including branchwood and bolewood above a 4 inch top (DOB), are from Smith (1985). Due to the nature of these equations, for trees between 4 and 5 inches in diameter, the estimate for a 5-inch tree is scaled back based on height. These equations do not provide foliage estimates, which are taken from Jenkins et. al. (2003). Also, the Smith equations do not provide information on how the crown material is distributed by size class. Information on partitioning canopy fuel loads by size class was taken from several sources (Snell and Little (1983), Loomis and Blank (1981), Loomis and Roussopoulos (1987), Loomis et. al. (1966)). Species were mapped, when necessary, based on workshop input. Because information on how crown material is partitioned for different species is often based on different definitions of "crown" (branchwood only, branchwood plus stemwood above a 0.25 inch diameter, branchwood plus stemwood above a 1 inch diameter), the equations to predict the proportion of crown biomass in various size classes are adjusted. The basic assumption is that the biomass of the unmerchantable tip can be calculated from the volume of a cone, where the height of the cone is the difference between total height and height at a 4 inch top diameter and the bottom diameter of the cone is 4 inches. There are some additions made to these estimates of crown biomass. Smith's equations include branchwood and stem material above a 4 inch DOB top, while the southern volume equations go up to a 4 inch DIB top. As a result, there is a small portion of biomass that is missing. This is estimated and added to the crown material estimates.

For trees less than 4 inches dbh, total above ground biomass is predicted using equations in Jenkins et. al. (2003). A similar method (to that for large trees) is used to adjust how the crown material is distributed by size class. In this case the main stem is assumed to be cone-shaped above breast height and cylinder-shaped below breast height.

Live leaf lifespan is used to simulate the contribution of needles and leaves to annual litter fall. Each year the inverse of the lifespan is added to the litter pool from each biomass category. Leaf lifespan data are primarily from Hardin et. al. (2001). Exceptions include eastern redcedar (Barnes and Wagner (2002)), holly (www.americanforests.org/productsandpubs/magazine/archives/2002winter/inprofile.php) and loblolly bay (www.fl-dof.com/pubs/trees_of_florida/loblollybay.html)

Dead foliage and branch materials also contribute to litter fall. Each species was categories into 1 of 6 crown fall rate categories and the life span of dead foliage and branches was determined for each category. Species not in the Ozarks/Ouachita region were classed as 5.

Species	Leaf Life (years)	Crown Fall Class	Species	Leaf Life (years)	Crown Fall Class
fir species	8	5	magnolia species	1	4
redcedar species	5	1	cucumbertree	1	4
spruce species	8	5	southern magnolia	2	4
sand pine	2	6	sweetbay	1	4
shortleaf pine	4	6	bigleaf magnolia	1	4
slash pine	2	6	apple species	1	4
spruce pine	2	6	mulberry species	1	5
longleaf pine	2	6	water tupelo	1	3
table mountain pine	3	6	blackgum/black tupelo	1	3
pitch pine	2	6	swamp tupelo	1	3
pond pine	2	6	eastern hophornbeam	1	4
eastern white pine	2	6	sourwood	1	5
loblolly pine	3	6	redbay	1	5
Virginia pine	3	6	sycamore	1	5
baldcypress	1	1	cottonwood species	1	5
pondcypress	1	1	bigtooth aspen	1	5
hemlock species	4	5	black cherry	1	4
Florida maple	1	5	white oak	1	3
boxelder	1	5	scarlet oak	1	4
red maple	1	5	southern red oak	1	4
silver maple	1	5	cherrybark oak	1	4
sugar maple	1	5	turkey oak	1	4
buckeye/horsechestnut species	1	5	laurel oak	1	4
birch species	1	5	overcup oak	1	3
sweet birch	1	5	blackjack oak	1	2
American hornbeam	1	4	swamp chestnut oak	1	3
hickory species	1	2	chinkapin oak	1	3
catalpa	1	4	water oak	1	3
hackberry species	1	4	chestnut oak	1	3
eastern redbud	1	5	northern red oak	1	4
flowering dogwood	1	5	Shumard oak	1	4
common persimmon	1	4	post oak	1	3
American beech	1	4	black oak	1	4
ash species	1	5	live oak	1	5
white ash	1	5	black locust	1	2
black ash	1	5	willow species	1	6
green ash	1	5	sassafras	1	4
honeylocust	1	2	basswood species	1	5
loblolly-bay	1	5	elm species	1	5
silverbell	1	5	winged elm	1	5
American holly	3	4	American elm	1	5
butternut	1	4	slippery elm	1	5
black walnut	1	4	other softwoods	2	5
sweetgum	1	5	other hardwoods	1	5
yellow-poplar	1	4	other species	1	5

Table 4.15.6.	Life span of live foliage and crown fall class (1 to 6) for species modeled in the SN-FFE variant.
1 abic 4.13.0.	Life span of five foliage and crown fan class (1 to 0) for species modeled in the SN-FTE variant.

Crown fall	Snag Crown Material Time to 100% Fallen (years)								
class	Foliage	<0.25"	0.25–1"	1-3"	3-6"	6-12"			
1	1 (RC is 3)	5	5	10	25	25			
2	1	3	3	6	12	12			
3	1	2	2	5	10	10			
4	1	1	1	4	8	8			
5	1	1	1	3	6	6			
6	1	1	1	2	4	4			

Table 4.15.7. Years until all snag crown material of certain sizes has fallen by crown fall class

Live Herbs and Shrubs

Live herb and shrub fuels are modeled very simply by the FFE. Shrubs and herbs are assigned a biomass value based on forest type. Data for pines and redcedar species are based on information from the Reference database for fuel loadings for the continental U.S. and Alaska (Scott Mincemoyer, on file at the Missoula Fire Lab). Data for hardwoods and oak-savannah are from Nelson and Graney (1996).

Table 4.15.8.Values (dry weight, tons/acre) for live fuels used in the SN-FFE.

Forest Type	Herbs	Shrubs
Pines	0.10	0.25
Hardwoods	0.01	0.03
Redcedar species	1.0	5.0
Oak-Savannah	0.02	0.13

Dead Fuels

Initial default CWD pools are based on forest type, using FIA data collected in the southern region. Initial fuel loads can be modified using the FUELINIT keyword.

 Table 4.15.9.
 Forest type is used to assign default coarse woody debris (tons/acre) by size class.

Forest Type	FIA Forest	Size Class (in)							
	Type Codes	< 0.25	0.25 – 1	1 – 3	3 – 6	6 – 12	> 12	Litter	Duff
White Pine	101-105	0.10	0.50	1.68	0.55	0.64	0.07	4.02	12.52
Longleaf – slash pine	141, 142	0.10	0.66	0.98	0.12	0.29	0.26	6.38	8.66
Loblolly – shortleaf pine	160s	0.14	0.72	1.54	0.25	0.44	0.33	4.90	6.03
Eastern redcedar	181, 402	0.24	1.24	2.72	0.36	0.97	0.33	3.82	3.80
Pine-hardwood	400s (not 402)	0.18	0.77	2.17	0.31	0.86	0.78	4.07	6.15
Oak-hickory	500s	0.13	0.68	1.93	0.43	1.01	1.01	4.28	5.91
Oak-gum- cypress	600s	0.13	0.67	1.83	0.18	0.57	0.77	2.49	5.68

Elm-ash- cottonwood	700s	0.22	1.09	2.68	0.26	0.76	0.43	2.33	1.60
Maple-beech- birch	800s	0.09	0.64	2.03	0.43	1.18	3.38	3.75	4.10

4.15.4 Bark Thickness

Bark thickness contributes to predicted tree mortality from simulated fires The bark thickness multipliers in Table 4.15.10 are used to calculate single bark thickness, which in turn, for most species, is used to calculate fire-related mortality (RMRS-GTR-116, section 2.5.5). The bark thickness equation used in the mortality equation is unrelated to the bark thickness used in the base FVS model. Data are from FOFEM 5.0 (Reinhardt and others 2001). For shortleaf pine, the bark thickness is based on an equation in Harmon (1984). For some species, (northern red oak, black oak, scarlet oak, white oak, chestnut oak, black gum, red maple, and hickory), fire-related mortality is predicted using height of stem-bark char, rather than bark thickness, based on equations in Regelbrugge and Smith (1994). It is assumed that height of stem-bark char is 70% of flame length (expert communication with Elizabeth Reinhardt, Cain (1984)).

Cassies	Multiplier		Creation	Multiplier	Cracico
Species	(V _{sp})	Species used	Species	(V _{sp})	Species us
fir species	0.052		magnolia species	0.039	
redcedar species	0.038		cucumbertree	0.036	
spruce species	0.034		southern magnolia	0.033	
sand pine	0.035		sweetbay	0.04	
shortleaf pine	***		bigleaf magnolia	0.033	
lash pine	0.055		apple species	0.043	
pruce pine	0.035		mulberry species	0.038	red mulberr
ongleaf pine	0.049		water tupelo	0.03	
able mountain pine	0.04		blackgum/black tupelo	0.039	
itch pine	0.045		swamp tupelo	0.037	
ond pine	0.062		eastern hophornbeam	0.037	
astern white pine	0.045		sourwood	0.036	
blolly pine	0.052		redbay	0.038	
'irginia pine	0.033		sycamore	0.033	
aldcypress	0.025		cottonwood species	0.04	
ondcypress	0.042		bigtooth aspen	0.039	
emlock species	0.039		black cherry	0.03	
lorida maple	0.029		white oak	0.04	
oxelder	0.034		scarlet oak	0.04	
ed maple	0.028		southern red oak	0.044	
ilver maple	0.031		cherrybark oak	0.044	southern re oak
ugar maple	0.033		turkey oak	0.037	
buckeye/horsechestnut	0.036	Ohio buckeye	laurel oak	0.036	
irch species	0.033		overcup oak	0.039	
weet birch	0.03		blackjack oak	0.037	
merican hornbeam	0.03		swamp chestnut oak	0.046	
nickory species	0.04	shagbark hickory	chinkapin oak	0.042	

 Table 4.15.10.
 Species specific constants for determining single bark thickness.

Species	Multiplier (V _{sp})	Species used	Species	Multiplier (V _{sp})	Species used
catalpa	0.037		water oak	0.036	
hackberry species	0.036	sugarberry	chestnut oak	0.049	
eastern redbud	0.035		northern red oak	0.042	
flowering dogwood	0.041		Shumard oak	0.037	
common persimmon	0.041		post oak	0.044	
American beech	0.025		black oak	0.045	
ash species	0.042		live oak	0.043	
white ash	0.042		black locust	0.049	
black ash	0.035		willow species	0.04	black willow
green ash	0.039		sassafras	0.035	
honeylocust	0.038		basswood species	0.038	American basswood
loblolly-bay	0.038		elm species	0.039	
silverbell	0.038		winged elm	0.031	
American holly	0.042		American elm	0.031	
butternut	0.041		slippery elm	0.032	
black walnut	0.041		other softwoods	0.038	redcedar
sweetgum	0.036		other hardwoods	0.045	black oak
yellow-poplar	0.041		other species	0.045	black oak

4.15.5 Decay Rate

Decay of down material is simulated by applying loss rates to pieces by size class (Table 4.15.11), as described in section 2.4.5 of the FFE documentation. Default wood decay rates are based on Abbott and Crossley (1982) and Barber and VanLear (1984). The litter decay rate is based on Sharpe et. al. (1980) and Witkamp (1966). A portion of the loss is added to the duff pool each year. Loss rates are for hard material; soft material in all size classes, except litter and duff, decays 10% faster.

Table 4.15.11.Default annual loss rates are applied based on size class. A portion of the loss is added to the duff
pool each year. Loss rates are for hard material. If present, soft material in all size classes except
litter and duff decays 10% faster.

Size Class (inches)	Annual Loss Rate	Proportion of Loss Becoming Duff		
< 0.25	- 0.11			
0.25 – 1	- 0.11			
1 – 3	0.09	_		
3 – 6		0.02		
6 – 12	0.07			
> 12	-			
Litter	0.65	_		
Duff	0.002	0.0		

By default, the FFE decays all wood species at the rates shown in Table 4.15.10. The decay rates of species groups may be modified by users, who can provide rates to the four decay classes shown in Table 4.15.12 using the FUELDCAY keyword. Users can also reassign species to different classes using the FUELPOOL keyword. The decay rate classes were generally determined from the Wood Handbook

(1999). When species were classified differently for young or old growth, young growth was assumed. Some species, such as many oaks, were assigned a decay rate class based on information provided at the development workshop. Species not present in the Ozarks/Ouachita region were classed as 4 if not in the wood handbook.

Species	Decay Rate Class		Decay Rate Class	
fir species	4	magnolia species	4	
redcedar species	2	cucumbertree	4	
spruce species	4	southern magnolia	4	
sand pine	4	sweetbay	4	
shortleaf pine	4	bigleaf magnolia	4	
slash pine	4	apple species	3	
spruce pine	4	mulberry species	1	
longleaf pine	4	water tupelo	2	
table mountain pine	4	blackgum/black tupelo	2	
pitch pine	4	swamp tupelo	2	
pond pine	4	eastern hophornbeam	3	
eastern white pine	4	sourwood	4	
loblolly pine	4	redbay	4	
Virginia pine	4	sycamore	4	
baldcypress	3	cottonwood species	4	
pondcypress	3	bigtooth aspen	4	
hemlock species	4	black cherry	2	
Florida maple	4	white oak	2	
boxelder	4	scarlet oak	3	
red maple	4	southern red oak	3	
silver maple	4	cherrybark oak	3	
sugar maple	4	turkey oak	3	
buckeye/horsechestnut species	4	laurel oak	3	
birch species	4	overcup oak	3	
sweet birch	4	blackjack oak	2	
American hornbeam	3	swamp chestnut oak	3	
hickory species	4	chinkapin oak	2	
catalpa	2	water oak	2	
hackberry species	4	chestnut oak	3	
eastern redbud	3	northern red oak	3	
flowering dogwood	3	Shumard oak	3	
common persimmon	2	post oak	2	
American beech	4	black oak	3	
ash species	4	live oak	2	
white ash	4	black locust	1	
black ash	4	willow species	4	
green ash	4	sassafras	2	
honeylocust	2	basswood species	4	
loblolly-bay	4	elm species	4	
silverbell	4	winged elm	4	
American holly	3	American elm	4	

Table 4.15.12.Default wood decay classes used in the SN-FFE variant. Classes are from the Wood Handbook
(1999). (1 = exceptionally high; 2 = resistant or very resistant; 3 = moderately resistant, and 4 =
slightly or nonresistant)

Species	Decay Rate Class	Species	Decay Rate Class
butternut	4	slippery elm	4
black walnut	2	other softwoods	4
sweetgum	4	other hardwoods	4
yellow-poplar	4	other species	4

4.15.6 Moisture Content

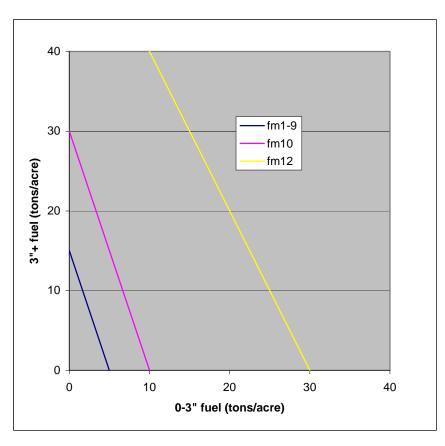
Moisture content of the live and dead fuels is used to calculate fire intensity and fuel consumption (Model Description, Section 5.2.1). Users can choose from four predefined moisture groups (Table 4.15.13) or they can specify moisture conditions using the MOISTURE keyword. These defaults were altered based on input from Gregg Vickers and Bennie Terrell. Duff moisture values are from FOFEM.

Table 4.15.13. Moisture values, which alter fire intensity and consumption, have been predefined for four groups.

	Moisture Group				
Size Class	Extremely Dry	Very Dry	Dry	Wet	
0 – 0.25 in. (1-hr)	5	6	7	16	
0.25 – 1.0 in. (10-hr)	7	8	9	16	
1.0 – 3.0 in. (100-hr)	12	13	14	18	
> 3.0 in. (1000+ -hr)	17	18	20	50	
Duff	40	75	100	175	
Live	55	80	100	150	

4.15.7 Fire Behavior Fuel Models

Fire behavior fuel models (Anderson 1982) are used to estimate flame length and fire effects stemming from flame length. Fuel models are determined using fuel load and stand attributes (Model Description, Section 4.8) specific to each FFE variant. Stand management actions such as thinning and harvesting can abruptly increase fuel loads, resulting in the selection of alternative fuel models. At their discretion, FFE users have the option of:


- 1. defining and using their own fuel models;
- 2. defining the choice of fuel models and weights;
- 3. allowing the FFE variant to determine a weighted set of fuel models, or
- 4. allowing the FFE variant to determine a weighted set of fuel models, then using the dominant model.

This section explains the steps taken by the SN-FFE to follow the third of these four options.

When the combination of large and small fuel lies in the lower left corner of the graph shown in Figure 4.15.4, one or more low fuel fire models become candidate models. In other regions of the graph, other fire models may also be candidates. Tables 4.15.14 and 4.15.15 define which low fuel model(s) will become candidates. According to the logic of this table, only a single fuel model will be chosen for a given stand structure. Consequently, as a stand undergoes structural changes due to management or

maturation, the selected fire model can jump from one model selection to another, which in turn may cause abrupt changes in predicted fire behavior. To smooth out changes resulting from changes in fuel model, the strict logic is augmented by linear transitions between states that involve continuous variables (for example, percent canopy cover, average height, moisture levels, etc.).

If the STATFUEL keyword is selected, fuel model is determined by using only the closest-match fuel model identified by either Figure 4.15.4 or Table 4.15.15. The FLAMEADJ keyword allows the user to scale the calculated flame length or override the calculated flame length with a value they choose.

Figure 4.15.4. If large and small fuels map to fuel models 1 - 9, candidate fuel models are determined using the logic shown in Tables 4.15.14 and 4.15.15. Otherwise, fire behavior is based on the distance to the closest fuel models, identified by the dashed lines.

Table 4.15.14.When low fuel loads are present in the SN-FFE, fire behavior fuel models are determined using
forest type. This table shows how forest type is determined. A default of Hardwood is used when
the forest type code does not key to any of the listed forest types.

Forest Type	Definition
Hardwood	Forest type code of 504, 505, 510, 512, 515, 519, 520 or 997; Forest type code 501 or 503 and not Oak Savannah;
Hardwood-Pine	Forest type code of 401, 403, 404, 405, 406, 407, or 409
Pine-Hardwood	Forest type code of 103, 104, 141, 142, 161, 162, 163, 164, 165, 166, 167, 168, or 996, 70% or less BA in pine, and not Pine-Bluestem
Pine	Forest type code of 103, 104, 141, 142, 161, 162, 163, 164, 165, 166, 167, 168, or 996, more than 70% BA in pine, and not Pine-Bluestem
Pine-Bluestem	Forest type code of 162, less than fully stocked and average top height > 50 ft.
Oak Savannah	Forest type code of 501 or 503, less than fully stocked and average top height $>$ 30 ft.
Eastern Redcedar	Forest type code of 181 or 402
Bottomland Hardwoods	Forest type code of 602, 605, 701, 706, 708, or 807
Non-stocked	Forest type code of 999

Table 4.15.15. Relationship between forest type and fuel model selected.

Forest type		Fuel model
Hardwood, Hardwood-	0-3" fuel > 5 tons	5
Pine, and Pine-Hardwood	0-3" fuel <=5 tons and 3"+ moisture >20%	8
	0-3" fuel <= 5 tons and 3"+ moisture <= 20%	9
Pine and Bottomland	3"+ moisture >20%	8
Hardwoods	3"+ moisture <= 20%	9
Pine-Bluestem		2
Oak Savannah		2
Eastern Redcedar	Avg. ht. of redcedar > 6 ft.	4
	Avg. ht. of redcedar <= 6 ft.	6
Non-stocked		6

4.15.8 Other

Crown fire is not modeled in the SN-FFE. As a result, every fire is seen as a surface fire, and crown fire hazard indices, such as the torching index and crowning index, are not reported. Canopy base height and canopy bulk density are reported, but keep in mind that these calculations do not include hardwoods. Also, when using the FlameAdj keyword to alter predicted fire behavior, users can override the flame length only. No matter what users enter for percent crowning (zero, blank, positive value, this will be overwritten internally with zero. If users would like to simulate additional mortality due to crowning, the FixMort keyword can be used to do so. Lastly, because the fuel models selected depend on fuel moisture, two sets of fuel models are reported in the potential fire report – one for the severe case and one for the moderate.

4.16 Pacific Northwest Coast (PN)

4.16.1 Tree Species

The Pacific Northwest coast variant models the 37 tree species shown in Table 4.16.1. One additional category, 'other species', is modeled using quaking aspen.

 Table 4.16.1.
 Tree species simulated by the Pacific Northwest Coast variant.

Common Name	Scientific Name	Notes
Pacific silver fir	Abies amabilis	
white fir	Abies concolor	
grand fir	Abies grandis	
subalpine fir	Abies lasiocarpa	
California red fir / Shasta red fir	Abies magnifica	
Sitka spruce	Picea sitchensis	
noble fir	Abies procera	
Alaska-cedar / western larch	Chamaecyparis nootkatensis / Larix occidentalis	= Xanthocyparis nootkatensis
incense-cedar	Calocedrus decurrens	= Libocedrus decurrens
Engelmann spruce	Picea engelmannii	
lodgepole pine	Pinus contorta	
Jeffrey pine	Pinus jeffreyi	
sugar pine	Pinus lambertiana	
western white pine	Pinus monticola	
ponderosa pine	Pinus ponderosa	
Douglas-fir	Pseudotsuga menziesii	
coast redwood	Sequoia sempervirens	
western redcedar	Thuja plicata	
western hemlock	Tsuga heterophylla	
mountain hemlock	Tsuga mertensiana	
bigleaf maple	Acer macrophyllum	
red alder	Alnus rubra	
white alder / Pacific madrone	Alnus rhombifolia / Arbutus menziesii	
paper birch	Betula papyrifera	
giant chinkapin / tanoak	Castanopsis chrysophylla / Lithocarpus densiflorus	
quaking aspen	Populus tremuloides	
black cottonwood	Populus trichocarpa	
Oregon white oak / California black oak	Quercus garryana / Quercus kelloggii	
western juniper	Juniperus occidentalis	

Common Name	Scientific Name	Notes
subalpine larch	Larix Iyallii	
whitebark pine	Pinus albicaulis	
knobcone pine	Pinus attenuata	
Pacific yew	Taxus brevifolia	
Pacific dogwood	Cornus nuttallii	
hawthorn species	Crataegus spp.	
bitter cherry	Prunus emarginata	
willow species	Salix spp.	
other		= quaking aspen

4.16.2 Snags

The snag fall rate, snag decay, and snag height loss predictions were updated in the Region 6 variants of FFE, based on work by Kim Mellen, regional wildlife ecologist. Contact Stephanie Rebain (sarebain@fs.fed.us) for more information.

Snag bole volume is determined using the base FVS model equations. The coefficients shown in Table 4.16.2 are used to convert volume to biomass. Soft snags have 80 percent the density of hard snags.

Snag dynamics can be modified by the user using the SNAGBRK, SNAGFALL, SNAGDCAY and SNAGPBN keywords described in the FFE Model Description.

4.16.3 Fuels

Information on live fuels was developed using FOFEM 4.0 (Reinhardt and others 1997) and FOFEM 5.0 (Reinhardt and others 2001) and in cooperation with Jim Brown, USFS, Missoula, MT (pers. comm. 1995). A complete description of the Fuel Submodel is provided in Section 4 of the FFE Model Description.

Fuels are divided into to four categories: live tree bole, live tree crown, live herb and shrub, and dead surface fuel. Live herb and shrub fuel load and the initial dead suface fuel load are assigned based on the cover species with greatest basal area. If there is no basal area in the first simulation cycle (a 'bare ground' stand) then the initial fuel loads are assigned by the vegetation code provided with the STDINFO keyword. If the vegetation code is missing or does not identify an overstory species, the model uses a ponderosa pine cover type to assign the default fuels. If there is no basal area in other cycles of the simulation (after a simulated clearcut, for example) herb and shrub fuel biomass is assigned by the previous cover type.

Live Tree Bole

The fuel contribution of live trees is divided into two components: bole and crown. Bole volume is transferred to the FFE after being computed by the FVS model, then converted to biomass using wood density calculated from Table 4-3a of The Wood Handbook (Forest Products Laboratory 1999). The coefficient in Table 4.16.2 for Douglas-fir is based on 'Douglas-fir coast'. The value for juniper is from Chojnacky and Moisen (1993).

Species	Density (Ibs/ft ³)	Species	Density (Ibs/ft ³)
Pacific silver fir	24.9	mountain hemlock	26.2
white fir	23.1	bigleaf maple	27.4
grand fir	21.8	red alder	23.1
subalpine fir	19.3	white alder / Pacific madrone	36.2
California red fir / Shasta red fir	22.5	paper birch	29.9
Sitka spruce	20.6	giant chinkapin / tanoak	36.2
noble fir	23.1	quaking aspen	21.8
Alaska-cedar / western larch	26.2	black cottonwood	19.3
incense-cedar	21.8	Oregon white oak / California black oak	37.4
Engelmann spruce	20.6	western juniper	34.9
lodgepole pine	23.7	subalpine larch	29.9
Jeffrey pine	21.2	whitebark pine	22.5
sugar pine	21.2	knobcone pine	23.7
western white pine	22.5	Pacific yew	26.2
ponderosa pine	23.7	Pacific dogwood	27.4
Douglas-fir	28.1	hawthorn species	27.4
coast redwood	21.2	bitter cherry	29.3
western redcedar	19.3	willow	22.5
western hemlock	26.2	other species	21.8

Table 4.16.2.Woody density (ovendry lbs/green ft³) used in the PN-FFE variant.

Tree Crown

As described in the Section 2 of the FFE Model Description, equations in Brown and Johnston (1976) provide estimates of live and dead crown material for many species in the PN-FFE (Table 4.16.3).

Table 4.16.3.The crown biomass equations used in the PN-FFE. Species mappings are done for species for
which equations are not available.

Species	Species Mapping and Equation Source	
Pacific silver fir	grand fir; Brown and Johnston (1976)	
white fir	grand fir; Brown and Johnston (1976)	
grand fir	Brown and Johnston (1976)	
Subalpine fir	Brown and Johnston (1976)	
California red fir / Shasta red fir	subalpine fir; Brown and Johnston (1976)	
Sitka spruce	Engelmann spruce; Brown and Johnston (1976)	
noble fir	grand fir; Brown and Johnston (1976)	
Alaska-cedar / western larch	western larch; Brown and Johnston (1976)	
incense-cedar	based on western redcedar; Brown and Johnston (1976)	
Engelmann spruce	Brown and Johnston (1976)	
Lodgepole pine	Brown and Johnston (1976)	

Species	Species Mapping and Equation Source	
Jeffrey pine	western white pine; Brown and Johnston (1976)	
sugar pine	western white pine; Brown and Johnston (1976)	
western white pine	Brown and Johnston (1976)	
Ponderosa pine	Brown and Johnston (1976)	
Douglas-fir	Brown and Johnston (1976)	
coast redwood	western redcedar for biomass, western hemlock for partitioning (Mike Lander, pers. comm.; Brown and Johnston 1976)	
western redcedar	Brown and Johnston (1976)	
western hemlock	Brown and Johnston (1976)	
Mountain hemlock	Gholz (1979); western hemlock (Brown and Johnston 1976)	
bigleaf maple	Snell and Little (1983)	
red alder	Snell and Little (1983)	
white alder / Pacific madrone	madrone; Snell and Little (1983)	
paper birch	aspen: Smith (1985); Jenkins et. al. (2003); Loomis and Roussopoulos (1978)	
giant chinkapin / tanoak	tanoak; Snell and Little (1983), Snell (1979)	
quaking aspen	bigtooth aspen; Smith (1985), Jenkins et. al. (2003), Loomis and Roussopoulos (1978)	
black cottonwood	Smith (1985); Jenkins et. al. (2003); Loomis and Roussopoulos (1978)	
Oregon white oak / California black oak	tanoak; Snell and Little (1983), Snell (1979)	
western juniper	Chojnacky (1992), Grier and others (1992)	
subalpine larch	subalpine fir; Brown and Johnston (1976)	
whitebark pine	Johnston (1976)	
knobcone pine	lodgepole pine; Brown and Johnston (1976)	
Pacific yew	western redcedar; Brown and Johnston (1976)	
Pacific dogwood	flowering dogwood; Smith (1985); Jenkins et. al. (2003); Loomis and Roussopoulos (1978)	
hawthorn species	apple; Smith (1985); Jenkins et. al. (2003); Loomis and Roussopoulos (1978)	
bitter cherry	black cherry; Smith (1985); Jenkins et. al. (2003); Loomis and Roussopoulos (1978)	
willow	Smith (1985); Jenkins et. al. (2003); Loomis and Roussopoulos (1978)	
other species	quaking aspen; Smith (1985); Jenkins et. al. (2003); Loomis and Roussopoulos (1978)	

Live leaf lifespan is used to simulate the contribution of needles and leaves to annual litter fall. Dead foliage and branch materials also contribute to litter fall, at the rates shown in Table 4.16.4. Each year the inverse of the lifespan is added to the litter pool from each biomass category. Leaf lifespan data are based on Keane and others (1989) and in some cases were adapted at the model design workshop. Lifespans are taken from the FFE workshop, with western white pine and mountain hemlock mapped using ponderosa pine, and western hemlock and western redcedar based on Douglas-fir.

	Live	Dead			
Species	Foliage	Foliage	<0.25"	0.25–1"	> 1"
Pacific silver fir	7	2	5	5	15
white fir	7	2	5	5	15
grand fir	7	2	5	5	15
subalpine fir	7	2	5	5	15
California red fir / Shasta red fir	7	2	5	5	15
Sitka spruce	5	2	5	5	15
noble fir	7	2	5	5	15
Alaska-cedar / western larch	5	2	5	5	20
incense-cedar	5	1	5	5	20
Engelmann spruce	6	2	5	5	10
odgepole pine	3	2	5	5	15
Jeffrey pine	3	2	3	10	15
sugar pine	3	2	5	5	15
western white pine	4	2	5	5	15
ponderosa pine	4	2	5	5	15
Douglas-fir	5	2	5	5	15
coast redwood	5	3	10	15	20
western redcedar	5	2	5	5	20
western hemlock	5	3	10	15	15
mountain hemlock	4	2	5	5	15
bigleaf maple	1	1	10	15	15
red alder	1	1	10	15	15
white alder / Pacific madrone	1	1	10	15	15
paper birch	1	1	10	15	15
giant chinkapin / tanoak	1	1	10	15	15
quaking aspen	1	1	10	15	15
black cottonwood	1	1	10	15	15
Oregon white oak / California black oak	1	1	10	15	15
western juniper	4	2	5	5	15
subalpine larch	1	1	5	5	15
whitebark pine	3	3	10	15	15
knobcone pine	4	3	10	15	15
Pacific yew	7	3	10	15	20
Pacific dogwood	1	1	10	15	15
hawthorn species	1	1	10	15	15
bitter cherry	1	1	10	15	15
willow	1	1	10	15	15
other species	1	1	10	15	15

Table 4.16.4.Life span of live and dead foliage (yr) and dead branches for species modeled in the PN-FFE variant.

Live Herbs and Shrubs

Live herb and shrub fuels are modeled very simply by the FFE. Shrubs and herbs are assigned a biomass value based on total tree canopy cover and dominant overstory species (Table 4.16.5). When there are no trees, habitat type is used to infer the most likely dominant species of the previous stand (Model Description, Section 4.2). When total tree canopy cover is <10 percent, herb and shrub biomass is assigned an "initiating" value (the 'I' rows from Table 4.16.5). When canopy cover is >60 percent, biomass is assigned an "established" value (the 'E' rows). Live fuel loads are linearly interpolated when canopy cover is between 10 and 60 percent. Data are based on NI-FFE data taken from FOFEM 4.0 (Reinhardt and others 1997) with modifications provided by Jim Brown, USFS, Missoula, MT (pers. comm., 1995).

109

Table 4.16.5.Values (dry weight, tons/acre) for live fuels used in the PN-FFE. Biomass is linearly interpolated
between the "initiating" (I) and "established"(E) values when canopy cover is between 10 and 60
percent.

Species		Herbs	Shrubs	Notes
Pacific silver fir	Е	0.15	0.10	Use grand fir
	I	0.30	2.00	Ose granu ni
white fir	Е	0.15	0.10	Use grand fir
	I	0.30	2.00	Ose grand m
grand fir	Е	0.15	0.10	
granu ili	I	0.30	2.00	
subalpine fir	Е	0.15	0.10	Use grand fir
	I	0.30	2.00	Ose grand in
California red fir / Shasta	Е	0.15	0.10	Use grand fir
red fir	I	0.30	2.00	Ose grand in
Sitka apruca	E	0.30	0.20	Lies Engelmenn enruse
Sitka spruce	I	0.30	2.00	Use Engelmann spruce
nahla fir	Е	0.15	0.10	Lloo groud fir
noble fir	I	0.30	2.00	Use grand fir
Alaska-cedar / western	Е	0.20	0.20	Lloo western redeader
larch	I	0.40	2.00	Use western redcedar
	Е	0.20	0.20	Line Develop fir
ncense-cedar	I	0.40	2.00	Use Douglas-fir
Engelmann spruce	Е	0.30	0.20	
	I	0.30	2.00	
lodgepole pine	E	0.20	0.10	
	I	0.40	1.00	
Jeffrey pine	Е	0.20	0.25	
	I	0.25	0.10	Use ponderosa pine
	Е	0.20	0.25	
sugar pine	I	0.25	0.10	Use ponderosa pine
	Е	0.15	0.10	
western white pine	I	0.30	2.00	
	Е	0.20	0.25	
ponderosa pine	1	0.25	0.10	
	E	0.20	0.20	
Douglas-fir	1	0.40	2.00	
	E	0.20	0.20	
coast redwood	-	0.40	2.00	Use Douglas-fir
	E	0.20	0.20	
western redcedar	-	0.40	2.00	
	Ē	0.20	0.20	
western hemlock	-	0.40	2.00	
	E	0.40	0.10	
mountain hemlock	1	0.30	2.00	Use grand fir
	E	0.20	0.20	
bigleaf maple	1	0.20	2.00	Use Douglas-fir
	E	0.40	0.20	
red alder	-			Use Douglas-fir
		0.40	2.00	

Species		Herbs	Shrubs	Notes
white alder /	Е	0.20	0.20	Use Douglas-fir
Pacific madrone	I	0.40	2.00	Ose Douglas-III
paper birch	Е	0.20	0.20	Use Douglas-fir
	I	0.40	2.00	Use Douglas-III
giant chinkapin / tanoak	Е	0.25	0.25	Use quaking aspen
giant chinkapin/ tanoak	I	0.18	2.00	
quaking aspen	Е	0.25	0.25	
	I	0.18	2.00	
black cottonwood	Е	0.25	0.25	Use quaking aspen
DIACK COLICITWOOD	I	0.18	2.00	Use quaking aspen
Oregon white oak /	E	0.23	0.22	
California black oak	I	0.55	0.35	
western juniper	E	0.14	0.35	Ottmar photo carica Maluma I
western juniper	I.	0.10	2.06	Ottmar photo series, Volume I
aubalaina larab	Е	0.20	0.20	Use western larch
ubalpine larch	I	0.40	2.00	Use western larch
	bine E	0.20	0.10	
whitebark pine	I.	0.40	1.00	Use lodgepole pine
knohoono nino	Е	0.20	0.10	
knobcone pine	I	0.40	1.00	Use lodgepole pine
Desifie your	Е	0.20	0.20	Lies Douglas fir
Pacific yew	I	0.40	2.00	Use Douglas-fir
Desifie deguesed	Е	0.20	0.20	Lies Douglas fir
Pacific dogwood	I	0.40	2.00	Use Douglas-fir
hautharn anaoian	Е	0.25	0.25	
hawthorn species	I	0.18	2.00	Use quaking aspen
hittor charne	Е	0.25	0.25	
bitter cherry	I	0.18	2.00	Use quaking aspen
	Е	0.25	0.25	
willow	I	0.18	2.00	Use quaking aspen
	Е	0.25	0.25	
other species	I	0.18	2.00	Use quaking aspen

Dead Fuels

Initial default CWD pools are based on overstory species. When there are no trees, habitat type is used to infer the most likely dominant species of the previous stand (Model Description, Section 4.2). Default fuel loadings were provided by Jim Brown, USFS, Missoula, MT (pers. comm., 1995) and were reviewed and in some cases modified at the model workshop (Table 4.16.6). If tree canopy cover is <10 percent, the CWD pools are assigned an "initiating" value and if cover is >60 percent they are assign the "established" value. Fuels are linearly interpolated when canopy cover is between 10 and 60 percent. Initial fuel loads can be modified using the FUELINIT keyword.

					Size C	lass (in)			
Species		< 0.25	0.25 – 1	1 – 3	3 – 6	6 – 12	> 12	Litter	Duff
Pacific silver fir	Е	1.1	1.1	2.2	10.0	10.0	0.0	0.6	30.0
	Ι	0.7	0.7	1.6	4.0	4.0	0.0	0.3	12.0
white fir	Е	0.7	0.7	3.0	7.0	7.0	0.0	0.6	25.0
writte in	Ι	0.5	0.5	2.0	2.8	2.8	0.0	0.3	12.0
grand fir	Е	0.7	0.7	3.0	7.0	7.0	0.0	0.6	25.0
granu ni	Ι	0.5	0.5	2.0	2.8	2.8	0.0	0.3	12.0
aubalaina fir	Е	1.1	1.1	2.2	10.0	10.0	0.0	0.6	30.0
subalpine fir	Ι	0.7	0.7	1.6	4.0	4.0	0.0	0.3	12.0
California red fir /	Е	0.7	0.7	3.0	7.0	7.0	0.0	0.6	25.0
Shasta red fir	Ι	0.5	0.5	2.0	2.8	2.8	0.0	0.3	12.0
Sitka spruce	Е	0.7	0.7	3.0	7.0	7.0	10.0	1.0	35.0
Silka spruce	Ι	0.5	0.5	2.0	2.8	2.8	6.0	0.5	12.0
noble fir E I Alaska-cedar / western E arch I	Е	0.7	0.7	3.0	7.0	7.0	0.0	0.6	25.0
	Ι	0.5	0.5	2.0	2.8	2.8	0.0	0.3	12.0
Alaska-cedar / western	Е	2.2	2.2	5.2	15.0	20.0	15.0	1.0	35.0
larch	Ι	1.6	1.6	3.6	6.0	8.0	6.0	0.5	12.0
incense-cedar	Е	2.2	2.2	5.2	15.0	20.0	15.0	1.0	35.0
incense-cedar	Ι	1.6	1.6	3.6	6.0	8.0	6.0	0.5	12.0
Engelmann spruce	Е	2.2	2.2	5.2	15.0	20.0	15.0	1.0	35.0
	Ι	1.6	1.6	3.6	6.0	8.0	6.0	0.5	12.0
odgepole pine	Е	0.9	0.9	1.2	7.0	8.0	12.0	0.6	15.0
	Ι	0.6	0.7	0.8	2.8	3.2	0.0	0.3	12.0
	Е	0.7	0.7	1.6	2.5	2.5	0.0	1.4	5.0
Jeffrey pine	Ι	0.1	0.1	0.2	0.5	0.5	0.0	0.5	0.8
	Е	0.7	0.7	1.6	2.5	2.5	0.0	1.4	5.0
sugar pine	Ι	0.1	0.1	0.2	0.5	0.5	0.0	0.5	0.8
	Е	1.0	1.0	1.6	10.0	10.0	10.0	0.8	30.0
western white pine	Ι	0.6	0.6	0.8	6.0	6.0	6.0	0.4	12.0
	Е	0.7	0.7	1.6	2.5	2.5	0.0	1.4	5.0
ponderosa pine	Ι	0.1	0.1	0.2	0.5	0.5	0.0	0.5	0.8
D	Е	2.2	2.2	5.2	15.0	20.0	15.0	1.0	35.0
Douglas-fir	Ι	1.6	1.6	3.6	6.0	8.0	6.0	0.5	12.0
	Е	2.2	2.2	5.2	15.0	20.0	15.0	1.0	35.0
coast redwood	Ι	1.6	1.6	3.6	6.0	8.0	6.0	0.5	12.0
	Е	2.2	2.2	5.2	15.0	20.0	15.0	1.0	35.0
western redcedar	Ι	1.6	1.6	3.6	6.0	8.0	6.0	0.5	12.0
	Е	0.7	0.7	3.0	7.0	7.0	10.0	1.0	35.0
western hemlock	Ι	0.5	0.5	2.0	2.8	2.8	6.0	0.5	12.0
western hemlock	E	1.1	1.1	2.2	10.0	10.0	0.0	0.6	30.0
mountain hemlock	Ι	0.7	0.7	1.6	4.0	4.0	0.0	0.3	12.0
	E	2.2	2.2	5.2	15.0	20.0	15.0	1.0	35.0
bigleaf maple	Ī	1.6	1.6	3.6	6.0	8.0	6.0	0.5	12.0
	E	0.7	0.7	1.6	2.5	2.5	5.0	0.8	30.0
red alder	Ī	0.1	0.1	0.2	0.5	1.4	3.0	0.4	12.0

Table 4.16.6.	Canopy cover and cover type are used to assign default coarse woody debris (tons/acre) by size
	class for established (E) and initiating (I) stands.

					Size C	lass (in)			
Species		< 0.25	0.25 – 1	1 – 3	3 – 6	6 – 12	> 12	Litter	Duff
white alder /	Е	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
Pacific madrone	Ι	0.5	0.5	1.0	1.4	1.4	0.0	0.3	5.0
nonor hiroh	Е	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
paper birch	Ι	0.5	0.5	1.0	1.4	1.4	0.0	0.3	5.0
giant chinkapin / tanoak	Е	0.2	0.6	2.4	3.6	5.6	0.0	1.4	16.8
giant chinkapin / tanuak	Ι	0.1	0.4	5.0	2.2	2.3	0.0	0.8	5.6
quaking aspen	Е	0.2	0.6	2.4	3.6	5.6	0.0	1.4	16.8
quaking aspen	Ι	0.1	0.4	5.0	2.2	2.3	0.0	0.8	5.6
black cottonwood	Е	0.2	0.6	2.4	3.6	5.6	0.0	1.4	16.8
DIACK CULLUTIWOOU	Ι	0.1	0.4	5.0	2.2	2.3	0.0	0.8	5.6
Oregon white oak /	Е	0.7	0.7	0.8	1.2	1.2	0.5	1.4	0.0
California black oak	I	0.1	0.1	0.1	0.2	0.2	0.0	0.5	0.0
western juniper	Е	0.1	0.2	0.4	0.5	0.8	1.0	0.1	0.0
western juniper	Ι	0.2	0.4	0.2	0.0	0.0	0.0	0.2	0.0
subalpine larch	Е	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
	Ι	0.5	0.5	1.0	1.4	1.4	0.0	0.3	5.0
whitebark pipe	Е	1.1	1.1	2.2	10.0	10.0	0.0	0.6	30.0
whitebalk pille	Ι	0.7	0.7	1.6	4.0	4.0	0.0	0.3	12.0
whitebark pine	Е	0.9	0.9	1.2	7.0	8.0	12.0	0.6	15.0
	Ι	0.6	0.7	0.8	2.8	3.2	0.0	0.3	12.0
Pacific yew	Е	2.2	2.2	5.2	15.0	20.0	15.0	1.0	35.0
Facilic yew	Ι	1.6	1.6	3.6	6.0	8.0	6.0	0.5	12.0
Pacific dogwood	Е	2.2	2.2	5.2	15.0	20.0	15.0	1.0	35.0
	I	1.6	1.6	3.6	6.0	8.0	6.0	0.5	12.0
hawthorn species	Е	0.2	0.6	2.4	3.6	5.6	0.0	1.4	16.8
nawmon species	Ι	0.1	0.4	5.0	2.2	2.3	0.0	0.8	5.6
bitter cherry	Е	0.2	0.6	2.4	3.6	5.6	0.0	1.4	16.8
	Ι	0.1	0.4	5.0	2.2	2.3	0.0	0.8	5.6
willow	Е	0.2	0.6	2.4	3.6	5.6	0.0	1.4	16.8
willow	Ι	0.1	0.4	5.0	2.2	2.3	0.0	0.8	5.6
other species	Е	0.2	0.6	2.4	3.6	5.6	0.0	1.4	16.8
other species	Ι	0.1	0.4	5.0	2.2	2.3	0.0	0.8	5.6

4.16.4 Bark Thickness

Bark thickness contributes to predicted tree mortality from simulated fires The bark thickness multipliers in Table 4.16.7 are used to calculate single bark thickness (RMRS-GTR-116, Section 2.5.5). The bark thickness equation used in the mortality equation is unrelated to the bark thickness used in the base FVS model. Data are from FOFEM 5.0 (Reinhardt and others 2001).

Species	Multiplier (V _{sp})	Species	Multiplier (V _{sp})
Pacific silver fir	0.047	mountain hemlock	0.040
white fir	0.048	bigleaf maple	0.024
grand fir	0.046	red alder	0.026
subalpine fir	0.041	white alder / Pacific madrone	0.060
California red fir / Shasta red fir	0.039	paper birch	0.027
Sitka spruce	0.027	giant chinkapin / tanoak	0.045
noble fir	0.045	quaking aspen	0.044
Alaska-cedar / western larch	0.022	black cottonwood	0.044
incense-cedar	0.081	Oregon white oak /	0.029
Engelmann spruce	0.036	California black oak	
lodgepole pine	0.028	western juniper	0.025
Jeffrey pine	0.068	subalpine larch	0.050
sugar pine	0.072	whitebark pine	0.030
western white pine	0.035	knobcone pine	0.030
ponderosa pine	0.063	Pacific yew	0.025
Douglas-fir	0.063	Pacific dogwood	0.062
coast redwood	0.081	hawthorn species	0.038
western redcedar	0.035	bitter cherry	0.062
western hemlock	0.040	willow	0.041
		other species	0.044

Table 4.16.7.	Species specific	constants for	determining	single bark thickness.

4.16.5 Decay Rate

Decay of down material is simulated by applying loss rates to pieces by size class, as described in section 2.4.5 of the FFE documentation. Default decay rates on mesic sites (Table 4.16.8) are based on Abbott and Crossley (1982). A portion of the loss is added to the duff pool each year. Loss rates are for hard material; soft material in all size classes, except litter and duff, decays 10% faster.

Table 4.16.8.Default annual loss rates on mesic sites are applied based on size class. A portion of the loss is
added to the duff pool each year. Loss rates are for hard material. If present, soft material in all
size classes except litter and duff decays 10% faster.

Size Class (inches)	Annual Loss Rate	Proportion of Loss Becoming Duff
< 0.25	0.12	
0.25 – 1	0.12	
1 – 3	0.09	_
3-6		0.02
6 – 12	0.015	
> 12		
Litter	0.50	_
Duff	0.002	0.0

Decay rates on moist sites are one-third higher than the rates shown in Table 4.16.8; dry sites are one-third lower. The habitat code set by the STDINFO keyword determines whether a stand is defined as a moist, mesic or dry site, as shown in Table 4.16.9. These assignments were provided by Tom DeMeo and Kim Mellen, USFS, Portland, OR (pers. comm. 2003).

Table 4.16.9.	Habitat type - moisture regime relationships for the PN-FFE variant. Moisture classes modify
	default decay rates, as described in the text.

Habitat	_ .	Habitat	_ .	Habitat		Habitat	_ .
Type Code	Regime	Type Code	Regime	Type Code	Regime	Type Code	Regime
CDS221	Dry	CFS217	Wet	CHS132	Dry	CHS422	Wet
CDS255	Dry	CFS218	Mesic	CHS133	Dry	CHS423	Mesic
CDS651	Dry	CFS219	Mesic	CHS134	Dry	CHS512	Wet
CEF321	Dry	CFS311	Wet	CHS136	Wet	CHS521	Wet
CES212	Dry	CFS611	Dry	CHS137	Mesic	CHS610	Mesic
CES321	Dry	CFS612	Mesic	CHS138	Mesic	CHS621	Mesic
CES621	Dry	CHF112	Wet	CHS139	Mesic	CHS622	Dry
CFF111	Wet	CHF121	Wet	CHS221	Mesic	CHS623	Wet
CFF211	Dry	CHF122	Mesic	CHS222	Wet	CHS624	Wet
CFF311	Dry	CHF131	Wet	CHS321	Dry	CMS242	Wet
CFF611	Mesic	CHF132	Wet	CHS322	Dry	CSF111	Wet
CFF612	Wet	CHF211	Wet	CHS323	Wet	CSF121	Wet
CFF911	Mesic	CHF511	Dry	CHS324	Dry	CSF321	Wet
CFS156	Mesic	CHF911	Mesic	CHS331	Mesic	CSS221	Wet
CFS211	Dry	CHM111	Wet	CHS332	Dry	CSS321	Wet
CFS212	Mesic	CHS121	Mesic	CHS333	Dry	CSS521	Wet
CFS213	Mesic	CHS122	Mesic	CHS334	Dry	CSS522	Wet
CFS214	Dry	CHS123	Dry	CHS335	Wet	CSS621	Wet
CFS215	Mesic	CHS131	Mesic	CHS421	Mesic		

The decay rates of species groups may be modified by users, who can provide rates to the four decay classes shown in Table 4.16.10 using the FUELDCAY keyword. Users can also reassign species to different classes using the FUELPOOL keyword.

Table 4.16.10. Default wood decay classes used in the PN-FFE variant. Classes are from the Wood Handbook (1999). (1 = exceptionally high; 2 = resistant or very resistant; 3 = moderately resistant, and 4 = slightly or nonresistant)

Species	Decay Rate Class	Species	Decay Rate Class
Pacific silver fir	4	mountain hemlock	4
white fir	4	bigleaf maple	4
grand fir	4	red alder	4
subalpine fir	4	white alder / Pacific madrone	3
California red fir / Shasta red fir	4	paper birch	4
Sitka spruce	4	giant chinkapin / tanoak	4
noble fir	4	quaking aspen	4
Alaska-cedar / western larch	2	black cottonwood	4
incense-cedar	2	Oregon white oak / California black oak	2
Engelmann spruce	4	western juniper	2
lodgepole pine	4	subalpine larch	3
Jeffrey pine	4	whitebark pine	4
sugar pine	4	knobcone pine	4
western white pine	4	Pacific yew	1
ponderosa pine	4	Pacific dogwood	4
Douglas-fir	3	hawthorn species	4
coast redwood	2	bitter cherry	2
western redcedar	2	willow	4
western hemlock	4	other species	4

4.16.6 Moisture Content

Moisture content of the live and dead fuels is used to calculate fire intensity and fuel consumption (Model Description, Section 5.2.1). Users can choose from four predefined moisture groups (Table 4.16.11) or they can specify moisture conditions for each class using the MOISTURE keyword.

Table 4.16.11.	Moisture values, which alter fire intensity and consumption, have been predefined for four groups.
----------------	--

	Moisture Group						
Size Class	Very Dry	Dry	Moist	Wet			
0 – 0.25 in. (1-hr)	4	8	12	16			
0.25 – 1.0 in. (10-hr)	4	8	12	16			
1.0 – 3.0 in. (100-hr)	5	10	14	18			
> 3.0 in. (1000+ -hr)	10	15	25	50			
Duff	15	50	125	200			
Live	70	110	150	150			

4.16.7 Fire Behavior Fuel Models

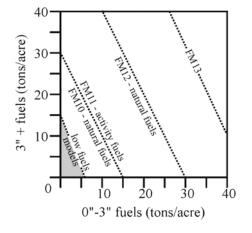
Fire behavior fuel models (Anderson 1982) are used to estimate flame length and fire effects stemming from flame length. Fuel models are determined using fuel load and stand attributes (Model Description, Section 4.16) specific to each FFE variant. In addition, stand management actions such as thinning and harvesting can abruptly increase fuel loads and can trigger 'Activity Fuels' conditions, resulting in the selection of alternative fuel models. At their discretion, FFE users have the option of:

- 1. defining and using their own fuel models;
- 2. defining the choice of fuel models and weights;
- 3. allowing the FFE variant to determine a weighted set of fuel models; or
- 4. allowing the FFE variant to determine a weighted set of fuel models, then using the dominant model.

This section explains the steps taken by the PN-FFE to follow the third of these four options. The fuel model selection logic is based on information provided at the PN-FFE design workshop. The appropriate fuel model is determined using measures of cover type, canopy closure (CC) and average size (QMD). Fuel model selection begins by summing the basal area for six species groups:

- Pacific silver fir, western hemlock, Sitka spruce, western redcedar (SF or WH or SS or RC in Figure 4.16.2);
- Douglas-fir, grand fir, western white pine (DF or GF or WP);
- mountain hemlock, subalpine fir, whitebark pine (MH or AF or WB);
- red alder (RA);
- lodgepole pine (LP); and
- Oregon white oak, tanoak (WO or TA).

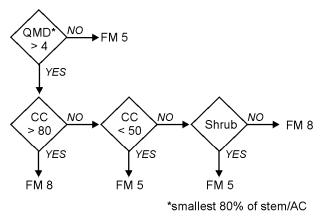
Species not included in the list are pooled with the Douglas-fir group. The two highest basal area groups are then selected and assigned weights in proportion to their basal area. For example, if a stand is 25% alder and 75% Douglas-fir, then the logic of the red alder rules will account for one quarter of the fuel selection and the logic for the Douglas-fir rules will account for the remainder.

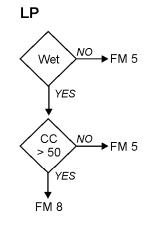

When the combination of large and small fuel lies in the lower left corner of the graph shown in Figure 4.16.1, one or more low fuel fire models become candidate models. In other regions of the graph, other fire models may also be candidates. The two dominant cover types described above, along with the flow diagrams in Figure 4.16.2, define which low fuel model(s) will become candidates. According to the logic of each of the figures, only a single fuel model will be chosen for a given stand structure. Consequently, as a stand undergoes structural changes due to management or maturation, the selected fire model can jump from one model selection to another, which in turn may cause abrupt changes in predicted fire behavior. To smooth out changes resulting from changes in fuel model, the strict logic is augmented by linear transitions between states that involve continuous variables (for example, percent canopy cover and QMD), as well as by the blended contribution of the two dominant cover types.

Some of the rules shown in Figure 4.16.2 include information about site-specific moisture regime or site-specific ground cover type. Moisture regime is based on the habitat code provided by the STDINFO keyword, using the classification shown in Table 4.16.9. Ground cover type is also based on habitat code, as shown in Table 4.16.12.

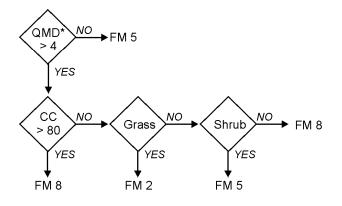
 Table 4.16.12.
 Habitat type – ground cover mapping for the PN-FFE variant. Ground cover classes modify default fuel model selection, as described in the text. Unclassified habitat groups default to 'Grass'.

Habitat Type Code	Ground Cover						
CDS221	Shrub	CFS217	Shrub	CHS132	Shrub	CHS422	Shrub
CDS255	Shrub	CFS218	Shrub	CHS133	Shrub	CHS423	Shrub
CDS651	Shrub	CFS219	Shrub	CHS134	Shrub	CHS512	Shrub
CEF321	Shrub	CFS311	Shrub	CHS136	Shrub	CHS521	Shrub
CES212	Shrub	CFS611	Shrub	CHS137	Shrub	CHS610	Shrub
CES321	Shrub	CFS612	Shrub	CHS138	Shrub	CHS621	Shrub
CES621	Shrub	CHF112	Forb	CHS139	Shrub	CHS622	Shrub
CFF111	Forb	CHF121	Forb	CHS221	Shrub	CHS623	Shrub
CFF211	Forb	CHF122	Forb	CHS222	Shrub	CHS624	Shrub
CFF311	Forb	CHF131	Forb	CHS321	Shrub	CMS242	Shrub
CFF611	Forb	CHF132	Forb	CHS322	Shrub	CSF111	Forb
CFF612	Forb	CHF211	Shrub	CHS323	Forb	CSF121	Forb
CFF911	_	CHF511	Forb	CHS324	Shrub	CSF321	Forb
CFS156	Shrub	CHF911	-	CHS331	Shrub	CSS221	Shrub
CFS211	Shrub	CHM111	Forb	CHS332	Shrub	CSS321	Shrub
CFS212	Shrub	CHS121	Shrub	CHS333	Shrub	CSS521	Shrub
CFS213	Shrub	CHS122	Shrub	CHS334	Shrub	CSS522	Shrub
CFS214	Shrub	CHS123	Shrub	CHS335	Shrub	CSS621	Shrub
CFS215	Shrub	CHS131	Shrub	CHS421	Shrub		

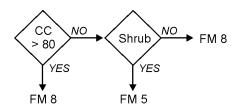

If the STATFUEL keyword is selected, fuel model is determined by using only the closest-match fuel model identified by either Figure 4.16.1 or Figure 4.16.2. The FLAMEADJ keyword allows the user to scale the calculated flame length or override the calculated flame length with a value they choose.

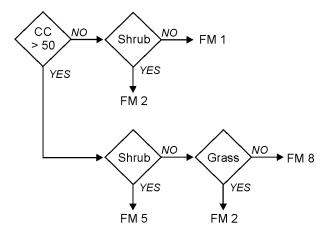


----- Fuel model, 100% weight


Figure 4.16.1. If large and small fuels map to the shaded area, candidate fuel models are determined using the logic shown in Figure 4.16.2. Otherwise, fire behavior is based on the closest fuel models, identified by the dashed lines, and on recent management (see Model Description Section 4.8 for further details).

SF or WH or SS or RC




DF or GF or WP

MH or AF or WB

WO or TA

RA

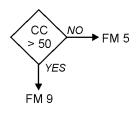


Figure 4.16.2. Fuel models for the PN-FFE variant.

4.17 Westside Cascades (WC)

4.17.1 Tree Species

The Westside Cascades variant models the 37 tree species shown in Table 4.17.1. One additional category, 'other species', is modeled using quaking aspen.

 Table 4.17.1.
 Tree species simulated by the Westside Cascades variant.

Common Name	Scientific Name	Notes
Pacific silver fir	Abies amabilis	
white fir	Abies concolor	
grand fir	Abies grandis	
subalpine fir	Abies lasiocarpa	
California red fir / Shasta red fir	Abies magnifica	
noble fir	Abies procera	
Alaska-cedar / western larch	Chamaecyparis nootkatensis / Larix occidentalis	= Xanthocyparis nootkatensis
incense-cedar	Calocedrus decurrens	= Libocedrus decurrens
Engelmann spruce / Sitka spruce	Picea engelmannii / Picea sitchensis	
lodgepole pine	Pinus contorta	
Jeffrey pine	Pinus jeffreyi	
sugar pine	Pinus lambertiana	
western white pine	Pinus monticola	
ponderosa pine	Pinus ponderosa	
Douglas-fir	Pseudotsuga menziesii	
coast redwood	Sequoia sempervirens	
western redcedar	Thuja plicata	
western hemlock	Tsuga heterophylla	
mountain hemlock	Tsuga mertensiana	
bigleaf maple	Acer macrophyllum	
red alder	Alnus rubra	
white alder / Pacific madrone	Alnus rhombifolia / Arbutus menziesii	
paper birch	Betula papyrifera	
giant chinkapin / tanoak	Castanopsis chrysophylla / Lithocarpus densiflorus	
quaking aspen	Populus tremuloides	
black cottonwood	Populus trichocarpa	
Oregon white oak / California black oak	Quercus garryana / Quercus kelloggii	
western juniper	Juniperus occidentalis	

Common Name	Scientific Name	Notes
subalpine larch	Larix Iyallii	
whitebark pine	Pinus albicaulis	
knobcone pine	Pinus attenuata	
Pacific yew	Taxus brevifolia	
Pacific dogwood	Cornus nuttallii	
hawthorn species	Crataegus spp.	
bitter cherry	Prunus emarginata	
willow species	Salix spp.	
other species		= quaking aspen

4.17.2 Snags

The snag fall rate, snag decay, and snag height loss predictions were modified in the Region 6 variants of FFE, based on work by Kim Mellen, regional wildlife ecologist. Contact Stephanie Rebain (sarebain@fs.fed.us) for more information.

Snag bole volume is determined using the base FVS model equations. The coefficients shown in Table 4.17.2 are used to convert volume to biomass. Soft snags have 80 percent the density of hard snags.

Snag dynamics can be modified by the user using the SNAGBRK, SNAGFALL, SNAGDCAY and SNAGPBN keywords described in the FFE Model Description.

4.17.3 Fuels

Information on live fuels was developed using FOFEM 4.0 (Reinhardt and others 1997) and FOFEM 5.0 (Reinhardt and others 2001) and in cooperation with Jim Brown, USFS, Missoula, MT (pers. comm. 1995). A complete description of the Fuel Submodel is provided in Section 4 of the FFE Model Description.

Fuels are divided into to four categories: live tree bole, live tree crown, live herb and shrub, and dead surface fuel. Live herb and shrub fuel load and the initial dead surface fuel load are assigned based on the cover species with greatest basal area. If there is no basal area in the first simulation cycle (a 'bare ground' stand) then the initial fuel loads are assigned by the vegetation code provided with the STDINFO keyword. If the vegetation code is missing or does not identify an overstory species, the model uses a ponderosa pine cover type to assign the default fuels. If there is no basal area in other cycles of the simulation (after a simulated clearcut, for example) herb and shrub fuel biomass is assigned by the previous cover type.

Live Tree Bole

The fuel contribution of live trees is divided into two components: bole and crown. Bole volume is transferred to the FFE after being computed by the FVS model, then converted to biomass using wood density calculated from Table 4-3a of The Wood Handbook (Forest Products Laboratory 1999). The coefficient in Table 4.17.2 for Douglas-fir is based on 'Douglas-fir coast'. The value for juniper is from Chojnacky and Moisen (1993).

Species	Density (Ibs/ft ³)	Species	Density (lbs/ft ³)	
Pacific silver fir	24.9	bigleaf maple	27.4	
white fir	23.1	red alder	23.1	
grand fir	21.8	white alder / Pacific madrone	36.2	
subalpine fir	19.3	paper birch	29.9	
California red fir / Shasta red fir	22.5	giant chinkapin / tanoak	36.2	
noble fir	23.1	quaking aspen	21.8	
Alaska-cedar / western larch	26.2	black cottonwood	19.3	
incense-cedar	21.8	Oregon white oak /	37.4	
Engelmann spruce / Sitka spruce	20.6	California black oak		
lodgepole pine	23.7	western juniper	34.9	
Jeffrey pine	21.2	subalpine larch	29.9	
sugar pine	21.2	whitebark pine	22.5	
western white pine	22.5	knobcone pine	23.7	
ponderosa pine	23.7	Pacific yew	26.2	
Douglas-fir	28.1	Pacific dogwood	27.4	
coast redwood	21.2	hawthorn species	27.4	
western redcedar	19.3	bitter cherry	29.3	
western hemlock	26.2	willow species	22.5	
mountain hemlock	26.2	other species	21.8	

Table 4.17.2.	Woody density (ovend	ry lbs/green ft ³) used	in the WC-FFE variant.

Tree Crown

As described in the Section 2 of the FFE Model Description, equations in Brown and Johnston (1976) provide estimates of live and dead crown material for many species in the WC-FFE (Table 4.17.3).

Table 4.17.3.The crown biomass equations used in the WC-FFE. Species mappings are done for species for
which equations are not available.

Species	Species Mapping and Equation Source
Pacific silver fir	grand fir; Brown and Johnston (1976)
white fir	grand fir; Brown and Johnston (1976)
grand fir	Brown and Johnston (1976)
Subalpine fir	Brown and Johnston (1976)
California red fir / Shasta red fir	subalpine fir; Brown and Johnston (1976)
noble fir	grand fir; Brown and Johnston (1976)
Alaska-cedar / western larch	western larch; Brown and Johnston (1976)
incense-cedar	based on western redcedar; Brown and Johnston (1976)
Engelmann spruce / Sitka spruce	Brown and Johnston (1976)
Lodgepole pine	Brown and Johnston (1976)
Jeffrey pine	western white pine; Brown and Johnston (1976)
sugar pine	western white pine; Brown and Johnston (1976)

Species	Species Mapping and Equation Source
western white pine	Brown and Johnston (1976)
Ponderosa pine	Brown and Johnston (1976)
Douglas-fir	Brown and Johnston (1976)
coast redwood	western redcedar for biomass, western hemlock for partitioning (Mike Lander, pers. comm.; Brown and Johnston 1976)
western redcedar	Brown and Johnston (1976)
western hemlock	Brown and Johnston (1976)
Mountain hemlock	Gholz (1979); western hemlock (Brown and Johnston 1976)
bigleaf maple	Snell and Little (1983)
red alder	Snell and Little (1983)
white alder / Pacific madrone	madrone; Snell and Little (1983)
paper birch	aspen: Smith (1985); Jenkins et. al. (2003); Loomis and Roussopoulos (1978)
giant chinkapin / tanoak	tanoak; Snell and Little (1983), Snell (1979)
quaking aspen	bigtooth aspen; Smith (1985), Jenkins et. al. (2003), Loomis and Roussopoulos (1978)
black cottonwood	Smith (1985); Jenkins et. al. (2003); Loomis and Roussopoulos (1978)
Oregon white oak / California black oak	tanoak; Snell and Little (1983), Snell (1979)
western juniper	Chojnacky (1992), Grier and others (1992)
subalpine larch	subalpine fir; Brown and Johnston (1976)
whitebark pine	Johnston (1976)
knobcone pine	lodgepole pine; Brown and Johnston (1976)
Pacific yew	western redcedar; Brown and Johnston (1976)
Pacific dogwood	flowering dogwood; Smith (1985); Jenkins et. al. (2003); Loomis and Roussopoulos (1978)
hawthorn species	apple; Smith (1985); Jenkins et. al. (2003); Loomis and Roussopoulos (1978)
bitter cherry	black cherry; Smith (1985); Jenkins et. al. (2003); Loomis and Roussopoulos (1978)
willow species	Smith (1985); Jenkins et. al. (2003); Loomis and Roussopoulos (1978)
other species	quaking aspen; Smith (1985); Jenkins et. al. (2003); Loomis and Roussopoulos (1978)

Live leaf lifespan is used to simulate the contribution of needles and leaves to annual litter fall. Dead foliage and branch materials also contribute to litter fall, at the rates shown in Table 4.17.4. Each year the inverse of the lifespan is added to the litter pool from each biomass category. Leaf lifespan data are based on Keane and others (1989) and in some cases were adapted at the model design workshop. Lifespans are taken from the FFE workshop, with western white pine and mountain hemlock mapped using ponderosa pine, and western hemlock and western redcedar based on Douglas-fir.

	Live	Dead			
Species	Foliage	Foliage <0.25"		0.25–1"	> 1"
Pacific silver fir	7	2	5	5	15
white fir	7	2	5	5	15
grand fir	7	2	5	5	15
subalpine fir	7	2	5	5	15
California red fir / Shasta red fir	7	2	5	5	15
noble fir	7	2	5	5	15
Alaska-cedar / western larch	5	2	5	5	20
incense-cedar	5	1	5	5	20
Engelmann spruce / Sitka spruce	6	2	5	5	10
lodgepole pine	3	2	5	5	15
Jeffrey pine	3	2	3	10	15
sugar pine	3	2	5	5	15
western white pine	4	2	5	5	15
ponderosa pine	4	2	5	5	15
Douglas-fir	5	2	5	5	15
coast redwood	5	3	10	15	20
western redcedar	5	2	5	5	20
western hemlock	5	3	10	15	15
mountain hemlock	4	2	5	5	15
bigleaf maple	1	1	10	15	15
red alder	1	1	10	15	15
white alder / Pacific madrone	1	1	10	15	15
paper birch	1	1	10	15	15
giant chinkapin / tanoak	1	1	10	15	15
quaking aspen	1	1	10	15	15
black cottonwood	1	1	10	15	15
Oregon white oak / California black oak	1	1	10	15	15
western juniper	4	2	5	5	15
subalpine larch	1	1	5	5	15
whitebark pine	3	3	10	15	15
knobcone pine	4	3	10	15	15
Pacific yew	7	3	10	15	20
Pacific dogwood	1	1	10	15	15
hawthorn species	1	1	10	15	15
bitter cherry	1	1	10	15	15
willow species	1	1	10	15	15
other species	1	1	10	15	15

Table 4.17.4.Life span of live and dead foliage (yr) and dead branches for species modeled in the WC-FFE variant.

Live Herbs and Shrubs

Live herb and shrub fuels are modeled very simply by the FFE. Shrubs and herbs are assigned a biomass value based on total tree canopy cover and dominant overstory species (Table 4.17.5). When there are no trees, habitat type is used to infer the most likely dominant species of the previous stand (Model Description, Section 4.2). When total tree canopy cover is <10 percent, herb and shrub biomass is assigned an "initiating" value (the 'I' rows from Table 4.17.5). When canopy cover is >60 percent, biomass is assigned an "established" value (the 'E' rows). Live fuel loads are linearly interpolated when canopy cover is between 10 and 60 percent. Data are based on NI-FFE data taken from FOFEM 4.0 (Reinhardt and others 1997) with modifications provided by Jim Brown, USFS, Missoula, MT (pers. comm., 1995).

125

Table 4.17.5.Values (dry weight, tons/acre) for live fuels used in the WC-FFE. Biomass is linearly interpolated
between the "initiating" (I) and "established"(E) values when canopy cover is between 10 and 60
percent.

Species		Herbs	Shrubs	Notes
Pacific silver fir	Е	0.15	0.10	Use grand fir
	I	0.30	2.00	Ose grand III
white fir	Е	0.15	0.10	Use grand fir
	I	0.30	2.00	Use grand m
grand fir	Е	0.15	0.10	
granu ni	I	0.30	2.00	
subalpine fir	Е	0.15	0.10	Use grand fir
	I	0.30	2.00	Ose grand in
California red fir / Shasta	E	0.15	0.10	Lico grand fir
red fir	I	0.30	2.00	Use grand fir
noble fir	E	0.15	0.10	Lloo grand fir
	I	0.30	2.00	Use grand fir
Alaska-cedar / western	Е	0.20	0.20	Llee western redeeder
larch	I	0.40	2.00	Use western redcedar
inconce coder	Е	0.20	0.20	Lieo Dougloo fir
incense-cedar	I	0.40	2.00	Use Douglas-fir
Engelmann spruce /	Е	0.30	0.20	
Sitka spruce	I	0.30	2.00	
	Е	0.20	0.10	
odgepole pine	I	0.40	1.00	
	Е	0.20	0.25	
Jeffrey pine	I	0.25	0.10	Use ponderosa pine
	Е	0.20	0.25	
sugar pine	I	0.25	0.10	Use ponderosa pine
	E	0.15	0.10	
western white pine	I	0.30	2.00	
, ·	Е	0.20	0.25	
ponderosa pine	I	0.25	0.10	
D "	Е	0.20	0.20	
Douglas-fir	I	0.40	2.00	
	Е	0.20	0.20	
coast redwood	I	0.40	2.00	Use Douglas-fir
	Е	0.20	0.20	
western redcedar	I	0.40	2.00	
	Е	0.20	0.20	
western hemlock	I	0.40	2.00	
	Е	0.15	0.10	
mountain hemlock	I	0.30	2.00	Use grand fir
	E	0.20	0.20	
bigleaf maple	I	0.40	2.00	Use Douglas-fir
	E	0.20	0.20	
red alder	-	0.40	2.00	Use Douglas-fir
white alder / Pacific	E	0.20	0.20	
madrone	-	0.40	2.00	Use Douglas-fir
	<u> </u>	0.40	2.00	

Species		Herbs	Shrubs	Notes
paper birch	Е	0.20	0.20	Use Douglas-fir
paper birch	I	0.40	2.00	Ose Douglas-III
giant chinkapin / tanoak	Е	0.25	0.25	Use quaking aspen
giant chinkapin / tanoak	I	0.18	2.00	
quaking aspen	Е	0.25	0.25	
	I	0.18	2.00	
black cottonwood	Е	0.25	0.25	Use quaking aspen
DIACK COLIONWOOD	I	0.18	2.00	Use quaking aspen
Oregon white oak /	Е	0.23	0.22	
California black oak	I	0.55	0.35	
western juniper	Е	0.14	0.35	Ottmar photo series, Volume I
western juniper	I	0.10	2.06	Ottinal photo series, volume i
subalpine larch	Е	0.20	0.20	Use western larch
	I	0.40	2.00	Use western larch
whitebark pine	Е	0.20	0.10	Use lodgepole pine
whitebark pille	I	0.40	1.00	
knobcone pine	Е	0.20	0.10	Use lodgepole pine
	I	0.40	1.00	
Pacific yew	Е	0.20	0.20	Use Douglas-fir
Facilic yew	I	0.40	2.00	Ose Douglas-III
Pacific dogwood	Е	0.20	0.20	Use Douglas-fir
Facilie dogwood	I	0.40	2.00	Ose Douglas-III
howthern energies	Е	0.25	0.25	Use quaking aspen
hawthorn species	I.	0.18	2.00	Use quaking aspen
hittor chorny	Е	0.25	0.25	
bitter cherry	I.	0.18	2.00	Use quaking aspen
	Е	0.25	0.25	
willow species	I.	0.18	2.00	Use quaking aspen
other energies	Е	0.25	0.25	
other species	I	0.18	2.00	Use quaking aspen

Dead Fuels

Initial default CWD pools are based on overstory species. When there are no trees, habitat type is used to infer the most likely dominant species of the previous stand (Model Description, Section 4.2). Default fuel loadings were provided by Jim Brown, USFS, Missoula, MT (pers. comm., 1995) and were reviewed and in some cases modified at the model workshop (Table 4.17.6). If tree canopy cover is <10 percent, the CWD pools are assigned an "initiating" value and if cover is >60 percent they are assign the "established" value. Fuels are linearly interpolated when canopy cover is between 10 and 60 percent. Initial fuel loads can be modified using the FUELINIT keyword.

					Size C	lass (in)			
Species		< 0.25	0.25 – 1	1 – 3	3 – 6	6 – 12	> 12	Litter	Duff
Desifie silver fir	Е	1.1	1.1	2.2	10.0	10.0	0.0	0.6	30.0
Pacific silver fir	Ι	0.7	0.7	1.6	4.0	4.0	0.0	0.3	12.0
white fir	Е	0.7	0.7	3.0	7.0	7.0	0.0	0.6	25.0
	Ι	0.5	0.5	2.0	2.8	2.8	0.0	0.3	12.0
grand fir	Е	0.7	0.7	3.0	7.0	7.0	0.0	0.6	25.0
grana m	I	0.5	0.5	2.0	2.8	2.8	0.0	0.3	12.0
subalpine fir	Е	1.1	1.1	2.2	10.0	10.0	0.0	0.6	30.0
		0.7	0.7	1.6	4.0	4.0	0.0	0.3	12.0
California red fir /	Е	0.7	0.7	3.0	7.0	7.0	0.0	0.6	25.0
Shasta red fir		0.5	0.5	2.0	2.8	2.8	0.0	0.3	12.0
noble fir	Е	0.7	0.7	3.0	7.0	7.0	0.0	0.6	25.0
	I	0.5	0.5	2.0	2.8	2.8	0.0	0.3	12.0
Alaska-cedar / western	E	2.2	2.2	5.2	15.0	20.0	15.0	1.0	35.0
larch	<u> </u>	1.6	1.6	3.6	6.0	8.0	6.0	0.5	12.0
incense-cedar	E	2.2	2.2	5.2	15.0	20.0	15.0	1.0	35.0
	<u> </u>	1.6	1.6	3.6	6.0	8.0	6.0	0.5	12.0
Engelmann spruce /	E	2.2	2.2	5.2	15.0	20.0	15.0	1.0	35.0
Sitka spruce	<u> </u>	1.6	1.6	3.6	6.0	8.0	6.0	0.5	12.0
lodgepole pine	E	0.9	0.9	1.2	7.0	8.0	12.0	0.6	15.0
	<u> </u>	0.6	0.7	0.8	2.8	3.2	0.0	0.3	12.0
Jeffrey pine	E	0.7	0.7	1.6	2.5	2.5	0.0	1.4	5.0
sugar pine		0.1	0.1	0.2	0.5	0.5	0.0	0.5	0.8
	E	0.7	0.7	1.6 0.2	2.5	2.5	0.0	1.4	5.0
		0.1	0.1		0.5	0.5	0.0	0.5	0.8
western white pine	E	1.0 0.6	1.0	1.6 0.8	10.0 6.0	10.0 6.0	10.0 6.0	0.8	30.0
	E	0.8	0.6 0.7	1.6	2.5	2.5	0.0	0.4 1.4	12.0 5.0
ponderosa pine		0.7 0.1	0.7	0.2	2.5 0.5	2.5 0.5	0.0	1.4 0.5	5.0 0.8
	E	2.2	2.2	5.2	15.0	20.0	15.0	1.0	35.0
Douglas-fir	Г 	2.2 1.6	1.6	3.6	6.0	20.0 8.0	6.0	0.5	12.0
	E	2.2	2.2	5.2	15.0	20.0	15.0	1.0	35.0
coast redwood	1	1.6	1.6	3.6	6.0	20.0 8.0	6.0	0.5	12.0
	E	2.2	2.2	5.2	15.0	20.0	15.0	1.0	35.0
western redcedar	1	1.6	1.6	3.6	6.0	8.0	6.0	0.5	12.0
	E	0.7	0.7	3.0	7.0	7.0	10.0	1.0	35.0
western hemlock	1	0.5	0.5	2.0	2.8	2.8	6.0	0.5	12.0
	E	1.1	1.1	2.2	10.0	10.0	0.0	0.6	30.0
mountain hemlock	-	0.7	0.7	1.6	4.0	4.0	0.0	0.0	12.0
	E	2.2	2.2	5.2	15.0	20.0	15.0	1.0	35.0
bigleaf maple	L I	1.6	1.6	3.6	6.0	20.0 8.0	6.0	0.5	12.0
	E	0.7	0.7	1.6	2.5	2.5	5.0	0.8	30.0
red alder	1	0.1	0.1	0.2	0.5	1.4	3.0	0.4	12.0
white alder /	E	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
Pacific madrone	I	0.9	0.5	1.0	3.5 1.4	3.5 1.4	0.0	0.0	5.0

Table 4.17.6.Canopy cover and cover type are used to assign default coarse woody debris (tons/acre) by size
class for established (E) and initiating (I) stands.

					Size C	lass (in)			
Species		< 0.25	0.25 – 1	1 – 3	3 – 6	6 – 12	> 12	Litter	Duff
nonar hirah	Е	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
paper birch	Ι	0.5	0.5	1.0	1.4	1.4	0.0	0.3	5.0
giant chinkanin / tanoak	Е	0.2	0.6	2.4	3.6	5.6	0.0	1.4	16.8
giant chinkapin / tanoak	Ι	0.1	0.4	5.0	2.2	2.3	0.0	0.8	5.6
guaking aspon	Е	0.2	0.6	2.4	3.6	5.6	0.0	1.4	16.8
quaking aspen	Ι	0.1	0.4	5.0	2.2	2.3	0.0	0.8	5.6
black cottonwood	Е	0.2	0.6	2.4	3.6	5.6	0.0	1.4	16.8
DIACK COLLOTIWOOU	Ι	0.1	0.4	5.0	2.2	2.3	0.0	0.8	5.6
Oregon white oak /	Е	0.7	0.7	0.8	1.2	1.2	0.5	1.4	0.0
California black oak	Ι	0.1	0.1	0.1	0.2	0.2	0.0	0.5	0.0
western juniper	Е	0.1	0.2	0.4	0.5	0.8	1.0	0.1	0.0
western juniper	I	0.2	0.4	0.2	0.0	0.0	0.0	0.2	0.0
aubalaina larab	Е	0.9	0.9	1.6	3.5	3.5	0.0	0.6	10.0
subalpine larch	I	0.5	0.5	1.0	1.4	1.4	0.0	0.3	5.0
whitebark pine	Е	1.1	1.1	2.2	10.0	10.0	0.0	0.6	30.0
	I	0.7	0.7	1.6	4.0	4.0	0.0	0.3	12.0
lunch ann a bha	Е	0.9	0.9	1.2	7.0	8.0	12.0	0.6	15.0
knobcone pine	I	0.6	0.7	0.8	2.8	3.2	0.0	0.3	12.0
Desifia your	Е	2.2	2.2	5.2	15.0	20.0	15.0	1.0	35.0
Pacific yew	Ι	1.6	1.6	3.6	6.0	8.0	6.0	0.5	12.0
Desifie degwood	Е	2.2	2.2	5.2	15.0	20.0	15.0	1.0	35.0
Pacific dogwood	I	1.6	1.6	3.6	6.0	8.0	6.0	0.5	12.0
howthorn encoice	Е	0.2	0.6	2.4	3.6	5.6	0.0	1.4	16.8
hawthorn species	Ι	0.1	0.4	5.0	2.2	2.3	0.0	0.8	5.6
bitter cherry	Е	0.2	0.6	2.4	3.6	5.6	0.0	1.4	16.8
	Ι	0.1	0.4	5.0	2.2	2.3	0.0	0.8	5.6
willow oposioo	Е	0.2	0.6	2.4	3.6	5.6	0.0	1.4	16.8
willow species	Ι	0.1	0.4	5.0	2.2	2.3	0.0	0.8	5.6
other encoice	Е	0.2	0.6	2.4	3.6	5.6	0.0	1.4	16.8
other species	Ι	0.1	0.4	5.0	2.2	2.3	0.0	0.8	5.6

4.17.4 Bark Thickness

Bark thickness contributes to predicted tree mortality from simulated fires The bark thickness multipliers in Table 4.17.7 are used to calculate single bark thickness (RMRS-GTR-116, Section 2.5.5). The bark thickness equation used in the mortality equation is unrelated to the bark thickness used in the base FVS model. Data are from FOFEM 5.0 (Reinhardt and others 2001).

Species	Multiplier (V _{sp})	Species	Multiplier (V _{sp})	
Pacific silver fir	0.047	bigleaf maple	0.024	
white fir	0.048	red alder	0.026	
grand fir	0.046	white alder / Pacific madrone	0.060	
subalpine fir	0.041	paper birch	0.027	
California red fir / Shasta red fir	0.039	giant chinkapin / tanoak	0.045	
noble fir	0.045	quaking aspen	0.044	
Alaska-cedar / western larch	0.022	black cottonwood	0.044	
incense-cedar	0.081	Oregon white oak / California black oak	0.029	
Engelmann spruce / Sitka spruce	0.036	western juniper	0.025	
lodgepole pine	0.028	subalpine larch	0.050	
Jeffrey pine	0.068	whitebark pine	0.030	
sugar pine	0.072	knobcone pine	0.030	
western white pine	0.035	Pacific yew	0.025	
ponderosa pine	0.063	Pacific dogwood	0.062	
Douglas-fir	0.063	hawthorn species	0.038	
coast redwood	0.081	bitter cherry	0.062	
western redcedar	0.035	willow species	0.041	
western hemlock	0.040	other species	0.044	
mountain hemlock	0.040			

 Table 4.17.7.
 Species specific constants for determining single bark thickness.

4.17.5 Decay Rate

Decay of down material is simulated by applying loss rates to pieces by size class, as described in section 2.4.5 of the FFE documentation. Default decay rates on mesic sites (Table 4.17.8) are based on Abbott and Crossley (1982). A portion of the loss is added to the duff pool each year. Loss rates are for hard material; soft material in all size classes, except litter and duff, decays 10% faster.

Table 4.17.8.Default annual loss rates on mesic sites are applied based on size class. A portion of the loss is
added to the duff pool each year. Loss rates are for hard material. If present, soft material in all
size classes except litter and duff decays 10% faster.

Size Class (inches)	Annual Loss Rate	Proportion of Loss Becoming Duff
< 0.25	0.12	
0.25 – 1	0.12	
1 – 3	0.09	
3 – 6		0.02
6 – 12	0.015	
> 12		
Litter	0.50	_
Duff	0.002	0.0

Decay rates on moist sites are one-third higher than the rates shown in Table 4.17.8; dry sites are one-third lower. The habitat code set by the STDINFO keyword determines whether a stand is defined as a moist, mesic or dry site, as shown in Table 4.17.9. These assignments were provided by Tom DeMeo and Kim Mellen, USFS, Portland, OR (pers. comm. 2003).

Habitat Type Code	Regime						
CAF211	Dry	CFS229	Dry	CHF222	Moist	CHS611	Moist
CAF311	Mesic	CFS230	Mesic	CHF250	Moist	CHS612	Dry
CAG211	Mesic	CFS231	Moist	CHF321	Mesic	CHS613	Moist
CAG311	Mesic	CFS251	Dry	CHF421	Moist	CHS614	Mesic
CAG312	Mesic	CFS252	Dry	CHM121	Moist	CHS615	Mesic
CAS211	Moist	CFS253	Moist	CHS111	Dry	CHS625	Mesic
CAS411	Dry	CFS254	Mesic	CHS113	Moist	CHS626	Mesic
CDC711	Dry	CFS255	Mesic	CHS114	Mesic	CMF250	Moist
CDC712	Mesic	CFS256	Mesic	CHS124	Mesic	CMF251	Moist
CDC713	Dry	CFS257	Mesic	CHS125	Mesic	CMS114	Dry
CDS211	Dry	CFS258	Mesic	CHS126	Mesic	CMS210	Mesic
CDS212	Dry	CFS259	Mesic	CHS127	Mesic	CMS216	Dry
CDS213	Dry	CFS260	Mesic	CHS128	Mesic	CMS218	Mesic
CDS641	Dry	CFS351	Moist	CHS129	Mesic	CMS221	Moist
CFC251	Dry	CFS352	Moist	CHS130	Mesic	CMS223	Moist
CFC311	Dry	CFS550	Moist	CHS135	Mesic	CMS241	Moist
CFF152	Moist	CFS551	Moist	CHS140	Dry	CMS244	Mesic
CFF153	Moist	CFS552	Moist	CHS141	Dry	CMS245	Dry
CFF154	Moist	CFS554	Dry	CHS223	Dry	CMS246	Dry
CFF250	Mesic	CFS555	Dry	CHS224	Dry	CMS250	Moist
CFF253	Mesic	CFS651	Moist	CHS251	Mesic	CMS251	Mesic
CFF312	Dry	CFS652	Mesic	CHS325	Dry	CMS252	Mesic
CFF450	Moist	CFS653	Dry	CHS326	Mesic	CMS253	Moist
CFM111	Moist	CFS654	Mesic	CHS327	Dry	CMS254	Dry
CFS110	Mesic	CHC212	Dry	CHS328	Dry	CMS255	Moist
CFS151	Mesic	CHC213	Dry	CHS351	Dry	CMS350	Moist
CFS152	Mesic	CHF111	Moist	CHS352	Dry	CMS351	Mesic
CFS154	Mesic	CHF123	Moist	CHS353	Dry	CMS352	Mesic
CFS216	Mesic	CHF124	Moist	CHS354	Moist	CMS353	Moist
CFS221	Dry	CHF125	Moist	CHS355	Mesic	CMS450	Moist
CFS222	Mesic	CHF133	Mesic	CHS511	Moist	CMS612	Mesic
CFS223	Dry	CHF134	Mesic	CHS513	Moist	CWF211	Dry
CFS224	Mesic	CHF135	Moist	CHS522	Moist	CWS521	Dry
CFS225	Moist	CHF151	Moist	CHS523	Moist	CWS522	Dry
CFS226	Moist	CHF221	Dry	CHS524	Moist		

Table 4.17.9.	Habitat type - moisture regime relationships for the WC-FFE variant. Moisture classes modify
	default decay rates, as described in the text.

The decay rates of species groups may be modified by users, who can provide rates to the four decay classes shown in Table 4.17.10 using the FUELDCAY keyword. Users can also reassign species to different classes using the FUELPOOL keyword.

Table 4.17.10.	Default wood decay classes used in the WC-FFE variant. Classes are from the Wood Handbook						
	(1999). (1 = exceptionally high; 2 = resistant or very resistant; 3 = moderately resistant, and 4 =						
	slightly or nonresistant).						

Species	Decay Rate Class	Species	Decay Rate Class
Pacific silver fir	4	bigleaf maple	4
white fir	4	red alder	4
grand fir	4	white alder / Pacific madrone	3
subalpine fir	4	paper birch	4
California red fir/Shasta red fir	4	giant chinkapin / tanoak	4
noble fir	4	quaking aspen	4
Alaska-cedar / western larch	2	black cottonwood	4
incense-cedar	2	Oregon white oak /	2
Engelmann spruce / Sitka spruce	4	California black oak	
lodgepole pine	4	western juniper	2
Jeffrey pine	4	subalpine larch	3
sugar pine	4	whitebark pine	4
western white pine	4	knobcone pine	4
ponderosa pine	4	Pacific yew	1
Douglas-fir	3	Pacific dogwood	4
coast redwood	2	hawthorn species	4
western redcedar	2	bitter cherry	2
western hemlock	4	willow species	4
mountain hemlock	4	other species	4

4.17.6 Moisture Content

Moisture content of the live and dead fuels is used to calculate fire intensity and fuel consumption (Model Description, Section 5.2.1). Users can choose from four predefined moisture groups (Table 4.17.11) or they can specify moisture conditions for each class using the MOISTURE keyword.

	Moisture Group						
Size Class	Very Dry	Dry	Moist	Wet			
0 – 0.25 in. (1-hr)	4	8	12	16			
0.25 – 1.0 in. (10-hr)	4	8	12	16			
1.0 – 3.0 in. (100-hr)	5	10	14	18			
> 3.0 in. (1000+ -hr)	10	15	25	50			
Duff	15	50	125	200			
Live	70	110	150	150			

Table 4.17.11.	Moisture values, which alter fire intensity and consumption, have been predefined for four group	s.
----------------	--	----

4.17.7 Fire Behavior Fuel Models

Fire behavior fuel models (Anderson 1982) are used to estimate flame length and fire effects stemming from flame length. Fuel models are determined using fuel load and stand attributes (Model Description, Section 4.17) specific to each FFE variant. In addition, stand management actions such as thinning and harvesting can abruptly increase fuel loads and can trigger 'Activity Fuels' conditions, resulting in the selection of alternative fuel models. At their discretion, FFE users have the option of:

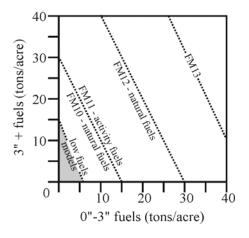
- 1. defining and using their own fuel models;
- 2. defining the choice of fuel models and weights;
- 3. allowing the FFE variant to determine a weighted set of fuel models; or
- 4. allowing the FFE variant to determine a weighted set of fuel models, then using the dominant model.

This section explains the steps taken by the WC-FFE to follow the third of these four options. The fuel model selection logic is based on information provided at the WC-FFE design workshop. The appropriate fuel model is determined using measures of cover type, canopy closure (CC) and average size (QMD). Fuel model selection begins by summing the basal area for six species groups:

- Pacific silver fir, western hemlock, Engelmann spruce/Sitka spruce, western redcedar (SF or WH or SS or RC in Figure 4.17.2);
- Douglas-fir, grand fir, western white pine (DF or GF or WP);
- mountain hemlock, subalpine fir, whitebark pine (MH or AF or WB);
- red alder (RA);
- lodgepole pine (LP); and
- Oregon white oak, tanoak (WO or TA).

Species not included in the list are pooled with the Douglas-fir group. The two highest basal area groups are then selected and assigned weights in proportion to their basal area. For example, if a stand is 25% alder and 75% Douglas-fir, then the logic of the red alder rules will account for one quarter of the fuel selection and the logic for the Douglas-fir rules will account for the remainder.

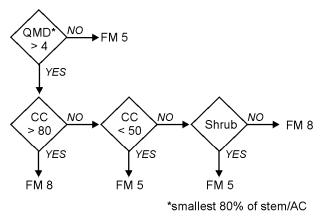
When the combination of large and small fuel lies in the lower left corner of the graph shown in Figure 4.17.1, one or more low fuel fire models become candidate models. In other regions of the graph, other fire models may also be candidates. The two dominant cover types described above, along with the flow


diagrams in Figure 4.17.2, define which low fuel model(s) will become candidates. According to the logic of each of the figures, only a single fuel model will be chosen for a given stand structure. Consequently, as a stand undergoes structural changes due to management or maturation, the selected fire model can jump from one model selection to another, which in turn may cause abrupt changes in predicted fire behavior. To smooth out changes resulting from changes in fuel model, the strict logic is augmented by linear transitions between states that involve continuous variables (for example, percent canopy cover and QMD), as well as by the blended contribution of the two dominant cover types.

Some of the rules shown in Figure 4.17.2 include information about site-specific moisture regime or site-specific ground cover type. Moisture regime is based on the habitat code provided by the STDINFO keyword, using the classification shown in Table 4.17.9. Ground cover type is also based on habitat code, as shown in Table 4.17.12.

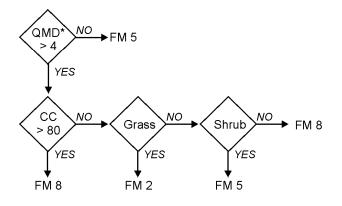
Table 4.17.12.Habitat type – ground cover mapping for the WC-FFE variant. Ground cover classes modify
default fuel model selection, as described in the text. Unclassified habitat groups default to
'Grass'.

Habitat Type Code	Regime						
CAF211	_	CFS229	Shrub	CHF222	Forb	CHS611	Shrub
CAF311	_	CFS230	Shrub	CHF250	Forb	CHS612	Shrub
CAG211	_	CFS231	Shrub	CHF321	Forb	CHS613	Shrub
CAG311	_	CFS251	Shrub	CHF421	Forb	CHS614	Shrub
CAG312	_	CFS252	Shrub	CHM121	Forb	CHS615	Shrub
CAS211	_	CFS253	Shrub	CHS111	Shrub	CHS625	Shrub
CAS411	_	CFS254	Shrub	CHS113	Shrub	CHS626	Shrub
CDC711	Shrub	CFS255	Shrub	CHS114	Shrub	CMF250	Forb
CDC712	Shrub	CFS256	Shrub	CHS124	Shrub	CMF251	_
CDC713	Shrub	CFS257	Shrub	CHS125	Shrub	CMS114	Shrub
CDS211	Grass	CFS258	Shrub	CHS126	Shrub	CMS210	Shrub
CDS212	Grass	CFS259	Shrub	CHS127	Shrub	CMS216	Shrub
CDS213	Shrub	CFS260	Shrub	CHS128	Shrub	CMS218	Shrub
CDS641	Shrub	CFS351	Shrub	CHS129	Shrub	CMS221	Shrub
CFC251	Shrub	CFS352	Shrub	CHS130	Shrub	CMS223	Shrub
CFC311	Forb	CFS550	Shrub	CHS135	Shrub	CMS241	Shrub
CFF152	Forb	CFS551	Shrub	CHS140	Shrub	CMS244	Shrub
CFF153	Forb	CFS552	Shrub	CHS141	Shrub	CMS245	Shrub
CFF154	Forb	CFS554	Shrub	CHS223	Shrub	CMS246	Shrub
CFF250	Forb	CFS555	Shrub	CHS224	Forb	CMS250	Shrub
CFF253	Forb	CFS651	Shrub	CHS251	Shrub	CMS251	Shrub
CFF312	Forb	CFS652	Shrub	CHS325	Shrub	CMS252	Shrub
CFF450	Forb	CFS653	Shrub	CHS326	Shrub	CMS253	Shrub
CFM111	Forb	CFS654	Shrub	CHS327	Shrub	CMS254	Shrub
CFS110	Shrub	CHC212	Shrub	CHS328	Shrub	CMS255	Shrub
CFS151	Shrub	CHC213	Shrub	CHS351	Shrub	CMS350	Shrub
CFS152	Shrub	CHF111	Forb	CHS352	Shrub	CMS351	Shrub
CFS154	Shrub	CHF123	Forb	CHS353	Shrub	CMS352	Shrub
CFS216	Shrub	CHF124	Forb	CHS354	Shrub	CMS353	-
CFS221	Shrub	CHF125	Forb	CHS355	Shrub	CMS450	Shrub
CFS222	Shrub	CHF133	Forb	CHS511	Shrub	CMS612	Shrub
CFS223	Shrub	CHF134	Forb	CHS513	Shrub	CWF211	Shrub
CFS224	Shrub	CHF135	Forb	CHS522	Shrub	CWS521	Shrub
CFS225	Shrub	CHF151	Forb	CHS523	Shrub	CWS522	Shrub
CFS226	Shrub	CHF221	Forb	CHS524	Shrub		

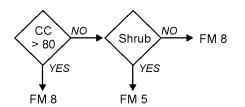

If the STATFUEL keyword is selected, fuel model is determined by using only the closest-match fuel model identified by either Figure 4.17.1 or Figure 4.17.2. The FLAMEADJ keyword allows the user to scale the calculated flame length or override the calculated flame length with a value they choose.

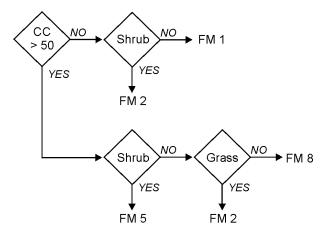


----- Fuel model, 100% weight


Figure 4.17.1. If large and small fuels map to the shaded area, candidate fuel models are determined using the logic shown in Figure 4.17.2. Otherwise, fire behavior is based on the closest fuel models, identified by the dashed lines, and on recent management (see Model Description Section 4.8 for further details).

SF or WH or SS or RC




DF or GF or WP

MH or AF or WB

WO or TA

RA

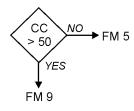


Figure 4.17.2. Fuel models for the WC-FFE variant.

4.18 Southern Oregon/Northern California (SO)

4.18.1 Tree Species

The expanded Southern Oregon/Northern California (SORNEC) variant models the 31 tree species shown in Table 4.18.1. Two additional categories, 'other softwoods' and 'other hardwoods', are modeled using Douglas-fir and quaking aspen.

Common Name	Scientific Name	Notes
western white pine	Pinus monticola	
sugar pine	Pinus lambertiana	
Douglas-fir	Pseudotsuga menziesii	
white fir	Abies concolor	
mountain hemlock	Tsuga mertensiana	
incense-cedar	Calocedrus decurrens	= Libocedrus decurrens
lodgepole pine	Pinus contorta	
Engelmann spruce	Picea engelmannii	
Shasta red fir	Abies magnifica	
ponderosa pine / Jeffrey pine	Pinus ponderosa / Pinus jeffreyi	
western juniper	Juniperus occidentalis	
grand fir	Abies grandis	
subalpine fir	Abies lasiocarpa	
pacific silver fir	Abies amabilis	
noble fir	Abies procera	
whitebark pine	Pinus albicaulis	
western larch	Larix occidentalis	
western redcedar	Thuja plicata	
western hemlock	Tsuga heterophylla	
pacific yew	Taxus brevifolia	
white alder	Alnus rhombifolia	
red alder	Alnus rubra	
bigleaf maple	Acer macrophyllum	
quaking aspen	Populus tremuloides	
black cottonwood	Populus trichocarpa	
bitter cherry	Prunus emarginata	
Oregon white oak	Quercus garryana	
willow species	Salix spp.	
giant chinkapin	Chrysolepis chrysophylla	=Castanopsis chrysophyl
curl-leaf mt. mahogany	Cercocarpus ledifolius	

 Table 4.18.1.
 Tree species simulated by the Southern Oregon/Northern California variant.

birch-leaf mt. mahogany	Cercocarpus betuloides	= C. montanus var. glaber?
other softwoods		= Douglas-fir
other hardwoods		= quaking aspen

4.18.2 Snags

Oregon –

The snag fall rate, snag decay, and snag height loss predictions were modified in the Region 6 (Oregon) portion of the SO variant of FFE, based on work by Kim Mellen, regional wildlife ecologist. Contact Stephanie Rebain (sarebain@fs.fed.us) for more information.

Snag bole volume is determined using the base FVS model equations. The coefficients shown in Table 4.18.4 are used to convert volume to biomass. Soft snags have 80 percent the density of hard snags.

Snag dynamics can be modified by the user using the SNAGBRK, SNAGFALL, SNAGDCAY and SNAGPBN keywords described in the FFE Model Description.

California -

The majority of the snag model logic is based on unpublished data provided by Bruce Marcot (USFS, Portland, OR, unpublished data 1995). Snag fall parameters were originally developed at the SO-FFE workshop. Parameters for California stands were revised at a California variants workshop (Stephanie Rebain, pers. comm., February 2003) A complete description of the Snag Submodel is provided in section 2.3 of the FFE documentation.

Four variables are used to modify the Snag Submodel for the different species in the SO-FFE variant:

- a multiplier to modify the species' fall rate
- a multiplier to modify the time required for snags to decay from a "hard" to "soft" state
- the maximum number of years that snags will remain standing
- a multiplier to modify the species' height loss rate

These variables are summarized in Tables 4.18.2 and 4.18.3.

Snag bole volume is determined using the base FVS model equations. The coefficients shown in Table 4.18.4 are used to convert volume to biomass. Soft snags have 80 percent the density of hard snags.

Table 4.18.2.Default snag fall, snag height loss and soft-snag characteristics for 20" DBH snags in the
California portion of the SO-FFE variant. These characteristics are derived directly from the
parameter values shown in Table 4.18.3. Snags from California stands never become soft, and
height loss in snags from California stands stops at 50% of the original height.

Species	95% Fallen (yr)	All Down (yr)	50% Height (yr)	Hard-to- Soft (yr)
California				
western white pine	25	100	20	_
sugar pine	25	100	20	-
Douglas-fir	35	100	20	_
white fir	35	100	20	_

mountain hemlock 25 100 20 - incense-cedar 45 100 20 - lodgepole pine 25 100 20 - Engelmann spruce 35 100 20 - Shasta red fir 35 100 20 - ponderosa pine / Jeffrey pine 25 100 20 - western juniper 45 150 20 - grand fir 35 100 20 - subalpine fir 35 100 20 - noble fir 35 100 20 - western larch 35 100 20 - western redcedar 45 100 20 - western hemlock 25 100 20 - pacific yew 45 100 20 - western hemlock 25 100 20 - pacific yew 45 1					
lodgepole pine 25 100 20 Engelmann spruce 35 100 20 Shasta red fir 35 100 20 ponderosa pine / Jeffrey pine 25 100 20 western juniper 45 150 20 grand fir 35 100 20 subalpine fir 35 100 20 pacific silver fir 35 100 20 noble fir 35 100 20 western larch 35 100 20 western hemlock 25 100 20 western hemlock 25 100 20 western hemlock 25 100 20 pacific yew 45 100 20 white alder 25 100 20 pacific yew 25	mountain hemlock	25	100	20	-
Engelmann spruce 35 100 20 - Shasta red fir 35 100 20 - ponderosa pine / Jeffrey pine 25 100 20 - western juniper 45 150 20 - grand fir 35 100 20 - subalpine fir 35 100 20 - pacific silver fir 35 100 20 - noble fir 35 100 20 - western larch 35 100 20 - western nedcedar 45 100 20 - western hemlock 25 100 20 - western hemlock 25 100 20 - pacific yew 45 100 20 - white alder 25 100 20 - iglad maple 25 100 20 - bigleaf maple 25 10	incense-cedar	45	100	20	-
Shasta red fir 35 100 20 - ponderosa pine / Jeffrey pine 25 100 20 - western juniper 45 150 20 - grand fir 35 100 20 - subalpine fir 35 100 20 - pacific silver fir 35 100 20 - noble fir 35 100 20 - western larch 35 100 20 - western redcedar 45 100 20 - western hemlock 25 100 20 - western hemlock 25 100 20 - western hemlock 25 100 20 - pacific yew 45 100 20 - white alder 25 100 20 - red alder 25 100 20 - bigleaf maple 25 100 20 - bitter cherry 25 100 20	lodgepole pine	25	100	20	-
ponderosa pine / Jeffrey pine 25 100 20 - western juniper 45 150 20 - grand fir 35 100 20 - subalpine fir 35 100 20 - pacific silver fir 35 100 20 - noble fir 35 100 20 - whitebark pine 25 100 20 - western larch 35 100 20 - western nedcedar 45 100 20 - western hemlock 25 100 20 - western hemlock 25 100 20 - white alder 25 100 20 - red alder 25 100 20 - bigleaf maple 25 100 20 - bitter cherry 25 100 20 - willow species 25 100<	Engelmann spruce	35	100	20	-
western juniper4515020-grand fir3510020-subalpine fir3510020-pacific silver fir3510020-noble fir3510020-whitebark pine2510020-western larch3510020-western redcedar4510020-western hemlock2510020-pacific yew4510020-white alder2510020-red alder2510020-bigleaf maple2510020-quaking aspen2510020-bitter cherry2510020-oregon white oak2510020-willow species2510020-birch-leaf mt. mahogany2510020-other softwoods3510020-	Shasta red fir	35	100	20	-
grand fir3510020-subalpine fir3510020-pacific silver fir3510020-noble fir3510020-whitebark pine2510020-western larch3510020-western redcedar4510020-western hemlock2510020-pacific yew4510020-white alder2510020-red alder2510020-pacific yew4510020-white alder2510020-red alder2510020-pusing aspen2510020-bigleaf maple2510020-bitter cherry2510020-willow species2510020-giant chinkapin2510020-birch-leaf mt. mahogany2510020-other softwoods3510020-	ponderosa pine / Jeffrey pine	25	100	20	-
subalpine fir 35 100 20 - pacific silver fir 35 100 20 - noble fir 35 100 20 - whitebark pine 25 100 20 - western larch 35 100 20 - western redcedar 45 100 20 - western hemlock 25 100 20 - pacific yew 45 100 20 - white alder 25 100 20 - red alder 25 100 20 - upacking aspen 25 100 20 - guaking aspen 25 100 20 - black cottonwood 25 100 20 - willow species 25 100 20 - willow species 25 100 20 - giant chinkapin 25 100	western juniper	45	150	20	-
pacific silver fir3510020-noble fir3510020-whitebark pine2510020-western larch3510020-western redcedar4510020-western hemlock2510020-pacific yew4510020-white alder2510020-red alder2510020-bigleaf maple2510020-bigleaf maple2510020-bitter cherry2510020-Oregon white oak2510020-willow species2510020-giant chinkapin2510020-birch-leaf mt. mahogany2510020-other softwoods3510020-other softwoods3510020-	grand fir	35	100	20	-
noble fir3510020-whitebark pine2510020-western larch3510020-western redcedar4510020-western hemlock2510020-pacific yew4510020-white alder2510020-red alder2510020-bigleaf maple2510020-plack cottonwood2510020-bitter cherry2510020-Oregon white oak2510020-willow species2510020-giant chinkapin2510020-birch-leaf mt. mahogany2510020-other softwoods3510020-other softwoods3510020-other softwoods3510020-other softwoods3510020-	subalpine fir	35	100	20	-
whitebark pine2510020-western larch3510020-western redcedar4510020-western hemlock2510020-pacific yew4510020-white alder2510020-red alder2510020-bigleaf maple2510020-quaking aspen2510020-bitter cherry2510020-Oregon white oak2510020-willow species2510020-giant chinkapin2510020-birch-leaf mt. mahogany2510020-other softwoods3510020-	pacific silver fir	35	100	20	-
western larch3510020-western redcedar4510020-western hemlock2510020-pacific yew4510020-white alder2510020-red alder2510020-bigleaf maple2510020-quaking aspen2510020-biack cottonwood2510020-bitter cherry2510020-oregon white oak2510020-giant chinkapin2510020-birch-leaf mt. mahogany2510020-other softwoods3510020-other softwoods3510020-	noble fir	35	100	20	-
western redcedar4510020-western hemlock2510020-pacific yew4510020-white alder2510020-red alder2510020-bigleaf maple2510020-quaking aspen2510020-black cottonwood2510020-bitter cherry2510020-Oregon white oak2510020-willow species2510020-giant chinkapin2510020-curl-leaf mt. mahogany2510020-birch-leaf mt. mahogany2510020-other softwoods3510020-	whitebark pine	25	100	20	-
western hemlock2510020-pacific yew4510020-white alder2510020-red alder2510020-bigleaf maple2510020-quaking aspen2510020-black cottonwood2510020-bitter cherry2510020-Oregon white oak2510020-willow species2510020-giant chinkapin2510020-birch-leaf mt. mahogany2510020-other softwoods3510020-	western larch	35	100	20	-
pacific yew4510020-white alder2510020-red alder2510020-bigleaf maple2510020-quaking aspen2510020-black cottonwood2510020-bitter cherry2510020-Oregon white oak2510020-willow species2510020-giant chinkapin2510020-birch-leaf mt. mahogany2510020-other softwoods3510020-	western redcedar	45	100	20	-
white alder 25 100 20 - red alder 25 100 20 - bigleaf maple 25 100 20 - quaking aspen 25 100 20 - black cottonwood 25 100 20 - bitter cherry 25 100 20 - Oregon white oak 25 100 20 - willow species 25 100 20 - giant chinkapin 25 100 20 - curl-leaf mt. mahogany 25 100 20 - birch-leaf mt. mahogany 25 100 20 - other softwoods 35 100 20 -	western hemlock	25	100	20	-
red alder2510020-bigleaf maple2510020-quaking aspen2510020-black cottonwood2510020-bitter cherry2510020-Oregon white oak2510020-willow species2510020-giant chinkapin2510020-curl-leaf mt. mahogany2510020-birch-leaf mt. mahogany3510020-	pacific yew	45	100	20	-
bigleaf maple2510020-quaking aspen2510020-black cottonwood2510020-bitter cherry2510020-Oregon white oak2510020-willow species2510020-giant chinkapin2510020-curl-leaf mt. mahogany2510020-birch-leaf mt. mahogany2510020-other softwoods3510020-	white alder	25	100	20	-
quaking aspen 25 100 20 - black cottonwood 25 100 20 - bitter cherry 25 100 20 - Oregon white oak 25 100 20 - willow species 25 100 20 - giant chinkapin 25 100 20 - curl-leaf mt. mahogany 25 100 20 - birch-leaf mt. mahogany 25 100 20 - other softwoods 35 100 20 -	red alder	25	100	20	-
black cottonwood 25 100 20 - bitter cherry 25 100 20 - Oregon white oak 25 100 20 - willow species 25 100 20 - giant chinkapin 25 100 20 - curl-leaf mt. mahogany 25 100 20 - birch-leaf mt. mahogany 25 100 20 - other softwoods 35 100 20 -	bigleaf maple	25	100	20	-
bitter cherry2510020-Oregon white oak2510020-willow species2510020-giant chinkapin2510020-curl-leaf mt. mahogany2510020-birch-leaf mt. mahogany2510020-other softwoods3510020-	quaking aspen	25	100	20	-
Oregon white oak 25 100 20 - willow species 25 100 20 - giant chinkapin 25 100 20 - curl-leaf mt. mahogany 25 100 20 - birch-leaf mt. mahogany 25 100 20 - other softwoods 35 100 20 -	black cottonwood	25	100	20	-
willow species 25 100 20 - giant chinkapin 25 100 20 - curl-leaf mt. mahogany 25 100 20 - birch-leaf mt. mahogany 25 100 20 - other softwoods 35 100 20 -	bitter cherry	25	100	20	-
giant chinkapin 25 100 20 - curl-leaf mt. mahogany 25 100 20 - birch-leaf mt. mahogany 25 100 20 - other softwoods 35 100 20 -	Oregon white oak	25	100	20	-
curl-leaf mt. mahogany 25 100 20 - birch-leaf mt. mahogany 25 100 20 - other softwoods 35 100 20 -	willow species	25	100	20	-
birch-leaf mt. mahogany2510020-other softwoods3510020-	giant chinkapin	25	100	20	-
other softwoods 35 100 20 -	curl-leaf mt. mahogany	25	100	20	-
	birch-leaf mt. mahogany	25	100	20	-
other hardwoods 25 100 20 -	other softwoods	35	100	20	-
	other hardwoods	25	100	20	_

Table 4.18.3.Default snag fall, snag height loss and soft-snag multipliers for the California portion of the SO-
FFE. These parameters result in the values shown in Table 4.18.2. (These three columns are the
default values used by the SNAGFALL, SNAGBRK and SNAGDCAY keywords, respectively.)

Species	Snag Fall	Height Ioss	Hard-to- Soft
California	i an	1033	0011
	1.24	1 40	
western white pine	1.24	1.49 1.49	_
sugar pine		-	_
Douglas-fir	0.88	1.49	_
white fir	0.88	1.49	-
mountain hemlock	1.24	1.49	-
incense-cedar	0.69	1.49	_
lodgepole pine	1.24	1.49	-
Engelmann spruce	0.88	1.49	-
Shasta red fir	0.88	1.49	-
ponderosa pine / Jeffrey pine	1.24	1.49	-
western juniper	0.69	1.49	-
grand fir	0.88	1.49	-
subalpine fir	0.88	1.49	-
pacific silver fir	0.88	1.49	-
noble fir	0.88	1.49	-
whitebark pine	1.24	1.49	-
western larch	0.88	1.49	-
western redcedar	0.69	1.49	-
western hemlock	1.24	1.49	-
pacific yew	0.69	1.49	-
white alder	1.24	1.49	-
red alder	1.24	1.49	_
bigleaf maple	1.24	1.49	_
quaking aspen	1.24	1.49	_
black cottonwood	1.24	1.49	_
bitter cherry	1.24	1.49	_
Oregon white oak	1.24	1.49	_
willow species	1.24	1.49	_
giant chinkapin	1.24	1.49	_
curl-leaf mt. mahogany	1.24	1.49	_
birch-leaf mt. mahogany	1.24	1.49	_
other softwoods	0.88	1.49	_
other hardwoods	1.24	1.49	_

4.18.3 Fuels

Information on live fuels was developed using FOFEM 4.0 (Reinhardt and others 1997) and FOFEM 5.0 (Reinhardt and others 2001) and in cooperation with Jim Brown, USFS, Missoula, MT (pers. comm.

1995). A complete description of the Fuel Submodel is provided in Section 2.4 of the FFE Documentation.

Fuels are divided into to four categories: live tree bole, live tree crown, live herb and shrub, and dead surface fuel. Live herb and shrub fuel load and the initial dead surface fuel load are assigned based on the cover species with greatest basal area. If there is no basal area in the first simulation cycle (a 'bare ground' stand) then the initial fuel loads are assigned by the vegetation code provided with the STDINFO keyword. If the vegetation code is missing or does not identify an overstory species, the model uses a ponderosa pine cover type to assign the default fuels. If there is no basal area in other cycles of the simulation (after a simulated clearcut, for example) herb and shrub fuel biomass is assigned by the previous cover type.

Live Tree Bole

The fuel contribution of live trees is divided into two components: bole and crown. Bole volume is transferred to the FFE after being computed by the FVS model, then converted to biomass using wood density calculated from table 4-3a of The Wood Handbook (Forest Products Laboratory 1999). The coefficient in Table 4.18.4 for Douglas-fir is based on 'Douglas-fir Interior west.' The value for juniper is from Chojnacky and Moisen (1993).

Table 4.18.4.Woody density (ovendry $lbs/green ft^3$) used in the SO-FFE variant.

Species	Density (lbs/ft ³)
western white pine	22.5
sugar pine	21.2
Douglas-fir	28.7
white fir	23.1
mountain hemlock	26.2
incense-cedar	21.8
lodgepole pine	23.7
Engelmann spruce	20.6
Shasta red fir, subalpine fir	22.5
ponderosa pine / Jeffrey pine	23.7
western juniper	34.9
grand fir	21.8
subalpine fir	19.3
pacific silver fir	24.9
noble fir	23.1
whitebark pine	22.5
western larch	29.9
western redcedar	19.3
western hemlock	26.2
pacific yew	26.2
white alder	23.1
red alder	23.1
bigleaf maple	27.4

quaking aspen	21.8
black cottonwood	19.3
bitter cherry	29.3
Oregon white oak	37.4
willow species	22.5
giant chinkapin	36.2
curl-leaf mt. mahogany	21.8
birch-leaf mt. mahogany	21.8
other softwoods	28.7
other hardwoods	21.8

Tree Crown

As described in the Section 2.2 of the FFE documentation, equations in Brown and Johnston (1976) provide estimates of live and dead crown material for most species in the SO-FFE. Some species mappings are used, as shown below in Table 4.18.5. Mountain hemlock biomass is based on Gholz (1979), using western hemlock equations from Brown and Johnston to partition the biomass and also to provide estimates for trees under one inch diameter. Juniper equations are based on a single-stem form.

Table 4.18.5. The crown biomass equations used in the SO-FFE. Species mappings are done for species for which equations are not available.

Species	Species Mapping and Equation Source
western white pine	Brown and Johnston (1976)
sugar pine	western white pine; Brown and Johnston (1976)
Douglas-fir	Brown and Johnston (1976)
white fir	grand fir; Brown and Johnston (1976)
mountain hemlock	Gholz (1979); western hemlock (Brown and Johnston 1976)
incense-cedar	based on western redcedar; Brown and Johnston (1976)
lodgepole pine	Brown and Johnston (1976)
Engelmann spruce	Brown and Johnston (1976)
Shasta red fir	subalpine fir; Brown and Johnston (1976)
ponderosa pine / Jeffrey pine	Brown and Johnston (1976)
western juniper	Chojnacky (1992), Grier and others (1992)
grand fir	Brown and Johnston (1976)
subalpine fir	Brown and Johnston (1976)
pacific silver fir	grand fir; Brown and Johnston (1976)
noble fir	grand fir; Brown and Johnston (1976)
whitebark pine	Brown (1978)
western larch	Brown and Johnston (1976)
western redcedar	Brown and Johnston (1976)
western hemlock	Brown and Johnston (1976)
pacific yew	western redcedar; Brown and Johnston (1976)
white alder	red alder; Snell and Little (1983)
red alder	Snell and Little (1983)
hite alder	red alder; Snell and Little (1983)

143

bigleaf maple	Snell and Little (1983)
quaking aspen	bigtooth aspen; Smith (1985), Jenkins et. al. (2003), Loomis and Roussopoulos (1978)
black cottonwood	Smith (1985), Jenkins et. al. (2003), Loomis and Roussopoulos (1978)
bitter cherry	black cherry; Smith (1985), Jenkins et. al. (2003), Loomis and Roussopoulos (1978)
Oregon white oak	tanoak; Snell and Little (1983), Snell (1979)
willow species	Smith (1985), Jenkins et. al. (2003), Loomis and Roussopoulos (1978)
giant chinkapin	tanoak; Snell and Little (1983), Snell (1979)
curl-leaf mt. mahogany	bigtooth aspen; Smith (1985), Jenkins et. al. (2003), Loomis and Roussopoulos (1978)
birch-leaf mt. mahogany	bigtooth aspen; Smith (1985), Jenkins et. al. (2003), Loomis and Roussopoulos (1978)
other softwoods	Douglas-fir; Brown and Johnston (1976)
other hardwoods	bigtooth aspen; Smith (1985), Jenkins et. al. (2003), Loomis and Roussopoulos (1978)

Live leaf lifespan is used to simulate the contribution of needles and leaves to annual litter fall. Dead foliage and branch materials also contribute to litter fall, at the rates shown in Table 4.18.6. Each year the inverse of the lifespan is added to the litter pool from each biomass category. These data are from the values provided at the SO-FFE workshop and California variants model verification workshop (Stephanie Rebain, USFS, pers. comm. February 2003).

	Live		De	ead	
Species	Foliage	Foliage	<0.25"	0.25–1"	> 1"
Oregon					
western white pine	4	2	5	5	15
sugar pine	3	2	5	5	15
Douglas-fir	5	2	5	5	15
white fir	7	2	5	5	15
mountain hemlock	4	2	5	5	15
incense-cedar	5	1	5	5	20
lodgepole pine	3	2	5	5	15
Engelmann spruce	6	2	5	5	10
Shasta red fir	7	2	5	5	15
ponderosa pine / Jeffrey pine	4	2	5	5	10
western juniper	4	2	5	5	15
grand fir	7	2	5	5	15
subalpine fir	7	2	5	5	15
pacific silver fir	7	2	5	5	15
noble fir	7	2	5	5	15
whitebark pine	3	2	5	5	15

Table 4.18.6.	Life span of live and dead foliage (yr) and dead branches for species modeled in the SO-FFE
	variant.

western larch	1	1	5	5	15
western redcedar	5	2	5	5	20
western hemlock	5	2	5	5	15
pacific yew	7	2	5	5	20
white alder	1	1	5	5	15
red alder	1	1	5	5	15
bigleaf maple	1	1	5	5	15
quaking aspen	1	1	5	5	15
black cottonwood	1	1	5	5	15
bitter cherry	1	1	5	5	15
Oregon white oak	1	1	5	5	15
willow species	1	1	5	5	15
giant chinkapin	1	1	5	5	15
curl-leaf mt. mahogany	1	1	5	5	15
birch-leaf mt. mahogany	1	1	5	5	15
other softwoods	5	2	5	5	15
other hardwoods	1	1	5	5	15
California					
western white pine	4	3	10	15	15
sugar pine	3	3	10	15	15
Douglas-fir	5	3	10	15	15
white fir	7	3	10	15	15
mountain hemlock	4	3	10	15	15
incense-cedar	5	1	10	15	20
lodgepole pine	3	3	10	15	15
Engelmann spruce	6	3	10	10	10
Shasta red fir	7	3	10	15	15
ponderosa pine / Jeffrey pine	4	3	10	10	10
western juniper	4	3	10	15	15
grand fir	7	3	10	15	15
subalpine fir	7	3	10	15	15
pacific silver fir	7	3	10	15	15
noble fir	7	3	10	15	15
whitebark pine	3	3	10	15	15
western larch	1	1	10	15	15
western redcedar	5	3	10	15	20
western hemlock	5	3	10	15	15
pacific yew	7	3	10	15	20
white alder	1	1	10	15	15
red alder	1	1	10	15	15
bigleaf maple	1	1	10	15	15
quaking aspen	1	1	10	15	15
					45
black cottonwood	1	1	10	15	15
black cottonwood bitter cherry	1 1	1 1	10 10	15 15	15 15

willow species	1	1	10	15	15
giant chinkapin	1	1	10	15	15
curl-leaf mt. mahogany	1	1	10	15	15
birch-leaf mt. mahogany	1	1	10	15	15
other softwoods	5	3	10	15	15
other hardwoods	1	1	10	15	15

Live Herbs and Shrubs

Live herb and shrub fuels are modeled very simply by the FFE. Shrubs and herbs are assigned a biomass value based on structural stage and cover type, using Fuel Characterization Classes (FCCs, Ottmar and others 1996). In each timestep, selection of the FCC begins with the stand structure logic of Crookston and Stage (1999), embedded in FVS. The resulting Crookston and Stage classification is then converted to Ottmar's classification system, using Table 4.18.7. Cover type is then defined by the species with the greatest basal area. When there are no trees, habitat type is used to infer the most likely dominant species of the previous stand. The FCC is then assigned using Table 4.18.8. Finally, shrub and herb loads are assigned using Table 4.18.9, and are set to zero if the structural stage is undefined. The structural class rules used in the SO-FFE variant were first developed for the Interior Columbia River Basin Assessment (Hessburg and others 1999).

Stand Classification System		
Crookston and Stage (1999)	Ottmar and others (1996)	- Notes
0	1	Regenerating from bare ground
1	1	Stand initiation
2	2	Stem exclusion, open canopy: <60% canopy cover
2	3	Stem exclusion, closed canopy: >=60% canopy cove
3	4	Understory reinitiation
4	5	Young forest, single stratum
5	6	Old forest, single stratum
6	7	Old forest, multistrata

Table 4.18.7.	Stand structure classification is converted from the Crookston and Stage to Ottmar system using
	these mappings and assumptions

Table 4.18.8. Cover type and structural stage class are used to determine the appropriate FCC, in order to estimate herb and shrub load and the initial default coarse woody debris load. FCCs for sugar pine are mapped using western white pine. When a ponderosa pine stand is classed as regenerating from bare ground, it is assumed that it has been recently logged and is assigned FCC-1 instead of FCC-4. Species 12–33 are assumed the same as Douglas-fir.

	Structural Stage [§]					
Species	1	2	3	4, 5	6	7
western white pine	52	53	56	58	57	61
sugar pine	52	53	56	58	57	61
Douglas-fir	52	53	56	58	62	62
white fir	52	53	56	58	62	62
mountain hemlock	52	53	56	58	62	62
incense-cedar	52	53	56	58	62	62
lodgepole pine	103	106	107	110	112	113
Engelmann spruce	52	53	56	59	61	62
Shasta red fir	52	53	56	59	62	62
ponderosa pine / Jeffrey pine	4, 1	4	4	8	11	10
western juniper	-	-	-	160	-	_
grand fir	52	53	56	58	62	62
subalpine fir	52	53	56	58	62	62
pacific silver fir	52	53	56	58	62	62
noble fir	52	53	56	58	62	62
whitebark pine	52	53	56	58	62	62
western larch	52	53	56	58	62	62
western redcedar	52	53	56	58	62	62
western hemlock	52	53	56	58	62	62
pacific yew	52	53	56	58	62	62
white alder	52	53	56	58	62	62
red alder	52	53	56	58	62	62
bigleaf maple	52	53	56	58	62	62
quaking aspen	52	53	56	58	62	62
black cottonwood	52	53	56	58	62	62
bitter cherry	52	53	56	58	62	62
Oregon white oak	52	53	56	58	62	62
willow species	52	53	56	58	62	62
giant chinkapin	52	53	56	58	62	62
curl-leaf mt. mahogany	52	53	56	58	62	62
birch-leaf mt. mahogany	52	53	56	58	62	62
other softwoods	52	53	56	58	62	62
other hardwoods	52	53	56	58	62	62

§ 1 = stand initiation (si); 2 = stem exclusion, open canopy (cover <60%) (seoc); 3 = stem exclusion, closed canopy (canopy cover>60%) (secc); 4 = understory re-initiation (ur); 5 = young forest, multi-story (yfms); 6 = old forest single-story (ofss); 7 = old forest, multi-story (ofms).

FCC	Herb	Shrub	FCC	Herb	Shrub
1	0.3	0.4	59	0.7	0.7
4	0.5	0.5	61	0.3	0.4
8	0.0	0.0	62	0.8	0.5
10	0.5	2.5	103	0.3	0.4
11	0.5	0.5	106	0.5	0.5
52	0.5	0.5	107	0.5	0.5
53	0.5	0.5	110	0.5	0.5
56	0.5	0.5	112	0.3	0.4
57	0.3	0.4	113	0.5	0.5
58	0.3	0.4	160	0.7	3.3

Table 4.18.9.Default live fuel loads (tons/acre) are determined for each FCC. The appropriate FCC is assigned
using Table 4.18.8.

Dead Fuels

Initial default values for the dead fuel components are determined using Fuel Characterization Classes (FCCs; Ottmar and others 1996) using Tables 4.18.7 and 4.18.8 and following the process just described in the section on live herbs and shrubs. The FCC diameter breakpoints shown in Table 4.18.10 are different from those used by the FFE. Linear interpolation is used to partition the FCC fuel loads into the FFE size classes. The SO-FFE initial loads for litter are set to zero, since these data are absent from the FCC system. Default initial fuel loads can be modified using the FUELINIT keyword.

Size Class (in)								
FCC	< 0.25	0.25 – 1	1 – 3	3 – 9	9 – 20	> 20	Litter	Duff
1	0.5	0.8	1.7	1.9	3.0	0.0	-	2.3
4	0.1	1.5	2.2	1.1	1.8	3.3	_	6.0
8	0.1	1.6	4.2	2.1	2.9	4.7	_	9.8
10	0.2	1.2	2.3	2.3	2.4	2.0	_	12.8
11	0.0	1.5	4.9	10.1	6.2	4.0	_	12.8
52	0.6	2.3	1.9	2.0	0.0	0.0	_	2.3
53	0.5	1.3	3.0	4.5	1.5	0.0	_	2.3
56	0.5	1.3	3.0	4.5	1.5	0.0	_	9.1
57	0.4	0.6	1.1	8.8	7.2	5.0	_	9.1
58	0.7	1.1	1.5	3.1	4.7	0.0	_	15.9
59	0.5	1.8	3.5	12.3	2.3	0.0	_	15.9
61	0.5	1.2	1.2	2.5	5.2	2.0	_	20.4
62	0.5	2.6	4.3	7.0	10.5	3.0	_	20.4
103	0.5	0.8	1.7	0.9	0.0	0.0	_	2.3
106	0.3	0.7	4.0	0.8	0.0	0.0	_	3.8
107	0.4	1.2	7.4	2.1	0.0	0.0	_	3.8
110	0.7	2.3	5.9	5.1	2.0	0.0	_	4.5
112	0.2	0.9	1.7	1.3	3.0	0.0	-	6.0
113	0.2	1.1	3.4	14.8	3.5	0.0	-	6.0
160	0.2	0.4	0.8	0.0	0.0	0.0	_	2.3

Table 4.18.10.Default dead fuel loads (tons/acre) are determined for each FCC used in the SO-FFE variant. The
appropriate FCC for each modeled stand is assigned using Tables 4.18.7 and 4.18.8. Litter
estimates are absent in the FCC, and set to zero.

4.18.4 Bark Thickness

Bark thickness contributes to predicted tree mortality from simulated fires The bark thickness multipliers in Table 4.18.11 are used to calculate single bark as described in 2.5.5 of the FFE documentation. The bark thickness equation used in the mortality equation is unrelated to the bark thickness used in the base FVS model. Data are from FOFEM 5.0 (Reinhardt and others 2001).

 Table 4.18.11.
 Species specific constants for determining single bark thickness.

Species	Multiplier (V _{sp})
western white pine	0.035
sugar pine	0.072
Douglas-fir	0.063
white fir	0.048
mountain hemlock	0.040
incense-cedar	0.060
lodgepole pine	0.028
Engelmann spruce	0.036
Shasta red fir	0.039
ponderosa pine / Jeffrey pine	0.063
western juniper	0.025
grand fir	0.046
subalpine fir	0.041
pacific silver fir	0.047
noble fir	0.045
whitebark pine	0.03
western larch	0.063
western redcedar	0.035
western hemlock	0.04
pacific yew	0.025
white alder	0.062
red alder	0.026
bigleaf maple	0.024
quaking aspen	0.044
black cottonwood	0.044
bitter cherry	0.062
Oregon white oak	0.029
willow species	0.041
giant chinkapin	0.045
curl-leaf mt. mahogany	0.044
birch-leaf mt. mahogany	0.044
other softwoods	0.063
other hardwoods	0.044

4.18.5 Decay Rate

Decay of down material is simulated by applying the loss rates shown in table 4.18.12, as described in section 2.4.5 of the FFE documentation. Default decay rates are based on Abbott and Crossley (1982). Decay parameters were originally developed at the SO-FFE workshop. Parameters for California stands were revised at a California variants workshop (Stephanie Rebain, pers. comm, February 2003), based on the decay rates used in the Sierra Nevada Framework.

Size Class	Annual Loss Rate	Proportion of Loss Becoming Duff
Oregon		
0 – 0.25 in.	- 0.12	
0.25 – 1.0 in.	0.12	
1.0 – 3.0 in.	0.09	-
3.0 – 6.0 in.		0.02
6.0 – 12.0 in.	0.015	
> 12.0 in.		
Litter	0.5	-
Duff	0.002	0.0
California		
0 – 0.25 in.		
0.25 – 1.0 in.	0.025	
1.0 – 3.0 in.		
3.0 – 6.0 in.		0.02
6.0 – 12.0 in.	0.0125	
> 12.0 in.		
Litter	0.5	-
Duff	0.002	0.0

 Table 4.18.12.
 Default annual loss rates are applied based on size class.

By default, the FFE decays all wood species at the rates shown in Table 4.18.12. The decay rates of species groups may be modified by users, who can provide rates to the four decay classes shown in Table 4.18.13 using the FUELDCAY keyword. Users can also reassign species to different classes using the FUELPOOL keyword.

Table 4.18.13. Default wood decay classes used in the SO-FFE variant. Classes are from the Wood Handbook (1999). (1 = exceptionally high; 2 = resistant or very resistant; 3 = moderately resistant, and 4 = slightly or nonresistant)

Species	Decay Class
western white pine	4
sugar pine	4
Douglas-fir	3
white fir	4

mountain hemlock	4
incense-cedar	2
lodgepole pine	4
Engelmann spruce	4
Shasta red fir	4
ponderosa pine / Jeffrey pine	4
western juniper	2
grand fir	4
subalpine fir	4
pacific silver fir	4
noble fir	4
whitebark pine	4
western larch	3
western redcedar	2
western hemlock	4
pacific yew	1
white alder	4
red alder	4
bigleaf maple	4
quaking aspen	4
black cottonwood	4
bitter cherry	2
Oregon white oak	2
willow species	4
giant chinkapin	4
curl-leaf mt. mahogany	4
birch-leaf mt. mahogany	4
other softwoods	3
other hardwoods	4

4.18.6 Moisture Content

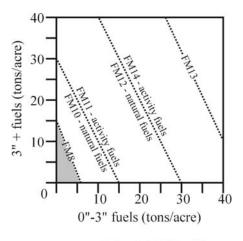
Moisture content of the live and dead fuels is used to calculate fire intensity and fuel consumption (section 2.52 of the FFE documentation). Users can choose from four predefined moisture groups shown in Table 4.18.14, or they can specify moisture conditions for each class using the MOISTURE keyword. The predefined moisture groups are the same as those defined for the NI-FFE.

 Table 4.18.14.
 Moisture values, which alter fire intensity and consumption, have been predefined for four groups.

	Moisture Group				
Size Class	Very Dry	Dry	Moist	Wet	
0 – 0.25 in. (1 hr.)	3	8	12	12	
0.25 – 1.0 in. (10 hr.)	4	8	12	12	
1.0 – 3.0 in. (100 hr.)	5	10	14	14	
> 3.0 in. (1000+ hr.)	10	15	25	25	

Duff	15	50	125	125
Live	70	110	150	150

4.18.7 Fire Behavior Fuel Models


Fire behavior fuel models (Anderson 1982) are used to estimate flame length and fire effects stemming from flame length. Fuel models are determined using fuel load and stand attributes (section 2.4.8) specific to each FFE variant. In addition, stand management actions such as thinning and harvesting can abruptly increase fuel loads and can trigger 'Activity Fuels' conditions, resulting in the selection of alternative fuel models. At their discretion, FFE users have the option of:

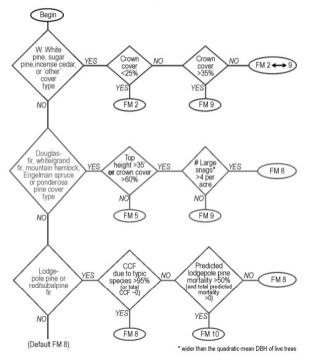
- 1. defining and using their own fuel models;
- 2. defining the choice of fuel models and weights;
- 3. allowing the FFE variant to determine a weighted set of fuel models, or
- 4. allowing the FFE variant to determine a weighted set of fuel models, then using the dominant model.

This section explains the steps taken by the SO-FFE to follow the third of these four options.

When the combination of large and small fuel lies in the lower left corner of the graph shown in Figure 4.18.1, one or more low fuel fire models become candidate models. In other regions of the graph, other fire models may also be candidates. The logical flow shown in Figure 4.18.2 defines which low fuel model(s) will become candidates. According to the logic of Figure 4.18.2, only in a single fuel model will be chosen for a given stand structure. Consequently, as a stand undergoes structural changes due to management or maturation, the selected fire model can jump from one model selection to another, which in turn may cause abrupt changes in predicted fire behavior. To smooth out changes resulting from changes in fuel model, the strict logic is augmented by linear transitions between states that involve continuous variables (for example, percent canopy cover, average height, snag density, etc.). In addition, a fuzzy logic approach is used to incorporate weights based on the dominant cover type.

If the STATFUEL keyword is selected, fuel model is determined by using only the closest-match fuel model identified by either Figure 4.18.1 or Figure 4.18.2. The FLAMEADJ keyword allows the user to scale the calculated flame length or override the calculated flame length with a value they choose.

----- Fuel model, 100% weight


Figure 4.18.1. If large and small fuels map to the shaded area, candidate fuel models are determined using the logic shown in Figure 4.18.2. Otherwise, fire behavior is based on the closest fuel models, identified by the dashed lines, and on recent management (see Model Description section 2.4.8 for further details).

153

(a)

SORNEC Fuel Model Logic (for low natural fuel conditions)

Part 1: Rules for All Private Lands and Region 5 National Forests

(b)

(for low natural fuel conditions)

Part 2: Rules for Region 6 National Forests

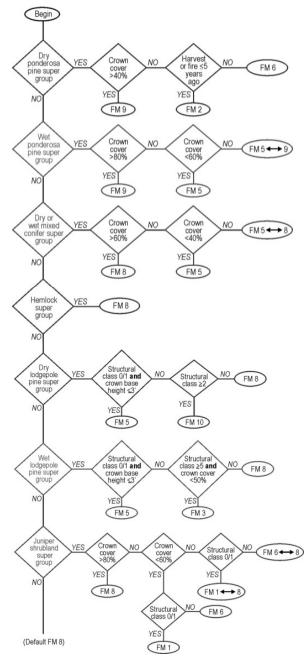


Figure 4.18.2. Fuel model logic for Region 5 (a) and Region 6 (b) forests modeled in the SO-FFE.

4.18.8 Consumption

Consumption of natural fuels is modeled in the same way as in the NI-FFE (Model Description, Section 5.5.2). Activity fuels, material created from a stand entry in the previous five years, are modeled using equations from Consume 1.0 (Ottmar and other 1993) with some modifications based on new information.

1-hr and 10-hr fuels

100 percent consumption.

100-hr fuels

$$C = 0.9 - 0.0535 \left[M_{10} - 0.03 \left(\frac{\ln\left(0.5F\left(1 + \frac{Slope - 20}{60} + \frac{Wind}{4}\right)\right)}{\ln\left(2\right)} - 12 \right] \right]$$

where: *C* is the percent consumption

F is the amount of 100-hr fuel present before the burn, in tons/acre

 M_{10} is the percent fuel moisture of the 10-hr fuels

Slope is the site slope, in percent

Wind is the wind speed at the time of the fire, in mph.

1000-hr+ fuels

The consumption of larger fuels depends on their moisture as well as the moisture level of the 10-hr fuels, 1000-hr fuels, and the amount of consumption of the 100-hr fuels.

First, a diameter reduction variable (DRED) is calculated based on fuel moisture (M):

Condition	Equation
M > 60%	1: <i>DRED</i> = -0.005 × M + 0.731
M > 44% and M \leq 60%	2: <i>DRED</i> = -0.0178 × M + 1.489
M \geq 44% and Consumption of 100hr \leq 75%	3: <i>DRED</i> = -0.096 × M + 4.6495
M < 44% and Consumption of 100hr $\geq 85\%$	4: <i>DRED</i> = -0.125 × M + 6.27
M < 44% and Consumption of 100hr 75% – 85%	Interpolate between eq. 3 and 4

Then, if the 10-hr fuel moisture is less than 15 percent, the DRED value is further modified:

1000-hr Fuel Moisture	Equation
$M \le 40\%$	$DRED = DRED \times (1 - 0.22)$
M 40%-50%	$DRED = DRED \times (1 - 0.11)$

Finally, the percent consumption can be calculated as:

$$C = 1 - \left(\frac{a - DRED}{5.2}\right)^2$$

where:Cis the percent consumptionDREDis the diameter reduction factor calculated above, andais 5.2 for 1000-hr fuels, and 13.7 for 10000-hr fuels

Duff

The consumption of duff depends on the moisture level of the duff and consumption in some of the other fuel classes. Assumptions were made about the duff moisture values at which each of the equations was used, the quadratic mean diameter of the 100-hr fuels, the number of dry months prior to the fire, and the bulk density.

Duff Moisture	Equation
≥ 200%	$R = 0.537 + (C_{1000} + C_{10000})$
125% – 200%	$R = 0.323 + 1.034 + \sqrt{DRED}$
50% – 125%	$R = 1.323 + 1.034 + \sqrt{DRED}$
< 50%	$R = 2.323 + 1.034 + \sqrt{DRED}$

where: C_i is the consumption value of the *i*-th hour fuels.

DRED is the diameter reduction factor of the large fuels, as calculated above.

R is the reduction factor of the duff.

Consumption, in tons/acre rather than percent, is then calculated as:

$$C = 12.1 \times R \times b$$

where: C is the maximum tons/acre of duff consumed

R is calculated above, and

b is a multiplier which is:

0.50 -when duff depth is less than 1 inch;

0.75 – when duff depth is 2 or more inches, and

is interpolated when duff depth is 1–2 inches.

4.19 Lake States (LS)

4.19.1 Tree Species

The Lake States variant models the 68 tree species categories shown in Table 4.19.1.

Common name	Scientific name	Common name	Scientific name
jack pine	Pinus banksiana	black oak	Quercus velutina
scotch pine	Pinus sylvestris	northern pin oak	Quercus ellipsoidalis
red pine natural	Pinus resinosa	bitternut hickory	Carya cordiformis
red pine plantation	Pinus resinosa	pignut hickory	Carya glabra
eastern white pine	Pinus strobus	shagbark hickory	Carya ovata
white spruce	Picea glauca	bigtooth aspen	Populus grandidentata
Norway spruce	Picea abies	quaking aspen	Populus tremuloides
balsam fir	Abies balsamea	balsam poplar	Populus balsamifera
black spruce	Picea mariana	paper birch	Betula papyrifera
tamarack	Larix laricina	commercial hardwoods	
northern white-cedar	Thuja occidentalis	butternut	Juglans cinerea
eastern hemlock	Tsuga canadensis	black walnut	Juglans nigra
other softwoods	-	eastern hophornbeam	Ostrya virginiana
eastern redcedar	Juniperus virginiana	black locust non-commercial	Robinia psuedoacacia
black ash	Fraxinus nigra	hardwoods	
green ash	Fraxinus pennsylvanica	boxelder	Acer negundo
eastern cottonwood	Populus deltoides	striped maple	Acer pensylvanicum
silver maple	Acer saccharinum	mountain maple	Acer spicatum
red maple	Acer rubrum	American hornbeam	Carpinus caroliniana
black cherry	Prunus serotina	American chestnut	Castanea dentata
American elm	Ulmus americana	hackberry	Celtis occidentalis
slippery elm	Ulmus rubra	flowering dogwood	Cornus florida
rock elm	Ulmus thomasii	hawthorn species	Crataegus sp.
yellow birch	Betula alleghaniesis	apple species	Malus sp.
American basswood	Tilia americana	black gum	Nyssa sylvatica
sugar maple	Acer saccharum	sycamore	Platanus occidentalis
black maple	Acer nigrum	pin cherry	Prunus pensylvanica
American beech	Fagus grandifolia	chokecherry	Prunus virginiana
white ash	Fraxinus americana	plum, cherry species	Prunus sp.
white oak	Quercus alba	willow species	Salix sp.
swamp white oak	Quercus bicolor	black willow	Salix nigra
bur oak	Quercus macrocarpa	diamond willow	Salix eriocephala
chinkapin oak	Quercus muehlenbergii	sassafras	Sassafras albidum
northern red oak	Quercus rubra	American mountain-ash	Sorbus americana

Table 4.19.1.Tree species simulated by the Lake States variant.

4.19.2 Snags

The snag model logic is based on input given at the Lake States FFE development meeting, which was held in Grand Rapids, MN in April 2005. A complete description of the Snag Submodel is provided in Section 3 of the FFE Model Description.

Initially, each species was put into a snag class (1 - 6), as listed in Table 4.19.2. The snag class is defined as follows:

- 1 aspen, birch, spruce, fir, poplar, basswood (fastest fallers)
- 2 jack pine
- 3 eastern white pine
- 4 red pine
- 5 ash, maple, beech, elm
- 6 cedar, tamarack, oak, hickory, hemlock (slowest fallers)

Species were put in snag class 5 by default.

Table 4.19.2.	Snag class for each species in LS-FFE.
---------------	--

Species	Snag class	Species	Snag clas
jack pine	2	black oak	6
scotch pine	4	northern pin oak	6
red pine natural	4	bitternut hickory	6
red pine plantation	4	pignut hickory	6
eastern white pine	3	shagbark hickory	6
white spruce	1	bigtooth aspen	1
Norway spruce	1	quaking aspen	1
balsam fir	1	balsam poplar	1
black spruce	1	paper birch	1
tamarack	6	commercial hardwoods	5
northern white-cedar	6	butternut	5
eastern hemlock	6	black walnut	5
other softwoods	6	eastern hophornbeam	5
eastern redcedar	6	black locust	5
olack ash	5	non-commercial hardwoods	5
green ash	5	boxelder	5
eastern cottonwood	1	striped maple	5
silver maple	5	mountain maple	5
red maple	5	American hornbeam	5
plack cherry	5	American chestnut	5
American elm	5	hackberry	5
slippery elm	5	flowering dogwood	5
rock elm	5	hawthorn species	5
yellow birch	1	apple species	5
American basswood	1	black gum	5
sugar maple	5	sycamore	5
black maple	5	pin cherry	5
American beech	5	chokecherry	5
white ash	5	plum, cherry species	5
white oak	6	willow species	5

Species	Snag class	Species	
swamp white oak	6	black willow	
bur oak	6	diamond willow	
chinkapin oak	6	sassafras	
northern red oak	6	American mountain-ash	

The snag class is used to modify the Snag Submodel for the different species in the LS-FFE variant thru:

- a multiplier to modify the species' fall rate;
- a multiplier to modify the time required for snags to decay from a "hard" to "soft" state;
- the maximum number of years that snags will remain standing; and
- a multiplier to modify the species' height loss rate.

Unlike most FFE variants, the LS-FFE base snag fall rate was modified from the one used in the NI-FFE model. The base snag fall rate is calculated as:

R = 0.18 - 0.006*d $F = mRN_0$

where

 $\begin{array}{l} R = \text{rate of fall;} \\ d = \text{initial dbh of the snag (inches);} \\ N_o = \text{initial density (stems/acre) of snags in the record;} \\ m = \text{multiplier that changes the rate of fall; it is based on the snag class and listed in table 4.19.4} \\ F = \text{density of snags (stems/acre) that fall each year from that record;} \\ \text{and } mR \ge 0.01. \end{array}$

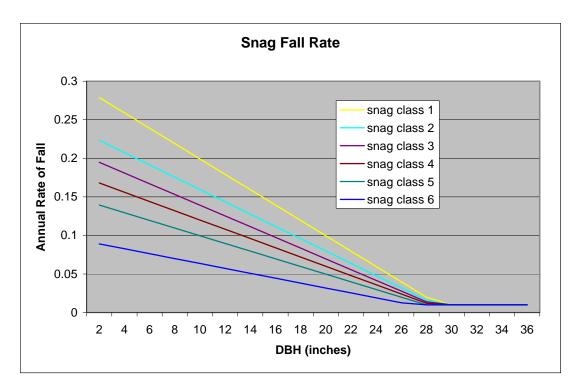


Figure 4.19.1. The rate of fall of small snags and the first 95% of large snags.

For the last 5 percent of snags over 18 inches (12 inches for cedars and tamarack), the number of snags falling each year is:

 $F = 0.05/(A - T)* N_o$

where

F = density of snags (stems/acre) that fall each year from that record;

A = maximum number of years that snags will remain standing (the time when all snags will have fallen); T = time when 95 percent of the snags have fallen; and

 $N_o =$ initial density (stems/acre) of snags in the record.

This equation ensure that some large snags persist throughout the period of time A, but that none persist beyond this time. The values of A can be found in Table 4.19.4.

Figures 4.19.2 and 4.19.3 show the proportion of 12 and 20 inch trees still standing after various amounts of time. From Figure 4.19.3, you can see how the last 5% of these large snags fall at a slower rate and that some persist for as long as 50 years.

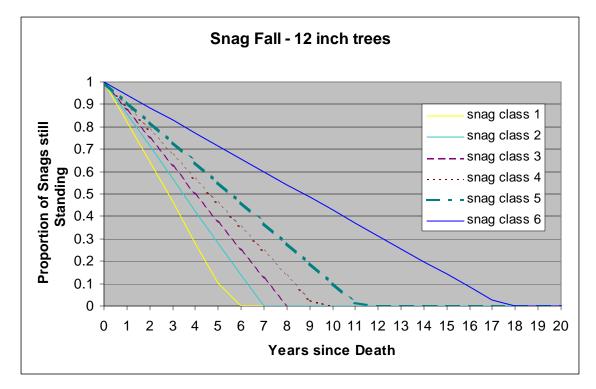


Figure 4.19.2 Snag fall rates for 12 inch trees.

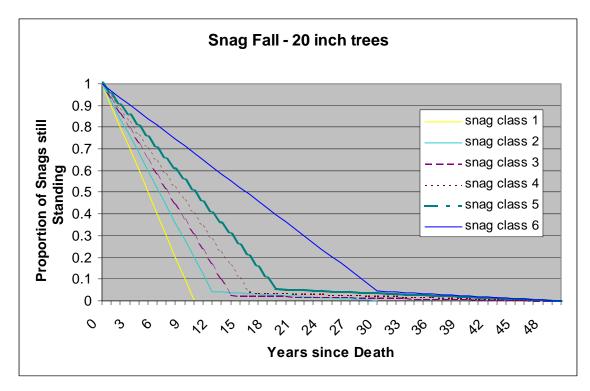


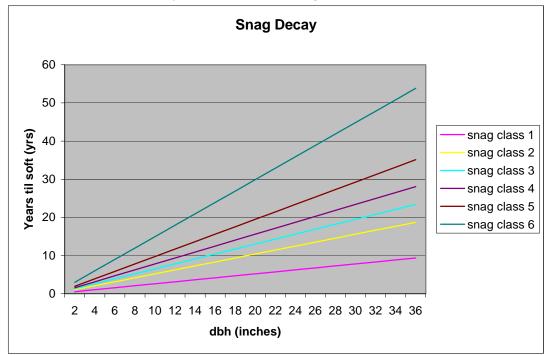
Figure 4.19.3 Snag fall rates for 20 inch trees.

The base height loss rate for snags is 10%, which corresponds to a snag losing 50% of its height in about 6 years. The height loss rate multipliers that adjust this based on the snag class of the species are in table

161

4.19.4. The corresponding number of years until a snag reaches 50% of its original height are found in table 4.19.3. The base height loss rate after 50% of a snag's height is lost is 1%. Soft snags lose height twice as fast as hard snags.

LS-FFE also models the decay of snags from a hard to a soft state. The number of years this is predicted to take is:


DecayTime = m(0.65*d)

where

DecayTime = number of years it takes for a hard snag to become soft (the time from death to transition to soft);

d = initial dbh of the snag (inches); and

m = multiplier used to scale the equation to increase or decrease the decay rate for different species (see table 4.19.4)

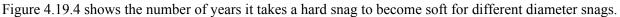


Figure 4.19.4. The number of years until soft for various diameter snags.

Table 4.19.3.Snag fall, snag height loss and soft-snag characteristics for 12" DBH snags in the LS-FFE variant.
These characteristics directly coincide with the parameter values shown in Table 4.19.4.

Snag Class	95% Fallen (yr)	50% Height (yr)	Hard-to- Soft (yr)
1	6	2	3.1
2	7	6	6.2
3	8	no height loss	7.8
4	9	no height loss	9.4

5	11	10	11.7
6	17	15 (except hemlock, which has no height loss)	17.9

Table 4.19.4.Default snag fall, snag height loss and soft-snag multipliers, and all down values for the LS-FFE.
These parameters result in the values shown in Table 4.19.3. (These columns are the default values
used by the SNAGFALL, SNAGBRK and SNAGDCAY keywords.)

	Snag			All Down (yr)
Snag Class	Fall	Height loss	Hard-to-Soft	
1	1.66	3.0	0.4	10
2	1.33	1.0	0.8	30
3	1.16	0	1.0	50
4	1.0	0	1.2	50
5	0.83	0.65	1.5	50
6	0.53	0.45 (except hemock, which is 0)	2.3	50

Snag bole volume is determined using the base FVS model equations. The coefficients shown in Table 4.19.5 are used to convert volume to biomass. Soft snags have 80 percent the density of hard snags.

Snag dynamics can be modified by the user using the SNAGBRK, SNAGFALL, SNAGDCAY and SNAGPBN keywords described in the FFE Model Description.

4.19.3 Fuels

Fuels are divided into to four categories: live tree bole, live tree crown, live herb and shrub, and dead surface fuels. Live herb and shrub fuel load and the initial dead surface fuel load are assigned based on the Forest Type code, as reported in the Summary Statistics Table.

One difference between the implementation of FFE in the Lake States variant, relative to its implementation in all of the western variants, is the distinction between crown material and stemwood. In the western variants, stemwood biomass is calculated by converting total cubic foot volume to biomass for each tree. Crown biomass is calculated through equations that predict the biomass of branchwood alone. In the Lake States variant, total cubic foot volume equations are not in use. As a result, stemwood biomass is calculated by converting merchantable cubic foot volume (to a 4 inch top diameter inside bark) to biomass for each tree. Crown biomass is calculated through equations that predict the biomass of branchwood plus the unmerchantable portion of the main stem (stemwood above a 4 inch diameter). This has some effects that users should be aware of.

- 1. The default assumption in the western variants when harvesting is that the stems are taken and the crown material (branchwood) is left. In the Lake States variants this corresponds to a default assumption that the merchantable material is taken and the unmerchantable material (branchwood, small trees, unmerchantable topwood) is left.
- 2. Surface fuel accumulation is predicted from a variety of processes including crown breakage and crown lift. Based on a default percentage and the change in crown ratio for each tree record, a certain amount of material is predicted to fall to the ground each year. This assumption changes slightly when using the Lake States variant. Rather than predicting a certain percentage of the branchwood will fall each year, essentially the model is predicting a

certain percentage of the unmerchantable material (branchwood, small trees, unmerchantable topwood) will fall each year.

3. Other changes were made to handle this situation and are described in the section on Tree Crowns.

Live Tree Bole

The fuel contribution of live trees is divided into two components: bole and crown. Bole volume is transferred to the FFE after being computed by the FVS model, then converted to biomass using wood density calculated from Table 4-3a of The Wood Handbook (Forest Products Laboratory 1999). Generally, species not listed were given a default value of 28.7 lbs/cuft.

Species	lbs/cuft	Species used	Species	lbs/cuft	Species used
jack pine	24.9		black oak	34.9	
scotch pine	25.6	red pine	northern pin oak	36.2	
red pine natural	25.6		bitternut hickory	37.4	
red pine plantation	25.6		pignut hickory	41.2	
eastern white pine	21.2		shagbark hickory	39.9	
white spruce	23.1		bigtooth aspen	22.5	
Norway spruce	23.1	white spruce	quaking aspen	21.8	
balsam fir	20.6		balsam poplar	19.3	
black spruce	23.7		paper birch	29.9	
tamarack	30.6		commercial hardwoods	31.8	black walnut
northern white-cedar	18.1		butternut	22.5	
eastern hemlock	23.7		black walnut	31.8	
other softwoods	27.4	eastern redcedar	eastern hophornbeam	31.8	black walnut
eastern redcedar	27.4		black locust	41.2	
			non-commercial		default
black ash	28.1		hardwoods	28.7	
green ash	33.1		boxelder	30.6	red maple
eastern cottonwood	23.1		striped maple	30.6	
silver maple	27.4		mountain maple		red maple
red maple	30.6		American hornbeam		default
black cherry	29.3		American chestnut		default
American elm	28.7		hackberry	30.6	
slippery elm	29.9		flowering dogwood		default
rock elm	35.6		hawthorn species	28.7	default
yellow birch	34.3		apple species	29.3	black cherry
American basswood	20.0		black gum	28.7	
sugar maple	34.9		sycamore	28.7	
black maple	32.4		pin cherry	29.3	black cherry
American beech	34.9		chokecherry	29.3	black cherry
white ash	34.3		plum, cherry species	29.3	black cherry
white oak	37.4		willow species	22.5	black willow
swamp white oak	39.9		black willow	22.5	
bur oak	36.2		diamond willow	22.5	black willow
chinkapin oak	37.4	white oak	sassafras	26.2	
northern red oak	34.9		American mountain-ash	28.7	default

Tree Crown

For merchantable trees, estimates of crown material, including branchwood and bolewood above a 4 inch top (DOB), are from Jenkins et al. (2003). These equations do not provide information on how the crown material is distributed by size class. Information on partitioning canopy fuel loads by size class was taken from several sources (Snell and Little (1983), Loomis and Blank (1981), Loomis and Roussopoulos (1987), Loomis et. al. (1966)). Species were mapped, when necessary, based on workshop input. Because information on how crown material is partitioned for different species is often based on different definitions of "crown" (branchwood only, branchwood plus stemwood above a 0.25 inch diameter, branchwood plus stemwood above a 1 inch diameter), the equations to predict the proportion of crown biomass in various size classes are adjusted. The basic assumption is that the biomass of the unmerchantable tip can be calculated from the volume of a cone, where the height of the cone is the

difference between total height and height at a 4 inch top diameter and the bottom diameter of the cone is 4 inches. There are some additions made to these estimates of crown biomass. Jenkin's equations include branchwood and stem material above a 4 inch DOB top, while the lake states volume equations go up to a 4 inch DIB top. As a result, there is a small portion of biomass that is missing. This is estimated and added to the crown material estimates.

For unmerchantable trees, total above ground biomass is predicted using equations in Jenkins et. al. (2003). Due to the nature of these equations, for trees less than 1 inch in diameter, the estimate for a 1-inch tree is scaled back based on diameter. A similar method (to that for large trees) is used to adjust how the crown material is distributed by size class. In this case the main stem is assumed to be cone-shaped above breast height and cylinder-shaped below breast height.

Live leaf lifespan is used to simulate the contribution of needles and leaves to annual litter fall. Each year the inverse of the lifespan is added to the litter pool from each biomass category. Leaf lifespan data are primarily from Hardin et. al. (2001). Exceptions include eastern redcedar and northern white-cedar, which are from Barnes and Wagner (2002).

Dead foliage and branch materials also contribute to litter fall. Each species was categorized into 1 of 4 crown fall rate categories and the life span of dead foliage and branches was determined for each category. By default, species were classed as a 3. This categorization was based on rates developed for the SN-FFE, as well as general input from the LS development workshop.

Species	Leaf Life (years)	Crown Fall Class	Species	Leaf Life (years)	Crown Fall Class
jack pine	2	4	black oak	1	2
scotch pine	3	4	northern pin oak	1	2
red pine natural	4	4	bitternut hickory	1	1
red pine plantation	4	4	pignut hickory	1	1
eastern white pine	2	4	shagbark hickory	1	1
white spruce	8	4	bigtooth aspen	1	4
Norway spruce	8	4	quaking aspen	1	4
balsam fir	8	4	balsam poplar	1	4
black spruce	8	4	paper birch	1	4
tamarack	1	1	commercial hardwoods	1	3
northern white-cedar	2	1	butternut	1	3
eastern hemlock	3	1	black walnut	1	3
other softwoods	5	1	eastern hophornbeam	1	3
eastern redcedar	5	1	black locust	1	3
black ash	1	3	non-commercial hardwoods	1	3
green ash	1	3	boxelder	1	3
eastern cottonwood	1	4	striped maple	1	3
silver maple	1	3	mountain maple	1	3
red maple	1	3	American hornbeam	1	3
black cherry	1	3	American chestnut	1	3
American elm	1	3	hackberry	1	3
slippery elm	1	3	flowering dogwood	1	3
rock elm	1	3	hawthorn species	1	3
yellow birch	1	4	apple species	1	3

 Table 4.19.6.
 Life span of live foliage and crown fall class (1 to 4) for species modeled in the LS-FFE variant.

American basswood	1	4	black gum	1	3
sugar maple	1	3	sycamore	1	3
black maple	1	3	pin cherry	1	3
American beech	1	3	chokecherry	1	3
white ash	1	3	plum, cherry species	1	3
white oak	1	1	willow species	1	3
swamp white oak	1	1	black willow	1	3
bur oak	1	1	diamond willow	1	3
chinkapin oak	1	1	sassafras	1	3
northern red oak	1	2	American mountain-ash	1	3

 Table 4.19.7.
 Years until all snag crown material of certain sizes has fallen by crown fall class

Crown fall	Snag Crown Material Time to 100% Fallen (years)					
class	Foliage	<0.25"	0.25–1"	1-3"	3-6"	6-12"
1 (white oak, hemlock, cedar, tamarack, hickory)	1	2	2	5	10	10
2 (red oaks)	1	1	1	4	8	8
3 (ash,elm, maple, beech, other)	1	1	1	3	6	6
4 (conifers, aspen, poplar, birch, basswood)	1	1	1	2	4	4

Live Herbs and Shrubs

Live herb and shrub fuels are modeled very simply by the FFE. Shrubs and herbs are assigned a biomass value based on the FIA forest type and size class, as reported in the Summary Statistics report. Data are from Ottmar et. al. (2002) and Ottmar and Vihnanek (1999).

FIA Forest Type		FIA Size Class	Herbs	Shrubs
all conifers	except	1 (sawtimber)	0.12	0.17
jack pine		2 (poletimber)	0.08	0.02
		3 (seedling-sapling)	0.06	0.00
jack pine		1 (sawtimber)	0.06	0.63
		2 (poletimber)	0.10	0.04
		3 (seedling-sapling)	0.14	0.35
hardwoods		1 (sawtimber)	0.00	0.00
		2 (poletimber)	0.00	0.00
		3 (seedling-sapling)	0.00	0.01

 Table 4.19.8.
 Values (dry weight, tons/acre) for live fuels used in the LS-FFE.

Dead Fuels

Initial default fuel pools are based on FIA forest type and size class. Default fuel loadings are based on FIA fuels data collected in the Lake States and were provided by Chris Woodall. Initial fuel loads can be modified using the FUELINIT keyword.

	FIA				Size C	lass (in)			
FIA Forest Type	Size Class	< 0.25	0.25 – 1	1 – 3	3 – 6	6 – 12	> 12	Litter	Duff
	1	0.09	0.51	1.76	0.78	1.89	1.95	1.83	3.87
white-red pine	2	0.07	0.51	0.93	0.06	0.26	0.00	0.54	1.43
pino	3	0.07	0.25	0.18	0.00	0.00	0.00	2.05	9.96
	1	0.31	2.22	4.99	0.64	2.11	1.46	1.44	9.05
jack pine	2	0.12	0.44	1.05	0.66	1.26	0.00	0.81	2.97
	3	0.11	0.89	4.58	4.98	4.76	0.00	0.20	2.09
	1	0.40	0.95	1.79	1.28	4.47	1.46	0.90	64.29
spruce-fir	2	0.19	0.60	1.22	0.52	1.88	0.57	2.36	80.12
	3	0.07	0.49	2.04	0.98	2.61	0.35	1.20	36.70
eastern redcedar	any	0.00	0.00	0.00	0.79	0.00	0.00	0.07	8.28
	1	0.12	0.57	1.14	0.62	3.71	0.37	0.81	2.14
oak-pine	2	0.11	0.95	1.59	0.17	1.89	0.00	0.29	1.28
	3	0.12	0.49	0.60	0.67	0.77	0.00	0.20	4.77
	1	0.18	0.53	1.60	0.78	1.65	0.52	0.91	4.45
oak-hickory	2	0.24	0.59	1.41	0.74	1.61	1.30	0.44	3.02
	3	0.09	0.80	0.16	0.48	0.51	0.00	0.49	3.96
elm-ash-	1	0.17	0.87	2.10	0.97	2.17	4.52	1.61	40.33
eastern	2	0.22	0.48	1.78	1.01	3.09	0.89	1.00	156.2
cottonwood	3	0.13	0.26	0.74	0.49	1.88	0.12	1.17	21.42
	1	0.22	0.62	1.74	0.99	1.77	1.41	1.38	7.82
maple- beech-birch	2	0.29	0.74	2.11	0.96	1.92	3.33	0.90	7.65
	3	0.23	0.69	2.96	1.15	2.81	0.28	0.81	2.37
	1	0.13	0.86	2.10	0.82	2.76	1.10	0.71	14.75
aspen-birch	2	0.12	0.70	2.51	1.04	2.41	2.70	0.53	6.58
	3	0.13	0.52	1.69	0.77	1.80	0.66	1.04	9.55
nonstocked	any	0.07	0.32	0.34	0.19	0.63	0.00	0.00	0.36

Table 4.19.9.	FIA forest type and size class are used to assign default surface fuel values (tons/acre) by size
	class.

4.19.4 Bark Thickness

Bark thickness contributes to predicted tree mortality from simulated fires The bark thickness multipliers in Table 4.19.10 are used to calculate single bark thickness, which in turn is used to calculate fire-related mortality (RMRS-GTR-116, section 2.5.5). The bark thickness equation used in the mortality equation is unrelated to the bark thickness used in the base FVS model. Data are from FOFEM 5.0 (Reinhardt and others 2001).

Species	Multiplier (V _{sp})	Species used	Species	Multiplier (V _{sp})	Species used
jack pine	0.04	<u> </u>	black oak	0.045	· · ·
scotch pine	0.03		northern pin oak	0.038	
red pine natural	0.043		bitternut hickory	0.037	
red pine plantation	0.043		pignut hickory	0.037	
eastern white pine	0.045		shagbark hickory	0.04	
white spruce	0.025		bigtooth aspen	0.039	
Norway spruce	0.029		quaking aspen	0.044	
balsam fir	0.031		balsam poplar	0.04	
black spruce	0.032		paper birch	0.027	
tamarack	0.031		commercial hardwoods	0.041	butternut
northern white-cedar	0.025		butternut	0.041	
eastern hemlock	0.039		black walnut	0.041	
	0.038	easterm		0.037	
other softwoods		redcedar	eastern hophornbeam		
eastern redcedar	0.038		black locust	0.049	
black ash	0.035		non-commercial hardwoods	0.034	boxelder
green ash	0.039		boxelder	0.034	
eastern cottonwood	0.04		striped maple	0.045	
silver maple	0.031		mountain maple	0.04	
red maple	0.028		American hornbeam	0.03	
black cherry	0.03		American chestnut	0.04	
American elm	0.031		hackberry	0.036	sugarberry
slippery elm	0.032		flowering dogwood	0.041	
rock elm	0.033		hawthorn species	0.038	
yellow birch	0.031		apple species	0.043	
American basswood	0.038		black gum	0.039	
sugar maple	0.033		sycamore	0.033	
black maple	0.035		pin cherry	0.045	
American beech	0.025		chokecherry	0.04	
white ash	0.042		plum, cherry species	0.04	
white oak	0.04		willow species	0.041	
swamp white oak	0.045		black willow	0.04	
bur oak	0.042		diamond willow	0.04	
chinkapin oak	0.042		sassafras	0.035	
northern red oak	0.042		American mountain-ash	0.04	

 Table 4.19.10.
 Species specific constants for determining single bark thickness.

4.19.5 Decay Rate

Decay of down material is simulated by applying loss rates to pieces by size class (Table 4.19.11), as described in section 2.4.5 of the FFE documentation. Default decay rates are based on Abbott and Crossley (1982), Alban and Pastor (1993), Tyrrell and Crow (1994), and Melillo et. al. (1982). A portion of the loss is added to the duff pool each year. Loss rates are for hard material; soft material in all size classes, except litter and duff, decays 10% faster.

Table 4.19.11.Default annual loss rates are applied based on size class. A portion of the loss is added to the duff
pool each year. Loss rates are for hard material. If present, soft material in all size classes except
litter and duff decays 10% faster.

Size Class (inches)	Annual Loss Rate	Proportion of Loss Becoming Duff
< 0.25	0.11	
0.25 – 1	0.11	
1 – 3	0.09	_
3-6	0.06	0.02
6 – 12	0.00	
> 12	0.02	_
Litter	0.31	_
Duff	0.002	0.0

By default, the FFE decays all wood species at the rates shown in Table 4.19.11. The decay rates of species groups may be modified by users, who can provide rates to the four decay classes shown in Table 4.19.12 using the FUELDCAY keyword. Users can also reassign species to different classes using the FUELPOOL keyword. The decay rate classes were generally determined from the Wood Handbook (1999). When species were classified differently for young or old growth, young growth was assumed. Species not listed in the wood handbook were classed as 4.

Table 4.19.12. Default wood decay classes used in the LS-FFE variant. Classes are from the Wood Handbook (1999). (1 = exceptionally high; 2 = resistant or very resistant; 3 = moderately resistant, and 4 = slightly or nonresistant)

Decay Species Rate Class		Species	Decay Rate Class	
jack pine	4	black oak	2	
scotch pine	4	northern pin oak	2	
red pine natural	4	bitternut hickory	4	
red pine plantation	4	pignut hickory	4	
eastern white pine	4	shagbark hickory	4	
white spruce	4	bigtooth aspen	4	
Norway spruce	4	quaking aspen	4	
balsam fir	4	balsam poplar	4	
black spruce	4	paper birch	4	
tamarack	3	commercial hardwoods	4	
northern white-cedar	2	butternut	4	
eastern hemlock	4	black walnut	2	
other softwoods	2	eastern hophornbeam	4	
eastern redcedar	2	black locust	1	
black ash	4	non-commercial hardwoods	4	
green ash	4	boxelder	4	
eastern cottonwood	4	striped maple	4	
silver maple	4	mountain maple	4	
red maple	4	American hornbeam	4	
black cherry	2	American chestnut	2	
American elm	4	hackberry	4	
slippery elm	4	flowering dogwood	4	

Species	Decay Rate Class	Species	Decay Rate Class
rock elm	4	hawthorn species	4
yellow birch	4	apple species	2
American basswood	4	black gum	4
sugar maple	4	sycamore	4
black maple	4	pin cherry	2
American beech	4	chokecherry	2
white ash	4	plum, cherry species	2
white oak	2	willow species	4
swamp white oak	2	black willow	4
bur oak	2	diamond willow	4
chinkapin oak	2	sassafras	2
northern red oak	2	American mountain-ash	4

4.19.6 Moisture Content

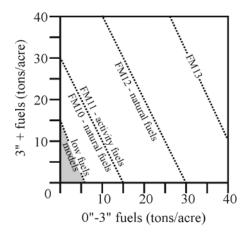
Moisture content of the live and dead fuels is used to calculate fire intensity and fuel consumption (Model Description, Section 5.2.1). Users can choose from four predefined moisture groups (Table 4.19.13) or they can specify moisture conditions using the MOISTURE keyword. These defaults were set based on input from Jeremy Bennett using local weather station data. Duff moisture values are from FOFEM.

Table 4.19.13.	Moisture values (%), which alter fire intensity and consumption, have been predefined for four
	groups.

	Moisture Group			
Size Class	Very Dry	Dry	Moist	Wet
0 – 0.25 in. (1-hr)	5	7	10	19
0.25 – 1.0 in. (10-hr)	8	9	13	29
1.0 – 3.0 in. (100-hr)	12	14	17	22
> 3.0 in. (1000+ -hr)	15	17	21	25
Duff	40	75	100	175
Live woody	89	105	135	140
Live herbaceous	60	82	116	120

4.19.7 Fire Behavior Fuel Models

Fire behavior fuel models (Anderson 1982, Scott and Burgan 2005) are used to estimate flame length and fire effects stemming from flame length. Fuel models are determined using fuel load and stand attributes specific to each FFE variant. Stand management actions such as thinning and harvesting can abruptly increase fuel loads, resulting in the selection of alternative fuel models. At their discretion, FFE users have the option of:


- 1. defining and using their own fuel models;
- 2. defining the choice of fuel models and weights;
- 3. allowing the FFE variant to determine a weighted set of fuel models, or

4. allowing the FFE variant to determine a weighted set of fuel models, then using the dominant model.

This section explains the steps taken by the LS-FFE to follow the third of these four options.

When the combination of large and small fuel lies in the lower left corner of the graph shown in Figure 4.19.5, one or more low fuel fuel models become candidate models. In other regions of the graph, other fuel models may also be candidates. Tables 4.19.14 and 4.19.15 define which fuel model(s) will become candidates. This logic uses the native plant community in its key. The native plant community codes that are used in LS-FFE are in Table 4.19.16 (Minnesota Department of Natural Resources 2003). Users of LS-FFE should set these codes in their stand list file, input data base, or thru the StdInfo keyword.

If the STATFUEL keyword is selected, fuel model is determined by using only the closest-match fuel model identified by either Figure 4.19.5 or Table 4.19.15. The FLAMEADJ keyword allows the user to scale the calculated flame length or override the calculated flame length with a value they choose.

----- Fuel model, 100% weight

Figure 4.19.5. Candidate fuel models are determined using the logic shown in tables 4.19.14 and 4.19.15. At high fuel loads, multiple fuel models may be candidates. In this case, fire behavior is based on the closest fuel models, identified by the dashed lines. Not all fuel models are candidates under all forest types (see table 4.19.15).

Table 4.19.14. In LS-FFE, fire behavior fuel models are determined using forest type. This table shows how forest type is determined. If there are no trees or a forest type cannot be determined, the type from the previous year is used. If this occurs at the beginning of a simulation, the default forest type is red pine.

Forest Type	Definition
Jack Pine	Jack pine composes the most basal area.
Northern Hardwoods	Hemlock, maples, basswood, beech, and red oak compose the most basal area.
Red & Eastern White Pine	Red and eastern white pine compose the most basal area
Mixed Wood	Aspen, birch, and large spruce and fir (5" dbh or larger) compose the most basal area.
Oak	Oaks compose the most basal area.
Aspen / Birch	Aspen, birch, and small spruce and fir (less than 5" dbh) compose the most basal area.
Oak - Pine	If oaks and red and eastern white pine compose the most basal area. In this case, if pines compose more basal area than oaks, the red and eastern white pine forest type is used. If oaks compose more basal area than the pines, the oak forest type is used.

Table 4.19.15. Relationship between forest type and fuel model selected.

Forest Type		Fuel Model
	surface fuel load is high (see Figure 4.19.5)	10, 11, 12, or 13
	canopy cover \leq 70% and stand height \leq 25'	4
	canopy cover \leq 70% and stand height > 25' and balsam fir understory (atleast 500 BF 1 – 3" per acre)	10 (before greenup) 162 (after greenup)
Jack Pine	canopy cover \leq 70% and stand height > 25' and grass understory (native plant community is FDc12 or FDc23)	2
Jack Pine	canopy cover \leq 70% and stand height > 25' and not a balsam fir or grass understory	10 (before greenup) 161 (after greenup)
	canopy cover > 70% and stand height \leq 15'	4
	canopy cover > 70% and stand height > 15' and midflame windspeed \leq 4mph	8
	canopy cover > 70% and stand height > 15' and midflame windspeed > 4mph	10
Northern Hardwoods	there is activity fuel and surface fuel load is high (see Figure 4.19.5)	11
	else if there is aspen or birch present or atleast 30% canopy cover of hemlock	8
	else if maple or basswood is dominant	186

r		,
	else if it is a fall burn	9
	else	8
	surface fuel load is high (see Figure 4.19.5)	10
	$0 - 3$ " surface fuel is ≥ 5 tons/acre	10
	0 – 3" surface fuel is < 5 tons/acre and less than 500 1 – 3" conifer trees/acre and birch dominant	9
Aspen / Birch	0-3" surface fuel is < 5 tons/acre and less than 500 $1-3$ " conifer trees/acre and aspen dominant	8
	$0-3"$ surface fuel is < 5 tons/acre and $1-3"$ conifer trees/acre \geq 500 and midflame windspeed > 4mph	164
	$0-3"$ surface fuel is < 5 tons/acre and $1-3"$ conifer trees/acre \geq 500 and midflame windspeed \leq 4mph and birch dominant	9
	$0-3"$ surface fuel is < 5 tons/acre and $1-3"$ conifer trees/acre \geq 500 and midflame windspeed \leq 4mph and aspen dominant	8
	surface fuel load is high (see Figure 4.19.5)	10, 11
	overstory canopy cover (trees 5"+) \geq 45% and it is an early spring burn and the fine fuel moisture is < 8%	186
	overstory canopy cover (trees 5"+) \geq 45% and it is an early spring burn and the fine fuel moisture is \geq 8%	8
	overstory canopy cover (trees 5"+) \geq 45% and it is not an early spring burn and atleast 30% of the basal area is in white oak and black oak	189
Oak	overstory canopy cover (trees 5"+) \geq 45% and it is not an early spring burn and less than 30% of the basal area in white oak and black oak	9
	overstory canopy cover is between 15 and 45% and the number of 0-2" trees/acre < 500 $$	2
	overstory canopy cover is between 15 and 45% and the number of 0-2" trees/acre ≥ 500	142
	overstory canopy cover is < 15% and the number of 0-2" trees/acre < 500	105
	overstory canopy cover is < 15% and the number of 0-2" trees/acre ≥ 500	142
Mixed	surface fuel load is high (see Figure 4.19.5)	10, 11, 12, or 13
Wood (aspen and	Birch is dominant	9
birch with conifers in the	else if conifers compose \ge 30% of the overstory canopy cover	10
overstory)	else	8

	there are activity fuels and slash is $0 - 2$ years old	12		
	there are activity fuels and slash is 2 - 5 years old	11		
	surface fuel load is high (see Figure 4.19.5)	10, 12, 13		
	$0 - 3$ " surface fuel is ≥ 5 tons/acre	5		
	If pine makes up less than 50% of the canopy cover and there are hardwoods present	8		
Red and	else if hazel underbrush is present (native plant community is FDn33 or FDc34) and there is a drought*	146		
Eastern white pine	else if hazel underbrush is present (native plant community is FDn33 or FDc34) and there is not a drought*	143		
	else if there is a balsam fir or balsam fir- eastern white pine understory (atleast 500 1 – 3" trees per acre) and the midflame windspeed is \leq 4 mph	10		
	else if there is a balsam fir or balsam fir- eastern white pine understory (atleast 500 1 – 3" trees per acre) and the midflame windspeed is > 4 mph	146		
	else if the canopy cover $\ge 50\%$	9		
	else if the canopy cover is \leq 30% and there is more red pine than eastern white pine	2		
	else	9		
* No drought is assumed unless one is set thru the FFE keyword Drought				

Table 4.19.16.LS-FFE native plant community (NPV) codes and descriptions (Minnesota Department of Natural
Resources 2003).

NPV Code	NPV description	NPV Code	NPV description	
1	FDn12 Northern Dry-Sand Pine Woodland	33	FPn82 Northern Rich Tamarack Swamp (Western Basin)	
2	FDn22 Northern Dry-Bedrock Pine (Oak) Woodland	34	FPs63 Southern Rich Conifer Swamp	
3	FDn32 Northern Poor Dry-Mesic Mixed Woodland	35	FPw63 Northwestern Rich Conifer Swamp	
4	FDn33 Northern Dry-Mesic Mixed Woodland		APn80 Northern Spruce Bog	
5	FDn43 Northern Mesic Mixed Forest		APn81 Northern Poor Conifer Swamp	
6	FDc12 Central Poor Dry Pine Woodland		APn90 Northern Open Bog	
7	FDc23 Central Dry Pine Woodland		APn91 Northern Poor Fen	
8	FDc24 Central Rich Dry Pine Woodland		CTn11 Northern Dry Cliff	

9	FDc25 Central Dry Oak-Aspen (Pine) Woodland	41	CTn12 Northern Open Talus
10	FDc34 Central Dry-Mesic Pine-Hardwood Forest	42	CTn24 Northern Scrub Talus
11	MHn35 Northern Mesic Hardwood Forest	43	CTn32 Northern Mesic Cliff
12	MHn44 Northern Wet-Mesic Boreal Hardwood- Conifer Forest	44	CTn42 Northern Wet Cliff
13	MHn45 Northern Mesic Hardwood (Cedar) Forest	45	CTu22 Lake Superior Cliff
14	MHn46 Northern Wet-Mesic Hardwood Forest	46	ROn12 Northern Bedrock Outcrop
15	MHn47 Northern Rich Mesic Hardwood Forest	47	ROn23 Northern Bedrock Shrubland
16	MHc26 Central Dry-Mesic Oak-Aspen Forest	48	LKi32 Inland Lake Sand/Gravel/Cobble Shore
17	MHc36 Central Mesic Hardwood Forest (Eastern)	49	LKi43 Inland Lake Rocky Shore
18	MHc37 Central Mesic Hardwood Forest (Western)	50	LKi54 Inland Lake Clay/Mud Shore
19	MHc47 Central Wet-Mesic Hardwood Forest	51	LKu32 Lake Superior Sand/Gravel/Cobble Shore
20	FFn57 Northern Terrace Forest		LKu43 Lake Superior Rocky Shore
21	FFn67 Northern Floodplain Forest		RVx32 Sand/Gravel/Cobble River Shore
22	WFn53 Northern Wet Cedar Forest		RVx43 Rocky River Shore
23	WFn55 Northern Wet Ash Swamp		RVx54 Clay/Mud River Shore
24	WFn64 Northern Very Wet Ash Swamp	56	OPn81 Northern Shrub Shore Fen
25	WFs57 Southern Wet Ash Swamp	57	OPn91 Northern Rich Fen (Water Track)
26	WFw54 Northwestern Wet Aspen Forest	58	OPn92 Northern Rich Fen (Basin)
27	FPn62 Northern Rich Spruce Swamp (Basin)	59	OPn93 Northern Extremely Rich Fen
28	FPn63 Northern Cedar Swamp	60	WMn82 Northern Wet Meadow/Carr
29	FPn71 Northern Rich Spruce Swamp (Water Track)	61	MRn83 Northern Mixed Cattail Marsh
30	FPn72 Northern Rich Tamarack Swamp (Eastern Basin)	62	MRn93 Northern Bulrush-Spikerush Marsh
31	FPn73 Northern Alder Swamp	63	MRu94 Lake Superior Coastal Marsh
32	FPn81 Northern Rich Tamarack Swamp (Water Track)		

4.19.8 Fire-related Mortality

Like most FFE variants, LS-FFE predicts fire-related tree mortality based on species, diameter, and crown scorch (see section 2.5.5 of the FFE documentation). However, some modifications were made to further refine the predictions. The mortality of conifers is reduced by 50% if the burn is simulated before greenup. There is a minimum of 70% mortality for balsam fir that are hit by the flaming front. All maples

under 4" dbh die when there is a burn and the flaming front hits them. Hardwoods also receive a reduction in mortality when the burn is before greenup – the mortality of most hardwoods is reduced by 20%, except for oaks above 2.5" dbh, whose mortality is reduced by 50%. All hardwoods less than 1" dbh die if the flaming front hits them.

177

4.20 Northeastern (NE)

4.20.1 Tree Species

The Northeastern variant models the 108 tree species categories shown in Table 4.20.1.

Common name	Scientific name	Common name	Scientific name	
balsam fir	Abies balsamea	white oak	Quercus alba	
tamarack	Larix laricina	bur oak	Quercus macrocarpa Quercus	
white spruce	Picea glauca	chinkapin oak	muehlenbergii	
red spruce	Picea rubens	post oak	Quercus stellata	
Norway spruce	Picea abies	other oak species	Quercus sp.	
black spruce	Picea mariana	scarlet oak	Quercus coccinea	
other spruce species	Picea sp.	shingle oak	Quercus imbricaria	
red pine	Pinus resinosa	water oak	Quercus nigra	
eastern white pine	Pinus strobus	pin oak	Quercus palustris	
loblolly pine	Pinus taeda	chestnut oak	Quercus prinus	
Virginia pine	Pinus virginiana	swamp white oak	Quercus bicolor	
northern white-cedar	Thuja occidentalis	swamp chestnut oak	Quercus michauxii	
Atlantic white-cedar	Chamaecyparis thoides	northern red oak	Quercus rubra Quercus falcata var.	
eastern redcedar	Juniperus virginiana	southern red oak	falcata	
other cedar species	juniperus species	black oak	Quercus velutina Quercus falcata var.	
eastern hemlock	Tsuga canadensis	cherrybark oak	pagodaefolia	
other hemlock species	Tsuga sp.	other hardwoods		
other pine species	Pinus sp.	buckeye species	Aesculus sp.	
jack pine	Pinus banksiana	yellow buckeye	Aesculus octandra	
shortleaf pine	Pinus echinata	water birch	Betula occidentalis	
Table Mountain pine	Pinus pungens	hackberry	Celtis occidentalis	
pitch pine	Pinus rigida	common persimmon	Diospyros virginiana	
pond pine	Pinus serotina	American holly	llex opaca	
Scotch pine	Pinus sylvestris	butternut	Juglans cinerea	
other softwoods		black walnut	Juglans nigra	
red maple	Acer rubrum	Osage-orange	Maclura pomifera	
sugar maple	Acer saccharum	magnolia species	Magnolia sp.	
black maple	Acer nigrum	sweetbay	Magnolia virginiana	
silver maple	Acer saccharinum	apple species	Malus sp.	
yellow birch	Betula alleghaniensis	water tupelo	Nyssa aquatica	
sweet birch	Betula lenta	blackgum	Nyssa sylvatica Oxydendrum	
river birch	Betula nigra	sourwood	arboreum	
paper birch	Betula papyrifera	Paulownia	Paulownia tomentosa	
gray birch	Betula populifolia	sycamore	Platanus occidentalis	
hickory species	Carya sp.	willow oak	Quercus phellos	

 Table 4.20.1.
 Tree species simulated by the Northeastern variant.

Common name	Scientific name	Common name	Scientific name
pignut hickory	Carya glabra	black locust	Robinia psuedoacacia
shellbark hickory	Carya laciniosa	black willow	Salix nigra
shagbark hickory	Carya ovata	sassafras	Sassafras albidum
mockernut hickory	Carya tomentosa	American basswood	Sorbus americana
American beech	Fagus grandifolia	white basswood	Tilia heterophylla
ash species	Fraxinus sp.	other elm species	Ulmus sp.
white ash	Fraxinus americana	American elm	Ulmus americana
black ash	Fraxinus nigra	slippery elm non-commercial	Ulmus rubra
green ash	Fraxinus pennsylvanica	hardwoods	
pumpkin ash	Fraxinus profunda	boxelder	Acer negundo
yellow-poplar	Liriodendron tulipifera	striped maple	Acer pensylvanicum
sweetgum	Liquidambar styraciflua	ailanthus	Ailanthus altissima
cucumbertree	Magnolia acuminata	serviceberry	Amelanchier sp.
quaking aspen	Populus tremuloides	American hornbeam	Carpinus caroliniana
balsam poplar	Populus balsamifera	flowering dogwood	Cornus florida
eastern cottonwood	Populus deltoides	hawthorn species	Crataegus sp.
bigtooth aspen	Populus grandidentata	eastern hophornbeam	Ostrya virginiana
swamp cottonwood	Populus heterophylla	plum, cherry species	Prunus sp.
black cherry	Prunus serotina	pin cherry	Prunus pensylvanica

4.20.2 Snags

The snag model logic is based on input given by researchers at the Northeast research station. Parts of it were taken from the SN-FFE and LS-FFE, where reasonable. A complete description of the Snag Submodel is provided in Section 3 of the FFE Model Description.

Initially, each species was put into a snag class (1 - 3), as listed in Table 4.20.2. The snag class is defined as follows:

- 1 fastest in terms of decay
- 2 average in terms of decay
- 3 slowest in terms of decay

Species	Snag class	Spe
balsam fir	1	whit
tamarack	3	bur
white spruce	1	chin
red spruce	1	post
Norway spruce	1	othe
black spruce	1	scar
other spruce species	1	shin
red pine	1	wate
eastern white pine	2	pin o
loblolly pine	1	ches
Virginia pine	1	swa
northern white-cedar	3	swa

Table 4.20.2.	Snag o	class for	r each	species	in	NE-FFE.
1 abic 4.20.2.	Shug (1055 IU	cuon	species	m	ILLIL.

Species	Snag class
white oak	3
bur oak	3
chinkapin oak	3
post oak	3
other oak species	3
scarlet oak	2
shingle oak	2
water oak	2
pin oak	2
chestnut oak	3
swamp white oak	3
swamp chestnut oak	3

Species	Snag class	Species	Snag class
Atlantic white-cedar	3	northern red oak	
eastern redcedar	3	southern red oak	
other cedar species	3	black oak	
eastern hemlock	3	cherrybark oak	
other hemlock species	3	other hardwoods	
other pine species	1	buckeye species	2
jack pine	1	yellow buckeye	
shortleaf pine	1	water birch	
Table Mountain pine	1	hackberry	
pitch pine	1	common persimmon	:
pond pine	1	American holly	2
Scotch pine	1	butternut	
other softwoods	1	black walnut	
red maple	2	Osage-orange	
sugar maple	2	magnolia species	
black maple	2	sweetbay	
silver maple	2	apple species	
yellow birch	1	water tupelo	;
sweet birch	1	blackgum	;
river birch	1	sourwood	
paper birch	1	Paulownia	
gray birch	1	sycamore	
hickory species	3	willow oak	
pignut hickory	3	black locust	
shellbark hickory	3	black willow	
shagbark hickory	3	sassafras	
mockernut hickory	3	American basswood	
American beech	2	white basswood	
ash species	2	other elm species	
white ash	2	American elm	
black ash	2	slippery elm	
		non-commercial	
green ash	2	hardwoods	
pumpkin ash	2	boxelder	:
yellow-poplar	2	striped maple	:
sweetgum	2	ailanthus	:
cucumbertree	2	serviceberry	:
quaking aspen	1	American hornbeam	
balsam poplar	1	flowering dogwood	:
eastern cottonwood	1	hawthorn species	2
bigtooth aspen	1	eastern hophornbeam	
swamp cottonwood	1	plum, cherry species	2
black cherry	2	pin cherry	

The snag class is used to modify the Snag Submodel for the different species in the NE-FFE variant thru a multiplier to modify the time required for snags to decay from a "hard" to a "soft" state. The basic equation used to predict the amount of time until a snag is soft can be found in the FFE documentation, section 2.3.5 (RMRS-GTR-116).

		Year til soft for
Snag Class	Hard-to-Soft multiplier	hard 12" snags
1	0.07	2
2	0.21	6
3	0.35	10

Table 4.20.3.Default soft-snag multipliers for the NE-FFE. This multiplier is the default value used by the
SNAGDCAY keyword.

Other model parameters that are set for all species in general include:

- the snag fall rate;
- the maximum number of years that snags will remain standing; and
- the snag height loss rate.

Unlike most FFE variants, the NE-FFE base snag fall rate was modified from the one used in the NI-FFE model. The base snag fall rate is linearly interpolated based on dbh. The assumed annual fall rates are in Table 4.20.4. They were based on discussions with Coeli Hoover and Linda Heather (FS Northern Research Station) and Yamasaki and Leak (in review).

Table 4.20.4.Default snag fall rates for the NE-FFE.

	Years until all snags	Associated snag
DBH (inches)	have fallen (yrs)	fall rate (proportion eachyear)
1	5	0.20
5	15	0.0667
12	25	0.04

The last 5 percent of snags over 20 inches fall at a slower rate and some remain standing up to 50 years.

The base height loss rate for snags is 1.5% a year. The corresponding number of years until a snag reaches 50% of its original height is 45 years. The base height loss rate after 50% of a snag's height is lost is 1%. Soft snags lose height twice as fast as hard snags.

Because the snag fall rates and height loss rates do not vary between species, the default snag fall and snag height loss multipliers (used by the SNAGFALL and SNAGBRK keywords) are 1.0.

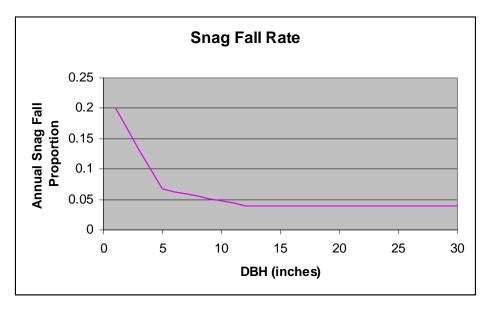


Figure 4.20.1. The rate of fall of small snags and the first 95% of large snags.

Figures 4.20.2 and 4.20.3 show the proportion of 5", 12", and larger trees still standing after various amounts of time. From Figure 4.20.3, you can see how the last 5% of these large snags fall at a slower rate and that some persist for as long as 50 years.

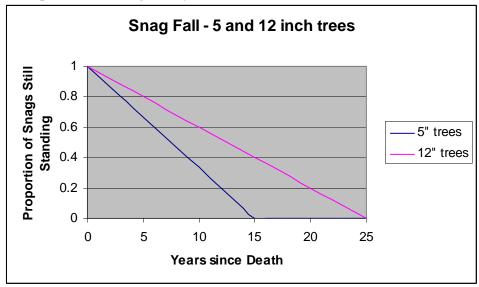


Figure 4.20.2 Snag fall rates for 5 and 12 inch trees.

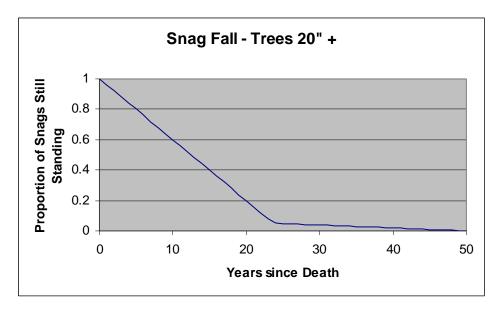


Figure 4.20.3 Snag fall rates for trees larger than 20 inches dbh.

Figure 4.20.4 shows the number of years it takes a hard snag to become soft for different diameter snags.

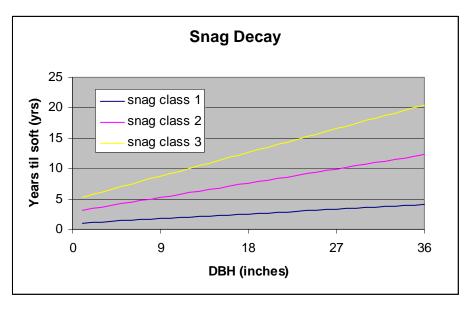


Figure 4.20.4. The number of years until soft for various diameter snags.

Snag bole volume is determined using the base FVS model equations. The coefficients shown in Table 4.20.5 are used to convert volume to biomass. Soft snags have 80 percent the density of hard snags.

Snag dynamics can be modified by the user using the SNAGBRK, SNAGFALL, SNAGDCAY and SNAGPBN keywords described in the FFE Model Description.

4.20.3 Fuels

Fuels are divided into to four categories: live tree bole, live tree crown, live herb and shrub, and dead surface fuels. Live herb and shrub fuel load and the initial dead surface fuel load are assigned based on the Forest Type code, as reported in the Summary Statistics Table.

One difference between the implementation of FFE in the Northeastern variant, relative to its implementation in all of the western variants, is the distinction between crown material and stemwood. In the western variants, stemwood biomass is calculated by converting total cubic foot volume to biomass for each tree. Crown biomass is calculated through equations that predict the biomass of branchwood alone. In the Northeastern variant, total cubic foot volume equations are not in use. As a result, stemwood biomass is calculated by converting merchantable cubic foot volume (to a 4 inch top diameter inside bark) to biomass for each tree. Crown biomass is calculated through equations that predict the biomass of branchwood plus the unmerchantable portion of the main stem (stemwood above a 4 inch diameter). This has some effects that users should be aware of.

- 1. The default assumption in the western variants when harvesting is that the stems are taken and the crown material (branchwood) is left. In the Northeastern variants this corresponds to a default assumption that the merchantable material is taken and the unmerchantable material (branchwood, small trees, unmerchantable topwood) is left.
- 2. Surface fuel accumulation is predicted from a variety of processes including crown breakage and crown lift. Based on a default percentage and the change in crown ratio for each tree record, a certain amount of material is predicted to fall to the ground each year. This assumption changes slightly when using the Northeastern variant. Rather than predicting a certain percentage of the branchwood will fall each year, essentially the model is predicting a certain percentage of the unmerchantable material (branchwood, small trees, unmerchantable topwood) will fall each year.
- 3. Other changes were made to handle this situation and are described in the section on Tree Crowns.

Live Tree Bole

The fuel contribution of live trees is divided into two components: bole and crown. Bole volume is transferred to the FFE after being computed by the FVS model, then converted to biomass using wood density calculated from Table 4-3a of The Wood Handbook (Forest Products Laboratory 1999). Generally, species not listed were given a default value of 28.7 lbs/cuft.

Species	lbs/cuft	Species used	Species	lbs/cuft	Species used
balsam fir	20.6	opecies useu	white oak	37.4	opecies useu
tamarack	20.6 30.6		bur oak	37.4	
white spruce	23.1		chinkapin oak	37.4	White oak
red spruce	23.1		post oak	37.4	White Oak
led spidee	20.1	Red / white	posi oak	57.4	White oak
Norway spruce	23.1	spruce	other oak species	37.4	WINE Oak
black spruce	23.7	-p	scarlet oak	37.4	
	_0	Red / white		0	Northern red oak
other spruce species	23.1	spruce	shingle oak	34.9	
red pine	25.6		water oak	34.9	
eastern white pine	21.2		pin oak	36.2	
loblolly pine	29.3		chestnut oak	35.6	
Virginia pine	28.1		swamp white oak	39.9	
northern white-cedar	18.1		swamp chestnut oak	37.4	
Atlantic white-cedar	19.3		northern red oak	34.9	
eastern redcedar	27.4		southern red oak	32.4	
other cedar species	27.4	Eastern redcedar	black oak	34.9	
eastern hemlock	23.7		cherrybark oak	38.0	
		Mountain /			Default
other hemlock species	26.2	western hemlock	other hardwoods	28.7	
other pine species	25.6	Red pine	buckeye species	28.7	Default
jack pine	24.9		yellow buckeye	28.7	Default
shortleaf pine	29.3		water birch	29.9	Paper birch
Table Mountain pine	28.1	Virginia pine	hackberry	30.6	
pitch pine	29.3		common persimmon	28.7	Default
pond pine	31.8		American holly	28.7	Default
Scotch pine	25.6	Red pine	butternut	22.5	
other softwoods	25.6	Red pine	black walnut	31.8	
red maple	30.6		Osage-orange	28.7	Default
sugar maple	34.9		magnolia species	28.7	0
black maple	32.4		sweetbay		Southern magnolia
silver maple	27.4		apple species		Black cherry
yellow birch	34.3		water tupelo	28.7	
sweet birch	37.4		blackgum	28.7	
river birch		Paper birch	sourwood		Default
paper birch	29.9		Paulownia		Default
gray birch	29.9	Paper birch	sycamore	28.7	
hickory species	30.0	Mockernut / shagbark hickory	willow oak	34.9	
pignut hickory	41.2	Shagbant monory	black locust	41.2	
shellbark hickory	38.7		black willow	22.5	
shagbark hickory	39.9		sassafras	26.2	
mockernut hickory	39.9		American basswood	20.0	
moonormat monory	00.0			20.0	American
American beech	34.9		white basswood	20.0	
ash species	33.1	Green ash	other elm species		American elm
white ash	34.3		American elm	28.7	
black ash	28.1		slippery elm	29.9	

Table 4.20.5.Woody density (ovendry lbs/green ft³) used in the NE-FFE variant.

Species	lbs/cuft	Species used	Species	lbs/cuft	Species used
			non-commercial		Default
green ash	33.1		hardwoods	28.7	
pumpkin ash	33.1	Green ash	boxelder	30.6	Red maple
yellow-poplar	24.9		striped maple	30.6	Red maple
sweetgum	28.7		ailanthus	28.7	Default
cucumbertree	27.4		serviceberry	28.7	Default
quaking aspen	21.8		American hornbeam	28.7	Default
balsam poplar	19.3		flowering dogwood	28.7	Default
eastern cottonwood	23.1		hawthorn species	28.7	Default
			eastern		Default
bigtooth aspen	22.5		hophornbeam	28.7	
		Eastern			Black cherry
swamp cottonwood	23.1	cottonwood	plum, cherry species	29.3	
black cherry	29.3		pin cherry	29.3	Black cherry

Tree Crown

For merchantable trees, estimates of crown material, including branchwood and bolewood above a 4 inch top (DOB), are from Jenkins et al. (2003). These equations do not provide information on how the crown material is distributed by size class. Information on partitioning canopy fuel loads by size class was taken from several sources (Snell and Little (1983), Loomis and Blank (1981), Loomis and Roussopoulos (1987), Loomis et. al. (1966)). Species were mapped when necessary. Because information on how crown material is partitioned for different species is often based on different definitions of "crown" (branchwood only, branchwood plus stemwood above a 0.25 inch diameter, branchwood plus stemwood above a 1 inch diameter), the equations to predict the proportion of crown biomass in various size classes are adjusted. The basic assumption is that the biomass of the unmerchantable tip can be calculated from the volume of a cone, where the height of the cone is 4 inches. There are some additions made to these estimates of crown biomass. Jenkin's equations include branchwood and stem material above a 4 inch DOB top, while the Northeastern volume equations go up to a 4 inch DIB top. As a result, there is a small portion of biomass that is missing. This is estimated and added to the crown material estimates.

For unmerchantable trees, total above ground biomass is predicted using equations in Jenkins et. al. (2003). Due to the nature of these equations, for trees less than 1 inch in diameter, the estimate for a 1-inch tree is scaled back based on diameter. A similar method (to that for large trees) is used to adjust how the crown material is distributed by size class. In this case the main stem is assumed to be cone-shaped above breast height and cylinder-shaped below breast height.

Live leaf lifespan is used to simulate the contribution of needles and leaves to annual litter fall. Each year the inverse of the lifespan is added to the litter pool from each biomass category. Leaf lifespan data are primarily from Hardin et. al. (2001). Exceptions include eastern redcedar and northern white-cedar, which are from Barnes and Wagner (2002).

Dead foliage and branch materials also contribute to litter fall. Each species was categorized into 1 of 6 crown fall rate categories and the life span of dead foliage and branches was determined for each category. The categorization and rates are based on those developed for SN-FFE and LS-FFE, as well as general input from the NE development meeting.

Species	Leaf Life (years)	Crown Fall Class	Species	Leaf Life (years)	Crown Fal Class
balsam fir	8	6	white oak	1	3
tamarack	1	1	bur oak	1	3
white spruce	8	6	chinkapin oak	1	
red spruce	8	6	post oak	1	
Norway spruce	8	6	other oak species	1	
black spruce	8	6	scarlet oak	1	4
other spruce species	8	6	shingle oak	1	4
red pine	4	6	water oak	1	
eastern white pine	2	6	pin oak	1	
loblolly pine	3	6	chestnut oak	1	
Virginia pine	3	6	swamp white oak	1	
northern white-cedar	2	1	swamp chestnut oak	1	;
Atlantic white-cedar	3	1	northern red oak	1	4
eastern redcedar	5	1	southern red oak	1	
other cedar species	5	1	black oak	1	
eastern hemlock	3	3	cherrybark oak	1	
other hemlock species	3	3	other hardwoods	1	
other pine species	2	6	buckeye species	1	
jack pine	2	6	yellow buckeye	1	
shortleaf pine	4	6	water birch	1	
Table Mountain pine	3	6	hackberry	1	
pitch pine	2	6	common persimmon	1	
pond pine	2	6	American holly	3	
Scotch pine	3	6	butternut	1	
other softwoods	2	6	black walnut	1	
red maple	1	5	Osage-orange	1	
sugar maple	1	5	magnolia species	1	
black maple	1	5	sweetbay	1	
silver maple	1	5	apple species	1	
yellow birch	1	6	water tupelo	1	
sweet birch	1	6	blackgum	1	:
river birch	1	6	sourwood	1	
paper birch	1	6	Paulownia	1	
gray birch	1	6	sycamore	1	
hickory species	1	2	willow oak	1	
pignut hickory	1	2	black locust	1	
shellbark hickory	1	2	black willow	1	
shagbark hickory	1	2	sassafras	1	
mockernut hickory	1	2	American basswood	1	
American beech	1	4	white basswood	1	
ash species	1	5	other elm species	1	
white ash	1	5	American elm	1	
black ash	1	5	slippery elm	1	
	I	0	non-commercial	I	
green ash	1	5	hardwoods	1	
pumpkin ash	1	5	boxelder	1	
yellow-poplar	. 1	4	striped maple	1	
		r	emped maple		

Table 4.20.6. Life span of live foliage and crown fall class (1 to 6) for species modeled in the NE-FFE variant.

cucumbertree	1	4	serviceberry	1	5
quaking aspen	1	6	American hornbeam	1	4
balsam poplar	1	6	flowering dogwood	1	5
eastern cottonwood	1	6	hawthorn species	1	5
bigtooth aspen	1	6	eastern hophornbeam	1	4
swamp cottonwood	1	6	plum, cherry species	1	4
black cherry	1	4	pin cherry	1	4

 Table 4.20.7.
 Years until all snag crown material of certain sizes has fallen by crown fall class

Crown fall	Snag Crown Material Time to 100% Fallen (years)							
class	Foliage	<0.25"	0.25–1"	1-3"	3-6"	6-12"		
1	1 (cedars = 3)	5	5	10	25	25		
2	1	3	3	6	12	12		
3	1	2	2	5	10	10		
4	1	1	1	4	8	8		
5	1	1	1	3	6	6		
6	1	1	1	2	4	4		

Live Herbs and Shrubs

Live herb and shrub fuels are modeled very crudely within NE-FFE. Shrubs and herbs are assigned a constant biomass value based on Chojnacky et. al. (2004).

Table 4.20.8.Values (dry weight, tons/acre) for live fuels used in the NE-FFE.

Forest Type	Herbs	Shrubs
All stand types	0.31	0.31

Dead Fuels

Initial default fuel pools are based on FIA forest type and size class. Default fuel loadings are based on FIA fuels data collected in the Northeast and were provided by Randy Morin and Chris Woodall. Initial fuel loads can be modified using the FUELINIT keyword.

 Table 4.20.9.
 FIA forest type and size class are used to assign default surface fuel values (tons/acre) by size class.

	FIA			S	ize clas	s (inches	5)		
FIA Forest type	size class	< 0.25	0.25 – 1	1 – 3	3 – 6	6 – 12	> 12	Litter	Duff
white / red / jack pine	all	0.81	1.19	1.66	0.73	2.24	2.01	3.06	11.20
spruce –fir	1	0.37	0.59	1.85	0.82	2.47	5.40	3.36	48.56
spruce –fir	2	0.50	0.68	1.77	1.52	3.17	1.64	1.91	22.14
spruce –fir	3	0.31	0.65	1.55	1.45	2.82	1.08	1.57	25.87

loblolly-shortleaf pine	all	0.21	1.08	7.32	0.53	0.57	0.00	4.21	13.94
exotic softwoods	all	0.34	0.50	0.56	0.08	0.00	0.00	0.60	8.11
oak-pine	1	0.23	0.82	2.55	0.83	2.11	1.20	4.06	22.63
oak-pine	2 or 3	0.26	0.84	1.15	0.49	0.50	4.64	3.12	17.56
oak-hickory	1	0.31	0.72	2.09	0.86	1.49	2.34	2.01	7.64
oak-hickory	2	0.32	1.13	2.51	0.53	0.98	0.52	1.75	7.31
oak-hickory	3	0.17	0.77	1.43	0.45	0.54	0.06	1.35	3.43
oak-gum-cypress	all	0.32	0.75	1.31	0.64	2.10	0.98	1.07	15.21
elm-ash-cottonwood	1 or 2	0.17	0.68	1.65	0.57	1.20	1.66	0.70	5.83
elm-ash-cottonwood	3	0.22	2.15	0.85	0.03	0.05	0.21	0.36	1.38
maple-beech-birch	1	0.39	0.90	2.88	0.95	2.25	1.96	2.39	13.75
maple-beech-birch	2	0.37	1.03	2.61	0.91	1.46	1.57	2.28	16.74
maple-beech-birch	3	0.33	0.73	1.25	0.54	0.92	1.99	1.71	8.27
aspen-birch	1 or 2	0.48	1.66	2.80	0.87	1.70	2.97	2.72	19.61
aspen-birch	3	0.52	0.76	2.57	1.15	0.94	0.34	1.34	10.36
nonstocked	5	0.33	1.08	1.47	0.24	0.49	0.53	1.01	1.07

4.20.4 Bark Thickness

Bark thickness contributes to predicted tree mortality from simulated fires The bark thickness multipliers in Table 4.20.10 are used to calculate single bark thickness, which in turn is used to calculate fire-related mortality (RMRS-GTR-116, section 2.5.5). The bark thickness equation used in the mortality equation is unrelated to the bark thickness used in the base FVS model. Data are from FOFEM 5.0 (Reinhardt and others 2001).

	Multiplier			Multiplier	
Species	(V _{sp})	Species used	Species	(V _{sp})	Species used
balsam fir	0.031		white oak	0.04	
tamarack	0.031		bur oak	0.042	
white spruce	0.025		chinkapin oak	0.042	
red spruce	0.034		post oak	0.044	
Norway spruce	0.029		other oak species	0.045	Quercus sp.
black spruce	0.032		scarlet oak	0.04	
other spruce species	0.034		shingle oak	0.041	
red pine	0.043		water oak	0.036	
eastern white pine	0.045		pin oak	0.041	
loblolly pine	0.052		chestnut oak	0.049	
Virginia pine	0.033		swamp white oak	0.045	
northern white-cedar	0.025		swamp chestnut oak	0.046	
Atlantic white-cedar	0.025		northern red oak	0.042	
eastern redcedar	0.038		southern red oak	0.044	
other cedar species	0.033	Juniperus sp.	black oak	0.045	
eastern hemlock	0.039		cherrybark oak	0.044	
		Western / mountain			Middle of this group
other hemlock species	0.04	hemlock	other hardwoods	0.04	
other pine species	0.03	Pinus sp.	buckeye species	0.036	Ohio buckeye
jack pine	0.04		yellow buckeye	0.05	
shortleaf pine	0.037		water birch	0.05	

 Table 4.20.10.
 Species specific constants for determining single bark thickness.

Species	Multiplier (V _{sp})	Species used	Species	Multiplier (V _{sp})	Species used
· · · · · · · · · · · · · · · · · · ·	0.04	opecies used		0.036	sugarberry
Table Mountain pine	0.04		hackberry	0.036	sugarberry
pitch pine	0.045		common persimmon	0.041	
pond pine	0.62		American holly	0.042	
Scotch pine		Dinus on	butternut		
other softwoods		Pinus sp.	black walnut	0.041	
red maple	0.028		Osage-orange	0.037	Magnalia
sugar maple	0.033		magnolia species	0.039	Magnolia sp.
black maple	0.035		sweetbay	0.04	
silver maple	0.031		apple species	0.043	
yellow birch	0.031		water tupelo	0.03	
sweet birch	0.03		blackgum	0.039	
river birch	0.029		sourwood	0.036	
paper birch	0.027		Paulownia	0.05	
gray birch	0.033		sycamore	0.033	
hickory species		Carya sp.	willow oak	0.041	
pignut hickory	0.037		black locust	0.049	
shellbark hickory	0.043		black willow	0.04	
shagbark hickory	0.04		sassafras	0.035	
mockernut hickory	0.043		American basswood	0.04	
American beech	0.025		white basswood	0.05	
ash species	0.042	Fraxinus sp.	other elm species	0.039	Ulmus sp.
white ash	0.042		American elm	0.031	
black ash	0.035		slippery elm	0.032	
			non-commercial		Middle of this
green ash	0.039		hardwoods	0.045	group
pumpkin ash	0.037		boxelder	0.034	
yellow-poplar	0.041		striped maple	0.045	
sweetgum	0.036		ailanthus	0.05	
cucumbertree	0.036		serviceberry	0.05	
quaking aspen	0.044		American hornbeam	0.03	
balsam poplar	0.04		flowering dogwood	0.041	
eastern cottonwood	0.04		hawthorn species	0.038	
bigtooth aspen	0.039		eastern hophornbeam	0.037	
swamp cottonwood	0.05		plum, cherry species	0.05	Prunus sp.
black cherry	0.03		pin cherry	0.045	•

4.20.5 Decay Rate

Decay of down material is simulated by applying loss rates to pieces by size class (Table 4.20.11), as described in section 2.4.5 of the FFE documentation. Default decay rates are based on Foster and Lang (1982), Arthur et. al. (1993), Fahey et. al. (1988), and Melillo et. al. (1982). A portion of the loss is added to the duff pool each year. Loss rates are for hard material; soft material in all size classes, except litter and duff, decays 10% faster.

Table 4.20.11.Default annual loss rates are applied based on size class. A portion of the loss is added to the duff
pool each year. Loss rates are for hard material. If present, soft material in all size classes except
litter and duff decays 10% faster.

Annual Loss Rate	Proportion of Loss Becoming Duff
0.10	
0.19	
0.11	_
0.07	0.02
0.02	_
0.03	
0.40	_
0.002	0.0
	Rate 0.19 0.11 0.07 0.03 0.40

By default, the FFE decays all wood species at the rates shown in Table 4.20.11. The decay rates of species groups may be modified by users, who can provide rates to the four decay classes shown in Table 4.20.12 using the FUELDCAY keyword. Users can also reassign species to different classes using the FUELPOOL keyword. The decay rate classes were generally determined from the Wood Handbook (1999). When species were classified differently for young or old growth, young growth was assumed. Species not listed in the wood handbook were classed as 4.

Table 4.20.12. Default wood decay classes used in the NE-FFE variant. Classes are from the Wood Handbook (1999). (1 = exceptionally high; 2 = resistant or very resistant; 3 = moderately resistant, and 4 = slightly or nonresistant)

Species	Decay Rate Class	Species	Decay Rate Class	
balsam fir	4	white oak	2	
tamarack	3	bur oak	2	
white spruce	4	chinkapin oak	2	
red spruce	4	post oak	2	
Norway spruce	4	other oak species	2	
black spruce	4	scarlet oak	2	
other spruce species	4	shingle oak	2	
red pine	4	water oak	2	
eastern white pine	4	pin oak	2	
loblolly pine	4	chestnut oak	2	
Virginia pine	4	swamp white oak	2	
northern white-cedar	2	swamp chestnut oak	2	
Atlantic white-cedar	2	northern red oak	2	
eastern redcedar	2	southern red oak	2	
other cedar species	2	black oak	2	
eastern hemlock	4	cherrybark oak	2	
other hemlock species	4	other hardwoods	4	
other pine species	4	buckeye species	4	
jack pine	4	yellow buckeye	4	
shortleaf pine	4	water birch	4	
Table Mountain pine	4	hackberry	4	
pitch pine	4	common persimmon	4	

Species	Decay Rate Class	Species	Decay Rate Class	
pond pine	4	American holly	2	
Scotch pine	4	butternut	2	
other softwoods	4	black walnut	2	
red maple	4	Osage-orange	1	
sugar maple	4	magnolia species	2	
black maple	4	sweetbay	2	
silver maple	4	apple species		
yellow birch	4	water tupelo	2	
sweet birch	4	blackgum	2	
river birch	4	sourwood	4	
paper birch	4	Paulownia	4	
gray birch	4	sycamore	4	
hickory species	4	willow oak		
pignut hickory	4	black locust		
shellbark hickory	4	black willow	4	
shagbark hickory	4	sassafras		
mockernut hickory	4	American basswood	4	
American beech	4	white basswood	4	
ash species	4	other elm species	4	
white ash	4	American elm	4	
black ash	4	slippery elm	4	
green ash	4	non-commercial hardwoods	4	
pumpkin ash	4	boxelder		
yellow-poplar	4	striped maple	4	
sweetgum	4	ailanthus		
cucumbertree	4	serviceberry	4	
quaking aspen	4	American hornbeam	4	
balsam poplar	4	flowering dogwood	4	
eastern cottonwood	4	hawthorn species	4	
bigtooth aspen	4	eastern hophornbeam	4	
swamp cottonwood	4	plum, cherry species	2	
black cherry	2	pin cherry		

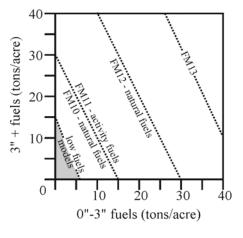
4.20.6 Moisture Content

Moisture content of the live and dead fuels is used to calculate fire intensity and fuel consumption (Model Description, Section 5.2.1). Users can choose from four predefined moisture groups (Table 4.20.13) or they can specify moisture conditions using the MOISTURE keyword. These defaults were set based on the values used in LS-FFE.

	Moisture Group				
Size Class	Very Dry	Dry	Moist	Wet	
0 – 0.25 in. (1-hr)	5	7	10	19	
0.25 – 1.0 in. (10-hr)	8	9	13	29	
1.0 – 3.0 in. (100-hr)	12	14	17	22	
> 3.0 in. (1000+ -hr)	15	17	21	25	
Duff	40	75	100	175	
Live woody	89	105	135	140	
Live herbaceous	60	82	116	120	

 Table 4.20.13.
 Moisture values (%), which alter fire intensity and consumption, have been predefined for four groups.

4.20.7 Fire Behavior Fuel Models


Fire behavior fuel models (Anderson 1982) are used to estimate flame length and fire effects stemming from flame length. Fuel models are determined using fuel load and stand attributes specific to each FFE variant. Stand management actions such as thinning and harvesting can abruptly increase fuel loads, resulting in the selection of alternative fuel models. At their discretion, FFE users have the option of:

- 1. defining and using their own fuel models;
- 2. defining the choice of fuel models and weights;
- 3. allowing the FFE variant to determine a weighted set of fuel models, or
- 4. allowing the FFE variant to determine a weighted set of fuel models, then using the dominant model.

This section explains the steps taken by the NE-FFE to follow the third of these four options.

NOTE: Currently NE-FFE does not have a detailed fuel model selection logic. As a result, fuel models are selected based on fuel loading only (Figure 4.20.5). When the combination of large and small fuel lies in the lower left corner of the graph shown in Figure 4.20.5, fuel model 9 becomes a candidate model. When fuel loads are higher, other fuel models (fm 10 - 13) may also become candidates.

If the STATFUEL keyword is selected, fuel model is determined by using only the closest-match fuel model identified by the logic described above. The FLAMEADJ keyword allows the user to scale the calculated flame length or override the calculated flame length with a value they choose.

Fuel model, 100% weight

Figure 4.20.5. At high fuel loads, multiple fuel models may be candidates. In this case, fire behavior is based on the closest fuel models, identified by the dashed lines. At low fuel loads, fuel model 9 is selected.

4.20.8 Fire-related Mortality

Like most FFE variants, NE-FFE predicts fire-related tree mortality based on species, diameter, and crown scorch (see section 2.5.5 of the FFE documentation). However, some modifications were made to further refine the predictions. The mortality of conifers is reduced by 50% if the burn is simulated before greenup. There is a minimum of 70% mortality for balsam fir that are hit by the flaming front. All maples under 4" dbh die when there is a burn and the flaming front hits them. Hardwoods also receive a reduction in mortality when the burn is before greenup – the mortality of most hardwoods is reduced by 20%, except for oaks above 2.5" dbh, whose mortality is reduced by 50%. All hardwoods less than 1" dbh die if the flaming front hits them.

4.21 Central States (CS)

4.21.1 Tree Species

The Central States variant models the 96 tree species categories shown in Table 4.21.1. The "other softwood" category is modeled as eastern white pine, the "other upland hardwoods" category is modeled as honeylocust, the "other lowland hardwoods" category is modeled as sycamore and the "non-commerical hardwoods" category is modeled as flowering dogwood.

Common name	Scientific name	Common name	Scientific name
eastern redcedar	Juniperus virginiana	southern red oak	Quercus falcata
juniper species	Juniperus sp.	black oak	Quercus velutina
shortleaf pine	Pinus echinata	scarlet oak	Quercus coccinea
Virginia pine	Pinus viginiana	blackjack oak	Quercus marilandica
loblolly pine	Pinus taeda	chinkapin oak	Quercus muehlenbergii
other softwood species		swamp white oak	Quercus bicolor
eastern white pine	Pinus strobus	bur oak	Quercus macrocarpa
black walnut	Juglans nigra	swamp chestnut oak	Quercus michauxii
butternut	Juglans cinerea	post oak	Quercus stellata Quercus stellata var.
tupelo species	Nyssa sp.	Delta post oak	mississippiensi
swamp tupelo	Nyssa biflora	chestnut oak	Quercus prinus
water tupelo	Nyssa aquatica	pin oak	Quercus palustris
blackgum, black tupelo	Nyssa sylvatica	cherrybark oak	Quercus pagoda
select hickory	Carya sp.	shingle oak	Quercus imbricaria
shagbark hickory	Carya ovata	overcup oak	Quercus lyrata
shellbark hickory	Carya laciniosa	water oak	Quercus nigra
mockernut hickory	Carya alba	Nuttall oak	Quercus nutallii
pignut hickory	Carya glabra	willow oak	Quercus phellos
hickory species	Carya sp.	Shumard oak	Quercus shumardii
water hickory	Carya aquatica	other upland hardwoods	
bitternut hickory	Carya cordiformis	sassafras	Sassafras albidum
pecan	Carya illinoensis	Ohio buckeye	Aesculus glabra
black hickory	Carya texana	catalpa	Catalpa sp.
American beech	Fagus grandifolia	common persimmon	Diospyros virginiana
black ash	Fraxinus nigra	honeylocust	Gleditsia triacanthos
pumpkin ash	Fraxinus profunda	balsam poplar	Populus balsamifera
blue ash	Fraxinus quadrangulata	bigtooth aspen	Populus grandidentata
eastern cottonwood	Populus deltoides	quaking aspen	Populus tremuloides
red maple	Acer rubrum	black locust	Robinia pseudoacacia
boxelder	Acer negundo	other lowland species	
silver maple	Acer saccharinum	sycamore	Platanus occidentalis
black cherry	Prunus serotina	baldcypress	Taxodium distichum
American elm	Ulmus americana	river birch	Betula nigra
sugarberry	Celtis laevigata	sweetgum	Liquidamber styraciflua
hackberry	Celtis occidentalis	willow species	Salix sp.

Table 4.21.1.Tree species simulated by the Central States variant.

Common name	Scientific name	Common name	Scientific name
winged elm	Ulmus alata	black willow non-commercial	Salix nigra
elm species	Ulmus sp.	hardwoods	
Siberian elm	Ulmus pumilia	American hornbeam	Carpinus caroliniana
slippery (red) elm	Ulmus rubra	eastern redbud	Cercis canadensis
rock elm	Ulmus thomasii	flowering dogwood	Cornus florida
yellow-poplar	Liriodendron tulipifera	hawthorn species	Crataegus sp.
American basswood	Tilia americana	Kentucky coffeetree	Gymnocladus dioicus
sugar maple	Acer saccharum	osage-orange	Malcura pomifera
ash species	Fraxinus sp.	cucumbertree	Magnolia acuminata
white ash	Fraxinus americana	sweetbay	Magnolia virginiana
green ash	Fraxinus pennsylvanica	mulberry species	Morus sp.
white oak	Quercus alba	eastern hophornbeam	Ostrya virginiana
northern red oak	Quercus rubra	sourwood	Oxydendrum arboreum

4.21.2 Snags

The majority of the snag model logic is based on unpublished data provided by Bruce Marcot (USFS, Portland, OR, unpublished data 1995). Snag fall parameters were developed at the SN-FFE development workshop. A complete description of the Snag Submodel is provided in Section 3 of the FFE Model Description.

Three variables are used to modify the Snag Submodel for the different species in the CS-FFE variant:

- a multiplier to modify the species' fall rate;
- a multiplier to modify the time required for snags to decay from a "hard" to "soft" state; and
- the maximum number of years that snags will remain standing.

Initially, each species was put into a snag class (1, 2, or 3), as listed in Table 4.21.2. Then the above variables were determined for each snag class. Snag class 1 generally represents pines, snag class 2 generally represents black oak and similar species, and snag class 3 generally represents white oak species and redcedar species. These variables are summarized in Tables 4.21.3 and 4.21.4.

Snag bole volume is determined using the base FVS model equations. The coefficients shown in Table 4.21.5 are used to convert volume to biomass. Soft snags have 80 percent the density of hard snags.

Snag dynamics can be modified by the user using the SNAGBRK, SNAGFALL, SNAGDCAY and SNAGPBN keywords described in the FFE Model Description.

Species	Snag class	Species	Snag class
eastern redcedar	3	southern red oak	2
juniper species	3	black oak	2
shortleaf pine	1	scarlet oak	2
Virginia pine	1	blackjack oak	3
loblolly pine	1	chinkapin oak	3
other softwood species	1	swamp white oak	3

Table 4.21.2.Snag class for each species in CS-FFE.

Species	Snag class	Species	Snag class
eastern white pine	1	bur oak	3
black walnut	2	swamp chestnut oak	2
butternut	2	post oak	3
tupelo species	3	Delta post oak	3
swamp tupelo	3	chestnut oak	2
water tupelo	3	pin oak	2
blackgum, black tupelo	3	cherrybark oak	2
select hickory	3	shingle oak	2
shagbark hickory	3	overcup oak	2
shellbark hickory	3	water oak	3
mockernut hickory	3	Nuttall oak	2
pignut hickory	3	willow oak	2
hickory species	3	Shumard oak	2
water hickory	3	other upland hardwoods	3
bitternut hickory	3	sassafras	2
pecan	3	Ohio buckeye	2
black hickory	3	catalpa	2
American beech	2	common persimmon	3
black ash	2	honeylocust	3
pumpkin ash	2	balsam poplar	1
blue ash	2	bigtooth aspen	1
eastern cottonwood	1	quaking aspen	1
red maple	2	black locust	3
boxelder	2	other lowland species	2
silver maple	2	sycamore	2
black cherry	2	baldcypress	3
American elm	1	river birch	1
sugarberry	2	sweetgum	2
hackberry	2	willow species	1
winged elm	1	black willow	1
elm species	1	non-commercial hardwoods	2
Siberian elm	1	American hornbeam	2
slippery (red) elm	1	eastern redbud	2
rock elm	1	flowering dogwood	2
yellow-poplar	2	hawthorn species	2
American basswood	1	Kentucky coffeetree	2
sugar maple	2	osage-orange	2
ash species	2	cucumbertree	2
white ash	2	sweetbay	2
green ash	2	mulberry species	2
white oak	3	eastern hophornbeam	2
northern red oak	2	sourwood	2

Snag Class	95% Fallen (yr)	All Down (yr)	50% Height (yr)	Hard-to- Soft (yr)	Notes
1	3	6 (pines are 50)		2	Snag height
2	7	15		6	loss is not modeled in
3	11	25 (RC is 100)		10	CS-FFE

Table 4.21.3.Snag fall, snag height loss and soft-snag characteristics for 12" DBH snags in the CS-FFE variant.
These characteristics directly coincide with the parameter values shown in Table 4.21.4.

Table 4.21.4.Default snag fall, snag height loss and soft-snag multipliers for the CS-FFE. These parameters
result in the values shown in Table 4.21.3. (These three columns are the default values used by the
SNAGFALL, SNAGBRK and SNAGDCAY keywords, respectively.)

Snag Class	Snag Fall	Height Ioss	Hard-to- Soft
1	7.17		0.07
2	3.07		0.21
3	1.96		0.35

Additionally, the base fall rate diameter cutoff (diameter at which 5 percent of snags are assigned a slower fall rate) was changed from 18 in. to 12 in. DBH. Due to the dynamics of eastern redcedar, for redcedar snags, even those less than 12 inches, 5 percent are assigned a slower fall rate.

Figures 4.21.1, 4.21.2, and 4.21.3 show how these values translate for 10 and 20 inch snags of varying species.

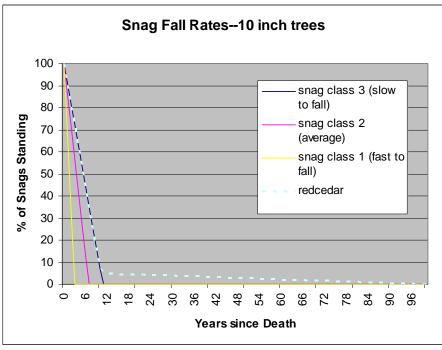


Figure 4.21.1. Snag fall rates for 10 inch trees.

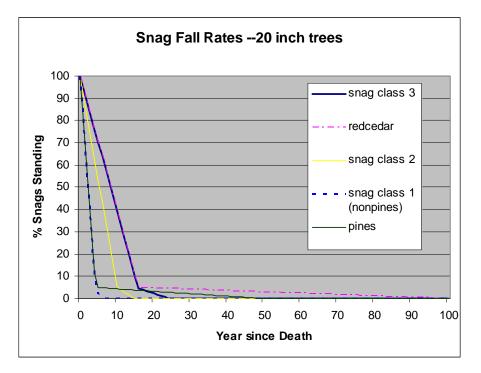
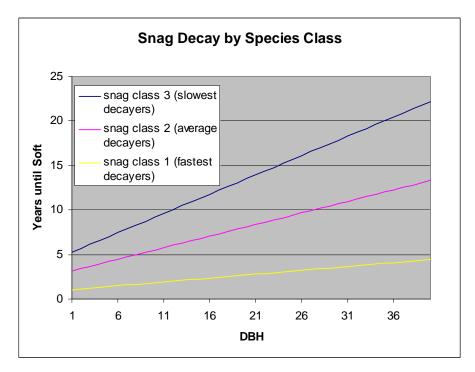



Figure 4.21.2. Snag fall rates for 20 inch trees.

199

Figure 4.21.3. The number of years until soft for various diameter snags.

4.21.3 Fuels

Fuels are divided into to four categories: live tree bole, live tree crown, live herb and shrub, and dead surface fuels. Live herb and shrub fuel load and the initial dead surface fuel load are assigned based on the Forest Type code, as reported in the Summary Statistics Table.

One difference between the implementation of FFE in the Central States variant, relative to its implementation in all of the western variants, is the distinction between crown material and stemwood. In the western variants, stemwood biomass is calculated by converting total cubic foot volume to biomass for each tree. Crown biomass is calculated through equations that predict the biomass of branchwood alone. In the Central States variant, total cubic foot volume equations are not in use. As a result, stemwood biomass is calculated by converting merchantable cubic foot volume (to a 4 inch top diameter inside bark) to biomass for each tree. Crown biomass is calculated through equations that predict the biomass of branchwood plus the unmerchantable portion of the main stem (stemwood above a 4 inch diameter). This has some effects that users should be aware of.

- 1. The default assumption in the western variants when harvesting is that the stems are taken and the crown material (branchwood) is left. In the eastern variants this corresponds to a default assumption that the merchantable material is taken and the unmerchantable material (branchwood, small trees, unmerchantable topwood) is left.
- 2. Surface fuel accumulation is predicted from a variety of processes including crown breakage and crown lift. Based on a default percentage and the change in crown ratio for each tree record, a certain amount of material is predicted to fall to the ground each year. This assumption changes slightly when using the Central States variant. Rather than predicting a certain percentage of the branchwood will fall each year, essentially the model is predicting a certain percentage of the unmerchantable material (branchwood, small trees, unmerchantable topwood) will fall each year.
- 3. Other changes were made to handle this situation and are described in the section on Tree Crowns.

Live Tree Bole

The fuel contribution of live trees is divided into two components: bole and crown. Bole volume is transferred to the FFE after being computed by the FVS model, then converted to biomass using wood density calculated from Table 4-3a of The Wood Handbook (Forest Products Laboratory 1999), Hardwoods of North America (1995), or Jenkins et. al (2004).

Species	lbs/cuft	Species used	Species	lbs/cuft	Species used
eastern redcedar	27.4		southern red oak	32.4	
juniper species	27.4	eastern redcedar	black oak	34.9	
shortleaf pine	29.3		scarlet oak	37.4	
Virginia pine	28.1		blackjack oak	34.9	black oak
loblolly pine	29.3		chinkapin oak	37.4	white oak
other softwood species	21.2		swamp white oak	39.9	
eastern white pine	21.2	e. white pine	bur oak	36.2	
black walnut	31.8		swamp chestnut oak	37.4	
butternut	22.5		post oak	37.4	
tupelo species	28.7	black tupelo	Delta post oak	37.4	post oak
swamp tupelo	28.7	black tupelo	chestnut oak	35.6	
water tupelo	28.7		pin oak	36.2	
blackgum, black tupelo	28.7		cherrybark oak	38.0	
select hickory	39.9	shagbark hickory	shingle oak	34.9	northern red oak
shagbark hickory	39.9	·	overcup oak	35.6	
shellbark hickory	38.7		water oak	34.9	
mockernut hickory	39.9		Nuttall oak	34.9	black oak
pignut hickory	41.2		willow oak	34.9	
hickory species	39.9	shagbark hickory	Shumard oak	34.9	black oak
			other upland		
water hickory	38.0		hardwoods	37.4	honeylocust
bitternut hickory	37.4		sassafras	26.2	
pecan	37.4		Ohio buckeye	20.6	yellow buckeye
black hickory	39.9	shagbark hickory	catalpa	23.7	
American beech	34.9		common persimmon	39.9	
black ash	28.1		honeylocust	37.4	
pumpkin ash	29.9		balsam poplar	19.3	
blue ash	33.1		bigtooth aspen	22.5	
eastern cottonwood	23.1		quaking aspen	21.8	
red maple	30.6		black locust	41.2	
boxelder	25.9		other lowland species	28.7	sycamore
silver maple	27.4		sycamore	28.7	
black cherry	29.3		baldcypress	26.2	
American elm	28.7		river birch	30.6	
sugarberry	30.6	hackberry	sweetgum	28.7	
hackberry	30.6		willow species	22.5	black willow
winged elm	37.4		black willow	22.5	
			non-commercial		flowering dogwood
elm species		American elm	hardwoods	39.9	
Siberian elm		American elm	American hornbeam	36.2	
slippery (red) elm	29.9		eastern redbud	36.2	
rock elm	35.6		flowering dogwood	39.9	
yellow-poplar	24.9		hawthorn species	38.7	
American basswood	20.0		Kentucky coffeetree	33.1	
sugar maple	34.9		osage-orange	47.4	
ash species	33.1	green ash	cucumbertree	27.4	
white ash	34.3		sweetbay	26.2	
green ash	33.1		mulberry species	36.8	
white oak	37.4		eastern hophornbeam	39.3	

Table 4.21.5.	Woody density (ovendry lbs/green ft ³) used in the CS-FFE variant.
---------------	--

Species	Ibs/cuft Species used	Species	Ibs/cuft Species used
northern red oak	34.9	sourwood	31.2

Tree Crown

For merchantable trees, estimates of crown material, including branchwood and bolewood above a 4 inch top (DOB), are from Jenkins et al. (2003). These equations do not provide information on how the crown material is distributed by size class. Information on partitioning canopy fuel loads by size class was taken from several sources (Snell and Little (1983), Loomis and Blank (1981), Loomis and Roussopoulos (1987), Loomis et. al. (1966)). Species were mapped when necessary. Because information on how crown material is partitioned for different species is often based on different definitions of "crown" (branchwood only, branchwood plus stemwood above a 0.25 inch diameter, branchwood plus stemwood above a 1 inch diameter), the equations to predict the proportion of crown biomass in various size classes are adjusted. The basic assumption is that the biomass of the unmerchantable tip can be calculated from the volume of a cone, where the height of the cone is 4 inches. Jenkin's equations include branchwood and stem material above a 4 inch DOB top, while the Central States volume equations go up to a 4 inch DIB top. As a result, there is a small portion of biomass that is missing. This is estimated and added to the crown material estimates.

For unmerchantable trees, total above ground biomass is predicted using equations in Jenkins et. al. (2003). Due to the nature of these equations, for trees less than 1 inch in diameter, the estimate for a 1-inch tree is scaled back based on diameter. A similar method (to that for large trees) is used to adjust how the crown material is distributed by size class. In this case the main stem is assumed to be cone-shaped above breast height and cylinder-shaped below breast height.

Live leaf lifespan is used to simulate the contribution of needles and leaves to annual litter fall. Each year the inverse of the lifespan is added to the litter pool from each biomass category. Leaf lifespan data are primarily from Hardin et. al. (2001), except eastern redcedar which is from Barnes and Wagner (2002).

Dead foliage and branch materials also contribute to litter fall. Each species was categories into 1 of 6 crown fall rate categories and the life span of dead foliage and branches was determined for each category. These relationships were taken from SN-FFE.

Species	Leaf Life (years)	Crown Fall Class	Species	Leaf Life (years)	Crown Fall Class
eastern redcedar	5	1	southern red oak	1	4
juniper species	5	1	black oak	1	4
shortleaf pine	4	6	scarlet oak	1	4
Virginia pine	3	6	blackjack oak	1	2
loblolly pine	3	6	chinkapin oak	1	3
other softwood species	2	6	swamp white oak	1	3
eastern white pine	2	6	bur oak	1	3
black walnut	1	4	swamp chestnut oak	1	3
butternut	1	4	post oak	1	3
tupelo species	1	3	Delta post oak	1	3
swamp tupelo	1	3	chestnut oak	1	3
water tupelo	1	3	pin oak	1	4

 Table 4.21.6.
 Life span of live foliage and crown fall class (1 to 6) for species modeled in the CS-FFE variant.

blackgum, black tupelo	1	3	cherrybark oak	1	4
select hickory	1	2	shingle oak	1	4
shagbark hickory	1	2	overcup oak	1	3
shellbark hickory	1	2	water oak	1	3
mockernut hickory	1	2	Nuttall oak	1	4
pignut hickory	1	2	willow oak	1	4
hickory species	1	2	Shumard oak	1	4
water hickory	1	2	other upland hardwoods	1	2
bitternut hickory	1	2	sassafras	1	4
pecan	1	2	Ohio buckeye	1	5
black hickory	1	2	catalpa	1	4
American beech	1	4	common persimmon	1	4
black ash	1	5	honeylocust	1	2
pumpkin ash	1	5	balsam poplar	1	5
blue ash	1	5	bigtooth aspen	1	5
eastern cottonwood	1	5	quaking aspen	1	5
red maple	1	5	black locust	1	2
boxelder	1	5	other lowland species	1	5
silver maple	1	5	sycamore	1	5
black cherry	1	4	baldcypress	1	1
American elm	1	5	river birch	1	5
sugarberry	1	4	sweetgum	1	5
hackberry	1	4	willow species	1	6
winged elm	1	5	black willow	1	6
-	1	5	non-commercial	1	5
elm species		_	hardwoods		
Siberian elm	1	5	American hornbeam	1	4
slippery (red) elm	1	5	eastern redbud	1	5
rock elm	1	5	flowering dogwood	1	5
yellow-poplar	1	5	hawthorn species	1	5
American basswood	1	5	Kentucky coffeetree	1	5
sugar maple	1	5	osage-orange	1	4
ash species	1	5	cucumbertree	1	4
white ash	1	5	sweetbay	1	4
green ash	1	5	mulberry species	1	5
white oak	1	3	eastern hophornbeam	1	4
northern red oak	1	4	sourwood	1	5

 Table 4.21.7.
 Years until all snag crown material of certain sizes has fallen by crown fall class

Crown fall	Snag Crown Material Time to 100% Fallen (yea)
class	Foliage	<0.25"	0.25–1"	1-3"	3-6"	6-12"
1	1 (RC is 3)	5	5	10	25	25
2	1	3	3	6	12	12
3	1	2	2	5	10	10
4	1	1	1	4	8	8
5	1	1	1	3	6	6
6	1	1	1	2	4	4

Live Herbs and Shrubs

Live herb and shrub fuels are modeled very simply by the FFE. Shrubs and herbs are assigned a biomass value based on forest type. Data for pines and redcedar species are based on information from the Reference database for fuel loadings for the continental U.S. and Alaska (Scott Mincemoyer, on file at the Missoula Fire Lab). Data for hardwoods and oak-savannah are from Nelson and Graney (1996). (These values were taken from SN-FFE.)

Table 4.21.8.Values (dry weight, tons/acre) for live fuels used in the CS-FFE.

Forest Type	Herbs	Shrubs
Pines	0.10	0.25
Hardwoods	0.01	0.03
Redcedar species	1.0	5.0
Oak-Savannah	0.02	0.13

Dead Fuels

Initial default CWD pools are based on forest type. Default woody fuel loadings were set based on FIA data collected in the Central States region (Table 4.21.9). Initial fuel loads can be modified using the FUELINIT keyword.

Forest Type	FIA Forest	Size Class (in)							
Group	Type codes	< 0.25	0.25 – 1	1 – 3	3 – 6	6 – 12	> 12	Litter	Duff
Pines	100s	0.18	0.93	1.77	0.27	0.75	8.38	4.10	3.82
Redcedar	181, 402	0.19	0.86	1.58	0.11	0.31	0.67	4.89	4.40
Pine-hardwood	400s	0.18	0.75	2.42	0.59	0.67	1.34	5.37	3.07
Oak-hickory	500s	0.15	0.74	1.70	0.38	0.97	2.68	5.17	4.52
Elm-ash- cottonwood	700s	0.20	0.92	2.19	0.41	1.46	3.80	2.49	2.80
Maple-beech-birch	800s	0.19	0.88	1.95	0.56	1.62	1.82	3.88	3.41
Nonstocked	999	0.02	0.21	0.40	0.02	0.33	0.42	3.12	2.05

Table 4.21.9.Forest type is used to assign default coarse woody debris (tons/acre) by size class.

4.21.4 Bark Thickness

Bark thickness contributes to predicted tree mortality from simulated fires The bark thickness multipliers in Table 4.21.10 are used to calculate single bark thickness, which in turn, for most species, is used to calculate fire-related mortality (RMRS-GTR-116, section 2.5.5). The bark thickness equation used in the mortality equation is unrelated to the bark thickness used in the base FVS model. Data are from FOFEM 5.0 (Reinhardt and others 2001). For shortleaf pine, the bark thickness is based on an equation in Harmon (1984). For some species, (red oak, black oak, scarlet oak, white oak, chestnut oak, black and swamp tupelo, red maple, and hickories), fire-related mortality is predicted using height of stem-bark char, rather than bark thickness, based on equations in Regelbrugge and Smith (1994). It is assumed that height of stem-bark char is 70% of flame length (expert communication with Elizabeth Reinhardt, Cain (1984)).

Species	Multiplier (V _{sp})	Species used	Species	Multiplier (V _{sp})	Species used
eastern redcedar	0.038		southern red oak	0.044	
juniper species	0.033		black oak	0.045	
shortleaf pine	***		scarlet oak	0.04	
Virginia pine	0.033		blackjack oak	0.037	
loblolly pine	0.052		chinkapin oak	0.042	
other softwood species	0.045		swamp white oak	0.045	
eastern white pine	0.045		bur oak	0.042	
black walnut	0.041		swamp chestnut oak	0.046	
butternut	0.041		post oak	0.044	
tupelo species	0.025		Delta post oak	0.044	post oak
swamp tupelo	0.037		chestnut oak	0.049	·
water tupelo	0.03		pin oak	0.041	
blackgum, black tupelo	0.039		cherrybark oak	0.044	s. red oak
select hickory	0.044	hickory spp	shingle oak	0.041	
shagbark hickory	0.04	2 11	overcup oak	0.039	
shellbark hickory	0.043		water oak	0.036	
mockernut hickory	0.043		Nuttall oak	0.03	
pignut hickory	0.037		willow oak	0.041	
hickory species	0.044		Shumard oak	0.037	
water hickory	0.044	hickory spp	other upland hardwoods	0.038	honeylocust
bitternut hickory	0.037		sassafras	0.035	nonoylocdot
Decan	0.036		Ohio buckeye	0.036	
plack hickory	0.04		catalpa	0.037	
American beech	0.025		common persimmon	0.041	
black ash	0.035		honeylocust	0.038	
oumpkin ash	0.037		balsam poplar	0.000	
olue ash	0.03		bigtooth aspen	0.039	
eastern cottonwood	0.03		quaking aspen	0.000	
red maple	0.04		black locust	0.049	
boxelder	0.020			0.043	sycamore
	0.034		other lowland species	0.033	Sycamore
silver maple	0.031		sycamore	0.035	
black cherry	0.03		baldcypress	0.023	
American elm	0.031		river birch	0.029	
sugarberry	0.036	sugarberry	sweetgum	0.030	
hackberry	0.030	sugarberry	willow species	0.041	
winged elm	0.031		black willow	0.04	dogwood
elm species	0.039		non-commercial hardwoods	0.041	uogwoou
Siberian elm	0.038		American hornbeam	0.03	
slippery (red) elm			eastern redbud		
rock elm	0.033		flowering dogwood	0.041	
vellow-poplar	0.041		hawthorn species	0.038	
American basswood	0.038		Kentucky coffeetree	0.031	
sugar maple	0.033		osage-orange	0.037	
ash species	0.042		cucumbertree	0.036	
white ash	0.042		sweetbay	0.04	
green ash	0.039		mulberry species	0.033	
white oak	0.04		eastern hophornbeam	0.037	
northern red oak	0.042		sourwood	0.036	

Table 4.21.10.	Species specific constants for determining single bark thickness.
----------------	---

4.21.5 Decay Rate

Decay of down material is simulated by applying loss rates to pieces by size class (Table 4.21.11), as described in section 2.4.5 of the FFE documentation. Default wood decay rates are based on Abbott and Crossley (1982) and Barber and VanLear (1984). The litter decay rate is based on Sharpe et. al. (1980) and Witkamp (1966). A portion of the loss is added to the duff pool each year. Loss rates are for hard material; soft material in all size classes, except litter and duff, decays 10% faster.

Table 4.21.11.Default annual loss rates are applied based on size class. A portion of the loss is added to the duff
pool each year. Loss rates are for hard material. If present, soft material in all size classes except
litter and duff decays 10% faster.

Size Class (inches)	Annual Loss Rate	Proportion of Loss Becoming Duff
< 0.25	- 0.11	
0.25 – 1	- 0.11	
1 – 3	0.09	_
3 – 6		0.02
6 – 12	0.07	
> 12	-	
Litter	0.65	_
Duff	0.002	0.0

By default, the FFE decays all wood species at the rates shown in Table 4.21.10. The decay rates of species groups may be modified by users, who can provide rates to the four decay classes shown in Table 4.21.12 using the FUELDCAY keyword. Users can also reassign species to different classes using the FUELPOOL keyword. The decay rate classes were generally determined from the Wood Handbook (1999) and from input given at the SN-FFE development workshop.

Table 4.21.12. Default wood decay classes used in the CS-FFE variant. Classes are from the Wood Handbook (1999). (1 = exceptionally high; 2 = resistant or very resistant; 3 = moderately resistant, and 4 = slightly or nonresistant)

Species	Decay Rate Class	Species	Decay Rate Class
eastern redcedar	2	southern red oak	3
juniper species	2	black oak	3
shortleaf pine	4	scarlet oak	3
Virginia pine	4	blackjack oak	2
loblolly pine	4	chinkapin oak	2
other softwood species	4	swamp white oak	2
eastern white pine	4	bur oak	2
black walnut	2	swamp chestnut oak	3
butternut	4	post oak	2
tupelo species	2	Delta post oak	2
swamp tupelo	2	chestnut oak	3
water tupelo	2	pin oak	3
blackgum, black tupelo	2	cherrybark oak	3

Decay Species Rate Class		Species	Decay Rate Class	
select hickory	4	shingle oak	2	
shagbark hickory	4	overcup oak	3	
shellbark hickory	4	water oak	2	
mockernut hickory	4	Nuttall oak	3	
pignut hickory	4	willow oak	2	
hickory species	4	Shumard oak	3	
water hickory	4	other upland hardwoods	2	
bitternut hickory	4	sassafras	2	
pecan	4	Ohio buckeye	4	
black hickory	4	catalpa	2	
American beech	4	common persimmon	2	
black ash	4	honeylocust	2	
pumpkin ash	4	balsam poplar	4	
blue ash	4	bigtooth aspen	4	
eastern cottonwood	4	quaking aspen	4	
red maple	4	black locust	1	
boxelder	4	other lowland species	4	
silver maple	4	sycamore	4	
black cherry	2	baldcypress	3	
American elm	4	river birch	4	
sugarberry	4	sweetgum	4	
hackberry	4	willow species	4	
winged elm	4	black willow	4	
elm species	4	non-commercial hardwoods	3	
Siberian elm	4	American hornbeam	3	
slippery (red) elm	4	eastern redbud	3	
rock elm	4	flowering dogwood	3	
yellow-poplar	4	hawthorn species	4	
American basswood	4	Kentucky coffeetree	4	
sugar maple	4	osage-orange	1	
ash species	4	cucumbertree	4	
white ash	4	sweetbay	4	
green ash	4	mulberry species	1	
white oak	2	eastern hophornbeam 3		
northern red oak	3	sourwood	4	

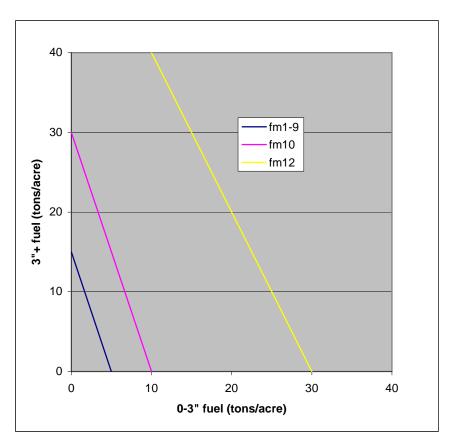
4.21.6 Moisture Content

Moisture content of the live and dead fuels is used to calculate fire intensity and fuel consumption (Model Description, Section 5.2.1). Users can choose from four predefined moisture groups (Table 4.21.13) or they can specify moisture conditions using the MOISTURE keyword. These defaults were taken from the SN-FFE and are based on input from Gregg Vickers and Bennie Terrell. Duff moisture values are from FOFEM.

	Moisture Group					
Size Class	Extremely Dry	Very Dry	Dry	Wet		
0 – 0.25 in. (1-hr)	5	6	7	16		
0.25 – 1.0 in. (10-hr)	7	8	9	16		
1.0 – 3.0 in. (100-hr)	12	13	14	18		
> 3.0 in. (1000+ -hr)	17	18	20	50		
Duff	40	75	100	175		
Live	55	80	100	150		

Table 4.21.13. Moisture values, which alter fire intensity and consumption, have been predefined for four groups.

4.21.7 Fire Behavior Fuel Models


Fire behavior fuel models (Anderson 1982) are used to estimate flame length and fire effects stemming from flame length. Fuel models are determined using fuel load and stand attributes (Model Description, Section 4.8) specific to each FFE variant. Stand management actions such as thinning and harvesting can abruptly increase fuel loads, resulting in the selection of alternative fuel models. At their discretion, FFE users have the option of:

- 1. defining and using their own fuel models;
- 2. defining the choice of fuel models and weights;
- 3. allowing the FFE variant to determine a weighted set of fuel models, or
- 4. allowing the FFE variant to determine a weighted set of fuel models, then using the dominant model.

This section explains the steps taken by the CS-FFE to follow the third of these four options.

When the combination of large and small fuel lies in the lower left corner of the graph shown in Figure 4.21.4, one or more low fuel fire models become candidate models. In other regions of the graph, other fire models may also be candidates. Tables 4.21.14 and 4.21.15 define which low fuel model(s) will become candidates. According to the logic of this table, only a single fuel model will be chosen for a given stand structure. Consequently, as a stand undergoes structural changes due to management or maturation, the selected fire model can jump from one model selection to another, which in turn may cause abrupt changes in predicted fire behavior. To smooth out changes resulting from changes in fuel model, the strict logic is augmented by linear transitions between states that involve continuous variables (for example, percent canopy cover, average height, moisture levels, etc.).

If the STATFUEL keyword is selected, fuel model is determined by using only the closest-match fuel model identified by either Figure 4.21.4 or Table 4.21.15. The FLAMEADJ keyword allows the user to scale the calculated flame length or override the calculated flame length with a value they choose.

- **Figure 4.21.4.** If large and small fuels map to fuel models 1 9, candidate fuel models are determined using the logic shown in Tables 4.21.14 and 4.21.15. Otherwise, fire behavior is based on the distance to the closest fuel models, identified by the dashed lines.
- **Table 4.21.14.**When low fuel loads are present in the CS-FFE, fire behavior fuel models are determined using
forest type. This table shows how forest type is determined. A default of Hardwood is used when
the forest type code does not key to any of the listed forest types.

Forest Type	Definition
Hardwood	Forest type code of 504, 505, 510, 512, 515, 519, 520 or 997; Forest type code 501 or 503 and not Oak Savannah;
Hardwood-Pine	Forest type code of 401, 403, 404, 405, 406, 407, or 409
Pine-Hardwood	Forest type code of 103, 104, 141, 142, 161, 162, 163, 164, 165, 166, 167, 168, or 996, 70% or less BA in pine, and not Pine-Bluestem
Pine	Forest type code of 103, 104, 141, 142, 161, 162, 163, 164, 165, 166, 167, 168, or 996, more than 70% BA in pine, and not Pine-Bluestem
Pine-Bluestem	Forest type code of 162, less than fully stocked and average top height > 50 ft.
Oak Savannah	Forest type code of 501 or 503, less than fully stocked and average top height > 30 ft.
Eastern Redcedar	Forest type code of 181 or 402
Bottomland Hardwoods	Forest type code of 602, 605, 701, 706, 708, or 807
Non-stocked	Forest type code of 999

Forest type		Fuel model
Hardwood, Hardwood-	0-3" fuel > 5 tons	5
Pine, and Pine-Hardwood	0-3" fuel <=5 tons and 3"+ moisture >20%	8
	0-3" fuel <= 5 tons and 3"+ moisture <= 20%	9
Pine and Bottomland	3"+ moisture >20%	8
Hardwoods	3"+ moisture <= 20%	9
Pine-Bluestem		2
Oak Savannah		2
Eastern Redcedar	Avg. ht. of redcedar > 6 ft.	4
	Avg. ht. of redcedar <= 6 ft.	6
Non-stocked		6

 Table 4.21.15.
 Relationship between forest type and fuel model selected.

4.21.8 Other

Crown fire is not modeled in the CS-FFE. As a result, every fire is seen as a surface fire, and crown fire hazard indices, such as the torching index and crowning index, are not reported. Canopy base height and canopy bulk density are reported, but keep in mind that these calculations do not include hardwoods (by default – users can adjust this with the CanCalc keyword). Also, when using the FlameAdj keyword to alter predicted fire behavior, users can override the flame length only. No matter what users enter for percent crowning (zero, blank, positive value, this will be overwritten internally with zero. If users would like to simulate additional mortality due to crowning, the FixMort keyword can be used to do so. Lastly, because the fuel models selected depend on fuel moisture, two sets of fuel models are reported in the potential fire report – one for the severe case and one for the moderate.

4.22 Southeast Alaska (AK)

4.22.1 Tree Species

The Southeast Alaska variant models the 11 tree species shown in Table 4.22.1. Two additional categories, 'other hardwoods' and 'other softwoods', are modeled using black cottonwood and Pacific silver fir, respectively.

Table 4.22.1.	Tree species simulated by the Southeast Alaska variant.	
---------------	---	--

Common Name	Scientific Name	Notes	
white spruce	Picea glauca		
western redcedar	Thuja plicata		
Pacific silver fir	Abies amabilis		
mountain hemlock	Tsuga mertensiana		
western hemlock	Tsuga heterophylla		
Alaska-cedar	Chamaecyparis nootkatensis		
lodgepole pine	Pinus contorta		
sitka spruce	Picea sitchensis		
subalpine fir	Abies lasiocarpa		
red alder	Alnus rubra		
black cottonwood	Populus trichocarpa		
other hardwoods		= black cottonwood	
other softwoods		= Pacific silver fir	

4.22.2 Snags

The snag height loss rates were set to 2% a year for all species other than western redcedar and Alaskacedar. Snag height loss is not modeled (i.e. is set to zero) for these two species. These values are based on Hennon and Loopstra (1991) and Hennon and others (2002). Soft snags lose height twice as fast as hard snags.

The snag fall and snag decay predictions are those used in the PN-FFE, which are based on work by Kim Mellen, regional wildlife ecologist. Contact Stephanie Rebain (<u>sarebain@fs.fed.us</u>) for documentation. In PN-FFE, these rates are based on the plant association code, which is used to estimate a moisture class, temperature class, and other information about slope position and soil depth. The AK variant does not use a habitat type or plant association code, so a cold, wet plant association is assumed, as well as non-shallow soils and a non-ridgetop position.

Snag bole volume is determined using the base FVS model equations. The coefficients shown in Table 4.22.2 are used to convert volume to biomass. Soft snags have 80 percent the density of hard snags.

Snag dynamics can be modified by the user using the SNAGBRK, SNAGFALL, SNAGDCAY and SNAGPBN keywords described in the FFE Model Description.

4.22.3 Fuels

A complete description of the Fuel Submodel is provided in Section 4 of the FFE Model Description.

Fuels are divided into to four categories: live tree bole, live tree crown, live herb and shrub, and dead surface fuel. Live herb and shrub fuel load and the initial dead surface fuel load are assigned based on the species with greatest basal area.

Live Tree Bole

The fuel contribution of live trees is divided into two components: bole and crown. Bole volume is transferred to the FFE after being computed by the FVS model, then converted to biomass using wood density calculated from Table 4-3a of The Wood Handbook (Forest Products Laboratory 1999).

Table 4.22.2.	Woody density (ovendry lbs/green ft ³) used in the AK-FFE variant.
---------------	--

Species	Density (lbs/ft ³)
white spruce	23.1
western redcedar	19.3
Pacific silver fir	24.9
mountain hemlock	26.2
western hemlock	26.2
Alaska-cedar	26.2
lodgepole pine	23.7
sitka spruce	20.6
subalpine fir	19.3
red alder	23.1
black cottonwood	19.3
other hardwoods	19.3
other softwoods	24.9

Tree Crown

As described in the Section 2 of the FFE Model Description, equations in Brown and Johnston (1976) provide estimates of live and dead crown material for many species in the AK-FFE (Table 4.22.3).

 Table 4.22.3.
 The crown biomass equations used in the AK-FFE. Species mappings are done for species for which equations are not available.

Species	Species Mapping and Equation Source
white spruce	Engelmann spruce; Brown and Johnston (1976)
western redcedar	Brown and Johnston (1976)
Pacific silver fir	grand fir; Brown and Johnston (1976)

Species	Species Mapping and Equation Source	
mountain hemlock	Brown and Johnston (1976)	
western hemlock	Brown and Johnston (1976)	
Alaska-cedar	western redcedar; Brown and Johnston (1976)	
lodgepole pine	Brown and Johnston (1976)	
sitka spruce	Engelmann spruce; Brown and Johnston (1976)	
subalpine fir	Brown and Johnston (1976)	
red alder	Snell and Little (1983)	
black cottonwood	Smith (1985); Jenkins et. al. (2003); Loomis and Roussopoulos (1978)	
other hardwoods	Smith (1985); Jenkins et. al. (2003); Loomis and Roussopoulos (1978)	
other softwoods	grand fir; Brown and Johnston (1976)	

Live leaf lifespan is used to simulate the contribution of needles and leaves to annual litter fall. Dead foliage and branch materials also contribute to litter fall, at the rates shown in Table 4.22.4. Each year the inverse of the lifespan is added to the litter pool from each biomass category. Values for AK-FFE were predominantly taken from PN-FFE. Values for western redcedar, Alaska-cedar, western hemlock, mountain hemlock, and 3"+ material were adjusted based on Hennon and others (2002).

	Live	Dead					
Species	Foliage	Foliage	<0.25"	0.25–1"	1 – 3"	3"+	
white spruce (mapped to Engelmann spruce)	6	2	5	5	10	50	
western redcedar	5	5	15	15	30	55	
Pacific silver fir	7	2	5	5	15	50	
mountain hemlock	4	1	5	5	15	50	
western hemlock	5	1	5	5	15	50	
Alaska-cedar	5	5	15	15	30	55	
lodgepole pine	3	2	5	5	15	50	
sitka spruce	5	2	5	5	15	50	
subalpine fir	7	2	5	5	15	50	
red alder	1	1	10	15	15	50	
black cottonwood	1	1	10	15	15	50	
other hardwoods	1	1	10	15	15	50	
other softwoods	7	2	5	5	15	50	

 Table 4.22.4.
 Life span of live and dead foliage (yr) and dead branches for species modeled in the AK-FFE variant.

Live Herbs and Shrubs

Live herb and shrub fuels are modeled very simply by the FFE. Shrubs and herbs are assigned a biomass value based on total tree canopy cover and dominant overstory species (Table 4.22.5). When total tree canopy cover is <10 percent, herb and shrub biomass is assigned an "initiating" value (the 'I' rows from Table 4.22.5). When canopy cover is >60 percent, biomass is assigned an "established" value (the 'E'

rows). Live fuel loads are linearly interpolated when canopy cover is between 10 and 60 percent. Data are based on PN-FFE defaults.

Table 4.22.5.Values (dry weight, tons/acre) for live fuels used in the AK-FFE. Biomass is linearly interpolated
between the "initiating" (I) and "established"(E) values when canopy cover is between 10 and 60
percent.

Species		Herbs	Shrubs	Notes
	Е	0.30	0.20	
white spruce	I	0.30	2.00	Use Engelmann spruce
western redcedar	Е	0.20	0.20	
western reucedai	I	0.40	2.00	
Pacific silver fir	Е	0.15	0.10	
Facilic Silver III	I	0.30	2.00	
mountain hemlock	E	0.15	0.20	
mountain nemiock	<u> </u>	0.30	2.00	
western hemlock	E	0.20	0.20	
western herniock	I	0.40	2.00	
Alaska-cedar	Е	0.20	0.20	
Alaska-cedar	I	0.40	2.00	
lodgepole pine	E	0.20	0.10	
	I	0.40	1.00	
	E	0.30	0.20	
sitka spruce	I	0.30	2.00	
aubalaina fir	Е	0.15	0.10	
subalpine fir	<u> </u>	0.30	2.00	
red alder	E	0.20	0.20	
	<u> </u>	0.40	2.00	
black cottonwood	E	0.25	0.25	
DIACK CULLUTIWOOU	<u> </u>	0.18	2.00	
other hardwoods	E	0.25	0.25	use black cottonwood
	I	0.18	2.00	USE DIACK COLIDITWOOD
other softwoods	Е	0.15	0.10	use Pacific silver fir
	I	0.30	2.00	

Dead Fuels

Initial default CWD pools are based on overstory species. Default fuel loadings are based on those used in the PN-FFE (see Table 4.22.6). (They were provided by Jim Brown, USFS, Missoula, MT (pers. comm., 1995) and were reviewed and in some cases modified at the PN model workshop.) If tree canopy cover is <10 percent, the CWD pools are assigned an "initiating" value and if cover is >60 percent they are assign the "established" value. Fuels are linearly interpolated when canopy cover is between 10 and 60 percent. Initial fuel loads can be modified using the FUELINIT keyword.

					Size C	ass (in)			
Species		< 0.25	0.25 – 1	1 – 3	3 – 6	6 – 12	> 12	Litter	Duff
white enruge	Е	2.2	2.2	5.2	15.0	20.0	15.0	1.0	35.0
white spruce	I	1.6	1.6	3.6	6.0	8.0	6.0	0.5	12.0
western redcedar	E	2.2	2.2	5.2	15.0	20.0	15.0	1.0	35.0
western reuceual	I	1.6	1.6	3.6	6.0	8.0	6.0	0.5	12.0
Pacific silver fir	E	1.1	1.1	2.2	10.0	10.0	0.0	0.6	30.0
Facilic Silver III	I	0.7	0.7	1.6	4.0	4.0	0.0	0.3	12.0
mountain hemlock	Е	1.1	1.1	2.2	10.0	10.0	0.0	0.6	30.0
mountain nemiock	I	0.7	0.7	1.6	4.0	4.0	0.0	0.3	12.0
western hemlock	Е	0.7	0.7	3.0	7.0	7.0	10.0	1.0	35.0
western hemiock	I	0.5	0.5	2.0	2.8	2.8	6.0	0.5	12.0
Alaska-cedar	Е	2.2	2.2	5.2	15.0	20.0	15.0	1.0	35.0
Alaska-Ceual	I	1.6	1.6	3.6	6.0	8.0	6.0	0.5	12.0
lodgepole pine	E	0.9	0.9	1.2	7.0	8.0	0.2	0.6	30.0
lougepole pille	I	0.6	0.7	0.8	2.8	3.2	0.0	0.3	12.0
sitka spruce	Е	0.7	0.7	3.0	7.0	7.0	10.0	1.0	35.0
Silka Spruce	I	0.5	0.5	2.0	2.8	2.8	6.0	0.5	12.0
aubalaina fir	Е	1.1	1.1	2.2	10.0	10.0	0.0	0.6	30.0
subalpine fir	I	0.7	0.7	1.6	4.0	4.0	0.0	0.3	12.0
red alder	Е	0.7	0.7	1.6	2.5	2.5	5.0	0.8	30.0
	I	0.1	0.1	0.2	0.5	0.5	3.0	0.4	12.0
black cottonwood	E	0.2	0.6	2.4	3.6	5.6	0.0	1.4	16.8
DIACK CULLUTIWUUU	I	0.1	0.4	5.0	2.2	2.3	0.0	0.8	5.6
other hardwoods	E	0.2	0.6	2.4	3.6	5.6	0.0	1.4	16.8
	I	0.1	0.4	5.0	2.2	2.3	0.0	0.8	5.6
other softwoods	E	1.1	1.1	2.2	10.0	10.0	0.0	0.6	30.0
	I	0.7	0.7	1.6	4.0	4.0	0.0	0.3	12.0

Table 4.22.6.Canopy cover and cover type are used to assign default coarse woody debris (tons/acre) by size
class for established (E) and initiating (I) stands.

4.22.4 Bark Thickness

Bark thickness contributes to predicted tree mortality from simulated fires The bark thickness multipliers in Table 4.22.7 are used to calculate single bark thickness (RMRS-GTR-116, Section 2.5.5). The bark thickness equation used in the mortality equation is unrelated to the bark thickness used in the base FVS model. Data are from FOFEM 5.0 (Reinhardt and others 2001).

215

Species	Multiplier (V _{sp})
white spruce	0.025
western redcedar	0.035
Pacific silver fir	0.047
mountain hemlock	0.040
western hemlock	0.040
Alaska-cedar	0.022
lodgepole pine	0.028
sitka spruce	0.027
subalpine fir	0.041
red alder	0.026
black cottonwood	0.044
other hardwoods	0.044
other softwoods	0.047

 Table 4.22.7.
 Species specific constants for determining single bark thickness.

4.22.5 Decay Rate

Decay of down material is simulated by applying loss rates to pieces by size class, as described in section 2.4.5 of the FFE documentation. Default decay rates (Table 4.22.8) are based on values provided by Kim Mellen, Pacific Northwest Regional wildlife ecologist, for the Pacific Northwest area. A portion of the loss is added to the duff pool each year. Loss rates are for hard material; soft material in all size classes, except litter and duff, decays 10% faster. Decay rates vary based on the decay rate class of a species (see Table 4.22.9).

Table 4.22.8.Default annual loss rates are applied based on size class and decay rate class. A portion of the loss
is added to the duff pool each year. Loss rates are for hard material. If present, soft material in all
size classes except litter and duff decays 10% faster.

Size Class		Annual Lose Rate					
(inches)	decay class 1	decay class 2	decay class 3	decay class 4	Loss Becoming Duff		
< 0.25							
0.25 – 1	0.052	0.061	0.073	0.098			
1 – 3	-						
3 – 6	0.012	0.025	0.041	0.077	0.02		
6 – 12	0.012	0.025	0.041				
> 12	0.009	0.018	0.031	0.058			
Litter	0.35	0.40	0.45	0.50			
Duff	0.002	0.002	0.003	0.003	0.0		

The decay rates of species groups may be modified by users, who can provide rates to the four decay classes shown in Table 4.22.9 using the FUELDCAY keyword. Users can also reassign species to different classes using the FUELPOOL keyword.

Table 4.22.9.	Default wood decay classes used in the AK-FFE variant. Classes are from the Wood Handbook
	(1999). (1 = exceptionally high; 2 = resistant or very resistant; 3 = moderately resistant, and 4 =
	slightly or nonresistant)

Species	Decay Rate Class
white spruce	4
western redcedar	2
Pacific silver fir	4
mountain hemlock	4
western hemlock	4
Alaska-cedar	2
lodgepole pine	4
sitka spruce	4
subalpine fir	4
red alder	4
black cottonwood	4
other hardwoods	4
other softwoods	4

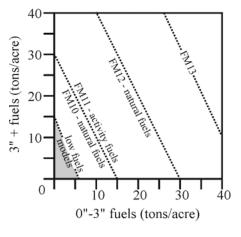
4.22.6 Moisture Content

Moisture content of the live and dead fuels is used to calculate fire intensity and fuel consumption (Model Description, Section 5.2.1). Users can choose from four predefined moisture groups (Table 4.22.10) or they can specify moisture conditions for each class using the MOISTURE keyword.

 Table 4.22.10.
 Moisture values, which alter fire intensity and consumption, have been predefined for four groups.

	Moisture Group					
Size Class	Very Dry	Dry	Moist	Wet		
0 – 0.25 in. (1-hr)	4	8	12	16		
0.25 – 1.0 in. (10-hr)	4	8	12	16		
1.0 – 3.0 in. (100-hr)	5	10	14	18		
> 3.0 in. (1000+ -hr)	10	15	25	50		
Duff	15	50	125	200		
Live	70	110	150	150		

4.22.7 Fire Behavior Fuel Models


Fire behavior fuel models (Anderson 1982) are used to estimate flame length and fire effects stemming from flame length. Fuel models are determined using fuel load and stand attributes specific to each FFE variant. Stand management actions such as thinning and harvesting can abruptly increase fuel loads, resulting in the selection of alternative fuel models. At their discretion, FFE users have the option of:

- 1. defining and using their own fuel models;
- 2. defining the choice of fuel models and weights;
- 3. allowing the FFE variant to determine a weighted set of fuel models, or
- 4. allowing the FFE variant to determine a weighted set of fuel models, then using the dominant model.

This section explains the steps taken by the AK-FFE to follow the third of these four options.

NOTE: Currently AK-FFE does not have a detailed fuel model selection logic. As a result, fuel models are selected based on fuel loading only (Figure 4.22.1). When the combination of large and small fuel lies in the lower left corner of the graph shown in Figure 4.22.1, fuel model 8 becomes a candidate model. When fuel loads are higher, other fuel models (fm 10 - 13) may also become candidates.

If the STATFUEL keyword is selected, fuel model is determined by using only the closest-match fuel model identified by the logic described above. The FLAMEADJ keyword allows the user to scale the calculated flame length or override the calculated flame length with a value they choose.

----- Fuel model, 100% weight

Figure 4.22.1. At high fuel loads, multiple fuel models may be candidates. In this case, fire behavior is based on the closest fuel models, identified by the dashed lines. At low fuel loads, fuel model 8 is selected.

Appendix A: P-Torch

P-Torch: A New Torching Index

Nicholas L. Crookston, RMRS-Moscow Elizabeth Reinhardt, RMRS-Missoula

Contact: ncrookston@fs.fed.us, (208) 883-2317

DRAFT: April 25, 2004

A new stand-level torching index is introduced. The index estimates the probability of finding a torching situation in a forest stand. A torching situation is generally defined as one where tree crowns of significantly large trees are ignited by the flames of a surface fire or flames from burning crowns of small trees that reach the larger trees. The proportion of small places where torching is possible is estimated using a Monte Carlo simulation technique. This estimate is called P-Torch and is reported as the percentage of small places in a stand where torching can occur, given specific surface fire intensity, which in turn depends on surface fuel characteristics, moisture, and windspeed.

This report says why a new torching index is needed, describes how the index is computed, displays some examples, and summarizes its features and differences between it and torching index.

1.0 Introduction

Will a surface fire stay on the surface? If it ignites the crowns of one or a group of trees, it is called a torching, passive, or candling fire. Torching fires have more extreme fire intensity and more radical effects than surface fires—assessing the likelihood of torching is an important part of assessing potential fire behavior (Scott and Reinhardt 2001). Torching fires are distinguished from more serious active crown fires that burn continuously through the forest canopy. They are ignited by surface fires and can be responsible for creating an active crown fire.

Scott and Reinhardt (2001) proposed a way to assess the hazard of both these kinds of fires by introducing Torching Index (TI) and Crowning Index (CI). Both these indices are outputs of the Fire and Fuels Extension of the Forest Vegetation Simulator (FFE-FVS, Reinhardt and Crookston 2003). Scott and Reinhardt (2001, p17) say that TI is the windspeed at which crown fires are expected to initiate, computed as "a function of surface fuel characteristics (fuel model), surface fuel moisture contents, foliar moisture content, canopy base height, slope steepness, and wind reduction by the canopy." High values of TI imply a low risk of torching.

TI is quite sensitive to canopy base height (CBH). When it is computed in the context of FFE-FVS, CBH is a stand average value. CBH is difficult to assess at a stand level, however. As computed in FFE-FVS, canopy base height is the lowest height at which a threshold amount of canopy biomass occurs. The threshold value is arbitrarily set at 30 lbs/acre/ft. When stand development is simulated over time, predicted CBH often fluctuates dramatically, causing unrealistic erratic behavior in predicted TI. To understand what can happen, imagine a well-stocked, single-storied stand with medium sized trees and a CBH of about 20 feet. In this case, TI is often predicted to be a relatively large number indicating a low hazard of torching. Now, further imagine that there is one full-crown 20-foot tall tree below the larger trees. If this tree causes the 30 lbs/acre/ft threshold to be exceeded, the CBH drops to ground level. At that point, any surface fire will cause torching and the predicted TI drops radically. Sometimes, the number of small trees, and therefore the amount of biomass near ground level, will hover near the threshold. Then, if a single tree dies, TI will radically increase, only to be followed by another tree growing large enough to cause TI to radically decrease. Several threshold values have been tried, and a number of modifications to the algorithm for computing CBH have been made. These adjustments have only transferred the problem from one stand to another. Experience has shown that many stands have conditions that exhibit radically changing CBH and uninformative radical changes in predicted TI.

2.0 P-Torch Defined

P-Torch was developed to address this difficulty. It is the probability of finding a small place where torching can happen in a forest stand. A torching situation is generally defined as one where tree crowns of significantly large trees can be ignited by the flames of a surface fire or flames from burning crowns of small trees that reach the larger trees. P-Torch is the proportion of small places where trees are present and torching is possible. Like TI, P-Torch requires a set of fire conditions: surface fuels, fuel moisture, and windspeed, but does not rely on an estimate of stand level CBH, as TI does.

2.1 Details

A small place where torching can happen is defined as a randomly located 0.025-acre (about 33 feet by 33 feet, or 10 m by 10 m) virtual plot that satisfies following conditions:

- A surface fire must be intense enough to ignite tree crowns of smaller trees that in turn ignite the crowns of larger trees, or where large trees have long crowns that are directly ignited by the surface fire.
- The height of the largest tree ignited must be greater than 50 percent of the stand top height (top height is the average height of the largest 40 trees per acre), or 50 feet, which ever is smaller. Furthermore, the size of the largest tree ignited must be greater than five feet.

Thirty virtual plots are generated and populated with sample trees using the following logic. Let TPA_i be number of trees per acre represented for sample tree *i* and let X_i be the number of these sample trees on a specific virtual plot. Sample tree *i* is considered to be on the virtual plot if one or more are on the virtual plot. The probability that one or more trees are on the plot is $Pr(X_i \ge 1) = 1 - Pr(X_i = 0)$. The Poisson distribution (Evans and others 2000, p. 155) can be used to compute this probability under the assumption that the trees and the virtual plots are randomly distributed in space. That is, $Pr(X_i = x) = \lambda_i^x \exp(-\lambda_i)/x!$ where λ_i is the average number of sample trees expected on the virtual plot $(\lambda_i = 0.025 \times TPA_i)$. Note that $Pr(X_i = 0) = \lambda_i^0 \exp(-\lambda_i)/0! = \exp(-\lambda_i)$ and therefore, $Pr(X \ge 1) = 1 - \exp(-\lambda_i)$. To decide that tree *i* is on the virtual plot a uniform random number is generated and compared to this probability.

Once each virtual plot is populated with trees, the program computes H_j , the height of crown material a surface fire must be capable of igniting to cause torching on virtual plot *j*. This calculation is done by checking the vertical distribution of tree crowns on the plot. Assumptions are that a small tree can cause the branches of a taller tree to ignite if the bottom of the taller tree's crown is lower than 1.25 times the height of the smaller tree. The foliage density of the trees and horizontal distance between them is not considered. When no trees are present, $H_j = \infty$.

Next, T_j , the probability that a surface fire can torch virtual plot *j* is computed. This probability depends on two key assumptions. The first is that a flame of length *F* can ignite a tree crown that is further off the ground than the flame is long. Let $I = (F/0.0775)^{1.45}/30.5$ be the height off the ground a flame of length *F* can ignite (Fig. 1). This relationship is based on the discussion in Scott and Reinhardt (2001, p13).

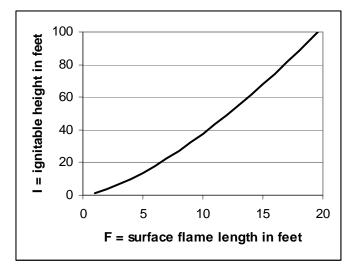


Figure 1—The relationship between surface flame length (F) and the height off the ground that flame can ignite (I).

The second assumption is that the distribution of I within a stand is lognormal

with a constant standard deviation of 0.25. Figure 2 illustrates the probability function used in this calculation for two values of *I*. When *I*=5 feet, the probability that a plot will torch (*T*) is nearly 1.0 for values of H_j between 0.0 and 3.0. When values of H_j exceed 8.5 feet the chance they will torch is very low. When *I*=10 feet, the probability that a plot will torch is nearly 1.0 until the value of H_j is greater than 6.0 and falls to nearly zero at about 18. Note that the curves are steeper for small values of *I* compared to large values.

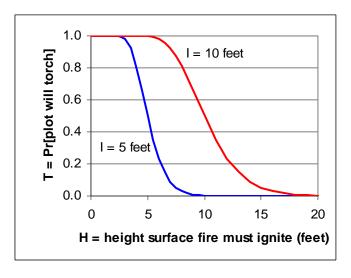


Figure 2—The probability that plot j will torch (T_j) is illustrated for two values of average ignition height (I). H_j is the height the surface fire must be able to ignite (feet) and is a function of the vertical crown structure on virtual plot j.

The actual calculations are done using Wichura's (1988) method to compute the

percentage points in the normal distribution and the relationship between the normal and lognormal cumulative distribution functions.

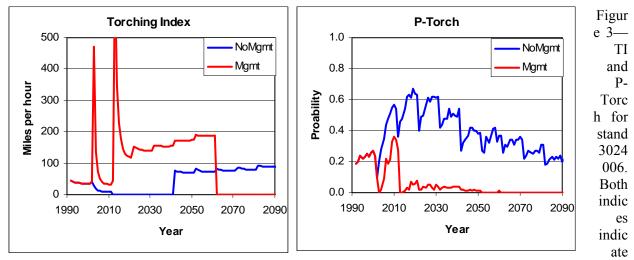
Once T_j is known for each plot, P-Torch (Pr[*Torch*]) is computed as the sum of the products of a plot torching and the virtual plot sampling probability (1/N where N is the number of virtual plots), as

follows:
$$\Pr[Torch] = \sum_{i=1}^{N} T_i \times \frac{1}{N}$$
.

2.3 Sensitivity to conditions.

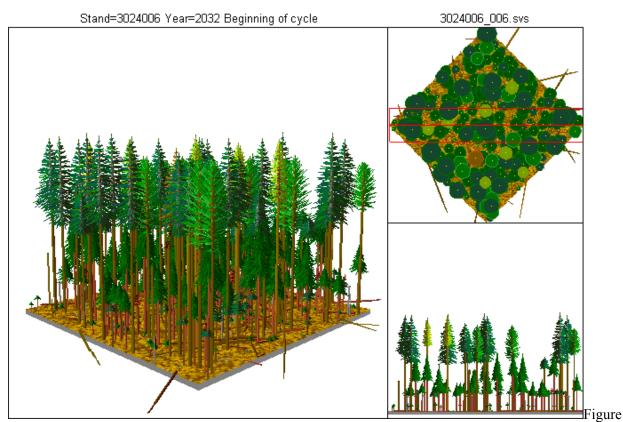
The advantage of P-Torch over TI is that it does not rely on the calculation of stand level CBH. In addition, P-Torch is not overly sensitive to small changes in the number of small trees. Yet it is sensitive to the flame length and key processes in stand development—the development of an understory, the

decline of old overstory trees, and crown recession. Management actions that modify these key processes modify the predicted value of P-Torch in realistic ways.

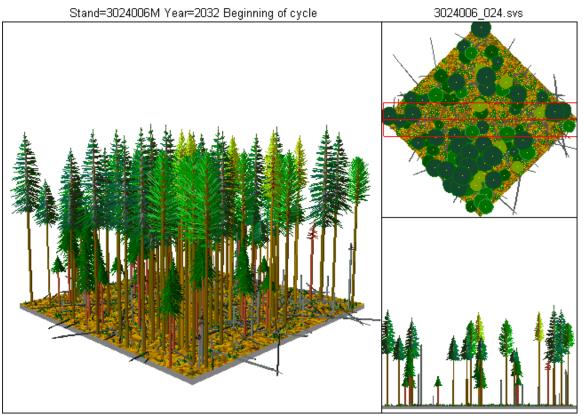

P-Torch can be very sensitive to flame length. When several virtual plots have about the same value of H and I is about equal to H, small changes in I can create large changes in P-Torch.

3.0 Examples

A major problem in devising an index like P-Torch is that the *correct* answer is difficult to observe. Acceptance of the index depends on creating one that is relevant to the professionals that use it. Looking at many runs and forming an opinion is the first step toward evaluating the index's utility. Two examples are presented to illustrate some of the impressions gained by computing P-Torch each year of 100-year projections on hundreds of stands.


3.1 Stand 3024006

The first example is from a mesic, grand fir stand from the Colville National Forest. Besides grand fir, the stand contains Douglas-fir and western larch, with cedar and hemlock in the understory. Fire is not a major part of the natural ecology of stands like this example as the fire return interval is 100+ years. Nonetheless, the example illustrates important features of both TI and P-Torch. Figure 3 illustrates the predicted TI and P-Torch values for this stand under two regimes, one without any management and the other with a prescription designed to reduce the risk of torching. Both indices indicate that torching is a potential problem. TI indicates that the hazard diminishes by 2040 but P-Torch indicates that the hazard is high throughout the simulation period. To reduce the hazard, two prescribed fires were simulated, both with moderately wet fuel conditions. The fires were set to burn at 10 and 20 years into the simulation. Both indices show that the fires had an immediate effect of reducing torching hazard. The first fire burned surface fuels and caused a lot of understory mortality. After the first fire, the addition of unconsumedkilled trees to the surface fuels caused the hazard to increase. The second fire cleaned up these fuels and killed off the understory that was stimulated by the first fire. P-Torch indicates that the strategy worked resulting in the long-term reduction of torching hazard. TI indicates that the strategy failed; at 2062, TI changed from 189 to zero miles per hour of wind. This change is completely attributable to a change in stand level CBH.



that prescribed fire reduced the hazard of torching, but TI showed that the hazard greatly increased in 2062 when a few understory trees caused the CBH to drop to zero. P-Torch more realistically indicates that those trees do not adversely increase the torching hazard.

Figures 4 and 5 show how this stand might look 10 years after the prescribed fires. Comparing the overstory confirms that the fires killed few large trees and comparing the profile views show that the understory structure was substantially changed. The lack of mid-sized trees greatly reduced the chance of finding a situation where fire can reach the main canopy. P-Torch indicates that this was an enduring change. Without additional disturbances, only small numbers of new trees enter the understory and these are generally suppressed by the heavy overstory. Yet the chance of finding a small plot with the necessary conditions for torching rarely reaches zero. It is interesting to note that an incidental result of the prescribed fires was an increase in merchantable volume 100 after the simulation started, compared to the no action alternative.

4—Example stand 30240006 shown at year 2032 without management using SVS (McGaughey 1997; http://www.fs.fed.us/pns/svs).

Figure

5—Example stand 30240006 shown at year 2032 with prescribed fires in 2002 and 2012.

3.2 Stand 300290023601

The second example is a young xeric Douglas-fir stand with lodgepole pine, growing on the Flathead National Forest in western Montana (Fig. 6). Stands like these have much shorter natural fire return intervals than stands like those used in the first example. Catastrophic losses can be avoided if the fires remain on the surface and are not intense. However, almost any fires burning in the early stages of this stands like would likely leave the stand poorly stocked.

Two scenarios demonstrate that unlike the first example, TI and P-Torch convey about the same information albeit in different ways. The reason is that the major driver of torching hazard in this example is surface fuel load rather than CBH.

Figure 7 illustrates the two indices plotted over time. Torching hazard starts out high and drops as the stand develops. According to P-Torch, the hazard rises at year 2030; TI continues to increase (showing a reduced hazard) and then it levels off showing that the hazard remains moderate. A series of prescribed fires, one every 15 years starting in 2025 and ending in 2070 was simulated to reduce the torching hazard. Both indices show that the prescriptions met the objective, yet P-Torch seems simpler to comprehend. A major goal of the prescribed fires was to improve the prospects for this stand if a fire burns when conditions are severe. Therefore, for both scenarios, a fire was simulated in year 2093 resulting in the loss of most trees in the unmanaged case and the loss of few trees otherwise (Fig. 8).

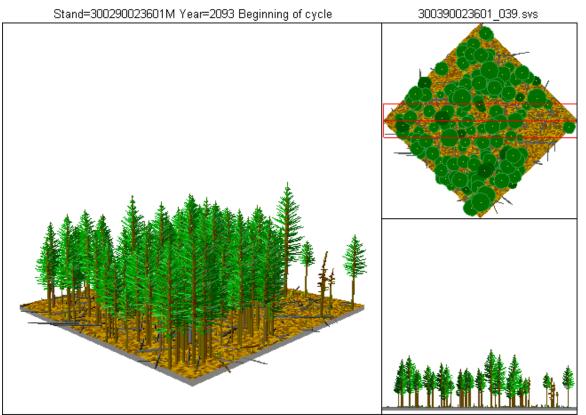
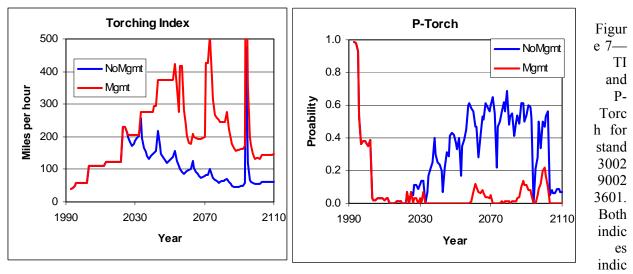



Figure 6—Stand 300290023601 at year 2093, after repeated prescribed surface fires. The appearance of this stand is about the same as it would be without the repeated prescribed fires and it is also about the same as it looks after an additional fire burns in year 2093 in severe fire conditions.

ate that the hazard of torching is high in the beginning and that a series of prescribed fire reduced the hazard. The saw-tooth appearance of the lines is partly due to spikes in fine fuels loads caused by simulated fires but mostly caused by modeling artifacts related to the way fuels are modeled in the FFE.

225

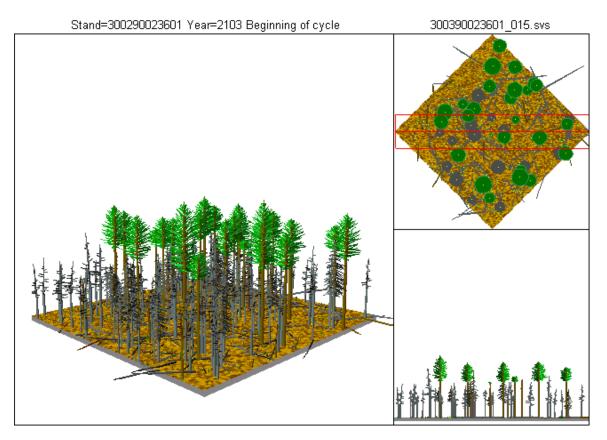


Figure 8—Stand 300290023601 in year 2103 given a fire burns with severe conditions in year 2093 and without any previous prescribed fire.

4.0 Conclusions

P-Torch has an intuitive appeal. It goes up when torching hazard increases and down when it decreases; the opposite is true of TI. P-Torch is sensitive to tree density in a way that TI cannot be—a lower density of trees reduces P-Torch even when all the trees have a 100 percent crown ratio. That is, the chances of finding a small place where torching can occur declines with tree density. This is easy to understand when you note that the probability of finding zero trees in a randomly placed small plot approaches one as the density approaches zero. TI is not directly sensitive to tree density unless the density falls below the threshold needed to compute the stand's CBH. That is, TI can indicate a high hazard of torching when there are only a few trees per acre. While it may be true that those few trees would all torch if exposed to a surface fire, this case would show a very low value of P-Torch simply because most of the randomly placed plots in a nearly unstocked stand would also be empty. This difference between the two indices can be considered philosophical, yet important. TI is indirectly sensitive to stand density because surface fire wind is a function of canopy closure and twenty-foot wind speed.

P-Torch does not require canopy base height to be assessed on a stand level. Since the calculation of CBH is problematic, and since TI depends so strongly on that calculation, this is an advantage.

P-Torch is sensitive to surface fire intensity. Longer flames can reach higher crowns and the chances of torching increases when a larger proportion of the trees in a stand can be ignited.

P-Torch is sensitive to the wind speed you specify for the burning conditions while TI is the predicted wind speed necessary to cause torching. The two indices are fundamentally different in this respect.

In FFE-FVS, TI is used in predicting fire behavior while P-Torch is not, at least not yet. Exactly how to include this new indicator of torching risk in fire behavior calculations is an open question.

Lastly, note that P-Torch takes more computer time to compute than TI. The additional computer time is mostly taken in creating the virtual plots.

5.0 References

- Evans, Merran; Hastings, Nicholas; Peacock, Brian. 2000. *Statistical distributions*. (3rd Edition). New York: John Wiley & Sons. 221 p.
- McGaughey, Robert J. 1997. Visualizing forest stand dynamics using the stand visualization system. In: Proceedings of the 1997 ACSM/ASPRS Annual Convention and Exposition; April 7-10, 1997. Seattle, WA. Bethesda, MD: American Society for Photogrammetry and Remote Sensing. Vol. 4:248-257.
- Reinhardt, Elizabeth; Crookston, Nicholas L. (Technical Editors). 2003. The Fire and Fuels Extension to the Forest Vegetation Simulator. Gen. Tech. Rep. RMRS-GTR-116. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 209 p.
- Scott, Joe H.; Reinhardt, Elizabeth D. 2001. Assessing crown fire potential by linking models of surface and crown fire behavior. Res. Pap. RMRS-RP-29. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 59 p.
- Wichura, Michael J. 1988. The percentage points of the normal distribution. Algorithm AS 241. Applied Statistics 37:477-484.

227

Ovendry Ibs/ Species green cuft Notes							
	Notes						
	used black cherry						
37.4	used white oak						
20.6	used Engelmann spruce						
20.6	used Engelmann spruce						
23.7	used lodgepole pine						
49.9	used live oak						
34.9							
37.4	used white oak						
36.2	used tanoak						
34.9	used nutmeg hickory						
28.7	used American sycamore						
37.4	used white oak						
49.9	used live oak						
19.3	used subalpine fir						
19.3	•						
23.7	used lodgepole / ponderosa pine						
28.1	used in pn and wc variants						
28.1	ni, ie, em, kt, ci, and tt variants						
26.8	cr and ut variants						
28.7	ws, nc, ca, so, ec, and bm variants						
37.4	used white oak						
	from Chojnacky (1992)						
	used tanoak						
	used redwood - young growth						
	, , , , , , , , , , , , , , , , , , ,						
	used lodgepole pine						
	used bigleaf maple						
	used live oak						
	from Chojnacky and Moisen (1993)						
	used lodgepole / ponderosa pine						
	used white pine						
	used lodgepole / ponderosa pine						
	assa lougopole / poriderosa pille						
	used quaking aspen						
	used red maple						
	useu reu mapie						
31.2							
	green cuft26.227.429.337.420.623.749.934.937.436.234.928.737.449.919.319.323.728.128.126.828.737.449.919.319.323.728.126.828.737.420.639.636.221.221.823.727.421.849.921.234.923.722.523.723.726.221.830.623.1						

Appendix B: Wood Density Values

Pacific dogwood27.4used bigleaf maplePacific madrone36.2used tanoakPacific silver fir24.9used baldcypressPacific yew26.2used baldcypresspaper birch29.9if rom Chojnacky and Moisen (1993)ponderosa pine23.7Port-Orford cedarPort-Orford cedar24.3quaking aspenquaking aspen21.8red alderred alder23.1red wood - young growthSitka spruce20.6used white pinesouthwestern white pine22.5used white pinesubalpine fir19.3used subalpine firsubalpine larch - IE19.3used subalpine firsugar pine21.2used western larchsugar pine21.2used western larchsugar pine21.2used subalpine firsubalpine larch - PN, WC29.9used western larchsugar pine21.2used western larchsugar pine22.5used red alderwestern hemlock26.2western nedcedar19.3western nedcedar19.3western larch29.9western larch29.9western redcedar19.3western fir23.1white alder23.1white alder23.1white fir23.1white spruce23.1white spruce23.1white spruce23.1white spruce23.1white spruce23.1white spruce2	la in i		
Pacific madrone36.2used tanoakPacific silver fir24.9used baldcypressPacific yew26.2used baldcypresspaper birch29.9from Chojnacky and Moisen (1993)ponderosa pine23.7Port-Orford cedar24.3quaking aspen21.8red alder23.1red fir22.5redwood21.2subalpine fir19.3subalpine fir19.3subalpine larch - IE19.3subalpine larch - PN, WC29.9used western larchsugar pine21.2tanoak36.2western hemlock26.2western hemlock26.2western white pine22.5used red alderwite alder23.1used red alder40.2used subalpine fir19.3subalpine fir19.3used subalpine firsubalpine larch - PN, WC29.9used western larchsugar pine21.2tanoak36.2western hemlock26.2western hemlock26.2western white pine22.5white alder23.1white alder23.1white fir23.1white fir23.1white fir23.1white spruce23.1white spruce23.1white spruce23.1white spruce23.1white spruce23.1white spruce23.1white spruce <t< td=""><td>Oregon white oak</td><td>37.4</td><td>used white oak</td></t<>	Oregon white oak	37.4	used white oak
Pacific silver fir24.9Pacific yew26.2used baldcypresspaper birch29.9pinyon pine31.8from Chojnacky and Moisen (1993)ponderosa pine23.7Port-Orford cedar24.3quaking aspen21.8red alder23.1red fir22.5redwood21.2used redwood - young growthSitka spruce20.6southwestern white pine22.5used subalpine fir19.3subalpine larch - IE19.3used subalpine fir19.3sugar pine21.2tanoak36.2walnut31.8western hemlock26.2western nedcedar19.3western white pine22.5white alder23.1used red alder19.3western hemlock26.2walnut31.8western hemlock26.2western nedcedar19.3western white pine22.5white alder23.1white alder23.1white alder23.1white spruce23.1white fir23.1white spruce23.1white spruce23.1white spruce23.1white pine22.5used white pine	5	27.4	a
Pacific yew26.2used baldcypresspaper birch29.9from Chojnacky and Moisen (1993)ponderosa pine23.7Port-Orford cedar24.3quaking aspen21.8red alder23.1red fir22.5redwood21.2used redwood - young growthSitka spruce20.6southwestern white pine22.5used white pinesubalpine fir19.3used subalpine fir19.3subalpine larch - IE19.3used western larchsugar pine21.2tanoak36.2western hemlock26.2western larch29.9western redcedar19.3western white pine22.5white alder23.1used red alder19.3western hemlock26.2western nemlock26.2western hemlock26.2western hemlock26.2western hemlock26.2western hemlock26.2western hemlock26.2western hemlock26.2western hemlock26.2western hemlock26.2white alder23.1white alder23.1white fir23.1white fir23.1white spruce23.1white spruce23.1white pine22.5used white pine25.5white pine25.5white pine25.5white pine25.5w	Pacific madrone	36.2	used tanoak
paper birch29.9pinyon pine31.8from Chojnacky and Moisen (1993)ponderosa pine23.7Port-Orford cedar24.3quaking aspen21.8red alder23.1red fir22.5redwood21.2used redwood - young growthSitka spruce20.6southwestern white pine22.5used white pinesubalpine fir19.3subalpine larch - IE19.3used subalpine firsugar pine21.2tanoak36.2walnut31.8western hemlock26.2western nemlock26.2western nemlock26.2western nemlock26.2western nemlock26.2western nemlock26.2western hemlock26.2western hemlock23.1white alder23.1white fir23.1white spruce23.1white spruce23.1white spruce23.1white pine22.5used white pine	Pacific silver fir	24.9	
pinyon pine31.8from Chojnacky and Moisen (1993)ponderosa pine23.7Port-Orford cedar24.3quaking aspen21.8red alder23.1red fir22.5redwood21.2used redwood - young growthSitka spruce20.6southwestern white pine22.5subalpine fir19.3subalpine larch - IE19.3subalpine larch - PN, WC29.9used western larchsugar pine21.2tanoak36.2walnut31.8western hemlock26.2western nedcedar19.3western white pine22.5white alder23.1used red alder19.3western hemlock26.2western hemlock26.2western hemlock26.2western hemlock26.2western hemlock26.2white alder23.1white spruce23.1white spruce23.1white spruce23.1white spruce23.1white spruce23.1white pine22.5used white pine	Pacific yew	26.2	used baldcypress
ponderosa pine23.7Port-Orford cedar24.3quaking aspen21.8red alder23.1red fir22.5redwood21.2used redwood - young growthSitka spruce20.6southwestern white pine22.5used white pinesubalpine fir19.3subalpine larch - IE19.3used subalpine firsugar pine21.2tanoak36.2walnut31.8western hemlock26.2western nedcedar19.3western vhite pine22.5white alder23.1used red alderwhite fir23.1white spruce23.1white pine22.5used white pine	paper birch	29.9	
Port-Orford cedar24.3quaking aspen21.8red alder23.1red fir22.5redwood21.2used redwood - young growthSitka spruce20.6southwestern white pine22.5used white pinesubalpine fir19.3used subalpine firsubalpine larch - IE19.3used subalpine firsubalpine larch - PN, WC29.9used western larchsugar pine21.221.2tanoak36.2walnut31.8western hemlock26.2western nedcedar19.3western white pine22.5white alder23.1white alder23.1white spruce23.1white spruce23.1white spruce23.1white spruce23.1white spruce23.1white pine22.5used white pine	pinyon pine	31.8	from Chojnacky and Moisen (1993)
quaking aspen21.8red alder23.1red fir22.5redwood21.2used redwood - young growthSitka spruce20.6southwestern white pine22.5used white pinesubalpine fir19.3used subalpine firsubalpine larch - IE19.3used subalpine firsubalpine larch - PN, WC29.9used western larchsugar pine21.2tanoakwalnut31.8western hemlock26.2western larch29.9western white pine22.5white alder23.1white alder23.1white fir23.1white spruce23.1white spruce24.5white spruce25.5white spruce25.5white spruce25.5white sp	ponderosa pine	23.7	
red alder23.1red fir22.5redwood21.2used redwood - young growthSitka spruce20.6southwestern white pine22.5used white pinesubalpine fir19.3used subalpine firsubalpine larch - IE19.3used subalpine firsubalpine larch - PN, WC29.9used western larchsugar pine21.2used western larchsugar pine21.2tanoak36.2walnut31.8western hemlock26.2western redcedar19.3western white pine22.5white alder23.1white fir23.1white spruce23.1white pine22.5used white pine	Port-Orford cedar	24.3	
red fir22.5redwood21.2used redwood - young growthSitka spruce20.6southwestern white pine22.5used white pinesubalpine fir19.3used subalpine firsubalpine larch - IE19.3used subalpine firsubalpine larch - PN, WC29.9used western larchsugar pine21.2tanoak36.2walnut31.8western hemlock26.2western larch29.9western redcedar19.3western white pine22.5white alder23.1white fir23.1white spruce23.1white spruce23.1white spruce23.1white pine22.5used white pine	quaking aspen	21.8	
redwood 21.2 used redwood - young growth Sitka spruce 20.6 southwestern white pine 22.5 used white pine subalpine fir 19.3 subalpine larch - IE 19.3 used subalpine fir subalpine larch - PN, WC 29.9 used western larch sugar pine 21.2 tanoak 36.2 walnut 31.8 western hemlock 26.2 western larch 29.9 western redcedar 19.3 western white pine 22.5 white alder 23.1 white spruce 23.1 white spruce 23.1 white spruce 23.1 white bark pine 22.5 used white pine	red alder	23.1	
Sitka spruce20.6southwestern white pine22.5used white pinesubalpine fir19.3used subalpine firsubalpine larch - IE19.3used subalpine firsubalpine larch - PN, WC29.9used western larchsugar pine21.2tanoak36.2walnut31.8western hemlock26.2western larch29.9western redcedar19.3western white pine22.5white alder23.1white fir23.1white spruce23.1white spruce23.1white bark pine22.5used white pine	red fir	22.5	
southwestern white pine22.5used white pinesubalpine fir19.3used subalpine firsubalpine larch - IE19.3used subalpine firsubalpine larch - PN, WC29.9used western larchsugar pine21.2tanoak36.2walnut31.8western hemlock26.2western larch29.9western redcedar19.3western white pine22.5white alder23.1white fir23.1white spruce23.1white bark pine22.5used white pine23.1	redwood	21.2	used redwood - young growth
subalpine fir19.3subalpine larch - IE19.3used subalpine firsubalpine larch - PN, WC29.9used western larchsugar pine21.2tanoak36.2walnut31.8western hemlock26.2western larch29.9western redcedar19.3western white pine22.5white alder23.1white fir23.1white spruce23.1white bark pine22.5used white pine23.1	Sitka spruce	20.6	
subalpine larch - IE19.3used subalpine firsubalpine larch - PN, WC29.9used western larchsugar pine21.2tanoak36.2walnut31.8western hemlock26.2western larch29.9western redcedar19.3western white pine22.5white alder23.1white spruce23.1white spruce23.1white bark pine22.5used white pine23.1	southwestern white pine	22.5	used white pine
subalpine larch - PN, WC29.9used western larchsugar pine21.2tanoak36.2walnut31.8western hemlock26.2western larch29.9western redcedar19.3western white pine22.5white alder23.1white fir23.1white spruce23.1white bark pine22.5used white pine23.1white bark pine22.5used white pine23.1	subalpine fir	19.3	
sugar pine21.2tanoak36.2walnut31.8western hemlock26.2western larch29.9western redcedar19.3western white pine22.5white alder23.1white fir23.1white spruce23.1white bark pine22.5used white pine23.1	subalpine larch - IE	19.3	used subalpine fir
tanoak36.2walnut31.8western hemlock26.2western larch29.9western redcedar19.3western white pine22.5white alder23.1white fir23.1white spruce23.1white spruce23.1white bark pine22.5used white pine	subalpine larch - PN, WC	29.9	used western larch
walnut31.8western hemlock26.2western larch29.9western redcedar19.3western white pine22.5white alder23.1white fir23.1white spruce23.1white spruce23.1white bark pine22.5used white pine23.1	sugar pine	21.2	
western hemlock26.2western larch29.9western redcedar19.3western white pine22.5white alder23.1used red alderwhite fir23.1white spruce23.1white spruce23.1white bark pine22.5used white pine	tanoak	36.2	
western larch29.9western redcedar19.3western white pine22.5white alder23.1used red alderwhite fir23.1white spruce23.1whitebark pine22.5used white pine	walnut	31.8	
western redcedar19.3western white pine22.5white alder23.1used red alderwhite fir23.1white spruce23.1whitebark pine22.5used white pine	western hemlock	26.2	
western white pine22.5white alder23.1used red alderwhite fir23.1white spruce23.1whitebark pine22.5used white pine	western larch	29.9	
white alder23.1used red alderwhite fir23.1white spruce23.1whitebark pine22.5used white pine	western redcedar	19.3	
white fir23.1white spruce23.1whitebark pine22.5used white pine	western white pine	22.5	
white spruce23.1whitebark pine22.5used white pine	white alder	23.1	used red alder
whitebark pine 22.5 used white pine	white fir	23.1	
whitebark pine 22.5 used white pine	white spruce	23.1	
willow species 22.5	whitebark pine	22.5	used white pine
	willow species	22.5	

Appendix C: Adjusting the Fire Behavior Calculations

This appendix describes two new fire behavior modeling options in FFE-FVS. First, a method of using the modelled fuel loads directly in simulating fire behavior was developed; identifying a standard fuel model is not required. Second, a new procedure for selecting a standard fire behavior fuel model was designed. The primary purpose of the new procedure is to select one or two of the 53 standard fire behavior fuel models (Albini 1976, Anderson 1982, Scott and Burgan 2005).

1. Modeled fuel loads to custom fuel model

A fuel model is a listing of 13 surface fuelbed inputs to the Rothermel surface fire spread model. A standard fuel model is a set of those inputs that is available for generic use in many situations. A custom fuel model is a listing of those inputs developed to represent a specific situation. In this new feature of FFE-FVS, the modeled fuel loads are used to create a custom fuel model for each situation. (In this case, no standard fuel model is actually selected and used, but the use of this option is reported as fm89.) The term "modeled loads" refers to the fuel load in the various fuel pools simulated by FFE-FVS. The fuel pools relevant to fire behavior modeling (spread rate and intensity) are shown in table 1 below. Larger dead and down fuel particles (1000-h timelag class) and duff are not considered in surface or crown fire modeling.

Fuel pool	Description	FFE Fuel Pool Used	
Fuel pool	A		
	The litter fuel pool consists of freshly fallen leaf litter	Litter	
Litter	and dead herbaceous material that is no longer in an		
	upright position.		
1-h timelag dead	The 1-h timelag fuel pool consists of dead and down	025" dead surface fuel	
fuel	fuel particles less than $\frac{1}{4}$ -inch (6 mm) in diameter.		
10 1. time 1.	The 10-h timelag fuel pool consists of dead and down	0.25 - 1" dead surface fuel	
10-h timelag	fuel particles between ¹ / ₄ -inch (6 mm) and 1-inch (25		
dead fuel	mm) in diameter.		
100 h timester	The 100-h timelag fuel pool consists of dead and	1 - 3" dead surface fuel	
100-h timelag	down fuel particles between 1-inch (25 mm) and 3		
dead fuel	inches (75 mm) in diameter.		
	The herbaceous fuel pool is the load of standing live	Herb fuel, as estimated in	
	and dead grass stems and other herbaceous fuel. Both	the All Fuels Report	
Herbaceous fuel	the live and dead standing components are included	*	
	in this fuel pool; the live and dead components are		
	separated at the time of fire behavior simulation.		
	The live woody fuel pool is the foliage of shrubs and	Shrub fuel, as estimated in	
	small trees plus the fine live branchwood of shrubs	the All Fuels Report, plus	
	and small trees. Fine live branchwood is generally	the foliage and half the fine	
Live woody fuel	considered branches less than ¹ / ₄ -inch (6 mm) in	branchwood of all trees less	
, , , , , , , , , , , , , , , , , , ,	diameter.	than 6 ft (by default, this	
		height is adjusted if	
		CanCalc is used.)	
	I		

Table 1. Fuel pools used in creating a custom fire behavior fuel model or selecting a standard fire behavior fuel model.

Fuel model parameter	units	Description
1-h load	t/a	The litter load plus the 1-h timelag dead fuel load as
		described in Table 1.
10-h load	t/a	The 10-h timelag dead fuel load as described in Table 1.
100-h load	t/a	The 100-h timelag dead fuel load as described in Table 1.
Live herbaceous load	t/a	The herbaceous fuel load as described in Table 1.
Live woody load	t/a	The live woody fuel load as described in Table 1.
1-h SAV	1/ft	User-specified SAV ratio of the 1-h timelag class.
		Default = 2000 1/ft. (See FireCalc keyword.)
Herbaceous SAV	1/ft	User-specified SAV ratio of the herbaceous fuel class.
		Default = 1800 1/ft. (See FireCalc keyword.)
Live woody SAV	1/ft	User-specified SAV ratio of the live woody fuel class.
		Default = 1500 1/ft. (See FireCalc keyword.)
Fuel bed depth	Ft	Calculation described below.
Dead fuel extinction moisture	Percent	Calculation described below.
Heat content	BTU/lb	Heat content of the fuel. All but one of the 53 standard
		fuel models uses a value of 8000 BTU/lb.
		Default = 8000 BTU/lb. (See FireCalc keyword.)

The 13 parameters required for a fire behavior fuel model are listed in Table 2 below.

Table 2. Fuel model parameters, their standard English units, and how each is mapped to a fuel pool quantity, a default value, or a calculation.

Of the parameters listed in Table 2, all but two of them are simple to gather from either a user-defined value (a default value for each is specified) or from the loads in various FFE-FVS fuel pools. Fuelbed depth and dead fuel extinction moisture are calculated from other fuelbed quantities as described in the sections below.

1.1 Fuelbed depth

Fuelbed depth is the fuel model parameter, but in reality the fire model is using that depth to compute bulk density and packing ratio; fuelbed depth itself is not a direct input to the Rothermel spread model. Spread rate and intensity is very sensitive to bulk density and packing ratio. In recognition of this, the procedure used in FFE-FVS to estimate fuelbed depth is really designed to estimate a reasonable bulk density—fuelbed depth is computed from that estimate.

Three intermediate quantities are needed in order to compute fuelbed depth for this custom fuel model: total fuel load (*TFL*), fine dead fuel load (*FDFL*) and fine fuel load (*FFL*). Total fuel load is the sum of all five fuel load parameters; fine dead fuel load is just the 1-h load; and fine fuel load is the sum of the 1-h load, herbaceous load, and live woody load parameters. All of these parameters are specified in Table 2. The fuelbed depth and bulk density are directly related:

$$FuelBedDepth = \frac{TFL}{BD} * 0.04591$$

where TFL is the total fuel load (t/ac) and BD is fuelbed bulk density (lb/ft^3). The factor 0.04591 is a unit conversion factor. Bulk density is the weighted-average of live and dead fuel bulk density values:

$$BD = BD_{live} + [WF * (BD_{dead} - BD_{live})]$$

where BD_{live} is the bulk density of the live fuel component of the fuelbed, BD_{dead} is the bulk density of the dead fuel component, and WF is a weighting factor that scales between BD_{live} and BD_{dead} . BD_{live} and BD_{dead} are user-specified constants for each simulation. Default BD_{live} is 0.10 lb/ft³; default BD_{dead} is 0.75 lb/ft³. (These can be adjusted with the FireCalc keyword.) The weighting factor (WF) is calculated as follows:

$$WF = \frac{FDFL}{FFL}$$

where *FDFL* and *FFL* are as defined above (t/ac). In other words, *WF* is the fraction of the fine fuel load that is dead. As used in the equation for *BD*, *WF* simply scales *BD* between the values for the live and dead fuel components. A fuelbed with no live fuel (*WF* = 1) will result in *BD* = *BD*_{dead}. A fuelbed with no fine dead fuel (*WF* = 0) will return $BD = BD_{live}$. A fuelbed for which the fine dead fuel load equals the fine live fuel load (*WF* = 0.5) will return a *BD* that is halfway between the values for *BD*_{live} and *BD*_{dead}.

1.2 Dead fuel extinction moisture content

Dead fuel extinction moisture content (MX_{dead}) is calculated as a function of the fuelbed packing ratio, which itself is simply *BD* divided by particle density. For an assumed particle density value of 32 lb/ft³, MX_{dead} is

$$MX_{dead} = 12 + 480 * \left(\frac{BD}{32}\right)$$

where MX_{dead} is in percent and BD is computed as described in the previous section (lb/ft³).

2. Modeled fuel loads to standard fuel model

The procedure described in section 1 above can be used within FFE-FVS for simulating fire behavior by selecting the appropriate option on the FireCalc keyword. Another option on the FireCalc keyword is to use the "new" fuel model logic. This selects 2 standard fire behavior fuel models using a new set of rules that determine which of the standard fuel models is most similar, based on the modeled fuel loads. Two sets of standard fuel models are available for use: the original 13 fuel models (Albini 1976, Anderson 1982) and a more recently developed set of 40 standard fuel models (Scott and Burgan 2005). Although each of those fuel models is designed to stand alone, some fuel modelers prefer to use them together as a virtual set of 53 fuel models. For that reason, this fuel model selection process is designed to, at the user's discretion, select from the original 13 fuel models, from the 40 fuel models, or from the compiled set of 53 fuel models.

Selecting a standard fuel model from fuel loads modeled by FFE-FVS is a two-step process. The first step is narrowing the range of fuel model choices to a reasonable handful based on three factors: fuel type, climate type (extinction moisture content), and which set of fuel models to choose from. Step two is selecting from the narrowed list based on a departure index of fuelbed characteristics: fine fuel load, characteristic surface-area-to-volume ratio, and bulk density.

2.1 Narrowing the fuel model choices

For any given fuelbed, three pieces of information are used to narrow the list of fuel model choices: major fire-carrying fuel type, climate type, and fuel model set. A set of rules is used to classify the fuelbed into a major fire-carrying fuel type. Climate type is set based on the variant. The fuel model set (13, 40, or 53 fuel models) is a direct input from the user.

2.1.1 Fire-carrying fuel type

This method recognizes four fire-carrying fuel types described in Scott and Burgan (2005): grass (GR), grass-shrub (GS), shrub or timber-understory (SH/TU), and timber litter or slash/blowdown (TL/SB). TL and SB fuel types are combined because both consist only of dead fuel. SH and TU fuel types are combined because both consist of a large fraction of dead fuel with a component of live woody or herbaceous fuel. A simple key is used to classify any fuelbed into one of these fuel types. Three fuelbed characteristics must be calculated to use the key:

LiveFraction is the ratio of live fuel load (grass/herbaceous load plus live woody load to the fine fuel load (*FFL*), which is the live fuel load plus the 1-h timelag class dead fuel load. LiveFraction is a dimensionless ratio, so it does not matter what units are used to calculate the fuel loads as long as the same units ar used for both live fuel load and fine fuel load. LiveFraction is used to determine if the fuelbed should be treated as a dead-fuel-only fuel model or as a fuel model that contains live fuel. LiveFraction theoretically varies between 0.0 (for fuelbeds with no live fuel) and 1.0 (for fuelbeds with only live fuel). In practice, fuelbeds normally have some amount of dead fuel, so the LiveFraction are listed in Table 2.

HerbFraction is the ratio of the herbaceous load to the fine fuel load. HerbFraction is used to determine if a fuelbed that has previously been determined to have a live fuel component is a grass-dominated fuelbed. Like LiveFraction, HerbFraction theoretically varies between 0.0 (for fuelbeds with no herbaceous fuel) and 1.0 (for fuelbeds with only herbaceous fuel). In practice, even pure-grass fuelbeds normally have some amount of dead and down fuel (grass litter, for example), so the HerbFraction normally approaches 1.0 without reaching it. A grass dominated fuelbed will have a high HerbFraction. The fuel load values needed to compute HerbFraction are listed in Table 2.

HerbRatio is the ratio of the herbaceous load to the live woody load. Because it is possible for the herbaceous load to exceed the live woody load, HerbRatio is open-ended with a minimum possible value of 0.0. If the fuelbed has no live woody load, this ratio should be set to 10. Once the above quantities have been computed, the following selection key identifies the fire carrying fuel type. (In the unlikely event that at fuelbed contains no fine fuel load—just 10- and 100-hr timelag class dead particles—then the fuel type is set to TL/SB.)

Fire-carrying Fuel Type Selection Guide

- A. IF **LiveFraction** <= 0.20 THEN the live fraction is inconsequential and a fuel model that does not include any live fuel will be selected (FuelType = TL/SB)
- B. IF LiveFraction > 0.20 THEN the live fraction is significant and a fuel model that contains a live herbaceous or live woody component will be selected (continue with a. below)
 - a. IF HerbFraction >= 0.75 THEN the fuelbed is dominated by herbaceous fuel and a grass-dominated fuel model will be available for selection (FuelType = GR)
 - b. IF **HerbFraction** < 0.75 THEN the fuelbed is not dominated by grass/herbaceous fuel (continue with i. below)
 - i. IF HerbRatio > 2.0 THEN grass/herbaceous component is dominant and fuel type is GR.
 - IF HerbRatio > 0.25 but <= 2.0 THEN both the grass/herbaceous load is enough to require a GS fuel model, but not enough to indicate a GR model, as above (FuelType = GS)

iii. IF HerbRatio <= 0.25 THEN the grass component is not enough to indicate a GS fuel model, and any SH or TU fuel model may be appropriate (FuelType=SH/TU)

2.1.2 Climate Type

Fire behavior fuel models appropriate for humid and sub-humid climates have higher extinction moisture contents than fuel models for arid and semi-arid climates. Therefore, a different set of fuel models is available for selection in the different climate types (with some overlap).

Therefore, two climate types are available:

- Arid to semi-arid climates (low extinction moisture content)
- Humid to sum-humid climates (high extinction moisture content)

This document describes a process in which the the available fuel models are determined from the climate type. Each FFE-FVS variant was assigned to one of these climate types (Table 3).

FFE-FVS Variant	Climate
	type
Northeast (NE)	Humid
Southern (SN)	Humid
Lake States (LS)	Humid
Central States (CS)	Humid
Southeast Alaska (AK)	Humid
Pacific Northwest Coast (PN)	Humid
West Cascades (WC)	Humid
Northern California/Klamath Mountains (NC)	Arid
Western Sierra (WS)	Arid
Inland California and Southern Cascades (CA)	Arid
Southern Oregon and Northeast California (SO)	Arid
Blue Mountains (BM)	Arid
Utah (UT)	Arid
Central Rockies (CR)	Arid
Tetons (TT)	Arid
Central Idaho (CI)	Arid
Eastern Montana (EM)	Arid
Northern Idaho/Inland Empire (NI/IE)	Arid
East Cascades (EC)	Arid
KooKanTL (KT)	Arid

Table 3. Listing of climate type for each FFE-FVS variant. Climate type applies only to fuel modeling and was assigned based on generally expected MX_{dead} values. Arid means semi-arid to arid climate; humid means sub-humid to humid climate.

2.1.3 Fuel model set

The last piece of information needed is which fuel model set to use. Two complete sets are available: the original 13 fuel models (Albini 1976, Anderson 1982) and the 40 fuel models (Scott and Burgan 2005). Although those sets were designed to stand alone, some people prefer to draw from among all 53 fuel models. This method allows three choices for fuel model set:

- Original 13
- 40 fuel models
- All 53 fuel models

		arid climate fuel models				humid climate fuel models			
		GR	GS	SH/TU	TL/SB	GR GS SH/TU TL/SB			
	1	Х	Х			Х	Х		
	2	Х	Х	Х		Х	Х	Х	
	3	Х	Х			Х	Х		
	4			Х				Х	
	5		Х	Х				Х	
Original 13 fuel models	6								
DOL DOL	7			Х			Х	Х	
L L	8				Х				Х
fue	9				Х				Х
13	10			Х				Х	
nal	11				Х				Х
iĝi	12				Х				Х
ō	13				X				X
	GR1	Х			~	Х			
	GR2	X	Х						
	GR3					Х	X		1
	GR4	Х	Х	1	1			1	1
	GR5	~				Х	Х		
	GR5 GR6		1	+	1	X	X	1	
	GR7	Х	1			~	~		
	GR8	^				Х			
	GR9					X			
	GS1	-	v			^		-	
		-	X					-	
	GS2						V		
	GS3	-	_	_			X	-	
	GS4		V	V			X X		
	SH1		X	X			~		
	SH2		Х	Х			V	V	
	SH3	-	_				X	X	
	SH4	-	_	N N			Х	Х	
	SH5	-	_	Х			_		
	SH6							Х	
	SH7			Х					
	SH8							Х	
	SH9							Х	
	TU1			Х				Х	
	TU2							Х	
	TU3			-				Х	
	TU4	1		Х	ļ	ļ			ļ
	TU5			Х					
	TL1	1			Х	ļ			Х
	TL2				Х				Х
	TL3				Х				Х
	TL4				Х				Х
	TL5				Х				Х
6	TL6				Х				Х
dels	TL7				Х				Х
DOC	TL8				Х				Х
el	TL9				Х				Х
) fu	SB1				Х				Х
New 40 fuel models	SB2				Х				Х
ev	SB3				Х				Х
Z	SB4	1	1		Х	1	1		Х

Table 4 below identifies the standard fire behavior fuel models appropriate for each of the four fuel types, for both arid climates and for humid climates.

Table 4.

For example, appropriate fuel models for a grass-dominated fuelbed (GR) in arid climates include fuel models 1, 2, and 3 from the original 13; and GR1, GR2, GR4, and GR7 from the 40 fuel model set. For a grass fuel type in a humid climate, the same original 13 fuel models are available (1, 2, and 3), but the narrowed list from the set of 40 fuel models includes GR1, GR3, GR5, GR6, GR8 and GR9. Depending on the user's preference, the final narrowed list could include fuel models from 1) only the 13 original fuel models, 2) from only the set of 40 fuel models, or 3) from either set of fuel models.

2.2. Selecting a fuel model from the narrowed list

Once the list of potential fuel models has been narrowed from step 1, the next step is to compute a departure index comparing characteristics of the subject fuelbed to characteristics of each of the fuel models on the narrowed list. The departure of the fuelbed from each candidate fuel model is then used to select best one or two fuel models.

2.2.1 Departure index

The departure index is the weighted average of the departure of three separate fuelbed characteristics: characteristic surface area to volume ratio (SAV), fuelbed bulk density (BD), and fine fuel load (FFL) Fine fuel load is the load of live and dead fuel less than 6 mm (0.25 in.) diameter. A normalized departure index is computed for each of those factors. The departure index (*DI*) is the square of the difference between the fuelbed characteristic and the fuel model characteristic, normalized by dividing by the standard deviation of the characteristic across all 53 standard fuel models. The final departure is a weighted average of the three characteristics. Bulk density and SAV are weighted equally (0.25 each); fine fuel load receives twice the weight of SAV and bulk density (0.50). The departure index is therefore defined as follows:

$$DI = 0.25 * \left(\frac{SAV_{fuelbed} - SAV_{fm}}{405.2}\right)^2 + 0.25 * \left(\frac{BD_{fuelbed} - BD_{fm}}{0.3992}\right)^2 + 0.50 * \left(\frac{FFL_{fuelbed} - FFL_{fm}}{3.051}\right)^2$$

where

 SAV_{fuelbed} is the SAV of the subject fuelbed (ft⁻¹) SAV_{fm} is the SAV of the subject standard fuel model (ft⁻¹) 405.2 is the standard deviation of SAV of the 53 standard fuel models (ft⁻¹) BD_{fuelbed} is the bulk density of the subject fuelbed (lb/ft³) BD_{fm} is the bulk density of the subject standard fuel model (lb/ft³) 0.3992 is the standard deviation of the bulk density of the 53 standard fuel models (lb/ft³) FFL_{fuelbed} is the fine fuel load of the subject fuelbed (t/a) FFL_{fm} is the fine fuel load of the subject standard fuel model (t/a) 3.051 is the standard deviation of the fine fuel load of the 53 standard fuel models (t/a)

For each subject fuelbed, the departure index is computed for each of the candidate standard fuel models on the narrowed list from the previous step.

2.2.2 Choosing a single standard fuel model

The single best standard fuel model for the subject fuelbed is the one with the lowest departure index. A departure index value of 0.0 indicates that all three fuel characteristics of the subject fuelbed exactly match one of the standard fuel models. By default, two fuel models will be chosen, unless the StatFuel keyword is used.

2.2.3 Choosing more than one standard fuel model

By default, FFE identifies and uses the two fuel models most similar to the subject fuelbed, along with weighting factors for each fuel model. The departure index described in section 2.2.1 provides a method for doing just that. For selecting two fuel models, the two fuel models with the lowest departure indices are selected. Each of those fuel models is given a weighting factor according to the inverse of its departure.

237

$$WF_x = \frac{\frac{1}{DI_x}}{\frac{1}{DI_x} + \frac{1}{DI_y}}$$

and

$$WF_{y} = \frac{\frac{1}{DI_{y}}}{\frac{1}{DI_{x}} + \frac{1}{DI_{y}}}$$

- /

For example, if DI_x is 25 and DI_y is 75, then WF_x is 0.75 and WF_y is 0.25.

References

- Abbott, D.T. and D.A. Crossley. 1982. Woody litter decomposition following clear-cutting. Ecology 63:35-42.
- Alban, D.H. and J. Pastor. 1993. Decomposition of aspen, spruce, and pine boles on two sites in Minnesota. Can. J. For. Res. 23:1744-1749.
- Alden, Harry A. 1995. Hardwoods of North America. Gen. Tech. Rep. FPL-GTR-83. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 136 pp.
- Anderson, H.E. 1982. Aids to determining fuels models for estimating fire behavior. Gen. Tech. Rep. INT-GTR-122. Ogden, UT: USDA Forest Service, Intermountain Forest and Range Experiment Station. 22 pp.
- Anonymous, 2000. Common stand exam appendices Version 1.4, April 2000. USDA Forest Service. (provided by M. Van Dyck, Fort Collins).
- Arthur, M.A., L.M. Tritton, and T.J. Fahey. 1993. Dead bole mass and nutrients remaining 23 years after clear-felling of a northern hardwood forest. Can. J. For. Res. 23: 1298-1305.
- Barber, B.L. and D.H. VanLear. 1984. Weight loss and nutrient dynamics in decomposing woody loblolly pine logging slash. Soil Sci. Soc. Am. J. 48:906-910.
- Barnes, B.V. and W.H. Wagner, Jr. 2002. Michigan Trees. University of Michigan Press, Ann Arbor, MI.
- **Brown, J.K.** 1978. Weight and density of crowns of Rocky Mountain conifers. Gen. Tech. Rep. INT-197. Ogden, UT: USDA Forest Service, Intermountain Forest and Range Experiment Station. 32 pp. + appendices.
- Brown, J.K. and C.M. Johnston. 1976. Debris Prediction System. USDA Forest Service, Intermountain Forest and Range Experiment Station, Missoula, MT. Fuel Science RWU 2104. 28 pp.
- Brown, J.K., J.A.K. Snell, and D.L. Bunnell. 1977. Handbook for Predicting Slash Weight of Western Conifers. USDA Forest Service, Intermountain Forest and Range Experiment Station. Gen. Tech. Rep. INT-37.
- Brown, P.M., W.D. Shepperd, S.A. Mata and D.L. McClain. 1998. Longevity of windthrown logs in a subalpine forest of central Colorado. Can. J. For. Res. 28:932-936.
- Cain, M. D. 1984. Height of stem-bark char underestimates flame length in prescribed burns. Fire Management Notes. USDA Forest Service. 45: 17-21.
- Chojnacky, D.C. 1992. Estimating volume and biomass for dryland oak species. *In:* Ffolliott, P.F., Gottfried, G.J., Bennett, D.A., Hernandez, C. V.-M., Ortega-Rubio, A. and R.H. Hamre, technical coordinators. Ecology and management of oak and associated woodlands: perspectives in the southwestern United States and northern Mexico: Proceedings; 1992 April 27-30; Sierra Vista, Arizona. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station Gen. Tech. Rep. RM-218. Fort Collins, Colorado, pp. 155-161.
- Chojnacky, D.C., R.A. Mickler, L.S. Heath, and C.W. Woodall. 2004. Estimates of down woody material in eastern US forests. Environmental Management 33: S44-S55.

- **Chojnacky, D.C. and G.G. Moisen.** 1993. Converting wood volume to biomass for pinyon and juniper. Res. Note INT-411. U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Ogden, UT. 5 pp.
- Cooper, S.V., K.E. Nieman and D.W. Roberts. 1991. Forest habitat types of northern Idaho: a second approximation. Gen. Tech. Rep. INT-236. U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Odgen, UT. 143 pp.
- **Crookston, N.L. and A.R. Stage.** 1999. Percent canopy cover and stand structure statistics from the Forest Vegetation Simulator. Gen. Tech. Rep. RMRS-GTR-24. Ogden, UT: U. S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 11 pp.
- **Dixon, G.** 1991. Utah, Tetons and Central Idaho Prognosis geographic variants. Unpublished manusript. <u>http://ftp.fs.fed.us/pub/fmsc/ftp/fvs/docs/overviews/ttvar.txt</u>
- **Everett, R., J. Lehmkuhl, R. Schellhaas, P. Ohlson, K. Keenum, H. Riesterer and D. Spurbeck.** 1999. Snag dynamics in a chronosequence of 26 wildfires on the East Slope of the Cascade Range in Washington State, USA. Int. J. Wildl. Fire 9:223-234.
- **Evert, F.** 1985. Systems of equations for estimating ovendry mass of 18 Canadian tree species. Canadian Forestry Service, Petawawa National Forestry Institute, Information Report PI-X-59. 50 pp.
- Fahey, T.J., J.W. Hughes, M. Pu, and M.A. Arthur. 1988. Root decomposition and nutrient flux following whole-tree harvest of northern hardwood forest. For. Sci. 34:744-768.
- Flint, R. 1925. Fire resistance of Northern Rocky Mountain conifers. Idaho Forester 7: 7-10, 40-43.
- Forest Products Laboratory. 1999. Wood handbook Wood as an engineering material. Gen. Tech. Rep. FPL-GTR-113. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 463 p.

http://www.fpl.fs.fed.us/documnts/FPLGTR/fplgtr113/fplgtr113.htm

- Foster, J.R. and G.E. Lang. 1982. Decomposition of red spruce and balsam fir boles in the White Mountains of New Hampshire. Can. J. For. Res. 12: 617-626.
- Gasser, D.P. 1994. Young growth management of giant sequoia, *In*: P. S. Aune, technical coordinator. Proceedings of the symposium on Giant Sequoia: their place in the ecosystem and society; 1992 June 23-25. Visalia, California. USDA Forest Service Gen. Tech. Rep. PSW-151.
- Grier, C.C., K.J. Elliott and D.G. McCullough. 1992. Biomass distribution and productivity of *Pinus* edulis-Juniperus monosperma woodlands of north-central Arizona. For. Ecol. Mgmt. 50:331-350.
- Gholz, H. L., C. C. Grier, A. G. Campbell, and A.T. Brown. 1979. Equations for estimating biomass and leaf area of plants in the pacific northwest. Res. Pap. 41. Corvallis, OR: Oregon State University, School of Forestry, Forest Research Lab.
- Hardin, J.W., D.J. Leopold, and F.M. White. 2001. Harlow and Harrar's Textbook of Dendrology, 9th ed. McGraw-Hill, NY.
- Harmon, M.E. 1984. Survival of trees after low-intensity surface fires in Great Smoky Mountains National Park. Ecology 65: 796-802.
- Hennon, P.E. and E.M. Loopstra. 1991. Persistence of western hemlock and western redcedar trees 38 years after girdling at Cat Island in southeast Alaska. Research Note PNW-RN-507. Portland, OR: U. S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 5 pp.

- Hennon, P.E., M.H. McClellan, and P. Palkovic. 2002. Comparing deterioration and ecosystem function of decay-resistant and decay-susceptible species of dead trees. *In* Symposium on the Ecology and Management of Dead Wood in Western Forests, 2–4 November 1999, Reno, Nev. *Edited by* W. Laudenslayer, P. Shea, B. Valentine, C. Weatherspoon, and T. Lisle. The Wildlife Society and USDA Forest Service, Pacific Southwest Research Station, Albany, Calif. USDA For. Serv. Gen. Tech. Rep. PSW-GTR-181. pp. 435–444.
- Hessburg, P.F., B.G. Smith, S.D. Kreiter, C.A. Miller, R.B. Salter, C.H. McNicoll, and W.J. Hann. 1999. Historical and current forest and range landscapes in the interior Columbia River basin and portions of the Klamath and Great Basins. Part I: Linking vegetation patterns and landscape vulnerability to potential insect and pathogen disturbances. Gen. Tech. Rep. PNW-GTR-458. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 357 p. (Quigley, Thomas, M., tech. ed.; Interior Columbia Basin Ecosystem Management Project: scientific assessment).
- Jenkins, J.C., D.C. Chojnacky, L.S. Heath, and R.A. Birdsey. 2003. National-scale biomass estimators for United States tree species. For Sci. 49:12-35.
- Jenkins, J.C., D.C. Chojnacky, L.S. Heath, and R.A. Birdsey. 2004. Comprehensive database of diameter-based biomass regressions for North American tree species. Gen. Tech. Rep. NE-319. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station. 45 pp.
- Keane, R.E., S.F. Arno, and J.K. Brown. 1989. FIRESUM—an ecological process model for fire succession in western conifer forests. Gen. Tech. Rep. INT-266. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 76 pp.
- Loomis, R.M. and P.J. Roussopoulos. 1978. Estimating aspen crown fuels in northeastern Minnesota. Res. Pap. NC-156. USDA, Forest Service, North Central Forest Experiment Station. 6 pp.
- Loomis, R.M. and R.W. Blank. 1981. Estimating northern red oak crown component weights in the northeastern United States. Res. Pap. NC-194. USDA, Forest Service, North Central Forest Experiment Station. 9 pp.
- Loomis, R.M., R.E. Phares, and J.S. Crosby. 1966. Estimating foliage and branchwood quantities in shortleaf pine. For. Sci. 12:30-39.
- Ludovici, Zarnoch and Richter. 2002. Modeling in-situ pine root decomposition using data from a 60year chronosequence. CJFR. 32:1675-1684
- Mayer, K.E. and W. F. Laudenslayer, Jr. (eds.). 1988. A Guide to Wildlife Habitats of California. California Department of Forestry and Fire Protection, Sacramento, CA, 166 pp.
- Melillo, J.M., J.D. Aber, and J.F. Muratore. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621-626.
- **Mincemoyer, S.** National Vegetation Classification System (NVCS), Reference database for fuel loadings for the continental U.S. and Alaska, on file at Missoula Fire Lab.
- Minnesota Department of Natural Resources 2003. Field Guide tothe Native Plant Communities of Minnesota: the Laurentian Mixed Forest Province. Ecological Land Classification Program, Minnesota County Biological Survey, and Natural Heritage and Nongame Research Program. MNDNR St. Paul, MN.
- Nelson, T.A. and D.L. Graney. 1996. Deer forage in hardwood stands following thinning and fertilization. Proc. Annu. Conf. Southeast. Assoc. Fish and Wildl. Agencies 50:566-574.

- Ottmar, R.D., E. Alvarado, and R.E. Vihnanek. 1996. Fuel condition classes. Internal report on file with: Pacific Northwest Research Station, Seattle Forestry Sciences Laboratory, 4043 Roosevelt Way N.E., Seattle, WA 98105.
- Ottmar, R.D., M.D. Schaaf, and E. Alvarado. 1996. Smoke considerations for using fire in maintaining healthy forest ecosystems. In: Gen. Tech. Rep. INT-GTR-341. Ogden, UT: U.S. Department of agriculture, Forest Service, Intermountain Research Station: 2-28 p.
- Ottmar, R.D., M.F. Burns, J.N. Hall, and A.D. Hanson. 1993. Consume Users Guide, Version 1.00. Gen. Tech. Rep. PNW-GTR-304. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 118 pp.
- **Ottmar, R.D. and R.E. Vihnanek.** 1999. Stero photo series for quantifying natural fuels. Volume V: midwest red and white pine, northern tallgrass prairie, and mixed oak types in the Central and Lake States. PMS 834. Boise, ID: National Wildfire Coordinating Group, National Interagency Fire Center. 99 p.
- Ottmar, R.D., R.E. Vihnanek, and J.C. Regelbrugge. 2000a. Stereo photo series for quantifying natural fuels. Volume IV: pinyon-juniper, sagebrush, and chaparral types in the Southwestern United States. PMS 833. Boise, ID: National Wildfire Coordinating Group, National Interagency Fire Center. 97 pp.
- **Ottmar, R.D., R.E. Vihnanek, and C.S. Wright**. 2000b. Stereo photo series for quantifying natural fuels. Volume III: Lodgepole pine, quaking aspen, and gambel oak types in the Rocky Mountains. PMS 832. Boise, ID: National Wildfire Coordinating Group, National Interagency Fire Center. 85 pp.
- Ottmar, R.D., R.E. Vihnanek, and C.S. Wright. 2002. Stero photo series for quantifying natural fuels. Volume Va: jack pine in the Lake States. PMS 837. Boise, ID: National Wildfire Coordinating Group, National Interagency Fire Center. 49 p.
- **Penman, J., M. Gytarsky, T. Hiraishi,** [et al.], eds. (2003) Good practice guidance for land use, land use change, and forestry. Hayama, Kanagawa, Japan: Institute for Global Environmental Strategies for the Intergovernmental Panel on Climate Change. 502 p.
- Pfister, R.D., B.L. Kovalchik, S.F. Arno and R.D. Presby. 1977. Forest habitat types of Montana. USDA For. Serv. Gen. Tech. Rep. INT-34. U.S. Department of Agriculture, Forest Service, Intermountain Forest & Range Experiment Station, Ogden, Utah. 174 pp.
- **Regelbrugge, J.C., and D.W. Smith.** 1994. Postfire tree mortality in relation to wildfire severity in mixed oak forests in the blue ridge of Virginia. North. J. Appl. For. 11(3): 90-97.
- Reinhardt, E.D., R.E. Keane and J.K. Brown. 1997. First Order Fire Effects Model: FOFEM 4.0, user's guide. U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Ogden, UT. Gen. Tech. Rep. INT-GTR-344. 65 pp.
- Ruark, G.A. 1987. Estimating crown biomass of shade tolerant and intolerant tree species with a variable allometric ratio. *In:* Ek, Alan R.; Shifley, Stephen R.; Burk Thomas E., eds. Forest growth modelling and prediction: proceedings of the IUFRO conference; 1987 August 23-27; Minneapolis, MN. Society of American Foresters Publication No. 87.12. General Technical Report NC-120. St. Paul, MN Department of Agriculture, Forest Service, North Central Forest Experiment Station.
- Sandberg, D.V., R.D. Ottmar, and G.H. Cushon. 2001. Characterizing fuels in the 21st century. International Journal of Wildland Fire. 10(381-287).
- Sando, R.W. and C.H. Wick. 1972. A method of evaluating crown fuels in forest stands. USDA Forest Service North Central Forest Experiment Station, St. Paul, Minnesota, 10 pp.

- Scott, J.H. and R.E. Burgan. 2005. Standard fire behavior fuel models: a comprehensive set for use with Rothermel's surface fire spread model. Gen. Tech. Rep. RMRS-GTR-153. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 72 p.
- Sharpe, D.M., K. Cromack, Jr., W.C. Johnson, and B.S. Ausmus. 1980. A regional approach to litter dynamics in southern appalachian forests. Can. J. For. Res. 10:395-404.
- Smith, W.B. 1985. Factors and equations to estimate forest biomass in the North Central region. Res. Pap. NC-268. St. Paul, MN: USDA, Forest Service, North Central Forest Experiment Station. 6 pp.
- Smith, J.E. and L.S. Heath. 2002. A model of forest floor carbon biomass for United States forest types. Res. Pap. NE-722. USDA, Forest Service, Northeastern Research Station, Newtown Square, PA, 37 pp.
- Smith, J.E., L.S. Heath, K.E. Skog and R.A. Birdsey. 2006. Methods for calculating forest ecosystem and harvested carbon with standard estimates for forest types of the United States. Gen. Tech. Rep. NE-343. USDA, Forest Service, Northeastern Research Station, Newtown Square, PA. 216 pp.
- Snell, J.A.K. 1979. Preliminary Crown Weight Estimates for Tanoak, Black Oak and Pacific Madrone. USDA Forest Service Res. Note Report PNW-340. Portland, OR, 4 pp.
- Snell, J.A.K. and S.N. Little. 1983. Predicting crown weight and bole volume of five western hardwoods. USDA Forest Service General Technical Report PNW-151, Portland, Oregon, 37 pp.
- Spetich, M.A., S. R. Shifley, G.R. Parker, and F. Ponder. 1997. Ground cover in old-growth forests of the central hardwood region. In: Proceedings of the 11th central hardwood forest conference; 1997 March 23-26; Columbia, MO. Gen. Tech. Rep. NC-188. St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station: 152-160.
- Standish, J.T., G.H. Manning and J.P. Demaerschalk. 1985. Development of biomass equations for British Columbia tree species. Canadian Forestry Service, Pacific Forest Research Centre, Information Report BC-X-264. 48 pp.
- **Tyrrell, L.E. and T.R. Crow.** 1994. Dynamics of dead wood in old-growth hemlock-hardwood forests of northern Wisconsin and northern Michigan. Can. J. For. Res. 24:1672-1683.
- **USDA Forest Products Laboratory.** 1974. Wood Handbook: Wood as an Engineering Material. USDA Forest Service. Agricultural Handbook No. 72.
- **USDA Forest Products Laboratory.** 1999. Wood handbook Wood as an engineering material. Gen. Tech. Rep. FPL-GTR-113. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 463 p.

[http://www.fpl.fs.fed.us/documnts/FPLGTR/fplgtr113/fplgtr113.htm]

- USDA Forest Products Laboratory. 1999. Wood handbook: Wood as an engineering material. Gen. Tech. Rep. FPL-GTR-113. Madison, WI: USDA Forest Service, Forest Products Laboratory, 463 pp.
- Williams, C. K., T. R. Lillybridge, and B. G. Smith. 1990. Forested Plant Associations of the Colville National Forest. U. S. Department of Agriculture, Forest Service, Colville National Forest, Colville, WA. 133 pp.
- Williams, C.K. and T.R. Lillybridge. 1983. Forested plant associations of the Okanogan National Forest. Report R6-Ecol-132b-1983. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Region. 116 pp.

- Williams, C.K., B. Kelly, B. Smith and T. Lillybridge. 1995. Forested plant associations of the Colville National Forest. Gen. Tech. Rep. PNW-GTR-360. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 375 pp.
- Witkamp, Martin. 1966. Decomposition of leaf litter in relation to environment, microflora, and microbial respiration. Ecology 47:194-201.
- Yamasaki, M. and W.B. Leak. (in review). Snag longevity in managed northern hardwoods. U.S. Department of Agriculture, Forest Service.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (202) 720-5964 (voice or TDD). USDA is an equal opportunity provider and employer.